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ABSTRACT

A NON-ITERATIVE METHOD

FOR URBAN TRAFFIC SIGNAL TIMING

BY

Gail Harold Grove

The primary objective of this research was to

improve the basic TRANSYT traffic network signal timing

method by replacing Robertson's time consuming hill-

climbing optimization process with a much faster and

thus less costly running non-iterative split and offset

calculation technique.

The TRANSYT/G splits were obtained by using

differential calculus methods on the network objective

function. This objective function was constructed of

tractable approximations to the stops, uniform and

random delay terms for each link within the network.

The TRANSYT/G offsets were determined from the

Morgan and Little maximal bandwidth offsets modified so

as to include: an improved apportionment of unequal

directional bandwidths, queue growth and decay allow-

ances by means of partial excess green shifts, and an

application to networks.



Gail Harold Grove

Based upon the results of testing two data sets

from Ft. Wayne, Indiana and Washington, D.C., it was

concluded that:

1. This author's split estimation method is

superior to Robertson's in terms of lower

objective function and higher system speed

values. This is true for its use in both

TRANSYT/G for on-line control applications

and in TRANSYT for more accurate off-line

signal timing optimization studies, and,

2. TRANSYT/G's vastly improved computer running

time versus TRANSYT makes it a potential

candidate for an on-line signal timing con-

trol method.

A secondary result of this research was the de-

velopment of a finite traffic queue dispersion model for

use in off-line simulation studies requiring a more

accurate model than the infinite queue version presently

being used in TRANSYT.
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CHAPTER I

INTRODUCTION

1.1 Benefits of Improved Urban Traffic Flow
 

Modern society has become more time conscious in

its day to day activities, especially when commuting be-

tween home, work, and recreation areas. As a result, man

is intolerant of unnecessary delay in his travel. A

significant portion of our population must contend with

driving through urban areas having considerable conges-

tion of vehicles. Thus, one of the primary duties of

a transportation engineer or planner is to improve traffic

flow through our cities by decreasing vehicle travel time.

In light of our energy shortage, it has become

increasingly important to reduce the amount of vehicle

stop and go movement which wastes so much of our dwindling

fuel supply. Virginia engineers (CR1) claim a potential

savings of 125,000 gallons per day for a computer con-

trolled network of 400 signals in washington, D.C.

Based upon sixty cents per gallon, this savings could be

$75,000/day in this area alone.

Increasing traffic densities in urban areas,

limited space for additional roadways, and the escalating

cost of roadway construction make it mandatory to

l



undertake research which contributes to the efficient

utilization of our existing urban roadway facilities.

The research described in this thesis is directed to-

wards increasing the efficient use of our existing urban

street networks, while simultaneously providing improved

service to the drivers. This has been accomplished by

the development of a real-time algorithm for calculating

traffic signal synchronizations which could be used for

on-line computer control of an urban network of signalized

intersections.

1.2 Previous Signal Timing Optimization Procedures

In Hillier's delay-difference method (HIl), he

considered tree or ladder-type networks which could be

simplified into a single link by combining links in

parallel and in series. The objective was the minimiza-

tion of delay in each link where flows were considered

uniform. The delay on a link was assumed to be a func-

tion of the offsets of the two signals at the ends of

this link and is independent of all other network off-

sets. This algorithm calculates the sum of the two

directional delays by varying the integer valued offsets

and selects the offset minimizing the sum of the two

delays. This method appears time consuming for cal-

culating the offset for a single link but has the ad-

vantage that computations increase linearly with the

number of links unlike most other models.



Allsop extended Hillier's work to general non-

simplifiable grid networks (ALl) and later used a

dynamic programming concept which minimizes the total

delay and gives a global minimum (AL2). However, this

technique is too slow to be used for real-time control

of medium sized networks of approximately 50 inter-

sections.

Inose, et a1. (INl) developed an algorithm

applicable only to tree networks in which the common

cycle time is selected as the maximum of the individual,

ideal intersection cycle times assuming uniform arrivals

at isolated intersections. Splits are then selected by

minimization of delay while offsets are calculated as a

function of the heavier of the directional vehicle

volumes on the links connecting each pair of nodes.

Inose, et a1., assume no turning movements and no platoon

dispersion. Any link which would form a closed loop of

links within the network is not used in the offset cal-

culations, thus restricting application to tree networks.

This method is simple and effective provided that there

are very few turning movements. It is unlikely that the

total delay is minimized.

SIGOP (TRl) was the first systematic signal timing

optimization program applicable to a general network.

The length of each split phase for a signal is set pro-

portional to the total or critical flow in each phase.



The total flow was considered to be the sum over all

lanes and approaches while the critical flow was the

maximum noted per lane through the given node. The

optimization procedure determines the offset differences

for each link and optimal offsets for the entire net-

work. The objective function is’a linear combination

of stops and delays. An n by n matrix inversion is

required, where n equals the number of nodes. Two

deficiencies are apparent in SIGOP. First, the offset

optimization procedure produces a local optimum rather

than a global optimum. Second, since the stochastic

effects on each link are ignored, the lower bound on

cycle time is selected as the optimum especially when-

ever the capacities of the signalized intersections are

approached.

Shortly, thereafter, Robertson (R01) developed

a more sophisticated model and more effective optimiza-

tion process called TRANSYT. A detailed description will

be found in Chapter II. TRANSYT has been field tested

in London and Glasgow with favorable results.

Kaplan and Powers (KPl) presented a comparison

of SIGOP and TRANSYT as applied in San Jose and Glasgow;

each area having high signal density. They concluded

that:

1. There is no measurable difference between

SIGOP and TRANSYT for short cycle times,



2. Double cycled TRANSYT produced travel times

which were 5 percent less than SIGOP and single cycled

TRANSYT in the Glasgow network, and

3. The TRANSYT model appeared more accurate in

predicting travel times.

For more details on these earlier algorithms,

Munjal and Hsu's comparative study (MHl) is an excellent

summary of the state-of-the-art circa 1972. Since this

time, several other signal timing methods have appeared

in the literature.

Messer et a1. (MWl) have applied a variable

sequence, multiphase, progression optimization program to

the real-time control of a Dallas, Texas arterial. Good

progressions were obtained and no apparent problems due

to variable phase sequencingwere experienced in this

pilot study.

Gartner (GAl) confirmed by direct field observa-

tions on a major Toronto arterial that his microscopic

flow pattern analysis reduced traffic delay.

Gartner and Little (GL1) presented a dynamic

programming approach to obtain the splits and offsets of

a general network. They extended Hillier's combination

method to general networks. Actual field evaluations

were being planned at the time of their article.

Lieberman and WOo's SIGOP II (LWl) is composed

of a flow model and a dynamic programming methodology



which minimizes an objective function composed of vehicle

delay, stops, and excess queue length. Turning movements,

lane channelization, multiphase control, signal split

constraints, platoon disperson (from TRANSYT), and short

term volume variations are included. SIGOP II is claimed

to possess computational speed which varies linearly with

the number of nodes and is somewhat slower than SIGOP but

faster than TRANSYT. However, it appears that program

tapes and the field validation are incomplete at this

time.

Even though this review of previous contributions

was brief, it should be noted that a vast amount of time

and effort has been expended by many researchers and that

many volumes are devoted to their results. However, one

should proceed onward to the preview of this author's

work.

1.3 Preview

Chapter II describes the objective function, the

traffic flow model and the optimization procedure of the

existing TRANSYT computer program. The variables utilized

in the optimization of the objective function are the

individual signal splits and the offsets between the

signals comprising the network. Appendix A contains a

derivation of the dispersion of traffic queues and an

extension to finite queue lengths.



The main body of this author's research comprises

Chapters III and V. Chapter III is a detailed deriva-

tion of the near-optimum split calculation employed in

TRANSYT/G. Chapter IV is a brief description of arterial

offsets, while Chapter V details the TRANSYT/G offset

method. The offsets are determined from an extension of

the Morgan-Little maximal bandwidth concept. Both splits

and offsets are calculated in a non-iterative fashion,

thus vastly reducing the computer run time and cost as

compared to the existing TRANSYT model.

Portions of the Ft. Wayne, Indiana and the Wash-

ington, D.C. downtown areas were selected for a comparison

of the improved TRANSYT/G program versus the TRANSYT pro-

gram. Chapter VI contains the two network applications

while Appendix B includes general computer program flow

charts and listings.

Conclusions and suggested future research ob-

jectives are included in Chapter VII.



CHAPTER II

THE TRANSYT MODEL

The mathematical model characterizing traffic

flow is composed of a set of expressions or equations

representing the traffic dynamics and its ultimate con-

trol based upon the network's physical configuration and

the behavior of the traffic operating within its

boundaries.

For control purposes, we desire a model capable

of providing information of significant detail for the

calculation of the selected traffic signal timing vari-

ables. However, it must not be so detailed that it is

incapable of real-time computer speeds encountered in

on-line control situations.

The Traffic Network Study Tool (TRANSYT) de-

veloped by Robertson (R01, R02) is a method of optimizing

traffic signal settings using an off-line computer model

of the known network system conditions. It is composed

of three main elements:

1. A network objective function for ranking

different sets of signal settings,



2. A traffic flow model used solely for gen-

erating avalue of the objective function for a given set

of signal timings, vehicle flows and network geometry,

and

3. A hill-climbing optimization process that

alters the signal settings and determines if the ob-

jective function has been reduced or not.

Before proceeding further on this subject some

terminology must be defined. In an urban traffic net-

work which is being modeled, each signalized inter-

section will be represented by a node and each signifi-

cant directional traffic stream leading into an inter-

section will be represented by a link. This concept of

a link applies to special bus-only lanes, pedestrian

crossings and heavy flow left turn lanes in addition to

the normal through traffic lanes. In a network, one

traffic signal is usually chosen as the reference sig-

nal. Then the phasing.of any other network signal is de-

termined by the time interval between the centers of the

main street reds of the two signals under consideration.

This interval ranges from zero up to the cycle length

and is called the offset. The other parameter of in-

terest is the split, defined as the ratio of the main

street green and amber time intervals to the cycle length.

The synchronization problem requires the specification
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of a split and offset for each signal in the network such

that some predetermined objective will be achieved.

2.1 Objective Function
 

In TRANSYT, Robertson defined the overall net-

work function, F, as

F = jgl Fj = jgl [Ksj + Wj(Dj + Rj)J, (2.1)

where 83. = the vehicle stops per second on the jth link,

K = the stop penalty common to all links in

the network,

Dj = the vehicular uniform delay on the jth link,

Rj = the vehicular random delay on the jth link,

Wj = the delay weighting factor on the jth link,

Fj = the objective function for the jth link, and

2. = the number of links comprising the network.

A typical urban traffic stream is composed of

many different types of vehicles, such as automobiles,

various sized trucks, buses and pedestrians, each with

their own average speeds. Thus, each link j is allowed

to have its own delay weighting factor Wj' In general,

most links are assigned unity weighting. However, it

may be desirable to have non-unity delay weighting on

certain links such as those containing bus-only traffic.

By use of the objective function different sets

of signal timings, in this case splits and offsets, can
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now be compared. The set of timings having the smallest

objective function is considered to be the best of those

sets investigated.

If a network having n signalized intersections

and 2 links, the stop penalty K and the link delay

weighting factors W., j = l,...,£ are given then the

3

stops, Sj' the uniform and random delays, Dj and Rj

respectively, for all 2 links can be determined from a

traffic flow model of the urban traffic network.

2.2 The TRANSYT Flow Model
 

The major characteristics of vehicular flow in a

signalized network are represented in the TRANSYT flow

model.

2.2.1 Basic Assumptions
 

The basic assumptions of the TRANSYT flow model

are:

1. All major intersections of the network have

traffic signals or are controlled by a priority rule,

2. All of the signals in the network have a

common cycle time or one-half of it, commonly referred

to as 'double cycling,‘

3. Traffic enters the network at a constant

Specified rate on each approach, and

4. The percentage of vehicle volumes turning

at each signalized intersection remains constant through-

out the entire cycle.
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2.2.2 Flow Histograms

All traffic behavior calculations required for

the stops and delay terms are made by manipulation of

three types of histograms and representation of indi-

vidual vehicles is not required. These three flow

histograms are:

1. Arrival - the traffic flow histogram that

would arrive at the stop line

at the end of the link if it

were not impeded by a signal at

the stop line,

2. Departure - the traffic flow histogram that

departs from the stop line of a

link, and

3. Saturation-—the traffic flow histogram that

would leave the stop line if

there-were enough flow to exceed

the intersection's capacity.

The actual flow histogram for any link during any one

cycle will vary from the average histogram due to the

random nature of individual vehicles and is accounted

for in the objective function's random delay term des-

cribed later in this chapter. The general histogram form

is illustrated in Figure 2.1 and.is significantly more

representative than uniform models such as Figure 2.2.
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2.2.3 Traffic Queues
 

Before proceeding further, several definitions

are required for the development of the basic queueing

process used in the TRANSYT flow model. These defini-

h
tions for the jt link are:

ij(t) = the arrival flow rate from the arrival

histogram (vehicles/hour),

oj(t) = the departure flow rate from the depar-

ture histogram (vehicles/hour),

Gj = the green interval saturation flow rate

from the saturation histogram (vehicles/

hour),

Ij(t) = the cumulative number of arrivals at

time t,

Oj(t) = the cumulative number of departures at

time t,

Qj(t) = the queue length at time t,

tgj = the start of the green interval,

taj = the start of the amber interval,

trj = the start of the red interval,

tej = the time when the queue length decreases

to zero, and

C = the cycle length.

The arrival flow rate for each link during each

cycle length spans three different time intervals, namely;

the green, the amber, and the red time intervals. Such
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a representation is illustrated in Figure 2.3, covering

two cycle lengths.

The basic cumulative arrival and departure re-

lations are defined as:

I.(t) f i.(T)dT, (2.2)

J rj

and

t

Oj(t) ft O.(T)dT, (2.3)

rj 3

where t . < t < t . + C.

r3 — - r3

This traffic flow model assumes that the

arrivals are periodic, that is; the same arrival histo-

gram is repeated cycle after cycle, thus

ij(t) = ij(t - DC), n = 1,2,... 0 (204)

Several important requirements of this flow

model are that the signalized intersection must not be

saturated, namely;

t .+C

. o + _ O o + - o o .Ij(trj C) ftrj 13(r)dr < (tr) C th)GJ,(2 5)

and that the arrival rate during the green interval does

not equal or exceed the saturation flow,

'. t < . f . < < . + . .iJ( ) G3 or tgj _ t ta] C (2 6)

Based upon these assumptions, requirements and-Figure

2.4, it can be shown that the vehicle flow.entering a
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link also exits that link during a cycle length. Thus,

since the queue must clear prior to the end of the green

interval, we have

Oj(trj + C) = Ij(trj + C). (2.7)

In a similar manner, all arrivals that have accumulated

from the start of the red interval up until the time when

the queue decays to zero must depart during the time from

the start of the green to the same point when the queue

clears. Thus,

Oj(tej) = Ij(tej) . (2.8)

During the remainder of the cycle when there is no queue,

the departures equal the arrivals at each point in time,

i.e.,

oj(t) = 1j(t) for tej : t < trj + C, (2.9)

or

r3 3 + C) - Ij(tej)(2.10)

Over the total cycle length, the departure rate can be

summarized as

0 for t . < t < t .

r3 — 93

' t = O I o OoJ( ) GJ for tgj i t < teJ (2 11)

i 0 t f t o < t < O + OJ( ) or e) _ tr] C
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The model requires the treatment of each link

and its associated flow histograms for two successive

cycle lengths before proceeding to the next link. The

first cycle allows for proper development of queues and

flow histograms while the second cycle length is used

for the calculation of the stops and delays for the ob-

jective function. Due to the previously mentioned un-

saturated flow assumptions and requirements, the queues

will decay to zero and remain zero only once during any

one green time interval. Thus the queue is always zero

at ta" This is illustrated in Figure 2.4 and is re-

3

presented mathematically by

Ij (t) trjgtgtgj

Qj(t) = Ij(t) — oj(t) = Ij(t)-(t-tgj)Gj for tgjf-titej

0 tej_<_t<trj+c

(2.12)

The time at which a queue clears, tej' can be determined

from

°j‘te’ = Ij‘te’ ‘ (tej ' tngGj = 0

for t . < t . < t . + . .9] e3 a] C (2 13)

2.2.4 Platoon Dispersion

The traffic flow into a link is obtained by using

the appropriate fraction of the departure histograms
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representing the turning movement flows from the up-

stream feeder links. The on-off nature of traffic sig-

nal control tends to create moving queues or platoons

of vehicles which tend to disperse as they travel away

from the traffic signal; this dispersion being due to

different individual vehicle speeds.

Based upon his field work, Robertson developed

the following empirical platoon dispersion relation for

h
the jt link.

ij (k + t) = Aoj(k) + (1 - A)ij(k - 1 + t) (2.14)

subject to Aij(k - l + t) Z l,

where oj(k) = the departure flow magnitude of an up-

h
stream link during the kt time interval,

ij(k + t) = the arrival flow magnitude during the

(k + t) time interval,

t = 0.8E(T), (2.15)

A = _____1 , (2.16)
> 1 + 0.5t

and E(T) = the expected travel time.

The side constraint on Robertson's equation is

required to ensure that the magnitude of flow will de-

crease as the platoon disperses. If this constraint were

violated the sequence {ij(-)} would be monotonically

increasing and thus would not be an accurate representa-

tion of the actual platoon dispersion phenomenon.
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The smoothing factor A is bounded above and

below by l and 0 respectively and decreases in a nega-

tive exponential manner as the travel time, t increases

from zero. Thus, this so-called exponential smoothing

is a function of the travel time down a link.

. A statistical derivation of traffic queues and

their dispersion is presented in detail in Appendix A.

As an example of platoon dispersion, consider a

portion of an arterial represented by the node-link dia-

gram of Figure 2.5. For the following case:

il(t) = 1000 vehicles/hour, for all t

G1 = 2000 vehicles/hour

t = 0 seconds

r1

t = 25 seconds

91

tel = 50 seconds

C = 60 seconds

t = 5, 10, and 20 seconds.

The 01(t) departure pattern leaving stopline l and the

i2(t) arrival histogram appearing at the downstream

stopline 2 were calculated and plotted in Figure 2.6.

It should be noted that as the travel time, t, in-

creases, the maximum amplitude of 12(t) decreases and

a longer time is required for i2(t) to decay to zero.

This dispersion mechanism is a basic part of the

TRANSYT flow model.
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2.2.5 Stops, Uniform and Random Delays

Next, the general stops and delay relations can

be written from the arrival queue length graphs illus-

trated in Figure 2.4.

h link ofThe vehicle stops per second on the jt

the traffic network can be determined by considering the

stops due to the vehicle queueing during a time interval

dt to be ij(t)dt. Thus the total vehicle stops per

h
cycle for the jt link is the area under the arrivals

graph of Figure 2.4, namely;

t .

— e] . —

So - o d - o o o oJ ftrj 13(t) t 13(te3) (2 17)

By use of equations 2.8-2.11, the stops equation can be

written as

t .

= = e]S. O(tej) ftrj oj(t)dt

Gj(tej - tgj). (2.18)

Similarly, the delay due to vehicle queueing

during this same time interval dt is Qj(t)dt, thus

giving the total uniform delay per cycle for the jth

link as

te.

D- = f 3 Q-(tldt.
(2.19,

J trj 3

Then using the definitions of queue length and cumulative

arrivals,
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t . ' t .

93 e) _ _
ft . Ij(t)dt + It . [Ij(t) (t tgj)GdetD. =

3 r3 9:

= [tej [ft i (T)dTJdt - G (t - t )2/2 (2 20)

trj trj j j ej 93 ° °

All TRANSYT flow calculations are made on the

basis of average flow rates and queues that are expected

to occur during each cycle unit. However, in real life

situations, the random behavior of individual vehicles

will tend to fluctuate about the average levels of the

flow histograms. Robertson (R01) observed in his field

studies that a cycle time which is long enough to clear

a queue during one green time period for uniform arrivals

may not be sufficient for complete queue decay for random

arrivals during every cycle. Thus an extra delay term,

called the random delay, Rj' solely dependent upon the

h
degree of saturation at the stop line on the jt link,

was added to the link's objective function, namely:

 

 

 

<ij 2

Rj ' 4(1 - xj) ' . (2°21)

where the jth link's degree of saturation, Xj, is given

by

t .+C

t . + C - . . '( r3 tgleJ 93

0.(t . + C)

= J r]
(2.22)

t . + C - t . G.

( r] 93) J
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This also can be written in terms of the cumulative

arrivals as

I t.+

x.= 3‘ r1cmt )G.+ "' . .

3 (r3 9: 3

(2.23)

It should be noted that this saturation term is bounded

within the unit interval, [0,1]. In a subsequent re-

vision of TRANSYT, Robertson (R02) presented a slightly

more complex representation of the random delay, namely:

2

R. =\//{2(1 14Xj) +ijXj}2 + :1 )

3 “‘3' “‘3' '“j‘ “‘3'

2 — . + ,X.(1 X3) mJ 1

 

 
 

 

 

nu - m.) }' (2'24)
3 3

where

20
m. = (2.25)

. + C - t . . T3 (tr] g:’)G:’ 0

To = the specified length of allowed over-

saturation time in minutes.

This random delay employed in TRANSYT overcomes the dis-

continuity at the point of 100% saturation, Xj = l, and

the negative random delay values in the oversaturation

region, Xj > 1. Both the original TRANSYT random delay

model and that used in its revision are illustrated in

Table 2.1 and Figure 2.7 for comparison.

2.2.6 Dummy Links
 

In a network comprised of links forming closed

loops, it is necessary to estimate some departure



Table 2.1 Random Delay Values
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X. OriginaL Revised TRANSYT

3 TRANSYT R.

Rj mj = 0.0001 mj = 0.001 ij = 0.01 mj = 0.1

0.0 0.000 0.000 0.000 0.000 0.000

0.1 0.003 0.003 0.003 0.003 0.003

0.2 0.013 0.012 0.012 0.012 0.012

0.3 0.032 0.032 0.032 0.032 0.031

0.4 0.067 0.067 0.067 0.066 0.064

0.5 0.125 0.125 0.125 0.124 0.117

.6 0.225 0.225 0.225 0.222 0.200

.7 0.408 0.408 0.407 0.398 0.333

.8 0.800 0.800 0.795 0.756 0.546

.9 2.025 2.020 1.977 1.671 0.878

.0 in 49.751 15.565 4.762 1.365

.1 -3.025 1002.493 102.429 12.001 2.007

.2 -l.800. 2001.249 201.239 21.155 2.769

.3 -l.408 3000.833 300.830 30.799 3.610

.4 -1.225 4000.625 400.623 40.608 4.501

.5 -1.125 5000.500 500.499 50.490 5.423

1.6 -l.067 6000.417 600.416 60.410 6.365

. -1.032 7000.357 700.357 70.353 7.320

1.8 -1.012 8000.312 800.312 80.309 8.285

. -1.003 9000.278 800.278 90.275 9.256

2.0 -1.000 10000.250 1000.250 100.248 10.233     
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Figure 2.7 Random Delay Versus Normalized Saturation
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patterns since each genuine link is processed only once

in calculating the objective function. A so-called

"dummy link" must be introduced in parallel with a genuine

link to break any set of links forming a closed loopa This

inserted dummy link has the same total flow as the genuine

link but its arrival histogram is assumed to be uniform

over the cycle length. The arrival pattern for the next

downstream link in the loop is calculated from the

appropriate percentage of the dummy link's departure

pattern. Then the flow histograms for the remaining

links comprising the closed loop are calculated in the

normal solution sequence. The rules for dummy link in-

clusion are:

1. Every closed loop of links must be broken by

a dummy link.

2. One dummy link can be used to break several

closed loops provided that the loops have at

least one common link.

3. The dummy link should be introduced at a node

within a loop at which the degree of satura-

tion of the corresponding link is high or the

volume flow rate entering the downstream link

is low.

4. Use as few dummy links as possible.
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2.3 Optimization Procedure

The optimization portion of TRANSYT makes use of

a special search procedure developed by Robertson to

accomplish a hill-climbing process.

In Great Britain, where TRANSYT was conceived,

most existing traffic signal equipment use 50 step control

mechanisms. Thus Robertson's optimization increment

sizes are based upon the 50 step cycles where each in-

crement must be less than one half the number of steps

in the cycle.

The hill-climbing process takes the first incre-

ment in the increment list and adjusts the offset of the

first intersection or node in the node list for a local

minimum of the network's objective functions. The offset

of the second node is then adjusted in a similar manner

and so on until the end of the node list is reached. At

this point, the second increment is used and each node is

reoptimized in turn. The process is considered complete

when all the nodes have been optimized for all of the in-

crements.

Robertson suggests the following two increment lists

for a 50 step cycle:

a) 7, 20, 7, 20, 7, 1, l for offsets and

b) 7, 20, -l, 7, 20, l, -l, l for splits and off-

sets .
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The 7 step increments are used to find an approx-

imate local minimum while the 20 step increments avoid

getting trapped in that minimum. The positive unity

steps are for fine-tuning the approximate offsets while

the -1 steps allow adjustments of the splits.

If the number of steps in the cycle length differ

from 50, then the 7 and 20 step increments should be ad-

justed proportionately.

Although Robertson's optimization procedure appears

to give very good results, it has several drawbacks.

First of all, the optimization process may produce a local

Optimum instead of the desired global optimum. The prob-

lem being that the objective function is not necessarily

convex for the general case. A function F defined on

an open interval (a,b) is said to be convex if for each

x,y 6 (a,b) and each A, 0 g A i l, we have

F(lx + (1 - l)y) : AF(x) + (1 - l)F(y) (2.26)

This definition and Figure 2.8 illustrates the concept

of convexity.

The second drawback to Robertson's hill-climbing

process is that the number of computations involved in-

crease in the order of the square of the number of inter-

sections and thus restricts its use to off-line applica-

tions.



Figure 2.8 Convex and Non-Convex Objective Functions
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CHAPTER III

TRANSYT/G NEAR-OPTIMUM SPLIT CALCULATION

The most widely known method of selecting a

reasonably good split for a signalized intersection is

that attributed to Webster, first published in his

classic paper in 1958 (WEl). A very good summary and

comparative evaluation of this technique was presented

by Gerlough and Wagner in 1967 for an isolated inter-

section (GWl) and in 1969 for an arterial (WAl).

Wagner et al. state that any systematic approach for

determining the split must be at least as well defined

as Webster's. Webster used a combination of Poisson

arrival model theory and computer simulation in order to

deduce his formula for average delay per vehicle at a

signalized intersection. From this, he derived ex-

pressions for optimum cycle length and split that min—

th

 

 

imized his total delay relation at the i intersection.

These were:

_ 1.5L + 5

C0 - n , (3.1)

l - Z Y

i=1 3
and

5

3i "' js ' (302)

IA ' 1.5LA ‘ fi-
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where C = the optimum cycle length,

0

rA = the effective red for the primary phase A,

L = the total lost time per cycle,

LA = the lost time for the primary phase A,

Yj = the ratio of maximum directional flow to

saturation flow for phase j, and

n = the number of signal phases.

It should be noted that the lost time includes the effect

of the starting delay and reduced flow during the amber

time. Webster's or some refinement of it is rapidly

becoming the standard.

Before proceeding, several observations concerning

Webster's split for a two-phase signal can be made for

various levels of traffic flow density (GWl). These are:

1. For light flow - the split can be varied

greatly from the optimum without producing an oversatura-

tion effect on either phase, and

2. For medium flow - the split can be varied

somewhat from the optimum before approaching oversatura-

tion, and

3. For heavy flow - only a small variation in

split can cause oversaturation.

The TRANSYT program contains an optional pro-

cedure for determining allocation of green times for two

or multiphase signals based upon equalization of satura-

tion on all phases. This technique is a refinement of
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Webster's and appears to give a good initial starting

point for iterative optimization schemes.

The philosophy and objective of this author's

research was to develop a non-iterative signal timing

algorithm. Thus, a near-optimum set of splits will be

determined for our general traffic network on a single

pass through the TRANSYT traffic flow model. The gen-

eral method employed by this author was to write the ob-

jective function in terms of the network signal splits,

and then calculate the optimum split set by calculus

methods.

In developing these signal split relations, only

two phase single cycle signals will be considered in the

first portion of this chapter thus preventing the deriva-

tions from becoming overly complex and obscuring the

technique at hand. Later, this method will be extended

to the double cycling and multiphase cases.

3.1 Split Bounds
 

Of course, the loosest set of bounds on the sig-

nal split normalized with respect to the cycle length,

would be 0 < si< 1. System requirements however,

dictate a somewhat tighter set; for example when consider-

ing the minimum green time per phase, we have:

5A 5B
o < ——-£_s i l - C— < 1, (3.3)
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= minimum green time in cycle units for the

primary phase (IPA) ,

gB = minimum green time in cycle units for the

secondary phase 6p 3’ ,

C = cycle length in cycle units.

A minimum green time is required to allow any queues to

discharge and for pedestrians to cross the street. When

considering the cumulative arrivals and departures at

any given intersection, some additional quantities such

as the ratio of arrivals to saturation flows can be intro-

duced into the overall bounds on the split. These

quantities may or may not be a tighter restriction, de-

pending upon the given set of system conditions, thus use

of minimum-maximum functions are required.

As previously shown in Figure 2.4, the total de-

partures during the non-red time must equal the total

arrivals during the entire cycle in order for the queue

to clear prior to the start of the next red time interval.

For link j, we have

trj+C trj+C

I.(t . + C) =- f o.(t)dt = f o.(t)dt
t . .3 r3 r] J tgJ J

trj-I-C

i It dot . (3.4)

93'

The split for a two-phase signal is the ratio

(bf the primary phase A green and amber time intervals to
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the cycle length (cross-hatched in Figure 3.1). From

this we have:

si = (trA + C - tgA)/C

tgA = trB (3.5)

trA = th

Using the definition for the split from above, the phase

cumulative arrival relations for Figure 3.1 become:

I (tA +C)<G(t +C-t)=GA(Si)C,
rA '— A rA 9A

(3.6)

I (t
+ ..

B C) < G (t

rB — B rB th) = GB” " Si)c°

Then solving for the split, si, and combining produces

the following bounds:

  

I (t + C) I (t + C)

A rA _ B rB
0 < —§AC 1: 3i i 1 CBC < l. (3.7)

As the link becomes more saturated, these bounds on the

split become tighter.

In the computerized TRANSYT traffic flow model,

the split is restricted to be an integer belonging to

the closed interval [0,C], where C is the cycle length

in cycle units. Therefore, the previously discussed

normalized split, 81, is scalar transformed to the

integer split, si, by:

s. = C°si. (3.8)
l
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The unnormalized upper and lower bounds may not result

in an integer value and thus must be restricted as such.

Specifically, each real valued bound having a non-zero

decimal part must be rounded up to the next highest in-

teger. This may be accomplished by the use of two well

defined mathematical functions, namely the 'greatest

integer' and the 'signum' functions:

[hj] E the greatest integer less than or equal

to 13.,

J

and

+1 if hj > 0

sgn(hj) : 0 if hj = 0 (3.9)

-1 1f hj < 0 .

We then define

 

E. e E. + s h. - h. 3.10

where

_ I.(t.+c)

h. = 3 .51 , j = A,B. (3.11)
J Gj

Since we are setting up integer bounds on an integer

valued split parameter, Ei, where the hj are real, the

rounding of the hj values must be done such that the

kj values will be within the hj bounds. That is)

hA 5_kA 5.31.: c - kB‘: 0 - hB . (3.12)

From this set of split bounds, it is required that
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z E. < c (3.13)

i 3 “

to insure a valid split value. In the case of equality,

kA = 51 = c - RE, the split is uniquely determined by its

bounds.

By denoting the sum of the minimum green plus

amber time intervals for the jth phase as gj, we have

the bounds on the integer split for the intersection of

two one-way streets as:

max(gA,k ) 3 si 1 C - max(gB,kB). (3.14)

A

For the intersection of two bidirectional streets,

the summation of the ratios of cumulative arrivals to the

saturation flow rates per phase will govern the bounds

calculation, thus

2 max(g.,k.) < E. < C - Z max(g.,k.), (3.15)

A 9’8

where the link subscript j = l,2,...,£.

3.2 Tractable Model of Stops and Uniform Delay

The least complicated signalized intersection

that may occur in a general network is the corner inter-

section composed of two one-way streets, each having a

uniform arrival rate as in Figure 3.2. After one com-

plete cycle of simulation, the queues will have had suf-

ficient time to develop properly. The general delay and

stops equations from Section 2.2 can then be written
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easily from the rectangular area under the arrival rate

curve and the triangular area under the queue length

curve of Figure 3.2. Thus, since the input is constant

at INj over the whole cycle length, we have for link

(
D II

t .

e3 -
ft . 1j(t)dt IN. t . - t . = G. t . - t . , 3.16r] 3( 8 r3) 3( e (33) ( )

J 3

t . t .

e] 93 _
ft . Qj(t)dt INjft . (t trj)dt

r3 I]

C II

t .

_ - e3 -
(G. INj)ft . (t te.)dt

J g] 3

l 2 l 2
= -IN. t . - t . + — G. ~ IN. t . - t . 3.17

2 3‘ 9] r3) 2 ( J 3" e) 93) ( )

where the time at which the queue clears is

IN.

. = t o + t - - t u o 3018tea 9] ( 93 r3)(§;l=—Ifi;) ( )

Substitution back into the stop and delay equations re-

sults in

. = t . - t . . 3.19

S] ( 93 r3)°3 ( )

and

1 2
0. = —»t - t . , 3.20

J 2‘ 9) r3) C3 ( )

where

0. IN.

c. = _J_____l . (3.21)
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Most of the intersections comprising a general

urban traffic network have many links with non-uniform

arrival rates, thus the areas under the arrivals, ij(t),

and queue length, Qj(t), curves (Figure 2.4) represent-

ing the stops and delay are not rectangular and tri-

angular respectively as in the uniform case (Figure 3.2).

Thus, by using the stops and delay equations based upon

uniform arrivals, some degree of error will be introduced

into the solution of the general network. But, since the

goal is to achieve only near-optimum signal settings in

a trade-off for real time operation, these uniform arrival

stops and delay equations will be accepted as an accurate

enough model.

3.3 Tractable Model of Random Delay

The revised TRANSYT random delay model described

in Section 2.2.5 can be rewritten as:

 

Rj mj(4_mj).2 1 (2 mj)Xj+Xj

- 2 + (2 - mj)Xj}. (3.22)

 

In order to write the random delay in terms of

the normalized split, 81, for the ith intersection, we

recall equation 2.23 from Chapter II for the degree of

h
saturation of the jt link. For a two phase signal this

relation becomes:
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Ij(tr. + C) E1. .

G s.C = s. for 3 E vA

.1 l

X. = (3.23)

I.(t . + C) h

63(1r3 s‘YC l-s for j 6 QB’
j i i

I.(tr. + C)

where h. s 1' Tl . (3.24)
3 jS

Now the derivative with respect to the split can

be derived as:

 

 

 

 

dR. 3R. 3X.

—1 = ——J-a O

dsi Xj si

1 2X3 ' (Z'm-) 3X.

1- 2- . X.+X.

where

r-I (t + C) -h -x2
i r' _ ' = ' .

2; - h. for J 6 (FA

G.C S. s. 3

ax. 3 1 1

8 =l
(3.26)

31
2

I~(tr- + C) h. x.

LGjC(1 - Si) (1-31) j 

It is observed that this form of the random delay and its

derivative with respect to the normalized split leads to

a very complicated form when attempting to derive the

near-optimum split calculation equations. With the use

of an appropriate approximation to the random delay

derivative, a tractable answer will be shown to exist.
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The random delay derivative with respect to the

degree of saturation, Xj, was evaluated for several dif-

ferent values of mj and is illustrated in Table 3.1.

From this we can see that the first derivative, or slope,

and mj are reciprocals of each other in the oversatura-

tion region (Xj > 1.0).

In order to decide upon an acceptable approxima-

tion of the random delay with respect to the split, first

one must determine the range over which the approximation

must hold. We see that

<0 for j€<pA

D
.
)

w

1' (3.27)
ds. V .

1 i 0 for j 6 QB .

The limits of this derivative are:

dR -w for j 6 TA

1im+(d—s-}) = (3.28)

31-20 J. N 0 for j 6 ‘PB:

R,0 for j 6 IA

dR.

11m (53%) = (3.29)

Si"1 +oo for j e (98 .

From Section 3.1, we found that the normalized

split is constrained within the bounds:

max(gA,kA) max(g§,kB)

< s. < 1 -

si(m1n) = C —’ i _, C

 

 

 = si(max).(3.30)
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Table 3.1 Random Delay Derivative with Respect to Degree

of Saturation

TRANSYT 3Rj/3Xj

 

 

    

3 m. = 0:0001 m. = 0.001 m. = 0.01 ‘m. = 0.1

3 3 3 J

0.0 0.000 0.000 0.000 0.000

0.1 0.059 0.059 0.059 0.058

0.2 0.141 0.141 0.140 0.138

0.3 0.260 0.260 0.259 0.249

0.4 0.444 0.444 0.441 0.412

0.5 0.750 0.749 0.740 0.659

0.6 1.312 1.309 1.279 1.045

0.7 2.526 2.514 2.397 1.667

0.8 5.991 5.915 5.261 2.651

0.9 24.589 23.237 15.328 4.061

1.0 5024.876 507.783 52.381 5.683

1.1 9975.211 976.946 86.194 7.092

1.2 9993.765 993.895 94.937 8.077

1.3 9998.225 997.254 97.511 8.698

1.4 9998.439 998.449 98.542 9.085

1.5 9999.000 999.005 99.048 9.331

1.6 9999.306 999.308 99.331 9.494

1.7 9999.490 999.491 99.504 9.606

1.8 9999.609 999.610 99.619 9.685

1.9 9999.691 999.692 99.698 9.744

2.0 9999.750 999.750 99.754 9.787
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For the usual minimum green and amber time in-

tervals in a 60 unit cycle length,

13 5,max(gj,Ej) for all j. (3.31)

Thus the bounds on the normalized split for a

60 unit cycle length become:

0.217 E 51.3 0.783 . (3.32)

These bounds can be shown to remain reasonably

constant for other cycle lengths. Thus our random delay

approximation will be considered for split values be-

tween 0.2 and 0.8.

For a typical link having a 2000 vehicle/hour/

lane saturation flow rate, the m3. term will commonly be

in the 0.0001 to 0.1 range and the hj term will be

less than 1.0. Table 3.2 represents a tabulation of the

de/dsi relations over the above m. and hj ranges.

J

The following random delay approximation was selected:

91:.dsi = mj (Kljsi + KZj) . (3.33)

From Table 3.2, the Klj and sz constants

were calculated to give:

h.

5% (41.6631 - 33.33) . j e In

R

I
f

(3.34)

D
:

m

h.
_l _ .

mj (41.663i 8.33) . 3 6 e8 ,
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Table 3.2 Random Delay Derivative with Respect to Split

Phase A: dRA/dsi

hA 0.5 1.0

1n.A 0.01 0.001 0.0001 0.01 0.001 0.0001

X.

0.2 -l,248.6 -12,498.6 -124,998.6 -2,499.6 -24,999.6 -249,999.6

0.3 - 552.5 - 5,552.4 - 55,552.4 -1,110.6 -ll,110.6 -lll,110.6

0.4 - 301.7 - 3,112.7 - 31,237.5 - 624.3 - 6,249.3 - 62,499.3

0.5 - 104.8 - 1,015.6 - 10,049.8 - 399.0 - 3,999.0 - 39,999.0

0.6 - 10.0 - 11.9 - 12.1 — 276.3 - 2,776.2 - 27.776.2

0.7 - 2.7 - 2.9 - 2.9 - 201.5 - 2,038.1 - 20,405.4

0.8 - 1.2 - 1.2 - 1.2 - 150.9 - 1,556.4 - 15,618.8     
Note: For the phase B derivative, dRB/dsi' replace the si

heading with l - si

table values.

 

and change the sign of the resulting



49

for 0.2 :_si 3 0.8.

At first, it may appear that this linear approx-

imation to the random delay derivative is overly simpli-

fied. However, Robertson points out that even when the

degree of saturation, xj, is as large as 0.9 and the

offset is the best possible, typically the random delay

is no more than half the total delay (R01). Thus this

author considers this linear approximation adequate for

the objectives of this research.

3.4 Near-Optimum Split

From Section 2.1, the objective function for each

link j, was given as the weighted sum of the stops and

delays or

F. = KS. + w. D. + R. 3.353 3 3I 3 3I. ( )

and the total network objective function, F, as a summa-

tion of the link Fj's. This can also be written in

terms of the node fi's, namely

2 n

F = 2 F. = 2 fi , (3.36)

j=l 3 i=1

where 2 = the number of links in the network, and

n = the number of nodes within the network.

Assuming that the Fj's for the links terminat-

ing; at any node, i, are dependent and those Fj's

associated with any other node are independent of this

39t-. results in:
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n £i

3:22

i=1 j=l

[KSj + Wj(Dj + Rj)] . (3.37)

where 21 = the number of links terminating at node i.

The equations for stops and uniform delay from

Section 3.2 for each link j can be written in terms of

the split as:

(l - Si)ch for j 6 QA

Sj = (3.38)

sich for j 6 m3,

1 2 2 . 4
f (1 Si) C cj for 3 C 0A

Dj = (3.39)

l 2 2 .
:- SiC Cj for j E (93.

where all terms have been previously defined.

Thus, the total network objective function can

be written as:

n

F = Z {KC[(1 - s.) 2 c. + s. E c.]

i=1 1 jéqh J 1 jégh J

02 2 2
+ 3—[(1 - s.) 2 W.c. + s. X W.c.]

1 .- i '6 j 3
thh 3 (PB .

+ Z W.R. . 3.40j J J ( )

iflhere all the links are separated into two sets, namely

those belonging to phase A, (a) and phase B, (03),

1‘e spective1y .
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Now considering any node, i, the objective func-

tion fi for all 1i links feeding that node can be

minimized with respect to its split, Si’ by the First

Derivative Test (OLl) as follows:

 

 

- d a _
0 - ds. (fi) — KCl .2 cj + .2 c.]

1 JEWA JEQB

C2

+ 5—[—2(l - si) 2 chj + 23i '2 W.cj]

jeQA JECPB

W.h.Kl. W.h.K2.

+siX—JfiJ—l+X—lfiL—l. (3.41)

3' 3' 3'

Then solving for the split si to provide a near min-

imization of the objective function for node i, gives:

5. =
1

2 W.h.K2. W.h.K2.

X (C W.c. + KCc. - _l_l__l) - Z (KCc. +

jeeA 3 3 3 j a $643 3 i»
.(3.42)

W.h.K .

2(C2W.c. + —1—J—l1)
. j j m.

J J

In order to be sure that 3i does indeed minimize the

node objective function fi' the second derivative with

respect to the split must be positive or indicate con-

vexity in an a neighborhood about §i. Then by the

Second Derivative Test (0L1),

d2 2 W.h.K1.

(f.) =czw.c. +z—J—J—l> 0, (3.43)
2 1 ~ . j 3 . m.

68- 3 3 3
J.
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since all terms are positive. Thus the near-optimum

split 81 can be used for any two phase traffic signal

where each phase may have numerous links.

The near-optimum normalized split has been plotted

in Figure 3.3 for the case of a two phase signal located

at the intersection of two one-way streets. The delay

weighting factors, Wj’ were assumed equal to unity, the

stop factor equal to 4 and saturation flows of 4500

vehicles per hour. From Figure 3.3, it is observed that

the split equals 0.5 for any situation having equal

arrivals, INj, and saturation flows, Gj' on both phases.

A more general statement can be made: the normalized

split will equal 0.5 for any situation having equal cj

terms. These cj terms were previously defined as the

ratio of the product of the saturation flow and the

h
arrival flow to their difference for the jt link.

3.5 Two-Phase Double Cycling
 

Sections 3.1 through 3.4 of this chapter have

covered the two-phase single cycling cases, however it

may be advantageous to use double cycling in certain

instances where the traffic flow rates are reasonably

light or the cycle length is long. Figure 3.4 illus-

trates the double cycling timing of a two-phase signal

and will constitute a reference for the following deriva-

‘tion. As a direct result of this diagram the following

related timing variables are:
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1.0‘

0.8:

Secondary

u Flow Rate
w-I 0.6‘

'3. 250
U)

'U 0.4‘

0

.3 500

'3 0.2. 750

g 1000

z 0.0 - . - .

0 250 500 750 1000

Primary Flow Rate

Figure 3.3 Normalized Split Relative to Arrivals
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trBl = t9A1

thl = trAl (3.44)

tr32 = t9A2

t982 = trA2 '

where tijk = the cycle unit representing the start of

the ith time interval for the jth

h

phase

during the kt half cycle.

The signal split, 31, is defined to be the sum of the

two green intervals and two amber intervals normalized

with respect to the cycle length. Alternately,

(t - t ) + (t - t )
51 = rA1 ngl C rA2 9A2 . (3.45)
 

It is assumed that there exists half cycle symmetry

of the timing parameters, that is

 

_ Q . .
tijz - tijl + 2 for all 1,]. (3.46)

Thus, the split reduces to

2(t - t )

s. = rAl 951 . (3.47)
i C

In double cycling, the queue can grow and decay twice

during the cycle length, namely; once for each green

interval. Thus by analogy to Section 3.2, the stops

h
equation for the jt link entering the subject inter-

section can be written as:

S. = (t )c. + (t

3 931 ' trjl 31
= A,B.(3.48)

qu ‘ trj2)cj2 3



56

Thus, substitution of the split term results in:

+CU
) ll

N
I
O

(1 - Si) (CA1 A2)'

and (3.49)

C

SB = 2 (Si) (Cal + CBZ)'

 

where

Gj INjk

c = .1. __ (3.50)
k G. - IN.

3 3 3k

and INjk = the uniform arrival rate for the jth phase

during the kth half cycle. Again, similar to the deriva-

tion for single cycled signals, the uniform delay can be

written as:

_ l _ 2

Dj ~ 2(tgjl trjl) cjl

1.1.“; - t )zc j =AB.(3.51)
2 gj2 rj2 j2' ’

Then, by substitution

2

_ c _ 2

DA " 8"” Si) (CA1 + CA2)'

c2 2

DB = '8—(Si) (cal + C132”

and

dR. 21

‘sti = mjmljsi + sz) 3 = A,B. (3.53)

since the degree of saturation, Xj, is the same as for

single cycled signals.

Then the near-optimum split 81 can be calculated

analogously to that of single cycling by substitution
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into the node objective function. The final result after

differentiation is:

 

§i==

2 WJLK . wink .

z [C—w.(c. +c. ”EC—(c. +c. )-—3—1—2-l]- I: [59m +c. )+-J-1—211
. 4 3 31 32 2 31 32 m. . 2 31 32 m.

36% 3 36423 3

C2 W.h.K1. '

314— Wj(cjl + C32) + —3—l—lmj1 (3.54)

which is similar to the single cycling split except that

the cycle length C is replaced with C/2 and c. is

3

replaced by (cjl + cjz).

3.6 Non-Overlapping Multiphase Single Cycling

Another important type of signalized intersection

employs more than two phases operating in the single cycle

mode. Left turn lanes handling heavy flow rates, pedes-

trian crosswalks and separate bus lanes are a few of the

examples requiring multiphased signals. Figure 3.5

illustrates the single cycling of a four-phase traffic

signal. From this diagram we note:

th = trA

th = trB

th = trC (3.55)

tgA g trD,

where tij = the cycle unit representing the start of the

ith time interval for the 3th phase.
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For an N phase non-overlapping traffic signal, there.

are (N-l) split terms. Thus for our four phase example

at the ith intersection,

t . .

= r3 9]
sij C (3.56) 

S. = (t . - t .)cj (3.57)

_ 1 2 .
D. — 2(t . - t .) cj where 3 = A,B,C (3.58)

The stops and uniform delay equations are then written

as:

sj = (l - Sij)ccj 3 = A,B,C (3.59)

SD = (SiA + Sis + SiC)CCD

_ 1 2 2 . _
Dj - 2(l Sij) C Cj J — A,B,C (3.60)

_ 1 2 2

DD ’ 2(siA + Sis + Sic) C cD

Let Si, Di, and R1 represent the weighted sums of the

stops, uniform and random delay terms for the ith signal,

respectively. Then take the first partial derivatives

of Si, Di, and ii with respect to the phase splits,

 

 

 

s.. to form:

13

3S.

81 = KC(cD - c )
3 ij

351 2
3813 - C [(siA + siB + siC)W’DcD - (l - sij)chj] (3.61)

881 W.h

38. = m (Kljsij 4' K23.) , J = A,B,C.
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Then to insure that a minimum does exist for the objec-

tive function, fi, for the ith signal, from section 3.4,

2.
1

f. = 2 KS. + W. D. + R.

1 -=1[ 3 3‘ J 3)]
J

= Si + Di + Ri . (3.62)

The second partial derivatives in turn appear as the forms:

 

azfi 2 W.h.K1.

..= 2=C(Wc +w.c.)+—l—l—l>o

33 35.. D D J 3 m3

13 (3.63)

azfi 2 .

ij ’W‘CWDCD> 0' 3 =A'B'C°
1k 13

By considering

L.. = U + V. > 0 (3.64)

33 J

ij = U > 0,

it is easily shown that

L L L

AA BA CA

AB BB CB

AC BC CC   

==U(V'AVB + VAVC + VBVC) + VAVBVC > 0. (3.65)
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Thus since the L.. > 0 and A > 0, the objective func-

1]

tion for the ith intersection has a relative minimum of

f1 (siA'siB'siC) at the p01nt (giA'giB'siC)'

Then by setting the first derivatives of the

intersection's objective function with respect to the

phase splits to zero, the general equation becomes:

esi 301 381

° = '3‘;— + 5‘..— + 's—
ij ij ij

- _ 2 - _
- KC(cD cj) + C [(siA + siB + SiC)WDCD (l sij)chj]

W.h.

+ —3—lmj (Kljsij + sz) 3 = A,B,C. (3.66)

By rearranging terms, we have the following set of equa-

tions:

2 h.K2.

h K

_ 2 2 , j 13
— sijIC WDcD + (C cj + mj )Wj]

+ (S + S )CZW c
ik ii D D

jpk.£ = A,B,C and j # k # z . (3.67)

Let

2 hIKZ

= KC - + . - _1_l wYJ (CJ CD) (C cJ ) 3

w = 02w c + (c2 + Eifli)w (3 68)
3 I) D C rnj 3 °

2 .

W = C W C J = AIBIC°
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Then the set of equations can be written in matrix form

as:

   

yA WA w w SiA

YB = V we w Sis

h_y L”w w WC“ 31C)

or

g = y! - 31 (3.69)

The set of splits for our multiphase situation can be

determined by pre-matrix multiplication by W71 or,

31 = 3'1 : z (3.70)

The matrix §i is a unique vector of phase splits for

the ith intersection provided [WI # 0; a condition which

can be shown true if wj # w # 0 for all 3.

This matrix representation can be used for any

number of phases (N :_2) constituting any signal's

requirements. If there are N phases, then there will

be (N-l) phase splits and the Si, W71, and 3. matrices

will have dimensions equal to (N-l) by l, (N-l) by

(N-l), and (N-l) by 1, respectively.

To extend this result to apply to situations

where there are multiple links per phase, simply replace

the yj, and wj with 2 y. and X wj respectively.

3 j
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3.7 Overlapping Multiphase Single Cycling

The more general form of multiphase single cycling

has some overlapping of green time intervals between the

various signal phases.

Consider Figure 3.6 of a specific example of an

overlapping four phase signal.

The respective red, green, and amber time intervals

for this signal are illustrated in Figure 3.7. Note that

there are only 2 independent phase Split terms required,

namely for phases A and C since the phase B green is an

overlap of the greens of phases A and C. Phase D is a

dependent phase.

Similar to Section 3.6, we can write:

th = tgA = tr0

tgC = trA (3.71)

t = t = t
gD rB rC

Thus for an N phase traffic signal with M

overlapping green time intervals, there are (N - M - 1)

split terms. These splits are

- tt . .

= r3 .93 - =
sij C where 3 A,C. (3.72) 

Then the stops and uniform delay terms can be written as:

(1 - s..)ch

1)

Sj = (l - siA - siC)CCB 3 = A,C (3.73)

(SiA + siC)CCD
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Fi ure .g 3 6 Four-Phase Overlapping Signal Model
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’ = A,C. (3.74)

In an analogous manner to the non-overlapping

green's case of Section 3.6, it can be shown that:

 

 

 

i
= KC(C - C - c.)

35.
1 _ 2 _ _ _ - -

asij — C [(siA + siC)WDcD (l siA SiC)WBcB (l sij)chj]

8R. W.h.

1 = _l_l. - =

asij mj (Kljsij + szl . 3 A,C. (3.75)

The minimum of the objective function, fi’ was obtained

from examination of the second partial derivatives:

azfi 2 W.h.Kl.

ij = EETTY — C [W’DcD + WBcB + chj] + —Jfi%——l-> 0

13 (3.76)

32fi 2I J 0 c
L. = -——————— = c w c + w c > 3 = A, .
3k asikasij D D B B

Then using equation set 3.64, it can be shown that

   

LAA LCA U + VA U

A = =

LAC LCC U U + VC

= U(vA + VC) + VAVC > 0, (3.77)_
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insures that the objective function has a relative min-

§. ) results from1mum. This minimum (SiA' 1C

8f.

 

_ 1 =2 .. .. 2 ..
0 - asij KC[cD cB cj] + C [(siA + SiC)WDCD

th.

3 = A,C. (3.78)

Rearrangement of terms provides:

2 K2.W.h.

KC[cj + CB - cD] + C (chj + WBCB) - mj

-s [C2(Wc +Wc)+(C2 +fljfi)W]
"ij DD BB cj mj j

2
+ Sikc (WDCD + WBcB)

j 7‘ k . (3.79)

The above equation can be set into matrix re—

presentation by letting

2 K2.W.h.

yj - KC(cj + cB - CD) + C (chj + CBWB) - -—%gJ—J-

= C2( W + W ) + (C2 + Eifli)w (3 80)

wj CDD BB Cj mj j '

- C2(c W + W )
w' DD CBB'

Then
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[WA w][:iA]
I

w WC ic

g = g . s. . (3.81)
r
—
—
1

"
<

‘
4

‘
I
_
“
’
3

ll

or

By comparing these results with those from Sec-

tion 3.6, we can see that each overlapping green reduces

the dimensions of the W. matrix by l.

3.8 Split Sensitivity
 

It has been shown in Kreer (KRl) that signal

timing histograms developed by TRANSYT are insenitive

to large volume changes within the network unless the

volume changes cause one or more intersections to be-

come saturated.

Knowledge of the sensitivity of the split equa-

tion will be of value to the traffic engineer when plan-

ning initial or changes to his traffic signal timing

system. In order to determine the magnitude of the split

sensitivity to cycle length, primary and secondary arrival

flows, the split equation of Section 3.4 was used. For

the ith node, the following sensitivity equations were

derived from the split equation by ordinary calculus

methods:

Asi 331 = 2C[WAcA(l-si) - chBgi] + K(cA - cB)

75C 2’ 5C denom. '

Asi asi C[K + CWA(1 - 81)] cA 2

——-e: = ( ),and
AINA 5INA denom. INA
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A3. 881 C[K + CWBéi] c

 

1 _ B 2

KIN ‘35IN denom. (IN ) '
B B B

W h K W h K

where denom.=C2(Wc +Wc)+i§——]-‘-§+—B—§—]-’-§.

A A B B mA mB

To illustrate these sensitivities, consider the

intersection of two one-way streets controlled by a two

phase signal with the following values:

1. Cycle length, C = 60 seconds, divided into

60 cycle units,

2. Delay weighting factors, WA = WB = l,

3. StOp penalty factor, K = 4,

4. Saturation flows, GA = GB = 4500 vehicles/

hour,

5. Random delay terms, hA/mA = hB/mB = 50.

These sensitivity equations are then solved for the

AC, AINA, and AINB

out varying the split, Si’ by‘i 1 cycle units. For

values which can be tolerated with-

example, consider the situation where the primary and

secondary flow rates are initially equal to 500 and 250

vehicles/hour respectively. The primary flow rate can

increase by 6% to 530 vehicles/hour before the integer

valued split estimate will increase by one cycle unit

(0.0167 for the normalized split). A number of other

variations in the cycle length, primary and secondary

flow rates have been evaluated and summarized in Table

3.3.
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One can conclude that the sensitivity of the

split equation is dependent upon the actual magnitude of

the cross flow rates in addition to their relative values.



CHAPTER IV

ARTERIAL OFFSET CALCULATION

4.1 Time-Space Diagrams
 

For years, traffic engineers have used time-

space diagrams as a visual aid in studying the behavior

of vehicle movement on an arterial. These diagrams

illustrate the split for each signalized intersection

along an arterial as well as the offsets between the

signals. It should be noted that the vehicle speeds be-

tween any two adjacent signals can be different from

those for any other set of adjacent signals. This re-

sults in the outbound and inbound green bands taking

on a zig-zag slope (Figure 4.1) instead of the constant

slope bands for constant velocity along the entire

street (Figure 4.2).

4.2 Maximal Arterial Bandwidth
 

Now consider an urban bidirectional roadway with

a number of signalized intersections all with a common

cycle time. The widths of the outbound and inbound

progression green bands, shown in Figures 4.1 and 4.2,

are the outbound and inbound maximal bandwidths,

respectively. A progression is determined by the splits,

the offsets, and the cycle length.
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The objective function for an arterial is some-

times chosen as the maximization of bandwidth. Morgan

and Little (LMl) have developed an algorithm based upon

this concept where they offer solutions to the following

two problems:

1. Given a common cycle length, splits for each

signal, the vehicle speeds between adjacent signals, de-

termine the set of offsets which will produce bandwidths

which are equal in each direction and as large as possible,

and

2. Adjust the set of offsets to increase one of

the two bandwidths, when possible, while giving the other

direction the largest bandwidth then possible.

Before proceeding, a set of terms need to be

defined for the remainder of the maximal bandwith dis-

cussion. These are:

rj = red time for node j on the street being

studied (cycles),

b(E) = outbound (inbound) directional band-

width (cycles),

x. = location of node j downstream from the

reference point (feet),

vj(V;) = outbound (inbound) vehicle speed along

link 3 (feet/sec.),

Tij(Tij) = travel time from node i to node j in

the outbound (inbound) direction (cycles),
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cycle length (sec./cycle),

relative offset from node i to node 1

measured between the center of the red

intervals of the two nodes (cycles),

minimum green of all nodes along the

arterial (cycles),

offset shift of node j for unequal

bandwidth (cycles),

outbound (inbound) platoon length

(seconds),

number of nodes or signals along the

arterial.

By convention, 0 : eij < l and the set {8..Ij = 1,...,m}

for any i is called a synchronization of the m

13

along the street in question.

signals

The travel times between the ith and jth signals

are determined from

and the Tij

 
are obtained by replacing each I with

I. Then for two sequential intersections, namely i

(i + l),

(j-l

kii Tk,k+1 3 > 1

< 0 j = i (4.1)

I i-l

[1:23 Tk'kfl j < i

and
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T = xi+1 ' xi

i,i+1 viC

-
(4.2)

_ = x1 x1+1

Ti,i+1 5.0
1

By definition, a signal is called 'critical' if one side

of its red touches the green band in one direction and

the other side touches the green band in the other direc-

tion. Morgan and Little's approach was to maximize the

directional bandwidths b and b. It was determined

that all critical signals must fall into at least one of

the two groups defined as follows:..

a) Group 1: consist of signals with reds touching

the front of the outbound and the rear

of the inbound, and

b) Group 2: where reds touch the front of the in-

bound and the rear of the outbound.

With the aid of Figures 4.3, 4.4, and 4.5 for the various

combinations of Group 1 and 2 signals the offset rela-

tions can be written as:

_ _1_ - 1 .

This leads to two possible solutions (0 and 1/2) and is

'half-integer synchronization' for the maximal equal

bandwidth case.

By defining man (-) = mantissa of (°); obtained

by dropping the integer portion and adding unity if the

result is negative; and dij = 0, 1/2, we have
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_ 1 -
eij — man[2('rij + Tij) + dij]° (4.4)

If the ith signal's red touches the front of the outbound

green band, it appears as shown in Figure 4.3a. By taking

th
the right side of the i '5 red as the origin, the tra-

h.
jectory (not shown) touching the right side of the jt 5

th
red passes the i signal at a point in time:

__ l _ 1 -' ..
uij - l manI2(ri rj) + 2(Tij Tij) dij] .(4.5)

h
The trajectory touching the left of the jt red passes

the ith signal at uij - rj. Thus since dij = 0 or 1/2

th
and the i red must touch the front, we get the main re-

sult of Morgan and Little's paper, namely:

B = max{max min maqu..(d..) - r.], 0}, (4.6)

i j dij 13 13 J

and a maximal equal bandwidth synchronization,

{6C1,...,ecm}.

Now in an effort to summarize the Morgan-Little

offset method for equal bandwidths, the next five steps

are listed.

1. Calculate the set Y s (lej 6 [l,m])

from y1 = 0

 

 

). (4.7)
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2. Calculate the set 2 = (zjlj 6 I-1,m])

from zl = 0

 

z. = z. + (x.-x ).(4.8)

3 3-1 20 j-l) v.

3. Calculate the set U = (uijli,j e [:l,m])

from uij(d) = l - man(yj-yi-dij),

dij = 0,1/2. (4.9)

4. After completing the previous three steps, we

have the maximum equal directional bandwidths

B = maxfmix min max (uij(dij) - rj), 0}. (4.10)

3 ..

1]

5. Then a two-way synchronization (ecl"'°'ecm)

for maximal bandwidths is determined from

ecj = man(zj - zC + dcj)' (4.11)

In general, either the outbound or the inbound

flow is greater; very seldom will they be exactly equal.

This unequal flow condition is a function of the time of

day and relative locations of residential, work, and

recreational areas in any given geographical setting.

The resulting morning and afternoon peak traffic flows

may dictate different bandwidths as a function of time

during the day or week.

Morgan and Little suggested dividing the total

available bandwidth, 2B, between the two directions on

the basis of platoon lengths p and 5, where they
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defined platoon length (in seconds) as the hourly volume

times the vehicle headway divided by 3,600. The shifting

procedure used to obtain the unequal directional bandwidths,

b and b, was developed from Figure 4.6. To shift the

front of the outbound band from f to f' in order to

obtain the directional bandwidth b, we have

aj = max[(ucj - 1) - (B - b), 0] (4.12)

for

max[0,B] £.b i g .

To obtain the inbound bandwidth b, the shift of the rear

of the inbound band from r to r' is achieved by

oj = max[b - (ucj - rj), 0] (4.13)

for

max[0,B] i b i 9.

An important point to remember is that only one of these

bandwidth shifts can be made for any one arterial since

the second is dependent on the other and the total avail-

able bandwidth.

Summarizing the unequal directional flow cases,

we take the following steps.

The total bandwidth can be divided between the

two opposing directions by first calculating the minimum

green time band.
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g = min(l - r.) = l - max(r.). (4.14)
i i i 1

Then for the inbound arrivals less than the outbound

(5 < p).

1. Calculate the larger bandwidth from

min(9.ZB p/(p + 5)) if p+§ : 2B

= g p :_ZB (4.15)

min(9:P) other

Calculate the adjustment set (01,...31m)

from

aj = max(uCj - l + b - B, 0), (4.16)

where the ucj's were a result of step 3

above.

Calculate the smaller bandwidth from

B = max(ZB - b, 0). (4.17)

Then an adjusted two-way synchronization

(001,...,0cm) is obtained from

ecj = man(zj - zc + dcj - aj). (4.18)

If the opposite case exists (5 > p), then

Calculate the larger directional bandwidth from

'min(g. 23 13/(p + 5)) if p+§ _<_ 23

g _ p > ZB (4.19)I
I
I

II

min(g,p) other
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Calculate the adjustment set (a1,...,om) from

oj = max(B + rj - ucj, 0). (4.20)

Calculate the smaller directional bandwidth

from

b = max(ZB - B, 0). (4.21)

Then an adjusted two-way synchronization

(0C1,...,6Cm) 'is obtained from

ecj = man(zj - zC + dcj - aj). (4.22)



CHAPTER V

TRANSYT/G OFFSET CALCULATION

Now that the maximal arterial bandwidth concept

of Morgan and Little has been described in Chapter IV,

several modifications will be presented. Even though

the basic maximal bandwidth procedure has appeal for

non-iterative offset calculations, this author considers

this algorithm to have several disadvantages, namely:

1. The criterion given for the apportionment of

unequal bandwidths does not include turning

movements,

2. Queue growth and decay are ignored, and

3. The arterial concept needs to be extended to

networks

Because of these disadvantages, the set of Morgan-Little

offsets may or may not minimize the previously defined

objective function of stops and delays for a network.

A reasonably good set of signal offsets may be

obtained provided that the effects of these above men-

tioned detriments are sufficiently minimized. This

author feels that an optimization procedure such as the

hillclimbing method is not required. In its place,

87
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Morgan and Little's method was used as a base from which

the TRANSYT/G offsets were determined.

In addition to the terms defined in Chapter IV,

several terms pertaining to the TRANSYT/G offset adjustd

ments are listed below.

Bcj = the offset shift of node j relative to

the critical node for queue clearance

(cycles),

ch(ch) = the excess green to the right of the rear

edge of the outbound (inbound) bandwidth

for node 3 relative to the critical

node (cycles),

u(fi) = the outbound (inbound) average cumulative

arrivals, and

¢cj = the TRANSYT/G offset for node 3 relative

to the critical node (cycles).

5.1 Unequal Bandwidth Apportionment

In the opinion of this author, Morgan and Little's

definition of platoon length does not reflect the de-

pendence upon turning movements and thus is not responsive

enough to the vehicle flow rates within the system. There-

fore it is suggested that the total bandwidth should be

apportioned between the two directions of flow on the basis

of the cumulative number of arrivals, Ij(trj + C), for

each direction of flow. The turning movements are taken

into account in the definitions of the average arrival
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demand, u. The cumulative arrivals averaged over all the

links comprising the outbound direction of flow is

l m

= — z o o + 0 S. 1u m =113(tr3 C) ( )

There exists a similar relation 0 for the inbound direc-

tion. Since the cumulative arrival terms are reasonably

estimated in the TRANSYT/G flow model, the turning move-

ments can exert their influence upon the offset determina-

tions.

As an illustration of this total bandwidth

apportionment, consider the two three-signal arterials

of Figure 5.1. In both cases, (a) and (b), Morgan and

Little would apportion the total bandwidth equally since

8 = p = 3600 = 0.277 . (5.2)

This author would apportion the total bandwidth

unequally for both cases. In case (a) where u < E,

1000 + 300 + 300
 

 

 

= 3 = 533., and

(5.3)

5 = 1000 + lgOO + 1000 = 1000.

For case (b), u > E and

u = 1000 + 1300 + 1500 = 1333.,

(5.4)

i = 1000 + 1%00 + 1000 = 1000.
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With the aid of Figure 5.1, it is obvious that unequal

bandwidths are called for, thus the use of u(fi) is pre-

ferred to p(p) for apportionment.

5.2 Excess Green Adjustment
 

Now the second shortcoming of Morgan and Little's

offset method will be alleviated, namely the consideration

of the requirements imposed on the offsets by the need

to start the clearing of queues prior to the arrival of

the next platoon.

Panyan (PAl) describes the situation where the

progression band occupies the total green time-of the sig-

nal having the minimum green. He suggests shifting 311

the excess green of the remaining signals to the left,

earlier in time, to allow the queues to start decaying

prior to the arrival of the next platoon. This queue

clearance shift of excess green time can be derived from

Figure 5.2 by taking a reference point at the center of

the Group 1 critical signal's red time interval. For

signal 3, we have:

1 .
man[0Cj 2(rc + rj) - b - Ic.sgn(3 c)]

Y 3
(5.5)

C3

- r.) + I .sgn(j - c)]
l

man[ec. + E(rc 3 c]

ch 3

where these excess green times lie within the following

bounds:
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0‘: ch :_l - rj - b,

(5.6)

0 i'ch £|1 - rj - b .

Since the magnitude of ch and §cj are un-

equal for the unequal bandwidth cases, one only wants to

th
shift the excess green of the 3 signal by the smaller

of the ch and ch quantities so as not to restrict

either directional bandwidth. Thus the shift of the 3th

offset relative to the critical node, c, would be

Bcj = min(ycj,ycj) Z 0. (5.7)

This queue clearance shift would be applied to all sig-

nals other than the critical signals resulting in the

start of all red times touching the rear of the pro-

gression green bands.

There is one important drawback to Panyan's shift

of all the available excess green time, namely: that none

of the excess green is available to the right of the pro-

gression band for stragglers at the end of the platoon.

Thus Panyan's 100% excess green shift may not be the

Optimum choice. This author proposes that the excess

green shift should be some intermediate value between

Panyan's 100% shift and the 0% shift inherent in the

Morgan-Little method. This proposed shift for the jth

signal is made relative to the Morgan-Little offsets,

6 ., described in Chapter IV. The resulting TRANSYT/G

0]

offsets are:
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¢cj = maniacj - ijchQHIj - 0)] (5.8)

where the multiplicative shift terms, kj, range between

0.0 and 1.0 and are determined during the initial check-

out of each network application.

Again referring to Figure 5.2, consider the

possibility that the jth signal is also critical, j = c',

along our selected street. Two possibilities exist:

c' belongs to either Group 1 or to Group 2. 'It is noted

that for c 6 Group 1, and

c'e Groupl,y .560 and ; ,=0,

or CC CC (5.9)

c' 6 Group 2, ch' = 0 and yea, 75 0.

In either situation, Bcc' = 0 and is the expected shift

between two critical signals along the same street.

5.3 Network Considerations

Now that the author's offsets have been developed

for arterials, an extension to networks requires the pro-

per interface of signal timings between the arterials and

cross streets.

The offsets for a general network are determined

by applying the author's arterial offset concept to a

subset of all the possible streets within the network

according to the following constraints. Each signalized

street selected will be referred to as a vein. When

constructing a vein-interconnection model:
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1. Each intersection must be included in one of

the veins,

2. All veins after selection of the first must

begin at an intersection belonging to a pre-

viously selected vein to insure prOper relative

timing,

3. No closed loops are to be formed when selecting

these veins,

4. Attempt to select streets with the heavier

traffic flows as veins first, and

5. Attempt to select as few veins as possible.

The vein-interconnection model is simply an over-

lay of the general network such that no set of veins form

a closed loop. It forms the sequential order in which

the offsets are estimated.

The first three rules are inherent in this

author's offset method while rules 4 and 5 generally

help one construct a vein-interconnection model having

a lower final objective function value.

The actual equations for the start of the green

and red time intervals can be visualized from Figures

5.2 and 5.3. By definition, let

6 = the relative shift due to the phasing at the

interconnecting node between two veins, such

as at node j in Figure 5.3.
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Since node 1 is the first to be considered in our example,

we can select 6 = 0, or any other convenient value. Thus

for 6 = 0 on vein 1, the :pA -green for node 1 will

start at zero. Next, the cpA green for node 2 starts

at man[%-(r2 - r1) + ¢c2 - 001]. For vein 2, belonging

to TB here, 6 equals the newly calculated :pA. node

3 starting green time minus its red time interval. In

summary, the green and red time intervals on a two-way

vein are shifted according to:

1 .

u = _ _ -
tgj man[2(rj r1) + ¢cj 001 + 6] (5.6)

where

6 = 0 for vein 1

{t'. - r. for all other veins where
g1 1

i is the cross phase at the

interconnecting node

and

t'. = t'. + t . - t . f l < ' < 5.7

U 93 (r3 93) or -3-n ( )

The primed and unprimed symbols represent the new and

previous values respectively.

If the vein is a one-way, there is only one

bandwidth and it equals the minimum green of all the

nodes associated with that particular vein. In this

case, equation 5.6 is replaced by

t'. = manlr. - r

93 3 1+T
lj + (1 - kj)(l - rj - g) + 5]

(5.8)
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In the next chapter, two applications to general

urban traffic networks will be illustrated in detail.



CHAPTER VI

NETWORK APPLICATIONS

Now that this author's signal timing method has

been developed in the previous chapters, two applica-

tions to actual urban areas will be illustrated. First,

a 21 intersection portion of the Ft. Wayne, Indiana

downtown area was selected for comparison of TRANSYT/G

versus the standard hillclimbing TRANSYT. Certain non-

critical modifications of the network configuration were

made. Vehicle volumes, speeds, turning movements and

physical dimensions were supplied by Ft. wayne officials.

The second application consisted of a modified

38 intersection portion of washington, D.C. This loca-

tion was selected due to availability of geometric and

traffic data similar to the Ft. Wayne data.

To evaluate the effectiveness of the new signal

timing method proposed by this author, data from.the

above mentioned example areas were used in two computer

programs, namely; TRANSYT and TRANSYT/G.

6.1 Link Numberipg System

The link numbering system is keyed to the node

numbers such that node number 1. becomes the first part
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of the link number. The last digit of the link number

takes on a value from 0 to 7 depending upon the direc-

tion of flow into the ith node. Links entering the node

from the north, east, south, west, northeast, southeast,

southwest, and northwest are assigned the values

0,...,7, respectively for their last digit (Figure 6.1a).

Figure 6.1b illustrates this technique for an inter-

section of two two-way streets at node number 9.

6.2 Selection of Networks

In Ft. Wayne, an area bounded by Main Street on

the north, Jefferson on the south, Fairfield on the west,

and Lafayette on the east was selected. The node-link

model selected for this region consists of 21 nodes, one

for each signalized intersection, and 56 links, one for

each directional flow including 6 dummy links required to

break loops for the TRANSYT calculations. Main and

Harrison Streets are two-way while the other eight streets

are one-way, as indicated in Figure 6.2.

Using the guidelines outlined in Chapter V, a

vein interconnection model required for TRANSYT/G was

selected and is illustrated as heavy black in Figure

6.3. Since this vein interconnection model is not unique,

other suitable models could have been selected.

In Washington, D.C., the node-link model selected

consisted of 38_nodes and 134 links including 21 dummy
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Figure 6.1 General Link Numbering System

and a Specific Example



102

 

 

41 53 151 213

    
 

\
4
3
/

4
;
;

\
3
/

    
 

 

150F

31 43 141 203

“\tr 32 ,c 142 192

F J

3"’<0i/ 140 \14 19

21 33 131 193

    

 
Figure 6.2 Node-Link Model of Modified Ft. Wayne, Indiana

Area



103

 

 

   

Vein 5 Vein 3 Vein l

   

   
@ ..

 

Figure 6.3 Vein Interconnection Model of Figure 6.2



104

links. The area includes nine two-way and six one-way

streets (Figure 6.4).

Similar to the Ft. wayne example, a vein-inter-

connection model was selected for TRANSYT/G (Figure 6.5).

6.3 Input Data

The input data required for TRANSYT is described

in detail in Robertson's User's Manual (R02) and will not

be reprinted here due to its length. The same data set

used for TRANSYT can be used for TRANSYT/G with one ex-

ception; the type 4 hillclimbing step size card has been

replaced by the new type 4 vein list cards. One card or

file line is required for each vein. The format con-

sists of right justified quantities in the standard five

column field widths used in TRANSYT. Field 1 contains

a 4. Field 2 contains the direction of flow indicator

per the following code:

bbbbl for one-way flow going east,

bbbb2 for one-way flow going north,

bbbb3 for one-way flow going west,

bbbb4 for one-way flow going south,

bbbb5 for two-way flow going east and west, .

bbbb6 for two-way flow going north and south,

assuming north at the top of the vein interconnection

model diagram. Fields 3 - 16 contain the node numbers

comprising the vein and are in the order in which they

are encountered in the vein model.
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6.4 Comparison of TRANSYT/G versus TRANSYT

To compare the new split and offset calculations

of TRANSYT/G to the previous hillclimbing TRANSYT method,

the following computer runs were made for both the Ft.

Wayne and the Washington data on a Burroughs B7700 system:

1. Initial conditions with equal splits and zero

offsets,

2. TRANSYT (STARl) splits without hillclimbing on

offsets,

3. TRANSYT/G (SPLIT) splits without offset calcula-

tions,

4. 7-Step hillclimbing TRANSYT with STARl splits,

5. 7-Step hillclimbing TRANSYT with SPLIT splits,

6. TRANSYT/G with no excess green shift, _

7. TRANSYT/G with full excess green shift, and

8. TRANSYT/G with partial excess green shift.

These results are summarized in Table 6.1.

By comparing run numbers 3 to 2 and also 5 to 4

for each data set, one can conclude that this author's

split calculation method (SPLIT) is superior to Robert-

son's (STARl). This is evidenced by that fact that the

use of SPLIT produced lower objective function and higher

system speed values than those produced by STARl. An-

other observation can be made concerning runs 4 and 5.

This author's split estimation method produces a better

set of initial conditions for the hillclimbing procedure.
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In both examples, fewer total number of calculations were

required and lower objective functions were obtained.

Run numbers 6, 7 and 8 are similar in nature ex-

cept for the amount of excess green shift adjustment to

the offsets. The shift values for runs 6, 7 and 8 were

zero (Morgan-Little), full (Panyan) and partial (Grove)

respectively. Comparison of these runs indicate lower

objective function and higher system speed values for

this author's partial shift for both examples. Thus, the

partial shift is preferred. It should be emphasized that

the partial shift varies from one network to another

and is determined from several trial runs during either

the preliminary checkout of a new signal timing system or

during on-line system operation.

Finally, comparison of runs 8 to 4 points out the

potential use of TRANSYT/G versus TRANSYT (Table 6.2).

In the opinion of this author, the benefit of TRANSYT/G's

extremely fast computer running time relative to TRANSYT's

far outshadows its slightly higher objective function

(about 3%) and lower system speed (about 1%) values. In

fact, from runs 4 and 8, the improvement in running time

can be estimated from the CPU times as follows:

a) the Ft. Wayne data ran l§§i§~= 37.3 times

faster, and

b) the Washington data ran $2353 = 73.0 times

faster
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on TRANSYT/G than on TRANSYT. Although the CPU run times

on the B7700 computer vary slightly as a function of the

system load, general comparisons such as these can be made.

Similar comparisons should result for other computers.

Another estimation of relative computer speed of

TRANSYT/G versus TRANSYT can be inferred by comparing the

number of links processed by the subroutine SUBPT. This

produces even higher ratios in favor of TRANSYT/G.

As an aside, comparison of the CPU times for run

number 4 of both data sets supports Robertson's general

statement (R01) that the run time of TRANSYT increases

as the square of the number of nodes in the data set.

Washington's 38 nodes versus Ft. Wayne's 21 nodes pro-

452.3

115.6

non-iterative program, its run time increases approx—

duced a CPU ratio of = 3.9. Since TRANSYT/G is a

imately linearly with the number of network nodes.



CHAPTER VII

CONCLUDING REMARKS

7.1 Conclusions
 

The primary objective of this research was to use

Robertson's basic TRANSYT traffic flow model and replace

his time consuming hillclimbing optimization process

with a non-iterative split and offset estimation technique.

This resulted in a much faster and thus less costly run-

ning TRANSYT/G computer program yielding sub-optimal

signal timings.

Based upon the results of testing the Ft. Wayne,

Indiana and the Washington, D.C. data sets, it was con-

cluded that:

1) This author's split estimation method is

superior to Robertson's in terms of lower objective func-

tion and higher system speed values. This is true for

its use in both TRANSYT/G for on-line control applications

and in TRANSYT for more accurate off-line signal timing

optimization studies, and,

2) TRANSYT/G's vastly lower computer running

time and sub-optimal signal timings makes it a potential

candidate for an on-line signal timing control method.
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A secondary result of this research was the de-

velopment of a finite traffic queue dispersion model

(Appendix A) for use in off-line simulation studies re-

quiring a more accurate model than the infinite queue

version presently being used in TRANSYT.

7.2 Suggested Future Research
 

Further research should be undertaken to deter-

mine other refinements in calculating near optimal splits

and offsets. For example, by relaxing the assumption of

uniform arrivals (Figure 3.2) in the stops and uniform

delay models, a better near-optimum split set may result.

Also, inclusion of secondary interdependencies of nearby

nodes and links may improve the offset calculations.

Secondly, the partial excess green shift used in

the offset predictions should be investigated as to its

dependence upon the various network geometries and traffic

parameters.

And thirdly, the finite queue dispersion model

should be extensively field tested in many urban areas

culminating in an improved TRANSYT/G program.
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APPENDIX A

TRAFFIC QUEUES AND THEIR DISPERSION

Queueing theory was originated by Erlang in 1909

in order to solve a congestion problem in a telephone

system. It was developed to describe the behavior of a

system providing a service for random demands. Since this

general description applies to both discrete and con-

tinuous flows, queueing theory is a logical portion of

any present day traffic flow model. For more detail,

Drew (DRl) is one of the many authors covering queueing

processes as applied to traffic systems.

In order to specify a queueing system, the follow-

ing items must be given:

1. the distribution of arrivals,

2. the source finiteness,

3. the queue discipline,

4. the channel configuration, and

5. each channel's service time distribution.

The collection of arrivals waiting to be served

is defined as the queue and the actual number of arrivals

waiting for service at time t is called the queue length.

A queueing system is considered to be in state

n if it contains exactly n items where n > 0,
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including all items in line and those being served. If

the arrival rate, a, is less than the service rate, b,

the queueing system is said to be stable and there exists

a finite time independent probability of the queue being

in any state n. On the other hand, if the ratio (%) > 1,

the queue length continues to grow with time.

When considering the idea of the queue length

(number of vehicles in a queue) for an urban traffic net-

work, first consider a directional traffic stream having

Poisson arrivals and an exponential service rate.

Let Pn(t + At), n > 0 represent the probability

that the queueing system contains n vehicles at time

(t + At). Let At be such that only one vehicle can

arrive or depart during the At time interval. Then

there are only three ways in which this queueing system

can reach state n during the time t to t + At, i.e.,

l. the system remains in state n, or

2. the system changed from state (n - 1) to state

n, or

3. the system changed from state (n + 1) to

state n.

If the probability of one_arrival in At is

(a A t) and the probability of one departure in At is

(b A t), the corresponding probabilities of no arrivals

or departures are (1 - a A t) and (l - b A t).
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Since traffic signals are spaced some finite dis—

tance apart in an urban network, the queue lengths must

be restricted to some finite value of N vehicles,

where N is a function of signal separation distance,

split, offset, and cycle length. Thus, if the maximum

number of vehicles in the queueing system is limited to

N such that vehicles arriving when n > N will not be

able to join the queue, we have, neglecting higher order

terms :

Pn(t + At) = Pn(t)[1 - (a+b)At]

+ Pn_1(t)[a A t] + Pn+1(t)[b A t], 0 < n < N

t+At) P0(t)[1-aAt] +P1(t)[bAt], n= 0(A.l)

P (t + At) ll 2PN(t)[l - b A t] + PN_1(t)Ia A t], n

Passing to the limit with respect to At results in:

Pn(t) = -(a+b)Pn(t) + aPn_1(t) + an+1(t) 0 < n < N,

Po(t) = -aPo(t) + bP1(t) n = 0, IA.2)

PN(t) = -bPN(t) + aPN_l(t) n = N.

Setting the time derivatives equal to zero and eliminating

time results in:

(l-I-)I)Pn=Pn+1-I-APn_l 0<n<N

P1 = APO n = 0 (A.3)

P = AP n = N.

N N-l
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where A = %. is the ratio of the arrival rate to the

service rate. Pn is the steady state time-independent

probability of n vehicles being in the system.

For a finite length queue, all of the individual

probabilities sum to unity,

N

2P =1=P +P +...+P

n=0 n 0 l N

= P + 1p + + ANP0 0 ... 0

N+l
l - A

= P0‘I’$‘A"‘° ' <A°4I

thus giving

0 1 _ AN+1 °

Then the discrete distribution for a finite

maximum allowable queue length N is,

— n - Anil ‘ A) (A.6)
Pn ' A P0 ’ 1 _ AN+1 '

Next the probability-generating function (pgf)

for this distribution is derived from the definition

n - co

Zn(0) E(O ) = i 0 P

l - A

=——NTI
1 - A n

1 - A 1 - (Ae)N+1
= (i ) _ - A.71 _ An+1 1 A6 I l
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The expected number of vehicles in a queue, E(n),

for which the maximum allowable is N is obtained from

the first derivative of the pgf with respect to e,

dzn(0)
Z'(l) = —————— .
n d0 0 = 1

After some algebraic manipulation, we have

_ N N+l

E(n) = 25(1) = (Iéxi 1 :N:I:N+l+ NA ° (A.8)
 

The limiting case is the non-truncated queue where the

expected number of vehicles in the queue is

lim E(n) = IéI , (A.9)

N—H'JO

as expected.

TableAul.illustrates the relation between the

expected queue length, E(n), as.a function of the ratio

of the arrival rate to the service rate for several

finite length queues and the limiting non-truncated queue.

From Table A.l, we can see that the expected queue length

becomes increasingly dependent upon the maximum queue

length N as the arrival to service rates ratio approaches

unity.

In an analogous manner, the variance for this dis-

tribution can be calculated from the first and second

derivatives of the pgf by

2-.. . .2
o — zn(1) + zn(1) - [zn(1)] (A.10)
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TABLE.A.1

EXPECTED QUEUE LENGTH, E(n)

 

 

 

 

Ratio of Maximumgueue Length

Arrival Rate

to Service =5 N=10 N=15 N=20 N=25 N=0°

Rate, A

0.00 0.000 0.000 0.000 0.000 0.000 0.000

0.05 0.053 0.053 0.053 0.053 0.053 0.053

0.10 0.111 0.111 0.111 0.111 0.111 0.111

0.15 0.176 0.176 0.176 0.176 0.176 0.176

0.20 0.250 0.250 0.250 0.250 0.250 0.250

0.25 0.332 0.333 0.333 0.333 0.333 0.333

0.30 0.424 0.429 0.429 0.429 0.429 0.429

0.35 0.527 0.538 0.538 0.538 0.538 0.538

0.40 0.642 0.666 0.667 0.667 0.667 0.667

0.45 0.768 0.816 0.818 0.818 0.818 0.818

0.50 0.905 0.995 1.000 1.000 1.000 1.000

0.55 1.051 1.207 1.221 1.222 1.222 1.222

0.60 1.206 1.460 1.495 1.500 1.500 1.500

0.65 1.368 1.760 1.841 1.855 1.857 1.857

0.70 1.533 2.111 2.280 2.322 2.331 2.333

30.75 1.701 2.515 2.838 2.950 2.985 3.000

0.80 1.868 2.966 3.537 3.805 3.921 4.000

0.85 2.034 3.456 4.383 4.951 5.281 5.667

0.90 2.195 3.969 5.361 6.420 7.204 9.000

0.95 2.351 4.490 6.422 8.155 9.697 19.000
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where it can be shown that

N(N+1)1N+1

1 _ AN+I
n -21 .

Zn(1) — ——— Zn(l) -1_A (A.1l) 

Therefore by substitution, the variance for our finite

queue is

_ N(N+1)xN+1

1 _ AN+I_
02 = E(n) [H - E(n)]  (A.12)

The variance for the limiting queue is well known

(DRl) and serves as a check for our finite case, namely

1im 02 = -—A-—- . (A.13)

N+00 (1-1)2

TableAnZ is a tabulation of the variance as a function

of A and N.

Now that the basics for queueing processes as

applied to urban traffic models with Poisson arrivals and

exponential departures have been discussed, the disper-

sion of moving queues will be covered.

Consider the placement of an observer near a

signalized intersection and given the task of determining

the effect of the signal's phase changes upon a stream

of traffic. He would note that the headway between

successive vehicles would decrease as they approached the

signal, tending to form a grouping or compression of

vehicles during the red phase. After the start of the

green phase the vehicle headway would then increase as

vehicle speeds increased, thus spreading out this group

of vehicles.
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TABLE A.2

2
QUEUE LENGTH VARIANCE, q

 

Ratio of

Arrival Rate

Maximum Queue Length

 

 

 

to Service N=5 N:10 N=15 N=20 N=25 N=w

Rate, A

0.00 0.000 0.000 0.000 0.000 0.000 0.000

0.05 0.055 0.055 0.055 0.055 0.055 0.055

0.10 0.123 0.123 0.123 0.123 0.123 0.123

0.15 0.207 0.208 0.208 0.208 0.208 0.208

0.20 0.310 0.312 0.312 0.312 0.312 0.312

0.25 0.436 0.444 0.444 0.444 0.444 0.444

0.30 0.586 0.612 0.612 0.612 0.612 0.612

0.35 0.762 0.827 0.828 0.828 0.828 0.828

0.40 0.962 1.106 1.111 1.111 1.111 1.111

0.45 1.184 1.469 1.487 1.488 1.488 1.488

0.50 1.420 1.941 1.996 2.000 2.000 2.000

0.55 1.662 2.547 2.698 2.714 2.716 2.716

0.60 1.902 3.308 3.678 3.740 3.749 3.750

0.65 2.130 4.229 5.046 5.254 5.297 5.306

0.70 2.338 5.288 6.921 7.531 7.714 7.778

0.75 2.518 6.429 9.382 10.946 11.618 12.000

0.80 2.666 7.561 12.371 15.856 17.945 20.000

0.85 2.779 8.572 15.598 22.242 27.601 37.778

0.90 2.858 9.357 18.529 29.161 40.081 90.000

0.95 2.903 9.842 20.550 34.629 51.573 380.000
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As traffic volumes increase on a given roadway,

the vehicles generally bunch-up forming moving queues or

platoons.

Robertson (R01) developed his version of the

smoothing factor empirically by making many observations

of vehicle travel times along several different roadways

during various times of the day. He then approximated

his field data with the equation,

1
= —-——-— A014

A 1 + 0.51: ' ( )

where t and A are the vehicle travel time and smooth-

ing factor, respectively.

Another approach was taken by Seddon (SE1) in

which, based upon a geometric distribution of travel

times, he derived the same smoothing factor to be,

_ _.1___ (A.15)

A " 1 + 0.251: °

Seddon concluded that his result was larger than

Robertson's due to taking his summation of the geometric

distribution over the complete set of positive non-zero

real integers. Seddon indicated that a truncated summation

might be more appropriate but it would not lead to a

straightforward solution.

This author then proceeded to obtain such a solu-

tion by considering this to be a finite process. First,
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consider a vehicle that leaves a traffic signal stop-

line and travels along a roadway such that it passesanu

observation point downstream. Define the random vari-

ables

xk = 1 if the vehicle is observed down-

stream in the kth interval

0 otherwise,

where the Xk are independent random variables and their

probabilities are

P(X l)

k A'

and
(A.16)

P(X 0)k l - A 0

Consider the event where the vehicle that leaves the sig-

nal stopline in the 1St interval passes the downstream ob-

servation point in the ith interval, t time interval units

later. The probability of this event is given by:

i-l .

P(i+t) = [ n p(xk = 0)]p(xk = 1) = (1-A)l 1A,

k=l

i = 1,2,... (A.17)

The average value of travel times past the ob-

servation point in the interval (i+t) is given by

tave = -12-[(i + t - 1) - (1) + (i +'t) - (2)]
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provided that the departure time at the stopline and the

arrival time at the observation point are randomly dis-

tributed within the appropriate intervals. Then the ex-

pected travel time, E(T), for this vehicle over a finite

number of intervals, N, is

N N

E(T) = .2 tave P(i + t)/.2 P(1 + t)

1=l 1=1

N . N .

E(T) = 2 (i + t - 1)(1 - A)1 1A/ z (1 - A)1 1A

i=1 i=1

N . N .

= (t - 1) + 2 1(1 - A)1 1A/ z (1 - A)1 1A.

i=1 i=1

(A.19)

The denominator summation is a truncated geometric

series having the closed form, 1 - (1 - A)N. By equating

the definition of expected value to the result derived

from the probability generating function, the numerator

summation can be shown to have the closed form

[1 - (N + 1)A(l - A)N - (1 - A)N+1]/A. Thus

N+11/A11—(1-A)N1.

(A.20)

(t-l) + [1 + (N+l)A(1-A)N - (l-A)E(T)

The desired result is to have the smoothing

factor, A, expressed explicitly in terms of the travel

time, t, and queue length, N. This is not easily done

for general values of N. However this function can be

solved for t in terms of A and N.

Both Robertson and Seddon have confirmed that the

expected travel time E(T) = 1.25t. Substitution into
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the previous equation leads to,

N N+l
t = l-A - NA(l-A) - (l-A) . (A.21)

0.25A[1 - (l-A)N]

 

In the limit for infinite queues, we have

lim [t] = .U—l—AL—EL, (A.22)

N+oo

which is exactly equal to Seddon's result and twice

Robertson's empirical form. FigureAn1.was constructed

from TableA.3 which is a tabulation of this author's,

Seddon's and Robertson's travel time equations for com-

parison.

Although Robertson's result was accurate enough

for this author's split and offset calculations, a more

sophisticated model of urban traffic flow may require a

smoothing factor which is a function of the maximum

allowed queue length, N. It is for this reason that

these results have been included.
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TABLEIA.3

TRAVEL TIME, t

 

 

Smoothing Maximum Queue Length Robert-

FaCt°r N=5 N=1o N=20 N=50 N=w* son's

0.05 7.590 16.315 31.295 59.328 76.000 38.000

0.10 7.161 14.586 24.928 34.964 36.000 18.000

0.15 6.714 12.861 19.441 22.607 22.667 11.333

0.20 6.252 11.188 15.067 15.997 16.000 8.000

0.25 5.777 9.613 11.745 12.000 12.000 6.000

0.30 5.293 8.171 9.269 9.333 9.333 4.667

0.35 4.803 6.883 7.414 7.429 7.429 3.714

0.40 4.314 5.757 5.997 6.000 6.000 3.000

0.45 3.829 4.787 4.888 4.889 4.889 2.444

0.50 3.355 3.961 4.000 4.000 4.000 2.000

0.55 2.897 3.259 3.273 3.273 3.273 1.636

0.60 2.460 2.662 2.667 2.667 2.667 1.333

0.65 2.048 2.153 2.154 2.154 2.154 1.077

0.70 1.666 1.714 1.714 1.714 1.714 0.857

0.75 1.314 1.333 1.333 1.333 1.333 0.667

0.80 0.994 1.000 1.000 1.000 1.000 0.500

0.85 0.704 0.706 0.706 0.706 0.706 0.353

0.90 0.444 0.444 0.444 0.444 0.444 0.222

0.95 0.211 0.211 0.211 0.211 0.211 0.105

1.00 0.000 0.000 0.000 0.000 0.000 0.000

*

 
Limiting case is same as Seddon's result.
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APPENDIX B

This appendix contains a general flow diagram of

Robertson's TRANSYT signal timing program and this

author's modified version, TRANSYT/G, illustrated in

Figure 8.1. Due to the length of these two computer pro-

grams, only listings of the following portions of

TRANSYT/G will be included:

1) the Type 4 Vein Card Section of TINPUT

(Figure 3.2),

2) the complete SPLIT subroutine (Figure 3.3),

and

3) the complete OFFSET subroutine (Figure B.4).

A general description of the function of the various

other subroutines called by TRANSYT and TRANSYT/G is as

follows:

TINPUT - reads all the input data and checks for

appropriate order and boundedness,

STARl - an optional calculation of the splits

based upon equal saturation of cross

phases (TRANSYT only),

HILLCL - performs Robertson's hillclimbing optimiza-

V tion of splits (optional) and offsets

(TRANSYT only),

128
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SUBPT - calculates the delays, stops, and objec-

tive function for a given set of signal

settings,

TOUTP - outputs the previously calculated informa-

tion for each node and link along with

their totals, and

SPLOT - plots out the link flow histograms.
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TRANSYT :)

 

 

 
 

(TRANSYT/G D

‘
B

0

 

 

Figure 3.1 TRANSYT and TRANSYT/G General Flow Diagrams



c-

c-

c-

C-

240

131

SUBROUUINE IINPUI(ICL40)

MISSING SECTION (SEE ORIGINAL IRANSYI LISIING).

YHE NEXT SECIION PROCtSSES A TYPE 0 CARD(A VEIN CARD)

IF(IPCARDoLV.S.OR.IPCARD.GT.0)GU I0 110

IF(WR11.EU.3)GD 70 246

IF(1PCARD.EQ.0)GO ID 205

wRITE( b.5110)

IF(NR1|.NE.U) NRIIE(1115110)

5110 FORMAT(“OCARD'90X9”CARD”p38Xp”NUDE/VEIN LIST”/

5

c-

c-

2&5

246

247

250

255

120

258

256

257

1” NO. TYPE”)

WPITE( b.5000)lCRNU:(ICARD(I)oI=lclb)

IF(lel.NE.0) NR11E(11:5040)ICRNO;(ICARD(I)oI=1,16)

NAR7=NARI+I

L0(NARI)=ICARD(2)

HN(NART):0 '

DU 250 [33016

J=ICARU(I)

lF(J.EU.0)Gn ID 250

IF(J.GI.0)60 T“ 2“?

NFAUL1:1

IFAULI(I)=IMINUS

IF(NN(NART).GE.IS)GO IU 255

NN(NARI)=NN(NARI)+I

LN(NARVnI-2)=J

CUNIINUt

GU 10 258

WHIIE( b.5120)

IF(lel.~E.0) NR11E(1|:5120)

FURNAI('0100 MANY NODES PER VtIN IN LIST ' LIMII la'/)

NFAULT=1

00 25b 131016

IF(IFAULI(I) .EO. IMINUS) 60 ID 257

CUNIINUE

60 10 100

leTtt 6:5050) IFAULI

HRIYE( 6'2000)

WRITE( 6:2003)

lF(hR11.EQ.0) GO TO 100

WRITE(II,5050) [FAULT

WRIYEUIpZUOO)

wRIIt(I1p2003)

60 It) 100

MISSING SECIIUN (sac ORIGINALTRANSYT LISIING).

REIURN

END

Figure 8.2 TINPUT Type 4 Card Input Section Listing
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SUBROUTINE SPLIT

REAL*U STP£N(?00)oRUNTlM(200)oVLHKMS(200)'HGHT(200)

IRKA(200)0RKH(200)0RKC(200)0RKD(200I0RKE(200)

INTEGER NLIST(SNIOLNUM(20070ICARD(16)IIFAULT(IO)

pNURD(79II)pNUHAX(7)0KNBIAS(7)0N00MAX(7)

OITLE(20)

INTEGER NLINK(50)INBIAS(7rSUIINMIN(7950)oLOUTN(200)

oLBSTRT(2:200)oLBFN5H(20200)ILDSTRT(21200)

ILFSTRT(ZIZOOJILFFNSH(ZIZOO)OLVEHC(200)

oLTOTF(200)oLUNIF(200)ILLN0(40200)

oLJT(flo200),LNUMO(200),NNUMO(50)oISIZES(15)

oNSTAGE(50)oKLIST(50)oLPL0T(240)oLFUDG(40200)

'IN(50)INK(SUIIIIrNDSAT(200)INTSAT(200)

IIPTOUT(12000)01HARK(IT)

ILDFN$H(20200)IL3ATF(200)OLENTF(“0200)

COHMON SIPEN,RUNTIM.VEHKHS,HGHI.CONv1aCONVSoCOva

ICONVTpCDNVBICONVA'CONVBOCUNVCIDSToDFNoSTOPP

ITIMIOLDPIOPINDEXIPAOPBOPCOTOTRTITVKIBUSRT

OBVKINLISToLNUMIICARDIIFAULTIITLEINPNoMFAULT

,NFAULT'IFNDIILOIPI[STEPSoINODESrILINKS

IISTLSToINODCIIVoNUSfoNOSLpNPLTS'ICYCLE

pNLINKpNBIAS:NMINoLOUTNoLBSTRTpLBFNSH

pLDSTRTpLDFNSHpLFSTRToLFFNSHoLVEHCoLSATF

pLTOTF,LUNIF:LLNOpLENTFOLJTILNUNOINNUHO

rISIZESoIMARKoNSlAGE.KLISToLPLOTpLFUDGrHRIl

COMMON/BLKA/NRI(200)'NARTpLU(20)pNN(20)pLN(ZOplb)

IP=1

IL=l

NOSEzo

N0$L=0

IF(NRII.E0.0)GU TU 199

THE TRAFFIC PATTERNS, DELAYS, ETC FOR THE

INITIAL SETTINGS ARE CALCULATED AND THE

SIGNAL AND LINK DETAILS ARE UUTPUT(UPTIONAL).

J=IMARK(6)

IF(J.EQ.O)GO T0 5

HFAULT:0

IL:0

CALL SUBPT(IPTUUTaRKAoRKBpRKCoRKDoRKEI

IFIJ.LU.I)GO T0 5

Iv=1

TF(NR11.E0.3)IV=3

NFAULT=0

CALL TUUTP(RKA9RKBoPKCoRKDoRKE)

NOSE=0

NDSL=H

MFAULT=0

CALL SUBPT(IPTOUTIRKAIRKBIRKCORKDORKE)

Iv=l

IF(NRIT.EQ.3)IV=3

Figure B.3 SPLIT Listing
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c-

c-

c-

c-

C-

c-

199

200

21()

211

181

133

NFAULT=0

CALL TUUTP(RKA'RKBIHKCIRKDIRKE)

THIS VERSION HILL ADJUST SPLITS FOR UNGROUPED

SIGNALS HAVING 2 STAGES, l GREEN/STAGE ONLY;

OTHERS LEFT AS IS.

SET UP NK(A,*) LINK TERMINATION MATRIX.

D” 200 I=1pINODES

INTIJ=0

DO 210 J=I:ILTNKS

I=LUUTN(J)

IF(I.LT.0)GO T0 210

IN(I)=IN(I)+I

KON=IN(I)

NKCIoKONJ=J

NK(1,11)=IN(T)

anTINUE

FOR EACH NUDE I. CALC NEw SPLIT AND ADJUST

GREEN BAND FOR EACH LINK EXITTNG FROM NODE I.

lx=ISTEPS

XC=IX

CL:1CYCLE

1:0

I=I+I

IF NUDE I HAS MORE THAN 2 STAGES OR IS TO

BE GROUPED NTTH A LATTER NUDE. LEAVE

SPLIT AS IS.

NNK=NK(l.Tl)

IF(NSTAGE(I). GT. 2. 0R. NLIST(I) LT. 0)GO T0 230

CA: 0. 3C3: U.

hKA:0.;WK83 0.

ucA=0.:wcH=u.

WKKA=0.;NKK3=0,

K=0

Ksk+l

NA=NK(I,K)

JB=L8$TRTTI.NA)

NS=NbIAS(JB.I)

JBH=LBFNSH(I.NA)

NF=NBIASTJBB,I)

IFINF.LT.NS)NF=NF+IX

NGI=NF-NS

IF(NGI.GT.IX)NGI=NGI-Ix

NR1(NA)=IX-NGI

IF(LNUH(NA).LT.0)GU T0 189

A:LTOTF(NA)

6=LSATF(NA)

C=8*A/(B-A)

D=O.S*TIM*A

NNN:I.25*AAXC/B+0.5

ann(JB.T)=MAx0(NHIN(J8,I),NNN)

Figure B.3 (cont'd.)
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187

189

184

168

171

I72

192

191

134

IF(J8.NE.))GU T0 186

CA=CA+C

NAA=NKA+NGHT(NA)*41.66*D

WKKA=NKKA-WGHT(NA)*33.53*D

wcA=wcA+wGHTTNA)*C

60 T0 187

C5=CH+C

WKH=WKB+wGfiT(NA)*QI.6b*D

hKKb=WKKB-NGHT(NA)‘8.33*D

«Cb=wc8+wGHT(NA)*C

CONT INUT'

IF(K.LI.NNK)GO TU 18!

AIC:(CL*CL*NCA)-(WKKA+HKKB)+STOPP*CL*(CA'CB)

IC=XCAAICI(CLACLt(NCA+WCB)+HKA0NK8)*.S

NA=NK(I.1)

JB=LB$TRT(IONA)

JRB=LBFNSH(I.NA)

Kx=LNUM(NA)/2

hx=ath

KK=1

AK=KK+I

Nb=NK(I,KK)

KX8=LNUM(N8)/2

KXH=2*KXB

KIJ=2

IFTKX8.EQ.LNUM(NH))KIJ:1

KIK=2

IF(Kx.Eu.LNUM(NA))KIK=1

IF(KIK.NE.KIJ)GO T0 188

IF(KK,LT,NNK)GO T0 180

KJB=LBSTRT(1pN8)

KJ88=LBFNSH(laNB)

IC3MINU(M‘X“(IC0NMIN(JUI1))01X'NHTN(KJBII))

Kxx=LNUM(NA)

TF(JB.tU.l)Gn TO 171

Lx=NbIAS(KJ88,I)+IC-NR1(NA)

NA=KJT5H

GO TO 172

Lx=NRIAS(JBB,1)+lc-NR1(NB)

MA=J88

NBIASIMArII=SCAL(LXoISIEP5)

k=0

K=K+I

NA=NKITvKI

JB=LBSTRT(1,NA)

NS:~BTAS(JB'I)

JHB=L8FNSH(1,NA)

NF=NBIAS(JBB.I)

NGI=SCAL(NF-NS.ISTEPS)

NRITNA)=IX-SCAL(NGTaISTEP8)

Figure B.3 (cont'd.)
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IF(K.LT.NNK)GO In 191

230 IF(I.LT.INUDES)GO T0 211

L- OUTPUT FOR NEW SPLITS.

HFAULT=O

IL=1

CALL SUHPT(IPTOUT:RKA.RKB.RKcoRKD,RKE)

1v=1

IF(leI.EU.3)IV=3

NFAULT=2

CALL TUUTPIRKAIRKBIRKC'RKUpRKE)

QETUF‘N

END

Figure B.3 (cont'd.)
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SURROUTINE UFFSET

THIS SUNRUUTINE IS ENTERED FROM THE MAIN PROGRAM

AND PERFORMS THE ESTIMATION SEUUENCE NECESSARY TO

FIND THE OFFSET SETTINGS. TNU SUBROUTINES ARE

ENTERED FROM "OFFSET” - ”SUHPT” T0 CALCULATE

DELAYS ETC AFTER EACH SIGNAL CHANGE AND "TOUTP' T0

UUTPUT RESULTS To THE LINE PRINTER.

REALAu STREN1200).RUNTIMTZOO).VEHKMSTZUO).NGHT(200)

'RKA(200)'RKB(200)'RKC(200)ORKD(ZOO)ORKE(200)

OPINIISI

INTEGER NLIST(SU).LNUM(200).ICARD(Ib)oIFAULT(16)

.NUS(IS):ILL(15)oN00(15).NP(15)IKS(15)

.TTLE(20)

INTEGER NLINKISU)INBIASI7050)INMIN(7050)IL0UTN(200)

nLBSTRT(2.2001oL8FNSHT2pzoo).LDSTRT(2:200)

OLFSTRT(3:200)0LFFNSH(23200)OLVEHC(200)

oLTOTF(200)oLUNIF(20”)oLLNO(“IZUOI

.LJT(0,200),LNUMUTBUU).NNUM0(SO)oISIZESTTS)

pNSTAGE(SH),KLIST(50).LPL0T(2&0).LFUDG(ao200)

pIPTOUT(12000)pIMARK(11)

oLDFNSH(2.200)oLSATP(200)pLENTF(H.200)

CUMMON STPtN,RUNTIH.vEHKMS.NGHT.C0NV1.CONV5.C0NVS

pCONVToCUNVBpCONVA,CONVBoCONVCoDSTaDFNoSTOPP

ITIHoULDPIIPINDLXIPAproPCoTUTRToTVKoBUSRT

IBVKINLISTILNUMI[CARDIIFAULTOITLLINPNaHFAULt

INFAULTI[ENDIILIIPIISTEPSIINODESIILINKS

rISTLST.INUDCpIVoNUSEpNOSLpNPLTSoICYCLE

oNLINKpNBIASoNMINILOUTNILBSTRToLBFNSH

.LDSTRT,LDFNSHpLFSTRTpLFFNSHaLVEHC.LSATF

,LTUTF,LUNIF,LLN0,LENTF.LJT,LNUM0.NNUM0

oISIZES:IMAHKoNS[AGEIKLISIILPLOIILFUDGoWRII

CUMMON/BLKA/NRI(200),NART.L0(20),NN(20).LN(20,16)

CUMMUN/BLKB/EGS

DIWENSION Y(1S).Z(15).TT1ST.TB(TS).R(IST

DIMENSION DLCT15).UCT15),TH(15),AL(15).EGS(15)

NRITE(11.789)

DO 777 J=IQNAPT

EGSIJ)=0.0

READ(12./)EGS(J)

771 CUNTINUE

789 FORMAT1' INSERT 0.0-~1.0 EXCESS GREEN SHIFT FOR"!

“EACH VEIN 1 LINE AT A TIME“)

1P=1

IL=1

N05E=u

NDSL=0

Xc=ISTtPS

CL=ICYCLF

IF(IMARK(I).NE.10)GO T0 400

THE TRAFFIC PATTERNS. DELAYS: ETC FOR THE INITIAL

Figure 3.4 OFFSET Listing
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SETTINGS ARE CALCULATED AND THE SIGNAL AND LINK

DETAILS ARE DUTPUT.

J=IMARK(6)

IF(J.EU.0)GO T0 5

MFAULTzu

IL=U

CALL $UHPT(TPTUUTaRKAIRKBoRKCoRKDoRKE)

IFIJ.EU.I)GU T0 5

TVs!

IFTwR11.EU.3)IV=3

NFAULT=0

CALL TUUTP(HKA,RKB,RKC.RKD.RKE)

NUSE=0

NUSL=0

MFAULTzu

CALL SUBPT IIPTOUTIRKApaKBoRKCpRKDrRKL)

IV=1

IF(WRII.EQ.S)IV=3

NFAULT=D

CALL TUUTP (RKAoRKBoRKCIRKDoRKE)

CONTINUE

CALC NEW UFFSETS FOR EACH NUDE 8 ADJUST LINK GREENS.

M=0

IND=0

M=M+I

N=NN(M)

TN=1800tN

P30

PBR=0

IF(L0(M).GE.S)GO T0 550

SET UP FOR ONE-RAY STREET.

1:5-L01M)

J=0

J=J+1

NLNzLNTM,J)

NA=10ANLN+I'T

DU 521 IA=T.ILINKS

IF(NA.EU.LNUM(IA))GO T0 522

CONTINUE

IF(J.EQ.N)GU T0 524

NA2=TO*LN(M,J+1)+I’T

DU 523 IB=IoILTNKS

IF(NA2.E0.LNUN(IB))GO T0 526

CONTINUE

TIJ)=CONV1AAVE(LJToIB)

PR:NRT(IA)

R(J):RRACONVA

IFTJ.LT.N)GU T0 520

G=1.-R(1)

DO “I J=20N

Figure 3.4 (cont'd.)
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XG=I.-R(J)

IF(G.GT.XG)G=xG

uI CUNTINUE

Na:N-I

00 Tn 916

c- SET UP FOR Two-NAY STREET.

550 1:7-LUTM)

an

610 J=J¢1

NLN=LN(M,J)

IFTJ.EQ.1.AND.LN(M.J).GT.LN(MoJ41))I=I+2

NAP=IU*NLN§I'T

IFTJ.F0.1)KI=TSIGN(2.LN(MoJ+IJ-LNTMoJ))

00 611 IA=1.ILINKS

IF(NAP,EQ,LNUM(IA))G0 TU 612

011 CONTINUE

612 P8R=PBR+LTOTF(IA)

NA=NAP+KI

DU 613 18:1.ILINKS

IFTNA.EN.LNHH(IH))GU TU 61a

615 CONTINUE

old P:P+LTUTF(IH)

mnaao

IF(J.EU.N)GU T0 615

NA2=TU*LN(M.J+1)+KI+I-1

DO 616 IE=1.ILINKS

IFINA2.EN.LNUN(IE))GO Tu 617

616 CONTINUE

617 T(J)=CONv1*AVE(LJT.It)

T8(J)=CONv1*AvE(LJT,TAT

615 RR=NR1(18)

R(J)=RR*CUNVA

IF(J.LT.N)GD Tn 610

PBR=PBRITN

621 R=PITN

N2=N-1

C' CALC Y(I) K ZTI) FUR tACH SIGNAL.

Y(1)=".

2(1)=0.

DO 10 1:20N

IFILUTM).LE.4)Tb(I-I)=0.

Dx=.5t(T(I-I)+T8(I'l))/CL

Y(I)=Y(I-1)+Dx-.5*(R(I)-R(I-1))

uxx=.s*(1(1-1)-TB(I-1)T/CL

10 Z(I)=Z(T-1)+Dxx

C' CALC MAX EQUAL BANDNIDTH.

CB=-1.1

00 an 1:1,N

88:1.1

J=0

Figure 3.4 (cont'd.)
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J=J+l

YY=Y(J)-Y(I)

U‘)=1.'SCAL(YYIIO)

YY=Y(J)-Y(1)-.S

US=1.-$CAL(YY.1.)

UUR=U0-R(J)

USR=US-R1J)

IF(UOR.LT.USR)GO T0 3

TH(J)=0.

AL(J)=U0

D=UOR

‘60 10 4

FH(J):0.5

ALtJ)=HS

D=U5R

Ib(D.LT.SB)SH=D

IF(J.LT.N)6U TU 30

IFISB.LF.CB)GD T0 20

CB=SB

KC=T

DO 21 J=lon

DLC(J)=TH(J)

UC(J)=AL(J)

CUNTINUE

IF(CB.LT.U)CB:0.

CHZ=2.*CB

BS=C6

BBS=CH

CALC MAX EUUAL BANDWIUTH SYNCHRONIZATION.

DU 35 .1:le

ZZ=Z(J)-Z(KC)+DLC(J)

THTJJ=SCAL(ZZ.1.)

CALC MIN GREEN.

G=IO-R(‘)

DU “0 [=20N

XG:lo-R(I)

1F(G.GT.XG)G=XG

CONTINUE

PPH:P+PBR

lF(PBR-P)45o105o70

CALC ADJUSTMENTS FOR lNBOUND LT OUTBOUND.

IF(PPH,GT.C82)GU T0 50

BS=ANIN1(69CBZ*PIPPB)

GU TU 60

1F(P.GE.CBB)GO T0 55

BS:AMINI(G:P)

GO TO 60

88:6

DO 65 J=TaN

AL(J)=AMAX1(uc(J)-l.+BS-CB.0.)

Figure 8.4 (cont'd.)
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335:AMAX1(C62-BS.0.)

IF(LU(M).LE.0)BBs=0.

GO TO 95

CALC ADJUSTMENTS FUR INBUUND GT OUTBOUND.

IFTPPB.GT.C82)GO TU 75

st=AMIN1(G.CBZ*PBR/PPB)

Go To 85

IF(PBR.GE.CBZ)GU T0 80

BBS=AMIN116oPBPJ

GO TO 85

885:6

'00 Q0 J=loN

AL(J)=AMAX1(HHS+R(J)-UC(J).0.)

HS:AMAX1(CBB-BBS.0.)

AL(KC)=U.

DU ‘00 JS‘oN

YY=TH(J)-AL(J)

TH(J)=$cAL(YY,l.)

CONTINUE

MAKE EXCESS GREEN ADJUSTMENTS T0 OFFSETS.

DU 880 J=IIN

AJ=J-KC

TC=0.

J1=J

J2:Kc-1

IF(J-KC)863,879,884

J1=KC

J2=J-l

DU 862 JJ=J1.J2

TC=TC§T(JJ)

TC=TCICL

GC:TH(J)-.S*(R(KC)+R(J))-8$-SIGN(TC'AJ)

ch=1.-R(J)-us 1 ;

GC=SCAL(GC:1.)

TCB=0.

IF(J.E0.KC)GO T0 878

DU 832 JJ=leJ2

TCB=TCH-TB(JJ)

1C8=TCBICL

GCB=TH(J)+.S*(R(KC)'R(J))*$IGN(TCB04J)

ccau=1.-R(J)-BBS

GCB=SCAL(GCB.1.)

Hc=AMINl(GCoGCB)

TH(J)=TH(J)-EGS(MJ*SIGN(BCoAJ)

IF(THTJ).LT.0.)TH(J)=TH(JJ+I.

TH(J):TH(J)*XC+.S

SET UP INTERFACE FROM UFFSETS TO NBIAS(*o*).

TT=0.

DO 907 J=IIN

IF(H.E0.1.AND.J.E0.1)DEL=0.

Figure 3.4 (cont'd.)
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IF(J.GT.1)GO T0 926

IF(M.GT.1)GO T0 907

NS=DEL+.S

GO TO 901

IF(L0(M).GE.S)GO Tn 927

T1=T1+T(J-1)/CL

ES=(1.'EGS(H))*(1.'R(J)-G)

us:(11+R(J)-R(1)+DEL+£S)*XC+.5

GO TO 901

YY=TH(J)-TH(1)

N8=YY*(.S*(R(J)-R(l))+DEL)*XC*.5

-NS=SCAL(NS.I$T£PS)

NLN=LN(M0J)

DU 770 KKK=1,INODES

IF(NLN.EQ.NLIST(KKK))GU T0 771

CONTINUE

IF(L0(M).LE.GIGU T0 911

1:1

IF(LU(M).tQ.S)I=2

NA=10*NLN+I'I

DU 908 IA=1.ILINKS

IF(NA.tu.LNUM(TA))GO TU 909

CUNTINUE

JB=LHSTRT(1.IA)

JHB=LBFNSH(1'IA)

NF:NBIAS(JHB'KKK)‘NBIAS‘JBpKKK)

NBIAS(JH,KKK):NS

=NS

NF=NF+NS

NF=SCALTNF.ISTEPS)

NBIAS(JBB:KKK)=NF

IT(N,EU,NART)GD T0 907

IF1NLN.E0.LN(M+1'1))XGzAtc0NVA-R(J)

IF(M.E0.NANT-1)GO T0 907

00 887 L=2.NART-M

IF(NLN.NE.LN(M+Lpl))GU T0 887

X62:A*CONVA-R(J)

1ND:M+L

GO T0 907

CONTINUE

CONTINUE

0EL=XG

IF(IND.EQ.0)GO T0 700

IF(M.EU.IND-1)DEL=XGZ

IFtM.LT.NART)GO T0 509

OUTPUT FOR NEW SIGNAL TIMINGS.

MFAULT=0

IL=I

CALL SUBPT(IPTOUTpRKAoRKBaRKC:RKD.RKE)

IV=1

Figure 3.4 (cont'd.)
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TFIWRIT.EQ.3)IV=5

ISTLST=2

NFAULT=ISTLST

CALL TOUTP(RKAoRKH'RKCIRKDoRKE)

C- FURTHER COPIES OF THE FINAL OUTPUT ARE PRINTED

C- IF SPECIFIED BY THE CONTENTS OF IMARK(9).

IF([MARK(9).LT.2.0R.IMARK(9).GT.b)GU T0 201

IY=IMAPK(9)-1

DU 509 IZ=T:IY

CALL TOUTP (RK‘pRKUoRKCoRKUoRKE)

309 CONTINUE

201'1F(NPLTS.EQ.0)GO IU 202

CALL SPLOT (IPTDUT)

202 RETURN

T.TTI)

FUNCTION SCAL(AIX)

c- THIS FUNCTION SCALES (A) BY IX) SUCH THAT

t- (A) LIES BETWEEN 0.0 AND (X).

SCALzA

TI IF(SC‘L.GE.".)GU T0 12

SCAL=SCAL+X

GO TO 11

12 IF(SCAL.LT.X)RETURN

SCAL=SCAL'X

60 T() 12

RETURN

END

FUNCTION AVE(X,K)

C- THIS FUNCTION AVERAGES THE XItpK) VECTOR COMPONENTS.

DIMENSION x(d,200)

COUNT=0.

AVE:O.

DO 1 1:1,4

[FIX(IoK).E0.0.)GU TO 1

COUNT=COUNT+1. '

AVE=AVE+X(I.K)

1 CONTINUE

IFIAVE.E0.0.)RETURN

AVE=AVEICOUNT

RETURN

END

Figure 3.4 (cont'd.)
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