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ABSTRACT 

 

METAGENOMIC ANALYSIS OF ANTIBIOTIC RESISTANT GENES IN A 

CONVENTIONAL AND MEMBRANE BIOREACTOR WASTEWATER TREATMENT 

PLANT 

 

By 

 

Camille McCall 

 

Wastewater treatment plants (WWTPs) are known environments for the presence and transfer 

of antibiotic resistant genes (ARGs), an evolving environmental pollutant. This study aimed to 

explore the prevalence of ARGs and resistant bacteria in a conventional, and a membrane 

bioreactor (MBR) WWTP in Michigan (USA). A sequence-based metagenomic approach was 

implemented to detect the profile of ARGs in the activated sludge (AS), before disinfection (BD), 

and after disinfection (AD) treatment stages in each WWTP. Metagenomic alignment detected 

genes resistant to sulfonamide, tetracycline, macrolide, elfamycin, aminoglycoside, and β-lactam 

classes of antibiotics to be prevalent ARGs in both WWTPs. Effluent samples yielded the highest 

presence of ARGs in each plant compared to AS and BD samples. Quantitative analysis found that 

56.25% and 53.33% of a total of 23 ARGs, which were detected at ≥ 90% gene similarity among 

all samples, were not detected until after disinfection samples for the conventional and MBR 

WWTPs, respectively. To our knowledge, this study is the first to report the prevalence of 

elfamycin resistant genes in WWTPs.  In addition to this, Acinetobacter baumannii, Pseudomonas 

aeruginosa, and Pasteurella multocida were found to be predominant resistant bacteria in AD 

samples from each WWTP. The occurrence of ARGs increased in both WWTPs as treatment 

progressed further suggesting that increased wastewater treatment selects for antimicrobial 

resistance.
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1. INTRODUCTION  

 

The development and overuse of antibiotics has led to the selection of antibiotic resistant 

genes (ARGs) in bacteria resulting in reduced susceptibility to a wide range of antimicrobial 

treatments. Antibiotics are largely used in animal production and are among the largest therapeutic 

treatment for bacterial infections in humans (Manaia et al., 2015; Schmieder and Edwards, 2012). 

It is said that within the first few years of introducing a new antibiotic, pathogens commonly 

known to persist in hospital settings, develop resistance (Schmieder and Edwards, 2012; Zhang et 

al., 2015b). To date, nosocomial (hospital) infections are one of the leading causes of death (Xia 

et al., 2016). Resistant pathogens of this nature escape controlled settings through, most 

commonly, hospital waste streams and are released into the environment. Antibiotic resistant genes 

have become an evolving environmental pollutant known to occur in ecosystems such as, soils, 

surface waters, and WWTPs (Manaia et al., 2015). WWTPs are known to select for antimicrobial 

resistance given the various treatment processes and the harboring of an abundance of diverse 

microbial communities (Mao et al., 2015; Murray et al., 1984).  

 

While ARGs in WWTPs have been explored in many facets, the effects of treatment on these 

genes are still unclear. Several studies report discrepancies in the effects of treatment on the 

behavior of ARGs throughout various wastewater treatment stages (Diehl and LaPara, 2010; 

Murray et al., 1984). The differences in how ARGs behave throughout waste treatment cycles can 

be caused by several factors that are at play. For example, biological treatment types, hydraulic 

detention time, presence of heavy metals, and temperature all play a role in the prevalence and 

removal of ARGs in wastewater treatment systems (Bondarczuk et al., 2016; Diehl and LaPara, 

2010; Gao et al., 2012b; Mao et al., 2015; Novo and Manaia, 2010; Zhang et al., 2015c; Zhang et 

al., 2015b). Common ARGs found in waste streams such as tetracycline and sulfonamide resistant 
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genes have been studied at great lengths, generally by means of culturing and polymerase chain 

reaction (PCR) techniques (Mao et al., 2015, Gao et al., 2012a; Zhang et al., 2011; Gao et al., 

2012b; Diehl and LaPara, 2010; Novo and Manaia, 2010; Munir et al., 2011). However, studies 

capturing a wide spectrum of ARGs in various types of wastewater treatment systems are limited. 

Considering the role of WWTPs in the selection or reduction of ARGs, the need to investigate the 

prevalence and diversity of these genes on a metagenomic scale has become increasingly important 

over the years. 

 

Though, culture-based techniques have made it possible to detect ARGs in environmental 

samples, a reported 99% of environmental bacteria cannot be cultured (Varela and Manaia, 2013). 

This makes culture-base metagenomics insufficient in identifying novel, or a broad spectrum of 

antibiotic resistant bacteria within microbial communities (Schmieder and Edwards, 2012). The 

introduction of sequence-based metagenomics allows for the detection of a wide range of ARGs 

through genomic mapping and gene affiliation to national reference databases (Schmieder and 

Edwards, 2012). Sequence-based techniques involve sequencing a random sample of genetic 

material recovered directly from the environment without the use of culturing (Penders et al., 

2013). Sequencing platforms such as Illumina, produce vast libraries of genetic information that 

are later sequenced and can then be post-processed for further analysis.  

 

In this study, we used a sequenced-based metagenomic approach to assess the occurrence of 

ARGs in a conventional activated sludge (CAS) with chlorine (Cl) disinfection, and a membrane 

bioreactor (MBR) with ultraviolet (UV) disinfection WWTP in Michigan. Samples were extracted 

from the activated sludge, before disinfection, and after disinfection stages of each WWTP. Our 
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major goal is to identify predominant antibiotic resistant bacteria (ARB) in AD samples from each 

WWTP.  
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2. MATERIALS AND METHODS 

2.1. Sample Collection 

  

Sewage samples were collected from the East Lansing and Traverse City WWTPs in 

Michigan (U.S.A.) in 2013. The characteristics of these WWTPs are shown in Table 2.1. Samples 

were taken from three different locations throughout the treatment process: activated sludge (AS), 

before disinfection (BD) and after disinfection (AD). Grab effluent samples were collected for 

bacterial isolation from each location. All samples were mixed and stored on ice, then transported 

to the laboratory for further processing.  

Table 2.1. Process characteristics for East Lansing and Traverse City wastewater treatment 

plants. 
 East Lansing WWTP Traverse City WWTP 

Wastewater treatment process 

(biological treatment) 

Conventional Activated 

Sludge (CAS) 

Membrane Biological Reactor 

(MBR) 

Sludge Retention Time (SRT) 14 days 7.58 days 

Capacity 18.8 MGD 17.0 MGD 

Average Flow 13.4 MGD 8.5 MGD 

Discharge Rate 14.1 MGD 4.0 MGD 

Disinfection Chlorine (Cl) Ultraviolet (UV)  

 

2.2. Sample Processing and Filtration  

 

Bacteria in the effluent samples were concentrated by filtration with 0.45 μm HA filters 

(Millipore, Billerica, MA). The volume of AD and BD samples filtered was 1 L for each of the 

four samples. The filters were collected in sterile 50 mL polypropylene tubes and 50 mL Phosphate 

Buffer (1X PBS) was added in each tube containing a filter. The tubes were vortexed for five 

minutes to allow the biomass layer on the filters to mix with water. 50 mL of the AS samples were 

also collected in sterile centrifuge tubes. All tubes were centrifuged for 20 min at 4500 rpm to 

concentrate the sample down to 2 mL. Supernatant was discarded and the concentrates were stored 

at −80 °C until DNA extraction was performed. 
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2.3. Nucleic Acid Extraction 

 

Bacterial DNA was extracted using a MagNA Pure Compact DNA extractor (Roche Applied 

Science, Indianapolis, IN, USA) following the protocol in the manufacturer’s manual. The MagNA 

Pure Compact utilizes a magnetic-bead technology for the isolation process. Sample amount of 

400 μL was loaded in the system and the elution volume was 100 μL. The purified DNAs were 

stored in a freezer at -20°C. DNA concentration was determined using the NanoDrop 

Spectrophotometer (NanoDrop® ND-1000, Wilmington, DE). 

2.4. High-throughput Sequencing and Preprocessing 

 

All six bacterial DNA samples were isolated and approximately 1 μg of DNA (per sample) 

was sent to the Research Technology Support Facility (RTSF) at Michigan State University. The 

NuGEN Ovation Ultralow Library System, with an input requirement of 1-100 ng of DNA, was 

used for all samples to accommodate for any sample containing low genetic material. After 

preparation, all libraries were sequenced on an Illumina platform (Illumina HiSeq2500, Roche 

Technologies) generating 150 bp paired-end reads.  

 

The reads were returned as FASTQ.GZ files. All FASTQ.GZ files were processed using a 

Unix/Linux system offered through the MSU High Performance Computing Center (HPCC). All 

raw sequence reads were analyzed for quality using FastQC, a quality control tool for sequencing 

data (Andrews, 2010). Based on the quality control check, Illumina adapters and low quality bases 

were removed from all raw reads using Trimmomatic (Bolger et al., 2014). Finally, FastQC was 

performed once more to ensure the integrity of the sequence reads and the accuracy of the latter 

genetic alignment processes.  
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2.5. Sequence-based Metagenomic Alignment and Calculations 

 

All six metagenomes were analyzed using Bowtie2 and Burrow-Wheeler Aligner-Maximal 

Exact Match (BWA-MEM), tools for aligning sequence reads to reference genomes. Bowtie2 

utilizes the full-text minute (FM) index, based on the Burrows-Wheeler transform (BWT), which 

allows for gapped-read alignment (Langmead and Salzberg, 2012). Bowtie2 was run using default 

settings (end-to-end alignment, and a minimum threshold alignment score of -90) for each 

metagenome (Langmead and Salzberg, 2012). BWA-MEM, similar to Bowtie2, uses the FM index 

and allows for long gapped-read alignments. BWA-MEM was run using default settings (local 

alignment) (Li, 2013). A threshold of ≥ 90% gene similarity when mapped with either Bowtie2 or 

BWA-MEM was established in order for resistant genes to be considered in this study 

(Kristiansson et al., 2011; Shi et al., 2013; Zhang et al., 2015c). Resistant genes detected at ≥ 90% 

similarity were then clustered together for further analysis.   

 

The breadth of coverage (gene similarity), and average depth and standard deviation (Std) 

were extracted for all ARGs in the reference genomes. Gene similarity, and average depth and 

standard deviation of all genes considered in this study can be found in the appendix section 

(Tables A.5 – A.10) The gene similarity for each gene was determined by normalizing the number 

of unique aligned bases in each position to the length of the reference gene (Molnar and Ilie, 2014). 

The depth, also known as the redundancy of coverage, for each gene was calculated by normalizing 

the total number of bases aligned in the reference gene against its total length. The redundancy of 

coverage for each metagenome was calculated using the Lander/Waterman equation𝐶 = 𝐿𝑁/𝐺 , 

where L is the read length, N is the number of aligned reads and G is the haploid genome size 

(Sims et al., 2014).  
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2.6. ARG Reference Databases 

 

Reference genomes from the Comprehensive Antibiotic Resistance Database (CARD) and 

the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) database were downloaded and 

used for alignment. Both databases are composed of antibiotic resistant gene nucleotide sequences 

in FASTA format and consist of various antibiotic classes. The CARD and ARG-ANNOT 

references are 2,848,122 bp and 1,463,892 bp, respectively and consist of genetic data imported 

from NCBI GenBank and peer-reviewed publications (Gupta et al., 2015; McArthur et al., 2013). 

CARD and ARG-ANNOT sequences are classified based on the CARD NCBI taxonomy ontology 

and PubMed publications (McArthur et al., 2013), and a unified nomenclature (Gupta et al., 2015), 

respectively. All sequences were curated prior to being introduced into the databases. Statistical 

data (mapped reads, error rate, mismatches, insertions, and overall mapping quality) was retrieved 

directly from the sample’s Binary Alignment/Mapping (BAM) output file using SAMtools.  

2.7. Statistical Assessment of Sequence Alignment  

 

Mapping quality (MAPQ) scores per sequence were extracted from the Sequence 

Alignment/Mapping (SAM) files generated from Bowtie2 and BWA-MEM alignments. The AD 

samples from the CAS and MBR WWTPs were considered in the statistical analysis to generate a 

base-level assessment of the sequence aligner’s mapping performance. All sequences considered 

were sequence reads that were aligned during primary alignment, paired, and mapped in its proper 

pair (i.e. among present SAM flags, these were: 83, 99, 147, and 163). The probability of incorrect 

sequence alignment was calculated using the Phred scale (Ruffalo et al., 2012).  
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3. RESULTS  

3.1. Preprocessing Quality Analysis  

  

Quality analysis results on raw reads yielded an average guanine-cytosine (GC) content and 

mean quality of 56.2% and 36 for all reads, respectively. The total number of sequences per paired-

end read for all samples range between 8.9-11.7 Mbp with an average of 10.4 Mbp (Table 3.1).  

Table 3.1. Quality control analysis results on raw sequence reads using FastQC 

Sample 
Sample 

Abbreviation 
Sequences Per 

Pair (bp) 
Average GC 
Content (%) 

Conventional Activated Sludge _ 
Activated Sludge 

CAS_AS 9994682 56 

Conventional Activated Sludge _ 
Before Disinfection 

CAS_BD 10129270 55 

Conventional Activated Sludge _  
After Disinfection 

CAS_AD 11667426 53 

Membrane Bioreactor 
 _ Activated Sludge 

MBR_AS 11042222 57 

Membrane Bioreactor  
_ Before Disinfection 

MBR_BD 8879956 58 

Membrane Bioreactor 
 _ After Disinfection 

MBR_AD 10670819 58 

 

3.2. Bowtie2 and BWA-MEM alignment on Illumina high-throughput sequences 

 

The average error rate, and GC content of mapped reads was 2.49% and 2.42%, and 53.18% 

and 47.8%, for CARD and ARG-ANNOT reference databases, respectively when aligned with 

Bowtie2. BWA-MEM generated an average error rate of 5.44% and 1.80%, and average GC 

content of 51.11% and 52.67% for CARD and ARG-ANNOT databases, respectively (See Tables 

A.1-A.4 for alignment statistics per sample). The average and maximum read length for BWA-

MEM local alignment was 149 bp and 150 bp, respectively for all samples, making it analogous 

to Bowtie2 end-to-end read alignment of 150 bp. The number of reads mapped with BWA-MEM 

was 5.98 and 5.12 times greater than Bowtie2 alignment against the CARD and ARG-ANNOT 

reference genomes, respectively.  
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Figure 1. Number of mapped bases in CARD and ARG-ANNOT reference databases per 

sample. The number of mapped bases was pulled from the standard CIGAR string from 

SAMtools statistical computation. Error bars indicate the number of mismatches computed given 

the corresponding BAM file.  

 

The number of bases mapped per sample for each reference genome reported the lowest 

alignment in AS samples for each treatment utility with AD samples containing the greatest 
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number of mapped reads (Figure 1). BWA-MEM covered 49.5% and 26.29% of ARGs for CARD 

and ARG-ANNOT reference genomes, respectively. This was about 14.8 and 10.2 times greater 

than Bowtie2. However, a significant portion of detected ARGs revealed less than 10% gene 

similarity, 70.61% and 85.57% for CARD and ARG-ANNOT databases, respectively. The average 

depth per sample for each database during BWA-MEM alignment closely corresponded to the 

average depth obtained during Bowtie2 alignment (Figure 2).  

 

 
Figure 2. Comparison of average sequencing depth per sample when aligned with CARD and 

ARG-ANNOT nucleotide reference genomes for Bowtie2 and BWA-MEM.  
 

3.3. ARGs Profiles in Wastewater Treatment Plants  

 

Bowtie2 alignment of CAS samples against the CARD database yielded greater alignment 

per base compared to the MBR WWTP by 1.5 and 1.7-fold for BD, and AD samples, respectively. 
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A 1.1-fold difference was found between AS samples in CAS and MBR WWTPs. The ARG-

ANNOT database found a greater number of aligned bases in AS and BD samples for the MBR 

plant by 1.7, and 1.1-fold, respectively. Similar to the CARD database, CAS samples yielded 

greater alignment in the AD sample by 1.4-fold compared to the MBR when aligned against the 

ARG-ANNOT database (Figure 1). BWA-MEM alignment detected a greater number of mapped 

bases in the MBR samples relative to the CAS samples for AS and AD sites during alignment 

against the CARD database. (Figure 1). Overall, results reveal a systematic trend of increasing 

ARGs as treatment progresses AD>BD>AS (Figure 1).  

3.4. ARG Nucleotide Reference Databases 

 

Alignment against the ARG-ANNOT reference database mapped a significantly lower 

number of sequence reads relative to CARD, approximately, 6.4 and 9.5 times less for Bowtie2 

and BWA alignments, respectively. However, the lower number of mapped reads in the ARG-

ANNOT reference database is expected considering its lesser genome size of 1463892 bp 

containing 1691 genes, compared to 2848122 bp with 3008 unique ARGs. ARG-ANNOT database 

detected only a small portion of ARGs with a gene identity of ≥ 90% in all samples given both 

aligners. Thus, the majority of prevalent ARGs found in all samples were identified when aligned 

to the CARD database. Genes resistant to Sulfonamide (sulI) (Genbank accession no. AF071413), 

detected in AS, BD, and AD samples, macrolides (msr(E), mph(E)) (Genbank accession no. 

JF769133), detected in AS, BD, and AD samples, and streptomycin (strA) (Genbank accession no. 

AB366441), detected in BD samples, with greater than 90% coverage were detected in ARG-

ANNOT reference database. Tetracycline resistant gene (tet(39)) (Genbank accession no. 

AY743590), detected in BD and AD samples, was detected in both databases with identical gene 
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similarities. The remaining ARGs considered in latter discussions were derived from the CARD 

reference database.  

3.5. Occurrence of ARGs in Wastewater Treatment Plants 

 

A total of 23 different resistant genes were detected at ≥ 90% gene similarity to its reference 

gene and therefore, were clustered together and considered in this study. The profiles of prevalent 

antibiotic resistant genes in each sample resemble the profiles of the total number of mapped bases 

presented in Figure 1, see Figure 3.  

 
Figure 3. Profile of ARGs detected at ≥ 90% gene similarity when aligned with either Bowtie2 

or BWA-MEM in each WWTP. ARGs considered consist of genes from both reference 

databases. 
 

Genes with resistance to macrolides, sulfonamides, elfamycins, β-lactam, and 

aminoglycoside classes of antibiotics were predominant, with AD samples containing the highest 

occurrences of these ARGs (Figures 3 and 4).   
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Figure 4. Relative abundance of antibiotic classes per sample belonging to resistant genes 

acquiring ≥ 90% gene similarity when aligned with either Bowtie2 of BWA-MEM. Genes were 

obtained from both CARD and ARG-ANNOT databases.  

 

Metagenomic alignment found sulfonamides, macrolides, β-lactam, and elfamycin ARGs to 

be predominant in AS samples (Table 3.2). SulI (GenBank accession no. AF071413) was detected 

with Bowtie2 alignment at a 98% and 96% similarity to the reference gene for CAS and MBR 

WWTPs, respectively. Elfamycin resistant (tuf) (Genbank accession no. CP002695) genes 

revealed 99% and 100% gene similarity when aligned with the MBR samples according to BWA-

MEM alignment. β-lactamase (blaRTG-5), and erythromycin (ermB) resistant genes conferred a 

100% gene similarity with the MBR sequence reads for AS when aligned with BWA-MEM 

(GenBank accession nos. JQ364968 and X64695, respectively).  

 

Tet39, sul1, msr(E), mph(E), streptomycin (strA, rpsL), and tuf resistant genes were 

prevalent in BD samples (Table 3.2). Macrolides and sulI resistant genes possessed ≥ 93% 

coverage in both WWTPs (Tables A.7-A.8). Tet(39) was detected in the MBR WWTP with a gene 

identity of 94.6% and 100% from Bowtie2 and BWA alignments, respectively. Tuf genes obtained 
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a gene homology as high as 100% when aligned with BWA-MEM for both CAS and MBR BD 

samples (Tables A.7-A.8).   

 

The greatest number of prevalent ARGs during Bowtie2 and BWA-MEM alignment 

occurred in AD samples (Figure 3). Significant portions of ARGs were not detected until AD 

samples in either Bowtie2 or BWA alignment. A total of 16 prevalent ARGs were detected in CAS 

samples, of which 56.25% of them arose after disinfection. MBR samples detected 15 ARGs, of 

which 53.33% of them were detected after disinfection (Figure 3 and Table 3.2). The portion of 

genes that persisted in AD samples from the activated sludge process was 12.50% and 33.33% for 

CAS and MBR treatment plants, respectively. BlaRTG-5, tet39, sul1, aminoglycoside (aadA6, 

msr(E), mph(E), tuf, rpsL and multidrug resistant efflux transporter (mexF) ARGs were found to 

be prominent in both AD samples (Table 3.2).   
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Table 3.2. ARGs and corresponding ARB detected with ≥ 90% gene similarity when aligned with either Bowtie2 or BWA-MEM in 

AS, BD, and AD samples from CAS and MBR WWTPs. Contains genes detected in CARD and ARG-ANNOT reference databases. All 

annotations are generated from their respective reference database. Detected at ≥ 90% similiality (+), detected at < 90% similarity (-).  

Database Accession No. 
Best Hit 

NCBI Genbank 
Accession No. 

Gene ARG Class ARB 
CAS 
AS 

MBR
AS 

CAS 
BD 

MBRB
D 

CAS 
AD 

MBR
AD 

AM087411.1.gene3 AM087411 aadA6 Aminoglycoside Pseudomonas aeruginosa - - - - + + 

JQ364968.1.gene6 JQ364968 blaRTG-5 Beta-lactamase Acinetobacter baumannii - + - + + + 

X58272.1.gene1 X58272 blaOXA-5 Beta-lactamase Pseudomonas aeruginosa - - - - - + 

X64695.1.gene9 X64695 ermB Macrolides Streptococcus pyogenes - + - - - - 

NC_002516.2.882884 NC_002516 mexF Multidrug Efflux Pseudomonas aeruginosa - - - - + + 

(MLS)MphE:JF769133:8
777-9661:885 

JF769133 mph(E) Macrolides Pasteurella multocida - + + + + + 

(MLS)MsrE:JF769133:7
246-8721:1476 

JF769133 msr(E)_1 Macrolides Pasteurella multocida - - + + + + 

EF102240.1.gene3 EF102240 msr(E)_2 Macrolides Acinetobacter baumannii - - - - + - 

NC_007682.3.4246769 NC_007682 msr(E)_3 Macrolides Escherichia coli - - - - - + 

NC_010481.6155782 NC_010481 msr(E)_4 Macrolides Acinetobacter baumannii - - - - + + 

CP003022.1.gene337 CP003022 msr(E)_5 Macrolides Pasteurella multocida - - - - - + 

AL123456.3.gene715 AL123456 rpsL_1 Aminoglycoside 
Mycobacterium 

tuberculosis 
- - - + - - 

CP003248.2.gene711 CP003248 rpsL_2 Aminoglycoside 
Mycobacterium 

tuberculosis 
- - - + - + 

(AGly)StrA:AB366441:2
2458-23261:804 

AB366441 strA Aminoglycoside Salmonella enterica - - + - - - 

(Sul)SulI:AF071413:670
0-7539:840 

AF071413 sulI_1 Sulfonamide Escherichia coli + + + + + + 

AJ223604.1.gene9 AJ223604 sulI_2 Sulfonamide Pseudomonas aeruginosa - - + - - - 

AY743590.gene AY743590 tet(39) Tetracycline Acinetobacter LUH5605 - - - + + - 

CP002695.1.gene3614 CP002695 tuf_1 Elfamycins Bordetella pertussis + + + + + + 

NC_011595.7072242 NC_011595 tuf_2 Elfamycins Acinetobacter baumannii - - + + + + 
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Table 3.2. (cont’d) 

CP002695.1.gene10 CP002695 tuf_3 Elfamycins Bordetella pertussis - + + + + + 

CP000647.1.gene3761 CP000647 tuf_4 Elfamycins Klebsiella pneumoniae - - - - + - 

NC_002516.2.881718 NC_002516 tufA Elfamycins Pseudomonas aeruginosa - - - - + + 

NC_002516.2.881697 NC_002516 tufB Elfamycins Pseudomonas aeruginosa - - + - + + 
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E.coli, Acinetobacter baumannii, Pasteurella multocida, and Pseudomonas aeruginosa 

composed the majority of antibiotic resistant bacteria (ARB) in AD samples (Table 3.2). Resistant 

gene msr(E)_2 belonging to Acinetobacter baumannii possessed a 97% gene identify in the AD 

sample for CAS treatment plant during Bowtie2 alignment, but was not detected in the MBR 

sample. Sulfonamide resistant gene, sul1, belonging to E.coli conferred a 98% (97%) and 98% 

(98%) gene identity for CAS and MBR after disinfection samples, respectively (Table A.9 – A.10).     

 

Beta-lactamase (RTG-5) belonging to Acinetobacter baumannii conferred a 99% gene 

identity in AD samples for the CAS treatment plant with an average depth of 1.27 and 1.36x in 

Bowtie2 and BWA-MEM alignment processes, respectively. While blaRTG-5 resistant gene went 

undetected in the MBR AD sample during Bowtie2 alignment, a 94% similarity was found during 

alignment with BWA-MEM. Pasteurella multocida resistant gene, mph(E), possessed a 98% 

(93%) and 91% (98%) identity to samples from the CAS and MBR AD samples, respectively, 

during alignment with Bowtie2 (BWA-MEM). After alignment with BWA-MEM, AD samples 

from CAS and MBR conferred a 100% gene identity with an average depth of 3.51 and 2.56, 

respectively to aadA6 resistant gene belonging to Pseudomonas aeruginosa (Table A.9 – A.10). 

3.6. Statistical Assessment using MAPQ Scores generated from Bowtie2 and BWA-

MEM Alignments 

 

MAPQ scores were extracted from Bowtie2 and BWA alignment from their respective SAM 

file. BWA-MEM produced MAPQ scores ranging from 0 to 60 (p<0.001). Average MAPQ scores 

generated during alignment with the CARD database were 18.65 (p=0.01) and 15.76 (p=0.03) for 

CAS and MBR samples, respectively. Alignment with the ARG-ANNOT databases revealed an 

average MAPQ score of 55.89 (p<0.001) and 59 (p<0.001) for CAS and MBR samples, 

respectively. 
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The lowest score reported for Bowtie2 alignment was 0 (p=1) with the highest being 255 

(MAPQ score not available). The MAPQ score of selected sequences in Bowtie2 was reported as 

255 for the majority of unique reads (reads with only one sequence alignment reported). Multi-

reads (reads with multiple alignments) reported in Bowtie2 generally contained a score of either 0 

or 1 (p>0.5) depending on the alignment score of the best alignment, and the difference between 

the best and second best alignment scores. Due to the absence of usable MAPQ scores for unique 

reads for Bowtie2, its base-line sequence mapping quality could not be fully assessed in this study.  
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4. DISCUSSION  

 

4.1. Occurrence of ARGs in WWTPs 

 

Here, we use a sequence-based metagenomic approach to investigate the prevalence of a 

broad spectrum of ARGs in a conventional activated sludge WWTP with chlorine disinfection, 

and membrane bioreactor with UV disinfection.  In this study, genes resistant to tetracycline, 

sulfonamide, β-lactam, aminoglycoside, elfamycin, and macrolide classes of antibiotics along with 

a multidrug efflux transporter (mexF) were detected in both CAS and MBR WWTPs. 

 

  Tetracycline and sulfonamide resistant genes are among the most common ARGs found in 

wastewater treatment systems, and other aquatic environments due to their widespread use (Gao 

et al., 2012a; Mao et al., 2015; Zhang et al., 2009a; Zhang et al., 2015a). Tet(39), and sulI were 

detected in BD and AD samples. Tetracycline and sulfonamide resistant genes are known to persist 

during wastewater treatment (Mao et al., 2015; Szczepanowski et al., 2009; Vaz-Moreira et al., 

2015). The ability of these genes to withstand various treatment processes greatly increases the 

risks of these genes contaminating natural water bodies. Mao et al., (2015) evaluated the profile of 

30 different ARGs in WWTPs in China and revealed that tet and sul1 genes were enriched in the 

final effluent of both selected WWTPs. Another study, conducted between hospital effluent, and 

the influent and effluent of an urban WWTP, revealed higher concentrations of sulfonamide 

resistant genes in the treated wastewater and hospital effluent compared to the raw sewage entering 

the WWTP (Vaz-Moreira et al., 2015). In contrast, Munir et al., 2011 observed a reduction in tetO, 

tetW, and sul1 resistant genes in the effluent of five different WWTPs in Michigan containing 

various treatment types. Another study, conducted on tetracycline resistant genes, tetA and tetC, 

in different water environments, found that the concentration of both tetracycline resistant genes 

were reduced in the final effluent of a sewage treatment plant in China (Zhang et al., 2009a). 
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Theses discrepancies indicate that antibiotic resistance selection is dependent on factors beyond 

that of solely wastewater treatment. 

 

Class A, RTG-5 (CARB-14), beta-lactamase, conferring resistance to carbenicillin (Bonnin 

et al., 2012; Couture et al., 1992), was detected in all MBR samples and in the AD sample of the 

CAS WWTP. Class D, OXA-5, beta-lactamase, conferring resistance to oxacillin (Couture et al., 

1992), was detected in the MBR AD sample. A primary mechanism behind β-lactamase resistance, 

generally for gram-negative bacteria, is the production of β-lactamase enzymes (Couture et al., 

1992; Xia et al., 2016). Beta-lactams are a widely used antibiotic with wide occurrences of 

resistance within the microbial community due to its extensive use and low toxicity (Zhang et al., 

2009b). A comprehensive study on bacterial plasmids isolated from the activated sludge and final 

effluent of a WWTP in Germany also detected β-lactamase hydrolyzing enzyme, OXA-5 

(Genbank accession no. JQ364968) present in AS and final effluent samples as well as resistance 

to several other class A-D β-lactamases (Szczepanowski et al., 2009).  

 

Multidrug efflux transporter, mexF, was detected in AD samples of both CAS and MBR 

treatment plants. The multidrug resistance pump, mexF, is a part of the resistance-nodulation-cell 

division (RND) family, encoding resistance in Pseudomonas aeruginosa to antibiotics such as, 

chloramphenicol, trimethoprim, and fluoroquinolones. The efflux pump is said to consist of three 

proteins, which collaborate to expel antibiotics from the cytoplasm or periplasm of the 

microorganism (Aires et al., 2002). A number of studies have reported RND resistance pumps in 

aquatic environments (Gomez-Alvarez et al., 2012; Szczepanowski et al., 2009).  

Aminoglycosides, aadA6 and rpsL, conferring resistance to streptomycin and spectinomycin 

(Finken et al., 1993; Papadovasilaki et al., 2015) were also present in this study. Aminoglycosides 
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consist of three groups, phosphotransferases (APHs), acetyltransferases (AACs), and the 

adenyltransferases (ANTs) (Wright, 1999). They are used against a wide range of aerobic bacteria, 

including Mycobacterium tuberculosis (Fonseca et al., 2015). Streptomycin was the first antibiotic 

used to treat TB (Honore et al., 1994). M.tuberculosis bacteria resistant to this drug are often 

classified as extensively drug-resistant strains (Fonseca et al., 2015). Mutations in the ribosomal 

protein S12 encoding gene, rpsL, is said to cause resistance to streptomycin in M.tuberculosis 

(Finken et al., 1993). Aminoglycoside resistant genes have become increasingly common in water 

environments (Shi et al., 2013; Szczepanowski et al., 2009) and have been reported in the effluent 

of treated wastewater in several instances (Szczepanowski et al., 2009; Vaz-Moreira et al., 2015).  

 

Macrolide and elfamycin resistant genes were the most abundant genes detected in this study 

with resistant genes occurring in all six samples. After disinfection samples produced the greatest 

abundance of these genes compared to AS and BD samples. Genes resistant to macrolide classes 

of antibiotics composed 30.43% (7 out of 23) of all prevalent ARGs detected in this study. 

Macrolide resistant genes msr(E) and mph(E), detected in this study, encode a macrolide efflux 

pump, and macrolide-inactivating phosphotransferase, respectively (Rose et al., 2012). Rose et al., 

(2012) revealed that msr(E) and mph(E) were consistently expressed in tandem when detected in 

Pasteurella multocida, which is revealed in one instance in our study. Erythromycin resistant gene 

ermB, belonging to macrolide resistant classes of antibiotics, was detected in the AS sample from 

the MBR WWTP. A recent study, conducted on a bench-scale activated sludge treatment process, 

observed a survival rate of 100% among bacteria that were highly resistance to erythromycin in 

the effluent of the activated sludge process. It also revealed that the proportions of ermB remained 

constant in the activated sludge process (Guo et al., 2015). In addition to this, erythromycin 
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resistant genes are known to persist in the final effluent of WWTPs (Berglund et al., 2015; Sidrach-

Cardona et al., 2014).  

 

Similar to macrolide ARGs, elfamycin resistant genes were the second most prevalent genes 

detected in this study composing 26.09% (6 out of 23) of ARGs detected. Elfamycins are a class 

of naturally occurring antibiotics, consisting of antibiotics such as Kirromycin, Aurodox, and 

Efrotomycin (Hall et al., 1989; Sottani et al., 1993; Miele et al., 1994). Elfamycins inhibit bacterial 

growth by binding to the elongation factor Tu polypeptide, a component responsible for bacterial 

protein synthesis (Sottani et al., 1993). To our knowledge, no recent studies on the prevalence of 

elfamycin resistant genes in sewage treatment plants have been documented. Sequence-based 

metagenomics has revealed the occurrence of these genes in all treatment stages with reports of 

100% gene similarity to the reference gene. 

4.2. Occurrence of ARGs in Various Wastewater Treatment Stages  

 

Activated sludge samples from both WWTPs attained the lowest occurrence of ARGs 

compared to before disinfection and after disinfection samples with no notable difference between 

the two biological treatment processes. It has been reported that biological treatment types, loading 

rates, sludge retention times and the production of biosolids, to name a few, impact the presence 

of resistant genes (Kim et al., 2010; Munir et al., 2011; Novo and Manaia, 2010) in biological 

treatment processes. Kim et al. (2010) reported the occurrence of tetracycline resistant genes in 

three WWTPs located in New York and Connecticut, with varying biological treatment functions. 

The study revealed that the AS processes did not contribute significantly to the enrichment of 

tetracycline resistant genes, and found that the fraction of these genes were lower in AS processes 

compared to the before disinfection processes. This was consistent with our study, which revealed 

a systematic trend of increasing occurrence of ARGs as treatment progressed.  
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The low profile of ARGs in the AS process could be the result of several factors such as, 

nutrient abundance, and adsorption to sludge biosolids. Munir et al. (2011) reported an increase in 

the concentration of tet and sul ARGs studied in the biosolids of five different WWTPs by several 

orders of magnitude relative to before and after disinfection samples. These ARGs can potentially 

be exposed to the natural environment via land applications causing further exposure and spread 

of antibiotic resistance (Schmieder and Edwards 2012). A study conducted by Novo and Manaia 

(2010) documented the prevalence of ARGs in three different WWTPs with varying biological 

treatment processes. The study revealed that ARGs resistant to tetracycline persisted in the treated 

effluent of the conventional activated sludge WWTP compared to the trickling filter, and 

submerged aeration filter facilities. The mechanisms behind the prevalence of ARGs after 

biological treatment systems are still unclear. Further studies are needed to assess various 

operational, functional, and environmental factors that contribute to the composition of resistant 

genes in wastewater microbial communities. 

 

Furthermore, a systematic increase was observed in the profile of ARGs from AS to BD 

samples for both WWTPs. There was an increase in genes conferring resistance to elfamycins, and 

the occurrence of tet(39), strA, and rpsL resistant genes in BD samples for each WWTP. Similar 

to our results, other studies have reported an increase in antibiotic resistant genes like tetracycline 

and macrolides in before disinfection samples (Guo et al., 2015; Kim et al. 2010) suggesting that 

resistant genes arose either in the effluent of the biological treatment processes, or during 

secondary clarification.  

 

After disinfection samples revealed the largest occurrence of ARGs in both CAS and MBR 

WWTPs. A significant number of the 23 total ARGs, which were detected at ≥ 90% gene 
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similarity, were not detected until after disinfection in both CAS and MBR treatment plants, 

56.25% and 53.33%, respectively.  Consistent with recent studies, a number of disinfection 

processes fail to be effective against reducing ARGs, and in some cases, an increase in the 

occurrence of these genes was observed in the treated effluent (Huang et al., 2011; Murray et al., 

1984; Shi et al., 2013; Yuan et al., 2015). A previous study revealed a significant increase in ARGs 

in water sampled from a chlorine disinfection tank as opposed to the raw source water of a water 

treatment plant in Nanjing, China. The results also revealed a significant increase in mobile genetic 

elements in the chlorinated water compared to the raw water sources (Shi et al., 2013). Other 

studies reported that chlorine disinfection had little effect on reducing the presence of ARGs in the 

effluent of WWTPs (Yuan et al., 2015; Munir et al., 2011). On the other hand, several studies have 

reported a decrease in the presence of ARGs after chlorination (Huang et al., 2011; Mao et al., 

2015; Murray et al., 1984).  

 

Similar to chlorine disinfection, recent studies detected an increase in antibiotic resistance 

after UV disinfection (Kim et al., 2010). In our study, there was an increase in detected ARGs after 

UV radiation treatment, but there was no significant difference between the occurrences of ARGs 

following chlorination compared to UV.  

4.3. Composition of ARBs in Chlorine and UV Treated Wastewater   

 

Acinetobacter baumannii, Pseudomonas aeruginosa, and Pasteurella multocida composed 

the majority of antibiotic resistant bacteria found in AD samples in both WWTPs. According to 

the CARD and ARG-ANNOT resistance gene ontologies (ARO), a number of prevalent ARGs 

found in this study: including macrolides, elfamyins, multidrug, aminoglycoside and β-lactamase 

resistant genes, belong generally to the abovementioned gram-negative bacteria. A. baumannii is 

an opportunist pathogen responsible for a number of nosocomial infections and reported outbreaks 
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within recent years (Zarrilli et al., 2008). Since the rise of its antibiotic resistant characteristics in 

the 1960s, A. baumannii has since been characterized as a multidrug resist bacteria known to 

develop resistance within the first year of introducing a new antibiotic for treatment (Gonzalez-

Villoria and Valverde-Garduno, 2016). 

 

Similar to A. baumannii, Pseudomonas aeruginosa is an opportunistic hospital-acquired 

pathogen commonly found in moist, high nutrient environments such as WWTPs (Slekovec et al., 

2012). P. aeruginosa accounts for 15% of hospital acquired infections to date, mainly attacking 

intensive care units. These pathogenic bacteria also play a role in community-acquired infections 

due to exposure to contaminated water sources (Slekovec et al., 2012). Slekovec et al., 2012 found 

the presence of P. aeruginosa to be most abundant in water extracted from the effluent of a hospital 

waste stream and the treated sludge from a WWTP, than the other environments sampled. 

Furthermore, the study revealed the appearance of multidrug resistant strains of P.aeruginosa in 

the hospital wastewater, treated wastewater, and receiving river water downstream the WWTP. 

The occurrence of these types of resistant opportunistic pathogens in the environment is of 

increasing importance concerning human health (Bouki et al., 2013; Varela and Manaia, 2013).  

 

Pasteurella multocida was also reported in this study and persisted in each of the treatment 

stages in the MBR WWTP. P. multocida is a pathogenic bacterium occurring in the natural oral 

flora of several species of animals (Weber et al., 1984). P. multocida are commonly classified as 

zoonotic pathogens known to cause various infectious diseases in both animals and humans (Rose 

et al., 2012; Weber et al., 1984). Human infections usually occur as a result of an animal bite 

causing a number of diseases including meningitis and pneumonia (Weber et al., 1984). Reports 
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have classified several antibodies that are no longer effective against P. multocida due to its 

reduced susceptibility to the drug (Rose et al., 2012; Sellyei et al., 2009; Weber et al., 1984).  

 

Other bacteria such as E.coli, Bordetella pertussis, Klebsiella pneumonia, and streptomycin 

resistant Mycobacterium tuberculosis were also reported in AD samples.  

Several studies reveal significant concentrations of antimicrobial resistant pathogenic bacteria in 

treated wastewater despite reductions of these bacteria throughout the treatment process (Everage 

et al., 2014; Munir et al., 2011; Slekovec et al., 2012). These studies indicate that resistant bacteria 

are disseminating into natural water bodies despite treatment (Gao et al., 2012a).   

4.4. Statistical Analysis of Sequence Alignment using MAPQ Scores 

 

Genetic alignment of AS, BD, and AD samples from each treatment utility was performed 

using Bowtie2 and BWA-MEM, which have proven to be accurate sequence aligners (Langmead 

and Salzberg, 2012; Li, 2013). Sequence-based metagenomics is most accurate when identifying 

known genes (Schmieder and Edwards, 2012), therefore ARGs found in all samples using 

metagenomic analysis only highly suggest the presence of these ARGs in this study. ARGs with a 

gene similarity less than 100% should be interpreted with caution as they could belong to some 

variation of the known reference gene, or novel resistance determinant (Schmieder and Edwards, 

2012). Despite vast enhancements in the efficiency and accuracy of genetic aligners, they still have 

their limitations. Genetic alignment is exposed to a number of performance errors. For example, 

insertion or deletions (indels) generated during sequencing runs, as well as duplicate regions in the 

reference genome can lead to incorrect mapping during the alignment process (Li and Homer, 

2010; Olson et al., 2015). Most sequence aligners generate sequence mapping quality scores for 

users to gage the confidence level of aligned sequences (Li and Homer, 2010; Ruffalo et al., 2011).  
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This study provided a baseline assessment of the unaltered sequence alignment errors rates 

from each aligner’s MAPQ scores when operating under default conditions. It was found that 

BWA-MEM produced more useful MAPQ scores compared to Bowtie2 (Ruffalo et al., 2011) and 

the number of sequences passing threshold requirements was greatest in BWA-MEM when aligned 

with either reference database for AD samples.  

 

Bowtie2 MAPQ scores for high quality, unique-read alignments were not accounted for 

when aligned against either reference database, while multi-read alignments generally received a 

score of either 0 or 1 depending on Bowtie2’s scoring criteria found in the user’s manual 

(Langmead and Salzberg, 2012). Thus, MAPQ scores for Bowtie2 could not be assessed without 

further analysis. The integrity of MAPQ scores is not only important in evaluating the accuracy of 

genetic alignment, but also for downstream applications such as variant analysis (Li and Homer, 

2010; Olson et al., 2015). Therefore, it is a best practice to realign MAPQ scores for accuracy 

before proceeding to downstream applications (Olson et al., 2015).  
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5. CONCLUSION 

 

The rise of antibiotic resistance genes in the environment stimulated the need to study the 

development of these genes in favorable environments such as WWTPs. Thus, our study aimed to 

explore the profile and occurrence of these genes in WWTPs using a sequenced-based 

metagenomic approach. This study allowed for the detection of a broad spectrum of ARGs in the 

activated sludge, before disinfection and after disinfection treatment stages of two WWTPs in 

Michigan. The results reveal a systematic increase in the number of ARGs as treatment progressed 

suggesting that wastewater treatment promotes the development of antimicrobial resistant genes. 

On the basis of conflicting studies, the selection for ARGs in WTTPs is still not fully understood. 

However, it is evident that a number of factors impact the selection or removal of ARGs in sewage 

treatment systems. Our study further contributes to the pool of information on the dissemination 

of ARGs in WWTPs given various operational conditions and treatment stages. Further studies, 

assessing a wide range of functional, operational, and environmental factors, are needed to fully 

understand the behavior of these genes in treatment plants and in the environment.   
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Table A.1. Bowtie2 alignment statistics per sample  

 
 

Table A.2. Bowtie2 alignment statistics per sample 
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Table A.3. BWA-MEM alignment statistics per sample  

 
 

Table A.4. BWA-MEM alignment statistics per sample  
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Table A.5. Average depth and gene similarity with Bowtie2 alignment for ARGs with ≥ 90% coverage in activated sludge (AS) 

samples for East Lansing (CAS) and Traverse City (MBR) WWTPs. ARGs from both CARD and ARG-ANNOT reference database 

are integrated into one data set.   

Database Accession No. Gene  Length GC% 
Avg Depth (x) Depth Std Gene Similarity (%) 

ELAS TCAS ELAS TCAS ELAS TCAS 

CP002695.1.gene10 tuf 1191 62.64 1.65 1.77 1.43 1.80 82.28 66.16 

CP002695.1.gene3614 tuf 1191 62.64 0.52 2.09 0.50 2.31 52.98 88.58 

(Sul)SulI:AF071413:6700-
7539:840 

sulI 855 60.58 7.91 6.57 3.00 4.14 98.25 96.14 

(MLS)MphE:JF769133:8777-
9661:885 

mphE 900 35.78 0.40 3.65 0.49 1.47 40.78 96.33 

JQ364968.1.gene6 blaRTG-5 378 43.12 - 1.15 - 0.85 ND 70.37 

X64695.1.gene9 ermB 111 31.53 - - - - ND ND 

 

 

Table A.6. Average depth and gene similarity with BWA-MEM alignment for ARGs with ≥ 90% coverage in activated sludge (AS) 

samples for East Lansing (CAS) and Traverse City (MBR) WWTPs. ARGs from both CARD and ARG-ANNOT reference database 

are integrated into one data set.   

Database Accession No. Gene Length GC% 
Avg Depth (x) Depth Std Gene Similarity (%) 

ELAS TCAS ELAS TCAS ELAS TCAS 

CP002695.1.gene10 tuf 1191 62.64 4.16 14.90 3.66 8.85 81.95 99.50 

CP002695.1.gene3614 tuf 1191 62.64 5.58 15.91 3.65 7.81 96.31 100 

(Sul)SulI:AF071413:6700-
7539:840 

sulI 855 60.58 0.04 0.87 0.21 0.76 4.44 74.62 

(MLS)MphE:JF769133:8777-
9661:885 

mphE 900 35.78 - 1.28 - 0.77 ND 80.56 

JQ364968.1.gene6 blaRTG-5 378 43.12 - 2.80 - 1.66 ND 100 

X64695.1.gene9 ermB 111 31.53 - 1.01 - 0.09 ND 100 
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Table A.7. Average depth and gene similarity with Bowtie2 alignment for ARGs with ≥ 90% coverage in before disinfection (BD) 

samples for East Lansing (CAS) and Traverse City (MBR) WWTPs. ARGs from both CARD and ARG-ANNOT reference database 

are integrated into one data set.   

Database Accession No. Gene  Length GC% 
Avg Depth (x) Depth Std Gene Similarity (%) 

ELBD TCBD ELBD TCBD ELBD TCBD 

AY743590.gene tet39 1188 40.57 1.32 2.36 1.34 0.89 64.81 94.61 

(AGly)StrA:AB366441:22458-
23261:804 

strA 818 55.26 2.10 0.37 1.23 0.48 97.68 36.67 

(Sul)SulI:AF071413:6700-
7539:840 

sulI 855 60.58 10.94 5.89 5.21 2.63 97.43 93.68 

(MLS)MphE:JF769133:8777-
9661:885 

mph(E) 900 35.78 2.87 6.33 1.73 3.43 95.78 95.89 

(MLS)MsrE:JF769133:7246-
8721:1476 

msr(E) 1501 39.31 5.05 6.31 2.67 2.91 94.47 94.74 

CP002695.1.gene10 tuf 1191 62.64 1.27 1.74 1.29 2.32 75.06 73.97 

CP002695.1.gene3614 tuf 1191 62.64 0.95 2.31 1.14 2.31 45.59 64.74 

NC_002516.2.881697 tuf 1194 59.63 1.48 0.75 1.52 0.95 58.71 45.06 

AJ223604.1.gene9 sulI 348 50 - - - - ND ND 

NC_011595.7072242 tuf 705 45.11 0.9872 1.18 1.10 1.54 49.08 44.54 

JQ364968.1.gene6 blaRTG-5 378 43.12 - 1.18 - 0.88 ND 68.25 

AL123456.3.gene715 rpsL 375 62.67 - - - - ND ND 
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Table A.8. Average depth and gene similarity with BWA-MEM alignment for ARGs with ≥ 90% coverage in before disinfection 

(BD) samples for East Lansing (CAS) and Traverse City (MBR) WWTPs. ARGs from both CARD and ARG-ANNOT reference 

database are integrated into one data set.   

Database Accession No. Gene  Length GC% 
Avg Depth (x) Depth Std Gene Similarity (%) 

ELBD TCBD ELBD TCBD ELBD TCBD 

AY743590.gene tet39 1188 40.57 1.16 2.26 1.21 0.92 62.79 100 

(AGly)StrA:AB366441:22458-
23261:804 

strA 818 55.26 0.53 0.54 0.83 0.55 31.30 51.34 

(Sul)SulI:AF071413:6700-7539:840 sulI 855 60.58 3.21 2.93 1.93 1.87 93.92 89.82 

(MLS)MphE:JF769133:8777-
9661:885 

mph(E) 900 35.78 1.18 3.86 0.66 2.15 86.33 98.33 

(MLS)MsrE:JF769133:7246-
8721:1476 

msr(E) 1501 39.31 0.78 1.97 0.99 1.40 46.50 81.81 

CP002695.1.gene10 tuf 1191 62.64 23.59 28.30 13.96 16.49 100 100 

CP002695.1.gene3614 tuf 1191 62.64 25.95 32.10 14.64 17.13 97.90 100 

NC_002516.2.881697 tuf 1194 59.63 18.05 20.28 15.16 17.41 93.80 89.28 

AJ223604.1.gene9 sulI 348 50 1.14 0.60 0.55 0.56 90.80 56.90 

NC_011595.7072242 tuf 705 45.11 5.39 3.69 4.92 2.35 90.21 90.35 

JQ364968.1.gene6 blaRTG-5 378 43.12 0.47 1.95 0.50 0.45 47.62 99.74 

AL123456.3.gene715 rpsL 375 62.67 2.37 4.61 2.85 3.43 57.87 99.20 
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Table A.9. Average depth and gene similarity with Bowtie2 alignment for ARGs with ≥ 90% coverage in after disinfection (AD) 

samples for East Lansing (CAS) and Traverse City (MBR) WWTPs. ARGs from both CARD and ARG-ANNOT reference database 

are integrated into one data set.   

Database Accession No. Gene Length GC% 
Avg Depth (x) Depth Std Gene Similarity (%) 

ELAD TCAD ELAD TCAD ELAD TCAD 

(Sul)SulI:AF071413:6700-7539:840 sul1 855 60.58 12.05 5.40 6.23 2.06 97.89 98.25 

AM087411.1.gene3 aadA6 846 53.66 2.59 0.68 1.60 0.68 81.44 56.50 

AY743590.gene tet39 1188 40.57 1.23 1.85 0.59 1.17 93.60 83.08 

CP002695.1.gene3614 tuf 1191 62.64 0.97 2.02 0.95 1.31 64.90 95.05 

EF102240.1.gene3 msrE 1476 39.97 2.01 1.69 0.79 1.58 97.83 75.14 

(MLS)MphE:JF769133:8777-9661:885 mphE 900 35.78 6.36 5.00 2.41 2.79 98.33 90.78 

(MLS)MsrE:JF769133:7246-8721:1476 msrE 1501 39.31 9.53 9.06 4.26 3.57 98.33 97.14 

JQ364968.1.gene6 blaRTG-5 378 43.12 1.27 0.53 0.46 0.50 99.21 53.44 

NC_002516.2.881697 tufB 1194 59.63 4.54 1.49 4.16 2.29 87.02 43.30 

NC_007682.3.4246769 msrE 1476 39.97 2.46 2.10 1.45 1.53 85.98 92.21 

NC_010481.6155782 msrE 1476 39.97 1.57 2.59 1.24 1.65 71.34 91.80 

NC_011595.7072242 tuf 705 45.11 0.25 1.00 0.43 1.14 24.82 51.49 

CP002695.1.gene10 tuf 1191 62.64 0.74 1.24 1.22 1.04 43.07 75.82 

NC_002516.2.882884 mexF 3189 65.57 0.52 0.21 1.06 0.47 27.34 22.42 

CP000647.1.gene3761 tuf 1185 54.09 0.64 0.54 1.38 0.72 18.65 40.68 

NC_002516.2.881718 tufA 1194 59.63 0.48 0.53 1.01 0.97 22.11 28.06 

CP003248.2.gene711 rpsL 375 62.67 - - - - ND ND 

CP003022.1.gene337 msrE 1476 39.97 1.72 1.37 1.79 1.07 64.16 75.07 

X58272.1.gene1 blaOXA-5 804 40.17 0.22 0.60 0.42 0.69 22.14 49.13 
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Table A.10. Average depth and gene similarity with BWA-MEM alignment for ARGs with ≥ 90% coverage in after disinfection (AD) 

samples for East Lansing (CAS) and Traverse City (MBR) WWTPs. ARGs from both CARD and ARG-ANNOT reference database 

are integrated into one data set.   

Database Accession No. Gene Length GC% 
Avg Depth (x) Depth Std Gene Similarity (%) 

ELAD TCAD ELAD TCAD ELAD TCAD 

(Sul)SulI:AF071413:6700-7539:840 sul1 855 60.58 2.66 2.25 1.32 0.87 97.19 98.33 

AM087411.1.gene3 aadA6 846 53.66 3.51 2.56 4.25 1.19 100 100 

AY743590.gene tet39 1188 40.57 1.12 0.82 0.86 0.83 82.15 55.96 

CP002695.1.gene3614 tuf 1191 62.64 24.15 47.95 14.13 26.90 100 100 

EF102240.1.gene3 msrE 1476 39.97 1.64 1.01 1.18 2.31 78.46 41.02 

(MLS)MphE:JF769133:8777-9661:885 mphE 900 35.78 1.55 2.61 0.70 1.07 92.56 98.25 

(MLS)MsrE:JF769133:7246-8721:1476 msrE 1501 39.31 1.34 3.05 1.20 1.31 71.55 96.67 

JQ364968.1.gene6 blaRTG-5 378 43.12 1.36 1.89 0.50 1.17 99.21 93.90 

NC_002516.2.881697 tufB 1194 59.63 24.97 34.68 14.62 24.84 96.40 92.55 

NC_007682.3.4246769 msrE 1476 39.97 1.14 1.89 0.64 1.17 86.79 93.90 

NC_010481.6155782 msrE 1476 39.97 1.40 0.82 0.75 0.83 91.26 55.96 

NC_011595.7072242 tuf 705 45.11 10.41 4.54 10.43 4.52 100 90.78 

CP002695.1.gene10 tuf 1191 62.64 21.20 45.58 13.25 26.59 98.74 100 

NC_002516.2.882884 mexF 3189 65.57 10.59 13.75 11.47 13.03 94.45 91.66 

CP000647.1.gene3761 tuf 1185 54.09 4.23 5.73 2.35 5.48 93.67 75.87 

NC_002516.2.881718 tufA 1194 59.63 16.57 26.85 15.49 27.23 93.30 90.62 

CP003248.2.gene711 rpsL 375 62.67 3.49 3.15 3.46 4.04 91.20 55.73 

CP003022.1.gene337 msrE 1476 39.97 1.17 2.66 0.84 1.53 78.66 96.27 

X58272.1.gene1 blaOXA-5 804 40.17 0.22 0.60 0.42 0.65 22.14 91.17 
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