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ABSTRACT

ESTIMATION OF BETA RISK COMPONENTS FOR REDUCTION
OF PREDICTION ERROR IN PORTFOLIO MODELS

By

R. Corwin Grube

Two primary uses have been made of systematic risk as it applies
to common stocks: (1) the evaluation of historical performance of
common stock portfolios (2) the construction of common stock portfolios
according to the risk-return (RR) criteria. This research focuses on
the construction of common stock portfolios according to the RR criteria.
In order to estimate the worth of a common stock by the RR criteria,
some ex ante estimate of the systematic risk of the stock is required.
Typically it has been assumed that systematic risk is stationary hence
a computation of ex post systematic risk can serve very well as an esti-
mate of ex ante systematic risk. This assumption, however, still
leaves the question of how to compute ex post systematic risk e.g.,
should the historical estimate be computed over three years, five years,
ten years or some other time period and should observations of return
within this period (used to compute the systematic risk) be taken
weekly, monthly, quarterly, etc. Furthermore, should the relationship
of risk and return be assumed to be Ri = oy + Bi Rm + e or should some

alternative market model be used?

Two market models were considered in this paper: (1) the ordinary
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least squares equation presented above and (2) the market model pre-
sented by Lawrence Fisher and Jules Kamin at the Midwest Finance Meetings
in March 1972 which depicts the relationship of risk and return as
Ri = B1 Rm. Twenty-eight estimates of ex post systematic risk were com-
puted for each of the thirty-five securities in the sample in each of
two different (but overlapping) test periods. These twenty-eight esti-
mates were then compared to the volatility (Ri/Rm) of the individual
securities in each of twelve different holding periods in test period I
and each of eight different holding periods in test period II. These
differences were defined as prediction error and the mean absolute
value of prediction errors was computed for all securities for each
measurement period, observation interval and holding period. Prediction
errors were computed for both market models and these results also
compared.

The results indicated that there is not a great deal of consistency
between securities i.e., the estimate of ex post systematic risk which
minimizes prediction error for security i will not necessarily minimize
prediction error for security j. The results also indicated that the
minimum mean prediction error is most decidedly a function of the time
period examined. In test period I the minimum mean prediction error
arose from 69 observations of monthly return used to estimate volatility
in a fifteen month holding period while in test period II the minimum
mean prediction error arose from three observations of quarterly returns
used to estimate volatility in a three month holding period. In general
and on average, it was noted that prediction error was positively corre-

lated with holding period length and that between 75 and 100 observations
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of return provided the minimum mean prediction error. It was also
noted that the ordinary least squares procedure of computing ex post
systematic risk provided a smaller mean prediction error than the
Fisher-Kamin procedure in the majority of instances.

The results further indicated that highly accurate estimates of
ex ante systematic risk were difficult to obtain e.g., the mean abso-
lute prediction error averaged across all holding periods and measure-
ment periods ranged between 0.45 (quarterly observation interval) and
1.20 (weekly observation interval) in test period I and between 0.37
(weekly observation interval) and 0.48 (quarterly observation interval)
in test period 1I. Given the magnitude of these errors and the inability
of a particular measurement period or observation interval to consis-
tently provide superior prediction results, it would appear that without
improved techniques to estimate ex ante systematic risk, the Risk-Return

programming model is of very limited use in the real world.
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CHAPTER 1

INTRODUCTION

Background and Objectives

In finance assets are frequently evaluated using quantitative
measures for the expected return and anticipated risk associated with
the asset.l The relationship of these two parameters is frequently
written in the following form,

Rie =™ 25e + PyeBue | (1-1)

where

Rit = the historical return during period t on
an individual asset 1

a, = 1/n E R, - b/n E R .
b,, =nIR_R,_-IR, IR = the systematic risk
it € mt it ¢ it mt component of asset i
2 2
nIR - (ZR.)

Rmt = the historical return on a portfolio of assets
similar to asset i during period t

n = the number of historical observations of R,  and Rmt

it

In this expression the systematic risk component, b describes the

it’
total risk of the asset so long as the asset is held in a portfolio of

1See for example, Chris A. Welles, 'The Beta Revolution: Learning
to Live with Risk", The Institutional Investor, Vol. V, No. 9
(September 1971), pp. 21-26 and following. See also, Frank E. Block,
"Beta Evaluation", Wall Street Transcript, July 3, 1972, p. 29,056.
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similar assets numbering at least twenty.2

The financial community uses the two parameter model in the follow-
ing two ways: (1) for the evaluation of historical investment perform-
ance and (2) for the prediction of the future relationship between the
return on asset i (Ri) and the portfolio of similar assets (Rm). Since
it is easier to predict the behavior of a portfolio of assets than an
individual asset (errors tend to cancel), and since the relationship is
assumed to be stationary over time, the model can be used to predict the
behavior of an individual asset with historical information and some
estimate of the behavior of the portfolio. The historical information

used consists of the n observations of R, and Rmt made during time

it
interval t.

The purpose of this research is to examine how the parameter, bit’
can best be estimated to provide the model user with the minimum pre-
diction error when predicting systematic risk in some future time

interval.

Problem Identification

There are several factors which will influence the predictability
of future systematic risk. Equation I-2 below provides a model which
measures prediction error as predicted less actual return of the indi-
vidual security and shows the several factors which influence the

computation of bit'3 In equation I-2, the size of the prediction error

2J. L. Evans and Stephen H. Archer, 'Diversification and the Reduc-
tion of Dispersion: An Empirical Analysis", Journal of Finance,
December 1968, pp. 761-769.
3A. M. Mood and F. M. Graybill, Introduction to the Theory of
Statistics, McGraw-Hill, 1963, pp. 335-343.




3

will be a function of the ability to correctly estimate bit'

EPi = (Rp - Ra) =0 1+ 1/n+ (Rmk - Rmt) (1-2)
R YA
I(R_-R )
where ¢ ot mt
R k= the observed return on the portfolio of assets
in time period k
o .= 1 fs (R _-a_-b R )
ei 1)t it it it mt
n-2
and n, 3 and bit are as described in equation (I-1).

The problem of estimating bit breaks down into two major com-
ponents: (1) establishing the optimal market model and (2) specifying

the parameters of the market model selected.
Market Model

There exist an infinite number of potential market models. The
market model specifies the computational equation of the historical
beta coefficient, bit’ and correction factors of any sort can be in-
cluded in the computation methodology. Thus there would exist, in
theory, as many market models as correction factors. Until recently
however, there was basic agreement that the proper (or at least suit-
able) relationship between the return on an individual security and
the return on the market could be expressed as in equation (I-1).

At the Midwestern Finance Association Meetings in 1972, Professor
Lawrence Fisher and Jules H. Kamin found that unbiased estimates of
bit developed in equation (I-1) provided predictions of future systematic

risk, bik’ which were inferior to those developed from equation (1-3)



below.a

X

it t it mt (1-3)
T
t

This development of the historical beta coefficient assumes an

alternative relationship between risk and return viz,

F

Rie = Pie Ryt

(1-4)

Equation (I-3) is an unbiased estimator of beta if the functional form
exhibited in equation (I-4) is assumed.6 What is at issue here is
whether the relationship of risk and return for an individual security
is best represented as

it = Pie Bne
or

Rip = 33¢ ¥ b5 Ry

Under the functional form assumed by Fisher,

F
bit: Rit/Rmt

whereas under the normal linear form,

bie = Ryp —ag)/Ry = Ry /R —ay /R

Clearly, if a, = 0.0, both estimates of systematic risk will be the

it

4Lawrence Fisher and Jules H. Kamin, "Good Betas and Bad Betas;
How to Tell the Difference'", A Presentation at the Midwest Finance
Association Meeting, St. Louis, Missouri, April, 1972.

5All statistics generated by Fisher and Kamin will be denoted
by superscript F.

6Harold J. Larson, Introduction to Probability Theory and Statis-
tical Inference, John Wiley and Sons, New York, 1969, p. 320.
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same. While ay, typically approaches zero, it is seldom identically
zero.7 This suggests that the two systematic risk measures will vary

/R

1t/ Roe* Which of the two forms is more correct will

by a factor of a
depend on which is the more useful i.e. which produces the least pre-

diction error.
Model Specification

Once the market model has been selected, the parameters of the
model must still be specified. The prediction error associated with
either equation (I-1) or (I-4) will depend on (1) the measurement period
over which returns are taken, t, (2) the number of observations of
return within the measurement period, n, and (3) the period over which
the systematic risk to be predicted is computed. The importance of
parameter specification to the selection of the market model is shown
below.

The prediction error model of equation (I-2) can be applied to the

Fisher market model as follows:8
F F 2 = 2
Epf = of, {1 et 7 ey - R ]} (1-6)

It can also be shown that9

7

Nancy L. F. Jacob, "Theoretical and Empirical Aspects of the
Measurement of Systematic Risk for Securities and Portfolios", Unpub-
lished Ph.D. dissertation, University of California - Irvine, 1970, p. 74.

8 F 2 - 2

EP1 =0y + Rmt L + 2RkE [(a -a)(b~-Db)] +0 a

But E [(a-a) (b-b)] -éa=o.o

F A 2 ~2 A 2 2 = 2
H = = -
ence EP1 Oy + R t % = %eq t+ R ¢t et [1/5 (Ri R t) ] Q.E.D.

9H. F. Larson, op. cit., p. 339.
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P21 _.F 2 }
(0o =1 F (Ryp = by Rpyed (1-6)

This means that the squared prediction error associated with the market
model of equation (I-1) will be less than the prediction error asso-
ciated with the Fisher formulation of equation (I-4) for any observa-

tion of R when
mk

- 2 2
N (R, =R ) . (R .)
o, freteBemt o GF P e —mk (1-7)
el n X = 2 ei z = 2
t(Rmt - Rmt) t(Rmt - Rmt)
. ~2 F 2
Breaking the inequality into factors it can be shown that Oy < (Uei)
when
R > Rpe(bye bl;t) it
mt R - " Rit (I-74)
it
Further,
= 2 2
1+14 Ry - Ry (Rox)
n — < 1 4+ ——— (I-7B)
Z(R - R )2 Z(R _® )2
t %me mt t Y me mt
when
hX = 2
Rie > 2 mt mt (1-7¢)
R
mk

Taken together, inequalities (I-7A) and (I-7C) guarantee that the pre-
diction error associated with the market model of equation (I-1) will
be less than that associated with equation (I-4) if

R (b 2

F -
R > mt" it + bit) bit R and R > otl 2(Rm - R
mt — - it mt

2n t mt
Rie n Rk

It 18 not obvious when these conditions will prevail. It can be agreed,

however, that the quantity (Rmt - imt)z will depend in part upon the
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observation interval selected. A priori, a larger absolute percentage
could be expected if daily rather than annual returns were used be-
cause of the greater variability of returns associated with shorter
time periods.lo Similarly, the variability of bit (ob) will depend
upon the length of the observation interval. (The observation interval
being that length of time between price observations used to compute
returns). If bit and bft are independent of the observation interval,
an assumption used in some applications, then Rmt (bit + bit) will be
positively correlated with the observation interval. Since the obser-
vation interval is determined in part by the total period over which
observations are taken (the measurement period), a seven year period,
for example, would virtually eliminate annual observations of return
since the significance of the statistical parameters would hold only
for very large confidence intervals.

The prediction results obtained by Fisher and Kamin may be due
to the measurement period and/or observation interval employed rather
than to any difference in the functional form of risk and return
exhibited in equations (I-1) and (I-4). The anticipated holding period,

discussed later, can also influence these results.

Portfolio Analysis Using Volatility as a Measure of Risk

The application of the two parameter model was originally presented

by Harry Markowitz in his 1952 article.11 Because Markowitz utilized

1oLawrence Fisher and James C. Lorie, "Some Studies of the Vari-
ability of Returns on Investments in Common Stock", Journal of Business,
April 1970, p. 110.

llﬂarry Markowitz, "Portfolio Selection", Journal of Finance,
March 1952, pp. 77-91.
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variance of return as a measure of risk, it has frequently been argued
that the attendant co-variance matrix required to evaluate combinations
of securities is both too costly and too time consuming to be useful

12,13

in the selection of portfolios. The substitution of the beta

coefficient for variance of return to measure risk was introduced by
Professor Sharpe in 1967.14 This substitution reduced the information
required to obtain estimates of risk for combinations of securities and
provided a low cost, viable alternative to the Markowitz mean-variance
approach. The Sharpe model is described here as it applies to the
evaluation of individual securities.
The Sharpe model requires two inputs:
(1) expected return for each security = E

i

(2) expected systematic risk of each security = bi

By plotting ex ante estimates of E, and bi for each security and com-

i
bination of securities, a feasible region of combinations would exist
similar to Figure I-1 below. Efficient combinations (maximum return

for any given level of risk) are indicated by the darker (upper left
hand) border. The goal is to determine this set of efficient portfolios

given the input requirements mentioned above.

12William F. Sharpe, Portfolio Theory and Capital Markets, McGraw-
Hill, 1970, p. 118.

13John Clark Francis and Stephen H. Archer, Portfolio Analysis
Prentice-Hall, Englewood Cliffs, New Jersey, 1971, pp. 95-96.

14William F. Sharpe, "A Linear Programming Algorithm for Mutual
Fund Portfolio Selection', Management Science, March 1967, pp. 499-
510.




FIGURE I-1
Linear programming can be used to accomplish this goal. Since

the objective is to maximize portfolio return for any given level of

risk, the following notation 1is in order:

n

Ep = 1k1%e%y

n

b = I X,b

where
n = the total number of securities under consideration
Xi = the portion of the total portfolio commited
to security 1

The objective function can be stated as

Maximize Z = (1 - E -
. ( qQ) p T 9by

subject to
0 <q <1
§ Xi =1

Xi >0 for all i

Li s Xi < Ui
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and

q = the relative importance of risk vs. return

The constraints can be interpreted as follows:

X, >0 dis-investment is not allowed

=
A
Lol
A

U1 at least L proportion and not more than U
proportion of total funds must be held in
security 1

X, = 1 100% of the available money shall be invested

0<q=<1 not more than 1007 risk nor less than 0.0%
risk can be assumed,

For each arbitrary q selected (0 < q < 1), the objective function will
determine an optimal combination of risky securities i.e., an optimum
portfolio.

If q = 0, indicating risk (bp) is to be totally disregarded, then
maximizing Zp is equivalent to maximizing Ep. Figure I-2 shows that
the linear programming algorithm would determine A as the optimum port-

folio for q = O.

0.0

FIGURE I-2 P
For q = 1, the optimum portfolio would be that portfolio which
minimizes risk regardless of return. In this case, maximizing Zp is

equivalent to minimizing bp. Portfolio B in Figure I-2 depicts this
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situation.

For 0 > q > 1, say q = .5, the appropriate Zp line slopes upward
at .5 and denotes C as the optimum portfolio in Figure I-2.

When q is8 chosen such that the slope of Zp is parallel to a linear
segment of the efficient border, then any linear combination of the
corner portfolios is equally acceptable and optimal. In Figure I-3
this situation is shown. If q = .4 and is parallel to line segment CD
as in Figure I-3, then any linear combination of portfolios C and D

which satisfies the expression X.D + X2D = ] is equally optimal.

1

0.0

FIGURE I-3

Model Limitations

Two inputs are required to use the model, Ei and bi' From a

conceptual standpoint, E, and bi are ex ante measures. As was pointed out

i
earlier, historical estimates of b1 are assumed to be the best esti-
mates of future bi' The reasoning proceeds as follows. By arguing

that bp i8 relatively stable over time, many authors have assumed

that ex post estimates of bi will provide the best estimate of
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15
future bi' The generally accepted methodology of determining his-
torical bi has been to use the linear regression analysis associated
with the market model of equation (I-1).
This reasoning suffers from two important limitations. First,
stability of portfolio volatility, bp’ is no assurance of the stability

of individual security volatility, b Also, the stability of the beta

i
coefficient is not necessarily equivalent to the predictability of the
beta coefficient if, indeed, the slope of the least squares regression
line is what should be predicted. Finally, no specifications have
been set down as to the measurement period or observation interval

which the model user should consider in determining the historical bi.16

Justification for Research

Incorrectly estimating the systematic risk of an individual
security may cause the model user to incorrectly rank securities
hence include in the portfolio securities which are less desirable
than others which have been excluded. An examination of the linear
programming model will demonstrate this argument.

Just as the value of a particular combination of securities was
expressed as Zp = (1 - q)Ep - qbp, the value of any particular security

can be expressed as

z, = (1 - q)Ei - qbi (I-9)

15See for example, William F. Sharpe, Portfolio Theory and
Capital Markets, McGraw-Hill, 1970, p. 142,
l6N1cholas J. Gonedes, "Evidence on the Information Content of
Accounting Numbers: Accounting-Based and Market-Based Estimates of
Systematic Risk", Journal of Financial and Quantitative Analysis,
June 1973, pp. 407-443.
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For any given value of q = 950 %4 becomes a function of Ei and bi'
For example, let q, = 1/2 and Ei = 0.10, then z, assumes different
values depending upon the estimate of bi' Table I-1 provides an
illustration.
z, = (l—q)Ei - qbi
q, = 1/2
Ei = 0.10
1 Y
.1 0.00
.3 -0.10
.7 -0.30
1.0 -0.45
1.5 -0.70

TABLE I-1

From Table I-1, it is apparent that z, is a decreasing function

i
of bi' This is reasonable since the relationship between value and
risk is negative by assumption i.e., individuals are assumed to be

risk averters. Figure I-4 plots the data in Table I-1.

1
0.0 0.5 1.0 b
1

-0.45

FIGURE I-4
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Figure I-5 below demonstrates a simple four security universe.
Each security is assumed to have a different expected value but the
same systematic risk. To simplify the example, it is assumed that
each security's b, has been estimated at 1.00. A ranking of the four

securities according to the z, criteria would indicate security 1 as

i

FIGURE I-5

the first choice, security 2 as the second choice, security 4 as the
third choice, and security 3 as the fourth choice. Satisfying the
constraint that two securities must be held would indicate holding
securities 1 and 2 in equal proportions in the portfolio. If however,
the correct values of bi are 0.5 not 1.0, then the proper ranking of
the securities would change. Now the highest ranking securities are

2 and 4, but not 1. In fact, security 1 now ranks last rather than
first. With a large sample of securities and a proportionately smaller
number of securities held, the change in rankings could be even more

significant.



CHAPTER II
PAST STUDIES

The literature on portfolio theory is abundant. For the most
part this literature has focused on the evaluation of historical
performance of securities and portfolios or on implications of the
theory itself. Little attention has been given to the problem of
specification of the risk-return model parameters when the model is
to be used for predictive purposes.

Michael C. Jensen's work with the portfolio model can be gener-
ally cast into that category which attempts to measure the ex post
performance of portfolios.l Specifically, he set out to determine
whether the returns achieved by mutual funds were consistent with
their systematic risk exposure. He did, however, partially test his
input data by comparing one year return with two year return (for use
in computing his beta co-efficients) over twenty years for each port-
folio. Regressing the betas so derived, Jensen found a correlation
co-efficient of 0.89 which he interpreted to mean that use of one year
observations or two year observations was largely immaterial in com-
puting returns for use in estimating beta co-efficients.

Marshall E. Blume, II, recognizing that the results obtained by

1Michae1 C. Jensen, '"Risk, Capital Asset Prices and Evaluation
of Portfolios", Journal of Business, April 1969, pp. 167-245.

15
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Jensen need not apply to individual securities, tested 251 securities
listed continuously on the NYSE over the period 1927-1960, for station-
arity.2 He divided the period into four equal sub-periods, computed
a beta co-efficient for each security in each sub-period, and regressed
the 251 individual betas from each sub-period against the respective
beta in each subsequent sub-period. His average correlation coeffi-
cient was approximately 0.72. Blume interpreted this to mean that
individual security betas were stationary over time.3

Both Jensen and Blume tested the stationarity property of the
beta co-efficient; Blume for individual securities, and Jensen for
groups of securities. These tests are not really a specification of
how the beta co-efficient should be computed. Blume for example,
arbitrarily selected one month as the observation interval and seven
years as the measurement period. Jensen did compare beta co-efficients
developed from one and two year observation intervals but he did not
attempt to reconcile differences nor determine which of the methods

provided the best results.A

As part of her 1970 dissertation entitled Theoretical and Empiri-

cal Aspects of the Measurement of Systematic Risk for Securities and

2Marshall E. Blume II, "The Assessment of Portfolio Performance:
An Application of Portfolio Theory", Unpublished Ph.D. dissertation,
University of Chicago, 1968.

3The stationarity property of the beta co-efficient and the pre-
dictability of the beta co-efficient are similar but not identical.
If the beta co-efficient is stationary then using historical informa-
tion to estimate the future will produce small prediction errors. On
the other hand, a particular beta co-efficient could be predictable
but not stationary.

4Jensen showed that in the absence of measurement error the
period over which these returns is computed is immaterial.
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Portfolios,5 Professor Nancy L. Jacob examined various properties of
the beta co-efficient for 593 securities on the NYSE listed continu-
ously between 1945-1965. To determine the predictive ability of
beta, she compared adjacent time periods of identical length, utilized
the same observation interval for measurement of return, and regressed
the individual security's betas so derived. She used three distinct
time period lengths: one year, five years and ten years and three
observation intervals: monthly, quarterly and annually to compute
beta for the regression test. This procedure was employed for indi-
vidual securities and for random and sorted portfolios of various
size. Using the co-efficient of determination (RZ) as her measure of
predictive ability, she found that it was extremely difficult to pre-
dict betas for one year periods (average R2 of approximately .100).6
As the period lengthened, however, from one to five years, the pre-
dictive ability substantially improved (R2 of approximately .370).
Dr. Jacob did not test the predictive ability of beta hetween one and
five years.7

As a result of these findings, Dr. Jacob argued "... an investor
cannot use the past average volatility... of a portfolio as a best

n8

guess of its future value.... In other words, the beta co-efficient

5Nancy L. F. Jacob, Theoretical and Empirical Aspects of the
Measurement of Systematic Risk for Securities and Portfolios,
Unpublished Ph.D. dissertation, University of California - Irvine,
1970.

6The figures cited for one year were reported for monthly obser-
vations of return only.

7Nancy L. F. Jacob, op. cit., p. 91.

81bid., p. 93.
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of an individual security or portfolio is not a particularly reliable
estimate of either volatility or expected return of the same security
or portfolio in future time periods.
In the design of her experiment, Dr. Jacob specified the computa-

tion of beta for individual securities as

I - -
t (mrilt - mry) (wro ¢ - mrmJt)

(11-1)

T Z
t (Mrm,t - mrm)

where mr, and mr are excess returns on the individual security and
the market respectively.

The market index used was unique in that it was comprised of the
593 securities which she studied. In addition, returns on the index
were computed under the assumption that funds were re-allocated equally
to each of the 593 securities in the market portfolio at each obser-
vation.

This technique of utilizing precisely the 593 securities in the
sample as the market index may cause the residual risk of any security,
e to be correlated with the market index.9 Portfolio theory
typically assumes that E(ei) = 0. The effect on Jacob's results is
uncertain. Because of the large number of securities, it may be insig-
nificant.

Professor Jacob found some results which do have implications for
the specification of the market model of equation I-1. First, she

found that the standard error of beta, o

b? is inversely related to the

9Michael C. Jensen, '"The Performance of Mutual Funds in the
Period 1945-1964", Journal of Finance, May 1968, p. 392.
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length of the period over which beta is measured.10 For example,
systematic risk exhibited less dispersion when measured with annual
returns over five years than when measured with annual returns over
two years. Secondly, she found 8b was directly related to the length
of the observational interval.11 That is, greater dispersion of the
beta coefficient was evident for annual and quarterly observations of
return than for monthly observations of return for any given period.
She did not, however, reach any conclusion as to which observation
interval provided the best estimates of beta (minimum Gb) nor over
how long a period returns should be observed.

One additional observation made by Professor Jacob is worth noting
here, Capital market theory specifies a perfect linear relationship
between Ri and Rm. She found this relationship less than perfect but
most in evidence when Rm was significantly different from zero.

Another 1970 dissertation, this by F. B. Campanella of Harvard
University, addressed itself to three specific questions concerning
the measurement of beta.12 First, Campanella asked, '"Do computed
values of beta vary with the length of the time period considered,
e.g., five years vs. ten years; or are the values of beta sensitive
to the time interval over which security returns are calculated, e.g.,

monthly vs. quarterly returns?"l3 He also asked, "...would beta

loNancy L. F. Jacob, op. cit., p. 61.

1lNancy L. F. Jacob, op. cit., p. 61.

12F. B. Campanella, Measurement and Use of Portfolio Systematic
Risk, Unpublished DBA dissertation, Harvard University, 1970.

131b1d., p. 29.
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computed for the time interval t=1951-60 be a good estimate of the
appropriate beta for time interval t=1961-70?"14

To test the stationarity of beta, Campanella regressed (bi)t
where t= 1956-66 against (bi)t where t=1946-56 and found a correlation
co-efficient of .513. For the identical regression but t=1946-56 and
1936-46, he found a correlation co-efficient of .707. And for 1936-46
vs. 1926-36, he found a correlation co-efficient of .655. To make
these results similar to Jacob's, the corresponding R2 has been com-
puted and is shown below in Table II-1. Campanella's conclusion was
that a relatively high correlation exists between the betas computed
in different time periods and there is stationarity over time.

In testing the effects of varying the observation intervals
and time period lengths, Campanella used five, ten and twenty year
periods and computed beta from both monthly and quarterly data. He
used 1956-66 betas (computed from monthly observation intervals) as a
standard and correlated all other betas with these. He found that
betas computed over ten years are highly correlated with betas computed

over either five years or twenty years for both monthly and quarterly

TABLE II-1
2
Regression Study R
1936-46 vs. 1926-36 429
1946~56 vs. 1936-46 .500
1956-66 vs. 1946-56 .263

1l‘loc cit.
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observations. His conclusion was that security betas are not sensi-
tive to either the length of the time period used or the observational
interval used.15

While Campanella argues that betas are largely stationary over
time, he calls for more work to be done in this area. He specifically

"... (we) need more research in the area of measuring the

says,
systematic risk of individual securities. The need is to test that
stationarity in individual security betas over the most recent decade
and further to test for within period stationarity."16
One recent study which did examine the short term stationarity
property of beta over time is described below.
Robert A. Levy developed a beta co-efficient for each of 500

NYSE securities in each of the ten years 1961-70.17

He then compared
the betas so developed in adjacent one year intervals to determine

the predictability of (bi) using (bi)t via regression analysis.

t+1
The quadratic mean of the nine correlation co-efficients so obtained
was .486. Levy went on to test the predictability of both thirteen
week and twenty-six week betas using the immediately preceding 52
weeks as a measurement period for (bi)t' His correlation co-efficient
was lower in each case. It should be noted that Levy used one week

differencing intervals in his computation of the beta co-efficients.

An interesting result is obtained if the Jacob and Levy studies

15F. B. Campanella, op. cit., p. 5.
16Ibid., p. 39.
17

Robert A. Levy, "On the Short Term Stationarity of the Beta
Co-efficient", Financial Analysts Journal, November/December 1971,
pPp. 55-62.
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are compared. Dr. Jacob found that for each of the three years 1963,
1964, and 1965, she was able to obtain an R2 of about .10.18 This R2

was obtained, recall, by regressing (bi) on (bi)t for about 600

t+l
securities where (bi)t was computed over the immediately preceding

one year time period using monthly data. Levy was able to obtain an

R2 of more than .20 or twice that of Jacob by using the measurement
period of one year immediately preceding the year he was attempting

to predict but using weekly rather than monthly observations of return.
This suggests that Professor Jacob's contention regarding the inability
of historical betas to predict future betas may have been premature.

If predictive results can be improved 100% (.20/.10) by altering the
specifications by which beta is computed, then perhaps further modifi-
cation would provide even better results. Additionally, this result
stands in direct contradiction to Campanella's claim that the obser-
vation interval is irrelevant to the stationarity property of beta.

It would appear that additional empirical testing is desirable in
order to resolve some of these controversies.

One additional point should be made here since it applies to all
of the studies cited above. The experimental design utilized in all
cases involved regressing the beta co-efficient of one time period
against the beta co-efficient of an adjacent time period. As pointed
out earlier, this test of stationarity is not identical to the test
of predictability. Conceptually, beta is an indicator of a security's

systematic risk i.e., its volatility vis a vis the market. For any

18Nancy L. F. Jacob, op. cit., p. 91.

19Robert A. Levy, op. cit., p. 57.

19
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given period of time, the real variable of interest (in a prediction
sense) 1s the volatility of the security with the market: RilRm.
Examining the predictability of beta as constructed through regression
analysis in adjacent time periods is equivalent to examining the pre-
dictability of the predictor itself. Hence the tests have examined
the predictability of the next predictor, not the predictability of
volatility. Utilizing the beta co-efficient as the variable to be

predicted requires an estimate of the quantity Ry =85~ 8. 1f

volatility or is the variable of interest, then predicting a beta

&7

co-efficient will provide a prediction error which includes both a;

and e, and thus differs from the variable of interest by a factor of

“(ay +ey) cince 21 “(agtey) Ry ~(a*ey) | It may be argued
Ry Rp Rm R

that this will not be of great concern since the expected value of the

error term is zero, i.e., E(ei) = 0.0 and a, will typically be near

i

zero. However, e, will typically not be zero as evidenced by the

i
need to combine securities to eliminate residual risk. This suggests
that to measure the predictive ability of beta an improved experi-
mental design i1s required which utilizes volatility or Ri/Rm as the

variable to be predicted.

Appropriate Time Interval Considered by Investors

The agreement reached by Blume and Jensen would seem to indicate
that specification of the beta co-efficient is not of critical impor-
tance so long as the use of beta is limited to longer time periods and
the historical evaluation of performance. For shorter time periods,
predictive purposes, and individual securities, the evidence is contra-

dictory and the results of previous studies are inconclusive. Recent
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evidence which indicates both the normative and positive appropriate-
ness of these shorter time periods is discussed below.

Friend, Blume, and Crockett have found that institutional turn-
over of securities within portfolios has been increasing steadily over
the last twenty years.zo In the case of mutual funds they found turn-
over approximated 47% in 1968 and nearly 56% in the second quarter of
1969.21 This turnover rate implies an expected average holding period
for any security in the portfolio of less than one year; since 100%
turnover would occur in (1/.56) 1.79 years, the expected holding period
for any security would be 1.79/2 or .895 years (assuming a uniform dis-
tribution of the anticipated holding periods).

This positive evidence is further augmented in a recent article
by Ralph A. Bing. Bing found that nearly 80% of the institutional
investors whom he surveyed were concerned with time horizons of three
years or less; 60% were concerned with time horizons of two years or
less; and 40X were concerned with less than one year.22 His sample
included not only mutual funds, but insurance companies and in-house
pension funds as well.

From a normative standpoint, the work done by Evans indicates
that this orientation toward shorter holding periods may well have

theoretical justification.23 Evans suggests that by re-allocating

201rwin Friend, Marshall Blume and Jean Crockett, Mutual Funds

and Other Institutional Investors; A New Perspective, New York,
McGraw-Hill, 1970.

211p44., p. 9.

22Ralph A. Bing, "A Survey of Practioners' Stock Evaluation
Methods," Financial Analysts Journal, May/June 1971, pp. 55-60.

23John L. Evans, "An Analysis of Portfolio Maintenance

Strategies", Journal of Finance, June 1970.
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portfolio dollars periodically, one could expect a higher return on
the portfolio than by simply buying and holding. Presumably the ran-
dom nature of stock price changes 1is responsible for this phenomenon,
but for this paper that is unimportant. What is important is that
from both a normative and a positive standpoint, investors consider
substantially shorter holding periods than the five to ten year
periods for which studies of beta stationarity (predictive) properties

are conclusive.

The Gonedes Paper

Before introducing the Gonedes paper it will be instructive to
point out the relationship between the prediction error associated

with equation I-2 and the number of observations of R, and Rm used to

i

compute beta.

From equation I-2 recall,

= 2
(R - )
2 P 2 A 1 m, k m, t
(EPi) E(Ri,k Ri,k) oei 1+ - + Z(R = )2
t m,t  m,t

Notice that the prediction error is a decreasing function of n since

ae is8 a decreasing function of n. This inverse relationship between

i
the prediction error and the number of observations suggests that to

minimize the prediction error it is desirable to observe the relation-
ship between return on the security and return on the market for as
long a period as possible e.g., since the inception of the company.
Alternatively, for some given length of time, the observations of
return should be for as short a differencing interval as possible e.g.,
hourly.

It seems reasonable to expect that companies will change their



26

management, marketing, and/or financial policies over time thus
providing investors with different information upon which to base
expectations regarding the company. If this is the case, then it
seems likely that the relationship between the return on the security
and the return on the market will change over time. It would also
seem reasonable that returns computed from very short observational
intervals would be less than meaningful and subject to random dis-
turbances of a large magnitude.za

Professor Nicholas Gonedes has suggested that "structural
changes" will occur to the extent necessary to offset any benefits

from increasing the number of observations or R, and Rm after about

i
seven years.25 The observation interval used by Gonedes was one

month, hence 84 observations provided the best estimates of a, and bi

i
for use in predicting Ri given Rm'

Gonedes first reserved the initial six monthly returns of each
of 99 securities in 1960 and 1968 as returns to be predicted. He then
constructed a set of beta co-efficients for each firm by ordinmary
least squares procedures over the period 1946-67. The 99 firms were
selected according to the following criteria: (1) monthly price-
relative data were available for the firm from the CRSP tape for the

period January 1946 to June 1968 and that selected annual data were

available from the CPMPUSTAT tapes for the same period; (2) the firm

24Jack A. Treynor, W. W. Priest, L. Fisher, and C. A. Higgins,

"Using Portfolio Composition to Estimate Risk," Financial Analysts
Journal, September/October 1968, pp. 93-100.

25Nicholas J. Gonedes, "Evidence on the Information Content of
Accounting Numbers: Accounting Based and Market Based Estimates of
Systematic Risk', Journal of Finance and Quantitative Analysis
(forthcoming).
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was a member of a two-digit S&P industry grouping with at least fifteen
member firms. The set of beta co-efficients for each firm was created
by breaking down the total twenty-one year period into sub-periods.
Gonedes selected the sub-periods just prior to the years of the
reserved returns and divided the sub-periods into three, five, seven,
ten, and twenty-one years of length. Figure II-1 shows the schematic

approach utilized by Gonedes for establishing sub-periods and reserved

returns.
FIGURE II-1
b(1957-59) b(1965-67)
b(1955-59 b(1963-67)
b(1953-59) Reseizggogeturn b(1961-67) Reseizggsgeturn
b(1950-59) b(1958-67)
b(1946-67) b(1946-67)

The prediction error was computed as EPi = (jo - Rij)2 where jo is
the predicted one period rate of return for the ith firm at time j and
Rij is the actual rate of return.

The predicted return sz was computed by first observing the mar-
ket return at time j, then using this to estimate the return on the
individual security using one of the available historical betas and
the relationship Rij = ai+biij' Since there are six reserved returns
in each of two years to be predicted and five betas to be used for

predictive purposes, there are (6x2x5) 30 prediction errors to be

recorded for each of the ninety-nine firms in the sample.
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Cross sectional summary statistics indicated, as mentioned
earlier, that the seven year period with 84 monthly observations used
to estimate beta provided the minimum prediction error.
Gonedes concluded that "... for the aggregate and 'on average'
the seven year observation period provides a (relatively) better set

26
of estimates".

The Observation Interval Problem

Using monthly observations of R

it and Rmt to construct the optimum

beta co-efficient as Gonedes has done implicitly assumes that the one
month observation interval is optimal. Jacob, however, suggests that
the variability of beta, 8% will be a function of the observation

1nterva1.27 Note that

- .29
R (R, -R )
EP = o: e I - (11-2a)
E(Rmt - Rpy)
= o M‘l. + ~2 (R k - R t)z )
A 95 m m ) (II-2b)
LRy, = Ryy) g
~2 = 2 ~2
but, 9. / 'zt’.(Rmt - Rmt) = 0y (II-2c)
~2 n+l ~2 = 2
so, EP = o, ( Py ) + o (Rmk - Rmt) (II-24)

hence the prediction error, since it 1is positively related to Gﬁ will
be positively related to the observation interval. The failure of

Gonedes to test alternative observation intervals suggests that he may

26Nicholas J. Gonedes, op. cit., p. 14.

27Nancy L. F. Jacob, op. cit., p. 61.
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have sub-optimized and in fact only determined the optimal observa-
tion period for the case of the one month observation interval.

It is also important to note that the squared difference between
the average return on the market and any specific return on the mar-
ket, (R, - iin)2 will be affected by both the size of R,

K and Rit'

From the model it can be seen that the prediction error will be a

function of this difference. In fact, as R, - ﬁit’ the quantity
’ ) = |2
o N1+ + _mk_ mt? g (1) =04 0% (1I-3)
= 12 € n € —
(R, - R ) n
t mt mt

Since for large n, celn approaches 0, then the prediction error

approaches oe as Rik -+ Rit'

Fisher and Lorie have shown that the variability of rates of
return will be a function of the length of time over which the returns

are observed.28 The greater the variability of Rmk the less likely is

Rmk to be near imt' On the other hand, for any given length of time a
larger observation interval implies a larger standard error of beta.29

Some trade off function is clearly implied with respect to the predic-

tion error which indicates the reduction in error from making imt

consistent with Rmk versus the increase in prediction error resulting

from fewer observations of Rmt used to compute Rmt

A final point regarding the observation interval concerns the

GE term in the prediction equation. Recall,

28Lawrence Fisher and James C. Lorie, "Some Studies of Variability
of Returns on Investments in Common Stock', Journal of Business,
April 1970, p. 110.

29Nancy L. F. Jacob, op. cit., p. 61.
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2

1
oe = n-ZZ(Rit - e

it ~ bitRmt) (I1-4)

In the computation of bit the first term of the numerator and denom-

inator are (n-% RitRmt) and (n-ERit,) respectively.30 These terms

will dominate in the computation of bit because of the n term. For

n—ro )
ngt ERit (ERmt)
_— > 0. (1I-5)
X Ip2
n
ntRit Rmt tRmt

Now if the return on the market index and the return on the individual
security are perfectly positively correlated, then the product

(Rmt)(Rit) should always be positive. Specifically, R ., > 0 implies

mt
Rit > 0 and Rmt < 0 implies Rit < 0. 1If, however, measurement error
exists, this relationship will not hold. Professor Jacob has pointed
out that the observation interval will influence this measurement
error.31 This suggests that the interval of time used to observe

R,, and Rmt will also affect the prediction error through the determina-

it
tion of bit’ hence o_- A priori, one might expect that returns measured
over a short interval of time would be more vunerable to random effects
than returns measured over a longer time period. The expected return
for say, a one week observation interval will be very near zero.

Ignoring discounting, an upper bound for this weekly return might

be the Fisher and Lorie average annual return for securities of about

0From equation I-1
L nER; e Rue T IRne IRye
2

2
nERmt - (ERmt)

31Nancy L. F. Jacob, op. cit., p. 63.
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.09 divided by 52 or .00167. Very little random disturbance could

cause Rit > 0 and Rmt < 0 or vice versa. If this occurs then the
computation of bit would be biased downward (due to the monotonically
increasing nature of ERit) relative to bit computed for longer obser-
vation intervals. It may be that monthly or quarterly observations
are less vunerable to small random fluctuations and in addition,

would provide more opportunity for random disturbances to cancel out.
But longer observation intervals imply fewer total observations for
any given period of time. Some trade off function is suggested for
evaluating the effect on the prediction error of increasing the length
of the observation interval to reduce the random 'noise' versus the

effect of reducing the number of observations.
The Confidence Interval Problem

In linear bivariate regression analysis the standard error of
an estimated value of the dependent variable, Xy given some value of

the independent variable, X, is given by the expresaion32

A 1 -

o (x)]x)) = oy, | 1+t (x; - %)) (1I-6)

2 2
sz - (sz)

n
For any given value of X, it is possible to compute the standard error
of the estimated value of Xy where 3 is given by X, =a + bx2 + e.
More importantly, the set of confidence limits established for Xgs

given x,, are non-linear.33 Figure II-2 on the following page provides
2

32A. M. Mood and Franklin A. Graybill, Introduction to the Theory
of Statistics, New York, McGraw-Hill, 1963, p. 336.

331b1d., p. 337.
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an illustration of a typical set of confidence limits for Xg < %y <
where
X; = a lower bound for the observed values of X,
Xg = an upper bound for the observed values of Xy
FIGURE II-2
X |

Note that equation II-6 is precisely the square root of the
Gonedes prediction error model. What Professor Gonedes has done then
is establish confidence intervals for the predicted values of return

on individual securities given some return on the market. The market

returns observed by Gonedes are presented in Table II—2.34 In rela-

tion to Figure II1-2 above, these returns correspond for the most part
U
2.

Averaging the prediction error (confidence intervals) across all

to values of X, near either X; or X

observed values of Rmk for each number of observations, n will pro-

duce a mean prediction error for each n viz, Ef(n) = I% E EPk(n)

34The returns reported here are those for the Dow Jones 65 Com-

posite Average. These returns would be similar to the returns ob-
served by Gonedes because of the high correlation between returns on
indicies. See Sharpe, op. cit., p. 1ll4.

N a
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TABLE II-2

Annualized Monthly

Month Observations of Return
1960 1968
January -.716 -.413
February .089 -.302
March -.216 -.082
April -.228 .871
May .258 .222
June .380 .216

where

EPk(n) = the total prediction error for all companies
given beta co-efficients computed from n
observations of return and market observa-

tion, Rmk'

For a larger n say n* = nt+c, it would be expected that EP(n*)<EP(n)

since a larger number of observations of return will, ceterus paribus,

reduce the prediction error. If the differences in individual values
of EPk(n) and EPk(n*) arise primarily in conjunction with observations

of very large and very small values of Rmk then the difference in the

mean values Ef(n) and EP(n*) need not hold for values of Rmk near the

expected value of Rmk' Based upon historical evidence, the expected
value of an annualized observation of Rmk would approximate 0.09.35

The one observation by Gonedes of annualized Rmk

1960) would not seem sufficient to justify his conclusion that the

near 0.09 (February

seven year measurement period (n=84) is optimal for values of R«

5Lawrence Fisher and James H. Lorie, "Rates of Return on
Investments in Common Stocks", Journal of Business, January 1964,
pp. 1-17.
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near 0.09. An illustration follows: suppose for n = 24 that Rmk is
observed at .5, .1, and -.6 and the corresponding EPk(n) values are
.8, .1, and 1.2. These observations provide a mean prediction error
of 0.7=(1/3(.8+.141.2)=0.7). For n*=n+36, let the observations of
Rmk provide EPk(n*) values of .7, .12, and 1.10. The mean prediction
error would be 0.64=(1/3(.7+.1241.1)=0.64). This illustration demon-

strates that while Ef(n*) < EF(n), EPk(n) < EPk(n*) for Rmk = ,.10.

Observation Periods up to Three Years

In selecting sub-periods for the determination of mean predic-
tion error, Gonedes arbitrarily selected three, five, seven, ten,
and twenty-one year periods for testing purposes. In the analysis
of time series data a frequently utilized technique is that of
weighting recent data more heavily than earlier data.36 This often
gives better prediction results than simply considering all data
equally. This suggests that future results may be more closely
related to recent events than to earlier events. The presence of
weighting devices would seem to lend validity to the idea of testing
sub-periods up to three years since in the prediction of monthly
reserved returns (annualized), it may well be that a sub-period
within the most recent three years provided the minimum prediction
error. Figure II-4 on the following page shows the Gonedes assump-
tion (line A) while lines B and C show potential alternative possi-

bilities.

36Charles T. Clark and Lawrence L. Schkade, Statistical Methods
for Business Decisions, South-Western Publishing Co., 1969, pp.
702-711.
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Before any judgement can be exercised with respect to the
appropriateness of line segments A, B, or C, further empirical work

must be done in order to observe points between zero and three years.

FIGURE II-4

Conedes' Results

fe- -
Prediction \é

Error \\\ A
B . L
7 TS e o

sC

Measurement Period
Length (in years)

Summary

The number of observations of Rit and Rmt’ the length of the
period over which these observations are taken, and the variability
of the returns will all affect the predictive ability of a security's
future volatility. These items comprise the essentials of the speci-
fication problem for the risk return model.

Previous studies have been shown deficient in methodology and
contradictory in results when attempting to predict the volatility
of securities' returns in short time periods. It has also been shown
that the market model itself i.e., the ordinary least squares regres-
sion procedures for computing beta co-efficients has also recently
come under attack.,

What is required is a simultaneous attention to the number of
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observations of R, and Rm , the length of the period over which

it t

these observations are taken, and the variability of these returns

as they affect both the market models introduced in order to consider

the influences on the prediction error of the various trade-off

functions which exist. Only by dropping the ceterus paribus assump-

tion can the combined effect of all these factors be ascertained and
consequently the optimal market model and specification of parameters

of the market model be determined.



CHAPTER III

RESEARCH DESIGN

General Approach

The purpose of this research is to examine the two market
models presented in Chapter I utilizing alternative parameter
specifications to determine which model and which set of specifi-
cations provide the minimum prediction error when estimating the
future volatility of a security based upon its historical beta
co-efficient.

Unfortunately, a mathematical solution to the prediction error
problem is not possible because the relationships (parameters) of
the prediction error model are subject to change. Ideally, one
could establish for an equation in several variables the set of
partial derivatives at zero and solve the resulting series of equa-
tions simultaneously for the minimum value of the dependent variable.
This minimum value of the dependent variable would then depict the
optimum relationship of the independent variables. In the predic-
tion error model, however, the question is not of establishing the
optimal relationship of the independent variables, rather it is to
specify the parameters of the model i.e., what are the relationships
which subsequently can be optimized? Accordingly, an empirical
approach will be used in order to estimate the parameters of the
model and the relationship of the independent variables.

37
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The Evaluation Model

This paper utilizes prediction error defined as in equation

III-1.

ITI-1

vhere Rik = the return on security i in time period k

R k= the return on the market surrogate in
time period k.
The quantity Rik/Rmk is the volatility of security i, will be defined
as the systematic risk of security i, and is the measure of concern
to investors. This is the relationship which will reflect the vol-
atility of an investor's portfolio, not the regression equation of

+ b, R

i it mt it' The regression equation is the estimating device

lIn the prediction model utilized by Gonedes (see equation II-2a)
the predicted return, Rjt will be a function of the historical beta
used in the market model. The observed return, Ryj will be condi-
tional upon the market return, Ry, and the volatility of the security
at that time (k). Implicitly this measure incorporates the slope of
the regression equation at time k and as such represents an attempt
to predict the future predictor rather than systematic risk only.
Rewriting the equation will illustrate this point:

- 2
~2 1 Ry =Ry 2:2 , w2
o, 1 +—+_——’3(R el (R - & )70+ &y (I1I-2)
£t mt
bue (R - R D762 + (BEH52 2B [(oy, - ay) + by - by IR - ey ]
ut ok T “mt’ % el %jt T %4k it ik’ “mk T €ik

(I11-3)

From equation III-3 the prediction error will be a function of the
difference in the expected value of the a parameter from time t to
time k, and the residual error at time k as well as the change in
the beta parameter from time t to time k. If the objective is to
determine the best predictor for a firm's systematic risk behavior,
then the error measurement should include only the systematic risk
component of the model as in equation III-1.
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for volatility; Rik/Rmk is the measure of interest. The term Rik/Rmk
will be referred to as the sensitivity of the security throughout the
remainder of this paper. The quantity bit is, of course the historical
beta co-efficient computed from the least squares procedures of linear
bivariate regression analysis.

It has been shown that average prediction error, when computed
from returns to be predicted which are very different from their
expected value, will not assure the model user that the beta value is
optimal because the average could conceal information to the contrary.
A more representative sample of returns would be generated if longer
holding periods were considered and the observed returns adjusted to
a basis consistent with those used in the computation of the historical
beta co-efficient, bit' The model used in this paper allows this
flexibility since the quantity Rik/Rmk can be observed over a period
of any length desired. In addition, Rik/Rmk need not be adjusted to
a shorter time basis (weekly, monthly, quarterly) since it is a ratio
and the absolute difference in return is not measured. This procedure
allows a greater range of returns to be observed without the additional
time and expense for adjustment to a basis consistent with the returns
used in the computation of the historical beta co-efficient while at
the same time providing returns nearer those an investor might expect
on an ex ante basis i.e., nearer the expected value of the market

return distribution.

Computational Procedures

Two test periods were selected to observe the sensitivity measure.

The first was the three year period 1/1/67 - 12/31/69, the second was
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the two year period 1/1/70 - 12/31/71. Allowing the first holding
period to correspond to the subperiod 1/1/67 - 4/1/67, the second
holding period to 1/1/67 - 7/1/67 etc., Table III-1A shows the twelve
holding periods corresponding to test period one (TPl) and Table III-1B
shows the eight holding periods corresponding to test period two (TP2).

A value of Rik/Rmk was observed for each holding period, for
each security. Thus there were (20x35) 700 sensitivities computed
for the sample.1

These sensitivities were computed as in equation III-4 below.

P D P R
1;+l it 1 §t+1 -1 4+ Dmt - Rik 111-4
it mt mk

Pifp = the price of security i at time t

Pit+1 = the price of security 1 at time t+l

D = the dividends declared on security i
during time t

P = the value of the S&P 500 index at time t
P = the value of the S&P 500 index at time t+1

D = dividends (in per cent) on the S&P 500
index during time t

lSee subsequent section on Sample Size, p. 43
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TABLE III-1
Time Time
Designation Period Designation Period
HP(1) 1/1/67 - 3/31/67 HP(13) 1/1/70 - 3/31/70
HP(2) 1/1/67 - 6/30/67 HP(14) 1/1/70 - 6/30/70
HP(3) 1/1/67 - 9/30/67 HP(15) 1/1/70 - 9/30/70
HP(4) 1/1/67 - 12/31/67 HP(16) 1/1/70 - 12/31/70
HP(5) 1/1/67 - 3/31/68 HP(17) 1/1/70 - 3/31/71
HP(6) 1/1/67 - 6/30/68 HP(18) 1/1/70 - 6/30/71
HP(7) 1/1/67 - 9/30/68 HP(19) 1/1/70 - 9/30/71
HP(8) 1/1/67 - 12/31/68 HP(20) 1/1/70 - 12/31/71
HP(9) 1/1/67 - 3/31/69
HP(10) 1/1/67 - 6/30/69
HP(11) 1/1/67 - 9/30/69
HP(12) 1/1/67 - 12/31/69

The importance of using dividends (and the benefits of using longer

holding periods) in the computation of sensitivity is evidenced here by

examination of Table III-2 which shows the S&P 500 return for each of

the twelve holding periods in TP1.

Table II1I-2 indicates that over

longer periods the dividends act as a smoothing device for returns.

In addition, since dividend yield differs substantially among individual

securities, ignoring dividends will bias upward the variability of

returns (relative to the market) of those companies following a stable,

high-payout dividend policy.
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TABLE III-2
Holding Return + Annualized
Period Return Dividends Return + Dividend
HP(1) 13.2% 14.0% 56.0%
HP(2) 14.5 16.1 32,2
HP(3) 20.7 23.1 30.8
HP(4) 18.5 21.7 21.7
HP(5) 10.1 14,1 11.3
HP(6) 25.3 30.1 20.1
HP(7) 27.4 33.0 18.9
HP(8) 30.2 36.5 18.3
HP(9) 28.3 35.3 15.7
HP(10) 20.4 28.2 11.3
HP(11) 17.2 25.8 9.4
HP(12) 2.9 12.4 4.1

In summary, since the holding period is important for obtaining
estimates of return consistent with investors' expectations and since
typical holding periods may be thought of as one-three years or
longer, sensitivity was computed for periods up to three years and
included the return provided by dividends.

An additional advantage to this method of testing was that it
provided insight into the length of the holding period required before
returns were sufficiently stable for reliable estimates of sensitivity
and prediction error to be obtained.

Returns used in estimating bit for both TPl and TP2 were computed
over twenty-eight periods of different length utilizing weekly, monthly

and quarterly observation intervals. The observation periods extended
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from three months to eighty-four months and each period represented a
three month increment over the previous observation period. Thus
there were twenty-eight observation periods for each test period
ranging from three months to seven years. Designating the first
observation period corresponding to TPl as OP(1ll) and the first
observation period corresponding to TP2 as OP(21), Table III-3 indi-
cates the observation periods and corresponding time interval for
each test period.

A regression equation was computed for each OP(ij) using weekly,
monthly, and quarterly observations of return. The particular obser-
vational interval being used was represented by its first letter.
Thus OPw(ij) corresponded to weekly observations of return taken in
TP(1) in observation period j, used in estimating the historical beta
coefficient.

Weekly price observations used to compute weekly returns were
taken as the closing Friday prices. When holidays or other events
caused the New York Exchange to be closed on Friday, the nearest
preceding day's closing price was used.

Monthly price observations were taken as every fourth weekly
price. Thus in this paper there are thirteen observations of monthly
return per year and 30 measurement periods over the total seven year
period. The effect of obtaining thirteen rather than twelve monthly
observations per year was not considered important since the focus
of this paper is on the effect of lengthened observation intervals
not the specific interval of month end prices for use in the computa-

tion of the historical beta co-efficients.
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TABLE III-3
TP1 TP2
Time Time
Designation Period Designation Period
OP(11) 10/1/66 - 12/31/66 OP(21) 10/1/69 - 12/31/69
0OP(12) 7/1/66 - 12/31/66 0P(22) 7/1/69 - 12/31/69
OP(13) 4/1/66 - 12/31/66 OP(23) 4/1/69 - 12/31/69
OP(14) 1/1/66 - 12/31/66 OP(24) 1/1/69 - 12/31/69
OP(15) 10/1/65 - 12/31/66 OP(25) 10/1/68 - 12/31/69
OP(16) 7/1/65 - 12/31/66 OP(26) 7/1/68 - 12/31/69
OP(17) 4/1/65 - 12/31/66 OP(27) 4/1/68 - 12/31/69
OP(18) 1/1/65 - 12/31/66 OP(28) 1/1/68 - 12/31/69
0P (19) 10/1/64 - 12/31/66 0P(29) 10/1/67 - 12/31/69
0P(110) 7/1/64 - 12/31/66 0OP(210) 7/1/67 - 12/31/69
OP(111) 4/1/64 - 12/31/66 OP(211) 4/1/67 -~ 12/31/69
0P(112) 1/1/64 - 12/31/66 0P(212) 1/1/67 - 12/31/69
OP(113) 10/1/63 - 12/31/66 O0P(213) 10/1/66 - 12/31/69
OP(114) 7/1/63 - 12/31/66 OP(214) 7/1/66 - 12/31/69
OP(115) 4/1/63 - 12/31/66 0P(215) 4/1/66 - 12/31/69
OP(116) 1/1/63 - 12/31/66 OP(216) 1/1/66 - 12/31/69
OP(117) 10/1/62 - 12/31/66 OP(217) 10/1/65 - 12/31/69
OP(118) 7/1/62 - 12/31/66 0P(218) 7/1/65 - 12/31/69
0P(119) 4/1/62 - 12/31/66 OP(219) 4/1/65 - 12/31/69
OP(120) 1/1/62 - 12/31/66 0P (220) 1/1/65 - 12/31/69
0P(121) 10/1/61 - 12/31/66 0P(221) 10/1/64 - 12/31/69
0P(122) 7/1/61 - 12/31/66 0P(222) 7/1/64 - 12/31/69
0P(123) 4/1/61 - 12/31/66 0P (223) 4/1/64 - 12/31/69
OP(124) 1/1/61 - 12/31/66 0P(224) 1/1/64 - 12/31/69
OP(125) 10/1/61 - 12/31/66 OP(225) 10/1/63 - 12/31/69
OP(126) 7/1/61 - 12/31/66 0P (226) 7/1/63 - 12/31/69
OP(127) 4/1/61 - 12/31/66 0oP(227) 4/1/63 - 12/31/69
0P (128) 1/1/61 - 12/31/66 OP(228) 1/1/63 - 12/31/69
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Quarterly price observations were taken as every thirteenth
weekly price observation hence, the observation interval was thirteen
times the weekly interval. Again, for purposes of this study, this
was considered acceptable since quarterly prices (or price changes)
were not directly under study.

Returns were computed for individual securities and the market
index according to equation III-4. Continuously compounded returns
were not utilized for the computation of historical betas because
returns for periods up to thirteen weeks were typically very small.
For small returns the difference between return as computed by equa-
tion III-4 and the natural log function of the price relative is also
very small (near zero). For example, a return of 3% computed by
equation III-4 would provide a continuously compounded return of
2,956%, a difference of .044% or .00044. Recalling that the expected
weekly return using the Fisher-Lorie results2 would be (8.7%/52) =
.167% = .00167, then all differences on weekly returns would be
expected to be on the order of magnitude of (.00167/.03 = .0556)
.0556 x .00044 = ,00002446. Differences of this magnitude (or even
thirteen times this magnitude in the case of quarterly price observa-
tions) were considered insignificant for purposes of this study.

Returns used to compute sensitivities were also taken as abso-
lute rather than continuously compounded returns. Absolute returns
were used because using continuously compounded returns for computing

sensitivities while using absolute returns for computing historical

2Lawrence Fisher and James H. Lorie, '"Rates of Return on
Investments in Common Stocks', Journal of Business, January 1964,
pp. 1-17.
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beta co-efficients seemed a priori unreasonable. Secondly, since
sensitivities are ratios, sensitivity computed from continuously com-
pounded returns was very similar to sensitivity computed from absolute
returns. As an example, if Rik = 0.15 and Rmk = 0.20 on an absolute

basis, sensitivity would be

Rik/Rmk = ,15/.20 = 0.75.

On a continuously compounded basis, sensitivity would be

1n(Rik + 1.0) In(1.15) .14
In(R_ + 1.0) = Tn(L.200 - 18

= .77.

Differences of the order of magnitude of 0.02 (.77 - .75), for observa-

tions of R,, and Rmk at 0.15 and 0.20, respectively, were not considered

ik
significant for purposes of this study. Finally, the lower sensitivi-
ties computed from absolute returns are consistently lower than those
computed with continuously compounded returns. While the absolute
value of the prediction error might be different, the relative differ-
ence (rankings) between individual prediction errors would be equal.
Thus the same ranking for alternative specifications of the historical
beta co-efficient should occur regardless of how sensitivities were
computed.

Quarterly dividends for individual companies were added to price
in the week, month, or quarter in which the stock went ex-dividend.
For the S&P 500, annual percentage rates were observed quarterly and
divided by fifty-two to estimate weekly dividend return, thirteen to
estimate monthly dividend return, and four to estimate quarterly divi-

dend return.

The S&P 500 Index was selected as the surrogate for the market.
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While all indicies are highly correlated,3 it is argued that the S&P
500 is more representative of the entire market than say the Dow Jones
65 Composite Average.4 The S&P 500 was preferred to Moody's 300 Aver-
age because of the availability of data and to the NYSE Index because
of its (NYSE's) shorter history.

An absolute prediction error defined as the absolute value of the
difference between the beta coefficient and sensitivity corresponding
to every combination of observation period, observation interval, and
holding period was computed for each security using the above tech-
niques. In TP1l, the twenty-eight observation periods, twelve holding
periods and three different observation intervals provided (3x12x28)
1008 absolute prediction errors for each company in the sample. In TP2
the three observation intervals, twenty-eight observation periods and
eight holding periods provided 672 absolute prediction errors for
each security in the sample. The total number of absolute prediction
errors computed was ((672+1008)35)=58,800.S

The absolute prediction errors were averaged across all securities
in the sample by observation period, by observational interval and by
length of holding period. Designating the absolute prediction error
across all 35 securities as d, then (al)Y,Z would correspond to the mean
absolute prediction error across all 35 securities for observation period

one and holding period two computed from weekly returns in TPl. Similarly,

3w:l.lliam F. Sharpe, Portfolio Theory and Capital Markets, McGraw-
Hill, 1970, p. 148.

4Jerome Cohen and Edward Zinbarg, Investment Analysis and Port-
folio Management, Richard D. Irwin, p. 631.

5

See the subsequent section on Sample Size.
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(az)g 10 would correspond to the mean absolute prediction error across
9

all 35 securities for observation period eight and holding period ten
computed from quarterly returns in TP2., Table III-4 provides a

schematic plan for the methodology.

TABLE III-4

@) (3;’)1’12 @), (a;)l,S
S N -
(ag)ll'nz. (dq)l 12 (dq)li.g (33)1,8

'(dl) i, | (dz)ij

(31)1,1 (dZ)i 3
(di)28,1 .. " 1)2:3 12 (&;;)28,1 (dz)Zf.‘ 8
@),g, 1.................(dl)28 12 @) ,q l...........(dz)zs,s
@D 2s,1 @Dyg,12 (@) 28,1 @ 23,8

Alternative Market Model

In Chapter I it was pointed out that Fisher and Kamin have argued
for an alternate form of the market model: R,, = b, R .. They have not
it it mt
however, specified which data should be used in the computation of the
historical beta co-efficient to obtain optimal results when considering

the model in a predictive sense.7

TLawrence Fisher and Jules H. Kamin, "Good Betas and Bad Betas; How
to Tell the Difference', a handout to accompany the presentation at The
Meeting of the Midwest Finance Association, St. Louis, Missouri, 1972.
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The same tests and methodology specified in Chapter III will be
utilized in evaluating alternative specifications of the '"Fisher beta'.
Finally, absolute prediction errors will be compared utilizing the
"Fisher beta' and the "ordinary beta" to determine which provides the
minimum absolute prediction error for all holding periods on average and

for specific holding periods.

The Sample

Sample Size

The problem of determining sample size was essentially a statisti-
cal problem. The population was considered to be all stocks listed
continuously on the New York Stock Exchange from 1960-1972, The objec-
tive was to draw from this population a random sample of sufficient size
in order to make inferences about the population.

It was known that according to the index model approach to port-
folio theory, any representative sample of securities will have a beta
of 1.0, where bP = f xibi and Xi = 1/n. Hence a sample of securities
which would allow inferences to be made about the population should
also, when combined into a portfolio, have a beta of 1.0.

As a first approximation, sixteen securities were selected at

random from the population.8 Betas were constructed for each security.9

A portfolio beta, bp’ was then computed by the technique shown above.

8See following section on Selection Procedures.

9The betas constructed for testing purposes were computed
according to the optimal Gonedes results i.e., one month observation
interval and a seven year observation period.
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The standard deviation of the sample betas was also computed and after
adjusting for small sample methods, taken as the population standard

deviation. At this point, available information consisted of the

following:
u = population mean = 1.0
x = sample mean = 1.1304
o- = the sample standard deviation = .2404

S = the estimated population standard deviation
= Oi/ﬁ = ,015

n = the number of elements in the sample = 16

The objective was to determine if u and X were significantly different
or alternatively, if the quantity (x - y) was significantly different
from zero. The hypothesis to be tested was taken as HO: (x - u) = 0.0.
Again, standard statistics texts demonstrate that the two-tailed T-test
will provide a confidence interval for accepting this hypothesis. The
confidence interval selected was .0l i.e., the results can be accepted
with 99% confidence. The results indicated that the sample of sixteen
was not sufficiently large to accept with 997 probability the hypothesis
under consideration. The next step was to determine how large a sample

wasgs necessary.

Letting
S = o=/vn
X
then )—(—u
t < | =
.99 o=/ v/a
and for t = 2,947 a value of n can be determined which will satisfy

.99

the criteria. Here, n = 29.512. To ensure results, an additional 19

companies were selected making the total sample 35 companies.



51
Selection Procedures

The number of securities which appeared in the Wall Street Journal
under the New York Exchange heading were counted as of the first trading
day in 1960. The total number which appeared on that date was 1472.
Each security was then assigned a number between 1 and 1472. Random
numbers (250) between zero and one were then generated from the Michigan
State University - CDC 6500 random number generator program. Multiplying
each random number generated by the total number of securities available
provided an adjusted random number corresponding to the number of one of
the securities in the population.

Each security was then reviewed for preferred status., All pre-
ferred stocks were eliminated from consideration. The remaining common
stocks were then compared to a list of the common stocks appearing in
the Wall Street Journal on the first trading day of 1972. Any stocks
which did not appear in this edition of the Journal were also excluded
from further consideration. The remaining securities were then con-
sidered to conform to the criteria of common stocks, continuously listed
and the first thirty-five chosen as the sample. Table III-5 lists the

securities selected for the study.



52

TABLE III-5

Admiral Corporation
Alleghany Ludlum Steel
American Electric Power
American Metal Climax
Boeing Company

Borden

Continental Can
Emerson Electric Co.
Falstaff Brewing Co.
Ferro Corp.

General Cigar

General Tire and Rubber

Getty 0il
Granby Mining
Harsco Corp.

International Mining

Joy Manufacturing Co.

S. S. Kresge Co.
Kroehler Mfg.

Lone Star Gas
McAndrews & Forbes
McGraw-Edison
National Can

Owens-Illinois

Phelps-Dodge

Public Service
Electric & Gas

Scott Paper

J. P. Stevens
Sunshine Mining
Tri-Continental
TRW Inc.

U. S. Tobacco
Upjohn
Walgreen Inc.

Washington Water
and Power




CHAPTER 1V

ANALYSIS OF RESULTS

Ordinary Least Squares (OLS) Beta Coefficients
Computed from Weekly Observations of Return

Beta coefficients computed from weekly observations of return
exhibited nearly without exception a hump-backed shape over time i.e.,
as more observations of return were included in the computation of
the beta coefficient, the beta value first increased, then decreased.
This would not be surprising if the value of the beta coefficient
approached 1.0 as the measurement period increased for it would tend
to indicate that periods of instability had cancelled over time and
with enough observations of return (a sufficiently long measurement
period) the security moved very much like the market. This hump-
backed nature of the beta values over time, however, held even in
cases where the beta value of MP(l) was near 1.0 and thus approached
1/2 or 1/4 as the measurement period lengthened.

This characteristic of the beta values over time held for both
test period one (TPl) and test period two (TP2). Typically, the maxi-
mum beta value occurred between MP(5) and MP(12) indicating that the
value taken on by the beta coefficient computed from weekly returns
is generally increasing between zero and three years and declining
thereafter. The actual number of observations of weekly returns during

this interval ranged from sixty five to 156, As evidenced in column

53
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one of Table IV-lA and IV-1B, the maximum values of the beta coefficient
observed between MP(5) and MP(12) typically provided the minimum mean

absolute prediction error (MAPE) across securities.l

TABLE IV-1A

MAPE (minimum values)
TP1

Ordinary least squares beta co-efficients

Weekly (MP) Monthly (MP) Quarterly (MP) HP
.50891 (6) .03320 ¢)) .01874% (3) 1
.93445 (6) .45874 9 .13840% (8) 2
.99483 (6) .51911 9 .19877% (8) 3

1.16025 (6) .68454 9 .36420% (8) 4

1.51196 (6) 1.04394 9) .72360%* (8) 5

1.39540 (6) .91968 €)) .59934%* (8) 6

1.25708 (6) .78137 9) .46103% (8) 7

1.53797 (6) 1.06225 9) .74191% (8) 8

1.28177 (6) .80605 9) .48571% (8) 9

1.05982 (6) .58411 9) .26377% (8) 10

1.31285 (6) .83714 9 .51680* (8) 11

1.43040 (6) .95468 (9) .63434% (8) 12

*Minimum row entry.

chsults shown in Tables IV-1A and IV-1B are computed from OLS beta
coefficients using weekly observations of return (column 1), monthly
observations of return (column 2) and quarterly observations of return
(column 3). Each value corresponds to the minimum MAPE value from all
twenty-eight measurement periods (i) for the holding period shown (j).
Thus in column 2 for TPl a value of .03320 was the minimum MAPE found
from all 28 measurement periods when attempting to predict systematic
risk in HP1 (the first 3 months subsequent to the computation of the
beta coefficient) and occurred in MP(9) i.e., with 27 observations of
monthly return used in the historical estimate. The average MAPE values
for both TP1 and TP2 are shown in Table IV-1l1l at the end of Chapter 1V.

MAPE values for each measurement period are shown in Appendix A.
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MAPE (minimum values)

TP2

Ordinary least squares beta co-efficients

Weekly
.34211%

.08094
.12355
.62614%*
.04049
.01109%*
.00811%*
.01651*

(MP)

(21)
(1)
(1)

(21)
(1)
(7N

(14)

(14)

Monthly
.90994

.06154*
.00377
1.19397
.00086*
.21877
46891
44429

(MP)

(30)
(30)
(14)
(30)
(23)
(30)
(30)
(30)

Quarterly (MP)
.98726 (16)
.13886 (16)
.00123% (25)

1.27128 (16)
.01743 (16)
.29609 (16)
.54623 (16)
.52160 (16)

=+
m\lO\U‘lJ-\wNi—'I'U

*Minimum row entry.

In TPl, seventy-eight observations of return (MP(6)) provided

beta coefficients which minimized MAPE for every one of twelve holding

periods considered.

In TP2 the results were not so consistent, but

of the eight holding periods considered, an optimum beta fell within

thirteen to 182 observations of return in seven instances.

nineteen of the twenty holding periods considered in both TP1 and

Thus in

TP2, the minimum MAPE was produced by beta coefficients computed over

a measurement period of less than three and one-half years.
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The observations made by Professor Gonedes that it is advantageous
to increase the number of observations to eighty-four (seven years for
monthly observations of return) seems to hold here even though eighty-
four observations of weekly returns covers a period of only about 1.6
years and hence could not encompass sufficient time for structural
changes to occur as he suggests,

A potential explanation of the declining value of the weekly beta
coefficient after about MP(12) and the similarity of the Gonedes
optimum number of observations to the weekly optimum number of observa-
tions reported here lies in a closer examination of the formula for
computing beta coefficients. The regression coefficient for a particular
security 1 can be written for computational purposes as in Equation IV-1

below. As n increases the term nIR _R., in the
t mt it

R,. - IR..ZI
nIR Ry = IRy IR,
ot t Tt

b =
it ) )
nZR° - (IR .)
t mt t mt

and

Rit = historical return during period t for
security 1

Rmt = historical return during period t for
the S&P 500 Index

n = the number of historical observations of

R1t and Rmt'

numerator becomes very large relative to (IR The same is true
t

IR,,.).
mt, it

in the denominator, anit becomes large relative to (ZRmt)z. After a
t t

sufficient number of observations, the value of the beta coefficient
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is largely a function of the expression: nIR R /nZR2 2 Now since

mt it
t
2 2
Rmt is always positive for any Rmt value, ngt is a monotonically
increasing function. The product (RitRmt) will not necessarily always
be positive and in fact will be negative whenever Rmt and Rit are of

opposite sign. Thus, the function ZRm R,, is not necessarily monotoni-

t it
cally increasing.
It seems reasonable to assume that Rmt and Rit will most often be

of opposite sign when index return, R is near zero. If so, small

mt’
returns on the market index may introduce a downward bias into the
regression equation viz, the monotonically increasing nature of the
denominator (nERit) vs, the fluctuating positive and negative behavior
of the numerator (nIR Lt it)

To determine whether this potential bias had entered the computa-
tion of beta values computed from weekly observations of return, a
runs test was performed on weekly individual security returns given both
positive and negative returns on the market index for the 364 week
period: 1960-1967.

A runs test is designed to determine whether the number of obser-
vations of a particular statistic are sufficiently different (in a two
alternative situation) to be considered random. The statistic under
consideration here was the sign of the return for an individual security

given the sign of the return of the market index. If the sign of the

return on the index is positive, then so should be the sign of the

2In the limit as m=, beta =:R tRit/zn

3This assumes, of course, that n is sufficiently large to effec-
tively eliminate the influence of the other term in both numerator and
denominator.
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return on an individual security (assuming a positive relationship).
If, however, a positive return on the market index brings a sufficient
number of negative returns for a particular security, then the rela-
tionship between the market returns and individual security returns is
not strongly positive and the test would indicate that the return on
the security is randomly positive and negative when the return on the
index is positive.

The runs test was performed twice, once for all observations of
weekly returns on the index such that 0.0<Rmt5.005 and once for
-.0055Rmt<0.0. For each observation of index return in this range the
corresponding individual security return was examined for sign. Any
values which the index return assumed greater than |.005| were discarded
and the conclusion applies only to weekly observations of index return

such that -.005<R_ <.005 and x # 0.0.%

The information required for the
test was as follows:
Z = the number of times the return on the indi-
vidual security shifted from positive to
negative.

n, = the number of times the return on the
individual security was greater than zero.

n, = the number of times the return on the
individual security was less than zero.

The results of the test indicated that thirty-two of the thirty-five
companies in the sample evidenced returns which were randomly positive
and negative around zero for 0.0<Rmt5.005. When -.0055Rmt<0.0, thirty-

one of the thirty-five companies evidenced returns which were randomly

4A weekly index return such that -.005<x<.005 corresponds to an
approximate annual return range of *267.
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positive and negative around zero. Only one company, Washington Water
and Power, exhibited a non-random movement with the market in both tests
i.e., index return greater than zero and less than zero.

This lack of strong positive correlation for index returns of small
magnitude combined with the declining values of the beta coefficients
observed after about MP(12) would indicate that observing more than 156
weekly returns is of very little value and in fact may actually impair
the calculation of an accurate historical estimate of a security's beta
value or systematic risk component. These results also suggest that any
optimum measurement period or number of observations of return used to
compute historical beta coefficients are not necessarily due to changes
in the nature of the company i.e., structural changes, but simply due
to the lack of a strong relationship between the price of the individual
companies and the market when the market exhibits small price movements.

The fact that different companies, Washington Water and Power not-
withstanding, had non-random movement with the market when market return
was greater and less than zero may indicate that the degree of respon-
siveness of individual companies differs as a result of a positive or
negative return from the market i.e., the beta coefficient for a par-
ticular security may be different during "up" markets than during "down'
markets,

Ordinary least squares (OLS) beta coefficients
computed from monthly observations of return

Beta coefficients computed from monthly observations of return were
less consistent in their behavior over time than beta coefficients com-
puted from weekly observations of return and did not exhibit the hump-

backed nature of the latter. Less consistency might be expected from
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monthly returns used in the computation of beta coefficients since
estimates of the beta value in early measurement periods contain very
few observations of return. In several instances in this study com-
panies had a beta value not significantly different from zero (5%
level) in early measurement periods.

Most of the beta coefficients computed from monthly returns tended
toward 1.0 as the measurement period lengthened. This is evidenced by
the range across all thirty-five securities of beta values in MP(1l) of
(-1.495 to 5.514) while in MP(30) the range had diminished to (.4085 to
1.650). Thus companies which exhibited a low beta value in early mea-
surement periods tended to exhibit a higher beta value in later measure-
ment periods and vice versa.

Beta coefficients computed from eighty-four observations of monthly
returns tended to provide the minimum MAPE in TP2 while beta coefficients
computed from twenty-seven observations of return provided the minimum
MAPE in TPl (see column 2 in Table IV-1lA and IV-1B). This disparity in
the optimum number of observations of monthly return serves to empha-
size that the validity of Professor Gonedes results need not hold in time
periods other than that for which his study was conducted. In addition,
TPl in this study conforms quite closely to the Gonedes' test period of
1959-1965. The optimum measurement period in Gonedes test period was
MP(30) or eighty-four observations of return while in this paper the
optimum number of observations was twenty-seven or MP(9). It may be
important that Gonedes minimum number of observations tested was
thirty-six or MP(12).

This disparity in optimum measurement period lengths between TPl

and TP2 is substantial: two years vs seven years. It was first thought
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that perhaps the optimum measurement period was in some way associated
with the behavior of the index during the different holding periods.
An examination of the relationship between the index and the mean pre-
diction error proved of little value.

Ordinary least squares (OLS) beta coefficients
computed from quarterly observations of return

Beta coefficients computed from quarterly observations of return
were typically not significantly different from zero (5% level) until
MP(12) or MP(13). Thus of the twenty-eight beta coefficients computed
for each security, only about one-half were useful, and it was necessary
to go back in time nearly three years before significance was generally
obtained. Once significance was obtained, however, there was less ten-
dency for the beta value to change as additional returns were considered.
Any changes were, as in the monthly case, typically changes toward 1.0.

In TP1l, optimum beta coefficients computed from quarterly observa-
tions of return came from MP(8) or eight observations of quarterly
returns. This two year period also proved optimum for beta coefficients
computed from weekly and monthly observations of return even though the
number of observations of return was different in each case. 1In TP2,
the optimal measurement period was MP(1l6) or four years of quarterly
observations.

In general it appears that with the exception of beta coefficients
computed from monthly returns in TP2, the measurement period which pro-
vided the minimum MAPE was typically less than five years and in TP1,
closer to two years. As Table IV-1A and IV-1B indicate, however, the
measurement period which will produce the minimum MAPE is a priori,

extremely difficult to know.
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A comparison of weekly, monthly, and
quarterly observation intervals

A comparison of weekly, monthly, and quarterly observation inter-
vals and their influence on MAPE reveals conflicting results. Table
IV-1A and IV-1B show that in TPl beta coefficients computed from quar-
terly observations of return consistently provided a smaller minimum
MAPE than either the weekly or monthly observation intervals. In TP2,
however, nearly the opposite is true. For five of the eight holding
periods, weekly observations of return provided the smallest MAPE
while quarterly observations of return provided only one. The absence
of consistency is similar to the results observed with the measurement
period length. Also worth noting is the fact that optimum beta coeffi-
cients in TP1l, (quarterly observations of return) were found for the most
part in MP(8) and with only eight observations of return available for
the computation, many of the beta coefficients were not significantly
different from zero (5% level). Given these results, it was felt that
perhaps some artificial estimate of the beta coefficients might provide
equally good predictive estimates without the necessity of many compu-
tations or the purchasing of the necessary historical information.
Accordingly, beta coefficients were allowed to assume values of 0.0,
0.5, 1.0, 1.5, and 2.0 for each security and all measurement periods,
and the MAPE for each holding period computed. Table IV-3 shows the
results for TPl and Table [V-4 shows the results for TP2.

Tables IV-3 and IV-4 are comparable to Tables IV-1A and IV-1B
respectively. Notice that artificial beta values of 2.0 in TPl and 0.5
in TP2 provided the minimum MAPE across all holding periods and that

these particular artificial beta values provided MAPE values similar
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to the minimum row values in Tables IV-1A and IV-1B.

The weekly, monthly and quarterly MAPE results were averaged sepa-
rately across all holding periods and these figures are shown in Table
V-5,

Comparing the minimum MAPE across all holding periods with the
MAPE from arbitrarily setting the beta coefficient equal to 1.0 pro-
duces some surprising results. In TPl setting beta equal to 1.0 pro-
vides an overall MAPE for all holding periods of .76103 while the
minimum MAPE for beta coefficients computed from weekly returns was
1.19945, from monthly returns was .72373, and quarterly returns was
.45125, 1In TP2, an arbitrary beta value of 1,0 produced an overall
MAPE of .42819 while the minimum MAPE for weekly returns was .36745,
for monthly returns was .43753, and for quarterly returns was .48055.
The results of combining TPl and TP2 are also shown in Table IV-5 on
the fgllowing page. The results indicate that if an investor could
ex ante determine which of the differencing intervals and measurement
periods would provide the minimum MAPE he could obtain superior results
relative to arbitrarily selecting a beta coefficient of 1.0. If he is
unable to ex ante determine which combination of differencing interval
and measurement period will provide the minimum MAPE consistently using
a particular observational interval may provide inferior results to an

arbitrary selection of the beta value as 1.0.
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TABLE IV=-5

A COMPARISON OF OLS BETA COEFFICIENT VALUES AND AN
ARBITRARY BETA VALUE OF 1.0 FOR ALL HOLDING PERIODS

TP1 TP2 (TP1+TP2)/2
W 1.19945 .36745 .78798
M .72373 .43753 64274
Q .45125 .48055 .54529
Beta = 1.0 .76103 42819 .59461

Implications for Portfolio Construction

Portfolio theory suggests that the investor should purchase the
market (or some reasonable facsimile thereof) and borrow or lend to
obtain his desired risk exposure. If the investor draws a random
selection of securities from the market sufficiently large (about
twenty securities) the results of the preceding section do not apply.

In practice, however, investors still appear to evaluate and rank
securities in an attempt to out-perform the market.5 For individuals
who are attempting to construct a portfolio of securities which exhibits
a beta value near 1.0 by the inclusion of some high and low beta secu-
rities, the results may be important. They suggest that the ranking
of securitiés might most efficiently be carried out (in a cost-benefit
sense) by simply assuming the systematic risk component of each security

to be 1.0, hence, ranking securities on an expected return basis.

5Chris A. Welles, "The Beta Revolution: Learning to Live with
Risk", The Institutional Investor, Vol. V, No. 9.
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For individuals who desire a portfolio which exhibits a beta value
dissimilar to 1,0, the results, again, need not apply. The sample under
consideration here was random and hence has no implications for groups
of securities which all exhibit a high or low historical beta value,
These portfolios may exhibit a beta value which is sytematically higher
or lower than predicted, whereas the sample here consisted of a random
selection of securities and presumably errors which were randomly posi-

tive and negative.,

The effect of Holding Period length on Minimum MAPE

Increasing the holding period length tended to decrease the minimum
MAPE in TP2 and increase the minimum MAPE in TPl, Combining the minimum
MAPE for TPl and TP2 by holding period indicates that overall the error
tends to increase as the holding period increases. All three observa-
tion intervals provided essentially the same results, however, weekly
obgervations of return were more consistent in exhibiting a higher pre-
diction error as the holding period lengthened than prediction error
from monthly observations of return which in turn were more consistent
than prediction errors from quarterly observations of return.

Apparently, in general, the longer one allows the period to be
predicted extend, the more difficult it becomes to obtain good predic-
tions. The idea that the security's behavior will be easier to predict
if a sufficiently long term interval is examined i.e., an opportunity
for "normal" behavior to occur is allowed, does not appear valid when
predicting an individual security's responsiveness with the market for
periods up to three years. For periods longer than three years this

statement may not be valid.



68
The conclusions must be qualified by the fact that in the two test
periods examined only one indicated a higher prediction error corre-
sponding to increased holding period length. The higher prediction
error assoclated with increased holding period length experienced in
TPl was, however, sufficiently large to influence the combined results

of TPl and TP2,

The Fisher-Kamin Beta

The characteristics of the Fisher-Kamin (F-K) beta coefficient are
nearly identical to the ordinary least squares beta coefficients and
results of the prediction tests are listed in Table IV-6A and IV-6B.

A Comparison of F-K and Ordinary Least
Squares (OLS) beta Coefficients

For each test period and holding period, the minimum MAPE was
taken for both OLS and F-K beta coefficients. The summary of results
are shown in Tables IV-7 through IV-9, The tables show that in four
of the six separate cases (two test periods and three observation
intervals) OLS beta coefficients provided a smaller MAPE than the F-K
beta coefficients. Only the F-K beta coefficients computed from quar-
terly observations of return in TPl provided a smaller MAPE (see Table
IV-9B).

MAPE computed from OLS beta coefficients using monthly observa-
tions of return were consistently lower in both TPl and TP2 than the
F-K beta coefficients. This appears to be in direct contradiction
to the Fisher-Kamin results cited in Chapter I. There are two poten-
tial explanations for this event. First, Fisher-Kamin used a five

year measurement period to compute beta coefficients. This measurement



69

TABLE IV-6A
MAPE (minimum values)
TPl
F-K beta coefficients
Weekly (MP) Monthly (MP) Quarterly (MP) HP
.50891 (6) .08169 (4) .00926% (3) 1
.93445 (6) .50723 (4) .10029* (10) 2
.99483 (6) .56760 (4) .16066%* (10) 3
1.16025 (6) .73302 (%) «32609%* (10) 4
1.51965 (6) 1.09242 (4) .68548% (10) 5
1.39540 (6) .96817 (4) .56123% (10) 6
1.25708 (6) .82985 (4) .42291% (10) 7
1.53797 (6) 1.11074 (4) .70380%* (10) 8
1.28177 (6) .85454 (4) L44760% (10) 9
1.05982 (6) .63260 (4) «22566% (10) 10
1.31285 (6) .88563 4) .47868% (10) 11
1.43040 (6) 1.00317 (4) «59623% (10) 12

*Minimum row entry.

The results for each measurement period appear in Appendix B.
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TABLE IV-6B

MAPE (minimum values)

TP2

F-K beta coefficients

Weekly (MP) Monthly (MP) Quarterly (MP) HP
«34534% (21) .92800 (30) .99120 (16) 1
.06343% (1) .07960 (30) .14280 (16) 2
.14106 (1) .00748 (16) .00440 (18) 3
.62937% (21) 1.21202 (30) 1.27523 (16) 4
.05800 (1) .00151% (24) .02137 (16) 5
.00703* (12) .23683 (30) .30003 (16) 6
.00971% (14) .48697 (30) .55017 (16) 7
.01491% (14) 46234 (30) .52554 (16) 8

*Minimum row entry.

The results for each measurement period appear in Appendix B.
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TABLE IV-7A

MAPE (weekly observations)

TP1**

F-K and OLS beta coefficients compared

Ordinary
least squares

.50891

«93445

.99483
1.16025
1.51965
1.39540
1.25708
1.53797
1,28177
1.05982
1.31285
1.43040

or)

(6)
(6)
(6)
(6)
(6)
(6)
(6)
(6)
(6)
(6)
(6)
(6)

Fisher

.50891

. 93445

.99483
1.16025
1.51965
1.39540
1.25708
1.53797
1.28177
1.05982
1.31285
1.43040

(MP)

(6)
(6)
(6)
(6)
(6)
(6)
(6)
(6)
(6)
(6)
(6)
(6)

joo]
© ® N O VW N ‘w

e
N = O

**No minimum in TPl; both ordinary least squares and

Fisher betas are equal.
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TABLE IV-7B

MAPE (weekly observations)
TP2

F-K and OLS beta coefficients compared

Ordinary

least squares (p) Fisher (MP)
«34211% (21) «34534 (21)
.08094 (1) .06343* (1)
«12355%* (1) .14106 (1)
«62614% (21) .62937 (21)
«04049% (1) .05800 1)
.01109 (7) .00703%* (12)
.00811%* (14) .00971 (14)
.01651 (14) «01491% (14)

[

0o N o0 N &~ LN+

*Minimum row entry.
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TABLE IV-8A

MAPE (monthly observations)

TP1

F-K and OLS beta coefficients compared

Ordinary
least squares

.03320%
.45874%
«51911%*
«68454%
1.04394%
«91968%
«78137%*
1.06225*%
.80605%*
«58411%
«83714%
«95468%

(MP)
(9)
(9)
(9
(9)
(9)
(9
(9)
(9
(9)
(9)
(9)
(9)

Fisher

.08169
.50723
.56760
.73302
1.09242
.96817
.82985
1.11074
«85454
.63260
.88563
1.00317

(5)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)
(4)

-
O ® N OO UV & W N lm

e
N = O
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TABLE IV-8B

MAPE (monthly observations)

TP2

F-K and OLS beta coefficients compared

Ordinary

least Squares (MP) Fisher
« 90994 * (30) +92800
«06154% (30) +07960
.00377 (14) .01691

1.19397% (30) 1.21202
+00086* (23) +00151
«21877% (30) +23683
+46891% (30 +48697
o44429% (30) +46234

(P)

(30)
(30)
(14)
(30)
(24)
(30

(30)
(30)

=
® NV S WN Iw
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TABLE IV-9A

MAPE (quarterly observations)
TP1

F-K and OLS beta coefficients compared

Ordinary

least squares (MP)
.01874 (3)
.13840 (8)
.19877 (8)
.36420 (8)
.72360 (8)
.59934 (8)
.46103 (8)
.74191 (8)
48571 (8)
.26377 (8)
.51680 (8)
63434 (8)

Fisher

.00926%*
.10029%*
.16066%*
.32609%*
.68548%
.56123%
42291%
.70380%*
J44760%
«22566%*
.47868%
«59623%

(MP)

(3)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)

joo]
© N O U W M 'v

O
N = O
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TABLE IV-9B

MAPE (Quarterly observations)

TP2

F-K and OLS beta coefficients compared

Ordinary
least squares

.98726%
.13886
.00123%*
1.27128%
.01743%
«29609%
.54623%
«52160%

(MP)

(16)
(16)
(25)
(16)
(16)
(16)
(16)
(16)

.99120
.14280
.00440
1.27523
.02137
.30003
.55017
«52554

(MP)

(16)
(16)
(18)
(16)
(16)
(16)
(16)
(16)

|

o N o0 B & LN
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period and the sixty monthly observations of return could have been
optimal for the F-K beta but not the OLS beta; this would provide
superior prediction results for the F-K beta. A second possibility is
that neither the F-K nor the OLS beta were optimal with sixty monthly
observations. Under this assumption, the difference between the five
year measurement period beta and the optimal beta value is important.
But this is equivalent to examining the variance between the estimates
of the beta coefficients computed from the twenty-eight different
measurement periods. If less variability exists between estimates of
the beta coefficient computed according to the Fisher-Kamin criteria
then it is possible that the F-K nonoptimum beta estimate utilizing
sixty observations of return would be closer to the optimum estimate
than the OLS beta estimate even though the OLS beta is a better esti-
mate of the security's behavior with the market.

Accordingly, the variance of the different beta estimates was
computed for each of the holding periods and averaged together for all
measurement periods for both Fisher-Kamin and OLS beta coefficients.

The results are shown in Table IV-10. In both TPl and TP2, the F-K

TABLE IV-10

VARIANCE OF BETA ESTIMATES

TP1 TP2
OLS F-K OLS F-K
W .09843 .06730 .07331 .07308
.07620 .07620 .15643 .14480

Q «34900 «32700 7.,32551 «36143
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beta provided a minimum mean error greater than the corresponding OLS
beta but with less variance between estimates. This suggests a situ-
tion in which the relationship Ri = a, + biRm describes more accurately

a security's behavior with the market than R, = biRm but produces worse

i
estimates of the security's future behavior. Alternatively, it may be
said that OLS beta coefficients provide better estimates of a security's
behavior with the market (smaller minimum prediction error) but F-K

beta coefficients are more useful in a prediction sense because there
exists less variance in the estimates of the beta coefficients and from
the results of the previous section, it is extremely difficult, a priori,

to select that measurement which will provide the optimum estimate of

the beta coefficient for prediction purposes.
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TABLE IV-11

AVERAGE MAPE FOR TPl AND TP2 BY HOLDING PERIOD*
OLS BETA COEFFICIENTS

W M Q HP
42551 47517 .50300 1
.50720 .26014 .13863 2
«55919 26144 .10000 3
.89319 «93925 .81774 4
«71794 .46027 .37052 5
.63408 «56922 44771 6
.63259 .62514 .50363 7
77724 «75327 .63176 8

1.28177 .80605 .48571 9
1.05982 .58411 «26377 10
1.31285 .83714 .51680 11
1.43040 .95468 .63434 12

*Minimum prediction errors for holding periods
9 through 12 are TPl only.



CHAPTER V
SUMMARY AND CONCLUSIONS

The purpose of the present research has been to accurately specify
the market model for use in making predictions about an individual
security's systematic risk behavior. The specification problem was
considered in two areas: the market model, and the parameters of the
market model., Specification of the market model was limited to the

choice of two available alternatives, (1) R,, = which is

it = 25e ¥ PyeRne

called the ordinary least squares procedure and (2) R, = b which

it itRmt
is called the Fisher-Kamin procedure. The parameters of the market
model to be specified included the measurement period, the observation
interval, and the length of the holding period. The proper specifica-
tion of the market model and the parameters of the model are necessary

if investors @re to accurately rank securities by means of the pro-

gramming model introduced by Professor Sharpe and presented in Chapter I.

Specification of the Market Model

As was pointed out in Chapter I, the OLS beta coefficient will
generate less prediction error than the Fisher beta coefficient for any
given combination of measurement period, holding period, and observation
interval when:

F
s Rmt(bit+bit) _ bitRit V-1
mt Rit n

80
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and 2
- n+l (Rmt-Rmt)
mt > 2n R v-2
mk

In general these two conditions appear to have been met since the OLS
beta coefficients produced lower mean absolute prediction error (MAPE)
values for most measurement periods and observation intervals. 1In
only one instance, MAPE computed with quarterly observations of return
in test period two (TP2), did Fisher beta coefficients consistently
provide lower MAPE values than the OLS beta coefficients.

Table V-1 indicates that the returns observed on the S&P 500 Index
were sufficiently similar in TPl and TP2 to be unable to explain why
Fisher beta coefficients produced less prediction error in TP2 but not
TPl. That the Fisher beta coefficient provided less prediction error
using quarterly observations of return rather than monthly or weekly
observations is not surprising. Condition two (equation V-2) is influ-
enced to a large degree by the number of observatiéns of return, (n)
hence fewer returns associated with the quarterly observation interval
tends to prohibit condition (2) from being satisfied. When n=1, the
expression ((n+l)/2n) is maximized with a value of 1.0. As n increases,
((n+l1)/2n) approaches 1/2, its minimum value., Fewer observations of
return would quite naturally tend to maintain ((n+l)/2n) near its maxi-
mum value, thereby decreasing the probability that condition (2) will
be satisfied.

A second factor which will influence the prediction errors asso-
ciated with the two models is the sensitivity of both the average
historical return of the market index and the individual security beta

values to changes in the observation interval. One might expect average



82
TABLE V-1

RETURNS FOR S & P 500 CORRESPONDING TO
MEASUREMENT PERIODS IN TPl & TP2

MP TP1 TP2
1 .05600 -.00500
2 -.09900 -.04900
3 -.04070 -.04500
4 -.01760 .02300
5 .03640 .02500
6 .06340 .04400
7 -.00840 -.12400
8 .03570 -.07000
9 .00690 -.00100
10 .04120 .08700
11 .03600 .01300
12 .07110 .13000
13 .03940 .05600
14 .04730 -.09900
15 .04980 -.04100
16 .06530 -.01800
17 .12700 .03600
18 .03630 .06300
19 -.20350 -.00800
20 -.02110 .03600
21 .08390 .00700
22 .03910 .04100
23 -.00110 .03600
24 .12810 .07100
25 .11120 .03900
26 -.06660 .04700
27 .03720 .05000
28 -.05810 .06500
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historical returns of the market to become proportionately smaller as
the observation interval is reduced. Weekly returns would be expected
to be about one-thirteenth of quarterly returns and one-fourth of
monthly returns. Beta coefficients although biased downward by the
use of weekly data, are not so sensitive to changes in the observation
interval because beta coefficients are ratios and ratios express one
variable in terms of another. As a result, decreasing the length of
the observation interval reduces nearly proportionately the left hand

side of the inequality, imt of condition (1). As ﬁmt decreases, b

it
and bit decrease to a lesser extent thus the probability that Rmt will
F
exceed the quantity Rmt (bit+bit) ) bit Rit also decreases.
R n

it
The ability of the OLS beta coefficient to produce in most

instances smaller MAPE values does not mean that the OLS formulation is
most useful in a prediction sense. The wider variability of OLS beta
estimates among the various measurement periods coupled with the diffi-
culty in a priori selecting the optimal measurement period suggests

that the Fisher beta may be more useful in making predictions.

Holding Period Length

The empirical evidence indicated that for periods ranging from
three months to three years, the prediction error increased as the
holding period length increased (Table IV-11). Contrast these results
with the results of Blume who, when comparing beta coefficients in
adjacent periods of seven years in length, found a high degree of
predictability. These results suggest that prediction error may, over

a lengthening holding period, exhibit a hump-backed shape i.e., first
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increasing, then decreasing. In order for the results of this study
and Blume's study to be consistent, it appears that sometime after
three years and before seven years, the prediction error turns down-
ward and the effect of lengthening the holding period on prediction
error becomes favorable. Unfortunately, investors seem to anticipate
a holding period of one to three years in length, in most instances.,
This holding period is precisely that interval when the effect of the
holding period on prediction error is most unfavorable. It would
appear that in order to minimize the prediction error arising from the
use of beta coefficients, one must either (a) pick those securities
which can comfortably be held for at least three years or (b) continu-
ously revise and update the historical beta coefficients for all secu-

rities under observation.

Measurement Period and Observation Interval

There existed no one best combination of measurement period
length and observation interval which consistently provided maximum
MAPE (Tables IV-1A and IV-1B), rather, the optimum combiantion seemed
to change between the gwo test periods. The difficulty in a priori
selecting a combination which will provide an acceptable prediction
error may suggest the use of an arbitrary value of 1.0 assigned to each
security for the investor who wishes to assemble a portfolio such that
the portfolio beta approaches 1.0.

It would appear from the results obtained that both weekly and
monthly observations of return are acceptable if no more than 75 - 100
observati&ns of return are collected for each beta estimate. The

absence of benefits from collecting weekly returns past 100 suggests
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that the "structural changes' hypothesized by Professor Gonedes are in
reality a tendency of the individual security to exhibit random posi-
tive and negative price movement for small changes in the value of the
market index. Thus the lack of a sufficiently strong relationship
which exists for most securities when the market exhibits a low abso-
lute value return is sufficient to offset any benefits of increasing
the number of observations used to compute the beta coefficient.

Quarterly 6bservations of return used to compute beta coefficients
did not provide, in all instances, a sufficient number of observations
over seven years to consistently insure the statistical significance of
the beta estimate. It may be possible that over a longer measurement
period a sufficient number of observations could be obtained which com-
bined with the tendency of quarterly returns of individual securities
to exhibit more reliable co-movement with the market (less random fluc-
tuation) would provide a beta coefficient which produces consistently
less prediction error than beta coefficients computed from either weekly
or monthly observations of return. This would appear to be a promising
area for future research.

At this stage it seems fair to say that the beta coefficient is
an average relationship between the behavior of an individual security
and the market of all securities. An average necessarily aggregates
behavior and thus may hide important deviations viz, the potential dual
response of a security in response to upward and downward movements in
the index.

The size of the prediction errors obtained suggests that making the
agssumption that a particular historical relationship between an indi-

vidual security and the market will continue to hold in the future is
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a risky business. The size of the prediction errors obtained also
suggests that highly accurate estimates of a security's systematic
risk behavior are extremely difficult to obtain. Given this difficulty
it would appear that the programming model proposed by Sharpe which
utilizes as an input the future systematic risk behavior of individual
securities is of only limited usefulness for ranking securities in the
real world., Perhaps, if ranking must be done, fundamental analysis
should be utilized. Both techniques require estimates to be made; the
programming technique requires estimates of return and systematic risk;
fundamental analysis requires estimates of earnings, dividends, etc.
If more reliable estimates of fundamental factors can be made than can
be made for return and systematic risk then there may be justification
in utilizing a fundamental rather than a programming approach.
Alternatively it appears that some combination of the programming
approach and the fundamental approach may be useful. If those funda-
mental factors which determine systematic risk can be identified, then
it may be possible to predict systematic risk more accurately from
estimates of better understood fundamental factors. Some research has

already appeared with this thrust.1

Limitations and Suggestions for Further Research

Perhaps the single largest and most important limitation to any
empirical study is that data is gathered from a specific time interval

and any results generated are limited in applicability to that time

1See for example, William J. Breen and Eugene M. Lerner,
"Corporate Financial Strategies and Market Measures of Risk and
Return," Journal of Finance, May 1973, pp. 339-351.
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interval. It may be useful, however, to determine empirically pre-
cisely that fact: results are in fact limited to a specific time
interval and will not hold in general. Witness for example the results
in TPl of tgis research vs. the results of TP2. An optimum measurement
period was found for each observation interval to be between two and
three years in TPl while in TP2 the results were more variable but
nevertheless tended toward a longer measurement period. This incon-
sistency seems important for individuals attempting to use estimates
of systematic risk generated from historical information to construct
portfolios.

A second limitation is the blue chip bias inherent in requiring
firms in the sample to be continuously listed on the NYSE during the
period 1960-1972, Many firms have joined the NYSE since 1960 but were
not considered in this study because data for these firms was not
readily available or because of the impact on the market model which
listing itself may contain,

Finally, the portfolio systematic risk component of all thirty-
five securities in combination was very near 1.0. This does not allow
generalization of the results to securities which in combination
exhibit a systematic risk component very much different from 1.0. As
mentioned earlier, these securities may exhibit a systematic predic-
tion error which invalidates the results found here. This attribute
of the sample does allow future research to be conducted which uses as
a sample securities that exhibit either a very high or a very low
historic beta value when combined.

Other suggestions for future research might include Runs Test for

observation intervals other than one week for values of the S&P 500
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« A repeated testing procedure might

index different from |0.005
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