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ABSTRACT
PLANAR SETS HAVING PROPERTY PV

by Merle D, Guay

As a natural generalization of convexity, a subset X of a
set S 1In a linear space L is sald to have prbperty P” relative to
S if for every n distinct poirits of X ét least two of the points are
Joined by a line segment which lies entirely in S; if X = S, then S
- 1s saild to have property Pn. Property P2 is the usual definition

of convexity.

It 1s first shown that a set having property PP may be ex-
pressed as the union of (n-1) or fewer starlike sets. Several re--
sults wnich depend primarily upon the linearity of tie contzining

space are then obtained for sets having property Pn.

In an attempt to determine the nurber of closed convex sub-
sets whlcn are required to express a closed, connected P set as
the union of convex sets several results are obtained, Forn = 4,
the maximum number is shown to be 5 if S bounds a bourkled domain of
its complement} and to be U if S has a cut point, a one-dimensional
kernel, ccntains a point at which S 1s both locally convex and one-
dimensional, or nas at most ore peint of local non-convexity whicn
is not in tne kerncl of &, If & has exactly onz point of local non~
convexity q, tnen $ 1s showm to be stzrlike from g, without assuning

L a)
that S has proparty P77y If In =ijitien, 3 has property Pn, then it
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is shown that S ray be expressed as the union of (n-1) or fewer
closed convex sets, Finally, if S has two or more points of local
non-convexity each of which 1s contained in the kernel of S, then
S 1s shown to be expressible as the union of 3 or fewer closed

convex sets, independent of property P,

Finally, the higher dimensional case, the topological
properties of P! sets, and the problem of‘obtaining an upper bound
on the number of convex sets required to express a set having prop-

erty P? as the union of convex sets are briefly considered.
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CHAPTER I
INTRODUCTION

As a natural generalization of convexity, a set S in a linear
topological space L is sald to have property P ir for every n distinct
points of S at least two of the polnts are joined by a line segment
which lies entirely in S, Property P2 is equivalent to convexity., For
n = 3, Valentine [17] found this concept to be useful in the study of
sets each of which is the union of two convex sets, He was able to
show that a closed connected set in E2 having property P3 can always
be expressed as the union of three or fewer closed convex sets having
a non-erpty intersection, and that the number three 1s best, He later
found this same concept useful in proving that the boundarles of two

compact, convex bodies Sl and S, in a Minkowski space L " intersect in

2
a finite number of (n - 2) - dimensional manifolds, provided that the
intersection of the interiors of Sl and 82 be contained in the interior

of the convex hull of the union of Sl and 82 [18]. The definition of
property P3 given by Valentine sucgested to me the definition given
above as a natural generalization. It was later discovered that

Allen [1] and in a joint paper, Danzer, Grunoaum and Klee [6] had
glven generalizations of convexity which encompass the definition above
as a speclal éase. However, no relevant publications have appeared to

date,
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The results of Valentine [17] sugmest the possiblity that a
closed connected set in E2 having property 7 should be expressible
as the union of n or fewer closed convex sets, However, this con-
Jecture 1s false, For example, if the.set S 1s closed, connected,
has property Pu, and bounds a bounded residual domain of S, then S
may be expressed as the unlon of 5 or fewer closed convex sets, and
the number 5 is best. This example and the fact that a set with
property P3 is starlike suzgests that the condition of starlikeness
be added to property P in the hypothesis of the conjecture. If, in
addition, certain restrictions are placed upon the nature of the set -
of points of local non-convexity, the result is forthcoming., In gen-
eral, howevef, the result is still a conjecture for the case n = 4,

while for values of n greater tnan four starlikeness does not restrict

the number of convex sets to be n,

The results contained nerein were obtalned in an attempt to de-
termine the properties of sets having property P (n > 3), and to de-
termine how such sets may be expressed as the union of thelr convex

subsets,



CHAPTER II
SETS HAVING PROPERTY P"

The results of this chapter are of an intrinsic nature, de-
pending primarily upon the properties attributed to the set itself.
The linearity of the containlng space 1s indispensable, of course,
While it 1s assumed that the sets being considered are embedded in
Euclidean m-dimensional space, Em, many of the results could have
been stated with a general linear topological space as the contain-
ing space. Since the results are also of a heterogeneous nature,
and are not required, for the most part, in the proofs of later re-
sults, tney ére numbered as propositions rather than being called
lemas,

With rare exception familiarity with the common terminology
of convexity and topology is assumed. Notation used is explained
as 1ts introduction becomes necessary. The following less familiar
definitions are essential to the understanding of most of that which

follows, Each is a natural generalization of convexity.,

Definition 2.1 A set S contained in a linear space L, is sald to be

starlike if there exists a point x in S such that for each y in S,

it 1s true that the line segment xy lles entirely in S,

Remark: A non-empty convex set 1is starlike from each of its points.

Definition 2.2 A subset X of a set S in a linear space L 1s sald to

have property Pn, (n > 2), relative to S if for every n distinct polnts

of X at least two of the points are joined by a line segment which lles
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entirely in S, If X = S, the set X 1s sald to have property P,

Remark: Property P2 is the usual definition of convexity,

The next two results help to explain the intimate relationship

between the two concepts,

Proposition 2,1 Let SC Em,have property P, Then S may be expressed

as the union of (n = 1) or fewer starlike sets,

Proof. For n = 2, the set is convex. Assume then that the
result is true for n = k = 1, and consider the case n = k. There
must exist (k - 1) points of S no two of which are joined by a line
segment lying entirely in S, since otherwise S has property ?J for
J < k and the induction hypotheses applies, Hence, let Pyseeesly s
be the (k = 1) points no two of which are joined by a line sesment
lying entirely in S, and let x be an element of S different from Py»
1=1,.00,k"1. Then the line segment xp1 is contained in S for some
1, since otherwise XpPysveesPy would violate property Pk. Thus S

is a unlon of sets X1 starlike from Py and the result follows,

As trivial exarples of sets in E2 having property P one might
consider tne boundary of a regular n - sided polygon as a set having
property P"+1 for n > 3. A set consisting of n distinct line segments
which intersect in the origin is an example of a starlike set having
property PMI.

Remarks: It is clear that any set which is tire union of exactly

(n - 1) convex sets has property P',
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It is also clear that property o implies property P" for
m > n,
The well-known definition of local convexity proves to be

extremely useful and so is included,

Definition 2.3 A set S 1s sald to be locally convex at a point p in S

i1f there exists an open spherlcal neighborhood N of p such that S NN
is convex. If a set is locally convex at each of its points, it is
~sald to be locally convex, A point p of S is a point of local non-

convexity if S is not locally convex at p.

Proposition 2,2 If SC E™ is a closed connected set having property Pn,
n > 3, then S is the union of a starlike set and a set having property
Pn"2 relative to S,

Proof. Tietze [14] has shown that a closed connected set in
E™ which is locally convex 1s in fact convex, Hence, if S has no points
of local non=convexity wé are done, Let t be a point of local non-
convexity and T = {x ¢ S | xtc S} let X)see0sX o be points of S =T
which are not Joined in S, and Ni be a spherical neighborhood of t of
I+ By the closure of S and the definition of t, for 1 suffi-

clently large, there exist Yy and z

radius
5 in N111 S such that YysZgaXyseeesXn o
are not joined in S, contradicting the fact that S has property Pn.
Hence, S - T is contained in a subset of S which has property ph=2

relative to S, and the result follows.

Remark: Instinctively one considers the above result as an invitation
to attempt an induction on n whén seeking to prove a gilven result, thile

this is sometimes effective, the set T will, in ceneral, have the same
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property P? as did S, and S = T is only contained in a subset of S
having property ph—2 relative to S, For n = 4, consider the following

example which 1llustrates the difficulty: the shaded area corresponds

toS - T,

As the union of three convex sets S quite obviously has property Pu,
and also quite obviously S - T is contained in a set having property
Pz, a convex set, while T again has property Pu.

While almost all exanples given are polygonal, no proof given
depends upon this property. It is simply easier to construct such
exarples, and, having constructed them, to determine whether or not
they do Indeed have property P" for some predetermined value of n.

Since a set having property P" 1s the union of a finite number
of starlike sets, it 1is not surprising that the following concept and

result are of interest when considering such sets.

Definition 2,4 Let S be contained in a linear topologzical space L.

The kernel K of S is the set of all points of S with respect to which

S is starlike, That is, K= {z ¢ S | zx ¢ S for all x € S},



-~
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Brunn showed that K is a closed convex set, provided that S is
a closed subset of Ez. The following result generalizes the Brunn

theorem [4] and provides a useful characterization of the kernel of S.

Proposition 2.3 Let S be a set in a linear topological space L, Then

the kernel K of S 1s the intersection of all maximal convex subsets of

S.

Proof. First of all, every point x of S is contalned in a maximal
convex subset, Mx of S, Let x be In S, Then {x} is a convex set, Par-
tially order by inclusion the collection C: of all convex subsects of S
containing x. Using the maximal principal extract a maximal simply -

ordered subcollection {Ch,}, and let M = U, (cX,},

Now, let v be in K. Then v 1s contained in every maximal convex
set in S for otherwise va, the Join of v with Mx would be a convex set
containing Mx prope;ﬂy. Next, assume that V is in the intersection of
all maximal convex sets of S, Then, since every point x of X is in some

maximal convex set, xv is in S, It follows that V e X.

Corollgﬂ. The kernel K of SC L is a convex set which is closed if S

is closed.

Proof. The set K 1s convex since the intersection of any numober
of convex sets 1s known to be convex, If S is closed, Mx is closed for
x in S since the closure of a convex set is a convex set, Finally, the

intersection of an arbitrary number of closed sets 1s a closed set,

Remark: HKelly [8] proved the following interesting result: If F is a

famlly of compact convex sets in an N-dimensional Minkowskl space LN,
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then a necessary and sufficient condition that all members of F have a
point in common 1s that every N + 1 members of F have a point in common.

Using the third result and the fact that K, as a closed subset of
a compact set, 1s compact, the theorem could be stated: If F is a family
of compact starlike sets in an N-dimensional Minkowski space Ly» then a
necessary and sufficient condition that all merbers of F be starlike from
a point common to all of their kernels, i1s that the intersection of each
N + 1 members of the family contain a point common to the kemels of the
N + 1 members.,

The Helly nurber of a fanily F of sets 1s defined to be the small-
est cardinal k such that whenever G is a finite subfamily of F and N G #

@ for all GC G with card G <k + 1, thenN G ¥ @, Helly's theoren
asserts that thé Helly nurber of the family F of corpact convex sets in

Elism+ 1, An intriguing but extremely difficult question 1s: Does the
family of compact (connected) sets in EN having property P? have a finite
Helly number?

it is of poséible Interest to mention, in passing, that the analogue
of the separation theorem for convex sets and the Krein-Millman theorem for
convex sets are obtalnable for starlike sets using the concepts of a homco-
morphism [2] and relative extreme points [12], respectively.

Although there are a numnber of elementary results which one may
prove for starlike sets which are the natural analogues of those usually
encountered for convex sets, our interest here is 1n sets having property
Pn, and so only 4 few elementary results which do not hold for sets havineg
property P? will be included,
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The following results are an indication of the fact that property
P? is preserved under many of the usual operations which are in some

sense "linear" operations,

Proposition 2.4 If SC E™ has property P* and L is a linear transforma-

tion of S, then L(S) has property P,

Proof, Let ¥1sees¥, be n distinct points of L(S). Then there

exist distinct points x seeesX, in S such that yy = L(xi), 1=1,2,...,n.

1
Since S has property Pn, xixJ
oy, + 1 - a;)y‘1 for 0 :'u <1, Hence yiyJ C L(S) for some 1 and J, as was

C S for some 1 and j. But L(c:zx1 + (1 - a)xJ)=

claimed.

Proposition 2.5 Let SC E" have property P? and A be any real number,

Then A S = {As | s ¢ S} has property P",

Proof, A S = {As | s ¢ S} defines a linear transformation.

Proposition 2.6 Let SC E" be a set having property P? which is con-
tained in a linear variety T of dimension m - 1, Let v be some point of
E" - T, Ten vS, the cone over S with vertex v, has property P°,

Proof, Let X)s X,

clearly do not lie along the same generator of the cone), and let = be

be points of vS = v such that xlx2¢ vS (which

the projection map which carries X3 and X5 into S along the generators

of the cone through Xy and xg,'respectively. Then the segment "("1)”("2) Z s,

8ince u(xl), w(xz) and v determine a plane containing Xy and X, by the

definition of vS, would then be in vS. Thus, if X1 9Xgye e pX, WETE

X)X,
distinct points of vS which were not Joined in vS, then n(xl), “(xz)""’"(xn)
would be distinct points of S which would vlolate property Pn.






Corollary, Let S CE" be a closed connected starlike set 'having prop-
erty P, Let S be a suspension of S constructed by choosing the suspen—
sion points vy and vy to lie on a line orthogonal to E" in E.m"l such that
v,V, intersects the kernel of S. Then T has property P,

Proof. Let K be the kernel of S, Clearly, K is nonempty since
KcK, Let ve VaVpe Then v e K. This follows from the fact that the
suspension of a convex set M in Em, having as suspension points two
and v, which lie on a line orthogonal to ol in Em" 1

1l 2
and intersecting M, 1s quite evidently a convex set. Since K is known

points such as v

to be the intersection af all maximal convex sets in S, and § is contain-
ed in the union of the suspenslons of all maximal convex sets in S, it
follows easily that vlvzis contained in every maximal convex set in §
and hence in K,

Now let X,, X55ss.,% be n distinct points of T which are not

Joined in 5, Since by Proposition 2.6, v,S and v,S have property Pn,

not all of.the points X)9X590005X CEN lle in one of these two sets,

Let x, € v;S and x, € v,S. Then x -ax+(1-u)v1,0_ia_<_l,for

2 1

some x ¢ Sand x, = By + (1 - B)v,, 0 <8 <1, for some y € S, Since
v,v,C K, if xyc S, then the join of ViV,
or a 2-simplex, (in either case a convex set), which contains X, %5 and

and xy would be a 3-simplex

lies entirely in S, This inplies that x,x,c 5, contrary to assumption.

1%2
Thus if x,x, & S, xy ¢ S. By the proof of Proposition 2,6, the same’

and x., are both in v.S or in v.S, Thus

1 2 1 2
ir X19Xo90 009X, AT not joined in S, there exist n distinct points which

conclusion may be drawn if x

are not Joined in S, This contradiction proves the result.






-11 -

Remarks: From Proposition 2,6 it is clear that one may obtain a
closed, connected set having property P which is starlike by simply
constructing the cone over a ciosed, connected set having property Pn.

It also follows from Proposition 2.6 that the suspension of the
set S between two points vl and v2 must have property P2n-l. It may,
of course, have property P" for n <m < 2n=1, as illustrated by the
Corollary to Proposition 2.6

To illustrate how the situation changes, (and consequently the
methods of proof), as the dimension of the set S increases, and to
provide an example for the preceéding result, we consider the conven-

tional five-pointed star in E2.

This set obviously has property P3, may be written as the union
of three (and no fewer) convex sets, and has exactly five 1solated
points of local nonconvexity. The cone over S is a three dimenslonal

set having property P3, but has no isolated points of local non-convaxity.
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The following result of Valentine [17] is a clear indication
of how the situation chanmes: Let S be a closed set in a linear
topological space L where the dimension of L 1s greater than two,
Assume that S has property P3, and that S is not contained in any

two-dimensional variety of L. Then if S has one isolated point of

local non-convexity, S has at most two polnts of local non-convexity,

Proposition 2.7 Let SC E" have property P" and C be a convex set in

E", 'IhenC+S={x+yIxeC,yeS}haspropertyPn.

Proof., Let cy + Xy, i=1.,,,.n, be n distinct elements of
C+S. Since xixjc S for some 1, J, and cicJC C for all 1, j, we

have 0 < a <1, a(ey + x,) + (1 - a) (cJ+xJ)=ac1+(1-a)cJ+

ax; + (1 - a)x; 1s In C + S, Hence, C + S has property P,

Corollary: If under the hypotheses of Proposition 2.7, C = {x}, then
x + S has property P",

Proposition 2.8 The Cartesian product of two starlike sets 1s starlike,

Proof. lLet AC Ek and Bc E" be starlike sets, and let a, and

b o be elements of the kernels of A and B, respectively. In Ek*m con-
sider the vector expression
c(ao,bo) + (1 -a)(a,b) = (cao, b)) + ((1 - a)a,(1l - a)b)
(t:.ao + (1 - a)a, ab_ + (1 - a)b)

which 1s an element of AXB for all 0 < a < 1.

since
ca°+(l-a)aeA,0_<_af_l

and
cb°+(l-c)beB,0_<_a_<_l.
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Corollary (to the Proof) The product of the kernels of A and B is

the kernel of the product A X B,

Proposition 2.9 The Cartesian product of a convex set, C, with a set

S having property Pn, has property o,

Proof. Let (ci,xi), i=1,2,...,n, be n distinct points of
C X S. Then cicJC C for all 1 and J and xixJ C S for some 1 and J.
Thus ac, + (1- a)cJ is an element of C and ax, + 1- °‘)x,j is an
element of S for some 1 and § and 0 < a < 1, But this implies that
(°°1 + (1= a)cJ, ax; + a- °)xj) is an element of C X S for some

iand jJ, and for all 0 < a < 1 as was to be shown,

Proposition 2,10 Let S CEm have property P? and ¢ > O. Then U(S,e),

the parallel bcdy of S, also has property Pn.

Proof. Let X 2Xo50 002X, be distinct elements of U(S,e). There
exist elgments Y1seees¥, Of S such that IIxi - yill <e foril=1,...,n,
by the definition of U(S,e). Assume first that all of the yy are distinct.
Then there exist 1 and J such tnat yiyj C S by property P, Fixing 1 and
J, consider xixd. let x = aXy + (1= °)x3 for soreq between 0 and 1, Then
for the same a, y = ayy +(1- u)yJ belonss to S. Moreover,

[Ix = y1] = [laxg + (1= o)y = ayy + (1 = o)y,
= llatxg = yp) + @ = a)xy = )]
<ae+ (l=-a)e=c¢
which implies that x 1s an elerent of U(S,e) which in turn irplies U(S,e)
has property Pn.
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Suppose now that the Yyseeesy, are not all distinct., Let y =
Yy i1# 3, If it is possible to select an element ij in S such that
vy ¥ SI'J and d(xj ,YJ) < €, and this is indeed possible for each pair
which are equal, then the above argument applies, If not, then
U(y;,e) NS =y, Since Xy »% are in U(y,,e), which 1s convex,
§1chU(yi,e) C U(S,e) which again implies U(S,e) has property P,

Proposition 2,11 If S is a set in Em, and X C S has property p" rela-

tive to S, then cl(X) has property P? relative to cl(S).

Proof, Let X)9XoseeesXy be distinct elements in cl(X), then for
any € > 0 there exist Uj,...,u, such that ||u|] < e and x; + u,,
1=1,2,i44,n are distinct elements of X, Since X has property P
relative to S, the line segment (xi + ui)(xJ + uJ), say, 1s in S, Thus
for any & such that 0 < a < 1, a(x; + ui) +(1- °)(xj + uJ) is in S,
Now

l[[a(xi tu)+Q1- cu)(xJ + uJ)] - [axy +1{1- G)XJ]”

= || uu1+(1-a) u [| cae+ (1=-a)e=c¢

Since ¢ 1s arbitrary, a x;+ (1 - o) X is in c1(S).

Proposition 2,12 Let n > 2 be a positive integer. The limit S of a

sequence {Sk }of compact sets having property 4 is a compact set having

property Pn.

Proof, It is well known that S is compact [10]. Hence, let

x2,x%,...,%7, be n distinct points of S, and let p(S,S) = ¢ 1in the

Hausdorff metric, Since ske U(S,e, ) and ¢, + 0, we may find a sequence

k
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i i k i i
{x} (1 =1,2,...,n) such that X is In S” and lim X, =X (1 =1,2,...,n).
Por each value of k, at least two points of xi,xi,...,xﬁ are joined by

a line segrent whicn lies entirely in Sk. Since the number of possible

palrs which may be joined in Sk for each k 1s finite, we may choose a

subsequence {SJ} of {Sk} for wnich the sequences {xj}, {x?},...,{xg}
1

converge to x ,xz,...,xn, and sucn that for some pair of points xl
and x°, say, xyxjc S for all values of J. Since S 1s closed and
‘J + 0 we have xl xzc: S; that is, S has property Pn.

Horn and Valentine [10] have generalized the notion of a convex

set in the following manner: A set X in E2 i1s called an Ln set 1f for

every pair of points x and y in X, there 1s a polygzonal path, consistin~,
of at most n segments, lying entirely in X, which joins x to y.

Perhaps the most strixing result obtalned for this class of sets
is the following result which was proved by Bruchner [3]. Theorem: A
necessary and sufficient condition that the set X in E2 be compact and
connected 1s that X be the limit of a sequence of compact Ln sets for
some natural number n, This result has been zeneralized by J. W, McCoy
to a set X contained in a corplete, convex, locally compact metric space
[13]. Kay [18] has shown that a closed, connected P set S in a Minkowski
space is an Lhrl set,

Thus, the class of all closed, connected sets having property 4

i1s a subclass of the class of Ln- sets, The following example shows

1
that they form a proper subclass., For n > 2, one needs only to take the

cone at (,1) over the points (0,0), (0,3),4++,(0,228), (0,1) to obtatn an

L, set with property Pn+2.

2
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As a generalization of Definition 1.2 of property Pn, the

following is given,

Définition 2.5 A set S in E" 1s said to have property Pr; if for each

n distinct points of S, at least r + 1 of the points, 1 <r <n -1,

are Jolned by line segments which lie entirely in S,

Proposition 2,13 Let S be a closed connected set in o (m 2 1), Then

S has property Pg if and only if S has property Pg‘l H Pn'l.
It is immediate that S has property Pg whenever S has property

p» and assure that {x }, k = 1,2,...,n-1

2!
is a collection of n = 1 distinct points no two of which are joined in S,

Pn-l. Hence, let S have property P

Let x € S, x # X9 k =1,2,..0,n=1, Then by property Pg, X Xy and x X5

say, are in S, Let {zi} be a sequence of points in (x xl) converging to

x,+ Then since x; X ¢ S, k= 2,..‘.,n-1, there must exist a neighborhood

1.
of N of x, such that for all z,

N and X s k =1,2,...,n=1, violate property Pr;l s a contradiction.

in N, zy xk¢ Sy k = 2,35444yn=1, Then

Corollary: Under the conditions of the Theorem, S is convex 1f and only
if S has property Pg.



CHAPTER III

PLANAR SETS HAVING PROPERTY P

The results of this chapter were obtalned in an attempt to
determine the nuﬁber of convex sets which are required 1f a closed,
connected set S in E2 having property P? is to be expressed as the
union of closed, convex sets, Two results of Valentine are extend-
ed and several new results obtained,:

Unlike the results of Chapter II, many of the proofs of this
Chapter depend upon the properties of the containing space, Ez.

The following notation and terminology will be standard throuch-
out the remaining chapters,

The letter S denotes a closed connected set in E2 unless other-
wise stated., K is the convex kernel of the set S, The letter Q al-
ways denotes the set of points of local non-convexity (lnc) of S. (Q
is evidently closed if Siis closed),

The closed line segment Joining x to y is denoted by xy; the
corresponding open line segrent 1s denoted by (xy)s The line deter-
mined by the points x and y is dencted by L(x,y). By R(x,y) is meant
the ray emanating from x and passinz throush y. By W(x,y) we shall
mean the open nalf-plane determined by L(x,y) and lying to the left
of the line L(x,y) if L(x,y) is considered as directed from x to y.
While the meaning of the notation W(x,y) as given above 1s not
standard, the economy of words which it allows in that which follows

Justifies its usage.

- 17 -



The interior, closure, boundary, and ébnvex hull of a set A

are denoted by intA, clA, bdA, and convA, respectively,

Definition 3.1 Let S be a connected space. A point q of S is called

a cut point of S provided that S - {q} = A |J B, where A and B are dis-

Joint, nonempty, open subsets of S,

Theorem 3.1 If q is a cut point of the P set S, and all the components

of S - {q)} are convex, then S 1s the union of n - 1 or fewer convex sets,

Proof. If all the components of S - {q} are one dimensional the
proof is immediate so assume that at least one of the components, S*, is
two dimensional, We proceed by induction on the number of components,

If there is but one additional component the conclusion is clear,
If not, q is a cut point of (S - S*) Y {q} and we claim (S - S*) U {q}
1s a P"F set, For 1f (S - S*) | {q} contains points x;,Xp,eee,X
no two of which are joined in that set, then since S* is not a subset of
the union of the lines L(q,xi), there is a point x in S* not joined in S
to any x,. Thus S is not P, Hence, by induction, (S - S*) U {a} is the

union of n - 2 or fewer convex sets and S itself the union of n - 1 or

fewer,

Theorem 3.2 If a closed, connected set S in E" has exactly one point,

q, of local non-convexity, then S 1s starlike from q.
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Proof. By Proposition 2.3, it éﬁffices to show that q is con-~
tained in every maximal convex subset of S. Let M be such a set and
suppose q £ M. Since M is closed, there exists a hyperplane, L, such
that L N M = @ with q in one open half-space and M in the other. Let
W be the closed half-space containing M.

If for each y € M there exists a sphere, o(y,p)C M then M is
both open and closed relative to S and S 1s not connected. Thus for
some z, z € M, each sphere o(z,p) intersects S = M,

Sihce S 1is locally convex there exists at z, a sphere O(Z,pl)
with o(z,pl) N S convex and furthermore for some Py < °1?°(z’°2)C: W,
Thus, o(z,pz) N SCWNS, is non erpty, convex and is not a subset of
M. It follows that I 1s a proper subset of the component, K, of WN S
which contains M,

Suppose, now, that x is any point of K, There exists a(x,p3)
such that o(x,p3)f1 S NW 1s convex, and since x € K, this set is a sub-
set of K. That 1is to say, K 1s locally convex at each point and, being,
closed and connected 1s by Tietze's theorem, convex., This contradicts

the maximality of M and snows that qQ must be an element of M,

Definition 3,2 If the rays R(q,p) and R(q,r) are not on a line they

bound a convex and a non convex sector of the plane, The closed convex
sector will be denoted by T(pqr) and the closed non convex sector by
T (par).

A sector of a circle which is non convex is a major circular

sector. The center of the circle is also called the center of the sector.
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Lerma 3.1 If q 1s the only point of local non-convexity of the closed,
connected set S in E2 » and q 1s not a cut point of S, then corresponding
to points p an_d r of S such that pr & S there exists a circular disk
D(pqr) such that D(pqr) N T*(pgr)C S,

Proof. Since S is starlike from q, the points q, p and r are not
collinear, Since S - {q} is connected, locally compact, and locally
connected, S = {q} 1s arcwise connected [20], and there exists an arc C
in S - {q} containing p and r. Let the distance from q to the compact
set C be a, and consider the circular disk D(pqr) with center q and
radius a/2.

If every ray R(g,x) in T(pqr) intersects C, then q is a point
of local convexity of T(pqr)N S and the component of T(pgr) N S con-
taining qr y qp is convex. Then pr S, a contradiction, Thus there
exists a ray R(q,x) in T(pgr) which fails to intersect C, Now if any
ray from q in T*(pqr) fails to intersect C, then C would lie in two
sSeparated subsets of the plane, Hence evéry such ray intersects C and
D(par) N T™(par) C S as required,

Lerma 3,2 If S and q are as in Lemma 3.i, then S has property P3.

Proof. Suppose X,y,z are points of S no two of which are jolned
in S. If q e conv{x,y,z}, then the smallest of the three disks D(xqy),
D(yqz), and D(xqz), guaranteed by Lemma 3.1, is a subset of S, and S 1s

locally convex at q, a contradiction.
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Suppose then that q £ conv{x,y,z}. One of the rays R(q,x),
R(q,y), and R(q,z) is in the interior of the convex sector defined
by the other two., Assume that R(q,y)c int(T(xqz)). Then D(xqy) C
T(yqz) NS, and q is a point of local convexity of S N T(yqz). The
component;lof this set containing y, q and z 1s thus a convex set and

yz 1s In S, This contradiction establishes the theorem,

Theorem 3.3 If q 1s the only point of local non-convexity of the

2

closed, connected P" set S In E » then S is the union of n - 1 or

fewer convex sets,

Proof. If q 1s not a cut point of S then S is P3 and it follows
from [17] that it is the union of two convex sets,

Suppose then that q is a cut point of S, If all the components
of S - {q} are convex, the conclusion follows from Theorem 3.1, We
consider now the remaining possibility that one of the components, S*,
i1s non-convex, Now q 1s clearly the only point of non-convexity of
S* U{q} , and q is not a cut point of this set. The set S* y{q} then
satisfies the hypotheses of Lemma 3.1 and q is the center of a major
circular sector, D, lying wholly in S* y{g}. Tnis means that the re-
maining conponents of S = {q} lie in the convex sector of the plane de-
fined by the rays which intersect D only in q. If M is such a component,
it is clearly convex, since its only possible point of non-convexity is q
and q 1s hardly the center of a major circular sector lying wholly in
M U{q}e So M U‘{q} is convex.
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Since (S - S*) U {q} is now clearly P*2 and satisfies the
hypotheses of Theorem 3.1, itlis the union of n - 3 or fewer convex
sets while S* is P3 and is the union of two convex sets, Thus S 1is
the union of n - 1 or fewer convex sets,

In the proof of Theorem 2 of [17] it may be observed that
the use of property P3 is unnecessary in the case where each point
of local non-convexity of the set S is in the convex kernel of S if
one introduces Lemma 3.4 below which itself is independent of prop-
erty P3 and requires only that S be closed and connected, That 1s,
the followinz theorem, a generalization of the theorem cited above,

can be proved,

Theorem 3.4 Let S have at least two points of local non-convexity.,
If every point of local non-convexity is in the kernel, K, of S, then
S may be written as the union of three closed convex sets, The num—
ber three is best,

The proof of this theorem is a modification of that given by
Valentine [17] which avoids the use of property P3. Four definitions

and five lemas are needed,

Definition 3.3 A cross-cut of a set Y contained in E? is a closed

segment xy such that (xy) ¢ intY and such that x and y are in bdY,

Lerma 3.3 Each open segrent (uv) of the convex kernel, K, of S

contains no points of local non-convexity.
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Proof, Let w be an element of Q N (uv), Clearly S & L(u,v),
Let z be In S - L(u,v), Since uv CK, suzvC S, Hence, each suffi-
ciently small neighborhood of w contains no crosscuts of E2 - S, since
such a crosscut xy would have to have its interior (xy) in one of the
open half-planes bounded by L(u,v).

Definition 3.4 A component of the complement of a closed connected

set S 1s called a residual domain of S,

Lemma 3.4 Let D be a bounded residual domain of S. Then, the bdD

contains at least three points of local non-convexity of S,

Proof, Consider the set E:2 - D which contains S, E2 - D is

closed since D is by definition an open subset of an open set in E‘?.
Moreover, bdD = ¢1D N (E2 - D) 1s closed and bounded, and hence corpact,
Let p be a fixed element of bdD and x be an arbitrary element of bdD.
As x varies over bdD the distance from p to x defines a continuous
function d from the compact set pX bdD into the reals, Hence, d must
attain its maximum at some point Q of bdD, Consider the sphere

o(p,r) having center at p and radius r = d(p,ql). Evidently Dc C,
where C 1s the open disk bounded by a(p,r). Thus, each point of o(p,r)
is contained in E2 - D, If Q is a point of local convexity of Ez - D,
then there exists an open spherical neizhborhood N of ql such that

NN (E2 - D) is convex. In particular, if x and y in o(p,r) N N are
such that pq, N xy # 2, we have xy C E - D which contradicts the‘
assumption that q is in the bdD, It follows that ql is a point of

local non-convexity for E2 - D. Moreover, q is a point of local
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non-convexity of S, Let x and y be elements of E2 - D such that
xy¢E2-D. Then xy N D # #. Since D is an open set xy N D may

be expressed as a countableunion of disjoint open intervals, Let
(uv) be one such interval, Then u, v ebdDC S, and uw @& S, More
specifically, if in every spherical neighborhood N' of Q there exist
'po.tnts x and y of E2 - D such that xy & E2 - D, then there exist
points u and v in S N xy N N' such that uww & S, That is, if q, 1s

a point of local non-convexity of E2 - D, then q is a point of local
non—-convexity of S, In the same way we»may next locate a second
point of local non-convexity q, in bdD at a maximal distance from

ql; (Which will not be p, in general). The third point a3 is ob-
tained in like manner by maximizing the sum of the distances d(ql,q3)
and d(qz,q3) to obtain an ellipse with foci at qQ, and q, passing
through Q3 Because the ellipse, 1like the circle, is a convex curve,

the very same argument gives the desired result,

Remark: The boundary of the triangle indicates that the number 3

is best,

Lemma_3.5 Under the hypothesis of Theorem 3.4, S has at least one

isolated point of local non-convexity.

Proof. Let xy be a crosscut of a residual domain of S, The
set D = (xy) is the union of two disjoint open sets, denoted by Dl

ard D, (14]., Since S is starlike, D., say, is bounded while D, 1is not.

2
contains a point q

1

Then bdD, 1s a continuum [14]., By Lemma 3.4, bdD

1 1l
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different from x or y which is a point of local non-convexity of S,
Since S is starlike from q, xq and yq are in S, This implies that
ch Axqy since D was a residual domain and q is in ble.
Consider the lines L(x,q) and L(y,q) or more specifically, the
v - shaped domains V,, 1 = 1,2,3,4, that they determine, Order the
V1 in a clockwise direction about q so that Vl :.)Dl. Suppose 9 is
an element of (clVl-q) N Q. Then since (qlx U qu) C S we have
Dl C Axyql. But this contradicts the fact that q is in ble. Suppose
next that there exists an element q in V‘2 N Q. Then quql and quql
are contained in S and once more we would contradict the fact that q

is an element of ble. Similarly for Vll‘

Now 1if ql i1sinV,N Q, (ququ quql) c S which implies q 1is

3

isolated since Vl contains no points of Q. Finally, since no open

segment of K contains a point of Q, there does not exist a sequence of

points of Q along L(x,q) N clV, or L(y,q) N clV_ with q as a limit

3 3
point, Thus, q is an isolated point of local non-convexity of S,

Corollary, Let Q' be the set of 1solated points of local non-convexity.
Then Q = c1(Q').

Proof, Let qe Q. If qeQ', thenqecl(Q')s Ifq¥ Q', let N‘
be an open spherical neighborhood of q. Since q € Q, there exist x,
y € NN S such that xy & S and xy defines a crosscut x'y' of a residual
damain D of S, As in the proof of Lerra 3.5, the boundary of the bounded

camponent D, of D-(x'y') contains an element q' of Q'. Since q € K,

1



- 26 -

chl C Ax'qy'cC N. Thus every neighborhood N of q contains an element
Q' of Q'. That is, QCcl(Q'). Since Q is closed, cl(Q') C Q, and we

have Q = c1(Q').

Lemma 3.6 The boundary of convQ is connected, and contains at most one

ray.

Proof, Since H = convQ is convex, if bdH were not connected, it
is well known that it would consist of two parallel lines, Then
Lemma 3.3 would imply that each of these parallel lines contains at
most two points of local non-convexity., But then Q would be bounded
and bdH would be connected, If bdH contains two rays, then Lemma 3.3

would again Imply that Q 1s bounded, a contradiction,

Definition 3.5 An edge of bd(convQ) is a closed segment xy or a closed

ray x = whose endpoints are elements of Q.

Lerma 3.7 Let x and y be successive points of local non-convexity in

bd(convQ), and W be an open half-plane of support to convQ which abuts
on the edge xy (or x =), Then (convQ) U (W N S) is a convex subset of
S.

Proof, If u is in convQ and v is an element of S N W, then
uvC S, since convQ C K, K being convex. Now, to show that

uv C (convQ U (S NW)) we show that xy Nuv # 4 (or uv N x = # #).
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Recall that x and y are in bdS. Suppose uv N xy = g, Then
xv and yv are in S wnich irplies that x is in int(Auyv) NS or y

is in int(Auxv) N S which implies x or y is not in Q, a contradiction.

\

Suppose next that u and v are elements of SN W, Let z be an
element of (xy) (or (x «)). Suppose uv & SN W, Since uz, zvC S,
Auvz would contain a point of Q, by Lemrma 3.4, This is a contradiction
since WN Q = # and by Lemma 3.3 (xy) (or x =) contain no points of Q,
Hence (convQ) U (W N S) is convex. (If convQ = xy, then (convd U (WN S))

may or may not be closed),

Lerma 3.8 Let {xiyi) be a countable nurber of pairwise disjoint edmes
in bd(convd). Assume that bd(convQ) contains at least three edges,
and let W be the open half-plane of support to convQ whose boundary
I © + = U"
contains (x,y,), (x;y; may be x;=). Taen the set X = (convd) U (S N ( 1 %))

1s a closed convex set.

Proof, Choose an order on tne boundary bd(convd), and assume

that in this ordering Xy is the beginning of the edge x and that

11
y1 is the end point of xiyi.

Let X3¥y and nyJ be two disjoint edmes, and consider the convex
reglon V bounded by tne lines L(xi,yj) and L(xj,yi) and containing the

quadrilateral xiyixdyj. Let Vi and Vj be the portions of V adjacent

to X394 and nyJ’ respectively, (These two sets may not be bounded).

If X;¥y = X4®,52Y, then L(xi,w)_is a line parallel to the ray Xy

Now, S N wac: Vj since otherwise X, or yJ are not in Q, a contradiction.
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Let u and v be elements of S, If u and v are in (convQ) U (S ny,),

then by Lemma 3.7, wC X, If uls in SN W, andvisinsﬂwj,

1#J,thenuls InV, and v is in VJ. Since V 1is convex,

V1 N x:lyix‘jy‘j = X;¥y, and we have uv n XYy ¥ @ which implies uv C X,
Finally, X is closed., The finite case is irmedlate since

clwin Sc Vi irplies cl(win S)c (win S) Yy bd(convQ). If there

are an infinite number of disjoint edges, let r be a'limit point of

the sequence of sets Wi N S, Since W )
n

1, J

of the preceeding paragraph it follows that (x1 Yy ) + q, a fixed point
nn

n SCV:l s by fixing (ny
n

of bd(convqQ), as 1+ =, Since then Vi »qas i +ewehaver=q,
n

an element of convQ. Hence X 1s closed since convQ 1s closed,

Proof of Theorem 3,4 First assume that Q = {ql U q2}. The line L(ql,qz)
divides the plane into the two open half-planes wi (1 =1,2), By Lerma
3.7, W, N S 1is convex (1 =1,2)., Hence, S = Cl(Wlﬂ S) U c1(w2n S) U
L(ql,qz) N S is the desired decormposition.,

Next assume that Q = {ql U q2U "Uqu} where m > 1, Order the

edges of bd(convQ) in a counterclockwise manner so that Ay = Qyryqe
Let wi denote the open half-plane of support to convQ adjacent to
Q449 BY Lemma 3.8 each of the sets

m
S, = (conv@) U s N (Y, W,, ;)

’ m
S, = (conQ) US N (Y W)

am
. 1s a closed convex set, Since SC (conv) U S N (igl Wi) we have S =

S, U S,
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Next, if Q =‘{q1 Ua, U "'Uq2m+1} m > 1, we add S3 =

1 and 52. Finally, 1f Q is

infinite, we need the following definition:

(conv?) U (S N w2ml-1) to the sets S

Definition 3.6 A closed, connected subset I of bd(convQ) is called

a polygonal element if the following conditions hold:
1, It is the closure of the union of edges of bd(convQ).
(An edge of bd(convQ) is a closed segment xy or a closed
ray Xxe whose endpoints are contained in clQ.)
2. Its endpoints are limit points of elements in Q,
3. If I = bd(convQ), then I contains at most one 1imit point
of elements in Q. If I # bd(convQ), then only its endpoints

are limit points of elements in Q.

Note that a polygonal element is maximal in the sense that it
is not a proper subset of a larger po]ygonai element, The number of
polygonal elements of bd(convQ) is countable, This follows from the
fact that they are convex subarcs of the boundary of a convex set,
convQ, which do not overlap, By definition, each I contains at least
one segment, Hence, relative to bd(convQ), each polygonal element
has a non-empty relative interior, and the non-overlapping of the poly-
gonal elements implies countability. If convQ is bounded, it 1s clear
that there can be at most finitely many polygonal elements of length
at least 1/n times the perimeter of bd(convQ). In the unbounded case,
we may sirply consider a (countable) monotone increasing sequence {oi}
»of closed disks concentric about the origin, Then bd(c 1 N convQ) con-

tains at most a countable nurber of polygonal elements for each wvalue
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of i, Since {Oi) is countable, we have bd(convd) contains at most

a countable nurber of polygonal elements,

Let Il’ IZ"”’Ik"" be a well orderlng of these elements. For

each polysonal element I , divlide the edges it contains into two

k’
classes Ml](' and Mi such that no two edges of Mli( (1 = 1,2) are adjacent,
that is, have an endpoint in common. It may happen that one of the Mf(
may be empty. For each edge e € mi we let Wi denote the open half-

plane of support to bd(convQ) whose boundary contains e. Define

F. = lé'mli( Wins)  (1=1,2) andlet

8= cnrUYE) (1=1,2)

Since each edge in I-’.‘f'( is separated from each edge in M:; (k # m), Lemra
3.8 implies that Sl and 32 are closed convex subsets of S. Morebver,
since for each polnt x € S, either x e convQ, or x 1s in some Wi ns,

we have S = Sl u 3, and Sl n 82 is non-empty.

Corollary, If S‘ha,s property P3 and two'or more points of local non-
convexity, then S may be expressed as the union of three or fewer

closed convex sets,

Proof. If q is a point of local ron-convexity of S, then S is
starlike frcm q, [17]. The result now follows, since the hypothssis

of the theorem 1is satisfied,

If the set S bounds a bounded residual domain of itself, the

following two results may be obtained,
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Lerma 3.9 Let S have property Pu. Then S can bound at most one
bounded residual domain of S,

Proof, Let K, be such a domain. By Lemma 3.1, bdk,

three or more points of local non-convexity of S, Let ql,qz,q3 be

contains

three such points, Then, by property Pu and the closure of S, these
points are joined by line segments lying entirely in S. Thus, by the
definition of Kl’ Kl C Aqlq2q3. Moreover, there can not exist a

fourth point qy of local non-convexity in Aqlq2q3 since then quqig:s,
i=1,2,3, which would either contradict the definition of K, or the

1
fact that q1 i1s an element of bdK,. For the same reasons if x

1 12910
and z, are elements of (q1q2)5 (q2q3) and (qlq3), respectively, then
the line joining any two of these points does not lie entirely in S,
Hence, by property Pu, every point of S 1s Joined to at least one of
the points X19Yq and zy by a line segment lying entirely in S, If a
second residual domain, K2 of S exists, then there exist points of
bdK2 corresponding to 3,9, and q3 of bdK1 at least one of which 1is
distinct from Q3,955 OF q3 and points X55Y 59 and z, corresponding to
X190, and Z)s respectively of Aqlqzqa such that the three line segments
Joining X19¥7s and zi to X5sY, Or Z, are not in S or the three line
segments joing X59Y 5 and z, to X1s¥ys OF 2, are not in S. In either
case property Pu is violated, Thus S can bound at most one bounded

residual domain of S,

Theorem 3.5 Let S have property Pu. If S bounds a bounded residual
domain of S, then S may be expressed as the union of five or fewer

closed convex sets, The nubher five is best,
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Proof, Let B be the bounded residual domain which is bounded
by S. Then B is entirely contaihed in some triangle whose vertices
| ;59 and 5 are points of local non-convexity of S, as was shown in

the proof of Lemma 3.4, Ve denote the six unbounded domains into
which the plane is divided by extensions of the sides of Aq1q2q3 as
shown in Figure 3.2. By. VO 'we shall mean the set cl(Aqlq2q3) - B,
The component of int(S N VO) whose closure contains 9,4 4 will be de=-

noted by Jij. Denote (S nvij)u JiJ U (qiqj) by DL1 .

Figure 3.2

v, Va3 \,

Observe first of all that SN D and S ) D,., are each convex

‘ 13> S N Dy 12
sets since if x and y are elements of SN D23, say, such that

xy ¢ SN D23, then, a and b (as shown in Figure 3.2) together with x
and y are four points which violate property Pu. The same argument
applies to S N Dl3 and S N D12' Observe next that the points c, a,
and b are not joined to any point in Sl = (S HW(qz,q3)) - J23, 82 =

(s n'.-l(q3,q1)) - J13, and S3 = (SN W(ql,qz)) - le, respectively,

which implies that these sets have property P3. Hence, by Proposition 2.11
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and the Corollary to Theorem 3.4, the closure of each of these sets
may be written as the union of three or fewer ciosed convex sets,

Let Q:l denote the set of points of local non-convexity of S T Since
'Si has property P3, Qi is contained in the kernel of Si' Clearly,

Q:I. is contained in c1(vin S), and is non-empty, since q 1s contained

in Q;. We denote the cardinality of Q, by N,. Since § = s,U 8, U S3»

il
the remainder of the proof consists of showing that under all possible

eircumstances these three starlike sets may always be written as the

union of five or fewer closed convex sets.

Order the points of Q 1 and Q 5 in a counterclockwise direction
Ny
U

=z q2’1, respectively, Let Ql = 3=1 {ql J}
?

start with = and
ing s 9 =q) 4 a,

v
and Q) = e {92,k

CASE I Assume first that Nl = N2 = 1, We consider a closed disk C1

with center at Qs i=1,2, and with radius sufficiently small so that

Cin sSc s In the proof of Theorem 3[16] it is shown that the number

i.
of companents of S Nbd(conv(Cy; N S)) 1s 1,2, or 4, If the number of

components is 4, then it is shown that clS, is the union of two distinct

i
rays or line segments intersecting at Qe Here this implies that Si is

contained in L(ql,qz) U L(qi,q3), i =1,2, For future reference, we de-
note the convex subset Si N L(q 13y of Sy by Xiz and denote the convex

subset S, N L(q,a;) by xi‘a.

If the number of components of SN bd(com/(Ci N S)) is 2, then

S, 1s knovn to be expressible as the union of two convex sets each of

i
which is determined by one of the two distinct components of
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S Nbd(conv(C, N S)). (By the proof of Theorem 3[17])., The inter-

section of these two convex subsets of S, is {qi}. Let B, be the

i
component of S N bd(conv(cin S)) which intersects SN D

i

1
12° et X5

be the unique convex subset of S1 determined by B,. By the above

discussion of the proof of Theorem 3[17], Q is a cut point of S, and

b
Xiz - (qi} is a component of Si - {qi}. Since Xiz - {qi} intersects

the convex (connected) set SN D)5, the lalter must be contained in

xi

12 = (qi}, and consequently in xilz, i1 =1,2, By the same argument

1 _ 1
(S1 - le) V) {qi) = X13 is a convex subset of S, containing S N D

i 13°
Irsn bd(conv(C1 N S)) has exactly one component, 1 = 1,2, then the

support line to the convex set J 12 through Qy» distinct from L(ql’q2)

if le ¥ g and L(ql,qz) if J12 = g, determines two convex subsets X§.2
i
and X 13 °f S, such that q, ¢ (clxiz n ch13), S ch UchiB,
1 i
X],2SND, and Xi3DSﬂD 13°

CASE II Assume now that Ni = 2:111, i=1,2, Consider the edges

QI’JQI’J+1 and qz’kq2’k+1 J = 1,...,211, k = l,...,2m2 where
q1,2m1+1 s 9,1 and q2,2m2+1 q2 1+ Let the open half-plane of
support to coanl and coan2 adjacent to ql' Jql, 341 and qz,qu,kﬂ'
respectively, be denoted by w and w2 respectively. By Lemma 3.8,

x;ll

the sets (coanl) U cl(Sl n (Jlil WZJ)) = xd

1o and (coanz) ) cl(Szn

are convex sets, having SN D15 in common, Moreover,

1
12

» 1 = 1,2, The closed convex sets

42
(¥ Yo y)) =X,

by the proof of Lerma 3.8, X7, is knovm to be one of the two convex sets

whose union 1s Si
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ml

and my
(coan ) U cl(S n (k-l 21()) X

are such that S X UXi and SN D

3 13C)(13 for 1 =1,2, as in

i
the proof of Lemma 3.8,

CASE III If one (or both) of the Ny, 1 =1,2, is infinite, then

by considering polygonal elements of bd(coani), as in the proof of
Theorem 3.4, we may express the set S1 as the union of two distinct

1 contains S N D12 and xi

convex subsets xi 12 13

12
13°

i
and Xi3, such that X

contains S N Dyqs 1 =1,2.

CASE IV  We next assume that Ni = 2n,+1 for m; > 1., Again, by

Lemma 3.8, the sets
(conVQ1) U cl(S n (J Y, 2.1 U melﬂ
ml

(coanl) U cl(S n (ng ;J+1)) =92

L]
o

are closed convex sets, Likewlise,
. m

W2, )

o NGYy Wo )

(1]}
N

(coanz) U cl(S

mp
2 .
(conva,) U e1(S, N (Y, 15, U WD) = 73,

are closed convex sets., The sare Lerma 3.8 shows that
1
1
(coanl) U cl(Sl n (Nl U w:"2 )) = Xl
2

(coanz) v cl(S‘2 N (wg U wgnlﬂ)) z X23

3
and
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are closed convex sets contailning S N D13 and S N D23, respectively.

1 1 1
Moreover, S, = xi3 U Y}, U2z, and the sets Y1, and Z

12 each contain

SAD,, 1=1,2

In the four cases consldered we have selected convex subsets

1 2 2 1 2

1
of S1 and 82 denoted by xl2’ x12’ Y12, le, 212, and le, each of

which contains the convex set S N D12.

selected the convex subsets Xi3 and X23 of S and 52 respectively,

in such a way that x13 contains S N D13 while X23 contains S N D23.

Moreover, in each case these subsets have been chosen so that Si =

At the same time we have

Xi3 U Y12 U le or Sy 13 U Xiz. It is clear that several other
cases arise as combinations of the four cases considered; for

example, Nl might be an even positive integer while N, is an odd

2
positive integer. However, in each of these cases, the decorposition

of S, and S, may be taken to be exactly the same as In the four cases

1
considered,

2

To reduce the number of convex sets from 9 to 5 we first show
that cl(Sl U Sz) may be expressed as the union of U or fewer closed
convex sets, This is accorplished by showing that c.'.l((}i2 ) HJZLZ) is a
closed convex subset of cl(SIU Sz) where X,Y, and Z may be substituted
for either G or H, Assume then that Gi?
ia £ H i1s a convex subset of 82 also con-
taining S N D;,e Consider the closed subset cl(G U H) of the closed

= G 1s a convex subset of Sl

containing S N D,, and that H

set S, Since G and H are convex sets, each is comected, Since GN H =

sN D12' a non-erpty, convex (connected) set, G U H 1s a connected set.
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Hence, ¢1(G U H) 1is a connected set. By Tietze's Theorem, if

cl(G U H) is locally convex, then c1(G U H) is convex, Assume, to
the contrary, that ¢1(G U H) has a point of local non-convexity p.
Since clG and clH are convex subsets of clSl and clS,, respectively,
p 1s not a point of local non-convexity of ¢lG or clH., Thus, if o
is a spherical neighborhood of p of radius r, and x,y € ¢ Ncl(G U H)
such that xy ¢ c1(G UH), then x € (¢1G - clH) while y ¢ (clH - clG),
This implies x ¢ cZL(S1 n Vl) while y ¢ cl(S2 N V2). If we take r to
be less than one-half the distance from Q to s then no such x and y
can exist, Since this contradicts the definition of p as a point of
local non-convexity of ¢1(G U H), it must be true that cl(G U H) 1is

locally convex, and hence convex,

For the cases dlscussed, 1t has thus far been shown that the
6 possible closed convex sets which could arise from cl(S1 U SZ) may
always be reduced to 4 or fewer closed convex sets, The arguments
glven for the four cases ‘above when applied t;o c:lS3 show that clS3
may be expressed as the unidn of 3 or fewer closed convex sets in such
a way that one of these sets X§3 contains S N Dl3 while another Xg3
contains S N D23. Then the same argument given above applies to show
that cl(Xi3U X§3) and cl(X§3 U Xg3) are closed convex subsets of S.
Recalling the arguments given in the four cases above, it is clear
that this can be done in such a way that there will remain in clS3 at
most one closed convex set, It has now been shown that the seven

possible closed convex sets which remained may be expressed as five

or fewer closed convex sets, the desired result.
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CASE V. There is one case which remains to be settled; namely, the

case whicn arlses when N

1 = 3 for one or more values of i,

Ir N1 = 3 for exactly one value of 1, then without loss of

generality we may assume that N, = 3. As in Cases II, III, and 1V

3
we conslider the edges q3l,q32, q32q33, and q33q31 of coan3. Ve

again denote the open half-plane of support to coan3 adjacent to

Q3’JQ3’J+1 J’ J = 1,2,3 letting Q3u H q3l. By Lemma 3.8 the

set (coan ) U cl(S rnw3) J =1,2,3, is a convex set, Moreover,

J

(coan3) U cl(S n ﬂ3) = X23 contains 023 while (coan YU cl(S n w3)
X§3 contains Dl3 Finally, 83 X33U X7, U ((coanB) ¥] cl(S n 1.13))

By the same arguments given for tne preceeding three cases
cl(X U X3 ) and cl(x U X33) are convex sets, The only distincticn
to be made now between this case and preylous cases is that the re-
»maining convex set in clS3 vhich is the fifth convex set in that de-
composition is the set (qoanB)lJ c1(S3f1 wg).

We next assume that Ni = 3 for 1 = 1,2 and that N, 1s one,

3
even or Infinite, In this case, as in Cases I, II, and III, the set

clS3 may be expressed as the union of two closed convex sets c](X23)

ine
and °l(xl3)’ containing D23

1 = 3 fori=1,2, Si mAy be expressed as the union of

the three convex sets, (coani) U cl(Sif1 wj), J=1,2,3,1=1,2,

and D, 4, rescectively,

Since N

with the property that
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Xiz = (convQ,) U cl(S; N W§) oDy,
Xiz = (coanz) U cl(82 n Wi) :)Dl2
and Xy3 & (conv@)) U e1(S, N W}) DDy,
x§3 = (conv,) Y cl(S, N wg) 5Dy,
By the argument glven after Case IV, cl(Xi2 U Xiz),

1 -
cl(X13 U X§3), and cl(X§3 U Xg3) are convex sets, Since S is evidently
the union of these three sets together with the convex sets (coani) V)
cl(Si n Wé) i=1,2, we see that S is once again expressible as the
union of five or fewer closed convex sets, Finally, we consider the

ca.sewhereNi=3,i=1,2,andN =2n+1 form> 1, It is con-

3

‘venient to consider the case m = 1 first,

For m = 1, we define the following sets
Ay = c1[(S, U S3) N (W(ay;,35;) N Wlay3,a35) N Wlag3,a5,))]
Ay = c1[(S; U S3) N (W(ay3,9y;) N W(ag;,a35) N Wag3,9;,))]

Finally, let
B, = ((S; N ;) N W(ay,,a33))

B, = ((S,N W5) N W(ag,255)

Since each is the closure of the intersection of convex sets, each 1s

convex., We define A; to be the set cl(conv(3, U B, U Bio))e Consider
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the set Al‘ Since 82 and S3 have property P3, each point of local
non=convexity of 82 and S3 is in the kerrel of 82 and 83, respectively,
By Lemma 3.7, cl(comy U (85N W3)) and el(conv, U (S, wg)) are
convex sets, The argument following Case IV may be applied to these
two sets to show that their union is a convex set, Thus, the inter-
section X of the closed half-plane cl('nl(qaz,qu)) with this set

is convex., From Lemma 3.7, it is also known that c:L(S2 n wi) U coan2
is a convex set, Thus, Y = (c1(82 N wi) U coanz) n cl(W(q32,q21)) is
a convex set, From its definition, A

=XUY, Let x,y eA. Ifx,

1 1°
yeXorx,yeY, then xycAl since X and Y are convex, If x € X and

y Y, then xy N coan2 # @ which irplies xy C Al’ since coanZC XNy,

In exactly the same manner it can be shown that A, is a convex set.

2

We next consider A;. By Lerma 3.7, X = convQy

Y= conv, U cl(S, n wg), Z, = convq, U cl(S, N wg) ard Z, = coan3 U

3
U cl(5; N W3),

cl(S3 n W§) are convex sets, By the argument following Case IV, Z =

Z, Uz, is a convex set, ‘By definition, A3 is the intersection of

X UY y 7 with the closed convex region bounded by L(q33,q3l),

L(ap),9,,) and L(ay3,a3,)e Thus, 1f x, y € A3N X, AsN ¥, or AgN z,

then xy C A3. Ifxe A, NX, ye A30 ¥, then x5y N convd, and xy N coan3

3

and xy N D23 are non-empty. Since convtl2 and coan3 are in the kernels
of S, and 83, respectively, xycC A3. If x e Xand z € Z, then xz N coan3

1s non-erpty which implies xz c Azs since convQ_, € X N Z., Similarly,

3
ifyeYand z¢ Z, then yzc A3, since yz N conv, is nonempty and
conv, © YNZ. The set A, is defined in precisely the same way as Ags

and may be shown to be convex inexactly the same manner. Lastly, we
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consider the set A_. By construction, each element of Bl UB,, is

5 12
not Jolned to the point of local non-convexity q33; otherwise 9)5»
Q9 OF 9y would be a point of local convexity. Similarly each
element of 82 U 812 is not joined to q3“2 by a line segment lying
entirely in S, since then 372953 OF 9p3 would not be in Q. There-
fore, by Proposition 2.2, B, UB]_2 and B, UB,, are convex relative
to S. By Bunt's refinement of Fenchel's Theorem [5](see Theorem 3.6

for statement) the convex hull of the two components B.and Bl2 s and

1

the convex hull of the two components B, and B, ., are contalned in S.

2 12
Next consider the set conv(Bl U Bz). By Bunt's refinement of
Fenchel's Theorem conv(Bl U Bz) C S if Bl ) 82 is convex relative to

S. Since by definition B, and B, are convex subsets of S, it suffices

1 2

to show that for x € Bl and y € 82, Xy € S. By the definition of Bl
ande,chéﬂslandycwgnsz. Since q;, € K| and q,) € K,,

X, ¥ ¢ w(qll'q12) n W(q23,q21). Evidently, if xy & S, then either
x or y i1s contained in ""(qzz'qn)' Assume that x ¢ w(q22’q13)° By
property Pu and the closure of S, we know that q22q‘13c S. Since
33 ¢ clV., there exists an element z in w; n App033 OW(q33,qn)ﬂ
W(q21,q3‘3) such that z d33 &S. Since x ¢ W(qzz,qn) if xzC S, then
93 £ Q3, a contradiction., But if xz & S, then property Pu is violated,
since xq33g‘_‘S and q33 ¢ Q implies that each point which is not joined to
q33 by a line segment lying entirely in S, 1s joined to x by such a line
segment, (See the proof of Proposition 2.2). This contradiction implies
xyc S, That 1s, B1 U 82 is convex relative to S, The same argument
applies if y ¢ W(q22,q13), or if x, ¥y ¢ W(q22,ql3). It follows that

conv(BlU 82) cC S,
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We now have three convex components Bl’ Bz, and 312 with the
property that conv(Bl U 812)’ conv(82 U 812) and conv(Bl U B2) are
contained in S, Ve wish to show that c:onv(Bl §] 82 U Blz)c S. Assume
that this is not the case and let w ¢ conv(Bl U 32 U 512) -S. It 1is
well known that this would imply the existence of three or fewer
poipts X13%5s and X3 of Bl U 82 ) 812 such that w ¢ conv{xl,xz,xé}- S.
Sj.nce conv(Bl U 812), com'(B2 V) 812) and conv(Bl U B2) are contained
in S, the existence of such a w 1s impossible unless there exists
such that x, ¢ B

3 1 1?
}-S= Axlxzx3 - S,

exactly three non-collinear points STRT and x

X, € BE' and x3 € Bl2’ say, and W ¢ conv{xl,xa,x3

We now have bd(Axlx2x3) C S wnile int(Axlxzx3) contains w £ S. Since
S 1is closed, there exists an open spherical nelghborhood ¢ of w such

that oN S = g and o c'int(Axlx2x3). Thus, bd(Ax,x.x.) bounds a

1%2%3
residual domaln of S, From Lemma 3.9, it follows that Aqllq21q3l C

A;lx2x3. But, since x, € clVi, i=1,2, and x, € D,, while 9, € clv

i 3 12
£ Axlx2x3, a contradiction. Thus, conv(B:L U 82 U Blz)c S, and

3 }
93

since S is closed, cl(conv(Bl 0] 82 U 512) C S, That is A5 is a closed

convex subset of S,

5
It mugt now be shown that S = kt-!l Ak' Consider the set Si

(eonv@y) U (Y} (5, N ) 1 =1,2,3, and recall that 9, C eIV, 1 =
1,2,3. Evidently, (S; - W3)c A, UA, U B, U A, (S, - W3) CA U Ag
UB), Uk, and (S5 - wg)c AL UA, u A3U Aj. The claim is that
(S) N ) Ay U Agy (5,0 ¥3)C Ay U Ag and (S50 13) © Ay U Ay Tt 1

irportant to recall that (S 1 n Wé) is a convex set whose closure inter-
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T § " i
sects (Si wz) in the line segment q12q13, and that (Sin wz) c

- e1(Wlayy,q;,) N W(ay5,4,)) since g4y e Ky, and q4,5,9535 ¢ Qi. 1=1,2,3,

With this in mind, we direct our attention first to (S ARY Since by

u 2).
property P° and the closure of S, Q 1s convex relative to S, the line

segments 935953 and d339); lie in S, If (S3ﬂ wg) <A, U Ay, then

3
there would exist three points x € (S3 n wg_‘) n W(q33,q12) N W(q23,q32),

ye33N (q32.q23) and z ¢ S3 N (q33,q12) such that x, y and z violate

property P3 of S Thus, (S3 n wg) (o A3 U Al&‘

3.
It is clear that the convex sets (Slﬂ w;) and (52 n Wg) are
each separated into two convex sets by the lines L(q33,q12) and

L(q32,q23), respectively. One of the convex subsets of S; 1is B, C AS’

i1=1,2, Thus, it suffices to show that (51” w;) - Bi is contained in
_ — Ly _

A3 UAj. This in turn reduces to showing that (Slﬂ Wz) Bl Cw(q33,q12)ﬂ

W(ql3,qll) and that (82n wg) - 82 cC N(qzl,qZZ) n W(q23,q32). This,

however, 1s evident from the fact that (S, N Wé) C c1(¥(qy7,945) N

W(qi3aqil) )e

=2m+ 1 form»> 1,

Consider now the case N1 =3,1=1,2, and N3

We first define the sets
M=

A= (5y0 (,Ll ngu))

)

and

"(Sn(Jl 2

The set S 1s expressible as the union of the following convex sets.
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Kl = 01[(82 V) 83) n (W(Q3’2m’q21) n w(q223q23) n IV'(Q32:Q33))J"AL

Ky = c1L(5; U S3) N (4(ayp,013) N W(ay1,83 5yy) N #A30583 5140003

R3 = c1U(S,U S3) N (a3 541,95) N Wlay),855) N W(ay3095 510)]

Ry = cll(5;U S9N (133 oe1091) N W(Qy3,9;5) N W(a3),03,) N

]
w(q?”zm’qB’le) ] - Al

and - - -
AS = cl(conv(E, U B,U E'lz)).

T o ‘l .

and -
B D,,N

12 H(ap)093 o) MW(A3 5047995700

The sets 7-\'2,K3 and KS are defined in the same way that A,, A,

and A5 were defined, respectively, The proof that each is convex re-

quires only the obvious change of subscript; that 1is, the replacement

of q32 by q3’2m and of q33 by q3,2m+1 in the above argument.

m=1
Consider the set '.l'\'l. By Lema 3.8, coer.3 U (S3 N (JQO ngﬂ))

is a convex set, Thus, W(q3 2m’q21) n W(q32,q33) intersects this set
t

I'L is contained in this intersection since

; a if A were
q21q3.2m and q32q33 intersect coan3 in line segments an 1

in a convex set. Moreover, A

not so contalned, either qy 5 or Qg would be a point of local

convexity, contrary to assumption,
The remainder of the proof that Kl is convex is the same a5

that for Al‘
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The set Kl& is defined in the same way that All was defined

except fqr its intersection with W(q3.2m+1,q32). By Lerma 3.8,
coan3 V) (83 n “’gmu) UAj is a convex set. Thus, the intersection
of this set with w(q3,2m’q3,2m+l) n W(q3'2m+l,q12) n W(q3l,q32) is
a convex set, Again, A‘" is contained in thls set since q31q32 and

\J
q3’2mq3’2m'_1 are contained in the kernel of 83. Ir All were not so

contained then q32 or q3 o would not be in Q3. The remainder of
?

the proof that Kl& is convex is the same as that for A.
5

The proof that S = 191 7&'1 is identical to that of Ny=3

with the exception of S This case differs for the set (S3 n

3.
W(q3.2m'_1,q32)), which is seen to be the union of Ai, Al:, and

(S3 N w%n) by checking the indices of %rr{ation. It is known from
Theorem 3.4 that S3 = convQg U(S3 n (ng w?)). Since (S3ﬂ w]3_)<:
BUR, (53N, KU E, and conlyC KUK, UK U Ey, ve

o U o=
see that 33 1s contained -in 1=1 Ai'

Thus, in every case, S is expressible as the union of five

or fewer closed convex sets,

To see that the nurmber five 1s best consider the following
exanple which satisfies the hypotheslis of the theorem but which can

not be expressed as the union of fewer than five convex sets.
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Theorem 3.6 If S has at most one point of local non-convexity which
is not in the kernel K of S, and S has property Pb, then S may be

expressed as the union of four or fewer closed convex sets,

Proof. 1If Q, the set of points of local non convexity of S,
is empty, then S 1s a closed, connected, locally convex set, which,
by Tietze's theorem is convex. If Q has exactly one element, then S
is expressible as the unlon of three or fewer closed convex sets, by
Theorem 3.3. If Q has two or more elements, each of which is in the
kemel, K, of S, then S may be expressed as the union of three or
fewer closed convex sets, by Theorem 3.4, Thus, we may assume that

Q has two or more elements, exactly one of which 1s not in X,

Let q € @-K. It was shown in the proof of Propositicn 2.2 that
S is expressible as the union of a starlike set whose kernel contalns
q, and the set X of all polnts of S which are not joined to q by a
line segment lying entirely in S, By Proposition 2.2, since S has
property Pn, the set X has property PZ relative to S, That is, X 1s
convex relative to S, Ve show that convX €S, and that S-X may te

expressed as the union of three or fewer closed convex sets,

It is first shown that X has at most two components, Assume that
X has three cotponents Cp, C,, and C3 in S, let ¢y € Cy, 1 = 1,2,3.
Since X 1s convex relative to S, we have that €125 CxC3s and o R

entirely contained in S. Since, horever, C; N C,, sz1 CihpandCNC

3’
are empty, we have that clc2,02c3, and clc3 each intersect S - X, Let

3

21512535 and 2y3 be elements of ci¢, n (s-X), c C3 N (s-X), and
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clc3r](8-x), respectively. Then qalz,qa23, and qa13 lie entirely
in S-XC S, The elements €11C2sC3s and q are not collinear since

the fact that qa.lz,qa23, and qa,, lie in S would imply qcic S for

13

some i, If C),C and c, are collinear in that order, say, then

2? 3
42,5,9353» and 3),8,53 are contained in S while ac, ¢ S. Since S-X

is closed, there exists an open spherical nelphborhood N of ¢, such

2
that x ¢ NN S implies xq &S, Thus bd(Aalzqa23) C S bounds one or

more residual aomains of S, Since S is starlike, this 1is impossible,

Ir C19Cos and c, are not collinear, then they determine the triancle

3

Aclc203 z T, whose vertices we may assume to be 1n that counterclock-

wise order. Then q € intT, or S-(SNT). (For the same reasons as
glven above, q can not lie on an extended side of T,) If q € intT,

bd(qa ) bounds one or more residual domains of S, a contradiction,

12°2%23
If q € S-(SN T), then without loss of generality, we may assume that q
is in the v-shaped region determined by L(c2,03) and L(cz,cl) and con-
taining (clc3), or that q 1s in the v-shaped rerlon determined by thzse

lines which intersects T in the point ¢ In the former case

. 2°
bd(qa2302a12) bounds a residual dormain of S, and in the latter case
bd(qal?_clc3a23) bounds a residual domain of S, Since 1In each case we
are led to a contradiction of the starlikeness of S, we have that X has

at most two corponents C, and C2, say, in S,

1
W, Fenchel [7] showed that a necessary and sufficient condition

for a point x to be contained in the convex hull of a corpact, connected

set X in E" is that there exist m (or fewer) points PysPpsesesPpy in X

such that x ¢ conv(plu p2U oo Y pm). " Later L.N.H., Bunt [5] showed
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that compactness was unnecessary and that "connected" may be replaced
by "having at most m components", For m = 2, this theorem may be
stated: A necessary and sufficient condition for a point x to be
contained in the convex hull of a set having at most 2 components

is that there exist 2 (or fewer) points P;sP5 in X, such that x ¢
conv(pl U p2) z P1Pye Since in this case X = {z | zq ¢S} has the
property that for all z, and z, in X, 2122C S, 1f we considered the
set Y of all points of S which are in X or are contained in a line
segment, the end points of which are in X, Bunt's refinement of
Fenchel's theorem applies to give YC S is the convX, That is, X

is contained in a convex subset of S,

We now direct our attention to the closed subset S-X of S,

Let Q and K denote the set of points of local non-convexity and kernel
of S-X, respectively, Let p ¢ § and assume that p £ K. Then p # q
since q € K. Let x € S-X be such that px ZZS-X. If p € Q of S, then
px C S, which then irplies that px N X # g, If x ¢ L(p,q),px C S=X
since gx and gp are in S-X, a contradiction, If x ¢ L(p,3), then we
may censlder apxq. Since p € Q, px CS. Since q € K, and x, p € S=X,
qx and qp C S-X C S, Also, since pxNX # @, and _S-X is closed, there
exists an open suwinterval (uv) of (px) such that (uv) C X which inplies
that bd(axpg) C S bounds a bounded residuzl domain of S, a contradiction,
since S Is starlike, Finally, we show that the case where p £ Q is
impossible by shéwing; pe Q irplies p € Q. Assume, to the contrary,

that p ¢ 5, and p £ Q. Then there exists a spnerical neighoorhood N of

p of radius r such that N1 S is convex. Since p ¢ @, there exist
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elements y and z of N N (5~X) such that yz & S-X, Since NN S is

convex, yz C S which implies that yzN X # @, Consider the points

¥,2, and q. If q € L(y,z), then yz C S-X since qy and qz are con-

tained in S-X. If q ¢ L(y,z), we may then consider 8yqz, As before,
since yzN X # # and S-X is closed, there eixsts an open interval

(uv) € (yz) such that (uv) C X, This implies that bd{8yqz), which

is contained in S, bounds a bounded residual domain of S, which again
contradicts the starllkeness of S, Hence, each point of local non-
convexity of S-X is in the kernel of S-X, Since S-X is a closed,
connected set, if S-X has two or more points of local non-convexity,

then S-X may be expressed as the union of three or fewer closed convex
sets, by Theorem 3.4, If S-X has exactly one point of local non-convexity,
then S-X 1is expressible as the unlon of three or fewer closed, convex
sets, by Theorem 3.3, If S-X has no points of local non;convexity,

then S-X is convex, by Tietze's theorem, Thus, in each case, S-X may

be expressed as the union of3three or fewer closed, convex sets, Mi’
i=1,2,3, Then S = clY LJ(E?Mi) is the desired decomposition of S into

¢closed convex sets,

Lerma 3,10 Let S have property Pn, and z be a point of local convexity
of S, If S is one-dimensional at z, then there exists a line X throuzh
z such that ¢l1(S-X) has property Pn'l.

Proof. Since z is a point of local convexlty, there exists an
open spherical neighborhood, o(z,e) of z such that o(z,e) N S is convex,

Since S is one-dimensional at z, there exlsts an € < € such that
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bd(o(z,e) N S) is zero-dimensional., Tnhat is, cl(o(z,e) N S) is
a line segrent, Y. Hence, xz C S implies x ¢ S N X, where X is the
line determined by Y, Thus if X19X5pe0eX | 4 aTE n-1 points of
S-X which are not Jolned in S, the polnts Xy,X,,ee0,X,_;, 2z Would
violate property Pn. Hence S=X, and consequently cl(S - X) = A,
have property Pn'l relative to S, Let Wl and WZ be the open half-
planes determined by X. Then A = c1[ (wln S) U (w2 N S)]. Assume
now that A doeé not have property Pn'l (relative to A), That is,
let Xq9XpgeeesX be n-1 distinct points of A which are not joined
in A, Not all of these points can be in cl(wln S), or in cl(\«2 ns),
since these sets have property Pn-l. Consider first the case where
£ X NS for 1 = 1,2,...,n-1. Since zx, ¢S for 1 = 1,...,n-1,

C S for some 1 and J because A has property Pn'1 relative to S.

1%
SincexthAx wnSwh.LlexJew N S, say. 'lhusxxjﬂ(an)
is non-empty. Let u = X,x N(XNS). Since A is closed and x,x, -{u}C

17 17
A, u e A, That is, A has property Pn'l. Next consider the case where
X, € (X N S) for some 1. Without loss of generality we may let 1 = 1,
Since x

€ cl(‘.u'l N S) orx, e cl(wzﬂ S), for each neighborhood N of

1 1
Xy there exists an element Yl In ¥, N S or W,N S such that 'fl,x2,...,
X, ) are not joined in A, since A 1s closed. Then Sc'l,xz,...,xn_l, z

violate property Pn. Thus in this case too, A has property Pn'l. That

1s, c1(S - X) has property P2,

Corollary If S is as in the lemma and n = U, then S 1is expressible as

the union of four or fewer closed convex sets,
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Proof, Since S satisfles the hypothesis of the lema,
cl(S - X) = A has property P3 and 1is expressible as the union of

three or fewer closed convex sets, If XN S has exactly one (convex)

component, the result follows,

If there exist two components Xl and X2 of XN S with the
property that nelther is a subset of A, then there exist points zy
3 l& and z, ¢ X2 w;lth the property that 2,2, & S. Moreover, the con-
ditions of the lemma are satisfied at zy and Zye It i1s clear that A
must be a convex set and the result follous,

Finally, the set X S can have at most two such components.,

For then cl1(S - X) =@ and S is not a connected set,

Theorem 3.7 Let S have property Pu. If S has a cut-point q, then

S may be expressed as the union of 4 or fewer closed convex sets,

Proof., Since q is a cut-point of S, S - {q} has two or more

camponents.,

If one of the corponents, C, of S = {q} is convex, we consider
the two cases, C 1s one-dimensional and C is two-dimensional, If C
i1s one-dimensional, then clC is evidently a line segment qy or a ray
R(q,y) emanating from q and containing qy. In either case the hypothesls
of Lemma 3.10 is clearly satisfied at y € C, and the result follows frcm

the Corollary to Lemma 3.10,

Assumne next that the convex component C of S = {q} is two-

dimensional, Since ¢1CN ¢c1(S - C) = {q}, if c € ¢1C and b ¢ c1(S - C),
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c#¥q#b, then cbC S implies q € (cb). loreover, if a, b € c1(S - C)
and ab C S, then ab C c1(S - C), Assume, to the contrary, that ab &
cl(S - C), Since q € c1(S=C) and abC S, ab N (clC = {q}) # 2.

That 1s, ab N C # @ which implies C 1is not a component of S - {q} ,

a contradiction, Now, let xl,xz,x3 be three distinct points of cl(S - C)
which are not pairwise joined in ¢l1(S - C), then by the above remarks,
ifceclCyc#q, then cx, C S implies q ¢ (cxi) and the polints xl,xz,x3
are not palrwise joined in S, Since ¢1C is two-dirensional at c, and
{xl,xz,x3}is a finite set, there exists 1n some nelghborhood N of ¢, a
point ¢' of clC such that c!' xi(zt S, 1=1,2,3. The points c', X)9XsX3
now violate property P3. Thus, S is once agaln expressible as the union
of three or fewer closed convex subsets of cl(S - C) and the closed

convex subset clC,

Let us now assume that the clcsure of each corponent of S - {q}
is not convex, Let C and C' be two such components., Let X, ¥y € c1C
and a, b € c1C' such that xy & ¢1C and ab & c1C'., By a previous argu-
ment this implies xy & S and ab & S. We first assume that q is not one
of the four polnts x, y, a, b, By property Pu, two of the four points
X, ¥, @, b must be joined by a line segment lying in S, Without loss
of generai.{ty wé may assume that xa € S, Once azain, this Implies
q ¢ (xa), Since C is a conponent of S - {q} and x # q, there exists a
spherical neighborhood ¢ of x such that ¢ N Sc C, If there exists a
spherical neighborhood o'c ¢ of x such that for all x' ¢ o' n S,

x' aC S, then q € (x'a) for each x' and we have cl(o'N S) ié a line
segment containinz x. ((o' N S) # {x} since S is connected) Clearly

x satisfies the nypothesis of Lerma 3.10 and the result follows from
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thé arguments used in the one-dimensional convex case above, Assume
then that for all spherical nelghborhood o' of x there exists x' # x
in ¢'N S such that x' a& S, Since S is a closed set and xy & S,
there exists an open spherical neighborhood o' C o such that for all
x'L €d'NS, x'y&S., Let x' € o' N S such that x' a ¢S, Then,
since x'a, x'y, and ab are not contained in S, by property Pu, x'b,
yb, or ya 1s contalned in S, If yac S, then q, y and a are collinear
since clC N cl1C' = {q}. Since xacC S, q, x, and a are collinear for
the same reason., Thus, if yaC S, xyc xa U ya € S, a contradiction,
Assume then that x'b c S, Since x' e o NS cC, x' ¥ q and x'bC S
implies q € (x'b).

If there exists a spherical neighborhood t of x' such that for
éll ze1NS, zbC S, then q € (zb) for all z ¢ 1t which implies
CIkT NS) is a line segnent containing x'. Then x' satisfies the
hypothesis of Lemma 3.10 and the arguments of the one-dimensional
convex case apply to glve the desired result, Therefore, we may
assume that there exists in every spherical nelghborhood t of x' an
element z such that zb ¢S, Let 1t o' be a spherical neighborhood
of x' which does not intersect the corponent of L(x,a) N S containing
xa, Let z ¢ t such that z0 & S, Since z ¢ o'y, zy &S, Since z e t
and 1 does not intersect the comporent of L(x,a) A S which contains
xa, za &S, We now have a point z ¢ C such that za, zb, zy are not
‘contained in S, Since ab and ya are not contained in S, it must
happen that yb 1s contained in S, by property Pu. If, however, yo C

S, then q, y, b are collinear, since c1C N c1C' = {q}. Since X' bCS,
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q, x', b are collinear for the same reason, Thus, if yb C S,

x'yC x'b U ybc S, a contradiction,

'mus, if xa and x'b are contained in S, x, y, a, b are
different from q, and nelther x nor x', as defined above, has a
spherical neighbornood whose closure intersects S in a line segment,
we are able to exhibit four points z, y, a, and b which violate

property Pn.

We now consider the case where xa and yb are contained in S,
and x, y, a, and b are each difference from q. Without loss of
generallty we may assume that none of the elements x, y, a, b has
a neighborhood whose .closure intersects S in a line segment, If x!'
1s defined as above, then x'b ¢ S, for if x'b C S, then clC N c1C' =
{q} implies q, x', b are collinear, Since ypC S, q, y, b are collinear
for the same reason, and we have x'y € x'o U yb € S, a contradiction.
Iet T'be a spherical neighborhood of b such that TNS ¢ C', Since S
is closed, and neither x'b nor ab is. in S, there exists a spherical
neighborhood I'' of b, I' c r, such that b' e r' implies b'x' and b'a
are not contained in S, By our original assumption each spherical
neighborhood of b contains an element which is not jolned to y by a
line segrent in S, Let b' ¢ I' N S have this property. Again, since
ypc S, xacSand xy&S, ya& S, Thus x', y, a, b' violate property Pu.
In the case where xa, yb C S, it has been shovn that ya& S. The same
reasoning snows that xa, yb, xbC S can not occur, Finally, assume that
one of the points x, y, a, or b is q, Without loss of generality we may

assume that a = q, Then since S 1s a closed set and gb & S, there exists
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a spherical neighborhood A of q such that for all a' ¢ AN S,
a'b &S, SinceqeclC', ANC' #g, Let a' e A NC', The argu~

ments given above are now applicable to the four polnts x, y, a', b.

Hence, in each case, we are led to a contradiction unless the
closure of some component of S = {q} is convex or unless there exists
a point having a neighborhood the intersection of whose closure is a

line segment.

Since the result has been established in each of these cases,’

the proof is complete.

Theorem 3.8 Let S be a closed. starlike set and have property Pu. Let

the kernel K of S be a one-dimensional set. Then S may be expressed as

the union of four or fewer closed convex sets,

Proof, Since S is closed, by the corollary to Proposition 2.3,
the kernel K of S is closed and convex. Since K i1s one-dimensional, X
is a line, ray, or line segrent, Clearly, K is not a line unless SC K.
Since S C K implies that S i1s convex, we may assume that K is a line
segment xy, or a ray R(x,y) containing xy. Let W(x,y) and W(y,x) be
the opén half-planes determined by L(x,y). Since S N L(x,y) contains
K, S N L(x,y) is a convex set, Thus, if SC S NL(x,y), S is convex,
and we are done, Moreover, if S N L(x,y) & c1[(W(x,y) U W(y,x)) N S],
then there exists a point of local convexity, z, in S N L(x,y) such
that S is one-dirensional at z. By Lemma 3.10, cl[S-(S NL(x,y))] has

property P3. Thus, the set S may be expressed as the union of the 3
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or fewer closed convex sets which arise from cl[S-(S M L(x,y))] and
the closed convex set S N L(x,y). Therefore, we may assume that

S N L(x,y) € cl[(W(x,y) U W(y,x)) N S], and that W(x,y) N S and
W(y,x) N S are not both empty. If W(x,y)N S and W(y,x) N S are con-
vex, we are again done, since then S 1s seen to be the union of the
two closed convex sets cl(W(x,y)N S), and c1(W(y,x) N S). Assume
then that W(x,y)N S is non-empty, and that cl(W(x,y)N S) is not

~ convex, Then W(x,y) N S must contain a point of local non~convexity
of S, Assume, to the contrary, that (W(x,y) N S) contains no points
of local non-convexity of S. We show that (W(x,y)N S) is a convex
set, For i1f u, v ¢ (W(x,y) N S) such that uv & (W(x,y) N S). Then
evidently uv & S. Since J{, yeK,anduve& S, x, y £ L(u,v). Thus,
we may consider the quadrilateral xyvu whose vertices may be consi-
dered to be ordered in.a counterclockwise manner x, y, v, u, as indi-
cated, Let p = xv N yu, and consider the corponent C of the closed
set S N Aupv contalning the connected subset of S, up U pv, Since C
is a closed, connected subset of S, i1f C 1s also locally convex, then,
by Tietze's result, C is convex. Since CC W(x,y) N S, if W(x,y)N S
contalns no poidts of local non-convexity then C is locally convex 1n

which case u, v € C implies uv CC C S, a contradiction,

Ify= .w, the quadrilateral xyvu becomes an infinite convex
strip. The same arguments apply, however, Thus, in the case belng
cohsidered, F:lf W(x,y)N S contains no points of local non-~convexity,
then W(x,y) N S and, consequently cl(W(x,y)N S) is a convex set.

" We see that if neither W(x,y) N S, nor W(y,x) N S contains a point
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of local non-convexity of S, then S 1s expressible as the union of

the two closed convex sets cl(W(x,y) N S) and cl(¥(y,x) N S),

We next show that each polnt of local non-convexity of W(x,y)
S is in the kernel of W(x,y)N S. Let q be a point of local non-
convexity of S in W(x,y)N S, Let z # q be a point of W(x,y) N S
such that zq & S, By the proof of Proposition 2.2, the set S is star-
like from q U z; that 1s, for each element u of S, either quC S or
zZuC S, We first assume that K = xy, y # =, Evidently, L(z,q)N xy =
@ since otherwise zq C S, Since &oy C S and Axzy C S, we have Axgy(n
Axzy = Tc X. Let u ¢ IntT. Then since u £ K, there exists an element
v of S such that uv & S.. Ofder the four v-shaped resions Vi’ 1=1,2,3,4
determined by L(x,u) and L(y,u) in a counterclockwise mamner startine
with that region which contains (xy). Evidently v £ clvy U clV3 since
xy = K and there would then exist an element w in xy such that w, u,
and v are collinear whichv would Imply uv € S, a contradiction, Let
Ve V2. Since S is st‘ariike from q Y 2z, vq or vz 1s contained in S,
We have, uqC axqy NS and uz C Axzy N S. The segnents vy and yu are
also contained in S since y € K. Thus uv is contained in the quadri-
lateral uqvy or uzvy, each of which lies entirely in S, and we have
uv C S, a contradiction. If ve Vs we have uv C uqvxC Soru C
uzvx C S, again a contradiction., This contradiction implies that
every point of W(x,y) N S and nence of cl(W(x,y) N S) is Joined to q
by a line segment which lies entirely in S, Thus each point of local

non-convexity g of S in W(x,y) N S 1s in the kernel of cl(W(x,y) N S).
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If y = », the same argument applies to the regionswclv ’ clV3,

Vn. If, however, v ¢ V2, we have uv is contained in the convex strip
ugv «» 1f qvC S or in uzv «» if zy € S, which again leads to the same

conclusion,

Let Q be the set of points of local non-convexity of cl(W(x,y)
NS) = A, The set Q is non-empty, by assurption, If q e § NL(x,y),
we show that q is the limit of a sequence of points of § N W(x »Y)e
Since each element of Q N W(x,y) is in K, the kernel of A, it will
follow from the cloéure of S, that qe K., Assume that q ¢ 3 NL(x,y).
If q is an isolated point of Q, then there exists an open spherical
neighborhood o of q such that N Q = {q}. Let u, v e 0 N A such
that uwv € A, Evidently uww& S, If u, v e L(x,y) N S, thenuvcCSs,
since L(x,y) N S contains xy, the kernel of S, Thus, at most one of
the points u and v is in L(x,y) N S, Assume that u ¢ L(x,y) N S,
- Then since u e cl(W(x,y) N S), every spherical neighborhood A of u
intersects YW(x,y) N S. HMoreover, since S is closed, there exists a
spherical neighbornood A' of u such that u' ¢ A'N A implies u' v S,
We may assume that A' c o. The above argument indicates that we may
assume u and v to be in W(x,y) N S, whenever 1t is desirable to do so.
If q ¢ K, the kernel of A, then qu and qv are in S. If q £ K, then
there exists a point z ¢ W(x,y) NS, such that qz & S, Since S 1s closed,
there will then exist a spherical neig,hbofhood 1t of q, T C o such that
w.c Tt NA implies wz & S, Let u, v e t N (W(x,y) N S) such that uv & S.

ﬁhen, by Proposition 2.2, each point of S is either joined to q or to z
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by a line segment lying entirely in S, Since uz and vz are not con-
talned in S, uq and vq are contained in S, Thus, in either case

(q € K and q £ K) we are able to find points uand vin o N
{(W(x,y) N S) such that uv & S while qu, quc S. By Lemma 3.3, q ¢
(x,y). Let us assume that q, x, y is the ordering of these three
points along the line L(x,y). (We do not exclude the possibility
that x = q), Sincey e K, y ¢ K. Since uv & S, u, v and y are not
collinear., Thus, we may consider Ayqu and Ayqv. Since qu, qvC S
and y ¢ K, each of these triangles lies entirely in A, Since qu and
qv are in S and uww & S, u, v, and q are not collinear, Hence éither
yu Ngv or yv N qu defines a unique point p in W(x,y) N S with the
property that pu and pv are contained in o N (W(x,y) N S). Thus,
Apuv lles entirely in o N(W(x,y)). Let C be the component of Apuv N
(W(x,y) N S) which contains the connected set up U pv., Since ApuvcC
o N(W(x,y), C is a closed, connected, locally convex set which must
then be convex, by Tletze's theorem. Since u, ve C, wcCcS, a
contradiction, unless C contains a point of local non-convexity of

S in ¢ N W(x,y) distinct from q.

If y = =, then the same argument holds for a suitable choice
of y' along the ray x =, It follows that every open spherical
neighborhood of q contains a point of local non~-convexity of S lying
in W(x,y) N S. That is, q is a limit point of a sequence {p,} of
points of local non-convexity of S in W(x,y) N S. Since P, € K for
each n, P, 2 C S for all a € A, For each a € A, the set {pna} con-

verges to the set qa which is in A, since A is a closed subset of
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the closed set S, Thus, q € K, the kernel of A. We now have that
every point of J, the set of points of local non-convexity of A is
in K, the kernel of A, Moreover, if § N L(x,y) is non-empty, then
the cardinality IT of Q is infinite,

Evidently the set A 1s a closed, connected set each of whose
points of local non-convexity is contained in its kernel K, That is,
the set A satisfies the hypothesis of Theorem 3.4, It follows that
if N is one, even, or infinite, that A is expressible as the unton

of 2 convex sets, as was shovm in the proof of Theorem 3.4, ‘

If N = 2n+ 1 1s an odd integer greater than one then
Q NL(x,y) = # and there exists an edge qy9; of convk} and a support

plane W, of convy which abuts conv® along qyq; such that xy € el(¥W N

(W(x,y) N S)). As in the proof of Theorem 3.4, Wy N (W(x,y) N 5),
and, consequently, cl(wo N (W(x,y) N S)), are convex, Starting
with qyq; we order the remalning edges of conv® in a counterclockwise
manner, If we let ‘.-!i be the open half-plane of support to convQ

whose closure contains Q493410 e have the convex sets

m
S, =cl {(convQ) U L(S NUW(x,y))N #y Yoy 1

m

| S, =cl {(conv®) UL(SNW(x,y))N igl Wy 1

and S, = c1(W, N (W(x,y) N S)) as three convex sets containing

3

cl(S NW(x,y)), as in the proof of Theorem 3.4. Let M, and M, be

maximal convex sets of cl(W(x,y) N S) containing S, and S,,

such that w ¢ Ml U M2' Then

respective-

ly, We show that S_C MlU M2. Let we S

3 3
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there exists an element s in Ml and t in 1-12 such that sq & S and
tw S, By Lema 3.8, s ¢ cl(w:L N (W(x,y)N S)) and t € cl(wzmﬂ
(W(x,y) N S)). Let X,¥59;9, be the natural ordering of the ver-
tices of the quadrilateral Xya,qqe Then 83 must be contained in
the union of the two convex rezions 02 and Cl bounded by L(x,qo)
and L(ql,q2m) , and L(y ,ql) and L(qo,ql) respectively, and contain-

ing the quadrilateral Xyq;9y Moreover, cl(wl N Wix,y)n S))c Cl

and cl(w2m N (W(x,y)N S))ccC If this were not the case either

2.
q, or q; would not be in Q. Since the quadrilateral xyq,q,C X
and the above mentioned sets are contained in Cl U CZ’ we have sw)
Kor twn X is non-erpty. That is, sw or tw is contained in S,

This contradiction shows that S C"Ml U M2. As in the proof of

3
Theorem 3.4, the same arguments hold for y = =, with only the obvious
changes. Since the above arguments may also be applied to cl(W(y,x)N
8), we see that S 1s the union of 4 or fewer closed convex sets, The

following exarple 1s representative:




- 62 =

An examination of the proof of Theorem 3,6 discloses the

following:

1. If S has property Pu, and q 1s a point of local non-
convexity of S, then the convex hull of the set X of
points of S which are not Jolned to q by a line segment
lying entirely in S is contained in S,

2. If w is a point in the kernel of S, then w 1s a point
in the kemmel of S - X,

3. If w 1s a point of local non-convexity of S - X, then w

1s a polnt of local non-convexity of S.

If S, X, and q are defined as above, and S does not bound a
bounded domain of its camplement, then S-X has property Pu. Assume

to the contrary, that X190 X59 X3y and X, are four points of S-X

3
which are not joined in S-X. Then X N X1X5s S8Y, is non-empty
since S has property Pu. Clearly, q, X1s and X, are not collinear
since ax, and qx, are contained in S-X. Thus, we may consider
Aqxlxz. Since S-X is closed, there exists an open subinterval (uv)
in (xlxz)r1 X which 1mp1ies bd(Aqxle)c: S bounds a residual domain

of S, contrary to assumption,

Sinée by Theorem 3.5, a closed, connected set in E2 having
property Pu which bounds a bounded domain of its complement may be
expressed as the union of 5 or fewer cloﬁed convex sets, the problem
of determining the number of closed convex sets which are required if

2

a closed, connected set in E™ having property Pu 1s to be expressed

as the union of such sets, may be reduced to the case where the set
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S does not bound such a domain, Since S is elther convex or contains
a point of local non-convexity q, (by Tletze's Theorem), we may assume
the existence of such a point., By the above remarks, S may be con-

sidered to be the union of a starlike set having property Pu with q

in its kernel, and a closed convex set, Thus, 1f the case where S is
starlike with one or more points of local non-convexity in the kernel
of S were settled, the general case would then follow, Several of the
cases settled by the theorems of this chapter allow one to place even

greater restrictions upon the nature of the set S,



CHAPTER IV
FURTHER CONSIDERATIONS AND EXAMPLES

While it may be difficult to determine how many convex sets
are required to express a closed, connected set S having property
P? as the union of closed convex sets it may not be as difficult
to establish an upper bound on the number required., The following
theorem 1s a step in that direction;_

Theorem 4.1 If S is a closed, comnected P" set in E2 and the set
Q of points of local non-convexity of S is a finite set, then S is

expressible as the union of a finite number of convex sets.

Proof., ILet N be the cardinality of Q. If N = 1, the result
follows from Theorem 3,3, Hence, assume the result to be true for

N<k-1 and consider the case N = k,

Since convQ is a compact, convex set in Em, there exists an
element q of Q such that q £ conv(Q - {q}). Thus, there exists a
line L which strictly separates q and the corpact convex set
conv(Q - {q}).

Let U be the closed half-space determined by L and contain-
ing conv(Q - {q}) in its interior, and V be the closed half-space
containing q in its interior, It is clear that UN S and VS
are closed sets having property P, Thus each has at most n = 1
components, and each corponent is a & set containing at most k - 1
points of Q. Thus, by our induction hypothesis, each component is
expressible as the union of a finite number of closed convex sets,

The result now follows,

- 6} -
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Remark: An example glven by Kay [11] shows that a finite
number of convex sets may not suffice if S is not closed, The case

where S 1s closed remains unsettled.

Considering the results obtained in Chapter III for closed,
connected sets in the plane having property Pu, one might conjecture
that a closed, starlike set in E2 with property P is expressible as
the union of n or fewer closed convex sets, The following examples

show that this is not the case for n > 4,

The first example given has property PS, but can not be ex-
pressed as the union of fewer than 6 closed convex sets, (Each
star is expressible as the union of no fewer than 3 convex sets,
and no point of one may be entirely included in convex subsets of
the other).




- 66 -

The second example given indicates how one might subdivide the
circumference of a circle to obtain a starlike set having property
sz'"l which i1s expressible as the union of no fewer than 3k convex

sets, where k is the number of stars.

This particular example has property Pl7 and 1s expressible

as the union of 24 closed convex sets,

the circle,

Z

Its kernel 1s the center of
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Scme of the topological properties of a set having property
P? have been established, For. example, if S 1s closed and connected,
then S is arcwise connected by Proposition 2,23 by Theorem 7 of Kay
[11] which is stated without proéf, S is locally starlike, and hence
locally connected.

For n > U, a closed connected set need not be simply connected
since the boundary of a triangle in Ez has property Pu. The question
of the connectivity of a closed, connected set in E:2 is of same in-
terest,

For n = 4 it was shown in Lemma 3,9 that a closed, connected
set S in E2 with property Pu can bound at most one bounded domain of
its complement, For n = 5, each of the following exarples having
property P5 bounds 3 such domains., (In these exarples, 4, 5, and 6

convex sets have been used to bound the three domains).

For n > 4, the nuwer of bounded domains which a closed,
2

connected set in L™ having property P can bound is an open question,
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'Iﬁe following class of examples of sets having property Pk+l which
bound Cg'l domains indicates that the nurber is greater than or equal
to'Cl;l. Let the k vertices of a convex polyson be chosen so that
the extension of each side intersects the extension of every other
silde, The configuration consisting of the k extended sides will
bound Cg'l domains and will have property Pk+1. Given below are
examples for k = 3,4,5,6,7,8. Several other configurations have
been considered, but each has resulted in Cg-l or fewer bounded do-

mains
/& AN pd
2 \ 3. 4

/c2 1 c3 =3 ch =6 \
2 = 10 b =15 c/ =2
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The nature of P sets in higher dimensions nas received very
little attention, If the proofs given in E2 are to be generalized,
it would seem that the generalization of Valentine's results, Theorem
3.3 and Theorem 3.4 should first be considered, and the nature of

the set of points of local non-convexity understood.

For n = 3, Valentine [18] has given the following result:

Let S be a closed set in a linear topological space L where the di-
| mension of L is greater than two. If S has property P3, is not con-
talned in any two-dimensional variety of L, and has one isolated
point of local nonconvexity, then S has at most two points of local
Aon-convexity. The proof uses strongly the fact that for n = 3 the
set of points of local non-convexity of S are in the kernel of S,
which is not true for n > 3, The following exarple is a P3 set in

E3 having exactly two points of local non-convexity.,

By adding lines which pierce the sphere one may obtain a P set

having 2(n - 2) isolated points of local non-convexity.
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It is clear from the example given after Proposition 2.6,
and the boundary of a 3-simplex which has property P5 that S need

not have any 1solated points of local non-convexity.
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