PLANAR SETS HAVENG BROPEKYY PR

Thesin for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY Merle D. Guay 1967

This is to certify that the
thesis entitled

Planar Sets having Property P^{N}
 presented by

Merle D. Guar
has been accepted towards fulfillment of the requirements for Ph.D. degree in Mathematics

Date May 23, 1967

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right.
$$

ABSTRACT
PLaljar sets having property pn
by Merle D. Guay

As a natural generalization of convexity, a subset X of a set S in a linear space L is said to have property P^{n} relative to S if for every n distinct points of X at least two of the points are joined by a line segment which lies entirely in S; if $X=S$, then S is said to have property P^{n}. Property P^{2} is the usual defintition of convexity.

It is first shown that a set having property P^{n} may be expressed as the union of ($n-1$) or fewer starlike sets. Several re.. sults which depend primarily upon the linearity of tioe containing space are then obtained for sets having property P^{n}.

In an attempt to determine the number of closed conver sidusets which are required to express a closed, connected r^{n} set $a s$ the union of convex sets several results are obtained. For $n=4$, the maximum number is shown to be 5 if S bounds a bouncled domair of Its complement; and to be 4 if S has a cut point, a onc-imensional kernel, contains a point at which S is both locally convex ard onedimensional, or inie at most one point of local nor-convexity wisin is not in the kemel of S. If S has exectiy ame point of local nomconvexity q, then \mathcal{B} is shom, to be stanlike from q, without assuine that S tas promenty p^{n}; fon Eidition, S has property P^{n}, then it

$$
\left[\begin{array}{c}
1 \\
0 \\
\\
\\
\hline
\end{array}\right.
$$

is shown that S may be expressed as the union of ($n-1$) or fewer closed convex sets. Finally, if S has two or more points of local non-convexity each of which is contained in the kernel of S, then S is shown to be expressible as the union of 3 or fewer closed convex sets, independent of property P^{n}.

Finally, the higher dimensional case, the topological properties of P^{n} sets, and the problem of obtaining an upper bound on the number of convex sets required to express a set having property P^{n} as the union of convex sets are briefly considered.

$$
\left.\left\lvert\, \begin{array}{l}
1020 \\
{[1} \\
0
\end{array}\right.\right]
$$

PLANAR SETS HAVING PROPERTY P^{n}

By
\section*{Merle D. Guay}

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirement for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1967

This thesis has been examined and approved.

Date

ACKNOWLEDGMENTS

I am greatly indebted to Professor John G. Hocking for his helpful guidance and encouragement during the preparation of this thesis.

I also wish to express my gratitude to Professor B. Grunbaum and Professor L. M. Kelly for their valuable surgestions and comments. I am particularly grateful to the latter for supgesting a shorter proof of Theorem 3.3.

CONTENTS

Chapter Page
I. INTRODUCTION 1
II. SETS HAVING PROPERTY P^{n} - • • • • 3
III. PLANAR SETS HAVING PROPERTY P ${ }^{n}$ 17
IV. FURIMER CONSIDERATIONS AID EXAIPIES 64
BIBLIOGRAPHY 71

CHAPTER I

INIRODUCTIO:

As a natural generalization of convexity, a set S in a linear topological space L is said to have property P^{n} if for every n distinct points of S at least two of the points are joined by a line segment which lies entirely in S . Property P^{2} is equivalent to convexity. For $\mathrm{n}=3$, Valentine [17] found this concept to be useful in the study of sets each of which is the union of two convex sets. He was able to show that a closed connected set in E^{2} having property P^{3} can always be expressed às the union of three or fewer closed convex sets having a non-empty intersection, and that the number three is best. He later found this same concept useful in proving that the boundaries of two compact, convex bodies S_{1} and S_{2} in a Minkowski space L_{n} intersect in a finite number of ($n-2$) - dimensional manifolds, provided that the intersection of the interiors of S_{1} and S_{2} be contained in the interior of the convex hull of the union of S_{1} and S_{2} [18]. The definition of property P^{3} given by Valentine suggested to me the definition given above as a natural generalization. It was later discovered that Allen [1] and in a joint paper, Danzer, Grunioaum and Klee [6] had given generalizations of convexity which encompass the definition above as a special case. However, no relevant publications have appeared to date.

The results of Valentine [17] sugrest the possiblity that a closed connected set in E^{2} having property P^{n} should be expressible as the union of n or fewer closed convex sets. However, this conjecture is false. For example, if the set S is closed, connected, has property P^{4}, and bounds a bounded residual domain of S, then S may be expressed as the union of 5 or fewer closed convex sets, and the number 5 is best. This example and the fact that a set with property P^{3} is starlike surgests that the condition of starlikeness be added to property P^{n} in the hypothesis of the conjecture. If, in addition, certain restrictions are placed upon the nature of the set of points of local non-convexity, the result is forthcoming. In general, however, the result is still a conjecture for the case $n=4$, while for values of n greater tinan four starlikeness does not restrict the number of convex sets to be n.

The results contained nerein were obtained in an attempt to determine the properties of sets having property $P^{n} \quad(n \geq 3)$, and to determine how such sets may be expressed as the union of their convex subsets.

CHAPTER II

SETS HAVING PROPERTY P^{n}

The results of this chapter are of an intrinsic nature, depending primarily upon the properties attributed to the set itself. The linearity of the containing space is indispensable, of course. While it is assumed that the sets being considered are embedded in Euclidean m-dimensional space, E^{m}, many of the results could have been stated with a general linear topological space as the containing space. Since the results are also of a heterogeneous nature, and are not required, for the most part, in the proofs of later results, they are numbered as propositions rather than being called lemmas.

With rare exception familiarity with the common terminolory of convexity and topology is assumed. Notation used is explained as its introduction becomes necessary. The following less familiar definitions are essential to the understanding of most of that which follows. Each is a natural generalization of convexity.

Definition 2.1 A set S contained in a linear space L, is said to be starlike if there exists a point x in S such that for each y in S, it is true that the line segment $x y$ lies entirely in S.

Remarix: A non-empty convex set is starlike from each of its points.

Definition 2.2 A subset X of a set S in a linear space L is said to have property $P^{n},(n \geq 2)$, relative to S if for every n distinct points of X at least two of the points are joined by a line segment which lies
entirely in S. If $X=S$, the set X is said to have property P^{n}. Remark: Property P^{2} is the usual definition of convexity.

The next two results help to explain the intimate relationship between the two concepts.

Proposition 2.1 Let $S \subset E^{m}$ have property P^{n}. Then S may be expressed as the union of $(n-1)$ or fewer starlike sets.

Proof. For $\mathrm{n}=2$, the set is convex. Assume then that the result is true for $n=k-1$, and consider the case $n=k$. There must exist $(k-1)$ points of S no two of which are foined by a line segment lying entirely in S, since otherwise S has property P^{j} for $j<k$ and the induction hypotheses applies. Hence, let p_{1}, \ldots, p_{k-1}, be the ($k-1$) points no two of which are joined by a line segment lying entirely in S, and let x be an element of S different from p_{1}, $1=1, \ldots, k-1$. Then the line sesment $x p_{i}$ is contained in S for some 1, since otherwise $x, p_{1}, \ldots, p_{k-1}$ would violate property P^{k}. Thus S is a union of sets X_{1} starlike from p_{i} and the result follows.

As trivial examples of sets in E^{2} having property P^{n} one mirght consider the boundary of a regular n - sided polygon as a set having property P^{n+1} for $n \geq 3$. A set consisting of n distinct line segments which intersect in the origin is an example of a starlike set having property $\mathrm{P}^{\mathrm{n+1}}$.

Remarks: It is clear that any set which is tre union of exactly $(n-1)$ convex sets has property P^{n}.

It is also clear that property P^{n} implies property P^{m} for $m>n$.

The well-known definition of local convexity proves to be extremely useful and so is included.

Definition 2.3 A set S is said to be locally convex at a point p in S if there exists an open spherical neighborhood N of p such that $S \cap N$ is convex. If a set is locally convex at each of its points, it is said to be locally convex. A point p of S is a point of local nonconvexity if S is not locally convex at p.

Proposition 2.2 If $S \subset E^{m}$ is a closed connected set having property P^{n}, $n>3$, then S is the union of a starlike set and a set having property P^{n-2} relative to S.

Proof. Thetze [14] has shown that a closed connected set in E^{m} which is locally convex is in fact convex. Hence, if S has no points of local non-convexity we are done. Let t be a point of local nonconvexity and $T=\{x \in S \mid x \in \subset S\}$ let x_{1}, \ldots, x_{n-2} be points of $S-T$ which are not joined in S, and N_{i} be a spherical neighborhood of t of radius $\frac{1}{1}$. By the closure of S and the definition of t, for 1 sufficiently large, there exist y_{i} and z_{i} in $N_{i} \cap S$ such that $y_{i}, z_{i}, x_{1}, \ldots, x_{n-2}$ are not joined in S, contradicting the fact that S has property P^{n}. Hence, $S-T$ is contained in a subset of S which has property P^{n-2} relative to S, and the result follows.

Remark: Instinctively one considers the above result as an invitation to attempt an induction on n when seeking to prove a given result. While this is sometimes effective, the set T will, in eeneral, have the same
property P^{n} as did S, and $S-T$ is only contained in a subset of S having property P^{n-2} relative to S . For $\mathrm{n}=4$, consider the following example which illustrates the difficulty: the shaded area corresponds to $\mathrm{S}-\mathrm{T}$.

As the union of three convex sets S quite obviously has property P^{4}, and also quite obviously S - T is contained in a set having property P^{2}, a convex set, while I again has property P^{4}.

While almost all examples given are polygonal, no proof given depends upon this property. It is simply easier to construct such examples, and, having constructed them, to determine whether or not they do indeed have property P^{n} for some predetermined value of n.

Since a set having property P^{n} is the union of a finite number of starlike sets, it is not surprising that the following concept and result are of interest when considering such sets.

Definition 2.4 Let S be contained in a linear topological space L. The kernel K of S is the set of all points of S with respect to which S is starlike. That is, $K=\{z \in S \mid z x \subset S$ for all $x \in S\}$.

6

Brunn showed that K is a closed convex set, provided that S is a closed subset of E^{2}. The following result generalizes the Brunn theorem [4] and provides a useful characterization of the kermel of S.

Proposition 2.3 Let S be a set in a linear topological space L. Then the kernel K of S is the intersection of all maximal convex subsets of S.

Proof. First of all, every point x of S is contained in a maximal convex subset, M_{x} of S. Let x be in S. Then $\{x\}$ is a convex set. Partially order by inclusion the collection C_{α}^{x} of all convex subsets of S containing x. Using the maximal principal extract a maximal simply ordered subcollection $\left\{C_{a!}^{X}\right\}$, and let $M_{x}=U_{a},\left\{C_{\alpha}^{x},\right\}$.

Now, let v be in K. Then v is contained in every maximal convex set in S for otherwise vir ${ }_{x}$, the join of v with M_{x} would be a convex set containing M_{x} properiy. Next, assume that \bar{v} is in the intersection of all maximal convex sets of S. Then, since every point x of X is in some maximal convex set, $x \bar{v}$ is in S. It follows that $\bar{v} \varepsilon K$.

Corollary. The kernel K of $S C L$ is a convex set which is closed if S is closed.

Proof. The set K is convex since the intersection of any number of convex sets is known to be convex. If S is closed, M_{x} is closed for x in S since the closure of a convex set is a convex set. Finally, the intersection of an arbitrary number of closed sets is a closed set.

Remaric: Helly [8] proved the following interesting result: If F is a family of compact convex sets in an N-dimensional Minkowski space I_{N},
then a necessary and sufficient condition that all members of F have a point in comnon is that every $N+1$ members of F have a point in common.

Using the third result and the fact that K , as a closed subset of a compact set, is compact, the theorem could be stated: If F is a family of compact starlike sets in an N-dimensional Minkowski space L_{N}, then a necessary and sufficient condition that all members of F be starlike from a point common to all of their kemels, is that the intersection of each $\mathrm{N}+1$ members of the family contain a point common to the kernels of the $\mathrm{N}+1$ members.

The Helly number of a fanily F of sets is defined to be the smallest cardinal k such that whenever G is a finite subfamily of F and $\cap G \neq$ \varnothing for all GCG with card $G<k+1$, then $\cap G \neq \varnothing$. Helly's theorem asserts that the Helly nurber of the family F of compact convex sets in E^{m} is $m+1$. An intriguing but extremely difficult question is: Does the family of compact (connected) sets in E^{m} having property P^{n} have a finite Helly number?

It is of possible interest to mention, in passing, that the analoçue of the separation theorem for convex sets and the Krein-ilillman theorem for convex sets are obtainable for starlike sets using the concepts of a homeomorphism [2] and relative extreme points [12], respectively.

Although there are a number of elementary results which one may prove for starlike sets which are the natural analogues of those usually encountered for convex sets, our interest here is in sets having property p^{n}, and so only à few elementary resuits which do not hold for sets havine, property P^{n} will be included.

The following results are an indication of the fact that property p^{n} is preserved under many of the usual operations which are in some sense "linear" operations.

Proposition 2.4 If $S \subset E^{m}$ has property P^{n} and L is a linear transformation of S, then $L(S)$ has property P^{n}.

Proof. Let y_{1}, \ldots, y_{n} be n distinct points of $L(S)$. Then there exist distinct points x_{1}, \ldots, x_{n} in S such that $y_{1}=L\left(x_{1}\right), 1=1,2, \ldots, n$. Since S has property $P^{n}, x_{1} x_{j} \subset S$ for some 1 and j. But $L\left(\alpha x_{1}+(1-\alpha) x_{j}\right)=$ $a y_{1}+(1-\alpha) y_{j}$ for $0 \leq \alpha \leq 1$. Hence $y_{i} y_{j} \subset L(S)$ for some 1 and j, as was claimed.

Proposition 2.5 Let $S \subset E^{m}$ have property P^{n} and λ be any real number. Then $\lambda S=\{\lambda s \mid s \in S\}$ has property P^{n}.

Proof. $\lambda S=\{\lambda s \mid s \varepsilon S\}$ defines a linear transformation.

Proposition 2.6 Let $S \subset E^{m}$ be a set having property P^{n} which is contained in a linear variety T of dimension $m-1$. Let v be some point of $E^{m}-T$. Then $v S$, the cone over S with vertex v, has property P^{n}.

Proof. Let x_{1}, x_{2} be points of $v S-v$ such that $x_{1} x_{2} \not \subset v S$ (which clearly do not lie along the same generator of the cone), and let π be the projection map which carries x_{1} and x_{2} into S alons the generators of the cone through x_{1} and x_{2}, respectively. Then the segment $\pi\left(x_{1}\right) \pi\left(x_{2}\right) \notin S$, since $\pi\left(x_{1}\right), \pi\left(x_{2}\right)$ and v determine a plane containing x_{1} and x_{2} : by the definition of $v S, x_{1} x_{2}$ would then be in vS. Thus, if $x_{1}, x_{2}, \ldots, x_{n}$ were distinct points of vS which were not joined in VS, then $\pi\left(x_{1}\right), \pi\left(x_{2}\right), \ldots, \pi\left(x_{n}\right)$ would be distinct points of S which would violate property P^{n}.

Corollary. Let $S \subset E^{m}$ be a closed connected starlike set having property P^{n}. Let \bar{S} be a suspension of S constructed by choosing the suspension points v_{1} and v_{2} to lie on a line orthogonal to E^{m} in E^{m+l} such that $v_{1} v_{2}$ intersects the kernel of S. Then S has property P^{n}.

Proof. Let K be the kernel of \bar{S}. Clearly, K is nonempty since $K \subset K$. Let $v \in v_{1} v_{2}$. Then $v \in K$. This follows from the fact that the suspension of a convex set M in E^{m}, having as suspension points two points such as v_{1} and v_{2} which lie on a line orthogonal to E^{m} in E^{m+1} and intersecting M, is quite evidently a convex set. Since K is known to be the intersection af all maximal convex sets in S, and \bar{S} is contained in the union of the suspensions of all maximal convex sets in S, it follows easily that $v_{1} v_{2}$ is contained in every maximal convex set in S and hence in K.

Now let $x_{1}, x_{2}, \ldots, x_{n}$ be n distinct points of S which are not joined in S. Since by Proposition $2.6, v_{1} S$ and $v_{2} S$ have property P^{n}, not all of the points $x_{1}, x_{2}, \ldots, x_{n}$ can lie in one of these two sets. Let $x_{1} \in v_{1} S$ and $x_{2} \in v_{2} S$. Then $x_{1}=\alpha x+(1-\alpha) v_{1}, 0 \leq \alpha \leq 1$, for some $x \in S$ and $x_{2}=\beta y+(1-\beta) v_{2}, 0 \leq \beta \leq 1$, for some y \mathcal{L} S. Since $v_{1} v_{2} \subset K$, if $x y \subset S$, then the join of $v_{1} v_{2}$ and $x y$ would be a 3 -simplex or a 2-simplex, (in either case a convex set), which contains $x_{1} x_{2}$ and lies entirely in S. This implies that $x_{1} x_{2} \subset S$, contrary to assumption. Thus if $x_{1} x_{2} \not \subset \bar{S}, x y \notin S$. By the proof of Proposition 2.6, the same conclusion may be drawn if x_{1} and x_{2} are both in $v_{1} S$ or in $v_{2} S$. Thus if $x_{1}, x_{2}, \ldots, x_{n}$ are not joined in S, there exist n distinct points which are not joined in S. This contradiction proves the result.

Remarks: From Proposition 2.6 it is clear that one may obtain a closed, connected set having property P^{n} which is starlike by simply constructing the cone over a closed, connected set having property P^{n}.

It also follows from Proposition 2.6 that the suspension of the set S between two points v_{1} and v_{2} must have property $\mathrm{P}^{2 n-1}$. It may, of course, have property P^{m} for $n \leq m \leq 2 n-1$, as illustrated by the Corollary to Proposition 2.6

To illustrate how the situation changes, (and consequently the methods of proof), as the dimension of the set S increases, and to provide an example for the preceeding result, we consider the conventional flve-pointed star in E^{2}.

This set obviously has property P^{3}, may be written as the union of three (and no fewer) convex sets, and has exactly five isolated points of local nonconvexity. The cone over S is a three dimensional set having property P^{3}, but has no isolated points of local non-convexity.

The following result of Valentine [17] is a clear indication of how the situation changes: Let S be a closed set in a linear topological space L where the dimension of L is greater than two. Assume that S has property P^{3}, and that S is not contained in any two-dimensional variety of L. Then if S has one isolated point of local non-convexity, S has at most two points of local non-convexity. Proposition 2.7 Let $S \subset E^{m}$ have property P^{n} and C be a convex set in E^{m}. Then $C+S=\{x+y \mid x \in C, y \varepsilon S\}$ has property P^{n}.

Proof. Let $c_{1}+x_{1}, 1=1,,,, n, n$ be n distinct elements of $C+S$. Since $x_{1} x_{j} \subset S$ for some $1, j$, and $c_{1} c_{j} \subset C$ for all $1, j$, we have $0 \leq \alpha \leq 1, \alpha\left(c_{1}+x_{1}\right)+(1-\alpha)\left(c_{j}+x_{j}\right)=\alpha c_{1}+(1-\alpha) c_{j}+$ $\alpha x_{1}+(1-\alpha) x_{j}$ is in $C+S$. Hence, $C+S$ has property P^{n}.

Corollary: If under the hypotheses of Proposition $2.7, C=\{x\}$, then $x+S$ has property P^{n}.

Proposition 2.8 The Cartesian product of two starlike sets is starlike.
Proof. Let $A \subset E^{k}$ and $B \subset E^{m}$ be starlike sets, and let a_{0} and b_{0} be elements of the kernels of A and B, respectively. In E^{k+m} consider the vector expression

$$
\begin{aligned}
a\left(a_{0}, b_{0}\right)+(1-\alpha)(a, b)= & \left(\alpha a_{0}, b_{0}\right)+\left((1-\alpha) a_{0}(1-\alpha) b\right) \\
& \left(\alpha a_{0}+(1-a) a, \alpha b_{0}+(1-\alpha) b\right)
\end{aligned}
$$

which is an element of AXB for all $0 \leq \alpha \leq 1$.
since

$$
\alpha a_{0}+(1-\alpha) a \in A, 0 \leq \alpha \leq 1
$$

and

$$
a b_{0}+(1-a) b \varepsilon B, 0 \leq \alpha \leq 1 .
$$

Corollary (to the Proof) The product of the kernels of A and B is the kernel of the product $\mathrm{A} X \mathrm{~B}$.

Proposition 2.9 The Cartesian product of a convex set, C, with a set S having property P^{n}, has property P^{n}.

Proof. Let $\left(c_{1}, x_{1}\right), 1=1,2, \ldots, n$, be n distinct points of $C \times S$. Then $c_{i} c_{j} \subset C$ for all 1 and j and $x_{j} x_{j} \subset S$ for some i and j. Thus $\alpha c_{1}+(1-\alpha) c_{j}$ is an element of C and $\alpha x_{i}+(1-\alpha) x_{j}$ is an element of S for some 1 and f and $0 \leq a \leq 1$. But this implies that $\left(\alpha c_{1}+(1-\alpha) c_{j}, \alpha x_{1}+(1-\alpha) x_{j}\right)$ is an element of C X S for some 1 and j, and for all $0 \leq \alpha \leq 1$ as was to be showm.

Proposition 2.10 Let $S \subset E^{m}$ have property P^{n} and $\varepsilon>0$. Then $U(S, \varepsilon)$, the parallel body of S, also has property P^{n}.

Proof. Let $x_{1}, x_{2}, \ldots, x_{n}$ be distinct elements of $U(S, \varepsilon)$. There exist elements y_{1}, \ldots, y_{n} of S such that $\left\|x_{1}-y_{1}\right\|<\varepsilon$ for $1=1, \ldots, n$, by the definition of $U(S, \varepsilon)$. Assume first that all of the y_{1} are distinct. Then there exist 1 and f such tnat $y_{i} y_{j} \subset S$ by property P^{n}. Fixing 1 and j, consider $x_{1} x_{j}$. Let $x=a x_{1}+(1-\alpha) x_{j}$ for sore α between 0 and 1. Then for the same $\alpha, y=\alpha y_{1}+(1-\alpha) y_{j}$ belongs to S. Moreover,

$$
\begin{aligned}
\|x-y\| & =\left\|\alpha x_{i}+(1-\alpha) x_{j}-\alpha y_{1}+(1-\alpha) y_{j}\right\| \\
& =\left\|\alpha\left(x_{1}-y_{1}\right)+(1-\alpha)\left(x_{j}-y_{j}\right)\right\| \\
& <\alpha \varepsilon+(1-\alpha) \varepsilon=\varepsilon
\end{aligned}
$$

which implies that x is an element of $U(S, \varepsilon)$ which in turn implies $U(S, \varepsilon)$ has property p^{n}.

Suppose now that the y_{1}, \ldots, y_{n} are not all distinct. Let $y_{1}=$ $y_{j}, i \neq j$. If it is possible to select an element \bar{y}_{j} in S such that $y_{i} \neq \bar{y}_{j}$ and $d\left(x_{j}, \bar{y}_{j}\right)<\varepsilon$, and this is indeed possible for each pair which are equal, then the above argument applies. If not, then $U\left(y_{i}, \varepsilon\right) \cap S=y_{1}$, Since x_{i}, x_{j} are in $U\left(y_{1}, \varepsilon\right)$, which is convex, $x_{1} x_{j} \subset U\left(y_{1}, \varepsilon\right) \subset U(S, \varepsilon)$ which again implies $U(S, \varepsilon)$ has property P^{n}.

Proposition 2.11 If S is a set in E^{m}, and $X \subset S$ has property P^{n} relative to S, then $c l(X)$ has property P^{n} relative to $c l(S)$.

Proof. Let $x_{1}, x_{2}, \ldots, x_{n}$ be distinct elements in $c l(x)$, then for any $\varepsilon>0$ there exist u_{1}, \ldots, u_{n}, such that $\left\|u_{i}\right\|<\varepsilon$ and $x_{1}+u_{i}$, $1=1,2, \ldots, n$ are distinct elements of X. Since X has property P^{n} relative to S, the line segment $\left(x_{1}+u_{i}\right)\left(x_{j}+u_{j}\right)$, say, is in S. Thus for any α such that $0 \leq \alpha \leq 1, \alpha\left(x_{1}+u_{1}\right)+(1-\alpha)\left(x_{j}+u_{j}\right)$ is in $S_{\text {. }}$ Now

$$
\begin{aligned}
& \left\|\left[\alpha\left(x_{1}+u_{i}\right)+(1-\alpha)\left(x_{j}+u_{j}\right)\right]-\left[\alpha x_{1}+(1-\alpha) x_{j}\right]\right\| \\
= & \left\|\alpha u_{i}+(1-\alpha) u_{j}\right\|<\alpha \varepsilon+(1-\alpha) \varepsilon=\varepsilon
\end{aligned}
$$

Since ε is arbitrary, $\alpha x_{1}+(1-\alpha) x_{j}$ is in $c l(S)$.
Proposition 2.12 Let $n \geq 2$ be a positive integer. The limit S of a sequence $\left\{S^{k}\right\}$ of compact sets having property P^{n} is a compact set having property P^{n}.

Proof. It is well know that S is compact [10]. Hence, let $x^{l}, x^{2}, \ldots, x^{n}$, be n distinct points of S, and let $\rho\left(S, S^{k}\right)=\varepsilon_{k}$ in the Hausdorff metric. Since $S^{k} \subset U\left(S, \varepsilon_{k}\right)$ and $\varepsilon_{k} \rightarrow 0$, we may find a sequence
$\left\{x_{k}^{1}\right\}(1=1,2, \ldots, n)$ such that x_{k}^{1} is in S^{k} and $\lim x_{k}^{1}=x^{1}(1=1,2, \ldots, n)$. For each value of k, at least two points of $x_{k}^{1}, x_{k}^{2}, \ldots, x_{k}^{n}$ are joined by a line segment winich lies entirely in S^{k}. Since the number of possible pairs which may be joined in S^{k} for each k is finite, we may choose a subsequence $\left\{S^{j}\right\}$ of $\left\{S^{k}\right\}$ for winich the sequences $\left\{x_{j}^{1}\right\},\left\{x_{j}^{2}\right\}, \ldots,\left\{x_{j}^{n}\right\}$ converge to $x^{1}, x^{2}, \ldots, x^{n}$, and sucn that for some pair of points x^{1} and x^{2}, say, $x_{j}^{1} x_{j}^{2} \subset S^{j}$ for all values of j. Since S is closed and $\varepsilon_{j} \rightarrow 0$ we have $x^{1} x^{2} \subset S$; that is, S has property P^{n}.

Horn and Valentine [10] have generalized the notion of a convex set in the following manner: A set X in E_{2} is called an L_{n} set if for every pair of points x and y in X, there is a polygonal path, consistin, of at most n segments, lying entirely in X, which joins x to y.

Perhaps the most striking result obtained for this class of sets is the following result which was proved by Bruchner [3]. Theorem: A necessary and sufficient condition that the set X in E_{2} be corpact and connected is that X be the limit of a sequence of compact L_{n} sets for some natural number n. This result has been generalized by J. W. McCoy to a set X contained in a complete, convex, locally compact metric space [13]. Kay [11] has shown that a closed, connected P^{n} set S in a Minkowsici space is an L_{n-1} set.

Thus, the class of all closed, connected sets having property p^{n} is a subclass of the class of L_{n-1} sets. The following exarmle shows that they form a proper subclass. For $n \geq 2$, one needs only to take the cone at $\left(\frac{1}{2}, 1\right)$ over the points $(0,0),\left(0, \frac{1}{n}\right), \ldots,\left(0, \frac{n-1}{n}\right),(0,1)$ to obtain an L_{2} set with property P^{n+2}.

As a generalization of Definition 1.2 of property P^{n}, the following is given.

Dedfinition 2.5 A set S in E^{m} is said to have property P_{r}^{n} if for each n distinct points of S, at least $r+1$ of the points, $l \leq r \leq n-1$, are joined by line segments which lie entirely in S.

Proposition 2.13 Let S be a closed connected set in $E^{m}(m \geqq 1)$. Then S has property P_{2}^{n} if and only if S has property $P_{1}^{n-1} \equiv P^{n-1}$.

It is immediate that S has property P_{2}^{n} whenever S has property P^{n-1}. Hence, let S have property P_{2}^{n}, and assume that $\left\{x_{k}\right\}, k=1,2, \ldots, n-1$ is a collection of $n-1$ distinct points no two of which are joined in S. Let $x \in S, x \neq x_{k}, k=1,2, \ldots, n-1$. Then by property P_{2}^{n}, x_{1} and $x x_{2}$, say, are in S. Let $\left\{z_{1}\right\}$ be a sequence of points in ($x x_{1}$) converring to x_{1}. Then since $x_{1} x_{k} \not \subset S, k=2, \ldots, n-1$, there must exist a neighborhood of N of x_{1} such that for all z_{1} in $N, z_{1} x_{k} \not \subset S, k=2,3, \ldots, n-1$. Then z_{i} and $x_{k}, k=1,2, \ldots, n-1$, violate property P_{2}^{n-1}, a contradiction.

Corollary: Under the conditions of the Theorem, S is convex if and only if S has property P_{2}^{3}.

CHAPTER III

PLANAR SETS HAVING PROPERTY P^{n}

The results of this chapter were obtained in an attempt to determine the number of convex sets which are required if a closed, connected set S in E^{2} having property P^{n} is to be expressed as the union of closed, convex sets. Two results of Valentine are extended and several new results obtained.

Unlike the results of Chapter II, many of the proofs of this Chapter depend upon the properties of the containing space, E^{2}.

The following notation and terminolopy will be standard throurhout the remaining chapters.

The letter S denotes a closed connected set in E^{2} unless otherwise stated. K is the convex kernel of the set S. The letter Q always denotes the set of points of local non-convexity (lnc) of S. (Q is evidently closed if S is closed).

The closed line sesment joining x to y is denoted by $x y$; the corresponding open line segrent is denoted by (xy). The line determined by the points x and y is denoted by $L(x, y)$. By $R(x, y)$ is meant the ray emanating from x and passins throurh y. By $W(x, y)$ we shall mean the open nalf-plane determined by $L(x, y)$ and lying to the left of the line $L(x, y)$ if $L(x, y)$ is considered as directed from x to y. While the meaning of the notation $W(x, y)$ as given above is not standard, the economy of wonds which it allows in that which follows justifies its usage.

The interior, closure, boundary, and convex hull of a set A are denoted by intA, clA, bdA, and convA, respectively,

Definition 3.1 Let S be a connected space. A point q of S is called a cut point of S provided that $S-\{q\}=A \cup B$, where A and B are disjoint, nonempty, open subsets of S.

Theorem 3.1 If q is a cut point of the P^{n} set S, and all the components of $S-\{q\}$ are convex, then S is the union of $n-1$ or fewer convex sets.

Proof. If all the components of $S-\{q\}$ are one dimensional the proof is immediate so assume that at least one of the components, S^{*}, is two dimensional. We proceed by induction on the number of components.

If there is but one additional component the conclusion is clear. If not, q is a cut point of $\left(S-S^{*}\right) ~ U\{q\}$ and we claim $\left(S-S^{*}\right) U\{q\}$ is a P^{n-1} set. For if $\left(S-S^{*}\right) U\{q\}$ contains points $x_{1}, x_{2}, \ldots, x_{n-1}$ no two of which are joined in that set, then since S^{*} is not a subset of the union of the lines $L\left(q, x_{i}\right)$, there is a point x in S^{*} not joined in S to any x_{1}. Thus S is not P^{n}. Hence, by induction, $\left(S-S^{*}\right) \cup\{a\}$ is the union of $n-2$ or fewer convex sets and S itself the union of $n-1$ or fewer.

Theorem 3.2 If a closed, connected set S in E^{m} has exactly one point, q, of local non-convexity, then S is starlike from q.

Proof. By Proposition 2.3, it suffices to show that q is contained in every maximal convex subset of S. Let M be such a set and suppose $q \notin M$. Since M is closed, there exists a hyperplane, L, such that $L \cap M=\varnothing$ with q in one open half-space and M in the other. Let W be the closed half-space containing M.

If for each $y \in M$ there exists a sphere, $\sigma(y, p) \subset M$ then M is both open and closed relative to S and S is not connected. Thus for some $z, z \varepsilon M$, each sphere $\sigma(z, \rho)$ intersects S - M.

Since S is locally convex there exists at z, a sphere $\sigma\left(z, \rho_{1}\right)$ with $\sigma\left(z_{\rho} \rho_{1}\right) \cap S$ convex and furthermore for some $\rho_{2}<\rho_{1} \rho\left(z_{, ~} \rho_{2}\right) \subset W$. Thus, $\sigma\left(z_{,} \rho_{2}\right) \cap S \subset W \cap S$, is non empty, convex and is not a subset of M. It follows that M is a proper subset of the component, K, of $W \cap S$ which contains M.

Suppose, now, that x is any point of K. There exists $\sigma\left(x, \rho_{3}\right)$ such that $\sigma\left(x, \rho_{3}\right) \cap S \cap W$ is convex, and since $x \varepsilon K$, this set is a subset of K. That is to say, K is locally convex at each point and, beins, closed and connected is by Thetze's theorem, convex. This contradicts the maximality of M and snows that q must be an element of M.

Definition 3.2 If the rays $R(q, p)$ and $R(q, r)$ are not on a line they bound a convex and a non convex sector of the plane. The closed convex sector will be denoted by T (pqr) and the closed non convex sector by T^{*} (pqr).

A sector of a circle which is non convex is a major circular sector. The center of the circle is also called the center of the sector.

Lemma 3.1 If q is the only point of local non-convexity of the closed, connected set S in E^{2}, and q is not a cut point of S, then corresponding to points p and \mathbf{r} of S such that $p r \not \subset S$ there exists a circular disk $D($ pqr $)$ such that $D(p q r) \cap T^{*}(p q r) \subset S$.

Proof. Since S is starlike from q, the points q, p and r are not collinear. Since $S-\{q\}$ is connected, locally compact, and locally connected, $S-\{q\}$ is arcwise connected [20], and there exists an arc C in $S-\{q\}$ containing p and r. Let the distance from q to the compact set C be a, and consider the circular disk $D(p q r)$ with center q and radius $\alpha / 2$.

If every ray $R(q, x)$ in $T(p q r)$ intersects C, then q is a point of local convexity of T (pqr) $\cap \mathrm{S}$ and the component of T (pqr) $\cap \mathrm{S}$ containing $q r \cup q p$ is convex. Then prcs, a contradiction. Thus there exists a ray $R(q, x)$ in $T(p q r)$ which fails to intersect C. Now if any ray from q in T^{*} (pqr) fails to intersect C, then C would lie in two separated subsets of the plane. Hence every such ray intersects C and $D(\mathrm{pqr}) \cap \mathrm{T}^{*}(\mathrm{pqr}) \subset S$ as required.

Lemma 3.2 If S and q are as in Lemma 3.1, then S has property P^{3}.

Proof. Suppose x, y, z are points of S no two of which are joined in S. If $q \varepsilon \operatorname{conv}\{x, y, z\}$, then the smallest of the three disks $D(x q y)$, $D(y q z)$, and $D(x q z)$, guaranteed by Lemra 3.1 , is a subset of S, and S is locally convex at q, a contradiction.

Suppose then that $q \in \operatorname{conv}\{x, y, z\}$. One of the rays $R(q, x)$, $R(q, y)$, and $R(q, z)$ is in the interior of the convex sector defined by the other two. Assume that $R(q, y) \subset \operatorname{int}(T(x q z))$. Then $D(x q y) \subset$ $T(y q z) \cap S$, and q is a point of local convexity of $S \cap T(y q z)$. The component of this set containing y, q and z is thus a convex set and yz is in S . This contradiction establishes the theorem.

Theorem 3.3 If q is the only point of local non-convexity of the closed, connected P^{n} set S in E^{2}, then S is the union of $n-1$ or fewer convex sets.

Proof. If q is not a cut point of S then S is P^{3} and it follows from [17] that it is the union of two convex sets.

Suppose then that q is a cut point of S. If all the components of S - \{q\} are convex, the conclusion follows from theorem 3.1. We consider now the remaining possibility that one of the components, S^{*}, is non-convex. Now q is clearly the only point of non-convexity of $S^{*} U\{q\}$, and q is not a cut point of this set. The set $S^{*} U\{q\}$ then satisfles the hypotheses of Lemma 3.1 and q is the center of a major circular sector, D, lying wholly in $S^{*} U\{q\}$. Tnis means that the remaining components of S - \{q\} lie in the convex sector of the plane defined by the rays which intersect D only in q. If M is such a component, it is clearly convex, since its only possible point of non-convexity is q and q is hardly the center of a major circular sector lying wholly in $M \cup\{q\}$. So $M U\{q\}$ is convex.

Since $\left(S-S^{*}\right) \cup\{q\}$ is now clearly P^{n-2} and satisfies the hypotheses of Theoren 3.1, it is the union of $n-3$ or fewer convex sets while S^{*} is P^{3} and is the union of two convex sets. Thus S is the union of $n-1$ or fewer convex sets.

In the proof of Theorem 2 of [17] it may be observed that the use of property P^{3} is unnecessary in the case where each point of local non-convexity of the set S is in the convex kernel of S if one introduces Lerma 3.4 below which itself is independent of property P^{3} and requires only that S be closed and connected. That is, the following theorem, a generallzation of the theorem cited above, can be proved.

Theorem 3.4 Let S have at least two points of local non-convexity. If every point of local non-convexity is in the kernel, K, of S, then S may be written as the union of three closed convex sets. The number three is best.

The proof of this theorem is a modifycation of that given by Valentine [17] wiich avoids the use of property P^{3}. Four definitions and five lemmas are needed.

Definition 3.3 A cross-cut of a set Y contained in E^{2} is a closed segnent $x y$ such that $(x y) \subset$ intY and such that x and y are in bdY.

Lemma 3.3 Each open segrent (uv) of the convex kernel, K, of S contains no points of local non-convexity.

Proof. Let w be an element of $Q \cap$ (uv). Clearly $S \not \subset L(u, v)$. Let z be in $S-L(u, v)$. Since $u v \subset K, \Delta u z v \subset S$. Hence, each sufficiently small neichborhood of w contains no crosscuts of $E^{2}-S$, since such a crosscut $x y$ would have to have its interior ($x y$) in one of the open half-planes bounded by $L(u, v)$.

Definition 3.4 A component of the complement of a closed connected set S is called a residual domain of S.

Lemma 3.4 Let D be a bounded residual domain of S. Then, the $b d D$ contains at least three points of local non-convexity of S.

Proof. Consider the set $E^{2}-D$ which contains $S . E^{2}-D$ is closed since D is by definition an open subset of an open set in E^{2}. Moreover, $b d D=c l D \cap\left(E^{2}-D\right)$ is closed and bounded, and hence compact. Let p be a fixed element of $b d D$ and x be an arbitrary element of $b d D$. As x varies over bdD the distance from p to x defines a continuous function d from the compact set $p X b d D$ into the reals. Hence, d must attain its maximum at some point q_{1} of bdD. Consider the sphere $\sigma(p, r)$ having center at p and radius $r=d\left(p, q_{1}\right)$. Evidently $D \subset C$, where C is the open disk bounded by $\sigma(p, r)$. Thus, each point of $\sigma(p, r)$ is contained in $E^{2}-D$. If q_{1} is a point of local convexity of $E^{2}-D$, then there exists an open spherical neighborhood N of q_{1} such that $N \cap\left(E_{2}-D\right)$ is convex. In particular, if x and y in $\sigma(p, r) \cap N$ are such that $p q_{1} \cap x y \neq \varnothing$, we have $x y \subset E^{2}-D$ which contradicts the assumption that q_{1} is in the $b d D$. It follows that q_{1} is a point of local non-convexity for E^{2} - D. Moreover, q_{1} is a point of local
non-convexity of S. Let x and y be elements of $E^{2}-D$ such that $x y \notin E^{2}-D$. Then $x y \cap D \neq \varnothing$. Since D is an open set $x y \cap D$ may be expressed as a countable union of disjoint open intervals. Let (uv) be one such interval. Then $u, v \in b d D \subset S$, and $u v \not \subset S$. More specifically, if in every spherical neighborhood N^{\prime} of q_{1} there exist points x and y of $E^{2}-D$ sucn that $x y \not \subset E^{2}-D$, then there exist points u and v in $S \cap$ xy $\cap N^{\prime}$ such that $u v \not \subset S$. That is, if q_{1} is a point of local non-convexity of $E^{2}-D$, then q_{1} is a point of local non-convexity of S. In the same way we may next locate a second point of local non-convexity q_{2} in $b d D$ at a maximal distance from $q_{1} \cdot$ (Which will not be p, in general). The third point q_{3} is obtained in like manner by maximizing the sum of the distances $d\left(q_{1}, q_{3}\right)$ and $d\left(q_{2}, q_{3}\right)$ to obtain an ellipse with foci at q_{1} and q_{2} passing through $q_{3^{\prime}}$. Because the ellipse, like the circle, is a convex curve, the very same argument gives the desired result.

Remark: The boundary of the triangle indicates that the number 3 is best.

Lemma 3.5 Under the hypothesis of Theorem 3.4, S has at least one isolated point of local non-convexity.

Proof. Let $x y$ be a crosscut of a residual domain of S. The set $D-(x y)$ is the union of two disjoint open sets, denoted by D_{1} and D_{2} [14]. Since S is starlike, D_{1}, say, is bounded while D_{2} is not. Then bdD_{1} is a continuum [14]. By Lemma 3.4, bdD_{1} contains a point q
different from x or y which is a point of local non-convexity of S. Since S is starlike from q, $x q$ and $y q$ are in S. This implies that $D_{1} \subset \Delta x q y$ since D was a residual domain and q is in $b d D_{1}$.

Consider the lines $L(x, q)$ and $L(y, q)$ or more specifically, the v - shaped domains $V_{1}, 1=1,2,3,4$, that they determine. Order the V_{1} in a clockwise direction about q so that $V_{1} \supset D_{1}$. Suppose q_{1} is an element of $\left(c l V_{1}-q\right) \cap Q$. Then since $\left(q_{1} x \cup q_{1} y\right) \subset S$ we have $D_{1} \subset \Delta x y q_{1}$. But this contradicts the fact that q is in $b d D_{1}$. Suppose next that there exists an element q_{1} in $V_{2} \cap$ Q. Then $\Delta x q q_{1}$ and $\Delta y q_{1}$ are contained in S and once more we would contradict the fact that q is an element of ${b d D_{1}}$. Similarly for V_{4}.

Now if q_{1} is in $V_{3} \cap Q,\left(\Delta y q_{1} U \Delta x q_{1}\right) \subset S$ which implies q is isolated since V_{1} contains no points of Q. Finally, since no open segment of K contains a point of Q, there does not exist a sequence of points of Q along $L(x, q) \cap c l V_{3}$ or $L(y, q) \cap c l V_{3}$ with q as a limit point. Thus, q is an isolated point of local non-convexity of S.

Corollary. Let Q^{\prime} be the set of isolated points of local non-convexity. Then $Q=c l\left(Q^{\prime}\right)$.

Proof. Let $q \in Q$. If $q \in Q^{\prime}$, then $q \in \operatorname{cl}\left(Q^{\prime}\right)$. If $q \notin Q^{\prime}$, let N be an open spherical neighborhood of q. Since $q \varepsilon Q$, there exist x, $y \in N \cap S$ such that $x y \not \subset S$ and $x y$ defines a crosscut $x^{\prime} y^{\prime}$ of a residual domain D of S. As in the proof of Lemma 3.5, the boundary of the bounded component D_{1} of $D-\left(x^{\prime} y^{\prime}\right)$ contains an element q^{\prime} of Q^{\prime}. Since $q \varepsilon K$,
$c D_{1} \subset \Delta x^{\prime} q y^{\prime} \subset N$. Thus every neighborhood N of q contains an element Q^{\prime} of Q^{\prime}. That is, $Q \subset c l\left(Q^{\prime}\right)$. Since Q is closed, $c l\left(Q^{\prime}\right) \subset Q$, and we have $Q=\operatorname{cl}\left(Q^{\prime}\right)$.

Lemma 3.6 The boundary of conv2 is connected, and contains at most one ray.

Proof. Since $H \equiv$ convQ is convex, if bdH were not connected, it is well known that it would consist of two parallel lines. Then Lemma 3.3 would imply that each of these parallel lines contains at most two points of local non-convexity. But then Q would be bounded and bdH would be connected. If bdH contains two rays, then Lemma 3.3 would again imply that Q is bounded, a contradiction.

Definition 3.5 An edge of $b d(c o n v Q)$ is a closed segment $x y$ or a closed ray $x \infty$ whose endpoints are elements of Q.

Lemma 3.7 Let x and y be successive points of local non-convexity in bd(convQ), and W be an open half-plane of support to conv2 which abuts on the edge $x y$ (or $x \infty$). Then (convQ) $U(W \cap S$) is a convex subset of S.

Proof. If u is in convQ and v is an element of $S \cap W$, then $u v \subset S$, since conv2 $\subset K$, K being convex. Now, to show that uv $\subset($ convQ $U(S \cap W)$) we show that $x y \cap u v \neq \varnothing$ (or uv $\cap x \infty \neq \varnothing$).

Recall that x and y are in bdS. Suppose uv $\cap x y=\varnothing$. Then $x v$ and $y v$ are in S whici inplies that x is in $\operatorname{int}(\Delta u y v) \cap S$ or y is in int($\Delta u x v) \cap S$ which implies x or y is not in Q, a contradiction.

Suppose next that u and v are elements of $S \cap W$. Let z be an element of (xy) (or ($\mathrm{x} \infty$)). Suppose uv $\notin \mathrm{S} \cap \mathrm{w}$. Since $u z, \mathrm{zv} \subset \mathrm{S}$, suvz would contain a point of Q, by Lemma 3.4. This is a contradiction since $\mathrm{W} \cap \mathrm{Q}=\varnothing$ and by Lemma 3.3 (xy) (or $\mathrm{x} \infty$) contain no points of Q . Hence (conv2) U ($\mathrm{w} \cap \mathrm{S}$) is convex. (If conv2 $=x y$, then (conv2 $U(\mathbb{W} \cap S$)) may or may not be closed).

Lerma 3.8 Let $\left\{x_{1} y_{1}\right\}$ be a countable number of pairwise disjoint edres in $\mathrm{bd}(\mathrm{conv})$). Assume that bd (conva) contains at least three edges, and let W be the open half-plane of support to conv2 whose boundary contains $\left(x_{1} y_{i}\right),\left(x_{1} y_{i}\right.$ may be $\left.x_{i} \infty\right)$. Then the set $X \equiv(\operatorname{conv}) \cup\left(S \cap\left(U_{i} X_{i}\right)\right)$ is a closed convex set.

Proof. Choose an order on the boundary bd(conv2), and assume that in this ordering x_{1} is the beginning of the edge $x_{1} y_{1}$ and that y_{1} is the end point of $x_{1} y_{1}$.

Let $x_{i} y_{i}$ and $x_{j} y_{j}$ be two disjoint edses, and consider the convex region V bounded by the lines $L\left(x_{1}, y_{j}\right)$ and $L\left(x_{j}, y_{i}\right)$ and containing the quadrilateral $x_{i} y_{1} x_{j} y_{j}$. Let V_{i} and v_{j} be the portions of V adjacent to $x_{1} y_{1}$ and $x_{j} y_{j}$, respectively. (These two sets may not be bounded). If $x_{j} y_{j}=x_{j}$, say, then $L\left(x_{1}, \infty\right)$ is a line parallel to the ray $x_{j} \omega_{0}$. Now, $S \cap W_{j} \subset V_{j}$ since otherwise x_{j} or y_{j} are not in 2 , a contradiction.

Let u and v be elements of S. If u and v are in (convQ) $U\left(S \cap W_{i}\right)$, then by Lemma 3.7, uv $\subset X$. If u is in $S \cap W_{i}$ and v is in $S \cap w_{j}$, $i \neq j$, then u is in V_{i} and v is in V_{j}. Since V is convex, $v_{1} \cap x_{1} y_{1} x_{j} y_{j}=x_{1} y_{1}$, and we have uv $\cap x_{1} y_{1} \neq \varnothing$ which implies uv $\subset x$.

Finally, X is closed. The finite case is immediate since $c l W_{1} \cap S \subset V_{1}$ irplies $\operatorname{cl}\left(W_{1} \cap S\right) \subset\left(W_{1} \cap S\right) \cup b d(c o n v Q)$. If there are an infinite number of disjoint edges, let r be a limit point of the sequence of sets $W_{i_{n}} \cap S$. Since $W_{i_{n}} \cap S \subset V_{i_{n}}$, by fixing ($x_{j} y_{j}$) of the preceeding paragraph it follows that $\left(x_{i_{n}} y_{i_{n}}\right) \rightarrow q$, a fixed point of bd(convQ), as $1_{n} \rightarrow \infty$. Since then $V_{i_{n}} \rightarrow q$ as $1_{n} \rightarrow \infty$ we have $r=q$, an element of conv2. Hence X is closed since convQ is closed.

Proof of Theorem 3.4 First assume that $Q=\left\{q_{1} \cup q_{2}\right\}$. The line $L\left(q_{1}, q_{2}\right)$ divides the plane into the two open half-planes $W_{1}(1=1,2)$. By Lerma 3.7, $W_{1} \cap S$ is convex $(i=1,2)$. Hence, $S=\operatorname{cl}\left(W_{1} \cap S\right) U \operatorname{cl}\left(W_{2} \cap S\right) U$ $L\left(q_{1}, q_{2}\right) \cap S$ is the desired decomposition.

Next assume that $Q=\left\{q_{1} \cup q_{2} \cup \ldots \Delta q_{2 m}\right\}$ where $m>1$. Order the edges of $\operatorname{bd}($ conv2 $)$ in a counterclockwise manner so that $q_{1} \equiv q_{2 m+1}$. Let W_{i} denote the open half-plane of support to conva adjacent to $q_{1} q_{i+1}$. By Lemma 3.8 each of the sets

$$
\begin{aligned}
& s_{1}=(c o n v Q) \cup S \cap\left(\left(_{i=1}^{m} W_{21-1}\right)\right. \\
& s_{2}=(c o n v Q) \cup S \cap\left(\bigcup_{1=1}^{M} W_{2 i}\right)
\end{aligned}
$$

is a closed convex set. Since $S \subset(\operatorname{conv2}) \cup S \cap\left(\bigcup_{1=1}^{2 m} W_{i}\right)$ we have $S=$ $S_{1} \cup S_{2}$.

Next, if $Q=\left\{q_{1} \cup q_{2} \cup \ldots \cup q_{2 m+1}\right\} m \geq 1$, we add $S_{3}=$ (conv2) $U\left(S \cap W_{2 m+1}\right)$ to the sets S_{1} and S_{2}. Finally, if Q is infinite, we need the following definition:

Definition 3.6 A closed, connected subset I of bd(convQ) is called a polygonal element if the following conditions hold:

1. It is the closure of the union of edges of bd(convQ). (An edge of bd(convQ) is a closed segment $x y$ or a closed ray $x \infty$ whose endpoints are contained in cl2.)
2. Its endpoints are limit points of elements in Q.
3. If $I=b d(c o n v 2)$, then I contains at most one limit point of elements in Q. If I $\neq \mathrm{bd}$ (convQ), then only its endpoints are limit points of elements in Q.

Note that a polygonal element is maximal in the sense that it is not a proper subset of a larger polygonal element. The number of polygonal elements of bd(convQ) is countable. This follows from the fact that they are convex subarcs of the boundary of a convex set, convQ, which do not overlap. By definition, each I contains at least one segment. Hence, relative to bd(conv2), each polygonal element has a non-empty relative interior, and the non-overlapping of the polygonal elements implies countability. If convQ is bounded, it is clear that there can be at most finitely many polygonal elements of length at least $1 / n$ times the perimeter of $b d$ (conv2). In the unbounded case, we may simply consider a (countable) monotone increasing sequence $\left\{\sigma_{1}\right\}$ of closed disks concentric about the origin. Then $\operatorname{bd}\left(\sigma_{1} \cap\right.$ convQ $)$ contains at most a countable nurber of polygonal elements for each value
or i. Since $\left\{\sigma_{i}\right\}$ is countable, we have bd(conv2) contains at most a countable number of polyzonal elements.

Let $I_{1}, I_{2}, \ldots, I_{k}, \ldots$ be a well ordering of these elements. Fon each polygonal element I_{k}, divide the edges it contains into two classes M_{k}^{1} and M_{k}^{2} such that no two edges of $M_{k}^{1}(1=1,2)$ are adjacent, that is, have ail endpoint in corrmon. It may happen that one of the M_{k}^{1} may be empty. For each edge e $\varepsilon \mathrm{m}_{\mathrm{k}}^{1}$ we let W_{e}^{1} denote the open halfplane of support to bd(convQ) whose boundary contains e. Define

$$
\begin{aligned}
& F_{k}^{1}=\bigcup_{\operatorname{eivi}}^{1}\left(W_{e}^{1} \cap S\right) \quad(i=1,2) \quad \text { and let } \\
& S_{i}=\operatorname{conv} U\left(U_{k} F_{k}^{1}\right) \quad(i=1,2)
\end{aligned}
$$

Since each edze in i_{k}^{1} is separated from each edge in $i_{k}^{1}(k \neq m)$, Lemra 3.8 implies that S_{1} and S_{2} are closed convex subsets of S. Moreover, since for each point $x \in S$, either $x \in$ conva, or x is in some $w^{1} \cap S$, we have $S=S_{1} \cup S_{2}$ and $S_{1} \cap S_{2}$ is non-empty.

Corollary. If S tras property P^{3} and two or more points of local non:convexity, then S may be expressed as the union of three or fener closed convex sets.

Proof. If q is a point of local ron-convexity of S, then S is starlike from q, [17]. The result now follows, since the hypothesis of the theorem is satisfied.

If the set S bounds a bounded residual dorain of itself, the following two results may be obtainez.

Lerma 3.9 Let S have property P^{4}. Then S can bound at most one bounded residual domain of S.

Proof. Let K_{1} be such a domain. By Lerma 3.4, bdK ${ }_{1}$ contains three or more points of local non-convexity of S. Let q_{1}, q_{2}, q_{3} be three such points. Then, by property P^{4} and the closure of S , these points are joined by line segments lying entirely in S. Thus, by the definition of $K_{1}, K_{1} \subset \Delta q_{1} q_{2} q_{3}$. Moreover, there can not exist a fourth point q_{4} of local non-convexity in $\Delta q_{1} q_{2} q_{3}$ since then $q_{4} q_{1} \subset S$, $1=1,2,3$, which would either contradict the definition of K_{1} or the fact that q_{1} is an element of bdk $_{1}$. For the same reasons if x_{1}, y_{1}, and z_{1} are elements of $\left(q_{1} q_{2}\right) ;\left(q_{2} q_{3}\right)$ and $\left(q_{1} q_{3}\right)$, respectively, then the line joining any two of these points does not lie entirely in S. Hence, by property P^{4}, every point of S is joined to at least one of the points x_{1}, y_{1} and z_{1} by a line segment lying entirely in S. If a second residual domain, K_{2} of S exists, then there exist points of bdk ${ }_{2}$ corresponding to q_{1}, q_{2} and q_{3} of $b d K_{1}$ at least one of which is distinct from q_{1}, q_{2}, or q_{3} and points x_{2}, y_{2}, and z_{2} corresponding to x_{1}, y_{1} and z_{1}, respectively of $\Delta q_{1} q_{2} q_{3}$ such that the three line segments joining x_{1}, y_{1}, and z_{1} to x_{2}, y_{2} or z_{2} are not in S or the three line segments joing x_{2}, y_{2} and z_{2} to x_{1}, y_{1}, or z_{1} are not in S. In either case property F^{4} is violated. Thus S can bound at most one bounded residual domain of S.

Theorem 3.5 Let S have property P^{4}. If S bounds a bounded residual domain of S, then S may be expressed as the union of flve or fewer closed convex sets. The number five is best.

Proof. Let B be the bounded residual domain which is bounded by S. Then B is entirely contained in some triangle whose vertices q_{1}, q_{2} and q_{3} are points of local non-convexity of S, as was show in the proof of Lerma 3.4. We denote the six unbounded domains into which the plane is divided by extensions of the sides of $\Delta q_{1} q_{2} q_{3}$ as show in Figure 3.2. By V_{0} we shall mean the set $\operatorname{cl}\left(\Delta q_{1} q_{2} q_{3}\right)-B$. The component of $\operatorname{int}\left(S \cap V_{0}\right)$ whose closure contains $q_{1} q_{j}$ will be denoted by $J_{i j}$. Denote $\left(S \cap V_{i j}\right) \cup J_{i j} \cup\left(q_{i} q_{j}\right)$ by $D_{i j}$.

Figure 3.2

Observe first of all that $S \cap D_{13}, S \cap D_{23}$ and $S \cap D_{12}$ are each convex sets since if x and y are elements of $S \cap D_{23}$, say, such that $x y \notin S \cap D_{23}$, then, a and b (as shown in Fipure 3.2) together with x and y are four points which violate property P^{4}. The same argument applies to $S \cap D_{13}$ and $S \cap D_{12}$. Observe next that the points c, a, and b are not joined to any point in $S_{1}=\left(S \cap W\left(q_{2}, q_{3}\right)\right)-J_{23}, S_{2}=$ $\left(S \cap W\left(q_{3}, q_{1}\right)\right)-J_{13}$, and $S_{3}=\left(S \cap W\left(q_{1}, q_{2}\right)\right)-J_{12}$, respectively, which implies that these sets have property P^{3}. Hence, by Proposition 2.11
and the Corollary to Theorem 3.4, the closure of each of these sets may be written as the union of three or fewer closed convex sets. Let Q_{1} denote the set of points of local non-convexity of S_{1}. Since S_{1} has property P^{3}, Q_{1} is contained in the kernel of S_{1}. Clearly, Q_{1} is contained in $c l\left(V_{1} \cap S\right)$, and is non-empty, since q_{1} is contained in Q_{1}. We denote the cardinality of Q_{1} by N_{1}. Since $S=S_{1} \cup S_{2} \cup S_{3}$, the remainder of the proof consists of showing that under all possible circumstances these three starlike sets may always be written as the union of flve or fewer closed convex sets.

Order the points of Q_{1} and Q_{2} in a counterclockwise direction starting with $q_{1} \equiv q_{1,1}$ and $q_{2} \equiv q_{2,1}$, respectively. Let $Q_{1}=\bigcup_{j=1}^{N_{1}}\left\{q_{1, j}\right\}$ and $Q_{2}=\bigcup_{k=1}^{2}\left\{q_{2, k}\right\}$.

CASE I Assume first that $N_{1}=N_{2}=1$. We consider a closed disk C_{1} with center at $q_{1}, 1=1,2$, and with radius sufficiently small so that $C_{1} \cap S \subset S_{1}$. In the proof of Theorem $3[16]$ it is shown that the number of components of $S \cap \operatorname{bd}\left(\operatorname{conv}\left(C_{1} \cap S\right)\right)$ is 1,2 , or 4 . If the number of components is 4, then it is shown that clS_{1} is the union of two distinct rays or line segments intersecting at q_{1}. Here this implies that S_{i} is contained in $L\left(q_{1}, q_{2}\right) \cup L\left(q_{1}, q_{3}\right), 1=1,2$. For future reference, we denote the convex subset $S_{1} \cap L\left(q_{1}, q_{2}\right)$ of S_{1} by X_{12}^{1} and denote the convex subset $S_{1} \cap L\left(q_{1}, q_{3}\right)$ by $X_{1,3^{1}}$

If the number of components of $S \cap \operatorname{bd}\left(\operatorname{conv}\left(C_{i} \cap S\right)\right)$ is 2 , then S_{1} is known to be expressiole as the union of two convex sets each of which is determined by one of the two distinct components of
$S \cap \operatorname{bd}\left(\operatorname{conv}\left(C_{1} \cap S\right)\right)$. (By the proof of Theorem 3[17]). The intersection of these two convex subsets of S_{1} is $\left\{q_{1}\right\}$. Let B_{1} be the component of $S \cap \operatorname{bd}\left(\operatorname{conv}\left(C_{1} \cap S\right)\right)$ which intersects $S \cap D_{12^{\circ}}$ Let X_{12}^{1} be the unique convex subset of S_{i} determined by B_{i}. By the above discussion of the proof of Theorem 3[17], q_{1} is a cut point of S_{1} and $X_{12}^{1}-\left\{q_{1}\right\}$ is a component of $S_{1}-\left\{q_{1}\right\}$. Since $X_{12}^{1}-\left\{q_{1}\right\}$ intersects the convex (connected) set $S \cap D_{12}$, the laiter must be contained in $x_{12}^{1}-\left\{q_{1}\right\}$, and consequentiy in $X_{12}^{1}, 1=1,2$. By the same argument $\left(S_{1}-x_{12}^{1}\right) \cup\left\{q_{1}\right\} \equiv x_{13}^{1}$ is a convex subset of S_{1} containing $S \cap D_{13}$. If $\mathrm{S} \cap \mathrm{bd}\left(\operatorname{conv}\left(C_{i} \cap \mathrm{~S}\right)\right)$ has exactly one component, $1=1,2$, then the support line to the convex set J_{12} through q_{1}, distinct from $L\left(q_{1}, q_{2}\right)$ if $J_{12} \not \equiv \varnothing$ and $L\left(q_{1}, q_{2}\right)$ if $J_{12}=\varnothing$, determines two convex subsets X_{12}^{1} and X_{13}^{1} of S_{1} such that $q_{1} \in\left(c 1 X_{12}^{1} \cap c 1 X_{13}^{1}\right), S_{1}=c 1 X_{12}^{1} \cup c 1 X_{13}^{1}$ $x_{12}^{1} \supset S \cap D_{12}$ and $x_{13}^{1} \supset S \cap D_{13}$.

CASE II Assume now that $N_{1}=2 m_{1}, 1=1,2$. Consider the edges $q_{1, j} q_{1, j+1}$ and $q_{2, k} q_{2, k+1} j=1, \ldots, 2 m_{1}, k=1, \ldots, 2 m_{2}$ where $q_{1,2 m_{1}+1} \equiv q_{1,1}$ and $q_{2,2 m_{2}+1} \equiv q_{2,1}$. Let the open half-plane of support to convQ Q_{1} and conv2 ${ }_{2}$ adjacent to $q_{1, j} q_{1, j+1}$ and $q_{2, k} q_{2, k+1}$. respectively, be denoted by W_{f}^{1} and W_{k}^{2}, respectively. By Lerma 3.8 , the sets $\left(\operatorname{conv} Q_{1}\right) \cup \operatorname{cl}\left(S_{1} \cap\left(\bigcup_{j=1}^{1} W_{2 j}\right)\right) \equiv x_{12}^{1}$ and $\left(\operatorname{convQ_{2}}\right) \cup \operatorname{cl}\left(S_{2} \cap\right.$ $\left.\left(\sum_{k=1}^{\mathrm{U}_{2}} W_{2 k-1}\right)\right) \equiv x_{12}^{2}$ are convex sets, having $S \cap D_{12}$ in cormon. Moreover, by the proof of Lerma $3.8, \mathrm{X}_{12}^{1}$ is known to be one of the two convex sets whose union is $S_{1}, 1=1,2$. The closed convex sets

$$
\left(\operatorname{convQ}_{1}\right) \cup \operatorname{cl}\left(\mathrm{S}_{1} \cap\left(\bigcup_{j=1}^{\mathrm{m}_{1}} \mathrm{w}_{2 j-1}\right)\right) \equiv \mathrm{x}_{13}
$$

and

$$
\left(\operatorname{convQ}_{2}\right) \cup \operatorname{cl}\left(S_{2} \cap\left(\bigcup_{k=1}^{m_{2}} W_{2 k}\right)\right) \equiv x_{23}^{2}
$$

are such that $S_{1}=X_{12}^{1} U X_{13}^{1}$ and $S \cap D_{13} \subset X_{13}^{1}$ for $1=1,2$, as in the proof of Lerma 3.8.

CASE III If one (or both) of the $N_{1}, 1=1,2$, is infinite, then by considering polygonal elements of $\operatorname{bd}\left(\operatorname{convQ}_{1}\right)$, as in the proof of Theorem 3.4, we may express the set S_{1} as the union of two distinct convex subsets X_{12}^{1} and X_{13}^{1}, such that X_{12}^{1} contains $S \cap D_{12}$ and X_{13}^{1} contains $S \cap D_{13}, 1=1,2$.

CASE IV We next assume that $N_{i}=2 m_{i}+1$ for $m_{i}>1$. Again, by Lemma 3.8, the sets

$$
\begin{aligned}
& \left(\operatorname{conva}_{1}\right) \cup \operatorname{cl}\left(S_{1} \cap\left(\bigcup_{j=1}^{\mathrm{m}_{1}-1} W_{2 j}^{1} \cup W_{2 m_{1}+1}^{1}\right)\right) \equiv \mathrm{y}_{12}^{1} \\
& \left(\operatorname{convQ_{1}}\right) \cup \operatorname{cl}\left(\mathrm{S}_{1} \cap\left(\bigcup_{j=1}^{m_{1}} W_{2 j+1}^{1}\right)\right) \equiv z_{12}^{1}
\end{aligned}
$$

are closed convex sets. Likewise,

$$
\left(\operatorname{conv}_{2}\right) \cup \operatorname{cl}\left(S_{2} \cap\left(\bigcup_{k=1}^{m_{2}} w_{2 k-1}^{2}\right)\right) \equiv z_{12}^{2}
$$

and

$$
\left(\operatorname{conv}_{2}\right) \cup \operatorname{cl}\left(S_{2} \cap\left(\bigcup_{k=2}^{m_{2}} 氵_{2 k}^{2} \cup w_{1}^{2}\right)\right) \equiv y_{12}^{2}
$$

are closed convex sets. The same Lemma 3.8 shows that

$$
\left(\operatorname{convQ}_{1}\right) \cup \operatorname{cl}\left(S_{1} \cap\left(W_{1}^{1} \cup W_{2 m_{1}}^{1}\right)\right) \equiv x_{13}^{1}
$$

and

$$
\left(\operatorname{convQ_{2}}\right) \cup \operatorname{cl}\left(S_{2} \cap\left(W_{2}^{2} \cup W_{2 m_{1}+1}^{2}\right)\right) \equiv X_{23}^{2}
$$

are closed convex sets containing $S \cap D_{13}$ and $S \cap D_{23}$, respectively. Moreover, $S_{1}=X_{13}^{1} \cup Y_{12}^{1} \cup Z_{12}^{1}$, and the sets Y_{12}^{1} and $Z_{l 2}^{1}$ each contain $s \cap D_{12}, i=1,2$.

In the four cases considered we have selected convex subsets of S_{1} and S_{2} denoted by $X_{12}^{1}, X_{12}^{2}, Y_{12}^{1}, Y_{12}^{2}, Z_{12}^{1}$, and Z_{12}^{2}, each of which contains the convex set $S \cap D_{12^{\circ}}$. At the same time we have selected the convex subsets X_{13}^{1} and X_{23}^{2} of S_{1} and S_{2}, respectively, in such a way that X_{13}^{1} contains $S \cap D_{13}$ while X_{23}^{2} contains $S \cap D_{23}$. Moreover, in each case these subsets have been chosen so that $S_{i}=$ $X_{13}^{1} \cup Y_{12}^{1} \cup Z_{12}^{1}$ or $S_{1}=X_{13}^{1} \cup X_{12}^{1}$. It is clear that several other cases arise as combinations of the four cases considered; for example, N_{1} might be an even positive integer while N_{2} is an odd positive integer. However, in each of these cases, the decomposition of S_{1} and S_{2} may be taken to be exactly the same as in the four cases considered.

To reduce the number of convex sets from 9 to 5 we first show that $c l\left(S_{1} \cup S_{2}\right)$ may be expressed as the union of 4 or fewer closed convex sets. This is accomplished by showing that $c l\left(G_{12}^{1} \mathrm{UH}_{12}^{2}\right)$ is a closed convex subset of $c l\left(S_{1} \cup S_{2}\right)$ where X, Y, and Z may be substituted for either G or H. Assume then that $G_{12}^{1} \equiv G$ is a convex subset of S_{1} containing $S \cap D_{12}$ and that $H_{12}^{2} \equiv H$ is a convex subset of S_{2} also containing $S \cap D_{12^{*}}$ Consider the closed subset $c l(G \cup H)$ of the closed set S. Since G and H are convex sets, each is connected. Since $G \cap H=$ $S \cap D_{12}$, a non-empty, convex (connected) set, $G U H$ is a connected set.

Hence, $\mathrm{cl}(\mathrm{G} \mathrm{U})$ is a connected set. By Tletze's Theorem, if $\mathrm{cl}(\mathrm{G} \mathbf{U})$ is locally convex, then $\mathrm{cl}(\mathrm{G} \mathbf{U})$ is convex. Assume, to the contrary, that $\mathrm{cl}(\mathrm{G} \cup \mathrm{H})$ has a point of local non-convexity p . Since cll and cll are convex subsets of clS_{1} and clS_{2}, respectively, p is not a point of local non-convexity of clG or clH . Thus, if σ is a spherical neighborhood of p of radius r, and $x, y \varepsilon \sigma \cap \operatorname{cl}(G \cup H)$ such that $\mathrm{xy} \not \subset \mathrm{cl}(\mathrm{G} \cup H)$, then $\mathrm{x} \varepsilon(\mathrm{clG}-\mathrm{clH})$ while y $\varepsilon(\mathrm{clH}-\mathrm{clG})$. This implies $x \in \operatorname{cl}\left(S_{1} \cap V_{1}\right)$ while $y \in \operatorname{cl}\left(S_{2} \cap V_{2}\right)$. If we take r to be less than one-half the distance from q_{1} to q_{2}, then no such x and y can exist. Since this contradicts the definition of p as a point of local non-convexity of $\mathrm{cl}(\mathrm{G} \mathrm{U} \mathrm{H})$, it must be true that $\mathrm{cl}(\mathrm{G} \mathrm{UH})$ is locally convex, and hence convex.

For the cases discussed, it has thus far been shown that the 6 possible closed convex sets which could arise from $\mathrm{cl}\left(\mathrm{S}_{1} \cup \mathrm{~S}_{2}\right)$ may always be reduced to 4 or fewer closed convex sets. The arguments given for the four cases above when applied to ClS_{3} show that clS_{3} may be expressed as the union of 3 or fewer closed convex sets in such a way that one of these sets X_{13}^{3} contains $S \cap D_{13}$ while another X_{23}^{3} contains $S \cap D_{23^{\circ}}$. Then the same argument given above applies to show that $\mathrm{cl}\left(\mathrm{X}_{13}^{1} \cup \mathrm{X}_{13}^{3}\right)$ and $\mathrm{cl}\left(\mathrm{X}_{23}^{2} \cup \mathrm{X}_{23}^{3}\right)$ are closed convex subsets of S . Recalling the arguments given in the four cases above, it is clear that this can be done in such a way that there will remain in clS_{3} at most one closed convex set. It has now been shown that the seven possible closed convex sets which remained may be expressed as five or fewer closed convex sets, the desired result.

CASE V. There is one case which remains to be settled; namely, the case which arises when $N_{i}=3$ for one or more values of 1 .

If $N_{1}=3$ for exactly one value of 1 , then witiout loss of generality we maj assume that $\mathrm{N}_{3}=3$. As in Cases II, III, and IV we consider the edges $q_{31}, q_{32}, q_{32} q_{33}$, and $q_{33} q_{31}$ of conv2 . .,e again denote the open half-plane of support to conval 3 adjacent to $a_{3, j} q_{3, j+1}$ by $w_{j,}^{3}, j=1,2,3$ letting $q_{34} \equiv q_{31}$. By Lemma 3.8 the set $\left(\operatorname{convQ_{3}}\right) \cup \operatorname{cl}\left(S_{3} \cap \sim_{j}^{3}\right) j=1,2,3$, is a convex set. Moreover, $\left(\operatorname{convQ_{3}}\right) \cup \operatorname{cl}\left(S_{3} \cap w_{1}^{3}\right) \equiv X_{23}^{3}$ contains D_{23} while $\left(\operatorname{conv2_{3}}\right) \cup \operatorname{cl}\left(S_{3} \cap: w_{3}^{3}\right)$ $\equiv X_{13}^{3}$ contains D_{13}. Finally, $S_{3}=X_{23}^{3} \cup X_{13}^{3} \cup\left(\left(\operatorname{conv} Q_{3}\right) \cup \operatorname{cl}\left(S_{3} \cap W_{2}^{3}\right)\right)$

By the same arguments given for the preceeding three cases $\operatorname{cl}\left(X_{13}^{1} \cup X_{13}^{3}\right)$ and $\operatorname{cl}\left(X_{23}^{2} \cup X_{23}^{3}\right)$ are convex sets. The only distinction to be made now between this case and previous cases is that the remaining convex set in clS_{3} which is the fifth convex set in that decomposition is the set $\left(\operatorname{conv} Q_{3}\right) \cup \mathrm{cl}\left(\mathrm{S}_{3} \cap W_{2}^{3}\right)$.

We next assure that $i_{1}=3$ for $1=1,2$ and that N_{3} is one, even or infinite. In this case, as in Cases I, II, and III, the set clS_{3} may be expressed as the union of tro closed convex sets $\mathrm{cl} .\left(\mathrm{X}_{23}^{3}\right)$ and $c l\left(X_{13}^{3}\right)$, containing D_{23} and D_{13}, rescectively.

Since $N_{1}=3$ for $1=1,2, S_{1}$ may be expressed as the union of the three convex sets, $\left(\operatorname{conv} Q_{i}\right) \cup \operatorname{cl}\left(S_{i} \cap i_{j}^{1}\right), j=1,2,3,1=1,2$, with tine property that
and

$$
\begin{aligned}
& x_{12}^{1} \equiv\left(\operatorname{convQ}_{1}\right) \cup \operatorname{cl}\left(S_{1} \cap w_{3}^{1}\right) \supset D_{12} \\
& x_{12}^{2} \equiv\left(\operatorname{convQ}_{2}\right) \cup \operatorname{cl}\left(S_{2} \cap w_{1}^{2}\right) \supset D_{12} \\
& x_{13}^{1} \equiv\left(\operatorname{convQ}_{1}\right) \cup \operatorname{cl}\left(S_{1} \cap w_{1}^{1}\right) \supset D_{13} \\
& x_{23}^{2} \equiv\left(\operatorname{convQ}_{2}\right) \cup \operatorname{cl}\left(S_{2} \cap w_{3}^{2}\right) \supset D_{23}
\end{aligned}
$$

By the argument given after Case $\mathrm{IV}, \mathrm{cl}\left(\mathrm{X}_{12}^{1} \cup \mathrm{X}_{12}^{2}\right)$, cl $\left(x_{13}^{1} \cup x_{13}^{3}\right)$, and $\operatorname{cl}\left(x_{23}^{2} \cup x_{23}^{3}\right)$ are convex sets. Since S is evidently the union of these three sets together with the convex sets (conv2 $\left.{ }_{1}\right) U$ $\operatorname{cl}\left(S_{1} \cap W_{2}^{1}\right) 1=1,2$, we see that S is once again expressible as the union of five or fewer closed convex sets. Finally, we consider the case where $N_{1}=3,1=1,2$, and $N_{3}=2 m+1$ for $m \geq 1$. It is convenient to consider the case $m=1$ first.

For $m=1$, we define the following sets

$$
\begin{aligned}
& A_{1}=\operatorname{cl}\left[\left(S_{2} \cup S_{3}\right) \cap\left(w\left(q_{22}, q_{23}\right) \cap w\left(q_{32}, q_{21}\right) \cap w\left(q_{32}, q_{33}\right)\right)\right] \\
& A_{2}=\operatorname{cl}\left[\left(S_{1} \cup S_{3}\right) \cap\left(w\left(q_{12}, q_{13}\right) \cap W\left(q_{11}, q_{33}\right) \cap w\left(q_{32}, q_{33}\right)\right)\right] \\
& \left.A_{3}=\operatorname{cl[}\left(S_{2} \cup S_{3}\right) \cap\left(w\left(q_{21}, q_{22}\right) \cap w\left(q_{23}, q_{32}\right) \cap w\left(q_{33}, q_{31}\right)\right)\right] \\
& A_{4}=\operatorname{cl}\left[\left(S_{1} \cup S_{3}\right) \cap\left(w\left(q_{13}, q_{11}\right) \cap w\left(q_{31}, q_{32}\right) \cap w\left(q_{33}, q_{12}\right)\right)\right]
\end{aligned}
$$

Finally, let
and

$$
\begin{aligned}
& B_{1}=\left(\left(S_{1} \cap w_{2}^{1}\right) \cap w\left(q_{12}, q_{33}\right)\right) \\
& B_{2}=\left(\left(S_{2} \cap w_{2}^{2}\right) \cap w\left(q_{32}, q_{23}\right)\right)
\end{aligned}
$$

$$
B_{12}=D_{12} \cap\left(w\left(q_{33}, q_{11}\right) \cap W\left(q_{21}, q_{32}\right)\right)
$$

Since each is the closure of the intersection of convex sets, each is convex. We define A_{5} to be the set $\operatorname{cl}\left(\operatorname{conv}\left(B_{1} \cup B_{2} \cup B_{12}\right)\right)$. Consider
the set A_{1}. Since S_{2} and S_{3} have property P^{3}, each point of local non-convexity of S_{2} and S_{3} is in the kerrel of S_{2} and S_{3}, respectively. By Lemma 3.7, $\mathrm{cl}\left(\operatorname{convQ}_{3} \cup\left(S_{3} \cap W_{1}^{3}\right)\right)$ and $\mathrm{cl}\left(\operatorname{convQ}_{2} \cup\left(S_{2} \cap W_{3}^{2}\right)\right)$ are convex sets. The argument following Case IV may be applied to these two sets to show that their union is a convex set. Thus, the intersection X of the closed half-plane $\operatorname{cl}\left(W\left(q_{32}, q_{21}\right)\right)$ with this set is convex. From Lemna 3.7, it is also known that $\mathrm{cl}\left(\mathrm{S}_{2} \cap \mathrm{w}_{1}^{2}\right) \cup$ convQ 2 is a convex set. Thus, $Y \equiv\left(\operatorname{cl}\left(S_{2} \cap W_{1}^{2}\right) \cup\right.$ conv2 $\left.Q_{2}\right) \cap \operatorname{cl}\left(W\left(q_{32}, q_{21}\right)\right)$ is a convex set. From its definition, $A_{1}=X U Y$. Let $x, y \in A_{1}$. If x, $y \in X$ or $X, y \in Y$, then $X y \subset A_{1}$ since X and Y are convex. If $X \varepsilon X$ and $y \in Y$, then $X y \cap \operatorname{convQ}_{2} \neq \varnothing$ which implies $x y \subset A_{1}$, since convQ $\mathcal{Z}_{2} \subset X \cap Y$. In exactly the same manner it can be shown that A_{2} is a convex set.

We next consider A_{3}. By Lerma 3.7, $X \equiv \operatorname{convQ} \mathrm{U}_{3} \mathrm{cl}\left(\mathrm{S}_{3} \cap \mathrm{w}_{2}^{3}\right)$,
 $\mathrm{cl}\left(\mathrm{S}_{3} \cap \mathrm{w}_{1}^{3}\right)$ are convex sets. By the argument following Case IV, $\overline{\mathrm{z}} \equiv$ $z_{1} \cup z_{2}$ is a convex set. By definition, A_{3} is the intersection of $\bar{X} \cup Y \cup \bar{Z}$ with the closed convex region bounded by $L\left(q_{33}, q_{31}\right)$, $L\left(q_{21}, q_{22}\right)$ and $L\left(q_{23}, q_{32}\right)$. Thus, if $x, y \in A_{3} \cap \bar{X}, A_{3} \cap \bar{Y}$, or $A_{3} \cap \bar{Z}$, then $x y \subset A_{3}$. If $x \in A_{3} \cap \bar{X}, y \in A_{3} \cap \bar{Y}$, then $x y \cap$ convQ $_{2}$ and $x y \cap$ convQ ${ }_{3}$ and $x y \cap D_{23}$ are non-empty. Since convt z_{2} and convQ $_{3}$ are in the kernels of S_{2} and S_{3}, respectively, $x y \subset A_{3}$. If $x \in X$ and $z \varepsilon \bar{Z}$, then $x z \cap$ conv2 3 is non-erpty which implies $x z \subset A_{3}$, since conva $\subset \overline{\mathrm{X}} \cap \overline{\mathrm{Z}}$. Similarly, if $y \in \bar{Y}$ and $z \varepsilon \bar{Z}$, then $y z \subset A_{3}$, since $y z \cap$ convQ ${ }_{2}$ is nonempty and conva $_{2} \subset Y \cap \bar{Z}$. The set A_{4} is defined in precisely the same way as A_{3}, and may be shown to be convex inexactly the same manner. Lastly, we
consider the set A_{5}. By construction, each element of $B_{1} \cup B_{12}$ is not joined to the point of local non-convexity q_{33}; otherwise q_{12}, q_{11} or q_{21} would be a point of local convexity. Similarly each element of $B_{2} \cup B_{12}$ is not joined to q_{32} by a line segment lying entirely in S, since then q_{11}, q_{21} or q_{23} would not be in Q. Therefore, by Proposition 2.2, $B_{1} \cup B_{12}$ and $B_{2} \cup B_{12}$ are convex relative to S. By Bunt's refinement of Fenchel's Theorem [5](see Theorem 3.6 for statement) the convex hull of the two components B_{1} and B_{12}, and the convex hull of the two components B_{2} and B_{12} are contained in S .

Next consider the set conv $\left(B_{1} \cup B_{2}\right)$. By Bunt's refinement of Fenchel's Theorem $\operatorname{conv}\left(B_{1} \cup B_{2}\right) \subset S$ if $B_{1} \cup B_{2}$ is convex relative to S. Since by definition B_{1} and B_{2} are convex subsets of S, it suffices to show that for $x \in B_{1}$ and $y \in B_{2}, x y \subset S$. By the definition of B_{1} and $B_{2}, x \in W_{2}^{1} \cap S_{1}$ and $y \in W_{2}^{2} \cap S_{2}$. Since $q_{11} \in K_{1}$ and $q_{21} \in K_{2}$, $x, y \in W\left(q_{11}, q_{12}\right) \cap W\left(q_{23}, q_{21}\right)$. Evidently, if $x y \not \subset S$, then either x or y is contained in $V\left(q_{22}, q_{13}\right)$. Assume that $x \in W\left(q_{22}, q_{13}\right)$. By property P^{4} and the closure of S, we know that $q_{22} q_{13} \subset S$. Since $q_{33} \in \operatorname{clV}_{3}$, there exists an element z in $W_{2}^{l} \cap q_{22} q_{13} \cap W\left(q_{33}, q_{11}\right) \cap$ $W\left(q_{21}, q_{33}\right)$ such that $z q_{33} \notin S$. Since $x \in W\left(q_{22}, q_{13}\right)$ if $x z \subset S$, then $q_{13} \notin Q_{3}$, a contradiction. But if $x z \notin S$, then property P^{4} is violated, since $\mathrm{xq}_{33} \& S$ and $q_{33} \in Q$ implies that each point which is not joined to q_{33} by a line segment lying entirely in S, is joined to x by such a line segment. (See the proof of Proposition 2.2). This contradiction implies $x y \subset S$. That is, $B_{1} \cup B_{2}$ is convex relative to S. The same argument applies if $y \in W\left(q_{22}, q_{13}\right)$, or if $x, y \in W\left(q_{22}, q_{13}\right)$. It follows that $\operatorname{conv}\left(B_{1} \cup B_{2}\right) \subset S$.

We now have three convex components B_{1}, B_{2}, and B_{12} with the property that $\operatorname{conv}\left(B_{1} \cup B_{12}\right), \operatorname{conv}\left(B_{2} \cup B_{12}\right)$ and $\operatorname{conv}\left(B_{1} \cup B_{2}\right)$ are contained in S. We wish to show that $\operatorname{conv}\left(B_{1} \cup B_{2} \cup B_{12}\right) \subset S$. Assume that this is not the case and let $w \varepsilon \operatorname{conv}\left(B_{1} \cup B_{2} \cup B_{12}\right)-S$. It is well known that this would imply the existence of three or fewer points x_{1}, x_{2}, and x_{3} of $B_{1} \cup B_{2} \cup B_{12}$ such that $w \varepsilon \operatorname{conv}\left\{x_{1}, x_{2}, x_{3}\right\}-S$. Since $\operatorname{conv}\left(B_{1} \cup B_{12}\right), \operatorname{conv}\left(B_{2} \cup B_{12}\right)$ and $\operatorname{conv}\left(B_{1} \cup B_{2}\right)$ are contained in S, the existence of such a w is impossible unless there exists exactly three non-collinear points x_{1}, x_{2}, and x_{3} such that $x_{1} \in B_{1}$, $x_{2} \in B_{2}$, and $x_{3} \in B_{12}$, say, and $w \varepsilon \operatorname{conv}\left\{x_{1}, x_{2}, x_{3}\right\}-S=\Delta x_{1} x_{2} x_{3}-S$. We now have $\operatorname{bd}\left(\Delta x_{1} x_{2} x_{3}\right) \subset S$ wille int $\left(\Delta x_{1} x_{2} x_{3}\right)$ contains $w \in S$. Since S is closed, there exists an open spherical neighborhood σ of w such that on $S=\varnothing$ and $\sigma \subset \operatorname{int}\left(\Delta x_{1} x_{2} x_{3}\right)$. Thus, bd $\left(\Delta x_{1} x_{2} x_{3}\right)$ bounds a residual domain of S. From Lerma 3.9, it follows that $\Delta q_{11} q_{21} q_{31} \subset$ $\Delta x_{1} x_{2} x_{3}$. But, since $x_{1} \in c l V_{1}, 1=1,2$, and $x_{3} \in D_{12}$ while $q_{11} \varepsilon \operatorname{clV}_{3}$, $q_{11} \notin \Delta x_{1} x_{2} x_{3}$, a contradiction. Thus, $\operatorname{conv}\left(B_{1} \cup B_{2} \cup B_{12}\right) \subset S$, and since S is closed, $\operatorname{cl}\left(\operatorname{conv}\left(B_{1} \cup B_{2} \cup B_{12}\right) \subset S\right.$. That is A_{5} is a closed convex subset of S .

It must now be shom that $S=\prod_{k=1}^{5} A_{k}$. Consider the set $S_{i}=$ $\left(\operatorname{convQ}_{1}\right) \cup\left(\bigcup_{j=1}^{U}\left(S_{1} \cap W_{j}^{1}\right)\right) 1=1,2,3$, and recall that $Q_{1} \subset \operatorname{clV}_{1}, 1=$ 1,2,3. Evidently, $\left(S_{1}-w_{2}^{l}\right) \subset A_{2} \cup A_{4} \cup B_{12} \cup A_{1},\left(S_{2}-W_{2}^{2}\right) \subset A_{1} \cup A_{3}$ $\cup B_{12} \cup A_{2}$, and $\left(S_{3}-W_{2}^{3}\right) \subset A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$. The claim is that $\left(S_{1} \cap W_{2}^{1}\right) \subset A_{4} \cup A_{5},\left(S_{2} \cap W_{2}^{2}\right) \subset A_{3} \cup A_{5}$ and $\left(S_{3} \cap W_{2}^{3}\right) \subset A_{3} \cup A_{4}$. It is important to recall that $\left(S_{1} \cap W_{2}^{1}\right)$ is a convex set whose closure inter-
sects $\left(S_{1}-W_{2}^{1}\right)$ in the line segment $q_{12} q_{13}$, and that $\left(S_{1} \cap W_{2}^{1}\right) \subset$ $\operatorname{cl}\left(W\left(q_{11}, q_{12}\right) \cap W\left(q_{13}, q_{11}\right)\right)$ since $q_{11} \in K_{1}$, and $q_{12}, q_{13} \in Q_{1}, 1=1,2,3$. With this in mind, we direct our attention first to $\left(S_{3} \cap i_{2}^{3}\right)$. Since by property P^{4} and the closure of S, Q is convex relative to S, the line segnents $q_{32} q_{23}$ and $q_{33} q_{12}$ lie in S. If $\left(S_{3} \cap W_{2}^{3}\right) \not \subset A_{3} \cup A_{4}$, then there would exist three points $x \in\left(S_{3} \cap w_{2}^{3}\right) \cap W\left(q_{33}, q_{12}\right) \cap W\left(q_{23}, q_{32}\right)$, $y \in S_{3} \cap\left(q_{32}, q_{23}\right)$ and $z \in S_{3} \cap\left(q_{33}, q_{12}\right)$ such that x, y and z violate property P^{3} of $\mathrm{S}_{3^{\prime}}$. Thus, $\left(\mathrm{S}_{3} \cap W_{2}^{3}\right) \subset A_{3} \cup A_{4}$.

It is clear that the convex sets ($S_{1} \cap W_{2}^{l}$) and ($S_{2} \cap W_{2}^{2}$) are each separated into two convex sets by the lines $L\left(q_{33}, q_{12}\right)$ and $L\left(q_{32}, q_{23}\right)$, respectively. One of the convex subsets of S_{1} is $B_{1} \subset A_{5}$, $1=1,2$. Thus, it suffices to show that $\left(S_{1} \cap W_{2}^{1}\right)-B_{1}$ is contained in $A_{3} \cup A_{4}$. This in turn reduces to showing that $\left(S_{1} \cap W_{2}^{l}\right)-B_{1} \subset W\left(q_{33}, q_{12}\right) \cap$ $W\left(q_{13}, q_{11}\right)$ and that $\left(S_{2} \cap W_{2}^{2}\right)-B_{2} \subset W\left(q_{21}, q_{22}\right) \cap W\left(q_{23}, q_{32}\right)$. This, however, is evident from the fact that $\left(S_{1} \cap W_{2}^{1}\right) \subset \operatorname{cl}\left(W\left(q_{11}, q_{12}\right) \cap\right.$ $W\left(q_{13}, q_{i 1}\right)$.

Consider now the case $N_{1}=3,1=1,2$, and $N_{3}=2 m+1$ for $m>1$. We first define the sets
and

$$
A_{1}^{\prime}=\left(S_{3} \cap\left(\bigcup_{\substack{m=1}}^{m-1} w_{2 j+1}^{3}\right)\right)
$$

$$
A_{4}^{\prime}=\left(S_{3} \cap\left(\bigcup_{j=1} w_{2 j}^{3}\right)\right)
$$

The set S is expressible as the union of the following convex sets.

$$
\begin{aligned}
\bar{A}_{1}= & \operatorname{cl}\left[\left(S_{2} \cup S_{3}\right) \cap\left(W\left(q_{3,2 m}, q_{21}\right) \cap W\left(q_{22}, q_{23}\right) \cap W\left(q_{32}, q_{33}\right)\right)\right]-A_{4}^{\prime} \\
\bar{A}_{2}= & \operatorname{cl}\left[\left(S_{1} \cup S_{3}\right) \cap\left(W\left(q_{12}, q_{13}\right) \cap W\left(q_{11}, q_{3,2 m+1}\right) \cap w\left(q_{32}, q_{3,2 m+1}\right)\right)\right] \\
\bar{A}_{3}= & \operatorname{cl[}\left[\left(S_{2} \cup S_{3}\right) \cap\left(W\left(q_{3,2 m+1}, q_{31}\right) \cap W\left(q_{21}, q_{22}\right) \cap W\left(q_{23}, q_{3,2 m}\right)\right)\right] \\
\bar{A}_{4}= & \operatorname{cl[}\left[(S _ { 1 } \cup S _ { 3 }) \cap \left(W\left(q_{3,2 m+1}, q_{12}\right) \cap W\left(q_{13}, q_{11}\right) \cap W\left(q_{31}, q_{32}\right) \cap\right.\right. \\
& \left.W\left(q_{3,2 m}, q_{3,2 m+1}\right)\right]-A_{1}^{\prime}
\end{aligned}
$$

and

$$
\bar{A}_{5}=\operatorname{cl}\left(\operatorname{conv}\left(\bar{B}_{1} \cup \bar{B}_{2} \cup \bar{B}_{12}\right)\right)
$$

where $\bar{B}_{1}=\left(S_{1} \cap w_{2}^{1}\right) \cap w\left(q_{12}, q_{3,2 m+1}\right)$

$$
\bar{B}_{2}=\left(s_{2} \cap w_{2}^{2}\right) \cap w\left(q_{3,2 m}, q_{23}\right),
$$

and

$$
\bar{E}_{12}=D_{12} \cap:\left(q_{21}, q_{3,2 m}\right) \cap w\left(q_{3,2 m+1}, q_{11}\right)
$$

The sets \bar{A}_{2}, \bar{A}_{3} and \bar{A}_{5} are defined in the same way that A_{2}, A_{3}, and A_{5} were defined, respectively. The proof that each is convex requires only the obvious change of subscript; that is, the replacement of q_{32} by $q_{3,2 m}$ and of q_{33} by $q_{3,2 m+1}$ in the above argument.

Consider the set \bar{A}_{1}. By Lemma 3.8, conve $\cup \cup\left(S_{3} \cap\left(\bigcup_{j=0}^{m-1} w_{2 j+1}^{3}\right)\right)$ is a convex set. Thus, $W\left(q_{3,2 m}, q_{21}\right) \cap W\left(q_{32}, q_{33}\right)$ intersects this set in a convex set. Moreover, A_{1}^{\prime} is contained in this intersection since $q_{21} q_{3,2 m}$ and $q_{32} q_{33}$ intersect conv2 in line segments and if A_{1}^{\prime} were not so contained, either $q_{3,2 \mathrm{~m}}$ or q_{33} would be a point of local convexity, contrary to assumption.

The remainder of the proof that \bar{A}_{1} is convex is the sarre as that for A_{1}.

The set \bar{A}_{4} is defined in the same way that A_{4} was defined except for its intersection with $W\left(q_{3,2 m+1}, q_{32}\right)$. By Lerma 3.8, $c^{c o n v 2_{3}} \cup\left(S_{3} \cap w_{2 m+1}^{3}\right) \cup A_{4}^{1}$ is a convex set. Thus, the intersection of this set with $W\left(q_{3,2 m}, q_{3,2 m+1}\right) \cap W\left(q_{3,2 m+1}, q_{12}\right) \cap W\left(q_{31}, q_{32}\right)$ is a convex set. Again, A_{4}^{\prime} is contained in this set since $q_{31} q_{32}$ and $q_{3,2 m} q_{3,2 m+1}$ are contained in the kernel of S_{3}. If A_{4} were not so contained then q_{32} or $q_{3,2 m}$ would not be in Q_{3}. The remainder of the proof that \bar{A}_{4} is convex is the same as that for A_{4}.

The proof that $S=\bigcup_{i=1} \bar{A}_{i}$ is identical to that of $N_{3}=3$ with the exception of $S_{3^{\circ}}$. This case differs for the set ($S_{3} \cap$ $W\left(q_{3,2 m+1}, q_{32}\right)$, which is seen to be the union of $A_{1}^{\prime}, A_{4}^{\prime}$, and $\left(S_{3} \cap W_{2 m}^{3}\right)$ by checking the indices of surmation. It is known from Theorem 3.4 that $S_{3}=\operatorname{conv2} Z_{3} \cup\left(S_{3} \cap\left(\bigcup_{j=1}^{2 m+1} W_{j}^{3}\right)\right)$. Since $\left(S_{3} \cap W_{1}^{3}\right) \subset$ $\bar{A}_{1} \cup \bar{A}_{3},\left(S_{3} \cap w_{2 m+1}^{3}\right) \subset \bar{A}_{2} \cup \bar{A}_{4}^{4}$ and convQ ${ }_{3} \subset \bar{A}_{1} \cup \bar{A}_{2} \cup \bar{A}_{3} \cup \bar{A}_{4}$, we see that S_{3} is contained in $\bigcup_{i=1} \bar{A}_{1}$.

Thus, in every case, S is expressible as the union of five or fewer closed convex sets.

To see that the number five is best consider the following example which satisfles the hypothesis of the theorem but winich can not be expressed as the union of fewer than five convex sets.

Theorem 3.6 If S has at most one point of local non-convexity which is not in the kernel K of S, and S has property P^{4}, then S may be expressed as the union of four or fewer closed convex sets.

Proof. If Q, the set of points of local non convexity of S, is empty, then S is a closed, connected, locally convex set, which, by Thetze's theorem is convex. If Q has exactly one element, then S is expressible as the union of three or fewer closed convex sets, by Theorem 3.3. If Q has two or more elements, each of which is in the kernel, K, of S, then S may be expressed as the union of three or fewer closed convex sets, by Theorem 3.4. Tnus, we may assume that Q has two or more elements, exactly one of which is not in K.

Let $q \varepsilon$ Q-K. It was shown in the proof of Proposition 2.2 that S is expressible as the union of a starlike set whose kernel contains q, and the set X of all points of S which are not foined to q by a line segment lying entirely in S. By Proposition 2.2, since S has property P^{4}, the set X has property P^{2} relative to S. That is, X is convex relative to S. We show that convX $\subset S$, and that $\mathrm{S}-\mathrm{X}$ may be expressed as the union of three or fewer closed convex sets.

It is first show that X has at most t:vo components. Assure that X has three components C_{1}, C_{2}, and C_{3} in S. Let $c_{1} \in C_{1}, 1=1,2,3$. Since X is convex relative to S, we have that $c_{1} c_{2}, c_{2} c_{3}$, and $c_{1} c_{3}$ are entirely contained in S. Since, however, $c_{1} \cap C_{2}, C_{2} \cap C_{3}$, and $C_{1} \cap C_{3}$ are empty, we have that $c_{1} c_{2}, c_{2} c_{3}$, and $c_{1} c_{3}$ each intersect $S-X$. Let a_{12}, a_{23}, and a_{13} be elements of $c_{1} c_{2} \cap(S-X), c_{2} c_{3} \cap(S-X)$, and
$c_{1} c_{3} \cap(S-X)$, respectively. Then $q a_{12}, q_{23}$, and $q a_{13}$ lie entirely in $S-X \subset S$. The elements c_{1}, c_{2}, c_{3}, and q are not collinear since the fact that $\mathrm{qa}_{12}, \mathrm{qa}_{23}$, and qa_{13} lie in S would imply $\mathrm{qc}_{1} \subset \mathrm{~S}$ for some 1. If c_{1}, c_{2}, and c_{3} are collinear in that order, say, then $\mathrm{qa}_{12}, \mathrm{qa}_{23}$, and $\mathrm{a}_{12} \mathrm{a}_{23}$ are contained in S while $\mathrm{qc}_{2} \not \subset \mathrm{~S}$. Since $\mathrm{S}-\mathrm{X}$ is closed, there exists an open spherical neirhborhood N of c_{2} such that $x \in N \cap S$ implies $x q \mathscr{C}$. Thus $b d\left(\Delta a_{12} q a_{23}\right) \subset S$ bounds one or more residual domains of S. Since S is starlike, this is impossible. If c_{1}, c_{2}, and c_{3} are not collinear, then they determine the triangle $\Delta c_{1} c_{2} c_{3} \equiv T$, whose vertices we may assume to be in that counterclockwise order. Then $q \in$ intT, or $S-(S \cap T)$. (For the same reasons as priven above, q can not lie on an extended side of T.) If $q \varepsilon$ int T, bd($\mathrm{qa}_{12} 2^{\mathrm{c}}{ }^{\mathrm{a}} 23$) bounds one or more residual domains of S , a contradiction. If $q \in S-(S \cap T)$, then without loss of generality, we may assure that q is in the v-shaped region determined by $L\left(c_{2}, c_{3}\right)$ and $L\left(c_{2}, c_{1}\right)$ and containing $\left(c_{1} c_{3}\right)$, or that q is in the v-shaped repion determined by these lines which intersects T in the point c_{2}. In the former case $\mathrm{bd}\left(\mathrm{qa}_{23^{\mathrm{c}} 2^{\mathrm{a}}}^{12}\right.$) bounds a residual domain of S , and in the latter case $\mathrm{bd}\left(\mathrm{qa}_{12}{ }^{\mathrm{c}} 1^{\mathrm{c}} 3^{\mathrm{a}} 23\right.$) bounds a residual domain of S . Since in each case we are led to a contradiction of the starlikeness of S, we have that X has at most two corponents C_{1} and C_{2}, say, in S.
W. Fenchel [7] showed that a necessary and sufficient condition for a point x to be contained in the convex hull of a compact, connected set X in E^{m} is that there exist m (or fewer) points $p_{1}, p_{2}, \ldots, p_{m}$ in X such that $x \in \operatorname{conv}\left(p_{1} \cup p_{2} \cup \cdots \cup n_{m}\right)$. Later L.N.H. Bunt [5] showed
that compactness was unnecessary and that "connected" may be replaced by "having at most m components". For $m=2$, this theorem may be stated: A necessary and sufficient condition for a point x to be contained in the convex hull of a set having at most 2 components is that there exist 2 (or fewer) points p_{1}, p_{2} in X, such that $x \varepsilon$ $\operatorname{conv}\left(p_{1} \cup p_{2}\right) \equiv p_{1} p_{2}$. Since in this case $X=\{z \mid z q \not \subset S\}$ has the property that for all z_{1} and z_{2} in $X, z_{1} z_{2} \subset S$, if we considered the set Y of all points of S which are in X or are contained in a line segment, the end points of which are in X, Bunt's refInement of Fenchel's theorem applies to give $Y \subset S$ is the convX. That is, X is contained in a convex subset of S.

We now direct our attention to the closed subset $S-X$ of S. Let \bar{Q} and \bar{K} denote the set of points of local non-convexity and kernel of S-X, respectively. Let $p \in \bar{Q}$ and assume that $p \notin K$. Then $p \neq q$ since $q \varepsilon \bar{K}$. Let $x \in S-X$ be such that $p x \not \subset S-X$. If $p \varepsilon Q$ of S, then $\mathrm{px} \subset S$, which then implies that $\mathrm{px} \cap \mathrm{X} \neq \varnothing$. If $\mathrm{x} \varepsilon \mathrm{L}(\mathrm{p}, \mathrm{q}), \mathrm{px} \subset S-\mathrm{X}$ since $q x$ and $q p$ are in $S-X$, a contradiction. If $x \notin L(p, q)$, then we may consider $\Delta \mathrm{pxq}$. Since $p \varepsilon Q, p x \subset S$. Since $q \in \Gamma$, and $x, p \varepsilon S-X$, $q \mathrm{q}$ and $\mathrm{qD} \subset S-X \subset S$. Also, since $\mathrm{px} \cap \mathrm{X} \neq \varnothing$, and $S-X$ is closed, there exists an open subinterval (uv) of ($p x$) such that (uv) $\subset X$ which inplies that $b \dot{c}(\Delta x p q) \subset S$ bounds a bounded residual domain of S, a contradiction, since S is siarlice. Finally, we shois that the case where $p \not Q Q$ is impossible by shoming $p \bar{Q}$ implies $p \varepsilon Q$. Assume, to the contrary, that $p \in \bar{Q}$, and $p \in Q$. Then there exists a spherical neifhoorhood in of p of radius r such that $N \cap S$ is convex. Since $p \varepsilon \bar{Q}$, there exist
elements y and z of $N \cap(S-X)$ such that $y z \not \subset S-X$. Since $N \cap S$ is convex, yz $\subset S$ which implies that $y z \cap X \neq \varnothing$. Consider the points y, z, and q. If $q \in L(y, z)$, then $y z \subset S-X$ since $q y$ and $q z$ are contained in $S-X$. If $q \notin L(y, z)$, we may then consider $\Delta y q z$. As before, since $\mathrm{yz} \cap \mathrm{X} \neq \varnothing$ and $\mathrm{S}-\mathrm{X}$ is closed, there eixsts an open interval (uv) $\subset(y z)$ such that (uv) $\subset X$. This implies that $b d(\Delta y q z)$, which is contained in S, bounds a bounded residual domain of S, which again contradicts the starlikeness of S. Hence, each point of local nonconvexity of $S-X$ is in the kernel of $S-X$. Since $S-X$ is a closed, connected set, if $S-X$ has two or more points of local non-convexity, then $\mathrm{S}-\mathrm{X}$ may be expressed as the union of three or fewer closed convex sets, by Theorem 3.4. If $S-X$ has exactly one point of local non-convexity, then $S-X$ is expressible as the union of three or fewer closed, convex sets, by Theorem 3.3. If $S-X$ has no points of local non-convexity, then $S-X$ is convex, by Tletze's theorem. Thus, in each case, $\mathrm{S}-\mathrm{X}$ may be expressed as the union of three or fewer closed, convex sets, M_{1}, $1=1,2,3$. Then $S=\operatorname{clY} U\left(U_{I} M_{1}\right)$ is the desired decomposition of S into closed convex sets.

Lerma 3.10 Let S nave property P^{n}, and z be a point of local convexity of S. If S is one-dimensional at z, then there exists a line X throurgh z such that $c l(S-X)$ has property P^{n-1}.

Proof. Since z is a point of local convexity, there exists an open spherical neighborhood, $\sigma(z, \varepsilon)$ of z such that $\sigma(z, \varepsilon) \cap S$ is convex. Since S is one-dimensional at z, there exists an $\bar{\varepsilon} \leq \varepsilon$ such that
$\operatorname{bd}(\sigma(z, \bar{\varepsilon}) \cap S)$ is zero-dimensional. That is, $\operatorname{cl}(\sigma(z, \bar{\varepsilon}) \cap S)$ is a line segment, Y. Hence, $x z \subset S$ implies $x \in S \cap X$, where X is the line determined by Y. Thus if $x_{1}, x_{2}, \ldots, x_{n-1}$ are n-1 points of S-X which are not joined in S, the points $x_{1}, x_{2}, \ldots, x_{n-1}, z$ would violate property P^{n}. Hence $\mathrm{S}-\mathrm{X}$, and consequently $\mathrm{cl}(\mathrm{S}-\mathrm{X}) \equiv \mathrm{A}$, have property P^{n-1} relative to S. Let W_{1} and W_{2} be the open halfplanes determined by X. Then $A=\operatorname{cl}\left[\left(W_{1} \cap S\right) U\left(W_{2} \cap S\right)\right]$. Assume now that A does not have property P^{n-1} (relative to A). That is, let $x_{1}, x_{2}, \ldots, x_{n-1}$ be $n-1$ distinct points of A which are not joined in A. Not all of these points can be in $\mathrm{cl}\left(\mathrm{W}_{1} \cap \mathrm{~S}\right)$, or in $\mathrm{cl}\left(\mathrm{W}_{2} \cap \mathrm{~S}\right)$, since these sets have property $\mathrm{P}^{\mathrm{n}-1}$. Consider first the case where $x_{1} \notin X \cap S$ for $1=1,2, \ldots, n-1$. Since $z_{1} \not \subset S$ for $1=1, \ldots, n-1$, $x_{1} x_{j} \subset S$ for some 1 and j because A has property P^{n-1} relative to S. Since $x_{1} x_{j} \not \subset A, x_{i} \varepsilon W_{1} \cap S$ while $x_{j} \varepsilon W_{2} \cap S$, say. Thus $x_{1} x_{j} \cap(X \cap S)$ is nan-empty. Let $u=x_{1} x_{j} \cap(X \cap S)$. Since A is closed and $x_{1} x_{j}-\{u\} \subset$ A, $u \in A$. That is, A has property P^{n-1}. Next consider the case where $x_{1} \in(X \cap S)$ for some 1 . Without loss of generality we may let $1=1$. Since $x_{1} \in \operatorname{cl}\left(H_{1} \cap S\right)$ or $x_{1} \in \operatorname{cl}\left(W_{2} \cap S\right)$, for each nelghborhood N of x_{1}, there exists an element \bar{x}_{1} in $i_{1} \cap S$ or $W_{2} \cap S$ such that $\bar{x}_{1}, x_{2}, \ldots$, x_{n-1} are not joined in A, since A is closed. Then $\bar{x}_{1}, x_{2}, \ldots, x_{n-1}, z$ violate property P^{n}. Thus in this case too, A has property P^{n-1}. That is, $\mathrm{cl}(\mathrm{S}-\mathrm{X})$ has property $\mathrm{P}^{\mathrm{n}-1}$.

Corollary If S is as in the lema and $n=4$, then S is expressible as the union of four or fewer closed convex sets.

Proof. Since S satisfies the hypothesis of the lemma, $\mathrm{cl}(\mathrm{S}-\mathrm{X})=\mathrm{A}$ has property P^{3} and is expressible as the union of three or fewer closed convex sets. If $\mathrm{X} \cap \mathrm{S}$ has exactly one (convex) component, the result follows.

If there exist two components X_{1} and X_{2} of $\mathrm{X} \cap \mathrm{S}$ with the property that neither is a subset of A, then there exist points z_{1} εX_{1} and $z_{2} \varepsilon X_{2}$ with the property that $z_{1} z_{2} \not \subset S$. Moreover, the conditions of the lemra are satisfied at z_{1} and z_{2}. It is clear that A must be a convex set and the result follows.

Finally, the set $\mathrm{X} \cap \mathrm{S}$ can have at most two such components. For then $\mathrm{cl}(\mathrm{S}-\mathrm{X})=\varnothing$ and S is not a connected set.

Theorem 3.7 Let S have property P^{4}. If S has a cut-point q, then \mathbf{S} may be expressed as the union of 4 or fewer closed convex sets.

Proof. Since q is a cut-point of $S, S-\{q\}$ has two or more components.

If one of the components, C, of $S-\{q\}$ is convex, we consider the two cases; C is one-dimensional and C is two-dimensional. If C is one-dimensional, then clC is evidently a line segment qy or a ray $R(q, y)$ emanating from q and containing $q y$. In either case the hypothesis of Lemma 3.10 is clearly satisfied at y ε, and the result follows from the Corollary to Lenma 3.10.

Assume next that the convex component C of $\mathrm{S}-\{\mathrm{q}\}$ is twodimensional. Since $\operatorname{clC} \cap \operatorname{cl}(S-C)=\{q\}$, if $c \varepsilon \operatorname{clC}$ and $b \varepsilon c l(S-C)$,
$c \neq q \neq b$, then $c b \subset S$ implies $q \varepsilon(c b)$. Soreover, if $a, b \varepsilon c l(S-C)$ and $a b \subset S$, then $a b \subset c l(S-C)$. Assume, to the contrary, that $a b \not \subset$ $c l(S-C)$. Since $q \varepsilon c l(S-C)$ and $a b \subset S, a b \cap(c l C-\{q\}) \neq \varnothing$. That is, $a b \cap C \neq \emptyset$ which implies C is not a component of $S-\{q\}$, a contradiction. Now, let x_{1}, x_{2}, x_{3} be three distinct points of $c l(S-C)$ which are not pairwise joined in $\mathrm{cl}(\mathrm{S}-\mathrm{C})$, then by the above remarks, if $c \in c l C, c \neq q$, then $c x_{1} \subset S$ implies $q \in\left(c x_{1}\right)$ and the points x_{1}, x_{2}, x_{3} are not pairwise joined in S. Since clC is two-dimensional at c, and $\left\{x_{1}, x_{2}, x_{3}\right.$ \}is a finite set, there exists in some neiphborhood N of c, a point c^{\prime} of $c l C$ such that $c^{\prime} x_{1} \not \subset S, i=1,2,3$. The points $c^{\prime}, x_{1}, x_{2}, x_{3}$ now violate property P^{3}. Thus, S is once again expressible as the union of three or fewer closed convex subsets of $\mathrm{cl}(\mathrm{S}-\mathrm{C})$ and the closed convex subset clC.

Let us now assume that the closure of each component of S - \{q\} is not convex. Let C and C^{\prime} be two such components. Let $x, y \varepsilon c l C$ and $a, b \varepsilon c l C^{\prime}$ such that $x y \notin c l C$ and $a b \not \subset c l C '$. By a previous argument this implies $x y \not \subset S$ and $a b \not \subset S$. We flrst assume that q is not one of the four points x, y, a, b. By property P^{4}, two of the four points x, y, a, b must be joined by a line segment lying in S. Without loss of generality we may assume that xa $\subset S$. Once azain, this implies $q \in(x a)$. Since C is a component of $S-\{q\}$ and $x \neq q$, there exists a spherical neighborhood σ of x such that $\sigma \cap S \subset C$. If there exists a spherical neighborhood $\sigma^{\prime} \subset \sigma$ of x such that for all $x^{\prime} \varepsilon \sigma^{\prime} \cap S$, $x^{\prime} a \subset S$, then $q \varepsilon\left(x^{\prime} a\right)$ for each x^{\prime} and we have $\operatorname{cl}\left(\sigma^{\prime} \cap S\right)$ is a line segment containing x. (($\left.\sigma^{\prime} \cap S\right) \neq\{x\}$ since S is connected) Clearly x satisfies the nypothesis of Lerma 3.10 and the result follows from
the arguments used in the one-dimensional convex case above. Assume then that for all spherical neighborhood σ^{\prime} of x there exists $x^{\prime} \neq x$ in $\sigma^{\prime} \cap S$ such that x^{\prime} a $\not \subset S$. Since S is a closed set and xy $\not \subset S$, there exists an open spherical neighborhood $\sigma^{\prime} \subset \sigma$ such that for all $x^{\prime} \varepsilon \sigma^{\prime} \cap S, x^{\prime} y \not \subset S$. Let $x^{\prime} \varepsilon \sigma^{\prime} \cap S$ such that $x^{\prime} a \not \subset S$. Then, since $x^{\prime} a, x^{\prime} y$, and $a b$ are not contained in S, by property $P^{4}, x^{\prime} b$, yb , or ya is contained in S. If ya $\subset S$, then q, y and a are collinear since $c l C \cap \operatorname{clC}=\{q\}$. Since $x a \subset S, q, x$, and a are collinear for the same reason. Thus, if ya $\subset S$, xy \subset xa U ya $\subset S$, a contradiction. Assume then that $x^{\prime} b \subset S$. Since $x^{\prime} \varepsilon \sigma \cap S \subset C, x^{\prime} \neq q$ and $x^{\prime} b \subset S$ implies q ع ($x^{\prime} b$).

If there exists a spherical neighborhood τ of x^{\prime} such that for all $z \varepsilon \tau \cap S, z b \subset S$, then $q \varepsilon(z b)$ for all $z \varepsilon \tau$ which implies $c l(\tau \cap S)$ is a line segment containing x^{\prime}. Then x^{\prime} satisfles the hypothesis of Lemma 3.10 and the arguments of the one-dimensional convex case apply to give the desired result. Therefore, we may assume that there exists in every spherical neighborhood τ of x^{\prime} an element z such that $\mathrm{zb} \not \subset \mathrm{S}$. Let $\tau \subset \sigma^{\prime}$ be a spherical neighborhood of x^{\prime} which does not intersect the component of $L(x, a) \cap S$ containing xa. Let $z \varepsilon \tau$ such that $z b \not \subset S$. Since $z \varepsilon \sigma^{\prime}, z y \not \subset S$. Since $z \varepsilon \tau$ and τ does not intersect the component of $L(x, a) \cap S$ which contains $x a, z a \not \subset S$. We now have a point $z \varepsilon C$ such that $z a, z b, z y$ are not contained in S. Since $a b$ and ya are not contained in S, it must happen that $y b$ is contained in S, by property P^{4}. If, however, $y b \subset$ S, then q, y, b are collinear, since $c l C \cap c C^{\prime}=\{q\}$. Since $x^{\prime} b \subset S$,
$\mathrm{q}, \mathrm{x}^{\prime}, \mathrm{b}$ are collinear for the same reason. Thus, if $\mathrm{yb} \subset \mathrm{S}$, $x^{\prime} y \subset x^{\prime} b \cup y b \subset S$, a contradiction.

Thus, if $x a$ and $x^{\prime} b$ are contained in S, x, y, a, b are different from q, and neither x nor x^{\prime}, as defined above, has a spherical neiginboriood whose closure intersects S in a line segment, we are able to exhibit four points z, y, a, and b which violate property P^{4}.

We now consider the case where xa and yo are contained in S, and x, y, a, and b are each difference from q. Without loss of generality we may assume that none of the elements x, y, a, b has a neighborhood whose closure intersects S in a line segment. If x^{\prime} is defined as above, then $x^{\prime} b \not \subset S$, for if $x^{\prime} b \subset S$, then $c 1 C \cap c l C^{\prime}=$ $\{q\}$ implies q, x, b are collinear. Since $y b \subset, q, y, b$ are collinear for the same reason, and we have $x^{\prime} y \subset x ' b U y b \subset S$, a contradiction. Let r^{\prime} be a spherical neighborhood of b such that $I \cap S \subset C^{\prime}$. Since S is closed, and neither x 'b nor $a b$ is in S, there exists a spherical neighborhood Γ^{\prime} of $b, r^{\prime} \subset \Gamma_{\text {, such }}$ that $b^{\prime} \varepsilon \Gamma^{\prime}$ implies $b^{\prime} x^{\prime}$ and $b^{\prime} a$ are not contained in S. By our orizinal assumption each spherical neighborhood of b contains an element which is not joined to y by a line segment in S. Let $b^{\prime} \varepsilon r^{\prime} \cap S$ have this property. Again, since $y b \subset S$, $x a \subset S$ and $x y \not \subset S$, ya $\not \subset S$. Thus $x^{\prime}, y, a, b^{\prime}$ violate property P^{4}. In the case where $x a, y b \subset S$, it has been show that ya $\not \subset S$. The same reasoning shows that $\mathrm{xa}, \mathrm{yb}, \mathrm{xb} \subset \mathrm{s}$ can not occur. Finally, assume that one of the points x, y, a, or b is q. Without loss of generality we may assume that $\mathrm{a}=\mathrm{q}$. Then since S is a closed set and $\mathrm{qb} \not \subset \mathrm{S}$, there exists
a spherical neizhborhood λ of q such that for all a' $\varepsilon \lambda \cap S$, $a^{\prime} b \not \subset S$. Since $q \varepsilon c^{\prime} C^{\prime}, \lambda \cap C^{\prime} \neq \varnothing$. Let $a^{\prime} \varepsilon \lambda \cap C^{\prime}$. The arguments given above are now applicable to the four points x, y, a^{\prime}, b.

Hence, in each case, we are led to a contradiction unless the closure of some component of $S-\{q\}$ is convex or unless there exists a point having a neigiborhood the intersection of whose closure is a line segment.

Since the result has been established in each of these cases, the proof is complete.

Theorem 3.8 Let S be a closed starlike set and have property P^{4}. Let the kernel K of S be a one-dimensional set. Then S may be expressed as the union of four or fewer closed convex sets.

Proof. Since S is closed, by the corollary to Proposition 2.3, the kernel K of S is closed and convex. Since K is one-dimensional, K is a line, ray, or line segment. Clearly, K is not a line unless $S \subset K$. Since SCK implies that S is convex, we may assume that K is a line segment $x y$, or a ray $R(x, y)$ containing $x y$. Let $W(x, y)$ and $W(y, x)$ be the open half-planes determined by $L(x, y)$. Since $S \cap L(x, y)$ contains $K, S \cap L(x, y)$ is a convex set. Thus, if $S \subset S \cap L(x, y), S$ is convex, and we are done. Moreover, if $S \cap L(x, y) \not \subset \operatorname{cl[}(W(x, y) \cup W(y, x)) \cap S]$, then there exists a point of local convexity, z, in $S \cap L(x, y)$ such that S is one-dimensional at z. By Lerma 3.10, $\operatorname{cl}[S-(S \cap L(x, y))]$ has property P^{3}. Thus, the set S may be expressed as the union of the 3
or fewer closed convex sets which arise from cl[S-(S $\cap \mathrm{L}(\mathrm{x}, \mathrm{y}))]$ and the closed convex set $S \cap L(x, y)$. Therefore, we may assume that $S \cap L(x, y) \subset \operatorname{cl}[(W(x, y) \cup W(y, x)) \cap S]$, and that $W(x, y) \cap S$ and $W(y, x) \cap S$ are not both empty. If $W(x, y) \cap S$ and $W(y, x) \cap S$ are convex, we are again done, since then S is seen to be the union of the two closed convex sets $\operatorname{cl}(W(x, y) \cap S)$, and $\operatorname{cl}(W(y, x) \cap S)$. Assume then that $W(x, y) \cap S$ is non-empty, and that $c l(W(x, y) \cap S)$ is not convex. Then $W(x, y) \cap S$ must contain a point of local non-convexity of S. Assume, to the contrary, that $(W(x, y) \cap S$) contains no points of local non-convexity of S. We show that $(W(x, y) \cap S)$ is a convex set. For if $u, v \in(w(x, y) \cap S)$ such that $u v \not \subset(W(x, y) \cap S)$. Then evidently $u v \not \subset S$. Since $x, y \in K$, and $u v \not \subset S, x, y \notin L(u, v)$. Thus, we may consider the quadrilateral xyvu whose vertices may be considered to be ordered in a counterclockwise manner x, y, v, u, as indicated. Let $\mathrm{p}=\mathrm{xv} \cap \mathrm{yu}$, and consider the cormonent C of the closed set $S \cap$ dupv containing the connected subset of S, up U pv. Since C is a closed, connected subset of S, if C is also locally convex, then, by THetze's result, C is convex. Since $C \subset W(x, y) \cap S$, if $W(x, y) \cap S$ contains no points of local non-convexity then C is locally convex in which case $u, v \in C$ implies uv $C C \subset S$, a contradiction.

If $\mathrm{y}=\infty$, the quadrilateral xyvu becomes an infinite convex strip. The same arguments apply, however. Thus, in the case being considered, if $W(x, y) \cap S$ contains no points of local non-convexity, then $W(x, y) \cap S$ and, consequently $c I(W(x, y) \cap S)$ is a convex set. We see that if neither $W(x, y) \cap S$, nor $W(y, x) \cap S$ contains a point
of local non-convexity of S, then S is expressible as the union of the two closed convex sets $c l(W(x, y) \cap S)$ and $c l(W(y, x) \cap S)$.

We next show that each point of local non-convexity of $W(x, y)$ S is in the kernel of $W(x, y) \cap S$. Let q be a point of local nonconvexity of S in $W(x, y) \cap S$. Let $z \neq q$ be a point of $W(x, y) \cap S$ such that $\mathrm{zq} \not \subset \mathrm{S}$. By the proof of Proposition 2.2, the set S is starlike from $q \cup z$; that is, for each element u of S, either quC S or zu \subset S. We first assume that $K=x y, y \neq \infty$. Evidently, $L(z, q) \cap x y=$ \varnothing since othervise $z q \subset S$. Since $\Delta x q y \subset S$ and $\Delta x z y \subset S$, we have $\Delta x q y \cap$ $\Delta x z y \equiv I \subset X, \quad$ Let $u \in$ intT. Then since $u \notin K$, there exists an element v of S such that uv $\not \subset S$. Order the four v-shaped regions $V_{1}, 1=1,2,3,4$ determined by $L(x, u)$ and $L(y, u)$ in a counterclockivise manner starting with that region which contains ($x y$). Evidently $v \in \operatorname{clV}_{1} \cup \operatorname{clV}_{3}$ since $x y=K$ and there would then exist an element w in $x y$ such that w, u, and v are collinear winich would imply uv $C S$, a contradiction. Let $v \in V_{2^{\prime}}$ Since S is starlike from $q U z, v q$ or $v z$ is contained in S. We have, $u q \subset \Delta x q y \cap S$ and $u z \subset \Delta x z y \cap S$. The sezments vy and yu are also contained in S since $y \varepsilon K$. Thus uv is contained in the quadrilateral uqvy or uzvy, each of which lies entirely in S, and we have $u v \subset S$, a contradiction. If $v \varepsilon V_{4}$, we have $u v \subset$ uqvx $\subset S$ or $u v \subset$ $u z v x \subset S$, asain a contradiction. This contradiction implies that every point of $W(x, y) \cap S$ and hence of $c l(W(x, y) \cap S)$ is joined to q by a line segnent which lies entirely in S. Thus each point of local non-convexity q of S in $W(x, y) \cap S$ is in the kernel of $c l(W(x, y) \cap S)$.

If $y=\infty$, the same argument applies to the regions $c l V_{1}, \mathrm{clV}_{3}$, and $V_{4^{\circ}}$ If, however, $v \in V_{2}$, we have uv is contained in the convex strip $u q v \infty$ if $q v \subset S$ or in $u z v \infty$ if $z y \subset S$, which again leads to the same conclusion.

Let \bar{Q} be the set of points of local non-convexity of $\operatorname{cl}(W(x, y)$ $\cap S) \equiv A$. The set \bar{Q} is non-empty, by assumption. If q $\varepsilon \bar{Q} \cap L(x, y)$, we show that q is the limit of a sequence of points of $\bar{Q} \cap W(x, y)$. Since each element of $\bar{Q} \cap W(x, y)$ is in \bar{K}, the kernel of A, it will follow from the closure of S, that $q \varepsilon \bar{K}$. Assume that $q \varepsilon \bar{Q} \cap L(x, y)$. If q is an isolated point of \bar{Q}, then there exists an open spherical neighborhood σ of q such tiat $\sigma \cap \bar{Q}=\{q\}$. Let $u, v \varepsilon \sigma \cap A$ such that $u v \not \subset A$. Evidentily $u v \not \subset S$. If $u, v \in L(x, y) \cap S$, then $u v \subset S$, since $L(x, y) \cap S$ contains $x y$, the kernel of S. Thus, at most one of the points u and v is in $L(x, y) \cap S$. Assume that $u \varepsilon L(x, y) \cap S$. Then since $u \varepsilon c l(w(x, y) \cap S)$, every spherical nelghborhood λ of u intersects $W(x, y) \cap S$. Moreover, since S is closed, there exists a spherical neighbornood λ^{\prime} of u such that $u^{\prime} \varepsilon \lambda^{\prime} \cap A$ implies $u^{\prime} v \not \subset S$. We may assume that $\lambda^{\prime} \subset \sigma$. The above argument indicates that we may assume u and v to be in $W(x, y) \cap S$, whenever it is desirable to do so. If $q \in \bar{K}$, the kermel of A, then $q u$ and $q v$ are in S. If $q \notin K$, then there exists a point $z \varepsilon W(x, y) \cap S$, such tiat $q z \not \subset S$. Since S is closed, there will then exist a spherical neighborhood τ of $q, \tau \subset \sigma$ such that $w \in \tau \cap A$ implies $w z \not \subset S$. Let $u, v \varepsilon \tau \cap(W(x, y) \cap S)$ such that $u v \not \subset S$. Then, by Proposition 2.2, each point of S is eitner joined to q or to z
by a line segment lying entirely in S. Since $u z$ and $v z$ are not contained in $S, u q$ and $v q$ are contained in S. Thus, in either case ($q \in K$ and $q \notin K$) we are able to find points u and v in $\sigma \cap$ $(W(x, y) \cap S)$ such that $u v \notin S$ while qu, qv $\subset S$. By Lerma 3.3, q \in (x, y). Let us assume that q, x, y is the ordering of these three points along the line $L(x, y)$. (We do not exclude the possibility that $x=q$). Since $y \in K, y \in \bar{K}$. Since $u v \not \subset S, u, v$ and y are not collinear. Thus, we may consider $\Delta y q u$ and $\Delta y q v$. Since qu, qv $\subset S$ and $y \in \bar{K}$, each of these triangles lies entirely in A. Since qu and $q v$ are in S and $u v \not \subset S, u, v$, and q are not collinear. Hence either yu \cap qv or $y v \cap$ qu defines a unique point p in $W(x, y) \cap S$ with the property that pu and pv are contained in $\sigma \cap(W(x, y) \cap S)$. Thus, $\Delta p u v$ lies entirely in $\sigma \cap(W(x, y))$. Let C be the component of $\Delta p u v \cap$ $(W(x, y) \cap S)$ which contains the connected set up $U p v$. Since $\Delta p u v \subset$ $\sigma \cap(W(x, y), C$ is a closed, connected, locally convex set which must then be convex, by Tletze's theorem. Since $u, v \in C$, $u v \subset C \subset S$, a contradiction, unless C contains a point of local non-convexity of S in $\sigma \cap W(x, y)$ distinct from q.

If $\mathrm{y}=\infty$, then the same argument holds for a suitable choice of y^{\prime} along the ray $x \infty$. It follows that every open spherical neighborhood of q contains a point of local non-convexity of S lying in $W(x, y) \cap S$. That is, q is a limit point of a sequence $\left\{p_{n}\right\}$ of points of local non-convexity of S in $W(x, y) \cap S$. Since $p_{n} \varepsilon \bar{K}$ for each $n, p_{n} a \subset S$ for all a εA. For each a εA, the set $\left\{p_{n} a\right\}$ converges to the set qa which is in A, since A is a closed subset of
the closed set S. Thus, $q \in \bar{K}$, the kernel of A. We now have that every point of \bar{Q}, the set of points of local non-convexity of A is in \bar{K}, the kernel of A. Moreover, if $\bar{Q} \cap L(x, y)$ is non-empty, then the cardinality $\bar{\Pi}$ of \bar{Q} is infinite.

Evidently the set A is a closed, connected set each of whose points of local non-convexity is contained in its kernel \bar{K}. That is, the set A satisfies the hypothesis of Theorem 3.4. It follows that if N is one, even, or infinite, that A is expressible as the union of 2 convex sets, as was shown in the proof of Theorem 3.4.

If $\overline{\mathrm{N}}=2 \mathrm{~m}+1$ is an odd integer greater than one then $\bar{Q} \cap L(x, y)=\varnothing$ and there exists an edge $q_{0} q_{1}$ of conv \bar{Q} and a support plane W_{0} of convर्द which abuts conv $\overline{\overline{2}}$ alons $q_{0} q_{1}$ such that xy $\subset \operatorname{cl}\left(W_{0} \cap\right.$ $(W(x, y) \cap S))$. As in the proof of Theorem 3.4, $W_{0} \cap(W(x, y) \cap S)$, and, consequently, $c l\left(W_{0} \cap(W(x, y) \cap S)\right)$, are convex. Starting with $q_{0} q_{1}$ we order the remaining edges of conv \bar{Z} in a counterclockwise manner. If we let W_{1} be the open half-plane of support to conv \bar{Z} whose closure contains $q_{1} q_{i+1}$, we have the convex sets

$$
\begin{aligned}
& S_{1}=c l\left\{(\operatorname{conv} \bar{Q}) \quad U\left[(S \cap W(x, y)) \cap \bigcup_{i=1}^{U_{1}} W_{2 i-1}\right]\right\} \\
& S_{2}=c l\left\{(\operatorname{conv} \bar{Q}) \quad U\left[(S \cap W(x, y)) \cap \bigcup_{1=1}^{U_{21}} W_{21}\right]\right\}
\end{aligned}
$$

and $S_{3}=\operatorname{cl}\left(W_{0} \cap(W(x, y) \cap S)\right)$ as tiree convex sets containing cl($S \cap W(x, y))$, as in the proof of Theorem 3.4. Let M_{1} and M_{2} be maximal convex sets of $\operatorname{cl}(W(x, y) \cap S)$ containing S_{1} and S_{2}, respectively. We show that $S_{3} \subset M_{1} \cup M_{2}$. Let $w \in S_{3}$ such that $w \notin M_{1} \cup M_{2}$. Then
there exists an element s in M_{1} and t in H_{2} such that $\mathrm{sq} \not \subset \mathrm{S}$ and $t_{w} \not \subset S$. By Lema 3.8, secl($\left.W_{1} \cap(H(x, y) \cap S)\right)$ and $t \varepsilon \operatorname{cl}\left(W_{2 m} \cap\right.$ $(W(x, y) \cap S)$). Let x, y, q_{1}, q_{0} be the natural ordering of the vertices of the quadrilateral $x_{y q_{1}} q_{0}$. Then S_{3} must be contained in the union of the two convex regions C_{2} and C_{1} bounded by $L\left(x, q_{0}\right)$ and $L\left(q_{1}, q_{2 m}\right)$, and $L\left(y, q_{1}\right)$ and $L\left(q_{0}, q_{1}\right)$ respectively, and containIng the quadrilateral $\mathrm{xyq}_{1} q_{0}$. Moreover, $\left.c l\left(W_{1} \cap W(x, y) \cap S\right)\right) \subset C_{1}$ and $\mathrm{cl}\left(\mathrm{W}_{2 \mathrm{~m}} \cap(\mathrm{~W}(\mathrm{x}, \mathrm{y}) \cap \mathrm{S})\right) \subset \mathrm{C}_{2}$. If this were not the case either q_{0} or q_{1} would not be in Q. Since the quadrilateral ${x y q_{1}}^{q_{0}} \subset \bar{K}$ and the above mentioned sets are contained in $\mathrm{C}_{1} \mathrm{UC}_{2}$, we have swn K or $\mathrm{tw} \cap \mathrm{K}$ is non-empty. That is, sw or tw is contained in S . This contradiction shows that $S_{3} \subset M_{1} \cup M_{2}$. As in the proof of Theorem 3.4, the same arguments hold for $y=\infty$, with only the obvious changes. Since the above arguments may also be applied to $\operatorname{cl}(W(y, x) \cap$ S), we see that S is the union of 4 or fewer closed convex sets. The following exarple is representative:

An examination of the proof of Theorem 3.6 discloses the following:

1. If S has property P^{4}, and q is a point of local nonconvexity of S, then the convex hull of the set X of points of S which are not joined to q by a line segnent lying entirely in S is contained in S.
2. If w is a point in the kernel of S, then w is a point in the kernel of $S-X$.
3. If w is a point of local non-convexity of $S-X$, then w is a point of local non-convexity of S.

If S, X, and q are defined as above, and S does not bound a bounded domain of its complement, then $S-X$ has property P^{4}. Assume to the contrary, that x_{1}, x_{2}, x_{3}, and x_{4} are four points of $s-X$ which are not joined in S-X. Then $X \cap x_{1} x_{2}$, say, is non-empty since S has property P^{4}. Clearly, q, x_{1}, and x_{2} are not collinear since $\mathrm{qx} \mathrm{X}_{1}$ and qx_{2} are contained in S-X. Thus, we may consider $\operatorname{sqx}_{1} x_{2}$. Since $S-X$ is closed, there exists an open subinterval (uv) in $\left(x_{1} x_{2}\right) \cap X$ which implies $b d\left(\Delta q x_{1} x_{2}\right) \subset S$ bounds a residual domain of S, contrary to assumption.

Since by Theorem 3.5, a closed, connected set in E^{2} having property P^{4} which bounds a bounded domain of its complement may be expressed as the union of 5 or fewer closed convex sets, the problem of determining the number of closed convex sets which are required if a closed, connected set in E^{2} having property P^{4} is to be expressed as the union of such sets, may be reduced to the case where the set
S does not bound such a domain. Since S is either convex or contains a point of local non-convexity q, (by Tletze's Theorem), we may assume the existence of such a point. By the above remarks, S may be considered to be the union of a starlike set having property P^{4} with q in its kernel, and a closed convex set. Tnus, if the case where S is starlike with one or more points of local non-convexity in the kernel of S were settled, the general case would then follow. Several of the cases settled by the theorems of this chapter allow one to place even greater restrictions upon the nature of the set S.

CHAPTER IV

FURTTER CONSIDERATIONS AND EXAMPLES

While it may be difficult to determine how many convex sets are required to express a closed, connected set S having property P^{n} as the union of closed convex sets it may not be as difficult to establish an upper bound on the number required. The foliowing theorem is a step in that direction.

Theorem 4.1 If S is a closed, connected P^{n} set in E^{2} and the set Q of points of local non-convexity of S is a finite set, then S is expressible as the union of a finite number of convex sets.

Proof. Let N be the cardinality of Q. If $\mathrm{H}=1$, the resuit follows from Theorem 3.3. Hence, assume the result to be true for $N \leq k-1$ and consider the case $N=k$.

Since conva is a compact, convex set in E^{m}, there exists an element q of Q such that $q \boldsymbol{Z} \operatorname{conv}(Q-\{q\})$. Thus, there exists a line L which strictly separates q and the compact convex set $\operatorname{conv}(Q-\{q\})$.

Let U be the closed half-space determined by L and containing $\operatorname{conv}(\mathrm{Q}-\{q\})$ in its interior, and V be the closed half-space containing q in its interior. It is ciear that $U \cap S$ and $V \cap S$ are closed sets having property P^{n}. Thus each has at most $\mathrm{n}-1$ components, and each cormonent is a P^{n} set containing at most $\mathrm{k}-1$ points of Q. Thus, by our induction hypothesis, each component is expressible as the union of a finite number of closed convex sets. The result now follows.

Remark: An example given by Kay [ll] shows that a finite number of convex sets may not suffice if S is not closed. The case where S is closed remains unsettled.

Considering the results obtained in Chapter III for closed, connected sets in the plane havins property P^{4}, one might conjecture that a closed, starlike set in E^{2} with property P^{n} is expressible as the union of n or fewer closed convex sets. The following examples show that this is not the case for $n>4$.

The first example given has property P^{5}, but can not be expressed as the union of fewer than 6 closed convex sets. (Each star is expressible as the union of no fewer than 3 convex sets, and no point of one may be entirely included in convex subsets of the other).

The second example given indicates how one might subdivide the circumference of a circle to obtain a starlike set having property $\mathrm{P}^{2 k+1}$ which is expressible as the union of no fewer than $3 k$ convex sets, where k is the number of stars.

This particular example has property P^{17} and is expressible as the union of 24 closed convex sets. Its kermel is the center of the circle.

Some of the topological properties of a set having property P^{n} have been established. For example, if S is closed and connected, then S is arcwise connected by Proposition 2.2; by Theorem 7 of Kay [ll] which is stated without proof, S is locally starlike, and hence locally connected.

For $n \geq 4$, a closed connected set need not be simply connected since the boundary of a triangle in E^{2} has property P^{4}. The question of the connectivity of a closed, connected set in E^{2} is of some interest.

For $n=4$ it was shown in Lemma 3.9 that a closed, connected set S in E^{2} with property P^{4} can bound at most one bounded domain of its complement. For $n=5$, each of the following examples having property P^{5} bounds 3 such domains. (In these examples, 4, 5, and 6 convex sets have been used to bound the three domains).

For $n>4$, the number of bounded domains which a closed, connected set in E^{2} having property P^{n} can bound is an open question.

The following class of examples of sets having property P^{k+1} which bound c_{2}^{k-1} domains indicates that the number is greater than or equal to $\cdot c_{2}^{k-1}$. Let the k vertices of a convex polygon be chosen so that the extension of each side intersects the extension of every other side. The configuration consisting of the k extended sides will bound C_{2}^{k-1} domains and will have property P^{k+1}. Given below are examples for $k=3,4,5,6,7,8$. Several other configurations have been considered, but each has resulted in C_{2}^{k-1} or fewer bounded domains

The nature of P^{n} sets in hifher dimensions nas received very little attention. If the proofs given in E^{2} are to be generalized, it would seem that the generalization of Valentine's results, Theorem 3.3 and Theorem 3.4 should first be considered, and the nature of the set of points of local non-convexity understood.

For $n=3$, Valentine [13] has given the following result: Let S be a closed set in a linear topological space L where the dimension of L is greater than two. If S has property P^{3}, is not contained in any two-dimensional variety of L, and has one isolated point of local nonconvexity, then S has at most two points of local non-convexity. The proof uses strongly the fact that for $n=3$ the set of points of local non-convexity of S are in the kermel of S, which is not true for $n>3$. The following example is a P^{3} set in E^{3} having exactly two points of local non-convexity.

By adding lines which pierce the sphere one may obtain a P^{n} set having $2(n-2)$ isolated points of local non-convexity.

It is clear from the example given after Proposition 2.6, and the boundary of a 3 -simplex which has property P^{5} that S need not have any isolated points of local non-convexity.

1. Allen, J. E., "A generalization of convexity," Notices, A. M. Soc. 8, 344 (1961).
2. Allen, J. E., Starlike and Inverse starlike sets. Ph.D. thesis (1963), Oklahoma State University.
3. Bruckner, A. M., and Bruckner, J. B., "On L sets, the Hausdorff metric, and connectedness," Proc. Am. Math. Soc. 13, 764767 (1962).
4. Brunn, H., "Uber Kerneigebiete," Math. Ann. 73, 436-440 (1913).
5. Bunt, L. N. H., Bijdrace Tot De Theorie Der Convexe Puntverqamelinrer, Amsterdam, (1934).
6. Danzer, L. W., Grumbaum, B., and Klee, V., "Helly's Theorem and its relatives," Proc. Symposia in Pure Mathematics, vol. VII, 101-180 (1963).
7. Fenchel, W., nÜber Kriimmung und Windung geschlossener Raumkurven," Mathematische Annalen, vol. 101, 241 (1929).
8. Helly, E., "Über Mengen konvexer Korper mit gemeinschaftlichen Punkten,"Joer. Deutsci. Math. Verein. 32, 175-176 (1923).
9. Hocking and Young. Topology, Reading, Mass. (1961).
10. Horn, A., and Valentine, F. A., "Some properties of L sets in the plane," Duke Math. J., vol. XVI, 131-140 (1949).
11. Kay, D. C., "On a generalization of convexity," Summer Research Project, University of Wyoming, Laramie, (1965).
12. Klee, V., "Relative extreme points," Proc. International Symposium on Linear Spaces, 282-289 (1960).
13. McCoy, J. W., "An Extension of the Concept of L_{n} Sets," Proc. Am. Math. Soc. 16, 177-180 (1965).
14. Newman, M. H., Topolory of Plane Sets of Points, Cambridge, Mass. (1954).
15. Post, K. A., "Star extensions of plane convex sets," Nederl. Akak. Wetensch. Proc. Ser. A67 - Indag. Math. 26, 330 338 (1964).
16. THetze, H., "Über Konvexheit im kleinem und im grossen and über gewisse den Punkten einer Menge zugeordnete Dimensionazahlen," Math. Z.28, 697-707 (1928).
17. . Valentine, F. A., "A three point convexity property," Pacific J. Math. 7, 1227-1235 (1957).
18. Valentine, F. A., "The intersection of two convex surfaces and property P_{3} " Proc. Am. Math. Soc. 9, 47-54 (1958).
19. Valentine, F. A., Convex Sets, New York, New York (1964).
20. Whyburn, G. T., Analytic Topolory, New Yor'k, New York (1942).
