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ABSTRACT 

COMPUTATIONAL STUDY OF THE EFFECT OF REYNOLDS NUMBER AND MOTION 
TRAJECTORY ASYMMETRY ON THE AERODYNAMICS OF A PITCHING AIRFOIL AT 

LOW REYNOLDS NUMBER 

By 

Patrick R. Hammer 

 It is well established that natural flyers flap their wings to sustain flight due to poor 

performance of steady wing aerodynamics at low Reynolds number.  Natural flyers also benefit 

from the propulsive force generated by flapping.  Unsteady airfoils allow for simplified study of 

flapping wing aerodynamics.  Limited previous work has suggested that both the Reynolds 

number and motion trajectory asymmetry play a non-negligible role in the resulting forces and 

wake structure of an oscillating airfoil.  In this work, computations are performed to on this topic 

for a NACA 0012 airfoil purely pitching about its quarter-chord point.   

Two-dimensional computations are undertaken using the high-order, extensively 

validated FDL3DI Navier-Strokes solver developed at Wright-Patterson Air Force Base.  The 

Reynolds number range of this study is 2,000-22,000, reduced frequencies as high as 16 are 

considered, and the pitching amplitude varies from 2° to 10°.  In order to simulate the 

incompressible limit with the current compressible solver, freestream Mach numbers as low as 

0.005 are used.  The wake structure is accurately resolved using an overset grid approach.   

The results show that the streamwise force depends on Reynolds number such that the 

drag-to-thrust crossover reduced frequency decreases with increasing Reynolds number at a 

given amplitude.  As the amplitude increases, the crossover reduced frequency decreases at a 

given Reynolds number.  The crossover frequency data show good collapse for all pitching 

amplitudes considered when expressed as the Strouhal number based on trailing edge-amplitude 



 

for different Reynolds numbers.  Appropriate scaling causes the thrust data to become nearly 

independent of Reynolds number and amplitude.  An increase in propulsive efficiency is 

observed as the Reynolds number increases while less dependence is seen in the peak-to-peak lift 

and drag amplitudes.   

Reynolds number dependence is also seen for the wake structure.  The crossover reduced 

frequency to produce a switch in the wake vortex configuration from von Kármán (drag) to 

reverse von Kármán (thrust) patterns decreases as the Reynolds number increases.  As the 

pitching amplitude increases, more complex structures form in the wake, particularly at the 

higher Reynolds numbers considered.  Although both the transverse and streamwise spacing 

depend on amplitude, the vortex array aspect ratio is nearly amplitude independent for each 

Reynolds number. 

 Motion trajectory asymmetry produces a non-zero average lift and a decrease in average 

drag.  Decomposition of the lift demonstrates that the majority of the average lift is a result of the 

component from average vortex (circulatory) lift.  The average lift is positive at low reduced 

frequency, but as the reduced frequency increases at a given motion asymmetry, an increasing 

amount of negative lift occurs over a greater portion of the oscillation cycle, and eventually 

causes a switch in the sign of the lift.  The maximum value, minimum value, and peak-to-peak 

amplitude of the lift and drag increase with increasing reduced frequency and asymmetry.  

 The wake structure becomes complex with an asymmetric motion trajectory.  A faster 

pitch-up produces a single positive vortex and one or more negative vortices, the number of 

which depends on the reduced frequency and asymmetry.  When the airfoil motion trajectory is 

asymmetric, the vortex trajectories and properties in the wake exhibit asymmetric behavior.    
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CHAPTER 1. INTRODUCTION 
 

1.1. Background 

Since the early 20th century, oscillating airfoils have been the focus of a large number of 

investigations.  Although early work focused on understanding the mechanisms related to flutter 

(Theodorsen, 1935), more recent studies of oscillating airfoils have been driven by developing 

Micro Air Vehicles (MAVs).  Fixed wings perform well to generate lift at high Reynolds 

numbers (Re ≥ 106) where aircrafts operate.  As a reference, the operating Reynolds number for 

different natural and man-made flyers, and the corresponding maximum lift-to-drag ratio, is 

illustrated in Figure 1.1 (Lissaman, 1983).  However, the performance of fixed wing 

aerodynamics deteriorates rapidly at the lower Reynolds numbers in which MAVs typically to 

operate (Re = 102-105).  At Reynolds numbers of order 105, the maximum lift-to-drag drops 

significantly due to higher drag and lower lift experienced at the lower Reynolds numbers, where 

the boundary layer is still laminar.  Here, the Reynolds number is based on the airfoil chord 

length and is defined as the ratio of inertia to viscous forces (i.e., Re = ρ∞U∞c/µ∞, where ρ∞ is the 

freestream fluid density, U∞ the freestream flow speed, c the airfoil chord length, and µ∞ the 

freestream fluid dynamic viscosity).  To overcome the loss in steady aerodynamic performance 

at these low Reynolds numbers, natural flyers flap their wings.   
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Figure 1.1.  a) Operating Reynolds numbers for different flyers (both natural and man-made) b) 

maximum lift-to-drag ratio versus Reynolds number (Lissaman, 1983).  The broken line 
corresponds to the Reynolds number of 105, where there is a sharp drop in performance.  Figure 

courtesy of Annual Reviews, Inc. 

The flows generated by flapping motions are predominantly vortical and have been 

studied extensively, primarily due to their connection with the propulsion of the majority of 

nature’s flyers and swimmers (e.g. Wu, 1971; Lighthill, 1975) through analytical approaches 

(e.g. Theodorsen, 1935; Garrick, 1936; von Kármán and Burgers, 1935; von Kármán and Sears, 

1938), experiments (e.g. Katzmayr, 1922; DeLaurier and Harris, 1982; Freymuth, 1988; 

Koochesfahani, 1989; Jones and Platzer, 1998; Lai and Platzer, 1999), and computations (e.g. 

Katz and Weihs, 1978; Stanek and Visbal, 1989; Liu and Kawachi, 1999; Ramamurti and 

Sandberg, 2001).  The idealized form of two-dimensional flapping typically studied consists of 

an oscillatory action comprised of two distinct motions: cross-stream translation (plunging or 

heaving) and rotation about a specific axis along the chord length (pitching).  Although true 

flapping is more complex, the study of the simplified oscillatory motions elucidates the basic 

aerodynamic mechanisms that natural flyers take advantage of.  One mechanism of flapping 

comes from pitching causing a geometric angle of attack, +, and plunging generating an effective 

angle of attack, +,, respectively, between the chord line and the direction of the relative 

approach flow.  This is shown schematically in Figure 1.2 for a flat plate.  The combination of 
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the pitching and plunging represents the effective angle of attack experienced by flyers in 

idealized, two-dimensional kinematic conditions.   

 
Figure 1.2. Schematic of flat plate undergoing a) pitching and b) plunging. 

It is well known from inviscid theory that an airfoil at a fixed angle of attack experiences 

a lift force because of the circulation around the airfoil (Anderson, Jr., 1984).  When the angle of 

attack continuously changes, as in the case of oscillatory motions, there is an accompanying 

change in circulation around the airfoil (von Kármán and Burgers, 1935), which causes 

circulation of the opposite sign as the circulation bound to the airfoil to shed into the wake due to 

Kelvin’s circulation theorem (Thomson, 1869) in the form of a wavy vorticity sheet (see Figure 

1.3).  In the figure, the circular arrows indicate the direction of rotation in the vorticity sheet.  

The resulting average velocity distribution in the wake induced by the rotation of the vorticity 

sheet causes a jet-like velocity profile, also shown in the figure.  Early flow visualization (Bratt, 

1953) and inviscid numerical studies (Gieseng, 1968; Katz and Weihs, 1978) have shown that 

this vorticity sheet rolls up into distinct vortices at high enough frequencies.  
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Figure 1.3.  Illustration of vorticity shed into the wake and its relationship to the airfoil 

circulation (von Kármán and Burgers, 1935), with resulting average velocity behavior in the 
wake based rotation of vorticity sheet.  Figure courtesy of Springer-Verlag. 

At the Reynolds numbers in which natural flyers operate, it is known (Koochesfahani, 

1989; Jones and Platzer, 1998) that there exist oscillation frequency requirements to generate the 

thrust-producing vortical pattern.  At lower oscillation frequencies, the wake structure oftentimes 

takes the form of a traditional von Kármán street (see Figure 1.4 for an example), which is 

known to produce drag based on work by von Kármán (1911, 1912) for cylinders in a cross-flow.  

As the oscillation frequency increases, the vortices become aligned and lead a uniform velocity 

profile that has no net momentum deficit or surplus.  The vortices then switch in orientation as 

the oscillation frequency increases further and produce the reverse von Kármán street in the 

airfoil’s wake, which leads to thrust due to the jet-like velocity profile.   
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Figure 1.4. Flow visualization of traditional von Kármán street, aligned vortices, and reverse 

von Kármán street with accompanying velocity profile. 

Although force measurements (DeLaurier and Harris, 1982) and qualitative deduction 

based on the flow patterns (Freymuth, 1989) have shown that thrust could be generated at low 

Reynolds numbers through pitching and plunging, Koochesfahani (1989) quantitatively 

connected the wake structure with the thrust generation.  Koochesfahani (1989) performed dye 

flow visualization and Laser Doppler Velocimetry (LDV) measurements of the wake structure 

behind a pitching airfoil and demonstrated the role of varying reduced frequency and pitching 

amplitude on the evolving wake structure and thrust force.  In these experiments, a NACA 0012 

airfoil pitched about the quarter-chord with two amplitudes (2º and 4º).  With the qualitative and 

quantitative information of the wake, the thrust coefficient, CT, was estimated based on the 

transverse profile of the time-averaged streamwise component of the velocity measured one 

chord length downstream of the trailing edge.  This allowed for a direct correlation between the 
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vortical structure and the thrust force.  At low reduced frequencies (k = f π c/U∞, where f is the 

pitching frequency) and amplitude, the wake structure was drag producing (see Figure 1.5).  As 

the reduced frequency increased, the drag decreased until it reached a critical reduced frequency 

at which the rows of clockwise and counter-clockwise vortices became aligned on the wake 

centerline, leading to a uniform average velocity profile.  This critical reduced frequency is 

called the crossover reduced frequency, kcr.  Further increasing the reduced frequency generated 

the jet-producing reverse von Kármán vortex street, leading to thrust.   

 
Figure 1.5.  Thrust coefficient dependency on reduced frequency and pitching amplitude 

(Koochesfahani, 1989).  Flow visualization of vortical patterns from current computations are 
included as reference.  Figure courtesy of AIAA. 

By increasing the pitching amplitude, Koochesfahani (1989) observed an increasing 

number of vortices shed per half-cycle at lower reduced frequencies.  At αo = 4º, two same-sign 

vortices could be shed during each half-cycle (referred to as a bifurcating wake), producing a 

double-wake time-averaged velocity profile.  By increasing the amplitude further, three vortices 

of the same sign could be shed during each half-cycle.  Multiple-same sign vortical patterns, 

however, were not generated at lower amplitudes.  Similar complex structures were also 
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observed by Schnipper, et. al., (2009) for pitching airfoils and Jones and Platzer (1998) and Lai 

and Platzer (1999) for plunging airfoils.  Increasing the pitching amplitude produced higher 

thrust and, thus, a lower crossover reduced frequency.  It was shown by Triantafyllou, et al., 

(1993) that the thrust becomes amplitude independent if scaled by a Strouhal number based on 

trailing edge peak-to-peak amplitude (St = fATE/U∞; where ATE is the trailing edge peak-to-peak 

amplitude) as opposed to the reduced frequency.   

However, simulations by Streitlien and Triantafyllou (1998) demonstrated that the time-

averaged thrust would be over predicted if only the time-averaged streamwise velocity profile in 

the wake of an oscillating airfoil is used to estimate the thrust, as done by Koochesfahani (1989).  

This overestimation was confirmed in computations by Liu and Kawachi (1999) and Ramamurti 

and Sandberg (2001) and experiments by Bohl and Koochesfahani (2009).  By including terms 

involving velocity fluctuations in the momentum integral estimation previously neglected, Bohl 

and Koochesfahani (2009) quantitatively showed that the thrust was lower, and the crossover 

reduced frequency was higher, than that obtained using only the time-averaged streamwise 

velocity.  This work also showed that the switch in vortex arrangement (von Kármán to reverse 

von Kármán) occurs before the switch from drag-to-thrust.  Thus, two crossover reduced 

frequencies are defined: one based on the switch in vortex arrangement and the other based on 

the drag-to-thrust switch.  Godoy-Diana, et al. (2008) also observed that the vortex arrangement 

switch occurs before the switch in streamwise force using a different airfoil and Reynolds 

number.  The reason the vortex arrangement switches before the drag-to-thrust switch is due to 

the additional momentum flux from the streamwise velocity fluctuations required to overcome 

the pressure reduction in the wake of the airfoil produced by the vortical structures (Bohl and 

Koochesfahani, 2009).   
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In order to quantitatively relate the behavior of the thrust to the vortical structure in the 

wake, Bohl (2002) and Bohl and Koochesfahani (2009) characterized the effect of reduced 

frequency on a variety of properties related to the strength, size, speed, and the pattern of the 

vortices in the wake.  The vortex strength was characterized by the peak vorticity (ωz,peak) and 

circulation (Γ), the speed by the vortex convection speed (UC), the size by the core radius (rc), 

and the pattern by the streamwise and transverse spacing (a and b, respectively) between the 

vortices (see Figure 1.6 for a schematic).  Measurements were done at a location 0.5c 

downstream of the trailing edge.  The combination of these parameters would then impact the 

resulting thrust force on the airfoil, as demonstrated by Monnier, et al., (2015).  It was found that 

as the reduced frequency increased, the peak vorticity, circulation, and convection speed 

increased.  Conversely, the streamwise spacing decreased while the transverse spacing increased 

until it reached an observable asymptotic value.  The core radius, however, did not vary 

significantly with increasing reduced frequency at the measurement location.   

 
Figure 1.6.  Schematic of vortex streamwise (a) and transverse (b) spacing. 
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1.2.  Reynolds Number Dependency 

A comparison between the thrust coefficient for a NACA 0012 purely pitching about its 

quarter-chord with 2° amplitude from experiments (Bohl and Koochesfahani, 2009, unpublished; 

Naguib, et al., 2011; Mackowski and Williamson, 2015) and viscous computations (Ramamurti 

and Sandberg, 2001; Young and Lai, 2004; Xiao and Liao, 2009; Jee and Moser, 2012; Zhang, et 

al., 2012) with inviscid flat plate theory (Garrick, 1957) and inviscid computations for a NACA 

0012 (Ramamurti and Sandberg, 2001) is provided in Figure 1.7.  The Reynolds number for the 

experiments and viscous computations is approximately 12,000.  In general, the low Reynolds 

number data show lower CT values than the inviscid predictions.  This produces a drag-to-thrust 

crossover reduced frequency, kcr, that is generally higher than the inviscid predictions of 

approximately 1 for the flat plate (Garrick, 1957) and 3 from inviscid flow around the NACA 

0012 (Ramamurti and Sandberg, 2001).  Koochesfahani (1989) commented that the discrepancy 

between the higher crossover reduced frequency in the viscous flow compared to the inviscid 

flow “may be expected because here is there substantial viscous drag that must be overcome that 

does not of course exist in the inviscid case”.  The higher kcr of the low Reynolds number data 

and remarks by Koochesfahani (1989) are suggestive that there may be a Reynolds number 

dependence on the crossover reduced frequency.   
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Figure 1.7.  Thrust coefficient vs. reduced frequency (left), crossover reduced frequency vs. 
Reynolds number for NACA 0012 pitching about its quarter-chord with a 2° amplitude at a 

Reynolds number of approximately 12,000 (right). 

Another significant point from Figure 1.7 is that it is troubling to see the great deal of 

scatter amongst the computational data for this “canonical” case commonly used for low 

Reynolds number unsteady aerodynamic validation, where the crossover reduced frequency 

varies from approximately 4 to 10.  For the specific instances where the thrust curves from the 

literature were close to the inviscid predictions, the authors noted only that there was agreement 

in the trends when making comparisons with other data without making comment on the 

quantitative agreement.  However, there is good quantitative agreement between the experiments 

by Naguib, et al., (2011) and Bohl and Koochesfahani (2009; unpublished) with compressible 

flow computations by Young and Lai (2004) and Yu, et al., (2010).   

Liu and Kawachi (1999) were the first to quantitatively observe a Reynolds number 

dependency on thrust, where the thrust increased as the Reynolds number increased.  This work 

used an incompressible Navier-Stokes solver.  However, only two Reynolds numbers within a 

very narrow range were used in this study: 7,200 and 12,000.  Other authors have also remarked 
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on a Reynolds number dependency on the thrust.  Dong, et al., (2006) performed computations 

to study the effect of aspect ratio on the wake structure and propulsive characteristics for 

ellipsoid wings undergoing combined pitch and plunge at insect-range Reynolds numbers (Re = 

102).  The authors noted that at low Reynolds numbers, airfoils produce thrust only at high 

Strouhal numbers due to the high profile drag that must be overcome at the low Reynolds 

numbers.  Experiments on a low aspect ratio pitching plate by Buchholz and Smits (2008) over a 

range of Reynolds numbers between 3,000 and 15,000 showed that the thrust generally increased 

with increasing Reynolds number.  However, the size of the error bars (especially at high 

Strouhal number) made this trend difficult to ascertain.    

High-order computations were also undertaken by Visbal (2009) to study transitional 

flow around an SD7003 undergoing pure plunging with a non-zero mean angle of attack.  For a 

specific reduced frequency of 3.93, an order of magnitude reduction in Reynolds number saw a 

switch in sign of the average thrust coefficient.  Ashraf, et. al., (2011) studied airfoil thickness 

effects at different Reynolds numbers (Re = 102-106) for an airfoil undergoing plunging and 

combined pitching and plunging.  The plunging amplitudes were 0.25 and 0.50 while the 

pitching amplitudes were 15º-30º.  The authors found that at low Reynolds number (Re = 102), 

the airfoils that were 12% or less produced thrust.  Airfoils thicker than this produced drag, 

which increased as the thickness increased.  As the Reynolds number increased to 2,000+, there 

was a peak in thrust and efficiency when the thickness was in the range 20%-30%.  Yu, et al., 

(2013) also investigated the effect of thickness on purely pitching, purely plunging, and 

combined pitch/plunge on two-dimensional airfoils at Re = 103, also using a high-order spectral 

difference method.  Yu, et al., (2013) noted that as the thickness-based Reynolds number 

increases, the wake structure gradually changes from drag-indicative to thrust-indicative.   
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 Directly tied to thrust is the propulsive efficiency.  The propulsive efficiency, -., is the 

ratio between work caused by the propulsive force versus the input power (Garrick, 1936; 

Triantafyllou, et al., 1993).  Written in terms of standard non-dimensional quantities, the 

propulsive efficiency is defined as 

 -. =
/0

/1.
 (1.1) 

where the time-averaged /0 is  

 /0 =
1

3
/0 4 54

670

6

 (1.2) 

the time-averaged input power coefficient, /1., is  

 /1. =
1

3
/8 4 ℎ + /; 4 + 54

670

6

 (1.3) 

In the above expression, /8 4  is the time-varying lift coefficient, /; 4  is the time-varying 

pitching moment coefficient and T is the oscillation period.  The plunging velocity, ℎ, and 

pitching velocity, +, are normalized by U∞ and U∞/c, respectively.   

Triantafyllou, et. al., (1993) theorized that there exists an optimal Strouhal number range 

where the peak propulsive efficiency occurs.  This optimal Strouhal number range occurs 

between St = 0.25-0.35, even though parameters such as the trailing edge amplitude, pitch-axis 

location will affect the maximum efficiency.  By comparing the operating range of various fish 

and cetaceans (Re = 104-106), Triantafyllou, et. al., (1993) noted that the optimal Strouhal 

number range was not significantly dependent on Reynolds number.  Computational results by 
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Liu and Kawachi (1999) on a pitching airfoil at Re = 7,200 and 12,000 also showed a propulsive 

efficiency within this range (see Figure 1.8).  It is possible that since a small Reynolds number 

range was used by Liu and Kawachi (1999), they could not fully ascertain the dependency of 

Reynolds number on the range of optimal Strouhal number.   

 
Figure 1.8.  Propulsive efficiency versus Strouhal number (Liu and Kawachi, 1999).  Figure 

courtesy of Elsevier. 

With the limited work found in the literature on the Reynolds number effect on the 

propulsive characteristics, the effect of Reynolds number on the vortex arrangement and its 

accompanying configuration switch has received even less attention in the literature.  Bohl and 

Koochesfahani (2009) characterized the effect of reduced frequency on the switch in orientation 

from a traditional von Kármán street to reverse von Kármán street for a sinusoidally pitching 

NACA 0012 at Re = 12,600 and 2° amplitude.  The authors observed that a visually aligned 

vortex array was produced at a reduced frequency of approximately 5.7 (St = 0.095).  Godoy-

Diana, et al., (2008) investigated wake transitions for the tear-drop shaped airfoil at chord 

Reynolds number of approximately 1,200 and found a switch in vortex configuration at St > 0.1 
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for AD < 1, where AD is the trailing edge amplitude normalized by the airfoil thickness (see 

Figure 1.9).  Monnier, et al., (2015) examined the effect of flexibility on the wake properties of 

an airfoil with a flexible trailing edge.  The airfoil had a “head” with a NACA 0036 profile and a 

“tail” with uniform thickness and a sharp trailing edge.  The chord Reynolds number was 2,100.  

It was observed that the switch in transverse spacing, b, occurred at St ≈ 0.135-0.20 for the rigid 

airfoil, which was higher than the conditions for the pattern switch observed by Bohl and 

Koochesfahani (2009).  It is unclear whether or not this higher crossover Strouhal number is a 

result of shape effects or Reynolds number. 

 
Figure 1.9.  a) Schematic of airfoil and kinematics considered and b) oscillation amplitude vs. 

Strouhal number.  The chord Reynolds number is approximately 1,200.  The blue line in the right 
image represents the switch from traditional von Kármán street to reverse von Kármán vortex 

patterns.  Figure courtesy of American Physical Society. 

1.3. Kinematic Trajectory Effects 
 

The vast majority of investigations found in the literature have focused on airfoils 

oscillating sinusoidally while less attention has been given to motions that are non-sinusoidal in 

nature.  The first work involving non-sinusoidal oscillations was Koochesfahani (1989).   In this 

work, the pitching trajectory was made asymmetric, where the degree of asymmetry was denoted 
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by a symmetry parameter, S, defined as the duration of the pitch-up (or downstroke for a 

plunging airfoil) divided by the total oscillation period.  This is shown schematically in Figure 

1.10.  Based on this nomenclature, a sinusoidal trajectory becomes a special case of the 

asymmetric trajectory when S = 50%. 

 
Figure 1.10.  Schematic of asymmetric trajectory definition (Koochesfahani, 1989).  Figure 

courtesy of AIAA. 

Koochesfahani (1989) found that asymmetric pitching had a very pronounced influence 

on the evolving vortical structure (see Figure 1.11).  For faster pitch-up (S = 38%), a single 

counter-clockwise vortex and two clockwise vortices were shed during each pitching cycle.  A 

slower pitch-up and a faster pitch-down produced a mirrored structure, where two counter-

clockwise vortices shed during the slow pitch-up and a single clockwise vortex shed during the 

fast pitch-down.  It was hypothesized that the force history would be affected due to the breaking 

of symmetry, though this effect was not characterized.  By increasing the pitching amplitude, 

more complex vortical structures were observed.  Interestingly, Naguib, et. al., (2011) 

reproduced the very intricate mean and r.m.s. profiles of Koochesfahani (1989) using a simple 

finite-core vortex array model whose only inputs were the relative position, core radius, and 

circulation of the vortices.   
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Figure 1.11.  Flow visualization for three asymmetries: S = 38%, 50%, and 61% 

(Koochesfahani, 1989).  The Reynolds number is 12,000 and the pitching amplitude is 2°.  
Figure courtesy of AIAA. 

More recently, Sarkar and Venkatraman (2006) studied an asymmetric plunging 

trajectory using an incompressible, viscous discrete vortex method.  Flow visualization of the 

discrete vortex particles showed complex flow patterns in the wake, reminiscent of those seen in 

Koochesfahani (1989).  This work further illustrated that the fast part of the motion, a single 

positive-sign vortex sheds while multiple vortices shed during the slower part.  Sarkar and 

Venkatraman (2006) also were the first to directly show the impact of asymmetry on the forces 

and efficiency.  They found that the airfoil experienced an increase in thrust as the plunging 

motion became more asymmetric.  The increase in thrust was also symmetric about S = 50%, 

such that S = 38% would produce the same thrust as S = 62%, for example.  In general, an 

asymmetric trajectory produced an increase in propulsive efficiency.  The authors also 

commented that the time-averaged lift was non-zero when using an asymmetric motion, and 

increased with asymmetry and reduced frequency, though no quantitative data was presented.  

Asymmetric flapping using oscillatory rolling kinematics was studied by Devranjan, et. 

al., (2013) using an inviscid discrete vortex method and experiments.  The discrete vortex 
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method incorporated flexibility using a cantilever simplification.  This work showed that 

asymmetric flapping can be an effective means of attaining lift, with an optimal flexibility 

existing for a given amplitude.  Yu and Tong (2005) also studied a complicated planar motion 

representative of insect flight.  In this work, stroke asymmetry was studied using an 

incompressible, potential flow solver.  Yu and Tong (2005) showed that asymmetry enhances 

time-averaged thrust while there was little impact on the time-averaged lift.  Asymmetric 

pitching was also investigated by Lu, et al., (2013) in the context of higher Reynolds number (Re 

= O(105)) and low reduced frequencies (k = O(10-1)).  They found that the force peak values, 

force time-histories, and hysteresis loop widths are noticeably affected by asymmetry.  

Asymmetry also delayed both the formation and development of the leading edge vortex. 

1.4.  Present Research 

It is clear from the literature that a dependency of the vortical flow on the Reynolds 

number exists.  However, it is even more apparent that an extensive, quantitative analysis of the 

effect of Reynolds number on both the forces, efficiency, and wake structure is lacking.  One of 

the main purposes of the present research is to characterize the effect of Reynolds number on the 

forces, efficiency, and wake structure for a pitching airfoil.  It is also of interest to further explore 

the role of asymmetry on the forces and flow structure of a pitching airfoil.  The underlying 

interest in asymmetric airfoil motion trajectory comes from the fact that natural flyers utilize 

asymmetric wing beats (Park, et. al., 2001; Rosén, et al., 2004).  Thus, it is beneficial to study 

the underlying physics of the flow created by asymmetric kinematics which natural flyers use 

and MAVs may exploit.   

In this work, high-fidelity, computations are undertaken to study both the effect of 

Reynolds number and trajectory asymmetry on the forces and flow structure of an oscillation 
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airfoil at low Reynolds number (Re = 2,000-22,000).  A schematic of the considered flow is 

given in Figure 1.12.  The flow is assumed to be two-dimensional, limiting the flow to be 

laminar.  This assumption is valid for the low Reynolds numbers of interest and confirmed by 

experiments (Koochesfahani, 1989).  This assumption is also the first step in studying these 

flows given the large parameter space.  The oscillatory motion selected is pitching performed 

about the quarter-chord.  The choice of kinematics is to allow for direct qualitative and 

quantitative comparison with the experiments by Koochesfahani (1989), Bohl and 

Koochesfahani (2009), and Naguib, et. al., (2011).  Two coordinate systems are used.  A global 

coordinate system is denoted by X and Y and originates at the leading edge.  A wake coordinate 

system is also used and is denoted by x and y, which originates at the trailing edge.  All forces 

were obtained by integrating the pressure and shear stress distributions around the surface of the 

airfoil.  The lift, L, is positive in the positive Y direction while drag, D, is positive in the positive 

X direction.  Note that positive thrust is in the negative X direction.  For this work, the high-

order, extensively-validated, FDL3DI Navier-Stokes solver is used (Gaitonde and Visbal, 1998; 

Visbal and Gaitonde, 1999).  

 
Figure 1.12.  Schematic of investigated flow with important parameters labeled. 

What sets this work apart from other high-order computations for oscillating airfoil 

studies (Visbal, 2009; Liang, et al., 2011; Ou, et al., 2011, Yu, et al., 2011; Yu, et al., 2013) are 

as follows.  The first, and most distinctive, difference is that this is the first attempt, to the 
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author’s knowledge, to use high-order computational tools to obtain quantitative data of the wake 

flow structure (velocity profiles, vortex properties, etc.).  This is made possible by implementing 

an overset grid approach.  The second distinctive difference is that this work utilizes freestream 

Mach numbers lower than those typically found in the literature employing a compressible flow 

code.  In this work, freestream Mach numbers as low as 0.005 are used.  The appropriateness of 

the freestream Mach number selections for simulating incompressible flow is examined 

systematically.  

The remainder of this document is divided as follows.  Chapter 2 discusses computational 

considerations, such as the asymmetric motion trajectory definition, the numerical method, 

validation, Mach number effects, and grid remapping/vortex tracking.  Chapters 3 and 4 present 

the effect of Reynolds number on the forces and vortex properties of a sinusoidally pitching 

airfoil.  Chapters 5 and 6 demonstrate the role asymmetry has on the forces and flow structure for 

the pitching airfoil.  Chapter 7 summarizes the outcomes of the present research and provided 

recommendations for future research.  
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CHAPTER 2.  COMPUTATIONAL CONSIDERATIONS 

Before the results of this work can be presented, several computational considerations 

must be addressed.  This chapter is organized as follows: Section 2.1 provides a discussion of the 

geometry and the motion trajectory of the pitching airfoil.  Sections 2.2 and 2.3 detail the 

computational method and domain, respectively.  Section 2.4 contains a description of the initial 

and boundary conditions. Section 2.5 is focused on issues related to the solution convergence and 

freestream Mach number.  Sections 2.6 presents validation for the symmetric and asymmetric 

pitching cases.  Finally, Section 2.7 provides additional details related to time-periodic 

convergence and data remapping. 

2.1.  Geometry and Trajectory Definition 

The geometry considered in this work was the NACA 0012 airfoil, which is 12% thick and 

symmetric about the centerline.  The airfoil’s trailing edge was rounded with a radius of 2.2x10-

3c to facilitate the use of an O-grid topology (see Figure 2.1).  This radius is approximately 3% of 

the boundary layer thickness at the trailing edge for the static airfoil at the highest Reynolds 

number of 22,000 studied here, which had the lowest boundary layer thickness of the 

investigated Reynolds numbers.   

 
Figure 2.1.  NACA 0012 geometry with rounded trailing edge. 
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The generalized pitching motion used an asymmetric pitching formulation, in which 

sinusoidal pitching was a special case.  The asymmetric pitching motion is defined in equation 

(2.1) and accurately describes the trajectory created by the function generator waveform used in 

experiments by Koochesfahani (1989).  

Part 1: 0 ≤ t < TPU/2   

 
+< 4 = += sin

A4

B3
  

Part 2: TPU /2 ≤ t < T-TPU /2   
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Part 3: T – TPU /2 ≤ t < T   

 
+E 4 = += sin
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3
− 1   

where +< 4  - +E 4  are the angle of attack time-history definitions for parts 1-3, T is the 

oscillation period, TPU = TS is the pitch-up period, and S is the symmetry parameter defined by 

the pitch-up period divided by the entire oscillation period (Koochesfahani, 1989).  Based on this 

definition of S, a sinusoidal trajectory occurs when S = 50%, while a faster pitch-up and slower 

pitch-down occurs at S < 50% and vice-versa for S > 50%, as illustrated in Figure 2.2, where f is 

the oscillation frequency.  
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Figure 2.2.  Angle of attack time-histories for S = 38%, 50%, and 62%, normalized by the 

pitching amplitude, αo. 

Since the trajectory described by equation (2.1) is piecewise continuous, there is a 

physically unrealistic discontinuity in the acceleration at t = TPU/2 and t = T – TPU/2.  In order to 

temporally resolve this acceleration jump, the angle of attack was smoothed using a Gaussian 

filter.  This resulted in a smoothed trajectory + 4 , defined by equation (2.2), where the size of 

the filter window, σ, was based on a desired percentage of the pitch-up period, TPU.   
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For completeness, an analytical derivation of the smoothed trajectory using a Fourier 

series expansion is given in Appendix A.  The impact of the smoothing on the acceleration, and 

resulting time-varying lift, for S = 38% can be seen in Figure 2.3 for the case of reduced 

frequency of 6.68 and pitching amplitude of 2°.  A small filter size of 0.5%TPU follows the 

unsmoothed trajectory (0.0%TPU) closely.  For the example shown in the figure, there are 

approximately 240 points capturing the sharp acceleration jump for 0.5%TPU. As the filter size 

increased, there is an increasingly dampened response in the forces around the phase where the 

angle of attack changes direction (see Figure 2.3).  This is also shown in Figure A.3 in Appendix.  
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The effect on the average forces is a slight decrease in thrust and a slight alteration in shape of CL 

vs. S curves (see Figure A.4 in Appendix A).  Trajectory smooth also slightly affected the wake 

structure, as shown in Figure A.5 in Appendix A.  The smoothing did not alter the sinusoidal 

trajectories.  For each asymmetry, the 0.5%TPU data collapsed on the unsmoothed (0.0%TPU) 

trajectory data and thus is used for all asymmetric motion trajectory computations in this work.  

Only values of S ≤ 50% were considered, with the assumption that S > 50% would produce 

mirrored results.   

 
Figure 2.3.  Pitching acceleration and lift time-history for S = 38%, illustrating influence of σ. 

In order to ensure a smooth startup of the airfoil motion, the filtered asymmetric 

trajectory, + 4 , was multiplied by a ramping function (Visbal, 2009), given by  

 + 4 = + 4 1 − J
HN.O6/6Q  (2.3) 

In equation (2.3), to is the time-scale for the motion to achieve 99% of its periodic state.  The 

value of to in this work is selected so that the airfoil reached 99% of its periodic state after one 

pitching cycle.  Remaining artifacts from the initial transients are minimized by advancing 

simulations twenty or more pitching cycles.   
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2.2.  Computational Method 

A brief summary is now given of the numerical method method based on two-

dimensional flow, with a more complete description based on three-dimensional flow given in 

Appendix B.  This work used the high-order, extensively validated FDL3DI Navier-Stokes 

solver, developed at WPAFB (Gaitonde and Visbal, 1998; Visbal and Gaitonde, 1999).   

2.2.1.  Governing Equations 

 The governing equations being numerically solved are the unsteady, compressible, two-

dimensional Navier-Stokes equations.  Using an appropriate transformation from Cartesian 

coordinates (x, y, t) to curvilinear coordinates (ξ, η, τ), the Navier-Stokes equations are solved in 

strong conservative form, given by 

 R
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The solution vector of conservative variables, T, is defined by 

 T = [, [], [^, [_
0 (2.5) 

In the above expression, ρ is the density, u and v are the Cartesian velocity components, and E is 

the specific total energy defined by 
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where, T is the temperature, γ is the ratio of specific heats, and M∞ is the freestream Mach 

number (M∞ = U∞/a∞, where U∞ and a∞ are the freestream velocity and speed of sound, 

respectively).  The transformation Jacobian between Cartesian and curvilinear coordinate is U, 

where U = R W, -, S /R b, c, 4 .   
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The inviscid fluxes, V1 and X1 are defined by  

 

V1 =
1

U

[d

[]d + Wef

[^d + Wgf

[_ + f d − W6f

; X1 =
1

U

[i

[]i + -ef

[^i + -gf

[_ + f i − -6f

 (2.7) 

The subscripts x, y, and z in equation (2.7) denote a partial derivative.  The directional 

contravariant velocities, U and V, in equation (2.7) are 

 
d = W6 + We] + Wg^

i = -6 + -e] + -g^
 (2.8) 

The viscous fluxes, VZ and XZ, in are given by 

 

VZ =
1

U

0

WeSee + WgSge

WeSeg + WgSgg

We ]See + ^Seg − Φe + Wg ]Sge + ^Sgg − Φg

XZ =
1

U

0

-eSee + -gSge

-eSeg + -gSgg

-e ]See + ^Seg − Φe + -g ]Sge + ^Sgg − Φg

 (2.9) 

The shear stress components See, Seg, and Sgg are defined by equation (2.10) upon implementing 

Stoke’s hypothesis for bulk viscosity (i.e., λ = -2/3µ). 

 

See =
2

3
l 2 We]m + -e]n − Wg^m + -g^n

Seg = Sge = l Wg]m + -g]n + We^m + -e^n

Sgg =
2

3
l 2 We^m + -e^n − Wg]m + -g]n

 (2.10) 
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The heat flux, Φo and Φp, is 

 
Φo = −

1

` − 1 aG
C

l

qr
We3m + -e3n

Φg = −
1

` − 1 aG
C

l

qr
Wg3m + -g3n

 (2.11) 

where, µ is the dynamic viscosity while Pr is a constant Prandtl number (Pr = 0.72 for air).   

In order to close the set of equations, the Ideal Gas Law (equation (2.12)) and 

Sutherland’s law for viscosity (equation (2.13), where Sc = 0.38 for air) are used.  All flow 

variables are normalized by their freestream value, except pressure which is normalized by twice 

the dynamic pressure (i.e., ρ∞U∞
2).  The length scale is the chord length, c, and the physical time 

has been normalized by U∞/c. 

 f =
[3

`aG
C

 (2.12) 

 l = 3
E/C

1 + Bs

3 + Bs
 (2.13) 

As stated before, these equations correspond to the two-dimensional Navier-Stokes 

equations since three-dimensional computations are very prohibitive given the very large 

parameter space considered in this work.  However, the assumption of two-dimensional flow is 

supported by experiments (Koochesfahani, 1989).   
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2.2.2.  The Time Marching Scheme 

The time marching algorithm (equation (2.14)) is the linearized, approximately factored 

method of Beam and Warming (1978), which has been diagonalized (Pulliam and Chaussee, 

1981) to improve computational efficiency.  The time-marching algorithm is supplemented by 

Newton-like subiterations to maintain second-order accuracy by reducing errors caused by the 

linearization, approximation factorization, and diagonalization, and explicit implementation of 

physical boundary conditions (Visbal, et al., 2003).  Although, three subiterations are typically 

used (Visbal and Gaitonde, 2002), seven subiterations are used in the current work.  In “delta” 

form, the time marching scheme is given by 

 

1

U

t7<

+
ΔS

1 + v
w
m

C
RV

1

t

RT
−
1

YJ

RV
Z

t

RT
U
t7<

1

U

t7<

+
ΔS

1 + v
wn
C

RX
1

t

RT
−
1

YJ

RX
Z

t

RT
ΔT =

−
ΔS

1 + v

1

U

t7<

+
1 + v T

t
− 1 + 2v T

x
− vT

xH<

ΔS
+ T

t
1

U
y

t

+w
m

O
V
1

t
−
1

YJ
V
Z

t
+ wn

O
X
1

t
−
1

YJ
X
Z

t

 (2.14) 

In equation (2.14), ΔS is the time-step size, p denotes subiteration step, and ΔT = T
t7<

−

T
t, where Tt7< corresponds to the p + 1 approximation of the n + 1 time level and p denotes the 

subiteration level within the current time-step.  In the first subiteration, p = 1 corresponds to Tx.  

As p → ∞, Tt→T
x7<.  The inviscid flux Jacobians are RV1/RT and RX1/RT while RVZ/RT and 

RXZ/RT are the viscous flux Jacobians.  First-order Euler-implicit and second-order three-point 

backward schemes result when θ = 0.0 and θ = 0.5, respectively.   
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The δ operator on the left- and right-hand-side of the equation represents spatial 

derivatives computed using finite difference schemes in the direction of the subscript (i.e., ξ and 

η) of the indicated order of accuracy, denoted by the number in the superscript.  For example, 

w
m

C  denotes second-order central difference scheme in the ξ direction while w
m

O  is the sixth-

order compact scheme in the same direction.  Since the solution is converged with subiterations, 

the lower order of accuracy on the implicit side does not impact the final solution (Garmann, 

2013).    

Not shown are second- and fourth-order, nonlinear artificial dissipation terms (Jameson, 

et al., 1981; Pulliam, 1986) that are appended to the implicit, left-hand-side for enhancing 

stability.  This results in a scalar, pentadiagonal system of equations that is more computationally 

expensive than solving a scalar tridiagonal system of equations but dramatically less expensive 

than solving the original block tridiagonal system.  The use of subiterations eliminates the impact 

of the dissipation terms on the final solution, and thus can be chosen specifically for stability 

(Visbal and Gaitonde, 2002).  The implementation of this time-marching method has been 

successfully applied to a variety of flows (e.g. Visbal and Rizzetta, 2002; Visbal and Gaitonde, 

2002; Visbal, et al., 2003; Rizzetta, et al., 2008).  The second-order time marching scheme is 

used for this research. 
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2.2.3.  Spatial Discretization and Filter 

High-order spatial derivatives are computed with the compact finite difference scheme, 

described by Lele (1992) to obtain spectral-like resolution.  For the interior grid points, the finite 

difference approximation of variable ϕ at point i can be expressed as a linear combination of the 

functional values of ϕ at point i and the surrounding points.  For a five-point stencil, this 

combination is represented by 

 z{|H<
}

+ {|
}
+ z{|7<

}
= ~

{|7< − {|H<

2
+ �

{|7C − {|HC

4
 (2.15) 

The solution of the equation (2.16) requires the inversion of a tridiagonal matrix and 

results in both explicit and compact schemes of varying orders of accuracy with appropriate 

choice of the coefficients a, b, and z.  If z = 0, the derivative at point i is decoupled from its 

neighbor points and the traditional second-order and fourth-order central difference schemes are 

recovered based on a and b.  If z ≠ 0, the derivative at point i is coupled to its neighbor points 

and results in fourth-order and sixth-order compact difference schemes based on z, a, and b. 

Although eighth- and tenth-order accuracy can be achieved using a seven-point stencil, it is 

much more computationally expensive due to the coupling of additional points.  Garmann (2010) 

commented that the sixth-order scheme is an effective balance between computational accuracy 

and efficiency.  For this work, the sixth-order accurate compact scheme was used for computing 

spatial derivatives at the interior points, with a = 14/9, b = 1/9, and z = 1/3.  In order to maintain 

the tridiagonal nature of the compact scheme, special treatment is required at the boundary points 

1, 2, N, and N-1.   

Since the high-order compact finite difference scheme is based on a centered stencil and 

thus non-dissipative, it is susceptible to numerical instabilities due to the growth of unstable 
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frequency modes that originate from mesh non-uniformity, boundary condition approximations, 

and non-linear flow features (Gaitonde and Visbal, 2000).  In order to maintain solution stability, 

a highly discriminating filter dampens the poorly evolved high-frequency content of the solution 

not properly resolved by the compact difference scheme (Gaitonde and Visbal, 1999; Gaitonde 

and Visbal, 2000).   

The high-order, low-pass filter (Gaitonde, et al., 1999) for interior points is derived in a 

similar way as the high-order compact scheme and is based on templates presented by Lele 

(1992) and Alpert (1981).  The filtered values { of the variable { are obtained by solving the 

following tridiagonal system of equations  

 zÄ{|H< + {| + zÄ{|7< =
~Å

2
{|7Å − {|HÅ

Ç

ÅÉÑ

 (2.16) 

Up to a tenth-order accurate filter can be obtained with an eleven-point stencil (N = 5).  As the 

boundary is approached, special treatment is needed due to the large centered stencil.  Two 

approaches have been used in the literature.  One approach reduces the filter order while 

maintaining a centered stencil while a one-sided formula is used at point 2 (Visbal and Gaitonde, 

1999).  The second approach uses high-order one-sided formulas (Gaitonde and Visbal 2000).  In 

this work, the first approach is used.   

The filter is applied to the conservative variables during each time-step or subiteration.  

Since the filter is one-dimensional, it is applied sequentially one direction at a time.  Before 

filtering a subsequent direction, the solution is updated with the filtered values.  To minimize 

potential bias, this sequence is alternated between various permutations (Visbal and Gaitonde, 



 31 

1999).  The filtering sequence alternates once per time-step; thus the same sequence is applied 

after each subiteration of a specific time-step.  

 For the current work, the filter was defined as follows.  The interior point used an eighth-

order filter in conjunction with z
Ö
 = 0.4.  The order of the centered filter was reduced from 

eighth-order at point 5 (and N-4) to sixth-order at point 4 (and N-3) and fourth-order at point 3 

(and N-2)  while maintaining z
Ö
 = 0.4.  Point 2 and N-1 used a fourth-order one-sided filter with 

z
Ö
 = 0.45.  Similar filtering schemes were adopted by Galbraith (2009), Garmann (2010), and 

Garmann (2013).   

2.3.  Computational Domain 

One of the goals of the present work is to study the wake evolution far downstream from 

the airfoil’s trailing edge.  In computational aerodynamic research, it is common to use an O-grid 

to discretize the fluid domain due to its simplicity in implementation, lower computational cost, 

and effectiveness in accurately capturing the forces and near wake region.  However, stretching 

of the grid causes the vortices to rapidly diffuse (see Figure 2.4).  Resolving the wake with the 

O-grid requires the clustering of grid points, which creates the disadvantage of having high 

resolution in locations where it is not necessary. 

 
Figure 2.4.  Instantaneous spanwise vorticity fields, ωzc/U∞, using only O-grid.  The Reynolds 

number is 12,000, reduced frequency is 6.68, and 2° pitching amplitude. 
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An alternative is to use an overset grid approach, which allows for grid resolution 

flexibility while maintaining a structured grid capable of using the high-order compact difference 

and filter schemes.  Connectivity between the grids was established during pre-processing using 

the NASA-developed software Pegasus 5 (Suhs, et al., 2002).  This was done by first identifying 

donor points and receiver points, then calculating their interpolation offset, w, in computational 

space.  For reference, donor points are points in which data is interpolated from and receiver 

points are points in which data is interpolated to.  

The low-order interpolation coefficients are then extended to high-order using AFRL-

developed software BELLERO (Sherer, et al., 2006).  It computes the high-order interpolation 

coefficient and offsets with the following procedure (Sherer and Scott 2005; Sherer and Visbal, 

2007).  First, the donor point stencil obtained from Pegasus is expanded such that the number of 

points in each coordinate direction equals the desired interpolation order of accuracy (N).  The 

receiver point is made as centered as possible within the donor point stencil during the expansion 

process.  Next, the high-order offsets in each coordinate direction are obtained by solving a set of 

isoparametric mapping equations based on the expanded stencil.  The final step is the calculation 

of the interpolation coefficients.  The interpolated flow variable at the receiver point r is 

calculated from the donor point d using the following formula  

 {Ü = q
á

n
q
|

m

ÇH<

|ÉÑ

	{1à7|,âà7á

ÇH<

áÉÑ

 (2.17) 

where {Ü is the interpolated scalar at the receiver point, {ä is the value from the donor point, and 

the indices Id and Jd represent the location of the base donor point in computational space (Sherer 

and Visbal 2007).  The interpolation coefficients q
á

n, and q
|

m  are calculated using 
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 (2.18) 

where n = i, j and ë = ξ,	η.		 Sixth-order interpolation was used in this work. 

The overset computational domain in this work consisted of a body-fitting O-grid around 

the airfoil and four Cartesian grids around the O-grid (see Figure 2.5).  Although the forces were 

not affected using the overset grid, its implementation allowed for the wake to be captured (see 

Figure 2.6).  As verification of the diffusion rate of the vortices, the decay of peak vorticity was 

compared to the theoretical decay of a two-dimensional vortex with a Gaussian vorticity 

distribution.  There was excellent agreement between the computational result and theory, which 

is shown in Appendix D. 

 
Figure 2.5.  Overset computational domain shown at three different scales. 
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Figure 2.6.  Comparison between the instantaneous spanwise vorticity fields, ωzc/U∞, using O-

grid (top) and overset grid (bottom).  The Reynolds number is 12,000, reduced frequency is 6.68, 
and 2° pitching amplitude. 

The O-grid around the airfoil was generated using the commercial software Pointwise 

(Gridgen User Manual, 1997), which uses a marching method to solve the system of two-

dimensional partial differential equations, given by equation (2.19), where subscripts denote 

partial derivatives and i W, -  is the cell volume distribution.  

 
bmbn + cmcn = 0

bmcn + cmbn = i W, -
 (2.19) 

The O-grid was composed of 651 grid points in the tangential, ξ, direction and 180 grid points in 

the normal, η, direction.  The grid spacing in the ξ-direction at the leading edge and trailing edge 

was 5.0x10-4c and 2.5x10-4 c, respectively.  The initial grid spacing in the η-direction away from 

the airfoil surface was 5.0x10-5 c.  The Cartesian grid behind the airfoil had a uniform spacing of 

2.5x10-3c over four chord lengths downstream of the trailing edge in the streamwise direction 

and approximately one and a half chord lengths in the transverse direction.  The cell size in the 

overlap regions was approximately uniform between all grids.  The four grids were then 

stretched rapidly to 140c away from the airfoil.  Two additional planes were added ±0.2c from 
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the center plane in the spanwise direction, ζ, in order to simulate two-dimensional flow using the 

current three-dimensional Navier-Strokes solver.  The total number of grid points was 5 million, 

which was decomposed into 71 subdomains for parallel solving to improve speed.   

2.4.  Initial Conditions and Boundary Conditions 

 The initial and boundary conditions are as follows.  Simulations were initialized with an 

instantaneous solution for the static airfoil at zero angle of attack.  At the airfoil surface, a no-

slip, adiabatic condition was used in conjunction with a zero normal pressure gradient.  The 

Neumann boundary conditions at the surface were computed with fourth-order accuracy using 

equation (2.20) (Gaitonde and Visbal, 1998). 

 
R{

R-
=
48{C − 36{E + 16{N − 3{ñ

25
 (2.20) 

where subscripts 2-5 denote the second through fifth grid points away from the surface in the - 

direction.  The surface velocities of the airfoil (]ò and ò̂) based on the imposed pitching motion 

were 

 
]ò = + 4 c − ct

ò̂ = −+ 4 b − bt

 (2.21) 

where xp and yp are the pitch axis coordinates and + 4  is the pitching velocity.  For all 

computations, the airfoil pitched about its quarter-chord (xp = 0.25c and yp = 0.0c).  Freestream 

conditions were specified at 140c from the airfoil surface.  This rapid stretching, in conjunction 

with the low-pass, high-order filter, allows for damping of spurious pressure wave reflections off 

the boundary (Visbal and Gaitonde, 2001).  Spatial periodicity to enforce an azimuthally 

continuous solution was specified along the five-point grid overlap in the tangential direction, ξ.  
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A zero gradient condition computed with first-order accuracy was imposed on the additional two 

planes in the spanwise direction for simulating two-dimensional flow with the current, three-

dimensional Navier-Stokes solver. 

2.5.  Convergence Studies 

2.5.1.  Convergence Study Summary 

 In order to verify the fidelity of the simulations, grid resolution, time-step, and 

subiteration convergence studies were conducted for both symmetric and asymmetric 

trajectories.  This section briefly documents the convergence studies, with a more complete 

discussion provided in Appendix C.  A summary of the final simulation parameters used for all 

computations in this work is given in Table 2.1.  

Table 2.1.  Final simulation parameters. 
Parameter Symmetric Traj. Asymmetric Traj. 

Grid Fine (5x106 points) Fine (5x106 points) 
Time-step 5.0x10-5 2.5x10-5 

Subiterations 7 7 
Mach Number 0.015 0.005 

 

2.5.2.  Grid, Time-step, Subiteration Studies 

 For presenting grid, time-step, and subiteration convergence, the asymmetric pitching 

case was selected.  The flow conditions for the asymmetric trajectory convergence studies were 

as follows: Re = 12,000, M∞ = 0.005, k = 6.68, αo = 2°, and S = 30%.  To verify grid 

independence, the computational domain was coarsened using a bi-cubic spline interpolation 

approach (Press, 1992; Garmann, 2010) to allow for a global coarsening of the grid while 

maintaining similar grid point distributions.  Two grids coarser grids were created, where one 

grid had 75% (Medium) and the other had 50% (Coarse) of the number of grid points in the 

baseline grid.  The leading edge spacing, trailing edge spacing, initial normal spacing away from 
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the airfoil surface, and uniform wake spacing for the two coarser grids are given in Table 2.2, 

with the Fine Grid spacing information included for reference.  The resulting Fine, Medium, and 

Coarse overset grids contained 5 million, 3.7 million, and 2.5 million grid points, respectively.  

The time-step was varied between 5.0x10-5 to 1.25x10-5 and the number of subiterations, nsubit, 

was increased from 3 to 9.  To present convergence, time histories of lift and instantaneous 

vorticity profiles measured one chord length from the trailing edge are at a phase of 0.5T are 

shown in Figure 2.7. 

Table 2.2.  Grid spacing information for three grids of varying resolution. 
Grid ΔξLE ΔξTE Initial η Uniform Wake Spacing 
Fine 5.0x10-4c 2.5x10-4c 5.0x10-5c 2.5x10-3c 

Medium 5.8x10-4c 2.9x10-4c 5.7x10-5c 2.9x10-3c 
Coarse 7.1x10-4c 3.5x10-4c 7.0x10-5c 3.5x10-3c 

  

 The lift time histories show negligible quantitative differences between the coarsest and 

finest parameters for the three studies.  The vorticity profiles show greater sensitivity.  All three 

grids produce the same maximum value of vorticity at this pitching phase and location in the 

wake.  The shape of the vorticity profile from the medium and fine grids is identical while the 

coarse grid produces a shift in the profile in the positive transverse direction and a difference in 

shape in the transverse range 0.147 < y/c < 0.29 (highlighted in the figure).  Similar observations 

are also seen with respect to time-step size and number of subiterations.  The two smaller time-

steps produce the same vorticity profile while the larger time-step shows produce some deviation 

in the transverse range 0.2 < y/c < 0.29 (highlighted in the figure).  Three subiterations produce a 

similar profile shape but lower maximum vorticity (highlighted in the figure).  When the number 

of subiterations, nsubit, increases to five or more, the profiles collapse.  At phases in which the 

vorticity profiles have low maximum values (ωzc/U∞ ≈ 1), some noise is observed in the profiles.  
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Increasing the number of subiterations reduces this low-level noise (see Figure C.2 and C.9 in 

the Appendix).  Seven subiterations was considered a good balance between accuracy and speed. 

 
Figure 2.7.  Lift time histories (top) and instantaneous vorticity profiles (bottom) measured at x/c 

= 1.0 at τ/T = 0.50 illustrating solution convergence by grid resolution (left), number of 
subiterations (middle), and time-step size (right).  Flow conditions: Re = 12,000, M∞ = 0.005, k = 

6.68, αo = 2°, and S = 30%. 

2.5.3.  Effect of Freestream Mach Number 

A challenging aspect of this work has been using a compressible flow solver to simulate 

incompressible flow, which requires a low freestream Mach number.  The reason for the 

challenge is that it is well known that the solution accuracy of compressible solvers deteriorates 

as the Mach number decreases towards zero (Volpe, 1993).  Although low Mach number pre-

conditioning techniques exist that reduce these errors (Turkel, 1987), it requires that the time 

marching scheme be modified.  This, however, can be non-trivial for well-established flow 

solvers, such as FDL3DI. 



 39 

In order to use existing compressible codes, Volpe (1993) showed that having high grid 

resolution can reduce the loss of accuracy in the context of inviscid, external flow.  Although not 

the intent of using the overset grid in this work, the low Mach number simulations do benefit 

from the higher grid resolution.  Young (2005) considered freestream Mach numbers in the range 

of 0.025-0.200 for plunging airfoils using a Navier-Stokes solver and showed that the force data 

visually converged towards the incompressible unsteady panel method results as Mach number 

decreased.  He also observed good visual agreement in the wake structure between 

incompressible flow visualization experiments and compressible simulations at M∞ = 0.050.  A 

brief overview of the Mach number effect will now be discussed, with additional results in 

Appendix C. 

In order to determine the Mach number requirement for simulating the incompressible 

flow limit for the symmetric and asymmetric trajectories, force and wake vorticity profile 

convergence studies were performed on a variety of cases using freestream Mach numbers 

ranging from 0.005 to 0.100.  The Mach number effect on the peak-to-peak amplitude of lift, 

peak-to-peak amplitude of drag, and average thrust coefficients for sinusoidal pitching is shown 

in Figure 2.8 for three reduced frequencies (k = 4, 8, and 12) at a Reynolds number of 12,000 and 

pitching amplitude of 2°.  At k = 4 and 8, the peak-to-peak amplitude of lift and drag decrease 

monotonically as M∞ decreases monotonically.  At k = 12, the lift and drag amplitudes initially 

increases as M∞ decreases from 0.075 to 0.100, then decreases monotonically as M∞ decreases to 

zero.  When M∞ ≤ 0.015, the error between the lift and drag peak values is less than 3%.  It is 

also observed that the phase of maximum lift and drag converge as Mach number decreases as 

well, which is visually shown the lift and drag histories in Appendix C.  The thrust coefficient 

increases as M∞ decreases from 0.075 to 0.100 for each reduced frequency (though this is 
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difficult to ascertain for k = 4 due to the scale of the figure), then decreases monotonically as M∞ 

decreases to zero.  The maximum difference in the average thrust between successive Mach 

numbers is on the third decimal point and only occurred at the highest reduced frequencies 

considered in this work.  Similar findings are observed in the convergence of peak-to-peak 

amplitude and average value of lift and drag for the asymmetric case. 

 
Figure 2.8.  Mach number effects on the peak-to-peak amplitude of lift and drag coefficients, 

and average thrust coefficient for Reynolds number of 12,000 and 2° pitching amplitude. 

 The asymmetric trajectory displayed greater significant sensitivity to the freestream Mach 

number.  Figure 2.9 shows the effect of Mach number on the time-varying lift for k = 6.68 and S 

= 38%.  At τ/T = 0.19 and 0.81, the airfoil changes directions and experiences a sharp 

acceleration.   Shortly after the high accelerations, a “bump” develops lift time history that 

becomes more pronounced as M∞ decreases.  Inspection of the pressure field (not shown) 

indicates that a pressure pulse radiates from the airfoil after the acceleration jumps and causes 

the dynamic response observed in the lift.  The response time decreases as the Mach number 

decreases due to the traveling speed of the pressure waves (i.e., speed of sound) increasing.  In 

order to capture the incompressible limit considering the dynamics response in the forces present 
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in the asymmetric cases, the freestream Mach number is selected to be 0.005 for the asymmetric 

pitching investigation.   

 
Figure 2.9.  Lift history for S = 38% illustrating effect of decreasing freestream Mach number 

for Re = 12,000, k = 6.68, and αo = 2°. 

In addition to the influence of Mach number on the forces when the trajectory was 

asymmetric, there was a strong dependence of the vortical structure in the wake on Mach 

number.   Figure 2.10 shows instantaneous spanwise vorticity fields for three Mach numbers 

(0.100, 0.050, and 0.005) and dye visualization from the experiment by Koochesfahani (1989).  

The asymmetry is 38%.  As shown in the figure, at each Mach number one positive vortex and 

two negative vortices shed per pitching cycle.  However, the negative vortices pair downstream 

after only one chord length for M∞ = 0.100.  It is not until at least M∞ = 0.050 that the 

computations produced a flow pattern similar to the experiment, where the negative vortices stay 

separate instead of pair.  Further reduction in Mach number to 0.005 produces slight differences 

in the downstream evolution of the wake structure compared to M∞ = 0.050, primarily in the 

strength of the vorticity which formed into the braid and downstream orientation of the negative 
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vortices.  Thus, selection of M∞ = 0.005 as for simulating the incompressible limit for the 

asymmetric pitching study is warranted.   

 
Figure 2.10.  Spanwise vorticity fields, ωzc/U∞, S = 38% at τ/T = 0.0, illustrating influence of 

M∞.  Dye-visualization from the experiment by Koochesfahani (1989) is included for reference at 
the bottom.  Bottom figure courtesy of AIAA. 

One final Mach number comparison of interest is the Mach number effect on the density 

variation.  As the Mach number decreases towards zero, the change in density from its 

freestream value, Δρ, also must decrease towards zero.  To show this, the maximum and 

minimum density change experienced in the flow, Δρmax and Δρmin, are plotted versus freestream 

Mach number for a reduced frequency of approximately 12 and 2° amplitude in Figure 2.11.  As 

shown in the figure, the maximum and minimum density variation decreases with decreasing 

freestream Mach number.  Once the freestream Mach number reached approximately 0.015, the 

difference between the maximum and minimum density change is less than 0.1%.  It is 
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particularly interesting that the density variation dependence on freestream Mach number can be 

well represented by the relationship   

 ∆[ = ∆[=

aG
C

aG,=
C

 (2.23) 

In equation (2.23), Δρo and M∞,o denote the reference conditions.  In the figure, the reference 

freestream Mach number is 0.100.  

 
Figure 2.11.  Density variation towards the incompressible limit with decreasing freestream 

Mach number. 

2.6.  Validation 

Although the flow solver has been successfully validated for a variety of flow conditions 

(Gaitonde and Visbal, 1999; Visbal and Gaitonde, 2002; Sherer and Visbal, 2007), it was 

necessary to perform independent qualitative and quantitative validation of the solver at the low 

Reynolds number and Mach number conditions of interest using the simulation parameters listed 

in Table 2.1.  Additional validation of for both symmetric and asymmetric trajectories is 

provided in Appendix D. 
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2.6.1.  Validation of Sinusoidal Pitching 

 For the sinusoidal pitching validation studies, the Reynolds number is 12,000 and the 

freestream Mach number is 0.015 while the pitching amplitudes were 2° and 4°. First, the 

validation of the unsteady and average forces from the current computations is evaluated.  In 

order to scrutinize the validity of the time-varying forces, the peak-to-peak amplitude of the 

time-varying lift coefficient, CL,pp, and drag coefficient, CD,pp, are compared with the 

corresponding values from incompressible simulations at a Reynolds number of 12,600 by Jee 

and Moser (2012) and direct force measurement experiments at a Reynolds number of 16,600 by 

Mackowski and Williamson (2015), shown in Figure 2.12.  In the figure, circles denote 2° data 

and squares represent 4° data.  The results from the current simulations and those by Jee and 

Moser (2012) agree extremely well.  There is only marginal disagreement in the drag amplitude 

at the higher reduced frequencies.  The computational results disagree with direct force 

measurements at higher reduced frequency range, though this disagreement may be related to 

three-dimensional effects not present in either simulation.   

 
Figure 2.12.  Peak-to-peak lift coefficient and peak-to-peak drag coefficient for 2° and 4° 

pitching amplitudes at a Reynolds number of approximately 12,000.  Data from the literature is 
included for comparison. 
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The average thrust coefficient validation of the current simulations is shown in Figure 

2.13.  Since the average lift is nearly zero for sinusoidal pitching (10-4 for highest k), it is not 

considered here.  The uncertainty in thrust coefficient in the figure based on the various 

computational convergence studies performed is within the symbol thickness.  Data from 

incompressible computations by Ramamurti and Sandberg (2001), compressible computations by 

Young and Lai (2004), and control volume thrust estimation experiments by Bohl and 

Koochesfahani (2009; UnPb) are included for comparison as they are considered more reliable 

data from the literature.  Overall, the thrust coefficient data from the current simulations agree 

very well with the data from the literature for both amplitudes, specifically Young and Lai 

(2004) and Bohl and Koochesfahani (UnPb).  The crossover reduced frequency for both 

amplitudes are also comparable.  The crossover reduced frequency from the current results is 

8.15 and 4.08 for 2° and 4° amplitudes, respectively, and are known to within 3%.  According to 

Young and Lai (2004) and Bohl and Koochesfahani (UnPb), the crossover reduced frequency for 

the two amplitudes are closer to 7.7 and 4.0.  The error based between these crossover reduced 

frequencies with the current results for the two amplitudes is 5.5% and 2%, respectively.  
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Figure 2.13.  Average thrust coefficient for 2° and 4° pitching amplitudes at a Reynolds number 

of approximately 12,000.  Data from the literature is included for comparison.  

Next, validation of the overset grid approach is discussed for the 2° pitching amplitude 

only.  Visual comparison between the vortical structures produced by the present computations 

with experiments by Bohl and Koochesfahani (2009) and incompressible CFD results by Jee and 

Moser (2012) is shown in Figure 2.14 for reduced frequencies of approximately 5.2 and 12 and 

Reynolds number of 12,600.  In the figure, the airfoil is at zero angle of attack and is pitching 

down.  There is good agreement between the three studies, particularly between the two 

computational results, which looked nearly identical.  In all three investigations, a traditional von 

Kármán vortex street is produced at the k = 5.2 and a reverse von Kármán street at the k ≈ 

12.  There is also agreement in the streamwise spacing of the vortices of same sign for both 

reduced frequencies.  The transverse spacing between vortices of opposite sign from the two 

computations agrees much better with each other than they do with the experiment at k = 5.2, 

though Jee and Moser (2012) hypothesized the difference is due to test-section wall effects not 

present in the simulations.  At k ≈ 12, there is better agreement in the transverse spacing among 
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all three studies.  Both computations are also able to resolve the connecting braids between 

vortices at k = 5.2 more effectively than the experiment, most likely due to better resolution.  

However, these braids visually disappear in the simulations of Jee and Moser (2012) by one 

chord length downstream of the trailing edge whereas these braids are resolved much further 

downstream in the current computations. 

 
Figure 2.14.  Instantaneous spanwise vorticity field (ωz/cU∞) comparison at a reduced frequency 

of approximately 5.2 (left column) and 12 (right column) between current compressible 
computations with experiments by Bohl and Koochesfahani (2009) and incompressible 

computations by Jee and Moser (2012).  The Reynolds number is approximately 12,000 and the 
pitching amplitude is 2° amplitude.  The airfoil is at zero angle of attack and is pitching down.  

Top and middle figures courtesy of Cambridge University Press and Elsevier.  

Next, quantitative validation based on vortex properties is presented.  The vortex 

properties considered were the following: transverse spacing (b), streamwise spacing (a), the 

convection speed (UC), the peak spanwise vorticity (ωz,peak), vortex circulation (Γ), and core 

radius (rc). The location of the vortex core was defined as the centroid of vorticity within the 

vortex core, defined by equation (2.23).  The transverse spacing was the lateral distance between 

vortex centroid of opposite sign at the measurement location.  The convection speed was 
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computed by numerically differentiating the centroid position with respect to time.  The 

streamwise spacing was calculated by relating the spacing to the vortex convection speed using 

the relationship a = UC/f, where f was the pitching frequency.  Although this method for 

calculating streamwise spacing differed from Bohl and Koochesfahani (2009), it allowed the 

streamwise spacing to be tracked over the entire domain.   

 bs =
öõb

öõ
;	cs =

öõc

öõ
 (2.23) 

For computing vortex circulation and core radius, Bohl and Koochesfahani used a fixed 

spatial radius of 1 cm (about 0.083c or 2.5 core radii from the peak) to minimize the contribution 

of neighboring vortices or braid vorticity and a vorticity cutoff of 2s-1 (or 2.3c/U∞) to remove 

low-level noise.  In order to properly compare the current results with those by Bohl and 

Koochesfahani, the same fixed spatial radius, vorticity threshold, and measurement location were 

used with the computational data.  The vortex circulation was calculated by the area integral of 

vorticity, defined by equation (2.24).  Following Bohl and Koochesfahani (2009), the core radius 

was computed using the radius of gyration of the vorticity, given by equation (2.25)  

 ú = öõΔbΔc (2.24) 

 rs =
rCöõΔbΔc

öõΔbΔc
 (2.25) 

A comparison of the vortex properties versus reduced frequency for 2° amplitude is 

shown in Figure 2.15 between the current computations and data from the literature (Bohl and 

Koochesfahani, 2009; Naguib, et al., 2011).  The measurement location in the work by Bohl and 

Koochesfahani was x/c = 0.5 whereas it was at x/c = 1.0 in Naguib, et al., (2011).  Vortex 
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property data was unavailable from Jee and Moser (2012) for comparison.  However, the 

locations of the vortices were extracted from their instantaneous vorticity fields by this author 

using an in-house code.  The a and b spacing were then computed based on the extracted vortex 

locations, and the convection speed was calculated using a and f.  The core radius from Naguib, 

et al., (2011) was taken as the 1/e point for a Gaussian distribution of vorticity.   

As seen in the figure, there is excellent agreement overall between the current simulations 

and data from the literature in both trend and magnitude of the vortex properties.  At reduced 

frequencies less than approximately 6, there is slight disagreement in the b spacing (for example, 

refer to visual discrepancy in k = 5.2 in Figure 2.14).  However, the variation of b with k is steep 

at these reduced frequencies and slight experimental uncertainty in the value of k could cause 

better data collapse.  At higher reduced frequencies, the b spacing all approach nearly the same 

asymptotic value.  There is also close agreement in the b spacing crossover reduced frequency 

(switch from traditional to reverse von Kármán street) between the current computations, Bohl 

and Koochesfahani (2009), and Jee and Moser (2012), as seen in Table 2.3.  The a spacing and 

convections speed are nearly identical between the current computations and the literature.  The 

current results produce higher peak vorticity than in the literature, but this is most likely a result 

of the greater spatial resolution of the simulations.  The vortex circulation results show good 

collapse with Bohl and Koochesfahani (2009) at k ≤ 8 while there is some discrepancy at k > 8.  

At the highest reduced frequency, this difference is approximately 0.04cU∞, or 10%.  The 

circulation results are close to the circulation from Naguib, et al., (2011) over the entire k range.  

The core radius show disagreement in terms of trend with k compared to results of Bohl and 

Koochesfahani (2009), though this comparison is deceptive due to the scaling in the figure.  For 

example, the difference between the computational results and Bohl and Koochesfahani (2009) 
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magnitude at the highest k was approximately 14%.  In the current results, the core radius 

continually decreases from 0.033c to slightly less than 0.03c over the range of reduced 

frequencies while the core radius remains “fairly constant” for Bohl and Koochesfahani (2009), 

with a value of rc/c = 0.032-0.034 at the measurement location in the experiment.   

 
Figure 2.15.  Vortex properties versus reduced frequency for Reynolds number of 12,000 and 2° 
amplitude.  Data from available literature is included for comparison.  Properties calculated at x/c 

= 0.5; except for Naguib, et al., (2011), which are done at x/c = 1.0.  

Table 2.3.  Vortex transverse spacing crossover reduced frequency for Re ≈ 12,000 and αo = 2°. 
Author kcr (Visual) x/c kcr (at x/c) 
Current 5.8 0.5 6.2 

Bohl and Koochesfahani (2009) 5.7 0.5 5.9 
Naguib, et al., (2011) 7.1 1.0 7.1 
Jee and Moser (2012) 5.7-6.7 0.5 6.4 
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2.6.2.  Validation of Asymmetric Pitching 

In order to validate the present computations for the asymmetric trajectory study, 

comparison was made between the computed wake structure and the incompressible flow 

experiment by Koochesfahani (1989).  In the experiment, the vortical pattern was visualized 

using dye (see Figure 2.16) at a Reynolds number of approximately 12,000 and reduced 

frequency of 6.68.  The flow visualization showed a single counter-clockwise rotating vortex and 

two clockwise rotating vortices shed during each pitching cycle for S = 38%, which evolved very 

asymmetrically.  The opposite behavior was observed for S = 61% in the experiment.  The 

computational result at a freestream Mach number of 0.005 for S = 38% is illustrated in Figure 

2.16 with the dye-visualization by Koochesfahani (1989).  

There are noticeable similarities and differences between the experimental and 

computational results.  The computational result is able to reproduce very similar flow features 

as observed in the experiment, such as the single counter-clockwise vortex and two clockwise 

vortices per pitching cycle.  The computation also produces similar trajectories and re-

arrangement of the vortices.  However, there are quantitative differences in the orientation of the 

vortices, particularly the clockwise vortices. The negative vortices are more vertically aligned in 

the computation than the experiment. 
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Figure 2.16.  Instantaneous spanwise vorticity field ωz/cU∞ comparison between incompressible 

dye-visualization experiment (top) and compressible computation (bottom) at a reduced 
frequency of 6.68 and S = 38%.  The Reynolds number is 12,000 and the pitching amplitude is 

2°.  Top image courtesy of AIAA.  

In order to compare the results quantitatively, average and r.m.s. velocity profiles were 

measured one chord length downstream of the trailing edge.  The + 4  trajectory was a smoothed 

version of trajectory from the experiment.  Figure 2.17 shows these profiles alongside the 

experimentally measured profiles using Laser Doppler Velocimetry (LDV) by Koochesfahani 

(1989) and Naguib, et al., (2011).  Included at the top of the figure are the airfoil trajectories 

from the experiment and the computation.  The computational result agrees qualitatively with the 

experimental profiles.  Both the simulation and experiment show a velocity excess below the 

wake centerline and a velocity deficit at the wake centerline in the average streamwise velocity 

profile.  There is also quantitative agreement.  At y/c < 0.027, the average u profile from the 

computation collapse onto the experimental data.  Moreover, the computation also reproduces 

“similar” r.m.s. velocity profiles.  However, the transverse region of of the momentum deficit 

(highlighted in yellow in the figure), magnitude of r.m.s. velocity, and location of the peaks and 

troughs in the fluctuations do not agree precisely.  These disagreements are the result of 
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differences in the properties of the vortices, such as their circulation, relative spacing, and core 

size, at the measurement location.  It should be noted that evolution of vortical structures where 

there are several vortices shed per cycle are sensitive to initial conditions (Koochesfahani, 1989).  

Additional attempts at isolating the cause of the discrepancy are provided in Appendix D.  It was 

found that uncertainty in the freestream velocity of the experiment could be related to the 

discrepancy between the computation and experiment.  Additional flow features such as slightly 

non-zero angle of attack, uncertainty in the actual pitching amplitude, three-dimensional effects, 

and test-section wall effects could also contribute to the discrepancies.  Further attempts at trying 

to reproduce the experimental result would be an exhaustive exercise and was not pursued 

further.   

 
Figure 2.17.  Average and r.m.s. velocity profiles measured at x/c = 1.0 using analytical pitching 

trajectory with S = 38% and k = 6.68. Trajectory comparison between analytical formula and 
experimental data is included on top for reference.  
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2.7.  Final Computational Considerations 

2.7.1.  Time-Periodic Convergence 

For all pitching airfoil computations, the entire domain rotated rigidly for twenty or more 

pitching cycles.  To determine if the flow reached a time-periodic state, two criteria were used.  

The first criterion was that the cycle-to-cycle change, in the peak and average force values 

dropped below 1%.  The second criterion was that the cycle-to-cycle variation of instantaneous 

velocity and vorticity transverse profiles at x/c = 3 in the wake dropped below 1% of U∞ and 

max(ωz(y)), respectively.  Once these criteria were satisfied, a single cycle was computed in 

which evenly-spaced instantaneous phases were extracted from the computation.  The number of 

phases extracted for the sinusoidal and asymmetric cases were 96 and 192, respectively. 

2.7.2.  Grid Remapping 

 Since the computational domain rotated rigidly, the wake data was remapped onto a non-

moving, Cartesian grid with uniform spacing Δx = Δy = 2.5x10-3c.  The remapping was done by 

bilinear interpolation using the MATLAB in-built function griddata.  Remapping the data 

allowed for computing statistical quantities in the wake, wake profile measurements, and vortex 

tracking.  The vorticity data presented in this document were computed using a fourth-order 

accurate explicit finite difference scheme.  Averaging of the velocity and vorticity fields in the 

wake was done by taking the mean at every grid point in the remapped data using either 96 or 

192 instantaneous phases.  The r.m.s. of the velocity and vorticity was calculated at every grid 

point according to 
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CHAPTER 3.  EFFECT OF REYNOLDS NUMBER ON 
AERODYNAMIC LOADS 

 

 One of the primary motivations of this work is to study the effect of Reynolds number on 

the unsteady and average aerodynamic loads and vortical structure in the airfoil produced by an 

airfoil pitching sinusoidally.  Six Reynolds numbers between 2,000 and 22,000 were used in this 

work.  They were selected to remain low enough such that laminar flow could be assumed.  

Pitching amplitudes varied between 2° to 10° in 2° increments while the reduced frequency 

ranged from 0 (static airfoil) to 16.0.   These reduced frequencies were chosen to provide a thrust 

curve covering both negative (i.e., drag) and positive thrust values for each Reynolds numbers.  

The freestream Mach number is 0.015 for all data presented in this chapter.  

This chapter is organized as follows.  Section 3.1 deals with the Reynolds number effect 

on the average thrust, Section 3.2 the thrust crossover frequency, Section 3.3 presents the 

efficiency, Section 3.4 the load fluctuation, and Section 3.5 compares the current computations 

with classical linear theory for an oscillating flat plate by Garrick (1936; 1957).  

3.1.  Average Thrust Coefficient 

In order to establish a baseline for studying the Reynolds number effect on the loads on a 

pitching airfoil, it is instructive to first quantify the Reynolds number effect on the static airfoil 

loads.  These data will later be used to scale the thrust coefficient on the pitching airfoil.  Due to 

symmetry in the kinematics, the average lift coefficient was zero and thus is not presented here.  

The drag coefficient, as expected, depends on Reynolds number.  The time-averaged total (/†,=), 

pressure-induced (/
†,=

t ), and friction-induced (/†,=y ) drag coefficients are shown in Figure 3.1.  

As seen in from the figure, the average drag coefficient, pressure drag, and friction drag decrease 
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non-linearly as the Reynolds number increases.  Although the friction drag is greater than the 

pressure drag over the entire Reynolds number range, its contribution to the total drag decreases 

from 70% to 55% as the Reynolds number increases from 2,000 to 22,000.  The total, pressure, 

and friction drag coefficient variation follow an A/ReB power-law reasonably well; the power-

law was computed using a least-squares procedure.  The R2 values of the fits were greater than 

98% for all three curves.  Remarkably, the friction drag for the airfoil had a Re exponent of -

0.558, which is within approximately 1% of the exponent for the flat plate value of -0.5 from 

laminar boundary layer theory (Blasius, 1908).  The pressure and shear stress distributions 

leading to these net effects on the average drag are discussed in Appendix E. 

 
Figure 3.1.  Total, pressure-induced, and friction-induced average drag versus Reynolds number 
for static NACA 0012 at α = 0°. The broken lines represent a least squares power-law fit to the 

data.  

Considering the oscillating airfoil, the average thrust coefficient, CT, versus reduced 

frequency at three Reynolds numbers for the 2° pitching amplitude is shown in Figure 3.2.  
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Positive CT indicates thrust while negative CT corresponds to drag.  At k = 0, the airfoil 

experiences the drag behavior shown in Figure 3.1.  As the reduced frequency increases, the drag 

decreases in magnitude for a given Reynolds number.  The drag eventually reaches zero and 

switches to thrust as the reduced frequency increases further.  This behavior is quantitatively 

similar for all Reynolds numbers, although CT values increased with increasing Re.  As a 

consequence, the reduced frequency when drag switches to thrust depends on Reynolds number.  

This dependency is discussed in greater detail later.  Although this conclusion is intuitive since 

viscous drag must be overcome to achieve thrust (Koochesfahani, 1989) and is consistent with 

the static airfoil drag data in Figure 3.1 and observation by others (e.g. Liu and Kawachi, 1999; 

Buchholz and Smits, 2008; Visbal, 2009; Borazjani and Sotriopoulos, 2008), quantitative data 

showing the extent of this dependence over the range of reduced frequencies and amplitudes 

presented in this work have not been available in the literature. 

 
Figure 3.2.  Average thrust coefficient versus reduced frequency for different Reynolds 

numbers.  The pitching amplitude is 2°. 
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One factor that influences the Reynolds number dependency is the baseline static airfoil 

drag at each Reynolds number.  By removing the static drag from the average thrust coefficient 

data, the thrust contribution from the unsteady motion alone, CT,u, can be examined.  As shown 

in Figure 3.3, CT,u increases as both reduced frequency and Reynolds number increase.  The 

difference in CT,u among the Reynolds numbers at k < 2 is small.  At high reduced frequency, the 

difference among the Reynolds numbers is much greater.  It is clear from shifting the CT vs. k 

curves in Figure 3.2 that the Reynolds number dependence on thrust is not simply due to the 

static airfoil drag coefficient, CD,o. 

 
Figure 3.3.  Average thrust coefficient, with static drag removed, versus reduced frequency for 

different Reynolds numbers.  The pitching amplitude is 2°. 

It is instructive to assess the contribution to CT by the pressure and shear stress 

distributions independently according to /0 = /
0

t
+ /0

y.  The pressure and friction components 

for the three Reynolds numbers, with their corresponding contributions by the static airfoil drag 
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removed, are presented in Figure 3.4 in order to isolate the influence of the unsteady motion.  

Both components increase in magnitude as the reduced frequency increases for a given Reynolds 

number, which is consistent with observations by Ramamurti and Sandberg (2001) and Borazjani 

and Sotriopoulos (2008) that both the pressure and shear stress contributions to CT increase in 

magnitude with k.  The pressure contribution shows weak dependence on Reynolds number.  As 

the Reynolds number increases, there is a slight increase in the pressure contribution.  As k 

increases, the difference in /
0

t between the Re = 2,000 and 22,000 grows.  Theoretically, /
0

t 

should represent the inviscid solution for this pitching amplitude and thus be independent of 

Reynolds number.  However, slight variations in the streamline pattern due to the presence of the 

boundary layer could alter the resulting pressure distribution at the surface, and hence show a 

weak dependence of Re on /
0

t.  The friction contribution shows a strong dependence on 

Reynolds number.  The data show that the friction force generated by the pitching motion is non-

linearly dependent on Reynolds number.  In fact, it scales with the static airfoil friction drag, 

/†,=
y .  These data quantitatively show that, as the Reynolds number increases, an oscillating 

airfoil has to overcome both less static drag and less unsteady-motion-produced friction drag to 

produce net thrust.  
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Figure 3.4.  Average thrust coefficient components, with static drag components removed, 

versus reduced frequency for different Reynolds numbers (color).  The pitching amplitude is 2°. 

The effect of pitching amplitude on thrust coefficient variation versus reduced frequency 

is shown in Figure 3.5 for Re = 2,000 and 22,000.  As the pitching amplitude increases, the thrust 

coefficient increases for both Reynolds numbers, though this is expected based on similar trends 

previously observed by Koochesfahani (1989) and Ramamurti and Sandberg (2001) at Re = 

12,000.  At an amplitude of 2°, the increase in thrust with k is relatively shallow.  As the 

amplitude increases, the thrust variation with k increases in steepness.   For the particular case of 

10° amplitude, there is a slight increase in drag for both Reynolds numbers at k = 1 before the 

drag decreased as k increases.  Interestingly, this “dip” in CT is greater for Re = 2,000 than Re = 

22,000.  Since the thrust increases as the amplitude increases, it is observed that there is 

amplitude dependence on the drag-to-thrust crossover reduced frequency.  This is quantitatively 

discussed in the next section. 
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Figure 3.5.  Average thrust coefficient versus reduced frequency for different pitching 

amplitudes (symbol).  Data for Re = 2,000 on left and for Re = 22,000 on right. 

Multiple authors (Triantafyllou, et al., 1993; Liu and Kawachi, 1999; Ramamurti and 

Sandberg, 2001) have shown that the Strouhal number (St = Lf/U, where f is the flapping 

frequency, L is the reference length, and U is the reference velocity) is a very important 

parameter for scaling the propulsive characteristics of an oscillating airfoil.  To account for the 

trailing edge amplitude, the length scale is selected to be the trailing edge peak-to-peak 

amplitude (i.e., L = ATE) for a pitching airfoil.  By plotting the average thrust coefficient data 

against Strouhal number for different amplitudes, the thrust data become nearly amplitude 

independent for the two Reynolds numbers (see Figure 3.6).  The 2°-6° data show good collapse 

over the entire Strouhal number range for each Reynolds number.  The 8° amplitude data for Re 

= 2,000 also seem to collapse on this curve and only deviate at high St.  At 10° amplitude, the Re 

= 2,000 data deviate primarily at low k.  The 8° and 10° amplitude data for Re = 22,000, 

however, produce slightly lower values of CT.  Even though the thrust values are slightly lower at 

the higher amplitudes at a given Strouhal number, the variation of CT with St is fairly uniform 

across the different amplitudes considered in the present work.  
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Figure 3.6.  Average thrust coefficient versus Strouhal number for different pitching amplitudes 

(symbols).  Data for Re = 2,000 on left and for Re = 22,000 on right. 

A clue about the decrease in CT as the amplitude increases for a constant Strouhal number 

may be elicited from Figure 3.7, which shows the instantaneous vorticity field around the airfoil 

for the 10° amplitude case at two Reynolds numbers and reduced frequencies of 1 and 4.  In the 

figure, the airfoil is at its maximum angle of attack (τ/T = 0.25).  At k = 1, both Reynolds 

numbers show a separation region that covers the majority of the aft side of the airfoil.  The 

higher of the two Reynolds number also shows a great deal of instability in the boundary layer. 

At a reduced frequency of 4, both Reynolds numbers show separation near the leading edge.  The 

boundary layer separation at Re = 2,000 remains relatively flat while Re = 22,000 produces a 

very distinctive vortex.  The leading edge separation for both Reynolds number propagates along 

the airfoil as the airfoil pitches the opposite way.  This vortex is eventually destroyed when the 

airfoil pitches in the same direction as the phase in which the vortex formed.  
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Figure 3.7.  Instantaneous spanwise vorticity field (ωzc/U∞) for two reduced frequencies (1.0 and 

4.0) and two Reynolds numbers (2,000 and 22,000).  The pitching amplitude is 10° and the 
airfoil is at its maximum angle of attack position and is about to pitch down (τ/T = 0.25). 

3.2.  Thrust Crossover Frequency 

As discussed earlier, one consequence of the Reynolds number effect on the thrust force 

is that the reduced frequency when the drag switches to thrust depends on Reynolds number.  In 

order to quantify this dependency, the thrust crossover reduced frequency, kcr, was determined 

for each amplitude and Reynolds number.  The crossover reduced frequency was found by fitting 

a polynomial ranging from 1st-order to 3rd-order using two to four points, respectively, closest to 

CT = 0.  Figure 3.8 shows the thrust crossover reduced frequency variation with respect to 

Reynolds number for each amplitude.  For the 2° amplitude case, the crossover reduced 

frequency decreases from 14.3 to 6.9 as the Reynolds number increases from 2,000 to 22,000.  

When the pitching amplitude increases from 2° to 4°, the crossover reduced frequency decreases 

nearly uniformly by a factor of 2.  As the pitching amplitude increases further, the crossover 
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reduced frequency decreases at a given Reynolds number towards the inviscid theory prediction 

of kcr = 1 for an oscillating flat plate (Garrick, 1936) and the inviscid prediction of kcr = 3 for 

NACA 0012 pitching with 2° amplitude (Ramamurti and Sandberg, 2001).  

 
Figure 3.8.  Thrust crossover reduced frequency versus Reynolds number for different pitching 

amplitudes (symbols).   

Since the thrust coefficient showed good data collapse when scaled using Strouhal 

number based on trailing edge amplitude, the thrust crossover reduced frequency was rescaled as 

a thrust crossover Strouhal number according to the relationship B4sÜ = °0¢£sÜ/A.  The 

crossover Strouhal number dependency on Reynolds number for different amplitudes is 

presented in Figure 3.9.  There is a reasonable collapse, particularly at low amplitudes, of the 

crossover frequency data when rescaled as a crossover Strouhal number.  At αo ≤ 6°, the 

crossover Strouhal number data nearly collapse onto a single curve that is well represented by an 

A/ReB power law fit.  As the Reynolds number increases from 2,000 to 22,000, the crossover 
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Strouhal number decreases from approximately 0.23 to 0.11 in the low amplitude limit.  As the 

amplitude increases to 8° and 10°, there is very noticeable deviation from the “low amplitude” 

power-law fit, particularly at the higher Reynolds numbers.  At Re = 22,000, the crossover 

Strouhal number increases from 0.11 to 0.15 as the pitching amplitude increased from 2° to 10°.  

This may be related to the behavior seen in Figure 3.7, where there is noticeable boundary layer 

separation at low reduced frequency (k = 1) and leading edge separation at the higher reduced 

frequency (k = 4) at these high amplitude conditions.  

 
Figure 3.9.  Thrust crossover Strouhal number versus Reynolds number for different pitching 

amplitudes (symbols).   

Comparison of the crossover Strouhal number is made with reliable data found in the 

literature shows good agreement (see Figure 3.10).  Although the majority of data from the 

literature is for Reynolds number of 12,000 for a NACA 0012, thrust estimation experiments 

using the mean streamwise velocity component measured in the wake were done on a tear-drop 
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shaped by Godoy-Diana, et al., (2008) at a Reynolds number of approximately 1,200.  Although 

it has been shown that the thrust estimated using the mean u-profile only over-predicts the thrust 

(Streitlien, et al., 1998; Bohl and Koochesfahani, 2009), the crossover Strouhal number from 

Godoy-Diana, et al., (2008) agrees with the current data.   

 
Figure 3.10.  Thrust crossover Strouhal number versus Reynolds number data comparison with 

literature.  Only the 2°, 6°, and 10° from the current data set are included.  Note that Godoy-
Diana, et al., (2008) used a tear-drop (TD) shaped airfoil. 

These findings appear to be consistent with observations found in nature among flyers 

and swimmers.  Rósen, et al., (2004), performed measurements on a thrush nightingale to study 

its wing beat kinematics.  The nightingale had a mean chord length of 4.8 cm.  The authors found 

that the wing beat amplitude and flapping frequency had values of 0.08±0.003 m and 14.4±0.4 

Hz over flight speeds ranging from 5 m/s to 10 m/s.  The corresponding Reynolds number based 

on mean chord length are 16,000 and 32,000, respectively.  The reduced frequency based on 

mean chord length decreased monotonically from approximately 0.4 to 0.2 as the flight speed 
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increased over the same flight speed range.  These operating reduced frequencies are 

significantly lower than the current results, which is most likely due to the more complex 

flapping kinematics and larger peak-to-peak amplitudes used by the nightingale compared to the 

pitching airfoil in this study.    

Borazjani and Sotriopoulos (2008) performed incompressible computations on a 

mackerel performing carangiform undulations (side-to-side oscillations from a view looking 

down onto the swimming mackerel) to study the effect of Reynolds number on the operating 

Strouhal number after noting that there exists a complex relationship between operating Strouhal 

number and Reynolds number based on the findings by Lauder and Tytell (2006) that the 

operating Strouhal number of Pacific salmon (Re = 104) is not the Strouhal number of optimal 

efficiency of 0.25-0.35 (Triantafyllou, et al., 1993) and changes according to swimming speed 

(i.e., Re).  The authors considered Reynolds numbers of 300 and 4,000, along with the inviscid 

limit.  Borazjani and Sotriopoulos (2008) showed that as the Reynolds number increased, the 

thrust coefficient increased.  As the Reynolds number increased from 300 to 4,000, the crossover 

Strouhal number decreased from 1.08 to 0.6, which are substantially higher than in the current 

work.  These values were also much higher than prediction of 0.26 by the authors’ inviscid 

simulation.  Interestingly, the inviscid Strouhal number falls within the optimal Strouhal number 

range according to Triantafyllou (1993).  

Although the scaling the thrust coefficient with the Strouhal number produced a dramatic 

collapse for each Reynolds number, the data formed into distinctive bands that depended on 

Reynolds number (see Figure 3.11).   
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Figure 3.11.  Average thrust coefficient versus Strouhal number for different Reynolds numbers 

(color) and pitching amplitudes (symbols).  Only the 2°, 6°, and 10° are included. 

Using both airfoil static drag from Figure 3.1 and the crossover Strouhal number from 

Figure 3.9, it is possible to rescale the data in Figure 3.11 to become nearly Reynolds number 

independent, as shown in Figure 3.12.  Dividing the thrust data for each Reynolds number by its 

corresponding static drag value starts each curve at -1 on the ordinate.  Dividing the Strouhal 

number by the crossover Strouhal number shifts each thrust curve on the abscissa so that drag 

switches to thrust at St/Stcr = 1.  Overall, there is very good data collapse among the three 

Reynolds numbers for the different amplitudes.  The 2°-6° data are well-represented by a cubic 

polynomial fit of the form 0.136x3 + 1.140x2 – 0.295x – 0.986.  As the pitching amplitude 

increases, the 8° and 10° data begin to show some deviation at St/Stcr ≥ 1.5.   
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Figure 3.12.  Average thrust coefficient versus the Strouhal number scaled by the crossover 
Strouhal number as a function of Reynolds number (color) and pitching amplitude (symbol).  

The thrust coefficient is scaled by the static airfoil drag. 

3.3.  Propulsive Efficiency 

For completeness, the effect of Reynolds number on propulsive efficiency is now 

discussed.  The propulsive efficiency is defined by equation (3.1) and represents the ratio 

between the propulsive energy and the total energy input into the system.  In terms of standard 

non-dimensional quantities, the propulsive efficiency is the average thrust coefficient divided by 

the average input power coefficient.   
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Most studies found in the literature (Triantafyllou, et al., 1993; Liu and Kawachi, 1999; 

Mackowski and Williamson, 2015) indicate that the propulsive efficiency scales according to 

amplitude when plotted versus the Strouhal number based trailing edge-amplitude.   

The propulsive efficiency for the three Reynolds numbers from the current computations 

are plotted versus Strouhal number in Figure 3.13.  The propulsive efficiency data fall into three 

distinctive curves based on Re.  As the Reynolds number increases, the propulsive efficiency 

increases.  At a Reynolds number of 2,000, the efficiency has a maximum value of 

approximately 6.5% to while it is closer to 11% for a Reynolds number of 22,000.  These 

maximum efficiency values are much lower than the linear theory prediction by Garrick (1936) 

of 50% for a flat plate pitching about its quarter-chord and the efficiency of plunging airfoils of 

around 20% (Triantafyllou, et al., 1993).  It is noteworthy that the data do not show a well-

defined peak, as seen in Figure 1.8 in Chapter 1, for example.  As the efficiency increases, it 

reaches a plateau.  At Re = 7,000 and 22,000, it is discernable that is there is a very slight drop in 

efficiency at St > 0.32, which falls within the optimal Strouhal range of 0.25-0.35 (Triantafyllou, 

et al., 1993).  Similar conclusions can be drawn from data presented by Mackowski and 

Williamson (2015) for a pitching NACA 0012 at Re = 16,600, specifically that the propulsive 

efficiency shows a plateau that did not greatly decrease as St increased.   
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Figure 3.13.  Average propulsive efficiency versus Strouhal number as a function of Reynolds 

number (color) and pitching amplitude (symbol). 

3.4.  Force Fluctuation 

 In this section, the effect of Reynolds number on the fluctuating force on a pitching 

airfoil is described.  As with the average force, the static airfoil is first considered to establish a 

baseline.  Examination of the force time histories showed unsteady oscillations in lift for Re ≥ 

12,000.  These oscillations were the result of a wake instability at these Reynolds numbers 

causing the wake to roll-up into discrete vortices.  This feature will be discussed further in the 

next chapter.  The lift fluctuation was characterized in terms of the peak-to-peak amplitude, CLpp, 

and the natural frequency, fn.  These data are shown in Figure 3.14, where the natural frequency 

is non-dimensionalized by U∞/πc to produce an equivalent natural shedding reduced frequency, 

kn = πfnc/U∞.   

Figure 3.14 shows that the lift amplitude increases nearly linearly with Reynolds number. 

It is also observed that there is nearly linear increase in natural shedding reduced frequency from 



 72 

8.5 at a Reynolds numbers of 12,000 to approximately 11 at a Reynolds number of 22,000. This 

trend is consistent with observation by Huang and Lin (1995), who stated “the frequency of 

vortex shedding increases linearly with the increase of freestream velocity.”  There is also 

excellent agreement between the shedding reduced frequency of the current computations with 

the data presented by Koochesfahani (1989), Huang and Lin (1995), and Young and Lai (2004).   

 
Figure 3.14.  Reynolds number effect of the fluctuating force characteristics for static NACA 

0012 airfoil at α = 0°. 

Now we examination of the force fluctuation of the unsteady airfoil. The lift and drag 

coefficient fluctuation, /8}  and /†} , are defined as the time-varying force with the average value 

removed.  Note that the average lift is zero for these cases.  The load fluctuations at four reduced 

frequencies ranging from 0.5 to 8 are shown in Figure 3.15 for 2° amplitude and three Reynolds 

numbers: 2,000, 7,000, and 22,000.  All three Reynolds produce very similar lift and drag 

fluctuation behavior.  The lift fluctuation shows a single set of peaks while there are two sets of 

peaks in the drag fluctuation.  As the reduced frequency increases, there is a slight increase in the 
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peak values, as well as a phase shift.  This is not surprising based on linear theory for a flat plate 

(Theodorsen, 1935).  

 
Figure 3.15.  Lift and drag fluctuations for different reduced frequencies.  The Reynolds 

numbers are Re = 2,000 (blue), 7,000 (red), and 22,000 (yellow).  The pitching amplitude is 2° 
amplitude.  Note that the scale is different for the different plots. 

 The lift and drag fluctuation for Re = 22,000 shows a high frequency oscillation 

compared to the pitching reduced frequency of k = 0.5.  The cause of this behavior is the wake 

instabilities observed for the static case at this Reynolds number.  Due to the low reduced 

frequency, the wake undulated about the centerline while carrying the vortices formed from the 

natural instability.  Similar wake structure observations were made by Koochesfahani (1989) for 

a Reynolds number of 12,000, 0.5 Hz pitching frequency (k = 0.835), and pitching amplitude of 

4°.  Application of a Fast Fourier Transform (FFT) to the lift fluctuation reveals two harmonics 

(see Figure 3.16).  The first is the forcing reduced frequency (i.e., k ≈ 0.5).  The second was the 

natural shedding reduced frequency of approximately 11 seen in Figure 3.14.  
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Figure 3.16.  Magnitude of lift fluctuation FFT for the Re = 22,000 case.  Instantaneous 

spanwise vorticity field at τ/T = 0.25 is included for visual reference. 

The load fluctuation can be characterized by the peak-to-peak amplitude (pp) and phase 

angle, ϕL.  The phase angle was quantified using the lift fluctuation only with respect to the angle 

of attack.  The lift phase angle was determined by subtracting the phase at which the minimum 

lift coefficient occurred from the phase at which the minimum angle of attack occurred.  The lift 

lagged behind the angle of attack if the phase angle was negative (i.e., increasingly negative ϕL 

yields increasing magnitude of phase lag or delay).  This is shown schematically in Figure 3.17.   
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Figure 3.17.  Schematic of the phase angle definition. 

The peak-to-peak amplitudes and phase angle data for three Reynolds numbers and three 

pitching amplitudes (2°, 6°, and 10°) are shown in Figure 3.18.  As the reduced frequency 

increases, the lift and drag amplitudes and phase increases in magnitude for each Reynolds 

number.  As the Reynolds number increases, the lift and drag amplitudes slightly increase in 

magnitude while the phase delay slightly decreases in magnitude.  As the amplitude increases, 

the lift and drag amplitudes increase while the phase lag decreases in magnitude.   
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Figure 3.18.  Peak-to-peak lift amplitude (left), peak-to-peak drag amplitude (middle), and lift 
phase lag (right).   Different Reynolds numbers are shown with the symbol color and different 

pitching amplitudes are shown with symbol type. 

It is instructive to scale the lift and drag amplitudes based on classical linear theory.  As 

shown in Appendix F, the lift and drag scale with += and +=C, respectively.  The resulting scaled 

data are shown in Figure 3.19.  The rescaled data show good collapse at the over the majority of 

the k range for the three amplitudes and Reynolds numbers.  The cause for the data collapse can 

be inferred from Figure 3.20, which compares the total time-varying lift and drag with the 

pressure and shear stress contributions for the representative example of k = 6.0 and αo = 2° at 

Re = 2000 and Re = 22,000.  As expected, the variation in the lift is due to the pressure 

distribution.  Less expected is that the the variation in the drag is also due primarily to the 

pressure distribution.  The shear stress contribution also did vary slightly with time, but is much 

lower in magnitude than the pressure contribution.  This behavior occurs for each Re, k, and αo.  

As the amplitude increases, there is a slight increase in the fluctuation of shear stress drag.   
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Figure 3.19.  Peak-to-peak lift amplitude normalized by += (left) and peak-to-peak drag 

amplitude normalized by +=C (right).   Different Reynolds numbers are shown with the color and 
different pitching amplitudes are shown with symbols. 

 
Figure 3.20.  Lift (top) and drag (bottom) histories, showing contribution from pressure and 

shear stress distribution compared to the total force for Re = 2,000 (left) and Re = 22,000 (right) 
at k = 6.0 and αo = 2°. 
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3.5.  Comparison with Inviscid Linear Theory 

Finally, it is of interest to see how the results from the viscous computations compare 

with inviscid theory of Theodorsen (1935) and Garrick (1936; 1957), which are presented in 

Appendix F.  Caution, however, must be exercised when making this comparison since the 

assumptions of a flat plate geometry, enforcement of the Kutta condition at the trailing edge, flat 

wake, and low oscillation amplitudes are not satisfied in the present computations, except for low 

amplitude.  By removing the static drag from the average thrust coefficient data so that only the 

CT,u is considered, the different cases may be directly compared with linear theory by Garrick 

(1957) as illustrated in Figure 3.21.  For both amplitudes, the three Reynolds numbers produce 

lower thrust than the linear theory over the majority of the reduced frequency range.  The thrust 

contribution from the pressure distribution with the static pressure drag removed showed better 

agreement with linear theory (see Figure 3.22).   

 
Figure 3.21.  Average thrust coefficient with static drag removed versus reduced frequency for 
different Reynolds numbers (color) and pitching amplitudes (symbol).  Data shown is for 2° and 

10° amplitudes.  The linear theory prediction is included for comparison. 
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Figure 3.22.  Average thrust coefficient from pressure with static pressure drag removed versus 

reduced frequency for different Reynolds numbers (color) and pitching amplitudes (symbol).  
Data shown is for 2° and 10° amplitudes.  The linear theory prediction is included for 

comparison. 

Comparison is also made with the lift and drag peak-to-peak amplitudes and the phase lag 

(see Figure 3.23).  The lift and drag were normalized using the amplitudes as done in Figure 

3.19.  The lift and drag scaled by the amplitude agree very well with linear theory over the 

majority the reduced frequencies.  The most deviation from linear theory occurs in the drag 

amplitude data at reduced frequencies above 10.  The phase angle agrees only at low reduced 

frequency.  As the reduced frequency increases, the phase delay from linear theory continue to 

increase towards an asymptotic limit of 180° while the data from the present computations 

appear to asymptote towards approximately 160°.  The computations also show an amplitude 

dependence on the phase angle, which does not occur in linear theory. 
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Figure 3.23.  Peak-to-peak lift amplitude (left), peak-to-peak drag amplitude (middle), and lift 
phase lag (right).   Different Reynolds numbers are shown with the symbol color and different 
pitching amplitudes are shown with symbol type.   The linear theory prediction of Theodorsen 

(1935) and Garrick (1936) is included for reference.   
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CHAPTER 4.  EFFECT OF REYNOLDS NUMBER ON WAKE 

STRUCTURE 

 Discussed in this chapter is the effect of Reynolds number on the wake structure 

produced by an airfoil pitching sinusoidally.  Only the 2° amplitude is considered for the 

majority of the results presented in this chapter, with the effect of amplitude discussed at the end 

of the chapter.  The reduced frequency again varied from approximately 0 (static airfoil) to 16.0.  

The freestream Mach number is 0.015 for all data presented in this chapter.  This chapter is 

organized as follows.  Section 4.1 provides a discussion of the flow behavior near the trailing 

edge, Section 4.2, the Reynolds number effect on the wake structure configuration, Section 4.3, 

the crossover reduced frequency for vortex configuration switch, and Section 4.4, the effect of 

oscillation amplitude on the vortex configuration. 

4.1.  Flow Near Trailing Edge 

 The flow behavior at the airfoil’s trailing edge may be quantified using the velocity and 

vorticity profiles.  “Measurements” are taken at the trailing edge over ±1c from the airfoil 

surface in the transverse direction.  Streamwise and transverse velocity components as well as 

spanwise vorticity profiles for different Reynolds number are shown in Figure 4.1 for the static 

airfoil.  The u-velocity component profiles show the velocity beginning at zero due to no-slip at 

the surface and increasing in magnitude to approximately U∞ for each Re over the Y-extent 

shown.  As the Reynolds number increases, the visual thickness of the boundary layer decreases.  

Another feature is the development of a reverse flow region and slight velocity deficit (see the 

region highlighted by the magenta box), which grows as the Reynolds number increases.  The z-

vorticity profiles also show the flow reversal where there is positive vorticity.  The spanwise 
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vorticity profiles show negative values outside of the reverse flow region, which reaches a peak 

value near the middle of the boundary layer and decreases in magnitude towards zero as the the 

outer flow is approached.   

 
Figure 4.1.  Upper surface u velocity and z-vorticity profiles measured at trailing edge for static 

airfoil at α = 0° for different Reynolds numbers. 

The boundary layer thickness (BTL) is defined as the distance from the surface for the 

velocity to reach 99% of the outer flow velocity according to laminar flat plate theory.  Since the 

inviscid outer flow velocity is not known, a zero vorticity condition is used in which the 

boundary layer thickness is defined as the distance from the surface in which the vorticity 

reaches a near-zero value.  Here, the near-zero cutoff value is taken to be ωzc/U∞ = 0.001.  The 

BTL at the trailing edge for the static airfoil, wo, on the upper surface is shown in Figure 4.2.  As 

the Reynolds number increases, the BTL decreases according to 1/Re0.4.   
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Figure 4.2.  Boundary layer thickness as a function of Reynolds number for static NACA 0012 

at α = 0°. 

 When the airfoil pitches sinusoidally, the trailing edge translates nearly vertically in the 

opposite direction as the leading edge (i.e., the trailing edge moves down as the airfoil pitches 

up).   Streamwise velocity profiles measured at the trailing edge for different Reynolds numbers 

are shown in Figure 4.3 for k = 6.0 and αo = 2° at eight, evenly spaced oscillation phases.  The 

selection of this reduced frequency is provided in the next section.  The transverse direction is 

scaled by the static airfoil boundary layer thickness in the figure to make differences in the 

profiles clearer.  The cyan and magenta lines denote u = 0 and u = U∞, respectively, for 

reference.  Instantaneous vorticity fields with a field of view near the trailing edge at the selected 

phases are shown in Figure 4.4 for Re = 12,000 as a representative case.  As the trailing edge 

translates in the negative Y direction (τ/T = 0.125-0.25), the u velocity in the flow outside of the 

boundary layer accelerates to approximately U∞.  A small region of reverse flow could be seen at 

τ/T = 0.125 for Re = 22,000 and disappears by τ/T = 0.25.   
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As the trailing edge translates in the positive Y direction during the pitch-down (τ/T = 

0.25-0.75), the u velocity continues accelerating for each Reynolds number beyond U∞ until the 

outer flow reaches its maximum value at τ/T ≈ 0.50, then decelerates.  Flow reversal is observed 

at τ/T = 0.75 and the outer flow again reaches a value of approximately U∞.  The region of flow 

reversal increases in magnitude as the Reynolds number increases.  Flow reversal was also 

observed experimentally by Bohl (2002) for a NACA 0012 airfoil pitching sinusoidally at k = 8.8 

and Re = 12,600 based on single component MTV tagging lines near the trailing edge.  Within 

the phase range 0.75 < τ/T < 0.875 as the airfoil pitched up, the flow reversal occurs over a wider 

region in the transverse direction.  Also observed is a secondary layer at τ/T < 0.875, which 

increases in as Reynolds number increases.  This secondary layer is a small region of high 

magnitude negative vorticity near the trailing edge that forms below the positive vortex, as 

indicated in Figure 4.4 for the case of Re = 12,000.  At τ/T < 1.0, the flow reversal has decreased 

in magnitude while the secondary layer decreases in magnitude as the Reynolds number 

increases.  In general, the streamwise velocity increases in as the Reynolds number increases 

during the pitch-down (0.50 < τ/T < 0.75).  As the airfoil slows down and switches directions, 

there is a phase lag in u that decreases as the Reynolds number increases.  This is not 

unexpected, however. 
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Figure 4.3.  Streamwise velocity boundary profiles, where Y is scaled by the static airfoil BLT, at eight phases of the oscillation cycle 
for different of Reynolds numbers.  The reduced frequency 6.0 and pitching amplitude is 2°.  Measurements are made at the trailing 

edge on the upper surface.  The coordinate system starts at the airfoil surface.  The airfoil position at every other phase is included for 
reference.  The cyan line denotes u = 0 and the magenta line represents u = U∞. 
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Figure 4.4.  Instantaneous spanwise vorticity field (ωzc/U∞) at 8 phases of the oscillation for k = 6.0, Re = 12,000, and αo = 2°.  The 
angle of attack, pitching velocity, and pitching acceleration history is shown at the top with circles indicating the phases at which the 
vorticity is shown.  The green line is the measurement location and the white line is the wake centerline.  The range covered in the 

figure is 0.8 ≤ X/c ≤ 1.2 and -0.075 ≤ Y/c ≤ 0.075. 
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4.2.  Wake Structure Configuration for 2° Pitching 

The Reynolds number effect on the wake structure for the static airfoil is examined in 

Figure 4.5.  Note that the coordinate system starts at the trailing edge at x/c = 0.  As the Reynolds 

number increases from 2,000 to 7,000, the vorticity shed into the wake remains stable.  The 

width of the wake decreases as the Reynolds number increases.  As the Reynolds number 

increases from 7,000 to 12,000, the wake transitions from a stable to unstable state.  The 

instability in the wake causes the wake to roll-up into discrete vortices.  These vortices form into 

a traditional von Kármán vortex street that is reminiscent of the flow behind a cylinder at low Re.  

As the Reynolds number increases from 12,000 to 22,000, the vortices visually become smaller.  

The wavelength and vertical spacing of the vortices also visually decrease.  Another feature is 

that the formation location of the vortices moves upstream towards the trailing edge as the 

Reynolds number increases. This Reynolds number effect is consistent with flow visualization 

by Huang and Lin (1995) who saw a stable wake at Re = 3,195 and an unstable wake at Re � 

8,000.  A stable wake was also observed in flow field images by Liu and Kawachi (1999) for Re 

= 7,200.  
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Figure 4.5.  Instantaneous spanwise vorticity fields (ωzc/U∞) for static NACA 0012 at α = 0° 

and different Reynolds numbers (increasing from the top down). 

 The organization of the vortices is quantified in terms of the transverse spacing (b) and 

streamwise spacing (a) to determine the Reynolds number effect on the natural flow of a steady 

airfoil.  Refer to Figure 1.6 in Chapter 1 for a schematic.  The values of an and bn, which are the 

streamwise and transverse spacing of the naturally formed vortices in the wake, are shown in 

Figure 4.6.  The location of the core center of a vortex is defined as the spatial position of the 

centroid of vorticity contained within the vortex.  Measurements were taken three chord lengths 

from the airfoil trailing edge such that the vortices were fully formed visually (see Figure 4.5).  

As seen in Figure 4.6, all three Reynolds numbers produce negative b due to the formation of a 

traditional von Kármán street in the wake from natural shedding of the shear layer.  As the 

Reynolds number increases, the transverse spacing decreases in magnitude.  Physically, this 

means the positive and negative vortices moved toward the wake centerline (y/c = 0) as the 
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Reynolds number increases.  The streamwise spacing decreases as the Reynolds number 

increases.   

 
Figure 4.6.  Wake vortex transverse (left) and streamwise (right) spacing dependence on 

Reynolds number for static NACA 0012 at α = 0°. 

Referring to Figure 4.7, the effect of Reynolds number on the pitching airfoil with 2° 

amplitude is considered.  When the airfoil is pitching with a reduced frequency of 2.0, the shear 

layer undulates about the wake centerline.  At Re = 2,000, vorticity carried by the wake rolls up 

and causes the undulating wake to form into a von Kármán street.  At the three higher Re values, 

the undulating wake carries the natural instabilities that form in the shear layer.  As the reduced 

frequency increases towards 5.2, the wake structure for Re = 2,000 maintains a von Kármán 

street whereas more complicated patterns form for the higher Reynolds numbers.  By k = 5.2, all 

four Reynolds numbers produce a vortex array with a single pair of alternating sign vortices shed 

each pitching cycle.  
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Figure 4.7.  Instantaneous spanwise vorticity field (ωzc/U∞) for αo = 2° and different Reynolds numbers (increasing left to right) and 
reduced frequencies (increasing from the top down).  The airfoil is at zero angle of attack and is pitching up (τ/T = 0.0).  The field of 

view extends over the range 0 ≤ x/c ≤ 3.0 and -0.5 ≤ y/c ≤ 0.5. 
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The Reynolds number dependence of the vortex array in the wake for the special case of 

k = 6.0 is shown in Figure 4.8.  The choice of k = 6.0 is that a switch from von Kármán to reverse 

von Kármán streets is clearly visible as the Reynolds number increases.  The airfoil is at zero 

angle of attack and is pitching up (τ/T = 0.0).  A single pair of alternating sign vortices shed past 

the trailing edge each cycle and thin strips of vorticity, called braids, connect the vortex cores.  

These braids originated in the boundary layer and were a result of vorticity continuously 

shedding into the wake before and after the shedding of the primary vortex that forms at the 

trailing edge.  These braids are weak compared to the vortex core strength and dissipate much 

more rapidly than the vortices themselves.  As the vortices convect downstream, these braids 

wrap around the vortex and reinforce it.   

The lowest Reynolds number of 2,000 produces large vortices with low levels of vorticity 

in a von Kármán street orientation (drag).  The connecting braids are visually thick compared to 

the higher Reynolds numbers. At Re = 7,000, the vortices become smaller and more concentrated 

compared to Re = 2,000.  Although still in a von Kármán street orientation (drag), the transverse 

spacing between vortices decreases in magnitude compared to the Re = 2,000.  At Re = 12,000, 

the vortices are slightly in a reverse von Kármán street arrangement.  At Re = 22,000, the vortex 

array is clearly in a reverse von Kármán street pattern.  The distribution of vorticity within the 

vortex core at Re = 2,000 is somewhat non-Gaussian (see Figure 4.9), where the transverse width 

is greater than the streamwise width.  As the Reynolds number increases, while the vorticity 

distribution becomes more Gaussian. 



 92 

 
Figure 4.8.  Instantaneous spanwise vorticity field (ωzc/U∞) for k = 6.0, αo = 2°, and different 
Reynolds numbers (increasing from the top down).  The airfoil is at zero angle of attack and is 

pitching up (τ/T = 0.0). 

 
Figure 4.9.  Vorticity profiles normalized by peak vorticity at x/c ≈ 1.0 for different Reynolds 

numbers at k = 6.0 and αo = 2°. 
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The evolution of the vortices was quantified by tracking the vortex centroid in space and 

time (Bohl and Koochesfahani, 2009).  An initial estimate was made of the vortex location by 

identifying the location of peak vorticity.  In order to remove false peaks near the trailing edge 

due to strong vorticity from the shear layer, the !" of each peak was computed using equation 

(4.1) (Graftieaux, et al., 2001).  

 !" # = 1
&

'() × +) − +( ∙ ./
'() ∙ +) − +(

0

123
 (4.1) 

In the above expression, '() represents the position vector of point of interest, P, and a neighbor 

point, M, +) is the Cartesian velocity vector of point M, +4 is a spatial average of the velocity at 

point P, ./ is the unit vector in the spanwise direction, and N is the number of points of interest 

that form a box around P.  This is shown schematically in Figure 4.10 for a Gaussian vortex.  

The vorticity peak locations with !" > 0.9 were retained.   

 
Figure 4.10.  Schematic of Γ2 variables for a Gaussian vortex. 
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The centroid was then calculated using equation (4.2), also defined in Chapter 2.  The 

choice of centroid accommodates the changing shape of the vortices as they convect downstream 

(Bohl, 2002) and would correspond to the location of highest vorticity if the vorticity had a 

Gaussian distribution.   

 56 =
7/5
7/

;	:6 =
7/:
7/

 (4.2) 

For computing the centroid, a spatial radius must be specified.  Since the vortex size varies 

significantly between the high and low Reynolds number (see Figure 4.9), a fixed radius was not 

used.  Instead, vorticity profiles in both the x- and y-directions were fit independently with a one-

dimensional Gaussian distribution to calculate the Gaussian radius, rG, defined as the 1/e point of 

the vorticity distribution.  The average was then taken from the fit to provide the average 

Gaussian radius, rGavg, to provide an estimation of vortex core size.  In order to encircle the 

vortex core and minimize the contribution from the connecting braids, a spatial radius of 2.5rGavg 

was selected and only vorticity within the radius was included in the calculation of the centroid.  

For the example of k = 6, the spatial radius is shown in Figure 4.11.   
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Figure 4.11.  Instantaneous spanwise vorticity field (ωzc/U∞) for k = 6.0, αo = 2°, and different 

Reynolds numbers, showing the spatial radius (increasing from the top down). 

The centroid trajectories for the four Reynolds numbers is shown in Figure 4.12.  In each 

case, the positive-sign vortex originates above the wake centerline while the negative-sign vortex 

originates below it.  At Re = 2,000, the positive and negative vortices cross in the transverse 

direction at x/c ≈ 0.07 such that the negative vortex is above the positive vortex producing a 

traditional von Kármán street.  The vortices move away from the centerline and reach a nearly 

steady-state value at x/c ≈ 0.89.  At Re = 7,000, the vortices crossed the wake centerline at x/c ≈ 

0.06 in a similar way as Re = 2,000.  The vortices initially move away from the centerline, reach 

a peak, then move toward the centerline and reached a nearly state-state value at x/c ≈ 1.5.   
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Figure 4.12.  Positive and negative vortex trajectories for different Reynolds numbers at k = 6.0 

and αo = 2°.   

At Re = 12,000, the vortices cross the centerline twice, once at x/c ≈ 0.085 and again at 

x/c ≈ 0.61, with a peak in the trajectory occurring at x/c ≈ 0.35.  The vortices then form a reverse 

von Kármán street and reach a nearly steady-state at x/c ≈ 1.5.  More noticeable oscillations in 

the trajectory are visible over nearly the entire field of view.  At Re = 22,000, the vortices 

initially move towards the wake centerline and reached a minimum distance from the centerline 

at x/c ≈ 0.2.  The vortices then move away from the centerline and form a reverse von Kármán 

street.  The vortex trajectory shows no initial formation peak nor a steady-state condition at this 

Re even up to four chord lengths from the airfoil trailing edge (not shown).  The vortices move 

away from the centerline, reach a maximum, and then gradually move toward the centerline.  
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Oscillations are also observed in the trajectories for the two higher Reynolds numbers, and are 

less noticeable in the lower Reynolds numbers.  

In order to quantify the wake structure evolution, the transverse and streamwise spacings 

of the vortices are computed for each Reynolds number.  The transverse spacing the vertical 

distance between the positive vortex and negative vortex from the wake centerline at each 

streamwise location (i.e., b = yp – yn).  The streamwise spacing was calculated using the 

relationship a = UC/f, where UC is the vortex convection speed and f is the pitching frequency.  

Obtaining the a spacing from the convection speed allowed the evolution of a to be tracked 

throughout the entire domain and differs from how it was done by Bohl (2002) and Bohl and 

Koochesfahani (2009).  The convection speed of the vortex was computed by smoothing the 

centroid x-position with a moving window filter, and then numerically differentiating it with a 

second-order central difference scheme.  The spatial evolution of b and a are shown in Figure 

4.13.  At Re = 2,000, the transverse spacing is negative, indicating the traditional von Kármán 

street arrangement and a velocity-deficit.  As the Reynolds number increases at this reduced 

frequency, the transverse spacing spacing decreases in magnitude towards zero, indicating an 

aligned vortex array.  The b spacing then switches sign and increases, producing reverse von 

Kármán street arrangement and jet-like behavior in the wake.  The streamwise spacing increases 

with increasing Reynolds number.  For each Reynolds number, the a spacing experiences a peak, 

which moves towards the trailing edge as the Reynolds number increases.  The streamwise 

spacing then decreases to a nearly asymptotic value for each Reynolds number.  At Re = 12,000 

and 22,000, the streamwise spacing also shows an oscillatory signature. 
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Figure 4.13.  Wake vortex transverse spacing (top) and streamwise spacing (bottom) at k = 6.0 

and αo = 2° for different Reynolds numbers.   

The transverse and streamwise spacing of the vortex centroid for the range of reduced 

frequencies at the different Reynolds numbers are shown in Figure 4.14.  A dashed line is 

included in the b spacing plot to give a reference for the aligned vortex array condition (i.e., b = 

0).  The b and a spacings were measured at x/c = 1.0.  The selection of this measurement location 

was based on three reasons: 1). this measurement location was downstream of the initial 

acceleration region before the vortex reached steady-state (refer to Figure 4.12 for example), 2) 

one chord length downstream of the trailing edge is a common location to measure velocity 

profiles for estimating thrust using a control volume analysis (Koochesfahani, 1989; Bohl and 

Koochesfahani, 2009; Naguib, et al., 2011), and 3) after the initial acceleration, the spacing did 

not significantly vary as the vortices convect downstream.  The Reynolds number dependence on 
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the peak vorticity, vortex circulation, core radius, and convection speed are provided in the 

Appendix G.   

For each Reynolds number, the b spacing begins with negative values at low k and 

switches to positive values as the reduced frequency increases.  The b spacing for each Reynolds 

number reaches nearly the same asymptotic value of approximately 0.060c.  For reference, the 

trailing edge amplitude is 0.052c.  However, the reduced frequency at which the switch in 

orientation takes place depends on Reynolds number.  This crossover reduced frequency is 

discussed in more detail in the next section.  The a spacing decreases as the reduced frequency 

increases for each Reynolds number while it increases as the Reynolds number increases. 

Physically, this is a result of the vortices having a higher convection speed at the higher Re. 

 
Figure 4.14.  Wake vortex transverse spacing (top) and streamwise spacing (bottom) 

dependency on k and Re for αo = 2°.  Measurements were done at x/c = 1.0.   
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4.3.  Transverse Spacing Crossover Frequency 

 From the data in Figure 4.14, the effect of Reynolds number on the crossover reduced 

frequency at which the b spacing switches sign can be quantified.  The crossover reduced 

frequency dependence on Reynolds number is presented in Figure 4.15.  Data from the literature 

(Bohl and Koochesfahani, 2009; Naguib, et al., 2011; Monnier, et al., 2015), as well as the drag-

to-thrust crossover reduced frequency, are also included in the figure for reference.  In addition 

to measurements obtained at x/c = 1.0, the crossover reduced frequency was also determined 

from visual inspection of the flow field where the vortex array was nearly aligned (see Figure 

4.16).  As the Reynolds number increases from 2,000 to 22,000, the crossover reduced frequency 

decreases from kcr ≈ 9 to kcr ≈ 5.2.  The decrease in kcr according to Re can be represented by a 

least squares power-law fit with an exponent of -0.23.  The data also compare quite well with the 

data found in the literature.  Noteworthy is that the conclusion by Bohl (2002) that the switch in 

wake orientation occurs before the switch from drag-to-thrust holds for a wide range of Re.  

Interestingly, the ratio of the thrust crossover reduced frequency and orientation crossover 

reduced frequency does not stay at a fixed value; it decreases as Re increases such that thrust 

occurs at lower k’s relative to kcr for b = 0 for higher Reynolds compared to lower Reynolds 

numbers. 
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Figure 4.15.  Crossover reduced frequency for b = 0 dependence on Reynolds number for αo = 

2°.  Data from literature are included for reference.  Note that Monnier, et al., (2015) used a 
modified NACA series airfoil. 

 
Figure 4.16.  Instantaneous spanwise vorticity field (ωzc/U∞) for visually aligned vortex array 

and αo = 2° for different Reynolds numbers (increasing from the top down).  The airfoil is at zero 
angle of attack and is pitching up (τ/T = 0.0).   
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4.4.  Effect of Pitching Amplitude 

The effect of pitching amplitude on the flow structure for different Reynolds numbers is 

shown in Figure 4.17 for k = 3.  The reduced frequency was selected to highlight the formation 

of a traditional von Kármán street at αo ≥ 4° for the Re = 2,000 and 7,000 that did not occur at Re 

= 12,000 and 22,000.  Flow visualization for additional k’s is presented in Appendix H.  The 

airfoil is at zero angle of attack and is pitching up (τ/T = 0.0).  At Re = 2,000 for αo = 2°, the 

vortex configuration is a traditional von Kármán street.  As the amplitude increases, the vortices 

become aligned, then switch to a reverse von Kármán street.  At Re = 7,000 for αo = 2°, the 

vortex configuration is similar to traditional von Kármán street, but with slightly different 

features.  As the amplitude increases, the vortex pattern becomes a traditional von Kármán street 

at the αo = 4°.  Increasing the amplitude to αo = 6°, a second vortex sheds each half-cycle that 

pair downstream to form a reverse von Kármán street.  The wake structure continues forming 

into a reverse von Kármán street as the amplitude increases further.  As the Reynolds number 

increases to 12,000 and 22,000, more complex structures are produced in the wake at this k at αo 

= 2°-4°.  As the amplitude increases to αo = 6° and 8°, the wake structure becomes reverse von 

Kármán-like, with small additional vortices shedding and pairing with the main vortex.  At αo = 

10°, Re = 12,000 produces a reverse von Kármán street and Re = 22,000 generates a von 

Kármán-like pattern.  Note that a traditional von Kármán street was not observed for Re = 12,000 

or 22,000 when αo ≥ 4° at this reduced frequency or the others considered in this work.  
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Figure 4.17.  Instantaneous spanwise vorticity field (ωzc/U∞) at k = 3.0 for different Reynolds numbers (increasing left to right) and 
pitching amplitudes (increasing from the top down).  The airfoil is at zero angle of attack and is pitching up (τ/T = 0.0).  The field of 

view extends over the range 0 ≤ x/c ≤ 3.0 and -0.4 ≤ y/c ≤ 0.4.    
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 In order to quantify the effect of pitching amplitude on the wake vortex arrangement, the 

b and a spacing are again computed.  For this analysis, only the cases in which a single pair of 

opposite sign vortices shed per cycle were considered.  The transverse and streamwise spacing 

dependence on pitching amplitudes for different reduced frequencies at Re = 2,000 and 22,000 

are shown in Figure 4.18.  As the amplitude increases for each Reynolds number, the transverse 

spacing increases at a given k.  There is a slight increase in streamwise spacing as the amplitude 

increases at a given k for each Reynolds number.  The streamwise spacing shows more 

sensitivity to reduced frequency than either Re or αo, as expected since a is a first order 

approximation of k.  By rescaling the spacing data with the Strouhal number (see Figure 4.19), 

the b spacing shows slightly better collapse while the a spacing data forms into distinctive curves 

separated by amplitude.  

 
Figure 4.18.  Wake vortex transverse (top) and streamwise (bottom) spacing dependence on k, 
for Re = 2,000 (left) and 22,000 (right) and αo = 2°-10°.  Data is presented for only cases with 

well-formed single vortex pairs. 
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Figure 4.19.  Wake vortex transverse (top) and streamwise (bottom) spacing dependence on k, 
for Re = 2,000 (left) and 22,000 (right) and αo = 2°-10°.  Data is presented for only cases with 

well-formed single vortex pairs. 

Using the transverse spacing data from Figures 4.18 and 4.19 the vortex orientation 

crossover reduced frequency/Strouhal number dependence on Reynolds number for different 

amplitudes may be quantified.  These crossover data are presented in Figure 4.20 based on a 

measurement location at x/c = 1.0 and again only for cases in which a single pair of alternating 

vortices shed each oscillation cycle.  At 4° amplitude, the vortex pattern shows a switch in b only 

for Re = 2,000 and 7,000.  The crossover reduced frequency is lower at 4° than 2°, as expected 

based on the drag-to-thrust crossover data presented in Chapter 4.  At Re = 12,000 and 22,000, 

there is no discernable transition from a traditional von Kármán to reverse von Kármán street, 

causing no crossover to occur (refer to Appendix H).  As the amplitude increases further, only 

the Re = 2,000 case continues to produce a clear switch in b.  When the crossover reduced 

frequency is rescaled in terms of a crossover Strouhal number, there is better data collapse such 

that the crossover Strouhal number decreases as the Reynolds number increases and slightly 
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increases as the amplitude increases.  For Re = 2,000, the crossover Strouhal number range is 

0.15-0.17 over the amplitude range of 2°-10° while it is 0.11-0.125 for 2°-4° amplitude at Re = 

7,000.  There is also good agreement with the literature.   

 
Figure 4.20.  Wake vortex transverse spacing switch crossover reduced frequency (left) and 

Strouhal number (right) dependence on Reynolds number for different amplitudes.  
Measurements from computations done at x/c = 1.0.  Data from literature are included for 

reference.  Note that Godoy-Diana, et al., (2008) used for a tear-drop shaped airfoil and Monnier, 
et al., (2015) used a modified NACA series airfoil. 

Finally, the vortex configuration may be quantified as a single parameter, the vortex 

aspect ratio (b/a).   Bohl and Koochesfahani (2009) showed that once the transverse spacing 

reached an asymptotic value, the aspect ratio continued to exhibit a slight increase as the reduced 

frequency increased further for Re = 12,600 and αo = 2°.  At the highest reduced frequency, the 

aspect ratio reached a value of 0.19 in that study, which was much lower than value of 0.28 for a 

stable point vortex street (von Kármán and Burgers, 1935).  The vortex aspect ratio from the 

present computations for each Re and different amplitudes as a function of Strouhal number is 

shown in Figure 4.21.  It is notable that the the aspect ratio nearly collapses with respect to 

amplitude for each Reynolds number.  As the Strouhal number increases, the aspect ratio 



 107 

decreases in magnitude, switches sign, then increases in magnitude for each Reynolds number.  

At Re = 2,000, this increase is a gentle.  As the Reynolds number increases, the increase in aspect 

ratio is much “sharper” as Strouhal number increases at the low Strouhal number range (see 

Figure 4.22).   

 
Figure 4.21.  Wake vortex configuration aspect ratio (b/a) dependence on St for different 

Reynolds number and pitching amplitudes.  Measurements from computations done at x/c = 1.0. 

 



 108 

 
Figure 4.22.  Wake vortex configuration aspect ratio (b/a) dependence on St for different 

Reynolds number for αo = 2° (circles) and 10° (squares).  Measurements from computations done 
at x/c = 1.0. 
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CHAPTER 5.  EFFECT OF TRAJECTORY ASYMMETRY ON 

AERODYNAMIC LOADS 

 In addition to studying the effect of Reynolds number on the average and fluctuating 

loads on a pitching airfoil, the effect of trajectory asymmetry is also of interest based on previous 

work (Koochesfahani, 1989).  According to Koochesfahani (1989), “it was expected that the load 

history would be strongly affected” due to symmetry breaking in the wake.  However, forces 

were not quantified in that investigation.   

The Reynolds number and pitching amplitude were selected to be 12,000 and 2°, 

respectively, to be in agreement with the previous experiment by Koochesfahani (1989).  The 

baseline reduced frequency was 6.68 to closely match the experiment by Koochesfahani (1989), 

though the reduced frequency is varied from 4 to 8 in this work to illustrate the effect of k.  The 

lowest reduced frequency considered corresponds to the lowest k considered by Bohl (2002) in 

which flow visualization was performed.  The highest reduced frequency was selected to be 

close to the drag-to-thrust crossover reduced frequency from Chapter 3.  Reduced frequencies 

greater than 8 were not pursued since Mach number effects become more prevalent for the 

sinusoidal pitching cases at k ≥ 10 and the addition of asymmetry would make these effects more 

challenging to overcome.  The freestream Mach number is 0.005 for all data presented in this 

chapter.  As stated in Chapter 2, a small amount of smoothing corresponding to 0.5%TPU was 

applied to the angle of attack history.  The value of S is less than 50% such that the pitch-up is 

faster than the pitch-down.  Example angle of attack, velocity, and acceleration time histories are 

provided schematically for different values of S in Figure 5.1 for reference.    
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Figure 5.1.  Angle of attack (top), pitching velocity (middle), and pitching acceleration (bottom) 

for different values of S.   

This chapter is organized as follows.  Section 5.1 deals with the effect of asymmetry on 

the average loads, Section 5.2 provides a discussion of decomposition of the lift into terms 

analogous to circulatory and non-circulatory components of inviscid linear theory by Theodorsen 

(1935), and Section 5.3 shows the load fluctuation caused by the asymmetrically pitching airfoil.  
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5.1.  Average Forces 

First, the influence of reduced frequency on the average force coefficients for the 

asymmetrically pitching airfoil is discussed.  The time-average lift and thrust coefficients are 

presented in Figure 5.2.  Positive lift corresponds to the positive Y direction and positive thrust 

denotes a forward propelling force in the negative X direction (refer to the schematic in Figure 

1.11 in Chapter 1).  When the pitching motion becomes asymmetric, the lift becomes non-zero. 

Sarkar and Venkatraman (2006) also observed non-zero average lift, stating that that the average 

lift increased with increasing asymmetry.  However, quantitative data were not presented by the 

authors.   

In the present computations, the average lift depends on both reduced frequency and 

asymmetry.  It is observed that over the range of investigated asymmetries for these flow 

conditions, the sign of the lift is primarily influenced by the reduced frequency while the 

variation of the lift with respect to S also depends on k.  At S = 50% (sinusoidal), the average lift 

is zero for all reduced frequencies, as expected.  At k = 4, the lift increases as the asymmetry 

increases until it reaches a nearly asymptotic value at S = 38%.  As the reduced frequency 

increases from 4 to 5.2, there is a noticeable decrease in average lift over the entire investigated S 

range.  There is also an interesting dip in lift at S = 38% for this reduced frequency, but the cause 

of this feature is currently unclear.  As the reduced frequency increases to 5.8, the net lift is 

nearly zero over the entire range of S.  As the reduced frequency increases to 6.68, the lift 

becomes negative.  As asymmetry increases, the negative lift increases in magnitude until it 

reaches a maximum at S ≈ 34%, then begins decreasing.  Further increase in reduced frequency 

to 8 produces negative lift with greater magnitude than at k = 6.68.  The value of S in which 

maximum negative occurs moves towards 50% as k increases from 6.68 to 8. 
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Figure 5.2.  CL (left) and CT (right) vs. S for different reduced frequencies.  The Reynolds 

number is 12,000 and the pitching amplitude is 2°.   

The effect on thrust is also interesting.  For sinusoidal pitching, the airfoil experiences 

drag at each reduced frequency.  Recall from Chapter 3 that the crossover reduced frequency for 

this Reynolds number and pitching amplitude was approximately 8.1.  At a given reduced 

frequency, CT increases away from the value at S = 50%.  At k ≤ 6.68, the value of CT increases 

towards zero (i.e., towards positive thrust).  At k = 8, the force switches from drag to thrust at S = 

40%.  The increase in CT makes intuitive sense since the “effective frequency” of the airfoil 

increases when pitching asymmetrically.  An additional feature of the thrust is that its differential 

between S = 50% and S ≠ 50% is not constant, but it depends on reduced frequency, as shown in 

Figure 5.3.   It is found that the thrust differential increases non-linearly with both increasing 

reduced frequency and asymmetry.   
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Figure 5.3.  Thrust differential vs. S for different reduced frequencies.  The Reynolds number is 

12,000 and the pitching amplitude is 2°.   

Decomposition of the average lift coefficient into its corresponding components caused 

by the average pressure and shear stress show that both components experience similar variation 

by k and S seen in the total lift (see Figure 5.4), but the component from the shear stress is two 

orders of magnitude smaller than the component from the pressure.  Performing the same 

exercise on the average thrust coefficient shows that pressure contribution experiences drag at k 

= 4 and thrust at k ≥ 5.2.  The shear stress contribution produces slightly increasing drag as the 

reduced frequency and asymmetry increase.  
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Figure 5.4.  Pressure (top) and shear stress (bottom) components of average CL (left) and CT 

(right) vs. S for different reduced frequencies.  The Reynolds number is 12,000 and the pitching 
amplitude is 2°.   

In order to better understand the cause of the non-zero lift, the contributions from the 

average positive lift, !"#, and negative lift, !"$, are isolated.  Figure 5.5 provides a schematic of 

the contributions of positive and negative lift and their respective temporal durations with respect 

to the oscillation cycle, %"# and %"$.  The angle of attack and pitching acceleration time histories 

are included in the figure for reference.  The net contribution from the positive and negative lift 

to the average total lift (seen in Figure 5.2) may be calculated using the cycle average, given 

equations (5.1) and (5.2).  However, averaging over the oscillation cycle, T, does not provide 

information about the amount of “area” integrated under the positive and negative lift curves.  

The amount of positive and negative lift during !"# and !"$ may be quantified using a equations 

(5.3) and (5.4), respectively, in which the averaging for the positive and negative lift components 

is done over %"# and %"$, respectively, instead of the oscillation period, T.  These two expressions 

are called the duration averages and are related to equations (5.1) and (5.2) by equations (5.5) 
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and (5.6).  Note that the lift pre-dominantly is in phase with the pitching acceleration in Figure 

5.5.   

 
Figure 5.5.  Schematic illustrating lift averaging definitions for the example of k = 6.68 and S = 

38%.  The angle of attack and pitching acceleration are included for reference. 
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 %"# + %"$ = % (5.5) 
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The results of this averaging analysis are shown in Figure 5.6.  In the figure, the ratio of 

the positive lift and negative lift is taken to illustrate relative differences while the absolute value 

is shown to display magnitude.  For sinusoidal pitching (S = 50%), these two components are 

equal and the ratio would be 1.  Using the oscillation cycle time-average of the positive and 

negative components (i.e., equations (5.1) and (5.2)), similar behavior to that presented in Figure 

5.2 is observed.  At k < 5.8, the average positive lift is greater than the negative lift for S < 50%.  

When k = 5.8, the positive lift nearly balances the negative lift over the entire range of S 

investigated here.  At k > 5.8, the negative lift exceeds the positive lift over the investigated 

range of S.  The ratio of positive to negative lift duration shows that as the asymmetry increases, 

the duration of negative lift increases for all reduced frequencies.  At a given value of S, negative 

lift occurs over a larger duration than the positive lift as k increases.  The ratio of the duration 

average of positive to negative lift shows that more positive lift occurs over the shorter %"# than 

the negative lift over the longer %"$at each value of S < 50% regardless of the reduced frequency.  

Both the duration ratio and duration average ratio show different variation with S compared to 

the cycle average ratio, making it difficult to ascertain what mechanism causes the trend in lift 

seen in Figure 5.2.  In order to elucidate the underlying mechanism causing the behavior of the 
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average lift with respect to both S and k, efforts were undertaken to decompose the lift into 

contributions analogous the circulatory and non-circulatory components of lift from inviscid 

linear theory, as discussed in the next section.   

 
Figure 5.6.  Ratio of cycle time-average of positive to negative lift (left), ratio of the duration of 
positive to that of negative lift period (middle), and ratio of duration time-average of positive to 

negative lift (right). 

5.2.  Lift Decomposition 

Classical theory by Theodorsen (1935) showed that the unsteady lift on a flat plate 

undergoing harmonic pitching and plunging in an incompressible, inviscid flow can be 

decomposed into two contributions.  The first source of lift is that associated with the 

development of circulation around the airfoil, Lc.  In order to incorporate this shedding of 

vorticity and its influence on the plate, Theodorsen introduced his complex lift attenuation 

function, C(k) (see Theodorsen (1935) for more details).  The second source of lift is the non-

circulatory (or added mass) component, Lnc, which originates from the reaction force on the 

oscillating plate caused by the displacement of the mass of fluid by the plate.  For high reduced 
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frequency oscillations, the non-circulatory component contributes the majority of the total time-

dependent lift coefficient.  For example, consider the ratio of the circulatory and non-circulatory 

lift coefficients to the total lift at the phase of maximum total lift, as shown in Figure 5.7.  At k < 

1.5, the circulatory component provides the majority of the total lift when the total lift is at its 

maximum.  At k > 1.5, the non-circulatory component provides the majority of the total lift when 

the total lift is at its maximum.  However, the applicability of Theodorsen’s lift formula to an 

asymmetrically pitching airfoil is unclear since the theory was derived for angle of attack 

variation of the form 0 * = 01234(.   

 
Figure 5.7.  Ratio of lift circulatory and non-circulatory components to total lift at the phase of 
maximum lift.  The lift coefficient time history for k = 6.68 (indicated by the blue line) using 

Theodorsen’s formula is included in the figure for reference, where the phase of maximum lift is 
indicated by the green dashed line. 

More recently, Wang, et al., (2013) introduced a simple formula for calculating the force 

on a body using only velocity data for incompressible flow at low Reynolds numbers.  Consider 

a solid body, B, that lies in a control volume, Vf, with control surface Σ.   
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Figure 5.8.  Schematic of fluid domain, Vf, with control surface Σ around solid body B. 

The force acting on the body, 5, is given by 

 5 = − −78 + 9
:

+; = −< =>
+* + > ∙ ∇>

AB

+C + −78 + 9
D

+; (5.7) 

Where p is the pressure, 8 is the normal vector, 9 is the surface shear stress vector, > is the 

velocity vector.  By substituting > ∙ ∇> = E×> + ∇ > G/2  into equation (5.7), the force is 

calculated as 
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+*
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2 8
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:
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(5.8) 

where E is the vorticity vector,  >×E is called the Lamb vector, and >  is the velocity 

magnitude.  According to Wang, et al., (2013), the first term in equation (5.8) is the Lamb vector 

integral and represents the vortex force (Prandtl, 1918; Saffman, 1992; Wang, et al., 2013), the 



 120 

second term is the unsteady inertial effect, the third and fourth terms are the contribution from 

the total pressure and shear stress at the control surface Σ, and the fifth term is the boundary term 

that depends on the surface velocity of the body.  In an inviscid, irrotational flow, the 

combination of the second and fifth term is the added mass (Wang, et al., 2013).  By selecting a 

rectangular control surface that is far from the solid body, the third and fourth terms are 

negligible.  In the special case of two-dimensional steady flow and assuming >	of the form > =

KL + >M (where >M is the velocity induced by vorticity), equation (5.8) reduces to classical Kutta-

Joukowski theorem N = <KLO (Prandtl, 1918; von Karman and Burgers, 1935; Wang, et al., 

2013).   

For an unsteady thin airfoil, the time-dependent two-dimensional lift force, L(t), reduces 

to two leading order terms, given by equation (5.9).  In this expression, ρ∞ is freestream density, 

u is the local streamwise component of velocity, v is the local transverse component of velocity, 

ωz is the local spanwise vorticity, t is the physical time, and A is the two-dimensional area of the 

control volume that extends far from the body.   

 N * = − <L >EP+Q
R

STUVWX	YZ[V	\WU]

+ <L
=^
=* +Q

R
_``WaWUbVZTc	\WU]

 (5.9) 

As seen in equation (5.9), the unsteady lift comes from two primary sources.  The first 

term is the vortex lift and the second term is the lift from the fluid acceleration.  These two 

components of lift are analogous to the circulatory and non-circulatory components in the 

inviscid theory by Theodorsen (1935).  Wang, et al., (2013) computationally showed that the 

equation (5.9) is very effective in accurately estimating both the time-average and unsteady lift 

for a variety of flows around stationary and flapping flat plates at Re ~ O(102).  This 
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decomposition is exploited here to determine the underlying contributions to the average lift.  In 

this work, only the vortex lift coefficient, CVL, was directly computed from the instantaneous 

velocity and vorticity fields due to difficulty in the ability to accurately compute =^/=* using the 

phases extracted from the computations.  Since only the vortex lift is calculated, the acceleration 

component of lift is considered the remainder between the total lift and the vortex lift. 

To calculate the vortex lift coefficient, a rectangular domain was created around the 

airfoil that extended H ahead of the leading edge, H/2 above and below the symmetry line, and 

ends at the trailing edge.  This is shown schematically in Figure 5.9.  For this analysis, H = 50c.  

The vortex lift was then calculated according to N * = − >EPΔQR , where A is the control 

volume area and grid cell area, ΔQ, approximated by the inverse of the transformation Jacobian 

at each grid point (i.e., ΔQ = e$f = ghij − ihgj).  This procedure was performed for each phase 

to produce a time history of the vortex lift coefficient.   

 
Figure 5.9.  Schematic of integration domain for computing the vortex lift. 

An example vortex lift coefficient time history is shown in Figure 5.10 for k = 6.68 and S 

= 38% as a representative case.  The pitching acceleration and total lift histories are included for 

reference.  Two features of the vortex lift coefficient are evident from the figure.  The first is that 

the vortex lift is approximately in phase with the angle of attack as opposed to the total lift, 

which is approximately in phase with the acceleration.  The second is that the amplitude of the 
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lift is much lower magnitude than the total lift.  The peak-to-peak amplitude of the vortex lift is 

approximately 2% of the peak-to-peak amplitude of the total lift.   

 
Figure 5.10.  Time history of angle of attack (top left), acceleration (top right), vortex lift 
coefficient (bottom left), and total lift coefficient (bottom right) for k = 6.68 and S = 38%. 

Performing the time-average of the unsteady vortex lift for each reduced frequency and 

asymmetry and plotting the actual average lift, CL, versus the average vortex lift produces a 

linear relationship with unit slope (see Figure 5.11).  The R2 value of the entire data set was 

0.99996, indicating a very strong correlation.  In fact, the average vortex lift coefficient values 

were within 2% of the actual average lift coefficient.  It can be inferred that the majority of the 

non-zero time-average lift is a result of the vortex lift component.   
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Figure 5.11.  CL vs. CVL for each reduced frequency and asymmetry.  The Reynolds number is 

12,000 and the pitching amplitude is 2°. 

 This behavior was not expected, though not surprising.  Consideration of the 

investigation by Wang, et al., (2013) sheds light on this observation.  As stated previously, the 

authors performed computations of a flat plate undergoing sinusoidal pitching and plunging 

about a 10° angle of attack at a Reynolds number of 300.  The pitching amplitude was 30° while 

the plunging amplitude was c/4.  The authors observed a very non-sinusoidal signature in the 

total lift, as shown in Figure 5.12 as the solid black line.  The contribution from the vortex lift 

(i.e., integrated Lamb vector; dashed line) is nearly sinusoidal and while the acceleration 

contribution (dot-dashed line) shows similar fluctuations as the total lift.  In fact, the authors 

state that “the Lamb vector integral mainly contributes to the mean lift with a considerable phase 

shift compared to DNS, while the acceleration term significantly modifies the waveform and 

phase.  The sum of the Lamb vector integral and the acceleration term recovers the true 

waveform.”  Both the vortex lift results by Wang, et al., (2013) and from the current 

computations have nearly sinusoidal waveforms.   
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Figure 5.12.  The time histories of lift, integrated Lamb vector contribution, and acceleration 

from computations by Wang, et al., (2013) for a flat plate at non-zero angle of attack undergoing 
combined pitching and plunging at Re = 300.  Instantaneous fields of spanwise vorticity (top), 

Lamb vector projected in the vertical direction (middle), and acceleration projected in the 
vertical direction (bottom) at τ = 18.8 (indicated by the red dashed line) are included on the right 

for reference. Figure courtesy of AIP Publishing, LLC. 

The vortex lift shown in Figure 5.12 visually does have a peak-to-peak amplitude an 

order of magnitude greater than in the current computations.   However, the flow considered by 

the Wang, et al., (2013) shows boundary layer asymmetry and separation due to the non-zero 

mean angle of attack and large oscillation amplitudes whereas the mean angle of attack is zero 

and pitching amplitude is small in the current work, and may lead to more subtle asymmetries in 

the boundary layer.  Regardless, differences in waveform and peak-to-peak amplitude between 

the vortex lift and the total lift from the present computations should not be considered 

unexpected based on this discussion. 

The effect of reduced frequency on the unsteady vortex lift is presented in Figure 5.13, 

with the angle of attack included for reference.  The reduced frequencies in the figure are 4 and 8 

to represent the lowest and highest k’s considered.  As previously seen in Figure 5.10, the vortex 
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lift is approximately in phase with the angle of attack for each asymmetry and reduced 

frequency.  In addition, both reduced frequencies show that the maximum vortex lift increases as 

the asymmetry increases.  However, the two reduced frequencies show noticeable differences.  

As the asymmetry increases for k = 4, the minimum vortex lift decreases in magnitude while an 

increasing amount of the vortex lift becomes positive.  For k = 8, the minimum vortex lift 

decreases slightly in magnitude while an increasing amount of the vortex lift becomes negative 

as asymmetry increases.  

 
Figure 5.13.  Angle of attack (top) and vortex lift coefficient (bottom) time histories for k = 4 

(left) and 8 (right). 

A similar averaging procedure done for average total lift was performed for the vortex lift 

(shown schematically in Figure 5.14) using equations (5.11) - (5.16) to quantify the contribution 

of positive and negative sign vortex lift. 
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Figure 5.14.  Schematic illustrating vortex lift averaging definitions for the example of k = 6.68 

and S = 38%.  The angle of attack is included for reference. 
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$

% !A"$  (5.16) 

The ratio of positive and negative vortex lift components using the cycle time-average showed 

similar behavior observed in Figure 5.2 and thus is not included in this analysis.  The ratios of 

the positive vortex lift duration versus negative vortex lift duration and duration average are 

shown in Figure 5.15.  These data distinctly show similar trends as seen in the cycle time-

average of the total lift in Figure 5.2.  At k = 4 for each asymmetry, the duration of the positive 

vortex lift exceeds the duration of negative vortex lift (i.e., %A"# /%A"$  > 1), as seen visually in 

Figure 5.14.  As the reduced frequency increases at a given value of S, an increasing duration of 

the vortex lift is negative until %A"# /%A"$  < 1.  The duration average ratio, !A"# /!A"$ , shows the 

amount of positive vortex lift decreases relative to the negative vortex lift as the reduced 

frequency increases at a given value of S.  It can be inferred that at k = 4, more positive vortex 

lift occurs over a large duration compared to the negative vortex lift.  As the reduced frequency 

increases, an increasing amount of negative vortex lift occurs over an increasing duration 

compared to the positive vortex lift component.   
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Figure 5.15.  Ratio of the duration of positive to that of negative lift period (left), and ratio of 

duration time-average of positive to negative lift (right). 

This can be clearly seen in Figure 5.16, which shows the unsteady vortex lift for both reduced 

frequencies at S = 38%, with the duration of the positive and negative lifts highlighted 

schematically.  There is clearly more positive vortex lift visually than negative vortex lift, both in 

duration and amount, for k = 4 while the opposite is true for k = 8.   
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Figure 5.16.  Vortex lift coefficient time histories for k = 4 (left) and 8 (right), with S = 38%. 

We note that it has been reported in the literature that natural flyers do flap 

asymmetrically (Park, et al., 2001; Rosén, et al., 2004).  Both authors showed that the 

downstroke fraction of the wingbeat cycle period (i.e., S) of barn swallows and thrush 

nightingales decreased as the flight speed increased.  This behavior implies an increase in 

Reynolds number and a decrease in reduced frequency.  The value of S dropped from around 

50% at low speed (U ≈ 10m/s) to approximately 40%-45% at higher speeds (U > 10m/s).  This is 

consistent with the current data in the following ways.  There was positive lift at low k when 

pitching asymmetrically with S < 50% in the current computations.  It can be inferred that as the 

reduced frequency decreases to the reduced frequencies considered by both authors (O(10-1)), the 

lift becomes higher.  Although these results are interesting, the value of average lift values 

produced by these computations undergoing idealized pitching are small (CL ~ O(10-2)).  

Realistic flapping is much more complex and presumably leads to higher lift and thrust 

coefficients.   



 130 

5.3.  Force Fluctuation 

For completion, consideration is made on the effect of airfoil trajectory asymmetry to the 

force fluctuation.  The lift and drag fluctuations, !"M  and !lM , for three values of S are shown in 

Figure 5.17 for a representative reduced frequency k = 6.68.  The angle of attack and pitching 

acceleration histories for the three cases are included for reference.  The lift and drag time 

histories show a very strong dependency on S.  For S = 50%, both the lift and drag fluctuation 

vary sinusoidally with time.  As the asymmetry increases, new features can be seen in the forces.  

First, the force fluctuations become non-sinusoidal and follow the pitching acceleration, 

suggesting that the force fluctuations are primarily a result of non-circulatory forces.  Second, the 

force fluctuations exhibit an inertial spike just after the jump in acceleration.  Third, the 

maximum and minimum force magnitudes increase as S increases.  
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Figure 5.17.  Lift and drag fluctuation for different asymmetries at k = 6.68.  The Reynolds 

number is 12,000 and the pitching amplitude is 2°.  The angle of attack and pitching acceleration 
history is included for reference. 

 The effect of both asymmetry and reduced frequency are quantified by the maximum, 

minimum, and peak-to-peak amplitude of lift and drag coefficient fluctuation, as shown in 

Figures 5.18.  As the reduced frequency and asymmetry increases, the lift and drag max/min and 

peak-to-peak values increase as well.  The additional lift and drag due asymmetry varies non-

linearly with S.   
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Figure 5.18.  Maximum (top), minimum (middle), and peak-to-peak (bottom) values of CL (left) 
and CD (right) vs. S for different reduced frequencies.  The Reynolds number is 12,000 and the 

pitching amplitude is 2°. 
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CHAPTER 6.  EFFECT OF TRAJECTORY ASYMMETRY ON 

WAKE STRUCTURE 

 The final results that will be discussed relate to the effect of the trajectory asymmetry on 

qualitative and quantitative characteristics of the wake structure.  As shown by Koochesfahani 

(1989), the extent of asymmetry can have a profound impact on the number of vortices shed and 

their orientation due to the vortex interactions in the wake.  For the purposes of this chapter, a 

limited range of reduced frequencies were considered.  The reduced frequencies are 5.2, 5.8, and 

6.68 to show the special cases of a traditional von Kármán street, neutral wake, and reverse von 

Kármán street when S = 50%.  The Reynolds number is 12,000 and freestream Mach number is 

0.005 for all data presented in this chapter.   

This chapter is organized as follows.  Section 6.1 contains an examination of the effect of 

trajectory asymmetry on the wake structure qualitatively Section 6.2 presents the basic wake 

provides a discussion of the vortex formation at the trailing edge, and Section 6.3 gives a 

presentation of the effect of trajectory asymmetry on the vortex properties. 

6.1. Wake Structure 

 Qualitative features of the wake structure for an asymmetric trajectory are discussed for 

different reduced frequencies.  The vortical structures in the wake of the airfoil for the three 

reduced frequencies and each asymmetric are shown in Figure 6.1.  The wake structures for k = 4 

and 8 are provided in Appendix I.  Approximately two chord lengths in the wake is shown in the 

figure.  In the figure, reduced frequency increases from left to right while asymmetry increases 

from the top down.  The airfoil is at zero angle of attack and is pitching up (τ/T = 0.0) for each 

instantaneous field shown.  In each case presented, a single positive vortex forms during the 
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pitch-up.  One or more negative vortices shed during the slow pitch-down, where the number of 

negative vortices depends on reduced frequency and asymmetry, as discussed next.    

At low asymmetries (S = 46%-42%), there is a very subtle effect caused by asymmetry 

for each reduced frequency.  The vortex structure has a slight downward deflection by observing 

both the positive and negative vortices below the wake centerline (y/c = 0).  The deflection angle 

of the wake visually increases as the asymmetry increases from S = 46% to 42%.  At k = 5.2 and 

S = 42%, the negative-sign vorticity braid rolls into a vortex but quickly pairs with the larger 

negative vortex.  A secondary vortex sheds at S = 42% for k = 6.68 but also pairs with the larger 

negative vortex downstream.  No secondary vortex is observed for k = 5.8.  At S = 38%, each 

reduced frequency produces two negative vortices.  As the asymmetry increases further, k = 5.2 

and 5.8 continue to produce two negative vortices during the pitch-down, with slightly different 

orientations.  At k = 6.68, three negative vortices shed into the wake.
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Figure 6.1.  Instantaneous spanwise vorticity field (ωzc/U∞) for Re = 12,000 and αo = 2° for different reduced frequencies (increasing 

to the right) and asymmetries (increasing from top down).  The airfoil is at zero angle of attack and is pitching up (τ/T = 0.0).  The 
range covered in the figure is 0.5 ≤ X/c ≤ 3 and -0.3 ≤ Y/c ≤ 0.3.
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Although asymmetry in the trajectory of the vortices can be seen visually in Figure 6.1, it 

is helpful to quantify the motion of the vortices by tracking the centroid through space.  Two 

values of S (50% and 38%) are considered for the three reduced frequencies in this exercise to 

demonstrate differences in how the vortices move when the airfoil trajectory is asymmetric.  The 

vortices considered are shown in Figure 6.2.   

 
Figure 6.2.  Schematic of vortex labeling for both S = 50% and S = 38%. 

The trajectories of the vortex centroids are shown for the three reduced frequencies and 

two values of S in Figure 6.3.  As shown in the figure, N1 and N2 followed the same trajectory 

for each reduced frequency when S = 50% due to symmetry in the pitching motion.   When S = 

38%, there is clear asymmetry in the vortex trajectories such that a steady state is not obtained 

over the downstream range considered in this work.  For each reduced frequency, both P1 and 

N2 convect below the wake centerline over the measurement domain whereas N1 convect above 

the centerline.  As the k increases, each vortex moves closer to the wake centerline, particularly 

downstream.  The highest reduced frequency also shows the centroid trajectories changing 

directions and moving towards the wake centerline between 2.7c and 3c.   
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Figure 6.3.  Positive and negative vortex centroid trajectories at three reduced frequencies numbers for S = 50% and 38%.  The 

Reynolds number is 12,000 and the pitching amplitude is 2°.
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6.2.  Vortex Formation at Trailing Edge 

In order to better understand the effect of trajectory asymmetry on the wake structure, it 

is of interest to study the vortex formation near the trailing edge that serves as the initial 

conditions for the subsequent evolution of the wake.  Figures 6.4-6.9 show the vorticity field 

near the trailing edge at twelve evenly-spaced oscillation phases for three asymmetries (S = 50%, 

38%, and 30%) at a reduced frequency of 6.68.  The figures are divided by pitch-up and pitch-

down phases, which are marked on the accompanying angle of attack, pitching velocity, and 

pitching acceleration.  An additional example for k = 5.2 at the same values of S is provided in 

Appendix I.  The three selected cases generally show the vorticity evolution associated with the 

formation of one, two, or three negative vortices to form in the wake.   

First, the sinusoidal case will be examined as shown in Figure 6.4 for the pitch-up and 

Figure 6.5 for the pitch-down.  As the angle of attack begins increasing, a counter-clockwise 

rotating (positive) vortex forms at the trailing edge.  At τ/T = 0.792, a small region of high 

magnitude negative vorticity is observed below the positive vortex.  As the airfoil continues 

pitching up, the upper surface boundary layer approaches the negative vorticity near the trailing 

edge.  By τ/T = 0.875, the upper surface boundary layer and trailing edge negative vorticity meet.  

The positive vortex subsequently detaches from the airfoil and sheds into the while continuing to 

be reinforced by the lower surface “feeding” shear layer.  At τ/T = 0.083-0.125, this “feeding” 

shear layer becomes separated from the vortex and continues to shed into the wake, forming a 

vorticity braid.  A region of high magnitude negative vorticity that forms at the trailing edge is 

also observed at these phases.  At τ/T = 0.208-0.250, this high magnitude negative vorticity 

spreads to cover more of the upper surface and some of the lower surface.   
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As the airfoil pitches down, a clockwise (negative) vortex forms at the trailing edge.  At 

τ/T = 0.333, a region of high magnitude positive vorticity forms at the trailing edge.  This 

positive vorticity meets the lower surface boundary layer by τ/T = 0.375 and the negative vortex 

detaches from the airfoil and sheds into the wake while being reinforced by the high vorticity 

“feeding” shear layer.  The “feeding” shear layer continuous shedding into the wake and forms a 

vorticity braid after being separated from the negative vortex.  As the airfoil reaches its minimum 

angle of attack, a region of high magnitude positive vorticity is observed to form near the trailing 

edge, and spreads to the upper and lower surface near the trailing edge.    
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Figure 6.4.  Instantaneous spanwise vorticity field (ωzc/U∞) at 12 phases of the pitch-up for k = 6.68, S = 50%, Re = 12,000, and αo = 
2°.  The angle of attack, pitching velocity, and pitching acceleration history is shown at the top with circles indicating the phases at 
which the vorticity is shown.  The white line is the wake centerline.  The range covered in the figure is 0.8 ≤ X/c ≤ 1.2 and -0.075 ≤ 

Y/c ≤ 0.075.
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Figure 6.5.  Instantaneous spanwise vorticity field (ωzc/U∞) at 12 phases of the pitch-down for k = 6.68, S = 50%, Re = 12,000, and αo 
= 2°.  The angle of attack, pitching velocity, and pitching acceleration history is shown at the top with circles indicating the phases at 
which the vorticity is shown.  The white line is the wake centerline.  The range covered in the figure is 0.8 ≤ X/c ≤ 1.2 and -0.075 ≤ 

Y/c ≤ 0.075.
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When trajectory was asymmetric, the vortices formed asymmetrically.  For S = 46% (not 

shown), the effect of asymmetry on the vortex formation was subtle.  When S = 38%, there was a 

more obvious effect on the vortex formation (see Figure 6.6-6.7).  As the airfoil pitches up, 

positive vorticity is observed to form on the upper and lower surface near the trailing edge as in 

the case of S = 50%.  However, the center of the counter-clockwise (positive) vortex is more 

upstream that it is for S = 50%.  A slightly larger region of high negative vorticity compared to S 

= 50% is observed below the positive vortex.  This negative vorticity meets the upper surface 

boundary layer and the positive sign vortex sheds into the wake.   

When the airfoil pitches down, a clockwise (negative) vortex forms at the trailing edge, 

with regions of negative vorticity on the upper and lower surface near the trailing edge.  A small 

region of high magnitude positive vorticity forms below the negative vortex and meets the lower 

surface boundary layer at τ/T = 0.240.  The negative vortex then sheds into the wake.  As the 

airfoil continues pitching down at τ/T = 0.344, a second negative vortex is observed near the 

trailing edge and is connected to the first shed negative vortex by a thin layer of negative 

vorticity.  At τ/T = 0.5, the lower surface boundary layer connects with a small region of positive 

vorticity at the trailing edge while the second negative vortex sheds into the wake.  At τ/T = 

0.656-0.708, a third “concentration” of high magnitude negative vorticity is observed near the 

trailing edge in the feeding shear layer while high magnitude positive vorticity forms at the 

trailing edge.  The third “concentration” of negative vorticity sheds into the wake and becomes a 

braid downstream while high positive magnitude vorticity spreads along the upper and lower 

surface near the trailing edge.  
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Figure 6.6.  Instantaneous spanwise vorticity field (ωzc/U∞) at 12 phases of the pitch-up for k = 6.68, S = 38%, Re = 12,000, and αo = 
2°.  The angle of attack, pitching velocity, and pitching acceleration history is shown at the top with circles indicating the phases at 
which the vorticity is shown.  The white line is the wake centerline.  The range covered in the figure is 0.8 ≤ X/c ≤ 1.2 and -0.075 ≤ 

Y/c ≤ 0.075.
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Figure 6.7.  Instantaneous spanwise vorticity field (ωzc/U∞) at 12 phases of the pitch-down for k = 6.68, S = 38%, Re = 12,000, and αo 
= 2°.  The angle of attack, pitching velocity, and pitching acceleration history is shown at the top with circles indicating the phases at 
which the vorticity is shown.  The white line is the wake centerline.  The range covered in the figure is 0.8 ≤ X/c ≤ 1.2 and -0.075 ≤ 

Y/c ≤ 0.075.
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For S = 30%, the positive vortex forms rapidly at the trailing edge during the fast pitch-up 

and sheds into the wake (Figure 6.8).  As the airfoil switches directions, a negative vortex forms 

at the trailing edge and quickly sheds into the wake (see Figure 6.9).  As the airfoil continues 

pitching down, high magnitude negative vorticity from the feeding shear layer continues 

shedding the wake.  At τ/T = 0.50-0.557, a “concentration” of vorticity separates from the shear 

layer and rolls up into a vortex.  As positive vorticity forms at the trailing edge (τ/T = 0.729-

0.844), a third “concentration” of vorticity forms in the shear layer and eventually rolls up into a 

third vortex.  
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Figure 6.8.  Instantaneous spanwise vorticity field (ωzc/U∞) at 12 phases of the pitch-up for k = 6.68, S = 30%, Re = 12,000, and αo = 
2°.  The angle of attack, pitching velocity, and pitching acceleration history is shown at the top with circles indicating the phases at 
which the vorticity is shown.  The white line is the wake centerline.  The range covered in the figure is 0.8 ≤ X/c ≤ 1.2 and -0.075 ≤ 

Y/c ≤ 0.075.
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Figure 6.9.  Instantaneous spanwise vorticity field (ωzc/U∞) at 12 phases of the pitch-down for k = 6.68, S = 30%, Re = 12,000, and αo 
= 2°.  The angle of attack, pitching velocity, and pitching acceleration history is shown at the top with circles indicating the phases at 
which the vorticity is shown.  The white line is the wake centerline.  The range covered in the figure is 0.8 ≤ X/c ≤ 1.2 and -0.075 ≤ 

Y/c ≤ 0.075.
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6.3.  Vortex Properties 

In order to quantify the effect of trajectory asymmetry on the wake structure for the three 

reduced frequencies, the vortex properties were computed.  As observed in Figure 6.1, a variety 

of vortical configurations were identified: two opposite sign vortices, one positive and two 

negative, and one positive and three negative.   In order to examine the effect of asymmetry on 

the vortex properties for different k, only the positive vortex and initially-formed negative vortex 

are considered (see Figure 6.10 for a schematic).  The vortex arrangement was quantified by the 

spatial location of the centroid in the transverse direction, the strength by the vorticity peak value 

and circulation, and the size by the core radius.  The properties for both vortices were quantified 

at x/c = 1.0.  This location was chosen since it was the measurement location from the 

experiment by Koochesfahani (1989). 

 
Figure 6.10.  Schematic of vortex labeling for both S = 50% and S = 38% for vortex properties. 

The properties for the the two vortices of interest are shown in Figure 6.11.  The 

transverse centroid coordinate, yc, at S = 50% depends on the arrangements of the vortex array at 

the different reduced frequencies, such as traditional or reverse von Kármán street.  As 

asymmetry increases, yc decreases for a given k.  At S = 38%, each vortex is below the wake 
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centerline (i.e., yc < 0).  As asymmetry increases further, yc continues decreasing.  The peak 

vorticity magnitude increases as both reduced frequency and asymmetry increase for vortex P.  

For vortex N, the peak vorticity magnitude decreases as asymmetry increases until S = 38%, then 

begins increasing in magnitude as asymmetry increases further.  It is unclear why this behavior 

occurs.  As the reduced frequency increases, the circulation magnitude increases in general.  

More interesting behavior is seen in the variation with respect to S.  As S decreases, the 

circulation magnitude of vortex P increases, slightly drops, then increases for k = 5.2.  The 

opposite trend occurs with vortex N at this reduced frequency, where the circulation magnitude 

decreases, slightly increases, then decreases.  At k = 5.8 and 6.68, the circulation magnitude of 

vortex P increases and decreases for vortex N in a monotonic fashion.  Interestingly, the 

circulation magnitude of vortex N becomes nearly independent of k at S = 34-30%.  The core 

radius in general decreases as asymmetry increases.  At k = 5.2 and S = 38%, there is a jump in 

core radius, though it is unclear why this occurs.   
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Figure 6.11.  Vortex properties of positive vortex P (circles) and negative vortex N (triangles) 
for different values of S at different reduced frequencies.  The Reynolds numbers is 12,000 and 

the pitching amplitude is 2°. 

 The streamwise spacing between vortices of the same sign, a, is calculated at x/c = 1.0 for 

both vortices using the convection speed and oscillation frequency.  The relative spacing 

between vortex P and N is ΔxP-N and is calculated when vortex P is at x/c = 1.0.  These 

definitions are shown schematically in Figure 6.12.  The transverse spacing is not considered 

here.  The vortex spacing data versus S is shown in Figure 6.13 for different reduced frequencies.  

As the reduced frequency increases, both a and ΔxP-N decrease.  As S decreases, the a spacing 

slightly increases for both vortices at a given k while ΔxP-N decreases.  
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Figure 6.12.  Schematic of vortex spacing definitions for asymmetry trajectory. 

 
Figure 6.13.  Streamwise spacing of centroid between opposite sign vortices (top) and same-sign 

vortices (bottom) for different values of S at different reduced frequencies.  The Reynolds 
numbers is 12,000 and the pitching amplitude is 2°. 



 152 

CHAPTER 7.  CONCLUSIONS AND FUTURE 

RECOMMENDATIONS 

The goal of this work was to investigate the effect of both Reynolds number and 

trajectory asymmetry on the forces and wake structure of a pitching NACA 0012 at low 

Reynolds number.  In order to accomplish this, high-order, two-dimensional computations were 

performed over a wide parameter space encompassing Reynolds numbers, reduced frequency, 

pitching amplitude, and asymmetry.  The wake structure, which is not typically of interest in 

most computational studies on flapping aerodynamic, was resolved using an overset grid system 

with very high resolution in the wake capable of capturing the evolution of the vortex array for 

up to four chord lengths from the airfoil’s trailing edge.  The high resolution allowed for both 

qualitative observation and quantitative characterization to be undertaken.  Simulation of the 

incompressible limit was done using low freestream Mach numbers with the current 

compressible Navier Stokes solver.  Only two-dimensional simulations were performed, limiting 

to assumptions of laminar flow which are appropriate for this Reynolds number range.  

Initial studies were conducted to determine the freestream Mach number requirements for 

both the symmetric and asymmetric trajectories.  It was found that freestream Mach numbers 

lower than those typically used in the literature were required to converge the various parameters 

of interest, such as force maximum and minimum values, average force values, and r.m.s. 

vorticity profiles in the wake.  The low Mach number requirements became more challenging 

when the airfoil trajectory became asymmetric.  However, with appropriate time-step size and 

enough subiterations, converged solutions were obtained.   
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7.1.  Reynolds Number Dependence 

The Reynolds number was shown to have a dramatic effect on the average forces, 

propulsive efficiency, and wake structure at the low Reynolds number range considered in this 

research.  As the Reynolds number increased, the average thrust coefficient decreased in 

magnitude from its starting static airfoil drag value, switched sign, and increased.  This increase 

in thrust caused the drag-to-thrust crossover reduced frequency to decrease monotonically with 

increasing Reynolds number and was a result of two mechanisms: 1) the static airfoil drag offset, 

which decreased with increasing Reynolds number, and 2) the shear stress contribution to drag, 

which increased with increasing reduced frequency and decreased as the Reynolds number 

increased.  This two-prong effect caused the behavior in the crossover reduced frequency.  It was 

also observed that the propulsive efficiency, lift peak-to-peak, and drag peak-to-peak also 

increased with Reynolds number, though the effect of Reynolds number on the lift and drag 

peak-to-peak amplitude was small.   

Different pitching amplitudes ranging from 2° to 10° were also considered to demonstrate 

the effect of amplitude.  As the amplitude increased, the thrust increased for each Reynolds 

number and caused the crossover reduced frequency to decrease.  When re-scaled based on the 

Strouhal number, there was a pronounced collapse of the crossover data.  The collapse showed 

that the 2°-6° data approximated the low-amplitude limit, while amplitudes greater than 6° 

showed deviation, particularly at the higher Reynolds numbers.  Scaling the Strouhal number by 

the crossover Strouhal number and the average thrust by the static drag offset caused the thrust 

coefficient data to become nearly independent of Reynolds number amplitude, with higher 

amplitudes showing small deviation.  The peak-to-peak amplitudes of lift and drag increased 
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with pitching amplitude, but could be nearly collapsed onto a single curve using amplitude 

scaling based on linear theory.   

The propulsive efficiency was found to increase as Reynolds number increased.  These 

data nearly collapsed with amplitude using the Strouhal number.  Also interesting was that the 

propulsive efficiency increased more gradually than found in the literature and did not reach a 

well defined peak over St = 0.2-0.4 for each Reynolds number.   

The wake data showed strong dependence of wake vortex configuration on Reynolds 

number.  At a reduced frequency k = 6, increasing Reynolds number from 2,000 to 22,000 

showed a switch in the vortex arrangement from a traditional von Kármán street (drag) to a 

reverse von Kármán street (thrust).  The wake structure had a nearly aligned arrangement at a 

Reynolds number of 12,000 at this reduced frequency.  It was found that the vortex transverse 

spacing increased as the Reynolds number increased over the low k range.  As the reduced 

frequency increased, the transverse spacing switched from negative to positive for each Reynolds 

number and asymptoted to a nearly common value.   

Analysis of the vortex transverse spacing data showed that the reduced frequency for 

vortex spacing crossover decreased as the Reynolds number increased.  The effect of pitching 

amplitude showed an increase in transverse and streamwise spacing with increasing amplitude.  

However, only the lower Reynolds numbers produced traditional von Kármán streets at αo ≥ 4.  

The resulting crossover reduced frequency decreased with increasing Reynolds number and 

could also be better scaled using a crossover Strouhal number definition.  It was also found that 

the vortex aspect ratio nearly collapsed when plotting the resulting data versus Strouhal number 

for a given Reynolds number.   
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7.2.  Trajectory Asymmetry 

Trajectory asymmetry showed a dramatic impact on the flow characteristics for the single 

Reynolds number and pitching amplitude considered.  As the asymmetry increased, the average 

lift became non-zero while there was a reduction in drag.  Behavior in average lift and the drag 

reduction depended on both reduced frequency and asymmetry.  In particular, as the reduced 

frequency increased, the non-zero lift switched in sign from positive to negative.  It was found 

that the behavior in average lift was directly tied to the domain integrated Lamb vector, called 

the vortex lift.  As the reduced frequency increased, the time duration and amount of negative 

vortex lift increased and eventually overtook the positive vortex lift.  Increasing asymmetry 

caused the peak-to-peak amplitudes of lift and drag to increase while the lift and drag fluctuation 

was primarily controlled by the pitching acceleration.   

Trajectory asymmetry produced interesting flow features in the wake, such as multiple 

negative vortices shed during the slower pitch-down.  As the trajectory asymmetry increased, the 

distribution of vorticity in the wake became increasingly asymmetric as well.  This was 

quantified both in the trajectories of the vortices and the vortex properties, particularly the peak 

vorticity and circulation.  As asymmetry increased, the positive-sign vortex developed higher 

peak vorticity and circulation values than than of the negative-sign vortex formed at the trailing 

edge.  The relative streamwise spacing between opposite sign vortices showed more influence by 

trajectory asymmetry than the streamwise spacing between same-sign vortices.   

7.3.  Future Recommendations 

Although this work was extensive, there do exist additional effects future studies should 

address.  Work by Dong, et al., (2006) and Bucholz and Smits (2008) suggest that the thrust 

coefficient, propulsive efficiency, and implicitly the crossover frequency depend on aspect ratio.  
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Since one of the assumptions in this work was two-dimensional flow, it would be of interest to 

investigate aspect ratio effects, with the presence of a wall boundary condition in the spanwise 

direction in particular, on the forces and wake structure for a pitching airfoil for different 

Reynolds numbers.  Since a single pitch-axis was used in this work, it would also be interesting 

to see how the forces and wake structure depend on pivot axis.  Since only a limited parameter 

space was considered for the asymmetric trajectory investigation, the effect of Reynolds number 

and pitching amplitude would be of interest for future study.  Finally, non-zero mean angles of 

attack would be of interest since natural flyers most likely utilize a non-zero mean angle of attack 

during flight.   
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APPENDIX A.  SMOOTHED ASYMMETRIC MOTION 

TRAJECTORY 

A.1. Smoothed Trajectory Analytical Derivation 

The original three-part formulation of the asymmetric motion trajectory is given by 

equation (A.1), where T is the oscillation period, !" is the pitching amplitude, and S is the 

symmetry parameter (S = TPU/T).   

Part 1: 0 ≤ t < TPU/2   

 !# $ = !" sin
)$

*+
  

Part 2: TPU /2 ≤ t < T-TPU /2   

 
!, $ = −!" sin

)

1 − *

$

+
−
1

2
 (A.1) 

Part 3: T – TPU /2 ≤ t < T   

 
!0 $ = !" sin

)

*

$

+
− 1   

In order to apply a Gaussian filter, the angle of attack, ! $ , must be rewritten as a Fourier series, 

given by  

 
! $ =

1"
2
+ 13 cos

2)6

+
$ + 73 sin

2)6

+
$

8

39#

 (A.2) 

Since the expression is an odd function, only the bn terms will be non-zero.  Equation (A.3) is 

then used to solve for the Fourier coefficients. 
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73 =

2

+
! $ sin

2)6

+
$ :$

,;

<

 (A.3) 

where n is the number of terms in the series solution.  In order to recover the asymmetric 

trajectory, velocity, and acceleration, at least 100+ terms are used in the series (see Figure A.1).   

 
Figure A.1.  Angle of attack (top), pitching velocity (middle), and pitching acceleration (bottom) 

coefficients for k = 6.68 and S = 38%, illustrating number of Fourier series terms. 

Using the relationships between the phase angle, θ, and time, (i.e., θ = 2πt/T and dθ = 

2π/Tdt), equation (A.3) may be rewritten as 

 
73 =

1

)
! = sin 6= :=

,;

<

 (A.4) 

Substituting the equation (A.1) into (A.4) yields  
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73 =

1

)
sin

=

2*
sin 6= :=

>?

<

− sin
= − )

2 1 − *
sin 6= :=

,;@>?

>?

+ sin
= − 2)

2*
sin 6= :=

,;

,;@>?

 

(A.5) 

Solution of these integrals give the angle of attack as 

 
! = = !" 73 sin 6=

8

39#

 (A.6) 

where 

 73 = +# + +, + +0 + +A + +B + +C (A.7) 

Terms T1-T6 in equation (A.7) are written as equations (A.8)-(A.13).  It is worth mentioning that 

these terms are derived only in terms of the symmetry parameter, S.   

 
+# =

2*

1 − 2*6
sin

) 1 − 2*6

2
 (A.8) 

 
+, =

2*

1 + 2*6
sin

) 1 + 2*6

2
 (A.9) 

 

 
+0 =

2 1 − *

1 − 2 1 − * 6
sin

) 1 − 46 + 2*6

2
+ sin

) 1 + 2*6

2
 (A.10) 

 

 
+A =

2 1 − *

1 + 2 1 − * 6
sin

) 1 + 46 − 2*6

2
− sin

) −1 + 2*6

2
 (A.11) 
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+B =

2*

1 − 2*6
− sin 2)6 − sin

) −1 − 46 + 2*6

2
 (A.12) 

 
+C =

2*

1 + 2*6
sin 2)6 − sin

) −1 + 46 − 2*6

2
 (A.13) 

The Gaussian filter, E $ =
#

,;FG
H@	

JG

GKG, is then applied to the angle of attack according to  

 
! $ = E $ − $ L $ :$

8

@8

=
1

2)M,
H@	

N@N G

,FG ! $ :$

8

@8

 (A.14) 

Substitution of equation (A.6) into (A.14) gives  

 
! $ =

1

2)M,
H@	

N@N G

,FG H@
,;3 G

,
F
O

G

73 sin 6
2)$

+

8

39#

:$

8

@8

 (A.15) 

The smoothed trajectory is thus given by 

 
! $ = !" 73H

@
,;3 G

,
F
OPQ

G

sin 6=

8

39#

 (A.16) 
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Figure A.2.  Angle of attack (top), pitching velocity (middle), and pitching acceleration (bottom) 

coefficients for k = 6.68 and S = 38%, illustrating influence of σ. 

A.2. Smoothed Trajectory Results 

The effect of trajectory smoothing on the lift time histories is shown in Figure A.3.  As 

the smoothing increases, there is an increasingly dampened response in the forces around the 

phase where the angle of attack changes direction the average forces is a slight decrease in thrust 

and a slight alteration in CL trend with respect to S curves as smoothing increases, as shown in 

Figure A.4.  The wake structure was also slightly affected.  Average u, r.m.s. u, and r.m.s. v 

profiles measured one chord from the trailing edge are shown in Figure A.5.  As the smoothing 

increases, the average u deficit drops slightly in magnitude.  There is also a slight increase in 

r.m.s. u and v at y/c = -0.2. 
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Figure A.3.  Time history of lift lift (left) and drag (right) coefficients for k = 6.68 and S = 38%, 

illustrating influence of σ. 

  
Figure A.4.  Average lift (left) and thrust (right) coefficients for k = 6.68 and different 

asymmetries, illustrating influence of σ. 
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Figure A.5.  Average u (left), r.m.s. u (middle), and r.m.s. v (right) for k = 6.68 and S = 38%.  
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APPENDIX B.  COMPUTATIONAL METHOD 

The numerical approach in this work is implicit large eddy simulation (ILES) using the 

high-order FDL3DI Navier-Stokes solver developed at AFRL, located at Wright-Pattern Air 

Force Base (Gaitonde and Visbal, 1998; Visbal and Gaitonde, 1999).  The details of the method 

are now discussed in this chapter, which is organized as follows: Section B.1 provides the 

governing equations utilized while B.2 presents the handling of the metric identities.  Section B.3 

details the time marching scheme.  Sections B.4 and B.5 present the spatial discretization and 

filter, respectively.  Section B.6 contains the description of the high-order interpolation process, 

solver parallelization discussed in Section B.7.  Note that section follows similar discussions as 

presented by Galbraith (2009), Garmann (2010), and Garmann (2013) and provides a summary 

of these descriptions.  Finally, only two-dimensional simulations are considered in this work, 

whereas this discussion corresponds to the more generalized three-dimensional case. 

B.1. The Governing Equations 

 The governing equations being numerically solved are the full, unsteady, compressible, 

three-dimensional, unfiltered Navier-Stokes equations.  To generalize the Navier-Stokes 

equations and make them more efficient for a wider range of geometries, appropriate coordinate 

transformations from Cartesian (x, y, z, t) to curvilinear coordinates (ξ, η, ζ, τ) can be made as 

follows: 

 

R = $
S = S T, V, W, $
X = X T, V, W, $
Y = Y T, V, W, $

 (B.1) 

Application of these transformations allows the Navier-Stokes equations to be written in the 

strong conservative form, shown below in equation (B.2).   
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Z

ZR

[

\
+
Z]̂

ZS
+
Z_^
ZX

+
Z ^̀

ZY
=

1

aH

Z]b
ZS

+
Z_b
ZX

+
Z`b
ZY

 (B.2) 

The solution vector of conservative variables, [, is defined by 

 [ = c, cd, ce, cf, cg O (B.3) 

In the above expression, ρ is the density, u, v, and w are the Cartesian velocity components, and 

E is the specific total energy defined by  

 g =
+

h h − 1 i8
, +

1

2
d, + e, + f,  (B.4) 

where, T is the temperature, γ is the ratio of specific heats, and M∞ is the freestream Mach 

number (M∞ = U∞/a∞, where U∞ and a∞ are the freestream velocity and speed of sound, 

respectively).  The transformation Jacobian is J, where J = ∂(ξ, η, ζ, τ)/ ∂(x, y, z, t).   

The inviscid fluxes (]̂ , _^, & ^̀,) are defined by  

 

]̂ =
1

\

cj
cdj + Skl
cej + Sml
cfj + Snl

cg + l j − SNl

_^ =
1

\

co
cdo + Xkl
ceo + Xml
cfo + Xnl

cg + l o − XNl

^̀ =
1

\

cp
cdp + Ykl
cep + Yml
cfp + Ynl

cg + l p − YNl

 (B.5) 
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The subscripts x, y, and z denote a partial derivative.  The directional contravariant velocities 

produced by the coordinate transformation, U, V, and W, in equation (B.5) are 

 
j = SN + Skd + Sme + Snf
o = XN + Xkd + Xme + Xnf
p = YN + Ykd + Yme + Ynf

 (B.6) 

For simplicity, indicial notation is used to represent the Cartesian coordinates and 

velocities, as well as the curvilinear coordinates, as follows 

 
T#, T,, T0 = T, V, W
d#, d,, d0 = d, e, f
S#, S,, S0 = S, X, Y

 (B.7) 

Using this indicial notation, repeated indices i, j, k, and l refer to summations while qrs is the 

Kronecker delta function.  The viscous fluxes, ]b, _b, and `b, in indicial notation are given by 

 ]b =
1

\

0
SkuRr#
SkuRr,
SkuRr0

Sku dsRrs − Φr

; _b =
1

\

0
XkuRr#
XkuRr,
XkuRr0

Xku dsRrs − Φr

; `b =
1

\

0
YkuRr#
YkuRr,
YkuRr0

Yku dsRrs − Φr

 (B.8) 

The shear stress components τij are defined by equation (B.9) upon implementing Stoke’s 

hypothesis for bulk viscosity (i.e., λ = -2/3µ). 

 Rrs = x
ZSy
ZTs

Zdr
ZSy

+
ZSy
ZTr

Zds
ZSy

−
2

3
qrs

ZS{
ZTs

Zdy
ZS{

 (B.9) 

In addition, the heat flux tensor (Φi) is 

 Φr = −
1

h − 1 i8
,

x

|}

ZSs
ZTr

Z+

ZSs
 (B.10) 
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In the above expression, µ is the dynamic viscosity while Pr is a constant Prandtl number 

(Pr = 0.72 for air).  In order to close the set of equations, the Ideal Gas Law (equation (B.11)) 

and Sutherland’s law for viscosity (equation (B.12), where Sc = 0.38 for air) are used.  All flow 

variables are normalized by their freestream value, except pressure which is normalized by twice 

the dynamic pressure (i.e., ρ∞U∞
2).  The length scale is the chord length, c, and the physical time 

has been normalized by U∞/c. 

 l =
c+

hi8
,  (B.11) 

 x = +0/,
1 + *�
+ + *�

 (B.12) 

Although these equations correspond to the three-dimensional Navier-Stokes equations, 

only the limiting case of two-dimensional flow is considered due to prohibitiveness of three-

dimensional computations given the very large parameter space considered in this work.  

However, the assumption of two-dimensional flow is supported by experiments (Koochesfahani, 

1989).   

B.2. Treatment of Metric Identities 

By putting the transformed Navier-Stokes equations back into strong conservative form, 

four metric identities related to the surface and volume of cells are invoked.  The surface 

conservation identities are  
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Ä# =
Sk
\ Å

+
Xk
\ Ç

+
Yk
\ É

Ä# =
Sk
\ Å

+
Xm
\ Ç

+
Ym
\ É

Ä0 =
Sn
\ Å

+
Xn
\ Ç

+
Yn
\ É

 (B.13) 

while the volume conservation identity, known as the geometric conservation law (GCL; 

Thomas and Lombard, 1979), is 

 ÄA =
1

\ Ñ

+
SÑ
\ Å

+
XÑ
\ Ç

+
YÑ
\ É

 (B.14) 

These relationships constitute a differential statement of surface and volume conservation for a 

closed cell (Visbal and Gaitonde, 2002).  Only identities I1-I3 are applicable when the 

computational domain is time-invariant.  These identities must be properly treated in order to 

satisfy freestream preservation for the numerically discretized, transformed governing equations.  

Although methods proposed by Pulliam and Steger (1978) and Vinokur (1989) are 

effective in two-dimensional flows using low-order explicit schemes, they cannot be extended to 

high-order explicit or compact schemes in their present form.  An alternative method for 

enforcing the metric identities was given by Thomas and Lombard (1979).  This procedure 

involves rewriting the metric relations into their respective conservative form before spatial 

discretization, given by 
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Sk = \ VÇW É
− VÉW Ç

Sm = \ VÇT É
− VÉT Ç

Sn = \ TÇV É
− TÉV Ç

Xk = \ VÉW Å
− VÅW É

Xm = \ WÉT Å
− WÅT É

Xn = \ TÉV Å
− TÅV É

Yk = \ VÅW Ç
− VÇW Å

Ym = \ WÅT Ç
− WÇT Å

Yn = \ TÅV Ç
− TÇV Å

 (B.15) 

It has been shown by Visbal and Gaitonde (2002) that using the conservative form of the metric 

identities satisfies both freestream preservation and metric cancellation on general three-

dimensional, curvilinear meshes using both low- and high-order discretization schemes.   

In order to numerically satisfy the GCL, Visbal and Gaitonde (2002) split the time-

derivative term from equation (B.2) using the chain rule. 

 
Z

ZR

[

\
=
1

\

Z[

ZR
+ [

Z

ZR

1

\
 (B.16) 

The first term is the inverse transformation Jacobian (J-1) and is evaluated using the 

instantaneous grid coordinates while the second term requires special treatment.  Rather than 

computing the time derivative of the inverse Jacobian at various time-levels, the GCL is directly 

invoked as 

 
1

\ Ñ

= −
SÑ
\ Å

+
XÑ
\ Ç

+
YÑ
\ É

 (B.17) 
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where the time-dependent metric terms, ξτ, ητ, & ζτ, are 

 

SÑ
\
= − TÑ

Sk
\

+ VÑ
Sm
\

+ WÑ
Sn
\

XÑ
\
= − TÑ

Xk
\

+ VÑ
Xm
\

+ WÑ
Xn
\

YÑ
\
= − TÑ

Yk
\

+ VÑ
Ym
\

+ WÑ
Yn
\

 (B.18) 

In the above expressions, xτ, yτ, and zτ are the grid speeds that can be determined either 

analytically or numerically.  Visbal and Gaitonde (2002) showed that using analytical grid 

speeds provides effective metric cancellation and freestream preservation.  The spatial 

derivatives of the time-dependent metrics are computed using the high-order compact difference 

scheme while the second term in (B.16) is moved to the right-hand side of the time-marching 

algorithm, found in the next section.   

B.3. Time-Marching 

B.3.1: Beam-Warming Method 

Time accurate solutions of equation (B.2) are obtained numerically using the linearized, 

approximately factored integration scheme developed by Beam and Warming (1978).   Consider 

the three-dimensional Euler equations in a Cartesian coordinate system, where the flux terms, ], 

_, and `, are functions of the solution vector [. 

 Z[

Z$
=
Z]̂ [

ZT
+
Z_^ [

ZV
+
Z ^̀ [

ZW
 (B.19) 

Beam and Warming (1978) showed that the solution vector could be advanced in time by 
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∆[3 =
∆$

1 + =

Z

Z$
∆[3 +

∆$

1 + =

Z

Z$
[3 +

=

1 + =
∆[3@#

+ Ü
1

2
+ = ∆$, + ∆$0 = a 

(B.20) 

The solution vector is in “delta” form, where [3 = [ 6Δ$  and Δ[ = [3à# − [3.  The 

current time-level is n+1 and the two previous time-levels are n and n-1.  The time-step is Δt 

while the constants θ1 and θ2 set the order of accuracy. Various explicit and implicit time 

integration methods can be recovered through proper selection of θ1 and θ2.  The Euler, first-

order implicit scheme is obtained from θ = 0.0 and θ = 0.5 produces the three-point backward, 

second-order implicit scheme.   

B.3.2. Beam-Warming Method: Linearization and Approximate Factorization 

To improve the solution efficiency of the algorithm, Beam and Warming (1978) 

linearized and approximately factored equation (B.20); the outcome is presented in equation 

(B.21).  

 Ä +
∆$

1 + =

Z

ZT
â^ Ä +

∆$

1 + =

Z

ZV
ä^ Ä +

∆$

1 + =

Z

ZW
ã^ ∆[3 = a (B.21) 

The terms AI, BI, and CI are the inviscid flux Jacobians in Cartesian coordinates (refer to Beam 

and Warming, 1978, or Anderson, et al., 1984 for further details) and I represents the identity 

matrix.  Equation (B.21) allows for the inversion of three one-dimensional block tridiagonal 

matrices instead of a single, three-dimensional matrix, which is more efficient to solve.  The 

inversion process then involves three one-dimensional sweeps, as shown in equation (B.22).  In 

this expression, Δ[#3and Δ[,3 represent intermediate steps in the inversion process.   
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Ä +
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ZT
â^ ∆[3

,
= a

Ä +
∆$

1 + =

Z

ZV
ä^ ∆[3

,
= ∆[3

#

Ä +
∆$

1 + =

Z

ZW
ã^ ∆[3

#
= ∆[3

<

∆[3 = ∆[3
<

 (B.22) 

However, since the inversion process involves the inversion of block matrices, it is still rather 

cumbersome.  Therefore, it is still desirable to improve the efficiency of the algorithm.  

B.3.3. Diagonalization by Pulliam and Chaussee (1981) 

To further improve computational efficiency of the Beam-Warming method for 

application to the Navier-Stokes equations written in general, curvilinear coordinates, Pulliam 

and Chaussee (1981) introduced a method of diagonalizing the Beam-Warming method by using 

the eigensystem of the inviscid flux Jacobians.   

 
â^ = +Åå^,Å+Å

@#

ä^ = +Çå^,Ç+Ç
@#

ã^ = +Éå^,É+É
@#

 (B.23) 

I In the above expression, å^,Å  å^,Ç, and å^,É  denote the diagonal vector of eigenvalues in AI, BI, 

and CI and +Å , +Ç, +É , +Å
@#, +Ç@#, and +É@# are matrices whose columns are the eigenvectors of AI, 

BI, and CI.  By assuming that the matrices +Å , +Ç, +É , +Å
@#, +Ç@#, and +É@# are locally constant, 

they may be taken out of the difference operators in equation (B.21).  Implementing this 

diagonalization procedure in equation (B.22) yields 
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 (B.24) 

The diagonalization leads to an uncoupling of the block tridiagonal system into a system of five 

independent, scalar tridiagonal equations that are solved simultaneously.  This system of 

equations may be solved using three one-dimensional sweeps, as detailed by equation (B.25).   

 

Ä +
∆$

1 + =

Z

ZT
å^,Å +Å

@# ∆[3
,
= +Å

@#a

Ä +
∆$

1 + =

Z

ZV
å^,Ç +Ç

@# ∆[3
#
= +Ç

@#+Å ∆[3
,

Ä +
∆$

1 + =

Z

ZW
å^,É +É

@# ∆[3
<
= +É

@#+Ç ∆[3
#

∆[3 = +É ∆[
3

<

 (B.25) 

By replacing the block tridiagonal matrix inversions of the Beam-Warming method with scalar 

tridiagonal matrix inversions, the computational efficiency is dramatically increased.    

The diagonalization process, however, is valid only for the Euler equations since the 

viscous flux Jacobian is not simultaneously diagonalizable with the inviscid flux Jacobian 

(Pulliam, 1985).  In order to simulate the full Navier-Stokes equations, the viscous terms must be 

included in some fashion.  Pulliam (1985) discussed different options for including the viscous 

terms in the diagonalized Beam-Warming method.  The recommended option is to include a 

diagonal term that is an estimation of the viscous flux Jacobian eigenvalues in the implicit 

operator.  These estimations (åb,Å , åb,Ç, and åb,Å) are given by equation (B.26), where D is a 

diagonal operator.   
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,

 (B.26) 

The estimation of the viscous flux Jacobian only has to be an approximation of the explicit right-

hand-side as long as the solution is converged with subiterations.   

In order to enhance the overall stability of the numerical scheme, high-order dissipation terms 

(Jameson, et al., 1981; Pulliam, 1986) are appended to the implicit operator as follows. The 

dissipation terms are added to the diagonalized implicit operator in each of coordinate direction 

and leads to a pentadiagonal system of scalar equations, which is less computationally expensive 

than the original block tridiagonal system.     

B.3.4. Final Time-Marching Expression 

 
The final time-marching algorithm written in “delta” form is given by equation (B.27).  

The time-marching algorithm is supplemented by Newton-like subiterations to maintain second-

order accuracy while reducing errors caused by the linearization, approximation factorization, 

and diagonalization, and explicit implementation of physical boundary conditions (Visbal, et al., 

2003).  Typically, three subiterations are used (Visbal and Rizzetta, 2002; Visbal and Gaitonde, 

2002; Visbal, et al., 2003).  
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 (B.27) 

In equation (B.27), ΔR is the time-step size, p denotes subiteration step, and Δ[ =

[éà# − [é, where [éà# corresponds to the p + 1 approximation of the n + 1 time level and p 

denotes the subiteration level within the current time-step.  In the first subiteration, p = 1 

corresponds to [3.  As p → ∞, [é→[3à#.  The inviscid flux Jacobians are Z]̂ /Z[, Z_^/Z[, 

and Z ^̀/Z[ while Z]b/Z[, Z_b/Z[, and Z`b/Z[ are the viscous flux Jacobians.  First-order 

Euler-implicit and second-order three-point backward schemes result when θ = 0.0 and θ = 0.5, 

respectively.   

The δ operator on the left- and right-hand-side of the equation represents spatial 

derivatives computed using finite difference schemes in the direction of the subscript (i.e., ξ, η, 

and ζ) of the indicated order of accuracy, denoted by the number in the superscript.  For 

example, qÅ
,  denotes second-order central difference scheme in the ξ direction while qÅ

C  is the 

sixth-order compact scheme in the same direction.  Since the solution is converged with 

subiterations, the lower order of accuracy on the implicit side does not impact the final solution 

(Garmann, 2013).    
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Not shown are second- and fourth-order, nonlinear artificial dissipation terms (Jameson, 

et al., 1981; Pulliam, 1986) that are appended to the implicit, left-hand-side for enhancing 

stability.  This results in a scalar, pentadiagonal system of equations that is more computationally 

expensive than solving a scalar tridiagonal system of equations but dramatically less expensive 

than solving the original block tridiagonal system.  The use of subiterations eliminates the impact 

of the dissipation terms on the final solution, and thus can be chosen specifically for stability 

(Visbal and Gaitonde, 2002).  The implementation of this time-marching method has been 

successfully applied to a variety of flows (e.g. Visbal and Rizzetta, 2002; Visbal and Gaitonde, 

2002; Visbal, et al., 2003; Rizzetta, et al., 2008).  The second-order time marching scheme is 

used for this research. 

B.4. Spatial Discretization 

As previously mentioned, the spatial derivatives on the explicit side of the time-marching 

method are computed with a high-order, compact finite difference scheme, first described by 

Lele (1992) to obtain spectral-like resolution.  For simplicity, the description of the compact 

difference scheme will be restricted to a one-dimensional mesh of N number of points with 

uniform grid spacing h (illustrated in Figure B.1).  

 
Figure B.1.  Notation for the interior and boundary points of a 1-D mesh. 

For a discrete function known at any location (i.e., conservative variable, primitive 

variable, metric, etc.), ϕi = ϕ(xi) where Tr ∈ 1, ê , the finite difference approximation of ϕi can 

be determined up to sixth-order accuracy using a five point interior stencil (i.e., i-2 thru i+2 in 

the above figure).  Special treatment is required for computing the spatial derivatives at the 
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boundary points.  Note that a coordinate transformation must be used to remap physical, 

curvilinear coordinates to the computational, rectangular coordinates for calculating the spatial 

derivatives.  The following discussion will describe interior schemes in more detail.  

B.4.1. Interior Points 

 For the interior points (shown in Figure B.2), the finite difference approximation of 

variable ϕ at point i can be expressed as a linear combination of the functional values of ϕ at 

point i and the surrounding points.   

 
Figure B.2.  Notation for the interior point stencil of a 1-D mesh. 

For a five-point stencil, this combination is represented by (B.28)  

 ëír@#
ì + ír

ì + ëírà#
ì = 1

írà# − ír@#
2ℎ

+ 7
írà, − ír@,

4ℎ
 (B.28) 

where ϕ’ is the derivative of the points and the coefficients a, b, and ψ define the order of 

accuracy of the compact scheme.  In order to obtain the values of the coefficients, Taylor series 

expansions for all functional values and their derivatives about point i are first determined, 

shown in equations (B.29)-(B.31) in compact notation form.   
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Next, these Taylor series expansions are directly plugged into equation (B.28), leading to the 

following after simplification 

 ír
ì + 2ë

ℎ,3

26 + 1 !
ír
,3à#

8

39<

= 1 + 2,37
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ír
,3à#
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 (B.32) 

By setting terms of the appropriate order to zero, the following three equations are produced for 

determining a, b, and ψ: 

 

 

Ü ℎ, : 1 − 1 + 2ë − 7 = 0
Ü ℎA :−1 + 6ë − 47 = 0
Ü ℎC :−1 + 10ë − 167 = 0

 (B.33) 

Solutions to these three equations lead to a family of both explicit (ψ = 0) and compact (ψ 

≠ 0).  By setting ψ = 0, the left-hand side of (B.32) is decoupled, which results in an explicit 

derivative at point i.  Explicit schemes are one order of accuracy lower than the stencil size.  

When ψ ≠ 0, the derivative at point i is coupled with the derivatives at points i+1 and i–1 and 

requires the solving of an implicit tridiagonal system.  By setting b = 0 and b ≠ 0, fourth-order 

and sixth-order compact schemes can be obtained, respectively.  Thus, the compact schemes are 
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one order of accuracy higher than the stencil size.  A compilation of these coefficients and their 

accompanying finite difference schemes can be found in Table B.1, where “E” and “C” denote 

explicit and compact schemes, respectively, and the number defines the order of accuracy.   

Table B.1.  Coefficients for the interior finite difference schemes. 
Scheme ψ a b Stencil 

E2 0 1 0 3 points 
E4 0 4/3 -1/3 5 points 
C4 1/4 3/2 0 3 points 
C6 1/3 14/9 1/9 5 points 

 

In order to quantify the resolution capability of the compact and explicit schemes, a 

wavenumber analysis is performed.  Assuming ϕ(x) is periodic over the domain [0, L], the 

function can be written as a Fourier series,  

 í T = íy exp
2)õúT

ù

û/,

y9@û/,

 (B.34) 

In the above equation, T ∈ [0, ù], õ = −1, k is the physical wave number, íy is the Fourier 

coefficient.  For convenience, a scaled wavenumber (ω = 2πkh/L) and coordinate (s = x/h) are 

introduced.  With this transformation, (B.34) can be rewritten as (B.35).  

 í ° = íy exp õ¢°

û/,

y9@û/,

 (B.35) 

Taking the derivative of (B.35) results in  

 íì ° = õ¢íy exp õ¢°

û/,

y9@û/,

= õ¢í °  (B.36) 



 181 

If a finite difference approximation is made for the exact derivative, it is assumed a modified 

wavenumber (¢ì) will result in the following relationship between the modified wavenumber 

and the original Fourier coefficients as 

 íy £§
= õ¢íy (B.37) 

 

 

In order to obtain a relationship between the modified wavenumber and the coefficients 

of the compact scheme, the Fourier expansion using the scaled coordinates, and its derivative, 

are inserted into equation (B.28).  Through algebraic manipulation, the modified wavenumber 

can be related to scaled wavenumber and the compact scheme coefficients by   

 ¢ì =
1	sin ¢ + 7/2	sin 2¢

1 + 2ë cos ¢
 (B.38) 

A comparison between the modified wavenumber and the scaled wavenumber gives a 

means of quantifying the resolving capabilities of the finite difference approximations with 

respect to exact differentiation.  The modified wavenumber for various finite difference schemes 

plotted against the scaled wavenumber is given in Figure B.3.  As seen in the figure, the compact 

schemes (dashed lines) exceed the resolution capability of the explicit schemes (dashed-dotted 

lines).   Wavenumbers in which the modified wavenumber deviates from the exact differentiation 

are under-resolved and can lead to errors.   
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Figure B.3.  Modified wavenumber versus scaled wavenumber for different finite difference 

schemes. 

It is worth noting that in the original formulation by Lele (1992), eighth- and tenth-order 

accurate compact schemes can be obtained with a seven-point stencil.  However, these two 

higher-order compact schemes require the solution of a pentadiagonal system.  The overall 

resolving efficiency increases from 63% for the sixth-order compact scheme to 70% and 73% for 

eighth- and tenth-order schemes, respectively.  Thus, from a computational standpoint, one must 

make trade-off between increased accuracy and decreased efficiency.  According to Garmann 

(2013), the sixth-order compact scheme offers an attractive balance between accuracy and 

computational cost.   

B.4.2. Boundary Points 

As previously mentioned, special care must be taken when computing the spatial 

derivatives at the boundary points due to the lack of a centered stencil (Gaitonde and Visbal, 

1998).  In order to maintain the tridiagonal system of the interior compact scheme, special one-

sided equations must be used at the boundary points.  For point i = 1 and 2, the formulas are 
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given by equations (B.39) and (B.40), respectively.  In equation (B.45), the coefficients are set to 

be symmetric about point 2 (i.e., ψ21 = ψ22 ≠ 0).   

 í#
ì + ë#í,

ì =
1

ℎ
1#í# + 7#í, + •#í0 + :#íA + H#íB + ¶#íC + E#íß  (B.39) 

 

ë,#í#
ì + í,

ì + ë,#í0
ì

=
1

ℎ
1,í# + 7,í, + •,í0 + :,íA + H,íB + ¶,íC + E,íß  

(B.40) 

A Taylor series expansion is done about points 1 and 2 and coefficients of like-order terms are 

matched in a similar way as done for the interior scheme.  This produces a series of equations 

whose solution yields the coefficients for various order of accuracy.  A summary of the 

coefficients for point 1 and 2 are given in Tables B.2 and B.3, respectively.  Note that f2 and g2 

are zero. 

Table B.2.  Coefficients for boundary point 1. 
Scheme ψ1 a1 b1 c1 d1 e1 Stencil 

C2 1 -2 -2 0 0 0 2 points 
C3 2 -5/2 2 1/2 0 0 3 points 
C4 3 -17/6 3/2 3/2 -1/5 0 4 points 

 
Table B.3.  Coefficients for boundary point 2. 

Scheme ψ21 ψ22 a2 b2 c2 d2 e2 Stencil 
AC4 1/4 1/4 -3/4 0 3/4 0 0 2 points 
AC5 3/14 3/14 -19/28 -5/42 6/7 -1/14 1/84 3 points 

 

B.5. Spatial Filtering 

Spatial accuracy was discussed in the previous section.  An equally necessary issue to 

address is solution stability.  Since the high-order compact finite difference scheme is based on a 

centered stencil and thus non-dissipative, it is susceptible to numerical instabilities due to the 

growth of unstable frequency modes (Gaitonde and Visbal, 2000) that originate from mesh non-
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uniformity, boundary condition approximations, and non-linear flow features.  In this work, a 

high-order low-pass Padé-type filter, developed by Gaitonde, et al. (1999) provides dissipation at 

high wavenumbers only where the spatial discretization already exhibits significant dispersion 

errors.  The filter is applied to the conservative variables during each subiteration or time-step.  

Since the filter is highly discriminating, it only dampens the poorly evolved high-frequency 

content of the solution (Gaitonde and Visbal, 1999; Gaitonde and Visbal, 2000; Visbal and 

Rizzetta, 2002; Visbal, et al., 2003).   

The high-order filter is one-dimensional and is applied sequentially one direction at a 

time.   Before filtering a subsequent direction, the solution is updated with the filtered values.  To 

minimize potential bias, this sequence is alternated between various permutations (Visbal and 

Gaitonde, 1999).  The filtering sequence alternates once per time-step; thus the same sequence is 

applied after each subiteration of a specific time-step.  Next, the interior filter will be discussed 

in greater detail, with a brief description of the boundary filter.   

B.5.1. Interior Points 

 The high-order filter is derived in a similar way as the high-order compact scheme and is 

based on templates presented by Lele (1992) and Alpert (1981).  The filtered values í of the 

variable í are obtained by solving the following tridiagonal system of equations   

 ë®ír@# + ír + ë®írà# =
1©
2

írà© − ír@©

û

©9<

 (B.41) 

In the above expression, ë® is a free parameter that adjusts the amount of filtering.  A 2N-order 

filter is obtained from a stencil consisting of 2N+1 interior points.  The coefficients in (B.41) are 
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found matching Taylor coefficients.  The Taylor series expansions of the terms on the left- and 

right-hand sides of equation (B.41) become equations (B.42) and (B.43), respectively. 

 ë®ír@# + ír + ë®írà# = ír + ë®
ℎ,3

26 !
ír
3

û

39<

 (B.42) 

 
1©
2

írà© − ír@©

û

©9<

=
™ℎ ,3

26 !
ír
,3

û

39<

 (B.43) 

Matching Taylor series coefficients then produces the following relation 

 0,3 + ë® = ™,31©

û

39<

 (B.44) 

The resulting filter is thus non-dispersive, causing no wavenumbers to be amplified.  If ψf 

is left as a free parameter, then there exist N+1 equations with N+2 unknowns (i.e., ao, a1, a2, 

…an).  In order to close the set of equations to solve for the filter coefficients, a Fourier analysis 

similar to that done for the compact scheme is performed.  The functional value and its 

corresponding filtered value have Fourier expansions, given in equations (B.45) and (B.46), 

respectively, where the scaled wavenumber is used. 

 í ° = íy exp õ¢°

û/,

y9@û/,

 (B.45) 

 í ° = íy exp õ¢°

û/,

y9@û/,

 (B.46) 
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Where are íy and íy are the Fourier coefficients of the unfiltered and filtered variables.  The 

spectral function of the filter equation is then determined substituting these expressions into 

equation (B.41), centering about ° = 0, and performing algebraic manipulation.  This results in 

 *] ¢ =
íy
íy

=
1© cos ™¢

û
©9<

1 + 2ë® cos ¢
 (B.47) 

In order to close the set of equations, the highest frequency mode (SF(π)) is set to zero, thus 

producing 

 *] ) = −1 ©1©

û

©9<

= 0 (B.48) 

Thus, the filter coefficients can be solved with the following system of equations (B.49).  

 

 

*] ) = 0: 0 = 1< − 1# + 1, − 10 + 1A − 1B
Ü ℎ, : 1 + 2ë® = 1< + 1# + 1, + 10 + 1A + 1B

Ü ℎA : 2ë® = 1< + 1# + 2
,1, + 3

,10 + 4
,1A + 5

,1B
Ü ℎC : 2ë® = 1< + 1# + 2

A1, + 3
A10 + 4

A1A + 5
A1B

Ü ℎ¨ : 2ë® = 1< + 1# + 2
C1, + 3

C10 + 4
C1A + 5

C1B
Ü ℎ#< : 2ë® = 1< + 1# + 2

¨1, + 3
¨10 + 4

¨1A + 5
¨1B

 (B.49) 

Up to tenth-order accurate filter (N = 5) can be obtained with an eleven-point stencil.  A 

summary of the coefficient values for various orders of accuracy is presented in Table B.4.  
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Table B.4.  Interior point filter coefficients. 
Scheme ao a1 a2 a3 a4 a5 Stencil 

F2 
1 + 2$%

2  
1 + 2$%

2  0 0 0 0 3 
points 

F4 
5 + 6$%

8  
1 + 2$%

2  
−1 + 2$%

8  0 0 0 5 
points 

F6 
11 + 10$%

16  
15 + 34$%

32  
−1 + 2$%

8  
1 − 2$%
32  0 0 7 

points 

F8 
93 + 70$%

128  
7 + 18$%

16  
−1 + 2$%

16  
1 − 2$%
16  

−1 + 2$%
128  0 9 

points 

F10 
193 + 126$%

256  
105 + 302$%

256  
−1 + 2$%

64  
−45 + 90$%

512  
−5 + 10$%

256  
−1 + 2$%
512  

11 
points 
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The above analysis requires that −0.5 ≤ &' ≤ 0.5 in order for the spectral function to 

range from 0 (completely filtered) to 1 (unfiltered).  A special case occurs for &' = 0.0, where 

explicit filtering is produced due to the left-hand-side of equation (2.46) being decoupled from 

the right-hand-side.  The impact of filter order and decreasing &' can be seen in Figure B.4, 

where the black line represents no filter being applied to ).  The greater the deviation from the 

black line, the greater the attenuation.  By increasing the order of accuracy, the filter becomes 

more discriminating in wavenumbers being attenuated.  By decreasing the free parameter 

towards -0.5, the filter increasingly attenuates lower frequencies. 

 
Figure B.4.  Effect of filter order (left) and &' (right) on filter characteristics. 

It is important to remember that the filter is only supposed to eliminate wavenumbers 

unresolved by the compact scheme.  Thus, it is necessary that the selection of the filter be such 

that the resolved wavenumbers by the compact scheme remain unfiltered.  An example of this is 

presented in Figure B.5, where the compact scheme and filter are sixth- and eighth-order, 

respectively.  When the compact scheme (dashed-blue line) begins deviating from the exact 

derivative (solid-blue line), the wavenumbers become unresolved.  To ensure these resolved 
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wavenumbers remain unfiltered, the filter is set to be two-orders of accuracy higher than the 

compact scheme.  This spatial filter (F8/&' = 0.40) is used in the current simulations. 

 

Figure B.5.  Resolution comparison between the compact scheme C6 and filter F8 (&' = 0.400). 

B.5.2. Boundary Points 

 Since the interior filter requires a large stencil (2N+1 points), special treatment is required 

at the boundaries where the interior stencil would extend beyond the boundaries.  For example, 

for an F8 filtering scheme, a nine-point stencil would not be able to properly span points 1 to 4 

and points N-3 to N.  In order to address this issue, two approaches have been developed.   

 The first approach, presented by Gaitonde and Visbal (2000), is to use one-sided filter 

formulas to maintain the tridiagonal nature of the filter scheme.  However, the spectral function 

of the one-sided filter formula will become complex when 0 < &' < 0.5.  This could undesirably 

introduce artificial dispersion, where the real component of the spectral function exceeds unity 

over a range of wavenumbers and, thus, amplifying them (see Figure B.6).  As &' approaches 
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0.5, the imaginary component and the amount of excess over unity decreases.  This amplification 

increases with filter order of accuracy and &'.  The second approach is using a lower order 

central filter and higher value for &' to produce spectral characteristics similar to the higher 

order interior point filters (see Figure B.7).  At points very close to the boundary, one-sided 

formulas are still required using the second approach.  Regardless of approach, however, no 

filtering is applied at the boundary points 1 and N since the values at these points are determined 

from the boundary conditions. 

 

Figure B.6.  Spectral filter response for the one-sided boundary point 2 formula for various filter 
orders and &'. 
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Figure B.7.  Spectral filter response for boundary point 2 for a one-sided filter (F4) and centered 

filter (F8) with similar spectral characteristics. 

For the current work, the order of the filter was reduced from eighth-order to fourth-order 

towards the boundary to maintain a centered stencil while the filter parameter &' increased 

towards 0.5.  Point 2 used a one-sided filter.  The coefficients and filter order are summarized in 

Table B.5.  Similar filtering schemes were adopted by Garmann (2011), Galbraith (2011), and 

Garmann (2013).   

Table B.5.  Filter scheme utilized in current work. 
Coordinate  Pt. 2, N-1 Pt. 3, N-2 Pt. 4, N-3 Pt. 5, N-4 

ξ Filter 
ψf 

F4 
0.450 

F4 
0.400 

F6 
0.400 

F8 
0.400 

η Filter 
ψf 

F4 
0.450 

F4 
0.400 

F6 
0.400 

F8 
0.400 

ζ Filter 
ψf 

F4 
0.450 

F4 
0.400 

F6 
0.400 

F8 
0.400 
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B.6:  Grid Connectivity and High-Order Interpolation 

Although structured meshes are very useful in their suitability with high-order compact 

schemes and filters due to their larger required stencils and tridiagonal nature, single structured 

meshes are often insufficient when investigations are done on complicated geometries or where 

additional resolution is desired in specific regions.  In addition, structured meshes often 

inadvertently cluster grid points in regions of less interest, resulting in undesirable computational 

overhead.   To remedy this situation, multiple grids comprise the computational domain in an 

overset approach.  

Connectivity between the grids must be established in a pre-processing and is done using 

Pegasus 5 (Suhs, et al., 2002).  First, donor points and receiver points are identified.  Here, donor 

points are points in which data is interpolated from and receiver points are points in which data is 

interpolated to.  For a schematic of the interpolation, please refer to Figure B.8.   

 

Figure B.8.  Schematic of donors points (from Mesh 1) and receiver points (from Mesh 2). 

Next, it is necessary to establish the distance between the receiver point r and the base 

point of the donor stencil d in the computational space of the donor grid, termed the interpolation 

offsets (δ).  The interpolation offsets are then computed using an inverse isoparametric mapping 
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with eight donor points (two in each coordinate direction). Trilinear interpolation is performed 

between the donor cells and the receiver points during the solution process.  

The low-order interpolation coefficients are then made high-order using AFRL developed 

BELLERO (Sherer, et al., 2006).  It computes the high-order interpolation coefficient and offsets 

with the following procedure.  First, the donor point stencil obtained from Pegasus is expanded 

such that the number of points in each coordinate direction equals the desired interpolation order 

of accuracy (N).  The receiver point is made as centered as possible within the donor point stencil 

during the expansion process.  Next, the high-order offsets in each coordinate direction are 

obtained by solving the following set of isoparametric mapping equations (equation (B.50)) 

based on the expanded stencil.   

 + ,-, ,/, 0 = 12
314

516
7

89:

6;<

	,- − ,/ = 0

89:

4;<

89:

2;<

 (B.509) 

In the above expression, 17 , 15, and 13  are the high-order interpolation coefficients in each 

direction as a function of the interpolation offset 0 while ,- and ,/are the physical (x, y, z)-

coordinate locations for the donor and receiver points, respectively.  The high-order offsets are 

solved iteratively using Newton’s method as  

 0>?: = 0> +
A+
A0

9:

∙ + ,-, ,/, 0  (B.51) 

The initial guess for 0 is the second-order offset calculated from Pegasus 5.  The final step is the 

calculation of the interpolation coefficients using the expression 
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Finally, the interpolated flow variable at the receiver point r is calculated from  
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where )/ is the interpolated scalar at the receiver point, )- is the value from the donor point, and 

the indices Id, Jd, and Kd represent the location of the base donor point in computational space 

(Sherer and Visbal 2007).  Sixth-order interpolation is used in the present work. 

B.7:  Solver Parallelization 

 Although computational resources have advanced very rapidly within the last decade, 

high-order calculations on grids consisting of hundreds of thousands to several million grid 

points over tens and hundreds of thousands of time-steps and subiterations continues to be very 

computationally expensive.  In order to increase computational efficiency, the calculations of the 

discretized Navier-Stokes equations are parallelized such that solutions are obtained through 

simultaneous calculations on multiple, independent processors (Morgan, et al., 2006).  This 

parallelization is accomplished by decomposing the computational domain of one or more grids 

into a series of smaller subdomains (or blocks), which assigned to different processors.  Since 

individual grids are decomposed into smaller, more manageable pieces, the exchange of 

information between blocks becomes critical to the solution process.   

In order to pass information between blocks, a finite-point overlap between blocks is 

necessary.  To illustrate this procedure, Figure B.9 gives a schematic of an example block 
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decomposition for a one-dimensional mesh.  Consider a single one-dimensional mesh being 

decomposed about point i.  Due to the five-point stencil of the compact scheme, each block 

requires a minimum five-point overlap for transferring information (Gaitonde and Visbal, 2000).  

This overlap consists of the point of interest and two fringe points (i.e., two points on either side 

of i; circles with dashed lines around them in Figure B.9).        

 

Figure B.9.  Illustration of block decomposition with five-point overlap. 

At every time-step, the equations are solved independently and simultaneously in each 

block.  Once the solution is computed in a given block, it shares data with adjacent blocks in the 

following way.  The values of the flow variables at points 1 and 2 on Block 2 are set to be equal 

to points N-4 and N-3, respectively, from Block 1.  Similarly, the values at points N-1 and N on 

Block 1 are set to the values of points 4 and 5, respectively, from Block 2.  Points 3 on Block 2 

and N-2 on Block 1, however, do not communicate directly.  Thus, the donor points (i.e., points 

N-4, N-3, 4, and 5) act as the boundary conditions for the receiver points (i.e., points 1, 2, N-1, 
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and N), thus ensuring a smooth transition of the overall flow solution across the different blocks 

of the computational domain while maintaining high-order accuracy.   

The synchronization process between block boundary updates is accomplished using a 

Message Passage Interface (MPI) library (MPI Forum, 2012).  For consistency, boundaries that 

rely on the physical boundary conditions are also updated immediately after the MPI 

synchronization.  Although the additional overlap points produce computational overhead, the 

parallelization is significantly more efficient than solving the equations in the original domain.  

Due to the usage of structured grids, this parallelization approach is easily extendable to higher 

domain dimensions.  In the present FDL3DI Navier-Stokes solver, two MPI and physical 

boundary condition updates are performed for each subiteration: once after the solution is 

updated from the time integration and once after the solution is filtered (Visbal and Gaitonde, 

2000).   

In order to optimize the efficiency of the solution, grid point decomposition should be as 

well balanced as possible across the various processors.  For the present studies, grid 

decomposition is performed using BELLERO (Sherer, et al., 2006).  The first step of the 

decomposition procedure is to determine how many blocks to generate and is done through an 

iterative procedure.  Next, various combinations of cuts are made in the blocks, also through an 

iterative procedure.  The combination that results in a minimum surface-to-volume ratio in order 

to minimize computational overhead is selected.  The third step is to then apply the “optimal” 

cuts to the individual grids.  The final step is to account for any blanking, as well as enforce the 

minimum stencils necessary for the spatial filter.  Once the computational domain is 

decomposed, the grid connectivity and appropriate boundary conditions are established for all 
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blocks.  For this work, the entire computational domain is decomposed into seventy-one blocks 

with a minimum of 100 points in the ξ- and η- directions. 
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APPENDIX C.  CONVERGENCE STUDIES 

C.1. Symmetric Pitching Convergence Studies 

 In order to test the fidelity of the solutions, grid resolution, subiteration, and time-step 

convergence were conducted for the extreme conditions of Re = 12,000, M∞ = 0.015, k ≈ 12.0 

and αo = 2°.  The grid was coarsened from 5 million grid points to 3.6 million (Medium Grid) 

and 2.5 million (Coarse Grid) with similar grid point distributions as the baseline grid, the time-

step was varied between 5x10-5 and 2.5x10-5, the number of subiterations was increased from 3 

to 9.  To present convergence, time histories of lift and instantaneous vorticity profiles measured 

one chord length from the trailing edge, at a phase of 0.625T, are shown in Figure C.1.  The 

choice over instantaneous profiles over average or r.m.s. is that the average and r.m.s. profiles 

are indistinguishable for investigating grid, time-step, and subiterations.  Instantaneous profiles 

provide a more stringent examination of solution convergence.   

 In general, there are no visual differences, nor great quantitative differences, between the 

lift histories for the three studies.  The peak and average values of lift and drag also showed 

negligible quantitative differences.  The effect of grid resolution on the vorticity profiles show 

the medium and fine grids produce nearly identical profiles while the coarse grid does show 

some agreement with the other two grids, but the fine and medium grids show much better 

agreement.   Both time-steps produce the same vorticity profile, showing time-step insensitivity 

for this case.  The number of subiterations show much more sensitivity.  Three subiterations do 

not produce a converged solution.  Five or more subiterations result in nearly identical profiles.  

At phases where there the maximum vorticity value of the profile is low (max(ωz(y))c/U∞  ~ 1), 

there is noticeable background noise in the profiles (Figure C.2).   Increasing the number of 
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subiterations reduces the background noise in the profiles.  Based on these data, the fine grid, 

seven subiterations and 5.0x10-5 time-step size were selected. 

 
Figure C.1.  Lift time histories (top) and instantaneous vorticity profiles (bottom) measured at 
x/c = 1.0 at τ/T = 0.625 illustrating solution convergence by grid resolution (left), number of 

subiterations (middle), and time-step size (right).  Flow conditions: Re = 12,000, M∞ = 0.015, k = 
11.9, and αo = 2°, and S = 50%. 

 
Figure C.2.  Instantaneous vorticity measured at x/c = 1.0 at τ/T = 0.25 illustrating solution 
convergence by grid resolution (left), number of subiterations (middle), and time-step size 

(right).  Flow conditions: Re = 12,000, M∞ = 0.015, k = 11.9, and αo = 2°, and S = 50%.  

To illustrate the effect of Mach number, three cases were considered: k = 6.68 and αo = 

2° (St = 0.11), k ≈ 12.0 and αo = 2° (St = 0.20), and k = 6.68 and αo = 6° (St = 0.33).  The Mach 

number varied between 0.005 to 0.100.  For reference, common values found in the literature are 
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0.050 (Young and Lai, 2004) and 0.100 (Visbal, 2009).  Note that the time-step was 5.0x10-5 for 

all Mach numbers, except for M∞ = 0.005, which had a time-step of 2.5x10-5 to remove 

significant background noise seen when the time-step was 5.0x10-5.  To present convergence, 

time histories of lift and r.m.s vorticity profiles measured one chord length from the trailing edge 

are shown in Figure C.3.  Note that r.m.s. profiles were selected instead of instantaneous profiles 

since slight variation in the vorticity shed from the trailing edge by Mach number results in slight 

differences in the wake structure that cannot readily be compared when using instantaneous 

profiles.  The r.m.s. profiles show the net effect on the wake structure.   

First, the lift histories are considered.  As the Mach number decreases, the peak lift in 

general decreases until it reasonably converged at M∞ = 0.005-0.025 for all three cases.  The 

phase of maximum and minimum lift also shifts towards the left until the lift histories are in 

phase at Mach numbers in the range 0.005-0.025.  Although the St = 0.33 case has a larger 

Strouhal number than the St = 0.20 case, it shows a similar trend in lift as the St = 0.11 case, 

illustrating that the Mach number becomes more pronounced as the reduced frequency increases 

as opposed to the amplitude increasing.  Similar observations were seen for the drag time 

histories and are not shown.  The r.m.s. vorticity profiles show that as the Mach number 

decreases, the maximum r.m.s. vorticity values decrease while the profile begin to collapse.   
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Figure C.3.  Lift time histories (top) and r.m.s vorticity profiles (bottom) measured at x/c = 1.0 

for different symmetric pitching cases illustrating solution convergence by Mach number. 

 The error due to decreasing Mach number was quantified using the RMSD of the lift and 

drag time histories, maximum and minimum values, and the RMSD of r.m.s. vorticity profiles.  

The error calculated as the root-mean-square difference in the lift and drag time histories was 

computed for successive Mach numbers, M∞,1 and M∞,2; M∞,1 is the lower of the two Mach 

numbers.  As the Mach number decreases to the range of 0.005-0.015, the error of the differences 

in the force histories decreases to or below 3%, as shown in Figure C.4.  The error in the 

maximum and minimum values of lift and drag is shown in Figure C.5, which decreases to or 

below 3% as the Mach number decreases to the range of 0.005-0.015.  As the Mach number 

decreases, the average drag values increase (see Table C.1).  The error of the average drag, not 

shown in the figure, dropped below approximately 4% as the Mach number decreases to the 

range 0.005-0.015.  However, it should be noted that the average drag values are small and may 

be susceptible to some numerical uncertainty due to stiffness in the equations as a result of the 

Mach number decreasing towards zero.  Quantitative convergence of the r.m.s. vorticity profiles 
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measured at different locations is shown in Figure C.6, which shows the error decreases to less 

than 1.0% of max(ωz,rms(y)/c/U∞) as the Mach number decreases to the range 0.005-0.015. 

 
Figure C.4.  Error percentage for lift and drag histories versus Mach number for sinusoidal 

pitching cases. 

 
Figure C.5.  Error percentage for lift and drag maximum and minimum values versus Mach 

number for sinusoidal pitching cases. 
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Table C.1.  Mach number effect on average thrust coefficient for different cases. 
M∞ St = 0.11 St = 0.20 St = 0.33 

0.005 0.01337 -0.04476 -0.2278 
0.015 0.01291 -0.04673 -0.2294 
0.025 0.01263 -0.04916 -0.2314 
0.050 0.0118 -0.05403 -0.2358 
0.075 0.01125 -0.04565 -0.2336 
0.100 0.01161 -0.01858 -0.2162 

 

 
Figure C.6.  Error percentage for r.m.s. vorticity profiles versus Mach number for sinusoidal 

pitching cases. 

 The behavior in the unsteady lift as the Mach number decreases Mach number can be 

seen in the pressure coefficient distribution around the airfoil at different phases, which are 

shown for k ≈ 12 in Figure C.7.  At each phase, Mach numbers in the range 0.005-0.025 produce 

very close pressure distributions, with slight quantitative differences.   Mach numbers in the 

range 0.050-0.100 show different values of pressure along the surface while there is a notable 

phase difference as the Mach number increases.  Thus, Mach numbers in the range 0.005-0.025 

are considered within the “incompressible limit.”  The selected Mach number for the symmetric 

pitching simulations was 0.015 to be remain as low as possible while not being as 

computationally expensive as 0.005. 
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Figure C.7.  Instantaneous surface pressure coefficient distributions for k ≈ 12 at four phases 

illustrating effect of Mach number. 

C.2. Asymmetric Pitching Convergence Studies 

 A similar exercise as done for the symmetric pitching was performed for the asymmetric 

trajectory.  The flow conditions were as follows: Re = 12,000, M∞ = 0.005, k = 6.68, αo = 2°, and 

S = 30%.  The grid was coarsened from 5 million grid points to 3.6 million (Medium Grid) and 

2.5 million (Coarse Grid) with similar grid point distributions, the time-step was varied between 

5x10-5 to 1.25x10-5, the number of subiterations was increased from 3 to 9.  To present 

convergence, time histories of lift and instantaneous vorticity profiles measured one chord length 

from the trailing edge, at a phase of 0.50T, are shown in Figure C.8. 

 In general, are were no visual differences, nor great quantitative differences, between the 

lift histories for the three studies.  The effect of grid resolution on the vorticity profiles shows the 

medium and fine grids produce nearly identical profiles while the coarse grid does show some 

general agreement with the other two grids.  However, the shape of the coarse grid profile result 

differs from the fine and medium grids in general.   Similar observations were also seen with 
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respect to time-step size.  The two smaller time-steps produce the same vorticity profile while the 

larger time-step shows general similarities but quantitative differences.  The number of 

subiterations showed much more sensitivity.  Three subiterations do not produce a converged 

solution, where as five or more subiterations produce the nearly identical profiles, with an 

increasing number of subiterations reducing the background noise in the profiles (Figure C.9).  

Based on these data, the fine grid, seven subiterations and 1.25x10-5 time-step size were selected. 

 
Figure C.8.  Lift time histories (top) and instantaneous vorticity profiles (bottom) measured at 

x/c = 1.0 at τ/T = 0.50 illustrating solution convergence by grid resolution (left), number of 
subiterations (middle), and time-step size (right).  Flow conditions: Re = 12,000, M∞ = 0.005, k = 

6.68, and αo = 2°, and S = 30%. 
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Figure C.9.  Instantaneous vorticity profiles measured at x/c = 1.0 at τ/T = 0.25 illustrating 

solution convergence by grid resolution (left), number of subiterations (middle), and time-step 
size (right).  Flow conditions: Re = 12,000, M∞ = 0.005, k = 6.68, and αo = 2°, and S = 30%. 

To illustrate the effect of Mach number, three cases were considered for k = 6.68: S = 

50%, 38%, and 30%.  The Mach number varied between 0.005 to 0.100.  To present 

convergence, time histories of lift and fluctuation vorticity profiles measured one chord length 

from the trailing edge are shown in Figure C.10.  First, the lift histories are considered.  As the 

Mach number decreases, the peak lift in general decreases until it reasonably converged at M∞ = 

0.005-0.025 for all three cases.  The phase of peak lift also shifted towards the left until the lift 

histories are in phase, also occurring around at Mach numbers in the range 0.005-0.025.  

However, the introduction shows a much greater sensitivity to the Mach number.  Just after the 

acceleration jump, there is a dynamic response that becomes “peakier” as the Mach number 

decreases.  The time-scale in which this inertial peak occurs decreases as the Mach number 

decreases.   
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Figure C.10.  Lift time histories (top) and fluctuation vorticity profiles (bottom) measured at x/c 
= 1.0 for different asymmetric pitching cases illustrating solution convergence by Mach number. 

Again, the error was quantified using the RMSD of the lift and drag time histories, 

maximum and minimum values, and the RMSD of r.m.s. vorticity profiles.  The error calculated 

as the root-mean-square difference in the lift and drag time histories was computed for 

successive Mach numbers, M∞,1 and M∞,2; M∞,1 is the lower of the two Mach numbers.  As the 

Mach number decreases to the range of 0.005-0.015, the error of the differences in the force 

histories decreases to or below 3%, as shown in Figure C.11.  The error in the maximum and 

minimum values of lift and drag is shown in Figure C.12, which decreases to or below 3% as the 

Mach number decreases to the range of 0.005-0.015.  As the Mach number decreases, the 

average lift decreases in magnitude while the average drag increases (see Table C.2 and C.3).  

The error of the average lift and drag, not shown in the figure, drops below approximately 3% as 

the Mach number decreased to the range 0.005-0.015, except for the drag at S = 30%.  However, 

the drag values are on the order of 10-3.  Quantitative convergence of the r.m.s. vorticity profiles 

measured at different locations is shown in Figure C.13, which shows the error decreases to less 

than 3.0% of max(ωz,rms(y)/c/U∞) as the Mach number decreases to the range 0.005-0.015. 
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Figure C.11.  Error percentage for lift and drag histories versus Mach number for sinusoidal 

pitching cases. 

 
Figure C.12.  Error percentage for lift and drag maximum and minimum values by Mach 

number for asymmetric pitching cases. 
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Table C.2.  Average lift coefficient for different asymmetries. 
M∞ S = 38% S = 30% 

0.005 -0.01950 -0.01633 
0.015 -0.02037 -0.01670 
0.025 -0.02155 -0.01972 
0.050 -0.02771 -0.02970 
0.075 -0.02919 N/A 
0.100 -0.02412 N/A 

 
Table C.3.  Average thrust coefficient for different asymmetries. 

M∞ S = 50% S = 38% S = 30% 
0.005 0.01337 0.01104 0.0064 
0.015 0.01291 0.01051 0.0057 
0.025 0.01263 0.01012 0.0051 
0.050 0.0118 0.00910 0.0038 
0.075 0.01125 0.00908 N/A 
0.100 0.01161 0.01030 N/A 

 

 
Figure C.13.  Error percentage for r.m.s. vorticity profiles versus Mach number for sinusoidal 

pitching cases. 
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APPENDIX D.  ADDITIONAL VALIDATION 

D.1. Additional Symmetric Pitching Validation 

Average and r.m.s. velocity profiles measured one chord downstream of the trailing edge 

from the current computations are compared with velocity profiles from experiments by Bohl 

and Koochesfahani (2009) in Figure D.1 at a reduced frequency of approximately 12.  The 

experimental profiles are shifted vertically so that the maximum u velocity is at y/c = 0.  Overall, 

the velocity profiles show good agreement.  The average and r.m.s. velocity maximum value 

between the computation and the experiment is extremely close, primarily in the average 

streamwise velocity.  Both the experiment and computation also produce three peaks in the urms 

profile, though the peaks produced by the CFD are slightly higher than those from the 

experiment.  There is slight discrepancy in the vrms profile, where the CFD shows a clear double 

peak while the profile from the experiment is relatively flat.  

 
Figure D.1.  Average u (left), r.m.s. u (middle), and r.m.s. v (right) profiles vs. y/c for Reynolds 
number of approximately 12,000 and 2° amplitude.  The reduced frequency is approximately 12.  
Data from Bohl and Koochesfahani (2009) is included for comparison.  Profiles are measured at 

x/c = 1.0 for both the computational and experimental results. 

A final validation test of the wake resolution for sinusoidal pitching was done by 

comparing the decay of peak vorticity with the theoretical prediction.  According to Cohn (1999) 
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and Bohl and Koochesfahani (2009), the decay of peak vorticity originates from two 

mechanisms: viscous diffusion and vortex stretching.  It can be shown that the peak vorticity 

decay of a single Gaussian vortex in incompressible, viscous flow is 

 NO,PQR2 =
NO,S

1 −
4TU
V

, − ,S
WX

 (D.1) 

where ωz,o is the initial condition of the peak vorticity at location xo, V is the vortex circulation, 

WX  is the vortex convection speed, and ν is the kinematic viscosity,.  The downstream decay of 

peak vorticity of the positive vortex for a reduced frequency of approximately 12 is presented in 

Figure D.2.   The decay of peak vorticity from the computation agree very well with theory.   

 
Figure D.2.  Comparison of the downstream decay of peak vorticity between computation and 
theory.  The initial condition location for the theory is highlighted by the yellow circle.  Flow 

conditions: Re = 12,000, M∞ = 0.015, k = 11.9, and αo = 2°, and S = 50%. 
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D.2. Additional Asymmetric Pitching Validation 

As shown in Chapter 2, there were quantitative differences in the velocity profiles 

between the experiment by Koochesfahani (1989) and the computational results for the 

asymmetrically pitching airfoil with S = 38%.  The differences in the profiles were a result of the 

properties of the vortices.  A comparison of the centroid location, circulation, core radius, and 

distance relative to the positive vortex (ΔxP-N, see Figure D.3) is provided in Tables D.1-D.3, 

where the experimental data was provided in Naguib, et al., 2011.  The data shows that P1 and 

N2 are comparable between the experiment (Koochesfahani, 1989; Naguib, et al., 2011) and 

computations.  The greatest discrepancy between the experiments and computations was with 

respect to vortex N1.   

Table D.1.  Vortex properties for P1 comparison between current computations and Naguib, et 
al., (2011) for k = 6.68 and S = 38%.   

Property Current Naguib, et al., (2011) 
yp -0.058 -0.066 

 Γ/cU∞ 0.223 0.23 
rc/c 0.0277 0.0287 

Table D.2.  Vortex properties for N1 comparison between current computations and Naguib, et 
al., (2011) for k = 6.68 and S = 38%.   

Property Current Naguib, et al., (2011) 
yp 0.024 0.08 

 Γ/cU∞ -0.09 -0.12 
rc/c 0.023 0.0287 

ΔxP1-N1/a 0.517 0.38 
 

Table D.3.  Vortex properties for N2 comparison between current computations and Naguib, et 
al., (2011) for k = 6.68 and S = 38%.   

Property Current Naguib, et al., (2011) 
yp -0.18 -0.20 

 Γ/cU∞ 0.11 0. 11 
rc/c 0.0268 0.0263 

ΔxP1-N2/a 0.8 0.82 
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Figure D.3.  Schematic of vortex labeling for both S = 50% and S = 38% for vortex properties. 

In order to isolate potential causes for the disagreement, simulations were performed 

using the actual pitching trajectory of the experiment in order to remove discrepancy between 

using analytical formula and the actual trajectory of the experiment.  Due to noise in the 

experimental trajectory, the pitching velocity was first computed with a second-order central 

difference scheme and smoothed using a moving average filter.  The filter window consisted of 

200 points, or 1% of the period for a reduced frequency of 6.68.  The smoothed pitching velocity 

was then integrated to produce the smoothed angle of attack history (see Figure D.4). 

 
Figure D.4.  Comparison between the experimental asymmetric trajectory and smoothed 

trajectory for S = 38%. 
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 Uncertainty with the flow conditions of the experiment (Koochesfahani, 1989) could 

affect how well the computation can reproduce the experiment.  Although the chord length of the 

airfoil was known, the freestream speed in the experiment was approximately 15.0 cm/s 

Koochesfahani (1989).  Uncertainty in the value of the freestream velocity impacts both the 

Reynolds number and reduced frequency of the experiment.  To study the effect of uncertainty in 

the freestream velocity, three Reynolds numbers (11,000, 12,000, and 13,000) and three reduced 

frequencies (6.20, 6.40, and 6.68) were chosen.   

It was found that the velocity profiles were more sensitive to uncertainty in the reduced 

frequency was more sensitive than uncertainty in the Reynolds number.  For the nominal 

Reynolds number of 12,000 as a representative case, the average and r.m.s. velocity profiles 

measured one chord length downstream of the trailing edge for different reduced frequencies are 

illustrated in Figure D.5 and compared with the experiment (Koochesfahani, 1989).  As the 

reduced frequency decreases from 6.68 to 6.2, the average velocity deficit widens while the 

average velocity surplus narrowed.  The magnitude of the deficit also decreases with decreasing 

the reduced frequency.  The location of the peaks and troughs in the streamwise velocity 

fluctuation change as a result of changing reduced frequency.  Part of the differences in the 

profiles is a result in changes in the trajectories of the three vortices, as shown in Figure D.6, 

while the other part is related to the vortex properties (not shown).    
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Figure D.5.  Average and r.m.s. velocity profile measured at x/c = 1.0 using actual experimental 

pitching trajectory for Re = 12,000 at S ≈ 38%., illustrating effect of k. 

 
Figure D.6.  Wake vortex trajectories for k = 6.20 (left), 6.40 (middle), and 6.68 (right) using 

actual experimental pitching trajectory for Re = 12,000 at S ≈ 38%. 

 There are additional factors that could also contribute to the differences.  For example, 

the airfoil in the experiment may not have been a perfect NACA 0012 due to machining errors.  

Potential uncertainty in both the actual mean angle of attack and pitching amplitude could also 

influence the vortical structure.  Three-dimensionality caused by axial flow in the vortex core 

present in the experiment was not captured by the current, two-dimensional computations.   
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Finally, possible flow interactions with test section walls or blockage effects were not modeled 

in these simulations.  Regardless, the high-order computations accurately capture very similar, 

albeit not identical, flow features observed in the experiment by Koochesfahani (1989).  

Additional tuning of the various flow and kinematic parameters (i.e., Re, k, xp/c, αo, αm, etc.) to 

achieve exact matching with the experimental profiles would be an exhaustive exercise with little 

added benefit to this work and thus was not pursued further. 
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APPENDIX E.  SURFACE PRESSURE AND SHEAR STRESS 

DISTRIBUTIONS 

The dependence of thrust coefficient on the Reynolds number was a direct result of a 

Reynolds number effect on the average pressure and shear stress distributions. The surface 

distributions are non-dimensionalized as the pressure and skin friction coefficient, defined by 

equations (E.1) and (E.2), respectively.  The non-dimensional freestream pressure (YZ/\ZWZ] =

1/^_Z
] ) has been removed from the pressure distribution.  The skin friction coefficient was 

determined by computing the shear stress at the wall.  The wall shear stress was calculated by 

`aRbb = c
-d

-5 aRbb
, where µ is the dynamic viscosity of the fluid and U is the contravariant 

velocity tangent to the wall (recall W = efg + ehi + eOj).   

 

 

kP = 2
Y − YZ
\ZWZ]

 (E.1) 

 k' = 2
`aRbb
\ZWZ]

 (E.2) 

First, consideration is made with respect to the static airfoil at zero angle of attack.   The 

effect of Reynolds number on the average pressure and skin friction coefficient distributions is 

shown in Figure E.1. As the Reynolds number increases, there is an increasing amount on 

suction near the leading edge.  There is also a decreasing amount of suction past X/c = 0.4 as the 

Reynolds number increased.  However, the pressure distribution shows no indication of 

approaching the inviscid limit near the trailing edge.  The shear stress for each Reynolds number 

shows a peak near the leading edge, which decreases near zero towards the trailing edge.  The 
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maximum skin friction coefficient non-linearly decreases in magnitude from 0.22 to 0.0735 as 

the Reynolds number increased from 2,000 to 22,000.  

 
Figure E.1.  Average pressure coefficient (top) and skin friction coefficient (bottom) for static 

NACA 0012 at α = 0° for different Reynolds numbers. 

Now, the pitching airfoil is considered.  Three examples of the pressure and shear stress 

distribution for Re = 2,000 and 22,000 are shown in Figure E.2 for 2° amplitude.  Three reduced 

frequencies are considered, 0, 6, and approximately 12.  As seen in the figure, the pressure 

distributions show no drastic effect of k near the leading edge.  Over the majority of the airfoil, 

there is a slight increase in suction as the reduced frequency increases for the two Reynolds 

numbers.  Near the trailing edge, however, there is a very strong increase in suction as k 

increased.  The region near the trailing edge over which the suction occurs also increases as k 

increases.  Similar results are seen in the shear stress.   From the leading edge to the mid-chord, 

there is negligible effect of k for the two Reynolds number.  Beyond the mid-chord, the shear 

stress increases, particularly near the trailing edge.  
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Figure E.2.  Average pressure and skin friction coefficient for a Reynolds number of 2,000 (left) 
and 22,000 (right) oscillating at different k.  The pitching amplitude is 2°.  The airfoil is shown at 

the bottom for spatial reference. 

By projecting the pressure and shear stress distributions in the streamwise direction, the 

average drag/thrust could be computed.  The projected pressure coefficient, (nxCp)avg, and skin 

friction coefficient, (nxCf)avg, for the two Reynolds number and different reduced frequencies are 

shown in Figure E.3.  If the quantity (nxCp)avg is positive, it is called projected pressure and 

contributes to thrust when integrated.  If the quantity (nxCp)avg is negative, it is called projected 

suction and contributes drag.  Conversely, positive (nxCf)avg contributes to drag and negative 

(nxCf)avg contributes to thrust when integrated.  The projected pressure and skin friction 

distributions for reduced frequencies of 0, 6, and approximately 12 are plotted in Figure E.3.   
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Figure E.3.  Average projected pressure and skin friction coefficient for a Reynolds number of 

2,000 (left) and 22,000 (right) oscillating at different k.  The pitching amplitude is 2°.  The airfoil 
is shown at the bottom for spatial reference. 

The projected pressure between the two Reynolds does not differ significantly for k = 0, 

except near the leading edge where the (nxCp)avg experiences a peak and between the mid-chord 

and trailing edge.  The projected friction decreases in magnitude as the Reynolds number 

increases to mn for the static case as well.  As the reduced frequency increases from k = 0, the 

peak projected pressure near the leading edge does not significantly increase for either Reynolds 

number while the projected suction between location of maximum thickness and the trailing edge 

switches to projected pressure, and thus leading to a contribution of positive CT, by a reduced 

frequency of 6.  Between the mid-chord and trailing edge, this projected pressure region 

experiences a peak near X/c = 0.75 for both Reynolds numbers.  The projected pressure drops 
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dramatically downstream of X/c = 0.9 and switches to projected suction.  The peak projected 

friction near the leading edge does not visibly increase at this k for either Reynolds number, 

while there is an increase in friction past the peak location.  Near the trailing edge, the projected 

friction increases dramatically for both Reynolds numbers compared to the static case.  At k ≈ 

12, the peak projected pressure increases slightly for both Reynolds numbers while the secondary 

peak between the mid-chord and trailing edge increases dramatically to values close to the 

primary peak.   This secondary region of projected pressure extends over a greater portion of the 

airfoil past the mid-chord than at k = 6, leading to high thrust.  The projected friction peak value 

near the leading edge again does not visibly change at this k.  However, the increase in friction 

beyond the peak increases further for both Reynolds numbers, particularly near the trailing edge.   
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APPENDIX F.  LINEAR THEORY 

Early linearized theory for a flat plate oscillating in an inviscid, incompressible flow 

(Glauert, 1929; von Kármán and Burgers, 1935; Theodorsen, 1935; Garrick, 1936) has shown 

that the lift and drag vary with time as a result of a time-varying angle of attack.  For pure 

pitching, the time-varying angle of attack is defined in complex notation as o = oSn6pq, where 

H = −1, αo is the pitching amplitude in radians, ω is the angular frequency in units of rad/s, and 

t is the physical time.  The angular frequency is related to the non-dimensional reduced 

frequency by k = ωc/2U∞.  Although the closed form solutions unsteady lift and drag were 

originally derived by Glauert (1929) and von Kármán and Burgers (1935), Theodorsen (1935) 

and Garrick (1936) independently derived the lift and drag, respectively, and are more 

traditionally referenced.   

It is assumed that the geometry is a flat plate while the flow is inviscid and irrotational 

such that the leaves the trailing edge smoothly (i.e., the Kutta condition).  A schematic of this is 

provided in Figure F.1.  This would require the flow to remain attached along the entire surface 

with no flow reversal.  The theory allows for the plate to undergo both plunging and pitching 

motions of small amplitude, where the non-dimensional pivot point m is related to the physical 

pitch-axis location as m = 2xp/c – 1.  Pitching about the physical quarter-chord yields m = -0.5.  

As the airfoil oscillates, vorticity continuously sheds from the trailing edge in accordance with 

the Kelvin condition and is carried downstream by the fluid at freestream speed.  This shed 

vorticity remains planar along the wake centerline.  



 223 

 
Figure F.1.  Schematic of oscillating plate (Theodorsen, 1935; Garrick, 1936). 

Employing velocity linearization, g = WZ +
rC

rf
 (where s is the velocity potential), the 

lift is given by equation (F.1).  Observation of the terms in the equation shows that the unsteady 

lift depends only on the freestream conditions, chord length, and plate kinematics.  To enforce 

the Kutta condition, Theodorsen introduced a complex attenuation function, C (equation (F.3)).  

This function is written in terms of Bessel functions of the first and second kind (J0, J1, Y0, and 

Y1) that depend only on the reduced frequency.  The behavior of the components F and G to 

Theodorsen’s function with the inverse of the reduced frequency can be seen in Figure F.2.  

Garrick (1936) gave the unsteady drag force as equation (F.3) 

 
t u = T\ZWZv WZo +

v
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 (F.1) 

where 

k = + + HÑ =
Ö: Ö: + ÜS + Ü: Ü: − ÖS
Ö: + ÜS ] + Ü: − ÖS ] − H

Ü:ÜS + Ö:ÖS
Ö: + ÜS ] + Ü: − ÖS ] (F.2) 
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Figure F.2.  F and G vs. 1/k (Theodorsen, 1935; Garrick, 1936). 
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Examination of the equations (F.1) and (F.3) shows that the unsteady forces consist of 

two terms each.  The lift force is generated by a contribution related to the changing circulation 

around the airfoil and a contribution caused by the inertia of the fluid displaced by the plate.  

These two terms are called the circulatory component and non-circulatory component, 

respectively.  The phasing behavior of the unsteady lift primarily falls one of three characteristic 

categories.  At low reduced frequency, the lift is primarily in phase with the angle of attack.  At 

k’s around 1, the lift is is approximately in phase with the pitching velocity.  At higher reduced 

frequencies, the lift is dominated by the pitching acceleration.  The drag force can be 

decomposed into a term related to a suction force at the leading edge caused by vorticity being 

infinite at the leading edge (von Kármán and Burgers, 1935) and a term related to the projection 

of the lift created by the pitching motion.  The lift and drag forces are linearly and quadratically 

dependent on the pitching amplitude, respectively.  Therefore, the lift and drag scale with oS and 

oS], respectively.  
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Garrick (1936; 1957) also derived a formula for the average thrust on a flat plate pitching 

in an inviscid, irrotational flow and is written in equation (F.4) in non-dimensional coefficient 

form.   
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The average thrust is negative if the fluid resists the airfoil (i.e., drag) and is positive if it propels 

the airfoil in the negative streamwise direction. In this expression, the thrust depends 

quadratically on pitching amplitude and non-linearly on the reduced frequency and non-

dimensional pitch-axis location, m.  The reduced frequency in which the drag switches to thrust 

(thrust crossover reduced frequency) based on this formula occurs at a reduced frequency of 1 

and is independent of amplitude.  Note that an incorrect formula was given by Garrick’s 1936 

publication (see equation (F.5) while the corrected formula given in equation (F.4) was presented 

in 1957.   
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Finally, Garrick (1936) provided the propulsive efficiency for a flat plate pitching as inviscid, 

irrotational flow as 
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According to equation (F.6), the propulsive efficiency is independent of amplitude and depends 

only on reduced frequency and pitch-axis location.   
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APPENDIX G.  ADDITIONAL VORTEX PROPERTY RESULTS 

G.1. Vortex Properties for 2° Amplitude Data 

The vortex properties as a function of reduced frequency for different Reynolds numbers 

pitching with 2° amplitude are shown in Figure G.1.  The transverse spacing increases from a 

negative value and switches to a positive value as the reduced frequency increases.  At a given k, 

the spacing increases as the Reynolds number increases until the reach a nearly asymptotic value 

of 0.060c, which was independent of Re.  For reference, the trailing edge amplitude was 0.052c.  

The streamwise spacing decreases with reduced frequency and increases with Re.  In other 

words, the vortices bunched together more as the Reynolds number decreases.  The cause for the 

increase in a by Re can be seen in the convection speed, which increases with increasing Re.  

Physically, the vortices at the low Re convect more slowly than at higher Re.   

The peak vorticity increases with linearly reduced frequency and non-linearly Reynolds 

number.  As the Reynolds number increases from 2,000 to 22,000, the peak vorticity increases 

by a factor of 4.5 at k = 5.2 and 4.2 at k ≈ 12.  The core radius decreases as reduced frequency 

and Reynolds number increases, though this was expected.  For each Reynolds number, the core 

radius decreases as the reduced frequency increases.  The vortex circulation, interestingly, 

remained relatively unchanged (to within the symbol size) among the different Reynolds 

numbers over the range of reduced frequencies.   
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Figure G.1.  Vortex properties as a function of reduced frequency for different Reynolds 

numbers.  The pitching amplitude is 2°. 

G.2. Effect of Amplitude 

 The effect of amplitude on the vortex properties is shown for all four Reynolds numbers 

in Figures G.2-G.5.  As the pitching amplitude increases, both Reynolds numbers show increase 

that the peak vorticity, spacing, core radius, spacing, circulation, and convection speed.   The 

data could also be replotted versus Strouhal number, since it has been shown that the thrust 

coefficient data shows amplitude collapse with respect to Strouhal number.  This is done for each 

Reynolds numbers in Figures G.6-G.9.  When the data is rescaled using the Strouhal number, 

only the circulation collapses and does not occur until Re = 7,000-12,000.  Instead, the peak 

vorticity and convection speed decrease whereas the transverse spacing, streamwise spacing, and 

core radius increase as the amplitude increases at a given Strouhal number.   
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Figure G.2.  Vortex properties as a function of reduced frequency for different amplitudes.  The 

Reynolds number is 2,000. 

 
Figure G.3.  Vortex properties as a function of reduced frequency for different amplitudes.  The 

Reynolds number is 7,000. 
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Figure G.4.  Vortex properties as a function of reduced frequency for different amplitudes.  The 

Reynolds number is 12,000. 

 
Figure G.5.  Vortex properties as a function of reduced frequency for different amplitudes.  The 

Reynolds number is 22,000. 
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Figure G.6.  Vortex properties as a function of Strouhal number for different amplitudes.  The 

Reynolds number is 2,000. 

 
Figure G.7.  Vortex properties as a function of Strouhal number for different amplitudes.  The 

Reynolds number is 7,000. 
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Figure G.8.  Vortex properties as a function of Strouhal number for different amplitudes.  The 

Reynolds number is 12,000. 

 
Figure G.9.  Vortex properties as a function of Strouhal number for different amplitudes.  The 

Reynolds number is 22,000. 
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APPENDIX H.  ADDITIONAL PITCHING AMPLITUDE FLOW 

VISUALIZATION RESULTS 

 
Figure H.1.  Instantaneous spanwise vorticity field (ωzc/U∞) at k = 2.0 for different Reynolds 

numbers (increasing left to right) and pitching amplitudes (increasing from the top down).  The 
airfoil is at zero angle of attack and is pitching up (τ/T = 0.0).  The field of view extends over the 

range 0 ≤ x/c ≤ 3.0 and -0.4 ≤ y/c ≤ 0.4. 

 
Figure H.2.  Instantaneous spanwise vorticity field (ωzc/U∞) at k = 2.67 for different Reynolds 
numbers (increasing left to right) and pitching amplitudes (increasing from the top down).  The 

airfoil is at zero angle of attack and is pitching up (τ/T = 0.0).  The field of view extends over the 
range 0 ≤ x/c ≤ 3.0 and -0.4 ≤ y/c ≤ 0.4. 
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Figure H.3.  Instantaneous spanwise vorticity field (ωzc/U∞) at k = 3.0 for different Reynolds 

numbers (increasing left to right) and pitching amplitudes (increasing from the top down).  The 
airfoil is at zero angle of attack and is pitching up (τ/T = 0.0).  The field of view extends over the 

range 0 ≤ x/c ≤ 3.0 and -0.4 ≤ y/c ≤ 0.4. 

 
Figure H.4.  Instantaneous spanwise vorticity field (ωzc/U∞) at k = 3.3 for different Reynolds 

numbers (increasing left to right) and pitching amplitudes (increasing from the top down).  The 
airfoil is at zero angle of attack and is pitching up (τ/T = 0.0).  The field of view extends over the 

range 0 ≤ x/c ≤ 3.0 and -0.4 ≤ y/c ≤ 0.4. 



 234 

 
Figure H.5.  Instantaneous spanwise vorticity field (ωzc/U∞) at k = 4.0 for different Reynolds 

numbers (increasing left to right) and pitching amplitudes (increasing from the top down).  The 
airfoil is at zero angle of attack and is pitching up (τ/T = 0.0).  The field of view extends over the 

range 0 ≤ x/c ≤ 3.0 and -0.4 ≤ y/c ≤ 0.4. 

 
Figure H.6.  Instantaneous spanwise vorticity field (ωzc/U∞) at k = 5.2 for different Reynolds 

numbers (increasing left to right) and pitching amplitudes (increasing from the top down).  The 
airfoil is at zero angle of attack and is pitching up (τ/T = 0.0).  The field of view extends over the 

range 0 ≤ x/c ≤ 3.0 and -0.4 ≤ y/c ≤ 0.4. 
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APPENDIX I.  ADDITIONAL ASYMMTRIC MOTION 

TRAJECTORY FLOW VISUALIZATION RESULTS 

 
Figure I.1.  Instantaneous spanwise vorticity field (ωzc/U∞) for k = 4.0 at Re = 12,000 and αo = 

2° for different asymmetries (increasing from the top down).  The airfoil is at zero angle of attack 
and is pitching up (τ/T = 0.0). 
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Figure I.2.  Instantaneous spanwise vorticity field (ωzc/U∞) for k = 5.20 at Re = 12,000 and αo = 
2° for different asymmetries (increasing from the top down).  The airfoil is at zero angle of attack 

and is pitching up (τ/T = 0.0). 
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Figure I.3.  Instantaneous spanwise vorticity field (ωzc/U∞) for k = 5.80 at Re = 12,000 and αo = 
2° for different asymmetries (increasing from the top down).  The airfoil is at zero angle of attack 

and is pitching up (τ/T = 0.0). 
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Figure I.4.  Instantaneous spanwise vorticity field (ωzc/U∞) for k = 6.68 at Re = 12,000 and αo = 
2° for different asymmetries (increasing from the top down).  The airfoil is at zero angle of attack 

and is pitching up (τ/T = 0.0). 
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Figure I.5.  Instantaneous spanwise vorticity field (ωzc/U∞) for k = 8.00 at Re = 12,000 and αo = 
2° for different asymmetries (increasing from the top down).  The airfoil is at zero angle of attack 

and is pitching up (τ/T = 0.0). 
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Figure I.6.  Instantaneous spanwise vorticity field (ωzc/U∞) at 12 phases of the pitch-up for k = 5.20, S = 50%, Re = 12,000, and αo = 
2°.  The angle of attack, pitching velocity, and pitching acceleration history is shown at the top with circles indicating the phases at 
which the vorticity is shown.  The white line is the wake centerline.  The range covered in the figure is 0.8 ≤ X/c ≤ 1.2 and -0.075 ≤ 

Y/c ≤ 0.075. 
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Figure I.7.  Instantaneous spanwise vorticity field (ωzc/U∞) at 12 phases of the pitch-down for k = 5.20, S = 50%, Re = 12,000, and αo 
= 2°.  The angle of attack, pitching velocity, and pitching acceleration history is shown at the top with circles indicating the phases at 
which the vorticity is shown.  The white line is the wake centerline.  The range covered in the figure is 0.8 ≤ X/c ≤ 1.2 and -0.075 ≤ 

Y/c ≤ 0.075. 
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Figure I.8.  Instantaneous spanwise vorticity field (ωzc/U∞) at 12 phases of the pitch-up for k = 5.20, S = 38%, Re = 12,000, and αo = 
2°.  The angle of attack, pitching velocity, and pitching acceleration history is shown at the top with circles indicating the phases at 
which the vorticity is shown.  The white line is the wake centerline.  The range covered in the figure is 0.8 ≤ X/c ≤ 1.2 and -0.075 ≤ 

Y/c ≤ 0.075. 
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Figure I.9.  Instantaneous spanwise vorticity field (ωzc/U∞) at 12 phases of the pitch-down for k = 5.20, S = 38%, Re = 12,000, and αo 
= 2°.  The angle of attack, pitching velocity, and pitching acceleration history is shown at the top with circles indicating the phases at 
which the vorticity is shown.  The white line is the wake centerline.  The range covered in the figure is 0.8 ≤ X/c ≤ 1.2 and -0.075 ≤ 

Y/c ≤ 0.075. 
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Figure I.10.  Instantaneous spanwise vorticity field (ωzc/U∞) at 12 phases of the pitch-up for k = 5.20, S = 30%, Re = 12,000, and αo = 

2°.  The angle of attack, pitching velocity, and pitching acceleration history is shown at the top with circles indicating the phases at 
which the vorticity is shown.  The white line is the wake centerline.  The range covered in the figure is 0.8 ≤ X/c ≤ 1.2 and -0.075 ≤ 

Y/c ≤ 0.075. 
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Figure I.11.  Instantaneous spanwise vorticity field (ωzc/U∞) at 12 phases of the pitch-down for k = 5.20, S = 30%, Re = 12,000, and 
αo = 2°.  The angle of attack, pitching velocity, and pitching acceleration history is shown at the top with circles indicating the phases 
at which the vorticity is shown.  The white line is the wake centerline.  The range covered in the figure is 0.8 ≤ X/c ≤ 1.2 and -0.075 ≤ 

Y/c ≤ 0.075. 
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