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ABSTRACT

CONTINUUM THEORY FOR GAS-SOLID-LIQUID MEDIA
By

Robert John Gustafson

The objective of this work was to develop a continuum
model which adequately describes the mechanical behavior
of a biological product. The medium was assumed con-
structed of two sets of interconnected pores separated Qy
a solid. One set of pores contained a gas; the other a
liquid. Constitutive and stress-strain relations were
derived through energy considerations for the gas-solid-
liquid medium.

A series of loading conditions was outlined for
determination of the material constants. Experimental
attempts were made to determine the compressibility of
apple parenchyma using three loading conditions which
involved the internal gas pressure and a hydrostatic
pressure. Apparatus limitations prevented successful
determination of the compressibilities. Suggestions for

improvement of the apparatus were made.



Robert John Gustafson

The finite elemegt method was used to obtain
numerical solutions to the axisymmetric boundary value
problem for the gas-solid-liquid medium. The stress
distribution in a spherical body without a skin (un-
restrained), with a skin (restrained), and a restrained
body subjected to flat plate compression were studied.
Internal liquid pressure was varied between 689.5 kPa
(100 psi) and 2758 kPa (400 psi) using 689.5 kPa (100 psi)
increments while a zero gas pressure was used. Material
properties of an apple were used in the contitutive
equations.

An unrestrained homogeneous body with the liquid
under pressure expanded without developing stress. The
restrained body was found to have a hydrostatic (com-
pressive) stress in the parenchyma and tension stress in
the skin. Flat plate compression combined with the
liquid pressure produced shear stresses and a hydrostatic

stress in the parenchyma.
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I. INTRODUCTION

Extensive loss is often incurred in the production
of various fruits; notably sweet cherries, tomatoes, and
certain varieties of apples; as a result of cracking of
the skin and fleshy tissues some time prior to harvest.
Cracks affect the appearance of the fruit, encourage mold
and insect contamination, cause trimming losses for the
canner, and result in consumer dissatisfaction. Rapid
deterioration usually follows the exposure of the ruptured
tissue to air, and the injured fruit becomes worthless or
of inferior grade. Cracked fruit, therefore, represent a
considerable loss in income to both processing and fresh
market industries.

Most of the previous research on fruit cracking has
been concerned with the environmental conditions conducive
to fruit splitting and breeding crack-resistant varieties.
It was the author's contention that present mechanics
models of materials were inadequate for representation of
the behavior of many biological products. A model which
incorporates the effects of the liquid and gas elements
was needed. The objective of this study was the develop-

ment of such a model.
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The work reported in this thesis may be divided into

three parts:

1. The development of a model containing parameters
and variables necessary to more adequately
represent the mechanical behavior of fruit
tissue.

2. The experimental determination of the parameters
necessary for use of the model developed.

3. Use of the finite element method for solution of
the continuum equations yielding stress distribu-
tions for a body approximating the shape of a

fruit.



II. REVIEW OF LITERATURE

Two areas must be considered when developing a
continuum mechanics model for a biological product such
as a fruit: the plant physiology and horticultural area
and the material science and mechanics area. This
review of literature is divided into two sections: i)
that work related to plant materials and ii) the mechanics

theory applicable to the present approach.

2.1 Mechanical Properties of Plant Materials

Several authors have recently reviewed the available
literature related to fruit anatomy pertinent to mechan-
ical properties and splitting of fruits. Tennes (1973)
reviewed literature available on fruit structure of
tomatoes and cherries as related to fruit splitting. He
also reviewed the cultural practices which have been used
in an attempt to alleviate the problem. Brusewitz (1969)
reviewed in detail the anatomy of plant material which
might be pertinent to the mechanical properties of the
material. Akyurt (1969) also discussed available literature
on the cellular structure of plant material and modeling
attempts which have been recorded. Because of these

3
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studies, the present review of literature was restricted
to works which have direct bearing on the proposed method
of modeling the elastic action of a system of cells. Lit-
erature on the growth of plants was not reviewed unless
it is pertinent to the elastic action of the material.

Many researchers pursuing the phenomenological
approach to the mechanics of biological materials have
assumed the tissues are continuous, homogeneous, and iso-
tropic. Only a few researchers have attempted to describe
the effect of such variables as cell dimensions and
turgor pressure. Of those attempting to include such
variables, the mechanical properties of plant materials
have been studied on three levels: the cell wall, the
cell, and tissue.

The structure of the cell wall has been studied in
great detail. A number of references, such as Frey-
Wyssling (1952), describe the make-up of the cell wall.
Probine and Prestone (1962) concluded that the anisotropic
nature of the cell wall affects its mechanical properties
and cell growth.

Cleland (1971) concentrated on certain aspects of
cell wall extension including the mechanical properties of
primary walls and their relation to cell enlargement. He
presented two conclusions from his rheological studies.
First, the mechanical properties of all primary cell walls

are probably qualitatively similar. Second, the difference
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that exists between cell elongation and mechanical proper-
ties of the walls are sufficient to indicate that cell
wall extension does not involve simple physical stretching
of the wall.

Frey-Wyssling (1952) pointed out that mechanical
stresses on tissues not only involve elastic or plastic
alteration of the cell wall, but they also bring about
morphological deformations of cell shape, which may be
even more important than the rheological behavior of the
cell wall.

Most attempts at describing cell action have been
based on the assumption of some regular geometric pattern
and shape for the cells. Matzke and Duffy (1955), how-
ever, stated that rigid conformity to pattern does not
exist. They found the average number of faces per cell
close to fourteen and that the faces vary in shape from
triangular to nonagonal.

Haines (1950) found that the relation between cell
extension and turgor pressure for spherical isotropic
cells obeying Hooke's Law is not linear but hyperbolic.
He further states, '"There can be no approximate linear
relationship to any cell dimension satisfactory for
purposes of calculating turgor or osmotic pressure."

Broyer (1952) defined a coefficient of distention of

a boundary as o = E%?K and a coefficient of enlargement
AP

He calculated relations between and for
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several simple geometric shapes and found that relative
volume and changes in volume can be used to determine e
as defined for actual pressure changes. Work required
for change in relative volume was calculated assuming
constant pressure.

Philip (1958b) developed a dynamic theory of the
classical osmotic plant cell in quantitative form and
extended it to the case where diffusible solute is
present. He assumed change in cell volume to be
linearly proportional to change in turgor pressure, and
developed a first-order expression for the change in
relative volume with respect to time for several initial
and boundary conditions. In a second paper, Philip (1958a)
developed relations for propagation of turgor pressure and
other properties through cell aggregates describing them
mathematically as diffusion phenomena and assuming the
elastic modulus of the material defined by

1/E = 1/T(V/Vy -1)
where T is the turgor pressure. He stated further study
of the cell-wall stress distribution was needed to refine
the propagation equations.

Building on the work of Broyer and Philip, Slayter
(1967) concluded that for given cell dimensions and
permeabilities, both the elastic properties of the cell
and the internal osmotic pressure influence the rate of

swelling and shrinking.
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Mela (1967a), using microscopic photography, developed
a method for studying Young's modulus by extension of
mitochondria cells measured for different concentrations
of salt water. He assumed membranes of uniform thickness
which do not have pores large enough to affect stress-
strain calculations. In a second article, Mela (1967b)
reported Young's modulus to be a non-linear function of
temperature with a minimum at 12—13°C.

Studies must be done on the level of a multi-cell
structure, or tissue, to include the effect of interaction
between cells. These studies have been performed by both
removing a segment of tissue'for analysis and by studying
the action of the whdle body such as a fruit.

Falk et al. (1958) studied the relations between
turgor pressure and Young's modulus using the resonant
frequency of potato tuber parenchyma. They concluded that
the cell wall material follows Hooke's law and that there
are changes in elasticity of the whole parenchyma due to
turgor pressure which are in turn reversible thanks to
the ideal cell wall material.

Nilsson et al. (1958) studied the dependence of
Young's modulus of potato tuber parenchyma on turgor
pressure using a simple theoretical model. The cells of
the parenchyma were approximated by regular geometric
cell-forms (spheres or polyhedra), each cell being

bounded by an elastic membrane and filled with an
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incompressible fluid. It was shown that this model
yields the correct dependence of cell diameter on turgor
pressure and that certain cell-wall constants can be
determined using the relation.

Burstrom et _al. (1967) used the resonance frequency
method for determining Young's modulus of internodes
of etiolated pea seedlings. They found the modulus to
increase nearly proportional to turgor pressure and that
at water saturation the modulus is more than fifty times
higher than at plasmolysis.

Studies by Meynhardt (1964) indicated it may be
possible to predict the susceptibility to splitting of
different grape cultivars by an anatomical investigation
of the berry tissue. He concluded that it seems possible
that the subepidermal cell dimension ratio (longitudinal
to radial) and the number of subepidermal cell layers may
contribute to the resistance or susceptibility of grape
berry tissue to splitting. Working with tomatoes, Cotner
et al. (1969) found that fruit with flattened epidermal
cells were less susceptible to concentric cracks than
those with rounded cells, but no such correlation existed
for radial cracks.

Clevenger and Hamann (1968) studied the mechanical
properties of apple skin, They determined material proper-
ties, including elastic modulus and Poisson's ratio, for

three varieties of apples. All skins were found to be
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anisotropic with the greatest strength in the longitudinal
direction. Relaxation and creep experiments showed that
apple skin tends to be viscoelastic in behavior. Four
element (Burger) models were found to describe the action
of the material very well,

Akyurt (1969) and Akyurt et al. (1972) attempted to
develop methods for studying the stress-strain relations
in plant materials, With the cell wall idealized as a
shell, the finite element method was proposed for the
solution of the corresponding linear equilibrium problem.
Akyurt showed that macrodisplacements as well as stresses
and couple stresses acting on cellular bodies emerge as
solutions of the field equations of the micropolar theory
of Eringen (1962). The linear theory of viscoelasticity
was also employed,

Considine and Kriedeman (1972) devised a laboratory
technique to measure the internal turgor pressure required
for fruit rupture in order to assess resistance to splitting
of grapes. Fruit of uniform maturity and known osmotic
potential were immersed in a range of osmotics to create
a known turgor pressure at equilibrium. '"Critical turgor,"
the pressure which resulted in 50 percent of the grapes
splitting, was approximately 15 atm in grape cultivars
prone to splitting and 40 atm in resistant cultivars.

They found splitting was not necessarily related to berry

size or to the presence of seeds. No dominant relationship
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was found to exist between the berry shape and the
susceptibility to splitting. The authors concluded that
it is the epidermal and subepidermal layers which limit
berry enlargement. Two uniform groups of berries were
immersed in distilled water to emphasize this point. One
group was intact, the other peeled. Within 30 minutes,
the intact fruit were ruptured. Peeled fruit, on the
other hand, absorbed twice as much water without suggestion
of splitting.

Raschke (1970) studied the transmission of changes
in water potential in leaves. He found the epidermis of
the leaf Zea mays transmits changes in water potential in
the water supply of the leaf to the stomata within 0.1
second. Also, reduction in water supply can cause the
subsidiary cells surrounding the stomata to collapse with-
in 1.5 minutes, and the epidermis to shrink to one-third

of its original thickness within 20 minutes.

2.2 Biot Theory of Elastic Porous Media

Theories of deformation of a porous material contain-
ing a viscous compressible fluid and the theory of flow
of the fluid through the material have been developed and
discussed in a series of papers by Biot and his co-workers
(Biot, 1941, 1955, 1956b, 1962, 1963; and Biot and Clinger,
1941, 1942). The theories were first applied to consolid-

ation and settlement of foundations for both isotropic and
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anisotropic media. Later developments have been in
dynamic problems (Biot, 1956a) and finite deformation
(Biot, 1972).

Paria (1957-58, 1958a, 1958b, 1966) applied Biot's
theories to axisymmetric consolidation of isotropic
material under static as well as impulsive loads, trans-
verse isotropic semi-infinite mass under normal loads,
deformation of viscoelastic body under pressure, spherical
isotropic body under pressure, and flow of fluids through
deformable bodies.

Freudenthal and Spillers (1962) developed theoretical
solutions, using Biot's theory, for the infinite layer
and the half-space assuming a quasi-static consolidating
elastic media.

Only a limited number of experimental determinations
of coefficients of the equations for Biot's theory have
been reported. Biot and Willis (1957) measured the
elastic coefficients for sandstone. Fatt (1957, 1959).
reported compressibilities of petroleum-bearing sand-
stones in the range of 0O to 15,000 psi. He also noted a
useful model for sandstone can be developed by a sphere
pack composed of a mixture of very hard and very soft
spheres.

Considerable interest in the use of Biot's theory
combined with the finite element has been recently shown

in the area of soil consolidation. Most researchers have
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used variational principles equivalent to the governing
equations in Biot's consolidation theory (Sanhu and
Wilson, 1969; Yokoo et al., 1971; Hwang et al., 1971) to
solve for pore pressure and settlement under various
loading conditions. Hwang et al. (1972) used a formulation

by the method of weighted residuals.



I1I. DEVELOPMENT OF QUASI-STATIC THEORY
OF A GAS-SOLID-LIQUID SYSTEM

3.1 Model Description

Consider a medium which is the combination of a
deformable solid material, a gas, and a liquid, compress-
ible or incompressible. The solid forms the skeleton or
the framework of the body and forms a division between
two sets of small pores. One set of interconnected pores
is filled with a liquid, the the other set contains a
gas.

The formulation of a mathematical theory of such a
three-phase medium starts with the definition of certain
relevant variables. Using the differential element
pictured in Figure 3.1, we shall define:

v’ u, as the displacements of the solid
matrix parallel to the coordinate axes,
Uy, Uy, UZ as the displacements of the gas,
Qx, Qy, QZ as the displacements of the liquid,
f as the liquid porosity, defined by f = Vf/VB
where Vf is the volume of the liquid and VB the

volume of the bulk material within the element,

g as the gaseous porosity, defined by g = Vg/VB’

13
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Figure 3.1 Differential Element of Medium
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where Vg is the volume of the gas within the
element.
The volumes of liquid displaced through unit areas
normal to the coordinate directions, X, Y, Z, would be
fo, ny, and sz. Similar values for the gas are gUx,

gUy, and gUZ.

3.2 Theoretical Development

The total stress components of the bulk material,

1

Tij , can be expressed using components as
where oij results from forces applied to the solid part

of the body, § is the Kronecker delta, and O and o

ij g
result from forces applied to the liquid and gas, respect-

ively. Denoting the liquid pressure, Pg, and the gas

pressure, pg,

Of = -fpf and og = gp (3.2)

g

! The standard indicial system for a rectangular Cartesian
reference frame is employed for the following section: Re-
peating the subscripts i, j, or k implies summation, Kron-
ecker's delta is denoted by 6§53, differentiation with re-
spect to space is indicated by subscripts preceded by comma.
The subscripts f and g are not to be confused with the
summation indices; they indicate liquid and gas, respect-
ively.
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Since the system is considered in equilibrium, Pe and
pg are assumed constant throughout their respective
regions of the body.

The strain energy of a porous elastic medium can be
defined as the isothermal free energy of the gas-solid-
liquid system. Let W denote the strain energy per unit
volume. The variation of the strain energy for a volume

V bounded by surface S is equal to the virtual work of

the surface forces, i.e.,

ffvf sWdV = fsf(fxaux + fybuy + f£,8u, + G,8U,

(3.3)
+ Gyde + GZGUz + FXGQx + FyéQy + FZGQZ) ds

where fi, G,, and Fi are the tractions acting on the

i
solid, gas, and liquid regions of dS respectively. They

can be expressed

=913 0y
(3.4)

&)
|

i = og Gij nJ

where n is an outward normal to the surface. Forces can
J

be expressed in terms of Tij, Ps) and pg by using (3.1)

and (3.2) to obtain

fi = (TiJ + 613 (gpg + fpg))ny
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(%)
[

i Gij (-gpg) nj.

Introducing the above expressions into (3.3) yields
j{! SWav = &!(fiGui + G48U; + F,8Q;)dS

By defining

w. =g(U; - uy)
i i i (3.5)
Vi = Q3 - uy)
we can obtain
[[] sWwav = [] Ty Suy ny ds
v S
- Pg {! Swin; dS (3.6)

- pg [[ 8v;n, as.
s

The vectors vy and wi represent gas and liquid flows
relative to the solid and are measured in terms of volume
per unit surface area of the bulk material.

The first of the surface integrals of (3.6) can be
transformed to a volume integral by means of Gauss'
theorem to produce

/[ .. n; dus;dS = [[ (t,.8u,), dV.
s 13 J 1 v ij- 17y
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Expanding the integrand
(Tij Gui),j = fuy Tij’j + Tij 6ui,j'

The total stress field being in equilibrium implies

Gui Tij,j = 0.

Therefore, the integrand can be expressed as

(Tij Gui)’j = Tyx Sy t Tyy Gey + T, Gez
(3.7)
+ § + T § + 8
Tyz Yx 2% Yy Txy Y
where
ou ) P
e = ——)E Y = u} + uz
X 39X X 0z 0y
u ju Ju
= ——y = __é + ——E
°y T Ty v T Bz ax (3.8)
auz 3ux ou
e = —_— ‘Y = —— + —_,
Z 9z Z 2y 39X

Similarly, the second and third surface integrals

of (3.6) can be transformed to volume integrals. Defining

T
]
[

€
I

div [ g(u; - U;)]

<
]
1

<
]

div[ f(u; - Q;)] (3.9)
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the second and third integrals become

- [] éwyn;ds = [[[ &zav
S v
and
- /f vin,ds = [[[ sv¥av.
S \%

Substituting the results of (3.7), (3.8), and (3.9)

into (3.6) yields

j{! SWdv = f{! (Txx 88y * T, Se  + 1, de,

yy
+ Tyz 6yx + TZX ny + Txy Gyz (3.10)
+ py 0¥ + Pg §z) dv.
Hence, for an arbitrary volume
SW = Txx 6ex + Tyy Gey + TZZ Gez
+ Tyz Syx + Txy dyz + sz ny (3.11)

+ sy + 8z.
Pf Pg 4

¢ and Y are defined for nonhomogeneous porosity. If uni-

form porosity is assumed throughout the body, (3.8) and

(3.9) become

Y
[

g div (ui - Ui)
(3.12)

<
[

f div (ui - Qi

)
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These variables are now measures of the amount of each
substance which has moved in or out of a given element
attached to the solid frame. They also represent the

increments of fluid and gas contents.

The strain energy W must be a function of ¢, ¥, and

the six strain components,

W= W(ex, e e ,y Y, T, ¥). (3.13)

Yy Yy 2

yl z)

§W must be an exact differential; therefore,

3w oW
T = T = o
xx  9€x yz = 9V,
'S . AW
yX 3ey X aYy

(3.14)

W W
Yoz aez Txy - 3Yz

i} oW

P = 3y P, = 23zg-

These relations lead directly to the formulation of
the general stress-strain relations for a gas-solid-
liquid medium. Biot (1962) points out several major
aspects of this type of derivation where W is the iso-
thermal free energy. The stress-strain relations in-
clude phenomena which may depend on the physical chemistry

of the gas-solid-liquid system; as well as, phenomena
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which are expressible by means of thermodynamic
variables such as interfacial and surface tension

effects.

3.3 Linear Stress-Strain Relations

Considering the case of an isotropic medium, the
strain energy is a function of five variables, the three
strain invariants, Il' 12, 13, and the fluid components
z and ¥, i.e.

I

W= W({I,, Iz, 3» & ¥). (3.15)

The strain energy is quadratic in form for a linear
material, Love (1944). Only the first- and second-order
variables are included in the energy expression. The in-

variant terms remaining are

I1 = ey + ey + e,

_ 2 2 2
I e e + ezey + e ey i(Yx +yY + v %),

2 y 2 X y X
It is more convenient to use the invariant

'=__ - 2 2 2 _ - -
12 4I2 Yx + Yy + yz 4ezey 4ezex

4e e .
Xy

The quadratic form for W now becomes



22

2W = He? + y Ié - 2Cer + Mz? - 2DeV

+ NY2 + pzv.

Sokolnikoff (1956) shows that the coefficients on any

linear terms in W must be zero. Therefore

= 2, 2 2
2W H(ex ey + e, + 2exey + 2exez + 2eyez)

2
y

2

2 - -— -
+ u(yx + v + Y, 4eyez 4ezex 4exey)

(3.16)
-ZC(ex + ey + ez); -2D(ex + ey + eZ)W

+ Mz? + NY? + pry,

where H, u, C, D, M, N, P are coefficients which depend on
the material properties.
Substituting expression (3.16) in the general

equations (3.14), we obtain

= - + - -
Txx He 2u(ey ez) Ctg DY
Tyy = He - 2u(ex + ez) - Cr - DY
Toz = He - 2u(ey + ex) - Ctr - DY
(3.17)
TYZ - Wy sz - uYY Txy N UYZ

Pe = -De + NY + Pr/2

p_ = -Ce + Mg + PY/2.



Letting H = A

c

23

+ 2u, C = aM, and D = BN

(3.17) can be given in the form

XX

yy

2z

yz

g

+ 2ue

+ 2ue

X

y

+ 2ue
uZ

T

zX

= -BNe +

= -aMe +

Written in matrix form

- 1 r
Txx Ac+2u
T A

yy

T A

ZZ c

T 0

yz|

Tox 0

0

Xy

pg -oM

pf L-BN

oMz - BNY
aMz - BNY
aMz - BNY
= uy

y

NY + Pz/2

Mz + PY/2.

© O o o

© O O O ¥
o O O =T

© O O o o

=

—aM

- oM

" B O O o

-BN
-BN
-BN

Z "™ O o o

(3.18)

We can define, using (3.18), the bulk modulus of

Jjacketed compressibility as

Kc =

+

2n/3

(3.19)
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for this '"closed system" in which the fluid pores are
sealed.
Several rélationships between coefficients in (3.16)
can be determined by considering the non-negative nature
of the strain energy W. Using (3.19), strain energy

can be expressed as
2W = K, e® - Ce; - 2DeY¥ + Mg?

+ N¥2 + Dgy + 2u/3[(ey-ez)2
\ , (3.20)
+ (ez - ex) + (ex - ey) ]

2

+ yv2 ).
y Ys )

2
tuly, +v z

Letting e = ¢ = ¥ = 0 directly implies u 2 O.

By putting Yx = Yy = Yz and ex = ey = ez the strain

energy expression reduces to
2V = Kce2 - 2Cer - 2DeVY
(3.21)
+ Mg? + NY? + Pgvy.
By letting ¥ = 0 in (3.19), we obtain the expression

2W = Kcez - 2Cre + Mz?. (3.22)

Since W must be equal to or greater than zero, it can be

shown that

Kc 2 0 and M 2 0. (3.23)
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Using the quadratic form for solution with respect to e,

we find the discriminate
4c? ? - 4Kc(Mr,2 - 2W) >0
for real solutions. We find, for ¢ # O

KM - €% 2 , > 0. (3.24)
4

Similarly, by letting ¢ = O in (3.19), we obtain

2W = K, e? - 2DY + Nv2, (3.25)

This expression is never negative if

K, 20, N20, and KN - D? 2> 0. (3.26)

Again considering (3.20) when neither ¢ or Y is

zero, the discriminate yields
(2C; + 2DY¥)? - 4K, (Mz? + NY2 + Pz¥ - 2W) 2 0
when solving for e. This relationship can be modified to
(KM - C?)g? + (K,N - D?)¥? + (K P - 2CD)¥¢
(3.27)

- 2K W 2 0.

For real solutions for g, the discriminate of the solution

must be non-negative, that is
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(K,P - 2CD)?*¥? - 4(K.M - C?) (KN - D*)¥* - 2K W]
20.
Therefore, considering ¥ #0,
2 2 2p2 22
(KM - C )(KCN - D*) - K.“P° - 4K,CDP + 4 C°D
(3.28)
2 0.
For expression (3.28) never to be negative
2 p2
-Kc P 2 0.

It was shown from (3.23) that KC is a real number which is

greater than or equal to zero, thereby implying
P> <o0. (3.29)

Therefore, P=0, for P to be a real constant as assumed.
With proof that P = 0, the last two equations of
(3.18) can be simplified to
Py = -BNe + NY
(3.30)
Pg = -oMe + Mg
We can define, using (3.18), the bulk modulus for an

"open system' where Pg = 0 and Py = 0 as

K = A+ 2u/3 (3.31)
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which is the inverse of the "jacketed" compressibility.
The open system would correspond to a jacketed compression
test where the pore fluids are allowed to escape freely.
Carrying Biot's (1956) analogy between a porous media and
a thermoelastic solid, it can be concluded that Ac and A
correspond to the adiabatic and isothermal Lamé coefficients
for a nonporous medium,

Solving equations (3.30) for t and Y yields

r = 0e + p /M
g (3.32)
Y = Be + pf/N
Using
aZM BZN
A= Ac - N " M (3.33)
(3.18) can be transformed into the form
+ + = +
Txx apg Bpf 2uex Ae
+ + =92 + A
Tyy ¥ @Pg * BPp = Zuey + de
T + aop_ + PBpe = 2ue + le
22 g f z (3.34)
yz = Wk R Xy MY,

g = oce + p /M
g
Y + Be + pf/N.

Written in abbreviated form
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T + 8 + = 2ue.. + 6§.. A
i ij(apg Bpf) uelJ ij e

]

+ M
T = ae pg/

(3.35)
Y = Be + pf/N'
The stress-strain relations can now be written in
such a form as to yield the "effective stress,'" i.e. the

total stress in excess of local fluid pressures

T;j = Tij + Gij (pf + pg) (3.36)
or

T;j - 855 (1 - adp, + (1 - B)pg) (3.37)

= 2y eij + Gij Ae

L = ae + p,/M

Y = Be + pg/N.

The "effective stress" for a fluid-solid system is
commonly used in soil mechanics for the study of fluid
saturated clays.

The bulk modulus expressions for the two types of
systems defined as the 'closed system," (3.19), and the
"open system,'" (3.31), can be combined with (3.33) to

give



K, - K=, - 2= + . (3.38)
We obtain by combining (3.24) and (3.26)

(K, - B2N)N + (K, - a?M)M 2 0.
Substituting from (3.38) into the above relation

K (N + M - 2MN) + 2KMN + a2M? + B2N?2 2 0 (3.39)
For expression (3.39) never to be negative, we conclude

N+M-2MN 20 (3.40)

In summary, the non-negative nature of the strain
energy yields the following limits to the coefficients

of equations (3.18) and those derived from it,

(3.41)

N+M-2NM 20

(K - B2N)N =20 (K, - a?M)M 2 0

3.4 Governing Equations for Transient Phenomena

The equations for the quasi-static theory of a gas-

solid-liquid have been established. This theory shall
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now be extended to cover the transient phenomena. The
equations will describe the distribution of stress, fluid
contents, and displacements as a function of time under
given loads. It is important to note that the time
variable t enters the theory through Darcy's law. There-
fore, the transient problem in this case refers to a flow
problem.

Substitution of (3.35) into the equilibrium equation

neglecting body forces as before yields

Tij,j = 2u eij,j - Gij(apg + Bpf - Aekk),j (3.42)

Substitution of the strain displacement relation

e

ij = ¥(uj 5+ u; ) (3.43)

J,1

into (3.42) produces

Huj, 35 + (A 4 u)uj,.- - O

ji gri = BPg.g = 0. (3.44)

Equations (3.44) are a set of three equations with five
unknowns, u, v, w, pg, Pg. Two additional equations are
needed to complete the system. These equations can be
obtained by introducing Darcy's Law governing the flow of
each of the fluids.

First consider the flow of the liquid, assuming it
to be incompressible. Paria (1966) gives a modified form

of Darcy's law
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9
= C . - 3.45
vffz
where C_ = —
f _kf
viscosity of the liquid, ky the permeability of the

for an isotropic media, where Ve is the

medium to liquid, and f the liquid porosity. If the
solid displacements are zero, u; = 0, (3.45) reduces to
the classical form of Darcy's law for an undeformed
medium. Combining the divergence of (3.45) with the Pe
relation of (3.18) and (3.12) yields

]
"BNuk’ki + Nf(uk - Qk),ki = Cf‘a’f (Ql - ui). (3.46)

Darcy's equation for the flow of gas in the medium is

)
pg,i = Cg 3t (Ui - ui) (3.47)
veg®
with Cg== K for an isotropic medium, where Vg is the
g
viscosity of the gas, kg the gas permeability of the

medium, and g the gas porosity. The density, p, for
isothermal flow of gases is directly proportional to pg,

hence

az(sz) _ 2cg ggg
t

g (3.48)

2
axi
Carman (1956). Equation (3.48) can be combined with the

last two equations of (3.18) to produce



(no sum on j)
2C, 3
(-oMey, + Mc)z,JJ = —Eﬂ 37 (-OMey, + M) (3.49)

where as defined in (3.12)
T = g(ui - Ui),j' (3.50)
Combining these two equations gives

2
('GMuk,k + gM(uy - Ui),i)

yJJ
oCgoM 3
_ ) —
= 2CgM 33(uy - U3) 5 - ¢ 3% Yk,k- (3.51)

(no sum on j)
Substituting (3.45) and (3.47) into the equilibrium
equation (3.44) yields a set of nine differential equations
and nine unknown displacements when combined with (3.46)

and (3.51). Summarizing, the nine equations are

a-
Mug, gy P OOt g gy - 9Cg e (U - uy)

) =0

)
-BCf ?E (Ql = ul

(3.52)
“BNu gt Np (U5 - Q) 5

9
= C_f'é? (Ql = ul)

(—OLMuk’k + gM(ui - Ui),i)qu

_ ] 2CoaMm ]
=2 CgM 33 ((uy - Uy) 4) + __g__ 7% Y% k.

’

(no sum on q)
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Written in conventional notation, these equations are

uv2u + (A + p)grad e - aCqg g% (U - )
9 (3.53)

- BC 3¢

@-® =0
-BNVe + NyV2(F - Q) = C; 3% (@ - W)

VZ(-aMe + gMV(W - U)?2

- 2gM o5 (V(E - V) + zcgaM 3.
The nine equations governing the transient problem

are coupled with each other and hence would have to be

solved simultaneously. As Paria (1966) points out for

a liquid-solid media, this implies that the flow fields

and the elastic field are not merely superposed, but that

they react upon each other. This could also be concluded

directly from the constitutive equations (3.18).

3.5 Determination of Elastic Coefficients

The following series of hypothetical tests are
intended to show the physical meaning of the elastic co-
efficients o, B, M, N, and A,. The coefficient u will be
assumed to be determined by standard means.

A jacketed test refers to an experiment during which
the sample is placed within an impermeable membrane. The

pressure of the gas, pg, and the pressure of the liquid,
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Py, are assumed controllable through tubes which penetrate
the membrane and are connected to the appropriate region.

See Figure 3.2.

3.5.1 Jacketed Compressibility Test - No Liquid Flow

Consider a jacketed specimen subjected to a hydro-

static pressure P' such that

= P! = = = P! = 0.
pg /a Tox Tyy Tos P Y 0

Define the compressibility under the given test conditions

as
§ = —, (3.54)
Two relationships are obtained from (3.18)

P' = X, 8P' + 2u/3 6P' - oMz (3.55)

c

P'/a = oM6P' + Mg. (3.56)
Assuming P' # 0, combining (3.55) and (3.56) gives

1 - a/a = (Ac + 2u/3 - a?M)§. (3.57)
From (3.24)

Ao + 2u/3 -a2M > 0,

therefore, @/a approaches unity as § approaches zero which

corresponds to an incompressible media.
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- ~

SAMPLE WITHIN AN
IMPERMEABLE MEMBRANE

Figure 3.2 Specimen for Hypothetical Tests



36
3.5.2 Jacketed Compressibility Test - No Gas Flow

Consider that a jacketed specimen subjected to a

hydrostatic pressure P' such that

Py = P’ Txx = Tyy = Tzz = -p' g = 0.
Define the compressibility for these conditions as

A = Fg. (3.58)
Two relations can be obtained from (3.18)

-P' = -A,AP' - 21u/3 A P' - BNY (3.59)

P' = BNAP' + NY. (3.60)
Assuming P' # O implies

1 - 8= (Ac + 2u/3 - B2N)A. (3.61)
Equations (3.26) gives

Ao *+ 2u/3 - B*N 2 0

therefore B equals one in the limit (incompressible case)
and A = 0.
Combining the results of the first two tests gives

the relation

+ B2N = + a2y, (3.62)
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3.5.3 Jacketed Compressibility Test - No Liquid Flow,

No Gas Pressure

Consider a jacketed specimen subjected to a hydro-

static pressure P' such that

]
o

pg =0 Tex = Tyy = Tzz = -p' ¥
Define the compressibility under these conditions as

K= =35 . (3.63)
Equations (3.18) reduce to

-P' = -x(A, + 2u/3)P' - aMg (3.64)
and

0 = aMkP' + Mg. (3.65)

Assuming P' # O, the combining of (3.64) and (3.65)

yields
1/ =2, + 2u/3 - aZM. (3.66)

Combining the results of the first and third tests
allows K to be expressed in terms of two measurable

compressibilities
a=a(1-% (3.67)

For a highly compressible gas, the compressibility §

would be very near that of K implying a small value for ©.
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When pg = 0, (3.32) reduces to

and o can be interpreted as the ratio of the change in
gas volume to dilitation for the jacketed test. If the
gas region within the specimen is connected with the
atmosphere by a tube, 7 would be the amount of gas flow-
ing through the tube.

Another interpretation of o can be obtained from
the first three equations of (3.34), where o is that

portion of the gaseous pressure which produces strains.
3.5.4 Jacketed Compressibility Test - No Gas Flow, No
Liquid Pressure

Consider a jacketed specimen subjected to a hydro-

static pressure such that
pg = 0 T =T =T = -p' r = 0.
Define the compressibility under these test conditions as
0 = '?5" . (3.68)
Equations (3.18) again reduce to two equations

p' = (kc + 2p/3) 8 P' + BNY (3.69)

and

0 = BNOP' + NY. (3.70)
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Considering P' # 0, and combining (3.69) and (3.70)

produces the equation
1/6 = A, + 2u/3 - B?N. (3.71)

When the result (3.71) is combined with that of Test

3.5.2, a can be expressed in terms of two measured

compressibilities
8 1 £ (3.72)
o .

The combination of (3.71) and the results of Test

3.5.3 yields the relation
1/0 + B2N = 1/ + a’M (3.73)

which can be shown to be another form of (3.62).
Considering the definition of ¥ for a uniform

prorsity, (3.12), and (3.42) can produce the expression

Y = f(ui,i - Qi,i) = Be + pf/N

(3.74)
where eS and ef are the dilitation of the solid and the
liquid regions, respectively. If the liquid is in-
compressible, i.e. er = 0, then

es p

B=1Ff 45 - - (3.75)

It can be seen than pf/N 2 0 and es/e < 1, therefore



40
B 2 f.

The value of A could be much smaller than the value
of © for an incompressible liquid and a highly compressed
gas, where the liquid is allowed to escape, leaving the
solid and gas portions only to support the load. This
implies that B is very close to unity for a soft solid

material and air.

3.5.5 Jacketed Compressibility Test - No Liquid Flow,

No Gas Flow

Consider a jacketed specimen subjected to a hydro-

static pressure P' such that

T =T =T = -p! r =Y = 0.
XX vy 2z

Define the compressibility under these test conditions as
w = - ¢e/P'. (3.76)
Substituting these conditions into (3.18),
-P' = - (Ac + 2pu/3)wP’'. (3.77)
Considering P' # 0, implies
1

o= X (3.78a)
c w 3

= X, + 2yu. (3.78b)
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Combining (3.66) and (3.71) with (3.78b) gives

1 + B2N (3.79)

Al Ol

+ a?M.

M and N can now be solved for in terms of measured

compressibilities;
1 1.1 1 1 5§ -2
M= -%az = (-0 -=-5%) (3.80)
_a1_ 1.1 1 1 8,72
N = (; - O)a_z = (w - O)(1 -%) (3.81)

3.5.6 Alternate Procedure for Determination of M

Consider an unjacketed specimen subjected to a hydro-

static pressure P' such that
= p!' Y = 0.
pg
Define the compressibility under these conditions as
no=-0or . (3.82)

Also define a second gas flow related parameter

Y1= g/P'. (3.83)
Equations (3.18) can be used to obtain

P' = aMnP' + My P'.

For P' # 0, the above relation shows that M can be
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expressed as

1

M=a—n-—+—YT . (3.84)

Biot and Willis (1957) describe a possible experi-
mental procedure for determination of y,. A unit volume
of porous material is placed within a closed chamber. Gas
is injected into the chamber under pressure and the
volume of injected fluid is measured. The volume of gas
injected per unit pressure will be the sum of the solid-
liquid compressibility ¢, the volume of the gas which has
entered the pores yi1, and a fixed quantity describing the
elastic properties of the chamber and the gas. The
differences between the volumes injected with and without

the porous material in the chamber will be given by

(3.85)

AV = ¢ + Yl - Cg

where Cg is the gas compressibility.

Measurement of the unjacketed compressibility n, and
knowledge of the gas compressibility and the gas porosity
provide an alternative method for determination of the
coefficient M. During the unjacketed test, gas will flow
in and out such that the gas pore space and the solid-
liquid matrix must undergo the same strain for linearly
elastic media. Therefore, the porosity of the gas, g,
will not undergo any strain. The dilitation of the gas

can be given by
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= - ' =
eg CgP Ui,i (3.86)

where Cg is the compressibility of the gas. The dilitation
of the solid-liquid region can be expressed as the sum of
the solid dilitation plus the liquid dilitation. If the
fluid is considered incompressible and the relative flow,
Y, is zero, the total dilitation of the solid-liquid
region is made up of the dilitation of the solid alone,
i.e.

e = -nP' =u

s i,i

Y can now be expressed in terms of compressibilities as
1

g
Y =I3—'—=

. o = g(Cy - n). (3.87)

3.5.7 Alternate Procedure for Determination of N

Consider a jacketed specimen subjected to a hydro-

static pressure such that
pg = P! T =T =T = -p’ r = 0.

As in second test, define the compressibility under these

conditions as

A= - (3.88)
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Also define a second liquid flow parameter

Y, = ¥/P". (3.89)
Equations (3.18) can be used to obtain

P' = BNAP' + YZNP'. (3.90)

Considering P' # O, implies

1
N=———7 . (3.91)
A+
B Y,

During the jacketed test with pf equal to the applied
pressure, the liquid will flow in and out such that the
fluid pore space and the solid-gas matrix must undergo the
same strain for a linearly elastic media. Therefore, the
porosity, f, will not undergo any strain. If the liquid

is considered incompressible, e_, = 0, the sum of the

f
solid and gas dilitation must be zero, i.e.

eg = -eg = —Cg(Apg). (3.92)

Obtaining from (3.18) Apg for a change in P' when ¢ = O,

eg can be expressed as

= QO = =0 '_ .93
eg CgMe CgMAP (3 )

Using definition (3.12) for VY,

Yy = —=— = -aC_fMA. (3.94)
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N can now be expressed in terms of the gas compressibility

and liquid porosity

3.6 Closure
Equations (3.35),

+ Bpf) = Gi-Ae + 2y e,

.+ .
iy * 85500 J 1]
¢ = ae + py/M (3.35)
¥ = Be + pg/N,

are similar to the conventional Hooke's law for a material
made up of gas, solid, and liquid. The equations include
the influence on the continuum of the two fluids which

are not in the conventional Hooke's law formulation. Four
additional material constants, o, B, M, and N, are
necessary for complete use of the formulation. The
pressure of the gas can be considered zero under most
naturally occurring conditions; therefore, only one
parameter, B, has a significant effect on the stress
values.

Writing the set of equations in matrix form,
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po -y puo —y o -
T A+2u A A 0O 0 O o B ex
T A A+2 A 0O 0 O a e

yy Y B y
Tye A A AM2u 0 0 0 «a B eZ
T 0 0 0 0O 0 O 0

Xy . YXY
Tz 0 0 0 0O w O O 0 Yyz
T 0 0 0 0 O 0 0

vz u sz
g a o o o O o -1 O —pg
Y 8 B B 0O 0 O o -1/M -p

allows one to see they can be used to replace the
conventional relations for development of a finite
element model. Associating relative flows with the
stress vector and pressures with the strain vector is
the most convenient formulation.

It is important to note several of the advantages
of the present approach. With this approach, it is not
necessary to describe the structure of individual cells
or the type of interaction which occurs between cells.
The model assumes only homogeneity of action in a bulk
material sense, not uniformity of cell shape and
composition. Measurement of material properties is made

on bulk materials not generalized from the action of
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individual cells. 1In addition, neither the gas or liquid
porosity needs to be determined using this formulation
although thé effects of both fluids are included in the
model.

The governing equations for the transient phenomena,
i.e., the equations governing the medium with fluids in
motion, were developed by introduction of Darcy's law of
flows for the gas and the liquid (see Equation (3.53)).
Additional material properties are necessary for these
equations including the.fluid porosity terms and terms
describing the properties of the fluids. These equations
imply that the fluid flows and elastic action are not
merely superimposed, but are coupled together. Assuming
incompressibility of all three materials would uncouple the

equations involved in describing the action of the body.



IV. EXPERIMENTAL DETERMINATION OF COEFFICIENTS o AND M
FOR APPLE FLESH

A device for applying a hydrostatic pressure to a
cylindrical specimen of apple flesh was used to deter-
mine the three bulk compressibilities, 6§, k, and w, as
defined in (3.54), (3.63), and (3.76). The change in
volume (volumetric strain) of a cylindrical specimen was
related to the applied hydrostatic stress while using
different values for the gas pressure, pg. The liquid
flow was assumed to be zero in all cases. Equations
(3.67) and (3.80) were used to calculate @ and M after
the three compressibilities were determined. Tests
simulating the hypothetical cases discussed in Sections
3.5.2 and 3.5.4 were not attempted because of the diffi-
culty involved in measuring and controlling turgor pressure,

pf, within the tissue.

4.1 Equipment and Procedure

A device developed by Finney (1963) and used by
Brusewitz (1969) was used in this work. The pressure
chamber was modified to allow the hydrostatic pressure
outside the specimen to vary independently of the air

48
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pressure within the specimen. The equipment is shown in
Figure 4.1 and schematically in Figure 4.2.

A carefully cut cylindrical sample 3.81 cm (1.5 in)
long with 2.54 cm (1.0 in) diameter was placed on the
sample stand and then covered with a highly flexible
membrane. The membrane was sealed around the edge of
the stand, thereby prohibiting water from entering the
sample. Air pressure and air flow for the sample were
controlled through the sample stand. Water was used
to apply the external pressure of 137.9 kPa (20 psi). The
change in water level within a precision bored glass
column was used to measure the change in volume within
the system. The column had an inside diameter of 5.00
+ 0.01 mm (0.1968 + 0.0004 in). Volume change could be
measured with a sensitivity of + 0.00982 cm3 (0.006 in3).
All water was boiled to remove the air and then allowed
to return to room temperature before each test. It was
necessary to remove the water from the system between
the calibration run and the actual test to insert the
test sample.

A calibration curve was determined before each test
to account for system characteristics. A steel cylinder
was used as the sample during calibration. The system
was pressurized to 171.9 kPa (25 psi) before each test

to check for leaks.
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Figure 4.1. Equipment for Measurement of Bulk

Compressibility
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- TO AIR SUPPLY

®<___ PRESSURE REGULATOR |

:_‘_@-4— PRESSURE GUAGE |

—~— GRADUATED GLASS COLUMN

<—— FILL VALVE

Jl

~<—— CHAMBER

SAMPLE

mn | o P SAMPLE STAND

) ~—— PRESSURE GUAGE 2

®<— PRESSURE REGULATOR 2

<— TO AIR SUPPLY

Figure 4.2, Bulk Compression Apparatus
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Pressure regulator two (Figure 4.2) was removed
for determination of k making the air pressure within
the sample equal to zero gauge pressure. A plug was in-
serted in the sample stand for determination of w. The
plug prohibited air from flowing out of the sample.

Pressure regulator two (Figure 4.2) was used to vary
the internal pressure of the sample for determination of
§. The internal pressure was applied after the external
hydrostatic pressure had been applied. Readings were
taken for internal pressures of 34.5, 51.7, 68.8, 86.2,
and 103.4 kPa (5, 7.5, 10, 12.5, and 15 psi).

The two coefficients, o and M, were calculated once
the three compressibilities had been determined. Alpha
was plotted as a function of the gas pressure using

(3.67)
a=a(l - 6/x)

where a is the ratio of the gas to the applied hydro-
static pressure. The value of a at pg = 0 was deter-
mined by projecting the regression line through the

vertical axis. M was calculated using (3.81) |

-1 _ 1,1
M= -

using a at pg = 0.
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4.2 Results of Experimentation

The equipment was found to be unsatisfactory for the
determination of the coefficients & and M. The three
major problem areas were repeatability of calibration,
resolution, and control of applied pressures. The use of
the sample stand and membrane to enclose the sample appears
to be a satisfactory technique, but the construction of
the pressure chamber has some undesirable characteristics.
Consistent measurable differences between the two
compressibilities x and w were found for the several
varieties of apples tested. In all cases, k was found to
be larger than w. Unsatisfactory repeatability of
calibration made determination of the absolute magnitude
of the difference unreliable. The coefficient o appeared
to be a nearly linear increasing function of the gas
pressure, p,.

Calibration of the system was necessary due to the
expansion of the equipment and compression of the fluid.
The calibration indicated that the system deformation was
of the same order of magnitude as that to be measured in
the deformed sample. It would be necessary to reduce the
volume change of the apparatus and reduce the variability

of the volume change for reliable results.
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4.3 Discussion of Apparatus Limitations

The unsatisfactory calibration repeatability of the
present system stems from several sources., The large
expansion of the apparatus was a major source of error.
This expansion was mainly due to the method of attaching
the top portion of the apparatus. A rubber gasket, 0.318
cm (0.125 in) thick, was compressed between the upper and
lower portions by tightening four bolts. The inability
to maintain constant bolt tension created variation in
calibration which could not be corrected. The need to
remove the water tb change samples was a source of error.
This disturbance may have created significant wvariability
in the compressibility of the water.

Readings for the fluid level in the glass column
could be made to + 0.05 mm (0.002 in). That is a volume
change of * 0.00982 cm?® (0.0006 in?). A resolution of
+ 0.005 cm?® (0.0003 in?) or less would be necessary to
produce satisfactory results. This resolution is
equivalent to a diameter of 3 mm (0.118 in) or less. This
size of column would be impractical unless the variation
of the apparatus itself is reduced.

The system was noted to be very sensitive to changes
in room temperature during operation. A change of 1°c
could produce a water volume change of approximately
0.2557 cm® (0.00867 in?) for the amount of water in the

present system.
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Standard gas pressure regulators were used to control
pressures. Difficulty was experienced in holding stable
readings with these regulators. Variation in pressure
with time at one regulator setting also contributed to
the difficulties encountered in determing a and M.
Suggestions for an improved apparatus have been in-

cluded in Section IV, Suggestions for Further Study.



V. FINITE ELEMENT FORMULATION

The finite element method is a numerical procedure
for solving differential equations and can be used in
conjunction with the constitutive equations developed
for a gas-solid-liquid medium to calculate stresses in a
body of arbitrary shape. The element equations can be
derived by minimizing the potential energy of the system.
The assemblage of the element equations yields a system
of algebraic equations which are solved for the desired
quantities. A detailed discussion of the general theory
of the finite element method is given in Zienkiewicz
(1971), Oden (1972), Desai and Abel (1972), and Martin
and Carey (1973).

‘The region under consideration is divided into small
elements connected at node points for the finite element
formulation. The unknowns, stresses, gas pressure, and
liquid pressure, are approximated over each element by
polynomials. The polynomials for the simplex triangular

axisymmetric element (Figure 5.1) are

=
|

=0 +C0 r 4+ 7
1 2 3

<
]

B+ 62r+Baz (5.1)
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Figure 5.1. Simplex Triangular Axisymmetric Element
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Solving the equations for the coefficients using the
nodal values of u, v,-pg,and-pf establishes the inter-
polating polynomials for the region. Interpolating
polynomials are expressed as a product of shape functions,

Ni's, and the nodal values. In the above case

u = Nlu1 + N2u2 + N3u3

v = va1 + sz2 + N3v3

(5.2)

|
T
|

= N, (- + N, (- + N_(-
—pf = Nl(-pfl) + Nz(-pfz) + N3(—pf3)

with shape functions

N, = (a, + byr + clz)/ZA

1 1 1
N, = (a2 + byr + czz)/ZA
N3 = (a3 + b3r + c3z)/2A
where
a; = rzz3 - r3z2
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etc., in cyclic order,

and A is the area of the element.

More complicated shape functions can be derived for poly-

nomials involving higher-order terms.

5.1 Development of the Variational Equations

Variational equations for the present theory were
developed following the procedure as outlined by Segerlind
(1974) for solid mechanics. Example finite element
equations in the following development are for the axi-
symmetric case. The column vector of nodal values, {U}?,
consists of the nodal displacements, and pressure terms
-Ps and -pg for the gas-solid-1liquid theory. This column
vector is

T
{U} = [U »V 7-pg] ’pfl’ <+ ., u ;vn:-p n’_pfn]

1 1
where n is the number of nodes and u and v the nodal
displacements parallel to the R and Z axes, respectively.

The total potential energy of the system can be

expressed as

I = SE - WL (5.4)

2 Standard matrix notation common to finite element work

is used in the following development: { }'s denote a
column vector, [ ] a matrix, superscript T denotes the
transpose of the matrix.
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where SE is the strain energy and WL the work done by
the internal and applied loads (Segerlind, 1974). For a
body subdivided into a number of elements, the expression

for the total potential can be written in summation form
E
= I (SE - WL, ) (5.5)

where E is the number of elements and SE(e) and WL(e) are
the respective components in each element.
The strain energy for an arbitrary differential

volume is

d(SE. ) = #{e} {r}dv. (5.6)

(e)
Equation (3.10) simplifies to the above form by letting

T
{e}

]
~—
™
m
o™

0’ err -pgr —pf}
T (5.7)

{1} T,¥}.

]
-~
o]
-

Assuming that each force and the corresponding displace-
ment are linear, the total strain energy is obtained by

integrating over the volume of the body giving

[} {}av

Vie)

S
Ele)

(5.8)
T _T
f3{u} [B [p] Bl{U}av.

v
(e)
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The material properties matrix, [ D], is defined in

{t} = [p) {e}. This matrix is

R Ry _Ru 0 a B
1-u 1-p
R R 0 a B
1-p
[D] = R 0 o B (5.9)
R(1-2n)
symmetric 2(1-u) 0 0
-1/M 0
-1/N
with
R = E(I'U)

(L + w)(1 - 2u)

The B matrix is defined by the relation {e} = [B] {U} and
contains shape functions as well as their derivatives.

The general form of [ B] is
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3N1 aNz 3Nn —1
o 2o =20 0 .0 Mo o
3 3
Mo 00 Mo o0 0 ... %o o o
ar or or
N
M o 00 M2 0o o0 o T oo o0 o
T r r
r
3N
1 oN 3 N. N
— —L 0 0 Nz Wy 5 0 3 g o
zZ or 3Z Tr 3z o
O 0 NO O 0 N, O 0 0 N O
0O 0 0N O 0 0 N 0O 0 0 N
n

where n is the number of nodes.

The work done by the applied loads can be separated
into four components:

1. Work due to concentrated loads,

2. Work resulting from the stress components
acting on the outside surface,

3. Work due to movement of liquid across the out-
side boundary, and

4. Work due to movement of gas across the outside
boundary.

The work due to body forces will be neglected in this

analysis.
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The work done by a concentrated force is the value
of the force multiplied by the distance through which it

acts. Denoting the nodal forces as

T

{p}" = {prl, P, 0,0, ..., P, P, 0, 0} (5.11)
the product becomes
T T
W, = {U} {P} = {P} {U}. (5.12)

The zeros placed in the {P} matrix make the relation
compatible with the displacement matrix as defined in
relation (5.3).

Work done by the stress components on the surface is

described by

wq = éiuqr + vq,)dS, (5.13)

where u and v are the displacements and q, and q, are the
stress components parallel to the coordinate axes.

Equation (5.13) can also be written as

T T
W= 2¢ [{U} M1 {gr} dL;. (5.14)
q A z
T . .
The[ M;] 's are used to denote the shape function matrices.
The work done by the flow of the liquid across the

boundary can be expressed using (3.6) and (3.5)

W, = é v pdSy = é[ M,]{U}vdS,. (5.15)
2 2
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A similar expression for the gas flow is

w =/ wpodS, = / [M3J{U}wds

€ 5 3 5,

3" (5.16)

The total potential energy is

E T T
n=z: [ (3{uy(B)[pIBIHU})AV
e=1 V (e)
(e)

T T .q m T

-2 £ {u} {u] {q;}rdL1 - 27 ££U} [MZJ{V(e)}rsz
1

T T T

-27 £§U} [MQ {w(e)}rdL3 - {u} {p}. (5.17)

Minimization of the energy expression produces

N o™=

([k Huy - {f }) = {p} (5.18)
1 (e) (e)

e

where the element stiffness matrix is

T
[k(e)] = é [(B] " [pI[ Blav
(e)

(e)

and the element force matrix is

- T .q
{(rt Y =2n( [Mﬂ {q;} dL

(e) A, 1

T
+ i[Mz] {v(e)}sz

2

T
s e
3
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5.2 Implementation of the Method

An existing axisymmetric finite element computer
program and associated subroutines were modified for use
with the present theory. Modifications included in-
corporating the new constitutive equations and allowing
for four unknowns at each node. This program utilized
isoparametric elements. Figure 5.2 outlines the structure
of the computer solution. The negative values on the
main diagonal of the material properties matrix, [ﬁ],
produced negative terms on the diagonal of the stiffness
matrix not found in the conventional formulation. A sub-
routine, SIGN, was used to change the sign of a negative
terms on the main diagonal of the stiffness matrix before
solving the system of equations.

A spherical body with a radius of 3.33 cm (1.31 in)
was selected for study. The symmetry of the sphere and
a load about the vertical axis made it necessary to
consider only one quadrant, The body was subdivided into
22 elements. Figure 5.3, using quadratic quadrilaterals
(8 nodes/element) and quadratic triangles (6 nodes/element)
to fit the curved surfaces of the body and approximate
the unknowns within each element. A layer of uniformly
thick elements, 0.1524 cm (0.06 in), was placed at the

surface to represent the skin of a fruit. Smaller elements
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STA@T

READ
- Characteristics of Grid

¥
INITIALIZATION

- Set Size of Global Stiffness Matrix
- Initialize Global Stiffness Matrix

¥
CALL SUBROUTINE

- to calculate element stiffness matrix [ BESMAXS

¥
INSERT ELEMENT STIFFNESS
. INTO GLOBAL STIFFNESS MATRIX
v
CALL SUBROUTINES

- to find displacements |< BDYVAL - Insert

B.C.'s

* SIGN
“
* DCMPB
<+
< SLVED

¥

CALL SUBROUTINE
- to calculate stresses BESTAXS
¥
'OUH%H‘I
¥
END

Figure 5.2. Outline of Finite Element Computer Program
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Figure 5.3. Grid for Finite Element Application
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were used at the top to increase the accuracy since the
load was applied parallel to the z-axis.

Determination of the element matrix for an iso-
parametric element requires numerical integration. Nine
integration points were used for each quadrilateral and
seven for each triangle. Location of the integration
points and weighting factors can be found in Zienkiewicz
(1971) or Segerlind (1974).

Material properties (Mohsenin, 1970) were chosen to
simulate the properties of an apple. An elastic modulus
of 13790 kPa (2000 psi) and a Poisson's ratio of 0.30
were used for skin. An elastic modulus of 5171 kPa (750
psi) was used for the parenchyma (flesh). These values
for the skin and parenchyma were used in all the numerical
problems. Poisson's ratio of the parenchyma was varied
to determine its influence on the stress distribution.

The following values were used for the other material

properties:
Parenchyma
a = 0.1 M = 6895 kPa (1000 psi)
B = 0.95 N = 3.10 kPa (0.45 psi)
Skin
o = 0.0 M = 6895 kPa (1000 psi)
B =0.0 N = 3.10 kPa (0.45 psi).
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The values of the gas pressure, -pg, and the liquid
pressure, -Ps» were assumed constant throughout the whole
body. A pressure of 0 kPa was used for the gas pressure

in all éases.

5.3 Results of Finite Element Analysis

Three types of numerical problems were run using the

quarter sphere grid described in Section 5.2.

5.3.1 Unrestrained Sphere

The first problem simulated a body with no skin.
One set of material properties was used for the entire
body, which was subjected to a turgor pressure and allowed
to expand freely, It was determined that a homogeneous
body expands due to turgor pressure, -pf, but no stresses
are developed within the body. The 3.33 cm (1.31 in)

radius sphere with the following material properties

E = 5171 kPa (750 psi) = 0.25
a = 0.10 M = 6895 kPa (1000 psi)
B = 0.95 N = 3.10 kPa (0.45 psi)

enlarged by 6.34 percent in the radial direction due to

a turgor pressure of 689.5 kPa (100 psi).
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5.3.2 Restrained Sphere

The second problem simulated the action of an
apple with no external restraints. A thin layer with
a higher elastic modulus was used to represent the skin.
The turgor pressure in this case created stress in both
the parenchyma of the apple and the skin. The stress in
the parenchyma was compressive and uniform throughout the
body. This compressive stress was directly proportional
to the turgor pressure for any given Poisson's ratio.

The magnitudes of all stress components in both regions,
however, were highly dependent on Poisson's ratio. Figure
5.4 shows the hydrostatic stress in the center of the
apple for various Poisson's ratios. The turgor pressure
was 2758 kPa (400 psi) in each case.

The turgor pressure created tension and shear
stresses in the skin. Figure 5.5 shows the relationship
between maximum principal stress and maximum shear stress
in the skin as related to the Poisson's ratio of the
parenchyma. Turgor pressure was 2758 kPa (400 psi) in

each case.

5.3.3 Flat Plate Contact

The third numerical study determined the stress
distribution within the spherical body due to compression

by a flat plate perpendicular to the vertical axis of
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.symmetry. A two-step procedure was necessary to solve
the problem. The expansion due to turgor pressure was
determined. The set deflection was then subtracted from
the expanded equilibrium state and boundary conditions
input for the second step. The body was restrained to
meet the flat plate deflection conditions during the
second run.

The Body shown in Figure 5.3 was given the follow-

ing material properties:

Skin Parenchyma
E = 13790 kPa (2000 psi) E = 5171 kPa (750 psi)
p = 0.30 u = 0.35
a = 0.0 a = 0.10
B =0.0 B = 0.95
M = 6895 kPa (1000 psi) M = 6895 kPa (1000 psi)
N = 3,10 kPa (0.45 psi) N = 3.10 kPa (0.45 psi)

The body with no external restraints expanded 0.3138 cm
(0.1236 in) for a turgor pressure, -pf, of -2068 kPa
(300 psi). The parenchyma developed by a hydrostatic
stress of -186.8 kPa (-27.1 psi). A maximum principal
stress of 2537 kPa (368 psi) and a maximum shear stress
of 1324 kPa (192 psi) developed in the center of the
skin.

Expansion of the body due to turgor pressure was
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restrained for the second run to yield a deflection of
0.0762 cm (0.03 in) along the vertical axis of symmetry.
The plane of contact to produce a flat surface at that
level had a radius of slightly greater than 0.86 cm
(0.34 in). The deflection developed sizable maximum
shear stresses within the parenchyma, as shown in Figure
5.6. The maximum shear stress of 227.5 kPa (33 psi)
appeared approximately 0.318 cm (0.125 in) below the
surface along the axis of symmetry. Shear stress in the
skin under the area of contact was decreased slightly on
the surface and increased slightly on the inner side.
Effect on the shear stresses in the skin damped out
rapidly beyond the area of contact.

The principal stress of the largest absolute mag-
nitude was a compressive stress. The stress increased in
magnitude from -186.8 kPa (-27.1 psi), as it would be due

to turgor pressure alone, as shown in Figure 5.7.

5,4 Closure

Fruit splitting generally does not involve external
loading but rather variation of the internal conditions.
The gas-solid-liquid model developed, used in conjunction
with the finite element method, has been shown to be
capable of describing the stress distribution within a
fruit created by variation of internal conditions such as

turgor pressure. Good agreement exists between the
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results of the numerical problems and the observations of
Considine and Kriedeman (1972) (see page 9, Review of
Literature). A fruit without skin expanded freely due to
increased 1liquid (turgor) pressure in both cases. The
restraint created by the skin produced stresses in the

body with turgor pressure.



VI. SUGGESTIONS FOR FURTHER STUDY

This work has established a theory for a gas-solid-
liquid medium similar to a biological material such as
a fruit. The finite element method was shown applicable
for solution of numerical problems. Numerous numerical
problems can now be approached using the theory in con-
Jjunction with the finite element method. Several areas

which should be given high priority are:

1. Study the effect of skin properties; i. e.
thickness, elastic modulus, etc., on the

stress within the skin and body.

2. Consider the effect of external distributed

loads.

3. Consider the case where the body is subjected
to large gas pressure, such as in the pressure

bomb technique for measuring turgor pressure.

4. Extend the program capabilities to consider the

viscoelastic material.

78
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More accurate determination of material properties
is needed before more specific use of the model can be
made. Equipment needs to be developed which has
satisfactory resolution for determining bulk compress-
ibilities. A suggested design is shown in Figure 6.1 for
a bulk compressibility apparatus. Pressure sources other
than gas regulators should be considered. A column of
heavy liquid such as mercury is one possible pressure
source.

The present theory should be extended to include
viscoelastic materials. Biot (1961) has used the corre-
spondence principle to develop the viscoelastic case for

a fluid—solid'medium.
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