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ABSTRACT

CONTINUUM THEORY FOR GAS-SOLID-LIQUID MEDIA

By

Robert John Gustafson

The objective of this work was to develop a continuum

model which adequately describes the mechanical behavior

of a biological product. The medium was assumed con-

structed of two sets of interconnected pores separated by

a solid. One set of pores contained a gas; the other a

liquid. Constitutive and stress-strain relations were

derived through energy considerations for the gas-solid-

liquid medium.

A series of loading conditions was outlined for

determination of the material constants. Experimental

attempts were made to determine the compressibility of

apple parenchyma using three loading conditions which

involved the internal gas pressure and a hydrostatic

pressure. Apparatus limitations prevented successful

determination of the compressibilities. Suggestions for

improvement of the apparatus were made.



Robert John Gustafson

The finite element method was used to obtain

numerical solutions to the axisymmetric boundary value

problem for the gas—solid-liquid medium. The stress

distribution in a Spherical body without a skin (un-

restrained), with a skin (restrained), and a restrained

body subjected to flat plate compression were studied.

Internal liquid pressure was varied between 689.5 kPa

(100 psi) and 2758 kPa (400 psi) using 689.5 kPa (100 psi)

increments while a zero gas pressure was used. Material

properties of an apple were used in the contitutive

equations.

An unrestrained homogeneous body with the liquid

under pressure expanded without developing stress. The

restrained body was found to have a hydrostatic (com-

pressive) stress in the parenchyma and tension stress in

the skin. Flat plate compression combined with the

liquid pressure produced shear stresses and a hydrostatic

stress in the parenchyma.

     

 

I
M.

Approveo

  

Department Chairman



CONTINUUM THEORY FOR GAS-SOLID-LIQUID MEDIA

BY

Robert John Gustafson

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Agricultural Engineering

1974



ACKNOWLEDGMENTS

The author sincerely appreciates the assistance of

all who have aided in this study. He is especially

appreciative, however, of the counsel and guidance pro-

vided by his major professor, Dr. Larry J. Segerlind

(Agricultural Engineering), during this graduate program.

To the other members of the guidance committee, Dr.

G. E. Mase (Metallurgy, Mechanics, and Material Science),

Dr. G. E. Merva, and Dr. J. B. Holtman (Agricultural

Engineering), the author expresses his deepest gratitude

for their time, professional interest, and constructive

suggestions.

Appreciation is also expressed to the Agricultural

Engineering Department for the assistantship and other

financial support given.

11



TABLE OF CONTENTS

LIST OF FIGURES

ABBREVIATIONS AND SYMBOLS

I. INTRODUCTION

II. REVIEW OF LITERATURE

2.1 Mechanical PrOperties of Plant

Materials . . . .

2.2 Biot Theory of Elastic Porous Media

III. DEVELOPMENT OF QUASI-STATIC THEORY OF A

GAS-SOLID-LIQUID SYSTEM . . .

3.1 Model Description

3.2 Theoretical Development

3.3 Linear Stress-Strain Relations

3.4 Governing Equations for Transient

Phenomena

3.5 Determination of Elastic Coefficients

3.5.1 Jacketed Compressibility Test

- No Liquid Flow .

3.5.2 Jacketed Compressibility Test

- No Gas Flow . .

3.5.3 Jacketed Compressibility Test

- No Liquid Flow, No Gas

Pressure .

iii

10

13

13

15

21

29

33

34

36

37



Page

3.5.4 Jacketed Compressibility Test

- No Gas Flow, No Liquid Pressure . 38

3.5.5 Jacketed Compressibility Test

- No Liquid Flow, No Gas Flow . . 40

3.5.6 Alternate Procedure for Determination

of M . . . . . . . 41

3.5.7 Alternate Procedure for Determination

of N . . . . . . . 43

3.6 Closure . . . . . . . 45

IV. EXPERIMENTAL DETERMINATION OF COEFFICIENTS a

AND M-FOR APPLE FLESH . . . . . . 48

4.1 Equipment and Procedure . . . . 48

4.2 Results of Experimentation . . . . 53

4.3 Discussion of Apparatus Limitations . . 54

V. FINITE ELEMENT FORMULATION . . . . . 56

5.1 Development of the Variational Equations . 59

5.2 Implementation of the Method . . . 65

5.3 Results of Finite Element Analysis . . 69

5.3.1 Unrestrained Sphere . . . . 69

5.3.2 Restrained Sphere . . . . 70

5.3.3 Flat Plate Contact . . . . 70

5.4 Closure . . . . . . . 74

VI. SUGGESTIONS FOR FURTHER STUDY . . . . 78

BIBLIOGRAPHY . . . . . . . . 81

iv



Figure

301

0
1
0
1
0
1
0
1
0
0
9
-

(
J
'
l
I
v
D
-
O
J
N
H
N

LIST OF FIGURES

Differential Element of Medium

Equipment for Measurement of Bulk

Compressibility

Bulk Compression Apparatus

Simplex Triangular AxiSymmetric Element

Outline of Finite Element Computer Program

Grid for Finite Element Application

Hydrostatic Stress in Parenchyma of Body

Maximum Principal Stress and Shear Stress

in the Skin

Flat Plate Contact - Distribution Curves

for Tmax (kPa)

Flat Plate Contact - Distribution Curves

for Principal Stress (kPa)

Suggested Bulk Compressibility Apparatus

Page

14

50

51

57

66

67

71

72

75

76

80



8.1, 8.2, 33

b b2, b3
1’

Cl, 02, C3

ABBREVIATIONS AND SYMBOLS

area

ratio of gas pressure to applied hydro—

static pressure

coefficients for shape functions

matrix defined by {e} = [Q [U]

material prOperty

compressibility of the liquid

compressibility of the gas

degree Centigrade

centimeter

material properties matrix

material property

material property - modulus of elasticity

dilatation of bulk material

dilatation of the liquid

dilatation of the gas

dilatation of the solid

strain tensor

strains in the coordinate directions

vi



traction on the liquid

liquid porosity

tractions on the solid

element force matrix

traction on the gas

gas porosity

material property

strain invariants

inch

bulk modulus of elasticity - ”open system”

bulk modulus of elasticity — ”closed

system”

liquid permeability

gas permeability

element stiffness matrix

kilopascal = (N/m2) x 103

matrix of shape functions

material property

milimeter

material property

shape function

unit normal vector

force matrix

material property

hydrostatic pressure

pressure of liquid

pressure of gas

vii



W1 or {W}

a

0.1, 0.2, (13

81, 82, 83

51, 52, 53

$1! ¢21 ¢3

pounds per square inch

displacement of liquid

stress component in r direction

stress component in z direction

surface

strain energy

displacement matrix

displacement of gas

displacement in the radial direction

displacements

displacements of solid matrix

volume

volume of bulk material

volume of liquid

volume of gas

displacement in z direction

gas flow relative to solid

strain energy per unit volume

work by concentrated forces

work by applied stresses

work by internal and applied loads

liquid flow relative to solid

material prOperty

coefficients for approximating polynomials

of the displacement components

viii



Yx: Y Yy,

Yi

Of

01.1

{r}

TIJ

material property

shear strain components

gas flow parameter

liquid flow parameter

jacketed compressibility - no gas flow

jacketed compressibility - no liquid flow

Kronecker delta, 0 for i f j, and 1 for i

= J

strain matrix

relative gas flow

unjacketed compressibility

jacketed compressibility

no liquid pressure

no gas flow,

jacketed compressibility

no gas pressure

no liquid flow,

material property - Lamé elastic constant

for "open system"

material property - Lamé elastic constant

for "closed system"

material property - Poisson's ratio

viscosity of liquid

viscosity of gas

total potential energy

density

stress component on liquid

stress component on gas

stress components on the solid

stress matrix

total stress components - bulk material

ix



normal stress components - bulk material

shear stress components - bulk material

effective stress

volume of gas

relative liquid flow

jacketed compressibility - no liquid flow,

no gas flow



I. INTRODUCTION

Extensive loss is often incurred in the production

of various fruits; notably sweet cherries, tomatoes, and

certain varieties of apples; as a result of cracking of

the skin and fleshy tissues some time prior to harvest.

Cracks affect the appearance of the fruit, encourage mold

and insect contamination, cause trimming losses for the

canner, and result in consumer dissatisfaction. Rapid

deterioration usually follows the exposure of the ruptured

tissue to air, and the injured fruit becomes worthless or

of inferior grade. Cracked fruit, therefore, represent a

considerable loss in income to both processing and fresh

market industries.

Most of the previous research on fruit cracking has

been concerned with the environmental conditions conducive

to fruit splitting and breeding crack-resistant varieties.

It was the author's contention that present mechanics

models of materials were inadequate for representation of

the behavior of many biological products. A model which

incorporates the effects of the liquid and gas elements

was needed. The objective of this study was the develop-

ment of such a model.
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The work reported in this thesis may be divided into

three parts:

1. The development of a model containing parameters

and variables necessary to more adequately

represent the mechanical behavior of fruit

tissue.

The experimental determination of the parameters

necessary for use of the model developed.

Use of the finite element method for solution of

the continuum equations yielding stress distribu-

tions for a body approximating the shape of a

fruit.



II. REVIEW OF LITERATURE

Two areas must be considered when developing a

continuum mechanics model for a biological product such

as a fruit: the plant physiology and horticultural area

and the material science and mechanics area. This

review of literature is divided into two sections: 1)

that work related to plant materials and ii) the mechanics

theory applicable to the present approach.

2.1 Mechanical Properties of Plant Materials

Several authors have recently reviewed the available

literature related to fruit anatomy pertinent to mechan-

ical properties and splitting of fruits. Tennes (1973)

reviewed literature available on fruit structure of

tomatoes and cherries as related to fruit splitting. He

also reviewed the cultural practices which have been used

in an attempt to alleviate the problem. Brusewitz (1969)

reviewed in detail the anatomy of plant material which

might be pertinent to the mechanical properties of the

material. Akyurt (1969) also discussed available literature

on the cellular structure of plant material and modeling

attempts which have been recorded. Because of these

3
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studies, the present review of literature was restricted

to works which have direct bearing on the proposed method

of modeling the elastic action of a system of cells. Lit-

erature on the growth of plants was not reviewed unless

it is pertinent to the elastic action of the material.

Many researchers pursuing the phenomenological

approach to the mechanics of biological materials have

assumed the tissues are continuous, homogeneous, and iso-

tropic. Only a few researchers have attempted to describe

the effect of such variables as cell dimensions and

turgor pressure. Of those attempting to include such

variables, the mechanical properties of plant materials

have been studied on three levels: the cell wall, the

cell, and tissue.

The structure of the cell wall has been studied in

great detail. A number of references, such as Frey-

Wyssling (1952), describe the make-up of the cell wall.

Probine and Prestone (1962) concluded that the anisotropic

nature of the cell wall affects its mechanical properties

and cell growth.

Cleland (1971) concentrated on certain aspects of

cell wall extension including the mechanical properties of

primary walls and their relation to cell enlargement. He

presented two conclusions from his rheological studies.

First, the mechanical properties of all primary cell walls

are probably qualitatively similar. Second, the difference
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that exists between cell elongation and mechanical proper-

ties of the walls are sufficient to indicate that cell

wall extension does not involve simple physical stretching

of the wall.

Frey-Wyssling (1952) pointed out that mechanical

stresses on tissues not only involve elastic or plastic

alteration of the cell wall, but they also bring about

morphological deformations of cell shape, which may be

even more important than the rheological behavior of the

cell wall.

Most attempts at describing cell action have been

based on the assumption of some regular geometric pattern

and shape for the cells. Matzke and Duffy (1955), how-

ever, stated that rigid conformity to pattern does not

exist. They found the average number of faces per cell

close to fourteen and that the faces vary in shape from

triangular to nonagonal.

Haines (1950) found that the relation between cell

extension and turgor pressure for spherical isotropic

cells obeying Hooke's Law is not linear but hyperbolic.

He further states, "There can be no approximate linear

relationship to any cell dimension satisfactory for

purposes of calculating turgor or osmotic pressure."

Broyer (1952) defined a coefficient of distention of

a boundary as a = Z%;A and a coefficient of enlargement

A P

 

He calculated relations between and for
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several simple geometric shapes and found that relative

volume and changes in volume can be used to determine e

as defined for actual pressure changes. Work required

for change in relative volume was calculated assuming

constant pressure.

Philip (1958b) developed a dynamic theory of the

classical osmotic plant cell in quantitative form and

extended it to the case where diffusible solute is

present. He assumed change in cell volume to be.

linearly proportional to change in turgor pressure, and

developed a first-order expression for the change in

relative volume with respect to time for several initial

and boundary conditions. In a second paper, Philip (1958a)

developed relations for propagation of turgor pressure and

other pr0perties through cell aggregates describing them

mathematically as diffusion phenomena and assuming the

elastic modulus of the material defined by

l/E = l/T(V/VO -1)

where T is the turgor pressure. He stated further study

of the cell-wall stress distribution was needed to refine

the propagation equations.

Building on the work of Broyer and Philip, Slayter

(1967) concluded that for given cell dimensions and

permeabilities, both the elastic properties of the cell

and the internal osmotic pressure influence the rate of

swelling and shrinking.
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Mela (1967a), using microscopic photography, developed

a method for studying Young's modulus by extension of

mitochondria cells measured for different concentrations

of salt water. He assumed membranes of uniform thickness

which do not have pores large enough to affect stress-

strain calculations. In a second article, Mela (1967b)

reported Young's modulus to be a non-linear function of

temperature with a minimum at 12—1300.

Studies must be done on the level of a multi-cell

structure, or tissue, to include the effect of interaction

between cells. These studies have been performed by both

removing a segment of tissue for analysis and by studying

the action of the whole body such as a fruit.

Falk §t_al. (1958) studied the relations between

turgor pressure and Young's modulus using the resonant

frequency of potato tuber parenchyma. They concluded that

the cell wall material follows Hooke's law and that there

are changes in elasticity of the whole parenchyma due to

turgor pressure which are in turn reversible thanks to

the ideal cell wall material.

Nilsson et_al. (1958) studied the dependence of

Young's modulus of potato tuber parenchyma on turgor

pressure using a simple theoretical model. The cells of

the parenchyma were approximated by regular geometric

cell-forms (Spheres or polyhedra), each cell being

bounded by an elastic membrane and filled with an
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incompressible fluid. It was shown that this model

yields the correct dependence of cell diameter on turgor

pressure and that certain cell-wall constants can be

determined using the relation.

Burstrom gt_gl. (1967) used the resonance frequency

method for determining Young's modulus of internodes

of etiolated pea seedlings. They found the modulus to

increase nearly proportional to turgor pressure and that

at water saturation the modulus is more than fifty times

higher than at plasmolysis.

Studies by Meynhardt (1964) indicated it may be

possible to predict the susceptibility to splitting of

different grape cultivars by an anatomical investigation

of the berry tissue. He concluded that it seems possible

that the subepidermal cell dimension ratio (longitudinal

to radial) and the number of subepidermal cell layers may

contribute to the resistance or susceptibility of grape

berry tissue to Splitting. Working with tomatoes, Cotner

g£_al. (1969) found that fruit with flattened epidermal

cells were less susceptible to concentric cracks than

those with rounded cells, but no such correlation existed

for radial cracks.

Clevenger and Hamann (1968) studied the mechanical

properties of apple skin. They determined material proper-

ties, including elastic modulus and Poisson's ratio, for

three varieties of apples. All skins were found to be
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anisotropic with the greatest strength in the longitudinal

direction. Relaxation and creep experiments showed that

apple skin tends to be viscoelastic in behavior. Four

element (Burger) models were found to describe the action

of the material very well.

Akyurt (1969) and Akyurt gt_al. (1972) attempted to

develop methods for studying the stress—strain relations

in plant materials. With the cell wall idealized as a

shell, the finite element method was proposed for the

solution of the corresponding linear equilibrium problem.

Akyurt showed that macrodisplacements as well as stresses

and couple stresses acting on cellular bodies emerge as

solutions of the field equations of the micropolar theory

of Eringen (1962). The linear theory of viscoelasticity

was also employed.

Considine and Kriedeman (1972) devised a laboratory

technique to measure the internal turgor pressure required

for fruit rupture in order to assess resistance to splitting

of grapes. Fruit of uniform maturity and known osmotic

potential were immersed in a range of osmotics to create

a known turgor pressure at equilibrium. "Critical turgor,"

the pressure which resulted in 50 percent of the grapes

splitting, was approximately 15 atm in grape cultivars

prone to splitting and 40 atm in resistant cultivars.

They found splitting was not necessarily related to berry

size or to the presence of seeds. No dominant relationship
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was found to exist between the berry shape and the

susceptibility to Splitting. The authors concluded that

it is the epidermal and subepidermal layers which limit

berry enlargement. Two uniform groups of berries were

immersed in distilled water to emphasize this point. One

group was intact, the other peeled. Within 30 minutes,

the intact fruit were ruptured. Peeled fruit, on the

other hand, absorbed twice as much water without suggestion

of splitting.

Raschke (1970) studied the transmission of changes

in water potential in leaves. He found the epidermis of

the leaf Zea mays transmits changes in water potential in

the water supply of the leaf to the stomata within 0.1

second. Also, reduction in water supply can cause the

subsidiary cells surrounding the stomata to collapse with-

in 1.5 minutes, and the epidermis to shrink to one-third

of its original thickness within 20 minutes.

2.2 Biot Theory of Elastic Porous Media

Theories of deformation of a porous material contain-

ing a viscous compressible fluid and the theory of flow

of the fluid through the material have been developed and

discussed in a series of papers by Biot and his co—workers

(Biot, 1941, 1955, 1956b, 1962, 1963; and Biot and Clinger,

1941, 1942). The theories were first applied to consolid-

ation and settlement of foundations for both isotropic and
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anisotrOpic media. Later developments have been in

dynamic problems (Biot, 1956a) and finite deformation

(Biot, 1972).

Paria (1957-58, 1958a, 1958b, 1966) applied Biot's

theories to axisymmetric consolidation of isotropic

material under static as well as impulsive loads, trans-

verse isotropic semi—infinite mass under normal loads,

deformation of viscoelastic body under pressure, spherical

isotropic body under pressure, and flow of fluids through

deformable bodies.

Freudenthal and Spillers (1962) developed theoretical

solutions, using Biot's theory, for the infinite layer

and the half-space assuming a quasi-static consolidating

elastic media.

Only a limited number of experimental determinations

of coefficients of the equations for Biot's theory have

been reported. Biot and Willis (1957) measured the

elastic coefficients for sandstone. Fatt (1957, 1959).

reported compressibilities of petroleum-bearing sand—

stones in the range of 0 to 15,000 psi. He also noted a

useful model for sandstone can be developed by a sphere

pack composed of a mixture of very hard and very soft

spheres.

Considerable interest in the use of Biot's theory

combined with the finite element has been recently shown

in the area of soil consolidation. Most researchers have
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used variational principles equivalent to the governing

equations in Biot's consolidation theory (Sanhu and

Wilson, 1969; Yokoo gt_al., 1971; Hwang gt_al., 1971) to

solve for pore pressure and settlement under various

loading conditions. Hwang gt_al. (1972) used a formulation

by the method of weighted residuals.



III. DEVELOPMENT OF QUASI-STATIC THEORY

OF A GAS-SOLID-LIQUID SYSTEM

3.1 Model Description

Consider a medium which is the combination of a

deformable solid material, a gas, and a liquid, compress-

ible or incompressible. The solid forms the skeleton or

the framework of the body and forms a division between

two sets of small pores. One set of interconnected pores

is filled with a liquid, the the other set contains a

gas.

The formulation of a mathematical theory of such a

three—phase medium starts with the definition of certain

relevant variables. Using the differential element

pictured in Figure 3.1, we shall define:

uZ as the displacements of the solid

matrix parallel to the coordinate axes,

Ux, Uy, Uz as the displacements of the gas,

QX, Qy, Qz as the displacements of the liquid,

f as the liquid porosity, defined by f = Vf/VB

where Vf is the volume of the liquid and VB the

volume of the bulk material within the element,

g as the gaseous porosity, defined by g = Vg/VB’

13
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LIQUID

REGIONS

GAS
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Figure 3.1 Differential Element of Medium
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where Vg is the volume of the gas within the

element.

The volumes of liquid displaced through unit areas

normal to the coordinate directions, X, Y, Z, would be

fo, ny, and sz. Similar values for the gas are gUx,

gUy, and gUZ.

3.2 Theoretical Development

The total stress components of the bulk material,

1
Tij , can be expressed using components as

Tij = Cij + Gij (Of + 0g) (3.1)

where 0. results from forces applied to the solid part

13

of the body, 5 is the Kronecker delta, and of and 0
ij g

result from forces applied to the liquid and gas, respect—

ively. Denoting the liquid pressure, pf, and the gas

pressure, pg,

of = -fpf and 0g = gpg. (3.2)

 

1 The standard indicial system for a rectangular Cartesian

reference frame is employed for the following section: Re-

peating the subscripts i, j, or k implies summation, Kron-

ecker's delta is denoted by 61-, differentiation with re-

spect to space is indicated by subscripts preceded by comma.

The subscripts f and g are not to be confused with the

summation indices; they indicate liquid and gas, respect-

ively.
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Since the system is considered in equilibrium, pi and

pg are assumed constant throughout their respective

regions of the body.

The strain energy of a porous elastic medium can be

defined as the isothermal free energy of the gas-solid-

liquid system. Let W denote the strain energy per unit

volume. The variation of the strain energy for a volume

V bounded by surface S is equal to the virtual work of

the surface forces, i.e.,

If; 6de = £J(rx5ux + fyduy + fzduz + GxGUx

(3.3)

+ Gycuy + czsuz + deQx + ryaoy + anoz) dS

where f1, G and F1 are the tractions acting on the
1,

solid, gas, and liquid regions of dS respectively. They

can be expressed

H
:

l

i “ “13 ”J

of 51; nj (3.4)

1 = cg 513 nJ

'
1
1

II

where n is an outward normal to the surface. ,Forces can

3

be expressed in terms of r13, pf, and pg by using (3.1)

and (3.2) to obtain
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Gi = 6ij (-gpg) nj.

Introducing the above expressions into (3.3) yields

If! 6WdV = £!(fidui + Giaui + Fiin)dS

= {!((Tij + 61j(gpg + fpf)nJ-)6ui + 61j(-gpg)5Uinj

+ dij(-fpf)6Qinj)dS.

By defining

W. = g(U- - u.)
1 1 1 (3.5)

Vi = f<Qi ’ “1)

we can obtain

[If 5de = [f rij dui nj as

V S

_ pg C! dwini as (3.6)

- pf ff dvini d8.

8

The vectors vi and W1 represent gas and liquid flows

relative to the solid and are measured in terms of volume

per unit surface area of the bulk material.

The first of the surface integrals of (3.6) can be

transformed to a volume integral by means of Gauss'

theorem to produce

ff 1.. n- du.dS = If (r._6u.), dV.
8 13 J 1 v 13 1 j
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Expanding the integrand

..= - .....+ o(Tij (Sul),J dul T 1 Sn

The total stress field being in equilibrium implies

Gui Tij,j = 0.

Therefore, the integrand can be expressed as

 

(Tij Gui),j = Txx éex + Tyy 6ey + TZZ dez

(3.7)

+ T 6 + r 6 + T 6

yz Yx ZX Yy xy YZ

where

u 8

e = a—EE Y : uy + auz

x 3x x Bz By

3U 3U 3U

= __X = __X_ + ___?£
ey 8y Yy BZ 8X (3.8)

Buz aux Bu

e = ——— y = ——— + ___

Z a z Z By 3X

Similarly, the second and third surface integrals

of (3.6) can be transformed to volume integrals. Defining

W

N l S

H

diVI g(ui - Ui)]

*
6 H l <

H div[ f(ui - Qi)] (3.9)
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the second and third integrals become

- If dwinidS = If} 5gdv

and

- II 6vinids = If] 6WdV.

Substituting the results of (3.7), (3.8), and (3.9)

into (3.6) yields

f&! Gde = IL! (rxx dex + r dey + Tzz dez

yy

+ Tyz dyx + TZX dyy + Txy 6Y2 (3.10)

+ pf 6? + pg 6;) dV.

Hence, for an arbitrary volume

6W = rxxéex + Tyy 6ey + rzz dez

+ Tyz dyx + r 672 + sz dyy (3-11)
XY

+ 6? + 6 .Pf Pg C

C and Y are defined for nonhomogeneous porosity. If uni—

form porosity is assumed throughout the body, (3.8) and

(3.9) become

r
s ll g div (ui - Ui)

(3.12)

>
6 ll f d1V (ui - Qi )
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These variables are now measures of the amount of each

substance which has moved in or out of a given element

attached to the solid frame. They also represent the

increments of fluid and gas contents.

The strain energy W must be a function of C. W, and

the six strain components,

9 9 Y ) C: W). (3°13)W = W(ex, e y z
y, z) Yx) Y

6W must be an exact differential; therefore,

9.11 8w

r = r =““

xx 8ex YZ an

3W 3W
T = -——'— T = "'—'"

yx aey ZX aYy

(3.14)

ML .311.
T = a

T = BY

zz ez XY z

.31! §_W

Pf = 3v pg = 8C'

These relations lead directly to the formulation of

the general stress-strain relations for a gas-solid-

liquid medium. Biot (1962) points out several major

aspects of this type of derivation where W is the iso-

thermal free energy. The stress-strain relations in-

clude phenomena which may depend on the physical chemistry

of the gas-solid—liquid system; as well as, phenomena
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which are expressible by means of thermodynamic

variables such as interfacial and surface tension

effects.

3.3 Linear Stress-Strain Relations

Considering the case of an isotropic medium, the

strain energy is a function of five variables, the three

strain invariants, 11, 12, I3, and the fluid components

C and W, i.e.

w = w<11, 12, 13, r. W). (3.15)

The strain energy is quadratic in form for a linear

material, Love (1944). Only the first— and second-order

variables are included in the energy expression.' The in-

variant terms remaining are

I1 = e + e + e

12 eyeZ ezey exey i(Yx Yy Yx )

It is more convenient to use the invariant

'=_ ._.. 2+ 2+ 2_ _ _

12 412 Yx yy yz 4ezey 4ezex

4e e .

X y

The quadratic form for W now becomes
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av a He2 + u 15 - 2Ce§ + Mcz - 2Dew

+ Nv’ + pCW.

Sokolnikoff (1956) shows that_the coefficients on any

linear terms in W must be zero. Therefore

= 2 + 2 + 2 + +2W H(ex ey ez 2exey + 2exez 2eyez)

- 4e e )
2 2 2 _ _

+ “(Yx + y + 7 4e eZ 4ezex x y
y Z

(3.16)

-ZC(ex + ey + ez); —2D(ex + ey + e2)?

+ Mcz + NYZ + Pew,

where H, u, C, D, M, N, P are coefficients which depend on

the material properties.

Substituting expression (3.16) in the general

equations (3.14), we obtain

= - + ._ .. WTxx He 2u(ey ez) C; D

Tyy = He — 2u(eX + ez) - Cc - DY

Tzz = He - 2u(ey + ex) - Cg - DY

(3.17)

T3’2 = uYX sz - “Yy Txy - “Yz

pf = -De + NW + PC/Z

p = -Ce + M; + PW/Z.



Letting H = A

C

+'.

2n, C = 3M,
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(3.17) can be given in the form

XX

YY

ZZ

yz

Written in

r' 1

T

XX

1

YY

T

22

r
yz

T

ZX

  

H

We can define, using (3.18), the bulk modulus of

F-

A

c

A

c

O

O

0

—GM

8N l.”

Ace + Zuex -

A

c

P

Ac+2u

e

g

+

A

c

A+

C

.. (1M

-BN

2pc

Y

Zue

z

T

ZX

-BNe +

-aMe +

211

matrix form

—GM

-BN

aMC - BNW

GM; - BNW

GM; - BNW

= UY

Y

NW + Pg/Z

M; + PW/Z.

0
0
0
0

O
O

0
O
T
:

0
0

O
T
:

jacketed compressibility as

Kc
+ 2u/3

c

and D =

0
0
0
0
0

1
:

SN

_aM

-aM

’
U
S
O
O
O

2
"
O

O
O

O

(3.18)

  

(3.19)
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for this "closed system" in which the fluid pores are

sealed.

Several relationships between coefficients in (3.16)

can be determined by considering the non-negative nature

of the strain energy W. Using (3.19), strain energy

can be expressed as

2W = Kc e2 - Ce; - 2DeY + Mcz

+ NW2 + D§W + 2U/3[(ey-ez)2

2 2 (3.20)

+ (eZ - ex) + (ex - ey) ]

lu(Yx Yy vz )

Letting e = C = W = 0 directly implies u 2 0.

By putting Yx = yy = yz and ex = ey = ez the strain

energy expression reduces to

2w = Kce2 - 2Cec - 2Dew

(3.21)

+ Mcz + NW2 + PcY.

By letting W = 0 in (3.19), we obtain the expression

2W = Kce2 - 2C§e + Mcz. (3.22)

Since W must be equal to or greater than zero, it can be

shown that

Kc 2 0 and M 2 0. (3.23)
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Using the quadratic form for solution with respect to e,

we find the discriminate

402 c2 - 4KC(M2;2 — 2W) 2 o

for real solutions. We find, for c f 0

This

zero,

when

KCM — c2 2 2 2 o. (3.24)

c

Similarly, by letting C = 0 in (3.19), we obtain

2w = Kc e2 - 2Dv + NW2. (3.25)

expression is never negative if

Kc 2 0, N 2 0, and KCN — D2 2 0. (3.26)

Again considering (3.20) when neither C or W is

the discriminate yields

(2c; + 2M)2 - 4KC(M;2 + NW2 + per - 2W) 2 0

solving for e. This relationship can be modified to

(KCM - C2)c2 + (KCN — D2)W2 + (ch — 2cn)v;

(3.27)

— ZKCW 2 o.

For real solutions for c, the discriminate of the solution

must be non-negative, that is



26

(ch — 2013)“?2 — 4(KCM - C2)[(KCN — 132w2 — 2ch11

2 0.

Therefore, considering 'l’ f 0,

2 2 2 2 2 2
(KCM - C )(KCN - D ) - Kc P — 4KCCDP + 4 C D

(3.28)

2 0.

For expression (3.28) never to be negative

2 2
-KC P 2 0.

It was shown from (3.23) that KC is a real number which is

greater than or equal to zero, thereby implying

2

P :0. (3.29)

Therefore, P=0, for P to be a real constant as assumed.

With proof that P = 0, the last two equations of

(3.18) can be simplified to

pf = -8Ne + NT

(3.30)

= — +pg dMe M;

We can define, using (3.18), the bulk modulus for an

"open system” where pg = 0 and pf = 0 as

K = A+ 2n/3 (3.31)
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which is the inverse of the "jacketed” compressibility.

The open system would correspond to a jacketed compression

test where the pore fluids are allowed to escape freely.

Carrying Biot's (1956) analogy between a porous media and

a thermoelastic solid, it can be concluded that Ac and A

correspond to the adiabatic and isothermal Lamé coefficients

for a nonporous medium.

Solving equations (3.30) for c and W yields

 

c = 0‘e + p /M

g (3.32)

W = 89 + pf/N

Using

C1. M B 2N

A - AC — N - M (3.33)

(3.18) can be transformed into the form

+ + = +Txx apg 8pf 2ueX Ae

+ a + = 2 e + AeTyy pg Bpf u y

r + up + SD = 2ue + Ae

22 g f Z (3.34)

yz uvx zx uvy xy UYZ

Z;=OLe+p/M

g

Y + 8e + pf/N.

Written in abbreviated form
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r + 6 + = 2 e.. + 6.. Acij ij(apg Bpf) u 13 13

e + MC a pg/

(3.35)
>
6 I

"' 89 + pf/N.

The stress-strain relations can now be written in

such a form as to yield the "effective stress," i.e. the

total stress in excess of local fluid pressures

i. = .. + 6.. + .T13 T1J 13 (Pf Pg) (3 36)

OI‘

Tij - Gij ((1 - 00pg + (1 - B)pf) (3.37)

= 2n eij + 613. Ae

= + M
C ae pg/

W = Be + pf/N.

The "effective stress” for a fluid—solid system is

commonly used in soil mechanics for the study of fluid

saturated clays.

The bulk modulus expressions for the two types of

systems defined as the "closed system," (3.19), and the

"open system," (3.31), can be combined with (3.33) to

give



 

 

K - K = A — A= + . (3.38)

We obtain by combining (3.24) and (3.26)

(Kc - BZN)N + (Kc - azM)M 2 0.

Substituting from (3.38) into the above relation

KC(N + M - 2MN) + 2KMN +a2M2 + BZNZ 2 0 (3.39)

For expression (3.39) never to be negative, we conclude

N + M - 2MN 2 0 (3.40)

In summary, the non-negative nature of the strain

energy yields the following limits to the coefficients

of equations (3.18) and those derived from it,

(3.41)

M 2 O N 2 0

N + M - 2NM 2 0

(K — BZN)N 2 0 (KC — 32M)M 2 o

3.4 Governing Equations for Transient Phenomena

The equations for the quasi—static theory of a gas-

solid-liquid have been established. This theory shall
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now be extended to cover the transient phenomena. The

equations will describe the distribution of stress, fluid

contents, and displacements as a function of time under

given loads. It is important to note that the time

variable t enters the theory through Darcy's law. There-

fore, the transient problem in this case refers to a flow

problem.

Substitution of (3.35) into the equilibrium equation

neglecting body forces as before yields

= 2n e.. . — 6ij(apg + Bpf - Aekk),j (3.42)

Substitution of the strain displacement relation

eij = 5(uihj + uj’i) (3.43)

into (3.42) produces

.-.+ + ...—O.uu1.JJ (A u)uJ, pJ]. g’i - Bpf’i = 0° (3'44)

Equations (3.44) are a set of three equations with five

unknowns, u, v, w, p pf. Two additional equations areg’

needed to complete the system. These equations can be

obtained by introducing Darcy's Law governing the flow of

each of the fluids.

First consider the flow of the liquid, assuming it

to be incompressible. Paria (1966) gives a modified form

of Darcy's law
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8

pf,i ‘ Cf 5? (Q1 “ Bi) (3.45)

vffz

where Cf =' k for an isotropic media, where vf is the

f

viscosity of the liquid, hr the permeability of the

medium to liquid, and f the liquid porosity. If the

solid displacements are zero, “i = 0, (3.45) reduces to

the classical form of Darcy's law for an undeformed

medium. Combining the divergence of (3.45) with the pf

relation of (3.18) and (3.12) yields

a

-8Nuk,ki + Nf(uk - Qk),ki = Cfgf (Q1 - ui). (3.46)

Darcy's equation for the flow of gas in the medium is

3

pg,i - C8 3? (Ui - ui) (3.47)

Bag:
with Cg== k for an isotropic medium, where vg is the

g .

viscosity of the gas, kg the gas permeability of the

medium, and g the gas porosity. The density, p, for

isothermal flow of gases is directly proportional to pg,

hence

32%” = & age
t

g (3.48)
a 2

xi

Carman (1956). Equation (3.48) can be combined with the

last two equations of (3.18) to produce



(no sum on j)

2C 2)

_ 2 =__E_
( aMekk + Mt) ,jj g 3t (-OtMekk + Mg) (3.49)

where as defined in (3.12)

t = g(ui - Ui).J' (3.50)

Combining these two equations gives

(-GMuk,k + gM(ui - Ui),1)2
.33

2ngM 3

- a _

(no sum on j)

Substituting (3.45) and (3.47) into the equilibrium

equation (3.44) yields a set of nine differential equations

and nine unknown displacements when combined with (3.46)

and (3.51). Summarizing, the nine equations are

a.

““i.Jj * (A + “) “3,31 ’ “Cg at (”1 ' “1’

.) = o
3

'BCf it. (Qi - ul

(3.52)

-8Nuk,ki + Nf (Iii - Q1),ij

3

= of??? (Qi " ui)

2
(-o¢Muk,k + gM(ui - Ui),i),qq

 

8 2C GM 3
=

O - o g

2 GEM at ((ul U1).i) + g 3? uk,k.

(no sum on q)
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Written in conventional notation, these equations are

uvzfi + (A + u)grad e - an Q% (U -'E)

a .- _, (3.53)

- BCf 5¥'(Q - u) = 0

-BNVe + va2(fi'-‘6) = cf 5% (5 - G)

2 ¢ 4'2
V (-aMe + gMV(u — U)

ZCgaM 39
3 A A

= 2gM 3? (V(u - U) + U? . 

The nine equations governing the transient problem

are coupled with each other and hence would have to be

solved simultaneously. As Paria (1966) points out for

a liquid-solid media, this implies that the flow fields

and the elastic field are not merely superposed, but that

they react upon each other. This could also be concluded

directly from the constitutive equations (3.18).

3.5 Determination of Elastic Coefficients

The following series of hypothetical tests are

intended to show the physical meaning of the elastic co-

efficients d, 8, M, N, and Ac. The coefficient u will be

assumed to be determined by standard means.

A jacketed test refers to an experiment during which

the sample is placed within an impermeable membrane. The

pressure of the gas, pg, and the pressure of the liquid,
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pf, are assumed controllable through tubes which penetrate

the membrane and are connected to the appropriate region.

See Figure 3.2.

3.5.1 Jacketed Compressibility Test - No Liquid Flow

Consider a jacketed specimen subjected to a hydro-

static pressure P' such that

p = P'/a T = r = T = —P' W = 0.

g xx yy zz

Define the compressibility under the given test conditions

as

6 = --. (3 54)

Two relationships are obtained from (3.18)

p' = A 5p' + 2n/3 op' — an; ' (3.55)

P'/a = aM6P' + Me. (3.56)

Assuming P' f 0, combining (3.55) and (3.56) gives

1 - a/a = (AC + 2u/3 - 92M)o. (3.57)

From (3.24)

Ac + 2u/3 -02M 2 0,

therefore, G/a approaches unity as 6 approaches zero which

corresponds to an incompressible media.
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SAMPLE WITHIN AN

IMPERMEABLE MEMBRANE

Figure 3.2 Specimen for Hypothetical Tests
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3.5.2 Jacketed Compressibility Test - No Gas Flow

Consider that a jacketed specimen subjected to a

hydrostatic pressure P' such that

pf = P' Txx = Tyy = Tzz = -P' C = 0.

Define the compressibility for these conditions as

A = PI. (3.58)

Two relations can be obtained from (3.18)

-P' = -AcAP' - 2u/3 A P' - BNW (3.59)

P' = BNAP' + NY. (3.60)

Assuming P' f 0 implies

l — 8 = (Ac + 2u/3 - BZN)A. (3.61)

Equations (3.26) gives

Ac + 2u/3 — BZN 2 0

therefore 8 equals one in the limit (incompressible case)

and A = 0.

Combining the results of the first two tests gives

the relation

+ BZN = + azM. (3.62)
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3.5.3 Jacketed Compressibility Test - No Liquid Flow,

No Gas Pressure

Consider a jacketed specimen subjected to a hydro-

static pressure P' such that

pg = 0 TXX = Tyy = Tzz = —p' w = 0'

K = — 75: . (3.63)

Equations (3.18) reduce to

-P' = —K(Ac + 2u/3)P' - GMC (3.64)

and

0 = aMKP' + Mg. (3.65)

Assuming P' f O, the combining of (3.64) and (3.65)

yields

1/K = Ac + 2u/3 - azM. (3.66)

Combining the results of the first and third tests

allows K to be expressed in terms of two measurable

compressibilities

a = a(l - g) (3.67)

For a highly compressible gas, the compressibility 6

would be very near that of K implying a small value for a.
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When pg = 0, (3.32) reduces to

and a can be interpreted as the ratio of the change in

gas volume to dilitation for the jacketed test. If the

gas region within the specimen is connected with the

atmosphere by a tube, c would be the amount of gas flow-

ing through the tube.

Another interpretation of a can be obtained from

the first three equations of (3.34), where a is that

portion of the gaseous pressure which produces strains.

3.5.4 Jacketed Compressibility Test - No Gas Flow, No

Liquid Pressure

Consider a jacketed specimen subjected to a hydro-

static pressure such that

pf=0 TXX=T =1: =_p' C20.

Define the compressibility under these test conditions as

e

O = ———- . 3.68p, < >

Equations (3.18) again reduce to two equations

p' = (AC + 2n/3) e p' + BNW (3.59)

and

O = BNOP' + NW. (3.70)
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Considering P' f 0, and combining (3.69) and (3.70)

produces the equation

1/9 = Ac + 2n/3 — BZN. (3.71)

When the result (3.71) is combined with that of Test

3.5.2, a can be expressed in terms of two measured

compressibilities

m

II ..
_. I

I

(3.72)

The combination of (3.71) and the results of Test

3.5.3 yields the relation

1/9 + BZN = l/K + azM (3.73)

which can be shown to be another form of (3.62).

Considering the definition of Y for a uniform

prorsity, (3.12), and (3.42) can produce the expression

W = f(ui, — Q. .) = Be + pf/N
i 1

(3.74)

= f(eS - ef)

where eS and ef are the dilitation of the solid and the

liquid regions, respectively. If the liquid is in—

compressible, i.e. ef = 0, then

(
D

'
U

f
—
h

S

—e_ - “r (3'75)

It can be seen than pf/N 2 0 and eS/e s 1, therefore
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8 2 f.

The value of A could be much smaller than the value

of 6 for an incompressible liquid and a highly compressed

gas, where the liquid is allowed to escape, leaving the

solid and gas portions only to support the load. This

implies that B is very close to unity for a soft solid

material and air.

3.5.5 Jacketed Compressibility Test - No Liquid Flow,

No Gas Flow

Consider a jacketed Specimen subjected to a hydro-

static pressure P' such that

TXX = Tyy = Tzz = -P' C = W = 0.

Define the compressibility under these test conditions as

w = - e/P'. (3.76)

Substituting these conditions into (3.18),

—P' = — (A0 + 2u/3)wP'. (3.77)

Considering P' f 0, implies

1 33A = _
(3.7821)

= A + 2p. (3.78b)
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Combining (3.66) and (3.71) with (3.78b) gives

1.

K
I
H

<
3
h
4

+ BZN (3.79)

+ azM,

M and N can now be solved for in terms of measured

compressibilities;

'l 1 1 l 5 -2

M = (— - 35);: = (g - K)(1 - z) (3.80)

_ 1 1 .1 _ _ 1 i ‘2
N - (— - 6)“? —( - 9M1 - K) (3.81)

3.5.6 Alternate Procedure for Determination of M

Consider an unjacketed specimen subjected to a hydro-

static pressure P' such that

n = _——— . (3.82)

Also define a second gas flow related parameter

y1= c/P'. (3.83)

Equations (3.18) can be used to obtain

P' = oan' + Mylp'.

For P' f 0, the above relation shows that M can be
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expressed as

1

M = ;fi_:_VT , (3.84)

Biot and Willis (1957) describe a possible experi-

mental procedure for determination of y1. A unit volume

of porous material is placed within a closed chamber. Gas

is injected into the chamber under pressure and the

volume of injected fluid is measured. The volume of gas

injected per unit pressure will be the sum of the solid—

liquid compressibility ¢, the volume of the gas which has

entered the pores Y1. and a fixed quantity describing the

elastic properties of the chamber and the gas. The

differences between the volumes injected with and without

the porous material in the chamber will be given by

(3.85)AV = 6 + Y1 - Cg

where Cg is the gas compressibility.

Measurement of the unjacketed compressibility n, and

knowledge of the gas compressibility and the gas porosity

provide an alternative method for determination of the

coefficient M. During the unjacketed test, gas will flow

in and out such that the gas pore space and the solid-

liquid matrix must undergo the same strain for linearly

elastic media. Therefore, the porosity of the gas, g,

will not undergo any strain. The dilitation of the gas

can be given by
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=...P'= .
eg Cg Ui,i (3 86)

where C8 is the compressibility of the gas. The dilitation

of the solid-liquid region can be expressed as the sum of

the solid dilitation plus the liquid dilitation. If the

fluid is considered incompressible and the relative flow,

W, is zero, the total dilitation of the solid-liquid

region is made up of the dilitation of the solid alone,

i.e.

e = -nP' = u.
S 1,i°

Y can now be expressed in terms of compressibilities as

1

 

__E__g(uii-Uii) _
Y1 - p. p, g(Cg n). (3 87)

3.5.7 Alternate Procedure for Determination of N

Consider a jacketed specimen subjected to a hydro—

static pressure such that

pf = P' T = r = T = -P' C = 0.

As in second test, define the compressibility under these

conditions as

A = -‘———. (3.88)
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Also define a second liquid flow parameter

Y2 = W/P'. (3.89)

Equations (3.18) can be used to obtain

P' = BNAP' + yzNP'. (3.90)

Considering P’ f 0, implies

1

N - BA + Y2 . (3.91)

During the jacketed test with pf equal to the applied

pressure, the liquid will flow in and out such that the

fluid pore space and the solid-gas matrix must undergo the

same strain for a linearly elastic media. Therefore, the

porosity, f, will not undergo any strain. If the liquid

is considered incompressible, e = 0, the sum of the

f

solid and gas dilitation must be zero, i.e.

eS = -eg = —Cg(Apg). (3.92)

Obtaining from (3.18) Apg for a change in P' when t = 0,

eg can be expressed as

e = 0C Me = -aC MAP'. (3.93)

g g g

Using definition (3.12) for Y,

W fes

= —— = ——— = -a fMA. 3.94

Y2 P' P' Cg ( )
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N can now be expressed in terms of the gas compressibility

and liquid porosity

 

3.6 Closure

Equations (3.35),

Tij + 6ij(apg + Bpf) = 6ijAe + 2n eij

g = ae + pg/M
(3.35)

Y — Be + pf/N,

are similar to the conventional Hooke's law for a material

made up of gas, solid, and liquid. The equations include

the influence on the continuum of the two fluids which

are not in the conventional Hooke's law formulation. Four

additional material constants, c, B, M, and N, are

necessary for complete use of the formulation. The

pressure of the gas can be considered zero under most

naturally occurring conditions; therefore, only one

parameter, 8, has a significant effect on the stress

values.

Writing the set of equations in matrix form,
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r " P s P -r

Txx A+2u A A 0 (l 0 (x B ek

Tyy A A+2u A 0 0 0 a B ey

Tzz A A A+2u 0 0 0 a B eZ

TX? 0 0 0 11 0 C) 0 0 nyI

1x2 == 0 0 0 0 11 0 0 0 sz

1&2 0 0 0 0 0 11 0 0 sz

C a a a 0 O 0 —l/M 0 —pg

:11 .1 “-8 B B 0 0 0 0 -l/MA _-pf.i    
allows one to see they can be used to replace the

conventional relations for development of a finite

element model. Associating relative flows with the

stress vector and pressures with the strain vector is

the most convenient formulation.

It is important to note several of the advantages

of the present approach. With this approach, it is not

necessary to describe the structure of individual cells

or the type of interaction which occurs between cells.

The model assumes only homogeneity of action in a bulk

material sense, not uniformity of cell shape and

composition. Measurement of material properties is made

on bulk materials not generalized from the action of
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individual cells. In addition, neither the gas or liquid

porosity needs to be determined using this formulation

although the effects of both fluids are included in the

model.

The goVerning equations for the transient phenomena,

i.e., the equations governing the medium with fluids in

motion, were developed by introduction of Darcy's law of

flows for the gas and the liquid (see Equation (3.53)).

Additional material pr0perties are necessary for these

equations including the fluid porosity terms and terms

describing the prOperties of the fluids. These equations

imply that the fluid flows and elastic action are not

merely superimposed, but are coupled together. Assuming

incompressibility of all three materials would uncouple the

equations involved in describing the action of the body.



IV. EXPERIMENTAL DETERMINATION OF COEFFICIENTS 3 AND M

FOR APPLE FLESH

A device for applying a hydrostatic pressure to a

cylindrical specimen of apple flesh was used to deter—

mine the three bulk compressibilities, 6, K, and w, as

defined in (3.54), (3.63), and (3.76). The change in

volume (volumetric strain) of a cylindrical specimen was

related to the applied hydrostatic stress while using

different values for the gas pressure, pg. The liquid

flow was assumed to be zero in all cases. Equations

(3.67) and (3.80) were used to calculate a and M after

the three compressibilities were determined. Tests

simulating the hypothetical cases discussed in Sections

3.5.2 and 3.5.4 were not attempted because of the diffi-

culty involved in measuring and controlling turgor pressure,

pf, within the tissue.

4.1 Equipment and Procedure

A device develOped by Finney (1963) and used by

Brusewitz (1969) was used in this work. The pressure

chamber was modified to allow the hydrostatic pressure

outside the specimen to vary independently of the air

48
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pressure within the specimen. The equipment is shown in

Figure 4.1 and schematically in Figure 4.2.

A carefully cut cylindrical sample 3.81 cm (1.5 in)

long with 2.54 cm (1.0 in) diameter was placed on the

sample stand and then covered with a highly flexible

membrane. The membrane was sealed around the edge of

the stand, thereby prohibiting water from entering the

sample. Air pressure and air flow for the sample were

controlled through the sample stand. Water was used

to apply the external pressure of 137.9 kPa (20 psi). The

change in water level within a precision bored glass

column was used to measure the change in volume within

the system. The column had an inside diameter of 5.00

t 0.01 mm (0.1968 : 0.0004 in). Volume change could be

measured with a sensitivity of 1 0.00982 cm3 (0.006 in3).

All water was boiled to remove the air and then allowed

to return to room temperature before each test. It was

necessary to remove the water from the system between

the calibration run and the actual test to insert the

test sample.

A calibration curve was determined before each test

to account for system characteristics. A steel cylinder

was used as the sample during calibration. The system

was pressurized to 171.9 kPa (25 psi) before each test

to check for leaks.
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Figure 4.1. Equipment for Measurement of Bulk

Compressibility
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Pressure regulator two (Figure 4.2) was removed

for determination of K making the air pressure within

the sample equal to zero gauge pressure. A plug was in-

serted in the sample stand for determination of w. The

plug prohibited air from flowing out of the sample.

Pressure regulator two (Figure 4.2) was used to vary

the internal pressure of the sample for determination of

6. The internal pressure was applied after the external

hydrostatic pressure had been applied. Readings were

taken for internal pressures of 34.5, 51.7, 68.8, 86.2,

and 103.4 kPa (5, 7.5, 10, 12.5, and 15 psi).

The two coefficients, a and M, were calculated once

the three compressibilities had been determined. Alpha

was plotted as a function of the gas pressure using

(3.67)

a = a(1 - 6/K)

where a is the ratio of the gas to the applied hydro-

static pressure. The value of a at pg = 0 was deter—

mined by projecting the regression 1ine through the

vertical axis. M was calculated using (3.81)

 

l 1

M - (w — K)a2

Using a at pg = O.
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4.2 Results of Experimentation

The equipment was found to be unsatisfactory for the

determination of the coefficients a and M. The three

major problem areas were repeatability of calibration,

resolution, and control of applied pressures. The use of

the sample stand and membrane to enclose the sample appears

to be a satisfactory technique, but the construction of

the pressure chamber has some undesirable characteristics.

Consistent measurable differences between the two

compressibilities K and m were found for the several

varieties of apples tested. In all cases, K was found to

be larger than w. Unsatisfactory repeatability of

calibration made determination of the absolute magnitude

of the difference unreliable. The coefficient a appeared

to be a nearly linear increasing function of the gas

pressure, pg.

Calibration of the system was necessary due to the

expansion of the equipment and compression of the fluid.

The calibration indicated that the system deformation was

of the same order of magnitude as that to be measured in

the deformed sample. It would be necessary to reduce the

volume change of the apparatus and reduce the variability

of the volume change for reliable results.
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4.3 Discussion of Apparatus Limitations

The unsatisfactory calibration repeatability of the

present system stems from several sources. The large

expansion of the apparatus was a major source of error.

This expansion was mainly due to the method of attaching

the top portion of the apparatus. A rubber gasket, 0.318

cm (0.125 in) thick, was compressed between the upper and

lower portions by tightening four bolts. The inability

to maintain constant bolt tension created variation in

calibration which could not be corrected. The need to

remove the water to change samples was a source of error.

This disturbance may have created significant variability

in the compressibility of the water.

Readings for the fluid level in the glass column

could be made to i 0.05 mm (0.002 in). That is a volume

change of i 0.00932 cm3 (0.0006 ina). A resolution of

i 0.005 cm3(0.0003 ina) or less would be necessary to

produce satisfactory results. This resolution is

equivalent to a diameter of 3 mm (0.118 in) or less. This

size of column would be impractical unless the variation

of the apparatus itself is reduced.

The system was noted to be very sensitive to changes

in room temperature during operation. A change of 10C

could produce a water volume change of approximately

0.2557 cm3 (0.00867 ina) for the amount of water in the

present system.
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Standard gas pressure regulators were used to control

pressures. Difficulty was experienced in holding stable

readings with these regulators. Variation in pressure

with time at one regulator setting also contributed to

the difficulties encountered in determing a and M.

Suggestions for an improved apparatus have been in—

cluded in Section IV, Suggestions for Further Study.



V. FINITE ELEMENT FORMULATION

The finite element method is a numerical procedure

for solving differential equations and can be used in

conjunction with the constitutive equations developed

for a gas-solid-liquid medium to calculate stresses in a

body of arbitrary shape. The element equations can be

derived by minimizing the potential energy of the system.

The assemblage of the element equations yields a system

of algebraic equations which are solved for the desired

quantities. A detailed discussion of the general theory

of the finite element method is given in Zienkiewicz

(1971), Oden (1972), Desai and Abel (1972), and Martin

and Carey (1973).

,The region under consideration is divided into small

elements connected at node points for the finite element

formulation. The unknowns, stresses, gas pressure, and

liquid pressure, are approximated over each element by

polynomials. The polynomials for the simplex triangular

axisymmetric element (Figure 5.1) are

0t+0Lr+0LZ

1 2 3

C'
. II

v=3+3r+Bz (5.1)
l 2 3
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Figure 5.1. Simplex Triangular Axisymmetric Element
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¢1+ ¢2r + 932

6 + 6 r + 6 z.

1 2 3

(5.1)

Solving the equations for the coefficients using the

nodal values of u, v,-pg,and-pf establishes the inter-

polating polynomials for the region. Interpolating

polynomials are expressed as a product of shape functions,

Ni's,

with

where

and the nodal values.

N u + N u + N u

11 22 33

lv1 + sz2 + N3v3

— + _ + -

In the above case

(5.2)

33)

N1(-pf1> + N2(-pf2> + N3(-pf3)

functions

r + clz)/2A(a1 + b1

(a + bzr + c2z)/2A

2

(a3 + b3r + c32)/2A

r223 - r322

r3 - r2
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etc., in cyclic order,

and A is the area of the element.

More complicated shape functions can be derived for poly—

nomials involving higher-order terms.

5.1 Development of the Variational Equations

Variational equations for the present theory were

developed following the procedure as outlined by Segerlind

(1974) for solid mechanics. Example finite element

equations in the following development are for the axi-

symmetric case. The column vector of nodal values, {U}2,

consists of the nodal displacements, and pressure terms

-pf and —pg for the gas-solid-liquid theory. This column

vector is

T

{U} = [ul 2V ,-pgl)pf1! ' ° ' 2 u ,Vna—pgnr—pfn]

1

where n is the number of nodes and u and v the nodal

displacements parallel to the R and Z axes, respectively.

The total potential energy of the system can be

expressed as

H = SE - WL (5.4)

 

2 Standard matrix notation common to finite element work

is used in the following development: { }'s denote a

column vector,[ ] a matrix, superscript T denotes the

transpose of the matrix.
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where SE is the strain energy and WL the work done by

the internal and applied loads (Segerlind, 1974). For a

body subdivided into a number of elements, the expression

for the total potential can be written in summation form

E

= 2 (SE - WL ) (5.5)

where E is the number of elements and SE(e) and WL(e) are

the respective components in each element.

The strain energy for an arbitrary differential

volume is

d(SE ) = é{e}T{T}dV. (5.6)

(e)

Equation (3.10) simplifies to the above form by letting

T

{E} II

r
-
H

(
D

(
I
)

(
O

2 - 9 - }Pg pf

T (5.7)

{I} r , §,Y}.

II

c
-
a

9
.
!

Assuming that each force and the corresponding displace-

ment are linear, the total strain energy is obtained by

integrating over the volume of the body giving

Ii{e}T{r}dv

V(e)

SE

(e)

(5.8)

T

Jim} [B] TED] [B](UldV.
V

(e)
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The material properties matrix,[ D], is defined in

{T} = UI]{E}. This matrix is

  

R _jiy _19_ 0 a B

l-u l-u

R E: 0 a 8
l-u

[D] = R O a B (5.9)

R(1-2u)

symmetric 2(1—u) 0 0

-l/M 0

-1flq

with

R = E (1 '11)

 

(1 +'IJ)(1 - 2U)

The B matrix is defined by the relation {6} = [B]{U} and

contains shape functions as well as their derivatives.

The general form of[ B] is
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3N1 8N2 3N T
—— —n0 32 0 32. 0 0 0 32 0 0

a a

_N1.0 00.3.1530 00... Nno 00

gr Br Br

N
N1 0 0 0 PIE 0 0 0 .3 0 0 0
? I‘ I‘

[B]= (5.10)

’BN
1 3N a a N 3N

7.1003331200...3_En00
2 3r 32 3r 32 '—5f

0 0 N10 0 0 N2 0 0 0 ND 0

0 0 0 N1 0 0 0 N2 0 0 0 N
n

where n is the number of nodes.

The work done by the applied loads can be separated

into four components:

1. Work due to concentrated loads,

2. Work resulting from the stress components

acting on the outside surface,

3. Work due to movement of liquid across the out-

side boundary, and

4. Work due to movement of gas across the outside

boundary.

The work due to body forces will be neglected in this

analysis.
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The work done by a concentrated force is the value

of the force multiplied by the distance through which it

acts. Denoting the nodal forces as

T

{P} = {pr1, p21, 0, 0, ...., Prn, pzn, 0, 0} (5.11)

the product becomes

T T

wc = {U} {P} = {P} {U}. (5.12)

The zeros placed in the {P} matrix make the relation

compatible with the displacement matrix as defined in

relation (5.3).

Work done by the stress components onthe surface is

described by

= + .Wq é(uqr qu)dSl (5 13)

l

where u and v are the displacements and q1. and q2 are the

stress components parallel to the coordinate axes.

Equation (5.13) can also be written as

T T

w = 2K f{U} [M ] {qr} dL . (5.14)

A

T . .
The[ Mi] '8 are used to denote the shape function matrlces.

The work done by the flow of the liquid across the

boundary can be expressed using (3.6) and (3.5)

wf = I v pdeZ = f[ M2]{UlvdSZ. (5.15)

32 32
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A similar expression for the gas flow is

wg = £3 ngd83 = éBEM3]{U}wdS (5.16)3.

The total potential energy is

E T T
H = z I (MW [8] [DJEBJ{U})dV

e=l V _ (e)

(e)

T T q T ]T
-2R g {U} [Mg {qIZ‘}rdL1 - 2n £:U} [M2 {v(e)}rdL2

1

T T T

-21r {\EU} [M3] {w(e)}rdL3 - {U} {p}. (5.17)

Minimization of the energy expression produces

E

z ([k 1{U}—{f }) = {p} (5.18)

9:1 (e) (e)

where the element stiffness matrix is

[k 1 = f [BJTEDJEBJdV
(e) V (e)

(e)

and the element force matrix is

_ Tq
{f } - 2nd [M11 {q21dL

(e) A1 1

T

+ £042] {v(e)}dL2

2

m3) .
T

+ £043] {w(e)
3

_
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5.2 Implementation of the Method

An existing axisymmetric finite element computer

program and associated subroutines were modified for use

with the present theory. Modifications included in-

corporating the new constitutive equations and allowing

for four unknowns at each node. This program utilized

isoparametric elements. Figure 5.2 outlines the structure

of the computer solution. The negative values on the

main diagonal of the material properties matrix, [0],

produced negative terms on the diagonal of the stiffness

matrix not found in the conventional formulation. A sub—

routine, SIGN, was used to change the sign of a negative

terms on the main diagonal of the stiffness matrix before

solving the system of equations.

A spherical body with a radius of 3.33 cm (1.31 in)

was selected for study. The symmetry of the sphere and

a load about the vertical axis made it necessary to

consider only one quadrant. The body was subdivided into

22 elements. Figure 5.3, using quadratic quadrilaterals

(8 nodes/element) and quadratic triangles (6 nodes/element)

to fit the curved surfaces of the body and approximate

the unknowns within each element. A layer of uniformly

thick elements, 0.1524 cm (0.06 in), was placed at the

surface to represent the skin of a fruit. Smaller elements
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Figure 5.3. Grid for Finite Element Application
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were used at the top to increase the accuracy since the

load was applied parallel to the z-axis.

Determination of the element matrix for an iso-

parametric element requires numerical integration. Nine

integration points were used for each quadrilateral and

seven for each triangle. Location of the integration

points and weighting factors can be found in Zienkiewicz

(1971) or Segerlind (1974).

Material pr0perties (Mohsenin, 1970) were chosen to

simulate the properties of an apple. An elastic modulus

of 13790 kPa (2000 psi) and a Poisson's ratio of 0.30

were used for skin. An elastic modulus of 5171 kPa (750

psi) was used for the parenchyma (flesh). These values

for the skin and parenchyma were used in all the numerical

problems. Poisson's ratio of the parenchyma was varied

to determine its influence on the stress distribution.

The following values were used for the other material

properties:

Parenchyma

a = 0.1 M = 6895 kPa (1000 psi)

8 = 0.95 N = 3.10 kPa (0.45 psi)

Skin

a = 0.0 M = 6895 kPa (1000 psi)

8 = 0.0 N = 3.10 kPa (0.45 psi).
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The values of the gas pressure, -pg, and the liquid

pressure, -pf, were assumed constant throughout the whole

body. A pressure of 0 kPa was used for the gas pressure

in all cases.

5.3 Results of Finite Element Analysis

Three types of numerical problems were run using the

quarter sphere grid described in Section 5.2.

5.3.1 Unrestrained Sphere

The first problem simulated a body with no skin.

One set of material properties was used for the entire

body, which was subjected to a turgor pressure and allowed

to expand freely. It was determined that a homogeneous

body expands due to turgor pressure, -pf, but no stresses

are developed within the body. The 3.33 cm (1.31 in)

radius sphere with the following material properties

E = 5171 kPa (750 psi) u = 0.25

a = 0.10 M = 6895 kPa (1000 psi)

8 = 0.95 N = 3.10 kPa (0.45 psi)

enlarged by 6.34 percent in the radial direction due to

a turgor pressure of 689.5 kPa (100 psi).
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5.3.2 Restrained Sphere

The second problem simulated the action of an

apple with no external restraints. A thin layer with

a higher elastic modulus was used to represent the skin.

The turgor pressure in this case created stress in both

the parenchyma of the apple and the skin. The stress in

the parenchyma was compressive and uniform throughout the

body. This compressive stress was directly proportional

to the turgor pressure for any given Poisson's ratio.

The magnitudes of all stress components in both regions,

however, were highly dependent on Poisson's ratio. Figure

5.4 shows the hydrostatic stress in the center of the

apple for various Poisson's ratios. The turgor pressure

was 2758 kPa (400 psi) in each case.

The turgor pressure created tension and shear

stresses in the skin. Figure 5.5 shows the relationship

between maximum principal stress and maximum shear stress

in the skin as related to the Poisson's ratio of the

parenchyma. Turgor pressure was 2758 kPa (400 psi) in

each case.

5.3.3 Flat Plate Contact

The third numerical study determined the stress

distribution within the spherical body due to compression

by a flat plate perpendicular to the vertical axis of
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.symmetry. A two-step procedure was necessary to solve

the problem. The expansion due to turgor pressure was

determined. The set deflection was then subtracted from

the expanded equilibrium state and boundary conditions

input for the second step. The body was restrained to

meet the flat plate deflection conditions during the

second run.

The body shown in Figure 5.3 was given the follow-

ing material properties:

Skin Parenchyma

E = 13790 kPa (2000 psi) E = 5171 kPa (750 psi)

u = 0.30 u = 0.35

a = 0.0 a = 0.10

B = 0.0 B = 0.95

M = 6895 kPa (1000 psi) M = 6895 kPa (1000 psi)

N = 3.10 kPa (0.45 psi) N = 3.10 kPa (0.45 psi)

The body with no external restraints expanded 0.3138 cm

(0.1236 in) for a turgor pressure, -pf, of -2068 kPa

(300 psi). The parenchyma developed by a hydrostatic

stress of —186.8 kPa (—27.1 psi). A maximum principal

stress of 2537 kPa (368 psi) and a maximum shear stress

of 1324 kPa (192 psi) deve10ped in the center of the

skin.

Expansion of the body due to turgor pressure was
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restrained for the second run to yield a deflection of

0.0762 cm (0.03 in) along the vertical axis of symmetry.

The plane of contact to produce a flat surface at that

level had a radius of slightly greater than 0.86 cm

(0.34 in). The deflection developed sizable maximum

shear stresses within the parenchyma, as shown in Figure

5.6. The maximum shear stress of 227.5 kPa (33 psi)

appeared approximately 0.318 cm (0.125 in) below the

surface along the axis of symmetry. Shear stress in the

skin under the area of contact was decreased slightly on

the surface and increased slightly on the inner side.

Effect on the shear stresses in the skin damped out

rapidly beyond the area of contact.

The principal stress of the largest absolute mag-

nitude was a compressive stress. The stress increased in

magnitude from -186.8 kPa (-27.1 psi), as it would be due

to turgor pressure alone, as shown in Figure 5.7.

5.4 Closure

Fruit splitting generally does not involve external

loading but rather variation of the internal conditions.

The gas-solid-liquid model developed, used in conjunction

with the finite element method, has been shown to be

capable of describing the stress distribution within a

fruit created by variation of internal conditions such as

turgor pressure. Good agreement exists between the
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results of the numerical problems and the observations of

Considine and Kriedeman (1972) (see page 9, Review of

Literature). A fruit without skin expanded freely due to

increased liquid (turgor) pressure in both cases. The

restraint created by the skin produced stresses in the

body with turgor pressure.



VI. SUGGESTIONS FOR FURTHER STUDY

This work has established a theory for a gas-solid-

liquid medium similar to a biological material such as

a fruit.‘ The finite element method was shown applicable

for solution of numerical problems. Numerous numerical

problems can now be approached using the theory in con-

Junction with the finite element method. Several areas

which should be given high priority are:

1. Study the effect of skin properties; i. e.

thickness, elastic modulus, etc., on the

stress within the skin and body.

2. Consider the effect of external distributed

loads.

3. Consider the case where the body is subjected

to large gas pressure, such as in the pressure

bomb technique for measuring turgor pressure.

4. Extend the program capabilities to consider the

viscoelastic material.

78
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More accurate determination of material properties

is needed before more specific use of the model can be

made. Equipment needs to be developed which has

satisfactory resolution for determining bulk compress-

ibilities. A suggested design is shown in Figure 6.1 for

a bulk compressibility apparatus. Pressure sources other

than gas regulators should be considered. A column of

heavy liquid such as mercury is one possible pressure

source.

The present theory should be extended to include

viscoelastic materials. Biot (1961) has used the corre-

spondence principle to deve10p the viscoelastic case for

a fluid-solid medium.
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