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ABSTRACT

AN INVERSION AlGORITHM FOR

ONE-DIMENSIONAL F-EXPANSIONS

By

Scott Bates Guthery

This paper presents an algorithm for the construction of a

function, whose fractional part preserves a given Lebesgue equi-

valent measure on (0,1), from a summation representation of the

Radon-Nikodym derivative of the given measure. Examples are

given and the technique is used to construct a function whose

associated f-expansion stochastic process has the same finite

dimensional distributions as a given stationary process.
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I. INTRODUCTION

This paper examines a variety of one-dimensional f—expansions

along with their invariant measures and associated stochastic pro-

cesses. To introduce the material, we present the following brief

summary of relevant work in the field.

1. Background
 

The classical f—expansion is the continued fraction. Beginn-

ing with x e (0,1) and f(x) = llx and letting [ ] denote the

greatest integer function and < > the fractional part, we use the

expansion algorithm:

_ '1 _ -1

a1(x) - [f (x)], r1(x) -<f (x)>

and for i 2 1, if ri(x) # 0, then

ai+1<x)=[f'1(ri<x>>] and r (x) =<f'1<ri<x)>>.
i+l

Setting pn(x) f(a1(x) + f(a2(x) +;..+ f(an(x))

1
 

1

a1(") + a2(x) +
 

.+ 1

an (X)

 

we have x = pan) if rn(x) = O and otherwise x = 1im pn(x).

n—m



Properties of this expansion have been studied extensively

and an excellent survey is provided by Khinchin (6 ).

Let us set

(0,1)f = {x‘rn(x) 3‘ o for all n}

and note that since we have excluded only a countable number of

elements of (0,1), we have

1((0.1)f) = 1

where A is Lebesgue measure. Any non-atomic probability measure

on (0,1) induces, in the obvious way, a probability measure on

(0’1)f' The underlying c-field is, in all cases, assumed to be

the Borel field B and almost everywhere (a.e.) statements are

made relative to A-

In 1951, RyllANardzewski (10) considered the transformation

T(x) =<1/x> on (0,1) and found that the measure w on (0,1)

defined by

l 1

dw/dx = log 2 (x+1)

was preserved by T and that T was ergodic with respect to w.

By noting that for a.e. x 6 (0,1)

n

T (x) = rn(x>,

where we let ro(x) = x, and hence

an+1(x) = [l/T“(x)] ,



he was able to deduce many of the measure theoretic prOperties of

the continued fraction expansion through applications of the

individual ergodic theorem.

For example, to calculate the frequence of the digit p in

the continued fraction expansion of a number x in (0,1)f, one

defines

1 q = p

I (q) =

p 0 q 1‘ p

and sets

11

F(p.X) = lim- 2 I ( (X))

n—m k=1 P ak

1 “‘1 k
= lim- 2 1 ([l/T (x)]).

new k=0 p

Using the individual ergodic theorem, one then has

 

1 1 “'1 (11/ k 1 t /im'-' 2 T ( ) ) = I ( 1 t )dw(t) a.e.

nam n k=O p x J g p 1

1 1= 1 I (E ltl) dc

log 2 O (t+1)

. 1 $22.2. 

log 2 log p(p+2)

That is, for a.e. x in (0,1) the frequence of p in its con-

2

1 logfl .

log 2 p(p+2)

Then, in 1957, Renyi (8) extended this result to the work

 

tinned fraction expansion is

of Everett (3) and Bissinger (1) who had investigated the use

of an arbitrary monotone function in the expansion algorithm and

conditions under which x = 1im pn(x). Such functions were said

11—100

to be valid for f-expansions.



Citing the following conditions on f:

Al) f(1) = 1;

A2) f(t) is non-negative, continuous, and strictly

decreasing for 1 s t s N and f(t) = O for

t 2 N where N > 2 is an integer or +m;

A3) “(1:2) - £(c1)| s \t2 - t1| for 1 s t1 < t2 and

|f(t2) -f(t1)|<‘t2-t1‘ if 'r-e<t1<t2

where T is the solution of the equation

1 +-f(T) = T and O < e < r is arbitrary;

B1) f(0) = 0;

B2) f(t) is non-negative, continuous, and strictly

increasing for O S t s N and f(t) = 1 for

t 2 N where N > 1 is an integer or +n;

B3) |f(t2) --f(t1)‘ < |t2 - tI‘ for 0 s t < t
1 2;

and a) if Hn(x,t) = g; f(a1(x) + f(a2(x) +...+ f(an(x) + t)))

then

sup H (x,t)

0<t<1 n

inf H (x,t)

0<t<1

SC<4¢D

where the constant C 2 1 depends neither on x

nor on n;

Renyi proved

Theorem 1.1. If f satisfies conditions A or B then f is valid

for f-expansions. If f further satisfies condition C, then there

exists a unique probability measure w on (0,1) such that:

i) m is equivalent to 1;

-1

ii) w is preserved by T(x) =«<f (x)>;



iii) T is ergodic with respect to w;

and iv) C"1 s gfi-S C.

This theorem defines an entire class of functions whose measure

theoretic f-expansion prOperties can be investigated using the

technique introduced by Ryll-Nardzewski, viz., the individual

ergodic theorem. However, since it utilizes a non-constructive

proof, it leaves open the problem of finding the measure w for

each function in the class. This problem has been solved in only

a very few cases and is the primary impetus behind the present

work.

Next, in 1960, Rokhlin (9) obtained an approximate rate of

convergence for the f-expansion of numbers using the functions and

measure described by Renyi. Defining m = f"1 and

Bub!) = {ylai(y) = a100, i = 1(1>n}

he proved

Theorem 1.2. If f satisfies A and C or B and C and log ‘m"

is Lebesgue integrable on (0,1), then

log w(Bn(x)) log 103nm) 1

h(T) = -lim n = -lim =J” log‘cp'(t)‘dw(t) a.e.

011-40: M

  

The number h(T) is called the entropy of the endomorphism T

and the theorem says that

103nm) 2: e‘m‘m.

Finally, in 1966,Kinney and Pitcher ('7) considered the

discrete stochastic process [ai,v,(0,1)f] associated with an



f-expansion formed by the coefficients (ai) of an f-expansion

and a measure v on (0,1). Using this construct, theywere able

to calculate the dimension of some sets defined in terms of f-

expansions and connect certain properties of the processes with

properties of the f-expansions.

2. Terminology

Suppose we consider the following conditions on a function

A') f(1) = 1; f(t) is non-negative, continuous and de-

creasing for 1 s t s N; and f(t) = 0 for t 2 N

where N > 2 is an integer or +w;

B') f(0) = 0; f(t) is non-negative, continuous, and in-

creasing for 0 s t s N; and f(t) = l for t 2 N

where N >11 is an integer or '+n.

If f satisfies A' let us define

-1
f (x) = g1b{t‘f(t) s x}

and if f satisfies B' let us define

-1 _

f (x) - glb{t|f(t) 2 x}

for all x 6 (0,1). With these definitions, we see that an f

which satisfies A' or B' may be used in the expansion algorithm

and that the set (0,1)f is well-defined. Such a function will

be said to be available for f-expansions. Obviously, any function

which satisfies A or B satisfies A' or B' reapectively. Note also

that f"1 is continuous at all but at most a countable set of



points and that except for these points f-1(x) is that unique

y such that f(y) = x.

Suppose now that f is available for f—expansions and that

w is a x-equivalent measure on (0,1). If the transformation

T =1<fm1> is an endomorphism on ((0,1)J3,w); i.e., T is measurable

and w(T-]‘B) = w(B) for all B 6 B; then we shall call the pair

(f,dw/dx) an expansion pair. The measure w will be said to be

invariant with respect to or preserved by f. If an expansion

pair (f,h) is such that f is valid for f-expansions, the pair

is called a valid expansion pair. Similarly, if T is an ergodic

endomorphism the pair is called an ergodic expansion pair. In

this terminology Renyi's theorem states that if f satisfies A

and C or B and C then there exists a unique x-equivalent probability

1 s dw/d), s c and (Law/cu) is a valid,measure m such that C-

ergodic expansion pair.

It has been found that many functions may be invariant with

reapect to the same measure. In the following we will study this

relationship by providing an inversion algorithm which produces a

variety of functions which preserve a given x-equivalent measure.

Conditions will also be presented which insure that the resultant

expansion pairs are ergodic and valid. As a result we will have

a number of examples of the results of Renyi's theorem and, there-

fore, functions whose f-expansion properties can be investigated

with the individual ergodic theorem. Finally, we note that just

as many functions preserve the same measure, many expansion pairs

may be associated with the same stochastic process. We shall close

by showing that the inversion algorithm may also be of use in

studying this relationship.



II. THE INVERSION ALGORITHM

The inversion algorithm given below can produce expansion

pairs from a summation representation of the Radon-Nikodym derivative

of a x-equivalent measure. Conditions are also given on the

representation which insure that the resultant expansion pairs are

valid or ergodic.

1. Definitions and Basic Relations

Let g be an a.e. non-negative Lebesgue integrable function

on [0,N) where N is an integer 2 2 or +m. Set

C(x) =‘I g(t)dt for x E [0,N) and assume 1im C(x) = 1. Then

G is an a.e. differentiable nondecreasing fuhZIion from [0,N)

onto [0,1) which is absolutely continuous On every finite sub-

interval of [0,N).

N-l

Next we set h(x) = Z g(x +'k) for x 6 (0,1) and assume

k=0

that h is positive over its domain of definition. Since

1 N

g h(t)dt =4; g(t)dt = 1, h is a probability density which deter-

mines a probability measure w on the Borel subsets of (0,1)

which is equivalent to Lebesgue measure. If we now set

x

H(x) =‘£ h(t)dt for x 6 [0,1], then H and H-1 are 1-1

strictly increasing a.e. differentiable transformations on [0,1].

Finally, we define

fU(x) = H-1(G(x)) for x 6 [mm



and

fD(x) = H'la - G(x-1)) for x e [1,N+1).

We note immediately that fU is an a.e. differentiable

nondecreasing function on [0,N) such that fU(0) = 0 and

1im fU(x) = 1. On the other hand, fD is an a.e. differentiable

:Eflincreasing function on [1,N+l) such that fD(1) = l and

lim f (x) = 0. Let us complete f and f by setting

x~N+1 D U D

0 x < 0

fU<x> -

1 x 2 N

and

x < 1

fD(x> =

O x 2 N+1.

It is easily seen that fD and fU satisfy A' and B' respectively

so that both are available for f-expansions.

In the following, we shall let

ch(x> = £51m. ch<x> = £61m,

TD(X) = <ch(X)>. TU(X) = <ch(X)>

and R(x) = H-1(l - R(x)).

Note that 9D, mu, TD, and T are a.e. differentiable functions
U

on [0,1] and that R is a strictly decreasing a.e. differentiable

function on [0,1]. Before proceeding to discuss the expansion

properties of fU and fD, we present the following lemma concern-

ing elementary relations between them.
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Lemma 2.1. The following relations hold:

2.1.1 fU(x) R(fD(x+l)) fD(x) = R(fU(x-l))

2.1.2 ¢N(X) mb(R(x)) - l mb(x) = mU(R(x)) + 1

2.1.3 TU(x) TD(R(x)) TD(x) = TU(R(x))

2.1.4 fé(x) g(x)/h(f (x)) a.e. f6(x) -g(x-1)/h(fD(x)) a.e.

2.1.5 mé(x) m6(R(x))R'(x) a.e. mfi(x) m5(R(x))R'(x) a.e.

2.1.6 R(x) = R'1(x)

2.1.7 R'(x) = -h(x)/h(R(x)) a.e.

Proof.

2.1.1 and 2.1.6 follow directly from the definitions of fU, fD’

and R. For 2.1.2 we have ¢U(x) g1b{t‘fU(t) 2 x}

glb{t|R(fD (t+1)) 2 x}

g1b{t| fD(t+1> 2 R(x)}

glb{t-1|fD(t) 2 R(x)}

g1b{t|fD(c) 2 R(x)} - 1

ch(R(X)) - 1

and similarly for mD(x). 2.1.3 follows directly from 2.1.2 since

TU(X) = <ch(X)> = <ch(R(x)) - 1>

= <ch<R<x>>> = gas»

and similarly for TD(x). For 2.1.4 we use the differential form

df-1(u) = du/(§§(f-1(u))) to obtain
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rag.) = d H-1(G(x)) g(x)/<§—:(H'1<c(x>))

g(x)/h(fU(x)) a.e.

and

-g<x-1>/<j—fi-(H‘1(1 - soc-1m)f6(x) = d H-1(1 - G(x-1))

= -g(x-1)/h(fD(X)) 8-6.

2.1.5 is simply an application of the chain rule to 2.1.2 with

the proviso that the equality holds only where both derivatives

exist. Finally, 2.1.7 follows again from the above mentioned

differential form since

R'(x) = d H'la - R(x)) = -h(x)/h(R(x)) a.e.

That (fU,h) and (fD,h) are, in fact, expansion pairs

is shown by

Theorem 2.2. The transformations TU and TD are endomorphisms

on ((0,1) ,B,w) .

aegi-

Since the inverse image of any interval is at most a countable

union of intervals under either transformation, each is measurable

and it is sufficient to prove that w(T-1(0,a)) = w((0,a)) for

a 6 (0,1). If we let f = fU, then we have
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_1 N-l raw) N-l

(Dav (0,00) = 2 J“ h(t)dt = 2 H(f(k+oz)) - H(f(k))

k=0 f(k) k=0

11-1 1+0; 1: N-l ids

= 2 J; g(t)dt -fg<t>dt) = 2 £ g(t)dt

k=0 0 k=0

N-loz aN-l

= 2 £g(t+k)dt =£ 2 g(t+k)dt

k=0 k=0

CY

=£homc=wumm>

so that TU preserves m.

If, on the other hand, we let f = fD, we have

N f(k) N

h(t)dt = 2 H(f(k)) - H(f(k-|o))w(TI-)1(0.oz)) = 21] 1
k: (W) k:

N (khx-l k-l )

:51 2E g(t)dt ~£ g(t)dt

‘ N-l kw N-l '

2 i g(t)dt = 2 Ego-Atom:

k=0 RFC

a N‘]. 0!

= 2 g(t+k)dt =j‘ h(t)dt = w<<0»01>>
k=0 0

so that TD preserves w and the proof is complete.

2.2 Conditions for Valid and Ergodic Expansion Pairs

If we now consider the following condition on the function

g:

D1) g(x) > O a.e.

and

N-l

D2) g(t) < inf 2 g(x+k) for all t E (0,N);

0stl k=0

we have
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Theorem 2.3. If g satisfies conditions D then (fU,h) and
 

(fD,h) are valid expansion pairs.

Proof.

Clearly fD satisfies Al, fU satisfies Bl,and D1 implies

A2 and B2 respectively. Since lfé(x)‘ = h?%1%%)) a.e. and

U
y = gSX'lz . '

‘fD(x)| h(fD(x)) a.e. condition D2 guarantees that ‘fU(x)‘ < 1

a.e. for x E (0,N) and ‘f6(x)| < 1 a.e. for x E (1,N+1).

Therefore by the mean value theorem fD satisfies A3 and EU

satisfies B3. Since fD meets conditions A and fU meets con-

ditions B, by Theorem 1.1 both are valid for f—expansions.

To show that the pair (fU,h) and (fD,h) are ergodic

expansion pairs, we can either show that ft and fD satisfy

Renyi's condition C or demonstrate directly that TU and TD are

ergodic endomorphisms. The first method is, in general, very

difficult but the following lemma can be of help in some Special

cases .

'Lgmma‘ggg. If a function f on [0,N) satisfies

E1) o<els|i'(x)|sez<1 for xE[0,N)

and E2) f' Lipschitz of order 1

then f satisfies condition C.

12:22:.

If 0 s t1 < t2 s N, then from (i) we have that

|f(t2) - f(t1)\ s ezlt2 - t1|

and from (ii) we have that

sup f'(t) - inf f'(t) S‘M(t2 - t )

tr<b<t2 tI<t<t2 1



where M

sup f'(a

0<t<1

inf f'(a

0<t<1

1

1

is a constant independent of t

+f (a2+. . .+f (an+t))) -

14

l

+f(a2+. . .+f(an+t)))

1:

sup f'(a1+f(a2+...+f(an+t))) - inf f'(a

_ 0<t<1

14| f(a2+f(a3+. . .+f(an+1)))

S

inf f'(a

0<t<1 1

and t Now,2.

+f(a +. . .+f(a +t)))

0<t<1 1 2 "

+f(a2+;..+f(an+t)))

- f(az+f(a3+...+f(an)))\
 

e1

1462‘ f(a3+f(a4+. . .+f (an+l))) - f(a3+f (a4+. . .+f (an)))\

S 

therefore,

sup H (x,t)

0<t<1

0<t<1

 

e1

-1

 

sup 'df f(a1(x) +-f(a2(x)

= 0<t<1

inf Hn(x,t)

inf g—t f(a1(x) + f(a2(x)

0<t<1

+°.’ .+ f(an(X)+t)))

+...+'f(an(x)+t)))

 

 

 

su f' a (x) +-f a x +u..+ f a x 4tH 0631 (j (j+1() (n() )))

= inf f(a (x) + f(a (x) +...+ f(a (x)+t)))

j l 0<t<1 j j+1 n

n Meg-1

II (1+ )

j=l 1

m Meg-1

s n (l + ) = Cl< m

j=l 61

since, by theorem 8.6.1 of Hille (4.), the infinite product con-

j-l
wMez

verges if 2 e converges which it obviously does.

j=l l

. I

By noting that fU(x) = g(x) a.e. and f6(x) = -g(x-1) a.e.

when w is Lebesgue measure, we see that the conditions of this
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lemma are reduced to conditions on the input function g.

3. Rokhlin's Formula

We conclude this chapter with

 

Theorem 2.5. If fD and fU satisfy A and C and B and C

respectively, then h(TU) = h(TD).

Proof.

1 1

h(TU) =£ loglcpl'l(x)‘h(x)dx =J; loglcp5(R(x))R'(x)‘h(x)dx

0

=1; loglcplgocm'<R<x>)|h<R<x))R'<x>dx

l 1

g log|m5(x)|h(x)dx +~£ log‘R'RCx)|h(x)dx

1

h(TD) +£ log |M§fgl|ux>dx

1 1

h(TD) +£ loglh<R(x)>lh(x)dx -j log‘h(x)‘h(x)dx0 ,

o 1

h(TD) +j1‘ log‘h(x)|h(R(x))R'(x)dx -f log‘h(x)‘h(x)dx

o

= h(TD).



III. EXAMPLES

In this section we present examples of the use of the inversion

algorithm which include generalizations of some known expansion pairs

along with some new ones.

1. Lebesgue Measure

Perhaps the easiest and most interesting measure to invert is

Lebesgue measure which has density function h(x) = 1. If we, for

N-l

example, have non-negative constants pk such that 2 pk = l

k=0

then we set g(x) = pk for k s x < k+l and k = O,l,...,N-l.

Then, since H(x) = H-1(x) = x, we have

} [x]-l

f (x) = C(x) = g(t)dt = 2 p + <x>p

U o k=0 k [x]

and

[x]-2

f (x) = 1 - G(x-l) = 1 - z p - <x>p .

D k=0 k [x] 1

A well-known special case of this expansion is obtained by setting

pk = fi' for k = O,l,...,M-l, from which we get

= Ix] +<x> =

fum M M 2
|
x

and

_ x -1. <x> = _ Ell

fD(x) - l - M. ‘+'qq- l M .

These are called the M-adic expansions since they yield the expansion

of numbers base M.

16
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Suppose now we insist that 01< 61 s pk s 62 < 1. Then by

noting that h(x) = 1 implies fé(x) = g(x) a.e. and

f6(x) = -g(x-l) a.e., it is easily seen that g satisfies condition

D and f satisfies condition C by Lemma 2.1. Therefore, fD and fU

n

satisfy the conditions of Renyi's theorem. Letting S = 2 p
n k=0 k

and S_1 = 0, we can compute their entrapy by Rokhlin's formula as

follows:

h(TD) = mu) =f logl q; (x>|dx = 2 i log rdx
O U n=0 n

n-l

N-l

= 2 (-1ng)(8 -S_)
“=0 n n n 1

N-l

= - l .r120 pn 03 pm

2. Generalizations 2f the Continued Fraction
 

Another interesting family of f-expansions is provided by a

special case of a summation theorem involving the psi function.

Suppose bi’ i = l(1)n, are distinct constants not less than 1 and

where m 2 2 and p(x) is a polynomial of degree m-2 or less.

By the partial fraction theorem, we may write Un(x) as

ai

x-l-n-l-bi

v
i
t
a
e

U (x) =

n 1 l

where 2 a1 = 0. Then by a theorem cited by Davis (2 ) we have

m

E U (x) = -2 a‘i’(x+b.)

n=0 n i=1 i 1
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9.
dx 1n T(x) forwhere Y is the psi function defined by T(x) =

x > 0. We now set

g(X) = U[x] (<X>) = _.P_B)_

m

n (xiii)
i=1

and assume the Un(x) have been normalized so that

co co 1 m 1

J” g(t)dt = 2 j‘ Un(t)dt = -.2_ ai J‘ 1(t+bi)dt

0 n=00 1-1 0

m

= - 2 a1(ln F(l+b.) - 1n T(b.))

_ 1 1
i-l

m

= - 2 a1 1n b = 1

i=1 1

Since

on w m

h(x) = )3 g(x+n) = 2 U (K) = " Z ai T(X‘Fbi)

n=0 n=0 “ i=1

we have

x m x

H(x) =£ h(t)dt = - 2 a A ‘1’(t+b.)dt
._ i 1
1-1

m

= -iilai ln(F(x+bi)/F(bi)).

Now assume m is even, bi = bi-l + l for i = 2(2)m, and

that p(x+n) has been chosen so that ai = '81-1 for i = 2(2)m.

Then setting k = m/2 and c1 = a21_1 and d1 = b21_1 for

i = 1(l)k, we have

 

k (1"(x-l-di) f‘(diH)

H(x) = - 2 c 1n
i=1 i 11:11) T(x-l-di+l)

w d

i
- Z c, 1n )
i=1 1 gt-I-di
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If k=1,b=b1, and B=ln(1+%) then

H-1(x) = b exp(Bx - l)

and since

g(x) = [B(x+b) (x-l-b+l)]-1

we have

 

G(x) = 1 + 13'1 1:183:31).

Therefore, the two functions

x

x+b+l

 

_ -1 =
iU(x> -H (cm)

and

b

x+b-l

 

fD(x) = H-1(l - G(x-l)) =

form expansion pairs with the density function

l

W) "'W

Note that when b = l f yields the continued fraction expansion.
D

b (b1+1)

3
If k = 2, c1 = -c2, and B = ln(BI?g;:ES) then

Bx
b1b3(1 - e )

 

-1

H (X) = Bx

ble - b3

and since

(b3-b1) (2x-l-b3-l-b1-i-1)

g(x) = B (x-I-b 1) (x-l-b 1+1) (x4433) (x-l-bB-I-l)
 

1‘” l 1 1
- - ______.+.________

1 x+b1+1 (x+b3) (x+b3+1))

u I
A

we have
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_1 (x+b1)(x+b3+l)

G(x)= £g(x)dt= 1 +3 1:1(<x+b3)(fib 1+1)). 

Therefore the two functions

b1b3(b3-b1) + 12161123) (x+b1+1) - b3(x+b1)(x+b3+l)

{h(x) = (b1:33) +b1(x+b1) (x4133+1) - b3(x+b3)(x+b1+1)
 

and

b1"1"i(bb3)

£11“) = b(x+b3- 1) (x4431) - b3(x+b1-1)(x+b3)

form expansion pairs with the density function

h - b

 

 

_ 3 l

h(x) ' B(x+b1)(x+b3) °

(b +1) (b+1)

Finally, consider the case k = 2, c1 = c2, and B = 1n( b b

l 3

Here we have

 

 

 

 

2 Bx

H—1(x) = /(b1"b3) +41’1":ie " (bf'ba)

2

and since

1 l 1 l l

g(x) = - —— - + - )
B(x+b1 x+b1+1 x+b3 x+b3+l

we have

_ (fib)®fi)

C(x) = 1 + B 1 1 3
“E (x+b 1+1) (x+b3+1)]'

Therefore the two functions

fU(x) = % J<b1-b3)2 + 4(b1+1) (133+1) (xi-b1) (xi-b3)(x-l-bl+1)-1(x+b3+1)-1--%-(b1+b3)

and

 

fD(x) = %J(b1-b3)2 + 4b1b3(x+b1)(xi-b3)(x-l-b1+l)-1(x+b3+l)-1-%(b1+b3)
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form expansion pairs with the density' function

h +-2x +-b

( l 3).

(X'Po 1) (x+b3)

l

B

 

h(X) =

3. Miscellaneous Examples
 

Using the inversion algorithm, available expansion pairs are

at least as numerous as the entries in various series summation

tables such as Jolly (5) or Davis (2).

For example, consider the use of the familiar exponential

  

series

a k

a ax a sax)

( a )e - ( a ) z k!

e -1 e -1 k=0

Here we let

and, therefore,

x [t]
x _g__ (a<t>)

G( ) (ea-1]; [t]! dt

1 [x] 2E (a<x>)[x+1]

( )3
ea_1 k=1 k! [x+l]!
  

where we ignore the summation term if 0 s x < 1. Next, since we

are setting

 

h(x) = (2 )ea"

e -l

we have
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X 3X

a at -

H(x)= a je dt=(e—a—l).

e -1 0 e -l

Inverting H, we find

- l

H 1(x) = ;'10g((ea-l)x+l).

Therefore, we have

[x] k [x+l]
a 1 .§_ (§<x>)

108((e '1) (ea-1(k§1 kl + [x+l]! )) + 1)tum = H‘1(c(x>>

1 [x] ak +18<x>)[x+'l]

-'a og<k§l kl [x+l]!

I
t
-
I
'

+1)

and, similiarly,

[x-l] k [x]

= '1 _ l a _a_ _ 8(a<X>L
fD(x) H (l - G(x-l)) - a log(e - z k! [x]!

k=l

 

Another family of expansion pairs, which extends the above

Lebesgue family, is provided by picking {a1}:=0 where

O = a 1< a = d0 1 < a 1 an setting<000<d

n-l n

h(x) = Bi ai_1 s x < ai’ i = l,2,...,n

n

such that Z 81(ai - ai_1) = 1. Then, if p1 > O for i = O,l,...,N-l

N—l 1

and 2 p = 1, we set

._ i
1-0

for a1 1 s <x> < oi. This family inverts easily and yields monotone

"broken line" functions.



IV. ASSOCIATED PROCESSES WITH FINITE MEMORY

In this section we present a sufficient condition for the use

of the inversion to construct an expansion pair whose associated

stochastic process has the same finite dimensional distribution

as a given stationary Markov process of finite multiplicity. In

a Special case this construction is also shown to be unique.

That there is no loss of generality in assuming the given

process is stationary is shown by

Theorem 4.1. If (f,dw/dx) is an expansion pair, then its

associated stochastic process, [ai,w,(0,l)f], is stationary.

222.

The result follows directly from

my, let (0,913) be a probability Space and T be an

endomorphism on the Space.

Then the random variables X and XoT are identically

distributed.

If B is a Borel subset of the real line, then

P[X e B] P({wIX(w) E 3})

P(T'1{w\x(w) e 3})

P({m"Tm' E [w‘X(w) E B}])

P<{w|xmw)> e 3})

P1X 0 T E B].

23
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Since (f,dw/dx) is an expansion pair the transformation

T(x) = <f-1(x)> is an endomorphism on ((0,1)f,B,u>). Therefore,

by the Lemma, a1(x) = [f-1(x)] and ak(x) = [£‘1(Tkx)] for

k = 2,3,... all have the same distribution.

1. Inversion Using §_Markov Process

Suppose [xi,P30] is a stationary Markov process of finite

multiplicity T and state Space {O,l,...,N-l} such that

P[xj = ij, j = l(l)T] > O for all (i1,...,iT) 6 ST. For any

M 2 1 and (11,...,iM) e SM let us define

M

I (i ,...,i ) = 2 i N

M 1 M j=1 j
M‘j

and

F(i1,...,i ) = 2 P[xn = jn, n = 1(1)M]
M

where the latter summation extends over all (j1,...,jM) for which

... S - ... . 'IM(j1, ,jM) IM(11, ,iM) Let us further define

F(11,ooo’iM-1) = F(il,ooo,iM-1’-1) and F(-1) = 0.

Now suppose w is a x-equivalent measure on (0,1) and

X

1et h = dw/d) and H(x) =‘j h(t)dt as usual. For each

0

(11,...,iT) 6 ST, let J(i ..,iT) be the indicator function of
1"

the interval [H-ICF(i1,...,iT-l)), H-1(F(il,...,iT))] and define

g(x) = 2 P[x1 = [x]|xj+1 = ij, j = 1(1)T]J(il,...,iT)(<x>)h(<x>).

3

Since, for all x 6 (0,1), we have
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N-l N-l

kiog(x+k) = k2=0 SE P[x1 = k|Xj+1 = ij, j = l(l)T]J(i1,...,iT)(x)h(x)

N-l

= Z P’[x1 = k‘

* * *

i,, j = 1(1)T]h(x) for J(i ,...,i )(x) = 1

k=0 3 I
xj+l =

=h(x)a

g may be used in the inversion algorithm for h. Let us set

f(x) = H-1(G(x)) and denote the stochastic process associated with

(f,h) by [ai,w,(0,l)f]. Using this notation, we have

Theorem 4.3. If H(f(i1 + f(i2 +...+ f(iT))) = F(i1,...,iT—l) for

all (11,...,iT) 6 ST, then [xi,Pgfl] and [ai,w,(0,l)f] have

the same finite dimensional distributions.

Proof.

First, we have

f(i1+f(i2+. . .+f(iT+1+1)))

w[a. = ij, j = l(l)T+l] h(t)dt
J

f(i1+f(iz+...+f(iT+1)))

H(f(i1+f(i2+...+f(iT+I+l)))) -

H(f(il+f(12+. . .+f(iT+1))))

C(i1+f(i2+...+f(iT+1-l-l)))) -

g(il+f(iz+. . .+f (i'r+1)))

i1+f(i2+. . .+f(iT+1+l))

g(t)dt

il+f(iz+;..+f(iT+1))
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f(12+. . .+f(iT+1+1))

= P[xl i1\xJ = ij, j = 2(1)rr+1] h(t)dt

f(i2+. . .+f (iT+1))

= P[xl = illxj = ij, j = 2(1)1-+1]

(H(f(i2+. . .+f(iT+1+l)))-

H (f(i2+. . .+f(iT+1))))

= P[x1 = i1|xj = ij, j = 2(1)T+1]P[xj=ij+1,j=l(1)'T]

= P[xj = ij, j = l(1)T+l].

Then, using induction, we assume n 2 1+2 and u)[aj = ij, j = l(1)n-l] =

P[xj = ij, j = l(1)n-1] for all (11,...,in_1) e s“"1 and show that

f(i1+f(12+. . .+f(in+1)))

m[aj = ij, j = l(1)n] = h(t)dt

f(il+f(12+...+f(in)))

H(f(i1+f(i2+. . .+f (in+l))))-H(f(i1+f(i2+. . .+f(in))))

= G(i1+f(iz+. . .+f (in+l)))-G(i1+f(i2+. . .+f(in)))

i1+f(i2+. . .+f(in+l))

g(t)dt

il+f(i2+. . .+f(in))

= p[x1=i1|xj=ij, j=2(l)'r+1]m[aj=ij+1, j=1(1)n]

= P[x =ij, j=2(l)T+l]P[xj=ij, j=2(l)n]

l=il|xj

P[xj = ij, j = 1(l)n].
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4.2. The Uniqueness g: the Construction for Lebesgue Measure
 

In the above construction, one sees that the function g is

just a "wrinkled" version of the density function h over each

interval [L,L+1). Furthermore, if the resultant process is to

have a finite memory, the wrinkles must occur at exactly those

points in the condition of Theorem 4.3. It has been conjectured

that this fixed wrinkling is also necessary for the resultant

process to have a finite memory. That is, if an associated

stochastic process has finite memory, then the derivative of the

function with which the process is associated is a fixed Wrinkling

of the density function of the process. That this is indeed the

case when h(x) = 1 is shown by

Theorem 4.4. If [ai,x,(0,l)f] is a stochastic process of

multiplicity T associated with a.valid expansion pair (f,l),

T+1

then for each (i ) 6 S we have
l’°°°’ir+l

f'(x) = C(il,...,i )
T+l

for a.e. x in [11+f(12+f(13+...+f(1T+1))), i1+f(iz+f(i3+...+f(iT+1+l)))).

Proof.

For n 2 l and (i1,...,in) 6 Sn, let us set

M(i1,...,in) = P[xn=in\xj=ij, j=1(l)n-1]

f(i1+f(i2+;..+f(in+l)))-f(i1+f(i2+...+f(in)))

f(il+f(i2+;..+f(in_1+l)))-f(i1+f(i2+...+f(in_1)))

 

and

f(i1+f(i2+...+f(in+1)))-f(i1+f(iz+...+f(in)))

D(il.m.in) = f(iz+f(j_3+,,.+f(in+l)))-f(12+f(13+...+f(in))) '
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Noting that

M(11,...,in)

M(i2""31n)

 

D(i1,...,in) = D(11,...,1

n-l)

we have by recursion that

n M(il’...,ij)

D(11,...,in) = D(il) 122 M(12,...,ij)

Further, since [ai,x,(0,l)f] is stationary of multiplicity T,

 

we know that

M(i1,. . .,in) = M(in_k,in_k+1,.. . ,in).

Now, since f is valid for f-expansion, we have a.e.

f'(x) = lim D([x],a1(<x>),...,an(<x>))

nam

so setting i1 = [x] and ij = aj_1(<x>) for j = 2,3,..., we

have

n. M(il,...,ij)

f'(x) = 1im D(i ) H
max 1 j=2 M(iz,...,ij)

 

But for j 2 T+2, we have

m(11,...,ij) =‘M(i2,...,ij) =‘M(ij_T,ij_T+1,...,ij)

so a.e.,

T+l M(i1,...,ij) _

 f'(x) = D(i ) H . . -
l j=2 M(12,...,1j)



V. ASSOCIATED PROCESSES WITH INFINITE MEMORY

In this final section we use the specialization of the in-

version algorithm introduced in chapter IV to construct a sequence

of expansion pairs with Lebesgue measure which converges to a

pair (f,1) whose associated stochastic process has the same

finite dimensional distributions as a given stationary process.

5.1. Approximating_§n_Arbitrary Stationary Process

Let [x1,150] be an arbitrary stationary stochastic pro-

cess with finite state space S = {O,l,...,N-l] such that

P[xj = ij’ j = l(1)n] > 0 for all (11,...,in) E Sn and n 2 1.

We shall call such processes finite positive.

For T = 1,2,..., define the sequence of measures P onT

O by setting

P [X = i-ja j = l(1)n] = P[xj =
T j , j = l(1)n] for n s T

11

and

n

PTEXj = ij. j = l(1)n] = P[xj = ij. j = 1(1)w]k=£1+lp[xk = ik‘xj=ij,j=k-T(1)k-1]

for n > T. From this definition, it is easily seen that for each

T [xi, PT, 0] is a stationary Markov process of multiplicity at

most T. Furthermore, this sequence of processes is consistent in

the sense that

PT[xj = ij, j = l(1)n] = P’T+1[xj = ij, j = l(1)n]

29
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for all n s T. Let FT be defined for each of these processes

as in 4.1.

If we use this sequence of Markov processes in the con-

struction of section 4.1 and take h(x) = l we have

Theorem 5.1. The stochastic process associated with (fT,l),

[aT i,).,(0,1).f ], has the same finite dimensional distributions

9 T

as [xi,P},0].

Proof.

Using theorem 4.3 and letting f = fT’ we need only Show

that

. + . = . . _
H(f(11 f(i2 +;..+ f(lr)))) FT(11’°°°’1T 1)

for all (i1,...,iT) 6 ST. But since H(x) = x, this reduces to

f(i1 + f(i2 +x..+ f(iT))) = F¢(il’°"’ir-1)

and since f(x) = C(x), we have

i1+f (12+. . .+f(iT))

f(i1 + f(i2 +...+ f(iT))) =£ g(t)dt

i1"'f(iz+. . .+f (11))

= J; 2 P[xl = [x]lxj+1 = kj,j=l(1)T]
J(k1,...,kT

)
(<x>)

'1'
S

il-l

= Z -P[x1 = L]

L=0

f(12+...+f(iT))

+41 zirptxlgi1‘xj+1=kj ’j=l(1)T]J(k1’ ' ' ° ’k'f) (x)

3

11-1

= 2 P[x1 = L]

L=O
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+ 2 P[x1=il‘xj+1=kj,j=1(1)vr]

IT_1(k1. - - . skT_1)<IT_1(i2, . . . ,iT)

= FT (11, o o o ’lT-l) 9

Clearly if [xi,P,fl] satisfies

E: 0 < P[xn+1 = in+1\xj = 13, j = l(1)n] S e < 1 for

n+1

all ) E S and n 2 l(11,...,1n+1

then [xi,P},fl] satisfies E and (fT,1) is a valid expansion

pair for all T. Suppose, on the other hand, that [xi,P50]

satisfies

F if

M.n = sup P[xn+1 = in+1|xj = lj, j = l(1)n]

n+1

S

and

m = 12:1 P[xn+1 = 1n+1|xj = lj, j = l(1)n]

S

then there exists a constant F such that

for all n 2 1.

Theorem 5.2. If [xi,P,0] satisfies condition F, then [xi,PT,fl]

satisfies F and (fT,1) is an ergodic expansion pair for all T.

Proof.

For fixed T and n, we have
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Minn = 82:1 P'rb‘nfl = in+l‘xj = ij’ j = 1(1)“)

3

PTE’Ei = ij, j = l(1)n+1]

 sup _ _
Sn+1 PTEXJ - ij, j - l(1)n]

= P = i = ‘ = +1-k 18:31 [xn+1 n+1‘xj 11, j n ()n]

S

where

(11 ns '1'

k =( .

LT 11 > ‘1'

Therefore, if n s 1', then M = M and if n > 'r, M = M .

'r,n n T,n 'r

A similiar argument shows the same to be true for m_" n so that,

3

in either case, we have

‘M

T,n s Fl/n.

m

Hence [Xi’PT’O] satisfies condition F.

Now, for a.e. x in (0,1) and n 2 l, we have

d

sup — f(a (x) -l- f(a (x) +...+ f(a (x)+t)))

0<t<1 dt 1 2 n

inf d— f(a1(x) + f(a2(x) +...+ f(an(x)+t)))
0<t<1 dt

n

sup II f'(a (X) + f(a (X) +---+ f(a (x)+t)))

= 0<t<1 i=1 1 1+1 “

n

inf 11 f'(ai(x) + f(a (x) +...+ f(a (x)+t)))

0<t<1 i=1 n

i+l

ozliplf'(ai(x) + f(ai+1(x) +...+ f(an(x)+t)))

inf f'(a

0<t<1

S

(x) + f(ai+1(x) +...+ f(an(x)+t)))

i=1 i
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Hence fT satisfies condition C which implies (fT,1) is an

ergodic expansion pair.

5.2. A Representation Theorem

Suppose, once again, that [xi,Pgn] is an arbitrary stationary

finite positive process with state Space S. Let

B(11,...,1n+1) = [11 + F(12,...,1n+1-1), 11 + F(12,...,1n+1)]

n+1

for all (i1,...,i ) E S and n 2 1. Set

n+1

_ . . . . ' n+1

an -{3(11,...,1n+1)|(11,...,in+1) e s }

and let an be the field generated by B“. Then ([0,N),Bn),

n = 1,2,..., is a sequence of measurable Spaces such that

c: 2 .6n Bn+l for n 1

Now, for each n, 1et ([0,N)nan) denote the cartesian

n

product 11 ([0,N) ,Bn) and let ([0,N)Q,B) be the cartesian

i=1 ,

product of all of the ([0,N),EB). Define the probability measure

P on ([0,N)ny3n) by setting
n

= o o = 0 =' =..=' '=1 1P[xj 1n+1,j’ j 2(1)n+1]/'N11’j 12,.) lj,j,J ()n+l

PnfB) =

0 otherwise

n

= ' . X... ... '

f” all B B(11,1’11,2) X B(in+1,1’ ’1n+l,n+l) 1“ i218“

and extending Ph to 5p' in the natural way. It is easily seen

that P aP1 2,... is a consistent sequence of measures so, by the

Kolmogorov consistency theorem, there exists a unique probability
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* m * m

measure P on ([0,N) #6) such that PnCB) = P (B X H [0,N))

i=1

for all B 6 5%.

m

Now let :8 = V 5%, and define the probability measure P

n=l

on ([0,N),Eb by setting

11 n
_. *

e a . . . o = o , . . . 1

P(kr;1B(1nk,1,1nk,23 ’lnk’nk+1)) P (kEIB(ink91,lnk92 9 nk’nk+1)

Q

x 1'1 [0,N))

i=1

for any n 2 1; nk 2 l, k = l,2,...,n; and

B(ink’1,---,ink’nk+1) E Bnk and extending P to E in the natural

way. Note that

36(ila°--ain+1)) = P[x = i j = 2(1)n+1]/N
.l .1,

for all B(il,...,in+1) E Bn and n 2 1.

Next, suppose f;, T = 1,2,..., is the sequence of a.e.

derivatives of the fT defined relative to [xi,Pgn] as in 5.1.

We see immediately that f; is measurable with respect to

([0,N),Eg) and we have already remarked that

51:52 c...c:6Tc£-3T+1c...c6.

Theorem 5.3. The sequence (fFJB¢>’ T = 1,2,..., is a martingale.

Proof.

First, we have

E(f1'_) 2 P[x1=il|xj=ij,j=2 (1)T+1]P[x

T+l

S j=ij .i=2 (1)T+1]/N

2 P[xJ = “3’ j = 1(1)'r+1]/N = l/N

ST+1
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so that the expectation of each f; is certainly finite. Secondly,

for x E B(il,...,iT+1)

1N- 1

E(f'+T1‘B )(x) = (P[xj=ij,j=2(1)T+1})1k2P[x1=i1‘xj=ij,j =,2(1)T+1xT+2=k]

x P[xj=ij,j=2 (1)T+1,XT+2=k]

_1N-1

= =' ’= = , -l l =k(P[x-1 lj,J 2(1)T+1])1kEOP[xjij j= ( )T+1,xT+2 ]

= P[xj=ij,j=1(l)T+1]/P[xj=1,1,5 =2(1)T+l]

P[x 1=111xj=ij , j=2 (1)'r+1]

i; (x)

and since Bn is a partition of [0,N), the proof is complete.

Therefore, by the martingale convergence theorem, there is

a function g such that f; a g a.e. Further, since 0 s f; s l,

by the bounded convergence theorem we have fn difg a.e. Let us

define f =‘fg.

We see immediately that if we let T = <f-1> and

TT = <f;1> we have

N- 1 f(km) 11-1 f(“0)

1(T1([o,a))) = 2 dt = 2 lim

k=0 If(k) k=0Tscoff: (Md

= lim ACT-1([0,a))) =

T—m T

since each (fT’l) is an expansion pair. Therefore, (f,l) is an

expansion pair.
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Further, if [ai,x,(0,1)f] is the stochastic process

associated with (f,l), then

f(ii+f(i2+...+f(in+l)))

)[aj = ij, j = l(1)n] =]‘ dt

f(11+f (12+. . .+f (in)))

f'1-(5‘1-i-if'r(i2-I-° . .+fT(in+1)))

= lim dt

Tam fT(1i+fT(12+u..+fT(in)))

= P[xj = ij. j = l(1)n]

fT(il+fT(iz+;..+fT(in+1)))

since I dt = P[xj = ij, j = l(1)n] for

fT(il+fT(12+...+fT(in)))

all T 2 n. Therefore [ai,x,(0,l)f] has the same finite

dimensional distributions as [xn,P50]. As a result, we have

proven

Theorem 5.4. If (f,h) is an expansion pair whose associated

stochastic process is finite positive, then there exists an

*

expansion pair (f ,1) whose associated stochastic process has

the same finite dimensional distributions.
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