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ABSTRACT

AN INVERSION ALGORITHM FOR
ONE-DIMENSIONAL F-EXPANSIONS

By

Scott Bates Guthery

This paper presents an algorithm for the construction of a
function, whose fractional part preserves a given lebesgue equi-
valent measure on (0,1), from a summation representation of the
Radon-Nikodym derivative of the given measure. Examples are
given and the technique is used to construct a function whose
associated f-expansion stochastic process has the same finite

dimensional distributions as a given stationary process.
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I. INTRODUCTION

This paper examines a variety of one-dimensional f-expansions
along with their invariant measures and associated stochastic pro-
cesses. To introduce the material, we present the following brief

summary of relevant work in the field.

1. Background

The classical f-expansion is the continued fraction. Beginn-
ing with x € (0,1) and f(x) = 1/x and letting [ ] denote the
greatest integer function and < > the fractional part, we use the

expansion algorithm:
_ -1 _ -1
aICx) =[f "(x)], rl(x) =<f “(x)>
and for i =1, if ri(x) # 0, then

a0 = [f-l(ri(x))] and (x) =<f'1(ri(x))>.

Ti+1

Setting pn(x) f(al(x) + f(az(x) +...+ f(an(x))

1

1

, 1
a (x)

we have x = pn(x) if rn(x) = 0 and otherwise x = lim pn(x).
n—oo



Properties of this expansion have been studied extensively
and an excellent survey is provided by Khinchin (6 ).

Let us set
©,1), = {x|r_x) #0 for all n}

and note that since we have excluded only a countable number of

elements of (0,1), we have
A©,1) ) =1

where ) 1is Lebesgue measure. Any non-atomic probability measure
on (0,1) induces, in the obvious way, a probability measure on
(O,I)f. The underlying g-field is, in all cases, assumed to be
the Borel field B and almost everywhere (a.e.) statements are
made relative to ).

In 1951, Ryll-Nardzewski (10) considered the transformation
T(x) =<l/x> on (0,1) and found that the measure w on (0,1)

defined by

1 1

do/d\ = 755 D

was preserved by T and that T was ergodic with respect to w.

By noting that for a.e. x € (0,1)
n
T (x) =r (x),
where we let ro(x) = x, and hence

a6 = [1/1°()],



he was able to deduce many of the measure theoretic properties of
the continued fraction expansion through applications of the
individual ergodic theorem.

For example, to calculate the frequence of the digit p in

the continued fraction expansion of a number x in (O,I)f, one

defines
1 q=p
I (q) =
P 0 q#p
and sets
1 0
F(pex) = lim = T I _(a (x))
n—e n k=1 P ak
n-1
= lim% T 1 ([I/Tk(x)]).
no " k=0 P

Using the individual ergodic theorem, one then has

1 n-1 (17 K 1 (1/
lim= £ I_((1/T x)]) = 1 _([1/t])dw(t) a.e.
nw " k=0 P : J(;" :
1 1
_ 1 1_([1/t]) a
log 2 0 (t+1)
ol (i)
Tog 2 8 p(p+2) °

That is, for a.e. x in (0,1) the frequence of p in its con-

2
1 (pt1)
Tog 2 %8 p(pt2) °

Then,in 1957, Renyi (8 ) extended this result to the work

tinued fraction expansion is

of Everett (3 ) and Bissinger (1 ) who had investigated the use
of an arbitrary monotone function in the expansion algorithm and
conditions under which x = lim pn(x). Such functions were said

n—o
to be valid for f-expansions.



Citing the following conditions on f:
Al) £f(1) = 1;
A2) f(t) 1is non-negative, continuous, and strictly
decreasing for 1 <t <N and f£f(t) =0 for
t 2N where N > 2 1is an integer or +w;
A3) |f(t,) - £(e)| s |, - ;] for 1<t <t, and
|f(t2) - f(tl)l < |t2 - tll if 1-e<t;<t

2

where rt 1is the solution of the equation
l1+f(t) =7 and 0< ¢ < v is arbitrary;

Bl) £(0) = 0;

B2) f(t) is non-negative, continuous, and strictly
increasing for 0 <t <N and £f(t) =1 for
t 2N where N >1 is an integer or -e;

B3) [f(t,) —f(t)| < |t, - t;] for 0t <ty;

and  ©) 1f H_(r,t) = 5= £(a ) + £(a,G0) ...t £(a_(x) + £)))

then

sup H (x,t)
O<t<l ™

inf H (x,t)
ot<l

< C< 4w

where the constant C = 1 depends neither on x
nor on n;

Renyi proved

Theorem 1.1. If f satisfies conditions A or B then f is valid
for f-expansions. If f further satisfies condition C, then there
exists a unique probability measure w on (0,1) such that:

i) w 1is equivalent to );

ii) w 1is preserved by T(x) = <f-1(x)>;



iii) T 1is ergodic with respect to w;
and iv) C“1 < %% < C.
This theorem defines an entire class of functions whose measure
theoretic f-expansion properties can be investigated using the
technique introduced by Ryll-Nardzewski, viz., the individual
ergodic theorem. However, since it utilizes a non-constructive
proof, it leaves open the problem of finding the measure w for
each function in the class. This problem has been solved in only
a very few cases and is the primary impetus behind the present
work.

Next, in 1960, Rokhlin (9 ) obtained an approximate rate of

convergence for the f-expansion of numbers using the functions and
f-l

measure described by Renyi. Defining ¢ = and

B (x) = {yla,(s) = a;(), 1 =1()n}
he proved

Theorem 1.2. If f satisfies A and C or B and C and log |¢'|

is Lebesgue integrable on (0,1), then

log w(B_(x)) log A(B_(x)) 1
h(T) = -lim - = -1lim = [ log|ep'(t)|du(t) a.e.
n—o N 0

The number h(T) is called the entropy of the endomorphism T

and the theorem says that

B () = e D

Finally, in 1966,Kinney and Pitcher (7) considered the

discrete stochastic process [ai,v,(o,l)f] associated with an



f-expansion formed by the coefficients (ai) of an f-expansion
and a measure v on (0,1). Using this construct, theywere able
to calculate the dimension of some sets defined in terms of f-
expansions and connect certain properties of the processes with

properties of the f-expansions.

2. Terminology

Suppose we consider the following conditions on a function

A') f() =1; £(t) 1is non-negative, continuous and de-
creasing for 1 < t < N; and f£f(t) =0 for t =N
where N > 2 is an integer or +=;

B') f£f(0) =0; f(t) is non-negative, continuous, and in-
creasing for 0 <t <N; and f(t) =1 for t =N
where N > 1 1is an integer or -,

I1f f satisfies A' let us define

f'l(x) = gib{t|f(t) < x}
and if f satisfies B' let us define

£ 1) = gib{t|£¢t) = x)

for all x € (0,1). With these definitions, we see that an f
which satisfies A' or B' may be used in the expansion algorithm
and that the set (0,1)f is well-defined. Such a function will
be said to be available for f-expansions. Obviously, any function
which satisfies A or B satisfies A' or B' respectively. Note also

that f-1 is continuous at all but at most a countable set of



points and that except for these points f-l(x) is that unique
y such that £(y) = x.

Suppose now that f is available for f-expansions and that
w 1is a \-equivalent measure on (0,1). If the transformation
T = <f-1> is an endomorphism on ((0,1),B,w); i.e., T is measurable
and w(T-lB) = w(@B) for all B € B; then we shall call the pair
(f,dw/d)) an expansion pair. The measure w will be said to be
1nvariant with respect toor preserved by f. If an expansion
pair (f,h) 1is such that f is valid for f-expansions, the pair
is called a valid expansion pair. Similarly, if T 1is an ergodic
endomorphism the pair is called an ergodic expansion pair. In
this terminology Renyi's theorem states that if f satisfies A
and C or B and C then there exists a unique )\-equivalent probability

1. aw/dy < ¢ and (f,dw/d)) 1is a valid,

measure ® such that C~
ergodic expansion pair.
It has been found that many functions may be invariant with
respect to the same measure. In the following we will study this
relationship by providing an inversion algorithm which produces a
variety of functions which preserve a given )\-equivalent measure.
Conditions will also be presented which insure that the resultant
expansion pairs are ergodic and valid. As a result we will have
a number of examples of the results of Renyi's theorem and, there-
fore, functions whose f-expansion properties can be investigated
with the individual ergodic theorem. Finally, we note that just
as many functions preserve the same measure, many expansion pairs
may be associated with the same stochastic process. We shall close
by showing that the inversion algorithm may also be of use in

studying this relationship.



II. THE INVERSION ALGORITHM

The inversion algorithm given below can produce expansion
pairs from a summation representation of the Radon-Nikodym derivative
of a \-equivalent measure. Conditions are also given on the
representation which insure that the resultant expansion pairs are

valid or ergodic.

1. Definitions and Basic Relations

Let g be an a.e. non-negative Lebesgue integrable function

on [O,N) where N is an integer = 2 or +». Set
X

G(x) = £ g(t)dt for x € [O,N) and assume 1lim G(x) = 1. Then
xN
G is an a.e. differentiable nondecreasing function from [O,N)

onto [0,1) which is absolutely continuous on every finite sub-

interval of [O,N).

N-1
Next we set h(x) = I gkx +k) for x € (0,1) and assume
k=0
that h 1is positive over its domain of definition. Since

1 N
£ h(t)dt =£ g(t)dt = 1, h is a probability density which deter-

mines a probability measure w on the Borel subsets of (0,1)
which is equivalent to Lebesgue measure. If we now set

X
H (x) ={)h(t)dt for x € [0,1], then H and H . are 1-1

strictly increasing a.e. differentiable transformations on [0,1].

Finally, we define

£,() = i l@x)) for x € [0,N)



and
£ G = Bl - gx-1)) for x € [1,N+1).

We note immediately that fU is an a.e. differentiable

nondecreasing function on [O,N) such that fU(O) =0 and
lim fU(x) = 1. On the other hand, fD is an a.e. differentiable

x—N
nonincreasing function on [1,N+l) such that fD(l) =1 and

lim fD(x) = 0. Let us complete f _ and fD by setting
x-N+1 U

0 x< 0
fU(X) =
l1 x=2N
and
x<1
£60) =
0 x = N+1.

It is easily seen that fD and fU satisfy A' and B' respectively

so that both are available for f-expansions.

In the following, we shall let

-1 -1
¢px) = £,7 (), mu(x) fU ),

T, (x)

<<pD(X)>, TU(X) =<tpU(x)>
and R(x) = u'1(1 - Hx)).

Note that P> Py Ips and T  are a.e, differentiable functions

U
on [0,1] and that R 1is a strictly decreasing a.e. differentiable

function on [0,1]. Before proceeding to discuss the expansion

properties of fU and f _, we present the following lemma concern-

D’

ing elementary relations between them.
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Lemma 2.1. The following relations hold:

2.1.1 fU(x) = R(fD(x+1)) fDCx) = R(fU(x-l))
2.1.2 ¢h(x) = ¢D(R(x)) -1 ¢D(x) = ¢U(R(x)) +1
2.1.3 TU(x) = TD(R(x)) TD(x) = TU(R(x))

2.1.4 f&(x) gx)/h(f (x)) a.e. fﬁ(x) -g(x-l)/h(fD(x)) a.e.

2.1.5 wﬁ(x) ¢6(R(x))R'(x) a.e. ¢6(x) @5(R(x))R'(x) a.e.

2.1.6 R(x) = R'l(x)
2.1.7 R'(x) = -hx)/h(R(X)) a.e.
Proof.

2.1.1 and 2.1.6 follow directly from the definitions of fU, fD’

and R. For 2.1.2 we have ¢U(x) glb{t\fu(t) 2 x}

glb{t|R(fD(c+1)) > x)

glb{c|fD(c+1) 2 R(x)}

glb{t-l\fD(t) = R(x)}

glb{t|£ (t) 2 RG]} - 1

Py RG)) -1
and similarly for ¢D(x). 2.1.3 follows directly from 2.1.2 since
Tu(x) = <¢U(x)> = <¢D(RCX)) - 1>
= <py R(x))> = T/ (R(x))
and similarly for TD(x). For 2.1.4 we use the differential form

df-l(u) = du/(di

E—(f-l(u))) to obtain
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' = -1 dH -1
fU(X) =dH "(Gx)) g(x)/(dx(H Gx)))

g(x)/h(fU(x)) a.e.

and

§6) =d 7l - ee-1) = gD/ Gt - c-1)))

= -g(x-1)/h(f(x)) a.e.

2.1.5 is simply an application of the chain rule to 2.1.2 with
the proviso that the equality holds only where both derivatives
exist. Finally, 2.1.7 follows again from the above mentioned

differential form since
R'(x) =d B 1 - Hx)) = -h(x)/h(R(x)) a.e.

That (fU,h) and (fD,h) are, in fact, expansion pairs

is shown by

Theorem 2.2. The transformations TU and TD are endomorphisms
on ((0,1),5,w).

Proof.

Since the inverse image of any interval is at most a countable
union of intervals under either transformation, each is measurable

and it is sufficient to prove that w(T-l(O,a)) = w((0,a)) for

o € (0,1). Ifwe let £ = fU, then we have
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1 N-1 £ (k+) N-1
o Q) = T [ h()dt = £ H(f(kh)) - H(E(K))
k=0 ‘£ (k) k=0
N-1 [ ko k N-1 kto
=z g g(t)dt -j'g(t)dt\) =z { g(t)dt
k=0 0 k=0
N-1 ¢ a N-1
= 3z £g(t+k)dt =£ T g(t+k)dt
k=0 k=0
o

= 1E h(t)dt = w((0,a))

so that TU preserves .

If, on the other hand, we let f = f_, we have

D’
N £(k)

N
h(t)dt = T H(f(k)) - H(f(ktx))

wty 0,) = 2 I
k= =

N (k-ia-l k-1
z g(t)dt - g(t)dt
A o
* N-1 k+y N-1

T { g(t)dt = I Ig(tﬂ()dt
k=0 k=0

o N-1 o
I g(t+k)dt = [ h(t)dt = w((0,a))
k=0 0

so that TD preserves w and the proof is complete.

2.2 Conditions for Valid and Ergodic Expansion Pairs

If we now consider the following condition on the function

g:
Dl) g(x) > 0 a.e.
and
N-1
D2) g(t) < inf £ g(x+k) for all t € (O,N);
0sx<1 k=0

we have
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Theorem 3;2. If g satisfies conditions D then (fU,h) and
(fD,h) are valid expansion pairs.
Proof.

Clearly fD satisfies Al, fU satisfies Bl,and D1 implies
A2 and B2 respectively. Since lf&(x)\ = and
501 = ey =
a.e. for x € (O,N) and \fﬁ(x)‘ < 1 a.e. for x € (1,N+1).

1.9 NN
h(fU(x))
e. condition D2 guarantees that lfé(x)‘ <1

Therefore by the mean value theorem fD satisfies A3 and fU
satisfies B3. Since fD meets conditions A and fU meets con-
ditions B, by Theorem 1.1 both are valid for f-expansions.

To show that the pair (fU,h) and (fD,h) are ergodic
expansion pairs, we can either show that fU and fD satisfy
Renyi's condition C or demonstrate directly that T, and T, are
ergodic endomorphisms. The first method is, in general, very

difficult but the following lemma can be of help in some special

cases.

Lemma 2.4. If a function f on [O,N) satisfies
El) 0<e¢; < |f'()| se<1 for x € [0,N)

and E2) f' Lipschitz of order 1

then f satisfies condition C.

Proof.

If 0 < t;j<t, <N, then from (i) we have that
|£¢ey) - £t < ez‘tz - t1|
and from (ii) we have that

sup f'(t) - inf £'(t) < M(t, - t))
t<t<t, t<t<t,



14

where M 1is a constant independent of tl and t2’ Now,

sup f'(a
<t<1

inf f'(a
o<t<l

1+f (a2+. .o (an+t) ))

1=
1

+f (az+. ..t (an+t)))
sup f' (a1+f (a2+. ..+f (an-l-t))) - inf f'(a
- K1 o<t<l

inf f'(a,+f (a2+. .o (an+t)))
O<t<1

1+f (a2+. ..+ (an+t) ))

1

M| £(a,+E(ayt. . HE(a +1))) - £(a,+E(azt. .. +E(a )]

<
€1
. Me2|f(a3+f(a4+...+f(an+1))) - f(a3+f(a4+...+f(an)))|
€1
Me;-l
< s
€1

therefore,

d
sup H (x,t) sup — f(a,.(x) + f(a,(x) +...+ f(a_ (x)+t)))
o<t<l ™ _octe1 98 1 2 n

inf “H G0 o & £(a, (%) + £(a,(®) +...+ £(a_(x)+)))

O<t<1 Oct<l dt
sup f'(a,(x) + f(a x) +...+ f(a (x)+t
S £y (@4, @ (a_(x)+)))
< 321 inf f(a ) + E(a,_ () +... £(a_(O+D)))
O<t<l 1 J n
n Meg-l
< 0@+ )
j=1 €1
® Me‘;_-l
< 01+ ) =C< »
j=1 €1
since, by theorem 8.6.1 of Hille (4 ), the infinite product con-
® Meg-l
verges if ¢ " converges which it obviously does.
j=1 ~1

By moting that f(x) = g(x) a.e. and £}(x) = -g(x-1) a.e.

when w is Lebesgue measure, we see that the conditions of this
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lemma are reduced to conditions on the input function g.

3. Rokhlin's Formula

We conclude this chapter with

Theorem 2.5. If fD and fU satisfy A and C and B and C

respectively, then h(TU) = h(TD).
Proof.

1 1
h(Ty) =£ log|pf (x) |h (x) dx =J(‘) Log|pp (R(x))IR" (x) | h(x)dx

0
=j; log| g )R’ (R(x)) |h R (x))R' (x)dx

1 1
£ loglcpl;(x)lh(x)dx +£ log|R'R(x) | h(x)dx

1
h(r,) +J(; log |%§’%1|h(x)dx

1 1
h(r,) + [ log|h(Rx))|h(x)dx - [ 1log|h(x)|h(x)dx
D 0

0 1
h(Tp) +j1‘ log|h(x)|h(R(x))R' (x)dx - [ log|h(x)|h(x)dx
0

= hCTD).



III. EXAMPLES

In this section we present examples of the use of the inversion
algorithm which include generalizations of some known expansion pairs

along with some new ones.

1. lebesgue Measure

Perhaps the easiest and most interesting measure to invert is

Lebesgue measure which has density function h(x) = 1. If we, for

N-1
example, have non-negative constants Py such that g Py =1
k=0
then we set g(x) =p, for k<x< k+1 and k =0,1,...,N-1.

k
Then, since H(x) = H-l(x) = x, we have
X [(x]-1
f =G = t)dt = + <x>
p® =6 j(; g (t) 2 P Plx]

and
[x]-2
f x) =1-G6(x-1)=1- 3 p -<x>p .
D k=0 K [x]-1
A well-known special case of this expansion is obtained by setting

= % for k =0,1,...,M-1, from which we get

Py
—m.+.<_=£
& =5 M M
and
_ x]-1 <> _ , _ x-1
fD(x) 1 - M +'1I- 1 v

These are called the M-adic¢c expansions since they yield the expansion

of numbers base M.

16
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Suppose now we insist that 0 < €1 < Py < €, < 1. Then by
noting that h(x) =1 implies f&(x) = g(x) a.e. and
fﬁ(x) = -g(x-1) a.e., it is easily seen that g satisfies condition

D and f satisfies condition C by Lemma 2.1. Therefore, £, and f

D U
n
satisfy the conditions of Renyi's theorem. Letting S_ = T p
N =0 k
and S_1 = 0, we can compute their entropy byRokhlin's formula as
follows:
1 N-1 Sn
-1 1
h(Ty) = h(py =[ log| ¢ “(x)|dx = = log = dx
U n=0 Py
n-1
N-1
= T (-logp)(S_-5S__.)
n=0 n” " n n-1
N-1
=-Z p_ logp .
n=0 " n

2. Generalizations of the Continued Fraction

Another interesting family of f-expansions is provided by a
special case of a summation theorem involving the psi function.

Suppose bi’ i = 1(1)n, are distinct constants not less than 1 and

Un(x) = TL@"_“.)_

I (xintd,)
i=1

where m = 2 and p(x) is a polynomial of degree m-2 or less.
By the partial fraction theorem, we may write Un(x) as

8

x+n+bi

neB

U (x) =
n i=1
where 3 a, = 0. Then by a theorem cited by Davis (2 ) we have

-] m
T U ()= -E

a¥(x+b,)
n=0 i=1 . 1
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where Y is the psi function defined by Y(x) = :—x In '(x) for

x > 0. We now set

g(x) = U[x] (<X>) = T&L—

T Getd)
i=1

and assume the Un(x) have been normalized so that

o) © ]_ m 1
[ gtyae = = [ U (t)dt = - T a [ ¥ (e )de
0 n=00 i=1 0
m
=3 ai(ln TA+.) - InT(.))
= i i
i=1
m
=-%a, lnb, =1
i=1 1 i
Since
-] (-] m
h(x) = Z ghxtn) = TU x) = -3 a Y&i)
n=0 n=0 ° i=1
we have
X m X
H(x) =£ h(t)dt = - ¢ a £w(t+b.)dc
-1 1 i
i=1
m
= -.Z a, ln(l"(x-l-bi)/l"(bi)).
i=1
Now assume m is even, bi = bi-l +1 for i =2(2)m, and
that p(x+n) has been chosen so that a, = -a; 4 for i = 2(2)m.
Then setting k = m/2 and c; =8y, , and d, =b,. ., for

i =1(@1)k, we have

K (I‘(x+di) r(d+1)
H) =-Z c, In
2% T TeH D
k a
= - Ie InGag)

i=1 i



19
If k=1,b=b, and B =In(l +%) then
-1 _
H () =b exp(Bx - 1)
and since

g(x) = [Bxt) (xtb+1)] 1

we have

Gx) =1 +B1 1ng‘f:il).

Therefore, the two functions

X
x+b+1

£, =B GE)) =

and

b
x+b-1

£ (x) = H_l(l - G(x-1)) =

form expansion pairs with the density function

1

hex) = B (x+b)

Note that when b =1 fD yields the continued fraction expansion.

b3(b1+1)
If k=2, € = =y and B = 1n(€I?SE:ESO then
By
H-l(x) _ blbg(l -e?)
be X - b,
and since
(b3-b1)(2x+b3+b1+1)

gix) =3 G ) (et +1) Getb,) (xb 1)

1~ 1 1 1

- - + )
1 x+b1+1 (x+b3) (x+b3+1)

we have
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X b

) (x+b,+1)
G (x) =‘[; g(x)dt =1 + g1 1 3

In( &,) (x+b1+1)) .

Therefore the two functions

£ ) = b1b3 (bs-bl) + bl(x-l-b3) (X'H')1+1) - b3 (x+b1) (X+b3+1)
U (bl-b3) + bl(x-l-bl) (x+b3+1) - b3(x+b3)(x+b1+1)

and

bybs(b;-by)

bl(x+b3-1) (x+b1) - b3 (x+b1-1) (x+b3)

£ x) =

form expansion pairs with the density function

heo =
X B(x-!bl) (x-l-b3) )
(b1+1) (b3+1)
Finally, consider the case k = 2, Cp = Cyo and B = In¢( 55
13

Here we have

2 Bx
/(bl-ba) +4b1b3e - (b1+b3)

B ) = :
and since
1,1 1 1 1
g®) = gl - el )
B g('i'b 1 x+b 1+1 x+b3 x+b3+1
we have
_ (x+b,) (x+b,)
Gx) =1 +B 13

Inlom D Gt 3+1)] .

Therefore the two functions

£,00) = % \/(bl-b3)2 + 4(b+1) (by+1) (et ) (etby) (x+b1+1)-1(x+b3+1)-1--;-(b1+b3)

and

£ () = % j(bl-b3)2 + 4b b (xtb ) (xtb,) (x+b1+1)-1(x+b3+1)-1--%-(b1+b3)
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form expansion pairs with the density function

b, +2x +b

( 1 3) R
(x4b,) (x+b,)

1
B

hx) =

3. Miscellaneous Examples

Using the inversion algorithm, available expansion pairs are
at least as numerous as the entries in various series summation
tables such as Jolly (5) or Davis (2).

For example, consider the use of the familiar exponential

series
® k
a
(Ee™ = (2o ¢ =
e -1 e -1 k=0
for a > 0.
Here we let
[x]
- (a<x>) a
and, therefore,
x (]
Gy = —2— [ L&) 4
e?10 [t
R IR
S e— 2 o—
ea-l k=1 k! [x+1]!

where we ignore the summation term if 0 < x < 1. Next, since we

are setting

h(x) = (e

e -1

ax

we have



X ax
HE) = =— [ e®fae = (& =1,
e -10 e -1
Inverting H, we find
1 L) =§ log((e?-1)x+1).
Therefore, we have
-1 1 1 [x] zalk a<x> [x+1]
£y = B0 = 2 tog(e® (A=(T & +-(§f‘ﬁ?]—!—)) +1)
e -1 k=1
[x] k [x+1]
_1 a_ , (a<x>)
"o 18CE A T L D
and, similiarly,
[x-1] k [x]
= -1 = —1- a - .a._. - 8_&02)__
fD(x) H™Q1 - 6(x-1)) 2 log (e kil Xl Tx] )

Another family of expansion pairs, which extends the above

Lebesgue family, is provided by picking {di}2=0 where
0= ¥y <oy <o o< @ = 1 and setting
h() = Bi o4 <x < o i=1,2,...,n

n
such that ¢ Bi(ozi - ai-l) = 1. Then, if P; >0 for i=01...,N-1

N-1 i=1
and I p; = 1, we set
i=0
gx) = p[x]Bi
for o1 < <x> <L a . This family inverts easily and yields monotone

"broken line'" functions.



IV. ASSOCIATED PROCESSES WITH FINITE MEMORY

In this section we present a sufficient condition for the use
of the inversion to construct an expansion pair whose associated
stochastic process has the same finite dimensional distribution
as a given stationary Markov process of finite multiplicity. 1In
a special case this construction is also shown to be unique.

That there is no loss of generality in assuming the given

process is stationary is shown by

Theorem 4.1. If (f,dw/d\) is an expansion pair, then its
associated stochastic process, [ai,w,(o,l)f], is stationary.
The result follows directly from
Lemma 4.2. Let (Q,U,P) be a probability space and T be an
endomorphism on the space.
Then the random variables X and XoT are identically
distributed.

If B 1is a Borel subset of the real line, then

P[Xx € B] = P({w|X(w) € B})

P(T'l{m\x(w) € B})

P({w'|Tw' € {w|XW) € B}})
P({w|X(T)) € BY)

P(X o T € B].
23
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Since (f,dw/d)\) 1is an expansion pair the transformation
T (x) ='<f-1(x)> is an endomorphism on ((O,I)f,B,w). Therefore,
by the Lemma, a,(x) = [f-l(x)] and a, (x) = [f-ICTkx)] for

k = 2,3,... all have the same distribution.

1. 1Inversion Using a Markov Process

Suppose [xi,P,Q] is a stationary Markov process of finite

multiplicity T and state space {0,1,...,N-1} such that

P[xj = ij’ j=11)1T] >0 for all (il,...,iT) € sT. For any
M=21 and (il,...,iM) € SM let us define
M
. . - M-j
IM(ll,-.o.lM) jilij N

and
F(il,...,iM) =7 P[xn = jn, n = 1(1)M]

where the latter summation extends over all (jl,...,jM) for which

IM(jl,...,jM) < IM(il,...,i

M). Let us further define

F(ipseeosiy=1) =F(i,... 1) and F(-1) = 0.

,iM-l’-
Now suppose ® is a )\-equivalent measure on (0,1) and
x
let h =dw/d\ and H(x) = [ h(t)dt as usual. For each
0
(il,...,iT) € ST, let J(il,...,iT) be the indicator function of

the interval [H-I(F(il,...,iT-l)), H-l(F(il,...,iT))] and define

g(x) = E p[x1 = [x]lxj+1 = 1j, j = 1(1)T]J(11,...,1T)G<x>)h(<x>).
S

Since, for all x € (0,1), we have
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N-1 N-1
T gxtk) = £ ¢ P[x, = k|x =i, J=1M)7]IE,5...,1 ) ®)h(x)
k=0 k=0 1 1 Y 1 T
N-1 * * *
= kzo Plx, = klxj+1 = ij, j=1Mrlhe) for J(ip,...,i)(x) =1
= h(x),

g may be used in the inversion algorithm for h. Let us set
f(x) = H-l(G(x)) and denote the stochastic process associated with

(f,h) by [ai,w,(o,l)f]. Using this notation, we have

Theorem 4.3. If H(f(i1 + f(12 +...+ f(11_))) = F(ll"“’i'r-l) for
all (ipse.e5i) € ST, then [x,,2,0] and [a ,0,(0,1) ] have
the same finite dimensional distributions.

Proof.

First, we have

f(il+f(i2+. . .+f(iT+1+1)))

wla, = i

j j=1QQ)r+1]

i’ h(t)dt

E(LH (L 0)))

H(EA M +D)))) -

H(f(11+f(12+. . '+f(i'r+1))))

G(i H (i .. (D)) -

G(i1+f(12+. . '+f(i'r+1)))

1+ (Ly+e . HE (L qHD))

g(t)dt

il+f(12+. . '+f(i1'+1))
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f(iz+. .o H (i'r+1+1))

Plx, = 11\xj i 3= 2(1)7+1] | h(t)dt

£yt . HE ()

P(x

|
(SN

g%y =15 1= 2]
(H(f(12+. . '+f(i"r+1+1)))-

H(E (e +E(E 1))

”
N

Plx; = 1| g =i ds z(1)-r+1]p[xj=ij+1,j=1(1)'r]

P[xj = ij, j =1Q1Q)r+1].

Then, using induction, we assume n = T+2 and w[aj =i, j=1(1M)n-1] =

]

Plx; = 1, § = 1(n-1] for all (ij,...,i_ ;) € S°"' and show that
£(LH (. (1))
m[aj = ij’ j =1()n] =| h(t)dt

F(L HE A E)))

H(E (L HE Gyt HE(E 1)) -H(E (L HE (L o (L ))))
= G(i M (iyhe . HE (L 1)) -G (1 HE (L y+. . HE(L)))

(1,4 HE (L +1))

g (t)dt

L H (L, + L+ ()

= Plxp=t [ =igs 32 Hela =1, 3=1(W)n]

= P[x1=il|xj=ij, i=2Q)r+17P(x » 3=2(1)n]

371

P[xj = ij’ j =1@)n].
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4.2. The Uniqueness of the Construction for Lebesgue Measure

In the above construction, one sees that the function g is
just a "wrinkled" version of the density function h over each
interval [4,4+1l). Furthermore, if the resultant process is to
have a finite memory, the wrinkles must occur at exactly those
points in the condition of Theorem 4.3. It has been conjectured
that this fixed wrinkling is also necessary for the resultant
process to have a finite memory. That is, if an associated
stochastic process has finite memory, then the derivative of the
function with which the process is associated is a fixed.wrinkling
of the density function of the process. That this is indeed the

case when h(x) = 1 is shown by

Theorem 4.4. 1If [ai,x,(O,l)f] is a stochastic process of

multiplicity T associated with a valid expansion pair (f,1),

T+
then for each (11,...,1T+1) €S we have

f'(x) = C(igseeesi_iy)

T+1

for a.e. x in [ii+f(12+f(13+...+f(iT+1))), il+f(i2+f(i3+...+f(iT+1+1)))).
Proof.

For n21 and (i ..,in) € Sn, let us set

1’°

M(iy5e00si)

N P(xn=in\x =i,, j=1(1)n-1]

33

f(il+f(i2+...+f(in+1)))-f(il+f(12+...+f(in)))
f(il'l'f(iz'i-. . '+f(in-1+l)))—f(il+f(12+' K '+f(in-1)))

and

£(L HE ()t HE (L +1))) -E (L HE (Lt L HE (L))
D(yseeesiy) = E(L,FE (1T . HE(_FD)))-E(L (L F. . (1))
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Noting that

M(il,ooo,in)
M(iz’ooo,in)

D(il’u-n’in) = D(il’--.’i

n-l)

we have by recursion that

n M(il"'°’ij)
D(ilsn.o,in) = D(il) jr=12 M(iz""’ij)

Further, since [ai,x,(o,l)f] is stationary of multiplicity T,

we know that

M(Lgsenesi ) = MO ol rsees,i)e

Now, since f 1is valid for f-expansion, we have a.e.
f'(x) = lim D([x],a1(<x>),...,an(<x>))
n—o
so setting i; = [x] and ij = aj_1(<x>) for j = 2,3,..., we
have
n M(il,...,ij)

£'(x) = lim D(i,) T
R (NS TCPPIPPFEI

But for j =z t+2, we have

M(igaeeesi)) = M(pseensty) = MO LE L0seeesdy)

so a.e.,

T+l M(i_,...,1,)
' = 1 i
f'x) =D(,) 1 - - =
1 j=2 M(12,...,1j)




V. ASSOCIATED PROCESSES WITH INFINITE MEMORY

In this final section we use the specialization of the in-
version algorithm introduced in chapter IV to construct a sequence
of expansion pairs with Lebesgue measure which converges to a
pair (f,1) whose associated stochastic process has the same

finite dimensional distributions as a given stationary process.

5.1. Approximating an Arbitrary Stationary Process

let [xi,P,Q] be an arbitrary stationary stochastic pro-
cess with finite state space S = {0,1,...,N-1} such that

Blx, = i,, § = 1(1)n] >0 for all (ip,...,i) € s" and n = 1.

h|
We shall call such processes finite positive.
For T =1,2,..., define the sequence of measures PT on

0 by setting

PT[xj = ij, j =1Q)n] = P[xj = 1j, j =11)n] for n<rT
and
n
PT[xj = 1j, j =1()n] = P[xj = 1j, j=1)r] 1 P[xk = ik\xj=ij,j=k-7(1)k-1]

k=r+1
for n > 1. From this definition, it is easily seen that for each
T [xi, PT, Q] 1is a stationary Markov process of multiplicity at

most T. Furthermore, this sequence of processes is consistent in

the sense that

PT[xj = 1j, j =1)n] = PT+1[xj = ij, j = 1(1)n]

29
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for all n < 7. Let FT be defined for each of these processes
as in 4.1,
If we use this sequence of Markov processes in the con-

struction of section 4.1 and take h(x) = 1 we have

Theorem 5.1. The stochastic process associated with (fT,l),

[aT i,x,(O,l)f ], has the same finite dimensional distributions
’

T
as [xi,P},Q].

Proof.
Using theorem 4.3 and letting f = fT, we need only show

that
H(E(L) + £+ £(1)))) = F (17,0051 1)
for all (11,..-,1T) € sT. But since H(x) = x, this reduces to

f(i1 + f(i2 +...+ f(iT))) = FT(i .,iT-l)

1’..
and since f(x) = G(x), we have

1A+ ()
£(1, + £(1, +...+ £(1))) ='£ g (t)dt

L+ (1)
= zE ETP[xl = [x]|xj+1 = kj,j=1(1)'r]J(k1,...,k_r)(<x>)
S

E(L,+. .+ (1))

+£ zTP[x1=11|xj+l=kj,j=1(1)'r]J(k1,...,kT)(x)

S

11-1

= T P[x1 =]
1=0
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+I P["1=i1"‘j+1=kj’j=1(1)ﬂ
ST CSTOPINS S 25 S CHAPE
= F'r(il’. oo,i'r-l) .

Clearly if [xi,P,O] satisfies

E: 0< P[xn+l = =i, j=11)n] <e< 1 for

im+1"‘j i’

. +1
all (isee5i 1) € s" and n=21

then [xi,PT,Q] satisfies E and (fT,l) is a valid expansion

pair for all T. Suppose, on the other hand, that [xi,P,Q]

satisfies
F if
M = su P = i x, =i =11
n nil [xn+1 1n+1| j j? J (1)n]
S
and
m = inf P{x =i x, =1i_, = 1(1)n
n sn+1 L n+l n+1l 3 i J (1)n]

then there exists a constant F such that

for all n = 1.

Theorem 5.2. If [xi,P,Q] satisfies condition F, then [xi,PT,Q]
satisfies F and (fT,l) is an ergodic expansion pair for all .
Proof.

For fixed 1t and n, we have
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Mo T su-;:_1 Plx ;= 1n+1\xj 1. = 1(1)n]
S
P = = 1(1)n+l
- e -r[’fi iE (1)n+1]
]_P[x —i:j=1(1)n]
h|
= 8:1-1:-1 P[xn_"1 = in+1‘xj = lj’ j = n+l-k(1)n]
S
where
(n n<-r
k = ¢ .
LT n>-T
Therefore, if n < 1, then M =M and if n> T, M =M.

T,N

A similiar argument shows the same to

in either case, we have

Mon < Fl/n
—Lm .
T,N

Hence [xi, 1] satisfies condition

Now, for a.e. x in (0,1) and n 2

sup d— f(al(x) + f(a x) +...+ f(an

0<t<1

T,n T

be true for m so that,
T,Nn

F.

1, we have

(x)+t)))

inf g? £(a,(x) + £(ay(x) +...+ £(a_

o<t

sup II f'(a,(x) + f(a (x) +.
- o<t g1 i i+l

(x)+t)))

.-+ f(a x)+t)))

inf n £! (a (x) + f(a
O<t<l i=1

i+1(x) +..

sup f' (a (x) + f(a 1(x) +..
o<t<l

.+ f(an(x)+t)))

o+ f(an(x)'*'t)))

s 1

(= Inf £'(a @) + f(a () +..

o<t<l

.+ f(an(x)+t)))
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Hence fT satisfies condition C which implies (fT,l) is an

ergodic expansion pair.

5.2. A Representation Theorem

Suppose, once again, that [xi’P’n] is an arbitrary stationary
finite positive process with state space S. Let
veeyid = + R | -1 i+ .o
Blpreoipyg) =1 #FUyeend Dy ) # R0t )]

n+1

for all (il,... ) €S and n =2 1. Set

’in+1

_ . . ' n+1
B = {3(11,...,1n+1)l(11,...,1n+1) € s

and let 5; be the field generated by B . Then ([O,N),E%),
n=1,2,..., is a sequence of measurable spaces such that
Bncﬁn+1 for n = 1.

Now, for each n, let ([0,N)",8") denote the cartesian
n
product 1 ([O,N)gen) and let ([0,N)”,8) be the cartesian
i=1
product of all of the ([0,N)¢9n). Define the probability measure

P on ([0,N)",5") by setting

n
=i s =2)n+1}Ni, =i =..=i =1(1)n+l
Py = 4y o 37 2w =) st L 3ml()
P ®) =
0 otherwise
n
= Xeao esayld
for all B B(il,l’il,Z) X B(in+1,1’ ’1n+1,n+1) in 15{9“

and extending Pn to A" in the natural way. It is easily seen

that Pl,PZ,... is a consistent sequence of measures so, by the

Kolmogorov consistency theorem, there exists a unique probability
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©

* ) *
measure P on ([O,N) ,3) such that Pn(B) =P B x 1 [0,N)
i=1
for all B € Eh.

@

Now let B = V Bn and define the probability measure P
n=1
on ([O,N),3) by setting

ry : ces = LI Y i
P(QZIB(lnk,l’ln],Z’ ’ink,nk+1)) P (kEIB(ink,l’ink,Z’ ’ nk,nk+1)

x 1 [o,N))
i=1

for any n=21;n,_21, k =1,2,...,n; and

k

B, qsereniy ,n +1) €B ~ and extending P to B 1in the natural
k k™ k k
way. Note that

F@(il,...,inﬂ)) = P[x

j = ij’ J =21)n+1]/N

for all B(il,...,1n+1) € Bn and n 2 1.

Next, suppose f;, T=1,2,..., is the sequence of a.e.
derivatives of the fT defined relative to [xi,P,ﬂ] as in 5.1.
We see immediately that f; is measurable with respect to
([O,N)J?T) and we have already remarked that

BchZ <:...c£9'r<:£-7'r_'_1 c...CB.

Theorem 5.3. The sequence (f;yBT), T=1,2,..., is a martingale.
Proof.

First, we have

]

B(E) = £ Blxy=i)|x,=i,,3=2()r+1]e0x, =i, 3=2 () T/

=i
J 3
ST+1

£ Plx, = Uy J=1)rH)/N = /N

3
T+
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so that the expectation of each f; is certainly finite. Secondly,

for x € B(il,...,iT+1)
‘ N-l
E(f! 4180 &) = (Plx =1 ,j= 2(1)T+1]) T Blx,=i|x,=1,3=2)1+l,x_
T+l j j k=0 ! h| j
X P[xj j,j 2(1)T+1, xT+2=k]
-1
= (P[X =i :j=2(1)7+1]) 2 P[x =i ,j=1(1)7+l,x =k]
k=0 ] T+
= P(x I j,j 1(1)T+1]/P[x j,j =2 (1)1+1)]

= P[x1= 1Ixj=ij,j=2(1)7+1]

£1.60)

and since Bn is a partition of [O,N), the proof is complete.
Therefore, by the martingale convergence theorem, there is
a function g such that f; - g a.e. Further, since 0 < f; <1,
by the bounded convergence theorem we have fn - Ig a.e. Let us
define f = Ig.
We see immediately that if we let T = <f-1> and
T = <f;1> we have

N-1 f(kt)  N-1 £ (k*“)

AT ([O,oz))) = T dt = £ 1lim
k=0 J‘f(k) k=0 T 'rf Ol

= lim AT (0,0))) =
T T

since each (fT,l) is an expansion pair. Therefore, (f,1) is an

expansion pair.

K]
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Further, if [ai,x,(O,l)f] is the stochastic process
associated with (f,1), then

f(ii+f(i2+...+f(in+1)))

i, 1 =1(n] = [ at
J (L + .+ (L))

x[aj =

fT(11+fT(12+...+fT(in+1)))

lim j dt
T fT(11+fT(12+...+fT(in)))

Pﬁxj =i, j=1()n]

j’
fT(il+fT(12+...+fT(in+1)))

since I dt = P[xj = ij’ j =1Q)n] for
fT(il+fT(i2+"'+fT(in)))
all T 2 n. Therefore [ai,x,(o,l)f] has the same finite

dimensional distributions as [xn,P,Q]. As a result, we have

proven

Theorem 5.4. If (f,h) 1is an expansion pair whose associated
stochastic process is finite positive, then there exists an

*
expansion pair (f ,1) whose associated stochastic process has

the same finite dimensional distributions.
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