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ABSTRACT

ELASTOSTATIC STRESS ANALYSIS OF FINITE

ANISOTROPIC PLATES WITH CENTRALLY

LOCATED TRACTION-FREE CRACKS

By

George Stephen Gyékényesi

A mapping-collocation method is developed for the elaStostatic

stress analysis of finite anisotropic plates with centrally located

traction-free cracks. The essence of the method is as follows:

1. The crack is mapped into the unit circle.

2. The boundary conditions on the crack are satisfied

exactly by expressing one of the stress potentials

in the form of the other.

3. A form of representation is assumed for the remaining

unknown stress potential in the parametric plane.

4. The boundary conditions on the outer boundary of the

region are satisfied by the method of least squares

boundary collocation.

In order to demonstrate the feasibility of the method, rectan-

gular orthotropic plates with centrally located traction-free cracks

under constant tensile and shear loads are analyzed. A parametric

study of the finite plate stress intensity factors is presented show—

ing the effects of varying material properties, orientation angle,

crack length to plate width and plate height to plate width ratios.

In general, some of the more significant results can be summarized

as follows:
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l. Rectangular orthotropic Plate with a centrally located traction-

free crack under constant tensile load acting in the direction

perpendicular to the crack.

(a) The opening mode stress intensity factor increases with

decreasing EZZ/Ell ratios, where E22 and E11 are

Young's moduli of elasticity for an orthotropic mate—

rial and 0 < E < l.

22/E11

(b) The opening mode stress intensity factor increases as

the crack length to plate width ratio increases.

(c) The opening mode stress intensity factor increases as

the plate height to plate width ratio decreases.

(d) Considering a square plate, the maximum opening mode

stress intensity factor occurs at the value of the

orientation angle of 900 while the minimum opening

mode stress intensity factor is obtained at O0 for

any constant crack length to plate width ratio.

(e) The presence of the sliding mode stress intensity fac-

tor is due to values of the orientation angle other

than 00 or 900 and to the finite size of the plate.

2. Orthotropic square plate with a centrally located traction-free

crack under constant shear loading.

(a) The sliding mode stress intensity factor increases with

decreasing EZZ/Ell ratios.

(b) The sliding mode stress intensity factor increases as

the crack length to plate width ratio increases.
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(c) The minimum sliding mode stress intensity factor always

occurs at the zero value of the orientation angle while

the maximum sliding mode Stress intensity factor can

occur at various values of the orientation angle for

conStant crack length to plate Width ratios.

(d) The presence of the opening mode stress intensity fa;—

tor is due to values of the orientation angle differ-

ent from O0 or 900 and to the finite size of the plate.

In addition to the development of the mapping-collocation method

and to the parametric study of stress intensity factors, the infinite

anisotrOpic plate solutions of Savin and Lekhnitskii are derived by

considering a finite rectangular anisotropic plate with a centrally

located traction-free crack and extending its dimensions to infinity.
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1. INTRODUCTION

The recently extended application of anisztrcpi: materials in vari-

ous fields of structural design makes one aware :f a whole class of new

problems in anisotropic elasticity theory. in order to study the frac-

ture phenomena of these materials, the problem of a centrally cracked

finite plate seems to be of immediate importanze. Methods of solution

for centrally cracked finite isotropic plates were developed by A. S.

Kobayashi (ref. 1) and O. L. Bowie and D. M. Neal (ref. 2) while the

problem of the finite anisotropic plate remained fairly neglected.

The plane problem of a centrally cracked finite anisotropic plate

could be considered as a special case of the more general problem of

the anisotr0pic.plate containing an elliptic hole. The limiting case of

this problem, i. e., the problem of an elliptic hole in an infinite ani-

sotrOpic plate, has extensively been investigated by various authors

over the past thirty years. The complex variable approach of N. I.

Muskhelishvili (ref. 3) as adopted by S. G. Lekhnitskii (ref. 4) to

plane anisotropic theory was used by both Lekhnitskii and G. N. Savin

to solve the problem of the infinite anisotropic plate bounded by an

ellipse. Lekhnitskii (refs. 4, 5) employed the method of series ex-

pansion while Savin (refs. 6, 7) applied.Schwarz‘s formula in order to

obtain the complex Stress potentials of Lekhnitskii.

Simultaneously with these achievements, A. E. Green, in a series

of articles published.in the early 1940’s, developed his own method,
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also solving the problem of an elliptic hole in an infinite anisotropic

region. His results are condensed in his Theoretical Elasticity
 

(ref. 8).

Another approach to plane elastic problems is advanced in L. M.

Milne-Thomson's Plane Elastic Systems (ref. 9) in handling both iso-
 

trOpic and anisotropic plane problems by a "semi-unified" method. He

also discusses the problem of the elliptic hole in an infinite aniso-

tropic region.

An entirely different method is due to D. D. Aug and M. L. Williams

(ref. 10). They used a formulation in integral equations for a cen-

trally cracked orthotropic plate. This method, however, applies only

for infinite orthotropic plates with zero orientation angle.

The semi-infinite specially orthotropic plate problem with a cen-

trally located crack was first discussed and solved by A. Mendelson and

S. W. Spero (ref. 11). The solution was obtained by the application of

finite Fourier transforms resulting in an integral equation for the

crack opening.

The concept of the extension of Fracture Mechanics from isotropic

to anisotropic media was proposed by P. C. Paris and G. C. Sih in 1961

(ref. 12). If their approach is adopted, the stress intensity factors

can be determined directly from the anisotropic stress potentials in a

manner similar to that introduced by Sih for isotropic materials.

As a further development, E. M. Wu examined the conditions neces-

sary for the application of Fracture Mechanics to anisotrOpic materials

and also verified them experimentally for orthotropic plates (ref. 13).

He concluded that the crack tip stress singularity is of the same order
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as that of isotropic materials and the stress intenSity factors are sim-

ilar to those of the isotropic case.

The subject of this dissertation is a logical continuation of the

above listed work as it is applied and extended to the problem of a fin—

ite anisotropic region With a centrally io-a:ed traction—free crack.

The proposed method of solution parallels Bow1e's modified mapping-

collocation technique (ref. 2) which was successfully used in the case

of isotropic materials.

Since the presence of flaws in a material is of critical nature,

the main objective of the work reported herein was the construction of

a practical method toward defining and obtaining the stress intensity

factors of finite anisotropic plates with central traction—free cracks.

The method of solution can briefly be described as follows:

1. The crack 18 mapped into the unit Circle.

2. The complex stress potentials of Lekhnitskii are found

by exactly satisfying the zero traction conditions on

the crack with the application of Muskhelishvili's

function extension concept a-ross the unit circle.

3. Upon expanding the remaining undefined stress potential

in a Laurent series, the conditions on the outer boundary

or the region are approximated by the method of least

squares boundary collocation.

The stress intensity factors for both the opening and sliding modes are

then computed Since they are shown to be functions of the coefficients

of the Laurent series already defined. In addition, expressrons for the
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stress components and displacements are given in general for the case

of the traction-free crack problem.

As an illustration of the practicality of the method, the problem

of an orthotrOpic rectangular plate with a central traction—free crack

is solved under constant tension and shear loading. The effects of

varying material properties, orientation angles, crack length to plate

width and plate height to plate width ratios are investigated and dis—

cussed at some length. It is shown for plates of various crack length

to plate width ratios that in the tension problem, the maXimum opening

mode stress intensity factor is obtained in each case when the "strong"

axis of the material is perpendicular to the crack. In the shear prob-

lem, the maximum sliding mode stress intensity factor can occur at var-

ious values of the orientation angle.

In addition to the finite plate results, the problem of infinite

anisotropic plates with central cracks is also discussed for the cases

of constant tension and shear loading. It is shown that the infinite

plate solutions of Lekhnitskii and Savin (refs. 4, 6) can also be ob-

tained by extending the dimensions of a rectangular plate to infinity.



2. PLANE PROBLEM FORMULATIONS FOR ANISOTROPIC MATERlALS

2.1 INTRODUCTION

In linear anisotropic elasti;ity there are two plane problems

which may be discussed from the classrcal point of view:

1. The state of plane stress, corresponding to a plane plate

of constant thickness loaded by forces in the plane of the

plate;

2. The state of plane strain, corresponding to a long (theo-

retically infinite) body acted upon by loads which are uni-

formly distributed in the infinite direction and have no

components normal to the finite planes.

These cases are similar to those in plane linear isotropic elasti-

city (ref. 15)—

It can easily be shown that the difference between the plane

stress and the plane strain problems is inherent in the use of

elastic constants within the stress-strain relations as given in

Appendix A. Therefore, any method of problem formulation for the

plane stress problem is also valid for the state of plane strain (or

vice versa) With the proper interchange of the elastic constants.

In the following, two methods of problem formulation will be

demonstrated:

1. The conventional stress function formulation (ref. 4);
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2. The displacement function formulation corresponding to

Marguerre's displacement function approach (refs. 15, 16)

in linear isotropic elasticity.

The formulations developed on the following pages are given for plane

stress problems with no body forces.

2.2 STRESS FUNCTION FORMULATION 0F PLANE STRESS PROBLEMS

Assuming that the stress components are derivable from a function

 

 

such that

32¢ 32¢ 32¢

Ox=—-2—;O =——2_;Ox=_3x8 2'X By YY 8x Y y

one finds that the equilibrium equations

30 80

£+JX=O

8x 8y

2.

30 80

__§Z.+.__ZZ.= 0

3x 3y

are identically satisfied.

The displacements, u and v, satisfy the strain compatibility

equation

825x azsy 328

+ =2—-§Z
2.

ay2 ax2 3x3y

also identically.

Therefore, the function, ¢, can be related to the displacements,

u and v, through the use of the strain-displacement relations

1

2

3



Bu

E2 = ”T"

XX OX

6 = 3X. 2.

yy 8y

26 = du +‘31

xy 8y 8x

and Hooke's Law for the state of anisotropic plane scress

o. = B..e\ (1,j = l, 2, 6) 2.

in the following manner:

2
Li 3 _ .3. i

3y2 B11 dx + 816 a u I 816 3x + 812 ay V

322 a a a a

3x2 = (812 3§'+ 826 E?) u + (826 §§'+ B22 5;) V 2'

__3_<.P_= _3 .9. .2. 3

8x3y 816 8x + 866 By u + 866 8x + 82668y V

Upon the elimination of u and v froanqs.2.6, the following fourth

order partial differential equation is obtained:

4

_ 2 3¢ 3 2

(811866 816) 3X4 I 2(8118 26 812816) a 3.
X 6y

4

2 3 ¢

+ (28168 26 2812866 + 811822 ‘ 812) 2 2
Bx 8y

349 2 342

+ 2(8168 22 812826) 3 + (822866 826) 4 = O
axay 8y
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Using the relations 42 from Appendix A, this differential equation can

be written as,

4 4 4 4 4

M _ ii. _3_1_ _ .12.. Li =

C22 4 2C26 3 + (C66 + 2C12) 2 2 2C16 3 + C11 4 0
3x 3x 8y 8x 3y Bxay By

2.8

The displacements are found from the stress-strain relations

6 = C ,o (i,j = 1, 2, 6) 2.9

by substituting the strain-displacement relations and the stress func—

tion, ¢. into the stress-strain relations, and integrating the result-

ing expressions,

I
: I

2

- 33—2 ii _ .39. _

C11 / y2 dx + C12 8x Ci6 8y + “o “’63'

X

2.10

<

ll

2

Li 2i- 2i

C22 0/“ ax2 dy + C12 8y C26 8x + vo + wox

Y

IhiEqs.2.10, the terms, uo, woy, v0, wox, designate rigid body motions.

This formulation was first obtained by S. G. Lekhnitskii in the 1930's

(ref. 4).

The general solution of the differential equation (Eq. 2.8) sub-

ject to displacement and/or stress boundary conditions would then be

the solution of the linear anisotropic plane stress problem in the case

of zero body forces.
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2.3 DISPLACEMENT FUNCTION FORMULATION OF PLANE STRESS PROBLEMS

The substitution of the strain-displacement relations

xx 8x

=22
yy 3y

Bu 3v

28xy 3y 3x

into Hooke's Law for the state of anisotropic plane stress

1 ' B 5 (131 = 19 2: 6)

12 By

au 8v Bu 3v

°xy 616 8x + 826 By + 866 l + >

Using the equations of equilibrium

80 80

3x By

30 30

__£2.+.__22.. 0
8x 8y

2.11

2.12

2.13

2.14

in conjunction with the stresses given in 2.13, results in Navier's equ-

ations for the state of anisotropic plane stress,
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32 32 32 32 32 32

811 2'*2816 axay I 866 2 “‘I 816 2'*(812 B66) axay'*826 2 V=‘)
3x By L 3x 3y

32 32 32— 32 32 32

B16 2'I(812'I866) axay'I826 2‘ “'I 866 2'I2826 axay'I822 2 V“)
8x 3y 3x 8y

u 
2.15

If the displacements, u and v, are defined in terms of an unknown func-

tion, w, such that

32 32 32

u I 816 2 I (812 I 866) axay I 826 2 w
3x 3y

2,16

<

I

32 32 a2

' ‘ B11 2 I 2816 axay I 866 2 w
8x 3y

where w = W(x,y), then the first equation of 2.15 is identically satis-

fied and the second equation becomes

 

4 4
2 a p _ 3

(866811 ' B16) 4 I 2(811866 816812) 3
3x 3x 3y

+ (B 8 + 28 B - 28 B - 82 ) ‘ififlL—
ll 22 16 26 12 66 12 2 2

3x 3y

4 4
a 2 a w _

I 2(822816 ‘ 826812) 3 I (866822 I 826) . 4 ’ 0
3x3y 8y

2.17

This equation can be written with the elastic compliances as,

4 4 4 4 4

ill- _3_L __3_i’__ 3‘4 ii):

C22 4 ZC26 3 I (C66 I 2C12) 2 2 2C16 3 I C11 4 0
8x 8x 8y 3x 3y axay 8y
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It may be noted that Eqs. 2.18 and 2.8 are of the same form. The stress

components can be obtained from 2.13 upon substituting for the displace-

mnt'o

a -(a a 43133 HS 6 B)—-L83 +(816 -e 31—9133
xx 11 66 16 2 11 26 8816 12 26 12 66 3

3x 3y Bxayz 3y

3 2 a3

H<81216 '811526) a 3 I (812666 I512 ' 822811826816) 2
x 8x 8y

+ 2(8 -B e > 33 '+(82 -e B ) 313
12 B26 16 22 a 3 26 22 66 3

x3y 8y

6 -(62-ee)—‘P-3+(ee- e)—§-—-“’+(88 -66)33
xy 16 11 66 a 3 12 16 811826 2 12 866 16 26 2

x 8x 3y 8x3y

2.19

In order to compare the above formulation with Marguerre's displacement

function approach, consider the case of isotropy

 

   

1 _

c11 ' C22 I E’ C16 C26 ' 0

2.20

v 2 l + v

C12 I ' E C66 I E

Then the displacements are written as,

u . E 326

2(1 - v) axay

2.21

v _ _ E 32w __ E 82w

1 _ v2 ax2 2(1 + v) 8y2

With the definition

. - ___EML___

,4 2(1 + v) 2'22
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the displacements,

 

 

= _ l + v Bag?

u l - v 3x3y

2.23

2 32% 32.11

V=l~v 2I 2
3x 3y

are obtained, where .a1' is the displacement function which was proposed

by Marguerre (ref. 16). Of course, in the case of isotropy, the fourth

order partial differential equation with constant coefficients (Eq= 2.18)

will simplify to the biharmonic form.

In conclusion it can be stated that the general solution of the dif-

ferential equation 2.18 subject to the apprOpriate boundary conditions

would constitute the solution of the anisotropic plane stress problem with

zero body forces.

The displacement function method was presented only as an interest—

ing point to note in plane anisotropic problem formulation paralleling

that of Marguerre's proposed method in isotropic elasticity.



3. GENERAL CONSIDERATIONS FOR PROBLEM SOLUTIONS CONCERNING

MULTIPLY-CONNECTED REGIONS

3.1 INTRODUCTION

The problem of multiply connected regions in plane linear aniso-

tropic elasticity is discussed in both Lekhnitskii's and Savin's works

(refs. 4, 6). In the following, a brief treatment of the subject

matter is given for reasons of completeness.

First, the governing differential equation is solved in terms of

two arbitrary complex functions (stress potentials) and expressions

for the stress components and displacements are derived in terms of

these two functions. The boundary conditions are established for both

the First and the Second Fundamental Problems. Lekhnitskii's complex

material parameters are examined and the resultant force and moment

for a segment of a curve are also found. Finally, the forms of the

stress potentials for a finite multiply connected region are defined.

For a more comprehensive discussion, the reader is referred to

the references given above.

3-2 SOLUTION OF THE DIFFERENTIAL EQUATION

The fourth order partial differential equation with constant

coefficients obtained from the stress function formulation

.4 4 4 4 4

ii. .242. _§_L_ LL Li:

C22 4 2C26 3 I (C66 I 2012) 2 2 2C16 3 I C11 4 0
8x 3x 3y 8x 3y Bxay 3y

3.

l3

1
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has been extensively studied by Lekhnitskii, Savin, Green and Milne-

Thomson (refs. 4, 6, 8, 9). Following Lekhnitskii's method of solu—

tion, it is observed that the above differential equation can be

written in symbolic form as,

D1D2D3D4¢ = 0 3.2

where

8 3

Dk — 3§-- “k 3;- (k - 1. 2. 3. 4)

and uk are the roots of the characteristic equation given as,

C - 2C u + (C + 2C )u2 - 2C u3 + C u4 = O 3 3
22 26 66 12 16 ll '

Integrating Eq. 3.2, the stress function, o, can be written as the sum

of four arbitrary functions,

4

¢ = E :Fk(x + uky) 3.4

k=l

Considering the positive definiteness of strain energy, Lekhnitskii

proved that all the roots, uk, must necessarily be complex. Since the

roots, uk, are all complex and the coefficients of the characterisric

equation defining the roots, uk, are all real; the roots, “k’ must be

complex conjugates of each other. So, the roots can be designated as,

pl, “2’ hi and B}. These roots, called complex parameters, depend

entirely on the material constants.

For real stresses, the stress function, ¢. must necessarily be

real. Therefore, the general solution of Eq. 3.2 must be of the form

6 = 2Re[F1(zl) + F2(22)] 3.5
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where

21 = x + uly

z = x + and “I # “2

2 “2y

If the roots are not distinct, i.e.,

“1 I L‘2’ “1 I u2

then the stress function becomes

¢ = 2Re[Fl(zl) + le2(zl)] 3.6

In particular, consider an isotropic material. The characteristic equa-

tion becomes

.1 2(1 + v) _ 2' 2 l_ 4 _
E + [}——7;——- 2 g] u + E u — O 3.7

Solving for the roots, one obtains

U1 = U2 = 1

“1 = “2 = -i

Hence

21 = 22 = x + 1y; 21 = 22 = x - iy

and the well known expression

6 = 2Re[EF2(Z) + Fl(z)] 3-8

is obtained.

3.3 STRESS COMPONENTS

It was shown in the preceding section that the stress function, ¢,

can be expressed in terms of two arbitrary functions of the complex var-

iables 21 and z2 when ul # “2’ in terms of 21 when ul - uz and

in terms of 2 when isotropy is considered. Knowing the stress
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function, one can readily find the stress components in terms of the

above arbitrary functions by simple differentiation. Defining

dFl

dz1 I ¢1(21)

sz 3.9

622 I ¢2(22)

the stress components will be given by the following equations:

1. The complex parameters are distinct (ul # uz):

2 ' 2 '

xx I 2Re[%1¢1(z1) I “2¢2(22E]

' '

yy - 2R2 E1(Zl) + (112(22fl 3.10

°xy I ZRE[%1¢1(21) I “2¢2(22{}

2. The complex parameters are equal (u1 = uz):

O

0'

 

_ r'2 ' _. ._ 2 '

°xx I 233Lf1¢1(z1) I 2“‘1“1"’2<zi) I z1“1¢2(zi;_]

FI' '

Oyy = 2R2 31(21) + 262(21) + zl¢2(zlfl 3.11

Ox}, = - 2Re[ul¢1(zl) + (111 + U1)¢2(zl) + u131¢2(zlfl

3. Isotropic case (111 = “2 = i, ii = ii = - i):

on - 232 [- 41(2) + 242(2) - 31:;(29

oyy - 2Re[bi(z) + 2¢2(z) + E¢;(z;] 3.12 _

oxy . - 2116 ”1(2) + 13¢;(zg
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The fundamental stress combinations will then become

XX

1

oyy - oxx + 210xy = 4¢l(z)

3.4 DISPLACEMENTS

o + Oyy = 462(2) + 462(z)

The displacements can also be expressed by uSing Eq. 2.10.

\l. The complex parameters are distinct

“ I 2Re[fi¢1(zi) I p2¢2(22)]

v = 2Re[ql¢l(zl) + q2¢2(22i]

where

= c 2 + c - c =
p1 11“i 12 16“1 q1

p2 I C11“2 I C12 I C16“2 q2 I

2. The complex parameters are equal (ul =

v 3.13

+ 4E¢2(z)

(ul # U2):

+ u0 - woy

3.14

+ v + w x

o o

c
22

u I C12“1 I C26
1

c
22

,, I C12“2 I C26
2

“2):

_. ._ 2 .—

u = 2Re£>1¢1(zl)+Plzl¢2(zl)+ [33110111111 -ul) +012 IUICIJFZQI}

+ u - w

o

~2Re (>‘(1E-23
V" qi¢1 z1 'Iqizi¢2 21. I pl

+ v + m

0

CV

fi' .

1 _

- 171-) 4-C121J1 -C26] F2(zl}

X

0

3.15
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3. Isotr0pic case (111 = u2 = 1, ul = “2 = — i):

2Re{-1;v [411(2) + 2152(2)] + g—E-l F202} + no - woy

2Re{- i L%—Y- [¢1(z) + E¢2(z)] - i _3E_V F2(z)} + vO + (sex

The fundamental displacement combination is written as,

u + iv = 2 {- l—E-y- [Tb-1(a + 232(2):] + 11%;) F2(z)}

+ u0 - woy + i(vO + wox) 3.17

 

C

II

<
2 II

3.5 BOUNDARY CONDITIONS

3.51 First Fundamental Problem

Suppose that the boundary stresses, Xu and Yn, are given (Fig-

ure 1). Then on the boundary, F, of the area, L, the following equa—

tions must be satisfied:

Xn = oxxcos(n,x) + Oxycos(n,y)

3.18

Yn = 0x cos(n,x) + oyycos(n,y)

Taking into consideration that

Q:dv

cos(n,x) = 5:1 cos(n,y) = - ds

and substituting for the stresses, the boundary conditions on the stress

function can be written as,

x—As Y--sa 3w
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Upon integration, these two expressions become

.. .33:

S

- ‘//) Ynds + Cl 8x

8

where C1 and C2 are arbitrary real constants of integration and s

3.20

L2
:

is measured from an arbitrarily chosen point on F.

Since the stress function, o, can be expressed in terms of two

arbitrary complex functions, Fl(z1) and F2(22), and consequently using

the definitions, 3.9; the derivatives, 3%. and 333 can be written in

terms of the complex functions, 61(zl) and ¢2(22). Hence, the equa—

tions which must be satisfied by the functions, ¢l(zl) and ¢2(z2), on

the boundary, P, of the area, L, are as follows:

41621) + 42oz) + Elczl) + $26,) = - / Yndx + c1

5

ul¢>l(zl) + u2¢2(22) + 316161) + "5262022) = f Xnds + 02 z in I‘

s

3.21

3.52 Second Fundamental Problem

Suppose that the displacement components u(x,y) and' v(x,y) are

given in the boundary, P, of the area, L. Then the boundary conditions

will be given by

Pl¢l(zl) + 92¢2(221)4+ 313151) + 32%(32) - woy + no = 110(8)

qul(zl) + q2¢2(22) +‘Ei$i(§i) + EEEéCEé) + wox + v0 = vo(s) z in P

3.22
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where u°(s) and v°(s) are specified values of the components of dis-

placement on the boundary, P, which are functions of the arcs of the

contour from an arbitrarily chosen reference point.

Considering both the First and the Second Fundamental Problems,

it is observed that both problems can be solved completely in terms of

the two arbitrary complex functions, ¢1(zl) and ¢2(22).

3.6 ON THE COMPLEX PARAMETERS OF LEKHNITSKII

Lekhnitskii has shown (ref. 4) that the complex parameters, pk,

in a rotated coordinate system are related to the complex parameters,

pg, in the original system by the equations

u: cos 6 - sin 6

u = (k = 1, 2) 3.23

cos 6 + “a sin 6

 

where 6 is the angle between the x-axes of the original and the rota—

ted systems. These transformation equations are of particular impor-

tance when problems of orthotropic media are considered.

For the case when the material and the reference axes coincide

(special orthotropy) Eq. 3.3 reduces to

42

C22 + (C66 + 2C12)u + C11“ - 0 3.24

For the case when the material and reference axes are not aligned

along the same directions (general orthotropy), the are found from
o

“k

3.24 with respect to the material axes first and then in accordance

with Eq. 3.23, the values of “k can be determined with respect to the

reference system.
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Upon solving Eq. 3.24, one obtains the roots

  

  

  

  

 

1/2
2 1/2

u6 = 1 C66 I 2(312 + (C66 I 2C12> _ C22

1 2C11 2C11 Cll

1/2
2 1/2

76 = _ 1 C66 I 2C12 + (C66 I 2C12) _ C22

1 2011 2C11 C11

.2

C + 2C C + 2C 2 C 1/2 1/2 3 5
u6=1 66 12_<66 12)_22

2 2011 2Cll Cll

1/2
_ 2 1/2

T16 = _ 1 C66 I 2C12 _ (C66 I 2C312) _ C22

2 2Cll 2Cll Cll

Since the complex parameters, pi, are of the form

0 o 0
uk — ok + 18k (k — l, 2) 3.26

one can immediately conclude that for the condition

C + 2C 2 C
66 12 22

20 _. ——C _>_ O 3.27

11 11

the complex parameters, pi, become purely imaginary, i.e.,

o = o = '

uk in (k l, 2) 3.28

where

o o
81 > O, 82 > 0

It also follows from Eq. 3.25 that

o o

81 2.82 3.29

Note that condition 3.27 is equivalent to
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E /E

22 < 1 3.30
2—

(E11 _v)

2612 12

in terms of engineering constants.

The rest of the range of material orthotropy is covered by the

 

condition

C + 2C 2 C

66 12 22

2C - Er-'< 0 3.31

11 11

resulting in ai = -dg and Bi = a; E-O. In terms of engineering con—

stants, this condition is equivalent to

E /E

11 22 > 1 3,32
 

2

(_IL1__,)
2G12 12

These dimensionless ratios are convenient to use and cover the whole

range of material properties.

The positive definiteness of B: guarantees that B in Eq. 3.23

k

are positive definite. As a matter of fact, one can always construct

such that B > 0, even in the case of complete anisotropy (ref. 6).

“k k

This fact is of importance if the following affine transformation is

considered:

xk = x + aky

(k = l, 2) 3.33

yk = Sky

where 2k is now defined as,

zk = xk + iyk (k = 1, 2) 3.34
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The Jacobians of the transformation become

k

Jk = = Bk > O (k = l, 2) 3.35

O Bk

Since 81 > O and 82 > 0, the description of any two transformed con—

tours, F1 and F2, in L1 and L2, respecrively, correspond to T in

L such that when 2 describes I in L, zl describes II in L1

and 22 describes T2 in L2, all in the same sense (ref. 9,

Figure 2).

3.7 RESULTANT FORCE AND RESULTANT MOMENT

Consider the curve AB (Figure I) loaded by.the.complex stress,

X.n + iYn. Suppose that one wants to find the resultant force and the

resultant moment of the forces acting on the curve AB.

The force vector acting on an element ds of the curve AB can be

written as,

(X +1Y)ds=d—a$_iai=_id_a_?i+i§$

3.36

n n 3y 3x 3X 8y

Hence, the total force acting on the curve AB becomes

B B

x+1r= (X+1Y)ds=-‘131+139i 3.37
n n 3x By

'A A

where [...]i denotes the increase in the value of the bracketed ex-

pression when moving along the curve AB from A to B.

Upon substitution for

211,21
3x By

the final form of the force acting on the curve AB is obtained
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X + iY = - 1&1 + iu1)¢l(zl) + (l + iu2)¢2(zz)

B

+ (l + iul)¢l(zl) + (1 + iu2)¢2(§2)}A 3.38

The moment, Mo’ with respect to the origin acting on the curve AB

is given by

M = (xYn - an)ds 3.39

A

After substituting for Xnds and Ynds the moment, MO, becomes

B

M = - [xd(%§) + yd(%$—) 3.40

A

Upon integration by parts, one obtains

Mo=..[:x_gix+ygy]:+[6133'“

Then the moment of the forces acting on the curve AB can be written in

terms of the complex stress potentials as,

B

Mo = 2Re[F1(zl) + F2(22flA - Reg [(1 - iu1)¢l(zl) + (1 - iu2)¢2(zz)

B

+ (1 - iTIlWlGl) + (1 - 1F2)$2(?2fl}A 3.42

3.8 FORMS OF THE STRESS POTENTIALS FOR FINITE MULTIPLY

CONNECTED REGIONS

Savin has shown (ref. 6) that the functions, ¢l(zl) and ¢2(22) for

a multiply connected region are expressed in general as,
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L

()— Ar( +*
I1 21 I 2 n 21 I 21,2) ¢1(zl)

=1

L 3.43

- B 2 + *¢2(22) - 2 u(z2 - 22,,) ¢2(22)

i=1

where .21 i and 22 2 are arbitrarily chosen points inside the bound—

! 9

* *

aries, Pl,£ and F2’£ (Figure 2); ¢l(zl) and ¢2(zz) are holomorphic

functions in L1 and L2, respectively and A2 and Bi are complex

constants which have to be determined from some known condition.

In general, the ith boundary, F2’ is loaded by the force vector,

Xg + iY£, as given in the preceding section. Due to force equilibrium,

any closed curve C in L reconciliable with I will be subject to
2 2

a load given by

- (X2, + 1Y1) = - i{(l + iul)¢1(zl) + (l + iu2)¢2(22)

B=A

+ (1 + filwlfil) + (1 + 1U2)'6'2(72)} 3.44

A

Considering the forms of ¢1(zl) and ¢2(22)(Eqs.3.43), it is noted

* *

that the holomorphic functions ¢l(zl) and ¢2(zz) do not increase in

value over the complete circuit, C Therefore, only the logarithmic2,.

terms have to be investigated in accordance with Eq. 3.44. If one

carries out this investigation, two equations will result which are

complex conjugates of each other. These equations are given as,

X2 + IYQ

(1 + 1111M, - (1 + 1111M, + (1 + 1112)}31 — (1 + iu2)B£ a .. 2“

X9’ - 1Y2

2n (ref. 6)- (1 .. 161ml.» (1 - film, — (1 — iu2)B9v+ (1 - 1112», = _

3.45
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Obviously, Eqs. 3-45 are not sufficient in themselves to determine

the values of the complex constants, Ag and 32' The other two equa-

tions, necessary for the determination of Al and B2’ are based on

the consideration of single valued displacements.

Upon writing the fundamental displacement combination

u + iv = Pl¢l(zl) + pl¢l(zl) + p2¢2(22) + p2¢2(22)

+ 1[ql¢l<zl> + qlrlol) + q2¢2<22> + q2$2(22)] 346

one requires that the condition

B=A

[p + iv]

A

II

C

be satisfied. The satisfaction of this condition will also result in

two complex conjugate equations

(Pl + iql)A£ - (31 + iql)A£ + (p2+ iq2)B£ - (p2 + 1q2)B£ = 0

- (pl -1q1)A,+ ('51 431%, - (p2 -iq,)B,+ (13’, 43213,: 0 (ref. 6)

3.47

For a solution of the system of equations consisting of Eqs. 3.45 and

3.47, the determinant of the coefficient matrix cannot vanish. In

order to prove that this condition is satisfied, the determinant, D,

of the coefficient matrix is obtained

I16B182°11022 2 2 2

D = 2(a - a ) (B + B )
2 2 2 2 {: 2 l 2 1

(ol + Bl)(a2 + 82)

 

2 2 4

+ (82 - 81) (82 + 81) + (0.2 - 61)} 3.48
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This determinant is the corrected form of that given by Savin which is

apparently in error (ref. 6). Obviously, for B > 0, the determinant,

k

D, does not vanish. Hence, the system of equations constructed from

A BEqs. 3.45 and 3.47 can be solved for the complex constants, A 2’ 2
£9

and B2.

There are two cases possible:

1. The resultant force vanishes on each boundary, i.e.,

X£+ 1Y2 = X2 - iY2 = 0

2. The resultant force does not vanish on each individual boundary.

In the first case, the complex constants, A A B and Bk, must be

2’ 2’ 2

taken as zero since D # 0. Hence, the stress potentials, ¢l(zl) and

¢2(22), are holomorphic functions in their respective regions, L1 and

£, BR and Bi,L . In the second case, the complex constants, A A

2 Q.

will have values other than zero. .Hence, the complex stress potentials,

¢l(zl) and ¢2(z2), will become multiple-valued due to the presence of

the logarithmic terms.



28

  

  

 
Figure 1. - Curve segment loaded by the complex stress, Xn + W”.
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z-plane

  
 

21-plane

  

   
Figure 2. - The multiply connected region, L, in the

z-, 21-, and 22-planes.



4. AN APPROACH TO THE SOLUTION OF FINITE-GEOMETRY

TRACTION-FREE CRACK PROBLEMS

4.1 INTRODUCTION

It was established in the preceding section that two complex holo-

morphic functions define the solution for problems for which the result-

ant force vanishes on each individual boundary. Since the solution is

defined in terms of two arbitrary complex holomorphic functions, it

still remains to find the forms of these functions such that the appro-

priate boundary conditions are satisfied on the boundaries of the

region.

In this section, the problem considered is that of a central,

traction-free crack in a finite anisotropic region. The method of solu—

tion proposed herein was called by Bowie "A.Modified Mapping-Collocation

Technique" (ref. 2) and was successfully employed by him for isotropic

problems.

As a first step, the crack is mapped into the unit circle. Then

the zero traction conditions on the crack are exactly satisfied by using

Muskhelishvili's continuation concept (ref. 3) across the unit circle

such that the form of either of the two functions is defined in the form

of the other. These expressions, will for the first time, be derived in

this section.

Upon satisfying the zero traction conditions on the crack, a

Laurent series form of representation is assumed for the remaining

30
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arbitrary function. The boundary conditions for the outer boundary are

then derived in terms of this Laurent series.

In order to satisfy the conditions on the outer boundary, the least

squares boundary collocation method is proposed. Bowie (ref. 2) also

suggests the possible use of two stress and the moment conditions on the

boundary in addition to the force boundary conditions for problems with

local stress irregularities. In this dissertation, the force boundary

conditions were found to be sufficient for the solution of the problems

considered.

In addition to the method of solution described above, the expres-

sions for the stress components are derived and specialized to the

neighborhood of the crack tip. It is then shown that the stress inten-

sity factors for a finite plate for both the opening and the shear modes

can be defined analogously to that of the infinite plate.

Finally, expressions for the displacements are derived and in par-

ticular, the displacements of the crack boundary are also given.

4.2 THE MAPPING OF A CRACK AND ITS EXTERIOR INTO

THE UNIT CIRCLE AND ITS EXTERIOR

Let the unit circle, y, in a c—plane be mapped into the crack

boundary, E:,in the z-plane by

w(o) 4.1N

II

where

i0

0 = e

The unit circle, y, in the C-plane will then correspond to the crack,

PC, in the z-plane with the same sense of description (Figure 3).
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Since the transformation

2k = x + uky = xk + iyk (k = l, 2) 4.2

can be expressed in terms of the conventional complex variables as,

l - iuk l + ink

zk=--2——z+——2—-z (k=l,2) 4.3

it follows that

z gflwfiy) +3.:im(l) : w (0) (k = l 2) 4 4

k 2 2 o I k ’ ‘

maps the unit circle, y, in the t-plane into the crack boundary, Fck’

in the zk-planes. Consequently

2k = wk(c) 4.5

will map the region, LC, determined by the unit circle into the regions,

Lk’ in the 2 —planes.

k

The mapping of the unit circle, y, into the crack boundary, PC, is

accomplished by the function

z =% (o +—) (ref. 9) 4.6

where a is the half—length of the crack (Figure 3). Hence, the unit

circle, y, is mapped into the crack boundary, Ick’ in the zk-planes by

_a .1.) _zk-2(o+0 (k-1,2) 4.7

Upon explicitly expressing the variable on the unit circle, one obtains

o = (k = l, 2) 4.8
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Therefore, the exterior region, LC, to the unit circle, y, is given by

the mapping

 

C = ' (k = l, 2) 4.9

Note that the positive sign preceding the radical guarantees the

"exterior to exterior” transformation.

4.3 ON THE CONTINUATION AND FORM OF THE STRESS POTENTIALS

In the following Muskhelishvili's extension concept (ref. 3) will

be applied to the complex stress potentials, ¢l(zl) and ¢2(22), in

the C—plane.

Consider that a traction-free crack, PC, in the z-plane is mapped

into the unit circle, y, in the c-plane by the functions

 

C = , z in F 4.10

and

 C = , , zk 1n Fck (k = l, 2) 4.11

(Figure 4). Then on the unit circle, the following boundary conditions

will prevail:

41(4) + ¢2(c) + ¢l(c) + ¢2(4) = o, r in y

4.12

ul¢l(c) + u2¢2(l;) + Fl$1® + U2$2® = 0. c in v

where

¢k<zk) = ¢klwk<r>1 s ¢k(c) (k = 1. 2)
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The functions, ¢1(C) and ¢2(C), are holomorphic in LC and are defined

in LC. In order to define ¢1(C) and ¢2(t) in RC (inside the unit

circle), substitute I/C for 2' into Eq. 4.12 and consider t in R .

C

Then the following expressions will result:

9 (C) + 9 (C) = - 3' I‘ - $l l‘ C in y
1. 2 1 C 2 C ’

4.13

u 4 (C) + u ¢ (C) = - I'I' 1' - E'E' I) C in Y
1 l 2 2 l l t 2 2 t ’

Hence

U ‘11 IT.“
- 1 2 1 2 l - 1

¢ (‘) = ‘—‘:—=F’¢ (C)'+'—‘f:‘=’ ¢ (—), C in R
1 C “1 “1 2 “1 “1 2 C C

4.14

11 '11 L1 '11
-— l l 2 l 2 - 1

¢(-)' _— ¢(C)+ _— ¢(—)9 C in R
2 C ”2 “2 l “2 “2 1 C C

The substitution C - l/E’ will change these definitions to

u - u 3' - u
- 2 1 l 2 l-—

$(C)--—-—_e ¢(=)+__— ¢(C). C in L
l “1 "1 2 C “1 "1 2 C

__ 4.15

n - u u - u
-' - l 2 1 l 2-— -—.6. __ (z)._.__.....), ... L
2 ”2 ”2 1 g “2 “2 1 C

Upon taking the complex conjugate expressions, one obtains

fi' - i' 3' - u
l 2 1 l 2

¢(C)'——_'=—$(")+——:———¢(C). C in L
1 “1 "1 2 C ul “1 2 C

4.16

H' - 3' 3' - u
2 l —- l 2 1

9 (C) ' “‘1f1=' ¢ (') i"“1:1=‘ ¢ (C). C in L
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Equations 4.16 show that either ¢1(t) or ¢2(C) can be expressed in

terms of the other. The zero traction condition on the crack provided

the extended definitions of either one of the two functions in terms

of the other such that each is continuous across the unit circle in

its C-plane.

The inverse transformation, back to the z —p1anes, results in

 
 

 

 
 

k

_ _ 2 2
u - z - z '+ z -a

1 2— 1 1 1 .
¢l(zl) __.1¢2 a , 21 in L1

II - z - 22-a II - z -+ 22 -a2
¢(z)_“2 “1,. 2 2 ,“2 “1¢ 2 2 z in L

2 2 u E 1 a In -H 1 a 2 2
2 2 2

4.17

Now, 61(21) and ¢2(zz) are defined in L1 and L2 such that using

either one or the other in solving a finite geometry problem, will

satisfy the zero traction condition on the crack. Furthermore, if

¢1(zl) or 62(22) is transformed to the t-plane, each can be consid-

ered holomorphic within its doubly connected region enclosed by r and

i' where r' is obtained by inversion of r with respect to the unit

circle (Figure 5).

The determination of either ¢l(§) or ¢2(C) depends on a form of

representation and the satisfaction of boundary conditions on r cor-

responding to I1 or P2, respectively. It will be assumed that ol(c)

or ¢2(C) can be represented in the form of a Laurent series. This

assumption appears to be reasonable for a certain class of problems

although the boundaries T' and r are not circular (ref. 2). As
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Bowie stated in reference 2: "There is no a priori reason to suspect

(for a certain class of problems) that the region of convergence of

such a series could not extend over the desired parameter range."

In general, assume the form for ¢1(C) as

n -n

¢1(C) - A10 + > :anc + BlnC 3 4.18

n=l

considering that ¢2(22) will be found from the second equation of 4.17.

 
 

  

Hence

2 2 n 2 2 n
21 + 21 - a z1 - zl — a

I191) I A10 I A1n a I Bln a

n:

4.19

z + Q/zz - a2

and ¢ 2 2 become

1 a

 

n

__ 22- 22-a _ K 22-3/221-8

a 10 In a

n

z + z - a

+2 2 I 2 4.20
In a

n=
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n

z + z2 - a2 z + 22 - a2

¢ 2 2 = A + A 2 v 2

l a 10 In a

n=l n

z - 22 - a2

+ B 2 I 2 4.21
In a

Therefore, 62(22) is obtained as,

3' - 3' 3' - u
2 l —- 2 l

¢(z)=—-_—:-A +—T-:-A

2 2 “2 “2 10 “2 ”2 10

I _. _. _. + 2 2 “
U'IJ “'11 Z 2‘3

+ 2 _ _1 A1 + 2 - _1 I} 2

“2 “2 n “2 “2 n 3

n=1

TJI-ILJI 17-11 2-

+ 2 _ _} -1 + 2 _ _} Bl 2 4.22

u2 2 n 112 “2 “

 

It is obvious that this expression is also a Laurent series and it is

of the form

so

n —

¢2(C) - A20 + E :[AZnt + BZHC I] 4.23

n=l

At this point, it is noted that upon assuming both ¢1(C) and

¢2(C) in the form of Laurent series' and satisfying the zero traction

conditions on the crack, one obtains the very same form of ¢2(z2) as

given by 4.22. This result is obtained by the elimination of the con-

stants A20, A2n and an which is p0881ble upon the satisfaction of

the zero traction conditions on the crack.
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4.4 BOUNDARY CONDITIONS FOR FINITE REGIONS CONTAINING

A TRACTION-FREE CRACK

Considering the First Fundamental Problem, the boundary conditions

3.21 must be satisfied by the functions ¢1(zl) and 62(22) on the

outer boundary of the region. Upon making the proper substitutions

(using the results of the preceding section), the boundary conditions

3.21 are written as,
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and
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where Ci and c; are real arbitrary constants of integration cor-

responding to the outer boundary of the doubly connected region. It

may be noted, here, that the complex constants, A10 and 210’ remain

undetermined. This fact, however, is of no importance since the

stresses are not influenced by these constants and the rigid body dis—

placements have already been expressed by other constants (see

Eq. 3.14).

Upon examination of the boundary conditions, 4.24 and 4.25, one

finds that the n-l terms can be contracted due to the fact that

and ‘ 4.26

111012 -F2)21+u2(fiz -u1)z2+'172(u1 -u2)?2 =- v(uz - 111M112 - u2)(u2 - “1)

Hence, the boundary conditions are written as

 

 

 

A " B 2

11 11 ., _. 2 2 2 2 _2 2

232 3012-172) [(112—112) zl—a +(1Iz—u1) zz-a +(u2-p1) V22_a]

\ 4‘1 ' 2 2 I 2 2 I
I n — I - - -

+ 2Re/‘ .- . 2322(1) -_ ) [(112 F2) (21 + 21 a ) +52 111) (22+ 22 a

-- -4 2 H2
n-2 I

+(u1 I“2)'22I (222 42)?

 

 

 

z in P 4.27



41

and

 

+ B N

11 11 - '-

2Re{:(u2 _ F2) “#2 " H1)(l12 ‘ H2)(l12 ‘ #1)}

— 3
A11 11 _ _ f 2 _ 2 _ _ 2 _ 2

+ F2012 - "1) 22 - 82]}

 

 

I \ n

+2Re) A1“ u(u F)z+ zZ-a2
atl<u -F) 1 2 2 1 1

L__/ 2 2
n=2

n

+ 11252 "1) (22 + 2% - 82)

I F2(“1 ”2)(22 I 22 I 82>?

‘x. \ B I n

+ 2Re '. 1n ( _ —-) z _ z2 _ a2\

/ n( __) “1 “2 “2 1 1 /
/ , a 112 112

n-2

1
:

H

v

G

N

l

a

N

N
N

l

m

N

v

:
3

I "2672 I

+ .. /_ + 2 n
112(111 - 112) \22 22 - a

= fxnds+c‘2’, z in r 4.28

8

At this point, it is convenient to introduce the following definitions:



ll

11

In

Zn

In

2n
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A11 I B11

gs - 3(112 - F2)

 

 

 

g = A11 I B

d a(u2 - “2)

g, . A1.
1n n( _->

= B1n

(an n( _—>

a ”2 ”2

<4 = (112 - 111)(u2 - 32)(F, - ul)

(uz-TIZM’Zi-azi-(IM-u)h/zg: -2ula+(u2-

_ 2 2 _

ul(u2 - “2)4/21 - a + u2(u2-

2

n

(112 - 5,)(21 + 21 - 82) + (3,

MA, - 82 + u2(u2-

4.29

F

:MFI—az

+ (u - 2)GC 2%

n n

(“2 I “2) (21 I 22 I 32) I (“2 “1)<22 I 22 I 82)

+ (u u )(2' + 32
1 2 2 2

n n

u1(u2 u2)(l 21 - 82) + u2(u2 “1)<22 + z: - 82)
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Now, observing that

F e? + F G’ = 2[ReF
11 d 11 d 1R8%3 I ImF

11m%%] etc.,
1 l

the boundary conditions become

ReFllReQE — ImFllImEE + E [ReFlnRegan - ImF

n=2

lnlmffln]

+ E :[ReFZHRefian - ImFZnImegn]

n=2

_ l [E [/3 Y ds + C5], 2 in F 4.30
— - n l

2
s

yReQEReQ; - yImfiZImeg + ReGllRe%Z - ImGlllmQE

+ E : [ReGlnRe%in — ImGlnImein] +- E :[RernRegan - ImGZHImegn]

=2 n=2

1 o
_ E-[’L/1 Xnds + C%], 2 in P 4.31

s

4.5 METHOD OF LEAST SQUARES BOUNDARY COLLOCATION'

Up to this point, it was shown that the solution of the governing

differential equation, 3.1, can be constructed in terms of the stress

potentials, ¢l(zl) and ¢2(zé);and in turn, ¢2(zz) can be defined in

the form of ¢1(zl) such that the zero traction conditions on the crack

boundary are exactly satisfied. It still remains to satisfy the
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boundary conditions, 4.30 and 4.31, on the outer boundary of the region

in order to complete the solution of the problem of a finite anisotropic

region with a central crack.

Perhaps the best method applicable to this end is the least squares

boundary collocation method as given in references 17 and 18. The

method is described briefly in the following:

1.

4.

The boundary conditions are satisfied at discrete points on the

boundary in the least squares sense.

One takes an overdetermined system of equations, i.e., the

number of equations must exceed the number of unknowns of the

system. Then in indicial notation, one has the following system

of equations:

égqu = Ki 4.32

where K1 depend on the loads acting on the boundary, 431 are

dependent on material properties and the boundary geometry and

43 are the unknowns of the system.

Upon assuming an approximation to the unknowns of the system,

one has, say,

435?; - Ki = R1 4.33

where R1 are the error terms due to the approximation, ‘6; to

Then the square of the error,

R1R1 I (61173 I K1)(é§£?; I K1) 4'34
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is minimized by taking

d(R R )

_l_1_ = o 4.35

as"
2

~which in turn results in

* .

éfléalkgk I 5.121(1 “'36

Or in matrix notation, one has

635%" = §TK 4.37

The applicability of the least squares boundary collocation method

to the problem at hand is readily obvious. Considering the truncation

of the infinite series' in the boundary conditions at NP correspond-

ing to the series' with the unknown constants, flan, and at NN for the

series' with g2n’ one has at a point on the outer boundary two equa-

tions in 2(NN + NP + 2) unknowns on the left hand side and two arbi-

trary integration constants on the right hand side. In general, these

integration constants can be handled as unknowns in the collocation

method; however, for certain orthotropic.cases they can readily be de-

termined. Then at a point on the boundary for the anisotropic case, one

has the folloWing two equations,

r- 1 '-

— -1- " o o ReF -ImF c — i Y dJ
2 ll. . . ZNN 2 n

A S

‘ 1
? 2 yReCc -yImCC ReGll...-ImG2NN C

O

H
O

O

N
O

Ree: l—\/p X ds

2 n

ImQ; L s -

Reg’

  

  IngNNL

4.38
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Considering M points on the boundary, the coefficient matrix 6’ will

be ofw 2M rows and 2(NN +INP + 3) columns subject to the condition

that 2M > 2(NN +tNP + 3).

4.6 STRESS COMPONENTS

Using expressions 3.10 in conjunction with Eqs. 4.19 and 4.22, the

stress components are obtained. These expressions are somewhat modified

by noting the contraction of the n=l terms and using some of the defi-

nitions given in 4.29:

oxx = Heiress]

 

 

 

2 _. z1 2 22
+ 2Re % 111012 - 112) + 11252 - “1)

z2 _ a2 22 _ 2

1 2 a

—2 E2

+ u2(u2 - “1)

.2 _ 2
22 a

NP

112012 - 712) 2 2 n

+ 2Re nfiin 1 (21 + 21 - a )

22 - 82

n=2 1

  

+u2(u:- +142012 - ul) __ . _2 2 n

32 2 22 - 22 ‘ a

IVE:- a

 

 

 

NN

A u2(u - 3') n

_ 2Re ‘ nVZn 1' "2 2 (21 - 2i - a2)

22 - a2 -

n=2 1

n n

+ u26:2 “1) 2 2 “2(“2 “1) 2
Z - z - a + + z - a

z - a -— -
2 22 a



+2Re

- 2Re

NP

n=2

n=2

2 2

21 a

(“2 - Hz)

2

Z -a

(n2 “2)

2

Z ’8

47

2

- “1)

2

Z - a

2'
2

-ul)

_2 2

Z ‘ a

n

z2_2
l a

(112 ul) (

22+ 2

2_2
z2 a

(U2 - U1) (E _2

22 ‘ Z

2_2
22 a

n

22_2)
l a

(uz-u1)(z- z

22 - 32 2

2

(U2 - “1) (_ _2

22+ 2

Z - 82

2
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21 22

o = - 2R2 g? 11(u — E') + u (3' - u )
xy (1 1 2 2 2- 2 2 2 l 22- 2

’21 a 2 a

_2

_ z2
+ u2(u2 - “1) 2

22 - a

NP

u (u - H") n

- 2Re ng’ l 2 2 z + 22 - a2)
1n 1 1

z2 2

n=2 1

”2(32 “1) 2 2)n
+ z + z - a

2 2 (2 2
z2 - a

+ 6%2 - “’22 - a

22-112
2

NN

. - n
u1(u2 “2) 2 2

+ 2Re 2n 21 - zl — a

22 _ 2

n=2 1

 

 

4.41
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4.7 CRACK TIP STRESS COMPONENTS AND STRESS INTENSITY FACTORS

The stress components were expressed, in general, for any traction—

free central crack problem in series form as given above. One can

Specialize these expressions for the neighborhood of the crack tip by

considering the transformation,

2 = a + r(cos 8 + i sin 8) (Fig. 6) 4.42

The substitution of 4.42 into 4.3 will result in

z = a + r(cos 6 + u sin 6) (k = l, 2) 4.43

k k

Subjecting the expressions for the stress components to these transform—

ations and observing the condition for the neighborhood of the crack

tip, (i.e., r/a << 1), the following expressions are obtained:

U U U U

OX = 4 Re [(1.12 - Ill-)2] Re{ 1. 2 [ 2 _ l 1

x V2ra , U1 U2 /cos 0-+u sin 6 /cos 6-+ulsin 6
2

2 2

4 - 1 [' u2 L11 .1
{a Re[:uz(u2 -ul)E] Re 11 -

-uL q.'
2 l 2 /cos 6-+uzsin 6 Vhos 6-+t131n 9]

 
 

  

   

  

4.44

U 11

o = 4 Re[(u2 -ul)§:/] Re{ i l _ 2

yy /2ra H1 H2 /cos 8-+uzsin 6 /cos 9'+p151n 6

4 Rafi-2012 -ul)Z:] Re u Eu 1 __ 1

V2ra 1 2 Vhos 6-+u sin 8 /cos 9 +1 sin 6
2 l

   

  

   

  

4.45
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[1.249314% 1 - 1xy “3:2“ l '-“2 Vhos 6-+ulsin 6 /cos 6-+uzsin 6

   

  

 

 
 

_4__ “1 “2
- 32(112-111)2Re -u -

V2raRe 2 /COs 6-+ulsin 6 Vhos 6-+uzsin 6

4.46

where

K \ NP

L]: a? + Enangln -Enan‘€

=2 n=2:
3

The forms of the crack tip stress components are the same as that of

given by Paris and Sih (ref. 12) for an infinite anisotrOpic region

with a central crack. Hence, the stress intensity factors for a finite

anisotropic region with a central crack are automatically defined as

4-

K1 “IE Re[(u2 - 1192] 4.47

and

K2 = - énefi'zwz - ”92] 4.48

where K1 and K2 are the opening mode and sliding mode stress inten-

sity factors, respectively. A further examination of the stress inten-

sity factors reveals that

2

K+uK=--—(u -u) m¢(c) 4-49
2 2 1 J; l 2 CI’l l

which form was first published in reference 12.
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vIn addition, one may note that the stress intensity factors depend

on the material properties and the geometry of the region, while the

stress components at the crack tip have a singularity of the order of

J?. This singularity is similar to that obtained for isotrOpic

materials.

4.8 DISPLACEMENTS

The substitution of Eqs. 4.19 and 4.22 into 3.14 results in the ex-

pressions for the displacements. These expressions are somewhat modi-

fied by using the definitions 4.29:

u=2(xcll - yclémefgscuz - u2)(u2 - 111M112 — 111)}

+ 2 c Re <6 3(u -E)+u3<U -u)+-3(1J - >
y 11 3 H1 2 2 2 2 1 “2 1 “2

_ [—2"‘2 f——22 _ [22—7
+ ZREEIEl-(uZ-uz) zl-a +P2m2-Ul) 22 - a +p2(u2 -111) 22—8}

NP '

n< \ n

+ 2R3 i {g’lnEIWZ '32) ("‘1 + 41% '32) +p2(1-2 ”“1)(22 + V23 '82)

n=2 p ' __ 2 n

+132(“1 ”2) éz ' ‘22 "a )D

NN

2 2 n 2 n, _ .. 2

+ 2R3 {’EnEfluz "“2) (7‘1 " 21 “a > +p2(“2 "“1)(22 " 22 'a )

n=2 2 n

+32(“1 “2) Z2 + 22 ”a
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and

v=2yclzne{gas(u2 - U2)(u2 - ul)(U2 - 111))

2xC22

“1“1”:“zne<gs(u2 - UZHIJZ - u1)('u’2 - 119%)

+2Re{%:1N[ql (112-112) ’\’ —a2 +q2(u2-ul) ”2: -a2 +q2(u2—ul)2¢"2 -8]?

+ 2Re {(glnEll (112—112))(21 +z/\’i- aZnOT)+q2(Eli-“1422+

n=2

+£12(ul -u2) (22-2

m2)u<m1<F
.42., 1,24% . ’37)}

In order to obtain the displacements on the crack boundary, one has

3
3

to set

2 + 22 - a2 = aeie (k = l, 2) 4.52

where

9 = cos-1-E

a

Further simplification of the crack displacement expressions is possible

by noting that

32 “1 .. “2
P1 + P2 _“2_ U2 + P2 fi—z_ “2 - C11012 - 111MHz - 111)
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and

1 2 “2 “2 “2 ”2 “1“1“2 2

Hence, the crack displacements become

__ . . z, _ 1" ‘ _. x. f- _. A ,_

““2C11R€<ég;‘“2 “2’(“2 *1’(”2 “1’“JS O

1' 15:92de - TZHFZ - ”9C2 - uflsm 9)

NP

5 > n ..
+ 2C11Re [E g1n(p2 - u2)(u2 - “1)C—2 l)(cos n O + i sin n 2%

n=2

NN

n -—
-—

v o

+ ZCllRe E [a g3n(“2 - u2)(u2 - Ll)(U2 - ul)(cos n G - 1 Sln n 6%

n=2

4.53

2C

=—-—-2—2=-Re{a‘€sul (11 -?)(u - 11 )(17 - 11 )cos 0
u u u u 2 2 2 l 2 l

l l 2 2

+ iagu111-012 WZHUZ - u1)(u2 - 111)sin 9)

2C2 2Re NP

3 pu > , a“(Zn“1(‘“2 112M211 -ul)(?2-ul)(cos n 9 + 1 Sin n 0:]

“1 1 2 2 _
n—2

2C22R2 .

“fin—17i-2 :1: [anWUIF‘1(112- u2)(u2- 111) (Hz -Ul)(cos n O - 1 8111 n O];

4.54

With the expressions of the crack displacements, the formulation

of the method of solution of problems of central cracks in finite aniso-

trOpic regions can be considered complete.. As a matter of fact, the
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method described above could also be used for the Second Fundamental

Problem by employing Eqs. 4.50 and 4.51 for the prescribed displace-

ments on the outer boundary.



}
<

\s

V// 7

z-plane

N
\
\

g-
‘w

\

\

&
\

>
3

 
W

“
\
\
\

.
\
\
\
‘

 
g-plane

Figure 3. - The mapping of the unit circle into a crack.
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Figure 4. - The mapping of the doubly-connected regions, L, L1,

and L2 into their corresponding parametric planes.
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Figure 5. - The region, Lg, as continued

across the unit circle.
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Figure 6. - The crack tip coordinate

system.
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Figure 7. - The tension problems of a rectangular plate with a

central crack.

 

 
 

     

Figure 8. - The shear problem of a square

plate with a central crack.



5, THE ANISOTROPIC INFINITE PLATE CONTAINING A CENTRALLY LOCATED

TRACTION-FREE CRACK UNDER CONSTANT LOAD

5.1 INTRODUCTION

The conventional method of solving the problem of a centrally

cracked infinite anisotropic plate under constant loading is due to

Lekhnitskii (ref. 4) and Savin (ref. 6). They consider the superposi—

tion of a constant state of stress in an infinite plate and that of the

stress disturbance caused by the presence of the crack.

In this section it will be demonstrated that the solutions of

Lekhnitskii and Savin can also be obtained by a direct limiting process

applied to the dimensions of a finite rectangular plate under constant

loading. In the following, three problems will be considered:

1. Central crack in an infinite plate under constant load in

the y—direction.

2. Central crack in an infinite plate under constant shear

loading.

3. Central crack in an infinite plate under constant load in

the.x-direction.

5.2 CENTRAL CRACK IN AN INFINITE PLATE UNDER

CONSTANT LOAD IN THE y-DIRECTION

The boundary conditions 4.24 and 4.25 are Specialized to the finite

plate shown in Figure 7(a). The infinite plate can then be considered

by letting the dimensions of the plate approach infinity. As a conse-

quence of 21+ m, one must set

59
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Aln=Bln=0 for n2_2

in order to preserve the finiteness of the stress components at infinity.

Then the boundary conditions become

2A 2All
11 _ — ' _ _ __

—————a(u2"Tl-2) [(112 - “2)21 + (112 - u1)22] +—_—_a(FZ112) [(F2 - “2)21 + (112 - u1)22]

o
_ C1 on x-c

23 23

11 _. 11 _. _ o _ _

- a(u -T1') (“Z-uan—afi -lJ) (Hz-ulnz - Zth+Cl on x- c

2 2 2 2

0 =
Tt(x-c)+Cl on y :th

5.1

and

---—-2A11 ( -—)2+ (—- )2 +—--—-2Kll "(-— )2
a(u2-'u'2)‘ “1“2 “2 1 “2 “2 “1 2, aCfi'Z-uz) “1“2 “2 1

l

i

_ _ 2311 __ _ 213-11

+ 112012 - 1192?] _—_a(u2'VZ) 112012 - 111) 2 -———-—a(fi2_ 112) 112012 -lTl)z2

on it:
4 II

5.2

N
O

N
O

on y = ih

Since C3 is a finite arbitrary constant, the consideration, 2 + w,

applied to Eq. 5.2 results in two independent equations:

A11”2(“2 ’ “1) ' Anuzmz ' “1) " B11‘1‘2(“2 ' “1) + 11“2(“2 ' “1) = 0

5.3



and

2 — 2 — _ -.-2 ., ~ —2 '. _ .-.'
A11[“1(“2 .' 112) + 22(42 - 111)] - 11["1C2 .22) + 12(42 111%

72 . —- 2

11 2‘t2 ' “1’ + .11”2(“2 ' “1) t 0 5‘4

on both x = in and y ih. Then Eq. 5-1 can be written as,

1 ._ -. _ — IT _ 1: ‘5' _ ' — '1 _ “2“” — .— I

.L

r

 

 

   

O ‘ -—.~.

Cia(“2 1‘2’ n X z -
2 u L

Coa(u u)

= -Tca(iJ -'LT)+ l 2 2 0n X=-C
t 2 2 2

— O _

Tt(x - C)a(112 - “2) Claw.2 - 22)

+ on y=ih 15
g 2 2

In order to satisfy Eq. 5.5, one must take

Tta(u2 - U2)

 

A11(“2 ‘ “1) ‘ A1152 ‘ “1) ’ B11(“2 ‘ “1) T 11‘“2 ‘ “1) = 2

5.6

and

O '=

Cl th 5.7

At this point, it is noted that there are only three equations

available (Eqs. 5.3, 5.4 and 5.6) for the determination of four con—

stants. Consequently, one of the constants must be arbitrary. One may

also note that these three expressions correspond to the stress compon-

ents at infinity.

From Eqs. 5-3 and 5.6, one obtains

T au

t 2

A -B =—f—_— 5.8

11 ll - 2(p2 pl)
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It is then convenient to express the stress components (Eqs. 4.39, 4.4”

and 4.41) as follows:

 

 

 

  

 

 

A - B _ 2- 2 _ 2__ 2

11 11 2 Z 21 a 2 -- Z2 Z2 3

Ox = 2R9 ( 51")- “1(“2 ”“2) Wu +“2(U? "“1) *‘ 1.1.7:?“

‘X a“2‘2 ‘ “2_2 ‘ V72”?
21 a 42 (1

g

3' — 22 -a2

-2 2 2
+u2(u2~ul) _____;____w >

22 _. a2

2
J)

A B
11 2 _ 2 _ 11 _2

2 2 2 2

5.9

A - B 2 z

1 _ 2
o 2Re 8(11 in) (112 - 112) + (112 - ul)

“2 2 2 _ 2 2 _ 2
21 a 22 a

.22

+ (u2 - 1J1) _._... 5.10

.2 _ 2
22 a

A B 2 z

11 11 — 2
o =-2Re — u(u-u) +u(U-u)

xy (112112) 12 2 2-2 22 1 2_2

21 a 22 a

“2‘2 “

+ U (u - u ) —-—-—y 5.11
2 2 1 _2 2

22 " a; 

Upon applying the boundary conditions in the forms of 5.4 and 5.8, the

‘

expressions for the stress components are obtained:
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Ttuluza L'l L42 1

xx - Re u _ u -

2 1 2 2( + ,2 2) Z2_az(z + I/2_ 2)
21 —a 21 I (.1 —a I 2 2 22 a

5.12

It [ ”221 "122 , ..
o . = Re _ _ H - 3.15

y’ ”2 *‘1 2 _ 2 2 _ 2
21 a I 22 a _

' T u p [. z z T

o = Re t} 2 1 - 2 5.1:.

"y 1 “2 [22 _ ,2 1’22 __ 2

1 d 2 a 

These expressions agree With either Savin's or Lekhnitskii's results.

In order to obtain the stress field in the neighborhood of the

crack tip, the following transformation is used:

2 = a + r(cos 6 + pk Sin 9) (k = l, 2) 5.15

k

where r, 6 and a are defined in Figure 6.

r ,

Considering -— << 1, one obtains

a

 

 

 

2 2 2 2 Q g . _ _ .

zk-a (zk+ zk-a)-a4/2ral\/tosb+pk51ne (La-1,2)

and

z

.___..._15.._.__. 8‘ (k=l,2)

z: _ a2 NZra Vcos 6 + ukSln U

Hence, the stress components are written for the neighborhood of the

crack tip as,
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{
>
1

t “1“2 H1 “2
 

 
 

o = Re -
  

 
 

 

  

  
 

  

xx. JEE' U2 _ u1 Jcos 6 + plain 9 Vbos 6 + uzsin 6

5.16

= TH]; Re 1 “2 _ "1

W .122? “2 ‘ “1 Eos e + ulsin 9 /cos a + uzsin e

5.17

O a Tr“; Re “1“2 1 _ 1

xy /§;' lul - u2 Vbos 9 + ulsin 6 /cos 9 + uzsin 6

5.18

The stress intensity factors are obviously

= f- = .Kl Tt a K2 0 5 l9

i.e., the sliding mode stress intensity factor is not present in the

solution.

5.3 CENTRAL CRACK IN AN INFINITE PLATE UNDER

CONSTANT SHEAR LOADING

According to Figure 8, the boundary conditions, 4.24 and 4.25,

with z + w, become

2A 2X
l1 __ —- ' 11 _. _. ._ ._

a(u2 _11—2) [(112 - "2)21 + (:12 - ulna +a(fl'2 ”12) [(112 -u2)zl + (112 "‘11)sz

- 23 _ 2B11 _

- a(1.l2 '32) (“2 - u1)22 - afiz - 112) (HZ - u1)::2 a

 

on

x==3tc

y=h

=-h

5.20
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and

2All A

a(u2 4:2) [“1(“2'“2)21+“2(“2"“1)22] + a(,.2 —)1:j2"""2)Z1

28 2B-
_ . -— _w 11 —- .Ll ._ ._

+ u--! .. --————-—— - ‘ - ._ ,. 52-, 2'_

u2(2 L11..)‘2'23 a(.12 —:2)2(“2 1)22 ~( 2 - 2) 2( 2 2

r

o _ =.

CZ on X L.

o

= <2Tc+C on x=—c 5.21

s 2

o

LTs(c-x)+C2 on y-ih 
The boundary conditions, 5.20 and 5.21 can further be Simplified, re-

sulting in the following three equations in four unknowns

2 - 2—. .. _-— —2—_,- 72._.—
A11E‘1(“2 -' “2) + 1‘2”2 “1% A11l2’1“2 "2) + “2(“2 ”13]

 

_. 2 __ __

B11“2(”2 " “1) + B11“2“‘2 ' “1) ’ O 5 22

A11(u2 - “1) - A110:2 - “1) - B11012 - “1’ + 311(“2 - t1) = 0

5 23

A11“2(“2 ' '1) ' A11“2“‘2 ‘ “1) ' B11“2(“2 ’ “1’ +M11 2 ‘ 1)

T 8(h p )
2 2

_ _ 2 5.24

The unknown integration constant was found to be

00 = - r c 5 25
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One may again note, as in the tension problem above, that one of the

four unknown constants is arbitrary.

From Eqs. 5.23 and 5.24, one obtains

Tsa

A - B =

11 ll 2(u2 - pl)

 

5.26

Upon substituting Eqs. 5.22 and 5.26 into the expressions for the

stress components (Eqs. 5.9, 5.10 and 5.11), the resulting expressions

  

 

 

 

become

7

2 2 2

Ta u u
o = Re 3. l _ 2

xx u2 H1 22 _ a2 + (22 _ a2 22 _ a2 + 1,22 _ 2

1 z1 1 2 z2 2 a 4

5.27

T 2 z

o = Re _? 1 --———3———- 5.28

yy “2 111 M22 _ 2 “22 _ a2

1 a 2

o = 5.29

T u z u 2

Re -s 1 l _ 2 2

xy 1 u2 ‘Lz _ a2 22 _ a2

1 2

With the transformation, 5.15, the crack tip stress field was found to

be

3
w 2

a I: Ts Re 1 “1 _ u2

xx '/2;' u2 - ul /cos 9 + ulsin 6 Vbos 6 +-pzsin 6

   

  

5.30
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T943 1 1 1
o = :__ Re ‘ _ . [ , —

yy /2r ”2 L1 Vcos 6 + u sin a /ccs 6 + p251n 6

    

  

    

  

l

5.31

T V; . u .
e ' i 4

_ J " .. . . ,

y VZr l 2 Vcos o T t 510 a 2-: r v s sin 3

l 2

5.32

In this case, the stress inten51ty factors are

K =0 K =T/E 5.33
1 2 s

i.e., the opening mode Stress intenSity factor 18 not present in this

solution.

5.4 CENTRAL CRACK IN AN INFINITE PLATE UNDER

CONSTANT LOAD IN THE x-DIRECTION

In accordance with Figure 7(b), as 2 + m, the bOundary conditions,

4.24 and 4.25, become

2Al 2A

1 M —i' -' _ 1 _____il__. —' _ ‘-' . _r- -

3012-712) [(“2 L2)"‘1+“‘2 L‘1)223‘“.:.(E2_.12)[“12 “2)z1+(”2 “fizz-J

— CO on x—i’

2B 23 1 ’ “

-'—?—-J%E—y (U2'-ul)Eé 77:7—lL-3-(UE -31)29 = 5.34

auz‘ 2 ““2‘“2 ‘ O

C. on y =;th
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2
2A11 A1_ _ 1 _. _ _

____..__ _ _ +___ _
a(u2-TJ'2) [111012 u2)zl+u2(u2 “1)7‘2] 8(11'2 '“2) [111012 112)zl

2B11 2B11
+ 112012 -ul)22] -__a(u2—U2) 112012 -u1)zz -———a(F2"“2) 112012 ‘ul)22

' + o _ i

Tty C2 on x- c

o

2
TLh-tC on y = h 5.35

v o
— + =—Tth C2 on y h

These conditions will also result in three equations having four

unknowns

2 _. 2 _. .2 _2 _.

11111211012 - 112) + 112012 - 111)] - A11[“1G2 - 112) + 112012 - 111-2]

'

Ta(u -T1')
.2 - 2 _. _. _ t 2 2

’ B11“2(“2 ‘ “1) + B11“2(“2 ’ “1) ‘ 2 5'36

 

A11(“2"”1)"A11(T"2 '“1) ’311(“2"“1)'+311(“2 "“1)‘=0 5'37

A11“2(“2 ' “1) ' A11“2(“2 ' “1) ‘ B11“2(“2 ’ “1) + 11“2(“2 ' “1) = 0

5.38

From Eqs. 5.37 and 5.38

All - B11 = 0 .5.39

Hence, upon substituting into the expressions for the stress components,

one obtains

I

= T
5.40

o = o = 0 5.41
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Therefore, one can conclude that the stress field is not influenced by

the crack in this particular case.



6. PROBLEM FORMULATION FOR A FINITE ORTHOTROPIC RECTANGULAR

PLATE CONTAINING A CENTRALLY LOCATED TRACTION-FREE

CRACK UNDER CONSTANT LOAD

6.1 INTRODUCTION

The motivation for considering the problem of a finite orthotropic

plate with a central crack is mainly due to the structural importance

of unidirectional materials in present day.design. As it will be shown,

the handling of such problems is somewhat simpler than that of aniso- '

tropic problems with regard to the size of the coefficient matrix in the

boundary collocation method. This simplification is a consequence of

stress symmetry prevailing in a symmetrically loaded rectangular ortho-

tropic plate.

The consideration of stress symmetry will lead one to the conclu-

sion that only the odd terms.are needed in the Laurent series expansion

of the stress potentials. One also finds that the arbitrary integration

constants, C? and C3, can also be determined.before.collocation.

For the loads considered in the case of the anisotropic infinite

plate (Figures 7(a), 7(b) and 8), the boundary conditions of the finite

orthotropic plate will be.given in this.section in a form readily appli-

cable to the boundary collocation method.

6 . 2 STRESS SYMMETRY

. From physical considerations of the.problems.at hand (Figures 7(a),

7(b) and 8) in the case of.orthotropic materials one can.expect symmetry

70
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in the stress components su:h that

OXX(Z) = Gxxfi-Z)

o (z = ” '—' 6 l

W ) n" ")

O (2; G 1-2)

xy X]

It can be shown that in order to satisfy these symmetry conditions, tne

has to set

' = Q: = 0 for n ev*n

gin 2n c

As a consequence to this relation among the unknown :cnstanrs, the sat-

isfaction of the boundary conditions is required on the y 5 0 pa:: of

the boundary only.

For the further consideration of special orthotropy, i.e., for

o o _, , ,
6 = 0 , 90 , in addition to conditions 6.1, the fellowing symmetry is

also obvious

xx xx

0 z = o 4“ 6,2yy( ) yy( )

o 2) = o —zxyk Xy( )

The symmetry conditions 6-2 will lead one to the conclusion that the

constants 9g, %%, gin and gin are pure imaginary quantities— Thus,

the above problems can be solved with the satisfaction of the boundary

conditions on the boundary in the first quadrant for specially ortho—

tropic materials.

6.3 THE DETERMINATION OF THE INTEGRATION CONSTANTS

First, the boundary conditions 4.27 and 4.28 are written at (c,0)

and (-c,0):
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.. 2111:3152 «1.15“ (1+Rm Lev“
n=l

 

u (u -u ) n 2 n 2 n

2Re % 21122-121 (Am ”313] (i) (1+ 1 - (i1) ) - (1+ 1 - (5:1) )

.-. J; Xnds] + (:3 6.4

= - / Y (18] +CO 6.5

s n l

= / de] +CO 6.6

s n 2

y=0

Upon considering n odd (orthotropic materials), the addition of Eq.

6.3 to Eq. 6.5 and Eq. 6.4 to Eq. 6.6 will result in
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C°=-l- Yd; + Yd;
1 2 n n

s s 6 7

x=c x=-c

y=0 y-O

cg=%-de] - de]

s n s n 6.8

x=c x=—1

y=0 y=0

Then for the three different cases of loading shown in Figures 7(a),

7(b) and 8, the arbitrary integration constants become

Constant load in CO = T t

l t

6,9

y-direction: C3 = 0

o

Constant C1 = 0

o 6.10

shear loading: C. = -T c

2 s

Constant load in CE = 0

o 6.11

x-direction: C2 = 0

6.4 BOUNDARY CONDITIONS

In addition to the above observations, one also finds that the

constant

55¢ = (112 - ul)(u2 - U2)(U2 - “1)

is an imaginary quantity in the case of special orthotropy. Conse-

quently, the square matrix gm? (Eq. 4.37) becomes singular due to

the third column of 6' (Eq. 4.38) containing zero elements only. In

order to account for the case of special orthotropy among the various

orthotropic cases, it is noted that
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yRegéRegs - yIm‘oZImég = yRe[?C?S]

Considering this contraction and the determination of the integration

constants, Eq. 4.38 becomes

r

0 ReF

y ReG

 

11

ll

-ImF

1

2NN

 

p

Ree:

 

Re [scars-11 *

 

 LII“ 2NN J

It can be noted, here, that upon solving Eqs. 6.12 at

 

in T 6.12

M points, the

stress components are fully determinate, (see Eqs. 4.39, 4.40 and

4.41), however, the displacement expressions only allow the deletion

of the first two columns of Eq. 4.38. Since this dissertation primar-

ily deals with stresses and stress intensity factors, the form given in

6.12 will be used.

At this point, the boundary conditions-for the three different

cases of loading (Figures 7(a),.7(b), and 8).are written in a compact

form readily applicable for automatic computation.
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. . .1231: -ImF . . .ReF -ImF (Rem/C(55)}
P Rel'1 '1‘“? INF 1NP 2NN 2NN1 11

Ree?

-— Imi?

Re%’

ImrlNP

 

 
[Re%ENN

I""652111: J

Ttx - Tsy

-% , z in r 6.13

TLy-Tst

6.5 SOME REMARKS ABOUT THE COMPUTER.PROGRAM

The consideration of Eqs. 6.13 at ‘M points on the boundary of a

rectangular plate results in a matrix equation such as 4.32, where

a - a = K

2Mx(NN+NP+l) (NN’+NP+i)x1 2Mxl

6.14

Then for the least squares boundary collocation method,.the problem

becomes

2':

6T2? - fTK 6.15

*

where ’8 is the desired solution vector.

The solution of Eq. 6.15 was carried out on the IBM TSS/360 com-

puter by declaring all quantities and operations in double precision
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and utilizing the Gauss-elimination technique with complete pivoting.

It should also be mentioned that the elements of the coefficient matrix,

n

a were scaled b the devisor Rn = c2 + hzfi .y

The listing of the complete program is given in Appendix B.



7. RESULTS AND DISCUSSION or res SGLUTLONE CF

THE TENSION AND saran PROBLEMS

7.1 INTRODUCTION

In this section, the solutions or. he

7

U
’

(
P

E
B

v
r shown in Figures

7(a), 7(b) and 8, are presented and disccssed For both ihe tensiin

and shear problems the effe2ts or r
?

he va;1ations or the dimensionless

. 4. '-

'enca ion angle and the a’fi ratios(
J

P
(

*
4material ratios (3.30, 3 32), the

are considered. For the tension problem, variation in the h.c ratio

is also taken into account.

7.2 SPECIFICATIONS OF PARAMETERS TREATED

The solutions of the three problems shown in Figures 7(a), 7(b)

and 8 are based on the following specifications:

1. For all cases a: .5 inches unless otherwise specified (see

Table 1).

2. The problems were non-dimensionalized by c;nsidering the can—

cellation of the constant boundary Stresses frzm bcth sides of

the boundary condition equations. This is effectively equiva—

lent to setting the applied boundary stresses equal to unity,

If other values of the applied boundary stresses are used,

they are properly indicated (see Table l)

3. With the exception of the investigation of the effects of

material properties on the stress intensity factors, the ratios

[
1
1

 

.366

{
T
}
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and

E11,1322
= .257

E 2

2612 12

were used throughout the entire analysis. These ratios corre-

spond to the properties of fiberglass.

In studying the effects of varying material properties on the

stress intensity factors in both the tension and shear problems,

the following parameter ranges were considered:

E

 

 

.05_<_E22$l

11

E E

.001; 11/ 22 £00

(E11 )2

-——-— v

2G12 12

5.3.; h=1; 6 =45°
c 3 c

. In studying the effects of varying plate aspect ratio, h/c, and

crack length to plate width ratio, a/c, on the stress intensity

factors in the tension problem, the parameter ranges were chosen

as follows:

C
)

A

n
l
m

M

u
fl
n
a

.25.:

n
l
s
‘
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6. The effects of variation of the orientation angle, 6, were also

analyzed for both the tension and shear problems considering

the following parameter ranges:

E.

c

2
0< :3

Os 0O
)

5.90

D.

c

7.3 EXAMINATION OF THE MAPPING COLLOCATION METHOD

The available results which could qualify the validity of the

mapping-collocation method for centrally cracked finite rectangular

orthotropic plates are those of the centrally cracked infinite plates,

given in section 5, and the results of Kobayashi, Isida and Sawyer

(refs. 1, l9 and 20) for finite isotropic rectangular plates. In order

to gain a certain degree of confidence in the mapping—collocation method

as deve10ped in the preceeding sections, both the results for the in-

finite orthotropic and finite isotropic plates were verified.

One knows that in the infinite plate solutions A = B = 0 for

ln 1n

n 2.2 and furthermore only the difference A11 - B11 is needed to ex-

press the stress components and the stress intensity factors whether the

plate under consideration is anisotropic or orthotropic. Hence, the

very first verification of the mapping-collocation method would result

from the use of the constants, Re[g2eg] and 3’
d

plate dimensions as compared to the crack length. However, this type of

, only, with fairly large

substantiation of the mapping-collocation method rests on the a priori

assumption that a large finite plate is the same as an infinite plate.
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A better method to verify the infinite plate results involves the

use of the "full" form of the stress potential, ¢l(;). Upon consider“

in" a 100"x100" plate with a one inch crack, it was found that the

stress intensity factors were quite insensitive to the number of terms

of the Laurent series expansion of ¢l(§). For example, the use of

Re[%:%;] and @% (three unknowns) resulted in Kl = .70712 JTH. and

K2 = .00000 while using 83 unknowns resulted in the stress intensity

factors, Kl = .70713 VIE. and K2 = .00000 with Tt = l. The corre-

sponding analytical results for an infinite plate are, Kl = V75 JIH

and K2 = 0. It was, however, also noted that the satisfaction of the

stress boundary conditions markedly improved with the use of more and

more terms in the Laurent series expansion of ¢l(§). Thus, the results

given in section 5 were verified for both the tension and shear

problems.

The verification of Kobayashi's Isida's and Sawyer's opening mode

stress intensity factors for various finite isotrOpic rectangular plates

in tension was carried out by setting the ratios

and

£11-, 2
2G 12

12

The value of the orientation angle had no influence on the results. The

cases considered are shown in Table l, where the various stress inten~

sity factors are tabulated and can readily be compared with each other.
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As can be seen from Table 1, agreement with the known results is ex-

tremely good, as a matter of fact one cannot speak of a higher degree

of accuracy than the one obtained when numerical methods are used.

In order to economize the mapping-collocation method with regard

to the use of the number of terms in the Laurent series expansion of

¢l(C), two different truncation numbers NN and NP were assigned

as limits of the sums in the various expressions. The numbers NN and

NP are odd for orthotropic materials and they are actually correspond—

ing to the number of the negative and positive exponent terms in the

Laurent series expansion of the stress potential function, ol(c). Upon

investigating various ‘NN/NP ratios for the finite plate problems, it

was found that a ratio of NN/NP = 5/3 resulted in fairly fast conver—

gence with rather well-satisfied boundary conditions. This NN/NP

ratio was retained throughout the whole investigation of the problems

given in Figures 7(a), 7(b) and 8.

One of the most important indications of the degree of accuracy of

the solutions obtained by the mapping-collocation method comes from the

examination of the boundary stress between collocation points (ref. 2).

Since the least squares method of collocation results in the satisfac—

tion of the boundary conditions only in the approximate sense, the mag-

nitude and frequency of oscillations of the boundary stresses serve as

an indicator to the "exactness" of the solution of the stress boundary

value problem. Thus, in each case, when the problem of a centrally

cracked finite plate was solved, the boundary stresses were also exam—

ined. For example, in the case of a square plate in tension with
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a/c = 2/3 and 6 = 45°, the largest error in the boundary stresses was

found to be about 4% and it occurred in a sudden manner at the corners

of the plate.

Since this dissertation deals with stresses and stress intensity

factors of centrally cracked finite rectangular orthotropic plates, the

pattern of convergence of the stress intensity factors, K1 and K2

was also investigated. It was observed that the insensitiveness of K1

and K to a change in the number of terms of the Laurent series ex-
2

pansion of the stress potential, ¢l(t), is an excellent indicator to how

well the boundary conditions are satisfied by the least squares approx-

imation. Referring to Figures 9, 10 and Table 2, one observes two types

of convergences:

1. Using approximately twice the number of equations as unknowns or

larger, i.e., 2M.z.2(NN + NP + 1), will result in nonoscilla—

tory, steady values of K and K . These values of K and
1 2 1

K2 are still subject.to.variations as.the.number of.unknowns

changes.

2. The second type of convergence is that when K1 and K2 become

insensitive to an increase in the terms of the Laurent series

expansion of the stress potential, ¢l(t), i.e., when a further

increase in the number.of unknowns does not.change the values of

K1 and K2.

Thus, it is noted that for a square.plate in tension with .a/c = 1/2

and 6 - 45°, the number of unknowns NN + NP + l 8‘41 is already suf-

ficient to result in converged values of K1 and K2. However, one may

also note that the boundary conditions are somewhat better satisfied
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when NN + NP + l = 83, despite the fact that the stress intensity fac—

tors have already converged. Hence, one can draw the conclusion that

for increasing plate dimensions less and less terms of the Laurent

series expansion are needed in order to obtain converged values of the

stress intensity factors. This fact was also observed rather radically

in the case of the 100"x100" plate.

Upon considering various materials, plate sizes, a/c ratios and

orientation angles under the loading conditions shown in Figures 7(a),

7(b) and 8, two conclusions became obvious regarding the convergence

of the stress intensity factors:

1. Convergence of the stress intensity factors is definitely

affected by the material parameters. It was found, for example,

0

that for a square plate in tension with a/c = 2/3 and 6 = 45

the use of the dimensionless material conStant

Ell/E22

(E11 _ v )2

2612 12

 

= .0001

E

with any EZZ- ratio resulted in oscillatory values of K1 and

11

K2. In this case, the number of unknowns was taken as 83 which

gave excellent results for higher values of the dimensionless

material constant.

2. Convergence of the stress intensity factors is also affected by

the a/c ratios. For a square plate in tension with

 

E /E E

E 11 22 2 = .257 E33-= .366

( 11 __v ) 11

2G12 12
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a/c = .9, 6 = 45° with the use of 83 unknowns, it was found

that the boundary conditions were rather badly satisfied, the.

method probably resulting in unconverged stress intensity fac-

tors. For smaller a/c ratios well-converged values of K1

and K2 were obtained.

7.4 SOLUTION OF THE TENSION PROBLEMS OF AN ORTHOTROPIC

RECTANGULAR PLATE WITH A CENTRAL CRACK

As shown in Figures 7(a) and 7(b), two distinct tension problems

were considered in this study. The solution of the problem for loading

applied in the x-direction (Figure 7(b)) for various h/c and a/c

ratios, orientation angles and material constants resulted in zero

values for the stress intensity factors. This fact is of significance

because it shows that just as in the isotropic case, the stress field

in the plate is not disturbed by the presence of the crack.7 It should

furthermore be noted that in the case of Figure 7(b) the crack is

aligned with the direction of loading, and for this particular config-

uration the plate behaves as a finite orthotropic rectangular plate

loaded by a constant boundary stress in the x-direction without a crack.

The consideration of the other tension problem, i.e., when the

constant boundary stress is applied in the y-direction (Figure 7(a)),

resulted in various parametric studies involving material properties,

a/c ratios, h/c ratios and orientation angles.

7.41 Effects of Material Properties on the Stress Intensity Factors

According to expressions, 3.30 and 3.32, an orthotropic material

can be characterized by two dimensionless ratios constructed from the

engineering material constants, C 2, and v . As 3

E11’ E22’ 1 12
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consequence to this method of characterization, a parametric study was

undertaken in order to determine the effects of these two dimensionless

ratios on the stress intensity factors.

Upon considering a square plate with a/c = 2/3, 6 = 45 and

Tt = l, the dimensionless ratios were varied and Table 3 was obtained.

From Table 3, the family of curves shown in Figures 11 and 12 were con-

structed. Figure 11 demonstrates the effects of the dimensionless

material ratios on the opening mode stress intensity factor while Fig—

ure 12 shows the sliding mode stress intensity factor as a function of

these two ratios.

Considering Figure 11, one arrives at the following conclusions:

1. The complete family of curves is asymptotic to the

 

 

 

E11/E22 _ 0

(E11 _ V )2

2G12 12

E /E

ordinate, i.e., as 11 22 + 0, K + w.
E 2 l

< 11 __\, )

2G12 12

2. The curves are asymptotic to various Kl'-va1ues as

E11/E22
E 2 + cc; and they are asymptOtic from below the

11 )
-———-- v(.12 .

asymptotes.

3. As the E22/E11 ratio decreases, the opening mode.stress in-

tensity factor, K increases in value.
19
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4. For each constant E22/E11 ratio, the stress intensity factor,

Kl, will attain a minimum value which is not the K -asymptote.

1

5. Upon examining the parametric curve for E22/Ell a 1, it seems

that the smallest possible minimum value which can be attained

by K1 is K1 = 1.131 VIE: occurring at

E11/E22 _

2

(3111“,)
2612 12

This value of K1 is very close to the value of the opening

 

mode stress intensity factor, K for an isotropic material1,

(X1 = 1.134 753.).

The consideration of Figure 12 results in conclusions somewhat

different from those for the Opening mode stress intensity factor.

First of all, one may note that the presence of the sliding mode stress

intensity factor, K2, is strictly due to the orthotropy of the material

and to the finiteness of the h/c and the a/c ratios. It may be

noted that the maximum magnitude.of the sliding mode stress intensity

factor shown in Figure 12 is about 14% of the value.of.the opening mode

stress intensity factor for the same E22/E11. ratio.

The closer examination of Figure 12 results in the following

conclusions:

1. The complete family of curves is asymptotic to the

E11/E22

('Eii _ v >2

2012 12

 

= O
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ordinate, i.e., as

E11/E22

(Ell _ v )2

2G12 12

2. The curves are asymptotic to various K -values as

 

+0, K+-m°

 

2

E11/E22 m.

E11 _ V >2

2612 12

3. As the E /E ratio decreases, the absolute value of the
22 ll

sliding mode stress intensity factor, K increases.
2’

4. For each constant EZZ/E ratio, the sliding mode stress
11

intensity factor attains its minimum absolute value at

 

E11/E22 = m.

(E11 _v )2

2012 12

5. The smallest possible minimum absolute value of the sliding

mode stress intensity factor, K2, is zero as one would expect,

i.e., for an isotropic material K2 = O.

7.42 Effects of Plate Width. and Plate Size on the

Stress Intensity Factors

In order to investigate the effects of various plate widths and

plate sizes on the stress intensity factors, K and K the dimension-

1 2’

less material ratios were set at

E

E33-= .366

11

and



88

 

E /E

11 22 2 = .257

2G12 12

with an orientation angle, 6 = 45°. These ratios correspond to fiber—

glass properties.

The variation of the h/c and a/c ratios resulted in Table 4.

In accordance with Table 4 graphical representations were constructed

as shown in Figures 13 and 14.

The family of curves for the opening mode stress intensity factor,

K1, (Figure 13) indicates the following:

1. As a/c + 2/3 the value of the opening mode stress intensity

factor becomes larger and larger for each constant h/c ratio.

2. As a/c + O the value of the opening mode stress intensity

factor approaches K1 = JTE'JIEZ, the value of K1 for an in—

finitely large plate, also for each constant h/c ratio.

3. As the h/c ratio decreases, the opening mode stress intensity

factor, Kl’ increases in value.

4. As the h/c ratio becomes very large, the opening mode stress

intensity factor approaches K1 = /:§ JEEL for the range of

values 0 < a/c 5.2/3. This seems to indicate that for an in-

finite strip, only very high a/c ratios will effect the stress

intensity factor, Kl, such that it will deviate from the K1-

value of the infinite plate.

The consideration of Figure 14 leads one to.the following

conclusions:
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H . As a/c + 2/3 the absolute value of the sliding mode stress

intensity factor, K2, becomes larger and larger for each con-

stant h/c ratio.

2. As a/c + O the sliding mode stress intensity factor approaches

the value, K2 = 0, i.e., the value of K for an infinitely

2

large plate. This also occurs for each constant h/c ratio.

3. As the h/c ratio decreases, the sliding mode stress intensity

factor, K2, increases in absolute value.

4. As the h/c ratio becomes very large, the sliding mode stress

intensity factor approaches the value, K = 0, i.e., the value

2

of K2 for an infinite plate for the range of values

0 < a/c 5.2/3.

The presence of significant values of K are due to the value of the
2

orientation angle (6 = 45°), however, the variations in K2 are defin-

itely induced by the variations in both the a/c and h/c ratios.

Thus, one can conclude that the finiteness of the plate with a/c > 0

accounts for the increase in the values of both stress intensity fac-

tors as compared to the case of the infinite plate.

7.43 Effects of Orientation Angle and Plate Width on the

Stress Intensity Factors

For the investigation of the effects of the orientation angle and

the ‘plate width on the stress intensity factors, the h/c ratio was

taken as one (square plate) and the dimensionless material ratios were

held constant at the values specified above.

The variations of the orientation angle, 6, and the a/c ratio re—

sulted in Table 5. The graphs constructed from.Table 5 are presented in
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15 and 16, where Figure 15 shows the effects of various orien-

tation angles, 6, on the opening mode stress intensity factor, K1, for

constant a/c ratios, while Figure 16 shows the sliding mode stress

intensity factor, K2, as affected by changes in 6 and a/c.

An examination of Figure 15 results in the following observations:

1. As the a/c ratio increases, the opening mode stress intensity

factor, Kl, also increases.

As the orientation angle, 6, increases, the opening mode stress

intensity factor, Kl, becomes larger and larger for each con-

stant a/c ratio.

The curves indicate zero slopes at 6 = 00 and 6 = 900.

For each constant a/c ratio, the maximum value of K occurs

1

at 6 = 900 and the minimum value at 6 - 0°.

The smallest possible minimum value of the opening mode stress

intensity factor is /75 JIEI which is the Kl-value for an in-

finite plate.

The conclusions concerning Figure 16 are as follows:

1.

2.

The existence of the sliding mode stress intensity factor, K2,

is strictly due to the values of the orientation angle, 6, dif-

ferent from 00 or 90°.

As the a/c ratio increases, the sliding mode stress intensity

factor, K2, also increases in absolute value.

For each constant a/c ratio, the absolute value of the slid-

ing mode stress intensity factor reaches a maximum at different

values of 6. For example, the maximum absolute value of K2

for ale 8 2/3 occurs at about 6 = 50°, with K2 being

-.065 JR.
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4. The smallest possible absolute value which is attained by K2

is zero as expected for an infinite plate.

7.44 Stress Distribution on the y = 0, x > a Line

As an illustration of the typical stress distribution on the line

y = 0 for the range 1 < x/a 5.3/2, the values of the stress components

were tabulated in Table 6 for a plate with h/c = l, a/c = 2/3, 6 = 450

and plotted in Figures 17 and 18. Figure 17 shows that both normal

stresses, Gxx and Oyy’ become asymptotic to the x/a = 1 line and

oxx becomes zero at x/a = 3/2 which is a point on the boundary. This

is expected since Oxx was specified to be zero on the x/a = 3/2

boundary. The other stress component, Oyy’ has the value of Oyy = .68

at y a 0, x/a = 3/2.

The intersting behavior of the shear stress is.shown.in Figure 18,

where in the.neighborhood of the crack tip Oxy < 0 and Oxy + - w as

x/a + 1. This behavior of ny in the neighborhood of the crack tip

could be expected from knowing that K2 was found to be negative for

the same case (see Figure 16). Then as x/a increases Oxy will

reach a maximum value (Oxy = .153) at about x/a = 1.35 which is 15.3%

of the applied stress.. It is noted that the presence of oxy is due

to the general orthotropy of the material. It should also be observed

that oxy becomes effectively zero on the boundary, which it should

be for proper satisfaction of the boundary conditions.

It should be mentioned at this point that for each .K1- and K2-

value obtained,.the complete boundary value problem of.an.orthotropic

rectangular plate containing a central crack had to be solved. In each

case, in addition to the computation of the stress components on the
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boundary, the stress components on the y = 0 line were also recorded.

It gives one confidence in the method to know that for isotropic and

specially orthotropic materials, the shear stress component, Oxy’ was

effectively zero on the y = 0 line. It should also be noted that for

problems with EZZ/Ell = l, the shear stress component, sky, on the

y a 0 line was found to be practically zero for any value of

 

E11/E22

(E11 _ V )2

2012 12

7.5 SOLUTION OF THE SHEAR PROBLEM OF AN ORTHOTROPIC

SQUARE PLATE WITH A CENTRAL CRACK

In addition to the tension problem discussed in the preceding sec-

tion, the problem of an orthotropic square plate containing a central

crack and loaded by unit shear stress (Figure 8) was also considered.

As in the case of the tension problem, the shear problem was also solved

for various dimensionless material ratios, a/c ratios and orientation

angles. The h/c ratio was held constant (h/c = 1) throughout the en-

tire analysis of the shear problem.

7.51 Effects of Material Properties on the Stress Intensity Factors

The results of the parametric.study involving.variations of the

dimensionless material ratios while considering a/c - 2/3 and 6 = 450

are summerized in Table 7 and Figures 19 and 20.

An examination of Figure 19 reveals.the following effects of the

dimensionless material ratios on the opening mode stress intensity

factor:
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l. The complete family of curves is asymptotic to the

 

 

 

E11/E22

E 2 = 0
(11_v)

2G12 12

ordinate, i.e., as

E11/E22
E 2+0, K1+—oo.

2G12 12

2. The curves are asymptotic to various values of K1 as

Ell/E22

(E11 _v )2

2G12 12

3. As the E22/E11 ratio decreases, the absolute value of K1

increases.

4. For each constant E22/E11 ratio, the opening mode stress

intensity factor, Kl, attains its minimum absolute value at

E11/E22 =

( E11 - v )2

2612 12

5. The smallest possible minimum absolute value of the opening

 

mode stress intensity factor, K1, is zero as one would expect

i.e., for an isotropic material Kl = 0.

The effects of the variations of the dimensionless material ratios

on the sliding mode stress intensity factor, K2, are shown in Figure 20.

According to Figure 20, one arrives at the following conclusions:



. As the

. It seems that the smallest possible minimum value of K
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. The complete family of curves is asymptotic to the

 

 

 

E11/E22

E 2 = 0

2G12 12

ordinate, i.e., as

E /E

11 22 +0 K +00.

E 2 ’ 2

(41... v
2012 12

. The curves are asymptotic to various K2-values as

E11/E22

2

2612 12

E22/E11 ratio decreases, the value of the sliding

mode stress intensity factor, K increases.
2’

. For each constant E22/Ell ratio, the sliding mode stress

intensity factor attains its minimum value at

 

E11/E22 =

(E11 _v )2

2012 12

2 IS

.982 JTEZ and it occurs at

 

E11/E22 = w.

(E11 _v )2

2912 12

For an isotropic material K2 = 1.022 Jihl.
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7.52 Effects of Orientation Angle and Plate Width

on the Stress Intensity Factors

The variation of the orientation angle, 6, and the a/c ratio re-

sulted in Table 8 and Figures 21 and 22. Considering Figure 21, one

arrives at the following conclusions:

1. The existence of the opening mode stress intensity factor, K1,

is strictly due to the values of the orientation angle, 6,

different from O0 or 90°.

2. As the a/c ratio increases, the absolute value of the opening

mode stress intensity factor, Kl, also increases.

3. For each constant a/c ratio, the absolute value of the opening

mode stress intensity factor, K , reaches a maximum at different

1

values of 6. For example, the maximum absolute value of K1

for a/c = 2/3 occurs at about 6 = 46°, with K being

1

-.073 J17...

4. The smallest possible absolute value of K is zero as expected

1

in the case of an infinite plate.

The effects of the orientation angle and the a/c ratio on the

sliding mode stress intensity factor are shown in Figure 22. According

to Figure 22, these effects can be summarized as follows:

1. As the a/c‘ ratio increases, the sliding mode stress intensity

factor, K2, also increases.

2. For each constant a/c ratio, the sliding mode stress intensity

factor, K2, reaches a maximum and this maximum occurs at various

0

values of 6. The minimum of K2 .always occurs at 6 = 0 . For
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example, for the curve, a/c = 2/3, the maximum value of K2

is 1.072 (EH. occurring at 6 = 42° while the minimum value

of K2 is .994 7551 at 5 = 0°.

3. The curves indicate zero slopes at 6 = 00 and 6 = 90°.

4. The smallest possible minimum value of K2 is V75 JEEL, which

is the K -value for an infinite plate.
2

There is an important observation which concerns the effects of the var-

iation of the orientation angle in the shear problem. As far as 6-

dependence is concerned, the orthotropic plate behaves differently in

tension and in shear. In the tension problem it was found that the max-

imum K1 values always occurred at 6 = 90°, (specially orthotropic

material) while in the shear problem it is obvious that the maximum K
2

is 6-dependent. However, it is also observed that in both the tension

and shear problems the minimum values of the significant stress inten-

sity factors occurred at 6 a 00 which designates the other type of

special orthotropy.

7.53 Stress Distribution on the y = 0, x > a Line

As an illustration of the typical stress distribution on the line

y = 0, 1 < x/a.g 3/2, the values of the.stress components were recorded

in Table 9 and depicted in Figures 23 and 24 for a plate with a/c = 2/3

and 5 - 45°.

Figure 23 shows the normal stress components, Oxx and oyy, as

they vary for l < x/a.$ 3/2.7 It is noted that Oxx + - w and

o ‘+ - w as x/a + 1, but oyy becomes positive and attains the value

YY

of qyy - .72 at x/a - 3/2. In agreement with the specified boundary

condition, Oxx becomes zero at y = 0, x/a = 3/2.
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The distribution of the shear stress, Oxy’ is shown in Figure 24,

where oxy + w as x/a + l and it has the specified value, ny = l,

at x/a = 3/2, y = 0 on the boundary.

It should also be mentioned that both Oxx and 0 were found

 

to be zero on the line y = 0, l < x/a 3,3/2 with EZZ/Ell = l and

E11/E22
for any value of E 2' The special cases of isotropy and

11 )
--—-— v
(2912 12

special orthotropy resulted also in zero values for the normal stresses,

oxx and ny’ on the y = 0, l < x/a 5.3/2 line.
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Table 1.

Comparison of opening mode stress intensity factors for

rectangular isotropic plates with central cracks

1000 psi Kobayashi Sawyer Isida Author

Ref. 1 Ref. 20 Ref. 19

c a K1 K1 K1 K1

in. . 'in. psivEEI psi/EEK ' psivffil * psi/EEK

3 .25 502.4 504.7 502 502.1

3 .50 720.6 725.0 718 719.2

3 .75 904.8 910.1 900 900.3

3 1.00 1083.0 1073.7 1075 1073.3

3 1.50 1496.0 1401.5 1436 1454.6

3 2.00 2074.0 1952.2 2000 2002.8

Table 2.

Typical pattern of convergence of the stress integsity factors

for tensile loading (h/c = 1, a/c = 1/2, 6 = 45 , T =‘1)

a = .5 in

Number of

equations

16

24

32

40

48

64

96

128

176

t

. Number of Number of Number of Number of

unknowns unknowns unknowns unknowns

15 25 ' 41 83

K1 K2 K1 K2 K1 K2 K1 K2

J13. JIE. JZH. ‘ JTH. VIE. J35. /15. J35.

.9580 -.0267

.9522 -.0279

.9514 -.0281

.9568 -.0326

.9593 -.0336

.9511 -.0283 .9560 -.0325

.9590 -.0334

.9511 -.0284 .9560 -.0326 .9590 -.0334

.9591 -.0334
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Figure 11. - Effects of material properties on the opening

mode stress intensity factor for tensile loading (NC = 1,

alc = 2/3, 6 = 45°, Tt = 1).
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Figure 12. - Effects of material properties on the sliding

mode stress intensity factor for tensile loading (NC = 1,

alc = 2/3, 6 = 45°, Tt = 1).
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Table 6.

Stress distribution on the y = 0, x > a line for tensile loading

(h/c = 1, a/c = 2/3, 6 = 45°, Tt = 1)

a = .5 in.

X

3' Oxx cyy Oxy

1.016 7.33 9.59 - 482

1.046 3.54 5.53 -.227

1.076 2.37 4.27 -.131

1.106 1.74 3.58 -.069

1.136 1.33 3.12 -.021

1.166 1.04 2.77 .020

1.196 .81 2.50 .055

1.228 .63 2.26 .085

1.258 .49 2.05 .111

1.288 .37 1.86 .131

1.318 .26 1.67 .146

1.348 .18 1.50 .153

1.374 .11 1.33 .150

1.410 .06 1.17 .136

1.440 .03 1.01 .108

1.470 .00 .84 .063

1.500 .00 .68 .000
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Figure 17. - Normal stress distribution on y = 0, x > a

line for tensile loading (hlc = 1, alc = 2/3, 6 = 45°,

T1 = 1).
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Figure 18. - Shear stress distribution on y = 0, x > a line

for tensile loading (hlc = l, alc = 2/3, 6 = 45°, Tt = 1).
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Asymptotes:

K1 - -0. 148

K1 - -0. 057

K1 ' '0. 007

1;
.

j

   

  

.
l

w

 

  
 

  
 

-. 1 Weakly

orthotropic 22 __

material-\ ~5— - 0.8

.01 . 1 l 10 100

E11"‘322
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Figure 19. - Effects of material properties on the opening

mode stress intensity factor for shear loading (hlc - 1,

a/c - 2/3, 6 - 45°, TS - ll.
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Figure 20. - Effects of material properties on the sliding

mode stress intensity factor for shear loading (hlc = 1,

a/c = 2/3, 6 = 45°, TS = 1).
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Table 8.

and orientation angle on the stress intensity factors for

shear loading (h/c - 1, Ts - I)

a
i
m

K1

.000

.000

.000

.000

-0001

-.004

-.004

-.001

.000

.000

K2

.720

.720

.720

.722

.725

.727

.727

.727

.727

.727

o
l
m

K1

.000

.000

.000

-.002

-.005

-.007

-.007

-.008

-.009

-.010

-.011

-.012

-.012

-.011
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-.002

.000

w
l
t
-
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alc = 2/3

    a/c =' 1/2

  alc = 1/6 alc=0

20 40 60 80

Orientation angle (6) in degrees

  
 

Figure 21. - Effects of orientation angle and plate width on

the opening mode stress intensity factor for shear loading

(h/c= 1, TS = 1).
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Figure 22. - Effects of orientation angle and plate width on

the sliding mode stress intensity factor for shear loading

(hlc = 1, TS - 1).
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Table 9.

Stress distribution on the y = 0, x > ao line for shear loading

(h/c = 1, a/c = 2/3, 6 = 45 , TS = 1)

a = .5 in.

x

3. Oxx Oyy Oxy

1.016 -3.01 -O.60 8.77

1.046 -1.55 -0.36 5.14

1.076 -1.09 -O.28 4.02

1.106 -.085 -0.23 3.43

1.136 -0.68 -0.19 3.04

1.166 -0.56 -0.15 2.76

1.196 -0.46 -0.11 2.53

1.228 -0.37 -0.07 2.34

1.258 -0.29 -0.03 2.17

1.288 -0.23 0.03 2.01

1.318 —0.18 0.09 1.87

1.348 -0.12 0.17 1.72

1.374 -0.08 0.25 1.58

1.410 —0.04 0.35 1.44

1.440 -0.02 0.46 1.30

1.470 0.00 0.58 1.15

1.500 0.00 0.72 1.00
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Figure 23. - Normal stress distribution on y = 0, x > a

line for shear loading (hlc - l, alc - 2/3, 6 = 45°,

T - llS o
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Figure 24. - Shear stress distribution on y = 0, x > a

line for shear loading (hlc = 1, a/c = 2/3, 6 = 45°,

T = l).
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8. SUMMARY AND RECOMMENDATIONS

The problem of multiply connected regions in plane linear aniso-

tropic elasticity was discussed by both.Lekhnitskii.and Savin (refs.

4, 6), however there was no practical method of solution developed from

their discussion of the problem. The motivation of the development of

the mapping-collocation.method.for finite anisotropic regions with cen—

trally located traction-free cracks is due to Bowie's successful results

(ref. 2) for finite isotropic regions with centrally located traction-

free cracks. The method developed herein closely parallels Bowie's

method for the isotropic problem, i.e.:

1.

2.

The crack is mapped into the unit circle.

The boundary conditions on the crack are.satisfied exactly by

using Muskhelishvili's.continuation principle.

. A form of representation is.assumed for the unknown stress

potential function.

. The boundary conditions on the outer boundary are satisfied

by the method of least squares boundary collocation.

During the development of this method of solution for finite aniso-

tropic regions, the following intermediate results were obtained:

1. The possibility of.a.disp1acement function formulation was

,.clearly demonstrated. It was shown that Marguerre's displace-

ment function is directly derivable from a displacement func-

tion in anisotropic elasticity.
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2. For orthotropic materials two dimensionless material ratios

were defined which were constructed from the engineering

material constants, E11’ E22, 012 and v12. These ratios are

of convenient forms when a parametric study is contemplated

involving stresses and stress intensity factors.

3. Upon applying Muskhilishvili's continuation principle across

the unit circle, one of the complex stress potentials were ex-

pressed in the form of the other such that the zero traction

conditions on the crack were satisfied. This result was di-

rectly applicable in the mapping-collocation method.

4. It was shown that the infinite region results of Lekhnitskii

and Savin can be obtained from considering a finite rectangular

region and extending its outer boundaries to infinity.

As final result, the complete formulation of the problem solution

of a finite anisotropic region with a centrally located traction-free

crack was obtained.

The mapping-collocation method as developed herein for anisotropic

regions with centrally located traction-free cracks was then applied to

a large number of rectangular orthotropic plate problems. The effects

of varying material properties, orientation angles, crack length to

plate width and plate height to plate width ratios on the stress inten-

sity factors were thoroughly studied for both tensile and shear loadings.

The parameter ranges considered in the solutions of problems of rectan-

gular orthotropic plates with centrally located traction-free cracks are

summarized as follows:
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1. Variation of Material Properties for both the Tension and Shear

Problems;

 

 

E
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2. Variation of Crack Length to Plate Width and Crack Height to

Plate Width Ratios for the Tension Problem;
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3. Variation of Orientation Angle and Crack Length to Plate Width

Ratio for both the Tension and Shear Problems;
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A natural extension of the mapping-collocation method as applied

to finite anisotropic regions with centrally located traction—free

cracks would be to consider various shapes for the inner boundary. For

example, triangular, rectangular and elliptical boundaries could be

specified by a single general Schwarz-Christoffel transformation and '

mapped into the unit circle. This possibility would require further re-

search as to the accuracy of the method when applied to various types of

doubly connected regions.

Another direction of research presents itself in the consideration

of a more detailed parametric study of the effects of dimensionless

material constants, orientation angles, a/c ratios and h/c ratios on

the stress intensity factors. It is a possibility that for certain pa-

rameter ranges "practical forms" of expressions could be obtained for

the approximation of the stress intensity factors. These forms would

result from curve-fitting the various parametric data.
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10 . APPENDICES



A. DISCUSSION OF ELASTIC CONSTANTS

INTRODUCTION

In order to formulate problems in linear anisotropic elasticity

one is compelled to study the various constitutive relations emanating

from the Generalized Hooke's Law. The purpose of such a study is a

thorough understanding of the different cases of anisotropy possible

with certain specialized forms of the constitutive relations. Although

in this dissertation interest is centered on plane problems, a discus-

sion such as this will help in viewing the plane stress and plane strain

constitutive relations in their proper perspective.

THE GENERALIZED HOOKE'S LAW

In general, it will.be.assumed that the stress.tensor, Uij’ is re-

lated to the strain tensor, 6kg, as follows:

'Oij = J§3(€kg) (i, j, k, l = 1, 2, 3) 1

where 3§3(€k2) is an analytic function of the components of the strain

tensor, 8 Considering that the function, 5:3 ), is analytic, it
(8km

can be expanded in Taylor series. .Retaining only linear terms in this

k2°

expansion, the following relationship is obtained:

Oij .= «1+ EijkILEkIL

Since the elastic medium is unstressed in the initial unstrained state,

the constant, 4K will be taken as zero. .Hence, the.stress-strain rela-

tion, called the Generalized Hooke's Law, is written as,
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Oij = Eijk£€k£ 3

In this expression, Eijkl is a fourth order tensor, having 81 compon-

ents; however, all these components are not independent of each other.

By taking into consideration the symmetric properties of both the stress

and the strain tensors, it can be shown that the tensor, Eijkl’ has only

36 independent components.

At this point, it.is convenient to introduce the notation

01 = 011 e1 = 811

' 02= 022 62 = 622

C3 = °33 83 = 633

“4 = 023 E4 = 823 4

‘ C5 = 013 E5 = 813

G6 3 012 86 = 812

Then the stress-strain relation can be written in indicial notation as,

o = S,,e (1,3 = 1, 2, 3, 4, 5, 6) 5

where the conversion of indices is obvious from 4, -The elementsg;

Sij’ of the matrix, S, are called the elastic stiffnesses or the modili

of elasticity.

For a real material, the matrix, S, is never.singu1ar;.hence, it

possesses an inverse. The elements of.the inverse of S .are.custom-

arily called the elastic compliances or the coefficients of deformation.

Thus, the inverse stress—strain relation is given by

e = c .o (i,j = 1, 2, 3, 4, 5, 6) 6
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It may be noted that neither Sij nor C1:] is a tensor. The indicial

notation is adopted only as a matter of convenience.

An additional symmetry property can be deduced from considering

the strain energy density of the material. If the existence of an elas-

tic potential is postulated, it can easily be shown that

Sij = Sji 7

and

This symmetric property reduces the number of independent.components of

the tensor, , and also the independent elements of the matrices S
EiijL

and C from 36 to 21 material constants. The material which has 21 in-

dependent constants relating its strains to its stresses is called gen-

erally anisotropic.

ROTATION OF AXES

The fourth order tensor, Eijkz’ obeys the transformation

Eijki = timtjntkothEmnop

Considering the symmetry properties given above,.this.transformation con-

sists of 21 equations for an anisotropic material.

For illustration purposes and later use, consider a rotation of the

O-xl-xz-x3. coordinate system about the x3-axis defined by the trans-

formation matrix
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(- v I E f- ‘1

C34(S34) m "“ C34(S34)

I v = 16

c (s ) n m c (s )
L35 354 _ J k 35 354

I I

033(333) = C33(S33) 17

It is noted here that the transformation equations are arranged in six

groups. The components of each group interact with one another but are

completely uncoupled from the other groups. This information is useful

in studying elastic symmetries.

AEOLOTROPIC MATERIALS

Aeolotropic or monoclinic elastic symmetry is defined by the invar-

iance of the elastic stiffnesses and compliances under the transforma-

tion given by

  

.1 q

1 O O

t = O 1 O 18

O O -1 (ref. 14)

t .J

This transformation specifies a material which has the xl-O—x2 plane

as its plane of elastic symmetry, i.e., the properties of the material

at +x3 are equal to those at -x3.

In order to derive the elastic stiffness and compliance matrices

for an aeolotropic material, consider the stress and the strain tensors

under the above transformation.

The stress tensor obeys the transformation

ij = tiktjzokz 19
C
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The strain tensor transforms in a similar manner

I

Eij = tiktjzekz 2°

Carrying out these operations, one obtains

I I I I

011 = O11 023 = ‘023 811 = E11 823 = ’523

I I I I

022 = O22 031 = ‘031 622 = 822 831 = "531 21

I I I I

°33 = °33 012 = G12 633 = 833 612 = 612

Upon changing to the appropriate indices in contracted notation, Hooke's

I

Law is written in both.coordinate systems. For example, a and o

1 1

become

I I I I I I I

01 = 81161 + 31262 + 31383 + 31464 + 81555 + 81686 22

01 = 81151 + 8128 + S e + S e + S e + S e 23

2 13 3 14 4 15 5 16 6

Substituting the relations 21 into 22 and comparing 22 with 23,

one must take for an aeolotropic material

314 = S15 = 0'

By considering all the equations of Hooke's Law, it can be shown that

for an aeolotrOpic material the elastic.stiffness.and.compliance matri-

ces must be of the form
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,

S11 S12 S13 0 0 516}

S12 S22 S23 0 0 S26

S13 S23 S33 0 0 S36

5 = 24

0 0 0 s44 345 o

o o o 545 355 0

E16 S26 S36 0 0 S69

and

1

C11 C12 C13 0 0 C161

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

C =

o o 0 C44 C45 0

o o o 045 055 o

1316 C26 C36 0 0 C663  
Hence, it is concluded that an.aeolotropic material is.characterized by

13 independent constants. It may also be noted that for the state of

plane stress or plane strain, aeolotropy is the first assumption.

ANISOTROPIC PLANE STRAIN

The state of generalized plane strain is obtained by assuming

u1 = “1(x1’ X2)

112 = u2(xl, x2) 26

U =UO
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,

S11 S12 S13 0 0 316'

S12 S22 S23 0 0 S26

S13 S23 S33 0 0 S36

S:
24

o o o 344 345 o

o o o 345 555 0

E16 S26 S36 0 0 S69

and

2

C11 C12 C13 0 0 C161

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

C:

o o 0 cm4 C45 0

o o 0 C45 055 0

L316 C26 C36 0 0 C66,  
Hence, it is concluded that an aeolotropic material is.characterized by

13 independent constants.. It may also be noted that for the state of

plane stress or plane strain, aeolotropy is the first assumption.

ANISOTROPIC PLANE STRAIN

The state of generalized plane strain is obtained by assuming

c.
‘ I

1 ' “1(x1’ x2>

u = u2(x1, x2) 26

U =11

O
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where uo is a constant. Upon using the infinitesimal strain-

displacement relations in conjunction with the generalized plane strain

assumption, one obtains

633 = s = e = O 27

When Hooke's Law for aeolotrOpic materials is applied, one finds that

the normal stress in the x3-direction can be expressed in terms of

the other stress components. Consequently, it can be eliminated from

Hooke's Law, and the resulting stress-strain relations can be written

for the state of anisotropic plane strain as,

s. = e.,o 28

1 13 j

where

Ci3c 3
a = c . —-———¥1— (i,j = 1, 2, 6)
ij 13 C33

The constants, a , are called.the reduced compliance coefficients. If

13

the elastic stiffnesses are used,.Hooke's Law becomes

0 = S .e,. (i,j = 1, 2, 6) 29

i e., the elements of the elastic stiffness matrix remain unchanged.

Considering both forms of the stress-strain relations, the rela-

tionships among the elastic constants can immediately be obtained.

,Taking

= So 30

1 = 51351 ijajkok

and using Kronecker's delta, results in

Sijajk = 61k 31
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Hence, for the state of anisotropic plane strain, the expressions which

relate the various elements of the reduced elastic compliance and the

elastic stiffness matrices are given as follows:

Elastic stiffnesses in terms of reduced elastic compliances:

 
 

 
 

 
 

2 2

_ O‘22"‘66 ' “26 “11066 ' “16
s — s =
11 [GI 22 [a]

_ o‘16"‘26 ' “66312 _ “16012 ' “11“26
s — s — 32
12 la] 26 [a]

(X a - 0. " 2

S = 12 26 22a16 S = “11“22 “12

16 [a] 66 [a]

Reduced elastic compliances in terms of elastic stiffnesses:

32 $2

 
 

  

 
 

a g S22366 ‘ 26 a g S11366 ' 16

11 Is] 22 [s]

a = 316326 ' 312866 a = S16512 '-S11826

12 Is] 26 TSI 33

s s - s s s s - 32
a = 12 26 22 16 a = 11 22 12

13 Is] 66 |s|

In these expressions Ia] and [SI designate the determinants of the

reduced elastic compliance and the elastic stiffness matrices,

respectively.

For a stable solid, the strain energy density function must always

be positive definite for any value of the strain.(stress).components,

except when all the strain (stress) components are zero. From matrix

theory, the necessary and sufficient condition for the quadratic form

i.e., the strain energy density function,
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1
W = 2 aijoioj 34

or

w-is 65 fl
2 “11

to be positive definite is that all the leading principal minors of the

matrices, a and 8 .must be positive. Hence,.the.materia1.constants

must satisfy the following inequalities:

  

a a “11 “12. “16

11 12

>
all 0, > 0, a12 a22 “26 > O 36

“12 “22

“16 0‘26 “66

and

s 3 S11 S12 S16

. 11 12

$11 > 0, S, S .. > 0, $12 $22, 526 > 0 37

12 22

S16. S26. S66  
These relations in conjunction with relations 32 and 33 1mp1y that

the diagona1.elements are a11.positive.

ANISOTROPIC PLANE STRESS

.The state of anisotrOpic plane.stress is defined.by the following

assumption:

0 = o = o = 0 38

Upon the use of these assumptions in Hooke's Law for aeolotropic.mate-

rials, it is found that the normal strain in the x3-direction can be

eliminated from the strain relations. The resulting.stressvstrain rela-

tion for the state of anisotropic plane stress becomes

 



0 = B .8. 39

where

S S

..=S..'—iij'3— (i:j=192: 6)

ij 13 S33

In this expression, the constants, B , are called the reduced elastic

ij

stiffnesses. When writing Hooke's Law in terms of the elastic compli-

ances, one obtains

ei_= Cijoj (1,3 = 1, 2, 6) 40

Hence, in the case of anisotropic plane stress, the elastic compliances

are not reduced.

The relationships among the reduced elastic stiffnesses and the

elastic compliances are given as follows:

Reduced elastic stiffnesses in terms of elastic compliances:

  

  

  

2 2

8 = C22C66 ' C26 8 = 011055 ‘ 916

11 |CT 22 |c[

B = C16CZ6 ‘ C12C66 B = C16C12 ’ C11°26 41

12 [cl 26 |cT

c c - c c c c - 02
B = 12 26 22 16 B = 11 22 12

16 [cl 66 [cf

Elastic compliances in terms of reduced elastic stiffnesses:
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2 2

C = 822866 ’ 826 C = 811866 ‘ B16

11 Isl 22 [BI

c = 816826 ' 812866 c = 816812 ' 811326 42

12 [BI 26 [6T

8 B - e B 8 e - 82
C = 12 26 22 16 c = 11 22 12 v ,,

16 [BI 66 [8]

The consideration of the positive definiteness of the strain energy

density function results in inequalities similar to those obtained for

 

  

the state of planestrain. '

B B 811 812 B16

11 12

511 > 0» B B > 0. 812 822 826 > O 43

12 22

B16 B26 866

and

C C C11 C12 C16

11 12

C11 > 0, C C > 0, C12 C22 C26 > O 44

12 22

C16 C26 C66  

In this case, it may also be concluded that the diagonal elements of the

reduced elastic stiffness and the elastic compliance matrices are

positive.

ENGINEERING CONSTANTS

From simple tensile and torsion tests, one can obtain constants

which can readily be related to the elastic stiffnesses and compliances.

These constants, customarily called engineering constants,.are given in

ref. 4, and they are reproduced here for reasons of completeness.
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For an aeolotropic material, the elastic compliances are expressed

in terms of engineering constants as follows:

 

C 1.1. C “32.1-21 C 1.1.
11 E11 12 E11 E22 44 G23

V V

C22 = El_' C23 = ' E22": ' Elé' C55 ='El" 45
22 22 33 13

c =_1_ C “13.11-32 C ,._1_
33 E33 13 E33 E11 66 G12

H31 12 “23 31 n12 1 n1 12

C45= G ‘ G C16=E “c
23 13 11 12

n n n n

C 6 = 12,3 = 3,12 026 3 12,2 = 2,12

3 E33 G12 E22 G12

where:

I .

E11, E22 and E33 are Young 3 moduli of elastic1ty with respect to

the coordinate directions.

G23, G13 and G12 are the shear moduli.for planes which are par-

allel to the coordinate p1anes,:me-x3, xl-O-x3 and xl-O-xz.

v21, v32, v13, v12, v23 and v31 are the Poisson ratios which

characterize contraction in the direction given by the second sub-

script due to extension in the direction given by the first

subscript.

The constants, u31,12 and u23,31, are called the coefficients of

Chentsov. These constants characterize shear in the coordinate

planes. For example, characterizes shear in the planes

“31,12
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parallel to the x1 and x2 coordinates inducing shear stresses

in planes parallel to the x3 and x1 coordinates.

n23 1, etc., are called the coefficients of mutual influence of

the first kind and n 3, etc., are called the coefficients of

1,2

mutual influence of the second kind. The mutual influence coef-

ficients of the first kind characterize stretching in the direc-

tions parallel to the x coordinte, etc., induced by shear
1

stresses in the x2-O—x3 plane, etc. The mutual influence coef-

ficients of the second kind characterize the shears in the planes

parallel to the x2 and x3 coordintes, etc., which are due to

normal stresses along the x1 coordinte, etc..

Using these engineering constants, the elastic compliance and the re-

duced elastic compliance matrices for the anisotropic plane stress and

plante strain states become

   

  
 

   

1 ' ”13V31 _ v21 + v31"23 n12,1 + v13”12,3

E11 E22 E11

a = _ V12 + V13V32 1 ' v32"23 n12,2 + v23”12,3

E11 E22 E22

n12,1'+"13"12,3 n12,2‘+"23”12,3 1 ’ n3,12”12,3

__ E11 E22 G12  
46
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and

F’ _.

1 _ V12 n12,1

11 E11 E11

V n

C: _E2_1 _1_ 7152.3 47

22 22 22

n n '
1,12 2,12 1

G12 G12 G12  
 

The corresponding reduced elastic stiffness and elastic stiffness

matrices can readily be obtained from relations 32 and 41.

 

INVARIANTS

For a generally anisotropic material there are a number of invar-

iants associated with the compliance and.stiffness matrices with reapect

to a rotation about the x3-axis (ref. 14). The proofs of these invari-

ants follow directly from the transformation equations 12, 13, 14, 15,

16 and 17. 'These invariants can, of course, be specialiZed for the

various cases discussed by taking the appropriate terms as zero.

I1 = C11 + C22 + 2C12

I2 = C66 ' 4C12

I3 = C44 + C55

48

I4 = C13 + C23

2 2

I5 ‘ C34 + C35

I6 = C33
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and

J1 = 811 + $22 + 2812

J2 = S66 ’ S12

J = S + S

3 44 55

49

J4 = S23 + S13

2 2

J5 = S34 + S35

J6 = S33

It may also be noted that the compressibility of an anisotropic material

given by

 

I + 16 + 21 50

is also invariant.

ORTHOTROPIC MATERIALS

An anisotropic materia1.possessing two.perpendicu1ar planes of

elastic symmetry, say, x3 = O and. x = 0, will.automatically have the

1

x2 = 0 plane also as its plane of elastic symmetry. Such a material

is called orthotropic; characterized by 9 independent material constants.

The compliance and stiffness matrices.formed by these constants must be

of the form
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F’ _.

C11 012 013 0 0 0

C12 C22 C23 0 0 0

c c c o 0 o
c = 13 23 33 51

o o o 044 0 o

o o o 0 C55 0

o o o 0 0 C66

and

r— __

311 512 $13 0 o o

312 322 323 o o o

313 323 s33 0 o 0

s = 52

o 0 0 S44 0 o

0 0 o o 355 o

o 0 o 0 o s
_ 69,  

ORTHOTROPIC PLANE STRAIN

The consideration of an orthotropic material in the state of plane

strain results in

C16 = C26 = C36 = C45 = 816 = S26 = S36 = S45 = O 53

consequently

a = a26 = O 54

Then the reduced elastic compliance matrix, a, and the elastic stiffness

matrix, S, will be of the form
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r“ 2

C _ C13 C _ C13C23 0‘1

11 C33 12 C33

2

C C C

a = C12 ‘ E3 23 C22 "E£1 0 55
33 33

L. O 0 099

and

5 1
S11 S12 0

S = $12 $22 0 56

0 0 S66

In terms of engineering constants, these two matrices become

F 1

‘ v13"31 “21 + v31"23

E E 0

11 22

_ v12 + V13"32 1 ' ”32V23
a - E E O 57

11 22

o o G1

L 13
and

Kinfl1 ‘ V23V32) K6E119’21 + “23v31) O

S = K6E22("12 + V13v32) K6E22(1 ‘ V31V13) 0 58

O 0 G

c
1%

where

K = (1 — v v - v v - v v ~ 2v v v )-1

v 12 21 23 32 31 13 12 23 31
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ORTHOTROPIC PLANE STRESS

For the state of plane stress, the reduced elastic stiffness and

the elastic compliance matrices satisfy the following forms:

  

  

P 82 S S q

S _ 13 S _ 13 23 0

11 S33 12 833

2

S S S

s = s12 - —l§—32- s22 — gfié- o 59

33 33

O 0 S

L 66-

and

’- 1
C11 C12 0

C = C12 C22 0 6O

.9 0 C66‘

These matrices can be given in terms of engineering constants as,

  

  

" E11 . ”21E11 o 1

1 ’ v12"21 1 ' V12"21

V12E22 E22

8 = 1 - v v 1 - v v 0 61
12 21 12 21

L 0 0 G12-  
and
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P ‘1

1 V12
— _ _E_._. O

11 11

\)

c = - E21. E%" o 62

22 22

o o '6;—

L 124

GENERAL ORTHOTROPY IN PLANE PROBLEMS

In orthotropic problems, the consideration of different material

and reference axes forces one to use the equations transforming the

material constants from the material axis system to the reference co-

ordinate system. The material constants are customarily defined with

respect to the material axes; hence, the elements of the elastic stiff-

ness and compliance matrices will vary in accordance with the prescribed

transformations between the two coordinate systems.

In the case of plane orthotropy, one finds that the elastic stiff—

ness and compliance matrices will become full matrices upon transforma-

tion; however, the number of independent material constants remains un-

changed. In the literature, one speaks of general orthotropy when the

reference axes do not coincide with the axes of orthotropy.

The transformation equations which apply for plane orthotropy are

given in group 12 with the specialization

C16 = C26 = 816 = S26 = 0

Consequently, the elements of the elastic compliance matrix can easily

be obtained for plane orthotropy as,
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' C0845 sin46 sin226 (1 zle)

C = + + G --——-—

  

11 E11 E22 4 12 E11

c' g _ V21 + sin226 (3 + “12 + 1 + V21 _ 1 >

12 E22 4 E11 E22 G12
0

ll  + + - 
' C0845 s1n46 sin226 ( 1 2v21)

622 E22 E11 4 12 E22

63

'
2v 2

C66 = 3111225 (EL + El— + E21) + co: 26

11 22 22 12

 

  

F 2 2

' _ sin 6 cos 6 l v21
Cl6 - sin 26 E - E + (éc - E ‘)cos 26

 

22 11 12 22
b

P .

, 2 2 v

c26 = sin 26 £§§—§-- 5%3-§-- §é¥—-- E2§)cos 26

22 11 12 2
b

where 6 is the angle between the material axes of orthotropy and the

reference coordinate system. The elastic stiffness, the reduced elas-

tic compliance and the reduced elastic stiffness matrices can then be

constructed in accordance with the appropriate relations given before.  



B. COMPUTER PROGRAM

The computer program whose listing is reproduced on the following

pages, will perform the required operations in the following order:

1. The coordinates of the collocation points are calculated.

2. The elements of the load vector, K, are computed for each

collocation point.

3. Lekhnitskii's complex material parameters are obtained.

4. The elements of the coefficient matrix, at are calculated

and the multiplication, 6T6, is accomplished.

5. The modified load vector,<§TK, is obtained.

6. By calling the subroutine, DGELG, the least squares solution

vector, g*, is found. The DGELG subroutine utilizes Gauss'

method with complete pivoting.

7. The stress intensity factors, K1 and K2 are obtained.

8. Finally, the stress components are calculated on the boundary

and on the y=O line.

The input variables are designated as follows:

TX, SY one half of the constant specified boundary tensile

, stress; TX on the y=h, -c < x < c and SY on

the x =.i.c, 0.< y < h part of the boundary.

SX, TY minus one half of the constant specified boundary

shear stress; SX on the y=h, -c < x < c and

TY on the x = i:c, O < y < h part of the boundary.

150
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NYM, NXM, number of collocation points on the following sec~

NXP, NYP tions of the boundary: NYM for x = -c, O $.y $.h;

NXM for y=h, -c < x 5.0; NXP for y=h, O < x 5_c;

NYP for x=c, O < y < h.

 

A half-length of crack

C half-width of plate

H halfuheight of plate

DELTA orientation angle T33

r ‘1

V12 Poisson's ratio 3

' I

E11’ E22 Young s moduli of elasticity . _

612 shear modulus la

NN, NP truncation numbers of infinite sums associated with

the negative and positive exponent terms of a Laurent

series, respectively

The results recorded in the output are the coordinates of the collo-

cation points, the elements of the least squares solution vector, the

stress intensity factors, K1 and K2, the stress components on the

boundary and on the y=0 line at discrete points.

 



0000100

0000200

0000300

0000400

0000500

0000600

0000700

0000750

0000800

0000900

0001000

0001100

0001200

0001300

0001400

0000100

0000200

0000300

0000400

0000500

0000600

0000700

0000800

0000900

0001000

0001100

0001200

0001400

0001500

0001600

0001700

0001800

0001900

0002000

0002100

0002200

0002300

0002400

0002450

0002500

0002600

0002700

0002800

0002900

0003000

0003100

0003200

0003300

0003400

0003500

0003600

0003700

0003800

0003900

0004000

0004100

0004200

0004300

0004400

0004500

0004600

0004700

0004800

0005000

0005100

0005200

0005300

0005400

0005500

0005600

0005700

0005800

0005900

0006000

0006100

0006200

0006300

0006400

0006500

0006525

600

IJSZ

COMMON/DATA/Y1200)’XIZOOIQASIGXXIZOOI9ASIGYYIZOO1QASIGXY1200)OSYQSX9TY’TX9C9HIAQDELTA’

$V129612pE229E11.HFAD(7),NYP,NYM,NXP,NXM,NN,NP

REAL*8 X.Y,SY,SX,TXyTch9H9A90ELTA9V1266129E22,E1l,ASIGXX.ASIGYY.ASIGXY

DIMENSION ETEM(100.100)

REAL*8 ETEM

NAMEL1ST/0UTCON/NP,NN,NYM,NXH.NXP,NYP,-

i“TXvTszxosY9C1H,A90ELTA9VIZgGIZy1322,E11

READ1560UTC0N)

N4=NP+NN+1

WRITE169600)

FORMAT(1H1)

HRITE17,0UTCON)

CALL CALCN(ETEM9N41

STOP

END

SUBROUT1NE CALCNIETFM9N4X1

DIMENSIDN ETEMH(100910019XKH(20019AUX11001

DIMENSION ETEMINQXoNQX)

DIHFNSIDN EM120091001vCM1IOOIQKMIZOOIQZCDNI61’ZC0NN1619

*ETKM1100191CMIIOOIQZCMZ(100)

COMMDN/DATA/Y1200)9X‘20019ASIGXX12001QASICYYIZDOI'ASIGXYIZOOIpSYoSXoTYoTX9C9H9A'DELTA9

5 VIZQGIZVEZZOEIIIHEAD‘?)9NNYP’NNYMQNNXP'NNXM’NN'NP

REAL*8 F11952296129V1290ELTA9A9A29H9C9X'Y9TX9TY9$X9SY9ETEMH,

EM,XKM,CM,KM,AUX,ETKMyTEMloTFM29C229C119C669C129NDAN9R905LYM,

DFLXMgDELXPgDELYPoDELX9DELTARQDR,TEMCyTEMS'RKoEPSQCMKoCMKpl9

CMKPZ9CMKP3QDELY0XXQYYQSIGXX9SIGXY9516YY90REAL90AIMAGpETEMySUM

*9ALPHAZ,BEIAZQKngZyADR'RECCCSQASIGXX,ASIGYYgASIGXY

COMPLEX*16 U10,U20,Ul,U29U18.UZB.UIDB,U20891MAG.F1N,F2N,GIN.GZN.ZI—

*922921892289UC0N1,UC0N29UCON39UC0N4QZCDN1yZCDNyZTEMvZCDNN92CM'ZCH2-

#ySIGXXS’SIGYYS,SIGXYSQZTEMBQTERMI,TERH29UC0N59UISOOUZSOQZSTRS'

#QUZRMUIVUIMU29U2MU239HIlNyHI2N9XJ1N9XJ2N9UCON69UCDN79UCON8

*9SQTZI9SDTZZQSDTZZDQZCDNNlozCUNNZyZCUNN3oZCUNN49ZCDNN592CDNN69CSUH-

*yFll'GllICC’ZCD'KSUMNP'KSUMNN'Z10,220,22809SXXNN'SYYNN’SXYNNQSXXNP-

*QSYYNP'SXYprTEMICQTEMZC

DATA OR /.0174532925 /

DATA IMAG/(DovloI/

NAMEL1ST/DUGO/N4gNPvNNvMoHZICQHyAQRQDELTA9V1206129FZZQEIIv-

*TX.TY,SX.SY.C11.C12,C226C666U10,UIDB,U20,UZDB.U1.UlB,U2.UZB,-

*UlMUZyUZMUZByUZBMUl9UCDN29UCDN3yUC0N49UCDN50UCDN69UCDN79CC

NAMELIST/RUGl/ZlvZZyZTEMyZCDN

NAMELIST/BUcle1N9F2N961N9GZN92CDNN

1TR16=D

IDTRIG=O

N4=N4X

N:NN

NYM=NNYM

NXP=NNXP

NXM=NNXM

NYP=NNYP

AZ = A¢A

N15 NYM +1

N25 NIS+NXM

N35 = NZS+NXP

DELYM ' H/FLOATINYM)

DELXM C/FLOAT(NXH)

DELXP C/FLOATINXP)

DELYP = H/FLDAT(NYP 1

X111 = ‘C

VII) = OoD+O

M=NYM

00 1 1:29"

X111: 'C

Y111 = VII-11+DELYM

Y(N151 =H

XINISI = ‘C

NSP1=N15+1

M = M+NXM

D0 2 I=NSP19M

Y111= H

X111 = X11'11+DELXM

Y1N251 = H

X(N2$1 3 DoD+0

NSPI = N25+1

M = M+NXP

DD 3 1=NSP19M

Y111=H

X111: XII-11

Y1N3$1 3 H

X1N351 = C

1F((DELTA.GE.

fi
i
$
fi

+ DELXP

1.1.AND.(DELTA .LE.89.)1 GO TO 350

 

 

 

 

 



0006550

0006575

0006600

0006700

0006800

0006900

0007000

0007100

0007200

0007300

0007400

0007500

0007600

0007700

0007800

0007900

0008000

0008100

0008200

0008300

0008400

0008500

0008600

0008700

0008800

0008900

0009100

0009200

0009300

0009400

0009500

0009600

0009700

0009800

0009900

0010000

0010100

0010200

0010300

0010400

0010500

0010600

0010700

0010800

0010900

0011000

0011100

0011200

0011400

0011500

0011600

0011700

0011800

0011900

0012000

0012100

0012200

0012300

0012400

0012500

0012600

0012700

0012800

0012900

0013000

0013100

0013200

0013300

0013400

0013500

0013600

0013700

0013800

0013900

0013950

0014000

0014100

0014200

0014300

0014400

0014500

0014600

0014700

0014800

0014900

0015000

350

15

153

0ELYP=H/FLDAT(NYP+1)

Y(N3S)=H—0ELYP

NSP1=M38+1

M+NYP

00 4 I=NSP16M

Y(I)= Y(1—1)-DELYP

X(I) = C

CONTINUE

J=1

DU 5 1:19M

KM(J)=TX*X(I)+TY*Y(I)

J=J+1

KM(J)=SX*X(I)+SY*Y(I)

J=J+1

M2 = 2*M

IF(ITRIG.E0.1)

C11= 1./E11

C12=-V12/F11

C22= 1./F22

C66 = 1./012

R=DSORT(C*$2+H$$2)

H =

60 T0 200

TEMIC = (C66+2.*C121/(2.*C11)

TEMZC =C050RT(TEM1C**2-C22/C11)

U10: IMAG* CDSORT(TEM1C+TEM2C)

0108: -U10

U20:IMAG$CDSQRT1TFM1C-TEM2C)

U2DR= -U20

0ELTAR= 0FLTA*0R

TEVC = 0CDS(0ELTAR)

TENS = DSIN(0ELTAR)

U1 = (UlDfiTFHC - TEMS)/(TEMC+UID*TEMS)

U150: U1*Ul

U2 = (U20*TFMC - TEMS)/(TEMC+UZD*TEMS)

0250: U2*UZ

UlB=DCONJG(01)

028=DCONJG(02)

UZMUZB=U2-028

UCONI = (028-011/(U2MU281

UZRMUI=URR-Ul

U1M02=Ul-UZ

0C002=Ul*020028

UCONB=UZ$UZRHUI

UCON4=U28*U1MU2

UC005=UC0N2*UI

UCON6=UCON3*02

UCON7=UCON4*028

HCONH= (028-U181/(02MU28)

CC=UCON5+UCON6+UCON7

HRITE1698000)

J=1

00 25 1:1,”

Z1 = X(I) + U1*Y(11

22= X11) + U2*Y(I)

ZlB=0CONJG(Zl)

228=0CONJG(ZZ)

SQTZ1= CDSQRT(Zl—A)*COSORT(ZI+A)

ZCON(1)= (21+SQTZI)

ZCON(4)= (Zl-SOTZI)

SOT22= CDSORT(ZZ-A)*CDSORT(22+A)

ZCON(2)= (Z2+50T22)

ZCON(5)= (Z2-50TZ?)

SQTZ28= DCONJG( SOTZZ)

ZCON(3)= (ZZB-SOTZZB)

ZCON(6)= (228+SOTZZR)

K=4

JP] = J+1

F11=(UZMHZB*SOTZI+028MUI*SOTZ2-U1MU2*SOT228)/R

Gl1=(UCON2¢SOTZ1+UCON3*50TZZ-UCON4*SOTZ28)/R

FM(J,1)=0.D+0

EM(JP1.1)=Y(1)/R

FM(J921=0REAL1F111

EM1JP1921=DREAL16111

EM(J.3)=-0AIMAG(F11)

EM(JP193)=—DAIMAG(GII)

IFINP.EO.1) 00 TO 17

DO 15 KK=39N992

00 16 JJ=103

ZCDNN(JJ)=(ZCON(JJ1/R)$tKK

FIN = U2M028*ZCONN(1) +028MUI*ZCONN(2)

GlN=UC0N292C0NN(1) + UCON3*ZCONN(2)

EM(J0K1= DRFAL‘FIN)

EM(JP19K)= DREAL1GIN1

K:K+1

FW‘J9K1 = ‘DAIMAG1F1N1

5M1JP1.K)= ‘DAIMAG161N1

K=K+1

 

 

 

+U1MUZ #ZCDNN131

+ UgomanzCflNN(3)





0015050

0015100

0015200

0015300

0015400

0015500

0015600

0015700

0015800

0015900

0016000

0016100

0016200

0016400

0016450

0016475

0016500

0016510

0016520

0016550

0016570

0016575

0016600

0016700

0016800

0016900

0017000

0017100

0017150

0017200

0017300

0017400

0017500

0017600

0017700

0017800

0017900

0018000

0018100

0018200

0018300

0018400

0018500

0018600

0018700

0018800

0018900

0019000

0019100

0019200

0019275

0019300

0019500

0019600

0019700

0019800

0019900

0020000

0020100

0020200

0020300

0020400

0020500

0020600

0020700

0020800

0020900

0021000

0021100

0021200

0021300

0021400

0021500

0021600

0021700

0021725

0021750

0021800

0021900

0022000

0022100

0022200

0022300

0022400

0022500

0022525

0022550

1016

1015

6501

6497

6498

6001

26

265

27

275

6502

390

6503

999

6512

60

640

997

9975

6508

998

9985

6509

6511

30

15M:

IF‘NN.EO.1)GO TO 25

DO 1015 KK=3,NN,2

DO 1016 JJ=4v6

ZCONN(JJ)=(ZCONIJJ)/R)**KK

FZN = U2MU28¢ZCONNI41 +U28MU1¢ZCONN(5) +U1MU2 I“ZCDNN(61

62N= UCON2*ZCONN(4)+UCON3*ZCONN(51 + UCON4*ZCONN(6)

EM1JyK) = DREAL(F2N)

EM‘JPloK) = DREAL1GZN)

K=K+1

EMlJvKl = v OAIMAG1F2N1

EM(JploK1 8 -DA1MAG(GZN)

K=K+1

J=J+2

FORMAT(1HL9 8HK VECTOR IlHK)

HRITE(6,64971

FORMAT11HL0'X ARRAY' llHK)

NR1TE‘6’6001) (X(I,,I'19M)

HRITE1696498)

FDRHATIIHLo'Y ARRAY'llHK)

HRITEIbvéOOl) (Y11101319H1

WRITE(6.6501) ,

HRITE16660011 (KMlII’I'loMZ)

FORMATTIX18615.7)

DO 265 J319N4

DO 265 13J9N4

SUM 3 00

DO 26 K=19MZ

SUM = SUM + EM1K911 * EM(K,J1

ETEM1J91)=SUM

ETEM(I,J)=SUM

DO 275 I=qu4

SUM=00

DO 27 J=loM2

SUM: SUM+ EM(J11)#KM(J1

ETKM11135UM

1F(IOTRIG.E0.01 GO TO 6512

HRITE16v6502)

FORMAT (1H1927H E TRANSPOSE 9 E MATRIX // )

DO 890 1=lgN4

HRITE(696OOO) (ETEM119J16J319N41

HRITE1696503)

FORMAT (1HL'27H E TRANSPOSE * K VECTOR // 1

HRITE16,6000)(ETKM(I1.1-1,N4)

DO 999 IBIgN4

DO 999 J=lvN4

ETEMH119J1=ETEM116J1

DO 60 1=qu4

CM(1)=ETKM(1)

DATA EPS/1.E-15 /

CALL DGELGlCMoETEM 1N4ylvE9591ER)

FORMAT(1HL,'IER= '915)

HRITE(696401 IER

IFIIOTRIG.E0.0) GO TO 6511

DO 9975 l'lvMZ

SUM=O.

DO 997 J=11N4

SUM=SUM+EM(I,J)#CM(J)

XKM111=SUM

HRITE1696508)

FORMAT(1HL 22H E t C VECTOR ll)

HRITE(6,60001(XKM(1191=19M21

DO 9985 1319N4

SUM=OI

DO 998 J'19N4

SUM=SUM+CM(J)*ETEMH(16J)

AUX111=SUM

HRITE1666509)

WRITE169600011AUX11191-19N4)

FORMAT11H1,12HETE*C MATRIX 1

K=3

ADR=AIR

KSUMNP=06D+O

RECCCS-CMCI)

ZCD=CM(2)+CM(3)*IMAG

NRITE(69619) RECCCSIZCD

HRITE(7.6191 RECCCSoZCD

IF!NP.EQ.1) GO TO 32

HRITE169620)

K=4

DO 30 J'3oNP.Z

KP1=K+1

ZCM(J)=CM(K)¢1MAG*CM(KP1)

HRITE16662I) JvZCM1J)

KSUMNP=KSUMNP+AOR*¢J‘FLOAT1J)*ZCM1J1

K=K+2

IF!NN.EO.1) GO TO 33
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0022700

0022800

0022900

0023000

0023100

0023200

0023300

0023400

0023500

0023600

0023700

0023000

0023900

0024000

0024100

0024200

0024300

0024400

0024500

0024550

0024600

0024700

0024800

0024900

0025000

0025100

0025200

0026300

0028400

0025500

0028600

0025700

0025000

0025900

0026000

0026100

0026200

0026300

0026400

0026500

0026600

0026700

0026000

0026000

0027000

0027100

0027200

0027300

0027400

0027600

0027600

0027700

0027R00

0027950

0027900

0020000

0028100

0028200

0028300

0029400

0020800

0020900

0(1?()0(10

0029100

0029200

0029300

0029400

0029450

0029800

0029600

0029700

0030100

0030200

0030300

0030400

0030500

0030600

0030700

0030800

0030900

0031000

0031100

0031200

0031300

0031400

0031500

1.55

HRITE(6.622)

00 31 J=3,NN,2

KP1=K+1

ZCM?(J)=CM(K)+IMAG*CM(KPI1

HRITE(6.621) J.ZCM2(J)

KSHMNN=KSUHNN+AOR#*J*FLOAT(J)*ZCM2(J)

31 K=K+2

620 FORMATtlHL/6X.'N'.16X,'Cl')

621 FORMAT11X.12,7X.2615.7)

622 FORMAT(1HL/ 6X.'N',16X,'C2')

619 FORMAT(1H1/1HLy4X.'REfiL(CC*CS)=',GlS.7,4X,'CD='.2015.71

33 ALPHA2=0RFAL(U21

BETA2=0AIMAG(U2)

TEM1=2./050RT(A)

ZTEM=U1MH2*H2MUZR*(AOR*ZC0+KSUNNP-KSUHNN)

TEMS=DAIMA01ZTFM)

Kl=-TEM1/RETA2*TFMS

K2=-TEMI*00FAL(ZTEM)+TEMI*ALPHA2/RETA2*TFMS

HRITE16,644)K1.K2

HRITE(7,644)K1.K2

644 FORMAT(1HL.'K1='.015.7,'K2='9615.7/(1X.IS.2GIS.7)1

DATA NYMS,NXMS,NXPS,NYPS/50,50,50,50/

NYH=NYMS

NXM=MXMS

NXP=NXPS

NYP=NYPS

ITRIG =1

60 T0 100

200 wRITE(6,67S)

62R FHRMAT(1H1/1HL,19X.'Z'.18X,'SIGMA XX',8X,'SICMA YY',RX,'SIRMA XY'/-

*l)

XX=X(I)

YY=Y(I)

21 = XX+ 01*YY

22 = XX+UZ*YY

Z18=0CO0JG(ZI)

ZZR=0CONJ01221

SOTZI= C050RT(Zl-A)*CDSORT(ZI+A)

ZCOM(1)= (21+80T71)

ZC0014)= (Zl-SOTZI)

SOT72: CDSORT(22-A1*C050RT(22+A)

2C00121= (22+SOTZ2)

2CON151= (ZP-SflTZZ)

SOT7PH= nCUNJG( SOTZ2)

ZCON(3)= (Z20-SOT2201

ZC00(6)= (220+SOTZZB)

SXXNN=0.0+O

SXYNN=0.0+0

SYYMN=0.0+O

SXXNP=0.0+0

SXYNP=0.0+0

SYYNP=0.0+0

1F(HP.E0.1) 00 T0 45

DO ‘91 J=39Np72

DU 40 JJ=193

40 ZCONH(JJ)=(ZCON(JJ)/R)**

ZCONN(1)=ZCONN(l)/SOTZI

ZCONN(2)=ZCONN(2)/SQTZZ

ZCONH(3)=ZCONN(3)/30TZZB

2::0P = SXXNP+XJ*ZCM(J)*(UCON5*ZCONN(1)+UC0N6*ZC0NM(2)-UCON7*ZCO“N-

m

53;;P = SYYNP+XJ*ZCM(J1*(U2MU28*ZCONN(11+U28MU1*ZCONN(71-U1MU2¥7C0-

*4

41 22;03)= SXYNP+XJ*ZCM(J)¢(UC0N2*ZCONN(11+UC0N3$ZCONN(2)-UC0N4¢7COWV-

45 “12:0N.E0.1) GO TO 46

00 43 J=3,NN,2

00 42 JJ=4,6

42 ZC000(JJ)=(ZC00(JJ1/R)**J

ZCONM¢41=ZCONN(4)/30TZI

zc00N(5)=zanN(S)/SQTZZ

ZCONN(6)=ZCONN(61/SOT228

XJ=J

SXXNN = SXXNN+XJ*ZCM2(J)*(UCON5*ZCDNN(4)+UCON6*ZCONN(5)-HCHN7*ZC00-

*N(6)1

SYYNN = SYYNN+XJ$ZCM2(J)*(02M028*ZCUNN(4)+028MUI*ZCONN(51-01002t7c-

*ONN(6))

43 SXYNN = SXYNN+XJ*ZCM2(J)*(UCON2*ZCDNN(4)+UCON3*ZCONN(51-HCOH4*7CON‘

*N(6))

46 ZlO=Zl/SOTZI

Z20=ZZISOT22

2280:228/50Tl28

ZTEM=ZCO*(UCON5$ZlO+UCON6¢ZZO~UCON7*ZZRO)IR

SIGXX=2.*(RFCCCS/R+0REAL(ZTEM+SXXNP-SXXNN))
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0031600

0031700

0031800

0031900

0032000

0032016

0032032

0032040

0032100

0032200

0032300

0032400

0032500

0032600

0032700

0032800

0032900

0033000

0033100

0033200

0033300

0033400

0000100

0000200

0000300

0000400

0000500

0000400

0000700

0000800

0000900

0001000

0001100

0001200

0001300

0001400

0001500

0001600

0001700

0001800

0001900

0002000

0002100

0002700

0002300

0002400

0002500

0002000

0002700

0002000

0002900

0003000

0003100

0003200

0003300

0003400

0003500

0003600

0003700

0003000

0003900

0004000

0004100

0004200

0004300

0004400

0004500

0004600

0004700

0004300

0004900

0005000

0005100

0005200

0005300

0005400

0005500

0005400

0005700

0005800

0005900

50
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ZTEM=ZCD*IU2MU23*Z10+UZBHU1*ZZD'U1MU2*ZZBDI/R

SIGYY=2.*DREALIZTEN+SYYNP~SYYNNI

ZTEM=ZCD*(UCON2*ZID+UCON3*ZZD'UCON4*ZZBDI/R

SIGXY=-2.*DREALIZTEH+SXYNp-SXYNN)

ASIGXXIII=SIGXX

ASIGYYIII=SIGYY

ASIGXYIII=SIGXY

HRITEI6963OIII0XII)vYIIIoASIGXXIIIyASIGYVII)oASIGXVIII'I'IyMI

FORMATIIX9I49551507I

DATA NCP/IOO/

IFIITRIGoEQoZIRETURN

MzNCP

DEL=2.*C/FLOATINCP'II

Y(1)=0.

X(1)=-C

00 77 I=2.NCP

YIII3OO

XII)=X(I'1)+DEL

ITRIG=2

GO T0 200

FORMATI 8E15o71

END

OOOOOOOOOOOOOOO...00.0.0.9...OOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOOOOOOODGEL

SUBROUTINE DGELG

PURPOSE

TO SOLVE A GENERAL SYSTEM OF SIMULTANEOUS LINEAR EQUATIONS.

USAGE

CALL DGELG(R.A9M.N.EPS.IER)

DESCRIPTION OF PARAMETERS

R - DOUBLE PRECISION M BY N RIGHT HAND SIOE MATRIX

(DESTROYED). ON RETURN R CONTAINS THE SOLUTIONS

OF THE EQUATIONS.

A - DOUBLE PRECISION M BY N COEFFICIENT MATRIX

(DESTROYED).

M - THE NUMBER OF EQUATIONS IN THE SYSTEM.

N - THE NUMBER OF RIGHT HAND SIDE VECTORS.

EPS - AN INPUT CONSTANT WHICH IS USED AS RELATIVE

TOLERANCE FOR TEST ON LOSS OF SIGNIFICANCE.

IER - RESULTING ERROR PARAMETER CODED AS FOLLOWS

1ER=0 - N0 ERROR.

IERt-l - N0 RESULT BECAUSE OF M LESS THAN 1 OR

PIVOT ELEMENT AT ANY ELIMINATION STEP

EQUAL TO 00

IER=K - WARNING DUE To POSSIBLE LOSS OF SIGNIFI-

CANCE INDICATED AT ELIMINATION STEP n+1,

WHERE PIVOT ELEMENT WAS LESS THAN OR

EQUAL TO THE INTERNAL TOLERANCE EPS TIMES

ABSOLUTELY GREATEST ELEMENT OF MATRIX A.

REMARKS

INPUT MATRICES R AND A ARE ASSUMED TO BE STORED COLUMNWISE

IN M*N RESP. M*M SUCCESSIVE STORAGE LOCATIONS. ON RETURN

SOLUTION MATRIX R IS STORED COLUMNWISE TOO.

THE PROCEDURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M 15

GREATER THAN 0 AND PIVOT ELEMENTS AT ALL ELIMINATION STEPS

ARE DIFFERENT FROM 0. HOWEVER WARNING IER-K ~ IF GIVEN -

INDICATES POSSIBLE LOSS OF SIGNIFICANCE. IN CASE OF A HELL

SCALED MATRIX A AND APPROPRIATE TOLERANCE EPSv IER-K MAY BE

INTERPRETED THAT MATRIX A HAS THE RANK K. ND WARNING IS

GIVEN IN CASE M=l.

SURROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

NONE

METHOD

SOLUTION IS DONE BY MEANS OF GAUSS-ELIMINATION WITH

COMPLETE PIVOTING.
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SUBROUTINE DGELGIRcAonNvEPSoIER)

DIMENSION AIIIyRIII

DOUBLE PRECISION R.A.PIV.T89TOLQPIVI

IFIMIZ3923TI

DGEL

DGEL

DGEL

DGEL

"
C
’
O
t
l
~
l
°
\
fl
&
d
fl
h
o
~

p
l
.
.
-

57  



0006000

0006100

0006200

0006300

0006400

0006500

0006600

0006700

0006800

0006900

0007000

0007100

0007200

0007300

0007400

0007500

0007600

0007700

0007800

0007900

0008000

0008100

0008200

0008300

0008400

0008500

0008600

0008700

0000800

0008900

0009000

0009100

0009200

0009300

0009400

0009500

0009600

0009700

0009800

0009900

0010000

0010100

0010200

0010300

0010400

0010500

0010600

0010700

0010800

0010900

0011000

0011100

0011200

0011300

0011400

0011500

0011600

0011700

0011800

0011900

0012000

0012100

0012200

0012300

0012400

0012500

0012600

0012700

0012800

0012900

0013000

0013100

0013200

0013300

0013400

0013500

0013600

0013700

0013800

0013900

0014000

0014100

0014200

0014300

0014400

0014500
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SEARCH FOR GREATEST ELEMENT IN

IER=0

PIV =

M M : I»1::=M

NM=N*M

00 3 L=I.MM

T8 = DABSIAILII

lFITH-PIV)3.3.2

PIV=TB

I=L

CONTINUE

TOL=EPS*PIV

AII) IS PIVOT ELEMENT.

MATRIX A

0.00

PIV CONTAINS THE ABSOLUTE VALUE OF A(II.

START ELIMINATION LOOP

LST=1

TEST ON SINGULARITY

IFIPIV12392394

IFIIER)7.5.7

IFIPIV-TOL)6.6.7

IER=K-l

PIVI = l.DO/A(I)

J=(I-1)/M

I=I-J*M-K

J=J+1-K

I+K IS RON-INDEX, J+K COLUMN-INDEX OF PIVOT ELEMENT

PIVOT ROW REDUCTION

00 8 L=K9NM.H

LL=L+I

T8=PIVI*R(LL)

RILLI=RIL1

RILI=TB

AND ROW INTERCHANGE IN RIGHT HAND SIDE R

IS ELIMINATION

IFIK-M)9.18.18

TERMINATED

COLUMN INTERCHANGE IN MATRIX A

LEND=LST+M-K

IF(J)12.12;10

II=J$M

OO 11 L=LSToLENO

TH=AILI

LL=L+II

AIL)=A(LL)

AILLI=TB

R00 INTERCHANGE AND PIVOT RON REDUCTION

DO 13 L=LST,MN,M

LL=L+I

TH=PIVI¢A(LL)

A(LL)=A(L)

A(L)=TB

IN MATRIX A

SAVE COLUMN INTERCHANGE INFORMATION

AILSTI=J

ELEMENT REDUCTION AND NEXT PIVOT SEARCH

PIV = 0.00

LST=LST+1

J=O

DO 16 II=LST9LEND

PIVI=-AIII)

IST=II+M

J=J+I

DO 15 L=IST9NM9M

LL=L-J

AIL1=AILI+PIVI*A(LL1

T8 = OARSIAILI)

IFITB-PIVIISTISTI4

PIV=TO

I=L

CONTINUE

DO 16 L=K9NN9M

LL=L+J

RILL1=RILLI+PIVI*RILI

LST=LST+M

END OF ELIMINATION LOOP

BACK SUBSTITUTION AND BACK INTERCHANGE

IFIN-1173922919

IST=HH+M

DGEL
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0014600

0014700

0014800

0014900

0015000

0015100

0015200

0015300

0015400

0015500

0015600

0015700

0015800

0015900

0016000

0016100

0016200

0016300

0016400

0016500

0016600

0016700

0000100

0000200

0000300

0000400

0000500

0000600

0000100

0000200

0000300

0000400

0000500

0000600

20

21

22

23
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LST=M+1

DO 21 I=29M

II=LST~I

IST=IST-LST

L=IST-M

L = AIL) + .500

DO 21 J=II1NMgM

TB=RIJI

LL=J

DO 20 K=IST.MM.M

LL=LL+1

TB=TB-A(KI#R(LL)

K=J+L

RIJI=RIKI

R(K1=TB

RETURN

ERROR RETURN

IER=-l

RETURN

END

FUNCTION DREALIZ)

DIMENSION 2(2)

DOUBLE PRECISION ZoDREAL

DREAL=ZI11

RETURN

END

FUNCTION DAIMAGIZ)

DIMENSION 2(2)

DOUHLE PRECISION ZoDAIMAG

DAIMAG=ZIZI

RETURN

END

DGEL 160

DGEL 161

DGEL 162

 

 

 



 



 


