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ABSTRACT

SOLUTION OF SOME MIXED BOUNDARY VALUE PROBLEMS
OF THREE-DIMENSIONAL ELASTICITY BY THE METHOD OF LINES

By

John Paul Gyekenyesi

A semi-numerical method is developed for solving a set of
coupled partial differential equations subject to mixed and possi-
bly coupled boundary conditions. The application of this method
to these equations leads to coupled sets of simultaneous ordi-
nary differential equations. Their solutions are obtained along
sets of continuous lines in a discretized region. When de-cou-
pling of the equations and their boundary conditions is not
possible, the use of a successive approximation method permits
the analytical solution of the resulf&ng ordinary differential
equations.

The use of this method is illustrated by presenting pre-
viously unavailable solutions for a number of mixed boundary value
problems in three-dimensional elasticity. Stress and displacement
distributions are obtained for two finite geometry, rectangular
bars which are loaded by a uniform surface stress distribution.
The first bar contains a through-thickness central crack while the
second bar has double edge cracks. Stress intensity factors K;

for both configurations are presented.
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John Paul Gyekenyesi

An independent treatment of problems in cylindrical coor-
dinates is also included., Stress and displacement distributions
are calculated for finite circular bars each with a penny shaped
crack. Approximate results for an annular plate containing
internal surface cracks are also presented.

Displacement distributions for each problem are calculated
by applying the method of lines to the Navier-Cauchy equations.
By comparing them to known solutions, the results of the circular
bar are used to examine the rate of convergence and the accuracy
of this method.

The results obtained show that the method of lines presents
a systematic approach to the solution of some three-dimensional
elasticity problems with arbitrary boundary conditions. The
advantage of this method over other numerical solutions is that
good results are obtained even from the use of a relatively coarse

grid.
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CHAPTER 1 _

INTRODUCTION

The object of a problem in elasticity is usually to calcu-
late the displacement and stress distributions in an elastic
body which is subject to given body forces or surface conditions.
These distributions are the solutions of the applicable field
equations which mathematically describe the behavior of engineer-
ing materials. The solution of this general system of equations
is, however, usually too difficult to evaluate. For many problems
of practical interest, some simplifying assumptions can be made
regarding the displacement or stress distributions which then
make the solution of these equations relatively simple. These
assumptions are generally based on the geometry and loading of the
problem at hand. Plane stress or plane strain solutions are two
examples that result from these simplifying assumptions.

Since all real bodies are three-dimensional in nature,
situations arise when these simplifying assumptions cannot be
validly accepted.. One important class of elasticity problems
falling in this category is found in the theory of fracture
mechanics. It is essential, therefore, that a method be developed
that makes the solution of the general field equations possible.

At present, only few analytical solutions of three-

1
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2
dimensional problems exist, and even these solutions are fre-
quently based on some symmetry condition required to simplify the
governing equations., Recently, with the availability of large
digital computers, the use of a number of approximate methods
was attempted, but these methods yielded only partial results for
these problems. Among these approximate methods are the finite
difference, direct potential, finite element, eigenfunction
expansion and the line method of analysis. Of all these solution
techniques, the line method of analysis is probably the least
known and least used method in three-dimensional elasticity.
Although the concept of this method for solving partial differen-
tial equations is not new, its useful application in the past has
been limited to simple examples. Because of their practical
importance and inherent singularities, the work in this disserta-
tion will concentrate on three-dimensional bodies containing
flaws or cracks. Assuming that the method of lines can be
successfully applied to these solids which contain large stress
and strain gradients, its use for less complicated, three-dimen-
sional, elasticity problems should present little difficulty.,

The phenomenon of structural failure by catastrophic crack
propagation at average stresses well below the yield strength has
been known for many years. Large scale failures have occurred in
such diverse structures as ships, storage tanks, aircraft and

rocket motors. These brittle failures have occurred with
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3
increasing frequency as the strength and size of our structures
have increased (1). Recent military and aerospace requirements
for very high strength, light weight hardware have given added
importance to the problem of brittle fracture.

Bfittle fracture, it should be noted, refers to a material
failure with negligible plastic deformation while materials with
ratios of yield strength to Young's modulus greater than 5x10~3
are regarded as high strength materials (2). In general, when
high strength materials contain small cracks or flaws they are
found to behave in a brittle manner and fail prematurely at low
design stress levels,

The main goal of fracture mechanics is the prediction of
the load at which a structure weakened by a crack will fail,
Knowledge of the stress and displacement distributions near the
crack tip is of fundamental importance in evaluating this load
at failure, Ludwig (3) has pointed out that the state of stress
near the crack front is triaxial in nature which today is recog-
nized as the main cause of brittle behavior in some materials.

It is important, therefore, that for structures with cracks
or inherent flaws, a three-dimensional solution of the stresses
be ocbtained. Although certain analytic methods for the solution
of three-dimensional elasticity problems have been developed (u4),
this is a very difficult problem. This difficulty arises because

existing mathematical techniques are not suitable for solving the
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equations of elasticity when solids with geometric singularities
are involved. The lack of a systematic approach to the solution
of three-dimensional crack problems has limited the previously
obtained solutions to a particular crack geometry under simple
types of loading.

In the past, most of the stress analysis of cracked bodies
has been based on the plane theory of elasticity. A good summary
of the results of this work has been presented by Paris and
Sih (5). Most of these two-dimensional results come from the
application of eigenfunction expansions, the complex variable
formulation and boundary point collocation. It must be recog-
nized that these solutions are all based on linear elasticity
even though small amounts of plasticity and other non-linear
effects arise near the crack tip. These non-linearities arise
because linear elastic analysis of crack problems will always pre-
dict stresses near the crack tip which approach infinity as the
inverse square root of the distance from the crack tip. Real
materials cannot possibly sustain such a s*+vecc <tate and hence
must develop a small plastic zone in which the linear elastic
solution is not valid. Irwin (6), however, showed that even
though linear elastic analysis does not admit these non-lineari-
ties, the elastic solution of the gross displacement and stress
fields has practical importance in estimating the onset of

fracture.
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Early three-dimensional solutions of crack problems involved
an extension of the so-called Griffith crack, that is a central
crack in an infinite plate under uniform tension, to three-
dimensions. These analytical solutions usually described the
stresses near circular or ellipsoidal cavities enclosed in
infinitely large solids. In 19u46,Sack (7) presented the solution
for a flat circular crack in an infinite solid under uniform
tension. Following Sack, other solutions for circular and
ellipsoidal cavities were obtained by Sneddon (8), Sternberg and
Sadowsky (9), Green and Sneddon (10). In reference (8), Sneddon
applied Hankel transform methods to Love's biharmonic strain
function and reduced the mixed boundary value problem of the
axisymmetric half-space to a set of dual integral equations. More
recently, Smith (11) solved the problem of a semi-circular edge
crack in a semi-infinite body. In his solution, Smith used super-
position methods in conjunction with an iteration technique to
satisfy the stress free boundary conditions of the crack and side
faces, Using Smith's method, Alavi (12) obtained the soluticn
for a circular crack embedded in a semi-infinite solid. Kassir
and Sih (13, 1u4) solved the more general problem of an embedded
elliptical crack subject to prescribed shear and linearly varying
normal pressure on the crack surface. Solutions of three-dimen-
sional crack problems with quadratic and higher order loadings

were presented by Segedin (15). Shah (16) solved the problems of
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6
embedded hyperbolic and parabolic cracks. In 1968, Hartranft
and Sih (17) extended the eigenfunction expansion method of
Williams to three dimensions and showed its application to an
infinite solid weakened by a plane of discontinuity.

Common to all the work cited above is that they represent
solutions of crack problems in infinite or semi-infinite solids.
Only limited work has been done on three-dimensional solutions
of crack problems in finite geometry solids. Irwin (18) in 1962
estimated the stress intensity factor for a part through ellipti-
cal crack in a flat plate. Some experimental investigation of
fracture in thin sections containing through and part-through
cracks was performed by Orange, Sullivan and Calfo (19) and
Kuhn (20)., After making certain assumptions on the nature of the
thickness variation of the stresses, Hartranft and Sih were
successful in obtaining partial results for cracks in finite
thickness bodies using variational methods (21) and eigenfunction
expansions (22), Studies at NASA, Lewis Research Center, are
currently being conducted using three-dimensional scattered light
photoelasticity to evaluate this solution. In 1966,Sih, Williams
and Swedlow (23) attempted the use of Galerkin's biharmonic stress
functions together with the eigenfunction expansion of Williams
in obtaining the solution for a cracked plate with finite thick-
ness. However, they were unable to obtain complete results.

Among the application of numerical methods to the solution
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7
of three-dimensional elasticity problems, Walker (2u4) attempted
to solve the problem of a rectangular bar with a central crack.
After a successful plane elasticity solution, he extended the
direct potential method of Rizzo to three dimensions but was
unable to obtain meaningful results. In using the direct poten-
tial method, Walker obtained singular integral equations in terms
of boundary tractions and displacements. The numerical solution
of these equations was then used in an analogous manner to Green's
boundary formula in potential theory to express the interior
stresses and displacements, In 1970, Cruse and Van Buren (25)
were more successful in applying this method to a finite rectan-
gular bar with a single edge crack. Recently, Ayres (26) pre-
sented a complete finite difference formulation for the computa-
tion of stresses and deformations in a three-dimensional elastic-
plastic solid. However, the inherent inaccuracies in a complete
finite difference solution of the Navier-Cauchy equations of three-
dimensional elasticity are well known, especially when mixed
boundary conditions are involved.

Other possible numerical solution of three~dimensional crack
problems may involve the use of three-dimensicnal finite elements
such as the tetrahedron (27) or the isoparametric hexahedron ele-
ments (28)., At present, however, the finite element method hLas
not been extensively investigated for the solution of three-

dimensional crack problems,
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Another method of solution may be obtained by applying the
method of lines (29) to the partial differential equations of
eq:ilibrium, Faddeva (30) discusses the application of this
method for the solution of a single elliptic, hyperbolic or
parabolic partial differential equation. In a similar manner,
Henric¢i  (31) discusses the solution of the one-dimensional con-
duction equation obtained through the use of this technique. For
three-dimensional elasticity problems, the essence of this semi-
analytical procedure is to reduce the three Navier-Cauchy equa-
tions to three sets of simultaneous ordinary differential
euqations, whose solutions can then be obtained in closed form.
Since the dependent variables in the resulting equations and
their boundary conditions are coupled, the use of a successive
approximation procedure becomes necessary. In addition, the
closed form solution of the resulting ordinary differential
equations may, in some cases, be difficult to evaluate, However,
the usefulness of this method in three-dimensional elasticity has
been demonstrated by Irobe (32).

It is the primary objective of this dissertation tc present
a simple and systematic approach to the solution of three-dimen-
sional elasticity problems with mixed boundary conditions. These
problems are more complex then those in (32), since the geometric

singularities involved require a large number of lines. Hence,

an extension of the solution methods presented in (32) becomes

necessarv.
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Problems in both rectangular Cartesian and cylindrical
coordinates are considered since they result in different types
of ordinary differential equations., Detailed results are given
for two rectangular bars which are loaded by a uniform surface
stress distribution. The first bar contains a through-thickness
central crack while the second bar has double edge cracks.
Stresses and displacements are also listed for a cylindrical
solid with a penny shaped crack. Similar numerical results for
the case of a central hole along the cylinder axis are also
included. In addition, approximate results for an annular plate

containing internal surface cracks are presented.
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CHAPTER 2
SOLUTION OF THE NAVIER-CAUCHY EQUATIONS IN

RECTANGULAR CARTESIAN COORDINATES BY THE METHOD OF LINES

Let us consider a finite solid with rectangular boundaries
which is loaded by a given boundary stress or displacement dis-
tribution. For all the problems discussed in this thesis, the
following assumptions shall apply:

a. The deformations are infinitesimal, that is products of

displacement gradients can be neglected.

b. All deformations are elastic.

c. All materials are homogeneous and isotropic.

d. Body forces will be neglected,

2.1 Governing Equations

Problems satisfying the first three of the above assumptions
fall in the general class of linearized elasticity, for which the
field equations neglecting body forces are listed below. Using

the standard summation convention, the equilibrium equations are

014 = 0 i, j = 1,2, 3 (2.1)

Hooke's law is,

10
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1
Oij = Aaijﬁkk + 2G€ij (2.2)

Strain-displacement relations are

- 1=
eij = 5(ui,j +uj,i) (2.3)

The solution must satisfy these equations at all interior points
of the body and, in addition, prescribed conditions on stress
and/or displacements must be met on the bounding surfaces. For
mixed boundary value problems, displacements are prescribed over
a portion of the boundary while stresses are prescribed over the
remaining part. The above three sets of equations may be com-
bined to form three partial differential equations in terms of
displacements by substituting the strain-displacement relations
(2.3) into Hooke's law (2.2) and the result in turn being substi-

tuted into (2.1). The resulting equations

Gu.

1,43 + () + G)“j,ji i,j=1,2, 3 (2.4)

are called the Navier-Cauchy equations of elasticity.
For problems formulated in rectangular Cartesian coordinates,

these equations can be written as

ae,
(\ + G)'a'x—+ 6v%u
de
(A + G);——xl+ Gv2v
y
Je 2
(A + G) et # GVW
Y

u
o

(2.5)

]
o

(2.6)

]
o

(2.7)
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where the dilatation, e,,

and the Laplacian, V2, is

, 2
v = &

2 3y2 92z

9X 2

is given by

(2.8)

(2.9)

The stress-displacement relations, which are needed in satisfying

the boundary stress distributions and in expressing the interior

stresses, can be obtained from substituting the strain-displace-

ment relations into Hooke's law.,

The following equations, listed

in the form used for Cartesian coordinate problems, are obtained:

-

o, = E (1-v) &=+ v
(1+v)(1-2v) L
- .
o, = E (1-v) &4 v
(14v)(1-2v) L 3y
h
g, = E (l-v)‘§§-+ v
(1+v)(1-2v) L 3
g - E Fav + auq
S ARNPYETN R
~ 9
O = E gy
2(1+v) | 92  9x_
r~ -
oy, = E LA
2(1+v) [ ¥z

5
7

Ei
L}

W\ |
+ SE)

(2,10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

Solution of these equations will be obtained by applying the
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method of lines, which is described in the following soction, to
equations (2.5) through (2.7) and by satisfying all rclevant
boundary conditions,
2.2 Method of Lines

Approximate solutions for second order, elliptic and linear
partial differential equations are frequently obtained by the
iinilte difference technique (33). For three-dimensional elas-
ticity problems, this may involve the solution of an enormous
number of algebraic equations in order that reasonable accuracy
may be attained. This will be particularly true for problens
involving steep stress and strain gradients which arise at
geometric singularities and thus require close grid spacing in
these regions.

An approximate solution with greater accuracy and much fewer
equations to solve can be constructed, however, by applying the
method of lines to these equations. The line method lies midway
between completely analytical and grid methods. The basis of the
method is substitution of finite differences for the derivatives
with respect to all the independent variables except one, with
respect to which the derivatives are retained. This approach re-
places a given partial differential equation with a system of
simultaneous ordinary differential equations., These equations
describe the dependent variable along lines which are parallel to

the coordinate in whose direction the derivatives were retained.
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It can be noted that this method can be applied to a
higher-order linear (or nonlinear) partial differential equation
or a system of partial differential equations. Application of
the line method is most useful when the resulting ordinary
differential equations are linear and have constant coefficients.
Equations (2.5) through (2.7) lead to linear differential
equations with constant coefficients.

Since in three-dimensional elasticity problems solutions of
three partial differential equations are desired, three sets of
parallel lines must be constructed. An arbitrary rectangular
grid consisting of these three sets of parallel lines is shown in
Figure 1(a). It is assumed, of course, that a grid of this type
will sufficiently describe the geometry of the problem in ques-
tion. The lines parallel to the x axis are numbered as 1, 2,
3-=~NY, NY+1l---2NY, 2NY+1l---3NY, 3NY+l---f, The lines parallel
to the y axis are numbered 1, 2, 3---NZ, NZ+1---2NZ, 2NZ+1l---
3NZ, 3NZ+l---m. Finally, lines parallel to the 2z axis are
numbered as 1, 2, 3---NX, NX+l--=-2NX, 2NX+1----""V  3NX+l==-n.
This numbering system is chosen so that the resulting variables
in the computer listings are identified through double subscripts
only. The first subscript identifies the line along which the
variables are calculated while the second subscript indicates
the position along that line., For convenience, the lines are

evenly spaced with h,, hy, and h, each equal to some different

y
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(@) Three sets of lines parallel to x-y-z coordinates..

.

(b) Set of interior lines parallel to x-coordinate.

Figure 1. - Sets of lines parallel to Cartesian coordinates.
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constant, although this is not absolutely necessary. The advan-
tage of uniform line spacing is that the resulting ordinary dif-
ferential equations can be solved more easily than those that
are derived from non-uniform line spacing.

Inherent to coupled systems of partial differential equations,
such as the Navier-Cauchy equations, is that solutions for the de-
pendent variables are possible only at points where the three sets
of parallel lines intersect. These points are usually called
nodes in a discretized body. This limitation is the result of
coupling among the equations, which makes the particular solution
of the ordinary differential equations valid only at the nodes.
2.2.1 Reduction of the First Navier-Cauchy Equation and

Associated Boundary Conditions.

For the solution of equation (2.5), the lines parallel to the
x-axis in Figure l(a) are considered. The x-directional displace-
ments of points along these lines will be denoted as Ups Up,

e « «» Uy. We define Vs Vlgs Vlgs « o < v|, as the deri-
vatives of the y-directional displacements of the same points on
these lines with respect to y and Qll, &[2, ] le

as the derivatives of the z-directional displacements of the same
points on these lines with respect to z. These displacements and
derivatives can then be regarded as functions of x only since
they are variables upon lines which are parallel to the x-axis.

Substituting equations (2.8) and (2.9) into equation (2.5) and
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expressing this equation along a general, x-directional line,

denoted as (ij) in Figure 1(bL) gives

& 2 2
3|24, 3V 4 3 PG NN S G = 0 (2.16)
oX | ax 3y ez | ax syl ez ..
ij y ij
By the above given definitions, we write (2.16) as
a2y, ujy 20 52
l3+i-\'z|”+d—~v'4[..+(1-2\)) + 5t = = 0
dx? dx ij dx Y dx? ay" 3z /..
1]
(2.17)

where an expression for the last term in (2.17) is still needed.
Introducing finite difference calculus (33), the partial deriva-
tives of u along the x-directional line (ij) of Figure 1(b) can

be written as follows:

2
3 u 1 (
i ¥ —— (u. . = 2u:s + U, . 2.18)
(av?) . h2 il H iR (
- i ] y
2
J u . 1
— © == (up el - 2upy g 5op) (2.19)
azl/ .. h
4 ij z

Using equations(2.18) and (2.19) in equation (2.17), the general

equation along interior lines is obtained. Thus,

2 ot us g
iy L a-2w [ ( 2, 2 ) T Rl
a2 2(1-v) [ \n2 e ) i3 h

= 0 (2.20)

2 2(1-v)

ui,j"’l + ui’j_l] . fij(X)
2

h
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A _ d?' dw'
where fij(x) c T i3 + I i3 (2.21)

Similar differential equations are obtained for the displacements
uij of the points on the other x-directional lines. ©Since each
equation has the terms of the displacements of the points on the
surrounding lines, these equations constitute a system of ordi-
nary differential equations for the displacements Uj, Up, o ¢ «,
Ug

Equations (2.20) and (2.21) are applicable to interior lines
only, since for bounding surface lines the central difference
expressions for the required second derivatives involve imaginary
lines. In order that central difference derivative approximations
may be used, expressions for these fictitious line displacements
must be found which are independent of the other differential
equations. Since three-dimensional elasticity problems have three
boundary conditions at every point of the bounding surface and a
second order ordinary differential equation can satisfy only a
total of two conditions, some of the boundary data can be used to
find expressions for these imaginary displaceumici...o., Hence, condi-
tions of normal stress and displacement will be enforced thrcugh
the constants of the homogeneous solutions while shear stress
boundary data will be incorporated into the differential equations
of the surface lines.

As an example of this procedure, let us take the first x-

directional line which is formed by the intersection of the x-z
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and x-y coordinate planes of a solid. For shear stress free

surfaces, the boundary data gives

. = 0 2,22
Izx X-y coordinate plane ( )

9yx |x-z coordinate plane ~ 0 (2.23)

Using equation (2.14) in equation (2.22) we obtain along line 1
that

@, 6,

1

In terms of the discretized displacements shown in Figure 1(a),

this equation gives

_ dw
ulYn = uNY"‘l + th E; L (2.2'4)

In a similar manner, equation (2.23) leads to

_ dv
Ujye = Up + 2hy ™ (2.25)

1

Note that the x-directional fictitious lines are numbered 1Yn
and 1lYe with n and e indicating adjaceut ac.th and east line
positions to the 1St x-directional line. Substitution of equa-
tions (2.24) and (2.25) into the general equation (2.20), leads

to the following equation along line 1l:
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2
d"u
1. (1-2v) [ (2 2) 2 2
—_—t ) U, + —=— u, ¥ —
2
ax®  2(1-v) A hZ Yl
Ii(x)
+ _— = 0 (2.26)
2(1-v)
where
Fix) = Ty dul (1-2\»)[3-9-"— + 22 ] 2.27)
dxl, dx| hy dx|1 h, dx|1

Equations (2.26) and (2.27) are typical of the corner line equa-
tions with the exception of some sign changes in (2.27) at the
other corners.

It will be convenient to non-dimensionalize the above equa=-
tions with respect to some characteristic dimension of the prob-
lem at hand. For the numerical examples presented, the following

variables were introduced:

h N
a = 3 x = X Eo= 2
a a X a
v y v VA h E}L 5 )
= o = = (2.28
v a y a y a '
" " - h
w = 2 z = = h = 2
a a z  a

where a is the crack dimension,

Equations (2,26) and (2,27) can then be written as






(l-2v)[(2 2>~ 2 . . 2 ]
+ — ¢+ U, + == U, + ——
) ~ =2 ) 1727 % 2~ “NY+l
dx 2(1-v) " hy hy i,
F (%)
E?i_;) (2.29)
FGo = D] L8y gonf2 g . L8 ](2.30)
dx 1) dxl, hy dxl h, dx '

Introducing matrix notation, the differential equations

along the x-directional lines can be expressed in the form

2
%:’z @} = [k 1@ + (GO} (2.31)
X A .
Lx1 XL Axl 2x1
where the non-dimensiocnalized coefficient matrix [Kx] and the
column vectors {u} and {r(x)} are given below.
(K] | 2[Kx,] 0 0 0
NYxNY NYxNY
[Kx21 [Kx1) | [Kx21 0 0
NYxNY NYxNY | NYxNY
N N N .
(K ] 0 AN N N 0 (2.32)
X N N N
LxL
NYxNY NYxNY NYxNY
0 0 0 2[Kx2] [le]
NYxNY NYxNY







(2.29)

a4 3—3—[ ](2.30)
1 hz d 1

Introducing matrix notation, the differential equations

*x ) =

along the x-directional lines can be expressed in the form

2
13_;,_, @} = [k 3@ o+ {r(X) (2.31)
X .
Lx1 X8 Axl Lx1
where the non-dimensionalized cocefficient matrix [Kx] and the
column vectors {u} and {r(x)} are given below.
NYxNY NYxNY
[Kx2] [le] | [Ky2] 0 0
NYxNY NYxNY i NYxNY
\\ N \\
K = 0 N 0 (2.32)
L x] ~ N N
Lx2
0 0 (K,,] [Ky] [Kyp ]
NYxNY NYxNY NYxNY
0 0 0 2[Kp1 | K]
NYxNY NYxNY
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where the submatrices [le] and [KXQJ are
kl -2k2 0 0 0
-k2 kl -k2 0 0
AN N AN AN
[(K.1] = 0 NN 0
x1 N N N
NYxNY
o | o -k, kq -k,
!
0 ; 0 | 0 -2k2 kl
(1-2v)[ 2 2
k, = +
1 2(1-v) [52 f2 ]
y z-
Kk, = ( ]__w.\,’\.'r' N "]
) l-\) ) ,;‘”h‘ ;
o
r:ka 0 0 0 0|
N
(Keol = | 0 0 AN 0 0
\
NYxNY
0 0 0 -k3 0
0 0 | 0 0 ~k3
~ -
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ko= (1-29) [;]
3 - =
2(1-v) h?
Note that kl = 2(ky + ka).
.- 3 (.
{u}l {:‘(x)}l 7
{u}, {f(x)},
W= o, } {r(x)} =§ : ) (2.33)
Lx1 . x1 .
{G}Nz-l {f(i)}NZ_l
(ilyg (0 g
N g . J
where the partitioned column vectors are
(. w r . N
Y UNY+1
GQ GNY+2
R
NYx1 ~ NYx1 )
UNY-1 U2NY-1
. Uy ) L U2y






A
Ug-2NY+1
Ug-2NY+2
i =/ 5
{U}NZ-J.\ :
NYx1 .
Ug-NY-1
Ug_Ny
L |
.
(#(x)}, = -_}._._4
1 2(1-v)
NYx1
.
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r
Ue-NY+1 ]
Yp-NY+2
tulyy = < :
NYx1 -
Ug-1
3 |
\ uf- ]

& -
+ 93- + (1-2\:)[?.—- g—;}
NY-1 ax NY-1 b, NY-1

+ B s eaw|-2-8,2 g
NY dx|yy dx = h, dx v




{f(i)}2 = -

NYx1

2(1-v)

av du 2
ax ‘% + (1-2v) [ﬁ'
XiINY+1 XINY+1 y
av di
- + —=
xIny+2 Xy
dxfony-1  dxlany-y
av di -2 av
- + - + (1-2v) | = —
dxlony = dxlony hy dx Ny
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{£(x)}
NZ-1

NYx1

{(#£(%)} =
N

Z

NYx1

1
2(1-v)

1
2(1-v)

\

L] L] \
43| , & . (12 )[2 dv]
Ry onyer - Rlyonyes VLR 3 p-onyer
av o
Flanve ¥ Wleoonyer
v . dr}l
Flyny-1 " Ty
dé' dél 2 v
t =z + (1-2y) | - = 5%
Flyyy  Rlgoyy Y [ Ry d*]z-uy )
.. . 2
g;' , & . (a2 8 - 2 dﬁ]
1NYsl - g onyey hy 3% By @y yye
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+
L-NY+2 L 2-NY+2

+

(l-2v)[r

ae an >
'a";l + IF + (1-2v) ] - g—gﬁﬂ
2-1 2-1 hy 9Xjo1
g§|+d6| a2 82, 2 an)
- (1~ ==
Ld e ax ) hy ™ R; dx-u‘
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Since the elements of the coefficient matrix [Kx] are all con-
stants, equations (2,31) are differential equations with constant
coefficients., The coupling terms from the second and third Navier-
Cauchy equations appear only in the vector {r(%)} which makes
the particular solution of (2.31) a function of this coupling.
Assuming that {r(X)} is known, solutions of (2.31) can be ob-
tained in closed form when boundary data at the end points of the
x-directional lines are given.
2.2.2 Reduction of the Second Navier-Cauchy Equation and
Associated Boundary Conditions

For the solution of equation (2.6), the lines parallel to
the y-axis in Figure 1(a) must be utilized. The y-directional
displacements of points along these lines will be denoted as v,
V2s V3y + + +y Vp. We define ﬂll, &|2, ﬁls, c e ey ﬁ[m as the
derivatives of the x-directional displacements of the same points
on these lines with respect to x and Wll, wlz, Wlay o 0 ey W[m
as the derivatives of the z-directional displacements of the same
points on these lines with respect to z. These displacements and
derivatives can then be regarded as functions of y only since
they are variables upon lines which are parallel to the y axis.
By substituting equations (2.8) and (2.9) into equation (2.6) and
analogously expressing this equation along a general y-directional

line (ij) to equation (2,20), the following equation will be

obtained:



2 2 2
2 [au, av, o vy [Pe s ey P L
ay[ax + 5y + az] + (1-2v) [ax2 + ay7 + 322] = 0 (2.3u)
ij ij

d2v

i du dw dv 3 32y 3y _

2t 3yl.. tayl.. t (1-2v) 7= + > + = 0

dy 1] y Ix 92° /1
(2.35)

In a similar manner to equations (2.18) and (2.139), we have

2
a°v 1
ij X
2
9V L1
(322) = h2' (vi.j+l - 2Vij + vi.j-l) (2037)
ij z

Combining equations (2.36), (2.37) and (2.35), the general equa-
tion along y-directional, interior lines is obtained. Thus, we

have

2
d vij , (-2v) 2 2\, 4 titl, 5t Va1
hx

- 1
dy2 2(1 V) h% J h%
o Vgt viger] f) (2.38)
h2 + 70 ‘
where I ——l (2.39)
dyl ;5 y ij

Similar differential equations are obtained for the displace=-
ments along the other y-directional lines. Since each equation

contains displacements of the surrounding lines, these equations
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] au oV oW
‘sy[ssz*w*a—z]
ij
2
d Vi. . QE . gﬁ
dy2 dy i3 dy| .

2 2 2
+ (1-2v) [é v 4 3 v+ g v] = 0
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(2.34)

(2,35)

In a similar manner to equations (2.18) and (2.19), we have

R

&)
Ix2

¢ o

N

@ |o

N | R

N <

S~
R

Combining equations

1l
7 (Vie1,5 7 Vit ViLg) (2.36)
X
2 2 ) (2.37)
w2 Vij#l T 4Vig * Vig-1 °

(2.36), (2.37) and (2.35), the general equa-

tion along y-directional, interior lines is obtained. Thus, we
have
2
dVij -2 [_f2, 2\,.. 4 Vit 3t Vao1,g
¥ 2(T=Y) h2 h2 vlj h2
dy2 X z X
Vi1 * Vi3-1] Fi3)
+ 2 2 = 0 2.38
12 MI6D) (2.38)
z
where #£..(y) dy] dal (2.39)
1j dy ij Yy ij

Similar differential equations are obtained for the displace-

ments along the other y-directional lines.

Since each equation

contains displacements of the surrounding lines, these equations
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form a set of ordinary differential equations for vy, vy, . . .

v_.
m

Noting that equations (2.38) and (2.39) are defined fully
for interior lines only, expressions for the imaginary displace-

ments Vv and v must be obtained from the shear stress

1Zw 1Zn
conditions in case of the first y-directional boundary line.
Since the first y-directional line is formed by the intersection
of the y-z and y-x coordinate planes, shear stresses on these
planes in the y direction are utilized. For shear stress free
surfaces, the boundary data gives

= 0 (2.u40)
y=-Xx coordinate plane

Ozy

o = 0 (2.41)

Xy

y=-z coordinate plane
Using equations (2.13) and (2.15) the following equations will be
obtained in terms of the discretized displacements shown in

Figure 1(a):

_ du

Vlzw = vNZ"’l + 2hx a;- N (2."42)
_ dw

Vign = Vo t 2h, & . (2.43)

Note that subscripts w and n again describe west and north
adjacent line positions with respect to the first y-directional
line., Substitution of equations (2,42) and (2.43) into the

general equation (2,38) results in the following equation along
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line 1:

2

vy , G-2v) [__ (;\_2__+ _2_)v . 32_+ 2"Nz+1]

2 2(1-v) 2 2 1 2 2
dy z hx hz hx
fl(y)

+m) = 0 (2.44)
. ; 2 du 2 d

7 = & +£".I N (1-2v)[——9+——3'-] (2.45)
dyly dyl hy &y By dy ]

Non-dimensionalizing these equations according to (2.28) and
introducing matrix notation, the ordinary differential equations

along the y-directional lines can be written as

2 -~ ~
3_2_ (v} = [K.] (v} + {s(§)} (2.46)
4y y

mxl mxm mxl mxl

The coefficient matrix [Ky] is given by

B Iyal | 20K 0 0 0
NZxNZ | NZxNZ
[K,] | KT | [Ky,d o 0
NZXNZ | NZxNZ | NZxNZ
N N
(k1 = 0 AN ~ ~ 0 (2.47)
mxm 0 0 [Kyo1 [Kyl] [Ky2]

NZxNZ NZxNZ NZxNZ

0 0 0 2[Kyp1 [Kyl]

NZxNZ NZxNZ
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where the submatrices [Kyl] and [Kyp] are

[ ky | -2kg | O 0 0]
~k3 k‘-& -k3 0 0
= N ~ ~N
[Ky1] 0 ~ N | °
NZxXNZ 0 0 | -kg ky | -kg
0 0 0o |-2x3 Ky
k3 = (1‘2\)) [ 1 ]
2(1-v) | §2
hZ
Lo e2wf2 2
LBRPYCROY Y]
Note that k, = Q(k3 + kSL
kg 0 0 0 0
0 kg | O 0 0
- <
[yl = | © 0 ~| 0 0
NZxNZ o | o 0 -k 0
L_o 0 0 0 -Kg |

ke = (1-2v)| 1
S 2(1-) | 72

The vectors {v} and {s(y)} can be written as
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where the submatrices [Kyl] and [Kyp] are

p— by

ky | -2kg | © 0 0
“k3 | ky | -k3 0 0
K = N ~ ~N
[Ky1] 0 NN ~ | °
NZXNZ 0 0 | -kg ky, | -k3
0 0 0 | -2k3 ky
e —

NO'te that ku = 2(k3 t ks)'
-k 0 0 0 0
0 ~kg 0 0 0
- S
[yl = | o0 0 ~ 0 0
NZxNZ o | o 0 ~kg 0
0 0 0 0 -k
5
R | -l

k = —————(1-2\’) ._l...
> 20 (2

The vectors {v} and {s(y)} can be written as






§
o) A

(¥,

o

{v}NX_l

{v}
YNk
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{s(y)} = {

mx1l

\

where the partitioned column vectors are

{3}l s ﬁ

NzZx1

~

g™ ¢
NZxl

( . N

Vm-2NZ+1

Vm-2NZ+2

.
G, = <
NZxl

f

{;}NX = ¢

NZxl

\.

-

TN

(£,

°

TIC) N

{f(y)}

%

NX )

SN
VNZ+1

VNZ+2

o

°

VoNZ-1
Vo7,

N

~

Vm-NZ+1

Vm-NZ+2

.
) >
.

v

m=-1

v
m

(2.48)



{#(3), =1

2(1-y)
NZxl
5 . -1
{i(y)}2 %)
NZx1
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dy

dw

+ =

d

ad

al d%l
dy

ay

NZ NZ

2NZ-1

ay

at

T~ +
dy
2NZ

5 (1o )[2 au
+ (1-2y ﬁ—'a§
NZ-1 Nz-1 X z-1

2 4i 2 dw
+ (1-2 - - T =
(1-2v) [hx dy g dy]

2NZ-1

. [ 2 dﬁ]
=2v) | = = <
d
2NZ Pz Yoz J
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Equations (2,46) form a set of equations that are similar to
equations (2.31)., Assuming that {s(§)} is known, solutions
of (2.46) can be obtained in closed form when boundary data at
the end points of the y-directional lines are given.
2.2.3 Reduction of the Third Navier-Cauchy Equations and
Associated Boundary Conditions

For the solution of equation (2.7), the lines parallel to
the z-axis in Figure 1(a) must be employed. The z-directional
displacements of points along these lines will be denoted as
Wi, Woy W3y « o« +4 Wy. We define u[l. ﬁ[2, ﬁla. .« e ey ﬁln
as the derivatives of the x-directional displacements of the same
points on these lines with respect to x and V|1, v|,, V|3,
o o ey Gln as the derivatives of the y-directional displacements
of the same points on these lines with respect to y. These
displacements and derivatives can then be regarded as functions
of 2z only since they are variables upon lines which are parallel
to the 2z axis, Following the same procedure as in the deriva-
tion of equations (2,20) and (2.38), the differential equation
for a general interior line (ij) along the z direction in Figure

1(a) is

2
d Mij , (1-2v) [_( 2, 2 ) U R A O

d22 2(1=-v) hf( h§ 1] h?(
! ulth Wi'j-l] + &ij(Z) = 0 (2.49)
12 2(1-v)

y
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where
du dv
$:0(2) = —=| + — (2.50)
1j dz ij dz ij

Similar differential equations are obtained for the other z-
directional lines, Since each equation has the terms of the dis-
placements w; of the points on the surrounding lines, a system
of ordinary differential equations is obtained for w;, wp, wg,
¢ o oy Wy. Noting again that equations (2.u49) and (2,50) are
defined fully for interior lines only, expressions for the
fictitious displacements wj,, and w;,g must be obtained from
the shear stress conditions in case of the first z-directional
boundary line. Since line 1 in the z-direction is formed by
the intersection of the z-x and z-y coordinate planes, shear
stresses on these planes in the z-direction are utilized., For

shear stress free surfaces we obtain

Wy + 2hx du (2.51)

dz 1

W1Xw

(2.52)

- dv

Substituting equations (2.51) and (2,52) back into the general
equation (2.49) and non-dimensionalizing the result according to

(2.28), leads to the following equation along line 1:

2~
d'w
1, (1-2v) [ /2 2\ = 2~ 2
proaidk e o) [(h:—i’" M ) it syt WNx+1]
Z % hy

%,(2)

o = 0
!tI-\)’
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1 dz

1

Introducing matrix notation, the differential equations along the

z-directional lines can be written as

2
9‘5{“} = (K1 i)+ {t(2)} (2.53)
dz nxl nxn nxl nxl

where the coefficient matrix [K,] and the column vectors {#}

and {t(2)} are given below,

[ [K,,1]  20K,,] 0 0 o |
NXXNX |  NXxNX
[Kz2] [Kzll [Kz2:I 0 0
NXxXNX |  NXxNX NXxNX
AN N
[Kz] = 0 A N > N h N 0
nxn
0 0 [K,n] Livg s [K,o1]
NXxNX | NXxNX NXXNX
0 0 0 2[K,0] | [K,q]
NXxNX [ NXxNX

where the submatrices

[Kzl] and [K22] are

(2.54)
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kg ~2kg 0 0 0
-kg ke -Kg 0 0
< <
[Ky 1 = 0 \\ N N 0
NXxNX 0 0 -kg ke | ks
0 0 0 -2kg| kg
(1-2v) 1
ks = -2l =
> 2(1-\;)[:52 ]
X
kg = (-2w) 2 2
2(1-v) |A2 2
y
0 -k, 0 0 0
Kyl = 0 0 \\ 0 0
NXxNX 0 0 0 -k, 0
0 0 0 0 -ky

N
1

K = L1=29) 1 1
2(1-v) ﬁ@

2(k, + kg).

Note that kg







-
{w} = {
nxl

q

~
G o= ¢
NXx1

\.

-
{Wlyy-1 = <
NXxl

N
oON

{W}2
{@lyy-1
{adyy J
. 3\
w1

Wy

WNX-1
WNX J
. =
Wh-2NX+1
Wi - 2NX4+2
Gn-Nx-l
Wn -NX
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{t(z)}

"

nxl

NXx1

r 3
{f(i)}l

{#(2)},

(F(2) gy

\{;(Z)}NY )

( 3

WNX+1

AN x+2

W
X

-

(2.55)



{#(2)}
1

NXxl

2(1-v)

dud

—_ +
kdz

NX

daa
dz

NX+2

a
dz

2NX-1

g
Ldi

+
2NX

40

av 2 4 2 4v
—_ -2 = Y
d’é 1 * (l \)) [BX dz M Fly dZ]l
; 2

g +am[Eg

dz 9 y Z 5

2 dv
sy + (1-2v) —"—.:]
421 Nx- [F‘y dZ jyy-1
Qv + (1-2v) -3-9.__“.+,2__.9_‘~i
dz{Ny hx dz hy dz NXJ
: . )
» & + (1-2v) %_.4.‘3.
dz{Nyg+1 x 42 e
-\
dz|Nx+2
av
+
dz{pNx-1
40 2 di
T + (1-2v) | - &= ==
az 2NX [. ﬁx d;]zux J







(B gy y

NXxl

{>5(2)}NY =

NXx1l

2(1-v)

2(1-v)

4

f

. . N
di R dav (1-2 )[2 4ai
= = + -2V - =
Azl onxe1 92l qooNxel |_hx 92 oNxe 1
at ds
dzly_oNx42 zln-2Nx+2
di av
- -
dzin-Nx-1 dzin-Nx-1
dii d¥ . (1-29) C 2 du
-~ - -2V - T
dzl,. dzln_ h, dz
n-NX n-NX X n-NX J
2 -~ 2 ~ - j
il.—l- +_‘1}=’_ +(l—2v)f—.—2-3——$
dz[n-Nx+1 = dzln-Nx+1 | bx dz By dz
-NX+1
-?l—';zi -:—11 + (1-2v) [- -;—--d—z:\
- zln-Nx+2
n-NX+2 n y NoNX42
ﬂé + Ei + (1-2v) r 2 &
di n"'l di n_l v L y di n"'l
b ¥ 2 di, 2 d¥
i, T &, (1'2")[?{; E Ry di]n J
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Equations (2.53) are a set of equations that are analogous to
the previously obtained two sets of differential equations.,
scssuming that {t(z)} is known, closed form solutions of {2.53)
can be obtained when boundary conditions at the end points of the
z-directional lines are given. Finally, it can be noted that the
three coefficient matrices obtained are all singular.
2,3 Solution of Simultaneous Differential Equations With Constant

Coefficients

Solution methods for a system of ordinary differential
equations with constant coefficients have been investigated
extensively and are available in the literature (34). One rela-
tively simple method is that of the power series solution (34).
In applying this method to a set of second order differential
equations, we must, by suitable transformations, reduce the given
simultaneous equations to a new set of first order differential
equations. The solution of this set of first order equations can
then be expressed in terms of a power series. The advantage of
this method is that it avoids the problem of finding the eigen-
values and eigenvectors of a given coefficient matrix. However,
in the application of this method serious convergence difficulties
may arise in evaluating the power series at large values of the
independent variable.

An entirely different method of solution involves the trans-

formation of the original coordinates into a new set of
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coordinates in which the differential equations become uncoupled.
In this new set of coordinates, usually called principal coordi-
nates, the matrix equations are reduced to a set of scalar
equations whose solutions can be easily evaluated. The required
transformation, however, is only possible when the matrix of
eigenvectors, usually denoted as the modal matrix, can be
accurately constructed, The solution method employed in this
dissertation is a combination of the above described two proce-
dures.

Since equations (2.31), (2.46) and (2.53) are all of the
same type it will be sufficient to discuss equations (2.31) only.

Hence, let us define the following new variables:

Ul = ﬁl Uz = a2 . . . Uz = az

- - 3 (2.56)
Uy . = G810, dYu o = 3%
wl = g Ywe Tz v Y T oxm

In terms of these variables, equations (2.31) can be written as

4} = [A] (U} o+ (T} (2.57)
dx
28x1 24x28 28x1 Zunt
where _ -
(o] (1]
L% LxL
[A] = (2.58)
[Kx] (o]
20%2¢0 x4 A
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by

- {0} N
x1
{r(x)} = < } (2.59)
20x1 {r(x)}
\ Lxl J

The solution of equation (2.57) is well known and can be written

as (3u4)

~

X
W} = A (o)) + AN f e LA (T(n)tan  (2.60)

24x1

where {U(o)

}

of @ and Y
dx

29%x28 2%l

at % =

o
24%x28

0 and eEA]i

by the following equation:

AN L pry 4 AR PR a0

24%24%

24x1

is a vector which consists of the boundary values

is a matrix series given

+ ° . .

2!

Using equation (2.58), the powers of matrix [A] can be

expressed as

[A]2n

[A]2n+l

-

[k, 1" [o] )
n

| (o] (K, ] B

[ 01 P ]
Ltxxl‘““l [0

0, 1, 2, 3, « o

0' l’ 2’ ] ° °

(2.61)



O -
PO OR-4

7.8

~ 1

alx
e X

inze s
Sin
f.',e



Substituting the powers of matrix [A]

us

into equation (2.61)

yields
~ -
=\ ¢2m = 2mL
DA 3
(2m)! (2m+1)r %
m=0 m=0
Al .| i
L2mtl .2m
(2m+l)' (Zm) ! X
Lm:O m=0
-
[All(Kx,i)] [Al2(Kx,§)]
~ %2 LxL
elAlx (2.62)
[AQl(Kx,i)] LAy p(Kyy%) ]
24x2%
L LxL x4 B
2 4 6
Since coshy = 1 + I—-+ Y + I—-+ « o e
2! L! 6!
3 5 7
sinhy = v+ X+ X . +Y_+, ...
3! 5! 71
the submatrices [Aij] iy,j = 1,2 can be expressed as the matrix
functions shown below.
A h [K 12 (2.63)
[A};] = [Ayp] = cos x] X .
LxL Lx2
7. N 1/2
(A;p] = (th] ) sinh [K,] (2.64)

x4
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[Ay] = (K 1[A),] (2.65)

where [Kx]l/2 is a matrix whose square is equal to [K,]. A
good summary of matrix function definitions and theory can be
found in (35),
2.3.1 Evaluation of Matrix Functions

As can be noted from equation (2.60), the accuracy of the
solution for a given problem will depend largely on the number of
terms retained in (2.61). In the course of this work, a number
of different methods were employed in evaluating (2.61). A short
description of each technique is given below. The accuracy of
each method can be checked by substituting equation (2.58) into

the identity of

elAJ% . o-[AIR . py (2.66)
In terms of the submatrices [Aij] this equation yields
[A11(K, ) 1% = [K Ao (K, 00T = [1] (2.67)

x4 LxL %L X Xa

The most straightforward calculation procedure for evaluating
the submatrices [Aij] for each value of the indépendent variable
X 1is to use the matrix series definitions (2.62) and truncate
them at some given values. However, for increasing values of X,
a large number of terms must be taken and if matrices with orders

of 20 or larger are involved, the numerical procedure becomes



47
inefficient. In order to avoid the computation of a large
number of terms, additive formulas for these matrix functions

may be obtained from using the identity of

[Al%1  [AlRo [AT(X1+%p)
e e e

In terms of the submatrices [Aij] this identity yields tne

following two equations:

-
[A)) (KyaRy¥Rp) ] = [A; 1 (KyyXp) JLAY) (Kyy%p) ]
b K I0A o (Kyey%1) T0ALp (Kyy %) ]
> (2.68)
[A1o(Ky,®1+%))] = [A12(Kx,%1)1[A1](Kx,%p)]
+ LA (K Ry ) JLA 2 (K %)) )
J

Alternate methods used in evaluating (2.62) involved the use
of Runge-Kutta integration formulas (33) and the conjoint algo-
rithm of Frame and Needler (36). An examination of equation
(2.62) will show that the matrix tunctions [Aij] satisfy the

following two sets of simultaneous matrix dirrerential equations:

§§ [A11(K %] = [Ay; (Ky,R)]
> (2.69)
§§ [Ag1(Kys®)] = [Ay3(Kyy%) 10Ky



u8

3—;‘- [Al2(Kx,5’<)] = [AQQ(Kxas“)] )

? (2.70)
d _ -
35 [A22(Kx,i)] = [Alz(Kx.x)][Kx] )

The initial conditions needed for the Runge-Kutta integration of

these equations are respectively

\
> (2.71)
. N
[Al2(Kx’X)]§=0 = [0]
) (2.72)
[A22(Kx,i)]§=0 = [I] J

Details of Frame's and Needler's solution may be found in
(36) and will not be repeated here. In comparing the results of
these three methods, it was found that using the first approach
with additive formulas gave the most accurate results. The rela-
tive merit of each method was established by its apility to
evaluate the submatrices [Aij] for large order coefficient
matrices at increasing values of the independent variable.

Common to all these techniques is that they do not require
the solution of an eigenvalue problem. However, as the number of
differential equations increases, these matrix series methods

place a serious limitation on the value of the independent
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variable for which equation (2.43) can he determinied, Theratfare,
the use of an improved matrix function evaluation routine is
needed. Inspection of equations (2.43), (2.64) and (2.65) shows
that if the coefficient matrix [Kx] could be diagonalized the
matrix functions would be replaced by simple hyperbolic functions
which could then be evaluated with better accuracy. This diago-
nalization of [Kx] is possible only if the associated eigen-
values and eigenvectors can be accurately determined. Hence, a
closed form solution of the associated eigenvalue problem is
necessary.

Appendix A gives the details of the development showing how
the eigenvalues and eigenvectors of a matrix having the form of
[Kx3 can be analytically evaluated. The equation for the eigen-

values of [Kx] is

- i-1 j-1
A.. = 2k, 1 - cos{ —=— | + 2k? 1l - cos T
1) 3 NZ-1 2 NY-1

(2.73)

where i=1,2, .. .NZ and j =1, 2, . . ., NY. Note that
these eigenvalues are ordered by fixing i first and then varying
j. Since & = NZ x NY, the number of eigenvalues associated with
[Kx] is 2.

The modal matrix or the matrix of eigenvectors corresponding

to the above ordered eigenvalues is given by

[Pl = [P] (® [P] (2.74)

L xL NZxNZ NYxNY
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where (:) denotes the Kroenecker product of two component

modal matrices (37) whose elements are given by

l’ 2’ e o ey NY (2975)
NY-1

P2 :T - [e{e]-) .(_I;-_l-)-&.—]-'l ™ r’i
ri o NZ-1

The similarity transformation, diagonalizing the coefficient

[Pl ] = [cos.g.si'l_)(ji)n] S,J

1, 2, . « .4 NZ (2.78)

matrix [K 1 is (35)
(A1 = [PT% [k JCP] (2.77)

where [A] is a diagonal matrix whose elements are the eigen-
values of [K,]. The matrix functions (2.63) and (2.64) can now
be evaluated in diagonalized form and retransformed according to

the transformation

[A;7] = [PI0Ay;2CP17E (2.78)

[A;,1 = [PI[A;,1(PT"? (2.79)

Note that the inverse of the modal matrix [P] can also be
evaluated in closed form and the details of the derivations are
shown in Appendix A.
2,3.2 Evaluation of the Particular Integral

In the explicit evaluation of equation (2.60), the value of

the particular integral cannot be obtained until the vector
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{T(n)} is known along the x-directional lines. We define

column vectors {Bj(x)} and {Bp(X)} as follows:

( h
{By (%)} X
< P = e-[A]n {r(n)}dn (2.80)
k{132(5'<)}J o
24x1 24x28 22x1

Using equations (2.59) and (2.62) in the above equation gives

C .
{Bl} X -1
[All(Kx’n)][AlQ(Kx’n)] {0}

< 5 = dn

LAy (Kyyn)I[Ap (K, 4n)] {r(n)}

B
L 2}J

Taking the inverse of the partitioned matrix leads to the follow=-

ing equations.

X
{8, (R)} = - (A1 1081, 2([Ay] - [Ap110A  17H(A, DY
5
« {r(n)} dn (2.81)
X
{(By(x)} = ([Ayp] = [Ayy10A 17 A, 7t

« {r(n)} dn (2.82)

where the arguments of [Aij] are understood to be (Ky,n).
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From considering the even and odd character of the matrix

functions [Aij]’ it can be shown that

[A;;] ([Agp] - [Ap110A;117 1A, D78
(2.83)

[A [A;13081,1(TAy, ] = [Ay;I0A 1714, D72

12]

The use of equations (2.83) allows us to write

X
-J.‘ [Alz(Kx’“)] {r(n)} dn (2.8u)
J [A11(Kyyn)] {r(n)} dn (2.85)

Similar expressions are obtained for the particular integrals of

{B, (%)}

Xt

{By (%)}

the solutions along the y and 2z directional lines. Since
{r(n)} is unknown, we start the solution of the problem by
~ 2 ~ 2
assuming values for dv, Q&,.ﬂﬁ. and 2¥ along the x direction-
X dyx dx dx
al lines. Generally, using zero values for these derivatives is

a good place to start. Using the partitioned form of the

matrices, equation (2.60) can be written as

f‘_\ ~ r =
{E(R) [A11(Kyy )] [Ag5(Ky,%)] {a(o)} (B, (%)}
Lo ST
) [A21(K 0801 [App(K 4%)] @) |00}

(2.86)

« Ve M

Equations (2.86) give us the first estimate for the vectors

{ﬁ(i)}(l) and {00}, 1t is assumed, of course, that the
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boundary condition vectors {u(o)} and {@i(o)} are specified
or known. Using these calculated values of {ﬁ}(l) and {é}(l)

we can evaluate the vector {s(?)}(l) where we still use the

originally assumed values of §¥ anau %g. An analogous equa-
tion to (2.86) will then give us the first value of {V(i)}<l)
and {#(31 ). First values of WD ang aan®

can then be calculated by using the first estimates of the x
and y directional displacements and their derivatives in the
vector {t(Z)}. At this point we return to equation (2.66) and
calculate the second value of {a(%)}(?) and {G(x)}?) based
on the first values of the y and 2z directional solutions.

If the values of {a(x)}™), (a1 ™), twgn™), agn™,
{W(Z)}(n) and {%(2)}(n) converge with the repetition of this
procedure, an approximate soluticn of a given prcblem will be
determined.

Based on the accumulated experience with this method, certain
comments can be made regarding this convergence. It was found
that the major factor controlling the con./ergence rate is the
accuracy to which the matrix functions [Aij] could be determined.
Using equation (2.67), an error matrix [ER] can be constructed

for each value of the independent variable. This matrix is
_ 12 <312
[ER] = [A)3(K,,%)]" = [K J[A (K ,%)]° - [1] (2.87)

In general, for convergence to occur the absolute values of the
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elements in [ER] should be less than about 3.5x10"", The rate
of convergence increases as the error decreases. Errors on the
order of 10~3 or larger will generally lead to divergence in the
successive approximation procedure.

Since the vector {r(n)} in equations (2.84) and (2.85)
involves displacements and their derivatives that are defined only
at the nodes, finite difference calculus must be used in evaluat-
ing its elements. Hence, integrals {B;(X)} and {B,(X)} are
evaluated by a suitable numerical integration technique. For the
numerical exgmples presented, the trapezoidal rule (33) is used
to evaluate the necessary particular integrals. In addition, the
lack of displacement data at some boundary points necessitates
the use of first order forward and backward differences in eval-
uating certain coupling term derivatives. The use of higher order
finite difference formulas at these points, however, gave no
noticeable improvement in accuracy. We note that similar conclu-
sions can be made about the parti~vlar integrals involving the
vectors {s(§)} and {t(2)}.

2,4 Application to Specific Geometries

A great amount of experimental work has been done in fracture
mechanics (2) through the use of crack-notched specimens. In the
past, many different types of specimens have been utilized for
determining a material's fracture toughness. The most common

early specimens employed were the center cracked and double edge
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notched bar specimens. It was recognized early, however, that
the obtained results were largely thickness dependent and avail-
able theoretical solutions did not account for this variation.

A prerequisite to the application of fracture testing is
the knowledge of the stress distribution in the specimen. Based
on this theoretical solution, the stress intensity factor K
can be calculated as a function of the load, crack and specimen
dimensions. With this information, it is possible then to
determine a material's fracture toughness through the use of
crack-notched specimen tests. The lack of a valid theoretical
solution has forced researchers in the past to make certain
empirical assumptions about the stress states in their specimens.
So that these assumptions may be analytically verified, the stress
and displacement fields in both the center cracked and double
edge cracked bar specimens will be investigated.

2.4.1 Bar With Through-Thickness Central Crack

In order to demonstrate the use of this analysis for the
solution of some three-dimensional, mixed boundary value, elas-
ticity problems, a number of previously unavailable solutions will
be investigated. Figure 2(a) shows a finite rectangular bar
with a through-thickness central crack which is loaded by a

uniform normal stress, o Because of the symmetric geometry and

o'
loading, only ocne-eighth of the bar has to be discretized as

shown in Figure 2(b). The existing displacement fields in the
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3=10
b=20
L=175
t=15
vs13

(b) Discretized region of rectangular bar with through-thickness central crack.

Figure 2. - Rectangular bar with through-thickness central crack under uniform tension.
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bar will be described by the solutions of the three sets of
ordinary differential equations. In this case, the previously
obtained plane elasticity solutions are not applicable because
the associated assumptions are not valid. Values of the non-
dimensionalized variables a, b, L and t used for this
problem are shown in Figure 2(a). Inspection of the derived
ordinary differential equations also shows that for any numeri-
cal computations, a value of Poisson's ratio must be selected.
For all the following examples, a Poisson's ratio of 1/3 will be
used as shown in the attached figures.

At this time we return to solution (2.86) and note that the
constants of the homogeneous solution were expressed in terms of
initial values. Since the problem in Figure 2(a) is a two point
boundary value problem, the initial values of both {i} and
{6} are usually not available. A method for evaluating the
initial value vector for equations (2.31) when the x-directional
lines in Figure 2(b) are involved will now be investigated.

From symmetry conditions, we can immediately conclude that

{a(o)} = 0 (2.88)

Lx1

The zero normal stress boundary condition on the face x = b
will be used to evaluate the vector {u(o)}. From equation

(2.86) we have at %X = B
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B} = [y (K BT} + (B (B)D)
+ [Agp (K ,B)1({T(0)} + {By(B)}) (2.89)

where ¢ = 0 gives
Xl~ =~
Xx=b

(BB} = (3 + (Mg

Provided that [A22(Kx,5)] is not singular and using (2.88) we

find from (2.89) that

(@)} = = [Ayy(KyyD) 171U} + {id)g g
2x1 LxL x1

= [Ayy(K ,B)I™F [Ap1(Ky,5)] {B)(B)} - (By(E)}
x4 %L %1 Lxl
(2.90)
Similar equations are obtained for the initial value vector of
equations (2,53) along the z-directional lines.

Along the y-directional lines the boundary conditions are
somewhat more involved since in the crack plane mixed boundary
conditions are specified. Denoting the number sf y-directional
lines following over the crack surface as NIC and those falling
outside as NOC, the zero normal stress condition over the crack
face and the symmetry condition in the crack plane result in the

following equations:
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{(v(o)} = X ({4} + {W})a_
over 1-v y=o
crack over crack

NICx1l

v = {0}~ 2.91

{V(O)}outside ¢ y=o0 ( )
crack outside crack

NOCx1

Equations (2.91) specify m elements of the initial value vector
{v(o0)}. The value of the rest of the elements in {V(o)}

can be found from using the given surface stress conditions at

§ = L. Thus, from Oyi;:ﬁ = 0, we have
Lo g - >z 2
i)y = (2 A20 L v (g5} 4 (@), . (2.92)
E (1-v) 1-v y=L
mxl mx1l mx1l

This vector can be suitably partitioned into vectors {éa}§=i and

. NICx1l
{VB}§=E'
NOCx1

For convenience of matrix manipulations, we partition the

initial value vector {V(o)} as

r 3
{Faq)
NICxl
(o)) {Fa) (Fag}

(o)} = Txl - mx1l - < NOCx1 P (2.93)

2mx1 {V(O)} {Pu} {Fu(!}
mx1l mxl NICx1l
(Fug)

kNOCXl)

Values of {Fuu} and {F3B} are given by equations (2.91)
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respectively. An analogous solution to equations (2.86) along

the y-directional lines can be written as

r ( D) ’

TN ("

k.{V(y)} [Dzl(Ky.9)][D22(Ky.9)] év(o)b {?u(i)}
(2.94)

where [Dij] are similar matrix functions to [Aij] and {Bj3}
{B,} are analogous particular integrals to (2.84) and (2.85).
From equation (2.94), we can express {V(L)} in a partitioned

form consistent with (2.93) as.

rg 3 ) R
i) (001017 [o21a2d| [ [(Fae]  [(Bo02)
NICx1l > NICXNIC . NICxNOC NICxl> 4NICxl
. = + >
{VB} [D2181] [D23g2] {Fag} {B3g}
NoCx1 ). . NOCXNIC NOCxNOC) - -\ [NOCxL Nocxl). .
y=L - < y=L\\ p, \ Jy:L
- N
ra] oe2]| [ [tread]  [Buad
, [|NIesize Nrcaoc NIrxal  JNICxl
' \
(0,511 [D22g2] {Fugd[  ){Bug)
NocNIC NocaNoc] .\ (Mocxy Nocxl .
- = 9=L \. \. yztl
(2.95)

Equation (2,95) leads to two matrix equations involving the two
unknown vectors {Faa} and {Fus}' Solution of these equations

ylelds
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-1 >
{FuB} = [Da] {Ve}y=ﬁ

NOCx1 NOCxNOC NOCx1

-1
- (017 [0y

NOCxNOC NOCxNIC NICxNIC

-1
- [0,070 [0,] (B} g

NOCxNOC NOCxNOC NOCxl

i [D21al]§=ﬁ {VG}§:ﬁ
NICxl

-1
RGN RN (GRS RGP

NOCxNOC NOCxNIC NICxl  NICxl

NOCx1
where
= -1
[Da] = ([Dypppd = [P21g1d [Poyayd " [Dpoep Vs -
NOCxNOC NOCxNOC NOCxXNIC NICxNIC NICxNOC
-1
[Db] = ([D2132] - [D2lsl] [D2lal] [D2l“2])§=i
NOCxNOC NOCxNOC NOCXNIC NICxNIC NICxNOC
= -1
[DC] = ([D22Bl] - [D2lBl] [DQlal] [D22al])9=n
NOCxNIC NOCxNIC NOCXNIC NICxNIC NICxNIC

(2.96)
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-1 5L L
{F [D2lal]9=f‘ {vd}y=L - {B3G y=L

NICxl NICXNIC NICxl NICxl

-1 }

[Dzlal];,:f, [D214235-1 {Bagly-t

NICxNIC NICxNOC NOCx1

-1
- D - D ~ F + B ~_
[ Qlal]yzL [ 2201]y=L ({ uq} { qa}y_t)
NICxNIC NICxNIC NICx1l NICx1l

-1 . i
- [DQlal]§=£ [D22a2]y=L ({Fug} + {BUB}§=L) (2.97)

NICxNIC NICxNOC NOCxl  NOCxl

where {F,g} is given by (2.96). Note that although the full

matrix [D2l] is singular, the partitioned submatrices are

v=L
not. Equations (2.96) and (2.97) together with the given boundary
data completely specify the initial value vector needed for the
solution of equations (2.u46).

Certain conclusions using the shear stress conditions can
also be noted for problems involving zero or uniform normal dis-

placements in a given plane. Using symme+rv ~anditions (2.88),

for example, we have

du du
3§|§=0 * a0 = O (2.98)
plane plane
The zero shear stress conditions on axy and &_,, together with

equation (2.98), will lead to
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v _ W _
5%|%=0  W|x=0 - O (2.99)
plane plane

Since —~ = — — and —- = — —, Wwe can conclude at once that
x dy 9% dx dz 9x
{r(x)}5.0 = O (2.100)
4x1

Equation (2.100) shows that all the elements of vector {r(%)}
in the plane of zero x-directional displacements are zero. Simi-
lar conclusions can also be obtained for the elements of the
vectors {s(§)} and {t(2)}.
mxl nxl

There are problems when it is more convenient to apply a
given boundary displacement, {¥(L)}, rather than a wniform
normal stress, {0, (L)}. Although we shall not present detailed
results for this case, the analogous boundary equations to

equations (2.96) and (2.97) are listed below.

{Fyg} (5,17 {vglyof,

NOCx1 NOCxNOC NOCxl

= ,-1 -1 i
NOCxNOC NOCxNIC NICxNIC NICxl

- =1 -
(5,170 (0,1 (Bl

NOCxNOC NOCxNOC NOCxl
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-1
- BT B () ¢ (Bl

NOCxNOC NOCxNIC NICxl NICxl

- {B48}§=L (2.101)
NOCx1
where
- -1
D1 = (591252] - [D11811 [D134:] [Dl2a2])§=ﬁ
NOCxNOC NOCXNOC ~ NOCKNIC NICXNIC ~ NICxNOC
- -1
(D] = ([91132] = [D13817 [D1343] [Dlla2])9=ﬁ
NOCxNOC NOCXNOC ~ NOCXNIC NICXNIC  NICxNOC
- -1
(b1 = ([D12B2] - [D1181] [Dy343] ED12a11)§=L
NOCKNIC NOCXNIC NOCKNIC NICKNIC NICKNIC
- sl (3. . - .
{Faet = [Dllal]'zﬁ {va}yzL {B3a}y=L
NICxl NICaNIC  NICxl  NICxl

-1 . .
- D diig Prgedig (Bagly=i
NICXNIC ~ NICKNOC  NOCxl

~

-l - ~> -
- [Dllal:l;gi [Dl2al]y=L({Fua} + {B‘#G}y=L)
NICxNIC NICxXNIC NICxl NICxl

-] ..
NICxNIC NICxNOC NOCxl  NOCxl
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With these equations and the given boundary data, the initial
vector of equations (2.46) can be evaluated for the case of a
displacement loaded rectangular bar containing a central crack.
Once the displacement field in the bar has been calculated
and the successive approximation procedure has converged, the
normal stress distributions along the sets of parallel lines can

be obtained from the following equations:

- E(1-v) :
{dx} ) (1+v)(1-2v) UYalong x lines
%1 ix1l
VE . .
f O (A9} 4 431 oo pingg (2:208)
%l Lxl
= E(1l-v) .
{O’y} = ——_——(11-\,)(1-2\;) {v} along y lines
mxl mxl
vE . .
({8} + (&) (2.104)
v (1+v)(1-2v) {a} + {w} along y lines
mxl mxl
{o,} = E(1-v) M . g
(14y)(1-2v) along z lines
nxl nxl
vE : .
i (1+y)(1-2y) ({ul + {¥}) along z lines (2.105)
nxl nxl

Note that the above equations involve only derivatives that can
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be evaluated in closed form. Hence, we expect that the normal
stress boundary conditions will be accurately enforced. The
shear stresses at each node can be obtained from applying equa-
tions (2.13) through (2.15). These equations, however, involve
derivatives that can only be evaluated through the use of
finite difference calculus. In general, this presents no impor-
tant loss of accuracy since values of the shear stresses are an
order of magnitude smaller than the normal stresses (25). This
same conclusion was obtained when the shear stresses in our
examples were investigated. Numerical results for the problem
of Figure 2(a) are listed and discussed in Chapter 4.
2,4.,2 Bar With Through-Thickness Double Edge Cracks

A problem closely related to the previously described
central crack solution is that of a rectangular bar with through-
thickness double edge cracks. The configuration and applied
loading of this problem are shown in Figure 3. For the geometry
shown, similar conclusions can be drawn about symmetry conditions
and validity of previous solutions as for the central crack
problem. The non-dimensionalized variables of the bar in
Figure 3(a) are made identical to those of Figure 2(a) so that
comparison between the two solutions will be possible.

Most of the equations and their boundary conditions for this
problem are identical to those of the central crack configura-

tion. The only difference is in the mixed boundary conditions
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(b) Discretized region of rectangular bar with double edge cracks.

Figure 3, - Rectangular bar with through-thickness double edge cracks under uniforn. tension.
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of the crack plane. Equations for the initial value vector

{v(o)}, in the partitioned form of (2.93), are listed below.

{Fsa} = 0
NOCx1l
v
{Fugl = - — ({T} + {ﬁ})-_o (2.106)
1-v Y=Y over crack
NICx1l NICx1l NICxl

Note that these given boundary conditions are the same as those
in (2.91) except that the partitioning subscripts o and B

have been interchanged. Using the condition of o [~ >~ = o we

yly=L "o
obtain
{F,.} = [O,77% {9 )~
ba a a’y=L
NOCx1 NOCxNOC NOCxl

= .1 3
= DT [Do1a25.5 [P21g0)s 7 (Va)5eg,

NOCxNOC NOCxNIC NICxNIC NICxl

- (D™t D, {Byylyf

NOCxNOC NOCxNOC NOCxl

= .1 = - -
- [Da] [DC] ({Fqs} + {BuB}y=L)

NOCxNOC NOCxNIC NICxl NICxl

{Bua}§=i (2.107)

NOCxl
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where

- -1 .

Fal = (00017 = [P2142] [0p1gp Tt [P2213);.5
NOCKNOC NOCKNOC ~ NOCKNIC NICKNIC  NICKNOC

= _ -1 ~ ~

(Dp1 = (ED?lal] - [D21421 [Dyyp;] [D2lBl])y=L
NOCKNOC NOCXNOC ~ NOCXNIC NICXNIC  NICKNOC

= _ -1

[Dc1 = @Dzzazl = [D2142] [Dyyp5] [D2232])§=i
NOCKNIC NOCKNIC  NOCKNIC NICKNIC  NICKNIC

-1 2 - -

(Fagl = [Dyygpdscy {Vghyef

NICx1 NICXNIC  NICxl

-1 - .
= [D21p215C; [Do181 3527 {Baaljer - {Baplyai
NICXNIC  NICXNOC  Nocxl NICxl

=1l -~ - ~ =
- [P 007 [Dy081 158 ({Fua} + {Bua}y=L)
NICNIC  NICxNOC NoCxl  NOCxl

-1
- [Dzlszj;zi [D22B2]§=ﬁ ({Fqs} + {BMB}§=f) (2.108)

NICxNIC NICxNIC NICxl  NICxl

Similar equations can be derived for a displacement loaded
double edge crack bar by using the given displacements rather than
their derivatives at the § = L plane. The details of that prob-

lem are not considered in this paper. Numerical results for the
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problem of Figure 3(a) are presented and discussed in Chapter

IV along with the solutions of the other examples.,
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CHAPTER 3
SOLUTION OF THE NAVIER-CAUCHY EQUATIONS IN

CYLINDRICAL COORDINATES BY THE METHOD OF LINES

3.1 Governing Equations
The discretization technique presented in the previous

chapter cannot be readily extended to problems having circular

boundaries. For problems of this geometry, it is more convenient

to formulate the field equations and associated boundary condi-
tions in cylindrical coordinates. In this coordinate system,

the Navier-Cauchy equations (2.4) can be written as follows:

de B n
—S + (1-2v) (vi -l \u- 32.-3.‘.’. = 0 (3.1)
1 %% (2 1 2 3y |
-+ (1=2v) (v "'3')""'—2'3—‘;‘ = 0 (3.2)
r 98 L ¢ r N
de 2
—Z + (1-2v) V°w = O (3.3)
9z c
where the dilatation, e,, is given by
ou 1l av u aw
= —— bt or-ud — —— 3.u
e, v + =3 + m + . (3.4)

and the Laplacian, V2 is

c?
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2 2 2

The stress-displacement relations, obtained by substituting the
strain-displacement relations into Hooke's law, can be written

in the following form:

o, = Aec + 26 %% (3.6)
0y = *eu?G(%%{;*%) (3.7)
o, = Ae_ + 26 3= (3.8)
o * G(—,l:%é‘l-%*‘%%) (3.9)
o, = G(a_:+a_:) (3.10)
Goy G(P_‘ziaf%%l’-) (3.11)

Solution of these equations can again be obtained by using the
line method together with the successive approximation procedure
and the applicable boundary cenditions.
3.2 Ordinary Differential Equations and :-5.. . .:nditions

in the Radial Direction

Following the line method as discussed in the previous
chapter, we construct three sets of lines in the direction of
the cylindrical coordinate axes. An arbitrary cylindrical grid
consisting of these three sets of lines is shown in Figure 4.

The numbering of the lines is analogous to that shown in Figure
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1. For convenience, the lines are evenly spaced with hp, he
and h, each equal to some given constant. The advantage of a
more easily calculated solution with even line spacing is not:
obtained in fully three-dimensional cylindrical coordinates
because some of the resulting differential equations have variable
coefficients. In addition, a closed form solution of the eigen-
value problem for the remaining equations is also impractical.,
The previously discussed limitations on the validity of particu-
lar solutions also apply to problems in cylindrical coordinates.

For the solution of equation (3.1), the radial 1lines of

Figure 4 must be utilized. The radial displacement of points

along these lines will be denoted as uj, Uy, « o ., ug. We

D9 + o oy v g Tnow as the derivatives of the cir-

define Q]l, v
cumferential displacements of the same points on these lines with
respect to 8 and w|;, w|p, + . ., W|, as the derivatives of
the axial displacements of the same points on these lines with
respect to z. These displacements and derivatives can then be
regarded as functions of the radius only. From equations (3.1);

(3.4) and (3.5), the following equation is obtained along the

first radial line:
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2
: du u . d“u
Serd L) L B, o 2
dr rdrf; 2 r dr r r dr
2 2
. 1 dul , L 9 ul R 3 ul i El 2 ;I .
Tdr 2 .2 2 2 2 1) ~
r r° 26 9z r r
(3.12)
where, by using finite difference calculus, we have
2u, 1
a6 le
32ul 1
= = - (Uygey = 291 + upg,) (3.14)
9z h?

The use of zero shear stress boundary conditions in the radial

direction on the r-z and r-8 coordinate planes gives

respectively

dv
Ujge u, + 2her 3;11 - 2he”|1 (3.15)

dw

Uign = Uygel t 2hz o (3.16)

1
Substituting these equations into equation (3.12) leads to the

following ordinary differential equationm:
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2
du; pduy; WY (1-2y) 2 2
dp2 r dr r2 2(1-v) r‘hg h?

2u 2u £ (r)
g2 g _Nerlg, 1 = 0 (3.17)
r2hf  hg 2(1-v)
where
4y=-3) ., dv dy,
£,(r) i-"Tlvl -y
r 1 rdarl rly
2 2 dw
+ (1-2\))['%‘3—‘"- > v+ra— (3.18)
rfg r r he z 9° 1

Similar differential equations are obtained for the displace-
ments u; of the points on the other radial lines. Since each
equation contains the displacements of the surrounding lines,
these equations constitute a system of ordinary differential
equations. Noting that equation (3.17) was derived for a corner
line, the form of the equations for interior lines and surface
lines will differ according to the application of known shear
stress conditions.

It will be convenient to non-dimensionalize equations (3.17)
and (3.18) with respect to some characteristic dimension. For
the penny shaped crack problems, which are to be discussed later
in this report, the same variables can be used as in (2.28) with

the following modifications:
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Introducing matrix notation, the differential equations along the

radial lines can be expressed in the form shown below.

2

Y

(o35
dr

1
r

Lx1

LxL

Lxl

-5) {u} = [K.(P)] {8} + {r(¥)}

x1

(3.20)

where the coefficient matrix [Kr(i)] and the column vectors

{1} and {r(®)} are given below.

[K ()]

XL

™
(Kl | 20K ] 0 0 0
NOxN® NexN8@
NOxNe NoxN§ NOxN©6
~N ~ ~
0 ~ ~ ~ 0
~ N
0 0 Kol | Kyl | [Ky,]
NOxN@ NoxNe NOxN6
0 0 0 2[Kr2] [Krl]
NexNe NGXNO_

(3.21)
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where the submatrices [Krl] and [Kr2] are

k7 -2k8 0 0 0
-kg k7 -k8 0 0
N AN N
[Kpa(®)] = 0 N N N\ 0
AN AN AN
NoexNe

0 0 -kg k7 -k8

0 0 0 | -2kg ko
- -

(1-2v) 2
k = +
7 2(1-v) ;2526 13?2
2(1=-v) ;25%
-k3 0 0 0 0
0 -k3 0 0 0
AN AN AN
[K.~] = 0 AN AN N 0
r2 N N N
NoxNe

0 0 0 -k3 0

0 0 0 0 -k3

K = (1-2v) 1
3 2(1-v) [?—

2
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Note that the coefficient matrix [Kr(i)] is a function of the
radius and since the sum of all the elements in any given row is

zero, it is also singular. The column vectors are written as

. r
(@, s,
(W, t#(0)},
@ ={ . ) (x(®} = ¢ : > (3.22)
2x1 2x1
{Wdyg-1 O,
() {#(2)}
L UiNz J L NZ

where the partitioned column vectors of {u} are the same as
those in the previous chapter except that they are of order NOxl.
The partitioned vectors {i(i)}i i=1,2,.. ., NZ, are

given by
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[ : )
(“\’;3) :I. + %—g—?— + %’fi + (l—2v)[—v—~}2‘ --?— - ~§- v+ ;— g—?]
P 1 riy drly rhg dr 4 By z 7))
- M 1, Q
(‘41)23) v' + -11 g-\?— d? + (1-2\:)[%— 9-:—]
r 2 Tdriz drip z 9T J,
1 . . . .
{(#(D)}, = < . . . . \
1 2(1-v) ] . ] .
Noxl .
(4v=3) o 1 a¥ dw 2 dn
=5 v + ¥ (“i'-; + (1-2v) ;———-.rj
r N8-1 Ng-1 Neml z N6-1
(uv;:a) v + :l--j—f- 3: + (1-2v) —v—-.h2 d? + gv + %—%;—']
F: Ng r driyg 8 r r 4
. 0 r B STy
r : : "
4y=3) 1 dv dn 2 4v 2 i
-(--\-)-2—-)- ‘7| t 3 3E + = + (1-2v) i v 1
? Ne+l T dliyge) riNg+l rhg dr  4p
8 Jye+
(4v-3) : 1 dé df
-~ v + ":'d':' '('i-:
r Ne+2 T dliygyn riNg+2
), = =2 (. - : )
2(1"\)) . . .
NOxl . .
(4v=-3) 2 1 dv dn
") v + T = + =
r 2N6-1 r dri2nNg-1 drione-)
(“";3) vlwe + %g% e %?; + (1'2")[*;52 33 + ———g" ]
- Tt 2
L r 2N 2] r he 2N )
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f . 3
(tw-s)zvl ’1% ’g_n_l . ooy [0 .25
g-2ne+1 T F Iy oneer T ¥y onee) v/ | THg aF *2hg LooNesl
(4v-3) - 1 d9 af
. °| *FE *IF
r L-2N6+2 L-2No+2 2-2Ng+2
- . . .
{#(®)} ] . . . L
AR . .
Nexl
(ho=3) = L Llav R an
-
;3 g-No-1 T 9Fly ng 1 T dF|g ngoy
__3__(“\)-3) \.l| + 1 g7-l + d_Q + (1-2v) -—2-d—°-¢ 2 v
. F p-Ne T dF|y ng T Flyye the dr ;’{,e L-N8 )
( 3
(4y-3) I 1 do a0 2 dv 2 . 2 d"]
"'"T"o + + + (1-2v) Ry i
r L-No+l L 2-N6+1 dar L-N6+} [ hg dr  r“hy Rz dr s-Nesl
(4y-3) ‘-,I 1 d&‘ ab . (12 )[ 2 da]
— + 5 75 * o= -2V - W g
72 g-Ne+2 T APl ngen © dFlg_Nge2 hg dr
£-N8+2
-1 . . . N
£(M)} — . .
{ NZ 2(1_‘,)< X : : :
Nexl
(4v=3) :l av I . (12 )[ 2 da]
ry -2V - by
r -1 | PO, T Rz oF
2-1
(4v-3) 3| .5 9-; + \ ¢ Qe2v)| 2— 7242 2 88
x - - T - -
- L ? dr L ar ;25 ’he dr r; dr
\ 6 L J
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Assuming that {r(¥)} is known, solutions of equations
(3.20) can be obtained in closed form using the given boundary
data at the end points of the radial lines.
3.3 Ordinary Differential Equations and Boundary Conditions

in the Circumferential Direction

For the solution of equation (3.2), ordinary differential
equations are developed along the circumferential lines of
Figure 4, The displacements along these lines will be denoted as
Vis Vps o+ o3 Vo We define ﬁll, ﬁlz, o o ey ﬁ[m as the
derivatives of the radial displacements of points on these
lines with respect to r, and Qll, ﬁlz, o o ey &lm as the
derivatives of the axial displacements of the same points on these
lines with respect to z. U and @ are defined, of course, as
the radial and axial displacements respectively. These displace-
ments and derivatives can then be regarded as functions of 8
only, since they are variables along circumferential lines.
Following a similar procedure to that used in the previous
section, the set of differential equations obtained along these
lines is listed below.

a2 .
= {?} = [K,] {¥} + {s(6)} (3.23)
482 °
mxl mxm mxl mxl

We note that for equations (3.23), the shear stress boundary

conditions in the 6 direction were utilized. An inspection of
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Figure 4 shows that for any given subset of NZ
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lines, the radius is a constant.

circumferential

In order that [Ke] and

{s(g)} be expressed in a form similar to (3.21) and (3.22),

we define the radius for each subset as ri

NR.

{s(8)}

[K,]

mxm

where the submatrices

and

can be written as follows:

i=

1, 25 3, « « vy

Then the coefficient matrix [Ke] and the vectors {¥} and

(K1 (71| [Kg, (2| 0 0 |
NZxNZ NZxNZ
NZxNZ NZxNZ NZxNZ
0 ~
\\‘\\ ~ - ~ 0
0 0 [Kes(fi)] [KBZ(ii)] [Kes(?i)]
NZxNZ NZxNZ NZxNZ
0 0 0 [Kel&(f\NR)] [KQS(?NR)]
NZxNZ NZxNZ
(3.24)

as used above,

[Kel] through [Kesl are expressed below

varies from 2 to NR-1,






k9 -2k10 0 0 0
-klo kg -klO 0 0
= ~N ~ ~
RCALER ° SN 0N °
NZxNZ 0 0 -kq0 k9 —klO
0 0 0 —2k10 k9
(2? 2?2 27
kg = (1-2v) s 1 .1
2(1- 2 2
(1=v) | 82 A2 i,
[ 2
_ (1-2v) ¥
klO YR Tl
2(1-v) |2
| "z
- . ) -
= \ ~
[K82(fi)] 0 ~ \\ ~ 0
NZxNZ 0 0 =k (B, ) kg (By) | =kyp(E;)
0 0 0 -2k12(?i) kll(?i)
~2 2
2% 27
k(B = (1-2v) ( et o+l
i -
2(1l- 2 2
‘(l v) _hr Ez
" .2
P
- (1-2y) i
k 2) = et | e
1) = ) 52
L'z
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[Kg3(FyR)]
NZxNZ

[Kgu(2,)]

NZxNZ
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ky5(B5)

[
u

1 and NR only

0 ~ ~ ~ 0
~ ~ ~ ‘
0 0 K1y kig | -k
0 0 0 -2kyy k13
- -
[ .2 2 -
Co@-2v) | 2R 2R 2AR
2w | =2 YT T
- hI‘ hz h!‘
r'i‘2
_ (1-2y) NR
- 2zl-v5 52
. 2
-kls(ij) 0 0 0 0
0 -kls(rj) 0 0 0
0 0 ~ 0 0
~
0 0 0 -k, e (R, 0
15( J)
0 0 0 0 -kls(ij)
- N
282
= (1-2v) i
2(1-V) ﬁi
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_lkls(fl) 0 ! 0 0 o
0 ~kig(F;): 0 0 0
[Kgs(F;)] = 0 o |~ o | o
NZxNZ 0 0 0 -kls(ii) 0
0 0 0 0 -k g(E;)

2
K (B.) = (1-2v) ii - Iy
161 2(1-v) | 52 o
r r
-kpp(¥)| 0 } 0 0 o ]
0 -kl7(§i)' 0 0 0]
~ _ ' ~
NZxNZ 0 0 | o -ky4(%;) 0
0 0 0 0 -kl7(ri)

(1-2v)
2(1-v)

"

kl7(ri)

Note that one set of submatrices [Kez], [Kes] and [Kggl is
constructed for each value of the radius and then they are
assembled according to equation (3.24).
The displacement vector {Vi can be written as in equation
mx

(2.48) with the exception of replacing NX by NR in those

equations, The vector {s(8)} becomes
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(" -
(o)),

(B,

s® = { . ) (3.25)

ICDI NN

(8}

8

where the partitioned column vectors are



{#(8)},

NZxl

{i(e)}2 =

-1

2(1-v)

2(1-v)
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r [ - -
(3-uy) 93{ + 7 di 7 dwl + (1-2v) Fran g + o
- - — - =g - 9 +t ¥ =%
ael,  lasl, ' Tlagl, [Py ® %R @,
. 8 2%
du dh . i 1dn do
~4y) == =t — - —— e .
(3 v)daz*rldéz’rldéi,*(l”) . 5@,
-
dﬁ’ . dﬁ[ . af 27 qu  dn
3-4v) T% + T, = + T o + (1-2v) | =— = - =
() lygey © L Blygoy T Bz Br a8 a®f g,
(3 dﬁt + 1y dﬁ[ + T dél + (1-2v) Z.—l L v—-nl &
L =4v) 33. NZ 1 dT NZ 1 dé NZ hp Eg 53 hz d8 NZ
( - B 2 27
(3-u4v) g}-l- ) g-u_ + B g_w + (1-2v) -:—21“-
Blnze1 Binze1 8iNz+1 z 49 [ Nz4y
du . db di
(3-4v) +r ‘ + P
Blnzer 2 Bluze2 d8|yz,0
(3-4v) -g—g- P2 %g— +F) 1:-
2Nz-1 2NZ-1 a%loNz-1
- . : -2r
(-w) J5 e S e gﬂl r(Qo2y) |2 8
2NZ abloyz 8lanz h, 48]onz
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NZxl

(D))

NZxl

1
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—
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; 3
A A 2r
(3-4v) d_g. . ;NR-l % + rNR-l d__. + (1-2v) _:_R.l. %
- - ' z
me2NZ+l m-2NZ+1 m-2NZ+1l meaNZel
an! . ad . F ad!
(3-4v) -d—{ * Fypel N NR-1 ?5[
m=2NZ+2 m=-2NZ+2 m-2NZ+2
da af a8
(3-4v) Egi * ’NR-l EE{ + ’NR-l Il
m-NZ-1 meNZ-1 m-N2Z-1
do 4d ad “*yp-1 ap
(3-4v) N + iNR-l dTl * Mpoy “{ + (1-2v) TH
m=NZ m=-NZ m=NZ
m-NZ
-2F 2
ey 49 + 7 db . bl . (1 NR do _ do NR 48
(3-49) aa! NR 35 NR 38| it B Sub i R sl 1
m=NZ+1l m=NZ+1 neNZ+)l
m-NZ+1
. -2r
do ad abd NR dO  dO
—| * - -
(3-4v) 35} + MR T e a + (1-2v) -—§:~ d-D
m-NZ+2 m=-NZ+2 m-NZ+2 m-NZ+2
& aé 2R 40
da d . ] R do
- L * (1-20) | ——mpe -
SOF wdl el N3 a
m-l mel m-l
m=1
, -2F 2%,
dg df . db NR d0  do NR de
- - —~ - o+ (1-2 —_ = e ye—
CORE T IR % R s AT ad T, @
m m m "
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Assuming that {s(8)} is known, solutions of equations
(3.23) can be obtained in closed form when boundary data at the
end points of the circumferential lines are specified.

Note that even though the elements of [Ke] are constants,
a closed form solution of the associated eigenvalue problem in
accordance with the decomposition methods of Appendix A is not
possible. In addition, we find that [Kg] is also singular al-
though this is not as evident from its elements as in the case of
the other coefficient matrices.
3.4 Ordinary Differential Equations and Boundary Conditions in

the Axial Direction

Application of the line method to equation (3.3) will result
in a set of ordinary differential equations along the axial lines
of Figure 4, The displacements along these lines will be denoted
aS Wiy Woy o+« sy Wpo We define Gll, ﬁl2, e ey ﬁln as the
derivatives of the radial displacements of points on these lines
with respect to r and Q[l, 6!2, o o oy an as the derivatives
of the circumferential displacements of the same points on these
lines with respect to 6., These displacements and derivatives are
then functions of z only, since they are variables along axial
lines, Using z-directional shear stress boundary conditions for
the corner and surface lines, the simultaneous differential equa-

tions along the axial lines can be written as follows:
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—_—

=

—
]

(K1 {®} + {t_(2)} (3.26)

nxl nxn nxl nxl

From Figure 4, one can note that the radius varies with the line
position within each subset of NR axial lines. Using the nota-
tion of the previous section, these radii are denoted as r;

i=1,2, 3, . . .y NR. The coefficient matrix [ch] is then

given by
[Kperd | 20K,00d 0 0 0
NRxNR NRxNR
|:ch2:| [chl] [ch2] 0 0
NRxNR NRxNR NRxNR
N N N
K, .1 = 0 \\ \\ N N 0 (3.27)
N N\ N
nxn
0 0 [ch2] [chl] [ch2:l
NRxNR NRxNR NRxNR
0 0 0 2[ch2] [chl]
| NRXNR | NRxNR

The submatrices [chl] and [ch2] can be written as shown

below,
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¢y -k18 0 0 0
“CoNr-1| ©2 “CNR+1 0 0
- ~ ~ ~
[KZClJ 0 ~ ~ ~ 0
NRxNR 0 0 “C3NR-u4| SNR-1| ~C2NR-2
. (1-2v) |2
18 2(1-v) | 52
r
o -
(1-2v) | 2 2
A T A LY EEaN fori=1,2, .. ., NR
i 2(1=v) | g2 3252 rt r o ’
.
(1-2v) {21 1| for i = NR+1, NR+2
c; = |t == or i = NR+1, NR+2, . . .,
2(1-v) hi 2hry 2NR-2
- - j = i-NR‘.‘l
c; = -2v) (1 _1 for i = 2NR-1, 2NR, . . .,
2(1-v) |g2. 2h. r 3NR-4
r r'k .
- - k = i-2NR+3
®aNr-3 | © 0 0 °
0 c3NR—2 0 C
- ~
[ch2:I = 0 0 ™~ 0 °
NRXNR 0 0 0 lCNp-3 0
0 0 0 0 CLUNR-4
o = Q-2v) |1 for i = 3NR-3, 3NR=2, . . .,
2(1-v) 212 UNR-U
L0 2 = i-3NR+b
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Note that submatrix [chl] will always contain 3NR-4 con-
stants denoted as c¢; while the matrix [KZC2] will have only
NR elements on its diagonal. The coefficient matrix [KZC]
has elements that are all constants which shows that equations
(3.26) are also differential equations with constant coefficients.
An investigation of its inverse will also show that [ch] is
singular. The displacement vector {#%} can be written as in
equation (2.55) with exception of replacing NY by N6 and the

partitioned {ﬁ}i vectors are of order NRxl instead of NXx1.

The vector {t (z)} becomes,

)
#(2)},
@)},
(@) = (. ) (3.28)
nxl .
@y,
| )







({(2)}1 =

NRx1

{i(z)}2 =

NRx1
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2(1
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-v)

1
-v)
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dai 1 da 1 '[*(12) 2 l)dﬁ+2 dv
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-1
{f(!))Ne = m
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5
:u *}—-g-f— #—}—-—ﬂ + (1-2v) %_}—- Q.El
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di L L a .1 d¥
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92l anre2 T2 Pl onree T2 Elolonge2
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J
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= s 140 T 4 + (1-2v) | 290
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?;- Py Y FE + (1-2v) | = — =
n-1 MNR-1 92lq)  Pyrep d2lp ™wr-1he 42
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Assuming that {t_(Z)} is known, we can solve equations
(3.26) in closed form provided that boundary conditions at the
end points of all the axial lines are given.

Inspection of equations (3.23) and (3.26) shows that they
are differential equations with constant coefficients whose
solutions can be obtained by the methods of Section 2.3. 1In
evaluating the matrix functions for equation (2.60), it is most
convenient to use the definitions (2.62) together with the
additive formulas (2.68). The difficulty in solving the eigen-
velue problems for equations (3.23) and (3.26) arises because the
decomposition of (A.2) does not lead to tri-diagonal matrices of
the form (A.1). Instead of equation (A.9), the methods of
Appendix A will lead to a difference equation with variable
coefficients whose solution is difficult to evaluate. Hence, a
closed form solution for the eigenvalues and eigenvectors will
not be possible,

An alternate approach to the eigenvalue problem would be
the use of a suitable numerical method. Sirre the decomposition
of equation (A.2) will always reduce the order of the matrices
involved, only the component matrix eigenvalues and eigenvectors
need be evaluated numerically. One such suitable numerical
technique is the Rutishauser left-right transformation method (38).
However, care should be exercised in using this method because

of the zero eigenvalue in each coefficient matrix. Doust and






97
Price (39) discuss a technique for readily adopting the
Rutishauser method to singular matrices. At this time, results
of the numerical analysis of this eigenvalue problem are not yet
available.

The solutions of equations (3.20) cannot be readily obtained
by the above discussed matrix series or normal mode analysis.
Since the coefficient matrix [K,(f)] is a function of the
independent variable and the differential operator in (3.20) con-
tains additional terms to the second derivative, a solution
technique for this type of equations will be presented in the
following section.

3.5 Solution of Simultaneous Differential Equations With

Variable Coefficients

Solution methods for a system of ordinary differential
equations with variable coefficients are, in general, more in-
volved and complicated than those discussed in the previous
sections. One technique in solving a system of higher order
differential equations of this type is to first reduce the given
equations by suitable transformations to a set of first order
differential equations. The solution of this set of first order
equations can then be expressed in terms of an infinite series
constructed by means of repeated integrations of the reduced
coefficient matrix whose elements are also functions of the

independent variable. The advantages of this method are its
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simplicity and the fact that it avoids the generally difficult
problem of solving the determinantal equation. On the other
hand, the process often has the disadvantage of slow convergence
in numerical applications (3u4).

Application of the normal mode method, as discussed in
Section 2.3, to equations with variable coefficients does not
present a practical approach to these equations because the
eigenvalues and eigenvectors are all functions of the independent
variable. This functional dependency would require a different
modal matrix along each point of the independent variable
necessitating a possible averaging technique at each node. Be-
cause of these difficulties with the normal mode method, we shall
use the integral series approach in obtaining the solutions of
equations (3.20).

Noting that the differential operator of equations (3.20) can
be written as _g.:.[.;_: .EL. (i‘tx)] y the following variables are intro-

rir dr
duced in order to obtain a system of first order equations:

Ul = B ul U2 = r u2 Uz = rd,
. 14d ~ _1lad < _1ld -
(3.29)

In terms of these variables, equations (3.20) can be written as

shown below.
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{u}

[A(®)] {U} + {r(®)} (3.30)

3°

22x1 24%22 24x1 24x1

where

- —

(o] r(I]
x4 x4
(A(®)] = 1 (3.31)
HK ()1 [o]
24%x2% r
L x4 Lxs
r {0} N
_ L%l
m®r =« 5 (3.32)
{r(?)}
24x1
9 Lx1 J

Following the Peano-Baker form of integration (34), the solution

of equation (3.30) can be written as

1)

r r na=l
{u®)l = [a,(A)] {u(d)} + [a_(A)] ta gl {r(n)}dn (3.33)

22x1 24x2%  24xl 24%24 o 24x2%  24xl

where {U(3)} 1is a vector which consists of the boundary values
of (#i) and [«J!'--g-;(i‘ﬁ)] at ? = 0. The matrizant of [A] is

an infinite matrix integral series given by
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- * r
[ef(a)] = [1] +f [ACpy)dpy +J\ [A(p2)]d02
° o

o

3
J\% (ACpy)1de, +J\i [A(p3)]d93J\ [ACp,) dp,
(o} o o
2
f (A(py)ldey + . . . (3.34)

o

Substituting equation (3.31) into equation (3.34) yields

_
. [1] o [01 p,[1]
[(Q°(A)] = + dp,
° o [1] o | Xix.1 [o]
¢ [[[01 p,l1] o [ 01 oy1]]
) P—;[Kr] [o]J ) -5-1-[1<r3 [Ol_j
[ (01 pal1]] o 01 eyl
+ 1 dp3 J\O 1 dp2
o a5kl L01] o |5tKed [0] |

P2[ 0] ,[I]
. 1 clgl + . . .
o |3{x.1 (o]

P

Partitioning the matrizant of [A] according to (2.62) gives in
terms of the coefficient matrix [Kr] the following four matrix

integral series:
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2,1 = [I] +»\‘Iﬁ\ po[I1dpy [K plp1)ldp, + . .
LxL
bl
[912] = J\ pldpl + f [I]°3dp3
o

2
J'e = [Kr(py) 1o, f o (1o, + .
o

~

r iy
- 1 1
LxL ° °
3 P2 1
[I]p2d92 f -5-1- [Kr("l)]d"l + .
(3] o

P2

by
[922.] = [I]+ J\ %—; [Kr(p2)]clo2 J\ pl[I:ldpl +
(s

Lx% °

Differentiating these integral series with respect to # gives

d
T, = rmf [K(p))]do, + . .
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r
d - 5 1
: I I — [K d
= (9, r[1] + #[I] \[ > [Ky(py) 1dp,

* \f\ pl[I]dpl + . o °

d _ 1 1
= [921] = -;‘- [Kr] + 7 [Kr] f [I]p2d92

1l
™
o)
[
]

(@]
p2
. \[ %:1. [Kr(pl)]dpl + . .
r
%;[922] = %[Kr] fpl[IJdpl ...

o

Inspection of these equations shows that the following relation-

ships exist among these four submatrices:

é.gg.[nll] = [9y,]
(3.35)

P00 = (000K ]
1d 3
;‘gg[ﬂlgl = [a,,]

f (3.36)

4 -

Po00,) = [9),)K]
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r
d . - 1
3[912] = P[I] + PLI] J\ 5-2-[K,(92)Jd92
o
P2
. f pLIldey + .
o
d _ 1 1
E—;— [92]_] = 'I:: [KI‘] + 'I:: [KI‘] f [I]pdeQ
o
p2
. 1
J\ 5= [Kplp)ldp, + . .
1
o
r
d _ 1

o

Inspection of these equations shows that the following relation=-

ships exist among these four submatrices:

d
%-5[911] = [9;,]
(3.35)
~ d
1d A
';' '5';"‘ [912] = [922]
> (3.36)
d. B}
r I [922] [QlQJEKr] J




2]
LR

o the Ze:

9
o
©
ot
Ty
a
lad
ct
.

Otzin &

velall :,.Cr.

watr!
-X eq..c

d

erent:,
dap:

<er;vati‘4e
€ Tegion

SLQ»
GOWS en
S that

de avoijeA

'Jsini

q

fqua-

;‘ |
Herer,

~q




103
From the definition of these matrix series we can conclude at

once that their initial values are

(2,%, = (1]
(25150 = (O

(3.37)
(9520 = (1]

Since the values of the submatrices [Qij] are difficult to
obtain from their series definitions, the above simultaneous
matrix equations may be evaluated by a suitable numerical tech-
nique such as the Runge-Kutta method. The necessary initial con-
ditions for this numerical solution are listed in (3.37).

In using a numerical method for the solution of a given
differential equation, it is usually necessary to solve for the
derivative of the dependent variable at the initial point. If
the region of interest includes the point ¥ = 0, equation (3.35)
shows that %? [9,;] at T =0 is not finite. This problem can

be avoided by defining a new variable [le] as
[a;,1 = 30 (3.38)

Using equation (3.38) in (3.35), the following simultaneous matrix

differential equations will be obtained:
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d 1 %
dr 11 ;2 21 11 r=0
(3.39)
d % _ 3 % . B a
= [921] =z [921] + [Qll][K;], [921];=0 = [0]

By applying L'Hospital's rule, all the necessary derivatives in
equations (3.36) and (3.39) can now be evaluated. Note that the
matrix [K;] is obtained from multiplying the coefficient matrix
[Kp,] by 72 such that no element of [K;] contains an © in
its denominator.

If one Qere to use the series definitions for evaluating the
matrix functions [Qij], similar difficulties would be encountered
since at © = 0 some of the integrals would diverge. This
divergence is the result of trying to evaluate improper integrals
of the second kind.

At this time, the analogy between solutions (3.33) and (2.60)
may be noted. Reference (34) shows in detail that the matrizant
of a matrix of constants is identically equal to the exponential
matrix series (2.61). However, indirect meinous such as additive
formulas and accuracy checks such as (2.87) for evaluating and
checking these matrix functions are not available when variable
coefficient differential equations are treated.

It is evident from the above discussion that for specific
examples a closed form solution of equations (3.20) is not pos-

sible. However, the advantage of the line method over complete
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finite difference solutions is still obtained in that higher order
numerical solutions are utilized for the computations.

Additional comments on the selection of the matrizant method
over a direct numerical solution of equations (3.20) can now be
made. The advantage of using equation (3.33) is in its ability
to express two point differential equation solutions directly in
terms of given boundary data. Direct numerical techniques, such
as the single-step Runge-Kutte method or the multi-step predictor-
corrector methods (33) usually require that all initial point
data be known. Since in a two point boundary value problem some
of the initial data is unknown, indirect methods such as "shooting"
and successive approximations must be employed (33). This, of
course, leads to an inefficient use of the computer and should
be avoided whenever possible. In addition, it is well known that
direct numerical solutions for a system of two point differential
equations are not available.

3.5.1 Evaluation of the Particular Integral for the Radial
Differential Equations
In a similar manner to equation (2.80) we represent the

particular integral in partitioned form as

r 3

{By(#)}

®
ixl -1
= [2"17" {¥(n)}dn (3.40)
{B, (%)} °
o 24%22 24x1

2x1

\ J
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- —1_1
(8, ()} 2 | [0, (K,m) T (25K, )] (0}
= dn
(B, (1)) o LIy (Kum T [aypk ym[ | (r(n))

It was found that equations (2.83) also apply to the matrix func-
tions [Qij] and thus the above integrals may be written as

r

{B, ()} [le(Kr,n)] {r(n)}dn (3.u41)

e

{B, ()} [21;(Kpyn)]  {r(n)}dn (3.42)

o
However, the simple relationships of (2.63) between matrices

(1) and [2,,] and of (2.65) between matrices [Q;;] and
[012] in an analogous manner to [Aij] are not valid. Note that
the particular integrals in the circumferential and axial direc-
tions can also be expressed in a similar manner to equations
(2.84) and (2.85). Since {r(n)} in the above integrals is
unknown, we start the solution of the problem by assuming zero
values for the required quantities. Using the partitioned form
of the matrices, the solution of equations (3.30) can be written

as
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~ 1l ~ -
®} = =0, (KD} + (B(HD)
2x1 x4 Lx1 Lx1
1
t ¥ [ (K, P IUF,} + {B (F)]) (3.43)
LxL Lx1 L%l
where
F1} = {Puls_s
! o P=rinitial
1 Y
{F,} = {;—1; (?ﬁ)}~ = {u + %}, .
r dr r.oitial ¥ ) r=rinitial
.~ 1
i)y = ([921<x,,f>] - ?5'[911(Kr'f)1F{F1} + {BJ(M)})
r
2x1

+

([Rp0(K o F)] = 25 [0, (K D DUE,} + (B (8)})
r

(3.44)

Equations (3.43) and (3.44) give us the first estimate for

¥ ana e ®

the vectors {u(%) . It is assumed of course
that the boundary vectors {Fl} and {F,} ‘are known. Using the
calculated values of {ﬁ}(l) and {6}(1) we can evaluate the
vector {s(a)}(l). An analogous equation to (2.86) will then
give us the first value of {9(5)}(1) and {3(5)}(1). Using the
first solutions along theradial and circumferential directions in

the vector {t_(2)}, the axial solution is obtained from a

similar equation to (2.86). If with the repetition of this
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procedure convergence of the calculated variables occurs, an
approximate solution of a given problem can be determined.

Regarding the convergence of this process, the comments
and error checks of the previous chapter apply only to the axial
and circumferential equations. Since equation (2.87) is not
applicable to the matrix functions in the radial direction,
their accuracy can only be checked by varying the Runge-Kutta
integration increment. Since the homogeneous solutions of equa-
tions (3.30) are independent of the other two sets of differential
equations, this integration step can be arbitrarily small. The
values of the coupling terms in {r(%)}, {s(8)} and {t (%)}
can only be determined by the use of finite difference calculus,
since they involve displacements and derivatives that are defined
only at the nodes. Similar approximations of derivatives near
boundaries must be made as in the case of rectangular coordinate
problems.
3.6 Application to Specific Geometries - Annular Plate With

Internal Surface Cracks

A problem of some practical importance is that of an annular
plate containing part-through cracks on the inside surface and
which is loaded by a uniform radial stress of. 0o on the outside
surface. In order to minimize the numerical computations, we have
assumed four internal cracks located symmetrically at ninety

degrees to each other. The closed form solution of this problem
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is extremely difficult to evaluate because the stress and dis-
placements fields of a circular hole interact with the singular
stress fields of the cracks. Figure 5 shows the geometry and
loading of the problem under investigation. Because of the
symmetric geometry and loading, only one-sixteenth of the origi-
nal plate has to be discretized. Figure 6 shows this region of
interest and the assumed crack geometry. The displacement fields
in the plate are described by the solutions of the three sets of
simultaneous ordinary differential equations. Inspection of
Figure 6 shows that non-dimensionalization with respect to the
outside radius is more convenient in this case since the crack
has two characteristic dimensions. Values of the non-dimension-
alized variables &, b, &, d, ¥ and 50 used for this problem
are also shown in Figure 6.

At this time we return to solutions (3.43) and (3.44) and
note that the initial value vectors {Fl} and {F,} are unknown.
Using equation (3.6), the given normal stresses on the inside and
outside surfaces of the plate can be written in discretized form
as follows:

™ - A (L (5 + - ur + (). . (3.45)

o A+2G ro ro r=rqg
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Figure 5. - Annular plate with internal surface cracks under uniform external tension.
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Figure 6. - Part of annular plate with internal surface cracks.
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8, = 45°
v=13

N~y

Figure 6. - Part of annular plate with internal surface cracks.
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: 1 A (1, L1 . )
{u};‘=B = 3120 {o’o} - ma (B- {V} + 5 {u} + {w} =5 (3.u46)

Using equation (3.45) in the definition of ({F,} and combining
this with the definition of {Fl}, the following equation will

be obtained:

~

A v A e 2G
{(F,} = - -—). - (Wl v~ 4 ——m—— {F,} (3.47)
2 M26 \Fofp=p,  M26 T TTTo  (420);2 1
o

In the partitioned matrix form, solution (3.33) at % = b can be

written as

r p _ _

{bu} (9, (Kp,B)] [Q)5(Kp,b) 1) [{F1} + {B(B)}

{f, +§. Lmzl(Kp'B)] |:Q:,2(1<r,1~>)]J {F;} + {B,(b)}
- /

(3.48)
From equation (3.48) two matrix equations can be constructed which
when combined with equation (3.46) lead to a similar equation to
(3.47) relating the vectors {Fl} and {Fy}. The result cf this

manipulation is



>
Y
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= A -1 é_ & - %
F} = %ae 9] <{B}+{w}> gl l{me}

-1 -1
- (8,(B)} - [, 7[Q MF,}- [2,177(a 1{B,(B)} (3.49)

where
(0] = — [0, (K,B)T - (23K ,B)]
a (A+2G)b
[(e.1 = ——2-9-—[9 (Kk_,B)1 - [a,,(Xx ,b)]
b (M20)52 2T 227r?

Simultaneous solution of equations (3.47) and (3.49) gives us the

following results:

- A -1 -1 ".} 2 ,
F = — [ o -
A -1 -1 v 2
+ VOIS La 1 "la_] [Qb]<{;‘o}+{w}> .
o
“1rg =1 ] %o “l,n oo
- [e.)77e,) m}- (2 1 7{B,(b)}
- [9.77 0,100, 1B, (B)} (3.50)
where

2G -1
1 = ([1]+ —7 (e,] [Qb]
(A+2G)E~o



lly

2G) -1 -1 A {\:7 } {.‘L}
—_— (e 1] L] - ——= [I] =— )+ (W
((A+2G)2§‘02 c : T a2 > ( To P=t

{F,}

(k+2G)f~°2 c A26
(x+2@.)2~ ( b 7=b
26 1 . 1 -1
- — Q] {By(b)} + [Q 1 "[0,] T[Q_1{(B (B)}>
(A+2G)502< < 1 < d bom2

(3.51)

Equations (3.50) and (3.51) define the necessary initial vectors
for the case of zero inside surface radial stress and for a

given radial stress o, on the outside.

o
For the problem shown in Figure 6, the boundary conditions

in the 2z direction are analogous to those developed in Chapter 2

for the x-directional boundary conditions. As a result of using

equation (3.8), the analogous equation to (2.90), of course, will

contain additional terms because of the cylindrical coordinates.
Along the circumferential direction, the following boundary

conditions are enforced in the crack plane through the use of

vectors {F3c} and {Fuc} which are defined analogously to

those in equation (2.93):

{v(o)} = {0} (3.52)

outside crack
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2 - ~ by ~2 ~2
{v(o)}over = - {u}over - X:?E'({rU} + {rw})over (3.53)

crack crack crack

and from the symmetry of the problem
{v(e)} = {0} (3.54)

A similar partitioning technique to that described in Chapter
2 must be followed to correctly evaluate the elements of {Fsc}
and {Fuc}' Care must be exercised in performing this operation
since for surface cracks the elements of the associated matrices
must be reordered to arrive at the desired form of (2.93).

Investigation of the shear stress boundary conditions
involving planes of zero or uniform normal displacements will
lead to similar conclusions about the coupling vectors {r(¥)},
{s(8)} and {t,(2)} as in rectangular coordinate problems. As
an example, we consider the symmetry condition (3.54). The zero

shear stress conditions in that plane are

8=6
(3.55)

u
o

Og2
0=6
o

Using equations (3.9) and (3.11) we obtain
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1 v v
= % = < - 7=
r 30|~ ~ ri{. or{. .
0=0, 6=8 0=9
{3.56)
1a8
T 26| _ 3z | .
6=6, 6=6
. 8“; a;} o ~ ~
Since ¥, — and — are all zero in the plane 6 = 8_, we
ap 9z ©
find from equation (3.25) that {s(8)}3_3 = O.

o
Once the successive approximation procedure has converged

and the displacement fields in the plate have been determined,
the normal stress distributions along the sets of parallel lines

can be calculated from the following equations:

_ 2 u 1 .= s
{or} = (A+2G){u} + A({?}-r 7 {v} + {W}>along radial (3.57)
lines
_ 1l . Q g 3
{oe} = (A+2G) ({; i}} + {;}) + A({u} + {w})along (3.58)
circum. lines
_ 5 5 fﬁ %
{oz} = (A+2G){w} + )\Gu, 1 ‘L%}*{?})along axial (3.59)

Noting the terms in the above equations, we expect to satisfy
normal stress boundary conditions again with good accuracy. The
shear stresses at each node can be obtained from using equations
(3:.9) through (3.11). These equations, however, can be evaluated
only through the use of finite differences. Computed stress and

displacement results for the problem of Figure 6 are tabulated
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in the following chapter.

3.7 Axisymmetric Problems

The field equations (3.1) through (3.3) and the stress-

displacements relations (3.6) through (3.11) are greatly simpli-

fied for problems that have circular symmetry. It is known that

for problems of this geometry, the circumferential displacement

is inherently zero at every point and all the remaining variables

are independent of the circumferential variable 6. Equations

(3.1) through (3.11) are then reduced to the following form:

where the dilatation, e

oe 2 1

— 4+ (1-2v) (v - -2) u = 0 (3.60)
or 8 r

oe 2

—2 4+ (1-2v) Vw = 0 (3.61)
oz S

s» and the Laplacian, Vz, are given by

25 u ow

e = -t — (3.62)
8 oar r 03z
2 2
voo= 2413 43 (3.63)
s ap2 T 9r 432
The stresses in terms of displacement variables are
= & u,
o, = (A26) o T A(?+ '3'5) (3.64)
0g. = (A426) B4 [y 3.‘-’-) (3.65)
Os r or 3z
= v du _ u
0,6 = (A+26) v A(-s—-r -) (3.66)
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g = g (¥ (3.67)
rzs ar 9z

The other two shear stresses are zero at every point in *he body.
Solution of these equations can again be obtained by the method
of lines together with the successive approximation procedure
and the applicable boundary conditions.
3.7.1 Ordinary Differential Equations and Boundary Conditions
in the Radial Direction

Since at this time the solution of only two partial
differential equations is desired, two sets of parallel lines are
constructed along the axes of the independent variables. Figure
7 shows an arbitrary axisymmetric cylindrical body with the
necessary discretization. For convenience the lines are evenly
spaced with h, and h, each equal to some given constant. The
radius of the solid is assumed to be uniform so that the length
of all radial and axial lines is the same. The uniform spacing
of lines again provides an advantage for more easily evaluating
the resulting differential equations. Tnis -.._.~s from the
axisymmetric condition since for these problems both sets of
ordinary differential equations have constant coefficients,
However, the particular solutions for these problems are limited
in the same manner as those for the previous cases.

For the solution of equation (3.60), the ordinary differen-

tial equations are developed along the radial lines in Figure 7.
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/ \
// )

Figure 7. - Sets of parallel lines for axisymmetric problems.
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The radial displacements along these lines will be denoted as
Ups Uys « o o3 Uy~ We define &Il, QIQ, o o e &INR as the
derivatives of the axial displacements of the same points on
these lines with respect to z. Using equation (3.62) and (3.63)
in equation (3.60), the following equation is obtained along the
first radial line of Figure 7:

2

2 .
d“u du u - 3 u
S i iy, (1-2v) 1, L - (3.68)
2 r dr 2 2(1-v) | 52 2(1l-v) dr
dr r z 1
where
2
] Ul _ U2 - 2ul + Uls
2 = 2 (3«69)
92z hz

The zero shear stress condition on the plane 2z = 0, gives

dw
= ——m— c7
uls 2hZ arl, tu, (3.70)

Combining equations (3.68), (3.69) and (3.70) yields

2
dup 1dw ow | 2a-2w) 22w o A
qg2 . rdr T2 _2(1-\;)}12 27 w2 YT aaey

2 -
(3.71)
where
dw 2 \d
F1(r) = S+ (1-2v) ___)_w_ (3.72)
dr 1 hz dr 1

Similar differential equations are obtained for the other

radial lines. Noting that equation (3.71) was developed for a



121
surface line, the form of the interior line equations will differ
according to the application of known shear stress conditions.
The above equation can again be non-dimensionalized with respect

to a crack dimension "a"

in accordance with equations (2.28) and
(3.19). Using matrix notation, the system of differential

equations along the radial lines can be written as

2
d 1d 1Y\ ..
(‘:‘z‘ YTEC "2') @ = [Kl {u} + {rg(®)} (3.73)
dr r
NRx1 NRxNR NRx1 NRx1

where the coefficient matrix [Krs] and the column vectors

{u} and {rs(§)} are given below.

2k3 -2k3 0 0 0
ISR IS R ]
-ks 2k3 -k3 0 0
[Kpgl = o |~ | T~ ~ o 0 (3.74)
~ S~ ~
NRxNR 0 0 -k3 2k3 -k3
- .

o = (1-2v) 1
3 2(1-v) 72

z
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r °
R &y o =2 )
l di" l + TV HZ d?‘ l
3 d‘:._’,
2 =,
~ N ~ - l *
=( . e (r)} = . 3.75
@ = - o 2(1-v) _ ) (379
NRx1 . NRx1 d&
u W
NR-1 dPinp-1
UyR Qo (1e2v) 22
. J Ldr NR hz dr NR )

In contrast to the general radial coefficient matrix (3.21), the
matrix (3.74) has constants for its elements. Note that it is
also singular.

Although the above matrices can also be obtained by reducing
the general cylindrical coordinate problem of Section 3.2, this
reduction is not so evident. Assuming that {rs(i)} is known,
closed form solutions of equations (3.73) can be obtained.

3.7.,2 Ordinary Differential Equations and Boundary Conditions
in the Axial Direction

Solution of equation (3.61) is obtained by constructing a
set of ordinary differential equations along the axial lines of
Figure 7. The axial displacements along these lines are denoted
as Wy, Wpy o o «y Wyge We define ﬁll, ﬁ|2, o ¢ oy GINZ as
the derivatives of the radial displacements of the same points

on these lines with respect to r. Using equation (3.62) and
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and (3.63) in equation (3.61) the following equation is developed

along the first axial line of Figure 7:

: 2 2 2
dzl, = rp dzl, g2 ar?  Tlar  dz?

(3.76)

Using equation (3.67) and the known zero shear stress condition

along the axis of the cylinder, we have

1% _ 1 du (3.77)
I‘l or rl le

Symmetry of the problem also leads to

2
W1 . L (wy = 2wy + w,) (3.78)
2 2
or h
r

Since r) = 0 along the axis of the cylinder, the terms contain-
ing ri; in the denominator must be investigated. For a uniformly
loaded axisymmetric problem, the radial displacements along the

cylinder axis are inherently zero. This implies that the term

1 du

3 is indeterminate and L'Hospital's rule can be used to
ry dz

1
find its limit. Thus, we have

2 d_ul :
lim 1ldu = 9r \dzl;/ _ du
r dz|, —

r - r) dz

(3.79)

1

Substituting equations (3.77), (3.78) and (3.79) into equation

(3.76) gives
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2
d'w _ £.(2)
2l _ 2(1—2v)2 wl 2(1 2v)2 Wy 4 1 = 0 (3.80)
dz 2(1=-v)hi, 2(1-v)hy, 2(1-v)
where
£,(2z) = (1+2 )d—f’- (3.81)

Similar differential equations are obtained for the other
axial lines. Since equation (3.80) was developed for the special
case of a line along the cylinder axis, the form of the equations
along the interior and surface lines will differ according to the
position of the line. It will be convenient to non-dimension-
alize these equations according to the method of the previous
section. Using matrix notation, the system of differential

equations along the axial lines of Figure 7 can be written as

2
L (3} = [Kygl (W) + {tg(2)} (3.82)
4z2
NZx1l NZxNZ NZx1 NZxl

From Figure 7 it can be noted that for any given axial line
the radius is a constant. We define the raaius at each axial
line as r;, i =1, 2, . . .NZ, where ;1 =0 and Ty, = b.
For a uniform radial increment ﬁr: the radius at any point is

(i-l)ﬁr. Using this notation, the coefficient matrix [K ] can

be written as follows:
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- -
2 -2 0 0 0 0
1l 3

- 2 - 0
5 2 0 0

k
. _18 N
(K, = > . . _(21_3) N _(21-1) . (3.83)
AN
0 0 0 \\ 2 \\\\
0 0 0 0 =2 2
L— -
k 8 (1‘2\)) g_
1 2(1-y) | h2
r
i = 2, 3’ o o e Nz-l
2i-1\¥18
The upper diagonal elements of [Kzs] are given by - 3157
s .3\ k
while its lower diagonal elements are given by -(%i-—g.)_%ﬁ for

i=2,3,. .., N2-1, Note that the elements of [Kzs] are all
constants and since the sum of the elements in any given row is
zero, the coefficient matrix is also singular. The column vectors

in equation (3.82) are listed below.

o= |y @y, @y ... gy |
NZxl



5y} = -1
{ts(z) 00 ﬁ

NZx1

i =
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du
(1+2v) ==
dz 1
dal L au
4t 1 du
o t — =
dz 3 Qhr dz 3
dz| (i-Dfp dzl,
a e &
di NZ-l NZ'2)EI\ d% NZ_l
di 1 dd -2 dd 1 4t
dz P dz F.dz T az
NZ r b
J
(3.84)
2, 3. . ] LN NZ"‘l

Assuming that {ts(i)} is known, the solution of equations

(3.82) can be obtained by the previously discussed matrix methods.

3.7.3 Solutions of the Ordinary Differential Equations for

Axisymmetric Problems

Although the methods discussed previously can be employed

to solve equations (3.73) and (3.82), there are certain simpli-

fications that are possible.

First of all we note that the
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coefficient matrix [K. ] is a tri-diagonal matrix having the
desired form of (A.l). Thus, a closed form solution of the
eigenvalues and eigenvectors of [Krs] is possible and from
equations (A.16) and (A.18) these eigenvalues and eigenvectors

are respectively

— i-1 .
Ai = 2k3 (1 - COS(NR-l) ] i=1,2,. . ., NR
(3.85)
[stn] = COS M- j = l’ 2, . . o9 NR
NR=-1
n=0,1,2, .. ., NR=1

(3.86)
Using the above matrix of eigenvectors, we diagonalize the
coefficient matrix as in equation (A.22). Following the solution
of (3.33), the matrizant of [A] can still be found by solving
the matrix equations (3.35) and (3.36) subject to the initial
conditions (3.37). However, these matrix functions are all in

diagonalized form now, since [K is a diagonal matrix. The

rs]
amount of numerical computations in the Runge-Kutta integration
procedure is greatly reduced. The diagonalized matrix functions
are then transformed into full matrices by the appropriate
similarity transformations at each position along the radius.

It must be noted that for axisymmetric problems an analogous
variable to equation (3.38) must be introduced. Since [K,g]

is a matrix of constants and the matrix [A] has the form of
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(3.31) this variable is f[QQl] rather than ©3[Q

analogous matrix equations to (3.39) are
a1 = [8F 3 (913, = (1]
ar 11 217 1l-r=0
(3.87)
d % 1, % *
—=[2,,] = =I[a,,]1+ [a,,1(K J; [, 1. = [0]
= 2l = Ly 114 s 8 Ll -

Once the matrix functions [Qij] have been determined,
the particular integrals can be obtained from analogous equations
to (2.84) and (2.85). The solution of equations (3.73) are then
found from using equations (3.43) and (3.44). In the numerical
examples for the cylinder with a penny shaped crack, the above
procedure was followed in evaluating the radial solutionms.

An alternate approach to the solution of equations (3.73)
may be used which avoids the problem of evaluating the matrizant
of [A]. Let us define a set of variables, {n(#)}, by the

transformation of
{u(r)} = [pg] {(n(r)} (3.88)

where [Ps] is the modal matrix of [K, J. Substituting equa-
tion (3.88) into (3.73) and pre-multiplying the result by
[Ps]"l we obtain a set of uncoupled second order differential

equations in {7}.

2 d
( + —_— ){.ﬁ-}
dg dr

[a 9
—

[A H} + [P T Hr ()} (3.89)

s~

o}

X
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The elements of [A, ] are the eigenvalues of [Krs] and [Ars]
is a diagonal matrix. Equations (3.89) then constitute an un-
coupled set of modified Bessel's equations of the first order
containing parameters A; (40). The solution of an equation of
this type is well known and may be written as shown below (4l).
The solution is written, say for the first equation of the above

set.

3
() = \J/F\fl(pl)[Il(iipl)Kl(Xi;) - K (X1py )T, (X 7)1dpy
o

1

- - - 1, ,— - - 1 -

(X, 7) (3.90)

1

where I (%7), K (X;7), I;(X;%) and K;(X;%) are modified
Bessel functions of the first and second kind. Ei and C, are
constants of integration which must be evaluated from the bound-
ary conditions and il(pl) is the non-homogeneous term in equa-
tions (3.89) obtained from the product of the first row in
[PS]"l by {r (¥)}. Given boundary conditions may be also
transformed according to (3.88) in order to obtain the necessary

conditions on {n}. Once the above solutions have been evaluated,

an inverse transformation will give us the closed form solutions
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of {u}. This solution method, however, is only possible for
axisymmetric problems.

Since a closed form solution of the associated eigenvalue
problem of [K ] is not possible, the matrix series methods
of Chapter 2 must be used to find the solutions of equations
(3.82). Because the two sets of differential equations in the
radial and axial directions cannot be decoupled, the previously
described successive approximation procedure must also be
utilized.

3.8 Application to Specific Geometries

Until this section, the results of the numerical examples
presented could not be checked against known solutions since
none were previously available. At this time, however, we pro-
pose to solve the problem of a cylindrical solid containing a
penny shaped crack and loaded by uniform tension normal to the
crack plane. A closed form solution for a similar geometry and
loading has been obtained previously by Sneddon (42) with the
exception that his cylinder was infinitely large. This problem
can be regarded as the three-dimensional extension of the
Griffith crack problem and its solution is one of the few analyt-
ical solutions available today. Hence, as the length and diameter
of a finite geometry cylinder are increased, the solutions ob-
tained from the line method should approach Sneddonf's solution.

This problem is also representative in that the less
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accurate numerical solution is used to evaluate some of the
required matrix functions. A relatively coarse grid is selected
so that the previously mentioned advantage of the line method
can be established. It is the primary purpose of this example
to examine the rate of convergence and the accuracy of the line
method in solving three-dimensional, mixed boundary condition,
elasticity problems.
3.8.1 Solid Cylindrical Bar With a Penny Shaped Crack

Figure 8 shows a cylindrical bar containing a penny shaped
crack and loaded by a uniform normal stress distribution. Any
numerical approach, of course, is restricted to a finite geometry
problem and strictly speaking Sneddon's solution cannot be
duplicated by an analysis using the line method. In the follow-
ing analysis, only a few convenient values of b and L will
be used to show that Sneddon's solution is approached as the
length and diameter are increased. An examination of Sneddon's
solution shows that a change in radius is more significant for
the agreement of the two solutions, than a change in bar length.

In constructing a set of lines for a given crack geometry,
the question of the crack edge location relative to the nodes
must be considered. Since we specify boundary conditions at the
nodes only and it is through given boundary data that a crack
surface is specified, we shall assume throughout this paper that

the crack edge is located midway between adjacent nodes. Then
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radius = a

Figure 8. - Solid cylindrical bar with a penny shaped crack.
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as we refine the selected grid, the exact crack edge location
becomes more accurately established. Note that in the limit,
this grid refinement would require the impossible task of
satisfying mixed boundary conditions at the same point. 1In
addition, plane elasticity solutions have shown that displace-
ment gradients become singular at that point.

Since the solution of the axisymmetric problem is but a
subcase of the more general cylindrical coordinate problem, the

radial displacement solutions can be obtained from the following

equations:
< 1 , -
{a(p»)} = - [Q11(Kpg,8)] {Bi (P}
l -~
t 7 [05(K 5,801 ({Fpg} + {Byg(¥)]) (3.91)
() = ([a(kegy ] = T3 10150, D] (g} + {Byg (M)
b0y, (K hP)] - 55 [0y (K, D)D) (B ()} (3.92)

r

where © # 0.

Since we have zero radial displacements along the cylinder
axis, the vector {Fls} = {#i(o)} 1is equal to zero in the gen-
eral equations (3.43) and (3.44)., Using the zero radial stress
condition on the outside surface, the vector {F,.} can be

expressed analogously to equation (3.51) as
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A -1.2
{Fpgt = — (9,1 "Wl .
2s A+2G bs r=b

-1 ~
- [QbS] [Qas]{BlS(B)} - {st(b)} (3.93)

where matrices [Qas] and [Qbs] are defined to be the same
as those in equation (3.49) except that the matrix functions
are dependent on [K 1 rather then [K 1 as before. Since
at this time the point # = 0 1is in the region of interest,

equations (3.91) and (3.92) become at % = 0 respectively

{u(o)}

(3.94)

{4(o)}

The first of equations (3.94) was obtained by applying L'Hospital's
rule to equations (3.91). The second equation comes from the
definition of {F, } and L'Hospital's rule.

After the necessary transformation of variables, the solu-
tions of equations (3,82) can be expressed in a similar manner
to equation (2,94), The associated matrix series, [Dij(KZS,E)]
and the particular integrals {B; (2)} and {B,g(2)} are found
the same way as those in Chapter 2. We define the initial value

vectors in the 2z direction as follows:
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{F,_,}

3sa

NICxl

NOCx1

{#(0)} {F,.}

- = (. = Ty . q (3.95)
e {#(0)} {F,.} (F

4saq

NICx1l

(Figg)

NOCx1 J

.

where we adopted the partioning scheme of (2.93) in order that
the mixed boundary conditions in the crack plane can be con-
veniently handled. We follow an analogous development as in
Chapter 2 from equations (2,93) through (2.97). The results
of this development completely define the initial vector (3.95)

and they are listed below.

{F3SB} = {O}E=o
NOCx1 outside crack (3.96)
(r, )} = A [fy # (B
isa A+26 rf3=0
NICx1l over crack

Equations (3.96) are specified boundary conditions in the crack

plane. We also have
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_ 1 -1 _ -1 13 EE
{Fuse} voy [Da] {ooB} -A[Da] ({us} + {;‘})iiﬁ
NOCx1l NOCxNOC NOCx1l NOCxNOC NOCxl NOCx1
= 2 [p.7Y [Dyy41] [Dyy 11°L (0}
\+2G a 2181 2lal aoa

NOCxXNOC NOCxNIC NICxXNIC  NICxl

. o
- DD T [Dyygy] [Dpyq107" ({Ga} +{§;‘i}), .
z=L

NOCxNOC NOCxNIC NICxNIC NICxl  NICxl

- D01 [Dp]  {Byga(L)} - (Bygy(DD}

NOCxNOC NOCxNOC  NOCxl NOCx1l

P2t g (dg e
A+26 @ c a ? J/3=0

NOCxNOC NOCxNIC NICxl NICxl

- [0 It Dl {Byg (L)} (3.97)

NOCxNOC NOCxNIC NOCxl

Uso

Matrices [Da]' (Dy1, [Dc] and the partitioned submatrices of
[Dﬁ] are the same as those in equations (2,96) and (2.97)
except that in this case they are functicns'of <Kzs' z=L).

Note that the particular integrals, the applied stress vector,
the radial displacements and its derivatives are also i:artitioned

according to their location with respect to the crack. The crack
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opening displacement is given by

1 -1 -1l [ u
{F3Sa} T A+26 I:Dlel] {ooa} - A[D2lal] 6“0;} +{¥q})§-ﬂ
NICxl NICxNIC NICx1 NICxNIC NICxl NICxl

: 1 .
= (Byeg(D)} = [0, 170 [0y, {Byg (D)}

NICx1 NICXNIC  NICxNOC NOCxl

- 00510177 [Dppq1] {Bygqe(D)}

NOCxNIC  NICxNIC NICxl

A -1 2 Q
" Sezg P2ald  [Poga ] ({ua} +{-§})§=o

NICxNIC  NICxNIC NICxl NICxl

-1
= [Dy141d 7 [Dypqp] {Fyggl

NICxXNIC NICxNOC NOCxl

-] >

NICxNIC NICxNOC  NOCxl

where {F“SB} is given by equation (3.97). Although the matrix
[D21(Kzs,ﬁ)] is singular, the partitioned matrices are not. In
calculating the above equations, the indeterminate terms at
r=0 must be carefully considered.

Similar conclusions regarding the elements of the coupling
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vectors {rs(5)} and {ts(;)} can also be noted from the
zero shear stress conditions along lines of uniform normal dis-
placements as in equation (2.100). Equation (3.67), when

applied to the coupling vectors, gives

{rs(;)}~ = {0}
r=o
NRx1l
(3.99)
{ts(i)}z;o = {0}
NOCx1 outside crack

Once the displacement field in the bar has been calculated
and the successive approximation procedure has converged, the
normal stress distributions along the radial lines can be ob-

tained from

{crs} = (A+2G){ﬁ} + A({}%} + {;}f> for 2 # o
r

(3.100)
{°r5}§=o = 2(A+G){ﬁ};=o + A{é};zo forr = o
{o_ } = (x+206) {2} + A({ﬁ} + {v%}T) forr # o
0s r
(3.101)
{aes};=° = 2(G){uky_ + (whp g for r = o
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{o,} = (26) ()T + AGG} +{;}) r#o0
(3.102)
lo,e} = Ow20){ilg, + 2Tk, for ¥ = 0

For convenience, all the normal stresses are expressed along
radial lines in the above euqations. Note that at r= 0,
the radial and circumferential stresses are equal. The shear

stress at each node can be calculated from

i () e

along radial lines
where for the required derivatives, finite difference calculus
must be used.
In using the given stress equations in cylindrical coordi-
nates, the relationships between Lame's constants, Young's
modulus and Poisson's ratio are needed, since the non-dimension-

alized displacements and their derivatives are expressed in terms

o
of some constant times EFL The needed identities are
(A#26) = —E(l=v) (3.104)
(1+v)(1-2v)
A = VE (3.105)
(1+v)(1-2v)
(A+G) = E (3.106)

2(1+v)(1-2v)
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Numerical values of the stress and displacement distribu-
tions for the problem of Figure 8 were calculated for a number
cf different geometry cylinders. These results are given and
discussed in the following chapter.
3.8.2 Hollow Cylindrical Bar With a Penny Shaped Crack

A problem very similar to that described in the previous
section is that shown in Figure 9. As shown in this figure,
an internal hole is assumed through the center of the penny
shaped crack, which introduces stress free surfaces on both sides
of the crack edge. For convenience in the manipulations, the
radius of this hole is taken as h,, that is, the radial incre-
ment. The differential equations in the radial direction are
identical to equations (3.73) and only their boundary conditions
need be modified. Since the radius at any point in this problem
can be expressed as rj = i*h, i=1,2,3,. . ., N2, the
form of the coefficient matrix (3.83) will be different than for
the solid cylinder. The coupling vector {tg(z)} must also be
modified accordingly. The results of these modifications are

shown below.

r L.
dﬁl L L an , (2 1 )dﬁ]7
hye——ad Ty 4 1_2 - e T T
iz, T @ VIR, "5/ @ N
~ -1 as 1 dﬂl }(
t . (2)} = + —+ — 3.107)
ttgn(=)) 2(l-v)< dz|; Py dzZly
NZx1 .
2 ) -
@ ES o[ )]
\dz NZ z hn 2 NZ)
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Flgure 9. - Hollow cylindrical bar with a penny shaped crack,
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We also have

- -
2 -2 0 0 0 0
3 5
- 2 -2
m = 0 0 0
AN N\ \
0 N N\ N 0 0
, N N N
K1 = 18 : N . (3.108)
zsh — 21-1 2
2 | o 0 -( : ) N -( rf) 0
21 \ 21
NZxNZ AN AN
0 0 0 N 2 N
N N\
0 0 0 0 -2 2

where i =2, 3, . . ., NZ-1 for both (3.107) and (3.108).

Solutions of the radial differential equations for this
problem can be obtained from similar equations to (3.43) and
(3.44). The initial condition vectors {F1sh} and {F2sh} are
obtained from the zero radial stress conditions on the inside
and outside surfaces. The results can be derived by setting
{3} and {co} equal to zero au.i setting Ty = ﬁr in equations
(3.50) and (3.51).

Solutions of the axial differential equations are expressed
by a similar equation to (2.94). The initial condition vectors
needed in these solutions are identical to those listed in
equations (3.96), (3.97) and (3.98). The normal stress distri-

butions are found by using equations (3.100) through (3.102)

where the equations for r = 0 are not applicable.
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Equations similar to those described by (3.97) and (3.98)
can also be developed for a displacement loaded cylinder. An
applied external radial surface load could also be easily in-
corporated into the modified form of equations (3.50) and
(3.51). Numerical results for the problem of Figure 9 are
presented in the next chapter. The case of an additional
external load of o, on the cylinder of Figure 9 was also
investigated. Detailed results for this problem are of no
specific interest but some general conclusions about the effect
of this radial load will be reported in Section 4.2,
3.9 Stress Intensity Factor

Most of the early analytical work in fracture mechanics
was based on the plane theory of elasticity. Consequently,
the elastic stress field equations usually employed in the
engineering analysis of real problems are based on the plane
elasticity assumptions. It is customary in fracture mechanics
to describe the crack opening displacement as a superposition
of three basic deformation modes (5). The first mode, mode I
defines an opening mode where the crack surfaces are displaced
normal to the crack plane. The second mode, mode II, is described
by displacements in which the crack surfaces slide over one
another perpendicular to the leading edge of the crack. The
third mode, mode III, defines a tearing displacement where the

crack surfaces slide with respect to one another parallel to the
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leading edge of the crack. Superposition of these three modes
is sufficient to describe the most general case of crack tip
stress and displacement fields. The stress intensity facters

K and K

for these three modes are designated KI’ II III

respectively. Since the examples discussed in this disserta-
tion have geometric symmetry and are symmetrically loaded, only
the opening mode of crack displacement will be obtained. Values
of K;, as subsequently defined in this section, are calculated
from the obtained crack opening displacements. Knowledge of
this factor for a given geometry and loading can then be possibly
used to predict failure of a structural component.

Since three-dimensional problems are neither in a state
of plane strain or plane stress, the definition of a stress
intensity factor for these problems must be first established.
The first problem to be considered in detail is Sneddon's penny
shaped crack solution. Reference (42) gives the crack opening

displacement as

uao(l-v2) —_——
Va - . (3.109)

z=0 nE

which for small values of R, where R = a - r, becomes

2
uoo(l-v )
| =

Z2=0 TE

2aR (3.110)

Paris and Sih (5) list the stress intensity factor for this

problem as follows:
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K; =.\/—_12'r— ag\/;- (3.111)

In terms of this stress intensity factor, the crack opening

displacement (3.110) becomes

K 2(1—v2) V2R

Wl,eo = ¥ e (3.112)

Rearranging this equation in terms of the known dimensionless

. E w|,- .
displacements — --l Z=0 gives
o, a

C.K ° (3.113)

where

u(l-vz)
E 2ma

(3.114)

Then a plot of equation (3.113) as the ;\/g-» 0 gives us the

desired value of 5— C;K; from which an equivalent stress

intensity factor for finite geometry cylinders can be calculated.
For the rectangular Cartesian coordinate problems, the

crack opening displacement near the crack tip is given by (5)

2(1- R
v[y=° = ——(—G—\’-)-KIA/E—‘"- plane strain (3.115)

v| plane stress (3.116)

K ——
y=o (14v)e I 2m
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Note that by definition the plane strain and plane stress stress
intensity factors are equal while the above displacements are
aprroximately 12.5% different for v = 1/3. Since the results,
to be discussed later, indicate that most of the bar in the
thickness direction is approximately in a state of plane strain,
equation (3,115) is selected to calculate the stress intensity
factor. Rearranging equation (3.115) so that the dimensionless

crack opening displacements can be utilized leads to

E_V]|y=o
c. a
E o
5T (2127

a

where C1 is given by (3.114). A plot of the above equation as
A//§T+ 0 can then be used to calculate Ki- Since the crack
opening displacement is a function of the thickness variable,
the stress intensity factor obtained above will vary in the 2
direction. However, if we were to account for the non=-plane
strain conditions near the surface by using equation (3.116) or
a corrected equation (3.115) for the definition of Ky, this
variation in the 2z direction would be minimized and the stress
intensity factor would become a constant across the thickness of
the bar by definition. This approach would essentially result

in a continuously varying definition of K, across the thickness.

I

It must be noted that the above description of K; is

completely arbitrary and it is questionable if it has any
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real significance in three-dimensional elasticity problems.

However, values of K based on equation (3.117), are still

I)

presented so that comparison between the calculated results and

the published plane strain solutions (5) will be possibie.



CHAPTER 4

RESULTS AND DISCUSSION

A computer program has been written for each of the numeri-
cal examples using the solution techniques of the preceeding
chapters to calculate the stress and displacement fields in
each case. With the exception of the annular plate with internal
surface cracks example, all numerical computations were per=-
formed for two arbitrary grid increments so that the convergence
of the finite difference approximations could be checked. 1In a
given direction, uniform line spacing was used in all calcula-
tions with no other restriction being placed on the selection of
the grid size. In general, an attempt was made to use a finer
grid along the direction of largest variable change. Previously
given numerical differentiation formulas show that their trunca-
tion errors are of Oh? with the exception of some boundary
terms in the coupling vectors {r}, {s} and {t} where Oh
derivative approximations were used. However, the use of
parabolic differentiation formulas in these isolated cases led
to essentially identical results. Since numerical differentia-
tion is inherently an inaccurate procedure, analytic differentia-
tion is used wherever possible such as in evaluating the normal

148
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stress distributions.

An inspection of the ordinary differential equations and
their boundary conditions shows that decoupling of the dependent
variables is impossible and the previously discussed successive
approximation procedure must be employed. Since the derivatives
{u}, {v} and {w} depend on similar matrix functions, parti-
cular integrals and initial value vectors as the corresponding
displacement vectors, convergence of the displacements will
assure convergence of their corresponding derivatives. This
conclusion has been confirmed by the results of the numerical
examples presented below.

The computations for all the examples were performed on an
IBM-360 time sharing digital computer using double precision
arithmetic. Since the storage capacity of these computers is
essentially unlimited, no attempt was made to optimize the use
of the involved arrays.

4.1 Solid Cylindrical Bar With a Penny Shaped Crack

In order to establish the validity of the line method,
detailed results will be first presented for the solid cylindri-
cal bar containing a penny shaped crack and loaded normal to
the crack plane. A convenient combination of the non-
dimensionalized variables for which the evaluation of the

required matrix functions presents no difficulty is as follows:



150

1 f

- ~ 2

L = 1.68 h = =— = .[1176 4.1
r 17 ( )

b = 1.77

The selection of these dimensions results in the construction of
16 axial and 13 radial lines in Figure 8. According to the
above choice of Hr’ the number of lines inside the crack
surface must be 9.

The computations for this problem involved 22 iterations in
the successive approximation procedure using an arbitrary con-
vergence criterion of 106, This convergence criterion is
defined as the maximum difference in the absolute values between
successively calculated displacements at any point. The largest
element of the error matrix (2.87) was .0001 at z = 1.68. The
Runge-Kutta integration increment in evaluating the diagonalized
matrix functions [Qij] was .00l. The approximate execution
time for a problem of this size using the above given data is
3 minutes on an IBM-360 computer.

The results of these computations are presented in Figures
10 through 14 and Tables 1 through 5. For easy comparison of
data, some of these figures include Sneddon's results for an
infinite solid. Figures 10(b) and 11(b) show displacement dis-
tributions for an identical bar which were calculated from a

grid having only 9 radial and 9 axial lines. Figure 14 contains
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(b) Dimensionless axial displacement distribution (9x9 grid).

Figure 10. - Dimensionless axial displacement distribution
for a solid cylindrical bar with a penny shaped crack.
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(a) Dimensionless radial displacement distribution (16x13
grid).
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(b) Dimensionless radial displacement distribution (9x9 grid).

Figure 11. - Dimensionless radial displacement distribution
for a solid cylindrical bar with a penny shaped crack.
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Figure 12, - Dimensionless axial stress distribution for a solid
cylindrical bar with a penny shaped crack at Z= 0.
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% b=1.77 h, = 0. 140
L=1.68 (1613 grid)
31— v=13 —--- Extrapolated
¢, A=V
Intercept = 2.1 : EvZna
o Ky =1.4850,ya
> |ntercept=1.6
%) ==
wle Sneddon's solution
1 Bl Kp=L130,va
| I I I [ .
0 20 40 .60 80 1.0
R/a

Figure 13. - Calculation of the stress intensity factor K for a
solid cylindrical bar with a penny shaped crack.
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Figure 14. - Dimensionless crack opening displacements for
solid cylindrical bars with penny shaped cracks of various
lengths and radii.
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the crack opening displacements of several cylindrical bars
with different geometry. Figure 13 shows the method for calcu-
lating an equivalent plain strain stress intensity factor Ko
for three-dimensional problems from knowing the crack opening
displacement.

Inspection of Figures 10(a) and 10(b) clearly shows the
advantage of the line method over other numerical solutions. A
relatively coarse grid of 9 axial and 9 radial lines gave almost
identical results to that obtained by using a 16 by 13 grid.

Note that an approximate 100% change in Er and a 50% change

in Ez resulted in about a 2% change in the axial displacements.
Since the bar is of finite size, the crack opening displacement
is expected to be higher than Sneddon's solution. Consistency

of the results with this conclusion is obvious from Figure 14,
Figures 10 also show that the axial displacement is highest at
the end of the bar above the center of the crack. If the bar
were of sufficient length, the highest displacement curve would
be a straight line with a constant axial displacement. Note that
the crack opening displacement curve is assumed to be 2ero at the
crack edge rather than at the first adjacent node outside the
crack plane.

Figures 11(a) and 11(b) show the radial contraction of the
bar as a function of the length and radius. The contraction is

the largest, as one would expect it, at the outside surface in
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the plane of the crack. Note that symmetry of the problem
requires zero slopes along the displacement axes in both
Figures 10 and 11. In the plane of the crack, a sudden in-
crease in contraction takes place as can be seen from the curves
shown. This increase is due to the constraint free crack
surface which permits the higher contraction rate of the bar
outside the crack radius to exert a strong influence on the
material inside the crack. Similar arguments about the agree-
ment of the radial displacements in Figures 11l(a) and 11(b) for
corresponding positions can also be made as for Figure 10.

Figure 12 shows the stress distribution normal to the
crack plane as a function of the distance from the crack edge.
It is known that for linear elastic problems, this stress dis=-
tribution approaches infinity near the crack tip as the inverse
square root of the distance from the crack edge. Establishment
of this type of singularity is, however, difficult when
numerical methods are used because values of the normal stress
are needed within a distance of .05a or less of the crack edge.
With the equal spacing of lines used throughout the examples,
the minimum node location for these examples is about .06a. For
the range of r shown ;n Figure 12, this inverse square root
singularity is not valid. However, for the range shown, the
obtained stress curve closely resembles Sneddon's solution as can

be noted. Obviously, the absolute value of this stress is
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greater for a finite size bar than for Sneddon's infinite solid.
Note that the stress near the outside radius rapidly approaches
the value of the applied dimensionless stress of unity.

Figure 13 shows the calculation of the stress intensity
factor K; according to equation (3.113). The intercept of
Sneddon's solution is 1.6 which gives a stress intensity factor
of 1.13 oo'\/;T The stress intensity factor for an infinite
cylindrical solid containing a penny shaped crack is given by
equation (3,.111) as 1.13 UO“V,;: Thus, the validity of using
the method of Section 3.9 for calculating these values of Kp
is established. The stress intensity factor obtained from the
2.1 intercept is 1.485 co'\/gt Hence, the finite bar discussed
in Figure 13 has an approximately 31% higher stress intensity
factor than the infinite solid.

Figure 14 shows the crack opening displacement for several
cylindrical bars with different lengths and radii. The obtained
results clearly show that as the length and diameter of the bars
are increased, Sneddon's solution for ar ir€init+e bar is rapidly
approached. For a bar with b=1L= 3.43, the maximum difference
is only about 7%.

Tables 1 through 5 show selected results from the computer
listings. The accuracy of the normal stress and displacement
boundary conditions can easily be noted from the numerical data

listed.
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4,2 Hollow Cylindrical Bar With a Penny Shaped Crack

In this example the dimensions of the bar were intention-
ally increased along with the inclusion of a central hole
through the cylinder axis. The expected result of these changes
from the problem of (4.1) would be the minimization of the crack
influence upon the calculated displacement and stress fields.
Selected results of the computations for this problem are shown
in Figures 15 through 18. The physical dimensions of the prob-
lem are also listed in these figures.

Figure 15 shows the dimensionless axial displacement dis-
tribution as a function of the radius and axial position. Note
that the maximum crack opening displacement is less than that
shown in Figure 14 for solid cylinders. The reason for this is
that there is no load applied over the central hole surface and
the effect of this is to offset the weakening influence of the
hole. As expected, the displacement curves are essentially con-
stant once the results are plotted beyond the vicinity of the
crack,

Figure 16 shows the radial contraction of the bar. This
contraction is maximum at the outside surface and its variation
along the 2z direction is only about 9%, For a bar without a
crack, this outside contraction would be a constant along the
z direction, Comparison of the curves in Figure 16 to those

in Figures 11 clearly shows that the crack effect on the radial
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Figure 15. - Dimensionless axial displacement distribution for a
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Figure 16. - Dimensionless radial displacement distribution for a
hollow cylindrical bar with a penny shaped crack.
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Figure 17, - Dimensionless axial stress distribution for a
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Figure 18, - Calculation of the stress Intensity factor Ky for
a hollow cylindrical bar with a penny shaped crack.
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contraction is more pronounced for bars with smaller overall
dimensions relative to the crack radius. Note the sudden in-
crease in contraction near the crack plane along the inside hole
radius. This increase is caused again by the crack plane which
through its constraint free surface permits a contraction rate
approaching the contraction near the crack edge.

The dimensionless axial stress distribution in the crack
plane is shown in Figure 17. The shape of this curve is similar
to those shown in Figure 12. Note the relatively constant stress
beyond a radius of 2 which shows that the region of largest
stress variation is between r =1 and ¢ = 2. Similar com-
ments about the axial stress singularity can also be made in
this case as for the solid cylindrical bar problem.

The calculation of the stress intensity factor K; using
the crack opening displacement is shown in Figure 18. Note that
even though the crack opening of Figure 15 is smaller than
Sneddon’s solution in Figure 14, the calculated stress intensity
factor of 1.20 oo\u/s- is somewhat greater than the 1.13 coﬂv/;-
obtained in Figure 13. This is due to the more negative slopes
obtained for finite sized bars in Figures 13 and 18. However,
the stress intensity factor of Figure 18 is considerably less
than that calculated for problem (4.1) in Figure 13.

The application of a uniform radial stress, Oys to the

outside surface of this hollow cylinder was found to have no
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effect on the crack opening displacement. However, the axial
displacements beyond the crack plane were considerably lowered.
The radial displacements for this problem were all in the out-
ward direction rather than inward as shown in Figure 16. The
results of Figure 17 were also found to be independent of this
radial surface load. As expected, the main effect of a radial
surface load was observed to be in the calculated circumferential
and radial stress fields.
4,3 Annular Plate With Internal Surface Cracks

As a first attempt at the solution of a general three-
dimensional problem in cylindrical coordinates, the problem of
Figure 6 was solved using a grid of 16 lines in all directions.
Because of the relatively coarse grid involved, the calculated
data is listed in Tables 6 through 1l. The construction of
meaningful figures from these results is obviously difficult.
It must be noted, however, that due to the unknown nature of the
resulting solutions, the use of a coarse grid is always recom-
mended in generating the first set of displacements. This
practice may greatly complicate the programming of the necessary
equations, but it has the advantage of providing results quickly
from which the numerical limitations can be immediately recog-
nized. Since the construction of a general computer program for
this problem requires a great amount of effort, the listings of

Appendix B-3 apply only to the specific case when NR = N8 = NZ =

u
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Table 6., - Dimensionless Radial Displacements E;E for an

Annular Plate with Internal Surface Cracks Under

Uniform Radial Tension on the Outside Surface

Lo 1

.25 .50 .75 1.00

D

0° . 435 .671 . 786 .930

15° <940 . 890 . 896 .998

30° 1.168 .992 .968 1.058

yse 1.240 1.026 -994 1.081

0° .506 .680 .789 «930

15° .907 . 860 . 886 -994

(3

30° 1.092 .953 .957 1.055

yseo 1.152 .986 .984 1.078

15° . 795 .761 . 856 .985

30° .898 . 856 .932 1l.048

y5° . 942 . 892 <961 1.073

0° .716 .659 .769 e9wd

15° <752 . 727 . 845 .978

N

30° - 815 . 809 .926 1.0u49

_¢
1
!
'
1
!
l

yse° . 845 - 8u3 .957 1.077




169

Table 7. - Dimensionless Circumferential Displacenents

Uniform Radial Tension

Ev

o b
o
an Annular Plate with Internal Surface Cracks Under

on the Outsilde Surtace

tor

)

e 150 200 g0

’ .00 .718 . 565 .302 . 000
| 1
l .10 L 597 16 248 000 T |
— = .25
.20 .000 073 063 000 |

.30 . 000 .C09 012 LU00
.00 JU25 .235 .138 L0000 |

.10 . 350 .232 115 .00 T
£ = .50

.20 .000 .075 057 .000 ;
.30 .000 .023 .026 .000 l !
I
.00 .000 .037 .029 . 000 i
.10 . 000 .033 026 .000 T |
1 r = .75 :
. .20 .000 .023 .020 . 000 |
1 |
.30 .000 .0lb 01y .000 l !
i‘ .
.00 .009 .006 .00k g f ‘
S0 .000 .007 .005 .000 :
; Pz 1.0
.20 .000 . 009 .007 .000 ;
1
I .30 000 . 010 L007 . 000 l
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Table 8. - Dimensionless Axial Displacements g for an Annular
o

Plate with Internal Surface Cracks Under Uniform

Radial Tension on the Outside Surface

z
.00 .10 <20 .30
by
«25 .000 -.218 -.342 -.416
.50 .000 -.108 -.217 -.322 T
= 0°
.75 -.000 -.089 -.175 -.258 l
1.00 .000 -.076 -.152 -.226
.25 .000 -,098 -.216 -,338 T
.50 .000 -.049 -.131 -.232
= 15¢°
.75 .000 -.075 -,154 -.237
1.00 .000 -.074 -.149 -.226
.25 .000 -.068 -.167 -.281
.50 .000 -,040 -,106 -.195 T
= 30°
.75 .000 -.067 -, 141 -.222
1.00 .000 -.075 -. 152 -.231
.25 .000 -.061 -.153 -cCe
.50 .000 -.039 -,101 -.186
= 450
.75 .000 -,065 -.137 -.218
1.00 .000 -,075 -,153 -.233 l
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Table 9, - Dimensionless Radial Stress Distribution = for an
o

Annular Plate with Internal Surface Cracks Under

Uniform Radial Tension on the Outside Surface

B
} .25 .50 .75 1.00
8
00 .000 .020 1.062 1.00 T
150 .000 . 346 .837 1.00
2= .00
300 .000 .293 .48 1.00
450 .000 .282 .726 1.00 l
0° .000 .027 1.0u8 1.00
150 | .000 . 405 .872 1.00 T
. % = .10
300 . .000 424 .801 1.00
uso .000 424 .783 1.00 l
0° .000 | 1.305 1.026 1.00 T
150 .000 .968 .980 1.00
3 = .20
30° .000 . 840 .932 1.00
450 ,000 .801 .915 1.00
0° .000 ,872 1.005 1.69 T
15° .000 .950 1.004 1.00
2 = .30
300 .000 .966 .986 1.00
450 .000 .956 .975 1.00 l
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o
Table 10, - Dimensionless Circumferential Stress £ for an
o
Annular Plate with Internal Surface Cracks Under
Uniform Radial Tension on the Outside Surface
r
. .25 .50 .75 1.00
]
0o° .00 .00 1.702 1,251 T
15° . 308 . 803 1.542 1.339
Z = .00
30° .209 1.043 1.460 1l.416
ys5° 240 1.1u45 1.441 1.443
0° .00 .00 1.659 1l.248
15° .703 .957 1.534 1.331 T
zZ = .10
30° . 803 1.196 1.472 1.410
50 .863 1.270 1.456 1.439 l
0° 4,569 2.821 1.506 1.236
15° 3.609 2,011 1,526 1.313 T
2= .20
30° 2.971 1.706 1.506 1.400
y50 2.748 1.629 1.u498 1.432
0° 3.050 1.858 1.442 ——e 1
15° 3.110 1.879 1.500 1.301
Z = .30
30° 3.171 1.825 1.523 1.397
50 3.167 1.775 1,524 1.432 l
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o
Table 11. - Dimensionless Axial Stress EE for an Annular Plate
o

with Internal Surface Cracks Under Uniform Radial

Tension on the Outside Surface

r
. .25 .50 .75 1.00
G
0° -1.974 | -1,049 .030 -.014
15° - .939 - .126 .0u3 . 040
| z = .00
30° - .631 .0h1 . 064 .060
yso° - 544 .082 .070 .062
0° -1.597 | -1.073 .028 -.010
15° - .867 | - .210 .032 .031
zZ = .10
30° - .579 .006 .053 .0u6
'450 - .”’87 0055 0059 .0’48
0° . 500 .313 .002 -.004
15° -3.135 { -1.996 -1.504 -1.310 T
Z= .20
30° - 077 .070 .039 .019
ys° - ,097 .073 .0u2 .020 l
0° .000 .000 .000 .00
15° .000 .000 .000 .000
z = .30
30° .000 .000 .000 .000
ys° .000 .000 .000 .000
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in Figure 6. Although the results in Tables 6 through 13 are
preliminary, they still demonstrate that the previously presented
sclution techniques permit the computation of the required dis-
placement and stress fields.

As a result of having 16 lines in all directions, the
coordinate increments used in this problem were ﬁr = .25,

Ez = ,10 and Ee = 15°, Using a convergence criterion of 10"6,
the number of successive calculations in the iteration procedure
was 41. The Runge-Kutta increment in evaluating the matrix
functions Qij was .00l while the largest error matrix element
in both the circumferential and axial directions was less than
10~° at all points.,

Table 6 shows the dimensionless radial displacement dis-
tribution as a function all three coordinates. It can be
noted that the outward radial displacement increases as a func~
tion of angular position while changes in the 2z direction are
most pronounced at the inside radius. Table 7 lists the calcu-
lated circumferential displacements. These results show that
below the crack plane, the circumferential displacements are
essentially zero while the maximum crack opening is at
§=2=0 and at r = .25 as expected. Note that the crack
opening decreases with an increase in radius and thickness.

Table 8 displays similar results for the calculated axial dis~

placements. While both radial and circumferential displacements
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are extensional, the axial displacements are negative indicating
a contraction in that direction. This contraction is a maximum
at the plate surface and in the crack plane decreases with an
increase in radius. Displacement Tables 6, 7 and 8 clearly show
the accuracy of the enforced displacement boundary conditions and
that the number of normal lines inside the crack plane for this
example is U4,

Table 9 contains the dimensionless radial stress distribu-
tion as a function of the coordinates. The zero normal stress
boundary condition on the inside surface and the applied radial
stress of unity on the outside surface are evident in the results
of this table. Note that in the plane of the crack, that is for
0 <2< .15, the radial stress varies gradually between 0 and
1 while below the crack plane it is close to unity everywhere
except on the inside surface. The maximum value of this stress
occurs in the crack plane at r = .5 just outside the crack
edge. As expected, the radial stress is tensile or zero every-
where in the body.

The dimensionless circumferential stress distribution is
shown in Table 10. It is expected that this stress be the
maximum tensile stress in the body since the crack plane is
normal to the circumferential axis., Because the interaction
between the hole and crack stress fields is most pronounced at

the inside radius, this stress should approach infinity most
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rapidly at the inside boundary just below the crack edge. The
results of Table 10 seem to confirm this observation, although
we must also remember that the nodes are closer to the crack
boundary below the crack surface than along the radius. Note
that at r = 1, the stresses are essentially constant along
the 2z direction,

Table 11 contains the dimensionless axial stress distribu-
tion as function of the coordinates. The zero normal stress
boundary condition at Z = .3 is obvious from the results in
this table. Note that the axial stress is either zero or com-
pressive in most of the region except just below the crack edge
where a tensile axial stress seems to be generated. Because of
the coarse grid used, the numerical results presented for this
example are probably somewhat inaccurate in magnitude, but they
do indicate some previously unknown variations in the stress and
displacement fields for this problem. This conclusion is
possible in that the line method does not usually require a fine
grid for good results as was shown in Se-tinmn 4.1,

4.4 Bar With Through-Thickness Central Crack

The solution of the problem shown in Figure 2 was obtained
by using two different sets of lines along the coordinate axes.
Selected results of these computations are shown in Figures 19
through 26 and Tables 12 through l4. The computation time for

the example containing a 35 x 70 x 98 line grid was about 30
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/-Plane stress

J solution = a-10 V=13

b=20  hy=01333

2.40 ~ =
| 9 L=Ll75 Dy-0.250
2.w s hZ = 0. 30
1.60—
1.20—
80—
40—
0 -
z° o (a) Dimensionless crack opening displacement (48x96x128
3° grid).
2.40“__ 7 a=10 v=13
b=2.0 ', =0.1538
2.00 L=1.75  Ty=0.2917
L 60— t-15  h,=0.375
1.20—
.80—
40—
l 1 |
0 20 0 .60 80 1.0
X

(b) Dimensionless crack opening displacement (35x70x98 grid).

Figure 19. - Dimensionless crack opening displacement for a
rectangular bar under uniform tension containing a
through-thickness central crack.
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— TeLm Ry=0250
te15  hy=030
1 I | | L o
0 4 .80 _ Lz 16 20
X

Figure 20. - Dimenslonless bar end extenslon for a rectangular

bar under uniform tension containing a through-thickness
central crack.

1
X
2.4'—' 0;,
m———
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T T=175 HK,=0.25
'él} te1 &
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l I | | -
0 .40 .80 1.2 1.6
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Flgure 21, - Dimensionless normal displacement distribution In the
crack plane for a rectangular bar under uniform tenslon contain-
Ing a through-thickness central crack,
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,~Crack edge location

8— |
3-10 v=13
b=2.0 by =0.1333
6r— =175 hy=0.250
5 t=15 h, = 0.30

- I I | | |
0 1.0 1.2 1.4 1.6 1.8 2.0
X
(a) Dimensionless y-directional normal stress as a function of X.
[ |
o %
1. 066 -
44— \
1,20~
1.337 T
V] ——
I I I | | I
0 .4 .80 1.2 1.6 2.0 2.4
z

(b) Dimensionless y-directional normal stress as a function of Z.

Figure 22. - Dimensionless y-directional normal stress distribution
in the crack plane for a rectanqular bar under uniform tension
containing a through-thickness central crack.
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3 20‘_ | ~Crack edge location
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| b=20 hy = 0.1333
2.40— | L=1715 ﬁy = 0,250
: t=15 h, =0.30
1.60— :
|
80— |
l
I
i A
’-,%Ioc’ 0 vV 10 1.2 14 16 1.8 2.0
© X

~

(a) Dimensionless z-directional normal stress as a function of x.
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0 .40 .80 1.2 1.6 2.0 2.4

(b) Dimensionless z-directional normal stress as a function of Z.

Figure 23. - Dimensionless z-directional normal stress distribution
in the crack plane for a rectangular bar under uniform tension
containing a through-thickness central crack.
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(a) Dimenslonless x-directional normal stress as a function of X.
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(b) Dimenslonless x-directional normal stress as a function of Z.

Figure 24. - Dimenslonless x-directional normal stress distribution
in the crack plane for a rectangular bar under uniform tension
containing a through-thickness central crack.
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5— -===== Extrapolated

R/a

Figure 25, - Calculation of the stress intensity factors Kp for
a rectangular bar under uniform tension containing a
through-thickness central crack,

3. 50— =10 Tl
b=20 vel3
=01
- 30—
£+
_l% /-Bmd on plane strain definition
L —
= \Based on continuousiy corrected
plane strain definition
2.0 I l -
0 .40 . go 1.2 1.6

Figure 26, - Variation of the stress intensity
factor Ky across the thickness for a rec-
tangufar bar under uniform tension con-
taining a through-thickness central crack.




Table 12, - Dimensionless x-Directional Displacements g-
o

Uniform Tension Containing a Through-Thickness Central Crack.

b=2.0,L=1.75, t=1.5 (48-96-128 x-y-z Directional Lines Respectively)

183

u

~
a

3 for a Rectangular Bar Under

1.0,

X
0.0 .40 .80 1.20 1.60 2.00
y
0.0 .000 -.u74 -.828 -1.026 -1.095 -1.192
.50 .000 -.143 -.275 - 541 - .783 - .920 T
z= .00
1.0 .000 -.025 -.092 - 242 - .h20 - .565 l
1.75 .000 .169 .257 .238 .1u48 .029
0.0 .000 -.479 -.8L46 -1.00 -1.030 -1.105
.50 .000 -.119 -.244 - .ugs8 - 742 - .888 t
zZ= .90
1.0 .000 -.015 -.076 - 220 - .393 - .540
1.75 .000 .180 .276 .260 .163 .0u2 #
0.0 . 000 -.395 -.713 - .890 - .991 -1.081
.50 .000 -.062 -.156 - 422 - .699 - .862 T
z = 1.5
1.0 .000 .009 -.035 - .182 - .367 - .520
1.75 .000 .179 .278 +263 .168 .050 '

N
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Table 13. - Dimensionless y-Directional Displacements E!; for a Rectangular Bar Under Uni-

%
form Tension Containing a Through-Thickness Central Crack. a = 1.6, b = 2.0,

L=1.75, t = 1.5 (48-96-128 x-y-z Directional Lines Respectively)

.00 .25 .50 1.00 1.50 1.75
.00 2.112 2.227 2.315 2.578 2.893 3.0u8 T
.60 2.197 2.322 2.415 2.638 2.952 3.107
% = .00
.90 2.218 2.334 2.420 2.638 2.956 3.117
1.50 2.249 2,323 2.402 2.631 2.945 3.125
.00 1.252 1.354 1.552 2.014 2.453 2.660
.60 1.287 1.424 1.622 2,072 2.512 2,716 - T
x = .80
.90 1.297 1.431 1.627 2.074 2.515 2,721
1.50 1.313 1.411 1.591 2.029 2.471 2.686
.00 .000 .270 572 1.173 1.713 1.966
.60 .000 .288 .599 1.202 1.736 1.986 T
% = 1.60
.90 .000 .291 .604 1.206 1.739 1.986
1.50 .000 .290 .589 1.179 1.716 1.965 #
.00 .000 «139 .351 .868 1.372 1.620 ‘
.60 .000 «174 .384 .883 1.385 1.630
% =2.0
.90 .000 .176 .388 .890 1.390 1.638
1.50 .000 .167 «377 .881 1.380 1.626 '
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Table 14, = Dimensionless z-Directional Diaplacements ?«; for a Rectangular Bar Under

)
Uniform Tenslon Centaining a Through=Thickness Central Crack, ¥ = 1,0, B = 2,0,

[ #1275, ¥ « 1,5 (48-96-128 x-y-2z Directional Lines Reapectively)

3
.00 30 .80 +90 1.20 1.50
H]
r.OO +000 =.008 -, 034 =-.083 -, 04l 028 T
080 .000 -.05“ -.123 --205 .s266 -'267
§ = 0.0
1,60 1000 =, 108 -, 229 -, 355 =, 492 -,628
2,00 +000 -, 119 -, 237 -, 358 -, 465 -, 554
'oo .000 '.0“8 -|°9“ --13“ -.167 -\19“
+80 «000 =-,078 -, 156 -, 234 -, 309 =377
9 = .50
1-50 .OOO -.110 -;223 ‘.suo -.“53 '0657
2.00 +000 =, 117 =-,231 =, 343 - 451 =. 549 1
+ 00 +000 =,080 =.160 =241 =, 324 -, 408
.80 .OOO -0093 -.185 -.273 -.37“ --“72
§=1l.0
1.680 «000 =, 109 -,218 =, 328 =, 438 =, 543
2l°° .000 ‘cll“ '0226 -.335 -, 440 -.5““ L
.00 + 000 =117 - 224 =334 =, 461 =, 614 *
+ 80 000 -, 118 -,218 - U9 -, 429 -, 5858
e 9 =178
1.80 « 000 =113 -, 219 =321 =, 422 -, 528
2.00 .000 - 118 -.224 -.327 -.u27 -.528 v




186

minutes while for the 48 x 96 x 128 grid it was about 50 minutes.
The number of iterations for these problems was 28 and 29 re-
spectively. The largest element of the error matrix was .CCOl
in the y direction at the end of the bar when the matrix func-
tions associated with the larger grid were calculated. A con-
vergence criterion of 1070 was applied to all three displacements
in calculating the successive approximations.

The dimensionless crack opening displacements are shown in
Figure 19. Inspection of Figures 19(a) and 19(b) shows that
the finite difference approximations have been sufficiently
refined when the results of the 48 x 96 x 128 grid were calcu-
lated. An approximate 15% change in Bx’ 17% change in By
and a 25% in h, resulted in a maximum of 1.5% change in the
crack opening displacement. Figure 19(a) also shows the results
of the plane elasticity solutions obtained by Mendelson (43) for
the problem shown. The plane stress solution gives the highest
crack opening displacement while the plane strain solution is
very close to the curve obtained at the center of the bar. Values
at z= .9 and 2 = 1.5 are between the two plane solutions as
can be expected. The shapes of the obtained curves are all
elliptical which can be easily shown by plotting the equation of
an ellipse with the coordinate intercepts as the major and minor

axes. Note that the maximum change in the crack opening is

about 6.5% across the given thickness.
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A plot of the bar end extension is shown in Figure 20. This

displacement is maximum at the center of the bar with the varia-
tion in the 2 direction being less pronounced than in the crack

Because the center of the bar is more constrainea, the

plane.
y-directional displacements are maximum on the surface of the bar

in both Figures 19 and 20. Figure 21 shows the variation of the

crack opening displacements across the thickness of the bar.

= .932, the displacement

Near the crack edge, that is at %
0 the changes in the

curve is almost a constant while at %

z direction are most rapid for 0 S z £ .5, Similar conclusion

is possible from Figure 19(a) where the curves at Z = .9 and

2 = 1.5 are very close to each other.

Figure 22 contains a plot of the stress distribution normal
to the crack plane as a function of both bar width and thickness.
Figure 22(a) shows the same general stress distribution as

Figure 12, indicating that the normal stress is singular, as

expected, at the crack edge. However, the resolution of our grid

near the crack is not sufficient to establish an inverse square

root singularity. Inspection of these curves shows that the

stress is highest near the center of the bar and it rapidly
approaches the applied stress for values of % > 1.5. Figure

22(b) shows that the variation in the 2 direction is largest

near the crack edge and as X increases, the stress curves
X = 1.066

become more constant. Note that the stress at X

| N
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indicates a central region of uniform stress for 0 < Z < 1.1

-~

and a boundary region of 1.1 < Z < 1.5 where the stress drops

significantly to the surface value. Similar results were ob-

tained by Cruse and Van Buren (25) for a single edge crack

bar specimen.
Figures 23 describe the o, stress distribution in the

crack plane. The results of Figure 23(a) indicate that this

normal stress is also singular near the crack edge and its value

approaches zero with increasing Z. This is expected since at
the surface is free of this normal stress. Note that

= 1.6 indicating

z = 1.5,

for 2 = 1.2, the stress becomes zero at X

that this normal stress also vanishes on part of the % = 2.0

face. This result seems consistent since the stress field is

expected to be three-dimensional in the vicinity of the crack

and approach the crack-free bar solution at locations far from

normal stress mainly as

the crack. Figure 23(b) shows this o,

a function of the thickness variable, 2. An unexpected increase
in this stress near the center of the bar can be noticed from
This sudden increase in o, appears to be

the results shown.
X approaches the

the result of the way this stress increases as

(%X = 1.0)., Note that the variation across the thick-

crack edge
is more continuous than in Figure 22(b) with no

ness in o,
noticeable central or boundary region shown.
seems to indicate that as the crack edge is being

However, the curve

at X = 1.066
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approached, most of the variation will occur near the surface

of the bar.

Figures 24 show the o, normal stress distribution in the

crack plane as a function of both % and Z. Figure 2u4(a)

indicates that this stress is also singular at the crack edge

and itis maximum near the center of the bar. Results in this

figure also show that o is zero only on the face % = 2.0

and has a given, non-zero value everywhere on the face Z = 1.5,

This is contrary to the results shown in Figure 23 for o, and

as a consequence the sudden increase in o, near the center of

the bar has not been obtained in Figure 2u4(b). Figure 2u4(b)

shows a central region of uniform stress and a boundary layer

through which the stress decreases to the surface values. Note

that the variation in o, across the thickness decreases as X

increases and approaches a constant value of zero at X% = 2.0.

Figure 24(a) also indicates that the value of o, remains

essentially constant for 1.2 < % < 1.35. This constant oy

stress is different, of course, as 2 increases from zero to

l. 5.
The results in Figures 19 through 24 cannot be checked

against known data but the crack opening displacements of

Figure 19 indicate reliability of the reported stress and dis-

placement distributions. Limited results reported in (25) agree

with some of our conclusions regarding the normal stress
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distributions but a detailed comparison between results is not

possible because of the problems treated.

Figure 25 shows the calculation of the opening mode stress
intensity factor from the plane strain crack opening dispiace-
In terms of the ordinate intercept, the stress intensity

= INTERCEPT - (.704) Oo‘\/;: Using the

extrapolated values in Figure 25, the stress intensity factors

ment,

factor is given by K;

K; for selected values of 2 were calculated. A plot of these

stress intensity factors as a function of 2 is shown in Figure

26. Since the stress intensity factor is proportional to the
crack opening displacement, the value of K; from the plane

strain definition is maximum at the surface and minimum near the

center. Similar results were obtained in reference (25) for a

single edge crack specimen where it was shown that as plane

stress conditions are approached, the stress intensity factor

increases. Srawley and Brown (5) have also found that the plane

strain fracture toughness, which is directly related to the

stress intensity factor, is considerably less than the plane

stress fracture toughness.
Figure 19(a) shows that at the center of the bar plane

strain conditions exist while at the surface 2 = 1.5, the

crack opening is about half-way between the plane strain and

plane stress solutions., Since the plane stress crack opening is

about 12.5% higher than the plane strain crack displacement, it
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is proposed that equation (3.115) be revised as follows:

v = 1.0625 [?Lé:ll Kr /ZR—] (4.2)
514

z=1.5a
Equation (4.2) will now be used to predict the corrected value

of K at z = 1.5. A similar corrected plane strain crack

opening displacement equation may be written for each position

along the Z axis and a continuously corrected value of K1

can be calculated. Figure 26 also shows a plot of this correc-

ted stress intensity factor. The value of this corrected stress

intensity factor is a constant across the thickness which then

agrees with the fact that plane stress and plane strain stress

intensity factors are equal. TFigure 26 shows that this cor-

rected value of K; is 2,37 UOW/E- In reference (2), Brown

and Srawley report a plane elasticity stress intensity factor

of 2.11 001/5 for a bar having an identical width and half

crack length., Note that the result of Figure 26 is about 12 per-

cent higher than this value which must be attributed to the fi-

nite length and thickness of the bar in Figure 2. The solution

in reference (2), of course, is for a bar with infinite length

and thickness,
Tables 12 through 14 show selected results from the dis-

placements obtained in the computations, The y-directional dis-

placements are all extensional while in the z-directicn only

K

A
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contraction is possible. A somewhat unexpected result is ob-

tained in Table 12, which indicates that parts of the bar con-

tract while other parts expand in the x~direction.
4,5 Bar With Through-Thickness Double Edge Cracks

Selected results for the problem of Figure 3 are presented
in Figures 27 through 34 and Tables 15 through 17. These re-
sults were obtained with two different sets of lines along the

coordinate axes which were identical to the two sets used for

the problem of Section 4.4, The convergence criteria and error

matrix elements were also the same as those for the central

crack problem. However, the number of required iterations in=-

creased greatly with the fine grid using 60 iterations while the

more coarse grid requiring 48 successive calculations. As a

result, the execution time for the finer, 48 x 96 x 128 line

grid problem was about 80 minutes.
The dimensionless crack opening displacements are plotted

in Figure 27. Comparison of Figures 27(a) and 27(b) shows that

the finite difference approximations have sufficiently converged
when the 48 x 96 x 128 line grid was used in the final calcula-

tions. Contrary to the central crack problem, the crack opening

displacements in Figure 27 are independent of the Z coordi=-

nate. Similar results were obtained by Cruse and Van Buren (25)

for the single edge crack bar specimen. One must also note that

for this problem the crack opening curve is no longer elliptical
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6f— b=2.0  hy,=0.1333
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t=15  h,=0.300
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- For all values of z
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(a) Dimensionless crack opening displacement (48x96x128 grid).

o

a=10 v=13

b=2.0  hy=0.1538
E- .75 ﬁy- 0.2917
t=15  h,=0.375

41—

- For all values of Z
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0 1.2 L4 L6 1.8 2.0
X

-0

(b) Dimensionless crack opening displacement (35x70x98 grid).

Figure 27. - Dimensionless crack opening displacement for a
rectangular bar under uniform tension containing through-
thickness double edge cracks.
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6— a=10 v=13 7
b=2.0 hy = 0.1333 rL5
T=175 ﬁy=o.2so

al— t=15 h,, = 0.300

I I I I | .
0 40 80 12 1.6 2.0
X

Figure 28. - Dimensionless bar end extension for a rectan-
gular bar under uniform tension containing through-
thickness double edge cracks.
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Figure 29. - Dimensionless normal displacement
distribution in the crack plane for a rectangu-
lar bar under uniform tension containing
thraugh-thickness double edge cracks.
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h, = 0.300

Crack edge location~"
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1% o (a) Dimensionless y-directional normal stress as a function
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(b) Dimensionless y-directional normal stress as
a function of z,

Figure 30. - Dimensionless y-directional normal stress dis-
tribution in the crack plane for a rectangular bar under
uniform tension containing through-thickness double
edge cracks.

»
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N a=10 v=13
b=20  h,=01333

I— L=175  hy=0.250

t=15  h,=0.30

o0 .20 .40 .60 .80 1.0

(a) Dimensionless z-directional normal stress as a function
of x.

(b) Dimensionless z-directional normal stress as a function
of z.

Figure 31. - Dimensionless z-directional normal stress dis-
tribution in the crack plane for a rectangular bar under
uniform tension containing through-thickness double edge
cracks,
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4 a=10 v=13

b=2.0 h, = 0.1333
L-175 Ey-o.zso
3— t= 15 h, = 0.300
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Crack edge location~
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(a) Dimensionless x-directional normal stress as a function of X.
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6—-

Y

(b) Dimensionless ﬁ-directional normal stress
as a function of z.

Figure 32. - Dimensionless x-directional normal stress distri-
bution in the crack plane for a rectangular bar under uni-
form tension containing through-thickness double edge
cracks.
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Figure 33. - Calculation of the stress intensity factors Ky for
a rectangular bar under uniform tension containing through-
thickness double edge cracks.
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Figure 34, - Variation of the stress intensity
factor K; across the thickness for a rec-
tangular bar under uniform tension con-
taining through-thickness double edge
cracks.
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Table 15, = Dimensionless x-Directicnal Displacements Eu for a Rectangular Bar Under

Uniform Tension Containing Through-Thickness Double Edge Cracks,

[ ]
qO

s 1,0,

Bs20,Ls 1,75 ts 1.5 (48-96-128 x-y-z Directional Lines Respectively)

%
0.0 .40 .80 1,20 1.60 2.00
4
0.0 ,000 .389 ,817 1.092 1.218 1.268 T
.50 ,000 ,054 - .018 - .128 - .082 - 054
rs .00
1.00 ,000 -224 - 478 - .700 - .852 - .9u6
1.75 ,000 -.648 -1.231 -1.688 -1,989 -2.181 l
0.0 ,000 .38 .784 1.078 1.152 1.169
.50 ,000 .030 - .060 - .187 - .158 - .133 T
ts .90
1.00 ,000 -.256 - .537 - 784 - 924 - .999
1.7% ,000 -.683 -1,295 -1.766 2,066 2,261
0.0 ,000 ,292 .599 ,831 ,911 941
.50 .000 '0028 - 0196 - 137“ - 03"‘“ - .31“
£s 1.8
1,00 ,000 -.293 - .616 - .892 -1.038 -1.113
1.7% ,000 -.693 -1.317 -1.801 2,108 2,291
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Table 16. - Dimensionless y-Directional Displacements E!; for a Rectangular Bar Under

%o
Uniform Tension Containing Through-Thickness Double Edge Cracks. & = 1.0,

b= 2,0, L=1.75, t = 1.5 (48-96-128 x~-y-z Directional Lines Respectively)

.00 .25 .50 1.00 1.50 1.75

.00 .000 .258 . 549 1.238 1.879 2,264

.60 .000 .222 . 493 1.146 1.856 2.2u49

.90 .000 .228 .503 1.159 1.869 2.257

1.50 .000 .2u8 . 529 1.182 1.907 2.277

.00 .000 .588 1.081 1.916 2.474 2.850 1
2
[}

.60 .000 .509 1.011 1.825 2.521 2.878
% = .80
.90 .000 .520 1.025 1.840 2.536 2.891
1.50 .000 .601 1.086 1.874 2,587 2,931
.00 3.374 3.432 3.500 3.785 4.036 4,305
.60 3.369 3.393 3. 442 3.698 $.131 4,387
% = 1.60
.90 3.370 3.390 3.u440 3.700 4.139 4.403
1.50 3.412 3.460 3.497 3.721 4.161 4,428 %
.00 4,547 4,536 4.512 4,649 4.799 5.060 4
.60 4,515 4.498 4.463 4,546 4,938 5.186
= 2.0
.90 4,512 4,491 4.453 4,538 4,941 5.198

1.50 4.572 4,536 4,475 4,537 4.938 5.196 *
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Table 17. - Dimensionless z-Directional Disnlacements gz; for a Rectangular Bar Under
o
Uniform Tension Containing Through-Thickness Double Edge Cracks. & = 1.0,

b=2.0,L=1.75 %=1.5 (48-96-128 x-y-z Directional Lines Respectively)

)
.00 .30 .60 .90 1.20 1.50
%
.00 .000 -.228 -.436 -.6u7 -.871 -1.120 T
.80 .000 -.201 -.394 -.609 -.888 -1.288
g =0.0
1.60 .000 -.100 -.179 -.238 -.274 - .293
2.00 .000 -.059 -.102 -.123 -.123 - .119
.00 .000 -.189 -.379 -.566 -.748 - .928
.80 .000 -.167 -.337 -.513 -.702 - .888 T
¥ = .50
1.60 .000 -.090 -.172 -.249 -.317 - .375
2.00 .000 -.052 -.110 -.164 -.205 - .219
.00 .000 -.134 -.270 -.400 -.519 - .625
.80 .000 -.118 -.2u1 -.363 -.479 - .584 r
§ = 1.0
1.60 .000 -.057 -.137 -.222 -.301 - .370
2.00 .000 -.038 -.097 -.165 -.231 - .287
.00 .000 -.095 -.188 -.267 -.315 - .308
.80 .000 -.097 -.186 -.264 -.323 - .3u3 T
$ = 1.75
1.60 .000 -.081 -.149 -.221 -.297 - 374
2.00 .000 -.067 -.123 -.190 -.270 - .361
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and for 1.3 < % < 2.0 the displacement curve is essentially
a straight line. These results appear to be consistent since
a* the bar edge no constraints exist against this mode of
deformation.

Figure 28 shows the dimensionless bar end extension. This
extension is maximum, as expected, at the edge of the bar and it
is also somewhat dependent on the Z coordinate. The small
variation in the Z direction is the result of the uneven con-
straints developed in the central region of the bar, which in
planes far from the crack spread over the entire cross section
of the problem. As can be noted, this end extension is somewhat
higher near the surface than at the center of the bar. Figure
29 shows the variation of the crack opening displacements across
the thickness of the bar. As discussed previously, these curves
also show constant displacements along the Z axis.

Figure 30 contains a plot of the stress distribution normal
to the crack plane. Inspection of these figures shows that this
stress is maximum at the center of the bar and is singular near
the crack edge. As previously mentioned, the type of singularity
is difficult to establish but the shape of these curves is
similar to that obtained in the other examples. The minimum
value of this stress occurs at % = 0 but even at this point
the stress is at least 40% higher than the applied stress.

Figure 30(b) shows that the variation in the 2% direction is
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largest near the crack edge and becomes more gradual with
decreasing values of X. Note that the stress near the crack
edge again indicates a central region of approximately uniform
stress and a boundary region beyond 2 = 1.1 where the stress
drops significantly to the surface values. This agrees with
the results obtained for the central crack problem.

Figures 31 describe the dimensionless o, stress distribu-
tion in the crack plane. The results of Figure 31 are very
similar to those shown in Figure 23 for the central crack prob-
lem with one major difference. Figure 31(a) indicates that
for all values of % this stress has a given, non-zero value
and it vanishes only on the surface 2 = 1.5. This result, of
course, follows from the relationship between the crack and
bar widths for the preblem described in Figure 3. The singular
nature of this stress near the crack edge is evident from
Figure 31(a). The variation of o, across the thickness is
shown in Figure 31(b). Note that the curve near the crack edge,
that is at % = ,932, begins to display an internal region of
uniform stress and a boundary region with significant variation.
The variation across the thickness becomes more gradual as the
value of X decreases.

Figures 32 contain the g, normal stress distribution in
the crack plane as a function of both bar width and thickness.

Figure 32(a) shows that this stress is also maximum at the center
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of the bar and is singular near the crack edge. The constant
value of this stress just outside the crack edge vicinity is
similar to the results obtained for the central crack problem.
Figures 32 also indicate that this normal stress is greater than
the applied stress at all points in the central portion of the
problem. Figure 32(b) displays the o, stress distribution
across the thickness of the bar. Note the central region of
uniform stress and a boundary region with significant stress
variation. As the value of X decreases, the stress distribu-
tion in the Z direction becomes a constant. This is expected
since far from the crack edge, the stress field should approach
a one-dimensional state of stress.

Figure 33 shows the calculation of the opening mode stress
intensity factor from the plane strain crack opening displacement.
Since the obtained displacements are independent of the 2
coordinate, the stress intensity factor shown is a constant
across the thickness of the bar. In addition, note that the
continuous correction for the changing conditions Irom piane
strain to plane stress, as applied to the central crack probiem,
has no meaning for the crack opening displacement of Figure 27,
As a consequence, Figures 33 and. 34 each contain only a single
curve, The results of Figure 3311ead to a stress intensity
factor of 4.0u4 oo‘\/gt Brown and Srawley in reference (2)

report a plane elasticity stress intensity factor of 2.05 coﬁv/;-
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which is lower than that reported for the central crack problem.
In view of the fact that the crack opening displacements and
normal stress distributions at corresponding locations are
considerably higher for the double edge crack problem than for
the central crack problem, the value of U4.0u4 ooﬂjﬁf seems to
be the more realistic solution for this stress intensity factor.

Tables 15 through 17 show selected values of the displace-
ments obtained in the computations. Table 15 shows that in the
crack plane, the x-directional displacements are outward while
in the other planes along the y-axis they are inward. Table 16
shows that all the y-directional displacements are extensional
and that the crack opening displacement is essentially constant
across the thickness. Table 17 shows that in the z-direction
only contraction is possible which is maximum on the surface of

the bar.



CHAPTER 5

SUMMARY AND CONCLUSIONS

The line method of analysis was investigated for the solu-
tion of coupled partial differential equations which were sub-
ject to coupled and mixed boundary conditions. The use of this
method was illustrated by solving the Navier-Cauchy equations of
elastic equilibrium for a number of mixed boundary value problems
in three-dimensional elasticity. Problems in both rectangular
Cartesian and cylindrical coordinates were investigated.

The application of the line method to the Navier-Cauchy
equations in Cartesian coordinates led to coupled sets of
ordinary differential equations with constant coefficients. In
cylindrical coordinates, this same solution technique results in
coupled sets of ordinary differential equations, some of which
have variable coefficients. Analytical methods, in conjunction
with a successive approximation procedure, were used to obtain
the solution of these resulting ordinary differential equations.

One advantage of solving directly for displacements in
solids containing geometric singularities is that the displace-
ments are not singular. In addition, stresses are expressed in

terms of first order partial derivatives only, which minimizes
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inherent inaccuracy in higher order numerical differentiation.
It is for this reason, that numerical solution of displacement
potentials or the Galerkin vector should be avoided since the
stresses are expressed as second and third derivatives of these
quantities respectively. The advantage of the line method over
other numerical solutions is that it minimizes the required
numerical differentiations and thus, it may be considered as a
semi-analytical approach to the solution of a problem.

Stress and displacement distributions were calculated in
two rectangular bars, one of which contained a through-thickness
central crack while the other had double edge cracks. The need
for these specific solutions has existed for a number of years
in fracture toughness testing. As expected, the results of the
central crack problem indicate that near the center of the given
geometry solid, the conditions are approximately in a state of
plane strain. As one proceeds from the center of the bar to its
surface in the thickness direction, plane stress conditions are
approached. Hence, displacements are maximum near the surface of
the bar while normal stresses are maximum near its center. The
singular nature of the normal stresses near the crack edge was
established and three-dimensional stress and displacement distri-
butions were successfully calculated. An equivalent plane strain
stress intensity factor for three-dimensiocnal problems was intro-

duced, Similar results are reported for a double edge crack bar
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which indicate that changes along the thickness direction in the
displacements parallel to the applied load are less significant.
The calculated normal stress distributions, however, led to
identical conclusions in this case as for the central crack
problem.

Solutions in cylindrical coordinates were obtained for an
annular plate containing internal surface cracks. The axisym-
metric problem of a solid cylinder with a penny shaped crack
was used to check thé convergence and accuracy of this method.
Results with good accuracy were obtained even from the use of a
relatively coarse grid. The stress and displacement solutions of
the above examples show that the method of lines provides a
simple and systematic approach to the solution of some three-
dimensional, mixed boundary value, elasticity problems.

At this time, some improvement in the solution techniques
and the use of the computer for Cartesian coordinate problems
may be indicated. Since the resulting ordinary differential
equations are readily solved by the normal mode method, the
numerical computations may be minimized by performing the succes-
sive approximation calculations in principal coordinates. Mani-
pulations of diagonalized matrices should minimize both the
round-off and inherent error which necessarily arise in all
numerical computations. In addition, considerable savings in

the cost of the required computer time will be possible.
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APPENDIX A
EVALUATION OF THE COEFFICIENT

MATRIX EIGENVALUES AND EIGENVECTORS

A close investigation of equation (2.32) shows that the

coefficient matrix [K,] can be decomposed into component
XL
matrices having the following tri-diagonal format:

~
2 =2
-1 2 -1
-1 2 -1
~ ~N
NN )
T (A.1
~N N
-1 2 -1
2 2
L | I
MxM

It is a simple matter then to find the eigenvalues and eigen-
vectors of this type of matrix. Noting that in equation (2.32)
we have NZ rows of submatrices each of order NY, we express

the coefficient matrix as
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(K, = Kk, [I;] ® (K] + kg (K] @ L] (A.2)

%2 NZxNZ NYXNY NZxNZ NYANY

where (:) denotes the Kroenecker product of two matrices (37).
Matrices [Kl] and [K2] have the desired form of (A.l) but
are of different order., Associated with the matrices [Kl]

and [K2] are the following two eigenvalue problems:

(K1 (X1} = u(xi) (A.3)
NYxXNY Nyxl NYxl
(K,] {x2} = 6{x2} (A.4)
NZxNZ NZxl NZxl
where uj, j =124 + o ¢y NY denote the eigenvalues of [Kl]

and §,, i=1,2, .. .4 N2 represent the eigenvalues of [Kp].
The original eigenvalue problem associated with the coefficient

matrix [Kx] can be written as

(k1 txs} = (X3} (A.5)

LxL xl Lxl

After some matrix manipulations involving Kroenecker products
(37), it can be shown that the eigenvalues K;j and the corre-
sponding matrix of eigenvectors (x3}*?  can be expressed in

terms of the component matrix eigenvalues and eigenvectors. The
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results of these manipulations are

Aij = k36i + k?“j (A.6)
et = eyt ® o)’ (A.7)
x4 NZxNZ NYXNY

where i =1,2, .. .,N2 ad j=1,2, . . ., NY. Equations
(A.6) and (A.7) reduce the problem of (A.5) to that of finding
the eigenvalues and eigenvectors of (A.l).

The eigenvalues of the tri-diagonal matrix (A.l) can be
obtained by using difference equation theory. Let us consider
th

the case when the eigenvalues are denoted as My Then the j

difference equation can be written as
Xj+l + (U-?)Xj + Xj_l = 0 (A.B)

We define 2p = u-2, where by Gersgorin theorem on bounds of
eigenvalues (44), we must have |p| = 1. Equation (A.8) can now
be written as a linear, second order differen~e equation with

constant coefficients, that is

X5.1 + 29xj Xy 0 {(A.9)

Following standard solution techniques (45), we assume that

x. = o (A.10)
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Substituting equation (A.10) into equation (A.9) and noting that

o] £ 1 we find that the values of a are given by

@; = cos ¢+ i sin ¢ = old
oy = cos ¢ - 1sin ¢ = e’z$
where
cos ¢ = -p
t1sin¢ = ¢ p2-l

T = /-1

The selution of (A.9) can now be written as

xs = ae*®)? + B(e™**)?
(A-11)
or xs = K cos j¢ + B T sin jo¢
Constants A and B can be evaluated from the following
boundary conditions:
0 T %
(A.12)
XM-1 = XMtl

where for the matrix [K;], M = NY. Applying equations (A.12)

to equations (A.1ll) gives
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[(el¢)2 - 1]JA + [(e‘i‘p)2 - 1]B

1]
o

(A.13)

2 -~ M‘ l -'7'

"2 - 13w M e )2 - o138

n
o

For a non-trivial solution of equations (A.13), the determinant
of the coefficients must vanish. This condition leads to the

following characteristic equation:

JM-Dip _ -(M-1)T¢

0 (A.18)
which can be written as
sin (M-1) ¢ = 0 (A.15)
Equation (A.15) will be satisfied if
nm
¢ = where n =0, 1, 2, . . ., M-1
n Mol » Ly < ’

Using the definition of p and wu, the eigenvalues of matrix

[K;] are given by

. = 211 - cos Bl m| where 3 =+ ., <4 . . -5 M {A.16)
J 9 9 ?
M-1 M = NY

Similarly, the eigenvalues of [K2] become
.-l’

§. = 2|1~ cos('i——)w where 1

1 M"l M

The eigenvectors corresponding to equation (A.16) can be

1,2, « « -y M (A.17)
NZ
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found by substituting the eigenvalues back into (A.1l) and using

boundary conditions (A.12). For the nth eigenvalue we have

. nm =(n)e= . . nm
cos j =2~ + B 'Isin j 20

(n) _ =(n)
%5 = A M-1 M-1

for n=0,1, . . .4, M-1

Enforcing the condition of x

én) = xgn) yields

(l - cos ﬁr:_-tlr) X(n)

5(n)
- ., 2nm

1l S1N =

M-1

Since equations (A.13) are linearly dependent, we may select a

convenient value for ﬂ‘n). Let us take ;ﬁn) as
An) = cos BT
M-1
Then the nth eigenvector is given by
xg“) = cos Lzl = 1,2, . . oy M
M-1 n=0,1,2, . . ., M=1

and the elements of eigenvectors {Xl}j, corresponding to the

eigenvalues uj, in equation (A.3) can be written as

; -1)(§-1
[P, 1 = {X1}3 = |cos SE"Jil“)ﬂ s=3=1,2, . . ., NY
1 s

s3 NY-1
(A.18)

Similarly, we find that



219

. -1 s
[Pz ] = {XQ}l = cos (—P—)—(—J;—]-—)— T
ri r NZ-1
r=1:=1,2,...,N2 (A 19)

Substituting equations (A.16) and (A.17) into equation (A.6)

yields for the eigenvalues of [K_ ] the following:

X
by = 2k |1 - cos + 2k,|1 - cos (j'l )ﬂ (A.20)
11 3 NL 1 2 NY-1 ’

where i =1,2, .. .,N2 ad §=1,2, .. ., NY,

Note that the smallest eigenvalue is zero while the largest
eigenvalue 1s (qu + uka)r The zero eigenvalue is consistent
with the inherent singular character of the coefficient matrices
obtained.

The modal matrices of LKl] and (K,], denoted by [P,;]
and [PQJ respectively, are constructed next according to
equations (A.18) and (A.19). Since the matrix in (A.l) is
non-symmetric, the eigenvectors (A 18) or (A 19) are not orthog-
onal, The modal matrix of the ...1litient matrix [Kx] is given
by the Kroenecker product of the component wovuasr macrices. Thus,

from equation (A.7) we have

[P] = [P,] @ (P)] (A.21)

Lxe NZxNZ NYXNY

The similarity transformations, diagonalizing the submatrices

[Kl] and [K2], can be written as
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] [Kl] [Pl] [Pl] [Al] (A.22)

NYxNY NYxNY  NYxXNY NYxNY

[Ky1 [P,]

NZxNZ NZxNZ  NZxNZ NZxNZ

[P2] [AQ] (A.23)

where [A;] and [Ap] are diagonal matrices having the eigen-
values of [Kl] and [K,] as their elements. The similarity
transformation of the matrix [K,], using the decomposition

(A.2) and equation (A.21), gives
(K IR, I@IP; D) = kg([I;1® K DR, 1EIP;T)
t k([ JG I, D[P 1G P D) (A.24)

Following the matrix manipulations in (37), equation (A.24) can

be reduced to the form shown below.
[K,J [P]1 = [P] [A] (A.25)
where the diagonalized form of [Kx] is given by
(Al = k(LA D + ky([A @I, D) (A.26)
The inverse of the modal matrix becomes
(p17t = [p, 17t ® (py07t (A.27)

Inspection of equations (A.22) and (A.23) shows that for an
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accurate evaluation of the component diagonalized matrices, the
closed form inverses of the modal matrices [Pl] and [Pp,] are
nesced,

Let us consider then the inverse of, say modal mairix L[P)],
in detail. Since [Pl] was obtained from the component matrix
[Kl], we shall construct a diagonal matrix [Dl] that transforms
the non-symmetric matrix [K;] 1into a symmetric matrix [Kl]s.

The form of this transformation is
1/2 1,2)* s
(D144 (¥, ] ([Dl] ’ ) = [k, ] (A.28)

where by definition the square root of a diagonal matrix is also
a diagonal matrix whose elements are the square roots of the
elements in the original matrix. For the tri-diagonal matrix

[Kl]’ the diagonal matrix (Dl] is of the form

— -

1/2

(p,] = (A.29)

MxM

1/2

MxM M=NY

Equation (A.22) will not be changed if we write it as
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SRRV
[Kl]([Dl] ) {p,] [Pl] = [Pl][Al] (A.30)
. . . 1/2 .
Pre-multiplying equation (A.30) by [Dl] gives

-1 ‘
([Dl]l/2[K1]([Dl]l/2) ) [0,3%/2p, ]

1/2

= [0;1%1p 30A,]

[k,15(Cp,1Y/2(p 1) = ([ 1Y/2(P 1)0Ay]) (A.31)

Since [Kl]s is a symmetric matrix, the transformation of (A.31)
is orthogonal and the columns of ([Dl]l/2[Pl]) must be orthog-

onal, For an orthogonal transformation, it is known that
(o, 2*2(e; T (0p,3/2[p1) = (0] (A.32)

where T denotes the transpose and [D] is diagonal. Since
[Dl] is a diagonal matrix, the first term in (A.32) can be

written as

(to; %2y T = rpy37 (0,142 (A.33)
Using equation (A.33) in equation (A.32) yields

(py37 [p,1 [Py = [D] (A.38)
Pre-multiplying this equation by [p]~2 gives

([p17ce 17Cp DLPy] = [1] (A.35)
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from which we find that

=1

-1
(p, "t = (017" [P1 (D;] (A.36)

1

Equation (A.36) requires the inverse of an unknown matrix [D].
However, from equation (A,34) we can show that the matrix [D]

always has the following form:

— 9

M-1
M-1 0
2
N
= N -
[D] ~ (A. 37)
MxM 0 M:l
2
M-1
L -

Comparing matrices (A.37) and (A.29) we can conclude that

(0] = — (0,17t (A.38)

MxM

Substituting this equation imtc eguation (A.36) gives the final

closed form inverse of [Pl] as

O s 25 ) e o) (A.39)

MxM MxM MxM MxM

[P

Similar equation is written for the inverse of the modal matrix

[P2]. With the closed form solution of the component modal

matrices and their inverses, the diagonalized form of [Ky] is
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obtained from equation (A.26). The matrix functions [A;;] and

[A can now be evaluated as scalars and then re-transformed to

12]
full matrix forms according to the following similarity

transformations:

[A;3] = [P][Ay,] [PT? (A.50)

-1
[A)0] [p] [A12] [P] (A.41)



APPENDIX B

FOURTH-ORDER RUNGE-KUTTA INTEGRATION FORMULAS

In Appendix B, we list the Runge-Kutta integration formulas
which are used to solve the simultaneous first order matrix

differential equations shown below:

d

E;'[Qll] = P[QQl] = [£1(r,[Q5;1)] (B.1)
L9, = TlolK = Thy(nlayD)] (8.2)

The initial conditions for these equations are,

[1] (B.3)

[Qll(ro)]

(ol (B.u)

[QQl(Po)]

A step-by-step procedure starting at ry is applied and the
following formulas are used to predict values of the matrices

along the independent variable axis (46):

(920, = [9000, + & (00130 + 200150 + 20Qp5] + [QgyD)
(B.5)

[0, Jne1 = L850 + 2 ([Qpy 1 + 20Qy,] + 2[Qy5] + [Q,, 1)
(B.6)
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where the approximate Runge-Kutta derivatives are

[Q1:]
[Qy,]
[Qp3]
[Q;,]
[Q,,

(Q,,1

22

[Q,,]

[Qy,]

increment and n

[£,(r 02, 1)]
( h Q h
[£1(ry + 2 L0100 + 510337, 9917,
h h
[£,(r , [9y,1)]

[£,(rn + 2 [213] + 200117, (9]

n

h
4y(ry + 30 [y30) + 20Qy,0, [ay,],

[f2(rn + h, [Qll]n + h[Q;31, [QQl]n

path of integration.

h
+ 20Qy 1)
+ 310,13

+ h[Qy,1)]

+ g{QQl])]
h
+ 2{Qy, D]

+ h[Qy31)]

(B.

(B.

(B.

(B.

In the above formulas, h 1is the arbitrary integration

denotes the instantaneous position along the

-10)

.11)

.12)

13)

1u4)



APPENDIX C

Appendix C includes a copy of each of the computer programs
prepared for the five numerical exauples presented. Sirce the
work was performed on an IBM-360 digital computer, the enclosed
listings use Fortran IV algebraic type language. A brief de-
scription of the required inputs, subroutine functions and a short
flow diagram for each problem is also given.

C.l Solid Cylindrical Bar With a Penny Shaped Crack

A schematic representation of the main subroutines of the
computer program is shown in Figure 35, The program is divided
into five parts four of which are called from the main program.
The main program is denoted as S5 while the subroutines are
designated as 51, 52, 52 and S«. Clubroutine S1 - EKGS uses the
Punge-Kutta algorithm to calculate the diaguias..ed radial manrix
functions, Subroutine 53 - FCT generates the needed first deri-
vatives tor the Kunge-Kutta solution. Subreutine S2 « MATINY
uses the Gauss-Jordan maximum pivot strategy (23) tc numerically
generate all the required matrix inverses. Subroutine 54 -
MAPOWR evaluates the required matrix series for the scluticn of
the constant ccefficient differential equations.

The input for each routine is typed in dat the beginning ot
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Main program - S5
Calls other parts of program

Evaluates eigenvalues, modal
matrix stores all required
matrix functions

Performs successive approxi-
mation calculations, evaluates
coupling vectors, Initial value
vectors, particular integrals

Generates and prints all output

Subroutine S1 - RKGS Subroutine S3 - FCT
Calculates diagonalized radial Generates required first
matrix functions derivatives

Subroutine S2 - MATINV

Generates matrix inverses
as needed

Subroutine S4 - MAPOWR Entry MASER

Calculates axial matrix
functions Entry MXTRA

Figure 35. - Schematic representation of the solid cylindrical bar
with a penny shaped crack computer program.
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each part using the word DATA for identification. The eigen-
values o! the radial and the elements of the axial coefficient
matrices are given in S5 and Si respectively. The enclosed
program is generalized in that the grid size can be modified by
suitable changes in the DATA, COMMON and DIMENSION statements
only. The successive approximation procedure is performed in
the main program S5 and the symbol KTR is used to follow the
number of repeated calculations. Information about matrix
function error checks, singularity of matrices and number of
iterations is printed at the terminal while the bulk of the
output is being stored in the computer for a more efficient
printing operation. The output for this problem includes the
displacements {u} and {w}, their derivatives {u} and {w}
and the stresses {a..}, {des}, {azs} and {orzs}, The dis-
placements and their derivatives are printed at the end of each

iteration, so that their convergence can easily be followed.
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