Apropled boundary

titiese equations le

equinities

His of continuous 13

has of the equation

pastile, the use of

the analytical solut

quations.

The use of this way mavailable

Files in three-c

distributions are o

has which are load

Teffist bar conta

Stond bar has doug

in both configurat

ABSTRACT

SOLUTION OF SOME MIXED BOUNDARY VALUE PROBLEMS
OF THREE-DIMENSIONAL ELASTICITY BY THE METHOD OF LINES

By

John Paul Gyekenyesi

A semi-numerical method is developed for solving a set of coupled partial differential equations subject to mixed and possibly coupled boundary conditions. The application of this method to these equations leads to coupled sets of simultaneous ordinary differential equations. Their solutions are obtained along sets of continuous lines in a discretized region. When de-coupling of the equations and their boundary conditions is not possible, the use of a successive approximation method permits the analytical solution of the resulting ordinary differential equations.

The use of this method is illustrated by presenting previously unavailable solutions for a number of mixed boundary value problems in three-dimensional elasticity. Stress and displacement distributions are obtained for two finite geometry, rectangular bars which are loaded by a uniform surface stress distribution. The first bar contains a through-thickness central crack while the second bar has double edge cracks. Stress intensity factors $K_{\rm I}$ for both configurations are presented.

Am interentent its Listes is **elec incl**uir estaloulated for fin: mil. Approximate res Dimal surface crack.

Displacement dis-Tanking the method Property than to be State used to examin

dinis method.

The results obta Mosorque objettes Esticity Problems wi through of this zero Stitestits are obtain

P. . .

An independent treatment of problems in cylindrical coordinates is also included. Stress and displacement distributions are calculated for finite circular bars each with a penny shaped crack. Approximate results for an annular plate containing internal surface cracks are also presented.

Displacement distributions for each problem are calculated by applying the method of lines to the Navier-Cauchy equations.

By comparing them to known solutions, the results of the circular bar are used to examine the rate of convergence and the accuracy of this method.

The results obtained show that the method of lines presents a systematic approach to the solution of some three-dimensional elasticity problems with arbitrary boundary conditions. The advantage of this method over other numerical solutions is that good results are obtained even from the use of a relatively coarse grid.

in parti

lepartment of !

SOLUTION OF SOME MIXED BOUNDARY VALUE PROBLEMS OF THREE-DIMENSIONAL ELASTICITY BY THE METHOD OF LINES

Ву

John Paul Gyekenyesi

A THESIS

Submitted to

Michigan State University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Metallurgy, Mechanics and Materials Science

To my Mother a

No No

To my Mother and Father, Katalin and György László

The author wishe in a Membelson, the are turing the cours

at continuing guidar

is the to the other

Polessors R. W. Lit

and for reviewing

Tery special to

ing a doctoral

The perb brown

inter in Setting

Lays be apprecia-

Finally, I wis

Pational Aeronauti enerous support e

ACKNOWLEDGMENTS

The author wishes to express his deepest appreciation to Dr. A. Mendelson, the writer's thesis advisor, for his assistance during the course of this research and for his encouragement and continuing guidance throughout the past years. Thanks are also due to the other members of the graduate committee, Professors R. W. Little, W. N. Sharpe, W. A. Bradley and N. L. Hills for reviewing this manuscript.

Very special thanks are due my wife, Erika, for her help during my doctoral studies.

The help provided by Mr. J. Kring of the Lewis Research Center in setting up and running the computer programs will always be appreciated.

Finally, I wish to thank Lewis Research Center of the National Aeronautics and Space Administration for providing generous support for this project.

TABLE OF CONTENTS

																											Page
TITLE	E .		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	i
DEDIC	CTAC	ON.	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	ii
ACKNO)./LI	EDGE	ME	T	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•		iii
LIST	OF	TAE	BLES	3.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		vii
LIST	Oł.	FIC	URI	ES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		x
LIST	OF	SY	fBOI	LS	•	•	•	•	•		•	•	•		•	•	•	•	•	•		•	•	•	•	•	xiv
Chapt	ter																										
1.	1I	ITRO	DUC	TI	(O)	١.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	ß	LUI ECTA ETHO	NGL	JLA	k	CA	RI	ES	I.	M	CC	OF	RDI	N/	TE	S	B	7	HE	:							10
																						•	•	•	•	•	
		2	Gov Met																	•	•	ø	•	•	•	•	10 13
			2.3	2.1						n a													chy	<i>i</i>			
			2.2	2.2	l	:₹€	du	ıct	ic	ons on	of	t	:he	5	90	c c c	b	Na	vi	ez) —	Car			•	•	16
			2.2	2.3	,	Cc R€	ndu	lit ict	ic ic	ns n	of	ť	h•	. 7	hi	.rc	. 1	Iav	/ie	er-	·Ca	au	chy	•	•	•	27
										ns me													•		•	•	35
	2.	3	So! Equ		-			-														•	•	•	•	•	42
			2.3 2.3																								46 50

1.4.1 Bar 1.4.1 Bar 101. A STUTION OF THE COLUMN TRANSPICAL COLUMN CO 3.1 Soverning : 3.2 Ordinary D Boundary D Ordinary D Conditions 3.4 Ordinary D Boundary S Solution Ecuation of Ecuations Equations 3.5,1 Ev 3.5 Application Annular in Axisympe 3.7.1 c 3.7.2 3.7.3 3.8 Applica 3.8.1 3.8.2

Ēà

ã

3,9 Stress

TO RESULTS AND

le ipplication

				Page
	2.4	Applica	ation to Specific Geometries	54
			Bar With Through-Thickness Central Crack. Bar With Through-Thickness Double Edge Cracks	55 66
			•	00
3.			THE NAVIER-CAUCHY EQUATIONS IN COORDINATES BY THE METHOD OF LINES	71
	3.1 3.2		ing Equations	71
	3.3	Boundar	ry Conditions in the Radial Direction ry Differential Equations and Boundary	72
	3.4	Conditi	ions in the Circumferential Direction ry Differential Equations and	82
	3.5	Boundar	ry Conditions in the Axial Direction on of Simultaneous Differential	90
	J. J		ons With Variable Coefficients	97
		3.5.1	Evaluation of the Radial Particular Integral	105
	3.6 3.7	Annula	ation to Specific Geometries - r Plate With Internal Surface Cracks metric Problems	108 117
		3.7.1	Ordinary Differential Equations and Boundary Conditions in the Radial Direction	118
		3.7.2		110
		3.7.3	Axial Direction	122
			for the Axisymmetric Case	126
	3.8	Applica	ation to Specific Geometries	130
		3.8.1	Solid Cylindrical Bar With a Penny Shaped Crack	131
		3.8.2	Hollow Cylindrical Bar With a Penny Shaped Crack	140
	3.9	Stress	Intensity Factor	143
4.			DISCUSSION	

- wil Solid by a Penny 4.1 Hollow
- a Penny 1 -3 Annular 1
- www.Bar With wi Bar Witt
- 1. 1.W117 AND C

THE PROPERTY OF STREET

WEDDIES

- A CHARGATION OF ELECTIVALUES AN
- 1. TOTETH-CFCEP P
- A COMPUTER LISTE
 - G1 Solid Oyl
 a Penny o
 G2 Hollow Oy
 a Penny o
 G3 Annular o
 G3 Annular o
 G5 Bar Wish

	Page
4.1 Solid Cylindrical Bar Witha Penny Shaped Crack	149
a Penny Shaped Crack	
5. SUMMARY AND CONCLUSIONS	206
LIST OF REFERENCES	209
APPENDICES	
A. EVALUATION OF THE COEFFICIENT MATRIX EIGENVALUES AND EIGENVECTORS	213
B. FOURTH-ORDER RUNGE-KUTTA INTEGRATION FORMULAS	225
C. COMPUTER LISTINGS	227
C.1 Solid Cylindrical Bar With a Penny Shaped Crack	227
C.2 Hollow Cylindrical Bar With a Penny Shaped Crack	242
C.3 Annular Plate With Internal Surface Cracks	255
C.4 Bar With Through-Thickness Central Crack	279
C.5 Bar With Through-Thickness Double Edge Cracks	298

- i Non-dimensionali a solid cylinder mier uniform m = 1.68 (16 ax
- Non-dimensional sylindrical bar miform normal (16 axial and)
- a solid cylind mder uniform = 1.88 (16 a
- Won-dimensional background to the control of the co
- anguar Plate
- for at attracts
 cracks wider
 outside surface
- and ar Place

LIST OF TABLES

T	able	e	Page
	1.	Non-dimensionalized radial displacements $\frac{E}{\sigma_0} \frac{u}{a}$ for a solid cylindrical bar with a penny shaped crack under uniform normal tension. \tilde{a} = 1.0, \tilde{b} = 1.77, \tilde{L} = 1.68 (16 axial and 13 radial lines)	155
	2.	Non-dimensionalized axial displacements $\frac{E}{\sigma_0} = \frac{w}{a}$ for a solid cylindrical bar with a penny shaped crack under uniform normal tension. $\tilde{a} = 1.0$, $\tilde{b} = 1.77$, $\tilde{L} = 1.68$ (16 axial and 13 radial lines)	156
	3.	Non-dimensionalized radial stress $\frac{\sigma_{rs}}{\sigma_{o}}$ for a solid cylindrical bar with a penny shaped crack under uniform normal tension. $\tilde{a} = 1.0$, $\tilde{b} = 1.77$, $\tilde{L} = 1.68$ (16 axial and 13 radial lines)	157
	4.	Non-dimensionalized circumferential stress $\frac{\sigma_{\theta S}}{\sigma_{0}}$ for a solid cylindrical bar with a penny shaped crack under uniform normal tension. $\tilde{a} = 1.0$, $\tilde{b} = 1.77$, $\tilde{L} = 1.68$ (16 axial and 13 radial lines)	158
	5.	Non-dimensionalized axial stress $\frac{\sigma_{zs}}{\sigma_0}$ for a solid cylindrical bar with a penny shaped crack under uniform normal tension. $\tilde{a} = 1.0$, $\tilde{b} = 1.77$, $\tilde{L} = 1.68$ (16 axial and 13 radial lines)	159
	6.	Dimensionless radial displacements $\frac{E}{\sigma_o}\frac{u}{b}$ for an annular plate with internal surface under uniform radial tension on the outside surface .	168
	7.	Dimensionless circumferential displacements for an annular plate with internal surface cracks under uniform radial tension on the outside surface	169
	8.	Dimensionless axial displacements $\frac{E}{\sigma} = \frac{w}{b}$ for an annular plate with internal surface or cracks under uniform radial tension on the outside surface.	

D. Pinesionless of Di for an annu-Do cracks under Outside surface

in dirensionless and an annular plans oracks under unsurface

in dimensionless x.

for a rectangula

containing a th

a = 1.0, b = 0.

X-y-z direction

in dimensionless of a rectangle a to a rectangle a to a rection a to a rection

for a rectangle containing a to a = 1.0, 5 = 7 x-y-z direction

for a rectar 6 containing thr

for a rectangle to a

		Page
9.	Dimensionless radial stress distribution $\frac{\sigma_r}{\sigma_o}$ for an annular plate with internal surface cracks under uniform radial tension on the outside surface	171
10.	Dimensionless circumferential stress distribution $\frac{\sigma_{\theta}}{\sigma_{0}}$ for an annular plate with internal surface cracks under uniform radial tension on the outside surface	172
11.	Dimensionless axial stress distribution $\frac{\sigma_Z}{\sigma_O}$ for an annular plate with internal surface cracks under uniform radial tension on the outside surface	173
12.	Dimensionless x-directional displacements $\frac{E}{\sigma_0}$ $\frac{u}{a}$ for a rectangular bar under uniform tension containing a through-thickness central crack. $\tilde{a} = 1.0$, $\tilde{b} = 2.0$, $\tilde{L} = 1.75$, $\tilde{t} = 1.5$ (48-96-128 x-y-z directional lines respectively)	183
13.	Dimensionless y-directional displacements $\frac{E}{\sigma_0} \frac{v}{a}$ for a rectangular bar under uniform tension containing a through-thickness central crack. $\tilde{a} = 1.0$, $\tilde{b} = 2.0$, $\tilde{L} = 1.75$, $\tilde{\tau} = 1.5$ (48-96-128 x-y-z directional lines respectively)	184
14.	Dimensionless z-directional displacements $\frac{E}{\sigma_0} \frac{w}{a}$ for a rectangular bar under uniform tension containing a through-thickness central crack. $\tilde{a} = 1.0$, $\tilde{b} = 2.0$, $\tilde{L} = 1.75$, $\tilde{\tau} = 1.5$ (48-36-128 x-y-z directional lines respectively)	185
15.	for a rectangular bar under uniform tension containing through-thickness double edge cracks. a = 1.0, b = 2.0, L = 1.75, t = 1.5 (48-96-128 x-y-z directional lines respectively)	199
16.	Dimensionless y-directional displacements $\frac{E}{\sigma_0} \frac{v}{a}$ for a rectangular bar under uniform tension containing through-thickness double edge cracks. $\tilde{a} = 1.0$, $\tilde{b} = 2.0$, $\tilde{L} = 1.75$, $\tilde{\tau} = 1.5$ (48-96-128 x-v-z directional lines respectively)	200
	X-V-Z GIPECTIONAL LINES PESDECTIVELV)	200

Ditensionless zfor a rectargular
containing through = 1.1, b = 1.1,
x-y-z directions

		Page
17.	Dimensionless z-directional displacements $\frac{E}{\sigma} = \frac{w}{a}$ for a rectangular bar under uniform tension containing through-thickness double edge cracks. $a = 1.0$, $b = 2.0$, $L = 1.75$, $t = 1.5$ (48-96-128)	
	x-y-z directional lines respectively)	201

- oplundrica
- i, Armular pl under und
- i. Fart of a
- · Sets of p
- in Solid by:
- A Hollow of
- it. Dimension for a so shaped o
- for a so shaped o
- staper of
- Calculation a so

LIST OF FIGURES

Figur	e	Page
1.	Sets of lines parallel to Cartesian coordinates	15
2.	Rectangular bar with through-thickness central crack under uniform tension	56
3.	Rectangular bar with through-thickness double edge cracks under uniform tension	67
4.	Sets of lines in the direction of cylindrical coordinates	73
5.	Annular plate with internal surface cracks under uniform external tension	110
6.	Part of annular plate with internal surface cracks	111
7.	Sets of parallel lines for axisymmetric problems	119
8.	Solid cylindrical bar with a penny shaped crack	132
9.	Hollow cylindrical bar with a penny shaped crack	141
10.	Dimensionless axial displacement distribution for a solid cylindrical bar with a penny shaped crack	151
11.	Dimensionless radial displacement distribution for a solid cylindrical bar with a penny shaped crack	152
12.	Dimensionless axial stress distribution for a solid cylindrical bar with a penny shaped crack at $\tilde{z} = 0 \dots \dots \dots$.	153
13.	Calculation of the stress intensity factor K _I for a solid cylindrical bar with a penny shaped crack	153

- i. limensiomless for solid cyli cracks of var
- ii. limensionless
 a hollow cyli
- ii. Dinemsionless
 a hollow cyli
- P. Dirensionless hollow cyling at Z = 0. . . .
- is, calculation of for a hollow shaped crack.
- Dimensionless rectangular (a through th
- in limensionles
 rectangular
 a through th
- the crack profession con-
- ii. Ditensionle distributio bar under u through-the
- distribution through the
- distribution through the

		Page
14.	Dimensionless crack opening displacements for solid cylindrical bars with penny shaped cracks of various lengths and radii	154
15.	Dimensionless axial displacement distribution for a hollow cylindrical bar with a penny shaped crack	164
16.	Dimensionless radial displacement distribution for a hollow cylindrical bar with a penny shaped crack	164
17.	Dimensionless axial stress distribution for a hollow cylindrical bar with a penny shaped crack at \tilde{z} = 0	165
18.	Calculation of the stress intensity factor K I for a hollow cylindrical bar with a penny shaped crack	165
19.	Dimensionless crack opening displacement for a rectangular bar under uniform tension containing a through-thickness central crack	177
20.	Dimensionless bar end extension for a rectangular bar under uniform tension containing a through-thickness central crack	178
21.	Dimensionless normal displacement distribution in the crack plane for a rectangular bar under uniform tension containing a through-thickness central crack.	178
22.	Dimensionless y-directional normal stress distribution in the crack plane for a rectangular bar under uniform tension containing a through-thickness central crack	179
23.	Dimensionless z-directional normal stress distribution in the crack plane for a rectangular bar under uniform tension containing a through-thickness central crack	180
24.	Dimensionless x-directional normal stress distribution in the crack plane for a rectangular bar under uniform tension containing a	
	through-thickness central crack	181

- in talculation of for a restanguing a t
- Of Pariation of the autous the third action and the autour actions.
- Containing the
- Description less careful and careful and careful and careful and careful caref
- G. Pinensionless in the crack partition tension tensio
- E. Timensionless Militation in Dar under unthiomess dou
- St. linensionless Prioriton in Per under un thlokness do
- Stransforfer Stroution in Sar under in thromers in
- Calculation for a rectar containing
- across the discounties of the engine

				F	age
25.	Calculation of the stress intensity factors $K_{\rm I}$ for a rectangular bar under uniform tension containing a through-thickness central crack	•	•	•	182
26.	Variation of the stress intensity factor K _I across the thickness for a rectangular bar under uniform tension containing a through-thickness central crack	•	•	•	182
27.	Dimensionless crack opening displacement for a rectangular bar under uniform tension containing through-thickness double edge cracks.	•	•	•	193
28,	Dimensionless bar end extension for a rectangular bar under uniform tension containing through-thickness double edge cracks	•	•	•	194
29.	Dimensionless normal displacement distribution in the crack plane for a rectangular bar under uniform tension containing through-thickness double edge cracks	•	•	•	194
30.	Dimensionless y-directional normal stress distribution in the crack plane for a rectangular bar under uniform tension containing throughthickness double edge cracks	•	•	•	195
31.	Dimensionless z-directional normal stress distribution in the crack plane for a rectangular bar under uniform tension containing throughthickness double edge cracks	•	•	•	196
32.	Dimensionless x-directional normal stress distribution in the crack plane for a rectangular bar under uniform tension containing throughthickness double edge cracks	•	o	•	197
33.	Calculation of the stress intensity factors K _I for a rectangular bar under uniform tension containing through-thickness double-edge cracks.	•	•	•	198
34,	Variation of the stress intensity factor K _I across the thickness for a rectangular bar under uniform tension containing through-thickness				100
	double edge cracks			•	198

- H. Schematic recylinorical crack compu
- 35. ionematic r
 plate with
 computer pr
- F. Schemanic r through-thi computer pr

	Page
Schematic representation of the solid cylindrical bar with a penny shaped crack computer program	. 228
Schematic representation of the annular plate with internal surface cracks computer program	. 256
Schematic representation of the bar with through-thickness central crack	290
	cylindrical bar with a penny shaped crack computer program

LIST OF SYMBOLS

a	half crack width or crack width in rectangular coordinates, crack radius in cylindrical coordinates
[A(K _x ,x)], [A(K _r ,r)]	coefficient matrices of first order differential equations
[A _{ij}]	<pre>partitioned submatrices of [A] for i = 1, 2 and j = 1, 2</pre>
A, \overline{A}	constants in difference equation solution
b	half bar width in rectangular coordinates, outside radius in cylindrical coordinates
{B _i }	particular integrals of first order differential equations for i = 1, 2, 3, 4.
B, \overline{B}	constants in difference equation solution
\overline{c}_1 , \overline{c}_2	constants of integration for modified Bessel's equation
С	surface crack length e in this from internal hole
c _i	<pre>elements of coefficient matrix [K_{zc}], i = 1, 2,, 3NR-4</pre>
đ	depth of surface crack along internal hole surface
[D ₁]	diagonal matrix for transforming [K ₁] into a symmetric matrix
[Д]	diagonal matrix
[D _{ij}]	similar matrix functions to $[A_{ij}]$ associated with (K_y,y) for $i=1, 2, j=1, 2$

[D _{ijak}], [D _{ijβk}]	partitioned matrix functions
[D _a], [D _b], [D _c]	products of partitioned matrix functions
е	Naperian or natural logarithm base
e _r , e _c , e _s	dilatation in rectangular, cylindrical and axisymmetric cylindrical coordinate problems
Е	Young's modulus of elasticity
[ER]	<pre>error matrix for accuracy check of matrix functions</pre>
f_i , \overline{f}_i	functions of given variables
{F _i }	initial value vectors for the first order differential equations $i = 1, 2, 3, 4$
<pre>{f};</pre>	<pre>partitioned subvectors of the coupling vectors {r}, {s} and {t}</pre>
G	shear modulus of elasticity
h _x , h _y , h _z	increments along Cartesian coordinate axes
h _r , h _e , h _z	increments along cylindrical coordinate axes
Ŧ	square root of minus one
[I], [I _i]	identity matrices of different order, i = 1, 2
i, j, k	integers
I ₀ , I ₁	modified Bessel functions of the first kind
κ ₀ , κ ₁	modified Bessel functions of the second kind
ĸ _I	stress intensity factor for opening mode
k _i	<pre>elements of coefficient matrices i = 1, 2,, 18</pre>
[K _x], [K _y],	coefficient matrices of second order differential equations in Cartesian coordinates

	;	A Albania
	:	ish lish ifa
		્રા કૃત
		₩. (#.),
		i
		:
		ı
		:
		F. 37, 32
		\$. .
		F10
		; ;
		ξ, ξ, χ
		(r)
		3
		9

[K_r], [K_θ], [K_{zc}] coefficient matrices of second order differential equations in cylindrical coordinates [K_{rs}], [K_{zs}], coefficient matrices of second order [K_{zsh}] differential equations for axisymmetric cylindrical coordinates $[K_1], [K_2],$ tri-diagonal component matrices [K_{xi}], [K_{yi}], component matrices of [K_x], [K_y] and [K_z] [K_{ri}], [K_{θ i}], component matrices of [K_r], [K_{θ}] and [K_{zc}] number of lines in x or radial directions ٤ half bar length in Cartesian coordinates L number of lines in y or circumferential m directions number of lines in z or axial directions n NX, NY, NZ, number of lines in a given plane NR. NO NOC number of normal lines outside crack surface NIC number of normal lines inside crack surface [P], [P₁], [P₅] modal matrices of $[K_x]$, $[K_1]$, $[K_2]$ and $[K_{rs}]$ internal hole radius ro r, θ, z cylindrical coordinate directions {r} coupling vector for x-directional or radial second order differential equations R distance from crack edge {**r**} coupling vector for x-directional or radial first order differential equations

5 <u>.</u> ×, 7, 2 (X2) (X2)

{s}	coupling vector for y-directional or circum- ferential second order differential equations
{\$\overline{s}}	coupling vector for y-directional or circum- ferential first order differential equations
t	half bar or plate thickness
{t}	<pre>coupling vector for z-directional or axial second order differential equations</pre>
₹ T }	coupling vector for z-directional or axial first order differential equations
u i	components of displacement along the coordinates
u	x-directional or radial displacement
U	<pre>x-directional or radial dependent variable in the first order differential equations</pre>
v	y-directional or circumferential displacement
V	y-directional or circumferential dependent variable in the first order differential equations
W	z-directional or axial displacement
W	z-directional or axial dependent variable in the first order differential equations
x, y, z	rectangular Cartesian coordinate directions
{X1}, {X2}, {X3}	eigenvectors of [K ₁], [K ₂] and [K _x] respectively
ai	solutions of second order difference equation
٥ <mark>.</mark>	Kroenecker delta
°i	eigenvalues of [K2]
€ij	components of the strain tensor
λ	Lame's constant
X_{ij}, X_{is}	eigenvalues of [K _x] and [K _{rs}] respectively

μ _j	eigenvalues of [K ₁]
Y	hyperbolic trigonometric function variable
$\overline{\eta}$	transformed radial displacements
η	variable of integration
ν	Poisson's ratio
$\left[\Omega_{\circ}^{\mathbf{r}}(A) \right]$	matrizant of [A]
$[\Omega_{ij}]$	<pre>partitioned submatrices of the matrizant of [A] i = 1, 2, j = 1, 2</pre>
ρ _i	<pre>variable of integration i = 1, 2, 3</pre>
2р	coefficient in difference equation
ф	direction angle in complex plane of α_1
σ _o	applied uniform surface stress
° _{ij}	components of the stress tensor
σ _x , σ _y , σ _z , σ _{xy} , σ _{zx} , σ _{yz}	components of the stress tensor in Cartesian coordinates
σ _r , σ _θ , σ _z , σ _{rθ} , σ _{rz} , σ _{θz}	components of the stress tensor in cylindrical coordinates
σ _{rs} , σ _{θs} , σ _{rzs}	stress components for axisymmetric cylindrical coordinate problems
θ _ο	circumferential length of annular plate cutout
∇^2 , ∇^2_c , ∇^2_s	Laplacian in Cartesian, cylindrical and axisymmetric cylindrical coordinates respectively
[v]	diagonal matrix having eigenvalues of $[K_{\mathbf{x}}]$ for its elements
[A _{rs}]	diagonal matrix having eigenvalues of $[K_{rs}]$ for its elements
[A _i]	diagonal matrices with eigenvalues as their elements

:, :, 20

ì, !

·, : : :

ì

:

.

ेश्वाद्यां कृष्टः -

•

,

.

ŝ

 $[\Lambda_{11}], [\Lambda_{12}]$ diagonalized matrix functions $[\Lambda_{11}]$ and $[\Lambda_{12}]$

Subscripts:

x, y, z refer to rectangular Cartesian coordinates

r, θ , zc refer to cylindrical coordinates

α, β refer to partitioning of variables for treating mixed boundary conditions

i, j, k integers

s refers to axisymmetric cylindrical problems

c refers to cylindrical coordinates

denotes lines along which coupling variables are written

Superscripts:

non-dimensionalized variables

 derivative of displacements with respect to independent variable in corresponding direction

T transpose of a matrix

s denotes symmetric

examples that

strations ar

validiy accep

The track

techanics.

Takes t

At Pres

Since all

The object

CHAPTER 1

INTRODUCTION

The object of a problem in elasticity is usually to calculate the displacement and stress distributions in an elastic body which is subject to given body forces or surface conditions. These distributions are the solutions of the applicable field equations which mathematically describe the behavior of engineering materials. The solution of this general system of equations is, however, usually too difficult to evaluate. For many problems of practical interest, some simplifying assumptions can be made regarding the displacement or stress distributions which then make the solution of these equations relatively simple. These assumptions are generally based on the geometry and loading of the problem at hand. Plane stress or plane strain solutions are two examples that result from these simplifying assumptions.

Since all real bodies are three-dimensional in nature, situations arise when these simplifying assumptions cannot be validly accepted. One important class of elasticity problems falling in this category is found in the theory of fracture mechanics. It is essential, therefore, that a method be developed that makes the solution of the general field equations possible.

At present, only few analytical solutions of three-

desimal prot partiy cased on paning equati agital computer es attempted ou Mese problems. Efference, dire expension and t termiques, the com and least the co tial equations Jeen Maited to Sportance and tim will conce flaws or chapke successfully at ati strain grai. simal, elasti The pheno-Propagation at See Mount for sam čiverse s

tocket motors.

dimensional problems exist, and even these solutions are frequently based on some symmetry condition required to simplify the governing equations. Recently with the availability of large digital computers, the use of a number of approximate methods was attempted but these methods yielded only partial results for these problems. Among these approximate methods are the finite difference, direct potential, finite element, eigenfunction expansion and the line method of analysis. Of all these solution techniques, the line method of analysis is probably the least known and least used method in three-dimensional elasticity. Although the concept of this method for solving partial differential equations is not new, its useful application in the past has been limited to simple examples. Because of their practical importance and inherent singularities, the work in this dissertation will concentrate on three-dimensional bodies containing flaws or cracks. Assuming that the method of lines can be successfully applied to these solids which contain large stress and strain gradients, its use for less complicated, three-dimensional, elasticity problems should present little difficulty.

The phenomenon of structural failure by catastrophic crack propagation at average stresses well below the yield strength has been known for many years. Large scale failures have occurred in such diverse structures as ships, storage tanks, aircraft and rocket motors. These brittle failures have occurred with

incessing frequ ime increased . im very high si Equitable to the Brittle fra Hitre with neg matics of yield are regarded as ing strength to find to behave testp. stress 1: The main a the load at while Coxtedge of the maik tip is of tianure, in tear the crack sized as the ma it is impo ar landrent file be ditained. n of three-dimens This is a very

existing mathe-

increasing frequency as the strength and size of our structures have increased (1). Recent military and aerospace requirements for very high strength, light weight hardware have given added importance to the problem of brittle fracture.

Brittle fracture, it should be noted, refers to a material failure with negligible plastic deformation while materials with ratios of yield strength to Young's modulus greater than 5×10^{-3} are regarded as high strength materials (2). In general, when high strength materials contain small cracks or flaws they are found to behave in a brittle manner and fail prematurely at low design stress levels.

The main goal of fracture mechanics is the prediction of the load at which a structure weakened by a crack will fail.

Knowledge of the stress and displacement distributions near the crack tip is of fundamental importance in evaluating this load at failure. Ludwig (3) has pointed out that the state of stress near the crack front is triaxial in nature which today is recognized as the main cause of brittle behavior in some materials.

It is important, therefore, that for structures with cracks or inherent flaws, a three-dimensional solution of the stresses be obtained. Although certain analytic methods for the solution of three-dimensional elasticity problems have been developed (4), this is a very difficult problem. This difficulty arises because existing mathematical techniques are not suitable for solving the

equations of el gre involved. of three-dimens omained soluti types of loading In the pas nas been based of the results SEE (E). Most epplication of firmilation an sized that the even though sm effects arise because linear fict stresses inverse square Taterials cantist develop . stiction is n tiough linear ties, the eig fields has pr fracture.

equations of elasticity when solids with geometric singularities are involved. The lack of a systematic approach to the solution of three-dimensional crack problems has limited the previously obtained solutions to a particular crack geometry under simple types of loading.

In the past, most of the stress analysis of cracked bodies has been based on the plane theory of elasticity. A good summary of the results of this work has been presented by Paris and Sih (5). Most of these two-dimensional results come from the application of eigenfunction expansions, the complex variable formulation and boundary point collocation. It must be recognized that these solutions are all based on linear elasticity even though small amounts of plasticity and other non-linear effects arise near the crack tip. These non-linearities arise because linear elastic analysis of crack problems will always predict stresses near the crack tip which approach infinity as the inverse square root of the distance from the crack tip. Real materials cannot possibly sustain such a stress state and hence must develop a small plastic zone in which the linear elastic solution is not valid. Irwin (6), however, showed that even though linear elastic analysis does not admit these non-linearities, the elastic solution of the gross displacement and stress fields has practical importance in estimating the onset of fracture.

z extension of ancin en inf inesians, Te stresses near c Emittely larg im a flat cir. tension, Follo ellipsoidal ca Stansky (9), Applied Hankel faction and re axis; metric h Medently, Smith crack in a sent position metho setisfy the st iaces, Using for a circular and Sih (13, 1 elliptical ora ortal pressur

simal crack p

Were Presente

Early thre-

Early three-dimensional solutions of crack problems involved an extension of the so-called Griffith crack, that is a central crack in an infinite plate under uniform tension, to threedimensions. These analytical solutions usually described the stresses near circular or ellipsoidal cavities enclosed in infinitely large solids. In 1946, Sack (7) presented the solution for a flat circular crack in an infinite solid under uniform tension. Following Sack, other solutions for circular and ellipsoidal cavities were obtained by Sneddom (8), Sternberg and Sadowsky (9), Green and Sneddon (10). In reference (8), Sneddon applied Hankel transform methods to Love's biharmonic strain function and reduced the mixed boundary value problem of the axisymmetric half-space to a set of dual integral equations. recently, Smith (11) solved the problem of a semi-circular edge crack in a semi-infinite body. In his solution, Smith used superposition methods in conjunction with an iteration technique to satisfy the stress free boundary conditions of the crack and side faces. Using Smith's method, Alavi (12) obtained the solution for a circular crack embedded in a semi-infinite solid. Kassir and Sih (13, 14) solved the more general problem of an embedded elliptical crack subject to prescribed shear and linearly varying normal pressure on the crack surface. Solutions of three-dimensional crack problems with quadratic and higher order loadings were presented by Segedin (15). Shah (16) solved the problems of

less. Howeve

אביסה ביה

embedded hyperbolic and parabolic cracks. In 1968, Hartranft and Sih (17) extended the eigenfunction expansion method of Williams to three dimensions and showed its application to an infinite solid weakened by a plane of discontinuity.

Common to all the work cited above is that they represent solutions of crack problems in infinite or semi-infinite solids. Only limited work has been done on three-dimensional solutions of crack problems in finite geometry solids. Irwin (18) in 1962 estimated the stress intensity factor for a part through elliptical crack in a flat plate. Some experimental investigation of fracture in thin sections containing through and part-through cracks was performed by Orange, Sullivan and Calfo (19) and Kuhn (20). After making certain assumptions on the nature of the thickness variation of the stresses, Hartranft and Sih were successful in obtaining partial results for cracks in finite thickness bodies using variational methods (21) and eigenfunction expansions (22). Studies at NASA, Lewis Research Center, are currently being conducted using three-dimensional scattered light photoelasticity to evaluate this solution. In 1966, Sih, Williams and Swedlow (23) attempted the use of Galerkin's biharmonic stress functions together with the eigenfunction expansion of Williams in obtaining the solution for a cracked plate with finite thickness. However, they were unable to obtain complete results.

Among the application of numerical methods to the solution

if three-dimens!
to solve the pri
liter a success:
inect potentia
IELE to obtail
tial zethod, Wa
distriary tra-
d these equat.
Hadary form
entesses and di
Pere Dore Succe
i-it par with
sented a compile
ilm of stress-
Pastic solid.
thite differen
itensional ela
bundary condi-
Other pos
Actiens hay in
such as the te
³⁶ 3 (28)
it been exter
itensional or
- 0:

of three-dimensional elasticity problems, Walker (24) attempted to solve the problem of a rectangular bar with a central crack. After a successful plane elasticity solution, he extended the direct potential method of Rizzo to three dimensions but was unable to obtain meaningful results. In using the direct potential method, Walker obtained singular integral equations in terms of boundary tractions and displacements. The numerical solution of these equations was then used in an analogous manner to Green's boundary formula in potential theory to express the interior stresses and displacements. In 1970, Cruse and Van Buren (25) were more successful in applying this method to a finite rectangular bar with a single edge crack. Recently, Ayres (26) presented a complete finite difference formulation for the computation of stresses and deformations in a three-dimensional elasticplastic solid. However, the inherent inaccuracies in a complete finite difference solution of the Navier-Cauchy equations of threedimensional elasticity are well known, especially when mixed boundary conditions are involved.

Other possible numerical solution of three-dimensional crack problems may involve the use of three-dimensional finite elements such as the tetrahedron (27) or the isoparametric hexahedron elements (28). At present, however, the finite element method has not been extensively investigated for the solution of three-dimensional crack problems.

Another method of solution may be obtained by applying the method of lines (29) to the partial differential equations of equilibrium. Faddeva (30) discusses the application of this method for the solution of a single elliptic, hyperbolic or parabolic partial differential equation. In a similar manner, Henrici (31) discusses the solution of the one-dimensional conduction equation obtained through the use of this technique. For three-dimensional elasticity problems, the essence of this semianalytical procedure is to reduce the three Navier-Cauchy equations to three sets of simultaneous ordinary differential eugations, whose solutions can then be obtained in closed form. Since the dependent variables in the resulting equations and their boundary conditions are coupled, the use of a successive approximation procedure becomes necessary. In addition, the closed form solution of the resulting ordinary differential equations may, in some cases, be difficult to evaluate. However, the usefulness of this method in three-dimensional elasticity has been demonstrated by Irobe (32).

It is the primary objective of this dissertation to present a simple and systematic approach to the solution of three-dimensional elasticity problems with mixed boundary conditions. These problems are more complex then those in (32), since the geometric singularities involved require a large number of lines. Hence, an extension of the solution methods presented in (32) becomes necessary.

Problems in confinates are of ordinary differ two rectang stress distributential chack whitesses and discusses of a children, In

untaining inte

Problems in both rectangular Cartesian and cylindrical coordinates are considered since they result in different types of ordinary differential equations. Detailed results are given for two rectangular bars which are loaded by a uniform surface stress distribution. The first bar contains a through-thickness central crack while the second bar has double edge cracks. Stresses and displacements are also listed for a cylindrical solid with a penny shaped crack. Similar numerical results for the case of a central hole along the cylinder axis are also included. In addition, approximate results for an annular plate containing internal surface cracks are presented.

HUAKULA

4125

tietd equati

the standar

Hooke

3

CHAPTER 2

SOLUTION OF THE NAVIER-CAUCHY EQUATIONS IN RECTANGULAR CARTESIAN COORDINATES BY THE METHOD OF LINES

Let us consider a finite solid with rectangular boundaries which is loaded by a given boundary stress or displacement distribution. For all the problems discussed in this thesis, the following assumptions shall apply:

- a. The deformations are infinitesimal, that is products of displacement gradients can be neglected.
- b. All deformations are elastic.
- c. All materials are homogeneous and isotropic.
- d. Body forces will be neglected.

2.1 Governing Equations

Problems satisfying the first three of the above assumptions fall in the general class of linearized elasticity, for which the field equations neglecting body forces are listed below. Using the standard summation convention, the equilibrium equations are

$$\sigma_{ji,j} = 0$$
 i, j = 1, 2, 3 (2.1)

Hooke's law is,

imed to form

displacements

Tital into Hoo Tited into (2.

Si,

Tor probl

these equation

()

(%

(;

$$\sigma_{ij} = \lambda \delta_{ij}^{\dagger} \epsilon_{kk} + 2G \epsilon_{ij}$$
 (2.2)

Strain-displacement relations are

$$\varepsilon_{ij} = \frac{1}{2} \left(\overline{u}_{i,j} + \overline{u}_{j,i} \right) \tag{2.3}$$

The solution must satisfy these equations at all interior points of the body and, in addition, prescribed conditions on stress and/or displacements must be met on the bounding surfaces. For mixed boundary value problems, displacements are prescribed over a portion of the boundary while stresses are prescribed over the remaining part. The above three sets of equations may be combined to form three partial differential equations in terms of displacements by substituting the strain-displacement relations (2.3) into Hooke's law (2.2) and the result in turn being substituted into (2.1). The resulting equations

$$G\overline{u}_{i,jj} + (\lambda + G)\overline{u}_{j,ji} = 0$$
 i,j = 1, 2, 3 (2.4)

are called the Navier-Cauchy equations of elasticity.

For problems formulated in rectangular Cartesian coordinates, these equations can be written as

$$(\lambda + G) \frac{\partial e_r}{\partial x} + G \nabla^2 u = 0$$
 (2.5)

$$(\lambda + G) \frac{\partial e_r}{\partial v} + G \nabla^2 v = 0$$
 (2.6)

$$(\lambda + G) \frac{\partial e_r}{\partial z} + G \nabla^2 w = 0$$
 (2.7)

where the cila

e_r

mi the Lapla.

,2

the councary of stresses, car telation.

In the form of

°x = -

; = ______

σ_z = -

, x; =

z_x =

o Yz =

Solution

where the dilatation, e, is given by

$$\mathbf{e_r} = \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{v}} + \frac{\partial \mathbf{w}}{\partial \mathbf{z}} \tag{2.8}$$

and the Laplacian, ∇^2 , is

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
 (2.9)

The stress-displacement relations, which are needed in satisfying the boundary stress distributions and in expressing the interior stresses, can be obtained from substituting the strain-displacement relations into Hooke's law. The following equations, listed in the form used for Cartesian coordinate problems, are obtained:

$$\sigma_{x} = \frac{E}{(1+v)(1-2v)} \left[(1-v) \frac{\partial u}{\partial x} + v \left(\frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \right] \qquad (2.10)$$

$$\sigma_{y} = \frac{E}{(1+v)(1-2v)} \left[(1-v) \frac{\partial v}{\partial y} + v \left(\frac{\partial w}{\partial z} + \frac{\partial u}{\partial x} \right) \right] \qquad (2.11)$$

$$\sigma_{z} = \frac{E}{(1+v)(1-2v)} \left[(1-v) \frac{\partial w}{\partial z} + v \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \right] \qquad (2.12)$$

$$\sigma_{xy} = \frac{E}{2(1+v)} \left[\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right]$$
 (2.13)

$$\sigma_{zx} = \frac{E}{2(1+y)} \left[\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right]$$
 (2.14)

$$\sigma_{yz} = \frac{E}{2(1+v)} \left[\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right]$$
 (2.15)

Solution of these equations will be obtained by applying the

method of lines, which is described in the following section, to equations (2.5) through (2.7) and by satisfying all relevant boundary conditions.

2.2 Method of Lines

Approximate solutions for second order, elliptic and linear partial differential equations are frequently obtained by the finite difference technique (33). For three-dimensional elasticity problems, this may involve the solution of an enormous number of algebraic equations in order that reasonable accuracy may be attained. This will be particularly true for problems involving steep stress and strain gradients which arise at geometric singularities and thus require close grid spacing in these regions.

An approximate solution with greater accuracy and much fewer equations to solve can be constructed, however, by applying the method of lines to these equations. The line method lies midway between completely analytical and grid methods. The basis of the method is substitution of finite differences for the derivatives with respect to all the independent variables except one, with respect to which the derivatives are retained. This approach replaces a given partial differential equation with a system of simultaneous ordinary differential equations. These equations describe the dependent variable along lines which are parallel to the coordinate in whose direction the derivatives were retained.

three partial

Parallel lines Fid consistin

Figure 1(a).

Will sufficie

tion, The ti

to the year

807, 3072+1-.

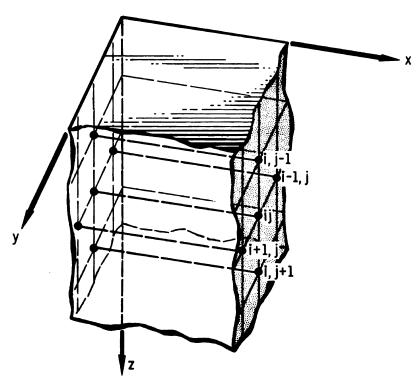
erec as

Tis number

the com

·:.e5::e5

the Post


everily s

It can be noted that this method can be applied to a higher-order linear (or nonlinear) partial differential equation or a system of partial differential equations. Application of the line method is most useful when the resulting ordinary differential equations are linear and have constant coefficients. Equations (2.5) through (2.7) lead to linear differential equations with constant coefficients.

Since in three-dimensional elasticity problems solutions of three partial differential equations are desired, three sets of parallel lines must be constructed. An arbitrary rectangular grid consisting of these three sets of parallel lines is shown in Figure 1(a). It is assumed, of course, that a grid of this type will sufficiently describe the geometry of the problem in ques-The lines parallel to the x axis are numbered as 1, 2, 3---NY, NY+1---2NY, 2NY+1---3NY, 3NY+1---. The lines parallel to the y axis are numbered 1, 2, 3---NZ, NZ+1---2NZ, 2NZ+1---3NZ, 3NZ+1---m. Finally, lines parallel to the z axis are numbered as 1, 2, 3---NX, NX+1---2NX, 2NX-1---- 3NX+1---n. This numbering system is chosen so that the resulting variables in the computer listings are identified through double subscripts only. The first subscript identifies the line along which the variables are calculated while the second subscript indicates the position along that line. For convenience, the lines are evenly spaced with h_{X} , h_{V} and h_{Z} each equal to some different

(a) Three sets of lines parallel to x-y-z coordinates..

(b) Set of interior lines parallel to x-coordinate.

Figure 1. - Sets of lines parallel to Cartesian coordinates.

omstant, alt tage of whift frantial equ are derived i Inherent such as the ! pencent varia of parallel | nices in a i. coupling aron of the ording 121 Pedic Assoc. For the X-axis in Fig tents of poin Vetives of t these lines es the deriv विदेशक का को derivatives

they are var

32352525258

constant, although this is not absolutely necessary. The advantage of uniform line spacing is that the resulting ordinary differential equations can be solved more easily than those that are derived from non-uniform line spacing.

Inherent to coupled systems of partial differential equations, such as the Navier-Cauchy equations, is that solutions for the dependent variables are possible only at points where the three sets of parallel lines intersect. These points are usually called nodes in a discretized body. This limitation is the result of coupling among the equations, which makes the particular solution of the ordinary differential equations valid only at the nodes.

2.2.1 Reduction of the First Navier-Cauchy Equation and Associated Boundary Conditions.

For the solution of equation (2.5), the lines parallel to the x-axis in Figure 1(a) are considered. The x-directional displacements of points along these lines will be denoted as u_1, u_2, \dots, u_k . We define $|\mathring{v}|_1, \mathring{v}|_2, \mathring{v}|_3, \dots, \mathring{v}|_k$ as the deriminatives of the y-directional displacements of the same points on these lines with respect to y and $|\mathring{w}|_1, |\mathring{w}|_2, |\mathring{w}|_3, \dots, |\mathring{w}|_k$ as the derivatives of the z-directional displacements of the same points on these lines with respect to z. These displacements and derivatives can then be regarded as functions of x only since they are variables upon lines which are parallel to the x-axis. Substituting equations (2.8) and (2.9) into equation (2.5) and

expressing this equation along a general, x-directional line, denoted as (ij) in Figure 1(b) gives

$$\frac{\partial}{\partial x} \left[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right]_{ij} + (1-2v) \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right]_{ij} = 0 \quad (2.16)$$

By the above given definitions, we write (2.16) as

$$\frac{\mathrm{d}^{2}u_{ij}}{\mathrm{d}x^{2}} + \frac{\mathrm{d}}{\mathrm{d}x}\dot{v}\Big|_{ij} + \frac{\mathrm{d}}{\mathrm{d}x}\dot{w}\Big|_{ij} + (1-2v)\left[\frac{\mathrm{d}^{2}u_{ij}}{\mathrm{d}x^{2}} + \left(\frac{\partial^{2}u}{\partial y^{2}} + \frac{\partial^{2}u}{\partial z^{2}}\right)_{ij}\right] = 0$$
(2.17)

where an expression for the last term in (2.17) is still needed. Introducing finite difference calculus (33), the partial derivatives of u along the x-directional line (ij) of Figure 1(b) can be written as follows:

$$\left(\frac{g^2u}{gy^2}\right)_{ij} \simeq \frac{1}{h_y^2} (u_{i+1,j} - 2u_{ij} + u_{i-1,j})$$
 (2.18)

$$\left(\frac{\partial^2 u}{\partial z^2}\right)_{ij} \simeq \frac{1}{h_z^2} (u_{i,j+1} - 2u_{ij} + u_{i,j-1})$$
 (2.19)

Using equations (2.18) and (2.19) in equation (2.17), the general equation along interior lines is obtained. Thus,

$$\frac{d^{2}u_{ij}}{dx^{2}} + \frac{(1-2v)}{2(1-v)} \left[-\left(\frac{2}{h_{y}^{2}} + \frac{2}{h_{z}^{2}}\right) u_{ij} + \frac{u_{i+1,j} + u_{i-1,j}}{h_{y}^{2}} \right]$$

$$+ \frac{u_{i,j+1} + u_{i,j-1}}{h_z^2} + \frac{f_{ij}(x)}{2(1-v)} = 0$$
 (2.20)

Lillar oli.

many differe

Equation

miy, since

expressions :

14nes, In c

tay be used, tust be four.

equations.

boundary con

second order

total of two

ind express

tions of not

the constant

coundary day

of the sure

As ar. e directional

where
$$f_{ij}(x) = \frac{d\dot{v}}{dx}\Big|_{ij} + \frac{d\dot{w}}{dx}\Big|_{ij}$$
 (2.21)

Similar differential equations are obtained for the displacements u_{ij} of the points on the other x-directional lines. Since each equation has the terms of the displacements of the points on the surrounding lines, these equations constitute a system of ordinary differential equations for the displacements $u_1, u_2, \dots, u_{\ell}$.

Equations (2.20) and (2.21) are applicable to interior lines only, since for bounding surface lines the central difference expressions for the required second derivatives involve imaginary lines. In order that central difference derivative approximations may be used, expressions for these fictitious line displacements must be found which are independent of the other differential equations. Since three-dimensional elasticity problems have three boundary conditions at every point of the bounding surface and a second order ordinary differential equation can satisfy only a total of two conditions, some of the boundary data can be used to find expressions for these imaginary displacements. Hence, conditions of normal stress and displacement will be enforced through the constants of the homogeneous solutions while shear stress boundary data will be incorporated into the differential equations of the surface lines.

As an example of this procedure, let us take the first x-directional line which is formed by the intersection of the x-z

ed x-y coord surfaces, the

> ; ;x

₽_{/X}

Edi**s** equation

(<u>12)</u> (12)

Tis equation

- ...

in a since

υ. -∶ε

ione that the . At the with

icsitions to

tions (2,2-,) ;
to the follow:

and x-y coordinate planes of a solid. For shear stress free surfaces, the boundary data gives

$$\sigma_{zx} = 0$$
 (2.22)

$$\sigma_{yx} |_{x-z \text{ coordinate plane}} = 0$$
 (2.23)

Using equation (2.14) in equation (2.22) we obtain along line 1 that

$$\left(\frac{\partial \mathbf{u}}{\partial \mathbf{z}}\right)_{1} = -\left(\frac{\partial \mathbf{w}}{\partial \mathbf{x}}\right)_{1}$$

In terms of the discretized displacements shown in Figure 1(a), this equation gives

$$u_{1Yn} = u_{NY+1} + 2h_z \frac{d_w}{dx}\Big|_{1}$$
 (2.24)

In a similar manner, equation (2.23) leads to

$$u_{1Ye} = u_2 + 2h_y \frac{dv}{dx} \Big|_1$$
 (2.25)

Note that the x-directional fictitious lines are numbered 1Yn and 1Ye with n and e indicating adjacent north and east line positions to the 1st x-directional line. Substitution of equations (2.24) and (2.25) into the general equation (2.20), leads to the following equation along line 1:

ctere

7. (x) =

Equations (tions with

other corne

It wil

tions with ;

ier at hand.

rariables we

where a is

Equatic

$$\frac{d^{2}u_{1}}{dx^{2}} + \frac{(1-2v)}{2(1-v)} \left[-\left(\frac{2}{h_{y}^{2}} + \frac{2}{h_{z}^{2}}\right) u_{1} + \frac{2}{h_{y}^{2}} u_{2} + \frac{2}{h_{z}^{2}} u_{NY+1} \right] + \frac{\mathcal{F}_{1}(x)}{2(1-v)} = 0$$
(2.26)

where

$$\mathcal{F}_{1}(\mathbf{x}) = \frac{d\dot{\mathbf{v}}}{d\mathbf{x}}\Big|_{1} + \frac{d\dot{\mathbf{w}}}{d\mathbf{x}}\Big|_{1} + (1-2\nu)\left[\frac{2}{h_{\mathbf{y}}}\frac{d\mathbf{v}}{d\mathbf{x}}\Big|_{1} + \frac{2}{h_{\mathbf{z}}}\frac{d\mathbf{w}}{d\mathbf{x}}\Big|_{1}\right] (2.27)$$

Equations (2.26) and (2.27) are typical of the corner line equations with the exception of some sign changes in (2.27) at the other corners.

It will be convenient to non-dimensionalize the above equations with respect to some characteristic dimension of the problem at hand. For the numerical examples presented, the following variables were introduced:

$$\tilde{u} = \frac{u}{a} \qquad \tilde{x} = \frac{x}{a} \qquad \tilde{h}_{x} = \frac{h_{x}}{a}$$

$$\tilde{v} = \frac{v}{a} \qquad \tilde{y} = \frac{y}{a} \qquad \tilde{h}_{y} = \frac{h_{y}}{a}$$

$$\tilde{w} = \frac{w}{a} \qquad \tilde{z} = \frac{z}{a} \qquad \tilde{h}_{z} = \frac{h_{z}}{a}$$

$$(2.28)$$

where a is the crack dimension.

Equations (2.26) and (2.27) can then be written as

$$\frac{d^{2}\tilde{u}_{1}}{d\tilde{x}^{2}} + \frac{(1-2\nu)}{2(1-\nu)} \left[-\left(\frac{2}{\tilde{h}_{y}^{2}} + \frac{2}{\tilde{h}_{z}^{2}}\right) \tilde{u}_{1} + \frac{2}{\tilde{h}_{y}^{2}} - \tilde{u}_{2} + \frac{2}{\tilde{h}_{z}^{2}} - \tilde{u}_{NY+1} \right] + \frac{\overline{f}_{1}(\tilde{x})}{2(1-\nu)} = 0$$
(2.29)

$$\overline{f}_{1}(\tilde{x}) = \frac{d\tilde{v}}{d\tilde{x}} \Big|_{1} + \frac{d\tilde{w}}{d\tilde{x}} \Big|_{1} + (1-2v) \left[\frac{2}{\tilde{h}_{y}} \frac{d\tilde{v}}{d\tilde{x}} \Big|_{1} + \frac{2}{\tilde{h}_{z}} \frac{d\tilde{w}}{d\hat{x}} \Big|_{1} \right] (2.30)$$

Introducing matrix notation, the differential equations along the x-directional lines can be expressed in the form

$$\frac{d^{2}}{d\tilde{\mathbf{x}}^{2}} \left\{ \tilde{\mathbf{u}} \right\} = \left[\mathbf{K}_{\mathbf{x}} \right] \left\{ \tilde{\mathbf{u}} \right\} + \left\{ \mathbf{r}(\tilde{\mathbf{x}}) \right\}$$

$$\mathbf{k} = \left[\mathbf{k}_{\mathbf{x}} \right] \left\{ \tilde{\mathbf{u}} \right\} + \left\{ \mathbf{r}(\tilde{\mathbf{x}}) \right\}$$

$$\mathbf{k} = \left[\mathbf{k}_{\mathbf{x}} \right] \left\{ \tilde{\mathbf{u}} \right\} + \left\{ \mathbf{r}(\tilde{\mathbf{x}}) \right\}$$

$$\mathbf{k} = \left[\mathbf{k}_{\mathbf{x}} \right] \left\{ \tilde{\mathbf{u}} \right\} + \left\{ \mathbf{r}(\tilde{\mathbf{x}}) \right\}$$

$$\mathbf{k} = \left[\mathbf{k}_{\mathbf{x}} \right] \left\{ \tilde{\mathbf{u}} \right\} + \left\{ \mathbf{r}(\tilde{\mathbf{x}}) \right\}$$

where the non-dimensionalized coefficient matrix $[K_x]$ and the column vectors $\{\tilde{u}\}$ and $\{r(\tilde{x})\}$ are given below.

		[K _{×1}]	2[K _{×2}] NY×NY	0	0	0	
		[K _{×2}]	[K _{×1}]	[K _{x2}]	0	0	
[K _x] :	=	0				0	(2,32)
L×L		0	0	[K _{×2}]	[K _{×1}] NY×NY	[K _{x2}] NYxNY	
		0	0	0	2[K _{x2}] NYxNY	[K _{×1}]	

١

$$\frac{d^{2}\tilde{u}_{1}}{d\tilde{x}^{2}} + \frac{(1-2\nu)}{2(1-\nu)} \left[-\left(\frac{2}{\tilde{h}_{y}^{2}} + \frac{2}{\tilde{h}_{z}^{2}}\right) \tilde{u}_{1} + \frac{2}{\tilde{h}_{y}^{2}} - \tilde{u}_{2} + \frac{2}{\tilde{h}_{z}^{2}} - \tilde{u}_{NY+1} \right] + \frac{\overline{f}_{1}(\tilde{x})}{2(1-\nu)} = 0$$
(2.29)

$$\overline{f}_{1}(\tilde{\mathbf{x}}) = \frac{d\tilde{\mathbf{v}}}{d\tilde{\mathbf{x}}} \Big|_{1} + \frac{d\tilde{\mathbf{w}}}{d\tilde{\mathbf{x}}} \Big|_{1} + (1-2\nu) \left[\frac{2}{\tilde{\mathbf{h}}_{y}} \frac{d\tilde{\mathbf{v}}}{d\tilde{\mathbf{x}}} \Big|_{1} + \frac{2}{\tilde{\mathbf{h}}_{z}} \frac{d\tilde{\mathbf{w}}}{d\hat{\mathbf{x}}} \Big|_{1} \right] (2.30)$$

Introducing matrix notation, the differential equations along the x-directional lines can be expressed in the form

where the non-dimensionalized coefficient matrix $[K_x]$ and the column vectors $\{\tilde{u}\}$ and $\{r(\tilde{x})\}$ are given below.

	[K _{×1}]	2[K _{×2}] NY×NY	0	0	0	
	[K _{×2}]	[K _{×1}]	[K _{x2}]	0	0	
[K _x] =	0				0	(2,32)
L×L	0	0	[K _{×2}]	[K _{×1}] NY×NY	[K _{×2}] NY×NY	
	0	0	0	2[K _{x2}] NYxNY	[K _{×1}]	

١

Anere in

7.x?

[Xx2] = |

where the submatrices $[K_{x1}]$ and $[K_{x2}]$ are

		k ₁	-2k ₂	0	0	0
		-k ₂	k ₁	-k ₂	0	0
[K _{x1}]	=	0				0
		0	0	-k ₂	k ₁	-k ₂
		0	0	0	-2k ₂	k ₁

$$k_1 = \frac{(1-2v)}{2(1-v)} \left[\frac{2}{\tilde{h}_y^2} + \frac{2}{\tilde{h}_z^2} \right]$$

$$k_2 = \frac{(1-2\nu)}{2(1-\nu)} \left[\frac{1}{2} \frac{2}{2} \right]$$

		-k ₃	0	0	0	0
		0	-k ₃	0	0	v
[K _{x2}]	=	0	0		0	0
		0	0	0	-k ₃	0
		0	0	0	0	-k ₃

lote that . ίχ<u>.</u> were the pa

$$k_3 = \frac{(1-2v)}{2(1-v)} \left[\frac{1}{\tilde{h}_z^2} \right]$$

Note that $k_1 = 2(k_2 + k_3)$.

$$\{\tilde{\mathbf{u}}\}_{1}$$

$$\{\tilde{\mathbf{u}}\}_{2}$$

$$\{\mathbf{r}(\tilde{\mathbf{x}})\}_{2}$$

$$\{\mathbf{r}(\tilde{\mathbf{x}})\}_{2}$$

$$\{\mathbf{x}\}_{1}$$

$$\{\mathbf{r}(\tilde{\mathbf{x}})\}_{2}$$

$$\{\mathbf{x}\}_{1}$$

$$\{\mathbf{r}(\tilde{\mathbf{x}})\}_{2}$$

$$\{\mathbf{r}(\tilde{\mathbf{x}})\}_{1}$$

$$\{\mathbf{r}(\tilde{\mathbf{x}})\}_{2}$$

$$\{\mathbf{r}(\tilde{\mathbf{x}})\}_{1}$$

$$\{\mathbf{r}(\tilde{\mathbf{x}})\}_{2}$$

$$\{\mathbf{r}(\tilde{\mathbf{x}})\}_{1}$$

$$\{\mathbf{r}(\tilde{\mathbf{x}})\}_{1}$$

$$\{\mathbf{r}(\tilde{\mathbf{x}})\}_{2}$$

$$\{\mathbf{r}(\tilde{\mathbf{x}})\}_{1}$$

$$\{\mathbf{r}(\tilde{\mathbf{x}})\}_{1}$$

$$\{\mathbf{r}(\tilde{\mathbf{r}})\}_{1}$$

$$\{\mathbf{r}(\tilde{\mathbf{r}})\}_{1}$$

where the partitioned column vectors are

$$\left\{ \begin{array}{c} \tilde{u}_{1} \\ \tilde{u}_{2} \\ \vdots \\ \tilde{u}_{NY+1} \end{array} \right\} \qquad \left\{ \begin{array}{c} \tilde{u}_{NY+1} \\ \tilde{u}_{NY+2} \\ \vdots \\ \tilde{u}_{NY-1} \\ \tilde{u}_{NY} \end{array} \right\} \qquad \left\{ \begin{array}{c} \tilde{u}_{1} \\ \tilde{u}_{1} \\ \vdots \\ \tilde{u}_{2} \\ \tilde{u}_{2} \end{array} \right\}$$

(0) NZ-1 NYX1

(f(x)) NYX1

$$\begin{cases}
\tilde{u}_{\ell-2NY+1} \\
\tilde{u}_{\ell-2NY+2} \\
\vdots \\
NYx1
\end{cases}$$

$$\begin{cases}
\tilde{u}_{\ell-NY+1} \\
\tilde{u}_{\ell-NY+2} \\
\vdots \\
NYx1
\end{cases}$$

$$\tilde{u}_{\ell-NY+1} \\
\tilde{u}_{\ell-NY+2} \\
\vdots \\
\tilde{u}_{\ell-1} \\
\tilde{u}_{\ell-1}$$

$$\begin{cases} \left. \frac{d\mathring{\tilde{v}}}{d\tilde{R}} \right|_{1} + \frac{d\mathring{\tilde{w}}}{d\tilde{R}} \right|_{1} + (1-2\nu) \left[\frac{2}{\tilde{h}_{y}} \frac{d\tilde{\tilde{v}}}{d\tilde{R}} + \frac{2}{\tilde{h}_{z}} \frac{d\mathring{\tilde{w}}}{d\tilde{R}} \right]_{1} \\ \left. \frac{d\mathring{\tilde{v}}}{d\tilde{R}} \right|_{2} + \frac{d\mathring{\tilde{w}}}{d\tilde{R}} \right|_{2} + (1-2\nu) \left[\frac{2}{\tilde{h}_{z}} \frac{d\tilde{\tilde{w}}}{d\tilde{\tilde{x}}} \right]_{2} \\ \vdots & \vdots & \vdots \\ \left. \frac{d\mathring{\tilde{v}}}{d\tilde{\tilde{x}}} \right|_{NY-1} + \frac{d\mathring{\tilde{w}}}{d\tilde{\tilde{x}}} \right|_{NY-1} + (1-2\nu) \left[\frac{2}{\tilde{h}_{z}} \frac{d\tilde{\tilde{w}}}{d\tilde{\tilde{x}}} \right]_{NY-1} \\ \left. \frac{d\mathring{\tilde{v}}}{d\tilde{\tilde{x}}} \right|_{NY} + \frac{d\mathring{\tilde{w}}}{d\tilde{\tilde{x}}} \right|_{NY} + (1-2\nu) \left[-\frac{2}{\tilde{h}_{y}} \frac{d\tilde{\tilde{v}}}{d\tilde{\tilde{x}}} + \frac{2}{\tilde{h}_{z}} \frac{d\tilde{\tilde{w}}}{d\tilde{\tilde{x}}} \right]_{NY} \end{cases}$$

$$\begin{cases} \left. \frac{d\tilde{v}}{d\tilde{x}} \right|_{NY+1} + \frac{d\tilde{w}}{d\tilde{x}} \right|_{NY+1} + (1-2v) \left[\frac{2}{\tilde{h}_{y}} \frac{d\tilde{v}}{d\tilde{x}} \right]_{NY+1} \\ \left. \frac{d\tilde{v}}{d\tilde{x}} \right|_{NY+2} + \frac{d\tilde{w}}{d\tilde{x}} \right|_{NY+2} \\ \vdots & \vdots & \vdots \\ \frac{d\tilde{v}}{d\tilde{x}} \right|_{2NY-1} + \frac{d\tilde{w}}{d\tilde{x}} \right|_{2NY-1} \\ \left. \frac{d\tilde{v}}{d\tilde{x}} \right|_{2NY} + \frac{d\tilde{w}}{d\tilde{x}} \right|_{2NY} + (1-2v) \left[\frac{-2}{\tilde{h}_{y}} \frac{d\tilde{v}}{d\tilde{x}} \right]_{2NY} \end{cases}$$

$$\left\{ \begin{array}{l} \left. \frac{d\mathring{\tilde{v}}}{d\tilde{R}} \right|_{\ell=2NY+1} + \frac{d\mathring{\tilde{w}}}{d\tilde{R}} \right|_{\ell=2NY+1} + (1-2\nu) \left[\frac{2}{\tilde{h}_y} \frac{d\tilde{\tilde{v}}}{d\tilde{R}} \right]_{\ell=2NY+1} \right\} \\ \left. \frac{d\mathring{\tilde{v}}}{d\tilde{R}} \right|_{\ell=2NY+2} + \frac{d\mathring{\tilde{w}}}{d\tilde{R}} \right|_{\ell=2NY+2} \\ \vdots \\ \vdots \\ \frac{d\mathring{\tilde{v}}}{d\tilde{R}} \right|_{\ell=2NY+1} + \frac{d\mathring{\tilde{w}}}{d\tilde{R}} \right|_{\ell=2NY+1} \\ \left. \frac{d\mathring{\tilde{v}}}{d\tilde{R}} \right|_{\ell=NY-1} + \frac{d\mathring{\tilde{w}}}{d\tilde{R}} \right|_{\ell=NY-1} \\ \left. \frac{d\mathring{\tilde{v}}}{d\tilde{R}} \right|_{\ell=NY} + (1-2\nu) \left[-\frac{2}{\tilde{h}_y} \frac{d\mathring{\tilde{v}}}{d\tilde{R}} \right]_{\ell=NY} \right\}$$

$$\begin{cases} \left. \frac{d\mathring{v}}{d\tilde{x}} \right|_{\ell=NY+1} + \frac{d\mathring{w}}{d\tilde{x}} \right|_{\ell=NY+1} + (1-2\nu) \left[\frac{2}{\tilde{h}_{y}} \frac{d\tilde{v}}{d\tilde{x}} - \frac{2}{\tilde{h}_{z}} \frac{d\tilde{w}}{d\tilde{x}} \right]_{\ell=NY+1} \\ \left. \frac{d\mathring{v}}{d\tilde{x}} \right|_{\ell=NY+2} + \frac{d\mathring{w}}{d\tilde{x}} \right|_{\ell=NY+2} + (1-2\nu) \left[-\frac{2}{\tilde{h}_{z}} \frac{d\tilde{w}}{d\tilde{x}} \right]_{\ell=NY+2} \\ \vdots & \vdots & \vdots \\ \frac{d\mathring{v}}{d\tilde{x}} \right|_{\ell=1} + \left. \frac{d\mathring{w}}{d\tilde{x}} \right|_{\ell=1} + (1-2\nu) \left[-\frac{2}{\tilde{h}_{z}} \frac{d\tilde{w}}{d\tilde{x}} \right]_{\ell=1} \\ \frac{d\mathring{v}}{d\tilde{x}} \right|_{\ell} + \frac{d\mathring{w}}{d\tilde{x}} \right|_{\ell} - (1-2\nu) \left[\frac{2}{\tilde{h}_{y}} \frac{d\tilde{v}}{d\tilde{x}} + \frac{2}{\tilde{h}_{z}} \frac{d\tilde{w}}{d\tilde{x}} \right]_{\ell} \end{cases}$$

Since the element stants, equation mefficients. Quartien. na particular s Assuming that mained in close. x-directional 1: 2.2.2 Peduction Associate For the so: the yearis in F displacements o 72, 73, derivatives of m these lines as the derivat points on thes ierivatives ca they are vari ày substituti gralogously e

line (ij) to

Stained:

Since the elements of the coefficient matrix $[K_{\mathbf{x}}]$ are all constants, equations (2.31) are differential equations with constant coefficients. The coupling terms from the second and third Navier-Cauchy equations appear only in the vector $\{\mathbf{r}(\tilde{\mathbf{x}})\}$ which makes the particular solution of (2.31) a function of this coupling. Assuming that $\{\mathbf{r}(\tilde{\mathbf{x}})\}$ is known, solutions of (2.31) can be obtained in closed form when boundary data at the end points of the x-directional lines are given.

2.2.2 Reduction of the Second Navier-Cauchy Equation and
Associated Boundary Conditions

For the solution of equation (2.6), the lines parallel to the y-axis in Figure 1(a) must be utilized. The y-directional displacements of points along these lines will be denoted as v_1 , v_2 , v_3 , . . . , v_m . We define $\dot{u}|_1$, $\dot{u}|_2$, $\dot{u}|_3$, . . . , $\dot{u}|_m$ as the derivatives of the x-directional displacements of the same points on these lines with respect to x and $\dot{w}|_1$, $\dot{w}|_2$, $\dot{w}|_3$, . . . , $\dot{w}|_m$ as the derivatives of the z-directional displacements of the same points on these lines with respect to z. These displacements and derivatives can then be regarded as functions of y only since they are variables upon lines which are parallel to the y axis. By substituting equations (2.8) and (2.9) into equation (2.6) and analogously expressing this equation along a general y-directional line (ij) to equation (2.20), the following equation will be obtained:

$$\frac{\partial}{\partial y} \left[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right]_{ij} + (1-2v) \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right]_{ij} = 0 \quad (2.34)$$

$$\frac{\mathrm{d}^{2}\mathbf{v}_{ij}}{\mathrm{d}\mathbf{y}^{2}} + \frac{\mathrm{d}\dot{\mathbf{u}}}{\mathrm{d}\mathbf{y}}\Big|_{ij} + \frac{\mathrm{d}\dot{\mathbf{w}}}{\mathrm{d}\mathbf{y}}\Big|_{ij} + (1-2\nu)\left[\frac{\mathrm{d}^{2}\mathbf{v}_{ij}}{\mathrm{d}\mathbf{y}^{2}} + \left(\frac{\partial^{2}\mathbf{v}}{\partial\mathbf{x}^{2}} + \frac{\partial^{2}\mathbf{v}}{\partial\mathbf{z}^{2}}\right)_{ij}\right] = 0$$
(2.35)

In a similar manner to equations (2.18) and (2.19), we have

$$\left(\frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2}\right)_{ij} \simeq \frac{1}{h_{\mathbf{x}}^2} (\mathbf{v}_{i+1,j} - 2\mathbf{v}_{ij} + \mathbf{v}_{i-1,j}) \tag{2.36}$$

$$\left(\frac{\partial^2 v}{\partial z^2}\right)_{ij} \simeq \frac{1}{h_z^2} (v_{i,j+1} - 2v_{ij} + v_{i,j-1})$$
 (2.37)

Combining equations (2.36), (2.37) and (2.35), the general equation along y-directional, interior lines is obtained. Thus, we have

$$\frac{d^{2}v_{ij}}{dy^{2}} + \frac{(1-2v)}{2(1-v)} \left[-\left(\frac{2}{h_{x}^{2}} + \frac{2}{h_{z}^{2}}\right) v_{ij} + \frac{v_{i+1,j} + v_{1-1,j}}{h_{x}^{2}} \right]$$

$$+ \frac{\mathbf{v_{i,j+1}} + \mathbf{v_{i,j-1}}}{\mathbf{h_z^2}} + \frac{f_{ij}(y)}{2(1-v)} = 0$$
 (2.38)

where
$$f_{ij}(y) = \frac{d\dot{y}}{dy}\Big|_{ij} + \frac{d\dot{w}}{dy}\Big|_{ij}$$
 (2.39)

Similar differential equations are obtained for the displacements along the other y-directional lines. Since each equation contains displacements of the surrounding lines, these equations

la similar man Committing equati tion along y-dir

there $f_{ij}(y)$:

Similar di ters along the ontains displa

$$\frac{\partial}{\partial y} \left[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right]_{ij} + (1-2v) \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right]_{ij} = 0 \quad (2.34)$$

$$\frac{\mathrm{d}^{2}\mathbf{v}_{ij}}{\mathrm{d}\mathbf{y}^{2}} + \frac{\mathrm{d}\dot{\mathbf{u}}}{\mathrm{d}\mathbf{y}}\Big|_{ij} + \frac{\mathrm{d}\dot{\mathbf{w}}}{\mathrm{d}\mathbf{y}}\Big|_{ij} + (1-2\nu)\left[\frac{\mathrm{d}^{2}\mathbf{v}_{ij}}{\mathrm{d}\mathbf{y}^{2}} + \left(\frac{\partial^{2}\mathbf{v}}{\partial\mathbf{x}^{2}} + \frac{\partial^{2}\mathbf{v}}{\partial\mathbf{z}^{2}}\right)_{ij}\right] = 0$$
(2.35)

In a similar manner to equations (2.18) and (2.19), we have

$$\left(\frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2}\right)_{\mathbf{i}\mathbf{j}} \simeq \frac{1}{h_{\mathbf{x}}^2} (\mathbf{v}_{\mathbf{i}+1,\mathbf{j}} - 2\mathbf{v}_{\mathbf{i}\mathbf{j}} + \mathbf{v}_{\mathbf{i}-1,\mathbf{j}})$$
 (2.36)

$$\left(\frac{\partial^2 \mathbf{v}}{\partial \mathbf{z}^2}\right)_{\mathbf{i}\mathbf{j}} \simeq \frac{1}{h_{\mathbf{z}}^2} \left(\mathbf{v}_{\mathbf{i},\mathbf{j}+1} - 2\mathbf{v}_{\mathbf{i}\mathbf{j}} + \mathbf{v}_{\mathbf{i},\mathbf{j}-1}\right) \tag{2.37}$$

Combining equations (2.36), (2.37) and (2.35), the general equation along y-directional, interior lines is obtained. Thus, we have

$$\frac{d^{2}v_{ij}}{dy^{2}} + \frac{(1-2v)}{2(1-v)} \left[-\left(\frac{2}{h_{x}^{2}} + \frac{2}{h_{z}^{2}}\right)v_{ij} + \frac{v_{i+1,j} + v_{i-1,j}}{h_{x}^{2}} \right]$$

$$+ \frac{v_{i,j+1} + v_{i,j-1}}{h_2^2} + \frac{f_{ij}(y)}{2(1-v)} = 0$$
 (2.38)

where
$$f_{ij}(y) = \frac{d\dot{y}}{dy}\Big|_{ij} + \frac{d\dot{w}}{dy}\Big|_{ij}$$
 (2.39)

Similar differential equations are obtained for the displacements along the other y-directional lines. Since each equation contains displacements of the surrounding lines, these equations

Form a set of C:

Noting the

intrinserior li

tents v_{10x} ar

unditions in c

Since the first

of the y-z and

planes in the y

٠ ء:

surfaces, the

z^{xy}

Using equation contained in . Figure 1(a):

V

ν

Note that ; addacent 1

line. Sur

gereral e

form a set of ordinary differential equations for v_1, v_2, \dots, v_m .

Noting that equations (2.38) and (2.39) are defined fully for interior lines only, expressions for the imaginary displacements v_{1Zw} and v_{1Zn} must be obtained from the shear stress conditions in case of the first y-directional boundary line. Since the first y-directional line is formed by the intersection of the y-z and y-x coordinate planes, shear stresses on these planes in the y direction are utilized. For shear stress free surfaces, the boundary data gives

$$\sigma_{zy}\Big|_{y-x \text{ coordinate plane}} = 0$$
 (2.40)

$$\sigma_{xy} \Big|_{y-z \text{ coordinate plane}} = 0$$
 (2.41)

Using equations (2.13) and (2.15) the following equations will be obtained in terms of the discretized displacements shown in Figure 1(a):

$$\mathbf{v}_{1Z\mathbf{w}} = \mathbf{v}_{NZ+1} + 2\mathbf{h}_{\mathbf{x}} \frac{d\mathbf{u}}{d\mathbf{y}}$$
 (2.42)

$$\mathbf{v}_{1\mathrm{Zn}} = \mathbf{v}_2 + 2\mathbf{h}_z \left. \frac{\mathrm{d}\mathbf{w}}{\mathrm{d}\mathbf{y}} \right|_1 \tag{2.43}$$

Note that subscripts w and n again describe west and north adjacent line positions with respect to the first y-directional line. Substitution of equations (2.42) and (2.43) into the general equation (2.38) results in the following equation along

$$\frac{\frac{2}{2}v_{\perp}}{\frac{2}{2}v_{\perp}^{2}} + \frac{(1-2v)}{2(1-v)} \left[-\frac{1}{2} \left(\frac{v_{\perp}^{2}}{2(1-v)} \right) \right] = 0$$

$$I(y) = \frac{dy}{dy}$$

a-ditensional

introducing math

simms the y-dire

$$\frac{\partial^2}{\partial y^2} \quad (v)$$

The objections

line 1:

$$\frac{d^{2}v_{1}}{dy^{2}} + \frac{(1-2v)}{2(1-v)} \left[-\left(\frac{2}{h_{z}^{2}} + \frac{2}{h_{x}^{2}}\right)v_{1} + \frac{2v_{2}}{h_{z}^{2}} + \frac{2v_{NZ+1}}{h_{x}^{2}} \right] + \frac{\overline{f}_{1}(y)}{2(1-v)} = 0$$
(2.44)

$$\mathcal{F}_{1}(y) = \frac{d\dot{u}}{dy}\Big|_{1} + \frac{d\dot{w}}{dy}\Big|_{1} + (1-2v)\Big[\frac{2}{h_{x}}\frac{du}{dy} + \frac{2}{h_{z}}\frac{dw}{dy}\Big]_{1}$$
 (2.45)

Non-dimensionalizing these equations according to (2.28) and introducing matrix notation, the ordinary differential equations along the y-directional lines can be written as

$$\frac{d^2}{d\tilde{y}^2} \left\{ \tilde{v} \right\} = \left[K_y \right] \left\{ \tilde{v} \right\} + \left\{ s(\tilde{y}) \right\}$$

$$m \times 1 \qquad m \times m \times 1 \qquad m \times 1$$

$$(2.46)$$

The coefficient matrix $[K_v]$ is given by

		[K _{y1}] NZxNZ	2[K _{y2}] NZxNZ	0	0	0	
		[K _{y2}] nz*nz	[K _{yl}] NZ x NZ	[k _{y2}] nzxnz	Q .	0	
[K _y] :	=	0	//	/		0	(2.47)
mxm		0	0	[K _{y2}] nzxnz	[K _{yl}] NZxNZ	[K _{y2}] NZxNZ	
		0	0	0	2[K _{y2}] NZxNZ	[K _{y1}] NZ×NZ	

where the subma

Note that $|\mathbf{k}_{\perp}|$

The Vectors

where the submatrices $[\textbf{K}_{y1}]$ and $[\textbf{K}_{y2}]$ are

k ₄	-2k ₃	0	0	0
-k ₃	k ₄	-k ₃	0	0
0	/	, /	/	0
0	α	-k ₃	k ₄	-k ₃
0	0	0	-2k3	k ₄
	-k ₃	-k ₃ k ₄ 0 0	-k ₃ k ₄ -k ₃ 0 0 -k ₃	-k ₃ k ₄ -k ₃ 0 0 0 -k ₃ k ₄

$$k_3 = \frac{(1-2\nu)}{2(1-\nu)} \left[\frac{1}{\tilde{h}_z^2} \right]$$

$$k_4 = \frac{(1-2\nu)}{2(1-\nu)} \left[\frac{2}{\tilde{h}_z^2} + \frac{2}{\tilde{h}_x^2} \right]$$

Note that $k_4 = 2(k_3 + k_5)$.

$$\begin{bmatrix} -k_5 & 0 & 0 & 0 & 0 \\ 0 & -k_5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ NZ_{XNZ} & 0 & 0 & 0 & -k_5 & 0 \\ 0 & 0 & 0 & 0 & -\kappa_5 & 0 \\ \end{bmatrix}$$

$$k_5 = \frac{(1-2v)}{2(1-v)} \left[\frac{1}{\tilde{h}_x^2} \right]$$

The vectors $\{\tilde{\mathbf{v}}\}$ and $\{\mathbf{s}(\tilde{\mathbf{y}})\}$ can be written as

dere the sum

14:1 = \rightarrow

Exists

Acte that $|\mathbf{k}_{\mathbf{k}}|$

 $\begin{bmatrix} -k_{0} \\ 0 \\ 0 \\ \end{bmatrix}$ $\begin{bmatrix} 3k_{0} \\ 2k_{0} \\ 0 \\ 0 \\ 0 \\ \end{bmatrix}$

k₅

The vectors

where the submatrices $[K_{y1}]$ and $[K_{y2}]$ are

		k ₄	-2k ₃	0	0	0
		-k ₃	k ₄	-k ₃	0	0
[K _{yl}]	=	0	/	/	/	0
NZXNZ		0	Q	-k ₃	k ₄	-k ₃
		0	0	0	-2k3	k ₄

$$k_3 = \frac{(1-2\nu)}{2(1-\nu)} \left[\frac{1}{\tilde{h}_z^2} \right]$$

$$k_4 = \frac{(1-2\nu)}{2(1-\nu)} \left[\frac{2}{\tilde{h}_z^2} + \frac{2}{\tilde{h}_x^2} \right]$$

Note that $k_4 = 2(k_3 + k_5)$.

$$k_5 = \frac{(1-2v)}{2(1-v)} \left[\frac{1}{\tilde{h}_x^2} \right]$$

The vectors $\{\tilde{\mathbf{v}}\}$ and $\{\mathbf{s}(\tilde{\mathbf{y}})\}$ can be written as

(1) (1) (2) (2) (3)

where the part

$$\{\tilde{\mathbf{v}}\}_{1}$$

$$\{\tilde{\mathbf{v}}\}_{2}$$

$$\{\mathbf{s}(\tilde{\mathbf{y}})\}_{2}$$

$$\{\mathbf{s}(\tilde{\mathbf{y}})\}_{3} = \begin{cases} \{f(\tilde{\mathbf{y}})\}_{1} \\ \{f(\tilde{\mathbf{y}})\}_{2} \end{cases}$$

$$\{\mathbf{x}\}_{NX-1}$$

$$\{\tilde{\mathbf{v}}\}_{NX}$$

$$\{f(\tilde{\mathbf{y}})\}_{NX-1}$$

$$\{f(\tilde{\mathbf{y}})\}_{NX}$$

where the partitioned column vectors are

$$\{\widetilde{\mathbf{v}}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{NZx1} \\ \{\widetilde{\mathbf{v}}_1 \\ \mathbf{v}_{NZ+1} \\ \mathbf{v}_{NZ-1} \\ \mathbf{v}_{NZ} \}$$

$$\{\widetilde{\mathbf{v}}_1 \\ \mathbf{v}_{NZ+1} \\ \mathbf{v}_{NZ+1} \\ \mathbf{v}_{NZ} \}$$

$$\{\widetilde{\mathbf{v}}_1 \\ \mathbf{v}_{NZ} \\ \mathbf{v}_{NZ+1} \\ \mathbf{v}_{m-2NZ+1} \\ \vdots \\ \mathbf{v}_{m-2NZ+2} \\ \vdots \\ \mathbf{v}_{m-NZ-1} \\ \mathbf{v}_{m-NZ} \}$$

$$\{\widetilde{\mathbf{v}}_1 \\ \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_4 \\ \mathbf{v}_6 \\ \mathbf{v}_6 \\ \mathbf{v}_{m-1} \\ \mathbf{v}_6 \\ \mathbf{v}_{m-1} \\ \mathbf{v}_6 \\ \mathbf{v}_{m-1} \\ \mathbf{v}_{m} \\ \mathbf{v}_{m}$$

$$\begin{cases} \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{y}}} \Big|_{1} + \frac{d\tilde{\mathbf{w}}}{d\tilde{\mathbf{y}}} \Big|_{1} + (1-2\nu) \left[\frac{2}{\tilde{h}_{\mathbf{x}}} \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{y}}} + \frac{2}{\tilde{h}_{\mathbf{z}}} \frac{d\tilde{\mathbf{w}}}{d\tilde{\mathbf{y}}} \right]_{1} \\ \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{y}}} \Big|_{2} + \frac{d\tilde{\mathbf{w}}}{d\tilde{\mathbf{y}}} \Big|_{2} + (1-2\nu) \left[\frac{2}{\tilde{h}_{\mathbf{x}}} \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{y}}} \right]_{2} \\ \vdots & \vdots & \vdots \\ \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{y}}} \Big|_{1} + \frac{d\tilde{\mathbf{w}}}{d\tilde{\mathbf{y}}} \Big|_{1} + (1-2\nu) \left[\frac{2}{\tilde{h}_{\mathbf{x}}} \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{y}}} \right]_{NZ-1} \\ \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{y}}} \Big|_{1} + \frac{d\tilde{\mathbf{w}}}{d\tilde{\mathbf{y}}} \Big|_{1} + (1-2\nu) \left[\frac{2}{\tilde{h}_{\mathbf{x}}} \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{y}}} \right]_{NZ-1} \\ \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{y}}} \Big|_{1} + \frac{d\tilde{\mathbf{w}}}{d\tilde{\mathbf{y}}} \Big|_{1} + (1-2\nu) \left[\frac{2}{\tilde{h}_{\mathbf{x}}} \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{y}}} - \frac{2}{\tilde{h}_{\mathbf{z}}} \frac{d\tilde{\mathbf{w}}}{d\tilde{\mathbf{y}}} \right]_{NZ} \right]$$

$$\begin{cases} \frac{d\tilde{u}}{d\tilde{y}} \Big|_{NZ+1} + \frac{d\tilde{w}}{d\tilde{y}} \Big|_{NZ+1} + (1-2v) \left[\frac{2}{\tilde{h}_{z}} \frac{d\tilde{w}}{d\tilde{y}} \right]_{NZ+1} \\ \frac{d\tilde{u}}{d\tilde{y}} \Big|_{NZ+2} + \frac{d\tilde{w}}{d\tilde{y}} \Big|_{NZ+2} \\ \vdots & \vdots & \vdots \\ \frac{d\tilde{u}}{d\tilde{y}} \Big|_{2NZ-1} + \frac{d\tilde{w}}{d\tilde{y}} \Big|_{2NZ-1} \\ \frac{d\tilde{u}}{d\tilde{y}} \Big|_{2NZ} + \frac{d\tilde{w}}{d\tilde{y}} \Big|_{2NZ} + (1-2v) \left[-\frac{2}{\tilde{h}_{z}} \frac{d\tilde{w}}{d\tilde{y}} \right]_{2NZ} \end{cases}$$

$$\{\hat{F}(\overline{y})\}_{\substack{NX=1\\NX=1}} = \frac{-1}{F(1-v)} \begin{cases} \frac{\partial \overline{y}}{\partial y} \\ \frac{\partial \overline{y}}$$

$$\begin{cases} \frac{d\tilde{\Omega}}{d\tilde{y}} \Big|_{m=N\tilde{U}+1} + \frac{d\tilde{x}}{d\tilde{y}} \Big|_{m=N\tilde{U}+1} + (1-2\nu) \left[-\frac{2}{h_{X}} \frac{d\tilde{\Omega}}{d\tilde{y}} + \frac{2}{h_{Z}} \frac{d\tilde{x}}{d\tilde{y}} \right]_{m=N\tilde{U}+1} \\ \frac{d\tilde{\Omega}}{d\tilde{y}} \Big|_{m=N\tilde{U}+2} + \frac{d\tilde{x}}{d\tilde{y}} \Big|_{m=N\tilde{U}+2} + (1-2\nu) \left[-\frac{2}{h_{X}} \frac{d\tilde{\Omega}}{d\tilde{y}} \right]_{m=N\tilde{U}+2} \\ \vdots \\ \frac{d\tilde{\Omega}}{d\tilde{y}} \Big|_{m=1} + \frac{d\tilde{x}}{d\tilde{y}} \Big|_{m=1} + (1-2\nu) \left[-\frac{2}{h_{X}} \frac{d\tilde{\Omega}}{d\tilde{y}} \right]_{m=1} \\ \frac{d\tilde{\Omega}}{d\tilde{y}} \Big|_{m=1} + \frac{d\tilde{x}}{d\tilde{y}} \Big|_{m=1} + (1-2\nu) \left[\frac{2}{h_{X}} \frac{d\tilde{\Omega}}{d\tilde{y}} + \frac{2}{h_{Z}} \frac{d\tilde{\Omega}}{d\tilde{y}} \right]_{m} \end{bmatrix}$$

Equations (2.40 equations (2.31 of (2.40) can be the end points 2.2.3 Reducti

Association the s

displacements

the z-axis in

as the deriv

points on th

of the same

displacement of z only

to the z

tion of equ

for a general l(a) is

 $\frac{d^2}{dz^2} + \frac{1}{2}$

Equations (2.46) form a set of equations that are similar to equations (2.31). Assuming that $\{s(\tilde{y})\}$ is known, solutions of (2.46) can be obtained in closed form when boundary data at the end points of the y-directional lines are given.

2.2.3 Reduction of the Third Navier-Cauchy Equations and Associated Boundary Conditions

For the solution of equation (2.7), the lines parallel to the z-axis in Figure 1(a) must be employed. The z-directional displacements of points along these lines will be denoted as \mathbf{w}_1 , \mathbf{w}_2 , \mathbf{w}_3 , ..., \mathbf{w}_n . We define $\mathbf{t}|_1$, $\mathbf{u}|_2$, $\mathbf{u}|_3$, ..., $\mathbf{u}|_n$ as the derivatives of the x-directional displacements of the same points on these lines with respect to \mathbf{x} and $\mathbf{v}|_1$, $\mathbf{v}|_2$, $\mathbf{v}|_3$, ..., $\mathbf{v}|_n$ as the derivatives of the y-directional displacements of the same points on these lines with respect to \mathbf{y} . These displacements and derivatives can then be regarded as functions of \mathbf{z} only since they are variables upon lines which are parallel to the \mathbf{z} axis. Following the same procedure as in the derivation of equations (2.20) and (2.38), the differential equation for a general interior line (ij) along the \mathbf{z} direction in Figure 1(a) is

$$\frac{d^{2}w_{ij}}{dz^{2}} + \frac{(1-2v)}{2(1-v)} \left[-\left(\frac{2}{h_{x}^{2}} + \frac{2}{h_{y}^{2}}\right) w_{ij} + \frac{w_{i+1,j} + w_{i-1,j}}{h_{x}^{2}} + \frac{w_{i,j+1} + w_{i,j-1}}{h_{y}^{2}} \right] + \frac{B_{ij}(z)}{2(1-v)} = 0$$
(2.49)

shear stress i

¥ì

Substituting equation (2.4 (2.28), leads

in 1 (1-2)

where

$$f_{ij}(z) = \frac{d\dot{u}}{dz}\Big|_{ij} + \frac{d\dot{v}}{dz}\Big|_{ij}$$
 (2.50)

Similar differential equations are obtained for the other z-directional lines. Since each equation has the terms of the displacements $\mathbf{w_i}$ of the points on the surrounding lines, a system of ordinary differential equations is obtained for $\mathbf{w_1}$, $\mathbf{w_2}$, $\mathbf{w_3}$, . . . , $\mathbf{w_n}$. Noting again that equations (2.49) and (2.50) are defined fully for interior lines only, expressions for the fictitious displacements $\mathbf{w_{lxw}}$ and $\mathbf{w_{lxs}}$ must be obtained from the shear stress conditions in case of the first z-directional boundary line. Since line 1 in the z-direction is formed by the intersection of the z-x and z-y coordinate planes, shear stress on these planes in the z-direction are utilized. For shear stress free surfaces we obtain

$$w_{1Xw} = w_2 + 2h_x \frac{du}{dz}$$
, (2.51)

$$w_{1Xs} = w_{NX+1} + 2h_y \frac{dv}{dz} \Big|_{1}$$
 (2.52)

Substituting equations (2.51) and (2.52) back into the general equation (2.49) and non-dimensionalizing the result according to (2.28), leads to the following equation along line 1:

$$\frac{d^{2}\tilde{w}_{1}}{d\tilde{z}^{2}} + \frac{(1-2v)}{2(1-v)} \left[-\left(\frac{2}{\tilde{h}_{x}^{2}} + \frac{2}{\tilde{h}_{y}^{2}}\right) \tilde{w}_{1} + \frac{2}{\tilde{h}_{x}^{2}} \tilde{w}_{2} + \frac{2}{\tilde{h}_{y}^{2}} \tilde{w}_{NX+1} \right] + \frac{\overline{f}_{1}(z)}{2(1-v)} = 0$$

Explicing tar

Hilrectional

1 12 125

where the open

कारं {t(2)} e

[3₂] :

there the su

where

$$\overline{f}_{1}(\tilde{z}) = \frac{d\dot{\tilde{u}}}{d\tilde{z}}\bigg|_{1} + \frac{d\dot{\tilde{v}}}{d\tilde{z}}\bigg|_{1} + (1-2v)\bigg[\frac{2}{\tilde{h}_{x}}\frac{d\tilde{u}}{d\tilde{z}} + \frac{2}{\tilde{h}_{y}}\frac{d\tilde{v}}{d\tilde{z}}\bigg]_{1}$$

Introducing matrix notation, the differential equations along the z-directional lines can be written as

where the coefficient matrix $[K_Z]$ and the column vectors $\{\tilde{w}\}$ and $\{t(\tilde{z})\}$ are given below.

	[K _{z1}]	2[K _{z2}] NXxNX	0	0	0	
	[K _{z2}]	[K _{z]}]	[K _{z2}] NX×NX	0	0	
[K _z] =	0		'\	//	0	(2.54)
nxn	0	0	[K _{z2}]	XXXXX [K ST]	[K _{z2}]	
	0	0	0	2[K _{z2}] NX*NX	[K _{z1}]	

where the submatrices $[\mathrm{K}_{\mathrm{2l}}]$ and $[\mathrm{K}_{\mathrm{22}}]$ are

11.1 =

 $\nabla(\chi)\chi$

38₂₂] .

MXXX

iote t

	1	r .		, ;	1	7
		k ₆	-2k ₅	0	0	0
		-k ₅	^k 6	-k ₅	0	0
$[K_{z1}]$	=	0		/	//	0
NXxNX		0	0	-k ₅	k ₆	-k ₅
		0	0	0	-2k ₅	k ₆
	l	-		l	1	· -

$$k_{5} = \frac{(1-2v)}{2(1-v)} \left[\frac{1}{\tilde{h}_{x}^{2}} \right]$$

$$k_{6} = \frac{(1-2v)}{2(1-v)} \left[\frac{2}{\tilde{h}_{x}^{2}} + \frac{2}{\tilde{h}_{y}^{2}} \right]$$

$$k_2 = \frac{(1-2v)}{2(1-v)} \left[\frac{1}{\tilde{h}_y^2} \right]$$

Note that $k_6 = 2(k_2 + k_5)$.

(X) =

īχ.

(8); = (3);

Wx1

$$\{\widetilde{w}\}_{1} = \begin{cases} \{\widetilde{w}\}_{1} \\ \{\widetilde{w}\}_{2} \\ \vdots \\ \{\widetilde{w}\}_{NY-1} \\ \{\widetilde{w}\}_{NY} \end{cases} = \begin{cases} \{t(\widetilde{z})\}_{1} \\ \{f(\widetilde{z})\}_{2} \\ \vdots \\ \{f(\widetilde{z})\}_{NY-1} \\ \{f(\widetilde{z})\}_{NY-1} \\ \{f(\widetilde{z})\}_{NY} \end{cases}$$

$$\{\widetilde{w}\}_{1} = \begin{cases} \widetilde{w}_{1} \\ \widetilde{w}_{2} \\ \vdots \\ \widetilde{w}_{NX+1} \\ \widetilde{w}_{NX} \end{cases} = \begin{cases} \widetilde{w}_{1} \\ \widetilde{w}_{2} \\ \vdots \\ \widetilde{w}_{2NX-1} \\ \widetilde{w}_{2NX-1} \\ \widetilde{w}_{2NX} \end{cases}$$

$$\{\widetilde{w}\}_{NY-1} = \begin{cases} \widetilde{w}_{n-2NX+1} \\ \widetilde{w}_{n-2NX+2} \\ \vdots \\ \widetilde{w}_{n-NX-1} \\ \widetilde{w}_{n-NX-1} \end{cases} = \begin{cases} \widetilde{w}\}_{NY} = \begin{cases} \widetilde{w}_{n-NX+1} \\ \widetilde{w}_{n-NX+2} \\ \vdots \\ \widetilde{w}_{n-1} \\ \widetilde{w}_{n-1} \end{cases}$$

$$\begin{cases} \left. \frac{d\dot{\tilde{u}}}{d\tilde{z}} \right|_{1} + \frac{d\dot{\tilde{v}}}{d\tilde{z}} \right|_{1} + (1-2\nu) \left[\frac{2}{\tilde{h}_{X}} \frac{d\tilde{u}}{d\tilde{z}} + \frac{2}{\tilde{h}_{y}} \frac{d\tilde{v}}{d\tilde{z}} \right]_{1} \\ \left. \frac{d\dot{\tilde{u}}}{d\tilde{z}} \right|_{2} + \frac{d\dot{\tilde{v}}}{d\tilde{z}} \right|_{2} + (1-2\nu) \left[\frac{2}{\tilde{h}_{y}} \frac{d\tilde{v}}{d\tilde{z}} \right]_{2} \\ \vdots & \vdots & \vdots \\ \left. \frac{d\dot{\tilde{u}}}{d\tilde{z}} \right|_{NX-1} + \frac{d\dot{\tilde{v}}}{d\tilde{z}} \right|_{NX-1} + (1-2\nu) \left[\frac{2}{\tilde{h}_{y}} \frac{d\tilde{v}}{d\tilde{z}} \right]_{NX-1} \\ \left. \frac{d\dot{\tilde{u}}}{d\tilde{z}} \right|_{NX} + \frac{d\dot{\tilde{v}}}{d\tilde{z}} \right|_{NX} + (1-2\nu) \left[-\frac{2}{\tilde{h}_{x}} \frac{d\tilde{u}}{d\tilde{z}} + \frac{2}{\tilde{h}_{y}} \frac{d\tilde{v}}{d\tilde{z}} \right]_{NX} \end{cases}$$

$$\begin{cases} \left. \frac{d\tilde{u}}{d\tilde{z}} \right|_{NX+1} + \frac{d\tilde{v}}{d\tilde{z}} \right|_{NX+1} + (1-2v) \left[\frac{2}{h_x} \frac{d\tilde{u}}{d\tilde{z}} \right]_{NX+1} \\ \left. \frac{d\tilde{u}}{d\tilde{z}} \right|_{NX+2} + \frac{d\tilde{v}}{d\tilde{z}} \right|_{NX+2} \\ \vdots & \vdots & \vdots \\ \left. \frac{d\tilde{u}}{d\tilde{z}} \right|_{2NX-1} + \frac{d\tilde{v}}{d\tilde{z}} \right|_{2NX-1} \\ \left. \frac{d\tilde{u}}{d\tilde{z}} \right|_{2NX} + \frac{d\tilde{v}}{d\tilde{z}} \right|_{2NX} + (1-2v) \left[-\frac{2}{h_x} \frac{d\tilde{u}}{d\tilde{z}} \right]_{2NX} \end{cases}$$

 $\frac{\partial z}{\partial x} = \frac{z}{2(z-v)}$

$$\begin{cases} \left. \frac{d\dot{0}}{d\tilde{z}} \right|_{n-2NX+1} + \frac{d\dot{\tilde{v}}}{d\tilde{z}} \right|_{n-2NX+1} + (1-2\nu) \left[\frac{2}{\tilde{h}_{X}} \frac{d\tilde{u}}{d\tilde{z}} \right]_{n-2NX+1} \\ \left. \frac{d\dot{\tilde{u}}}{d\tilde{z}} \right|_{n-2NX+2} + \frac{d\dot{\tilde{v}}}{d\tilde{z}} \right|_{n-2NX+2} \\ \vdots \\ \vdots \\ \left. \frac{d\dot{\tilde{u}}}{d\tilde{z}} \right|_{n-NX-1} + \frac{d\dot{\tilde{v}}}{d\tilde{z}} \right|_{n-NX-1} \\ \left. \frac{d\dot{\tilde{u}}}{d\tilde{z}} \right|_{n-NX-1} + \left. \frac{d\dot{\tilde{v}}}{d\tilde{z}} \right|_{n-NX-1} \\ \left. \frac{d\dot{\tilde{u}}}{d\tilde{z}} \right|_{n-NX} + \left. \frac{d\dot{\tilde{v}}}{d\tilde{z}} \right|_{n-NX} + (1-2\nu) \left[-\frac{2}{\tilde{h}_{X}} \frac{d\tilde{\tilde{u}}}{d\tilde{\tilde{z}}} \right]_{n-NX} \end{cases}$$

$$\begin{cases} \left. \frac{d\mathring{u}}{d\tilde{z}} \right|_{n-NX+1} + \frac{d\mathring{v}}{d\tilde{z}} \right|_{n-NX+1} + (1-2v) \left[\frac{2}{\tilde{h}_{x}} \frac{d\tilde{u}}{d\tilde{z}} - \frac{2}{\tilde{h}_{y}} \frac{d\tilde{v}}{d\tilde{z}} \right]_{n-NX+1} \\ \left. \frac{d\mathring{u}}{d\tilde{z}} \right|_{n-NX+2} + \frac{d\mathring{v}}{d\tilde{z}} \right|_{n-NX+2} + (1-2v) \left[-\frac{2}{\tilde{h}_{y}} \frac{d\tilde{v}}{d\tilde{z}} \right]_{n-NX+2} \\ \vdots & \vdots & \vdots \\ NXx1 \end{cases}$$

$$\begin{cases} f(\tilde{z}) \right\}_{NY} = \frac{-1}{2(1-v)} \qquad \qquad \vdots \\ \frac{d\mathring{u}}{d\tilde{z}} \bigg|_{n-1} + \frac{d\mathring{v}}{d\tilde{z}} \bigg|_{n-1} + (1-2v) \left[-\frac{2}{\tilde{h}_{y}} \frac{d\tilde{v}}{d\tilde{z}} \right]_{n-1} \\ \frac{d\mathring{u}}{d\tilde{z}} \bigg|_{n} + \frac{d\mathring{v}}{d\tilde{z}} \bigg|_{n} - (1-2v) \left[\frac{2}{\tilde{h}_{x}} \frac{d\tilde{u}}{d\tilde{z}} + \frac{2}{\tilde{h}_{y}} \frac{d\tilde{v}}{d\tilde{z}} \right]_{n} \end{cases}$$

Equations (1.53) the previously of mains that ambe obtained Mirectional I three coefficies 1,3 Solution o Coefficier Solution equations with extensively and tively simple : in applying th equations, we sizultaneous e equations, T them be expres this method is Values and el in the applic Tay arise in independent .

An enti

formation of

Equations (2.53) are a set of equations that are analogous to the previously obtained two sets of differential equations. Assuming that $\{t(\tilde{z})\}$ is known, closed form solutions of (2.53) can be obtained when boundary conditions at the end points of the z-directional lines are given. Finally, it can be noted that the three coefficient matrices obtained are all singular.

2.3 Solution of Simultaneous Differential Equations With Constant
Coefficients

Solution methods for a system of ordinary differential equations with constant coefficients have been investigated extensively and are available in the literature (34). One relatively simple method is that of the power series solution (34). In applying this method to a set of second order differential equations, we must, by suitable transformations, reduce the given simultaneous equations to a new set of first order differential equations. The solution of this set of first order equations can then be expressed in terms of a power series. The advantage of this method is that it avoids the problem of finding the eigenvalues and eigenvectors of a given coefficient matrix. However, in the application of this method serious convergence difficulties may arise in evaluating the power series at large values of the independent variable.

An entirely different method of solution involves the transformation of the original coordinates into a new set of

coordinates in in this new set mates, the mat equations whos warsformation. eigenvectors, accurately con dissertation i

es.

Since eq same type it Hence, let us

7₁ =

^U2+1 =

in terms of

Where

coordinates in which the differential equations become uncoupled. In this new set of coordinates, usually called principal coordinates, the matrix equations are reduced to a set of scalar equations whose solutions can be easily evaluated. The required transformation, however, is only possible when the matrix of eigenvectors, usually denoted as the modal matrix, can be accurately constructed. The solution method employed in this dissertation is a combination of the above described two procedures.

Since equations (2.31), (2.46) and (2.53) are all of the same type it will be sufficient to discuss equations (2.31) only. Hence, let us define the following new variables:

$$U_{1} = \tilde{u}_{1} \quad U_{2} = \tilde{u}_{2} \quad \dots \quad U_{\ell} = \tilde{u}_{\ell}$$

$$U_{\ell+1} = \frac{d\tilde{u}_{1}}{d\tilde{x}} \quad U_{\ell+2} = \frac{d\tilde{u}_{2}}{d\tilde{x}} \quad \dots \quad U_{2\ell} = \frac{d\tilde{u}_{\ell}}{d\tilde{x}}$$

$$(2.56)$$

In terms of these variables, equations (2.31) can be written as

$$\frac{d}{d\tilde{x}} \{U\} = [A] \{U\} + \{\overline{r}(\tilde{x})\}$$

$$2lx1 2lx2l 2lx1 22x1 22x1$$

where

$$\begin{bmatrix} [A] & = \\ [K_x] & [C] \\ [K_x] & [N] \end{bmatrix}$$
(2.58)

Μ

24%

The solution o

as (34)

 $\{\mathbb{C}(\lambda)\} = e^{\sum_{i=1}^{n} \frac{1}{n}}$ 11x1

Where {U(o)}

of 3 and $\frac{d}{d}$ by the follow

e[A]%

Using equati

expressed as

[A]²n

[4]2n+1

$$\{\overline{\mathbf{r}}(\tilde{\mathbf{x}})\} = \begin{cases} \{0\} \\ \mathbf{k}\mathbf{x}\mathbf{1} \\ \\ \{\mathbf{r}(\tilde{\mathbf{x}})\} \\ \mathbf{k}\mathbf{x}\mathbf{1} \end{cases}$$
(2.59)

The solution of equation (2.57) is well known and can be written as (34)

$$\{U(\tilde{\mathbf{x}})\} = e^{\left[A\right]\tilde{\mathbf{x}}} \{U(o)\} + e^{\left[A\right]\tilde{\mathbf{x}}} \int_{0}^{\tilde{\mathbf{x}}} e^{-\left[A\right]\eta} \{\overline{\mathbf{r}}(\eta)\} d\eta \quad (2.60)$$
21x1 21x21 21x1 21x21 21x1

where $\{U(o)\}$ is a vector which consists of the boundary values of \tilde{u} and $\frac{d\tilde{u}}{d\tilde{x}}$ at $\tilde{x}=0$ and $e^{\left[A\right]\tilde{x}}$ is a matrix series given by the following equation:

$$e^{[A]\tilde{x}} = [I] + \frac{[A]\tilde{x}}{1!} + \frac{[A]^2\tilde{x}^2}{2!} + \frac{[A]^3\tilde{x}^3}{3!} + \dots$$
 (2.61)

Using equation (2.58), the powers of matrix [A] can be expressed as

$$[A]^{2n} = \begin{bmatrix} [K_{\mathbf{x}}]^n & [0] \\ & & \\ [0] & [K_{\mathbf{x}}]^n \end{bmatrix}$$

$$n = 0, 1, 2, 3, \dots$$

$$[A]^{2n+1} = \begin{bmatrix} [0] & [K_{\mathbf{x}}]^n \\ & & \\ [K_{\mathbf{x}}]^{n+1} & [0] \end{bmatrix}$$

$$n = 0, 1, 2, \dots$$

Sustituting ylelis

elájž =

Since cosh

[A₁₁

[A₁₂

Substituting the powers of matrix [A] into equation (2.61) yields

$$e^{[A]X} = \begin{bmatrix} \sum_{m=0}^{\infty} \frac{x^{2m}}{(2m)!} [K_x]^m & \sum_{m=0}^{\infty} \frac{x^{2m+1}}{(2m+1)!} [K_x]^m \\ \sum_{m=0}^{\infty} \frac{x^{2m+1}}{(2m+1)!} [K_x]^{m+1} & \sum_{m=0}^{\infty} \frac{x^{2m}}{(2m)!} [K_x]^m \end{bmatrix}$$

$$e^{[A]\tilde{x}} = \begin{bmatrix} [A_{11}(K_{x},\tilde{x})] & [A_{12}(K_{x},\tilde{x})] \\ kxk & kxk \\ [A_{21}(K_{x},\tilde{x})] & [A_{22}(K_{x},\tilde{x})] \\ kxk & kxk \end{bmatrix}$$

$$(2.62)$$

Since
$$\cosh \gamma = 1 + \frac{\gamma^2}{2!} + \frac{\gamma^4}{4!} + \frac{\gamma^6}{6!} + \dots$$

 $\sinh \gamma = \gamma + \frac{\gamma^3}{3!} + \frac{\gamma^5}{5!} + \frac{\gamma^7}{7!} + \dots$

the submatrices $[A_{ij}]$ i,j = 1,2 can be expressed as the matrix functions shown below.

$$[A_{11}] = [A_{22}] = \cosh [K_{x}]^{1/2} \tilde{x}$$
 (2.63)

$$[A_{12}] = ([K_x]^{1/2})^{-1} \sinh [K_x]^{1/2} \tilde{x}$$
 (2.64)

2.3.1 Evalua

As can i

solution for

terms retaine

of different

description o

each method of

the identity

e[.:

In terms of

[\(\frac{11}{K}\)\) £xí

The mosthe submatri

is to use

them at some

large numb

of 20 or lar

$$[A_{21}] = [K_{x}][A_{12}]$$
 (2.65)

where $[K_x]^{1/2}$ is a matrix whose square is equal to $[K_x]$. A good summary of matrix function definitions and theory can be found in (35).

2.3.1 Evaluation of Matrix Functions

As can be noted from equation (2.60), the accuracy of the solution for a given problem will depend largely on the number of terms retained in (2.61). In the course of this work, a number of different methods were employed in evaluating (2.61). A short description of each technique is given below. The accuracy of each method can be checked by substituting equation (2.58) into the identity of

$$e^{[A]\tilde{x}} \cdot e^{-[A]\tilde{x}} = [I]$$
 (2.66)

In terms of the submatrices [Aij] this equation yields

$$[A_{11}(K_{x},\tilde{x})]^{2} - [K_{x}][A_{12}(K_{x},\tilde{x})]^{2} = [I]$$
(2.67)
$$!x! \qquad !x! \qquad !x.$$

The most straightforward calculation procedure for evaluating the submatrices $[A_{ij}]$ for each value of the independent variable $\tilde{\mathbf{x}}$ is to use the matrix series definitions (2.62) and truncate them at some given values. However, for increasing values of $\tilde{\mathbf{x}}$, a large number of terms must be taken and if matrices with orders of 20 or larger are involved, the numerical procedure becomes

inefficient. In order to avoid the computation of a large number of terms, additive formulas for these matrix functions may be obtained from using the identity of

$$e^{[A]\tilde{x}_1} \cdot e^{[A]\tilde{x}_2} = e^{[A](\tilde{x}_1 + \tilde{x}_2)}$$

In terms of the submatrices [Aij] this identity yields the following two equations:

$$\begin{bmatrix} A_{11}(K_{\mathbf{x}}, \tilde{\mathbf{x}}_{1} + \tilde{\mathbf{x}}_{2}) \end{bmatrix} = \begin{bmatrix} A_{11}(K_{\mathbf{x}}, \tilde{\mathbf{x}}_{1}) \end{bmatrix} \begin{bmatrix} A_{11}(K_{\mathbf{x}}, \tilde{\mathbf{x}}_{2}) \end{bmatrix}$$

$$+ \begin{bmatrix} K_{\mathbf{x}} \end{bmatrix} \begin{bmatrix} A_{12}(K_{\mathbf{x}}, \tilde{\mathbf{x}}_{1}) \end{bmatrix} \begin{bmatrix} A_{12}(K_{\mathbf{x}}, \tilde{\mathbf{x}}_{2}) \end{bmatrix}$$

$$\begin{bmatrix} A_{12}(K_{\mathbf{x}}, \tilde{\mathbf{x}}_{1} + \tilde{\mathbf{x}}_{2}) \end{bmatrix} = \begin{bmatrix} A_{12}(K_{\mathbf{x}}, \tilde{\mathbf{x}}_{1}) \end{bmatrix} \begin{bmatrix} A_{11}(K_{\mathbf{x}}, \tilde{\mathbf{x}}_{2}) \end{bmatrix}$$

$$+ \begin{bmatrix} A_{11}(K_{\mathbf{x}}, \tilde{\mathbf{x}}_{1}) \end{bmatrix} \begin{bmatrix} A_{12}(K_{\mathbf{x}}, \tilde{\mathbf{x}}_{2}) \end{bmatrix}$$

$$(2.68)$$

Alternate methods used in evaluating (2.62) involved the use of Runge-Kutta integration formulas (33) and the conjoint algorithm of Frame and Needler (36). An examination of equation (2.62) will show that the matrix functions $[A_{ij}]$ satisfy the following two sets of simultaneous matrix differential equations:

$$\frac{d}{d\tilde{\mathbf{x}}} \left[\mathbf{A}_{11} (\mathbf{K}_{\mathbf{x}}, \tilde{\mathbf{x}}) \right] = \left[\mathbf{A}_{21} (\mathbf{K}_{\mathbf{x}}, \tilde{\mathbf{x}}) \right]$$

$$\frac{d}{d\tilde{\mathbf{x}}} \left[\mathbf{A}_{21} (\mathbf{K}_{\mathbf{x}}, \tilde{\mathbf{x}}) \right] = \left[\mathbf{A}_{11} (\mathbf{K}_{\mathbf{x}}, \tilde{\mathbf{x}}) \right] \left[\mathbf{K}_{\mathbf{x}} \right]$$
(2.69)

$$\frac{d}{d\tilde{\mathbf{x}}} \left[\mathbf{A}_{12}(\mathbf{K}_{\mathbf{x}}, \tilde{\mathbf{x}}) \right] = \left[\mathbf{A}_{22}(\mathbf{K}_{\mathbf{x}}, \tilde{\mathbf{x}}) \right]
\frac{d}{d\tilde{\mathbf{x}}} \left[\mathbf{A}_{22}(\mathbf{K}_{\mathbf{x}}, \tilde{\mathbf{x}}) \right] = \left[\mathbf{A}_{12}(\mathbf{K}_{\mathbf{x}}, \tilde{\mathbf{x}}) \right] \left[\mathbf{K}_{\mathbf{x}} \right]$$
(2.70)

The initial conditions needed for the Runge-Kutta integration of these equations are respectively

$$\begin{bmatrix} A_{11}(K_{x},\tilde{x})]_{\tilde{x}=0} & = & [I] \\ A_{21}(K_{x},\tilde{x})]_{\tilde{x}=0} & = & [O] \\ A_{12}(K_{x},\tilde{x})]_{\tilde{x}=0} & = & [O] \\ A_{22}(K_{x},\tilde{x})]_{\tilde{x}=0} & = & [I] \\ \end{bmatrix}$$
(2.71)

Details of Frame's and Needler's solution may be found in (36) and will not be repeated here. In comparing the results of these three methods, it was found that using the first approach with additive formulas gave the most accurate results. The relative merit of each method was established by its ability to evaluate the submatrices [A;] for large order coefficient matrices at increasing values of the independent variable.

Common to all these techniques is that they do not require the solution of an eigenvalue problem. However, as the number of differential equations increases, these matrix series methods place a serious limitation on the value of the independent

variable for
the upe of a
tespel. The
test if the
testrix funct
values and e
closed form

Append.

The eigenva

G_X can b

values of

hadansary.

X_{ij} =

these eigen : Since [Kx] is x

The mo

variable for which equation (2.30) can be determined. Therefore, the use of an improved matrix function evaluation routine is needed. Inspection of equations (2.63), (2.64) and (2.65) shows that if the coefficient matrix $[K_X]$ could be diagonalized the matrix functions would be replaced by simple hyperbolic functions which could then be evaluated with better accuracy. This diagonalization of $[K_X]$ is possible only if the associated eigenvalues and eigenvectors can be accurately determined. Hence, a closed form solution of the associated eigenvalue problem is necessary.

Appendix A gives the details of the development showing how the eigenvalues and eigenvectors of a matrix having the form of $[K_X]$ can be analytically evaluated. The equation for the eigenvalues of $[K_X]$ is

$$\overline{\lambda}_{ij} = 2k_3 \left[1 - \cos\left(\frac{i-1}{NZ-1}\right)\pi \right] + 2k_2 \left[1 - \cos\left(\frac{j-1}{NY-1}\right)\pi \right]$$
(2.73)

where $i = 1, 2, \ldots$ NZ and $j = 1, 2, \ldots$, NY. Note that these eigenvalues are ordered by fixing i first and then varying j. Since $l = NZ \times NY$, the number of eigenvalues associated with $[K_v]$ is l.

The modal matrix or the matrix of eigenvectors corresponding to the above ordered eigenvalues is given by

$$[P] = [P_2] \bigotimes [P_1]$$

$$(2.74)$$

$$k \times k \qquad NZ \times NZ \qquad NY \times NY$$

where 🗴 dmodal matrice

The similari Matrix [K]

> Where [!] values of te evaluat

the transf

Note that evaluate

shown in 2.3.2

75

the Par

where x denotes the Kroenecker product of two component modal matrices (37) whose elements are given by

$$P_{2_{ri}} = \left[\cos \frac{(r-1)(i-1)}{NZ-1} \pi\right] r, i = 1, 2, ..., NZ (2.76)$$

The similarity transformation, diagonalizing the coefficient matrix $[K_x]$ is (35)

$$[\Lambda] = [P]^{-1} [K_{x}][P]$$
 (2.77)

where $[\Lambda]$ is a diagonal matrix whose elements are the eigenvalues of $[K_{\mathbf{x}}]$. The matrix functions (2.63) and (2.64) can now be evaluated in diagonalized form and retransformed according to the transformation

$$[A_{11}] = [P][\Lambda_{11}][P]^{-1}$$
 (2.78)

$$[A_{12}] = [P][\Lambda_{12}][P]^{-1}$$
 (2.79)

Note that the inverse of the modal matrix [P] can also be evaluated in closed form and the details of the derivations are shown in Appendix A.

2.3.2 Evaluation of the Particular Integral

In the explicit evaluation of equation (2.60), the value of the particular integral cannot be obtained until the vector $\{\overline{\mathbf{r}}(\eta)\}$ is known along the x-directional lines. We define column vectors $\{B_1(\tilde{\mathbf{x}})\}$ and $\{B_2(\tilde{\mathbf{x}})\}$ as follows:

$$\begin{cases}
\{B_{1}(\tilde{x})\} \\
\{B_{2}(\tilde{x})\}
\end{cases} = \int_{0}^{\tilde{x}} e^{-[A]\eta} \{\overline{r}(\eta)\} d\eta \qquad (2.80)$$

$$2\ell x l \qquad 2\ell x 2\ell \qquad 2\ell x l$$

Using equations (2.59) and (2.62) in the above equation gives

$$\begin{cases} \{B_1\} \\ \{B_2\} \end{cases} = \int_{0}^{\tilde{\mathbf{x}}} \left[\begin{bmatrix} A_{11}(K_{\mathbf{x}}, \eta)][A_{12}(K_{\mathbf{x}}, \eta)] \\ [A_{21}(K_{\mathbf{x}}, \eta)][A_{22}(K_{\mathbf{x}}, \eta)] \end{bmatrix}^{-1} \left\{ \{0\} \\ \{r(\eta)\} \right\} d\eta$$

Taking the inverse of the partitioned matrix leads to the following equations.

$$\{B_{1}(\tilde{x})\} = -\int_{0}^{\tilde{x}} [A_{11}][A_{12}]([A_{22}] - [A_{21}][A_{11}]^{-1}[A_{12}])^{-1}$$

•
$$\{r(\eta)\}\ d\eta$$
 (2.81)

$$\{B_{2}(\tilde{x})\} = \int_{0}^{\tilde{x}} ([A_{22}] - [A_{21}][A_{11}]^{-1}[A_{12}])^{-1}$$

$$\cdot \{r(\eta)\} d\eta \qquad (2.82)$$

where the arguments of $[A_{ij}]$ are understood to be (K_{x}, η) .

fractions

From conside

The use of

-

Similar exp

(r(n)) is
assuming value

al lines.

a good pla

 $\left\{ \left\{ \tilde{g}(\tilde{\mathbf{x}}) \right\} \right\}$

Equations [1(X)](1)

From considering the even and odd character of the matrix functions $[A_{ij}]$, it can be shown that

$$[A_{11}] = ([A_{22}] - [A_{21}][A_{11}]^{-1}[A_{12}])^{-1}$$

$$[A_{12}] = [A_{11}][A_{12}]([A_{22}] - [A_{21}][A_{11}]^{-1}[A_{12}])^{-1}$$

$$(2.83)$$

The use of equations (2.83) allows us to write

$$\{B_1(\tilde{x})\} = -\int_{\tilde{x}} [A_{12}(K_{x}, \eta)] \{r(\eta)\} d\eta$$
 (2.84)

$$\{B_2(\tilde{x})\} = \int_0^{\tilde{x}} [A_{11}(K_{x},\eta)] \{r(\eta)\} d\eta$$
 (2.85)

Similar expressions are obtained for the particular integrals of the solutions along the y and z directional lines. Since $\{r(\eta)\}$ is unknown, we start the solution of the problem by assuming values for $\frac{d\tilde{\mathbf{v}}}{d\tilde{\mathbf{x}}}, \frac{d\tilde{\tilde{\mathbf{v}}}}{d\tilde{\mathbf{x}}}, \frac{d\tilde{\tilde{\mathbf{w}}}}{d\tilde{\mathbf{x}}}$ and $\frac{d\tilde{\tilde{\mathbf{w}}}}{d\tilde{\mathbf{x}}}$ along the x directional lines. Generally, using zero values for these derivatives is a good place to start. Using the partitioned form of the matrices, equation (2.60) can be written as

$$\begin{cases}
\{\tilde{\mathbf{u}}(\tilde{\mathbf{x}})\} \\
\{\tilde{\mathbf{u}}(\tilde{\mathbf{x}})\}
\end{cases} = \begin{pmatrix}
[A_{11}(K_{\mathbf{x}},\tilde{\mathbf{x}})] & [A_{12}(K_{\mathbf{x}},\tilde{\mathbf{x}})] \\
[A_{21}(K_{\mathbf{x}},\tilde{\mathbf{x}})] & [A_{22}(K_{\mathbf{x}},\tilde{\mathbf{x}})]
\end{pmatrix} \begin{pmatrix}
\{\tilde{\mathbf{u}}(o)\} \\
\{\tilde{\mathbf{u}}(o)\}
\end{pmatrix} + \begin{pmatrix}
\{B_{1}(\tilde{\mathbf{x}})\} \\
\{B_{2}(\tilde{\mathbf{x}})\}
\end{pmatrix}$$
(2.86)

Equations (2.86) give us the first estimate for the vectors $\{\tilde{\mathbf{u}}(\tilde{\mathbf{x}})\}^{(1)}$ and $\{\tilde{\mathbf{u}}(\tilde{\mathbf{x}})\}^{(1)}$. It is assumed, of course, that the

comdary con

for each va

[52]

Sing equal

in General

boundary condition vectors $\{\tilde{u}(o)\}$ and $\{\tilde{u}(o)\}$ are specified or known. Using these calculated values of $\{\tilde{u}\}^{(1)}$ and $\{\tilde{u}\}^{(1)}$ we can evaluate the vector $\{s(\tilde{y})\}^{(1)}$ where we still use the originally assumed values of $\frac{d\tilde{w}}{d\tilde{y}}$ and $\frac{d\tilde{w}}{d\tilde{y}}$. An analogous equation to (2.86) will then give us the first value of $\{\tilde{v}(\tilde{y})\}^{(1)}$ and $\{\tilde{v}(\tilde{y})\}^{(1)}$. First values of $\{\tilde{w}(\tilde{z})\}^{(1)}$ and $\{\tilde{w}(\tilde{z})\}^{(1)}$ can then be calculated by using the first estimates of the x and y directional displacements and their derivatives in the vector $\{t(\tilde{z})\}$. At this point we return to equation (2.86) and calculate the second value of $\{\tilde{u}(\tilde{x})\}^{(2)}$ and $\{\tilde{u}(\tilde{x})\}^{(2)}$ based on the first values of the y and z directional solutions.

If the values of $\{\tilde{u}(\tilde{x})\}^{(n)}$, $\{\tilde{u}(\tilde{x})\}^{(n)}$, $\{\tilde{v}(\tilde{y})\}^{(n)}$, $\{\tilde{v}(\tilde{y})\}^{(n)}$, $\{\tilde{v}(\tilde{y})\}^{(n)}$, and $\{\tilde{w}(\tilde{z})\}^{(n)}$ converge with the repetition of this procedure, an approximate solution of a given problem will be determined.

Based on the accumulated experience with this method, certain comments can be made regarding this convergence. It was found that the major factor controlling the convergence rate is the accuracy to which the matrix functions $[A_{ij}]$ could be determined. Using equation (2.67), an error matrix [ER] can be constructed for each value of the independent variable. This matrix is

[ER] =
$$[A_{11}(K_{x}, \tilde{x})]^{2} - [K_{x}][A_{12}(K_{x}, \tilde{x})]^{2} - [I]$$
 (2.87)

In general, for convergence to occur the absolute values of the

elements in

of converge

uating cert.

finite diffe

sions can be vectors {s

2,4 Applic

A greatechanics (

Past, many

determining

early speci

elements in [ER] should be less than about 3.5×10^{-4} . The rate of convergence increases as the error decreases. Errors on the order of 10^{-3} or larger will generally lead to divergence in the successive approximation procedure.

Since the vector $\{r(\eta)\}$ in equations (2.84) and (2.85) involves displacements and their derivatives that are defined only at the nodes, finite difference calculus must be used in evaluating its elements. Hence, integrals $\{B_1(\tilde{x})\}$ and $\{B_2(\tilde{x})\}$ are evaluated by a suitable numerical integration technique. For the numerical examples presented, the trapezoidal rule (33) is used to evaluate the necessary particular integrals. In addition, the lack of displacement data at some boundary points necessitates the use of first order forward and backward differences in evaluating certain coupling term derivatives. The use of higher order finite difference formulas at these points, however, gave no noticeable improvement in accuracy. We note that similar conclusions can be made about the particular integrals involving the vectors $\{s(\tilde{y})\}$ and $\{t(\tilde{z})\}$.

2.4 Application to Specific Geometries

A great amount of experimental work has been done in fracture mechanics (2) through the use of crack-notched specimens. In the past, many different types of specimens have been utilized for determining a material's fracture toughness. The most common early specimens employed were the center cracked and double edge

notched bar : the obtained ale theoret A prese the knowledg can be calcu

on this theo

dimensions.

determine a

crack-notch

solution h

empirical a

So that the

and displac

ejge chacke

2.4.1 Bar

In or:

solution of

ticity proj

be investi

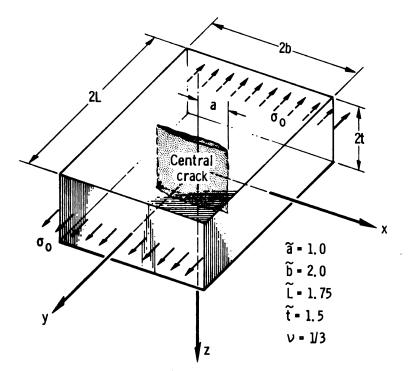
With a thr

mitorm no

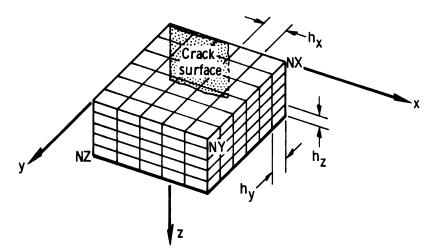
loading, or

shown in :

notched bar specimens. It was recognized early, however, that the obtained results were largely thickness dependent and available theoretical solutions did not account for this variation.


A prerequisite to the application of fracture testing is the knowledge of the stress distribution in the specimen. Based on this theoretical solution, the stress intensity factor K can be calculated as a function of the load, crack and specimen dimensions. With this information, it is possible then to determine a material's fracture toughness through the use of crack-notched specimen tests. The lack of a valid theoretical solution has forced researchers in the past to make certain empirical assumptions about the stress states in their specimens. So that these assumptions may be analytically verified, the stress and displacement fields in both the center cracked and double edge cracked bar specimens will be investigated.

2.4.1 Bar With Through-Thickness Central Crack


In order to demonstrate the use of this analysis for the solution of some three-dimensional, mixed boundary value, elasticity problems, a number of previously unavailable solutions will be investigated. Figure 2(a) shows a finite rectangular bar with a through-thickness central crack which is loaded by a uniform normal stress, σ_0 . Because of the symmetric geometry and loading, only one-eighth of the bar has to be discretized as shown in Figure 2(b). The existing displacement fields in the

(b) Discre

Figure 2. - Rec

(a) Rectangular bar with through-thickness central crack.

(b) Discretized region of rectangular bar with through-thickness central crack.

Figure 2. - Rectangular bar with through-thickness central crack under uniform tension.

bar will be described by the solutions of the three sets of ordinary differential equations. In this case, the previously obtained plane elasticity solutions are not applicable because the associated assumptions are not valid. Values of the non-dimensionalized variables \tilde{a} , \tilde{b} , \tilde{L} and \tilde{t} used for this problem are shown in Figure 2(a). Inspection of the derived ordinary differential equations also shows that for any numerical computations, a value of Poisson's ratio must be selected. For all the following examples, a Poisson's ratio of 1/3 will be used as shown in the attached figures.

At this time we return to solution (2.86) and note that the constants of the homogeneous solution were expressed in terms of initial values. Since the problem in Figure 2(a) is a two point boundary value problem, the initial values of both {ŭ} and .

{ŭ} are usually not available. A method for evaluating the initial value vector for equations (2.31) when the x-directional lines in Figure 2(b) are involved will now be investigated.

From symmetry conditions, we can immediately conclude that

$$\{\tilde{u}(o)\} = 0$$
 (2.88)

The zero normal stress boundary condition on the face $\hat{\mathbf{x}} = \hat{\mathbf{b}}$ will be used to evaluate the vector $\{\hat{\mathbf{u}}(\mathbf{o})\}$. From equation (2.86) we have at $\hat{\mathbf{x}} = \hat{\mathbf{b}}$

ixl

Similar equ

equations

Alon $\hat{\epsilon}$ somewhat π

conditions

lines foll

cutside as

face and t

following

$$\{\tilde{\mathbf{u}}(\tilde{\mathbf{b}})\} = [A_{21}(K_{\mathbf{x}},\tilde{\mathbf{b}})](\{\tilde{\mathbf{u}}(\mathbf{o})\} + \{B_{1}(\tilde{\mathbf{b}})\}) + [A_{22}(K_{\mathbf{y}},\tilde{\mathbf{b}})](\{\tilde{\mathbf{u}}(\mathbf{o})\} + \{B_{2}(\tilde{\mathbf{b}})\})$$
(2.89)

where
$$\sigma_{\mathbf{x}}\Big|_{\widetilde{\mathbf{x}}=\widetilde{\mathbf{b}}} = 0$$
 gives $\{\widetilde{\mathbf{u}}(\widetilde{\mathbf{b}})\} = \frac{-\nu}{1-\nu} (\{\widetilde{\mathbf{v}}\} + \{\widetilde{\mathbf{w}}\})_{\widetilde{\mathbf{x}}=\widetilde{\mathbf{b}}}$

Provided that $[A_{22}(K_{x},\tilde{b})]$ is not singular and using (2.88) we find from (2.89) that

$$\{\tilde{u}(o)\} = \frac{-\nu}{1-\nu} [A_{22}(K_{x},\tilde{b})]^{-1}(\{\tilde{v}\} + \{\tilde{w}\})_{\tilde{x}=\tilde{b}}$$

$$\text{lxl} \qquad \text{lxl}$$

$$- [A_{22}(K_{x},\tilde{b})]^{-1} [A_{21}(K_{x},\tilde{b})] \{B_{1}(\tilde{b})\} - \{B_{2}(\tilde{b})\}$$

$$\text{lxl} \qquad \text{lxl} \qquad \text{lxl}$$

$$(2.90)$$

Similar equations are obtained for the initial value vector of equations (2.53) along the z-directional lines.

Along the y-directional lines the boundary conditions are somewhat more involved since in the crack plane mixed boundary conditions are specified. Denoting the number of y-directional lines following over the crack surface as NIC and those falling outside as NOC, the zero normal stress condition over the crack face and the symmetry condition in the crack plane result in the following equations:

; {**∵**(;

112

. . . .

N00x Equations

(?/s)}.

can be fo

; = :. ;

7.X.T

This vect.

(Va)y=1. Nooxi

For

initial va

{V(ο)

latues of

$$\begin{cases} \dot{\tilde{\mathbf{v}}}(\mathbf{o}) \rbrace = \frac{-\mathbf{v}}{\mathbf{over}} (\{\dot{\tilde{\mathbf{u}}}\} + \{\dot{\tilde{\mathbf{w}}}\}) \tilde{\mathbf{y}} = \mathbf{o} \\ \text{crack} \end{cases}$$

$$\begin{aligned} & \text{NICxl} \\ \{\tilde{\mathbf{v}}(\mathbf{o})\} \rbrace & \text{outside} \\ & \text{crack} \end{aligned} = \begin{cases} 0 \rbrace_{\tilde{\mathbf{v}} = \mathbf{o}} \\ \text{outside} \end{aligned}$$

$$\begin{aligned} & \text{outside} \\ & \text{crack} \end{aligned} \qquad \text{outside crack}$$

$$\end{aligned}$$

$$\begin{aligned} & \text{NOCxl} \end{aligned}$$

Equations (2.91) specify m elements of the initial value vector $\{V(o)\}$. The value of the rest of the elements in $\{V(o)\}$ can be found from using the given surface stress conditions at $\tilde{y} = \tilde{L}$. Thus, from $\sigma_y \big|_{\tilde{v} = \tilde{L}} = \sigma_o$ we have

$$\begin{cases} \dot{\tilde{v}}(\tilde{L}) \rbrace = \begin{cases} \frac{\sigma_0}{E} \frac{(1+v)(1-2v)}{(1-v)} \\ -\frac{v}{1-v} \end{cases} - \frac{v}{1-v} \left(\{\tilde{u}\} + \{\tilde{w}\} \}_{\tilde{y}=\tilde{L}} \right)$$

$$mx1 \qquad mx1 \qquad mx1$$

This vector can be suitably partitioned into vectors $\{\tilde{\tilde{v}}_\alpha\}_{\tilde{y}=\tilde{L}}$ and $\{\tilde{\tilde{v}}_\beta\}_{\tilde{y}=\tilde{L}}.$ NOCx1

For convenience of matrix manipulations, we partition the initial value vector $\{V(o)\}$ as

$$\{V(o)\} = \begin{cases} \{\tilde{v}(o)\} \\ mxl \\ \{\tilde{v}(o)\} \\ mxl \end{cases} = \begin{cases} \{F_3\} \\ mxl \\ \{F_4\} \\ mxl \end{cases} = \begin{cases} \{F_{3\alpha}\} \\ NICxl \\ \{F_{3\beta}\} \\ NOCxl \\ \{F_{4\alpha}\} \\ NICxl \\ \{F_{4\beta}\} \\ NOCxl \end{cases}$$

Values of $\{F_{4\alpha}\}$ and $\{F_{3\beta}\}$ are given by equations (2.91)

respective

Where [D]
(5]) are
From equat

(va) (va) (va) (va) (va) (va) (va) (va)

Equation (
unknown ve

respectively. An analogous solution to equations (2.86) along the y-directional lines can be written as

$$\begin{cases}
\{\tilde{\mathbf{v}}(\tilde{\mathbf{y}})\} \\
\{\tilde{\mathbf{v}}(\tilde{\mathbf{y}})\}
\end{cases} = \begin{pmatrix}
[D_{11}(K_{\mathbf{y}},\tilde{\mathbf{y}})][D_{12}(K_{\mathbf{y}},\tilde{\mathbf{y}})] \\
[D_{21}(K_{\mathbf{y}},\tilde{\mathbf{y}})][D_{22}(K_{\mathbf{y}},\tilde{\mathbf{y}})]
\end{pmatrix} \begin{pmatrix}
\{\tilde{\mathbf{v}}(0)\} \\
\{\tilde{\mathbf{v}}(0)\}
\end{pmatrix} + \begin{pmatrix}
[B_{3}(\tilde{\mathbf{y}})\} \\
[B_{4}(\tilde{\mathbf{y}})\}
\end{pmatrix}$$
(2.94)

where $[D_{ij}]$ are similar matrix functions to $[A_{ij}]$ and $\{B_3\}$ $\{B_4\}$ are analogous particular integrals to (2.84) and (2.85). From equation (2.94), we can express $\{\mathring{v}(L)\}$ in a partitioned form consistent with (2.93) as

Equation (2.95) leads to two matrix equations involving the two unknown vectors $\{F_{3\alpha}\}$ and $\{F_{4\beta}\}$. Solution of these equations yields

$$\{F_{ij\beta}\} = [D_a]^{-1} \{\tilde{v}_{\beta}\}_{\tilde{y}=\tilde{L}}$$

NOCxl NOCxNOC NOCxl

-
$$[D_a]^{-1}$$
 $[D_{21\beta 1}]_{\tilde{y}=\tilde{L}}$ $[D_{21\alpha 1}]_{\tilde{y}=\tilde{L}}$ $\{\dot{\tilde{v}}_{\alpha}\}_{\tilde{y}=\tilde{L}}$
NOC×NOC NOC×NIC NIC×NIC NIC×L

-
$$[D_a]^{-1}$$
 $[D_b]$ $\{B_{3\beta}\}_{\tilde{y}=\tilde{L}}$

NOC×NOC NOC×NOC NOC×1

-
$$[D_a]^{-1}$$
 $[D_c]$ $(\{F_{4\alpha}\} + \{B_{4\alpha}\}_{\tilde{y}=\tilde{L}})$
NOC×NOC NOC×NIC NIC×1 NIC×1

$$- \{B_{\mu\beta}\}_{\tilde{y}=\tilde{L}}$$
NOCx1 (2.96)

where

$$[D_a] = ([D_{22\beta2}] - [D_{21\beta1}] [D_{21\alpha1}]^{-1} [D_{22\alpha2}])_{\tilde{y}=\tilde{L}}$$

NOCXNOC NOCXNOC NOCXNIC NICXNOC

$$[D_b] = ([D_{21\beta2}] - [D_{21\beta1}] [D_{21\alpha1}]^{-1} [D_{21\alpha2}])_{\tilde{y}=\tilde{L}}$$
NOCENOC NOCENOC NOCENIC NICENIC NICENOC

 $[D_c] = ([D_{22\beta1}] - [D_{21\beta1}] [D_{21\alpha1}]^{-1} [D_{22\alpha1}])_{\tilde{y}=\tilde{L}}$ NOCANIC NOCANIC NICANIC NICANIC

$$\{F_{3\alpha}\} = [D_{21\alpha1}]_{\tilde{y}=\tilde{L}}^{-1} \{\hat{\tilde{v}}_{\alpha}\}_{\tilde{y}=\tilde{L}} - \{B_{3\alpha}\}_{\tilde{y}=\tilde{L}}$$
 NICxl NICxl NICxl

- $\begin{bmatrix} D_{21\alpha 1} \end{bmatrix}_{\tilde{y}=\tilde{L}}^{-1} \begin{bmatrix} D_{21\alpha 2} \end{bmatrix}_{\tilde{y}=\tilde{L}}^{\{B_{3\beta}\}} \tilde{y}=\tilde{L}$ NICXNIC NICXNOC NOCX1
- $[D_{21\alpha1}]_{\tilde{y}=\tilde{L}}^{-1}$ $[D_{22\alpha1}]_{\tilde{y}=\tilde{L}}$ $(\{F_{4\alpha}\} + \{B_{4\alpha}\}_{\tilde{y}=\tilde{L}})$ NICXNIC NICXNIC NICXL NICXL
- $[D_{21\alpha 1}]_{\tilde{y}=\tilde{L}}^{-1}$ $[D_{22\alpha 2}]_{\tilde{y}=\tilde{L}}^{-1}$ $(\{F_{4\beta}\} + \{B_{4\beta}\}_{\tilde{y}=\tilde{L}})$ (2.97) NICXNIC NICXNOC NOCX1 NOCX1

where $\{F_{4\beta}\}$ is given by (2.96). Note that although the full matrix $[D_{21}]_{\tilde{y}=\tilde{L}}$ is singular, the partitioned submatrices are not. Equations (2.96) and (2.97) together with the given boundary data completely specify the initial value vector needed for the solution of equations (2.46).

Certain conclusions using the shear stress conditions can also be noted for problems involving zero or uniform normal displacements in a given plane. Using symmetry conditions (2.88), for example, we have

The zero shear stress conditions on $\tilde{\sigma}_{xy}$ and $\tilde{\sigma}_{xz}$, together with equation (2.98), will lead to

Since $\frac{d\hat{r}}{d\hat{x}}$

in the pla

Equation (

Vectors

There

normal st

results f

equations

{F₄₈

Nook

$$\frac{\partial \tilde{\mathbf{v}}}{\partial \tilde{\mathbf{x}}} \Big|_{\tilde{\mathbf{x}}=0} = \frac{\partial \tilde{\mathbf{w}}}{\partial \tilde{\mathbf{x}}} \Big|_{\tilde{\mathbf{x}}=0} = 0$$
 (2.99)

Since $\frac{d\hat{\mathbf{v}}}{d\tilde{\mathbf{x}}} = \frac{d}{d\tilde{\mathbf{y}}} \frac{\partial \tilde{\mathbf{v}}}{\partial \tilde{\mathbf{x}}}$ and $\frac{d\hat{\tilde{\mathbf{w}}}}{d\tilde{\mathbf{x}}} = \frac{d}{d\tilde{z}} \frac{\partial \tilde{\mathbf{w}}}{\partial \tilde{\mathbf{x}}}$, we can conclude at once that

$$\{\mathbf{r}(\tilde{\mathbf{x}})\}_{\tilde{\mathbf{x}}=0} = 0 \tag{2.100}$$

$$\ell \mathbf{x} \mathbf{1}$$

Equation (2.100) shows that all the elements of vector $\{r(\tilde{x})\}$ in the plane of zero x-directional displacements are zero. Similar conclusions can also be obtained for the elements of the vectors $\{s(\tilde{y})\}$ and $\{t(\tilde{z})\}$.

There are problems when it is more convenient to apply a given boundary displacement, $\{\tilde{\mathbf{v}}(\tilde{\mathbf{L}})\}$, rather than a uniform normal stress, $\{\sigma_{0}(\overline{\mathbf{L}})\}$. Although we shall not present detailed results for this case, the analogous boundary equations to equations (2.96) and (2.97) are listed below.

$$\{F_{4\beta}\} = [\overline{D}_a]^{-1} \{\tilde{v}_{\beta}\}_{\tilde{y}=\tilde{L}}$$
NOCX1 NOCXNOC NOCX1

- $[\overline{D}_{\mathbf{a}}]^{-1}$ $[D_{11\beta 1}]_{\tilde{\mathbf{y}}=\tilde{\mathbf{L}}}^{\tilde{\mathbf{z}}}$ $[D_{11\alpha 1}]_{\tilde{\mathbf{y}}=\tilde{\mathbf{L}}}^{-1}$ $\{\tilde{\mathbf{v}}_{\alpha}\}_{\tilde{\mathbf{y}}=\tilde{\mathbf{L}}}^{\tilde{\mathbf{z}}}$ NOCENOC NOCENIC NICENIC NICEL
- $[\overline{D}_a]^{-1}$ $[\overline{D}_b]$ $\{B_{3\beta}\}_{\tilde{y}=\tilde{L}}$ NOCENOC NOCENOC NOCE

-
$$[\overline{D}_{a}]^{-1}$$
 $[\overline{D}_{c}]$ $(\{F_{4\alpha}\} + \{B_{4\alpha}\}_{y=\tilde{L}}^{\sim})$
NOC×NOC NOC×NIC NIC×1 NIC×1

$$- \{B_{\mu\beta}\}_{\tilde{y}=\tilde{L}}$$

$$NOCx1$$
(2.101)

where

$$[\overline{D}_a] = ([D_{12\beta2}] - [D_{11\beta1}] [D_{11\alpha1}]^{-1} [D_{12\alpha2}])_{\tilde{y}=\tilde{L}}$$

NOCXNOC NOCXNOC NOCXNIC NICXNOC

$$[\overline{D}_b] = ([D_{11\beta2}] - [D_{11\beta1}] [D_{11\alpha1}]^{-1} [D_{11\alpha2}])_{\tilde{y}=\tilde{L}}$$

NOCXNOC NOCXNOC NOCXNIC NICXNOC

$$[\overline{D}_{c}] = ([D_{12\beta2}] - [D_{11\beta1}] [D_{11\alpha1}]^{-1} [D_{12\alpha1}])_{\tilde{y}=\tilde{L}}$$

NOCXNIC NOCXNIC NICXNIC NICXNIC

$$\{F_{3\alpha}\} = [D_{11\alpha 1}]_{\tilde{y}=\tilde{L}}^{\tilde{z}_1} \{\tilde{v}_{\alpha}\}_{\tilde{y}=\tilde{L}} - \{B_{3\alpha}\}_{\tilde{y}=\tilde{L}}$$

$$NICx1 \qquad NICxNIC \qquad NICx1 \qquad NICx1$$

- $[D_{11\alpha 1}]_{\tilde{y}=\tilde{L}}^{\tilde{l}}$ $[D_{11\alpha 2}]_{\tilde{y}=\tilde{L}}^{\tilde{l}}$ $\{B_{3\beta}\}_{\tilde{y}=\tilde{L}}$ NICXNIC NICXNOC NOCX1
- $[D_{1|\alpha 1}]_{\tilde{y}=\tilde{L}}^{-1}$ $[D_{12\alpha 1}]_{\tilde{y}=\tilde{L}}^{-1} (\{F_{4\alpha}\} + \{B_{4\alpha}\}_{\tilde{y}=\tilde{L}})$ NICXNIC NICXNIC NICX1 NICX1
- $[D_{11\alpha1}]_{\tilde{y}=\tilde{L}}^{\tilde{z}_1}$ $[D_{12\alpha2}]_{\tilde{y}=\tilde{L}}(\{F_{4\beta}\} + \{B_{4\beta}\}_{\tilde{y}=\tilde{L}})$ (2.102) NICXNIC NICXNOC NOCX1 NOCX1

with these
vector of
displaceme
Once
and the si

be obtaine

Note than

With these equations and the given boundary data, the initial vector of equations (2.46) can be evaluated for the case of a displacement loaded rectangular bar containing a central crack.

Once the displacement field in the bar has been calculated and the successive approximation procedure has converged, the normal stress distributions along the sets of parallel lines can be obtained from the following equations:

$$\{\sigma_{\mathbf{x}}\} = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)} \{\hat{\mathbf{u}}\}_{\text{along x lines}}$$

$$\text{lxl}$$

$$+ \frac{\nu E}{(1+\nu)(1-2\nu)} (\{\hat{\mathbf{v}}\} + \{\hat{\mathbf{w}}\})_{\text{along x lines}} (2.103)$$

$$\text{lxl} \quad \text{lxl}$$

$$\{\sigma_{\mathbf{z}}\} = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)} {\{\tilde{\mathbf{w}}\}}_{\text{along z lines}}$$

$$nxl \qquad nxl$$

$$+ \frac{\nu E}{(1+\nu)(1-2\nu)} {\{\tilde{\mathbf{u}}\}}_{\text{along z lines}} {\{\tilde{\mathbf{u}}\}}_{\text{alon$$

Note that the above equations involve only derivatives that can

stress bour stear stre. tions (2.1) derivative finite dir tant loss order of m same conci examples xof Figure 2,4,2 Bar A pro central c: thickness loading ci shown, siand valid

te evaluate

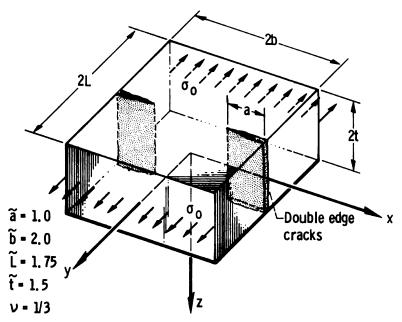
Problem,

figure 3(

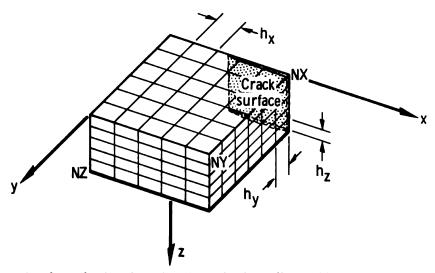
comparisc(

Most Problem a

tion. Th


be evaluated in closed form. Hence, we expect that the normal stress boundary conditions will be accurately enforced. The shear stresses at each node can be obtained from applying equations (2.13) through (2.15). These equations, however, involve derivatives that can only be evaluated through the use of finite difference calculus. In general, this presents no important loss of accuracy since values of the shear stresses are an order of magnitude smaller than the normal stresses (25). This same conclusion was obtained when the shear stresses in our examples were investigated. Numerical results for the problem of Figure 2(a) are listed and discussed in Chapter 4.

2.4.2 Bar With Through-Thickness Double Edge Cracks


A problem closely related to the previously described central crack solution is that of a rectangular bar with throughthickness double edge cracks. The configuration and applied loading of this problem are shown in Figure 3. For the geometry shown, similar conclusions can be drawn about symmetry conditions and validity of previous solutions as for the central crack problem. The non-dimensionalized variables of the bar in Figure 3(a) are made identical to those of Figure 2(a) so that comparison between the two solutions will be possible.

Most of the equations and their boundary conditions for this problem are identical to those of the central crack configuration. The only difference is in the mixed boundary conditions

Figure 3. -

(a) Rectangular bar with through-thickness double edge cracks.

(b) Discretized region of rectangular bar with double edge cracks.

Figure 3. - Rectangular bar with through-thickness double edge cracks under uniform tension.

of the cra

{7(o)}, in

1.

Note that in (2.91)

have been

citain

{F₄a}

NocxI

of the crack plane. Equations for the initial value vector $\{V(o)\}$, in the partitioned form of (2.93), are listed below.

$$\{F_{3\alpha}\} = 0$$

NOCxl

$$\{F_{4\beta}\} = -\frac{v}{1-v} (\{\tilde{u}\} + \{\tilde{w}\})_{\tilde{y}=0 \text{ over crack}}$$
NICxl NICxl NICxl (2.106)

Note that these given boundary conditions are the same as those in (2.91) except that the partitioning subscripts α and β have been interchanged. Using the condition of $\sigma_y |_{y=\tilde{L}} = \sigma_o$ we obtain

$$\{F_{\mu_{\alpha}}\} = [\overline{\overline{D}}_{a}]^{-1} \{\hat{v}_{\alpha}\}_{\tilde{y}=\tilde{L}}$$

NOCxl NOCxNOC NOCxl

-
$$[\overline{D}_a]^{-1}$$
 $[D_{21\alpha 2}]_{\tilde{y}=\tilde{L}}$ $[D_{21\beta 2}]_{\tilde{y}=\tilde{L}}$ $\{\tilde{v}_{\beta}\}_{\tilde{y}=\tilde{L}}$ NOCENOC NOCENIC NICENIC NICEL

-
$$[\overline{D}_a]^{-1}$$
 $[\overline{D}_b]$ $\{B_{3\alpha}\}_{\tilde{y}=\tilde{L}}$

NOCKNOC NOCKNOC NOCKL

-
$$[\overline{D}_a]^{-1}$$
 $[\overline{\overline{D}}_c]$ $(\{F_{4\beta}\} + \{B_{4\beta}\}_{\tilde{y}=\tilde{L}})$
NOC×NOC NOC×NIC NIC×1 NIC×1

$$- \{B_{4\alpha}\}_{\tilde{y}=\tilde{L}}^{\tilde{z}}$$

$$NOCxl$$
(2.107)

wher

2,

X:

Sin

^{ರೆಂಭು}ie e

their dea

lem are n

where

$$[\overline{D}_{a}] = ([D_{22\alpha 1}] - [D_{21\alpha 2}] [D_{21\beta 2}]^{-1} [D_{22\beta 1}])_{\tilde{y}=\tilde{L}}^{\tilde{y}}$$

$$NOC \times NOC \qquad NOC \times NOC \qquad NOC \times NIC \qquad NIC \times NIC$$

$$[\overline{D}_{b}] = ([D_{21\alpha 1}] - [D_{21\alpha 2}] [D_{21\beta 2}]^{-1} [D_{21\beta 1}])_{\tilde{y}=\tilde{L}}^{\tilde{y}}$$

$$NOC \times NOC \qquad NOC \times NIC \qquad NIC \times NIC \qquad NIC \times NOC$$

$$[\overline{D}_{c}] = ([D_{22\alpha 2}] - [D_{21\alpha 2}] [D_{21\beta 2}]^{-1} [D_{22\beta 2}])_{\tilde{y}=\tilde{L}}^{\tilde{y}}$$

$$NOC \times NIC \qquad NOC \times NIC \qquad NIC \times NIC \qquad NIC \times NIC$$

$$\{F_{3\beta}\} = [D_{21\beta2}]_{\tilde{y}=\tilde{L}}^{-1} \{\hat{v}_{\beta}\}_{\tilde{y}=\tilde{L}}$$

NICx1 NICxNIC NICx1

-
$$\begin{bmatrix} D_{21\beta 2} \end{bmatrix}_{\tilde{y}=\tilde{L}}^{-1} \begin{bmatrix} D_{21\beta 1} \end{bmatrix}_{\tilde{y}=\tilde{L}} \{B_{3\alpha}\}_{\tilde{y}=\tilde{L}} - \{B_{3\beta}\}_{\tilde{y}=\tilde{L}}$$

NICXNIC NICXNOC NOCX1 NICX1

-
$$[D_{21\beta2}]_{y=\tilde{L}}^{z_1} [D_{22\beta1}]_{y=\tilde{L}}^{z_2} (\{F_{4\alpha}\} + \{B_{4\alpha}\}_{y=\tilde{L}}^{z_2})$$

NICXNIC NICXNOC NOCX1 NOCX1

-
$$[D_{21\beta2}]_{\tilde{y}=\tilde{L}}^{\tilde{z}1} [D_{22\beta2}]_{\tilde{y}=\tilde{L}} (\{F_{+\beta}\} + \{B_{4\beta}\}_{\tilde{y}=\tilde{L}})$$
 (2.108)
NICXNIC NICXNIC NICXL NICXL

Similar equations can be derived for a displacement loaded double edge crack bar by using the given displacements rather than their derivatives at the $\tilde{y} = \tilde{L}$ plane. The details of that problem are not considered in this paper. Numerical results for the

problem of Figure 3(a) are presented and discussed in Chapter

IV along with the solutions of the other examples.

The

CHAPTER 3

SOLUTION OF THE NAVIER-CAUCHY EQUATIONS IN CYLINDRICAL COORDINATES BY THE METHOD OF LINES

3.1 Governing Equations

The discretization technique presented in the previous chapter cannot be readily extended to problems having circular boundaries. For problems of this geometry, it is more convenient to formulate the field equations and associated boundary conditions in cylindrical coordinates. In this coordinate system, the Navier-Cauchy equations (2.4) can be written as follows:

$$\frac{\partial \mathbf{e}}{\partial \mathbf{r}} + (1-2\mathbf{v}) \left[\left(\nabla_{\mathbf{c}}^2 - \frac{1}{\mathbf{r}^2} \right) \mathbf{u} - \frac{2}{\mathbf{r}^2} \frac{\partial \mathbf{v}}{\partial \theta} \right] = 0$$
 (3.1)

$$\frac{1}{\mathbf{r}} \frac{\partial \mathbf{e}_{\mathbf{c}}}{\partial \theta} + (1-2\mathbf{v}) \left[\left(\nabla_{\mathbf{c}}^{2} - \frac{1}{\mathbf{r}^{2}} \right) \mathbf{v} + \frac{2}{\mathbf{r}^{2}} \frac{\partial \mathbf{u}}{\partial \theta} \right] = 0 \qquad (3.2)$$

$$\frac{\partial \mathbf{e}}{\partial \mathbf{z}} + (1-2v) \nabla_{\mathbf{c}}^2 \mathbf{w} = 0 \tag{3.3}$$

where the dilatation, e_c , is given by

$$\mathbf{e}_{\mathbf{c}} = \frac{\partial \mathbf{u}}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}} \frac{\partial \mathbf{v}}{\partial \theta} + \frac{\mathbf{u}}{\mathbf{r}} + \frac{\partial \mathbf{w}}{\partial \mathbf{z}}$$
 (3.4)

and the Laplacian, ∇_c^2 , is

$$\nabla_{\mathbf{c}}^{2} = \frac{\partial^{2}}{\partial \mathbf{r}^{2}} + \frac{1}{\mathbf{r}} \frac{\partial}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}^{2}} \frac{\partial^{2}}{\partial \theta^{2}} + \frac{\partial^{2}}{\partial z^{2}}$$
(3.5)

The stress-displacement relations, obtained by substituting the strain-displacement relations into Hooke's law, can be written in the following form:

$$\sigma_{\mathbf{r}} = \lambda e_{\mathbf{c}} + 2G \frac{\partial u}{\partial \mathbf{r}}$$
 (3.6)

$$\sigma_{\theta} = \lambda e_{c} + 2G \left(\frac{1}{r} \frac{\partial v}{\partial \theta} + \frac{u}{r} \right)$$
 (3.7)

$$\sigma_{z} = \lambda e_{c} + 2G \frac{\partial w}{\partial z}$$
 (3.8)

$$\sigma_{r\theta} = G\left(\frac{1}{r}\frac{\partial u}{\partial \theta} - \frac{v}{r} + \frac{\partial v}{\partial r}\right)$$
 (3.9)

$$\sigma_{rz} = G\left(\frac{\partial w}{\partial r} + \frac{\partial u}{\partial z}\right) \tag{3.10}$$

$$\sigma_{\theta z} = G \left(\frac{\partial v}{\partial z} + \frac{1}{r} \frac{\partial w}{\partial \theta} \right)$$
 (3.11)

Solution of these equations can again be obtained by using the line method together with the successive approximation procedure and the applicable boundary conditions.

3.2 Ordinary Differential Equations and Borning Conditions in the Radial Direction

Following the line method as discussed in the previous chapter, we construct three sets of lines in the direction of the cylindrical coordinate axes. An arbitrary cylindrical grid consisting of these three sets of lines is shown in Figure 4. The numbering of the lines is analogous to that shown in Figure

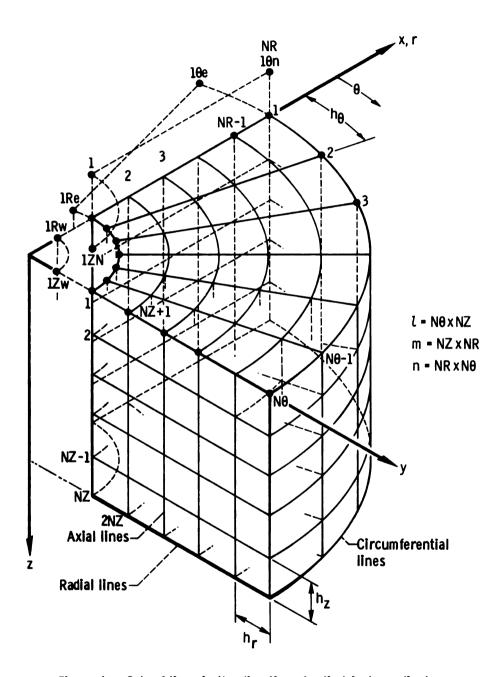


Figure 4. - Sets of lines in the direction of cylindrical coordinates.

i. For c
and h_Z
tore easi
obtained
because s
coefficie
value pro
The previ

For :

along the define ψ

respect t

the axial

respect t

regarded

first rac

1. For convenience, the lines are evenly spaced with h_r , h_θ and h_z each equal to some given constant. The advantage of a more easily calculated solution with even line spacing is not obtained in fully three-dimensional cylindrical coordinates because some of the resulting differential equations have variable coefficients. In addition, a closed form solution of the eigenvalue problem for the remaining equations is also impractical. The previously discussed limitations on the validity of particular solutions also apply to problems in cylindrical coordinates.

For the solution of equation (3.1), the radial lines of Figure 4 must be utilized. The radial displacement of points along these lines will be denoted as $u_1, u_2, \dots, u_{\ell}$. We define $\dot{\mathbf{v}}|_1, \dot{\mathbf{v}}|_2, \dots, \dot{\mathbf{v}}|_{\ell}$ now as the derivatives of the circumferential displacements of the same points on these lines with respect to θ and $\dot{\mathbf{w}}|_1, \dot{\mathbf{w}}|_2, \dots, \dot{\mathbf{w}}|_{\ell}$ as the derivatives of the axial displacements of the same points on these lines with respect to \mathbf{z} . These displacements and derivatives can then be regarded as functions of the radius only. From equations (3.1), (3.4) and (3.5), the following equation is obtained along the first radial line:

$$\frac{d^{2}u_{1}}{dr^{2}} + \frac{1}{r} \frac{d\dot{v}}{dr} \Big|_{1} - \frac{1}{r^{2}} \dot{v} \Big|_{1} + \frac{1}{r} \frac{du_{1}}{dr} - \frac{u_{1}}{r^{2}} + \frac{d\dot{w}}{dr} + (1-2v) \left[\frac{d^{2}u_{1}}{dr^{2}} + \frac{1}{r^{2}} \frac{du_{1}}{dr^{2}} + \frac{1}{r^{2}} \frac{\partial^{2}u_{1}}{\partial\theta^{2}} + \frac{\partial^{2}u_{1}}{\partial z^{2}} - \frac{u_{1}}{r^{2}} - \frac{2}{r^{2}} \dot{v} \Big|_{1} \right] = 0$$
(3.12)

where, by using finite difference calculus, we have

$$\frac{\partial^2 u_1}{\partial \theta^2} = \frac{1}{h_{\theta}^2} (u_2 - 2u_1 + u_{1\theta}e)$$
 (3.13)

$$\frac{\partial^2 u_1}{\partial z^2} = \frac{1}{h_2^2} (u_{N\theta+1} - 2u_1 + u_{1\theta n})$$
 (3.14)

The use of zero shear stress boundary conditions in the radial direction on the r-z and $r-\theta$ coordinate planes gives respectively

$$u_{1\theta e} = u_2 + 2h_{\theta}r \frac{dv}{dr}\Big|_1 - 2h_{\theta}v\Big|_1$$
 (3.15)

$$u_{len} = u_{N\theta+1} + 2h_{\mathbf{z}} \frac{dw}{d\mathbf{r}} \Big|_{1}$$
 (3.16)

Substituting these equations into equation (3.12) leads to the following ordinary differential equation:

$$\left[\frac{d^{2}u_{1}}{dr^{2}} + \frac{1}{r}\frac{du_{1}}{dr} - \frac{u_{1}}{r^{2}}\right] + \frac{(1-2\nu)}{2(1-\nu)}\left[-\left(\frac{2}{r^{2}h_{\theta}^{2}} + \frac{2}{h_{2}^{2}}\right)u_{1}\right] + \frac{2u_{2}}{r^{2}h_{\theta}^{2}} + \frac{2u_{N\theta+1}}{h_{z}^{2}}\right] + \frac{f_{1}(r)}{2(1-\nu)} = 0$$
(3.17)

where

$$f_{1}(\mathbf{r}) = \frac{(4v-3)}{r^{2}} \dot{\mathbf{v}} \Big|_{1} + \frac{1}{r} \frac{d\dot{\mathbf{v}}}{d\mathbf{r}} \Big|_{1} + \frac{d\dot{\mathbf{w}}}{d\mathbf{r}} \Big|_{1}$$

$$+ (1-2v) \left[\frac{2}{rh_{\theta}} \frac{d\mathbf{v}}{d\mathbf{r}} - \frac{2}{r^{2}h_{\theta}} \mathbf{v} + \frac{2}{h_{z}} \frac{d\mathbf{w}}{d\mathbf{r}} \right]_{1}$$
(3.18)

Similar differential equations are obtained for the displacements u_i of the points on the other radial lines. Since each equation contains the displacements of the surrounding lines, these equations constitute a system of ordinary differential equations. Noting that equation (3.17) was derived for a corner line, the form of the equations for interior lines and surface lines will differ according to the application of known shear stress conditions.

It will be convenient to non-dimensionalize equations (3.17) and (3.18) with respect to some characteristic dimension. For the penny shaped crack problems, which are to be discussed later in this report, the same variables can be used as in (2.28) with the following modifications:

$$\tilde{\mathbf{r}} = \frac{\mathbf{r}}{\mathbf{a}} \qquad \tilde{\mathbf{h}}_{\mathbf{r}} = \frac{\mathbf{h}_{\mathbf{r}}}{\mathbf{a}}$$

$$\tilde{\boldsymbol{\theta}} = \boldsymbol{\theta} \qquad \tilde{\mathbf{h}}_{\boldsymbol{\theta}} = \mathbf{h}_{\boldsymbol{\theta}}$$
(3.19)

Introducing matrix notation, the differential equations along the radial lines can be expressed in the form shown below.

where the coefficient matrix $[K_r(\tilde{r})]$ and the column vectors $\{\tilde{u}\}$ and $\{r(\tilde{r})\}$ are given below.

[K _r (r)] =	[K _{rl}] N0×N0	2[K _{r2}] N0xN0	0	0	O
	[K _{r2}] N0×N0	[K _{rl}] N0×N0	[K _{r2}] N0×N0	0	0
	0	//	, ,	/	0
l×l	0	0	[K _{r2}] N0×N0	[K _{rl}] N0×N0	[K _{r2}] N0×N0
	0	0	0	2[K _{r2}] NexNe	[K _{rl}] N0×N0

where the

 $[X_{\mathbf{r}_{\mathbf{i}}}(\mathbf{r})]$

%ex%e

[K_{r2}]

liexlie

where the submatrices $[K_{rl}]$ and $[K_{r2}]$ are

	k ₇	-2k ₈	0	0	0
	-k ₈	k ₇	-k ₈	0	0
[K _{rl} (r)] =	0	//	//	//	0
N0×N0	0	0	-k ₈	k ₇	-k ₈
	0	0	0	-2k ₈	k ₇

$$k_7 = \frac{(1-2\nu)}{2(1-\nu)} \left[\frac{2}{\tilde{r}^2 \tilde{h}_{\theta}^2} + \frac{2}{\tilde{h}_{z}^2} \right]$$

$$k_{g} = \frac{(1-2v)}{2(1-v)} \left[\frac{1}{\tilde{r}^{2}\tilde{h}_{\theta}^{2}} \right]$$

	-k ₃	0	0	0	0
	0	-k ₃	0	0	0
[K _{r2}] =	0	//	//		0
Nθ×Nθ	0	0	0	-k ₃	0
	0	0	0	0	-k ₃

$$k_3 = \frac{(1-2v)}{2(1-v)} \left[\frac{1}{\tilde{h}_z^2} \right]$$

Note : radiu zero,

(2)

ίχ<u>'</u>

Where

....5

give:

Note that the coefficient matrix $[K_r(\tilde{r})]$ is a function of the radius and since the sum of all the elements in any given row is zero, it is also singular. The column vectors are written as

$$\left\{ \begin{bmatrix} \left\{ \tilde{\mathbf{u}} \right\}_{1} \\ \left\{ \tilde{\mathbf{u}} \right\}_{2} \\ \vdots \\ \left\{ \tilde{\mathbf{u}} \right\}_{NZ-1} \\ \left\{ \tilde{\mathbf{u}} \right\}_{NZ} \end{bmatrix} \right\} = \left\{ \begin{cases} \left\{ f(\tilde{\mathbf{r}}) \right\}_{1} \\ \left\{ f(\tilde{\mathbf{r}}) \right\}_{2} \\ \vdots \\ \left\{ f(\tilde{\mathbf{r}}) \right\}_{NZ-1} \\ \left\{ f(\tilde{\mathbf{r}}) \right\}_{NZ-1} \\ \left\{ f(\tilde{\mathbf{r}}) \right\}_{NZ} \end{bmatrix} \right\}$$

$$\left\{ \left\{ f(\tilde{\mathbf{r}}) \right\}_{NZ-1} \\ \left\{ f(\tilde{\mathbf{r}}) \right\}_{NZ} \right\}$$

where the partitioned column vectors of $\{\tilde{u}\}$ are the same as those in the previous chapter except that they are of order N0x1.

The partitioned vectors $\{f(\tilde{r})\}_{i}$ i = 1, 2, ..., NZ, are given by

			(4.9 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
			9 to 2

$$\begin{cases} \left. \left(\frac{4\nu - 3}{\tilde{r}^2} \right) \dot{\vec{v}} \right|_{1} + \frac{1}{\tilde{r}} \frac{d\dot{\vec{v}}}{d\tilde{r}} \right|_{1} + \frac{d\dot{\vec{w}}}{d\tilde{r}} \right|_{1} + (1 - 2\nu) \left[\frac{2}{\tilde{r} \tilde{h}_{\theta}} \frac{d\tilde{v}}{d\tilde{r}} - \frac{2}{\tilde{r}^2 \tilde{h}_{\theta}} \tilde{v} + \frac{2}{\tilde{h}_{z}} \frac{d\tilde{w}}{d\tilde{r}} \right]_{1} \\ \left. \left(\frac{4\nu - 3}{\tilde{r}^2} \right) \dot{\vec{v}} \right|_{2} + \frac{1}{\tilde{r}} \frac{d\dot{\vec{v}}}{d\tilde{r}} \right|_{2} + \frac{d\dot{\vec{w}}}{d\tilde{r}} \right|_{2} + (1 - 2\nu) \left[\frac{2}{\tilde{h}_{z}} \frac{d\tilde{w}}{d\tilde{r}} \right]_{2} \\ \vdots & \vdots & \vdots \\ \left. \left(\frac{4\nu - 3}{\tilde{r}^2} \right) \dot{\vec{v}} \right|_{N\theta - 1} + \frac{1}{\tilde{r}} \frac{d\dot{\vec{v}}}{d\tilde{r}} \bigg|_{N\theta - 1} + \frac{d\dot{\vec{w}}}{d\tilde{r}} \bigg|_{N\theta = 1} + (1 - 2\nu) \left[\frac{2}{\tilde{r} \tilde{h}_{\theta}} \frac{d\tilde{w}}{d\tilde{r}} \right]_{N\theta - 1} \\ \left. \left(\frac{4\nu - 3}{\tilde{r}^2} \right) \dot{\vec{v}} \bigg|_{N\theta} + \frac{1}{\tilde{r}} \frac{d\dot{\vec{v}}}{d\tilde{r}} \bigg|_{N\theta} + \frac{d\dot{\vec{w}}}{d\tilde{r}} \bigg|_{N\theta} + (1 - 2\nu) \left[\frac{-2}{\tilde{r} \tilde{h}_{\theta}} \frac{d\tilde{v}}{d\tilde{r}} + \frac{2\tilde{v}}{\tilde{r}^2 \tilde{h}_{\theta}} + \frac{2}{\tilde{h}_{z}} \frac{d\tilde{w}}{d\tilde{r}} \right]_{N\theta} \right\}$$

$$\begin{cases} \frac{(4\nu-3)}{\tilde{r}^2} \dot{\tilde{v}}\Big|_{N\theta+1} + \frac{1}{\tilde{r}} \frac{d\dot{\tilde{v}}}{d\tilde{r}}\Big|_{N\theta+1} + \frac{d\dot{\tilde{a}}}{d\tilde{r}}\Big|_{N\theta+1} + (1-2\nu) \left[\frac{2}{\tilde{r}\tilde{h}_{\theta}} \frac{d\tilde{v}}{d\tilde{r}} - \frac{2}{\tilde{r}^2\tilde{h}_{\theta}} \tilde{v}\right]_{N\theta+1} \\ \frac{(4\nu-3)}{\tilde{r}^2} \dot{\tilde{v}}\Big|_{N\theta+2} + \frac{1}{\tilde{r}} \frac{d\dot{\tilde{v}}}{d\tilde{r}}\Big|_{N\theta+2} + \frac{d\dot{\tilde{a}}}{d\tilde{r}}\Big|_{N\theta+2} \\ \vdots & \vdots & \vdots \\ \frac{(4\nu-3)}{\tilde{r}^2} \dot{\tilde{v}}\Big|_{2N\theta-1} + \frac{1}{\tilde{r}} \frac{d\dot{\tilde{v}}}{d\tilde{r}}\Big|_{2N\theta-1} + \frac{d\dot{\tilde{a}}}{d\tilde{r}}\Big|_{2N\theta-1} \\ \frac{(4\nu-3)}{\tilde{r}^2} \dot{\tilde{v}}\Big|_{2N\theta} + \frac{1}{\tilde{r}} \frac{d\dot{\tilde{v}}}{d\tilde{r}}\Big|_{2N\theta} + (1-2\nu) \left[\frac{-2}{\tilde{r}\tilde{h}_{\theta}} \frac{d\tilde{v}}{d\tilde{r}} + \frac{2\tilde{v}}{\tilde{r}^2\tilde{h}_{\theta}}\right]_{2N\theta} \end{cases}$$

940 82-1

> ikizi) Na

$$\begin{cases} \frac{\left(4\psi - 3\right)}{\tilde{r}^{2}} \dot{\tilde{v}}\Big|_{\tilde{g}-2N\theta + 1} + \frac{1}{\tilde{r}} \frac{d\dot{\tilde{v}}}{d\tilde{r}}\Big|_{\tilde{g}-2N\theta + 1} + \frac{d\dot{\tilde{w}}}{d\tilde{r}}\Big|_{\tilde{g}-2N\theta + 1} + (1-2\psi) \left[\frac{2}{\tilde{r}\tilde{h}_{\theta}} \frac{d\tilde{v}}{d\tilde{r}} - \frac{2}{\tilde{r}^{2}\tilde{h}_{\theta}} \tilde{v}\right]_{\tilde{g}-2N\theta + 1} \\ \frac{\left(4\psi - 3\right)}{\tilde{r}^{2}} \dot{\tilde{v}}\Big|_{\tilde{g}-2N\theta + 2} + \frac{1}{\tilde{r}} \frac{d\dot{\tilde{v}}}{d\tilde{r}}\Big|_{\tilde{g}-2N\theta + 2} + \frac{d\dot{\tilde{w}}}{d\tilde{r}}\Big|_{\tilde{g}-2N\theta + 2} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\left(4\psi - 3\right)}{\tilde{r}^{2}} \dot{\tilde{v}}\Big|_{\tilde{g}-N\theta - 1} + \frac{1}{\tilde{r}} \frac{d\dot{\tilde{v}}}{d\tilde{r}}\Big|_{\tilde{g}-N\theta - 1} + \frac{d\dot{\tilde{w}}}{d\tilde{r}}\Big|_{\tilde{g}-N\theta - 1} \\ \frac{\left(4\psi - 3\right)}{\tilde{r}^{2}} \dot{\tilde{v}}\Big|_{\tilde{g}-N\theta} + \frac{1}{\tilde{r}} \frac{d\dot{\tilde{v}}}{d\tilde{r}}\Big|_{\tilde{g}-N\theta} + \frac{d\dot{\tilde{w}}}{d\tilde{r}}\Big|_{\tilde{g}-N\theta} + (1-2\psi) \left[\frac{-2}{\tilde{r}\tilde{h}_{\theta}} \frac{d\tilde{v}}{d\tilde{r}} + \frac{2}{\tilde{r}^{2}\tilde{h}_{\theta}} \tilde{v}\right]_{\tilde{g}-N\theta} \\ \end{bmatrix}_{\tilde{g}-N\theta}$$

$$\begin{cases} \frac{(4v-3)}{\hat{r}^2} \dot{\hat{v}}\Big|_{\hat{\mathbf{g}}=N\theta+1} + \frac{1}{\hat{\mathbf{f}}} \frac{d\hat{\hat{\mathbf{v}}}}{d\hat{\mathbf{f}}}\Big|_{\hat{\mathbf{g}}=N\theta+1} + \frac{d\hat{\hat{\mathbf{g}}}}{d\hat{\mathbf{f}}}\Big|_{\hat{\mathbf{g}}=N\theta+2} + (1-2v) \left[\frac{2}{\hat{r}\hat{h}_{\theta}} \frac{d\hat{\mathbf{v}}}{d\hat{r}} - \frac{2}{\hat{r}^2\hat{h}_{\theta}} \dot{\hat{\mathbf{v}}} - \frac{2}{\hat{h}_{z}} \frac{d\hat{\hat{\mathbf{w}}}}{d\hat{r}}\right]_{\hat{\mathbf{g}}=N\theta+2} \\ \frac{(4v-3)}{\hat{r}^2} \dot{\hat{\mathbf{v}}}\Big|_{\hat{\mathbf{g}}=N\theta+2} + \frac{1}{\hat{r}} \frac{d\hat{\hat{\mathbf{v}}}}{d\hat{r}}\Big|_{\hat{\mathbf{g}}=N\theta+2} + \frac{d\hat{\hat{\mathbf{g}}}}{d\hat{r}}\Big|_{\hat{\mathbf{g}}=N\theta+2} + (1-2v) \left[-\frac{2}{\hat{h}_{z}} \frac{d\hat{\hat{\mathbf{w}}}}{d\hat{r}} \right]_{\hat{\mathbf{g}}=N\theta+2} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{(4v-3)}{\hat{r}^2} \dot{\hat{\mathbf{v}}}\Big|_{\hat{\mathbf{g}}=1} + \frac{1}{\hat{r}} \frac{d\hat{\hat{\mathbf{v}}}}{d\hat{r}}\Big|_{\hat{\mathbf{g}}=1} + \frac{d\hat{\hat{\mathbf{g}}}}{d\hat{r}}\Big|_{\hat{\mathbf{g}}=1} + (1-2v) \left[-\frac{2}{\hat{h}_{z}} \frac{d\hat{\hat{\mathbf{w}}}}{d\hat{r}} \right]_{\hat{\mathbf{g}}=1} \\ \frac{(4v-3)}{\hat{r}^2} \dot{\hat{\mathbf{v}}}\Big|_{\hat{\mathbf{g}}} + \frac{1}{\hat{r}} \frac{d\hat{\hat{\mathbf{v}}}}{d\hat{r}}\Big|_{\hat{\mathbf{g}}} + \frac{d\hat{\hat{\mathbf{g}}}}{d\hat{r}}\Big|_{\hat{\mathbf{g}}} + (1-2v) \left[\frac{2}{\hat{r}^2\hat{h}_{\theta}} \dot{\hat{\mathbf{v}}} - \frac{2}{\hat{r}\hat{h}_{\theta}} \frac{d\hat{\hat{\mathbf{v}}}}{d\hat{r}} - \frac{2}{\hat{h}_{z}} \frac{d\hat{\hat{\mathbf{g}}}}{d\hat{r}} \right]_{\hat{\mathbf{g}}} \end{aligned}$$

(3,20

iata 3.3

equat

Figur

deriv

lines

deriva lines

the r

lents

only, Follow

Sect:

lines

h tibaco Assuming that $\{r(\tilde{r})\}$ is known, solutions of equations (3.20) can be obtained in closed form using the given boundary data at the end points of the radial lines.

3.3 Ordinary Differential Equations and Boundary Conditions in the Circumferential Direction

For the solution of equation (3.2), ordinary differential equations are developed along the circumferential lines of Figure 4. The displacements along these lines will be denoted as v_1, v_2, \ldots, v_m . We define $|\mathring{u}|_1, |\mathring{u}|_2, \ldots, |\mathring{u}|_m$ as the derivatives of the radial displacements of points on these lines with respect to $|\mathring{v}|_1, |\mathring{v}|_2, \ldots, |\mathring{w}|_m$ as the derivatives of the axial displacements of the same points on these lines with respect to $|\mathring{v}|_1, |\mathring{v}|_2, \ldots, |\mathring{w}|_m$ as the derivatives of the axial displacements of the same points on these lines with respect to $|\mathring{v}|_1, |\mathring{v}|_2, \ldots, |\mathring{v}|_m$ as the radial and axial displacements respectively. These displacements and derivatives can then be regarded as functions of $|\mathring{v}|_1, |\mathring{v}|_2, \ldots, |\mathring{v}|_m$ as the only, since they are variables along circumferential lines. Following a similar procedure to that used in the previous section, the set of differential equations obtained along these lines is listed below.

We note that for equations (3.23), the shear stress boundary conditions in the θ direction were utilized. An inspection of

Figure 4

lines, th

{s(ê)} }

MR. Ther

we define

{s(₹)} c

[K⁶] =

מאמ

where the

and i,

Figure 4 shows that for any given subset of NZ circumferential lines, the radius is a constant. In order that $[K_{\theta}]$ and $\{s(\tilde{\theta})\}$ be expressed in a form similar to (3.21) and (3.22), we define the radius for each subset as r_i $i=1,2,3,\ldots$, NR. Then the coefficient matrix $[K_{\theta}]$ and the vectors $\{\tilde{v}\}$ and $\{s(\tilde{\theta})\}$ can be written as follows:

		[K ₀₁ (テ ₁)]	[K ₀₄ (F ₁)] NZ×NZ	0	0	0
		[K ₀₅ (ř _i)] NZ×NZ	[K ₀₂ (Ŧ _i)] NZ×NZ	[K ₀₆ (ř _i)] NZ x NZ	0	0
[K _θ]	=	0	,	\	, ,	0
mxm		0	0	[K ₀₅ (ř _i)] NZXNZ	[K ₀₂ (F _i)] NZxNZ	[K ₀₆ (F _i)] NZ x NZ
		0	0	0	[K ₀₄ (ĩ _{NR})] nzxnz	[K ₀₃ (F _{NR})] nzxnz
	_	L	'		i '	(3.24)

where the submatrices $[K_{\theta 1}]$ through $[K_{\theta 6}]$ are expressed below and i, as used above, varies from 2 to NR-1.

 $[\ell_{\mathfrak{g}_1}(\mathfrak{k}_1)]$

\$2x\$\$2

 $[x_{\theta 2}(\mathbf{r}_i)]$

Sikzk

$$\begin{bmatrix} k_{9} & -2k_{10} & 0 & 0 & 0 \\ -k_{10} & k_{9} & -k_{10} & 0 & 0 \\ 0 & 0 & -k_{10} & k_{9} & -k_{10} \\ 0 & 0 & 0 & -2k_{10} & k_{9} \end{bmatrix}$$

$$k_{g} = \frac{(1-2\nu)}{2(1-\nu)} \left[\frac{2\tilde{r}_{1}^{2}}{\tilde{n}_{r}^{2}} + \frac{2\tilde{r}_{1}^{2}}{\tilde{n}_{z}^{2}} + \frac{2\tilde{r}_{1}}{\tilde{n}_{r}} \right]$$

$$k_{10} = \frac{(1-2\nu)}{2(1-\nu)} \begin{bmatrix} \frac{\tilde{r}^2}{1} \\ \tilde{h}_z^2 \end{bmatrix}$$

$$\begin{bmatrix} k_{11}(\tilde{\mathbf{r}_i}) & -2k_{12}(\tilde{\mathbf{r}_i}) & 0 & 0 & 0 \\ -k_{12}(\tilde{\mathbf{r}_i}) & k_{11}(\tilde{\mathbf{r}_i}) & -k_{12}(\tilde{\mathbf{r}_i}) & 0 & 0 \\ 0 & 0 & -k_{12}(\tilde{\mathbf{r}_i}) & k_{11}(\tilde{\mathbf{r}_i}) & -k_{12}(\tilde{\mathbf{r}_i}) \\ 0 & 0 & 0 & -2k_{12}(\tilde{\mathbf{r}_i}) & k_{11}(\tilde{\mathbf{r}_i}) \end{bmatrix}$$

$$k_{11}(\tilde{r}_i) = \frac{(1-2\nu)}{2(1-\nu)} \left[\frac{2\tilde{r}_i^2}{\tilde{h}_r^2} + \frac{2\tilde{r}_i^2}{\tilde{h}_z^2} + 1 \right]$$

$$k_{12}(\tilde{r}_i) = \frac{(1-2v)}{2(1-v)} \left[\frac{\tilde{r}_i^2}{\tilde{h}_z^2} \right]$$

 $[X_{\theta3}(\xi_{XR})$

NEXXE

[X₆₄(F_j) NZx:Z

	١	٦ :				· · · · · · · · · · · · · · · · · · ·
		k ₁₃	-2k ₁₄	0	0	0
		-k ₁₄	^k 13	-k ₁₄	0	0
$[K_{\theta 3}(\tilde{r}_{NR})]$	=	0	/	\	/	0
NZ×NZ	0	0	-k ₁₄	k ₁₃	-k ₁₄	
		0	0	0	-2k ₁₄	k ₁₃
	•			· _	_	-

$$k_{13} = \frac{(1-2v)}{2(1-v)} \left[\frac{2\tilde{r}_{NR}^2}{\tilde{h}_r^2} + \frac{2\tilde{r}_{NR}^2}{\tilde{h}_z^2} - \frac{2\tilde{r}_{NR}}{\tilde{h}_r} \right]$$

$$k_{14} = \frac{(1-2v)}{2(1-v)} \begin{bmatrix} \tilde{r}_{NR}^2 \\ \tilde{h}_z^2 \end{bmatrix}$$

$$k_{15}(\tilde{r}_{j}) = \frac{(1-2v)}{2(1-v)} \left[\frac{2\tilde{r}_{j}^{2}}{\tilde{h}_{r}^{2}} \right]$$

j = 1 and NR only

$$k_{16}(\tilde{r}_i) = \frac{(1-2\nu)}{2(1-\nu)} \left[\frac{\tilde{r}_i^2}{\tilde{h}_r^2} - \frac{\tilde{r}_i}{2\tilde{h}_r} \right]$$

$$k_{17}(\tilde{r}_i) = \frac{(1-2v)}{2(1-v)} \begin{bmatrix} \tilde{r}_i^2 \\ \tilde{h}_r^2 + \frac{\tilde{r}_i}{2\tilde{h}_r} \end{bmatrix}$$

Note that one set of submatrices $[K_{\theta 2}]$, $[K_{\theta 5}]$ and $[K_{\theta 6}]$ is constructed for each value of the radius and then they are assembled according to equation (3.24).

The displacement vector $\{\check{\mathbf{v}}\}$ can be written as in equation mxl (2.48) with the exception of replacing NX by NR in those equations. The vector $\{s(\check{\theta})\}$ becomes

$$\{s(\tilde{\theta})\} = \begin{cases} \{f(\tilde{\theta})\}_{1} \\ \{f(\tilde{\theta})\}_{2} \\ \vdots \\ \{f(\tilde{\theta})\}_{NR-1} \\ \{f(\tilde{\theta})\}_{NR} \end{cases}$$

$$(3.25)$$

where the partitioned column vectors are

$$\left\{ f(\tilde{\theta}) \right\}_{1} = \frac{-1}{2(1-\nu)}$$

$$\left\{ (3-4\nu) \frac{d\tilde{u}}{d\tilde{\theta}} \right|_{1} + \tilde{r}_{1} \frac{d\tilde{u}}{d\tilde{\theta}} \right|_{1} + \tilde{r}_{1} \frac{d\tilde{u}}{d\tilde{\theta}} \right|_{1} + (1-2\nu) \left[\frac{2\tilde{r}_{1}}{\tilde{h}_{r}} \frac{d\tilde{u}}{d\tilde{\theta}} - \frac{d\tilde{u}}{d\tilde{\theta}} + \frac{2\tilde{r}_{1}}{\tilde{h}_{z}} \frac{d\tilde{u}}{d\tilde{\theta}} \right]_{1}$$

$$\left\{ (3-4\nu) \frac{d\tilde{u}}{d\tilde{\theta}} \right|_{2} + \tilde{r}_{1} \frac{d\tilde{u}}{d\tilde{\theta}} \right|_{2} + \tilde{r}_{1} \frac{d\tilde{u}}{d\tilde{\theta}} \right|_{2} + (1-2\nu) \left[\frac{2\tilde{r}_{1}}{\tilde{h}_{r}} \frac{d\tilde{u}}{d\tilde{\theta}} - \frac{d\tilde{u}}{d\tilde{\theta}} \right]_{2}$$

$$\left\{ (3-4\nu) \frac{d\tilde{u}}{d\tilde{\theta}} \right|_{NZ-1} + \tilde{r}_{1} \frac{d\tilde{u}}{d\tilde{\theta}} \right|_{NZ-1} + \tilde{r}_{1} \frac{d\tilde{u}}{d\tilde{\theta}} \Big|_{NZ-1} + (1-2\nu) \left[\frac{2\tilde{r}_{1}}{\tilde{h}_{r}} \frac{d\tilde{u}}{d\tilde{\theta}} - \frac{d\tilde{u}}{d\tilde{\theta}} - \frac{d\tilde{u}}{d\tilde{\theta}} \right]_{NZ-1}$$

$$\left\{ (3-4\nu) \frac{d\tilde{u}}{d\tilde{\theta}} \right|_{NZ} + \tilde{r}_{1} \frac{d\tilde{u}}{d\tilde{\theta}} \Big|_{NZ} + \tilde{r}_{1} \frac{d\tilde{u}}{d\tilde{\theta}} \Big|_{NZ} + (1-2\nu) \left[\frac{2\tilde{r}_{1}}{\tilde{h}_{r}} \frac{d\tilde{u}}{d\tilde{\theta}} - \frac{d\tilde{u}}{d\tilde{\theta}} - \frac{2\tilde{r}_{1}}{\tilde{h}_{z}} \frac{d\tilde{u}}{d\tilde{\theta}} \right]_{NZ}$$

rac

tic Tilly

(3,23)

eni p

a clo

2005

thou

the

3,4

.g. 13:

às

Ċe.

W.

););

1

t)

t

Assuming that $\{s(\tilde{\theta})\}$ is known, solutions of equations (3.23) can be obtained in closed form when boundary data at the end points of the circumferential lines are specified.

Note that even though the elements of $[K_{\theta}]$ are constants, a closed form solution of the associated eigenvalue problem in accordance with the decomposition methods of Appendix A is not possible. In addition, we find that $[K_{\theta}]$ is also singular although this is not as evident from its elements as in the case of the other coefficient matrices.

3.4 Ordinary Differential Equations and Boundary Conditions in the Axial Direction

Application of the line method to equation (3.3) will result in a set of ordinary differential equations along the axial lines of Figure 4. The displacements along these lines will be denoted as w_1, w_2, \ldots, w_n . We define $u|_1, u|_2, \ldots, u|_n$ as the derivatives of the radial displacements of points on these lines with respect to r and $v|_1, v|_2, \ldots, v|_n$ as the derivatives of the circumferential displacements of the same points on these lines with respect to θ . These displacements and derivatives are then functions of z only, since they are variables along axial lines. Using z-directional shear stress boundary conditions for the corner and surface lines, the simultaneous differential equations along the axial lines can be written as follows:

From Fi

positi

tion o

i=1,

given

rx: zc. [K

The Sel

$$\frac{d^{2}}{d\tilde{z}^{2}} \{\tilde{w}\} = [K_{zc}] \{\tilde{w}\} + \{t_{c}(\tilde{z})\}$$

$$nxl \quad nxn \quad nxl \quad nxl$$
(3.26)

From Figure 4, one can note that the radius varies with the line position within each subset of NR axial lines. Using the notation of the previous section, these radii are denoted as r_i $i = 1, 2, 3, \ldots$, NR. The coefficient matrix $[K_{zc}]$ is then given by

		[K _{zcl}]	2[K _{zc2}] NRxNR	0	0	0	
		[K _{zc2}] NR x NR	[K _{zcl}] NR x NR	[K _{zc2}] Nr x NR	0	0	
[K _{zc}]	=	0				0	(3.27)
nxn		0	0	[K _{zc2}] NR x NR	[Kzcl] NRxNR	[K _{zc2}] NrxNR	
		0	0	0	2[K _{zc2}] NR x NR	[K _{zcl}]	

The submatrices [K $_{\mbox{zcl}}$ and [K $_{\mbox{zc2}}$] can be written as shown below.

IX political in the control of the c

c

[X_{zc2}]

c .

	c ₁	-k ₁₈	0	0	0
	-c _{2NR-1}	c ₂	-c _{NR+1}	0	0
$[K_{zcl}] =$	0	/	/	/	0
NR × NR	0	0	-с _{ЗNR-4}	c _{NR-1}	-c _{2NR-2}
	0	0	0	-k ₁₈	c _{NR}
•	!	'	' - I		

$$k_{18} = \frac{(1-2v)}{2(1-v)} \begin{bmatrix} \frac{2}{\kappa^2} \end{bmatrix}$$

$$c_i = \frac{(1-2v)}{2(1-v)} \left[\frac{2}{\tilde{h}_i^2} + \frac{2}{\tilde{r}_i^2 \tilde{h}_\theta^2} \right]$$
 for $i = 1, 2, ..., NR$

$$c_{i} = \frac{(1-2v)}{2(1-v)} \left[\frac{1}{\tilde{h}_{r}^{2}} + \frac{1}{2\tilde{h}_{r}\tilde{r}_{j}} \right]$$
 for $i = NR+1, NR+2, ..., 2NR-2$
 $j = i-NR+1$

$$c_{i} = \frac{(1-2\nu)}{2(1-\nu)} \left[\frac{1}{\tilde{h}_{r}^{2}} - \frac{1}{2\tilde{h}_{r}\tilde{r}_{k}} \right]$$
 for $i = 2NR-1, 2NR, ..., 3NR-4$
 $k = i-2NR+3$

$$c_{i} = \frac{(1-2v)}{2(1-v)} \left[-\frac{1}{r_{i}^{2}h_{\theta}^{2}} \right]$$
 for $i = 3NR-3$, $3NR-2$, ..., $4NR-4$

Note th

stants

WR ele

(3,26)

An inve

...

singula

equatio

partit;

De ve

Note that submatrix $[K_{zcl}]$ will always contain 3NR-4 constants denoted as c_i while the matrix $[K_{zc2}]$ will have only NR elements on its diagonal. The coefficient matrix $[K_{zc}]$ has elements that are all constants which shows that equations (3.26) are also differential equations with constant coefficients. An investigation of its inverse will also show that $[K_{zc}]$ is singular. The displacement vector $\{\tilde{w}\}$ can be written as in equation (2.55) with exception of replacing NY by N0 and the partitioned $\{\tilde{w}\}_i$ vectors are of order NRxl instead of NXxl. The vector $\{t_c(\tilde{z})\}$ becomes,

$$\left\{ \begin{cases} \left\{ f(\tilde{z}) \right\}_{1} \\ \left\{ f(\tilde{z}) \right\}_{2} \\ \vdots \\ \left\{ f(\tilde{z}) \right\}_{N\theta-1} \\ \left\{ f(\tilde{z}) \right\}_{N\theta} \end{cases} \right\}$$
 (3.28)

Ðχ. The same

$$\begin{cases} \frac{d\ddot{u}}{d\ddot{z}}\Big|_{1} + \frac{1}{\tilde{r}_{1}} \frac{d\ddot{u}}{d\ddot{z}}\Big|_{1} + \frac{1}{\tilde{r}_{1}} \frac{d\ddot{v}}{d\ddot{z}}\Big|_{1} + (1-2v) \left[\left(\frac{2}{\tilde{h}_{r}} - \frac{1}{\tilde{r}_{1}}\right) \frac{d\ddot{u}}{d\ddot{z}} + \frac{2}{\tilde{r}_{1}\tilde{h}_{\theta}} \frac{d\ddot{v}}{d\ddot{z}} \right]_{1} \\ \frac{d\ddot{u}}{d\ddot{z}}\Big|_{2} + \frac{1}{\tilde{r}_{2}} \frac{d\ddot{u}}{d\ddot{z}}\Big|_{2} + \frac{1}{\tilde{r}_{2}} \frac{d\ddot{v}}{d\ddot{z}}\Big|_{2} + (1-2v) \left[\frac{2}{\tilde{r}_{2}\tilde{h}_{\theta}} \frac{d\ddot{v}}{d\ddot{z}} \right]_{2} \\ \vdots & \vdots & \vdots & \vdots \\ NRx1 \end{cases}$$

$$\begin{cases} d\ddot{u}\Big|_{NR-1} + \frac{1}{\tilde{r}_{NR-1}} \frac{d\ddot{u}}{d\ddot{z}}\Big|_{NR-1} + \frac{1}{\tilde{r}_{NR-1}} \frac{d\ddot{v}}{d\ddot{z}}\Big|_{NR-1} + (1-2v) \left[\frac{2}{\tilde{r}_{NR-1}\tilde{h}_{\theta}} \frac{d\ddot{v}}{d\ddot{z}} \right]_{NR-1} \\ \frac{d\ddot{u}}{d\ddot{z}}\Big|_{NR} + \frac{1}{\tilde{r}_{NR}} \frac{d\ddot{u}}{d\ddot{z}}\Big|_{NR} + \frac{1}{\tilde{r}_{NR}} \frac{d\ddot{v}}{d\ddot{z}}\Big|_{NR} + (1-2v) \left[\left(\frac{-2}{\tilde{h}_{r}} - \frac{1}{\tilde{r}_{NR}}\right) \frac{d\ddot{u}}{d\ddot{z}} + \frac{2}{\tilde{r}_{NR}\tilde{h}_{\theta}} \frac{d\ddot{v}}{d\ddot{z}} \right]_{NR} \end{cases}$$

$$\begin{cases} \frac{d\dot{0}}{d\bar{z}}\Big|_{NR+1} + \frac{1}{\bar{r}_{1}} \frac{d0}{d\bar{z}}\Big|_{NR+1} + \frac{1}{\bar{r}_{1}} \frac{d\dot{0}}{d\bar{z}}\Big|_{NR+1} + (1-2\nu) \left[\left(\frac{2}{\bar{h}_{r}} - \frac{1}{\bar{r}_{1}} \right) \frac{d0}{d\bar{z}} \right]_{NR+1} \\ \frac{d\dot{0}}{d\bar{z}}\Big|_{NR+2} + \frac{1}{\bar{r}_{2}} \frac{d0}{d\bar{z}}\Big|_{NR+2} + \frac{1}{\bar{r}_{2}} \frac{d\dot{0}}{d\bar{z}}\Big|_{NR+2} \\ \vdots & \vdots & \vdots \\ NRx1 \end{cases}$$

$$\frac{d\dot{0}}{d\bar{z}}\Big|_{2NR-1} + \frac{1}{\bar{r}_{NR-1}} \frac{d0}{d\bar{z}}\Big|_{2NR-1} + \frac{1}{\bar{r}_{NR-1}} \frac{d\dot{0}}{d\bar{z}}\Big|_{2NR-1} \\ \frac{d\dot{0}}{d\bar{z}}\Big|_{2NR-1} + \frac{1}{\bar{r}_{NR}} \frac{d0}{d\bar{z}}\Big|_{2NR} + \frac{1}{\bar{r}_{NR}} \frac{d\dot{0}}{d\bar{z}}\Big|_{2NR} + (1-2\nu) \left[\left(\frac{-2}{\bar{h}_{r}} - \frac{1}{\bar{r}_{NR}} \right) \frac{d0}{d\bar{z}} \right]_{2NR} \end{cases}$$

$$\begin{cases} \frac{d\ddot{u}}{d\dot{z}}\Big|_{n-2NR+1} + \frac{1}{\tilde{r}_1} \frac{d\ddot{u}}{d\ddot{z}}\Big|_{n-2NR+1} + \frac{1}{\tilde{r}_1} \frac{d\dot{v}}{d\ddot{z}}\Big|_{n-2NR+1} + (1-2v) \left[\left(\frac{2}{\tilde{h}_r} - \frac{1}{\tilde{r}_1}\right) \frac{d\ddot{u}}{d\ddot{z}} \right]_{n-2NR+1} \\ \frac{d\ddot{u}}{d\ddot{z}}\Big|_{n-2NR+2} + \frac{1}{\tilde{r}_2} \frac{d\ddot{u}}{d\ddot{z}}\Big|_{n-2NR+2} + \frac{1}{\tilde{r}_2} \frac{d\dot{v}}{d\ddot{z}}\Big|_{n-2NR+2} \\ \vdots & \vdots & \vdots \\ NRx1 \\ \frac{d\dot{u}}{d\ddot{z}}\Big|_{n-NR-1} + \frac{1}{\tilde{r}_{NR-1}} \frac{d\ddot{u}}{d\ddot{z}}\Big|_{n-NR-1} + \frac{1}{\tilde{r}_{NR-1}} \frac{d\ddot{v}}{d\ddot{z}}\Big|_{n-NR-1} \\ \frac{d\dot{u}}{d\ddot{z}}\Big|_{n-NR} + \frac{1}{\tilde{r}_{NR}} \frac{d\ddot{u}}{d\ddot{z}}\Big|_{n-NR} + \frac{1}{\tilde{r}_{NR}} \frac{d\ddot{v}}{d\ddot{z}}\Big|_{n-NR} + (1-2v) \left[\left(\frac{-2}{\tilde{h}_r} - \frac{1}{\tilde{r}_{NR}}\right) \frac{d\ddot{u}}{d\ddot{z}} \right]_{n-NR} \end{cases}$$

$$\begin{cases} \left. \frac{d\dot{0}}{dz} \right|_{n-NR+1} + \frac{1}{\tilde{r}_1} \left. \frac{d\tilde{0}}{d\tilde{z}} \right|_{n-NR+1} + \frac{1}{\tilde{r}_1} \left. \frac{d\dot{0}}{d\tilde{z}} \right|_{n-NR+1} + (1-2\nu) \left[\left(\frac{2}{\tilde{h}_r} - \frac{1}{\tilde{r}_1} \right) \left. \frac{d\tilde{0}}{d\tilde{z}} - \frac{2}{\tilde{r}_1 \tilde{h}_\theta} \left. \frac{d\tilde{0}}{d\tilde{z}} \right]_{n-NR+1} \right] \\ \left. \frac{d\dot{0}}{d\tilde{z}} \right|_{n-NR+2} + \frac{1}{\tilde{r}_2} \left. \frac{d\tilde{0}}{d\tilde{z}} \right|_{n-NR+2} + \frac{1}{\tilde{r}_2} \left. \frac{d\dot{0}}{d\tilde{z}} \right|_{n-NR+2} + (1-2\nu) \left[\frac{-2}{\tilde{r}_2 \tilde{h}_\theta} \left. \frac{d\tilde{0}}{d\tilde{z}} \right]_{n-NR+2} \right] \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{d\dot{0}}{d\tilde{z}} \right|_{n-1} + \frac{1}{\tilde{r}_{NR-1}} \left. \frac{d\tilde{0}}{d\tilde{z}} \right|_{n-1} + \frac{1}{\tilde{r}_{NR-1}} \left. \frac{d\dot{0}}{d\tilde{z}} \right|_{n-1} + (1-2\nu) \left[\frac{-2}{\tilde{r}_{NR-1} \tilde{h}_\theta} \left. \frac{d\tilde{0}}{d\tilde{z}} \right]_{n-1} \right] \\ \left. \frac{d\dot{0}}{d\tilde{z}} \right|_{n} + \frac{1}{\tilde{r}_{NR}} \left. \frac{d\tilde{0}}{d\tilde{z}} \right|_{n} + \left. \frac{1}{\tilde{r}_{NR}} \left. \frac{d\dot{0}}{d\tilde{z}} \right|_{n} + (1-2\nu) \left[\left. \left(\frac{-2}{\tilde{h}_r} - \frac{1}{\tilde{r}_{NR}} \right) \right. \right] \right. \\ \left. \frac{d\dot{0}}{d\tilde{z}} \right|_{n} + \frac{1}{\tilde{r}_{NR}} \left. \frac{d\tilde{0}}{d\tilde{z}} \right|_{n} + \left. \frac{1}{\tilde{r}_{NR}} \left. \frac{d\dot{0}}{d\tilde{z}} \right|_{n} + (1-2\nu) \left[\left. \left(\frac{-2}{\tilde{h}_r} - \frac{1}{\tilde{r}_{NR}} \right) \right. \right] \right. \\ \left. \frac{d\dot{0}}{d\tilde{z}} \right|_{n} + \frac{1}{\tilde{r}_{NR}} \left. \frac{d\tilde{0}}{d\tilde{z}} \right|_{n} + (1-2\nu) \left[\left. \left(\frac{-2}{\tilde{h}_r} - \frac{1}{\tilde{r}_{NR}} \right) \right. \right] \right. \\ \left. \frac{d\tilde{0}}{\tilde{z}} \left(\frac{1}{\tilde{z}} - \frac{1}{\tilde{r}_{NR} \tilde{h}_\theta} \right) \right. \\ \left. \frac{d\tilde{0}}{\tilde{z}} \right|_{n} + \frac{1}{\tilde{r}_{NR}} \left. \frac{d\tilde{0}}{d\tilde{z}} \right|_{n} + (1-2\nu) \left[\left(\frac{-2}{\tilde{h}_r} - \frac{1}{\tilde{r}_{NR}} \right) \right] \right. \\ \left. \frac{d\tilde{0}}{\tilde{z}} \left(\frac{1}{\tilde{z}} - \frac{1}{\tilde{z}_{NR} \tilde{h}_\theta} \right) \right. \\ \left. \frac{d\tilde{0}}{\tilde{z}} \right|_{n} + \frac{1}{\tilde{r}_{NR}} \left. \frac{d\tilde{0}}{d\tilde{z}} \right|_{n} + (1-2\nu) \left[\left(\frac{-2}{\tilde{h}_r} - \frac{1}{\tilde{r}_{NR}} \right) \right] \right. \\ \left. \frac{d\tilde{0}}{\tilde{z}} \left(\frac{1}{\tilde{z}_{NR} \tilde{h}_\theta} \right) \right] \left. \frac{d\tilde{0}}{\tilde{z}} \right|_{n} + \frac{1}{\tilde{r}_{NR}} \left. \frac{d\tilde{0}}{\tilde{z}} \right|_{n} + (1-2\nu) \left[\frac{-2}{\tilde{r}_{NR} \tilde{h}_\theta} \right] \right.$$

- 2

$$\begin{cases} \frac{d\dot{u}}{d\dot{z}}\Big|_{n-2NR+1} + \frac{1}{\hat{r}_1} \frac{d\ddot{u}}{d\dot{z}}\Big|_{n-2NR+1} + \frac{1}{\hat{r}_1} \frac{d\dot{v}}{d\dot{z}}\Big|_{n-2NR+1} + (1-2\nu) \left[\left(\frac{2}{\hat{h}_r} - \frac{1}{\hat{r}_1}\right) \frac{d\ddot{u}}{d\dot{z}} \right]_{n-2NR+1} \\ \frac{d\dot{\dot{u}}}{d\dot{z}}\Big|_{n-2NR+2} + \frac{1}{\hat{r}_2} \frac{d\ddot{u}}{d\dot{z}}\Big|_{n-2NR+2} + \frac{1}{\hat{r}_2} \frac{d\dot{v}}{d\dot{z}}\Big|_{n-2NR+2} \\ \vdots & \vdots & \vdots \\ NRx1 \\ \frac{d\dot{\dot{u}}}{d\dot{z}}\Big|_{n-NR-1} + \frac{1}{\hat{r}_{NR-1}} \frac{d\ddot{u}}{d\dot{z}}\Big|_{n-NR-1} + \frac{1}{\hat{r}_{NR-1}} \frac{d\ddot{v}}{d\dot{z}}\Big|_{n-NR-1} \\ \frac{d\dot{\dot{u}}}{d\dot{z}}\Big|_{n-NR} + \frac{1}{\hat{r}_{NR}} \frac{d\ddot{u}}{d\dot{z}}\Big|_{n-NR} + \frac{1}{\hat{r}_{NR}} \frac{d\ddot{v}}{d\dot{z}}\Big|_{n-NR} + (1-2\nu) \left[\left(\frac{-2}{\hat{h}_r} - \frac{1}{\hat{r}_{NR}}\right) \frac{d\ddot{u}}{d\dot{z}} \right]_{n-NR} \end{cases}$$

$$\begin{cases} \left. \frac{d\dot{0}}{d2} \right|_{n-NR+1} + \frac{1}{\tilde{r}_1} \frac{d\dot{0}}{d\hat{z}} \right|_{n-NR+1} + \frac{1}{\tilde{r}_1} \frac{d\dot{0}}{d\hat{z}} \right|_{n-NR+1} + (1-2\nu) \left[\left(\frac{2}{\tilde{h}_r} - \frac{1}{\tilde{r}_1} \right) \frac{d\dot{0}}{d\hat{z}} - \frac{2}{\tilde{r}_1 \tilde{h}_{\theta}} \frac{d\dot{0}}{d\hat{z}} \right]_{n-NR+1} \\ \left. \frac{d\dot{0}}{d\hat{z}} \right|_{n-NR+2} + \frac{1}{\tilde{r}_2} \frac{d\dot{0}}{d\hat{z}} \right|_{n-NR+2} + \frac{1}{\tilde{r}_2} \frac{d\dot{0}}{d\hat{z}} \right|_{n-NR+2} + (1-2\nu) \left[\frac{-2}{\tilde{r}_2 \tilde{h}_{\theta}} \frac{d\dot{0}}{d\hat{z}} \right]_{n-NR+2} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{d\dot{0}}{d\hat{z}} \right|_{n-1} + \frac{1}{\tilde{r}_{NR-1}} \frac{d\dot{0}}{d\hat{z}} \right|_{n-1} + \frac{1}{\tilde{r}_{NR-1}} \frac{d\dot{0}}{d\hat{z}} \right|_{n-1} + (1-2\nu) \left[\left(\frac{-2}{\tilde{h}_r} - \frac{1}{\tilde{r}_{NR}} \right) \frac{d\dot{0}}{d\hat{z}} - \frac{2}{\tilde{r}_{NR} \tilde{h}_{\theta}} \frac{d\dot{0}}{d\hat{z}} \right]_{n} \\ \frac{d\dot{0}}{d\hat{z}} \right|_{n} + \frac{1}{\tilde{r}_{NR}} \frac{d\dot{0}}{d\hat{z}} \right|_{n} + \frac{1}{\tilde{r}_{NR}} \frac{d\dot{0}}{d\hat{z}} \right|_{n} + (1-2\nu) \left[\left(\frac{-2}{\tilde{h}_r} - \frac{1}{\tilde{r}_{NR}} \right) \frac{d\dot{0}}{d\hat{z}} - \frac{2}{\tilde{r}_{NR} \tilde{h}_{\theta}} \frac{d\dot{0}}{d\hat{z}} \right]_{n} \end{cases}$$

(3 ÷. Assuming that $\{t_c(\tilde{z})\}$ is known, we can solve equations (3.26) in closed form provided that boundary conditions at the end points of all the axial lines are given.

Inspection of equations (3.23) and (3.26) shows that they are differential equations with constant coefficients whose solutions can be obtained by the methods of Section 2.3. In evaluating the matrix functions for equation (2.60), it is most convenient to use the definitions (2.62) together with the additive formulas (2.68). The difficulty in solving the eigenvelue problems for equations (3.23) and (3.26) arises because the decomposition of (A.2) does not lead to tri-diagonal matrices of the form (A.1). Instead of equation (A.9), the methods of Appendix A will lead to a difference equation with variable coefficients whose solution is difficult to evaluate. Hence, a closed form solution for the eigenvalues and eigenvectors will not be possible.

An alternate approach to the eigenvalue problem would be the use of a suitable numerical method. Since the decomposition of equation (A.2) will always reduce the order of the matrices involved, only the component matrix eigenvalues and eigenvectors need be evaluated numerically. One such suitable numerical technique is the Rutishauser left-right transformation method (38). However, care should be exercised in using this method because of the zero eigenvalue in each coefficient matrix. Doust and

Pric

Piti

of t

ava:

ty t

Sino

inde

tain

tech

foll

3.5

equa

Volv

Sect

difi

equa

die:

equa

cons

coef

inde

Price (39) discuss a technique for readily adopting the Rutishauser method to singular matrices. At this time, results of the numerical analysis of this eigenvalue problem are not yet available.

The solutions of equations (3.20) cannot be readily obtained by the above discussed matrix series or normal mode analysis. Since the coefficient matrix $[K_{\mathbf{r}}(\vec{r})]$ is a function of the independent variable and the differential operator in (3.20) contains additional terms to the second derivative, a solution technique for this type of equations will be presented in the following section.

3.5 Solution of Simultaneous Differential Equations With Variable Coefficients

Solution methods for a system of ordinary differential equations with variable coefficients are, in general, more involved and complicated than those discussed in the previous sections. One technique in solving a system of higher order differential equations of this type is to first reduce the given equations by suitable transformations to a set of first order differential equations. The solution of this set of first order equations can then be expressed in terms of an infinite series constructed by means of repeated integrations of the reduced coefficient matrix whose elements are also functions of the independent variable. The advantages of this method are its

simplicity as problem of s hand, the pr im numerical Applica Section 2.3, present a pr eigenvalues variable. T modal matrix necessitatin cause of the use the inte equations (3 Noting be written a duced in or U₁ = r

In terms of shown below

simplicity and the fact that it avoids the generally difficult problem of solving the determinantal equation. On the other hand, the process often has the disadvantage of slow convergence in numerical applications (34).

Application of the normal mode method, as discussed in Section 2.3, to equations with variable coefficients does not present a practical approach to these equations because the eigenvalues and eigenvectors are all functions of the independent variable. This functional dependency would require a different modal matrix along each point of the independent variable necessitating a possible averaging technique at each node. Because of these difficulties with the normal mode method, we shall use the integral series approach in obtaining the solutions of equations (3.20).

Noting that the differential operator of equations (3.20) can be written as $\frac{d}{d\tilde{r}} \left[\frac{1}{\tilde{r}} \frac{d}{d\tilde{r}} \right]$, the following variables are introduced in order to obtain a system of first order equations:

$$U_{1} = \tilde{\mathbf{r}} \tilde{\mathbf{u}}_{1} \qquad U_{2} = \tilde{\mathbf{r}} \tilde{\mathbf{u}}_{2} \qquad U_{\ell} = \tilde{\mathbf{r}} \tilde{\mathbf{u}}_{\ell}$$

$$U_{\ell+1} = \frac{1}{\tilde{\mathbf{r}}} \frac{d}{d\tilde{\mathbf{r}}} (\tilde{\mathbf{r}} \tilde{\mathbf{u}}_{1}) \qquad U_{\ell+2} = \frac{1}{\tilde{\mathbf{r}}} \frac{d}{d\tilde{\mathbf{r}}} (\tilde{\mathbf{r}} \tilde{\mathbf{u}}_{2}) \qquad U_{2\ell} = \frac{1}{\tilde{\mathbf{r}}} \frac{d}{d\tilde{\mathbf{r}}} (\tilde{\mathbf{r}} \tilde{\mathbf{u}}_{\ell})$$

$$(3.29)$$

In terms of these variables, equations (3.20) can be written as shown below.

of equation

where {U(

an infinit

$$\frac{d}{d\tilde{r}} \{U\} = [A(\tilde{r})] \{U\} + \{\overline{r}(\tilde{r})\}$$

$$2lxl \quad 2lxl \quad 2lxl \quad 2lxl$$
(3.30)

where

$$[A(\tilde{r})] = \begin{bmatrix} [0] & \tilde{r}[I] \\ lxl & lxl \\ \frac{1}{\tilde{r}}[K_{r}(\tilde{r})] & [0] \\ lxl & lxl \end{bmatrix}$$
(3.31)

$$\{\overline{\mathbf{r}}(\tilde{\mathbf{r}})\} = \begin{cases} \{0\} \\ \mathbf{l} \times \mathbf{l} \\ \{\mathbf{r}(\tilde{\mathbf{r}})\} \\ \mathbf{l} \times \mathbf{l} \end{cases}$$
(3.32)

Following the Peano-Baker form of integration (34), the solution of equation (3.30) can be written as

$$\{U(\tilde{r})\} = \left[\Omega_{0}^{\tilde{r}}(A)\right] \{U(\tilde{o})\} + \left[\Omega_{0}^{\tilde{r}}(A)\right] \int_{0}^{\tilde{r}} \left[\Omega_{0}^{\eta}\right]^{-1} \{\overline{r}(\eta)\} d\eta \quad (3.33)$$

$$2lxl \quad 2lx2l \quad 2lxl \quad 2lx2l \quad 2lx2l \quad 2lx1$$

where $\{U(\eth)\}$ is a vector which consists of the boundary values of $(\tilde{r}\tilde{u})$ and $\left[\frac{1}{\tilde{r}}\frac{d}{d\tilde{r}}\left(\tilde{r}\tilde{u}\right)\right]$ at $\tilde{r}=0$. The matrizant of [A] is an infinite matrix integral series given by

Substitutin

Partitionin;

terms of the

integral se

$$\left[\Omega_{0}^{\tilde{r}}(A) \right] = \left[I \right] + \int_{0}^{\tilde{r}} \left[A(\rho_{1}) \right] d\rho_{1} + \int_{0}^{\tilde{r}} \left[A(\rho_{2}) \right] d\rho_{2}$$

$$\cdot \int_{0}^{\rho_{2}} \left[A(\rho_{1}) \right] d\rho_{1} + \int_{0}^{\tilde{r}} \left[A(\rho_{3}) \right] d\rho_{3} \int_{0}^{\rho_{3}} \left[A(\rho_{2}) \right] d\rho_{2}$$

$$\cdot \int_{0}^{\rho_{2}} \left[A(\rho_{1}) \right] d\rho_{1} + \dots$$

$$(3.34)$$

Substituting equation (3.31) into equation (3.34) yields

$$[\Omega_{o}^{\tilde{r}}(A)] = \begin{bmatrix} [I] & 0 \\ 0 & [I] \end{bmatrix} + \int_{o}^{\tilde{r}} \begin{bmatrix} [0] & \rho_{1}[I] \\ \frac{1}{\rho_{1}}[K_{r}] & [0] \end{bmatrix} d\rho_{1}$$

$$+ \int_{o}^{\tilde{r}} \begin{bmatrix} [0] & \rho_{2}[I] \\ \frac{1}{\rho_{2}}[K_{r}] & [0] \end{bmatrix} d\rho_{2} \int_{o}^{\rho_{2}} \begin{bmatrix} [0] & \rho_{1}[I] \\ \frac{1}{\rho_{1}}[K_{r}] & [0] \end{bmatrix} d\rho_{1}$$

$$+ \int_{o}^{\tilde{r}} \begin{bmatrix} [0] & \rho_{3}[I] \\ \frac{1}{\rho_{3}}[K_{r}] & [0] \end{bmatrix} d\rho_{3} \int_{o}^{\rho_{3}} \begin{bmatrix} [0] & \rho_{2}[I] \\ \frac{1}{\rho_{2}}[K_{r}] & [0] \end{bmatrix} d\rho_{2}$$

$$\cdot \int_{o}^{\rho_{2}} \begin{bmatrix} [0] & \rho_{1}[I] \\ \frac{1}{\rho_{1}}[K_{r}] & [0] \end{bmatrix} d\rho_{1} + \dots$$

Partitioning the matrizant of [A] according to (2.62) gives in terms of the coefficient matrix $[K_r]$ the following four matrix integral series:

[3₁₁] =

[012] = ixi

[22] = lxi

[0₂₂] =

Differentia

 $\frac{d}{d\hat{r}} \left[\Omega_{11} \right]$

$$[\Omega_{11}] = [I] + \int_{0}^{r} \rho_{2}[I] d\rho_{2} \int_{0}^{\rho_{2}} \frac{1}{\rho_{1}} [K_{r}(\rho_{1})] d\rho_{1} + \dots$$

$$k \times k$$

$$[\Omega_{12}] = [I] \int_{0}^{\tilde{r}} \rho_{1} d\rho_{1} + \int_{0}^{\tilde{r}} [I] \rho_{3} d\rho_{3}$$

$$\cdot \int_{0}^{\rho_3} \frac{1}{\rho_2} \left[\kappa_{\mathbf{r}}(\rho_2) \right] d\rho_2 \int_{0}^{\rho_2} \rho_1 \left[1 \right] d\rho_1 + \dots$$

$$[\Omega_{21}] = \int_{0}^{\tilde{r}} \frac{1}{\rho_{1}} [K_{r}(\rho_{1})] d\rho_{1} + \int_{0}^{\tilde{r}} \frac{1}{\rho_{3}} [K_{r}(\rho_{3})] d\rho_{3}$$

.
$$\int_{0}^{\rho_3} [I] \rho_2 d\rho_2 \int_{0}^{\rho_2} \frac{1}{\rho_1} [K_r(\rho_1)] d\rho_1 + \dots$$

$$[\Omega_{22}] = [I] + \int_{0}^{\tilde{r}} \frac{1}{\rho_{2}} [K_{r}(\rho_{2})] d\rho_{2} \int_{0}^{\rho_{2}} \rho_{1}[I] d\rho_{1} + \dots$$

Differentiating these integral series with respect to r gives

$$\frac{\mathrm{d}}{\mathrm{d}\tilde{\mathbf{r}}} \left[\Omega_{11}\right] = \tilde{\mathbf{r}}\left[1\right] \int_{0}^{\tilde{\mathbf{r}}} \frac{1}{\rho_{1}} \left[K_{\mathbf{r}}(\rho_{1})\right] \mathrm{d}\rho_{1} + \dots$$

$$\frac{\mathrm{d}}{\mathrm{d}\tilde{\mathbf{r}}} \left[\Omega_{12}\right] = \tilde{\mathbf{r}}\left[\mathbf{I}\right] + \tilde{\mathbf{r}}\left[\mathbf{I}\right] \int_{0}^{\tilde{\mathbf{r}}} \frac{1}{\rho_{2}} \left[\mathbf{K}_{\mathbf{r}}(\rho_{2})\right] \mathrm{d}\rho_{2}$$

$$\cdot \int_{0}^{\rho_{2}} \rho_{1}\left[\mathbf{I}\right] \mathrm{d}\rho_{1} + \dots$$

$$\frac{\mathrm{d}}{\mathrm{d}\tilde{\mathbf{r}}} \left[\Omega_{21}\right] = \frac{1}{\tilde{\mathbf{r}}} \left[K_{\mathbf{r}}\right] + \frac{1}{\tilde{\mathbf{r}}} \left[K_{\mathbf{r}}\right] \int_{0}^{\tilde{\mathbf{r}}} \left[1\right] \rho_{2} \mathrm{d}\rho_{2}$$

$$\cdot \int_{0}^{\rho_{2}} \frac{1}{\rho_{1}} \left[K_{\mathbf{r}}(\rho_{1})\right] \mathrm{d}\rho_{1} + \dots$$

$$\frac{\mathrm{d}}{\mathrm{d}\tilde{r}} \left[\Omega_{22}\right] = \frac{1}{\tilde{r}} \left[K_{\mathbf{r}}\right] \int_{0}^{\tilde{r}} \rho_{1}[\mathrm{I}] \mathrm{d}\rho_{1} + \dots$$

Inspection of these equations shows that the following relationships exist among these four submatrices:

$$\frac{1}{\tilde{r}} \frac{d}{d\tilde{r}} \left[\Omega_{11}\right] = \left[\Omega_{21}\right]$$

$$\tilde{r} \frac{d}{d\tilde{r}} \left[\Omega_{21}\right] = \left[\Omega_{11}\right] \left[\kappa_{r}\right]$$
(3.35)

$$\frac{1}{\tilde{\mathbf{r}}} \frac{d}{d\tilde{\mathbf{r}}} \left[\Omega_{12}\right] = \left[\Omega_{22}\right]$$

$$\tilde{\mathbf{r}} \frac{d}{d\tilde{\mathbf{r}}} \left[\Omega_{22}\right] = \left[\Omega_{12}\right] \left[K_{\mathbf{r}}\right]$$
(3.36)

$$\frac{\mathrm{d}}{\mathrm{d}\tilde{\mathbf{r}}} \left[\Omega_{12}\right] = \tilde{\mathbf{r}}\left[1\right] + \tilde{\mathbf{r}}\left[1\right] \int_{0}^{\tilde{\mathbf{r}}} \frac{1}{\rho_{2}} \left[K_{\mathbf{r}}(\rho_{2})\right] \mathrm{d}\rho_{2}$$

$$\cdot \int_{0}^{\rho_{2}} \rho_{1}\left[1\right] \mathrm{d}\rho_{1} + \dots$$

$$\frac{\mathrm{d}}{\mathrm{d}\tilde{\mathbf{r}}} \left[\Omega_{21}\right] = \frac{1}{\tilde{\mathbf{r}}} \left[K_{\mathbf{r}}\right] + \frac{1}{\tilde{\mathbf{r}}} \left[K_{\mathbf{r}}\right] \int_{0}^{\tilde{\mathbf{r}}} \left[\mathrm{I}\right] \rho_{2} \mathrm{d}\rho_{2}$$

$$\cdot \int_{0}^{\rho_{2}} \frac{1}{\rho_{1}} \left[K_{\mathbf{r}}(\rho_{1})\right] \mathrm{d}\rho_{1} + \cdot \cdot \cdot$$

$$\frac{\mathrm{d}}{\mathrm{d}\tilde{\mathbf{r}}} \left[\Omega_{22}\right] = \frac{1}{\tilde{\mathbf{r}}} \left[K_{\mathbf{r}}\right] \int_{0}^{\mathbf{r}} \rho_{1}[1] \mathrm{d}\rho_{1} + \dots$$

Inspection of these equations shows that the following relationships exist among these four submatrices:

$$\frac{1}{\tilde{r}} \frac{d}{d\tilde{r}} \left[\Omega_{11}\right] = \left[\Omega_{21}\right]$$

$$\tilde{r} \frac{d}{d\tilde{r}} \left[\Omega_{21}\right] = \left[\Omega_{11}\right] \left[K_{r}\right]$$
(3.35)

$$\frac{1}{\tilde{\mathbf{r}}} \frac{d}{d\tilde{\mathbf{r}}} \left[\Omega_{12}\right] = \left[\Omega_{22}\right]$$

$$\tilde{\mathbf{r}} \frac{d}{d\tilde{\mathbf{r}}} \left[\Omega_{22}\right] = \left[\Omega_{12}\right] \left[\mathbf{K_r}\right]$$
(3.36)

From the dei

obtain from matrix equa nique such

Since

ditions for

In usi

differentia

derivative the region

shows that

be avoided

Using equadifferentia From the definition of these matrix series we can conclude at once that their initial values are

$$\begin{bmatrix} \Omega_{11} \end{bmatrix}_{\tilde{\mathbf{r}}=0} = \begin{bmatrix} \mathbf{I} \end{bmatrix}$$

$$\begin{bmatrix} \Omega_{12} \end{bmatrix}_{\tilde{\mathbf{r}}=0} = \begin{bmatrix} \mathbf{0} \end{bmatrix}$$

$$\begin{bmatrix} \Omega_{21} \end{bmatrix}_{\tilde{\mathbf{r}}=0} = \begin{bmatrix} \mathbf{0} \end{bmatrix}$$

$$\begin{bmatrix} \Omega_{22} \end{bmatrix}_{\tilde{\mathbf{r}}=0} = \begin{bmatrix} \mathbf{I} \end{bmatrix}$$
(3.37)

Since the values of the submatrices $[\Omega_{ij}]$ are difficult to obtain from their series definitions, the above simultaneous matrix equations may be evaluated by a suitable numerical technique such as the Runge-Kutta method. The necessary initial conditions for this numerical solution are listed in (3.37).

In using a numerical method for the solution of a given differential equation, it is usually necessary to solve for the derivative of the dependent variable at the initial point. If the region of interest includes the point $\tilde{r}=0$, equation (3.35) shows that $\frac{d}{d\tilde{r}} \left[\Omega_{21}\right]$ at $\tilde{r}=0$ is not finite. This problem can be avoided by defining a new variable $\left[\Omega_{21}^{*}\right]$ as

$$[\Omega_{21}^*] = \tilde{r}^3[\Omega_{21}]$$
 (3.38)

Using equation (3.38) in (3.35), the following simultaneous matrix differential equations will be obtained:

<u>d</u> | dr

 $\frac{d}{d\tilde{r}}$ [

By apple

matrix

. .

[K_r] =

its den

Tatrix

since a

diverge

of the

A:

may be

of a ma

formula

checkin

cceffi,

I.

example

sible.

$$\frac{d}{d\tilde{r}} \left[\Omega_{11} \right] = \frac{1}{\tilde{r}^2} \left[\Omega_{21}^* \right]; \quad \left[\Omega_{11} \right]_{r=0} = [I]$$

$$\frac{d}{d\tilde{r}} \left[\Omega_{21}^* \right] = \frac{3}{\tilde{r}} \left[\Omega_{21}^* \right] + \left[\Omega_{11} \right] [\overline{K}_r]; \quad \left[\Omega_{21}^* \right]_{\tilde{r}=0} = [0]$$
(3.39)

By applying L'Hospital's rule, all the necessary derivatives in equations (3.36) and (3.39) can now be evaluated. Note that the matrix $[\overline{K}_{\mathbf{r}}]$ is obtained from multiplying the coefficient matrix $[K_{\mathbf{r}}]$ by $\tilde{\mathbf{r}}^2$ such that no element of $[\overline{K}_{\mathbf{r}}]$ contains an $\tilde{\mathbf{r}}$ in its denominator.

If one were to use the series definitions for evaluating the matrix functions $[\Omega_{ij}]$, similar difficulties would be encountered since at $\tilde{r} = 0$ some of the integrals would diverge. This divergence is the result of trying to evaluate improper integrals of the second kind.

At this time, the analogy between solutions (3.33) and (2.60) may be noted. Reference (34) shows in detail that the matrizant of a matrix of constants is identically equal to the exponential matrix series (2.61). However, indirect meanous such as additive formulas and accuracy checks such as (2.87) for evaluating and checking these matrix functions are not available when variable coefficient differential equations are treated.

It is evident from the above discussion that for specific examples a closed form solution of equations (3.20) is not possible. However, the advantage of the line method over complete

finite

numeri A

over a

made.

to exp

terms

as the

corre

data :

of th

ar.d s

cours

be av

direc

equat

3.5.

Part

finite difference solutions is still obtained in that higher order numerical solutions are utilized for the computations.

Additional comments on the selection of the matrizant method over a direct numerical solution of equations (3.20) can now be made. The advantage of using equation (3.33) is in its ability to express two point differential equation solutions directly in terms of given boundary data. Direct numerical techniques, such as the single-step Runge-Kutte method or the multi-step predictor-corrector methods (33) usually require that all initial point data be known. Since in a two point boundary value problem some of the initial data is unknown, indirect methods such as "shooting" and successive approximations must be employed (33). This, of course, leads to an inefficient use of the computer and should be avoided whenever possible. In addition, it is well known that direct numerical solutions for a system of two point differential equations are not available.

3.5.1 Evaluation of the Particular Integral for the Radial Differential Equations

In a similar manner to equation (2.80) we represent the particular integral in partitioned form as

$$\begin{cases}
\{B_{1}(\tilde{\mathbf{r}})\} \\
\{x\} \\
\{B_{2}(\tilde{\mathbf{r}})\} \\
\{x\}
\end{cases} = \int_{0}^{\tilde{\mathbf{r}}} [\Omega_{0}^{\eta}]^{-1} \{\tilde{\mathbf{r}}(\eta)\} d\eta \qquad (3.40)$$

 $\left\{\left\{\mathfrak{b}_{1}(\mathfrak{F})\right\}\right\}$

 $\left\lfloor \{3_2(\tilde{x})\}\right\rfloor$

It was four tions [n]

 $\{B_{\underline{I}}(\underline{x})\}$

{B₂(T)

However,

נט^{וון} פ $[v^{15}]$

the par

tions o (2.84)

IN JULION

values of the

25

$$\begin{cases} \left\{ \mathbf{B}_{1}(\tilde{\mathbf{r}}) \right\} \\ \left\{ \mathbf{B}_{2}(\tilde{\mathbf{r}}) \right\} \end{cases} = \int_{0}^{\tilde{\mathbf{r}}} \left[\left[\mathbf{\Omega}_{11}(\mathbf{K}_{\mathbf{r}}, \eta) \right] \left[\mathbf{\Omega}_{12}(\mathbf{K}_{\mathbf{r}}, \eta) \right]^{-1} \left\{ \mathbf{0} \right\} \\ \left[\mathbf{\Omega}_{21}(\mathbf{K}_{\mathbf{r}}, \eta) \right] \left[\mathbf{\Omega}_{22}(\mathbf{K}_{\mathbf{r}}, \eta) \right] \right]^{-1} \left\{ \mathbf{r}(\eta) \right\} d\eta$$

It was found that equations (2.83) also apply to the matrix functions $[\Omega_{ij}]$ and thus the above integrals may be written as

$$\{B_{1}(\tilde{\mathbf{r}})\} = -\int_{0}^{\tilde{\mathbf{r}}} \left[\Omega_{12}(K_{\mathbf{r}}, \eta)\right] \{\mathbf{r}(\eta)\} d\eta \qquad (3.41)$$

$$\{B_{2}(\tilde{\mathbf{r}})\} = \int_{0}^{\tilde{\mathbf{r}}} [\Omega_{11}(K_{\mathbf{r}}, \eta)] \{\mathbf{r}(\eta)\} d\eta \qquad (3.42)$$

However, the simple relationships of (2.63) between matrices $[\Omega_{11}]$ and $[\Omega_{22}]$ and of (2.65) between matrices $[\Omega_{21}]$ and $[\Omega_{12}]$ in an analogous manner to $[A_{ij}]$ are not valid. Note that the particular integrals in the circumferential and axial directions can also be expressed in a similar manner to equations (2.84) and (2.85). Since $\{r(\eta)\}$ in the above integrals is unknown, we start the solution of the problem by assuming zero values for the required quantities. Using the partitioned form of the matrices, the solution of equations (3.30) can be written

where

$$\{F_1\} = \{\tilde{r}\tilde{u}\}_{\tilde{r}=\tilde{r}_{\text{initial}}}$$

$$\{F_2\} = \left\{\frac{1}{\tilde{r}}\frac{d}{d\tilde{r}}(\tilde{r}\tilde{u})\right\}_{\tilde{r}_{\text{initial}}} = \left\{\dot{u} + \frac{\tilde{u}}{\tilde{r}}\right\}_{\tilde{r}=\tilde{r}_{\text{initial}}}$$

$$\{\dot{u}(\tilde{r})\} = \left\{[\Omega_{21}(K_{\mathbf{r}},\tilde{r})] - \frac{1}{\tilde{r}^2}[\Omega_{11}(K_{\mathbf{r}},\tilde{r})](\{F_1\} + \{B_1(\tilde{r})\}) \right\}$$

$$\{x_1\} + ([\Omega_{22}(K_{\mathbf{r}},\tilde{r})] - \frac{1}{\tilde{r}^2}[\Omega_{12}(K_{\mathbf{r}},\tilde{r})](\{F_2\} + \{B_2(\tilde{r})\})$$

$$(3.44)$$

Equations (3.43) and (3.44) give us the first estimate for the vectors $\{\tilde{\mathbf{u}}(\tilde{\mathbf{r}})\}^{(1)}$ and $\{\tilde{\mathbf{u}}(\tilde{\mathbf{r}})\}^{(1)}$. It is assumed of course that the boundary vectors $\{F_1\}$ and $\{F_2\}$ are known. Using the calculated values of $\{\tilde{\mathbf{u}}\}^{(1)}$ and $\{\tilde{\mathbf{u}}\}^{(1)}$ we can evaluate the vector $\{s(\tilde{\theta})\}^{(1)}$. An analogous equation to (2.86) will then give us the first value of $\{\tilde{\mathbf{v}}(\tilde{\theta})\}^{(1)}$ and $\{\tilde{\mathbf{v}}(\tilde{\theta})\}^{(1)}$. Using the first solutions along the radial and circumferential directions in the vector $\{t_{\mathbf{c}}(\tilde{\mathbf{z}})\}$, the axial solution is obtained from a similar equation to (2.86). If with the repetition of this

procedure convergence of the calculated variables occurs, an approximate solution of a given problem can be determined.

Regarding the convergence of this process, the comments and error checks of the previous chapter apply only to the axial and circumferential equations. Since equation (2.87) is not applicable to the matrix functions in the radial direction, their accuracy can only be checked by varying the Runge-Kutta integration increment. Since the homogeneous solutions of equations (3.30) are independent of the other two sets of differential equations, this integration step can be arbitrarily small. The values of the coupling terms in $\{\hat{\mathbf{r}}(\hat{\mathbf{r}})\}$, $\{s(\hat{\boldsymbol{\theta}})\}$ and $\{t_{\mathbf{c}}(\hat{\mathbf{z}})\}$ can only be determined by the use of finite difference calculus, since they involve displacements and derivatives that are defined only at the nodes. Similar approximations of derivatives near boundaries must be made as in the case of rectangular coordinate problems.

3.6 Application to Specific Geometries - Annular Plate With
Internal Surface Cracks

A problem of some practical importance is that of an annular plate containing part-through cracks on the inside surface and which is loaded by a uniform radial stress of σ_0 on the outside surface. In order to minimize the numerical computations, we have assumed four internal cracks located symmetrically at ninety degrees to each other. The closed form solution of this problem

is extremely difficult to evaluate because the stress and displacements fields of a circular hole interact with the singular stress fields of the cracks. Figure 5 shows the geometry and loading of the problem under investigation. Because of the symmetric geometry and loading, only one-sixteenth of the original plate has to be discretized. Figure 6 shows this region of interest and the assumed crack geometry. The displacement fields in the plate are described by the solutions of the three sets of simultaneous ordinary differential equations. Inspection of Figure 6 shows that non-dimensionalization with respect to the outside radius is more convenient in this case since the crack has two characteristic dimensions. Values of the non-dimensionalized variables \tilde{a} , \tilde{b} , \tilde{c} , \tilde{d} , \tilde{t} and $\tilde{\theta}_0$ used for this problem are also shown in Figure 6.

At this time we return to solutions (3.43) and (3.44) and note that the initial value vectors $\{F_1\}$ and $\{F_2\}$ are unknown. Using equation (3.6), the given normal stresses on the inside and outside surfaces of the plate can be written in discretized form as follows:

$$\{\mathring{\tilde{\mathbf{u}}}\}_{\widetilde{\mathbf{r}}=\widetilde{\mathbf{r}}_{\mathbf{0}}} = -\frac{\lambda}{\lambda+2G} \left(\frac{1}{\widetilde{\mathbf{r}}_{\mathbf{0}}} \left\{\mathring{\tilde{\mathbf{v}}}\right\} + \frac{1}{\widetilde{\mathbf{r}}_{\mathbf{0}}} \left\{\widetilde{\mathbf{u}}\right\} + \left\{\mathring{\tilde{\mathbf{w}}}\right\} \right)_{\widetilde{\mathbf{r}}=\widetilde{\mathbf{r}}_{\mathbf{0}}}$$
(3.45)

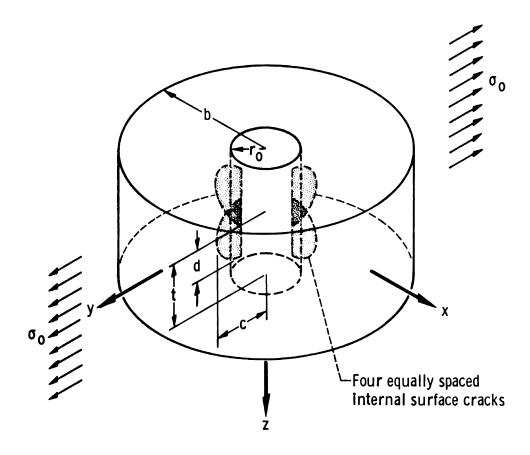


Figure 5. - Annular plate with internal surface cracks under uniform external tension.

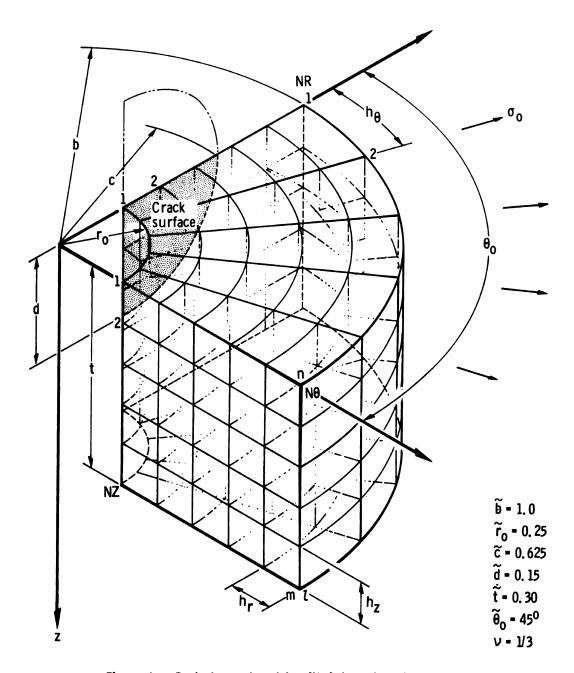


Figure 6. - Part of annular plate with internal surface cracks.

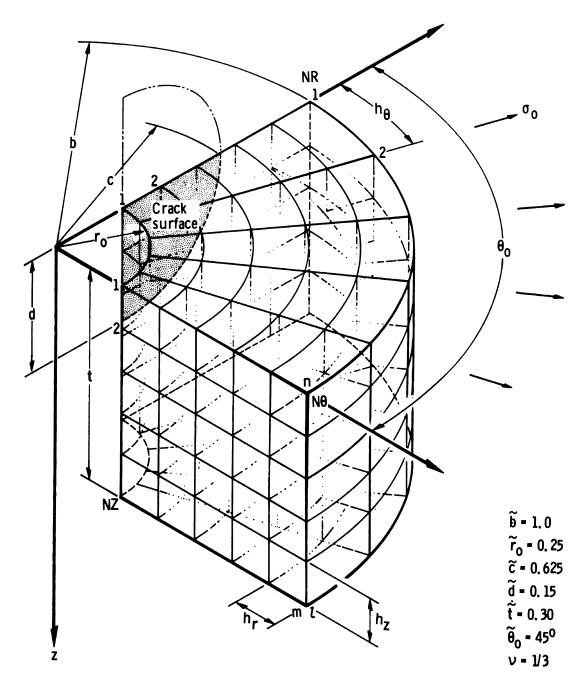


Figure 6. - Part of annular plate with internal surface cracks.

			¢
			:: :::
			t
			ż
			;
ļ			
			· ·
			•
			!
			,

$$\{\tilde{\mathbf{u}}\}_{\tilde{\mathbf{r}}=\tilde{\mathbf{b}}} = \frac{1}{\lambda + 2G} \{\sigma_{o}\} - \frac{\lambda}{\lambda + 2G} \left(\frac{1}{B} \{\tilde{\mathbf{v}}\} + \frac{1}{B} \{\tilde{\mathbf{u}}\} + \{\tilde{\mathbf{w}}\}\right)_{\tilde{\mathbf{r}}=\tilde{\mathbf{b}}}$$
(3.46)

Using equation (3.45) in the definition of $\{F_2\}$ and combining this with the definition of $\{F_1\}$, the following equation will be obtained:

$$\{F_2\} = -\frac{\lambda}{\lambda + 2G} \left\{ \frac{\tilde{v}}{\tilde{r}_0} \right\}_{\tilde{r} = \tilde{r}_0} - \frac{\lambda}{\lambda + 2G} \left\{ \tilde{w} \right\}_{\tilde{r} = \tilde{r}_0} + \frac{2G}{(\lambda + 2G)}_{\tilde{r}_0} \left\{ F_1 \right\} \quad (3.47)$$

In the partitioned matrix form, solution (3.33) at $\tilde{r} = \tilde{b}$ can be written as

$$\left\{ \begin{bmatrix} \{\tilde{\mathbf{b}}\tilde{\mathbf{u}}\} \\ \{\tilde{\mathbf{u}} + \frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{b}}} \} \end{bmatrix} = \begin{bmatrix} [\Omega_{11}(\mathbf{K_r,b})] [\Omega_{12}(\mathbf{K_r,b})] \\ [\Omega_{21}(\mathbf{K_r,b})] [\Omega_{22}(\mathbf{K_r,b})] \end{bmatrix} \begin{bmatrix} \{\mathbf{F_1}\} + \{\mathbf{B_1(\tilde{\mathbf{b}})}\} \\ \{\mathbf{F_2}\} + \{\mathbf{B_2(\tilde{\mathbf{b}})}\} \end{bmatrix}$$
(3.48)

From equation (3.48) two matrix equations can be constructed which when combined with equation (3.46) lead to a similar equation to (3.47) relating the vectors $\{F_1\}$ and $\{F_2\}$. The result of this manipulation is

(;

whe

Sim fol

!

Wh.

$$\{F_{1}\} = \frac{\lambda}{\lambda + 2G} \left[\Omega_{a}\right]^{-1} \left(\left(\frac{\dot{\tilde{v}}}{\tilde{b}}\right) + \left(\frac{\dot{\tilde{w}}}{\tilde{b}}\right)\right)_{\tilde{r} = \tilde{b}}^{-1} - \left[\Omega_{a}\right]^{-1} \left(\frac{\sigma_{o}}{\lambda + 2G}\right)$$
$$- \{B_{1}(\tilde{b})\} - \left[\Omega_{a}\right]^{-1} \left[\Omega_{b}\right] \{F_{2}\} - \left[\Omega_{a}\right]^{-1} \left[\Omega_{b}\right] \{B_{2}(\tilde{b})\} \quad (3.49)$$

where

$$\left[\Omega_{a}\right] = \frac{2G}{(\lambda + 2G)\tilde{b}^{2}} \left[\Omega_{11}(K_{r}, \tilde{b})\right] - \left[\Omega_{21}(K_{r}, \tilde{b})\right]$$

$$[\Omega_{b}] = \frac{2G}{(\lambda + 2G)\tilde{b}^{2}} [\Omega_{12}(K_{r}, \tilde{b})] - [\Omega_{22}(K_{r}, \tilde{b})]$$

Simultaneous solution of equations (3.47) and (3.49) gives us the following results:

$$\{F_{1}\} = \frac{\lambda}{\lambda + 2G} \left[\Omega_{c}\right]^{-1} \left[\Omega_{a}\right]^{-1} \left(\left(\frac{\dot{\tilde{v}}}{\tilde{b}}\right) + \left(\frac{\dot{\tilde{v}}}{\tilde{w}}\right)\right)_{\tilde{r} = \tilde{b}}$$

$$+ \frac{\lambda}{\lambda + 2G} \left[\Omega_{c}\right]^{-1} \left[\Omega_{a}\right]^{-1} \left[\Omega_{b}\right] \left(\left(\frac{\dot{\tilde{v}}}{\tilde{r}_{o}}\right) + \left(\frac{\dot{\tilde{w}}}{\tilde{w}}\right)\right)_{\tilde{r} = \tilde{r}_{o}}$$

$$- \left[\Omega_{c}\right]^{-1} \left[\Omega_{a}\right]^{-1} \left(\frac{\sigma_{o}}{\lambda + 2G}\right) - \left[\Omega_{c}\right]^{-1} \{B_{1}(\tilde{b})\}$$

$$- \left[\Omega_{c}\right]^{-1} \left[\Omega_{a}\right] \left[\Omega_{b}\right] \{B_{2}(\tilde{b})\}$$

$$(3.50)$$

where

$$\left[\Omega_{c}\right] = \left(\left[1\right] + \frac{2G}{(\lambda + 2G)\tilde{r}_{o}^{2}} \left[\Omega_{a}\right]^{-1} \left[\Omega_{b}\right]\right)$$

$$\{F_{2}\} = \left(\frac{2G\lambda}{(\lambda+2G)^{2}\tilde{r}_{o}^{2}} \left[\Omega_{c}\right]^{-1}\left[\Omega_{a}\right]^{-1}\left[\Omega_{b}\right] - \frac{\lambda}{\lambda+2G}\left[I\right]\right) \left(\left(\frac{\tilde{v}}{\tilde{r}_{o}}\right) + \left(\frac{\tilde{v}}{\tilde{w}}\right)\right)_{\tilde{r}=\tilde{r}_{o}}^{-1} \left(\frac{2G\lambda}{(\lambda+2G)\tilde{r}_{o}^{2}} \left[\Omega_{c}\right]^{-1}\left[\Omega_{a}\right]^{-1}\left(\left(\frac{\tilde{v}}{\tilde{v}}\right) + \left(\frac{\tilde{v}}{\tilde{w}}\right)\right)_{\tilde{r}=\tilde{b}}^{-1} + \frac{2G\lambda}{(\lambda+2G)^{2}\tilde{r}_{o}^{2}} \left[\Omega_{c}\right]^{-1}\left[\Omega_{a}\right]^{-1}\left(\left(\frac{\tilde{v}}{\tilde{v}}\right) + \left(\frac{\tilde{v}}{\tilde{w}}\right)\right)_{\tilde{r}=\tilde{b}}^{-1} + \frac{2G\lambda}{(\lambda+2G)\tilde{r}_{o}^{2}} \left[\left(\Omega_{c}\right)^{-1}\left\{B_{1}(\tilde{b})\right\} + \left[\Omega_{c}\right]^{-1}\left[\Omega_{a}\right]^{-1}\left[\Omega_{b}\right]\left\{B_{2}(\tilde{b})\right\}\right)$$

$$(3.51)$$

Equations (3.50) and (3.51) define the necessary initial vectors for the case of zero inside surface radial stress and for a given radial stress σ_{o} on the outside.

For the problem shown in Figure 6, the boundary conditions in the z direction are analogous to those developed in Chapter 2 for the x-directional boundary conditions. As a result of using equation (3.8), the analogous equation to (2.90), of course, will contain additional terms because of the cylindrical coordinates.

Along the circumferential direction, the following boundary conditions are enforced in the crack plane through the use of vectors $\{F_{3c}\}$ and $\{F_{4c}\}$ which are defined analogously to those in equation (2.93):

$$\{\tilde{\mathbf{v}}(\mathbf{o})\}$$
 = $\{0\}$ (3.52) outside crack

ET.

S

ī

$$\{\tilde{v}(o)\}_{\substack{\text{over}\\\text{crack}}} = -\{\tilde{u}\}_{\substack{\text{over}\\\text{crack}}} - \frac{\lambda}{\lambda + 2G} (\{\tilde{r}\tilde{u}\} + \{\tilde{r}\tilde{w}\})_{\substack{\text{over}\\\text{crack}}}$$
 (3.53)

and from the symmetry of the problem

$$\{\tilde{\mathbf{v}}(\boldsymbol{\theta}_{\mathbf{O}})\} = \{0\} \tag{3.54}$$

A similar partitioning technique to that described in Chapter 2 must be followed to correctly evaluate the elements of $\{F_{3c}\}$ and $\{F_{4c}\}$. Care must be exercised in performing this operation since for surface cracks the elements of the associated matrices must be reordered to arrive at the desired form of (2.93).

Investigation of the shear stress boundary conditions involving planes of zero or uniform normal displacements will lead to similar conclusions about the coupling vectors $\{r(\tilde{r})\}$, $\{s(\tilde{\theta})\}$ and $\{t_c(\tilde{z})\}$ as in rectangular coordinate problems. As an example, we consider the symmetry condition (3.54). The zero shear stress conditions in that plane are

$$\sigma_{\theta r} \Big|_{\theta = \theta_{0}} = 0$$

$$\sigma_{\theta z} \Big|_{\theta = \theta_{0}} = 0$$
(3.55)

Using equations (3.9) and (3.11) we obtain

$$\frac{1}{\tilde{r}} \frac{\partial \tilde{u}}{\partial \tilde{\theta}} \Big|_{\tilde{\theta} = \tilde{\theta}_{0}} = \frac{\tilde{v}}{\tilde{r}} \Big|_{\tilde{\theta} = \tilde{\theta}_{0}} - \frac{\partial \tilde{v}}{\partial \tilde{r}} \Big|_{\tilde{\theta} = \tilde{\theta}_{0}}$$

$$\frac{1}{\tilde{r}} \frac{\partial \tilde{w}}{\partial \tilde{\theta}} \Big|_{\tilde{\theta} = \tilde{\theta}_{0}} = -\frac{\partial \tilde{v}}{\partial \tilde{z}} \Big|_{\tilde{\theta} = \tilde{\theta}_{0}}$$

$$(3.56)$$

Since \tilde{v} , $\frac{\partial \tilde{v}}{\partial \tilde{r}}$ and $\frac{\partial \tilde{v}}{\partial \tilde{z}}$ are all zero in the plane $\tilde{\theta} = \tilde{\theta}_0$, we find from equation (3.25) that $\{s(\tilde{\theta})\}_{\tilde{\theta}=\tilde{\theta}}^{\tilde{\theta}} = 0$.

Once the successive approximation procedure has converged and the displacement fields in the plate have been determined, the normal stress distributions along the sets of parallel lines can be calculated from the following equations:

$$\{\sigma_{\mathbf{r}}\} = (\lambda + 2G)\{\hat{\tilde{\mathbf{u}}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{r}}}\right\} + \left\{\frac{1}{\tilde{\mathbf{r}}}\right\}^2 + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{v}}}\right\}\right) = (\lambda + 2G)\left(\left\{\frac{1}{\tilde{\mathbf{r}}}\right\}^2 + \left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{r}}}\right\}\right) + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{u}}}\right\} + \left\{\frac{\tilde{\mathbf{w}}}{\tilde{\mathbf{v}}}\right\}\right) = (\lambda + 2G)\{\hat{\tilde{\mathbf{w}}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{r}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{r}}}\right\}\right) = (\lambda + 2G)\{\hat{\tilde{\mathbf{w}}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{r}}}\right\}\right) = (\lambda + 2G)\{\hat{\tilde{\mathbf{w}}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{r}}}\right\}\right) = (\lambda + 2G)\{\hat{\tilde{\mathbf{w}}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{r}}}\right\}\right) = (\lambda + 2G)\{\hat{\tilde{\mathbf{w}}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{r}}}\right\}\right) = (\lambda + 2G)\{\hat{\tilde{\mathbf{w}}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{r}}}\right\}\right) = (\lambda + 2G)\{\hat{\tilde{\mathbf{w}}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{r}}}\right\}\right) = (\lambda + 2G)\{\hat{\tilde{\mathbf{w}}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{v}}}\right\}\right) = (\lambda + 2G)\{\hat{\tilde{\mathbf{w}}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{v}}}\right\}\right) = (\lambda + 2G)\{\hat{\tilde{\mathbf{w}}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{v}}}\right\}\right) = (\lambda + 2G)\{\hat{\tilde{\mathbf{w}}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{v}}}\right\}\right) = (\lambda + 2G)\{\hat{\tilde{\mathbf{w}}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{v}}}\right\}\right) = (\lambda + 2G)\{\hat{\tilde{\mathbf{w}}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{v}}}\right\}\right) = (\lambda + 2G)\{\hat{\mathbf{v}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{v}}}\right\}\right) = (\lambda + 2G)\{\hat{\mathbf{v}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{v}}}\right\}\right) = (\lambda + 2G)\{\hat{\mathbf{v}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\} + \left\{\frac{\tilde{\mathbf{v}}}{\tilde{\mathbf{v}}}\right\}\right) = (\lambda + 2G)\{\hat{\mathbf{v}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{v}}}\right\}\right) = (\lambda$$

Noting the terms in the above equations, we expect to satisfy normal stress boundary conditions again with good accuracy. The shear stresses at each node can be obtained from using equations (3.9) through (3.11). These equations, however, can be evaluated only through the use of finite differences. Computed stress and displacement results for the problem of Figure 6 are tabulated

in the following chapter.

3.7 Axisymmetric Problems

The field equations (3.1) through (3.3) and the stress-displacements relations (3.6) through (3.11) are greatly simplified for problems that have circular symmetry. It is known that for problems of this geometry, the circumferential displacement is inherently zero at every point and all the remaining variables are independent of the circumferential variable 0. Equations (3.1) through (3.11) are then reduced to the following form:

$$\frac{\partial e_s}{\partial r} + (1-2v) \left[\left(\nabla_s^2 - \frac{1}{r^2} \right) \right] u = 0$$
 (3.60)

$$\frac{\partial e}{\partial z} + (1-2v) \nabla_{s}^{2} w = 0$$
 (3.61)

where the dilatation, e_s , and the Laplacian, v_s^2 , are given by

$$e_{s} = \frac{\partial u}{\partial r} + \frac{u}{r} + \frac{\partial w}{\partial z}$$
 (3.62)

$$\nabla_{\mathbf{s}}^{2} = \frac{\partial^{2}}{\partial \mathbf{r}^{2}} + \frac{1}{\mathbf{r}} \frac{\partial}{\partial \mathbf{r}} + \frac{\partial^{2}}{\partial \mathbf{z}^{2}}$$
 (3.63)

The stresses in terms of displacement variables are

$$\sigma_{rs} = (\lambda + 2G) \frac{\partial u}{\partial r} + \lambda \left(\frac{u}{r} + \frac{\partial w}{\partial z} \right)$$
 (3.64)

$$\sigma_{\theta s} = (\lambda + 2G) \frac{u}{r} + \lambda \left(\frac{\partial u}{\partial r} + \frac{\partial w}{\partial z} \right)$$
 (3.65)

$$\sigma_{zs} = (\lambda + 2G) \frac{\partial w}{\partial z} + \lambda \left(\frac{\partial u}{\partial r} + \frac{u}{r} \right)$$
 (3.66)

$$\sigma_{rzs} = G \left(\frac{\partial w}{\partial r} + \frac{\partial u}{\partial z} \right)$$
 (3.67)

The other two shear stresses are zero at every point in the body. Solution of these equations can again be obtained by the method of lines together with the successive approximation procedure and the applicable boundary conditions.

3.7.1 Ordinary Differential Equations and Boundary Conditions in the Radial Direction

Since at this time the solution of only two partial differential equations is desired, two sets of parallel lines are constructed along the axes of the independent variables. Figure 7 shows an arbitrary axisymmetric cylindrical body with the necessary discretization. For convenience the lines are evenly spaced with h_r and h_z each equal to some given constant. The radius of the solid is assumed to be uniform so that the length of all radial and axial lines is the same. The uniform spacing of lines again provides an advantage for more easily evaluating the resulting differential equations. This process from the axisymmetric condition since for these problems both sets of ordinary differential equations have constant coefficients. However, the particular solutions for these problems are limited in the same manner as those for the previous cases.

For the solution of equation (3.60), the ordinary differential equations are developed along the radial lines in Figure 7.

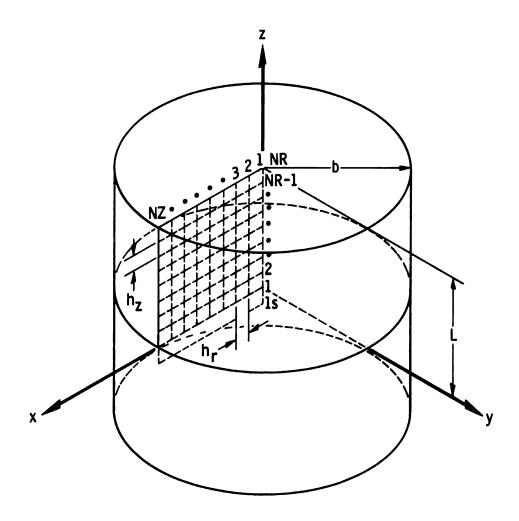


Figure 7. - Sets of parallel lines for axisymmetric problems.

The radial displacements along these lines will be denoted as u_1, u_2, \ldots, u_{NR} . We define $\dot{w}|_1, \dot{w}|_2, \ldots, \dot{w}|_{NR}$ as the derivatives of the axial displacements of the same points on these lines with respect to z. Using equation (3.62) and (3.63) in equation (3.60), the following equation is obtained along the first radial line of Figure 7:

$$\left[\frac{d^{2}u_{1}}{dr^{2}} + \frac{1}{r}\frac{du_{1}}{dr} - \frac{u_{1}}{r^{2}}\right] + \frac{(1-2v)}{2(1-v)}\left[\frac{\partial^{2}u_{1}}{\partial z^{2}}\right] + \frac{1}{2(1-v)}\frac{d\dot{w}}{dr}\Big|_{1} = 0 \quad (3.68)$$

where

$$\frac{\partial^2 u_1}{\partial z^2} = \frac{u_2 - 2u_1 + u_{1s}}{h_z^2}$$
 (3.69)

The zero shear stress condition on the plane z = 0, gives

$$u_{ls} = 2h_z \frac{dw}{dr}\Big|_{1} + u_2$$
 (3.70)

Combining equations (3.68), (3.69) and (3.70) yields

$$\left[\frac{d^2u_1}{dr^2} + \frac{1}{r}\frac{du_1}{dr} - \frac{u_1}{r^2}\right] + \frac{2(1-2v)}{2(1-v)h_z^2}u_2 - \frac{2(1-2v)}{2(1-v)^2}u_1 + \frac{f_1(r)}{2(1-v)} = 0$$
(3.71)

where

$$f_1(\mathbf{r}) = \frac{d\mathbf{w}}{d\mathbf{r}} \Big|_1 + (1-2\mathbf{v}) \left(\frac{2}{h_z}\right) \frac{d\mathbf{w}}{d\mathbf{r}} \Big|_1$$
 (3.72)

Similar differential equations are obtained for the other radial lines. Noting that equation (3.71) was developed for a

surface line, the form of the interior line equations will differ according to the application of known shear stress conditions.

The above equation can again be non-dimensionalized with respect to a crack dimension "a" in accordance with equations (2.28) and (3.19). Using matrix notation, the system of differential equations along the radial lines can be written as

$$\left(\frac{d^2}{d\tilde{\mathbf{r}}^2} + \frac{1}{\tilde{\mathbf{r}}} \frac{d}{d\tilde{\mathbf{r}}} - \frac{1}{\tilde{\mathbf{r}}^2}\right) \{\tilde{\mathbf{u}}\} = [K_{\mathbf{r}\mathbf{s}}] \{\tilde{\mathbf{u}}\} + \{r_{\mathbf{s}}(\tilde{\mathbf{r}})\}$$

$$NR\mathbf{x}\mathbf{1} \qquad NR\mathbf{x}NR \quad NR\mathbf{x}\mathbf{1} \qquad NR\mathbf{x}\mathbf{1}$$

where the coefficient matrix [K $_{rs}$] and the column vectors $\{\tilde{u}\}$ and $\{r_s(\tilde{r})\}$ are given below.

$$\begin{bmatrix} 2k_3 & -2k_3 & 0 & 0 & 0 \\ -k_3 & 2k_3 & -k_3 & 0 & 0 \\ 0 & 0 & -k_3 & 2k_3 & -k_3 \\ 0 & 0 & 0 & -2k_3 & 2k_3 \\ 0 & 0 & 0 & -2k_3 & 2k_3 \end{bmatrix}$$

$$k_3 = \frac{(1-2\nu)}{2(1-\nu)} \left(\frac{1}{\tilde{h}_2^2}\right)$$

$$\begin{cases}
\tilde{u}_{1} \\
\tilde{u}_{2} \\
\vdots \\
\tilde{u}_{NR-1} \\
\tilde{u}_{NR}
\end{cases} ; \{r_{s}(\tilde{r})\} = \frac{-1}{2(1-v)} \begin{cases}
\frac{d\tilde{w}}{d\tilde{r}} \Big|_{1} + (1-2v) \frac{2}{\tilde{h}_{z}} \frac{d\tilde{w}}{d\tilde{r}} \Big|_{1} \\
\vdots \\
\tilde{u}_{NR-1} \\
\tilde{u}_{NR}
\end{cases} ; \{r_{s}(\tilde{r})\} = \frac{-1}{2(1-v)} \begin{cases}
\frac{d\tilde{w}}{d\tilde{r}} \Big|_{1} + (1-2v) \frac{2}{\tilde{h}_{z}} \frac{d\tilde{w}}{d\tilde{r}} \Big|_{1} \\
\vdots \\
\frac{d\tilde{w}}{d\tilde{r}} \Big|_{NR-1} \\
\frac{d\tilde{w}}{d\tilde{r}} \Big|_{NR} - (1-2v) \frac{2}{\tilde{h}_{z}} \frac{d\tilde{w}}{d\tilde{r}} \Big|_{NR}
\end{cases}$$
(3.75)

In contrast to the general radial coefficient matrix (3.21), the matrix (3.74) has constants for its elements. Note that it is also singular.

Although the above matrices can also be obtained by reducing the general cylindrical coordinate problem of Section 3.2, this reduction is not so evident. Assuming that $\{r_s(\tilde{r})\}$ is known, closed form solutions of equations (3.73) can be obtained.

3.7.2 Ordinary Differential Equations and Boundary Conditions in the Axial Direction

Solution of equation (3.61) is obtained by constructing a set of ordinary differential equations along the axial lines of Figure 7. The axial displacements along these lines are denoted as w_1, w_2, \ldots, w_{NZ} . We define $\dot{u}|_1, \dot{u}|_2, \ldots, \dot{u}|_{NZ}$ as the derivatives of the radial displacements of the same points on these lines with respect to r. Using equation (3.62) and

and (3.63) in equation (3.61) the following equation is developed along the first axial line of Figure 7:

$$\frac{d\dot{u}}{dz}\bigg|_{1} + \frac{1}{r_{1}} \frac{du}{dz}\bigg|_{1} + \frac{d^{2}w_{1}}{dz^{2}} + (1-2v) \left[\frac{\partial^{2}w_{1}}{\partial r^{2}} + \frac{1}{r_{1}} \frac{\partial w_{1}}{\partial r} + \frac{d^{2}w_{1}}{dz^{2}} \right] = 0$$
(3.76)

Using equation (3.67) and the known zero shear stress condition along the axis of the cylinder, we have

$$\frac{1}{r_1} \frac{\partial w_1}{\partial r} = -\frac{1}{r_1} \frac{du}{dz} \Big|_{1}$$
 (3.77)

Symmetry of the problem also leads to

$$\frac{\partial^2 w_1}{\partial r^2} = \frac{1}{h_n^2} (w_2 - 2w_1 + w_2)$$
 (3.78)

Since r_1 = 0 along the axis of the cylinder, the terms containing r_1 in the denominator must be investigated. For a uniformly loaded axisymmetric problem, the radial displacements along the cylinder axis are inherently zero. This implies that the term $\frac{1}{r_1} \frac{du}{dz} \Big|_1$ is indeterminate and L'Hospital's rule can be used to find its limit. Thus, we have

$$\lim_{\mathbf{r} \to \mathbf{r}_{1}} \left(\frac{1}{\mathbf{r}} \frac{d\mathbf{u}}{d\mathbf{z}} \Big|_{1} \right) = \frac{\frac{\partial}{\partial \mathbf{r}} \left(\frac{d\mathbf{u}}{d\mathbf{z}} \Big|_{1} \right)}{1} = \frac{d\dot{\mathbf{u}}}{d\mathbf{z}} \Big|_{1}$$
 (3.79)

Substituting equations (3.77), (3.78) and (3.79) into equation (3.76) gives

$$\frac{d^2 w_1}{dz^2} - \frac{2(1-2v)}{2(1-v)h_r^2} w_1 + \frac{2(1-2v)}{2(1-v)h_r^2} w_2 + \frac{f_1(z)}{2(1-v)} = 0$$
 (3.80)

where

$$f_1(z) = (1+2v) \frac{d\dot{u}}{dz}\Big|_1$$
 (3.81)

Similar differential equations are obtained for the other axial lines. Since equation (3.80) was developed for the special case of a line along the cylinder axis, the form of the equations along the interior and surface lines will differ according to the position of the line. It will be convenient to non-dimensionalize these equations according to the method of the previous section. Using matrix notation, the system of differential equations along the axial lines of Figure 7 can be written as

$$\frac{d^2}{d\tilde{z}^2} \{\tilde{w}\} = [K_{zs}] \{\tilde{w}\} + \{t_s(\tilde{z})\}$$

$$NZx1 \quad NZxNZ \quad NZx1 \quad NZx1$$
(3.82)

From Figure 7 it can be noted that for any given axial line the radius is a constant. We define the radius at each axial line as \tilde{r}_i , $i=1,2,\ldots$ NZ, where $\tilde{r}_1=0$ and $\tilde{r}_{NZ}=\tilde{b}$. For a uniform radial increment \tilde{h}_r , the radius at any point is $(i-1)\tilde{h}_r$. Using this notation, the coefficient matrix $[K_{ZS}]$ can be written as follows:

	2	-2	0	0	0	0	
$[K_{zs}] = \frac{k_{18}}{2}$ $NZxNZ$	1 2	2	_ <u>3</u>	0	0	0	(3.83)
	0		/	//	0	0	
	0	0	$-\left(\frac{2i-3}{2i-2}\right)$	//	$-\left(\frac{2\mathbf{i}-1}{2\mathbf{i}-2}\right)$	0	
	0	0	0	//	2	//	
	0	0	0	0	- 2	2	

$$k_{18} = \frac{(1-2v)}{2(1-v)} \left[\frac{2}{h_r^2} \right]$$

i = 2, 3, ..., NZ-1

The upper diagonal elements of $[K_{ZS}]$ are given by $-\left(\frac{2i-1}{2i-2}\right)^{\frac{k}{18}}$ while its lower diagonal elements are given by $-\left(\frac{2i-3}{2i-2}\right)^{\frac{k}{18}}$ for $i=2, 3, \ldots, NZ-1$. Note that the elements of $[K_{ZS}]$ are all constants and since the sum of the elements in any given row is zero, the coefficient matrix is also singular. The column vectors in equation (3.82) are listed below.

$$\{\tilde{\mathbf{w}}\}^{\mathrm{T}} = |\tilde{\mathbf{w}}_{1} \quad \tilde{\mathbf{w}}_{2} \quad \tilde{\mathbf{w}}_{3} \quad \dots \quad \tilde{\mathbf{w}}_{\mathrm{NZ}}|$$

$$\mathrm{NZ}_{\mathbf{x}\mathbf{l}}$$

$$\{t_{\mathbf{S}}(\tilde{\mathbf{z}})\} = \frac{-1}{2(1-\nu)} \begin{cases} \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{z}}}\Big|_{1} \\ \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{z}}}\Big|_{2} + \frac{1}{h_{\mathbf{r}}} \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{z}}}\Big|_{2} \\ \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{z}}}\Big|_{3} + \frac{1}{2h_{\mathbf{r}}} \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{z}}}\Big|_{3} \\ \vdots & \vdots \\ \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{z}}}\Big|_{NZ-1} + \frac{1}{(1-1)h_{\mathbf{r}}} \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{z}}}\Big|_{NZ-1} \\ \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{z}}}\Big|_{NZ-1} + \frac{1}{h_{\mathbf{z}}} \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{z}}}\Big|_{NZ-1} \\ \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{z}}}\Big|_{NZ} + \frac{1}{h_{\mathbf{z}}} \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{z}}}\Big|_{NZ-1} \\ \frac{d\tilde{\mathbf{u}}}{h_{\mathbf{z}}}\Big|_{NZ} + \frac{1}{h_{\mathbf{z}}} \frac{d\tilde{\mathbf{u}}}{d\tilde{\mathbf{z}}}\Big|_{NZ-1} \\ \text{Assuming that } \{t_{\mathbf{s}}(\tilde{\mathbf{z}})\} \text{ is known, the solution of equations} \\ (3.82) \text{ can be obtained by the previously discussed matrix methods.} \\ 3.7.3 \text{ Solutions of the Ordinary Differential Equations for} \\ \text{Axisymmetric Problems} \\ \text{Although the methods discussed previously can be employed} \\ \text{to solve equations (3.73) and (3.82), there are certain simpli-} \end{cases}$$

to solve equations (3.73) and (3.82), there are certain simplifications that are possible. First of all we note that the

coefficient matrix $[K_{rs}]$ is a tri-diagonal matrix having the desired form of (A.1). Thus, a closed form solution of the eigenvalues and eigenvectors of $[K_{rs}]$ is possible and from equations (A.16) and (A.18) these eigenvalues and eigenvectors are respectively

$$\overline{\lambda}_{i} = 2k_{3} \left[1 - \cos\left(\frac{i-1}{NR-1}\right)\pi\right] \quad i = 1, 2, \dots, NR$$

$$(3.85)$$

$$[P_{sjn}] = \left[\cos\frac{(j-1)n\pi}{NR-1}\right] \quad j = 1, 2, \dots, NR$$

$$n = 0, 1, 2, \dots, NR-1$$

$$(3.86)$$

Using the above matrix of eigenvectors, we diagonalize the coefficient matrix as in equation (A.22). Following the solution of (3.33), the matrizant of [A] can still be found by solving the matrix equations (3.35) and (3.36) subject to the initial conditions (3.37). However, these matrix functions are all in diagonalized form now, since $[K_{rs}]$ is a diagonal matrix. The amount of numerical computations in the Runge-Kutta integration procedure is greatly reduced. The diagonalized matrix functions are then transformed into full matrices by the appropriate similarity transformations at each position along the radius. It must be noted that for axisymmetric problems an analogous variable to equation (3.38) must be introduced. Since $[K_{rs}]$ is a matrix of constants and the matrix [A] has the form of

(3.31) this variable is $\tilde{r}[\Omega_{21}]$ rather than $\tilde{r}^3[\Omega_{21}]$. The analogous matrix equations to (3.39) are

$$\frac{d}{d\tilde{r}} [\Omega_{11}] = [\Omega_{21}^{*}]; \qquad [\Omega_{11}]_{\tilde{r}=0}^{*} = [I]$$

$$\frac{d}{d\tilde{r}} [\Omega_{21}^{*}] = \frac{1}{\tilde{r}} [\Omega_{21}^{*}] + [\Omega_{11}][K_{rs}]; [\Omega_{21}^{*}]_{\tilde{r}=0}^{*} = [0]$$
(3.87)

Once the matrix functions $[\Omega_{ij}]$ have been determined, the particular integrals can be obtained from analogous equations to (2.84) and (2.85). The solution of equations (3.73) are then found from using equations (3.43) and (3.44). In the numerical examples for the cylinder with a penny shaped crack, the above procedure was followed in evaluating the radial solutions.

An alternate approach to the solution of equations (3.73) may be used which avoids the problem of evaluating the matrizant of [A]. Let us define a set of variables, $\{\overline{\eta}(\tilde{r})\}$, by the transformation of

$$\{\tilde{\mathbf{u}}(\tilde{\mathbf{r}})\} = [P_{\mathbf{S}}] \{\overline{\eta}(\tilde{\mathbf{r}})\}$$
 (3.88)

where $[P_s]$ is the modal matrix of $[K_{rs}]$. Substituting equation (3.88) into (3.73) and pre-multiplying the result by $[P_s]^{-1}$ we obtain a set of uncoupled second order differential equations in $\{\overline{\eta}\}$.

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}\tilde{\mathbf{r}}^2} + \frac{1}{\tilde{\mathbf{r}}}\frac{\mathrm{d}}{\mathrm{d}\tilde{\mathbf{r}}} - \frac{1}{\tilde{\mathbf{r}}^2}\right)\{\overline{\eta}\} = \left[\Lambda_{\mathbf{r}\mathbf{s}}\right]\{\overline{\eta}\} + \left[P_{\mathbf{s}}\right]^{-1}\{\mathbf{r}_{\mathbf{s}}(\tilde{\mathbf{r}})\} \quad (3.89)$$

The elements of $[\Lambda_{rs}]$ are the eigenvalues of $[K_{rs}]$ and $[\Lambda_{rs}]$ is a diagonal matrix. Equations (3.89) then constitute an uncoupled set of modified Bessel's equations of the first order containing parameters $\overline{\lambda}_i$ (40). The solution of an equation of this type is well known and may be written as shown below (41). The solution is written, say for the first equation of the above set.

$$\overrightarrow{\eta}_{1}(\widetilde{\mathbf{r}}) = \int_{0}^{\widetilde{\mathbf{r}}} f_{1}(\rho_{1})[I_{1}(\overline{\lambda}_{1}\rho_{1})K_{1}(\overline{\lambda}_{1}\widetilde{\mathbf{r}}) - K_{1}(\overline{\lambda}_{1}\rho_{1})I_{1}(\overline{\lambda}_{1}\widetilde{\mathbf{r}})]d\rho_{1}$$

$$\vdots \frac{1}{I_{1}(\overline{\lambda}_{1}\rho_{1})[-\overline{\lambda}_{1}K_{0}(\overline{\lambda}_{1}\rho_{1}) - \frac{1}{\rho_{1}}K_{1}(\overline{\lambda}_{1}\rho_{1})] - K_{1}(\overline{\lambda}_{1}\rho_{1})[\overline{\lambda}_{1}I_{0}(\overline{\lambda}_{1}\rho_{1}) - \frac{1}{\rho_{1}}I_{1}(\overline{\lambda}_{1}\rho_{1})] }$$

+
$$\overline{C}_1 I_1 (\overline{\lambda}_1 \tilde{r}) + \overline{C}_2 K_1 (\overline{\lambda}_1 \tilde{r})$$
 (3.90)

where $I_o(\overline{\lambda}_1\tilde{r})$, $K_o(\overline{\lambda}_1\tilde{r})$, $I_1(\overline{\lambda}_1\tilde{r})$ and $K_1(\overline{\lambda}_1\tilde{r})$ are modified Bessel functions of the first and second kind. \overline{C}_1 and \overline{C}_2 are constants of integration which must be evaluated from the boundary conditions and $f_1(\rho_1)$ is the non-homogeneous term in equations (3.89) obtained from the product of the first row in $[P_s]^{-1}$ by $\{r_s(\tilde{r})\}$. Given boundary conditions may be also transformed according to (3.88) in order to obtain the necessary conditions on $\{\overline{\eta}\}$. Once the above solutions have been evaluated, an inverse transformation will give us the closed form solutions

of $\{\tilde{\mathbf{u}}\}$. This solution method, however, is only possible for axisymmetric problems.

Since a closed form solution of the associated eigenvalue problem of $[K_{ZS}]$ is not possible, the matrix series methods of Chapter 2 must be used to find the solutions of equations (3.82). Because the two sets of differential equations in the radial and axial directions cannot be decoupled, the previously described successive approximation procedure must also be utilized.

3.8 Application to Specific Geometries

Until this section, the results of the numerical examples presented could not be checked against known solutions since none were previously available. At this time, however, we propose to solve the problem of a cylindrical solid containing a penny shaped crack and loaded by uniform tension normal to the crack plane. A closed form solution for a similar geometry and loading has been obtained previously by Sneddon (42) with the exception that his cylinder was infinitely large. This problem can be regarded as the three-dimensional extension of the Griffith crack problem and its solution is one of the few analytical solutions available today. Hence, as the length and diameter of a finite geometry cylinder are increased, the solutions obtained from the line method should approach Sneddon's solution.

This problem is also representative in that the less

accurate numerical solution is used to evaluate some of the required matrix functions. A relatively coarse grid is selected so that the previously mentioned advantage of the line method can be established. It is the primary purpose of this example to examine the rate of convergence and the accuracy of the line method in solving three-dimensional, mixed boundary condition, elasticity problems.

3.8.1 Solid Cylindrical Bar With a Penny Shaped Crack

Figure 8 shows a cylindrical bar containing a penny shaped crack and loaded by a uniform normal stress distribution. Any numerical approach, of course, is restricted to a finite geometry problem and strictly speaking Sneddon's solution cannot be duplicated by an analysis using the line method. In the following analysis, only a few convenient values of \tilde{b} and \tilde{L} will be used to show that Sneddon's solution is approached as the length and diameter are increased. An examination of Sneddon's solution shows that a change in radius is more significant for the agreement of the two solutions, than a change in bar length.

In constructing a set of lines for a given crack geometry, the question of the crack edge location relative to the nodes must be considered. Since we specify boundary conditions at the nodes only and it is through given boundary data that a crack surface is specified, we shall assume throughout this paper that the crack edge is located midway between adjacent nodes. Then

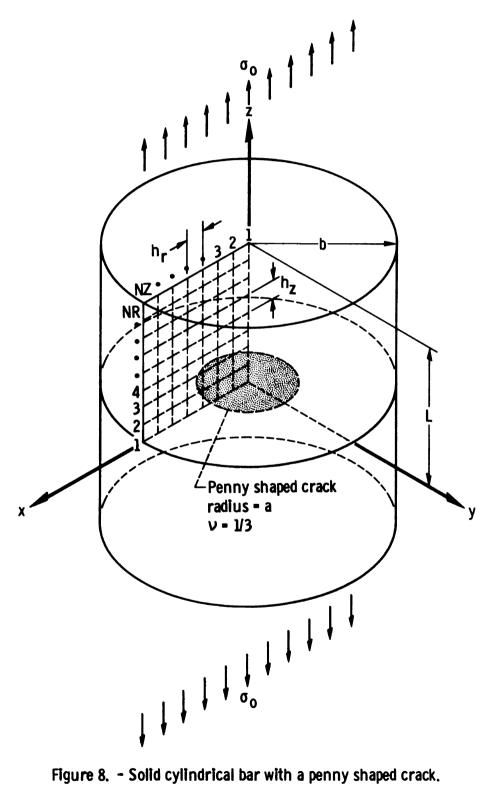


Figure 8. - Solid cylindrical bar with a penny shaped crack.

as we refine the selected grid, the exact crack edge location becomes more accurately established. Note that in the limit, this grid refinement would require the impossible task of satisfying mixed boundary conditions at the same point. In addition, plane elasticity solutions have shown that displacement gradients become singular at that point.

Since the solution of the axisymmetric problem is but a subcase of the more general cylindrical coordinate problem, the radial displacement solutions can be obtained from the following equations:

$$\{\tilde{\mathbf{u}}(\tilde{\mathbf{r}})\} = \frac{1}{\tilde{\mathbf{r}}} [\Omega_{11}(\kappa_{rs}, \tilde{\mathbf{r}})] \{B_{1s}(\tilde{\mathbf{r}})\}$$

$$+ \frac{1}{\tilde{\mathbf{r}}} [\Omega_{12}(\kappa_{rs}, \tilde{\mathbf{r}})] (\{F_{2s}\} + \{B_{2s}(\tilde{\mathbf{r}})\})$$
(3.91)

$$\{\tilde{\mathbf{u}}(\tilde{\mathbf{r}})\} = ([\Omega_{22}(\mathbf{K_{rs}},\tilde{\mathbf{r}})] - \frac{1}{\tilde{\mathbf{r}}^2} [\Omega_{12}(\mathbf{K_{rs}},\tilde{\mathbf{r}})]) (\{\mathbf{F}_{2s}\} + \{\mathbf{B}_{2s}(\tilde{\mathbf{r}})\})$$

$$+ ([\Omega_{21}(\mathbf{K_{rs}},\tilde{\mathbf{r}})] - \frac{1}{\tilde{\mathbf{r}}^2} [\Omega_{11}(\mathbf{K_{rs}},\tilde{\mathbf{r}})]) \{\mathbf{B}_{1s}(\tilde{\mathbf{r}})\}$$
(3.92)

where $\tilde{r} \neq 0$.

Since we have zero radial displacements along the cylinder axis, the vector $\{F_{1s}\}=\{\tilde{r}\tilde{u}(o)\}$ is equal to zero in the general equations (3.43) and (3.44). Using the zero radial stress condition on the outside surface, the vector $\{F_{2s}\}$ can be expressed analogously to equation (3.51) as

$$\{F_{2s}\} = \frac{\lambda}{\lambda + 2G} [\Omega_{bs}]^{-1} \{\tilde{w}\}_{\tilde{r} = \tilde{b}}$$

$$- [\Omega_{bs}]^{-1} [\Omega_{as}] \{B_{1s}(\tilde{b})\} - \{B_{2s}(\tilde{b})\}$$
(3.93)

where matrices $[\Omega_{\rm as}]$ and $[\Omega_{\rm bs}]$ are defined to be the same as those in equation (3.49) except that the matrix functions are dependent on $[K_{\rm rs}]$ rather than $[K_{\rm r}]$ as before. Since at this time the point $\tilde{r}=0$ is in the region of interest, equations (3.91) and (3.92) become at $\tilde{r}=0$ respectively

$$\{\tilde{u}(o)\} = 0$$

 $\{\tilde{u}(o)\} = \frac{1}{2} \{F_{2s}\}$ (3.94)

The first of equations (3.94) was obtained by applying L'Hospital's rule to equations (3.91). The second equation comes from the definition of $\{F_{2s}\}$ and L'Hospital's rule.

After the necessary transformation of variables, the solutions of equations (3.82) can be expressed in a similar manner to equation (2.94). The associated matrix series, $[D_{ij}(K_{ZS},z)]$ and the particular integrals $\{B_{3s}(\tilde{z})\}$ and $\{B_{4s}(\tilde{z})\}$ are found the same way as those in Chapter 2. We define the initial value vectors in the z direction as follows:

$$\{W(\tilde{z})\}_{\tilde{z}=0}^{\tilde{z}=0} = \begin{cases} \{\tilde{w}(o)\} \\ \{\tilde{w}(o)\} \end{cases} = \begin{cases} \{F_{3s}\} \\ \{F_{4s}\} \end{cases} = \begin{cases} \{F_{3s\alpha}\} \\ \{F_{4s\alpha}\} \\ \{F_{4s\alpha}\} \\ \{F_{4s\beta}\} \\ \{F$$

where we adopted the partioning scheme of (2.93) in order that the mixed boundary conditions in the crack plane can be conveniently handled. We follow an analogous development as in Chapter 2 from equations (2.93) through (2.97). The results of this development completely define the initial vector (3.95) and they are listed below.

$$\{F_{3s\beta}\} = \{0\}_{\tilde{z}=0}$$

$$NOCx1 \qquad outside crack$$

$$\{F_{4s\alpha}\} = \frac{-\lambda}{\lambda + 2G} \left\{ \{\tilde{u}\} + \left\{\tilde{u}\}\right\}_{\tilde{z}=0}^{\infty} \right\}$$

$$NICx1 \qquad over crack$$

Equations (3.96) are specified boundary conditions in the crack plane. We also have

$$\{F_{\mu s \beta}\} = \frac{1}{\lambda + 2G} \left([D_a]^{-1} \{\sigma_{o \beta}\} - \lambda [D_a]^{-1} \left(\{\tilde{u}_{\beta}\} + \left(\frac{\tilde{u}_{\beta}}{\tilde{r}}\right) \right)_{\tilde{z} = \tilde{L}} \right)$$

$$\text{NOCxl} \qquad \text{NOCxl} \qquad \text{NOCxl} \qquad \text{NOCxl}$$

$$-\frac{1}{\lambda+2G}\left([D_a]^{-1} \quad [D_{21\beta1}] \quad [D_{21\alpha1}]^{-1} \quad \{\sigma_{0\alpha}\}\right)$$
NOCENOC NOCENIC NICENIC NICEL

-
$$\lambda[D_a]^{-1}$$
 $[D_{21\beta1}]$ $[D_{21\alpha1}]^{-1}$ $(\{\dot{\tilde{u}}_{\alpha}\} + \{\dot{\tilde{u}}_{\alpha}\})_{\tilde{z}=\tilde{L}})$

NOCENOC NOCENIC NICENIC NICEL NICEL

-
$$[D_a]^{-1}$$
 $[D_b]$ $\{B_{3s\beta}(\tilde{L})\}$ - $\{B_{4s\beta}(\tilde{L})\}$
NOC×NOC NOC×NOC NOC×1 NOC×1

+
$$\frac{\lambda}{\lambda + 2G} [D_a]^{-1} [D_c] \left(\{ \dot{\tilde{u}}_{\alpha} \} + \left(\frac{\tilde{u}_{\alpha}}{\tilde{r}} \right) \right)_{\tilde{z}=0}$$
NOCKNOC NOCKNIC NICKL NICKL

-
$$[D_a]^{-1}$$
 $[D_c]$ $\{B_{4s\alpha}(\tilde{L})\}$ (3.97)
NOCXNOC NOCXNIC NOCX1

Matrices $[D_a]$, $[D_b]$, $[D_c]$ and the partitioned submatrices of $[D_{ij}]$ are the same as those in equations (2.96) and (2.97) except that in this case they are functions of $(K_{zs}, \tilde{z}=\tilde{L})$. Note that the particular integrals, the applied stress vector, the radial displacements and its derivatives are also partitioned according to their location with respect to the crack. The crack

opening displacement is given by

$$\{F_{3s_{\alpha}}\} = \frac{1}{\lambda + 2G} \left([D_{21\alpha 1}]^{-1} \{\sigma_{o_{\alpha}}\} - \lambda [D_{21\alpha 1}]^{-1} \left(\{\tilde{u}_{\alpha}\} + \left(\frac{\tilde{u}}{\tilde{r}}\right) \right)_{\tilde{z} = \tilde{L}} \right)$$

$$\text{NICxl} \qquad \text{NICxNIC} \qquad \text{NICxl} \qquad \text{NICxl} \qquad \text{NICxl} \qquad \text{NICxl}$$

-
$$\{B_{3sa}(\tilde{L})\}$$
 - $[D_{2lal}]^{-1}$ $[D_{2la2}]$ $\{B_{3sb}(\tilde{L})\}$
NICxl NICxNIC NICXNOC NOCxl

-
$$[D_{2|\alpha|}]^{-1}$$
 $[D_{22|\alpha|}]$ $\{B_{4|\alpha|}(\tilde{L})\}$
NOCNNIC NICNIC NICX

+
$$\frac{\lambda}{\lambda + 2G} [D_{21\alpha 1}]^{-1} [D_{22\alpha 1}] \left(\{ \dot{\tilde{u}}_{\alpha} \} + \left\{ \frac{\tilde{u}}{\tilde{r}} \right\} \right)_{\tilde{z}=0}$$
NICXNIC NICXNIC NICX1 NICX1

-
$$[D_{2|\alpha|}]^{-1}$$
 $[D_{22\alpha2}]$ $\{F_{4s\beta}\}$
NICXNIC NICXNOC NOCX1

-
$$[D_{21\alpha 1}]^{-1}$$
 $[D_{22\alpha 2}]$ $\{B_{4s\beta}(\tilde{L})\}$ (3.98)
NICXNIC NICXNOC NOCX1

where $\{F_{4s_{\beta}}\}$ is given by equation (3.97). Although the matrix $[D_{21}(K_{zs},\tilde{L})]$ is singular, the partitioned matrices are not. In calculating the above equations, the indeterminate terms at $\tilde{r}=0$ must be carefully considered.

Similar conclusions regarding the elements of the coupling

vectors $\{r_s(\tilde{r})\}$ and $\{t_s(\tilde{z})\}$ can also be noted from the zero shear stress conditions along lines of uniform normal displacements as in equation (2.100). Equation (3.67), when applied to the coupling vectors, gives

Once the displacement field in the bar has been calculated and the successive approximation procedure has converged, the normal stress distributions along the radial lines can be obtained from

$$\{\sigma_{\mathbf{r}\mathbf{S}}\} = (\lambda + 2\mathbf{G})\{\hat{\mathbf{u}}\} + \lambda \left(\left\{\frac{\tilde{\mathbf{u}}}{\tilde{\mathbf{r}}}\right\} + \left\{\frac{\hat{\mathbf{w}}}{\tilde{\mathbf{v}}}\right\}^{T}\right) \text{ for } \tilde{\mathbf{r}} \neq 0$$

$$\{\sigma_{\mathbf{r}\mathbf{S}}\}_{\tilde{\mathbf{r}}=\mathbf{0}} = 2(\lambda + \mathbf{G})\{\hat{\tilde{\mathbf{u}}}\}_{\tilde{\mathbf{r}}=\mathbf{0}} + \lambda \{\hat{\tilde{\mathbf{w}}}\}_{\tilde{\mathbf{r}}=\mathbf{0}} \qquad \text{for } \tilde{\mathbf{r}} = 0$$

$$(3.100)$$

$$\{\sigma_{\theta S}\} = (\lambda + 2G) \left\{\frac{\tilde{u}}{\tilde{r}}\right\} + \lambda (\{\hat{u}\} + \{\hat{w}\}^{T}) \text{ for } \tilde{r} \neq 0$$

$$\{\sigma_{\theta S}\}_{\tilde{r}=0} = 2(\lambda + G) \{\hat{u}\}_{\tilde{r}=0} + \{\hat{w}\}_{\tilde{r}=0} \qquad \text{for } \tilde{r} = 0$$

$$(3.101)$$

,

$$\{\sigma_{ZS}\} = (\lambda + 2G)\{\tilde{\tilde{w}}\}^{T} + \lambda \left\{\tilde{\tilde{u}}\} + \left\{\tilde{\tilde{u}}\right\}\right\} \quad \text{for } \tilde{r} \neq 0$$

$$\{\sigma_{ZS}\} = (\lambda + 2G)\{\tilde{\tilde{w}}\}_{\tilde{r}=0} + 2\lambda\{\tilde{\tilde{u}}\}_{\tilde{r}=0} \quad \text{for } \tilde{r} = 0$$

$$(3.102)$$

For convenience, all the normal stresses are expressed along radial lines in the above equations. Note that at $\tilde{r} = 0$, the radial and circumferential stresses are equal. The shear stress at each node can be calculated from

$$\{\sigma_{rzs}\} = \frac{E}{2(1-v)} \left(\left\{\frac{\partial w}{\partial r}\right\} + \left\{\frac{\partial u}{\partial z}\right\}\right)$$
 along radial lines

where for the required derivatives, finite difference calculus must be used.

In using the given stress equations in cylindrical coordinates, the relationships between Lame's constants, Young's modulus and Poisson's ratio are needed, since the non-dimensionalized displacements and their derivatives are expressed in terms of some constant times $\frac{\sigma_O}{E}$. The needed identities are

$$(\lambda+2G) = \frac{E(1-\nu)}{(1+\nu)(1-2\nu)}$$
 (3.104)

$$\lambda = \frac{vE}{(1+v)(1-2v)}$$
 (3.105)

$$(\lambda+G) = \frac{E}{2(1+\nu)(1-2\nu)}$$
 (3.106)

Numerical values of the stress and displacement distributions for the problem of Figure 8 were calculated for a number of different geometry cylinders. These results are given and discussed in the following chapter.

3.8.2 Hollow Cylindrical Bar With a Penny Shaped Crack

A problem very similar to that described in the previous section is that shown in Figure 9. As shown in this figure, an internal hole is assumed through the center of the penny shaped crack, which introduces stress free surfaces on both sides of the crack edge. For convenience in the manipulations, the radius of this hole is taken as h_r , that is, the radial increment. The differential equations in the radial direction are identical to equations (3.73) and only their boundary conditions need be modified. Since the radius at any point in this problem can be expressed as $r_i = i \cdot h_r$ $i = 1, 2, 3, \dots, NZ$, the form of the coefficient matrix (3.83) will be different than for the solid cylinder. The coupling vector $\{t_s(\tilde{\mathbf{z}})\}$ must also be modified accordingly. The results of these modifications are shown below.

$$\{t_{\text{sh}}(\tilde{z})\} = \frac{-1}{2(1-\nu)} \begin{cases} \frac{d\tilde{u}}{d\tilde{z}} \Big|_{1} + \frac{1}{\tilde{r}_{1}} \frac{d\tilde{u}}{d\tilde{z}} + (1-2\nu) \left[\left(\frac{2}{\tilde{h}_{r}} - \frac{1}{\tilde{r}_{1}}\right) \frac{d\tilde{u}}{d\tilde{z}} \right]_{1} \\ \vdots & \vdots \\ \frac{d\tilde{u}}{d\tilde{z}} \Big|_{1} + \frac{1}{\tilde{r}_{1}} + \frac{d\tilde{u}}{d\tilde{z}} \Big|_{1} \\ \vdots & \vdots \\ \frac{d\tilde{u}}{d\tilde{z}} \Big|_{NZ} + \frac{1}{\tilde{b}} \frac{d\tilde{u}}{d\tilde{z}} - (1-2\nu) \left[\left(\frac{2}{\tilde{h}_{r}} + \frac{1}{\tilde{b}}\right) \frac{d\tilde{u}}{d\tilde{z}} \right]_{NZ} \end{cases}$$

$$(3.107)$$

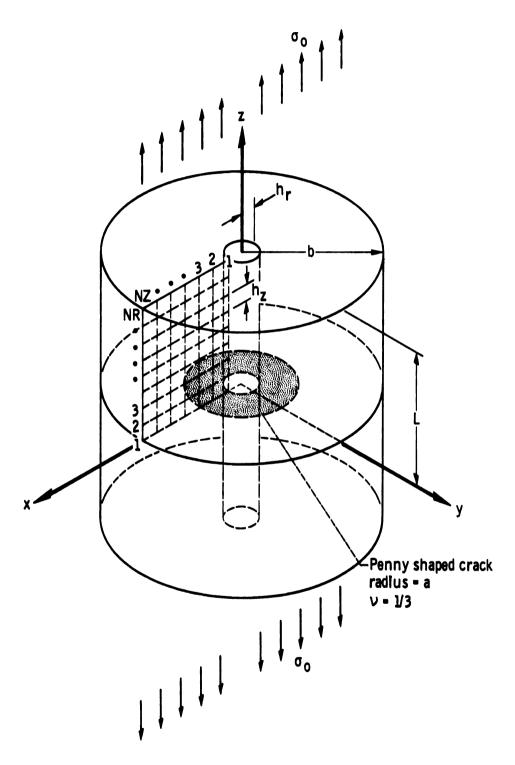


Figure 9. - Hollow cylindrical bar with a penny shaped crack.

We also have

	2	- 2	0	0	0	0	
$[K_{zsh}] = \frac{k_{18}}{2}$ $NZ \times NZ$	-3	2	- 5	0	0	0	(3.108)
	0			//	0	0	
	0	0	$-\left(\frac{2i-1}{2i}\right)$	1	$-\left(\frac{2i+1}{2i}\right)$	0	
	0	0	0	\	2	///	
	0	0	0	0	-2	2	

where i = 2, 3, ..., NZ-1 for both (3.107) and (3.108).

Solutions of the radial differential equations for this problem can be obtained from similar equations to (3.43) and (3.44). The initial condition vectors $\{F_{1sh}\}$ and $\{F_{2sh}\}$ are obtained from the zero radial stress conditions on the inside and outside surfaces. The results can be derived by setting $\{\mathring{\mathbf{v}}\}$ and $\{\sigma_{0}\}$ equal to zero and setting $\mathring{\mathbf{r}}_{0}=\mathring{\mathbf{h}}_{\mathbf{r}}$ in equations (3.50) and (3.51).

Solutions of the axial differential equations are expressed by a similar equation to (2.94). The initial condition vectors needed in these solutions are identical to those listed in equations (3.96), (3.97) and (3.98). The normal stress distributions are found by using equations (3.100) through (3.102) where the equations for $\tilde{r} = 0$ are not applicable.

Equations similar to those described by (3.97) and (3.98) can also be developed for a displacement loaded cylinder. An applied external radial surface load could also be easily incorporated into the modified form of equations (3.50) and (3.51). Numerical results for the problem of Figure 9 are presented in the next chapter. The case of an additional external load of $\sigma_{\rm O}$ on the cylinder of Figure 9 was also investigated. Detailed results for this problem are of no specific interest but some general conclusions about the effect of this radial load will be reported in Section 4.2.

3.9 Stress Intensity Factor

Most of the early analytical work in fracture mechanics was based on the plane theory of elasticity. Consequently, the elastic stress field equations usually employed in the engineering analysis of real problems are based on the plane elasticity assumptions. It is customary in fracture mechanics to describe the crack opening displacement as a superposition of three basic deformation modes (5). The first mode, mode I defines an opening mode where the crack surfaces are displaced normal to the crack plane. The second mode, mode II, is described by displacements in which the crack surfaces slide over one another perpendicular to the leading edge of the crack. The third mode, mode III, defines a tearing displacement where the crack surfaces slide with respect to one another parallel to the

leading edge of the crack. Superposition of these three modes is sufficient to describe the most general case of crack tip stress and displacement fields. The stress intensity factors for these three modes are designated $K_{\rm I}$, $K_{\rm II}$ and $K_{\rm III}$ respectively. Since the examples discussed in this dissertation have geometric symmetry and are symmetrically loaded, only the opening mode of crack displacement will be obtained. Values of $K_{\rm I}$, as subsequently defined in this section, are calculated from the obtained crack opening displacements. Knowledge of this factor for a given geometry and loading can then be possibly used to predict failure of a structural component.

Since three-dimensional problems are neither in a state of plane strain or plane stress, the definition of a stress intensity factor for these problems must be first established. The first problem to be considered in detail is Sneddon's penny shaped crack solution. Reference (42) gives the crack opening displacement as

$$w|_{z=0} = \frac{4\sigma_0(1-v^2)}{\pi E}$$
 \sqrt{a} (3.109)

which for small values of R, where R = a - r, becomes

$$w|_{z=0} = \frac{4\sigma_0(1-v^2)}{\pi E} \sqrt{2aR}$$
 (3.110)

Paris and Sih (5) list the stress intensity factor for this problem as follows:

$$K_{I} = \sqrt{\frac{2}{\pi}} \sigma_{O} \sqrt{a}$$
 (3.111)

In terms of this stress intensity factor, the crack opening displacement (3.110) becomes

$$w|_{z=0} = K_{I} \frac{2(1-v^{2})\sqrt{2R}}{E\sqrt{\pi}}$$
 (3.112)

Rearranging this equation in terms of the known dimensionless displacements $\frac{E}{\sigma_0} \frac{w}{a}|_{z=0}$ gives

$$\frac{E}{\sigma_o} C_I K_I = \frac{\frac{E}{\sigma_o} \frac{w}{a} |_{z=o}}{\sqrt{\frac{R}{a}}}$$
 (3.113)

where

$$C_{I} = \frac{4(1-v^{2})}{E\sqrt{2\pi a}}$$
 (3.114)

Then a plot of equation (3.113) as the $\sqrt{\frac{R}{a}} \rightarrow 0$ gives us the desired value of $\frac{E}{\sigma_0} C_I K_I$ from which an equivalent stress intensity factor for finite geometry cylinders can be calculated.

For the rectangular Cartesian coordinate problems, the crack opening displacement near the crack tip is given by (5)

$$v|_{y=0} = \frac{2(1-v)}{G} K_{I} \sqrt{\frac{R}{2\pi}}$$
 plane strain (3.115)

$$|v|_{y=0} = \frac{2}{(1+v)G} K_I \sqrt{\frac{R}{2\pi}}$$
 plane stress (3.116)

Note that by definition the plane strain and plane stress stress intensity factors are equal while the above displacements are approximately 12.5% different for v = 1/3. Since the results, to be discussed later, indicate that most of the bar in the thickness direction is approximately in a state of plane strain, equation (3.115) is selected to calculate the stress intensity factor. Rearranging equation (3.115) so that the dimensionless crack opening displacements can be utilized leads to

$$\frac{E}{\sigma_o} C_I K_I = \frac{\frac{E}{\sigma_o} \frac{v}{a} | y=o}{\sqrt{\frac{R}{a}}}$$
 (3.117)

where $C_{\rm I}$ is given by (3.114). A plot of the above equation as $\sqrt{\frac{R}{a}} + 0$ can then be used to calculate $K_{\rm I}$. Since the crack opening displacement is a function of the thickness variable, the stress intensity factor obtained above will vary in the z direction. However, if we were to account for the non-plane strain conditions near the surface by using equation (3.116) or a corrected equation (3.115) for the definition of $K_{\rm I}$, this variation in the z direction would be minimized and the stress intensity factor would become a constant across the thickness of the bar by definition. This approach would essentially result in a continuously varying definition of $K_{\rm I}$ across the thickness.

It must be noted that the above description of $\mbox{K}_{\mbox{\scriptsize I}}$ is completely arbitrary and it is questionable if it has any

real significance in three-dimensional elasticity problems. However, values of $K_{\rm I}$, based on equation (3.117), are still presented so that comparison between the calculated results and the published plane strain solutions (5) will be possible.

CHAPTER 4

RESULTS AND DISCUSSION

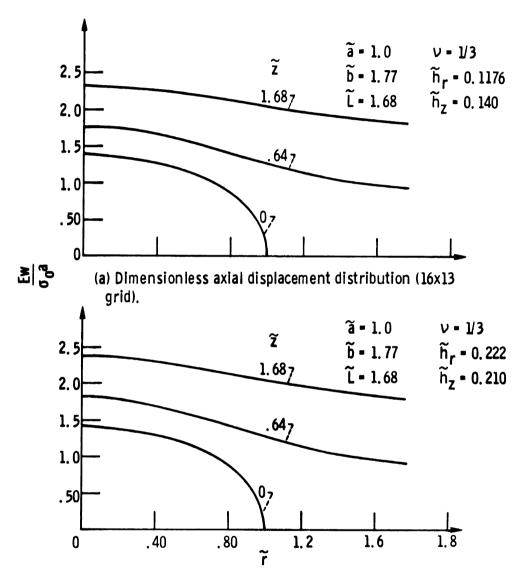
A computer program has been written for each of the numerical examples using the solution techniques of the preceeding chapters to calculate the stress and displacement fields in each case. With the exception of the annular plate with internal surface cracks example, all numerical computations were performed for two arbitrary grid increments so that the convergence of the finite difference approximations could be checked. given direction, uniform line spacing was used in all calculations with no other restriction being placed on the selection of the grid size. In general, an attempt was made to use a finer grid along the direction of largest variable change. Previously given numerical differentiation formulas show that their truncation errors are of Oh^2 with the exception of some boundary terms in the coupling vectors $\{r\}$, $\{s\}$ and $\{t\}$ where Oh derivative approximations were used. However, the use of parabolic differentiation formulas in these isolated cases led to essentially identical results. Since numerical differentiation is inherently an inaccurate procedure, analytic differentiation is used wherever possible such as in evaluating the normal

stress distributions.

An inspection of the ordinary differential equations and their boundary conditions shows that decoupling of the dependent variables is impossible and the previously discussed successive approximation procedure must be employed. Since the derivatives {û}, {v} and {w} depend on similar matrix functions, particular integrals and initial value vectors as the corresponding displacement vectors, convergence of the displacements will assure convergence of their corresponding derivatives. This conclusion has been confirmed by the results of the numerical examples presented below.

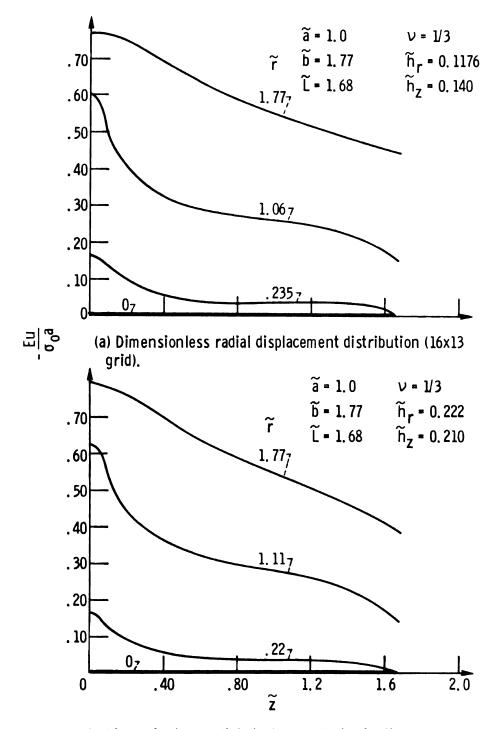
The computations for all the examples were performed on an IBM-360 time sharing digital computer using double precision arithmetic. Since the storage capacity of these computers is essentially unlimited, no attempt was made to optimize the use of the involved arrays.

4.1 Solid Cylindrical Bar With a Penny Shaped Crack


In order to establish the validity of the line method, detailed results will be first presented for the solid cylindrical bar containing a penny shaped crack and loaded normal to the crack plane. A convenient combination of the non-dimensionalized variables for which the evaluation of the required matrix functions presents no difficulty is as follows:

$$\tilde{a} = 1$$
 $\tilde{h}_z = .14$
 $\tilde{L} = 1.68$
 $\tilde{h}_r = \frac{2}{17} = .1176$ (4.1)
 $\tilde{b} = 1.77$

The selection of these dimensions results in the construction of 16 axial and 13 radial lines in Figure 8. According to the above choice of \tilde{h}_r , the number of lines inside the crack surface must be 9.


The computations for this problem involved 22 iterations in the successive approximation procedure using an arbitrary convergence criterion of 10^{-6} . This convergence criterion is defined as the maximum difference in the absolute values between successively calculated displacements at any point. The largest element of the error matrix (2.87) was .0001 at $\ddot{z}=1.68$. The Runge-Kutta integration increment in evaluating the diagonalized matrix functions $[\Omega_{ij}]$ was .001. The approximate execution time for a problem of this size using the above given data is 3 minutes on an IBM-360 computer.

The results of these computations are presented in Figures 10 through 14 and Tables 1 through 5. For easy comparison of data, some of these figures include Sneddon's results for an infinite solid. Figures 10(b) and 11(b) show displacement distributions for an identical bar which were calculated from a grid having only 9 radial and 9 axial lines. Figure 14 contains

(b) Dimensionless axial displacement distribution (9x9 grid).

Figure 10. - Dimensionless axial displacement distribution for a solid cylindrical bar with a penny shaped crack.

(b) Dimensionless radial displacement distribution (9x9 grid).

Figure 11. - Dimensionless radial displacement distribution for a solid cylindrical bar with a penny shaped crack.

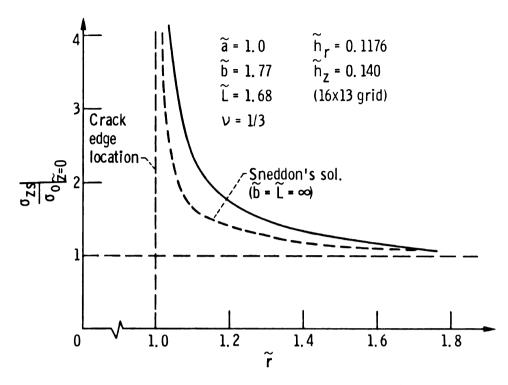


Figure 12. - Dimensionless axial stress distribution for a solid cylindrical bar with a penny shaped crack at $\tilde{z} = 0$.

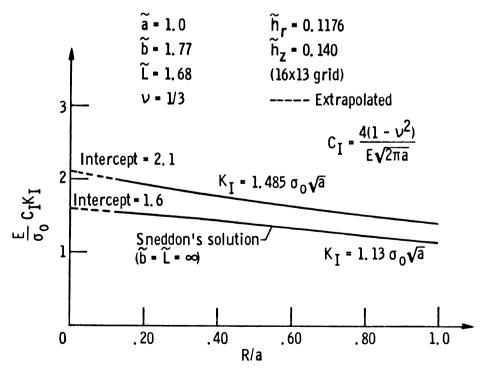


Figure 13. - Calculation of the stress intensity factor $\,{\rm K}_{I}\,$ for a solid cylindrical bar with a penny shaped crack.

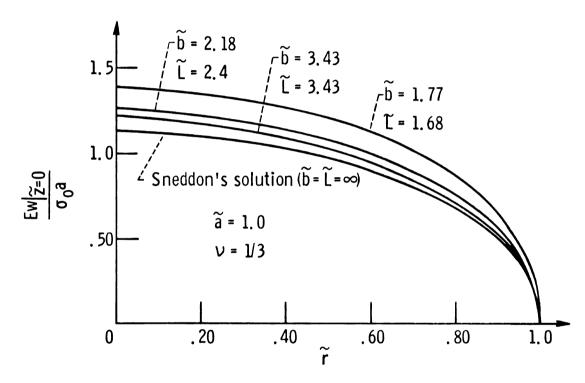


Figure 14. - Dimensionless crack opening displacements for solid cylindrical bars with penny shaped cracks of various lengths and radii.

Table 1. - Non-dimensionalized Radial Displacements $\frac{E}{\sigma_0} \frac{u}{a}$ for a Solid Cylindrical Bar with a $\tilde{a} = 1.0, \tilde{b} = 1.77, \tilde{L} = 1.68$ Penny Shaped Crack Under Uniform Normal Tension. (16 axial and 13 radial lines)

1.77	773	725	949	530	530	483	425
1.53	705	689*-	e+2.	482	435	-388	-,325
1.294 .	-,653	529	433	379	ከተይ • –	303	233
1.06	609*-	371	-,300	273	255	224	150
.941	579	297	239	223	214	188	-,114
. 706	88h*-	217	149	142	-•145	-°12h	850*-
.471	333	-,153	091	-,083	085	₩20*-	023
.235	168	080	540*-	038	039	+,€0.−	900*-
00.	000• .	000•	000•	000	000•	000•	000
151	00.	.28	• 56	ħ8°	1.12	1.40	1.68

Table 2. - Non-dimensionalized Axial Displacements $\frac{E}{\sigma_0}\frac{w}{a}$ for a Solid Cylindrical Bar with a

 $\tilde{a} = 1.0, \tilde{b} = 1.77, \tilde{L} = 1.68$ Penny Shaped Crack Under Uniform Normal Tension,

(16 axial and 13 radial lines)

121	00°	.28	.56	ή8•	1.12	1.40	1.68
00°	1,394	1.544	1.646	1.766	1.928	2.126	2.329
.235	1,351	1.495	1.596	1.722	1.892	2,097	2.306
.471	1.219	1.359	1.472	1,622	1.812	2.029	2.250
902.	.973	1,113	1.273	1.473	1.696	1.933	2.167
T46°	515	942.	1.029	1.302	1,565	1.823	2.072
1.06	000°	, 542	£16°	1.221	1.502	1.768	2.024
1,294)00°	†8 8°	.758	1,090	1.390	1.670	1.937
1,53	000°	πεε °	.673	666°	1.304	1,592	1,866
1,77	000 .	.291	019°	586*	1.245	1,535	1,812

Penny Shaped Crack Under Uniform Normal Tension. \tilde{a} = 1.0, \tilde{b} = 1.77, \tilde{L} = 1.68 Table 3. - Non-dimensionalized Radial Stress $\frac{\sigma_{rs}}{\sigma_o}$ for a Solid Cylindrical Bar with a

(16 axial and 13 radial lines)

1.77	000	000	000.	000.	000.	000.	000
1.53	.116	017	ħħO*-	026	£00°-	.012	021
1.244	.376	-,095	113	950*-	₩00*-	.028	800.
1.06	1.134	138	150	065	600*	. 064	.085
.941	522	262	155	850*-	.023	880•	981.
.706	-, 883	270	124	0251	• 058	.142	.247
.471	-1.017	375	123	.002	£60°	.193	. 352
.235	-1.043	TS#*-	T#T*-	4410.	.116	.230	ьZħ ・
00.	-1.060	624*-	8hI*-	.0211	.127	.246	02ħ°
Ž,	00.	.28	• 56	ħ8•	1.12	1.40	1.68

Table 4. - Non-dimensionalized-Circumferential Stress $\frac{\sigma_{\theta S}}{\sigma_{O}}$ for a Solid Cylindrical Bar with $\tilde{a} = 1.0$, $\tilde{b} = 1.77$, $\tilde{L} = 1.68$ a Penny Shaped Crack Under Uniform Normal Tension.

(16 axial and 13 radial lines)

c	_	235	121	706	ניזט	90	1,000	ני	77 ر
	6		•	•			162.1	20.	,,,-
-1.060 -1.061	-1.061		-1,047	986*-	-, 790	606.	.125	020	108
-,479	T9ħ°-		-° 401	-,291	112	.108	.015	023	051
-,148	-,138		901	SS0 * -	ττο.	640*	£0°	.022	÷05
.021 .023	.023		.032	٠,047	.062	.067	.062	• 055	.057
,127 ,12 ^L	° 121		.120	e11°	₩01.	660*	980°	920.	₩90*
57° 97°	23ء		.218	161•	091°	ከተፒ *	911.	960°	.072
54, 074,	5 th °		104.	. 333	.257	,220	η ς Ι°	.112	680°
	_	1	_				The second secon	The state of the s	The second second

 $\tilde{a} = 1.0, \tilde{b} = 1.77, \tilde{L} = 1.68$ for a Solid Cylindrical Bar with a Penny Shaped Crack Under Uniform Normal Tension. Table 5. - Non-dimensionalized Axial Stress $\frac{\sigma_{zs}}{\sigma_{o}}$

$\overline{}$
lines
radial
13
and
axial
(16

t								
. 235	•	.471	.706	.941	1.06	1.294	1.53	1.77
000.	٠.	000•	000.	000	3,320	1.512	1.206	686*
.093	.1	9†	.319	₩28.	1.513	1.365	1.201	1.082
.295 .386	.38	9	. 592	056.	1.150	1.230	1.186	1.172
.542 .624	.62	+	.770	.957	1.041	1.122	1.136	1.159
.759 .808	. 80	80	.885	.972	1.010	1.059	1.082	1.092
. 915	.93	ဗ	.960	066.	1.003	1.022	1.036	1.037
866.	66.	6	666*	000*1	666*	\$66 °	£66°	066

the crack opening displacements of several cylindrical bars with different geometry. Figure 13 shows the method for calculating an equivalent plain strain stress intensity factor $K_{\rm I}$ for three-dimensional problems from knowing the crack opening displacement.

Inspection of Figures 10(a) and 10(b) clearly shows the advantage of the line method over other numerical solutions. A relatively coarse grid of 9 axial and 9 radial lines gave almost identical results to that obtained by using a 16 by 13 grid. Note that an approximate 100% change in \tilde{h}_{r} and a 50% change in \tilde{h}_{z} resulted in about a 2% change in the axial displacements. Since the bar is of finite size, the crack opening displacement is expected to be higher than Sneddon's solution. Consistency of the results with this conclusion is obvious from Figure 14. Figures 10 also show that the axial displacement is highest at the end of the bar above the center of the crack. If the bar were of sufficient length, the highest displacement curve would be a straight line with a constant axial displacement. Note that the crack opening displacement curve is assumed to be zero at the crack edge rather than at the first adjacent node outside the crack plane.

Figures 11(a) and 11(b) show the radial contraction of the bar as a function of the length and radius. The contraction is the largest, as one would expect it, at the outside surface in

the plane of the crack. Note that symmetry of the problem requires zero slopes along the displacement axes in both Figures 10 and 11. In the plane of the crack, a sudden increase in contraction takes place as can be seen from the curves shown. This increase is due to the constraint free crack surface which permits the higher contraction rate of the bar outside the crack radius to exert a strong influence on the material inside the crack. Similar arguments about the agreement of the radial displacements in Figures 11(a) and 11(b) for corresponding positions can also be made as for Figure 10.

Figure 12 shows the stress distribution normal to the crack plane as a function of the distance from the crack edge. It is known that for linear elastic problems, this stress distribution approaches infinity near the crack tip as the inverse square root of the distance from the crack edge. Establishment of this type of singularity is, however, difficult when numerical methods are used because values of the normal stress are needed within a distance of .05a or less of the crack edge. With the equal spacing of lines used throughout the examples, the minimum node location for these examples is about .06a. For the range of r shown in Figure 12, this inverse square root singularity is not valid. However, for the range shown, the obtained stress curve closely resembles Sneddon's solution as can be noted. Obviously, the absolute value of this stress is

greater for a finite size bar than for Sneddon's infinite solid.

Note that the stress near the outside radius rapidly approaches
the value of the applied dimensionless stress of unity.

Figure 13 shows the calculation of the stress intensity factor $K_{\rm I}$ according to equation (3.113). The intercept of Sneddon's solution is 1.6 which gives a stress intensity factor of 1.13 $\sigma_{\rm o}$ \sqrt{a} . The stress intensity factor for an infinite cylindrical solid containing a penny shaped crack is given by equation (3.111) as 1.13 $\sigma_{\rm o}$ \sqrt{a} . Thus, the validity of using the method of Section 3.9 for calculating these values of $K_{\rm I}$ is established. The stress intensity factor obtained from the 2.1 intercept is 1.485 $\sigma_{\rm o}$ \sqrt{a} . Hence, the finite bar discussed in Figure 13 has an approximately 31% higher stress intensity factor than the infinite solid.

Figure 14 shows the crack opening displacement for several cylindrical bars with different lengths and radii. The obtained results clearly show that as the length and diameter of the bars are increased, Sneddon's solution for an infinite bar is rapidly approached. For a bar with $\tilde{b} = \tilde{L} = 3.43$, the maximum difference is only about 7%.

Tables 1 through 5 show selected results from the computer listings. The accuracy of the normal stress and displacement boundary conditions can easily be noted from the numerical data listed.

4.2 Hollow Cylindrical Bar With a Penny Shaped Crack

In this example the dimensions of the bar were intentionally increased along with the inclusion of a central hole through the cylinder axis. The expected result of these changes from the problem of (4.1) would be the minimization of the crack influence upon the calculated displacement and stress fields. Selected results of the computations for this problem are shown in Figures 15 through 18. The physical dimensions of the problem are also listed in these figures.

Figure 15 shows the dimensionless axial displacement distribution as a function of the radius and axial position. Note that the maximum crack opening displacement is less than that shown in Figure 14 for solid cylinders. The reason for this is that there is no load applied over the central hole surface and the effect of this is to offset the weakening influence of the hole. As expected, the displacement curves are essentially constant once the results are plotted beyond the vicinity of the crack.

Figure 16 shows the radial contraction of the bar. This contraction is maximum at the outside surface and its variation along the z direction is only about 9%. For a bar without a crack, this outside contraction would be a constant along the z direction. Comparison of the curves in Figure 16 to those in Figures 11 clearly shows that the crack effect on the radial

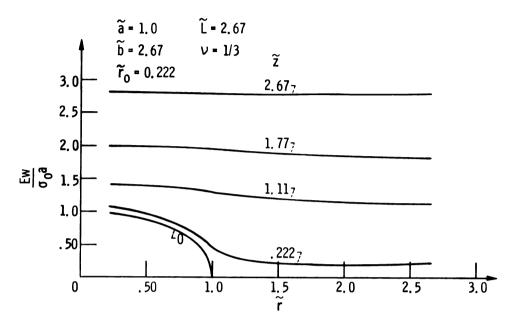


Figure 15. - Dimensionless axial displacement distribution for a hollow cylindrical bar with a penny shaped crack.

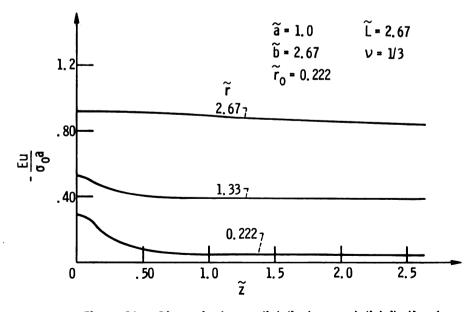


Figure 16. - Dimensionless radial displacement distribution for a hollow cylindrical bar with a penny shaped crack.

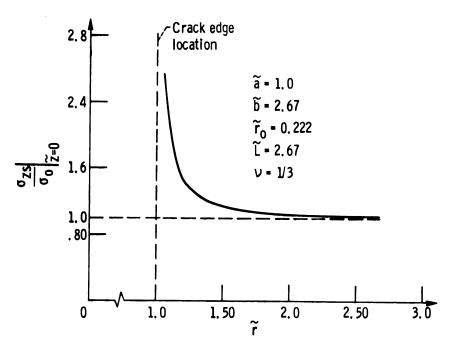


Figure 17. - Dimensionless axial stress distribution for a hollow cylindrical bar with a penny shaped crack at $\tilde{z} = 0$.

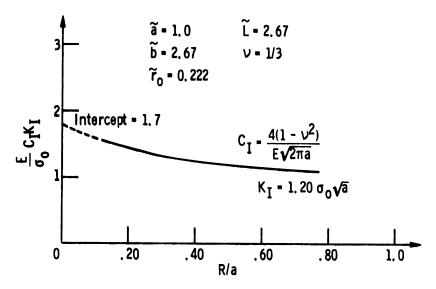


Figure 18. - Calculation of the stress intensity factor $\, K_{I} \,$ for a hollow cylindrical bar with a penny shaped crack.

contraction is more pronounced for bars with smaller overall dimensions relative to the crack radius. Note the sudden increase in contraction near the crack plane along the inside hole radius. This increase is caused again by the crack plane which through its constraint free surface permits a contraction rate approaching the contraction near the crack edge.

The dimensionless axial stress distribution in the crack plane is shown in Figure 17. The shape of this curve is similar to those shown in Figure 12. Note the relatively constant stress beyond a radius of 2 which shows that the region of largest stress variation is between $\tilde{r} = 1$ and $\tilde{r} = 2$. Similar comments about the axial stress singularity can also be made in this case as for the solid cylindrical bar problem.

The calculation of the stress intensity factor $K_{\rm I}$ using the crack opening displacement is shown in Figure 18. Note that even though the crack opening of Figure 15 is smaller than Sneddon's solution in Figure 14, the calculated stress intensity factor of 1.20 $\sigma_{\rm O}\sqrt{a}$ is somewhat greater than the 1.13 $\sigma_{\rm O}\sqrt{a}$ obtained in Figure 13. This is due to the more negative slopes obtained for finite sized bars in Figures 13 and 18. However, the stress intensity factor of Figure 18 is considerably less than that calculated for problem (4.1) in Figure 13.

The application of a uniform radial stress, σ_0 , to the outside surface of this hollow cylinder was found to have no

effect on the crack opening displacement. However, the axial displacements beyond the crack plane were considerably lowered. The radial displacements for this problem were all in the outward direction rather than inward as shown in Figure 16. The results of Figure 17 were also found to be independent of this radial surface load. As expected, the main effect of a radial surface load was observed to be in the calculated circumferential and radial stress fields.

4.3 Annular Plate With Internal Surface Cracks

As a first attempt at the solution of a general three-dimensional problem in cylindrical coordinates, the problem of Figure 6 was solved using a grid of 16 lines in all directions. Because of the relatively coarse grid involved, the calculated data is listed in Tables 6 through 11. The construction of meaningful figures from these results is obviously difficult. It must be noted, however, that due to the unknown nature of the resulting solutions, the use of a coarse grid is always recommended in generating the first set of displacements. This practice may greatly complicate the programming of the necessary equations, but it has the advantage of providing results quickly from which the numerical limitations can be immediately recognized. Since the construction of a general computer program for this problem requires a great amount of effort, the listings of Appendix B-3 apply only to the specific case when NR = N0 = NZ = 4

Table 6. - Dimensionless Radial Displacements $\frac{Eu}{\sigma_0 b}$ for an Annular Plate with Internal Surface Cracks Under Uniform Radial Tension on the Outside Surface

r õ	25	.50	.75	1.00	
00	. 435	.671	. 786	.930	A
15°	。940	. 890	.896	,998	7 - 00
30°	1.168	.992	.968	1.058	ž = .00
450	1,240	1.026	, 994	1.081	•
00	.506	.680	.789	, 930	A
15°	.907	.860	.886	.994	ž = .10
30°	1.092	.953	.957	1.055	2 = .10
450	1.152	.986	.984	1.078	•
0°	.724	.656	.779	.927	A
15°	. 795	.761	.856	, 985	ž = ,20
30°	.898	. 856	.932	1.048	2 - ,20
45°	.942	. 892	.961	1.073	•
0°	،716	.659	.769	G*R.	A
15°	. 752	.727	. 845	, 978	ž = .30
30°	.815	. 809	.926	1.049	2 - 30
45°	° 845 -	, 843	.957	1.077	•

Table 7. - Dimensionless Circumferential Displacements $\frac{Ev}{\sigma_{o}b}$ for an Annular Plate with Internal Surface Cracks Under Uniform Radial Tension on the Outside Surface

ð	go	15°	30.6	1450	
.00	.718	. 566	.302	.000	A (
.10	.592	. 450	.238	.000	
.20	.000	.073	.063	.000	$\dot{\mathbf{r}} = .25$
.30	.000	.009	.012	.000	•
.00	.425	.285	.138	.000	A
,10	.350	.232	.115	.000	~ 5)
.20	.000	.075	.057	.000	ř = .50
.30	.000	.023	.026	.000	
.00	.000	.037	.029	.000	A
.10	.000	.033	.026	.000	$\tilde{\mathbf{r}} = .75$
.20	.000	.023	.020	.000	r = ,/5 ,
.30	.000	.014	.014	.000	•
.00	.000	.006	.004	୍ବର ବସ	A
.10	.000	•007	.005	.000	ř = 1.0
.20	.000	.009	.007	.000	1 - 1.0
.30	.000	.010	.007	.000	

Table 8. - Dimensionless Axial Displacements $\frac{Ew}{\sigma_0 b}$ for an Annular Plate with Internal Surface Cracks Under Uniform Radial Tension on the Outside Surface

ž	.00	.10	. 20	.30	
.25	.000	218	- .342	416	A
.50	.000	108	217	322	ð = 0°
.75	.000	089	175	258	
1.00	.000	076	152	- , 226	₩
.25	.000	098	216	-,338	4
• 50	.000	049	131	232	ð = 15°
.75	.000	 075	154	 237	6 2 15
1.00	.000	074	149	226	•
.25	.000	068	167	281	A
• 50	.000	040	106	- .195	ð = 30°
.75	.000	067	141	222	30
1.00	.000	- .075	152	231	•
.25	.000	061	- .153	- ° ∠ C ∠	4
. 50	.000	039	101	- .186	ð = 45°
.75	.000	065	137	218	5 - 43
1.00	.000	075	153	233	. ↓

Table 9. - Dimensionless Radial Stress Distribution $\frac{\sigma_r}{\sigma_o}$ for an Annular Plate with Internal Surface Cracks Under Uniform Radial Tension on the Outside Surface

.					
ř	. 25	.50	.75	1.00	
00	.000	.020	1.062	1.00	A
15°	.000	.346	.837	1.00	ž = .00
30°	.000	.293	. • 748	1.00	200
45°	.000	.282	.726	1.00	\
0°	.000	.027	1.048	1.00	A
15°	.000	.405	.872	1.00	ž = .10
30°	.000	.424	.801	1.00	
450	.000	. 424	.783	1.00	\
0°	.000	1.305	1.026	1.00	4
15°	.000	.968	.980	1.00	ž = .20
30°	.000	.840	.932	1.00	
45°	.000	.801	.915	1.00	•
00	.000	.872	1.005	1.00	A
15°	.000	.950	1.004	1.00	ž = . 30
30°	.000	.966	.986	1.00	
450	.000	.956	.975	1.00	\rightarrow
•		,			

Table 10. - Dimensionless Circumferential Stress $\frac{\sigma_{\theta}}{\sigma_{o}}$ for an Annular Plate with Internal Surface Cracks Under Uniform Radial Tension on the Outside Surface

ř					l .
õ	.25	.50	_~ 75	1.00	
00	.00	.00	1.702	1.251	A
15°	.308	. 803	1.542	1,339	ž = .00
30°	ຸ 209	1.043	1.460	1.416	200
450	, 240	1,145	1,441	1.443	
00	.00	٥٥0 .	1.659	1.248	A
15°	.703	.957	1.534	1.331	ž = .10
30°	.803	1.196	1.472	1,410	
45°	.863	1.270	1.456	1.439	+
00	4.569	2.821	1.506	1,236	A
15°	3,609	2.011	1,526	1.313	Ž = .20
30°	2.971	1.706	1.506	1.400	
450	2.748	1.629	1.498	1.432	\rightarrow
00	3.050	1,858	1,442	(* * * · ·	A
15°	3.110	1.879	1.500	1,301	ž = .30
30°	3.171	1.825	1.523	1.397	
450	3.167	1.775	1,524	1.432	•

Table 11. - Dimensionless Axial Stress $\frac{\sigma_Z}{\sigma_O}$ for an Annular Plate with Internal Surface Cracks Under Uniform Radial Tension on the Outside Surface

ř	.25	.50	.75	1.00	
00	-1.974	-1.049	.030	014	A
15°	939	126	.043	.040	~ 00
30°	631	.041	.064	.060	ž = .00
450	544	.082	.070	.062	•
0°	-1.597	-1.073	.028	010	A
15°	867	210	.032	.031	$\tilde{z} = .10$
30°	579	.006	.053	.046	210
450	487	.055	.059	.048	
0°	.500	.313	.002	004	A
15°	-3.135	-1.996	-1.504	-1.310	∄ = .20
30°	077	.070	.039	.019	
45°	097	.073	.042	.020	•
00	.000	.000	.000	.000	4
15°	.000	.000	.000	.000	$\tilde{z} = .30$
30°	.000	.000	.000	.000	
450	.000	.000	.000	.000	. ↓

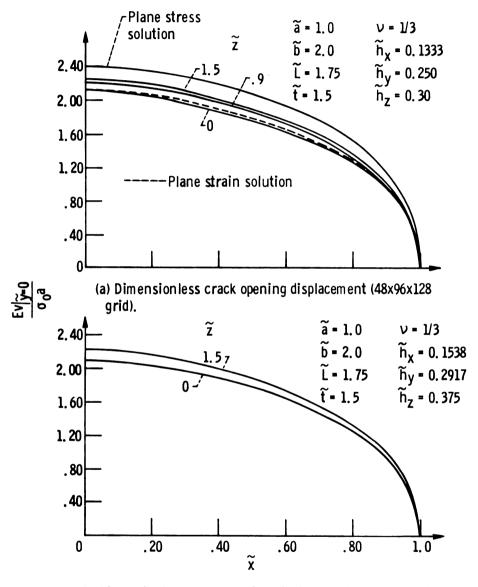
in Figure 6. Although the results in Tables 6 through 13 are preliminary, they still demonstrate that the previously presented solution techniques permit the computation of the required displacement and stress fields.

As a result of having 16 lines in all directions, the coordinate increments used in this problem were \tilde{h}_r = .25, \tilde{h}_z = .10 and \tilde{h}_θ = 15°. Using a convergence criterion of 10⁻⁶, the number of successive calculations in the iteration procedure was 41. The Runge-Kutta increment in evaluating the matrix functions Ω_{ij} was .001 while the largest error matrix element in both the circumferential and axial directions was less than 10^{-5} at all points.

Table 6 shows the dimensionless radial displacement distribution as a function all three coordinates. It can be noted that the outward radial displacement increases as a function of angular position while changes in the z direction are most pronounced at the inside radius. Table 7 lists the calculated circumferential displacements. These results show that below the crack plane, the circumferential displacements are essentially zero while the maximum crack opening is at $\tilde{\theta} = \tilde{z} = 0$ and at $\tilde{r} = .25$ as expected. Note that the crack opening decreases with an increase in radius and thickness. Table 8 displays similar results for the calculated axial displacements. While both radial and circumferential displacements

are extensional, the axial displacements are negative indicating a contraction in that direction. This contraction is a maximum at the plate surface and in the crack plane decreases with an increase in radius. Displacement Tables 6, 7 and 8 clearly show the accuracy of the enforced displacement boundary conditions and that the number of normal lines inside the crack plane for this example is 4.

Table 9 contains the dimensionless radial stress distribution as a function of the coordinates. The zero normal stress boundary condition on the inside surface and the applied radial stress of unity on the outside surface are evident in the results of this table. Note that in the plane of the crack, that is for $0 < \tilde{z} < .15$, the radial stress varies gradually between 0 and 1 while below the crack plane it is close to unity everywhere except on the inside surface. The maximum value of this stress occurs in the crack plane at $\tilde{r} = .5$ just outside the crack edge. As expected, the radial stress is tensile or zero everywhere in the body.


The dimensionless circumferential stress distribution is shown in Table 10. It is expected that this stress be the maximum tensile stress in the body since the crack plane is normal to the circumferential axis. Because the interaction between the hole and crack stress fields is most pronounced at the inside radius, this stress should approach infinity most

rapidly at the inside boundary just below the crack edge. The results of Table 10 seem to confirm this observation, although we must also remember that the nodes are closer to the crack boundary below the crack surface than along the radius. Note that at $\tilde{r} = 1$, the stresses are essentially constant along the z direction.

Table 11 contains the dimensionless axial stress distribution as function of the coordinates. The zero normal stress boundary condition at $\tilde{z} = .3$ is obvious from the results in this table. Note that the axial stress is either zero or compressive in most of the region except just below the crack edge where a tensile axial stress seems to be generated. Because of the coarse grid used, the numerical results presented for this example are probably somewhat inaccurate in magnitude, but they do indicate some previously unknown variations in the stress and displacement fields for this problem. This conclusion is possible in that the line method does not usually require a fine grid for good results as was shown in Section 4.1.

4.4 Bar With Through-Thickness Central Crack

The solution of the problem shown in Figure 2 was obtained by using two different sets of lines along the coordinate axes. Selected results of these computations are shown in Figures 19 through 26 and Tables 12 through 14. The computation time for the example containing a $35 \times 70 \times 98$ line grid was about 30

(b) Dimensionless crack opening displacement (35x70x98 grid).

Figure 19. - Dimensionless crack opening displacement for a rectangular bar under uniform tension containing a through-thickness central crack.

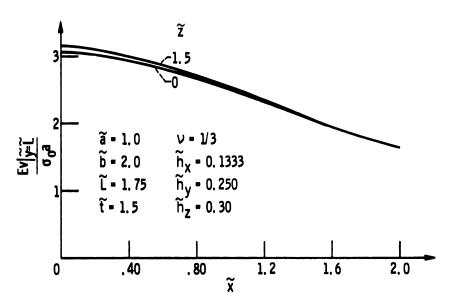


Figure 20. - Dimensionless bar end extension for a rectangular bar under uniform tension containing a through-thickness central crack.

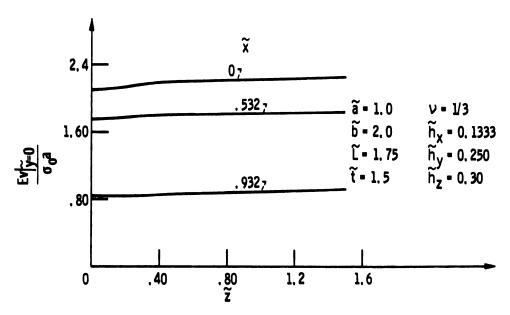
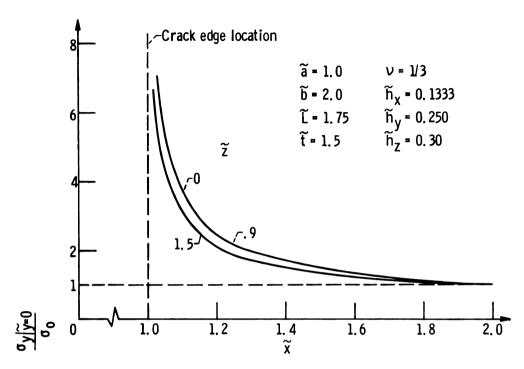
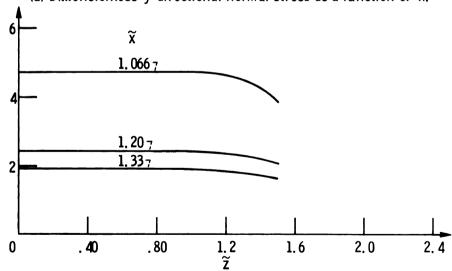
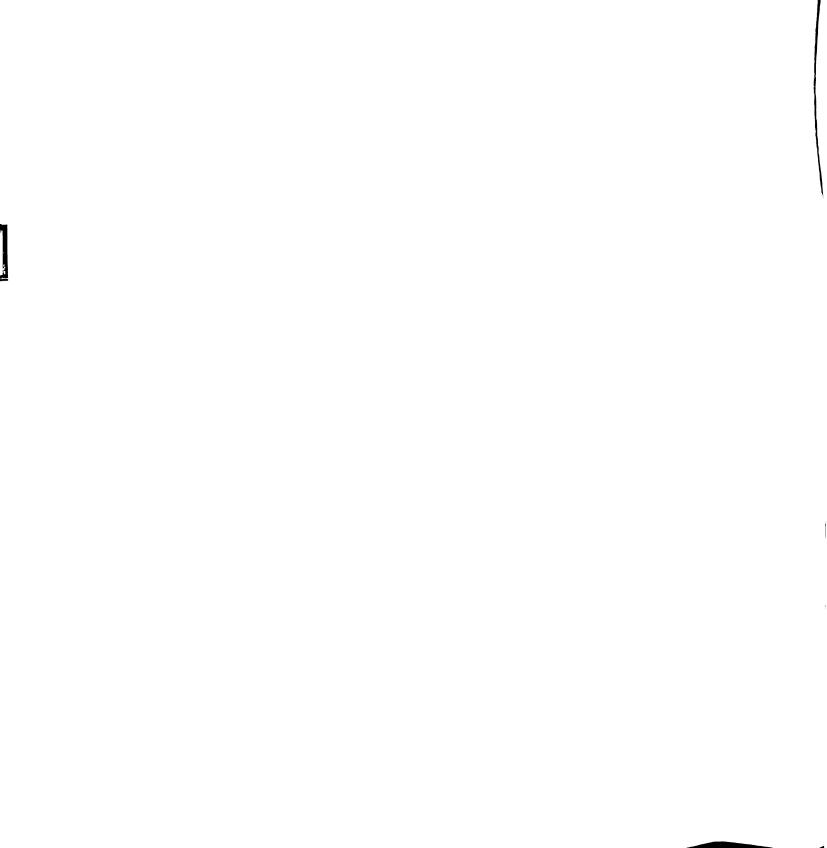
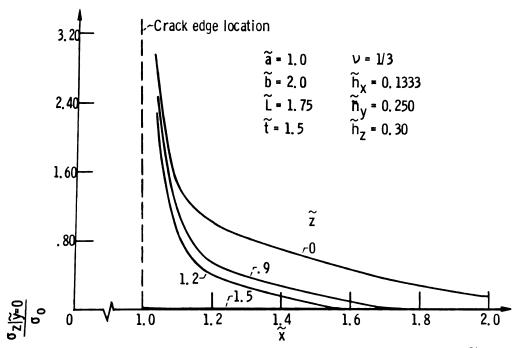




Figure 21. - Dimensionless normal displacement distribution in the crack plane for a rectangular bar under uniform tension containing a through-thickness central crack.




(a) Dimensionless y-directional normal stress as a function of \tilde{x} .

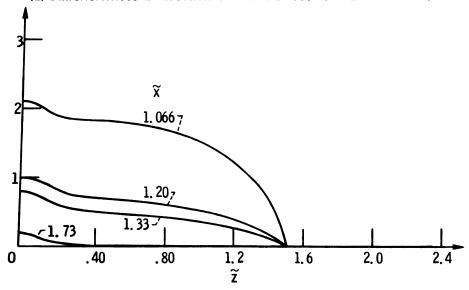
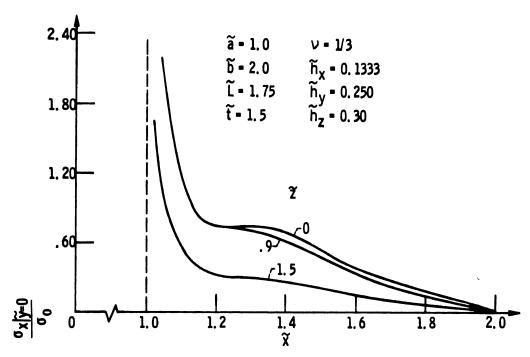
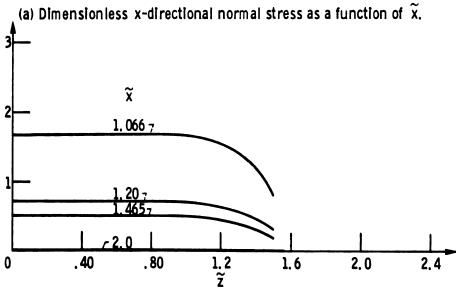

(b) Dimensionless y-directional normal stress as a function of \widetilde{z} .

Figure 22. - Dimensionless y-directional normal stress distribution in the crack plane for a rectangular bar under uniform tension containing a through-thickness central crack.




(a) Dimensionless z-directional normal stress as a function of \widetilde{x} .

(b) Dimensionless z-directional normal stress as a function of \tilde{z} .

Figure 23. - Dimensionless z-directional normal stress distribution in the crack plane for a rectangular bar under uniform tension containing a through-thickness central crack.

(b) Dimensionless x-directional normal stress as a function of \widetilde{z} .

Figure 24. - Dimensionless x-directional normal stress distribution in the crack plane for a rectangular bar under uniform tension containing a through-thickness central crack.

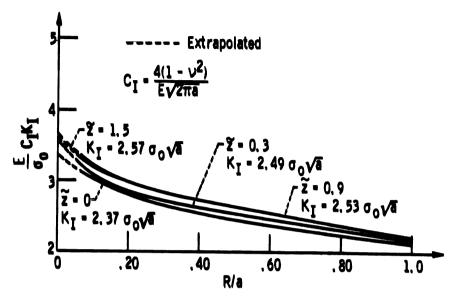


Figure 25. - Calculation of the stress intensity factors K_{I} for a rectangular bar under uniform tension containing a through-thickness central crack.

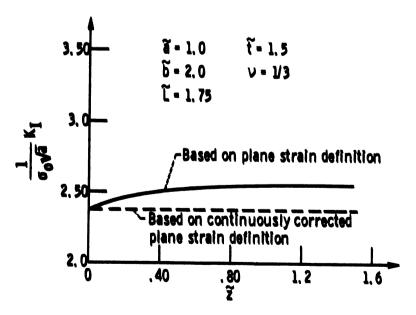


Figure 26. - Variation of the stress intensity factor K_T across the thickness for a rectangular bar under uniform tension containing a through-thickness central crack.

Table 12. - Dimensionless x-Directional Displacements $\frac{E}{\sigma_0} \frac{u}{a}$ for a Rectangular Bar Under Uniform Tension Containing a Through-Thickness Central Crack. \tilde{a} = 1.0, \tilde{b} = 2.0, \tilde{L} = 1.75, $\tilde{\tau}$ = 1.5 (48-96-128 x-y-z Directional Lines Respectively)

y x	0.0	.40	.80	1.20	1.60	2.00	
0.0	.000	474	828	-1,026	-1.095	-1.192	A
.50	.000	143	276	541	783	920	$\tilde{z} = .00$
1.0	.000	025	092	242	420	565	200
1.75	.000	.169	.257	.238	.148	.029	•
0.0	.000	479	846	-1.00	-1.030	-1.105	A
. 50	.000	119	244	498	742	888	$\tilde{\mathbf{z}} = .90$
1.0	.000	015	076	220	393	540	2 30
1.75	.000	.180	.276	.260	.163	.042	•
0.0	.000	-,395	713	890	991	-1.091	A
.50	.000	062	156	422	699	862	$\tilde{z} = 1.5$
1.0	.000	.009	035	182	367	520	
1.75	.000	.179	.278	.263	.168	.050	•

Table 13. - Dimensionless y-Directional Displacements $\frac{Ev}{\sigma_0 a}$ for a Rectangular Bar Under Uniform Tension Containing a Through-Thickness Central Crack. \tilde{a} = 1.0, \tilde{b} = 2.0, \tilde{L} = 1.75, \tilde{t} = 1.5 (48-96-128 x-y-z Directional Lines Respectively)

y ž	.00	.25	. 50	1.00	1.50	1.75	
.00	2.112	2.227	2.315	2.578	2.893	3.048	†
.60	2.197	2.322	2.415	2.638	2.952	3.107	7 - 00
.90	2,218	2.334	2.420	2.638	2.956	3.117	x = .00
1.50	2.249	2,323	2,402	2.631	2.945	3.125	₩
.00	1.252	1.354	1.552	2.014	2.453	2.660	Δ
.60	1.287	1.424	1,622	2,072	2.512	2.716	ī _ 00
.90	1.297	1.431	1.627	2.074	2,515	2.721	$\tilde{x} = .80$
1.50	1.313	1.411	1.591	2.029	2.471	2.686	•
.00	.000	.270	. 572	1.173	1.713	1.966	4
.60	.000	.288	.599	1,202	1.736	1.986	X = 1.60
.90	.000	.291	.604	1.206	1.739	1.986	X - 1.60
1.50	•000	.290	.589	1.179	1.716	1.965	♦
.00	.000	.139	.351	.868	1.372	1.620	A
.60	•000	.174	.384	.883	1.385	1.630	% = 2.0
.90	.000	.176	.388	.890	1.390	1.638	
1.50	•000	.167	.377	.881	1.380	1,626	•

Table 14. - Dimensionless z-Directional Diaplacements $\frac{Ew}{\sigma_{o}a}$ for a Rectangular Bar Under Uniform Tension Containing a Through-Thickness Central Crack. $\frac{\pi}{a}$ = 1.0, $\frac{\pi}{b}$ = 2.0, $\frac{\pi}{b}$ = 1.75, $\frac{\pi}{b}$ = 1.5 (48-96-128 x-y-z Directional Lines Respectively)

	,	.00	. 30	.60	.90	1.20	1.50	
	.00	.000	008	034	053	041	.025	4
	.80	.000	054	-,128	205	266	267	
1.60		.000	105	225	355	492	-,628	9 = 0.0
	2.00	.000	119	237	356	-,465	554	1 ♦
Ī	.00	.000	048	094	134	167	-,194	4
	.80	.000	078	-,156	234	309	377	
1.60	.000	110	223	340	458	657	9 = .50	
T	2.00	.000	117	231	343	-,451	549	1 ♦
Γ	.00	.000	080	160	241	324	408	1
	. 80	.000	093	185	278	374	-,472	
,	1.60	.000	109	218	328	436	543	9 = 1.0
2	.00	.000	114	226	335	440	-,544	1 ↓
	.00	.000	117	224	334	-,461	614	A
	. 80	.000	-,116	-,218	319	429	558	
1.	60	.000	113	219	321	-,422	-,526	9 = 1.75
• (00	.000	116	224	327	427	526	1 ↓

minutes while for the 48 x 96 x 128 grid it was about 50 minutes. The number of iterations for these problems was 28 and 29 respectively. The largest element of the error matrix was 0001 in the y direction at the end of the bar when the matrix functions associated with the larger grid were calculated. A convergence criterion of 10^{-6} was applied to all three displacements in calculating the successive approximations.

The dimensionless crack opening displacements are shown in Figure 19. Inspection of Figures 19(a) and 19(b) shows that the finite difference approximations have been sufficiently refined when the results of the 48 x 96 x 128 grid were calculated. An approximate 15% change in \tilde{h}_{v} , 17% change in \tilde{h}_{v} and a 25% in \tilde{h}_z resulted in a maximum of 1.5% change in the crack opening displacement. Figure 19(a) also shows the results of the plane elasticity solutions obtained by Mendelson (43) for the problem shown. The plane stress solution gives the highest crack opening displacement while the plane strain solution is very close to the curve obtained at the center of the bar. Values at \tilde{z} = .9 and \tilde{z} = 1.5 are between the two plane solutions as can be expected. The shapes of the obtained curves are all elliptical which can be easily shown by plotting the equation of an ellipse with the coordinate intercepts as the major and minor axes. Note that the maximum change in the crack opening is about 6.5% across the given thickness.

A plot of the bar end extension is shown in Figure 20. This displacement is maximum at the center of the bar with the variation in the \tilde{z} direction being less pronounced than in the crack plane. Because the center of the bar is more constrained, the y-directional displacements are maximum on the surface of the bar in both Figures 19 and 20. Figure 21 shows the variation of the crack opening displacements across the thickness of the bar.

Near the crack edge, that is at $\tilde{x} = .932$, the displacement curve is almost a constant while at $\tilde{x} = 0$ the changes in the z direction are most rapid for $0 \le z \le .5$. Similar conclusion is possible from Figure 19(a) where the curves at $\tilde{z} = .9$ and $\tilde{z} = 1.5$ are very close to each other.

Figure 22 contains a plot of the stress distribution normal to the crack plane as a function of both bar width and thickness. Figure 22(a) shows the same general stress distribution as Figure 12, indicating that the normal stress is singular, as expected, at the crack edge. However, the resolution of our grid near the crack is not sufficient to establish an inverse square root singularity. Inspection of these curves shows that the stress is highest near the center of the bar and it rapidly approaches the applied stress for values of $\tilde{x} > 1.5$. Figure 22(b) shows that the variation in the \tilde{z} direction is largest near the crack edge and as \tilde{x} increases, the stress curves become more constant. Note that the stress at $\tilde{x} = 1.066$

indicates a central region of uniform stress for $0 < \tilde{z} < 1.1$ and a boundary region of $1.1 < \tilde{z} < 1.5$ where the stress drops significantly to the surface value. Similar results were obtained by Cruse and Van Buren (25) for a single edge crack bar specimen.

Figures 23 describe the σ_z stress distribution in the crack plane. The results of Figure 23(a) indicate that this normal stress is also singular near the crack edge and its value approaches zero with increasing ž. This is expected since at $\tilde{z} = 1.5$, the surface is free of this normal stress. Note that for $\tilde{z} = 1.2$, the stress becomes zero at $\tilde{x} = 1.6$ indicating that this normal stress also vanishes on part of the $\tilde{x} = 2.0$ face. This result seems consistent since the stress field is expected to be three-dimensional in the vicinity of the crack and approach the crack-free bar solution at locations far from the crack. Figure 23(b) shows this σ_2 normal stress mainly as a function of the thickness variable, Z. An unexpected increase in this stress near the center of the bar can be noticed from the results shown. This sudden increase in σ_z appears to be the result of the way this stress increases as x approaches the crack edge ($\tilde{x} = 1.0$). Note that the variation across the thickness in σ_z is more continuous than in Figure 22(b) with no noticeable central or boundary region shown. However, the curve X = 1.066 seems to indicate that as the crack edge is being

approached, most of the variation will occur near the surface of the bar.

Figures 24 show the σ_{ν} normal stress distribution in the crack plane as a function of both $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{z}}$. Figure 24(a) indicates that this stress is also singular at the crack edge and it is maximum near the center of the bar. Results in this figure also show that σ_{x} is zero only on the face $\tilde{x} = 2.0$ and has a given, non-zero value everywhere on the face $\tilde{z} = 1.5$. This is contrary to the results shown in Figure 23 for σ_z and as a consequence the sudden increase in $\sigma_{\mathbf{x}}$ near the center of the bar has not been obtained in Figure 24(b). Figure 24(b) shows a central region of uniform stress and a boundary layer through which the stress decreases to the surface values. Note that the variation in $\sigma_{_{\mathbf{X}}}$ across the thickness decreases as $\tilde{\mathbf{x}}$ increases and approaches a constant value of zero at $\tilde{x} = 2.0$. Figure 24(a) also indicates that the value of σ_{x} remains essentially constant for 1.2 < \tilde{x} < 1.35. This constant σ_{x} stress is different, of course, as 2 increases from zero to 1.5.

The results in Figures 19 through 24 cannot be checked against known data but the crack opening displacements of Figure 19 indicate reliability of the reported stress and displacement distributions. Limited results reported in (25) agree with some of our conclusions regarding the normal stress

distributions but a detailed comparison between results is not possible because of the problems treated.

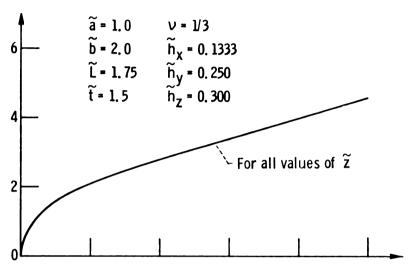
Figure 25 shows the calculation of the opening mode stress intensity factor from the plane strain crack opening displacement. In terms of the ordinate intercept, the stress intensity factor is given by $K_{I} = INTERCEPT \cdot (.704) \sigma_{o} \sqrt{a}$. Using the extrapolated values in Figure 25, the stress intensity factors K_T for selected values of \tilde{z} were calculated. A plot of these stress intensity factors as a function of 2 is shown in Figure 26. Since the stress intensity factor is proportional to the crack opening displacement, the value of $\ensuremath{\mbox{K}_{T}}$ from the plane strain definition is maximum at the surface and minimum near the center. Similar results were obtained in reference (25) for a single edge crack specimen where it was shown that as plane stress conditions are approached, the stress intensity factor increases. Srawley and Brown (5) have also found that the plane strain fracture toughness, which is directly related to the stress intensity factor, is considerably less than the plane stress fracture toughness.

Figure 19(a) shows that at the center of the bar plane strain conditions exist while at the surface 2 = 1.5, the crack opening is about half-way between the plane strain and plane stress solutions. Since the plane stress crack opening is about 12.5% higher than the plane strain crack displacement, it

is proposed that equation (3.115) be revised as follows:

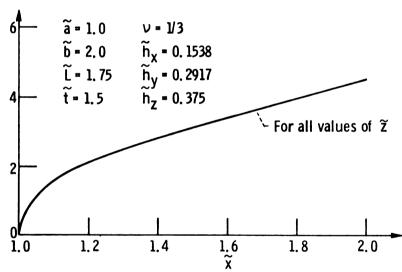
$$v \Big|_{\substack{y=0\\z=1.5a}} = 1.0625 \left[\frac{2(1-\nu)}{G} K_{I} \sqrt{\frac{R}{2\pi}} \right]$$
 (4.2)

Equation (4.2) will now be used to predict the corrected value of K_{I} at z = 1.5. A similar corrected plane strain crack opening displacement equation may be written for each position along the \tilde{z} axis and a continuously corrected value of K_T can be calculated. Figure 26 also shows a plot of this corrected stress intensity factor. The value of this corrected stress intensity factor is a constant across the thickness which then agrees with the fact that plane stress and plane strain stress intensity factors are equal. Figure 26 shows that this corrected value of $K_{\rm I}$ is 2.37 $\sigma_{\rm O}\sqrt{a}$. In reference (2), Brown and Srawley report a plane elasticity stress intensity factor of 2.11 $\sigma_0 \sqrt{a}$ for a bar having an identical width and half crack length. Note that the result of Figure 26 is about 12 percent higher than this value which must be attributed to the finite length and thickness of the bar in Figure 2. The solution in reference (2), of course, is for a bar with infinite length and thickness.


Tables 12 through 14 show selected results from the displacements obtained in the computations. The y-directional displacements are all extensional while in the z-direction only

contraction is possible. A somewhat unexpected result is obtained in Table 12, which indicates that parts of the bar contract while other parts expand in the x-direction.

4,5 Bar With Through-Thickness Double Edge Cracks


Selected results for the problem of Figure 3 are presented in Figures 27 through 34 and Tables 15 through 17. These results were obtained with two different sets of lines along the coordinate axes which were identical to the two sets used for the problem of Section 4.4. The convergence criteria and error matrix elements were also the same as those for the central crack problem. However, the number of required iterations increased greatly with the fine grid using 60 iterations while the more coarse grid requiring 48 successive calculations. As a result, the execution time for the finer, 48 x 96 x 128 line grid problem was about 80 minutes.

The dimensionless crack opening displacements are plotted in Figure 27. Comparison of Figures 27(a) and 27(b) shows that the finite difference approximations have sufficiently converged when the 48 x 96 x 128 line grid was used in the final calculations. Contrary to the central crack problem, the crack opening displacements in Figure 27 are independent of the Z coordinate. Similar results were obtained by Cruse and Van Buren (25) for the single edge crack bar specimen. One must also note that for this problem the crack opening curve is no longer elliptical

 $\frac{E^{V}|\widetilde{y}=0}{\sigma_{0}^{a}}$

(a) Dimensionless crack opening displacement (48x96x128 grid).

(b) Dimensionless crack opening displacement (35x70x98 grid).

Figure 27. - Dimensionless crack opening displacement for a rectangular bar under uniform tension containing throughthickness double edge cracks.

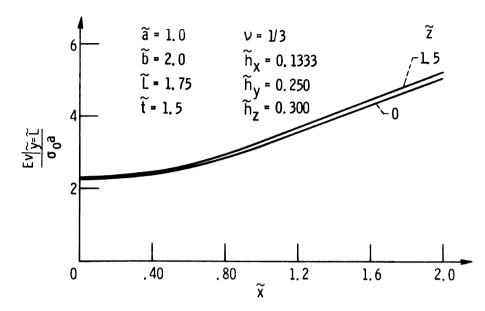


Figure 28. - Dimensionless bar end extension for a rectangular bar under uniform tension containing throughthickness double edge cracks.

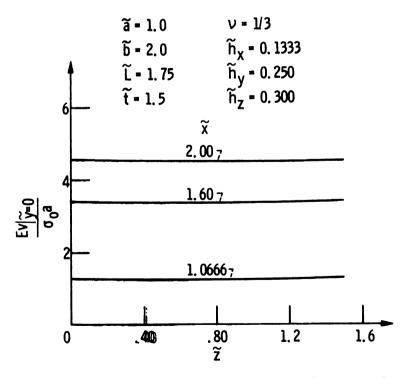
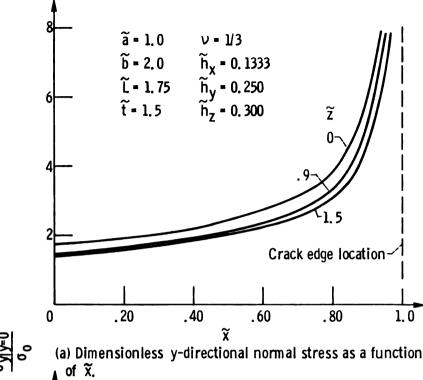
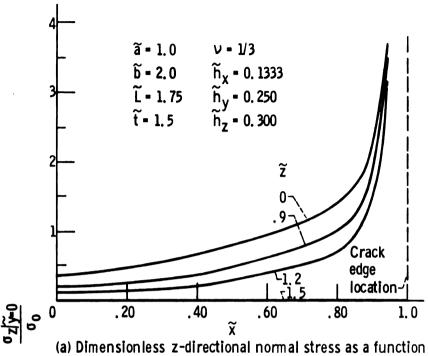
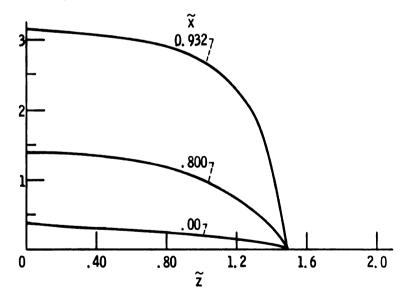
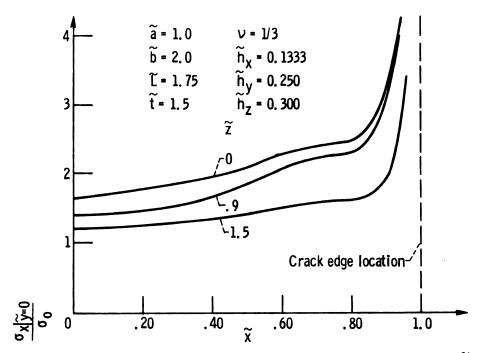




Figure 2%. - Dimensionless normal displacement distribution in the crack plane for a rectangular bar under uniform tension containing through-thickness double edge cracks.

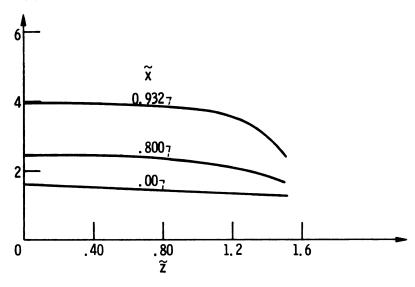


(b) Dimensionless y-directional normal stress as a function of \tilde{z} .

Figure 30. - Dimensionless y-directional normal stress distribution in the crack plane for a rectangular bar under uniform tension containing through-thickness double edge cracks.



(a) Dimensionless z-directional normal stress as a function of x.



(b) Dimensionless z-directional normal stress as a function of z.

Figure 31. - Dimensionless z-directional normal stress distribution in the crack plane for a rectangular bar under uniform tension containing through-thickness double edge cracks.

(a) Dimensionless x-directional normal stress as a function of \tilde{x} .

(b) Dimensionless x-directional normal stress as a function of \tilde{z} .

Figure 32. - Dimensionless x-directional normal stress distribution in the crack plane for a rectangular bar under uniform tension containing through-thickness double edge cracks.

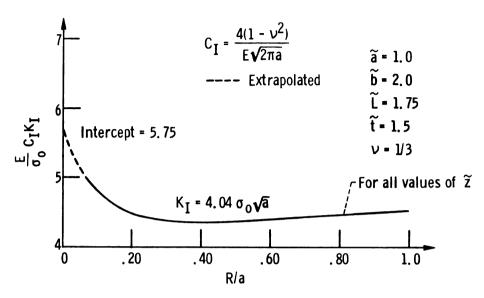


Figure 33. - Calculation of the stress intensity factors $\, K_{I} \,$ for a rectangular bar under uniform tension containing throughthickness double edge cracks.

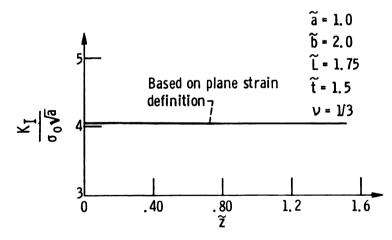


Figure 34. - Variation of the stress intensity factor K_{I} across the thickness for a rectangular bar under uniform tension containing through-thickness double edge cracks.

Table 15. - Dimensionless x-Directional Displacements $\frac{E}{\sigma_0} \frac{u}{a}$ for a Rectangular Bar Under Uniform Tension Containing Through-Thickness Double Edge Cracks. $\frac{a}{a} = 1.0$, $\frac{a}{b} = 2.0$, $\frac{a}{b} = 1.75$, $\frac{a}{b} = 1.5$ (48-96-128 x-y-z Directional Lines Respectively)

9	0.0	.40	.80	1.20	1.60	2.00	
0.0	.000	.389	.817	1.092	1.218	1,268	•
. 50	.000	.054	018	128	082	054	1
1.00	.000	224	478	700	852	946	2 .00
1.75	.000	646	-1.231	-1.688	-1.989	-2.181	→
0.0	.000	.348	.784	1.078	1.152	1.169	A
, 50	.000	.030	060	187	158	133	
1.00	.000	256	537	784	924	999	½ = . 90
1.75	.000	683	-1.295	-1.766	-2.066	-2.261] ♦
0.0	.000	.292	.599	.831	.911	.941	A
,50	.000	028	196	374	- ,344	314	2 = 1.5
1.00	.000	293	616	892	-1.038	-1.113	
1.75	.000	693	-1.317	-1.801	-2.106	-2.291] ♦

Table 16. - Dimensionless y-Directional Displacements $\frac{Ev}{\sigma_0 a}$ for a Rectangular Bar Under Uniform Tension Containing Through-Thickness Double Edge Cracks. \tilde{a} = 1.0, \tilde{b} = 2.0, \tilde{L} = 1.75, \tilde{t} = 1.5 (48-96-128 x-y-z Directional Lines Respectively)

2 9	.00	.25	.50	1.00	1.50	1.75	
.00	.000	.258	.549	1.238	1.879	2.264	4
.60	.000	.222	.493	1.146	1.856	2.249	
.90	.000	.228	. 503	1.159	1.869	2.257	R = 0.0
1.50	.000	.248	.529	1.182	1.907	2.277	•
.00	.000	.588	1.081	1.916	2.474	2.850	•
.60	.000	.509	1.011	1.825	2.521	2,878	% = .80
.90	.000	.520	1.025	1.840	2.536	2.891	X 2 .80
1.50	.000	.601	1.086	1.874	2,587	2.931	•
.00	3.374	3.432	3.500	3.785	4.036	4.305	†
.60	3.369	3.393	3.442	3.698	8.131	4.387	% = 1.60
.90	3.370	3.390	3.440	3.700	4.139	4.403	1.00
1.50	3.412	3.460	3,497	3.721	4.161	4.428	•
.00	4.547	4.536	4.512	4.649	4.799	5.060	A
.60	4.515	4.498	4.463	4.546	4.938	5.186	% = 2.0
.90	4.512	4.491	4.453	4.538	4.941	5.198	
1.50	4.572	4.536	4.475	4.537	4.938	5.196	•

Table 17. - Dimensionless z-Directional Displacements $\frac{E_W}{\sigma_0 a}$ for a Rectangular Bar Under Uniform Tension Containing Through-Thickness Double Edge Cracks. \tilde{a} = 1.0, \tilde{b} = 2.0, \tilde{L} = 1.75, $\tilde{\tau}$ = 1.5 (48-96-128 x-y-z Directional Lines Respectively)

2 2	.00	.30	.60	.90	1.20	1.50	
.00	.000	228	436	647	871	-1.120	4
.80	.000	201	394	609	888	-1.288	
1.60	.000	100	179	238	274	293	y = 0.0
2.00	.000	059	102	123	123	119	
.00	.000	189	379	566	748	928	Δ
. 80	.000	167	337	513	702	888	1
1.60	.000	090	172	249	317	375	ŷ = .50
2.00	.000	052	110	164	205	219	
.00	.000	134	270	400	519	625	A
. 80	.000	118	241	363	479	584	3 - 3 0
1.60	.000	057	137	222	301	370	ÿ = 1.0
2.00	.000	038	097	165	231	287	•
.00	.000	095	188	267	315	308	٨
. 80	.000	097	186	264	323	343	8 - 3 75
1.60	.000	081	149	221	297	374	ÿ = 1.75
2.00	.000	067	123	190	270	361	•

and for $1.3 < \tilde{x} < 2.0$ the displacement curve is essentially a straight line. These results appear to be consistent since at the bar edge no constraints exist against this mode of deformation.

Figure 28 shows the dimensionless bar end extension. This extension is maximum, as expected, at the edge of the bar and it is also somewhat dependent on the \tilde{z} coordinate. The small variation in the \tilde{z} direction is the result of the uneven constraints developed in the central region of the bar, which in planes far from the crack spread over the entire cross section of the problem. As can be noted, this end extension is somewhat higher near the surface than at the center of the bar. Figure 29 shows the variation of the crack opening displacements across the thickness of the bar. As discussed previously, these curves also show constant displacements along the \tilde{z} axis.

Figure 30 contains a plot of the stress distribution normal to the crack plane. Inspection of these figures shows that this stress is maximum at the center of the bar and is singular near the crack edge. As previously mentioned, the type of singularity is difficult to establish but the shape of these curves is similar to that obtained in the other examples. The minimum value of this stress occurs at $\tilde{\mathbf{x}} = 0$ but even at this point the stress is at least 40% higher than the applied stress. Figure 30(b) shows that the variation in the $\tilde{\mathbf{z}}$ direction is

largest near the crack edge and becomes more gradual with decreasing values of $\tilde{\mathbf{x}}$. Note that the stress near the crack edge again indicates a central region of approximately uniform stress and a boundary region beyond $\tilde{\mathbf{z}} = 1.1$ where the stress drops significantly to the surface values. This agrees with the results obtained for the central crack problem.

Figures 31 describe the dimensionless σ_Z stress distribution in the crack plane. The results of Figure 31 are very similar to those shown in Figure 23 for the central crack problem with one major difference. Figure 31(a) indicates that for all values of $\tilde{\mathbf{x}}$ this stress has a given, non-zero value and it vanishes only on the surface $\tilde{\mathbf{z}}=1.5$. This result, of course, follows from the relationship between the crack and bar widths for the problem described in Figure 3. The singular nature of this stress near the crack edge is evident from Figure 31(a). The variation of σ_Z across the thickness is shown in Figure 31(b). Note that the curve near the crack edge, that is at $\tilde{\mathbf{x}}=.932$, begins to display an internal region of uniform stress and a boundary region with significant variation. The variation across the thickness becomes more gradual as the value of $\tilde{\mathbf{x}}$ decreases.

Figures 32 contain the $\sigma_{\rm X}$ normal stress distribution in the crack plane as a function of both bar width and thickness. Figure 32(a) shows that this stress is also maximum at the center

of the bar and is singular near the crack edge. The constant value of this stress just outside the crack edge vicinity is similar to the results obtained for the central crack problem. Figures 32 also indicate that this normal stress is greater than the applied stress at all points in the central portion of the problem. Figure 32(b) displays the $\sigma_{\rm X}$ stress distribution across the thickness of the bar. Note the central region of uniform stress and a boundary region with significant stress variation. As the value of $\tilde{\rm X}$ decreases, the stress distribution in the $\tilde{\rm Z}$ direction becomes a constant. This is expected since far from the crack edge, the stress field should approach a one-dimensional state of stress.

Figure 33 shows the calculation of the opening mode stress intensity factor from the plane strain crack opening displacement. Since the obtained displacements are independent of the \tilde{z} coordinate, the stress intensity factor shown is a constant across the thickness of the bar. In addition, note that the continuous correction for the changing conditions from plane strain to plane stress, as applied to the central crack problem, has no meaning for the crack opening displacement of Figure 27. As a consequence, Figures 33 and 34 each contain only a single curve. The results of Figure 33 lead to a stress intensity factor of 4.04 $\sigma_{\rm o}$ $\sqrt{\rm a}$. Brown and Srawley in reference (2) report a plane elasticity stress intensity factor of 2.05 $\sigma_{\rm o}$ $\sqrt{\rm a}$

which is lower than that reported for the central crack problem. In view of the fact that the crack opening displacements and normal stress distributions at corresponding locations are considerably higher for the double edge crack problem than for the central crack problem, the value of $4.04~\sigma_0\sqrt{a}$ seems to be the more realistic solution for this stress intensity factor.

Tables 15 through 17 show selected values of the displacements obtained in the computations. Table 15 shows that in the crack plane, the x-directional displacements are outward while in the other planes along the y-axis they are inward. Table 16 shows that all the y-directional displacements are extensional and that the crack opening displacement is essentially constant across the thickness. Table 17 shows that in the z-direction only contraction is possible which is maximum on the surface of the bar.

CHAPTER 5

SUMMARY AND CONCLUSIONS

The line method of analysis was investigated for the solution of coupled partial differential equations which were subject to coupled and mixed boundary conditions. The use of this method was illustrated by solving the Navier-Cauchy equations of elastic equilibrium for a number of mixed boundary value problems in three-dimensional elasticity. Problems in both rectangular Cartesian and cylindrical coordinates were investigated.

The application of the line method to the Navier-Cauchy equations in Cartesian coordinates led to coupled sets of ordinary differential equations with constant coefficients. In cylindrical coordinates, this same solution technique results in coupled sets of ordinary differential equations, some of which have variable coefficients. Analytical methods, in conjunction with a successive approximation procedure, were used to obtain the solution of these resulting ordinary differential equations.

One advantage of solving directly for displacements in solids containing geometric singularities is that the displacements are not singular. In addition, stresses are expressed in terms of first order partial derivatives only, which minimizes

inherent inaccuracy in higher order numerical differentiation. It is for this reason, that numerical solution of displacement potentials or the Galerkin vector should be avoided since the stresses are expressed as second and third derivatives of these quantities respectively. The advantage of the line method over other numerical solutions is that it minimizes the required numerical differentiations and thus, it may be considered as a semi-analytical approach to the solution of a problem.

Stress and displacement distributions were calculated in two rectangular bars, one of which contained a through-thickness central crack while the other had double edge cracks. The need for these specific solutions has existed for a number of years in fracture toughness testing. As expected, the results of the central crack problem indicate that near the center of the given geometry solid, the conditions are approximately in a state of plane strain. As one proceeds from the center of the bar to its surface in the thickness direction, plane stress conditions are approached. Hence, displacements are maximum near the surface of the bar while normal stresses are maximum near its center. The singular nature of the normal stresses near the crack edge was established and three-dimensional stress and displacement distributions were successfully calculated. An equivalent plane strain stress intensity factor for three-dimensional problems was introduced. Similar results are reported for a double edge crack bar

which indicate that changes along the thickness direction in the displacements parallel to the applied load are less significant. The calculated normal stress distributions, however, led to identical conclusions in this case as for the central crack problem.

Solutions in cylindrical coordinates were obtained for an annular plate containing internal surface cracks. The axisymmetric problem of a solid cylinder with a penny shaped crack was used to check the convergence and accuracy of this method. Results with good accuracy were obtained even from the use of a relatively coarse grid. The stress and displacement solutions of the above examples show that the method of lines provides a simple and systematic approach to the solution of some three-dimensional, mixed boundary value, elasticity problems.

At this time, some improvement in the solution techniques and the use of the computer for Cartesian coordinate problems may be indicated. Since the resulting ordinary differential equations are readily solved by the normal mode method, the numerical computations may be minimized by performing the successive approximation calculations in principal coordinates. Manipulations of diagonalized matrices should minimize both the round-off and inherent error which necessarily arise in all numerical computations. In addition, considerable savings in the cost of the required computer time will be possible.

LIST OF REFERENCES

- Srawley, J. E. and Esgar, J. B.: Investigation of Hydrotest Failure of Thiokol Chemical Corporation 260 Inch Diameter SL-1 Motor Case, Technical Memorandum, NASA TMX-1194, January 1966.
- Brown, W. F., Jr. and Srawley, J. E.: Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM Special Technical Publication No. 410, 1966.
- 3. Ludwig, P. and Scheu, R.: Stahl u. Eisen. 43, 999, 1923.
- 4. Lur'e, A. I.: Three-Dimensional Problems of the Theory of Elasticity. Interscience Publishers, 1964.
- 5. Paris, P. C. and Sih, G. C.: Stress Analysis of Cracks, Fracture Toughness Testing and Its Applications. STP No. 381, ASTM, pp. 30-81, 1965.
- 6. Irwin, G. R.: Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. J. of App. Mech., 1957.
- 7. Sack, R. A.: Extension of Griffith's Theory of Rupture to Three Dimensions. Proc. Phys. Soc. (London), 58, pp. 729-736, 1946.
- Sneddon, I. N.: The Distribution of Stress in the Neighborhood of a Crack in an Elastic Solid. Proc. Roy. Soc. A-187, pp. 229-260, 1946.
- 9. Sadowsky, M. A. and Sternberg, E.: Three Dimensional Solution for a Stress Concentration Around a Circular Hole in a Plate of Arbitrary Thickness, J. of Appl. Mech., 16, 149, 1949.
- 10. Green, A. E. and Sneddon, I. N.: The Distribution of Stress in the Neighborhood of a Flat Elliptical Crack in an Elastic Solid. Proc. Cambridge Phil. Soc., 46, 159, 1950.

- 11. Smith, F. W.: Stresses Near a Semi-Circular Edge Crack.
 Ph.D. Dissertation, University of Washington, 1966.
- 12. Alavi, M. J.: Stresses Near a Circular Crack in a Half Space. Ph.D. Dissertation, Colorado State University, 1968.
- 13. Kassir, M. K. and Sih, G. C.: Three Dimensional Stress
 Distribution Around an Elliptical Crack Under Arbitrary
 Loadings. J. of Appl. Mech., Transactions of ASME,
 Sept. 1966.
- 14. Kassir, M. K. and Sih, G. C.: Geometric Discontinuities in Elastostatics. J. of Math., Vol. 16, No. 9, 1967.
- 15. Segedin, C. M.: Some Three-Dimensional Mixed Boundary Value Problems in Elasticity. Department of Aeronautics and Astronautics, University of Washington, June 1967.
- 16. Shah, R. C.: Stresses and Stress Intensity Factor for Embedded Hyperbolic and Parabolic Cracks. Ph.D. Thesis, University of Washington, 1966.
- 17. Hartranft, R. J. and Sih, G. C.: The Use of Eigenfunction Expansions in the General Solution of Three Dimensional Crack Problems. J. Math. Mech., 19, 123, 1969.
- 18. Irwin, G. R.: Crack Extension Force for a Part Through Crack in a Plate. J. of Appl. Mech., December 1962.
- 19. Orange, T. W., Sullivan, T. L. and Calfo, D. F.: Fracture of Thin Sections Containing Through and Part-Through Cracks. NASA TM X-52794, 1970.
- 20. Kuhn, P.: Residual Tensile Strength in the Presence of Through Cracks or Surface Cracks. NASA TN D-5432, 1970.
- 21. Hartranft, R. J. and Sih, G. C.: An Approximate Three-Dimensional Theory of Plates with Application to Crack Problems. Technical Report No. 7, Lehigh University Institute of Research, May 1968.
- 22. Sih, G. C. and Hartranft, R. J.: Variations of Strain Energy Release Rate with Plate Thickness. NASA Grant NGR-39-007-025, to be published in Int. Journ. of Fract. Mech., 1972.

- 23. Sih, G. H., Williams, M. L. and Swedlow, J. L.: Three-Dimensional Stress Distribution Near a Sharp Crack in a Plate of Finite Thickness. California Institute of Technology, Technical Report AFML-TR-66-242, November 1966.
- 24. Walker, Jr., G. E.: A Study of the Applicability of the Method of Potential to Inclusions of Various Shapes in Two and Three-Dimensional Elastic and Thermo-Elastic Stress Fields. Ph.D. Dissertation, University of Washington, 1969.
- 25. Cruse, T. A., Van Buren, W.: Three-Dimensional Elastic Stress Analysis of a Fracture Specimen with an Edge Crack. Carnegie-Mellon University, Department of Mechanical Engineering, Report SM-21, January 1970.
- 26. Ayres, D. J.: A Numerical Procedure for Calculating Stress and Deformation Near a Slit in a Three-Dimensional Elastic-Plastic Solid. NASA TM X-52440, June 1968.
- 27. Gallagher, R. H., Padlog, J. and Bijlaard, P. P.: Stress Analysis of Heated Complex Shapes. J. Am. Rocket Soc., 32, pp. 700-707, 1962.
- 28. Zienkiewicz, O. C., Irons, B. M., Ergatoudis, J., Ahmad, S. and Scott, F. C.: Iso-Parametric and Associated Element Families for Two- and Three-Dimensional Analysis, Finite Element Methods in Stress Analysis. Tapir, Technical University of Norway, Trondheim, 1969.
- 29. Mikhlin, S. G. and Smolitskiy, K. L.: Approximate Methods for Solution of Differential and Integral Equations.

 American Elsevier Publishing Company Inc., New York, 1967.
- 30. Faddeva, V. N.: The Method of Lines Applicable to Some Boundary Problems. Akademia Nauk SSR. Matematicheski Institut im V. A. Sleklova, V. 28, 1949.
- 31. Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York, 1962.
- 32. Irobe, M.: Method of Numerical Analysis for Three-Dimensional Elastic Problems. Japan National Congress of Applied Mechanics, 16th, University of Tokyo, October 19, 1966, Proceedings. Central Scientific Publishers, Tokyo, pp. 1-7, 1968.

- 33. Carnahan, B., Luther, H. A. and Wilkes, J. O.: Applied Numerical Methods. John Wiley and Sons, Inc., 1969.
- 34. Frazer, R. A., Duncan, W. J. and Collar, A. R.: Elementary Matrices and Some Applications to Dynamics and Differential Equations. Cambridge at the University Press, 1963.
- 35. Frame, J. S.: Matrix Functions and Applications. IEEE Spectrum, March-July 1964.
- 36. Frame, J. S. and Needler, M. A.: State and Covariance Extrapolation from the State Transition Matrix. Proceed the IEEE, Vol. 59, No. 2, February 1971.
- 37. Halmos, P. R.: Finite Dimensional Vector Spaces. Van Nostrand, Princeton, 1958.
- 38. Rutishauser, H.: Solution of Eigenvalue Problems with the LR-Transformation. National Bureau of Standards, Appl. Math. Series, 49, pp. 47-81, 1958.
- 39. Doust, A. and Price, V. E.: The Latent Roots and Vectors of a Singular Matrix. The Computer Journal, A Publication of the British Computer Society, Vol. 7, No. 3, pp. 222-227, 1964.
- 40. Wylie, C. R. Jr.: Advanced Engineering Mathematics. McGraw-Hill Book Company, Inc., Second Edition, 1960.
- 41. Hildebrand, F. B.: Advanced Calculus for Engineers.
 Prentice-Hall, Inc., Eighth Printing, 1958.
- 42. Sneddon, I. N.: Crack Problems in the Mathematical Theory of Elasticity. North Carolina State College, Department of Mathematics and Engineering Research, Raleigh, 1961.
- 43. Mendelson, A., Gross, B. and Srawley, J. E.: Evaluation of the Use of a Singularity Element in Finite-Element Analysis of Center-Cracked Plates. NASA Technical Note E-6680, 1972.
- 44. Lancaster, P.: Theory of Matrices. Academic Press, 1969.
- 45. Scheid, F.: Theory and Problems of Numerical Analysis.
 Schaum's Outline Series, McGraw-Hill Book Company, 1968.
- 46. Harris, D. L.: Numerical Methods Using FORTRAN. Charles E. Merrill Books, Inc., Columbus, Ohio, 1964.

APPENDIX A

EVALUATION OF THE COEFFICIENT

MATRIX EIGENVALUES AND EIGENVECTORS

A close investigation of equation (2.32) shows that the coefficient matrix $[K_X]$ can be decomposed into component $\ell \times \ell$ matrices having the following tri-diagonal format:

2	-2					_	
-1	2	-1					
	-1	2	-1				
		\	\	\			(4.3)
			\		//		(A.1)
				-1	2	-1	
					-2	2	
L			ı M×M	I	1	_	

It is a simple matter then to find the eigenvalues and eigenvectors of this type of matrix. Noting that in equation (2.32) we have NZ rows of submatrices each of order NY, we express the coefficient matrix as

$$[K_{x}] = k_{2} [I_{1}] \otimes [K_{1}] + k_{3} [K_{2}] \otimes [I_{2}]$$

$$(A.2)$$

$$k_{x} = k_{2} [I_{1}] \otimes [K_{1}] + k_{3} [K_{2}] \otimes [I_{2}]$$

$$NZ_{x}NZ = NZ_{x}NZ = NZ_{x}NZ = NZ_{x}NZ$$

where \bigotimes denotes the Kroenecker product of two matrices (37). Matrices $[K_1]$ and $[K_2]$ have the desired form of (A.1) but are of different order. Associated with the matrices $[K_1]$ and $[K_2]$ are the following two eigenvalue problems:

$$[K_1] \{X1\} = \mu\{X1\}$$
 (A.3)

NYXNY NYX1 NYX1

$$[K_2]$$
 {X2} = δ {X2} (A.4)
NZxNZ NZxl NZxl

where μ_j , $j=1,2,\ldots$, NY denote the eigenvalues of $[K_1]$ and δ_i , $i=1,2,\ldots$, NZ represent the eigenvalues of $[K_2]$. The original eigenvalue problem associated with the coefficient matrix $[K_x]$ can be written as

$$\begin{bmatrix} K_{\mathbf{x}} \end{bmatrix} \quad \{X3\} \quad = \quad \overline{\lambda}\{X3\}$$

$$\mathbb{L} \times \mathbb{L} \quad \mathbb{L} \times \mathbb{L}$$

$$\mathbb{L} \times \mathbb{L} \quad \mathbb{L} \times \mathbb{L}$$

After some matrix manipulations involving Kroenecker products (37), it can be shown that the eigenvalues $\bar{\lambda}_{1\hat{1}}$ and the corresponding matrix of eigenvectors $\{X3\}^{\hat{1}\hat{1}}$ can be expressed in terms of the component matrix eigenvalues and eigenvectors. The

results of these manipulations are

$$\overline{\lambda}_{ij} = k_3 \delta_i + k_2 \mu_j \tag{A.6}$$

where $i = 1, 2, \ldots, NZ$ and $j = 1, 2, \ldots, NY$. Equations (A.6) and (A.7) reduce the problem of (A.5) to that of finding the eigenvalues and eigenvectors of (A.1).

The eigenvalues of the tri-diagonal matrix (A.1) can be obtained by using difference equation theory. Let us consider the case when the eigenvalues are denoted as μ_j . Then the j^{th} difference equation can be written as

$$x_{j+1} + (\mu-2)x_j + x_{j-1} = 0$$
 (A.8)

We define $2p = \mu-2$, where by Gersgorin theorem on bounds of eigenvalues (44), we must have $|p| \le 1$. Equation (A.8) can now be written as a linear, second order difference equation with constant coefficients, that is

$$x_{j-1} + 2\rho x_j + x_{j+1} = 0$$
 (A.9)

Following standard solution techniques (45), we assume that

$$x_{j} = \alpha^{j}$$
 (A.10)

Substituting equation (A.10) into equation (A.9) and noting that $|\rho| \le 1$ we find that the values of α are given by

$$\alpha_1 = \cos \phi + \overline{i} \sin \phi = e^{\overline{i}\phi}$$

$$\alpha_2 = \cos \phi - \overline{i} \sin \phi = e^{-\overline{i}\phi}$$

where

$$\cos \phi = -\rho$$

$$\pm i \sin \phi = \pm \sqrt{\rho^2 - 1}$$

$$i = \sqrt{-1}$$

The solution of (A.9) can now be written as

$$x_{j} = A(e^{\overline{i}\phi})^{j} + B(e^{-\overline{i}\phi})^{j}$$
or
$$x_{j} = \overline{A} \cos j\phi + \overline{B} \overline{i} \sin j\phi$$
(A.11)

Constants A and B can be evaluated from the following boundary conditions:

$$x_0 = x_2$$
 $x_{M-1} = x_{M+1}$
(A.12)

where for the matrix $[K_1]$, M = NY. Applying equations (A.12) to equations (A.11) gives

$$[(e^{i\phi})^2 - 1]A + [(e^{-i\phi})^2 - 1]B = 0$$

$$(A.13)$$

$$(e^{i\phi})^{M-1}[(e^{i\phi})^2 - 1]A + (e^{-i\phi})^{M-1}[(e^{-i\phi})^2 - 1]B = 0$$

For a non-trivial solution of equations (A.13), the determinant of the coefficients must vanish. This condition leads to the following characteristic equation:

$$e^{(M-1)i\phi} - e^{-(M-1)i\phi} = 0$$
 (A.14)

which can be written as

$$\sin (M-1) \phi = 0$$
 (A.15)

Equation (A.15) will be satisfied if

$$\phi_n = \frac{n\pi}{M-1}$$
 where n = 0, 1, 2, ..., M-1

Using the definition of ρ and μ , the eigenvalues of matrix $[K_1]$ are given by

$$\mu_{j} = 2 \left[1 - \cos \left(\frac{j-1}{M-1} \right) \pi \right] \quad \text{where} \quad j = 1, 2, \dots, M \quad (A.16)$$

Similarly, the eigenvalues of $[K_2]$ become

$$\delta_{i} = 2 \left[1 - \cos \left(\frac{i-1}{M-1} \right) \right] \quad \text{where} \quad i = 1, 2, \ldots, M \quad (A.17)$$

The eigenvectors corresponding to equation (A.16) can be

found by substituting the eigenvalues back into (A.11) and using boundary conditions (A.12). For the n^{th} eigenvalue we have

$$x_{j}^{(n)} = \overline{A}^{(n)} \cos j \frac{n\pi}{M-1} + \overline{B}^{(n)} \overline{i} \sin j \frac{n\pi}{M-1}$$
for $n = 0, 1, \dots, M-1$

Enforcing the condition of $x_0^{(n)} = x_2^{(n)}$ yields

$$\overline{B}(n) = \frac{\left(1 - \cos\frac{2n\pi}{M-1}\right)\overline{A}(n)}{\overline{1}\sin\frac{2n\pi}{M-1}}$$

Since equations (A.13) are linearly dependent, we may select a convenient value for $\overline{A}^{(n)}$. Let us take $\overline{A}^{(n)}$ as

$$\overline{A}^{(n)} = \cos \frac{n\pi}{M-1}$$

Then the nth eigenvector is given by

$$x_j^{(n)} = \cos \frac{(j-1)n\pi}{M-1}$$
 $j = 1, 2, ..., M$ $n = 0, 1, 2, ..., M-1$

and the elements of eigenvectors $\{Xl\}^j$, corresponding to the eigenvalues μ_j , in equation (A.3) can be written as

$$[P_{1_{sj}}] = \{X1\}_{s}^{j} = \left[\cos\frac{(s-1)(j-1)}{NY-1}\pi\right] s = j = 1, 2, ..., NY$$
(A.18)

Similarly, we find that

$$[P_{2_{ri}}] = \{X2\}_{r}^{i} = \left[\cos \frac{(r-1)(i-1)}{NZ-1} \pi\right]$$

$$r = i = 1, 2, \dots, NZ \quad (A.19)$$

Substituting equations (A.16) and (A.17) into equation (A.6) yields for the eigenvalues of $[K_x]$ the following:

$$\overline{\lambda}_{13} = 2k_3 \left[1 - \cos \left(\frac{1-1}{NZ-1} \right) \pi \right] + 2k_2 \left[1 - \cos \left(\frac{1-1}{NY-1} \right) \pi \right]$$
 (A.20)

where i = 1, 2, ..., NZ and j = 1, 2, ..., NY.

Note that the smallest eigenvalue is zero while the largest eigenvalue is $(4k_2 + 4k_3)$. The zero eigenvalue is consistent with the inherent singular character of the coefficient matrices obtained.

The modal matrices of $[K_1]$ and $[K_2]$, denoted by $[P_1]$ and $[P_2]$ respectively, are constructed next according to equations (A.18) and (A.19). Since the matrix in (A.1) is non-symmetric, the eigenvectors (A.18) or (A.19) are not orthogonal. The modal matrix of the scallingent matrix $[K_X]$ is given by the Kroenecker product of the component modal matrices. Thus, from equation (A.7) we have

$$[P] = [P_2] \otimes [P_1]$$

$$\ell \times \ell \qquad NZ \times NZ \qquad NY \times NY$$
(A.21)

The similarity transformations, diagonalizing the submatrices $[K_1]$ and $[K_2]$, can be written as

$$[K_1][P_1] = [P_1][\Lambda_1]$$
 (A.22)

NYXNY NYXNY NYXNY

$$[K_2][P_2] = [P_2][\Lambda_2]$$

$$NZ \times NZ \times NZ \times NZ \times NZ \times NZ$$

$$(A.23)$$

where $[\Lambda_1]$ and $[\Lambda_2]$ are diagonal matrices having the eigenvalues of $[K_1]$ and $[K_2]$ as their elements. The similarity transformation of the matrix $[K_X]$, using the decomposition (A.2) and equation (A.21), gives

$$[K_{\mathbf{x}}]([P_2] \otimes [P_1]) = k_5([I_1] \otimes [K_1])([P_2] \otimes [P_1])$$

$$+ k_6([K_2] \otimes [I_2])([P_2] \otimes [P_1]) \qquad (A.24)$$

Following the matrix manipulations in (37), equation (A.24) can be reduced to the form shown below.

$$[K_{\mathbf{x}}][P] = [P][\Lambda] \qquad (A.25)$$

where the diagonalized form of $[K_x]$ is given by

$$[\Lambda] = k_2([I_2] \otimes [\Lambda_1]) + k_3([\Lambda_2] \otimes [I_1])$$
 (A.26)

The inverse of the modal matrix becomes

$$[P]^{-1} = [P_2]^{-1} \otimes [P_1]^{-1}$$
 (A.27)

Inspection of equations (A.22) and (A.23) shows that for an

accurate evaluation of the component diagonalized matrices, the closed form inverses of the modal matrices $[P_1]$ and $[P_2]$ are needed.

Let us consider then the inverse of, say modal matrix $[P_1]$, in detail. Since $[P_1]$ was obtained from the component matrix $[K_1]$, we shall construct a diagonal matrix $[D_1]$ that transforms the non-symmetric matrix $[K_1]$ into a symmetric matrix $[K_1]^S$. The form of this transformation is

$$[D_1]^{1/2} [K_1] ([D_1]^{1/2})^{-1} = [K_1]^s$$
 (A.28)

where by definition the square root of a diagonal matrix is also a diagonal matrix whose elements are the square roots of the elements in the original matrix. For the tri-diagonal matrix $[K_1]$, the diagonal matrix $[D_1]$ is of the form

$$\begin{bmatrix} 1/2 & & & & \\ & 1 & & & \\ & & 1 & & 0 & \\ & & & & \\ & & & & \\ & MxM & & & & \\ & & & & 1/2 \end{bmatrix}$$

$$(A.29)$$

$$MxM & & & M=NY$$

Equation (A.22) will not be changed if we write it as

$$[K_1](D_1]^{1/2})^{-1}[D_1]^{1/2}[P_1] = [P_1][\Lambda_1]$$
 (A.30)

Pre-multiplying equation (A.30) by $[D_1]^{1/2}$ gives

$$\left([D_1]^{1/2} [K_1] \left([D_1]^{1/2} \right)^{-1} \right) [D_1]^{1/2} [P_1]$$

=
$$[D_1]^{1/2}[P_1][\Lambda_1]$$

$$[K_1]^{s}([D_1]^{1/2}[P_1]) = ([D_1]^{1/2}[P_1])[\Lambda_1]$$
 (A.31)

Since $[K_1]^S$ is a symmetric matrix, the transformation of (A.31) is orthogonal and the columns of $([D_1]^{1/2}[P_1])$ must be orthogonal. For an orthogonal transformation, it is known that

$$([D_1]^{1/2}[P_1])^T ([D_1]^{1/2}[P_1]) = [D]$$
 (A.32)

where T denotes the transpose and [D] is diagonal. Since $[D_1]$ is a diagonal matrix, the first term in (A.32) can be written as

$$([D_1]^{1/2}[P_1])^T = [P_1]^T [D_1]^{1/2}$$
 (A.33)

Using equation (A.33) in equation (A.32) yields

$$[P_1]^T [D_1] [P_1] = [D]$$
 (A.34)

Pre-multiplying this equation by [D]⁻¹ gives

$$([D]^{-1}[P_1]^T[D_1])[P_1] = [I]$$
 (A.35)

from which we find that

$$[P_1]^{-1} = [D]^{-1} [P_1]^{T} [D_1]$$
 (A.36)

Equation (A.36) requires the inverse of an unknown matrix [D]. However, from equation (A.34) we can show that the matrix [D] always has the following form:

$$\begin{bmatrix} M-1 & & & & \\ & \frac{M-1}{2} & & 0 & & \\ & & & & \\ MxM & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

Comparing matrices (A.37) and (A.29) we can conclude that

$$[D] = \frac{M-1}{2} [D_1]^{-1}$$
(A.38)

Substituting this equation into equation (A.36) gives the final closed form inverse of $[P_1]$ as

$$[P_1]^{-1} = \frac{2}{M-1} [D_1] [P_1]^T [D_1]$$

MxM MxM MxM MxM

Similar equation is written for the inverse of the modal matrix $[P_2]$. With the closed form solution of the component modal matrices and their inverses, the diagonalized form of $[K_X]$ is

obtained from equation (A.26). The matrix functions $[A_{11}]$ and $[A_{12}]$ can now be evaluated as scalars and then re-transformed to full matrix forms according to the following similarity transformations:

$$[A_{11}] = [P] [A_{11}] [P]^{-1}$$
 (A.40)

$$[A_{12}] = [P] [A_{12}] [P]^{-1}$$
 (A.41)

APPENDIX B

FOURTH-ORDER RUNGE-KUTTA INTEGRATION FORMULAS

In Appendix B, we list the Runge-Kutta integration formulas which are used to solve the simultaneous first order matrix differential equations shown below:

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{r}} \left[\Omega_{11}\right] = \mathbf{r}\left[\Omega_{21}\right] = \left[f_1(\mathbf{r}, [\Omega_{21}])\right] \tag{B-1}$$

$$\frac{\mathrm{d}}{\mathrm{dr}} \left[\Omega_{21}\right] = \frac{1}{\mathrm{r}} \left[\Omega_{11}\right] \left[\mathrm{K}_{\mathrm{r}}\right] = \left[f_{2}(\mathrm{r}, \left[\Omega_{11}\right])\right] \tag{B.2}$$

The initial conditions for these equations are,

$$\left[\Omega_{11}(\mathbf{r}_{0})\right] = [I] \tag{B.3}$$

$$[\Omega_{21}(r_0)] = [0]$$
 (B.4)

A step-by-step procedure starting at r_0 is applied and the following formulas are used to predict values of the matrices along the independent variable axis (46):

$$[\Omega_{11}]_{n+1} = [\Omega_{11}]_n + \frac{h}{6} ([Q_{11}] + 2[Q_{12}] + 2[Q_{13}] + [Q_{14}])$$
(B.5)

$$[\Omega_{21}]_{n+1} = [\Omega_{21}]_n + \frac{h}{6} ([Q_{21}] + 2[Q_{22}] + 2[Q_{23}] + [Q_{24}])$$
(B.6)

where the approximate Runge-Kutta derivatives are

$$[Q_{11}] = [f_1(r_n, [\Omega_{21}]_n)]$$
 (B.7)

$$[Q_{12}] = [f_1(r_n + \frac{h}{2}, [\Omega_{11}]_n + \frac{h}{2}[Q_{11}], [\Omega_{21}]_n + \frac{h}{2}[Q_{21}])]$$
 (B.8)

$$[Q_{13}] = [f_1(r_n + \frac{h}{2}, [\Omega_{11}]_n + \frac{h}{2}[Q_{12}], [\Omega_{21}]_n + \frac{h}{2}[Q_{22}])]$$
 (B.9)

$$[Q_{14}] = [f_1(r_n + h, [\Omega_{11}]_n + h[Q_{13}], [\Omega_{21}]_n + h[Q_{23}])]$$
 (B.10)

$$[Q_{21}] = [f_2(r_n, [\Omega_{11}]_n)]$$
 (B.11)

$$[Q_{22}] = [f_2(r_n + \frac{h}{2}, [\Omega_{11}]_n + \frac{h}{2}[Q_{11}], [\Omega_{21}]_n + \frac{h}{2}[Q_{21}])]$$
 (B.12)

$$[Q_{23}] = [f_2(r_n + \frac{h}{2}, [\Omega_{11}]_n + \frac{h}{2}[Q_{12}], [\Omega_{21}]_n + \frac{h}{2}[Q_{22}])]$$
 (B.13)

$$[Q_{24}] = [f_2(r_n + h, [\Omega_{11}]_n + h[Q_{13}], [\Omega_{21}]_n + h[Q_{23}])]$$
 (B.14)

In the above formulas, h is the arbitrary integration increment and n denotes the instantaneous position along the path of integration.

APPENDIX C

Appendix C includes a copy of each of the computer programs prepared for the five numerical examples presented. Since the work was performed on an IBM-360 digital computer, the enclosed listings use Fortran IV algebraic type language. A brief description of the required inputs, subroutine functions and a short flow diagram for each problem is also given.

C.1 Solid Cylindrical Bar With a Penny Shaped Crack

A schematic representation of the main subroutines of the computer program is shown in Figure 35. The program is divided into five parts four of which are called from the main program. The main program is denoted as S5 while the subroutines are designated as S1, S2, S3 and S4. Subroutine S1 - EKGS uses the Runge-Kutta algorithm to calculate the diagonalized radial matrix functions. Subroutine S3 - FCT generates the needed first derivatives for the Runge-Kutta solution. Subroutine S2 - MATINV uses the Gauss-Jordan maximum pivot strategy (33) to numerically generate all the required matrix inverses. Subroutine S4 - MAPOWR evaluates the required matrix series for the solution of the constant coefficient differential equations.

The input for each routine is typed in at the beginning of

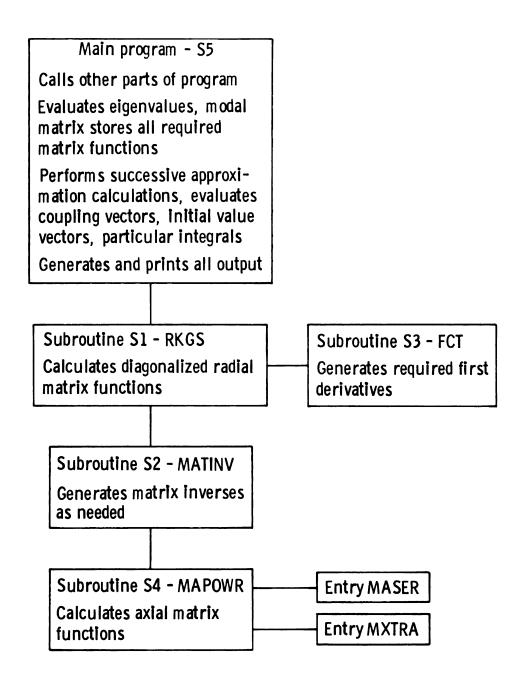


Figure 35. - Schematic representation of the solid cylindrical bar with a penny shaped crack computer program.

each part using the word DATA for identification. The eigenvalues of the radial and the elements of the axial coefficient matrices are given in S5 and S4 respectively. The enclosed program is generalized in that the grid size can be modified by suitable changes in the DATA, COMMON and DIMENSION statements only. The successive approximation procedure is performed in the main program S5 and the symbol KTR is used to follow the number of repeated calculations. Information about matrix function error checks, singularity of matrices and number of iterations is printed at the terminal while the bulk of the output is being stored in the computer for a more efficient printing operation. The output for this problem includes the displacements {u} and {w}, their derivatives {u} and {w} and the stresses $\{\sigma_{rs}\}$, $\{\sigma_{\theta s}\}$, $\{\sigma_{zs}\}$ and $\{\sigma_{rzs}\}$. The displacements and their derivatives are printed at the end of each iteration, so that their convergence can easily be followed.

COMPLETE PROGRAM LISTING

```
$1 0000100. $UBRDUTINE RKGS (01,02,X0) 0000000. $UBRDUTINE RKGS (01,02,X0) 0000000. $UBRDUTINE RKGS (01,02,X0) 0000000. $UBRDUTINE RKGS (01,02,X0) 0000000. $UBRDUTINE RKGS (01,01) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(13) 04(1
```

```
SUBROUTINE MAPONR

SUBROUTINE MAPONR

IMPLICIT REAL#8 (A-H,0-Z)

DOUBLE PRECISION K,MAX

DIMENSION K,MAX

DIMENSION K,MAX

DIMENSION K,MAX

DOUBLE PRECISION K,MAX

MANIENZ-I SCOOWK

XK(1,M)=0.00

XK(1,M)=2.000*K

XK(1,L)=2.000*K

XK(1,L)=1.00

YK(1,M)=XK(1,M)

YK(1,M)=XM(1,M)

YK(1,M)=XM(1
                                                                                                                                                                                                                         IMPLICIT REAL*8 (A-H*D-Z)
COMMON /RUNGE/ 03(13),04(13),07(13),08(13)
COMMON /EIGEN/ XL(13)
DATA NR /13/
40 DO 45 I=1,NR
03(1)=x+08(1)
45 O4(1)=xL(1)+07(1)/X
                                                                                                                                                                 FORMAT (* ERROR = *,014.6)
FORMAT (* ERROR INDICATOR NUMBER ',11)
                                                                                                     KSIG=2
IF (KSIG.NE.O) PRINT 22, KSIG
RETURN
                                                                                                                                                                                                 END
SUBROUTINE FCT(X)
PRINT 21, TEST

DO 17 J=1,M

X(1,J)=Y(1,J)

GO TO 20

KSIG=1

GO TO 20
                                                                                                                                                                                                                                                                                                                                    RETURN
                                                                                                                                                                                                                                                                                                                                                      END
```

```
$4 0003100. WIM,N)-0,D0
$5 0003300. WIM,N)-1,0,D0
$6 003300. WIM,N)-1,NZ
$6 0003300. WIM,N)-1,NZ
$6 000300. W
```

```
COMMON /SERIES/ D1(12,12),D2(12,12),D3(12,12)

COMMON /SERIES/ D1(12,12),D2(12,12),D3(12,12)

COMMON /SERIES/ D1(13,12),DC2(13,12),D3(12,12)

D1MENSION D1(13),D02(13),D02(13),D02(13),D02(13),D02(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),DD3(13),DD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13),PD3(13)
                  (* WARNING -- NOT ENDUGH TERMS TAKEN *)
(* FOR ',F8.4, TERMS TAKEN = ',12).
(* FOR ',F8.4, ERROR = ',F15.9)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      XL(1)=YP2*(1.0D0-DCOS(YP1*DFLOAT(I-1)))
DO 202 J=1,NR
DO 202 I=1,NR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           YP3=YP1 *DFLOAT ((I-1)*(J-1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PIV(1,1)=PIV(1,1)/2.0D0
PIV(1,NR)=PIV(1,NR)/2.0D0
                                                                                         IMPLICIT REAL*8 (A-H,0-Z)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              P(I,J)=DCOS(YP3)
PIV(I,J)=P(I,J)/YP4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      X11=X10/2.000
X12=X8-5.00-1/HZ
X13=X12/2.000
X14=1.2500/HZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           X15=X14/2.000
YP2=2.000*XKON
YP4=DFLOAT(NRM1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               X6=X5/2,000
X7=1,000/(HR*HZ)
X8=X7/2,000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     201 I=1,NR
                                                                                                                                                                                                                                                                                                                                                                                                                                                     NRM1=NR-1
NOC=N2-NIC
X1=7.50-1/HR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             X3=X2/2.0D0
X4=7.5D-1/H2
X5=X4/2.0D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         X10=3.000*X9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          X2=X1/2.0D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      x9=x8/2.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  YP1=P1/YP4
                 FORMAT (FORMAT (FORMAT (
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        201
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              202
0008500.C
0008600.19
0008700.20
0008800.21
                                                                                       00000100
0000200
0000325
0000335
0000335
0000350
0000350
0000000
0000000
0001000
0001400
0001470
0001470
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0001900
0002000
0002100
0002300
0002400
0002500
0002500
0002800
0002800
0002800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0001700.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0003100.
0003200.
0003203.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0003218.
                                                                                                                                                                                                                                                                                                                                                                                                                                                     1600.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0003206.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0003227.
                                                                        .0068000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0003215.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0003233
                                                                                                                                                                                                                                                                                                                                                                                                                                                       000
```

```
$$ 0003239. $$ PIV(INR,11)=PIV(INR,11)Z.000 $$ 0003242. $$ DIV(INR,11)=PIV(INR,11)Z.000 $$ 0003242. $$ DIV(IN,11)=PIV(INR,11)Z.000 $$ 0003248. $$ 0003251. $$ 203 PIV(II,1)=PIV(II,1)=Z.000 $$ 0003251. $$ 0003251. $$ DIV(II,1)=PIV(II,1)=Z.000 $$ 0003252. $$ DIV(II,1)=PIV(II,1)=Z.000 $$ 0003263. $$ DIV(II,1)=DIV(II,1)=Z.000 $$ 0003260. $$ PO2(II)=0.00 $$ DO203260. $$ PO2(II)=0.00 $$ DO203260. $$ PO2(II)=0.00 $$ DO203260. $$ PO2(II)=0.00 $$ DO203260. $$ PO2(II)=0.00 $$ DO20400. $$ PO2(II)=0.00 $$ DO20400. $$ DIV(II,1)=0.00 $$ DO20400. $$ DIV(II,1)=1.000 $$ DO20400. $$ DIV(II,1)=1.000 $$ DO20400. $$ DIV(II,1)=1.000 $$ DO20400. $$ DIV(II,1)=1.000 $$ DO20600. $$ DO20600. $$ DIV(II,1)=1.000 $$ DO20600. $$ DO20600. $$ DIV(II,1)=1.000 $$ DO20600. $$ DO20600.
```

```
00 15 N=1,NR
N(1,N) = 0.00
N(1,N) = 0.00
N(1,N) = 0.00
00 13 N=1,NR
N(1,N) = 0.00
00 17 N=1,NR
CALL MATINY (H,NR)
00 17 N=1,NR
CALL MATINY (H,NR)
00 17 N=1,NR
CALL MATINY (H,NR)
00 16 J=1,NR
CALL MATINY (H,NR)
00 16 J=1,NR
CALL MATINY (H,NR)
00 16 J=1,NR
CALL MATINY (H,NR)
01 0 N=1,NR
CALL MATINY (H,NR)
02 (M+N) = 0.00
03 10 N=1,NR
CALL MATINY (H,NR)
03 (M+N) = 0.00
04 (M+N) = 0.00
05 (M+N) = 0.00
05 (M+N) = 0.00
06 (M+N) = 0.00
06 (M+N) = 0.00
06 (M+N) = 0.00
07 (M+N) = 0.00
08 (M+N) = 0.00
09 (M+N) = 0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CALL MASER(X)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               601
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              103
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         101
                 0007020

0007040

0007080

0007180

0007120

0007120

0007120

0007120

0007120

000720

000720

000720

000720

000720

000730

000730

000730

000730

000730

000730

000730

000740

000740

000750

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

000760

00076
```

```
| STATE | STAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            UDOT(M,I)=UDOT(M,I)+(O14(M,N,I)-Q10(M,N,I)/XX)*F5(N)+(O15(M,N,I)-O11(M,N,I)/XX)*F6(N)
UX(M,I)=UX(M,I)+(O10(M,N,I)*F5(N)+D11(M,N,I)*F6(N))/X
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            F1(L)=F1(L)-OV1(L)

X=HR

XX=X*X

D0 54 I=1,NZ

D0 52 J=1,NR

F5(J)=F1(J)+B1(J,I)

F6(J)=F2(J)+B2(J,I)

D0 53 N=1,NR
        0012900.
0013050.
0013050.
0013100.
0013150.42
0013150.43
0013250.
0013350.44
0013350.44
0013450.
0013450.
0013450.
0013450.
001350.46
001350.46
001350.46
001350.46
001350.46
001350.46
001350.46
001350.46
001350.40
001360.00
0018800.00
0018850.00
0018850.00
0018850.00
0018850.00
0018850.00
0018850.00
0018850.00
0018850.00
0018850.00
0018850.00
0018850.00
0018950.00
0018950.00
0019950.00
0019500.00
0019500.00
```

```
1(1,1) = x4*(UDDT((1,1)-UDDT((2,1)) + x10*(UX(1,1)-UX(2,1)) / DFLOAT((1))
    T(1,N) = x4*(UDDT((NRM1,1)-UDDT((NR,1)) + x7*(UX(NRM1,1)-UX(NR,1))
    T(N2,NR) = x4*(UDDT((NRM1,NZ)-UDDT((NR,NZ)) + x12*(UX(NR,NZ)-UX(NRM1,NZ))
    DO 59 J=2,NNRM1
    T(1,J) = x5*(UDDT(J-1,1) - UDDT(J+1,1)) + x8*(UX(J-1,1)-UX(J+1,1))
    T(1,J) = x5*(UDDT(J-1,1) - UDDT(J+1,1)) + x13*(UX(J+1,1))
    T(1,J) = x5*(UDDT(J-1,NZ) - UDDT(J+1,NZ) + x13*(UX(J+1,NZ)-UX(J-1,NZ))
    DO 59 J=2,NZM1
    T(1,J) = x5*(UDDT(J-1,1) - UDDT(J+1,1)) + x11*(UX(J-1,1)-UX(J+1,1))
    T(1,J) = x5*(UDDT(J-1,1) - UDDT(J+1,1)) + x11*(UX(J-1,1)-UX(J+1,1)) / DFLOAT((1)
    DO 60 J=1,NZ
    MX(J,1) = 0,DO
    MACJ,1) = 0,DO
    M4(J,1) = 0,DO
    B4(J,1) = 0,DO
    DO 61 J=1,NZ
    MX(J,1) = 0,DO
    DO 61 J=1,NZ
    MX(J,1) = 0,DO
                                                                             T(I,1)=0.00
T(I,NR)=X4*(UDOT(NRMI,1)-UDOT(NR,1))+X10*(UX(NRMI,1)-UX(NR,1))/DFLOAT(I)
DO 58 I=2,NIC
                                                                                                                                                                                                                                                                                                                                                                                                                                                              NIX=1+NIC
WBE(1)=C3-C1*(UDDT(NR,NIX)+UX(NR,NIX)/(HR*DFLOAT(NIX)))
DO 68 M=1,NOC
DO 55 KA=1,NR
WRITE (6,93) (UX(KA,K),K=1,NZ)
WRITE (6,88)
DO 56 KA=1,NR
WRITE (6,93) (UDOT(KA,K),K=1,NZ)
T(1,1)=X4*(UDOT(1,1)-UDOT(2,1))+X7*(UX(1,1)-UX(2,1))
DO 57 I=2,NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SUM2=SUM2+DX2(M,N)*WAL(N)+DX4(M,N)*(F4(N)+B4(N,NR))
F4(MIX)=SUM1-SUM2-B4(MIX,NR)
D0 71 M=1,NIC
                                                                                                                                                                                                                                                                                                                                                                    SUM1=SUM1-D11(J,L,M-1)*T(L,M-1)-D11(J,L,M)*T(L,M)
SUM2=SUM2+D10(J,L,M-1)*T(L,M-1)+D10(J,L,M)*T(L,M)
B3(J,M)=B3(J,M-1)+H2*SUM1/2,0D0
B3(J,M)=B4(J,M-1)+H2*SUM1/2,0D0
D0 64 I=1,NIC
                                                                                                                                                                                                                                                                                                                                                                                                                               WAL(I)=C3-C1*(UDOT(NR,I)+UX(NR,I)/(HR*DFLOAT(I)))
F4(I)=-C1*(UDOT(I,I)+UX(I,I)/(HR*DFLOAT(I)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         SUM1=SUM1+DA(M,N)*WBE(N)-DX3(M,N)*B3(NIX,NR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                     DO 65 I=1,NOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DO 67 N=1,NIC
                                                                                                                                                                                                                                                                                                  F4(I)=0.D0
D0 63 M=2,NR
D0 63 J=1,NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DO 66 N=1,NOC
                                                                                                                                                                                                                                                                                                                                                           DO 62 L=1,NZ
                                                                                                                                                                                                                                                                                                                                     SUM1=0.D0
SUM2=0.D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SUM1=0.D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       SUM2=0.D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               NIX=N+NIC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NIX=N+NIC
                                                                                                                                                                                                                                                                                                                                                                                                                             0024500.
0024600.64
0024700.
0024800.
0024900.65
0025000.
0024000.
0024100.62
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0025500.
                                                                                                                                                                                                                                                                                                                                                                                                        0024300.63
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0026000.68
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0025900.67
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0025200.
                                                                                                                                                                                                                                                                                                                                                                                             0024200.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0025700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0025400.
```

```
00 73 M=1,N2
WDDT(M+1)=WDDT(M+1)+N2
WDDT(M+1)=WDDT(M+1)+N2
WDDT(M+1)=WDDT(M+1)+N2
WDDT(M+1)=WDDT(M+1)+N2
WDDT(M+1)=WDDT(M+1)+N2
WDDT(M+1)=WDDT(M+1)+N2
WRITE (6,99)
DD 74 Ka=1,N2
WRITE (6,90)
DD 75 WRITE (6,90)
DD 76 I=2,NRM
WRITE (6,90)
DD 76 I=2,NRM
WRITE (6,90)
DD 77 J=2,NRM
WRITE (6,90)
DD 78 I=1,N2
WRITE (6,90)
DD 79 J=1,N2
WRITE (6,90)
WR
                                               SUMI=SUMI+DXI(M,N)*WAL(N)-DX7(M,N)*(F4(N)+B4(N,NR))
DO 70 N=1,NOC
NIX=N+NIC
SUMZ=SUMZ+DX6(M,N)*B3(NIX,NR)+DX8(M,N)*(F4(NIX)+B4(NIX,NR))
DO 73 I=1,NR
DO 73 I=1,NR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    G(1,NZ)=X2*(WX(NZ,1)-WX(NZM1,1))+X5*(UX(2,NZ)-UX(1,NZ))
G(NR,1)=X2*(WX(2,NR)-WX(1,NR))+X5*(UX(NR,1)-UX(NRM1,1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       DO 80 I=1,NR
SIGR(1,J)=C31Y*UVDT(1,J)+XLAM*(UX(1,J)/YJ+WDDT(J,1))
SIGT(1,J)=C31Y*UVX(1,J)/YJ+XLAM*(UDDT(1,J)+WDDT(J,1))
SIGZ(1,J)=C31Y*WDDT(J,1)+XLAM*(UDDT(1,J)+UX(1,J)/YJ)
G(1,1)=X2*(WX(2,1)-WX(1,1))+X5*(UX(2,1)-UX(1,1))
                                                                                                                                                                                F7(J)=F3(J)+B3(J,I)
F8(J)=F4(J)+B4(J,I)
D0 73 N=I,NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          YJ=HR*DFLOAT(J)
                  SUM2=0.D0
D0 69 N=1,NIC
                                                                                                                                                                                                                                       0027500
0027600
0027800
0027800
0028000
0028100
0028200
                                                                                                                                                                                                                                                                                                                                                                                                             0028400
0028500
0028600
0028700
0028800
0028900
0029100
0029200
0029400
                                                                   0026600.
0026700.
0026800.70
0026900.71
0027000.
                                                                                                                                                                                0027200.
0027300.72
0027400.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0030400.
0030500.79
0030600.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0031200.80
                                                      0059200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0030100.78
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0029700.
0029800.
0029900.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0030800.
0030900.
0031000.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0031400.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .0036200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0030200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0030300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0030700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0031100
```

```
G(NR,NZ)=XZ*(WX(NZ,NR)-WX(NZ-1,NR))+XS*(UX(NR,NZ)-UX(NRM1,NZ))

00 81 J=2,NZM1

G(I,J)=X3*(WX(J+1,1)-WX(J-1,1))+XS*(UX(Z,J)-UX(I,J))

G(NR,J)=X3*(WX(J+1,1)-WX(J-1,NR))+XS*(UX(NR,J)-UX(NRM1,J))

00 81 I=2,NRM1

G(I,J)=X3*(WX(J+1,1)-WX(J-1,1))+X6*(UX(I+1,J)-UX(I-1,J))

00 82 I=2,NRM1

G(I,J)=X2*(WX(Z,I)-WX(I,I))+X6*(UX(I+1,1)-UX(I-1,J))

G(I,NZ)=X2*(WX(NZ,I)-WX(I,I))+X6*(UX(I+1,1)-UX(I-1,I))

MRITE (6,94)

MRITE (6,94)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         TI (/// U-MATRIX ')

TI (/// W-MATRIX ')

TI (/// W-DOT MATRIX ')

TI (/// W-DOT MATRIX ')

TI (/// ITERATION NUMBER ',I2,///)

TI (/// SIGMA-R MATRIX ')

TI (/// SIGMA-THETA MATRIX ')

TI (/// SIGMA-Z MATRIX ')

TI (/// SIGMA-Z MATRIX ')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              FORMAT (FORMAT (FORMAT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
        0031600.
0031700.
0031800.
0031800.
0032000.
0032300.
0032400.82
0033200.
0033200.
0033200.
0033200.
0033400.
0033400.
0033400.84
0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.00303400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.0033400.00303400.0033400.0033400.0030400.0030400.0030400.0030400.0030400.0030400.0030400.0030400.0030400.0030400.0030400.0030400.0030400.00
```

C.2 Hollow Cylindrical Bar With a Penny Shaped Crack

Since the solution of this problem is very similar to that discussed in Appendix C.1, the enclosed computer program also follows the schematic representation of Figure 35. The input and output data are handled identically to those for the solid cylindrical bar and only the initial value vectors that are derived from given boundary conditions are different. This program, in addition to the axial load C2, includes the possibility of having an outside surface load of C5.

```
$2 0001500. A=0ABS(Y(J,J1)).LE.A) GD 10 2
$2 0001600. A=0ABS(Y(J,J1))
$2 0001600. L=J
$3 0001900. L=J
$4 0002000. NK(L)=K(I)
$5 0002000. NK(L)=K(I)
$5 0002200. NK(L)=K(I)
$5 0002200. NK(L)=K(I)
$5 0002200. NK(I)=K(I)
$5 0002200. NK(I)=K(I)
$5 0002200. NK(I)=K(I)
$5 0002200. NK(I)=K(I)
$5 0002200. NK(I)=J
$5 0002200. NK(I,J)=K(I,J)
$5 0003200. NK(I,M)=I,M)
$5 0004200. NK(I,M)=I,M)
$5 0004400. NM(I,M)=I,M)
$5 0004400. NM(I,M)=I,
```

```
IMPLICIT REAL&B (A-H,O-Z)
DOUNLE PRECISION K,MAX
DIMENSION XK(13,13), WK(13,13), T(13,13), DXX(13,13), DYK(13,13,35)
CUMMON /SERIES/ D1(13,13), D2(13,13), D3(13,13)
NATA NZ K,MSER /13,3,6D1,35/
NZMI=NZ-1
                                                                                               END

SUBROUTINE FCT(X, IFL)

SUBROUTINE FCT(X, IFL)

IMPLICIT REAL*8 (A-H,0-Z)

COMMON / RUNGE/ 03(13),07(13),08(13)

COMMON / EIGEN/ XL(13)

DATA MR 713/

IF (IFL.E0.Z) GO TO 20

IF (IFL.E0.Z) GO TO 50

10 DO 15 I=1,NR

03(1)=0.00

15 O4(1)=XL(1)

0 SO 55 I=1,NR

0 SO 55 O4(1)=XL(1)

0 SO 55 I=1,NR

0 SO 55 I=1,NR
                                                                                    FORMAT (* ERROR = ', D14.6)
FORMAT (* ERROR INDICATOR NUMBER ', II)
                                     KSIG=1
GO TO 20
KSIG=2
IF (KSIG-NE.O) PRINT 22, KSIG
RETURN
                                                                                                                                                                                                                                                                                                                                                                DO I M=1,NZ

DO I L=1,NZ

XK(L,M)=0,DO

XK(1,1)=2,0D0*K

XK(1,2)=-2,0D0*K

XK(NZ,NZMI)=-2,0D0*K

XK(NZ,NZMI)=-2,0D0*K

DO Z L=2,NZMI
                                                                                                                                                                                                                                              03(1)=0.00
25 04(1)=0.00
RETURN
40 00 45 1=1.NR
03(1)=x*08(1)
45 04(1)=xL(1)*07(1)/x
                                                                                                                                                                                                                                                                                                            SUBROUTINE MAPOWR
PRINT 21, TEST
00 17 J=1,M
00 17 1=1,M
X(1,J)=Y(1,J)
G0 T0 20
                                                                                                                                                                                                                                                                                             RETURN
                                                                                                                                                                                                                                                                                                      ENC
                                     0006900.
0007000.16
0007100.
                     0007200
                                                                                                                                                                                                                                                                                                                                                                                 0001000
                                                                                                                                                                                                                                              0001300.
0001600.
0001500.
0001700.
0001900.
0001900.
                                                                                                                                                                                                                                                                                                                                          0000500.
0000600.
0000700.
                                                                                                                                                                                                                                                                                                                                                                                                 0001200.
                                                                                                                                                                                                                                                                                                                                                                                          00011000
                                                                                                                                                                                                                                                                                                                                                                                                                0001400.
                                                                                                                                                                                                                                                                                                                    0000000
                                                                                                                                                                                                                                                                                                                            00000000
                                                                                                                                                                                                                                                                                                                                   .004000
                                                                                                                                                                                                                                                                                                                                                                  .0080000
                                                                                                                                                                                                                                                                                                                                                                           .0060000
```

```
$$\text{0001600}$\text{0001600}$\text{xi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{vi(1,1-1)=-\text{cit}1-2.0001}$$\text{vi(1,1-1)=-\text{vi(1,1-1)=-\text{vi(1,1-1)=-\text{vi(1,1-1)=-\text{vi(1,1-1)=-\text{vi(1,1-1)=-\text{vi(1,1-1)=-\text{vi(1,1-1)=-\text{vi(1,1-1)=-\text{vi(1,1)=-\text{vi(1,1-1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)=-\text{vi(1,1)
```

```
END
IMPLICIT REAL#8 (A-H,0-Z)
COMMON /SERIES/ D1(13,13),D2(13,13),D3(13,13)
D1MENSION P(13,13),PD2(13,13),PO2(13,13),PO3(13),PO3(13),PT1(13,13),PT2(13,13),PT3(13,13),PT4(13,13))
D1MENSION P(13,13),PIV(13,13),PO(13,13),PO2(13),PO3(13),PO3(13),PT1(13,13),PT2(13,13),PT3(13,13),PT4(13,13))
D1MENSION D14(13,13),PIV(13,13),PO3(13,13),PO3(13,13),PO3(13,13),PT1(13,13),PT2(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),PT4(13,13),
D3(M,N)=0.D0
D0 15 L=1,NZ
D3(M,N)=03M,N)+T(M,L)*D2(L,N)
D0 17 N=1,NZ
D0 16 M=1.NZ
DXX(M,N)=0.D0
DXX(M,N)=DXX(M,N)+D1(M,L)*D1(L,N)-D3(M,L)*D2(L,N)
DXX(N,N)=DXX(M,N)-1.0D0
MAX=0.00
D0 18 M=1,NZ
MAX=DMAX1(DXX(M,N),MAX)
IF (MAX.GT=1.0D-9) PRINT 21, X,MAX
RETURN
                                                                                                                                                                                                                                                                                                   FORMAT (' WARNING -- NOT ENDUGH TERMS TAKEN ')
FORMAT (' FOR ',F8.4,' TERMS TAKEN = ',12)
FORMAT (' FOR ',F8.4,' ERROR = ',F15.9)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         X11=X10/2.0D0
X12=X8-5.0D-1/H2
X13=X12/2.0D0
X14=1.25D0/H2
X15=X14/2.0D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            X5=X4/2.0D0
X6=X5/2.0D0
X7=1.0D0/(HR*HZ)
X8=X7/2.0D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             NRM1=NR-1
NOC=NZ-NIC
X1=7.50-1/HR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         X10=3.000*X9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        X3=X2/2.000
X4=7.5D-1/HZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       x9=x8/2.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      x2=x1/2.000
                                                         0007300.
0007400.
0007600.
0007600.
0007800.17
0008800.
0008100.
0008300.
0008400.
0008500.19
0008500.10
                       0007100.
                                                                                                                                                                                                                                                                                                                                                                           0000100
0000350
0000350
0000350
0000500
0000500
0001500
0001500
0001600
0001600
0001600
0001600
0001600
0001600
0001600
0001600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0002200.
0002300.
0002400.
0002600.
0002700.
0002800.
0002900.
                                                                                                                                                                                                                                                                                                                                                             .0068000
       0007000
```

```
207 SUM3-SUM3-P73(1,1)*PIV(1,J)
207 SUM3-SUM3-P73(1,1)*PIV(1,J)
208 OLG (1,J-1) = SUM2
208 OLS (1,J-1) = SUM2
208 OLS (1,J-1) = SUM2
208 OLS (1,J-1) = SUM2
209 OLS (1,J-1) = SUM2
200 
                    207
                                                                                    506
                                                                                                                                                                                                                                                                                                      112
                                                                                                                                                              12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   103
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               101
     0005750.
0005780.
0005780.
0005800.
0005800.
0006800.
0006800.
0006800.
0006800.
0007000.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0007200.
0008700.
0008800.
0008800.
0008800.
0008800.
0008800.
0008800.
0008800.
0008900.
0008900.
0008900.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0009600
0009700
0009900
0010000
0010100
0010200
0010200
0010500
0010600
0010600
0010600
0010900
0011000
```

```
$$ 0011300. DX8(M*N)=D.DO
$$ 0011300. DX8(M*N)=DX8(M*N)+DX1(M*J)*DJ1(J*NIX)
$$ 0011500. DX8(M*N)=DX8(M*N)+DX1(M*J)*DJ1(J*NIX)
$$ 0011500. DX8(M*N)=DX8(M*N)+DX1(M*J)*DJ1(J*NIX)
$$ 0011200. DX 3* J=1*NIC
$$ 0012200. DX7 M*N*N=0.DO
$$ 0013200. DX7 M*N*N=0.DO
$$ 0013200. DX8 M*N*N=0.DO
$$ 0014200. DX8 M*N*N=0.DO
$$ 0014400. DX8 M*N*N=0.DO
$$ 00144
```

```
T(1,NR) = X4*(UDDT(NRM1,I)-UDDT(NR,I))+X10*(UX(NRM1,I)-UX(NR,I))/DFLOAT(I-1)

D0 58 I=2,NIC
T(I,1)=X4*(UDDT(1,I)-UDDT(2,I))+X10*(UX(1,I)-UX(2,I))/DFLOAT(I-1)
T(I,NR)=X14*(UDDT(NR-1,I)-UDDT(NR,I))
T(I,NR)=X14*(UDDT(NR-1,I)-UDDT(NR,I))
T(NZ,NR)=X4*(UDDT(NRM1,NZ)-UDDT(NR,NZ))+X12*(UX(NR,NZ)-UX(NRM1,NZ))
                                                                                                          BI(J,1)=0.00

B2(J,1)=0.00

B2(J,1)=0.00

B2(J,1)=0.00

B2(J,1)=0.00

B2(I,1)=0.00

B2(I,1)=0.00

B2(I,1)=0.00

B2(I,1)=0.00

B2(I,1)=0.00

B2(I,1)=0.00

B2(I,1)=0.00

B3(I,1)=0.00

B3
                                                                                                                                                                                                                                                                                                                                                                                                                                 F2(J)=F2(J)+O5(J,L)*WDOT(NZ,L)-W(J,L)*B1(L,NZ)
D0 510 J=1,NR
F2(J)=F2(J)-B2(J,NZ)
X=HR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                WRITE (6,87)
00 55 KA=1,NR
MRITE (6,93) (UX(KA,K),K=1,NZ)
WRITE (6,88)
00 56 KA=1,NR
WRITE (6,93) (UDDT(KA,K),K=1,NZ)
T(1,1)=X14*(UDDT(1,1)-UDDT(2,1))
00 57 1=2,NZ
00 46 1=1,NR
UY(1,J)=UX(1,J)
00 47 1=1,NZ
00 47 J=1,NR
UX(J,1)=0,D0
UDOT(J,1)=0,D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               T(I,1)=0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ** ×= ××
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      510
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      540
                                                                                                                                                                                                                                                                                                                                                                                                                                   2
 00164700.
0016800.46
0011800.
00171200.
0017200.
0017200.
0017200.
0017500.
0017600.
0017700.48
0017700.48
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018800.
0018900.
0019900.
0019900.
0019900.
0019900.
0019900.
0019900.
0019000.55
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0021000.
0021100.
0021200.56
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0021400.
0021500.
0021600.57
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0021700.
0021800.58
0021900.
0022000.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0021300.
```

```
T(1,4)=x15*(UDDT(J-1,1)-UDDT(J+1,1))
T(N2,J)=x5*(UDDT(J-1,NZ)-UDDT(J+1,NZ))+x13*(UX(J-1,NZ)-UX(J-1,NZ))
T(N2,J)=x5*(UDDT(J-1,NZ)-UDDT(J-1,NZ))+x13*(UX(J-1,NZ)-UX(J-1,NZ))
D(0.59 I=2,NZH)
D(0.60 I=1,NZH)
D(0.60 I=1,NZH)
D(0.60 I=1,NZH)
D(0.60 I=1,NZH)
D(0.61 I=1,NZH)
D(0.61 I=1,NZH)
D(0.63 M=2,NZH)
D(0.63 M=2,NZH)
D(0.63 M=2,NZH)
D(0.63 J=1,NZH)
D(0.64 J=1,NZH)
D(0.65 J=1,NZH)
D(0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SUM2=SUM2+DX6(M,N)*B3(NIX,NR)+DX8(M,N)*(F4(NIX)+84(NIX,NR))
F3(M)=SUM1-SUM2-B3(M,NR)
DO 73 I=1,NR
DO 72 J=1,NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NIX=I+NIC
WBE(I)=C3-C1+(UDOT(NR,NIX)+UX(NR,NIX)/(HR*DFLOAT(NIX-1)))
DO 68 M=1,NOC
HIX=M+NIC
                                                                                                                                                                                                                                                                                                                                                                                              SUM_=SUM_=D11(J,L,M-1)*T(L,M-1)-D11(J,L,M)*T(L,M)
SUM2=SUM2+D10(J,L,M-1)*T(L,M-1)+D10(J,L,M)*T(L,M)
83(J,M)=84(J,M-1)+H2*SUM2/2.0D0
84(J,M)=84(J,M-1)+H2*SUM2/2.0D0
MAL(1)=C3-C1*F2(NR)
F4(1)=-C1*F2(1)
D0 64 1=2,N 1C
MAL(1)=C1*(UDD1(NR,1)+UX(NR,1)/(HR*DFLOAT(1-1)))
F4(1)=-C1*(UDD1(NR,1)+UX(NR,1)/(HR*DFLOAT(1-1)))
D0 65 1=1,NOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      SUM2=SUM2+DX2(M,N)*WAL(N)+DX4(M,N)*(F4(N)+B4(N,NR))
F4(MIX)=SUM1-SUM2-B4(MIX,NR)
DO 71 M=1,NIC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 SUM1=SUM1+DX1(M,N)*WAL(N)-DX7(M,N)*(F4(N)+B4(N,NR))
DQ 70 N=1,NOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           SUM1=SUM1+DA(M,N)*WBE(N)-DX3(M,N)*B3(NIX,NR)
DO 67 N=1,NIC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     F7(J)=F3(J)+B3(J,I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SUM2=0.D0
D0 66 N=1,NOC
NIX=N+NIC
59 J=2,NRM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DO 69 N=1,NIC
                                                                                                                                                                                                                                                                                                                                     SUM1=0.D0
SUM2=0.D0
D0 62 L=1.NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SUM1=0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 NIX=N+NIC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              NIX=N+NIC
                                                                              0022500.59
0022500.
0022700.
0022800.
0023000.
0023100.60
                                                                                                                                                                                                                                                                                                                                                                                                  0024000.
0024100.62
0024200.
0024400.
0024500.
0024600.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0024800.64
0024900.
0025000.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0026100.67
0026200.68
0026300.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0027000.70
0027100.71
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0025800.66
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0026700.69
                                                                                                                                                                                                                                                                           0023400.61
                                                                                                                                                                                                                                                                                             0023500.
0023600.
0023700.
0023800.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0025200.
0025300.
0025400.
0025600.
0025600.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0026400.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0027300.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0027200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0005200
```

```
R(1,1)=XX*(WDOT(1,1)=WDOT(1,1))=XR*(WX(NZM1,1)=XX(NZ,1))
R(1,NZ)=X1*(WDOT(1,NZ)=WDOT(1,NZ))=XI*(WDOT(1,NZ)=XI*(WDOT(1,NZ)=XI*(WDOT(1,NZ)=WDOT(2,NZ))
R(NR,NZ)=XI*(WDOT(1,NZ)=WDOT(2,NZ))
R(NR,NZ)=XI*(WDOT(1,NZ)=WDOT(2,NZ))+X8*(WX(NZ,NZ)=WX(NZM1,NZ))
DO 76 I=Z,NRM1
R(I,1)=XI*(WDOT(1,1)=WDOT(2,1))
R(I,1)=XI*(WDOT(NZM1,1)=WDOT(NZ,1))
DO 77 J=Z,NZM1
                                                                                                                                                                                                                                                                R(1,J)=x2*(WDDT(J-1,1)-WDDT(J+1,1))+x9*(WX(J-1,1)-WX(J+1,1))
R(NR,J)=x2*(WDDT(J-1,NR)-WDDT(J+1,NR))+x9*(WX(J+1,NR)-WX(J-1,NR))
DO 77 I=2,NRM1
B(I,J)=x2*(WDDT(J-1,1)-WDDT(J+1,1))
PRINT 91, KTR
IF (DABS(WX(L,1)),6T.5.0D0) STOP
DO 78 I=1,NR
DO 78 J=1,NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SIGR(I,J)=C31V*UDDT(I,J)+XLAM*(UX(I,J)/YJ+WDDT(J,I))
SIGR(I,J)=C31V*UX(I,J)/YJ+XLAM*(UDDT(I,J)+WDDT(J,I))
SIGT(I,J)=C31V*WDDT(J,I)+XLAM*(UDDT(I,J)+UX(I,J)/YJ)
SIGZ(I,J)=XZ*(WX(Z,I)-WX(I,I)+XS*(UX(Z,I)-UX(I,I))
G(I,I)=XZ*(WX(NZ,I)-WX(I,I))+XS*(UX(Z,I)-UX(I,I))
G(I,I)=XZ*(WX(Z,I)-WX(I,I)+XS*(UX(NX,I)-UX(NRMI,I))
G(I,X,I)=XZ*(WX(X,I,NR)-WX(I,NR))+XS*(UX(NR,I)-UX(NRMI,I))
G(NR,NZ)=XZ*(WX(NZ,I,NR)-WX(I,NR))+XS*(UX(NR,I)-UX(NRMI,I))
DO 81 J=Z,NZMI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           G(I,J)=X3*(WX(J+1,1)-WX(J-1,1))+X5*(UX(2,J)-UX(1,J))
G(NR,J)=X3*(WX(J+1,NR)-WX(J-1,NR))+X5*(UX(NR,J)-UX(NRMI,J))
DO B1 I=2,NRM1
G(I,J)=X3*(WX(J+1,I)-WX(J-1,I))+X6*(UX(I+1,J)-UX(I-1,J))
DO B2 I=2,NRM1
F8(J)=F4(J)+B4(J,I)
D0 73 N=I,NZ
D0 73 N=I,NZ
D0 73 M=I,NZ
MD0 73 M=I,NZ
MD01(M,I)=WD01(M,I)+D10(M,N,I)*F8(N)+D14(M,N,I)*F7(N)
WX(M,I)=WD(M,I)+D11(M,N,I)*F8(N)+D10(M,N,I)*F7(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SIGR(1,1)=C31V*UDDT(1,1)+XLAM*(UDDT(1,1)+WDDT(1,1))
SIGT(1,1)=XLAM*(UDDT(1,1)+WDDT(1,1))+C31V*UDDT(1,1))
SIGT(1,1)=C31V*WDDT(1,1)+Z*OD0*XLAM*UDDT(1,1)
DO 80 1=2*NZ
YJ=HR*DFLOAT(J-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                           44
                                                                                                                                                                                                                                                                                                                                                                                                                                          10
                                                                                                                                                                                                                                                                                                                                                                                                                                        (DABS(UX(I,J)-UY(I,J)).GT.1.0D-6) GD
                                                                                                                                        WRITE (6,93) (WDOT(KA,K),K=1,NR)
                                                                                               WRITE (6,93) (WX(KA,K),K=1,NR)
WRITE (6,90)
DG 75 KA=1,NZ
                                                                                                                                                                                                                                                                                                                                                                                             CONTINUE
DO 79 J=1,NZ
DO 79 I=1,NR
IF (DABS(UX(I,J)-U
CONTINUE
WRITE (6,92) KTR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DO 800 I=1,NR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             800
                                                                                                            0028300.
0028400.
0028500.75
0028600.
0028700.
0028900.
0029100.
                                                                                                                                                                                                                                                                  0029400.
0029500.
0029600.
0029700.77
0029800.
0039000.
0030200.
0030200.
0030200.
0030200.
0030200.
0030200.
0030200.
0030200.
0030200.
0031200.
0031800.
0031800.
0031800.
                                                      0027900.73
0028000.
0028100.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0032700.81
                                                                                                0028200.74
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0032100.
0032200.
0032300.
                                                                                                                                                                                                                                                      0029300.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0032400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0032500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0032600
```

```
$5 0032900. $G[I_01]=X2*(WX(I_01)]+X6*(UX(I+1,1)-UX(I-1,1))$
$5 0033000.82 $G[I_0X]=X2*(WX(IX_1)-WX(IX_1)]+X6*(UX(I+1,1)-UX(I-1,1))$
$5 003300.83 $MITE (6,94)$
$5 003300.83 $MITE (6,93) $(SIGR(I_0J)_0J=1,NZ)$
$5 003300.84 $MITE (6,93) $(SIGR(I_0J)_0J=1,NZ)$
$5 0033600.84 $MITE (6,93) $(SIGT(I_0J)_0J=1,NZ)$
$5 0033600.84 $MITE (6,93) $(SIGT(I_0J)_0J=1,NZ)$
$5 0033600.85 $MITE (6,94) $(SIGZ(I_0J)_0J=1,NZ)$
$5 0033600.85 $MITE (6,93) $(SIGZ(I_0J)_0J=1,NZ)$
$5 0034000.85 $MITE (6,93) $(G(I_0J)_0J=1,NZ)$
$5 0034000.87 $MITE (6,93) $(G(I_0J)_0J=1,NZ)$
$5 0034500.87 $FORMAT (1/// U-MATRIX ')$
$5 0034500.89 $FORMAT (1/// U-MATRIX ')$
$5 0034500.90 $FORMAT (1/// U-MATRIX ')$
$5 0034500.91 $FORMAT (1/// U-MATRIX ')$
$5 0034500.92 $FORMAT (1/// U-MATRIX ')$
$5 003500.92 $FORMAT (1/// SIGMA-THETA MATRIX ')$
$5 003500.94 $FORMAT (1/// SIGMA-THETA MATRIX ')$
$5 003500.95 $FORMAT (1/// SIGMA-RZ MATRIX ')$
```

C.3 Annular Plate With Internal Surface Cracks

The main subroutines for this general three-dimensional cylindrical coordinate problem are shown in Figure 36. This program is similar to the previously presented two programs, except that two additional subroutines are used. Note that the matrix function routines in the circumferential and axial directions are entered at different locations which are denoted as MASER, MXTRA and MASES respectively. In addition, the input discussed for the axisymmetric problems, this program includes as input the indices of the coupling vector variables. These are denoted as arrays LR, LS and LT in the program. The integers in DATA IN are used to rearrange the elements of the circumferential matrix functions at $\theta_{\rm O}$ according to the form needed in the partitioning procedure for treating mixed boundary conditions.

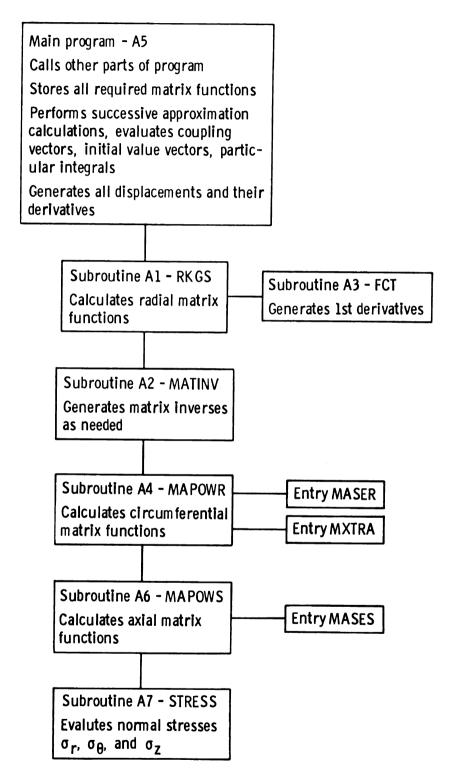


Figure 36. - Schematic representation of the annular plate with internal surface cracks computer program.

COMPLETE PROGRAM LISTING

```
SUBROUTINE FCT(X)

IMPLICIT REAL*8 (A-H,0-Z)

COMMON RUNGE/ O3(16,16),07(16,16),08(16,16)

DATA I:,27,29,28 /2.5D1,5.0D1,1.82378130550D0, 9.1189065275D-1 /

Z4=4.0D0*29

Z3=4.0D0*28

Z5= Z3/X**2

Z6 = Z.000 * Z5

Z7 = Z6 + Z.

DO Z J=1,16

DO Z J=1,16

DO Z J=1,16

DO Z I=1,16

O4(1,1)=( Z7*07(1,1)-Z5*07(1,2)-Z1*07(1,5))/X

O4(1,4)=( Z7*07(1,4)-Z5*07(1,2)-Z4*07(1,4)-Z1*07(1,7))/X

O4(1,4)=( Z7*07(1,4)-Z5*07(1,2)-Z4*07(1,4)-Z1*07(1,7))/X

O4(1,4)=( Z7*07(1,4)-Z5*07(1,3)-Z5*07(1,4)-Z1*07(1,9))/X

O4(1,5)=( Z7*07(1,4)-Z5*07(1,3)-Z5*07(1,6)-Z5*07(1,7)-Z1*07(1,1))/X

O4(1,8)=( Z7*07(1,8)-Z2*07(1,3)-Z5*07(1,1)-Z5*07(1,1))/X

O4(1,8)=( Z7*07(1,8)-Z2*07(1,4)-Z5*07(1,1)-Z5*07(1,1)])/X

O4(1,9)=( Z7*07(1,9)-Z1*07(1,5)-Z5*07(1,1))-Z2*07(1,1)-Z1*07(1,1)]/X

O4(1,9)=( Z7*07(1,9)-Z1*07(1,5)-Z5*07(1,1))-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*07(1,1)-Z2*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    114))/X
04(1,11)=( 27*07(1,11)-21*07(1,7)-25*07(1,10)-26*07(1,12)-22*07(1,1)
115))/X
04(1,12)=( 27*07(1,12)-21*07(1,8)-25*07(1,11)-22*07(1,16))/X
04(1,13)=( 27*07(1,13)-21*07(1,9)-26*07(1,14)-25*07(1,16))/X
04(1,14)=( 27*07(1,14)-21*07(1,10)-26*07(1,13)-25*07(1,15))/X
04(1,15)=( 27*07(1,15)-21*07(1,11)-25*07(1,14)-26*07(1,16))/X
04(1,16)=( 27*07(1,16)-21*07(1,12)-25*07(1,16))/X
                                                                                                                                                                                                                                                                                                      FORMAT (' ERROR = ',014.6)
FORMAT (' ERROR INDICATOR NUMBER ',11)
                                                                                                                                                                                                                            KSIG=2
IF (KSIG.NE.O) PRINT 22, KSIG
RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SUBROUTINE MAPOWR
IMPLICIT REAL*8 (A-H,0-Z)
DD 13 L=1,M
A=A+Y(I+1)*W(L+J)
Y(I+J)=Y(I+J)+A
CONTINUE
KSIG=3
PRINT 21, TEST
DO 17 J=1,M
X(I+J)=Y(I+J)
GG TO 20
GG TO 20
                                                                                                                                                                                                                                                                                                                                            END
                0006500.13
0006600.14
0006700.15
                                                                                          0006900.
0007200.16
0007300.17
0007300.
0007400.18
0007600.19
0007700.20
0007800.
                                                                                                                                                                                                                                                                                                                                           00008200.
00000100.
00000300.
00000500.
00000500.
00001300.
0001300.
0001200.
0001200.
0002200.
0002200.
0002200.
0002200.
0002200.
0002200.
0002200.
0002200.
                                                                    00099000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0000100.
```

```
0000400
0000400
0000400
0000600
0000800
00001000
0001100
0001100
0001100
0001100
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
0001200
```

```
0011500- D0 9 J=1,MSER
0011500- D0 6 M=1,MZ
0011500- D0 6 M=1,MZ
0011500- D0 6 L=1,MZ
0011500- D0 6 L=1,MZ
0011500- D0 7 M=1,MZ
0011500- D0 7 M=1,MZ
0011500- D0 7 M=1,MZ
0012100- D0 7 M=1,MZ
0012100- D0 7 M=1,MZ
0012100- D0 8 M=1,MZ
0012100- D0 8 M=1,MZ
0012100- D0 8 M=1,MZ
0012100- D0 8 M=1,MZ
0012200- D0 1 M=1,MZ
001200- D0 1 M=1,
```

```
FORMAT (' WARNING -- NOT ENDUGH TERMS TAKEN ')
FORMAT (' FOR ',F8.4,' TERMS TAKEN = ',12)
FORMAT (' FOR ',F8.4,' ERROR = ',F15.9)
MAX=DMAX1(DXX(M,N),MAX)
IF (MAX.GT.1.0D-9) PRINT 21, X,MAX
RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                         X(8) = -X(5)

X(9) = 1.25D0/(A1*A1)

X(10) = 3.75D-1/(A1*HR)

X(11) = 3.75D-1/HR

X(12) = 2.5D-1/(A1*HR*HT)

X(13) = 5.0D-1/(A1*A1*HT)

X(14) = 2.5D-1/(HZ*HR)

X(15) = -X(13)

X(16) = 1.25D0/(A2*A2)
                                                                                                                                                                                                                                                                                                                    AB(1)=A

AB(2)=A1

AB(4)=B

X(1)=1.05D0/(A*A)

X(2)=7.5D-1/(A*HR)

X(3)=7.5D-1/(A*HR)

X(4)=5.0D-1/(A*A*HT)

X(5)=5.0D-1/(A*A*HT)

X(5)=5.0D-1/(HZ*HR)

X(7)=0.0D
        0016600.

0016800.19

00117100.21

00117100.20

00117100.21

00017200.

00001700.

00001700.

00001700.

00001700.

00001700.

00001700.

00001700.

00001700.

00001700.

00001700.

00001700.

00001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.

0001700.
```

```
A5 0010100. X(77)=-X(43)
A5 0010500. X(73)=-X(43)
A5 0010500. X(73)=-X(43)
A5 0010500. X(73)=-X(43)
A5 0010600. X(74)=-X(164)
A5 0010600. X(77)=-X(164)
A5 0010800. X(77)=-X(164)
A5 0010800. X(77)=-X(164)
A5 0011000. X(18)=-X(164)
A5 0011200. D0 1 1=1,16
A5 0011200. D0 1 1=2,4
A5 0011300. D0 1 1,4,1,11=1,00
A6 001300. X(77)=-X(16,1)=1,10
A6 001300. X(78)=-X(16,1)=1,10
A6 001300. X(78)=-X(16,1)=1,10
A6 001300. X(78)=-X(16,1)=1,10
A6 001300. X(78)=-X(16,1)=0.00
A6 001400. X(78)=-X(16,1)=0.00
A6 001400. X(16,1)=0.00
A6 001400. D0 3 H=1,16
A7 0014
```

```
AS 0015500. SUM-0-DO 6 J=1,16
AS 0015500. SUM-0-DO 5 L=1,16
AS 0015600. SUM-0-DO 5 L=1,16
AS 0015600. SUM-0-DO 6 DT(M-N) = DT(
```

```
AS 0026300. D6(M,N)=0.D0
AS 0026400. D0 30 J=116
AS 0026600. D0 30 J=116
AS 0026600. D0 30 J=116
AS 0026600. 30 D6(M,N)=D6(M,N)=D6(M,N)
AS 0027000. D0 31 M=1.16
AS 0027100. D0 31 M=1.16
AS 002700. D0 32 M=1.4
AS 002800. D0 33 M=1.4
AS 002800. D0 33 M=1.4
AS 002800. D0 34 M=1.12
AS 002800. D0 35 M=1.4
AS 002800. D0 36 M=1.12
AS 002800. D0 38 M=1.12
AS 002800. D0 38 M=1.12
AS 002800. D0 38 M=1.12
AS 003000. D0 40 M=1.12
AS 003100. D0 50 M=1.12
AS 003100. D
```

```
AS 0031700. D0 41 N=1,4

AS 0031800. DX6(HN)= 0.00

AS 003200. DX6(HN)= 0.00

AS 003200. 41 DX6(HN)= 0.00

AS 003200. 42 DX6(HN)= DX6(HN)| + DA(HL)| + DC(LLN)|

AS 003200. DX6(HN)= DX6(HN)| + DA(HL)| + DC(LLN)|

AS 003200. CALL MAPMS

AS 003200. GAZ(J,L,1)= 0.00

AS 003200. GAZ(H,N,1)= 1.00

AS 003200. GAZ(H,N,1)= 1.00

AS 003300. GAZ(H,N,1)= GZ(H,N)

AS 003300. GAZ(H,N,1)= GZ(H,N)

AS 003400. GAZ(H,N)= GZ(H,N)

AS 003400. GAZ(H,N)= GZ(H,N)

AS 003400. GAZ(H,N)= GZ(H,N)

AS 003500. GAZ(H,N)= GZ(H,N)= GZ(H,N)
```

```
00 107 J=1,16
F1(4)= F1(4)+01(J,L)*VBM(L)+ O2(J,L)*VAM(L)-OC(J,L)*B1(L,4)
1 -OCAB(J,L) * B2(L,4)
1 -OCAB(J,L) * B2(L,4)
1 - O6(J,L)*B2(L,4)
1 - O(J,L)*B2(L,4)
53 G2(H*N)= G2(H*N)+G1(H*L)*G3(L*N)

KTR=0

D0 100 N=1*4

D0 100 N=1*4

D0 100 N=1*1*4

D0 100 N=1*1*4

D0 100 N=1*1*4

D0 100 N=1*1*4

D0 102 N=1*1*4

D0 103 N=1*1*4

D0 104 N=2*4

D0 104 N=2*4

D0 105 L=1*1*6

SUMT = SUMT+OB1(J,L,M-1)*R(L,M-1)+OB1(J,L,M)*R(L,M)

SUMT = SUMT+OB1(J,L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1)*R(L,M-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       DO 109 1=1,4
DO 110 J=1,16
H1(J) = F1(J) + B1(J,1)
H1(J) = F2(J) + B2(J,1)
DO 111 M=1,16
DO 111 M=1,16
UDOT(M,1) = UDOT(M,1) + (DA2(M,N,1)-DA1(M,N,1)/YY)*H1(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          KNT=0

DO 106 M=1,4

DO 106 M=1,4

KNT= KNT+1

VAW(KNT)= VDOT(M+N)/A + WDOT(4*N-3,M)

6 VBW(KNT)= VDOT(M+12,N)/B + WDOT(4*N,M)

DO 107 L=1,16

DO 107 L=1,16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    YY=Y*Y
DO 109
DO 110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      107
                                                                                                                                           001
                                                                                                                                                                                                                                                                                                                                                                                         103
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          105
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             104
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             106
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   108
                                                                                                                                                                                                                                                                                                                                  102
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                110
           0037100
0037200
0037200
0037200
0037600
0037600
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0038100
0041100
0041100
0041100
0041100
0041100
0041100
0041100
0041100
0041100
0041100
0041100
```

```
1 1
1 (OA4(M,N,I) - OA3(M,N,I)/YY) *H2(N)
111 U(M,I)= U(M,I) + (OA1(M,N,I) + H1(N) + OA3(M,N,I)*H2(N))/Y
     WRITE(6,112)
FORMAT( //' U-MATRIX ')
DO 901 I=1,16
                                                                          E3(1)=83(J,4)
  Y=Y+HR
    109 YY=Y*Y
      112
 0047600.
0047700.
0047800.
                                                                     0047400
                                                                      0047500
```

1 1

```
A5 0053300. 2 + X(LL2)*(V(L8,L9)-V(L10,L111))

A5 0053500. 00 7 TG(H1)=0.00

A5 0053500. 01 132 | 1=1.4

A5 0053500. 01 132 | 1=1.16

A5 0053500. 01 133 | 1=1.16

A5 0054500. 05 86 (J,J1)= 0.00

A5 0054500. 13 86 (J,J1)= 1.14

A5 005500. 14 RMITE (G,J1) RMIL) A1 A1

A5 005500. 15 RMITE (G,J1) RMIL) A1

A5 005500. 15 RMITE (G,J1) RMIL) A1

A5 005500. 16 RMITE (G,J1) RMIL) A1

A6 005500. 17 RMITE (G,J1) RMIL) A1

A6 005500. 18 RMITE (G,J1) RMIL) A1

A6 005500. 18 RMITE (G,J1) RMIL) A1

A6 005500. 19 RMITE (G,J1) RMIL) A1

A6 005500. 10 RMITE (G,J1) RMIL) A1

A7 005500. 1
```

```
E16=2,000*E15
E17=K/(8*2*HT**2)
E18= 2,000*E17
E1= E10+E12
E2=E10+E14
E4=E10+E18
                                                                                                                                                                                                                                            E19=K/(2.000*HR*A1)
                                               143
                                                                                                144
                                                                                                        145
   0058800-
0058800-
0058800-
0058800-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
0059200-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
00011000-
```

0=K/(2.000 = E9+E19 = E9+E19 = E9+E20 = E9+E20 = E9+E20 = [1,1] = E6 (5,1) = E1 (1,2) = E1 (1,2) = E1 (1,3) = E1 (3,2) = E3	C	(12,8) = (1,2,8) = (1,0,9) = (1,0,9) = (1,0,9) = (1,0,10) = (1,0,10) = (1,0,10) = (1,0,10) = (1,0,10) = (1,0,11) = (1,0,1
8 3 3 3 3 3 5 3 8 8 8 8 8 8 8 8 8 8 8 8	00045900 0004100 0004100 0004200 0004300 0004500 0004600 0004600 000500 0005200 0005200 0005200 0005500 0005500 0005600 0005600	164555555555555555555555555555555555555
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

```
A6 0008200. XX(16,12)=-E18
A6 0008300. XX(13,13)=E1
A6 0008500. XX(13,13)=E1
A6 0008600. XX(115,13)=-E1
A6 0008600. XX(115,14)=-E1
A6 0008900. XX(115,14)=-E1
A6 0009900. XX(115,14)=-E1
A6 0009900. XX(115,15)=-E1
A6 0009900. XX(115,15)=-E1
A6 0009900. XX(115,15)=-E1
A6 0009900. XX(115,15)=-E1
A6 0009900. XX(115,16)=-E7
A6 001000. XX(115,16)=-E7
A6 001000. XX(115,16)=-E7
A6 0010100. D0 3 H=1,NZ
A6 0010100. D0 3 H=1,NZ
A6 0010100. D0 5 H=1,NZ
A6 001000. D0 6 H=1,NZ
A6 001000. D0 6 H=1,NZ
A6 001100. D0 A H=1,NZ
A6 0011200. D0 A H=1,NZ
A6 0011300. D0 A H=1,NZ
A7 00 A H=1,NZ
A1 00 A H=
```

```
SUBROUTINE STRESS
IMPLICIT REAL*8 (A-H,D-Z)
COMMON /FINAL/U,U0DT, W, WDDT, AB
COMMON /FINAL/U,U0DT, W, VDDT (16,4), V(16,4), VDDT (16,4), WDDT (16,4)
DIMENSION U(16,4), SR (16,4), SZ (16,4)
DIMENSION U(16,4), SR (16,4), SZ (16,4)
DATA CI.XL /1.5D0,7.5D-1/
114 FORMAT (411x,F15.8)

DATA CI.XL /1.5D0,7.5D-1/
115 FORMAT (411x,F15.8)

DATA CI.XL /1.5D0,7.5D-1/
116 FORMAT (411x,F15.8)

DATA CI.XL /1.5D0,7.5D-1/
117 FORMAT (411x,F15.8)

DATA CI.XL /1.5D0,7.5D-1/
117 FORMAT (411x,F15.8)

DATA CI.XL /1.5D0,7.5D-1/
SR (1,3) = CI *U0DT (1,3) + XL** ((U(1,3) + VDDT (4*J-3,4)) / AB (J) + WDDT (J+4,1))
SR (3,4) = CI *UDDT (5,3) + XL** ((U(4,3) + VDDT (4*J-2,3)) / AB (J) + WDDT (J,4,2))
SR (3,4) = CI *UDDT (5,4) + XL** ((U(1,3) + VDDT (4*J-2,3)) / AB (J) + WDDT (J,4,2))
SR (1,3) = CI *UDDT (1,3) + XL** ((U(1,3) + VDDT (4*J-2,3)) / AB (J) + WDDT (J+4,2))
SR (1,3,4) = CI *UDDT (10,4) + XL** ((U(11x,4) + VDDT (4*J-1,2)) / AB (J) + WDDT (J+4,3))
SR (11,3) = CI *UDDT (112,3) + XL** ((U(11x,4) + VDDT (4*J-1,3)) / AB (J) + WDDT (J+4,3))
SR (11,3) = CI *UDDT (112,3) + XL** ((U(11x,4) + VDDT (4*J-1,3)) / AB (J) + WDDT (J+4,3))
SR (112,3) = CI *UDDT (112,3) + XL** ((U(11x,4) + VDDT (4*J-1,3)) / AB (J) + WDDT (J+4,3))
                                                                                                                                                         PRINT 19

PRINT 20, X,J

DO 15 M=1,NZ

DO 15 M=1,NZ

G3 (M,N) =0.DO

DO 15 M=1,NZ

G3 (M,N) =0.DO

DO 16 M=1,NZ

DOX (M,N) =0.DO

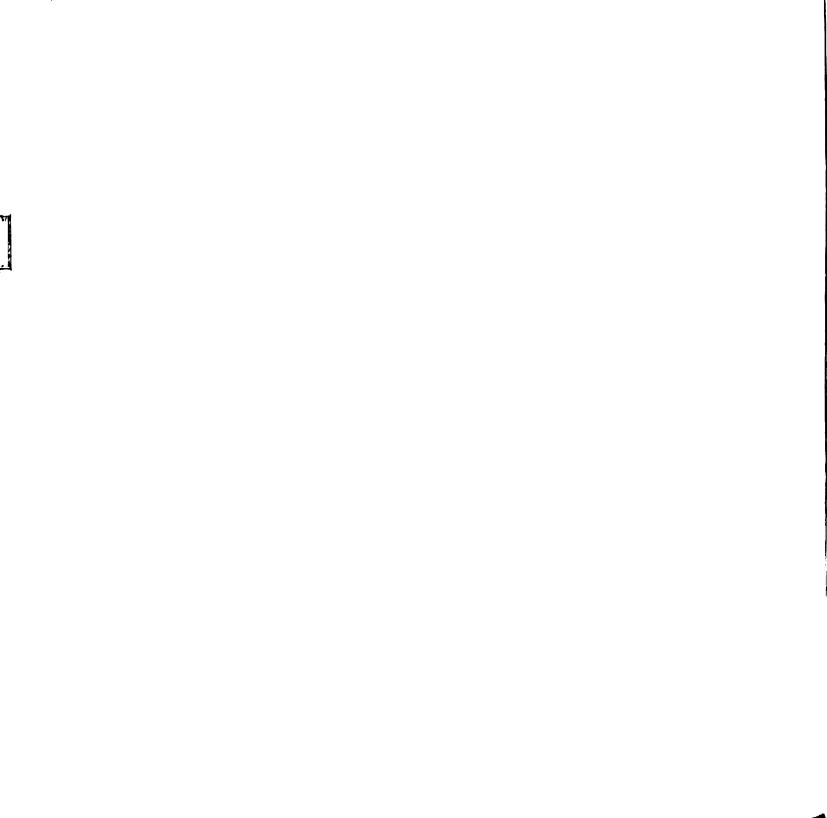
DOX (M,N) =0.DX (M,N) +G1(M,L) *G1(L,N) -G3(M,L) *G2(L,N)

DXX (M,N) =0.DX (M,N) -1.0DO

MAX=0.DO

MAX=0.DO

DO 18 N=1,NZ


DXX (M,N) =0.XX (M,N) -1.0DO

MAX=0.DO

DO 18 N=1,NZ

DO 18 N=1,NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FORMAT (' WARNING -- NOT ENDUGH TERMS TAKEN ')
FORMAT (' FOR ',F8.4,' TERMS TAKEN = ',12)
FORMAT (' FOR ',F8.4,' ERRÜR = ',F15.9)
                                                                                                                                                                                                                                                                                                                                                                                                                             MAX=DMAX1(DXX(M,N),MAX)
IF (MAX.GT.1.0D-9) PRINT 21, X,MAX
RETURN
                             DO 12 N=1,NZ
DO 12 N=1,NZ
TEMP=C4*DYK(M,N,J)
IF (TEMP=G7...OD-16) IFLAG=1
G1(M,N)=G1(M,N)+TEMP
G2(M,N)=G2(M,N)+TEMP
IF (IFLAG.EQ.O) GD TD 14
CONTINUE
 C5=C5*TAX*X*X/Y3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             END
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 114
0013600.
0013700.
0013700.
0013900.
0014000.
0014200.
0014500.12
0014500.13
0014500.13
0015000.
0015000.
0015000.
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
0015500.15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0000100.
0000200.
0000300.
0000400.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          00011000
00011000
0001300
0001400
0001500
0001600
0001700
0001800
```

```
$R(13,J)=C1*U0OT(15,J)*XL*((U(13,J)+V0OT(4*J,1))/AB(J)+WDOT(19+1)$
$R(15,J)=C1*U0OT(15,J)*XL*((U(15,J)+V0OT(4*J,1))/AB(J)+WDOT(19+1)$
$R(15,J)=C1*U0OT(15,J)*XL*((U(15,J)+V0OT(4*J,1))/AB(J)+WDOT(19+1)$
$R(15,J)=C1*U0OT(16*J)*XL*((U(15,J)+V0OT(4*J,1))/AB(J)+WDOT(19+1)$
$T(1,J)=C1*(VOOT(4*J-3,1)+U(1,J))/AB(J)*XL*(U0OT(1,J)+WDOT(1,J))$
$T(1,J)=C1*(VOOT(4*J-3,1)+U(1,J))/AB(J)*XL*(U0OT(1,J)+WDOT(1,J+2))$
$T(15,J)=C1*(VOOT(4*J-3,1)+U(1,J))/AB(J)*XL*(U0OT(1,J)+WDOT(1,J+2))$
$T(15,J)=C1*(VOOT(4*J-2,1)+U(1,J))/AB(J)*XL*(U0OT(1,J)+WDOT(1,J+2))$
$T(15,J)=C1*(VOOT(4*J-1,1)+U(1,J))/AB(J)*XL*(U0OT(1,J)+WDOT(1,J+2))$
$T(15,J)=C1*(VOOT(4*J-1,1)+U(1,J))/AB(J)*XL*(U0OT(1,J)+WDOT(1,J+2))$
$T(15,J)=C1*(VOOT(4*J-1,1)+U(1,J))/AB(J)*XL*(U0OT(1,J)+WDOT(1,J+2))$
$T(15,J)=C1*(VOOT(4*J-1,1)+U(1,J))/AB(J)*XL*(U0OT(1,J)+WDOT(1,J+2))$
$T(15,J)=C1*(VOOT(4*J-1,1)+U(1,J))/AB(J)*XL*(U0OT(1,J,J)+WDOT(1,J+2,J))$
$T(15,J)=C1*(VOOT(4*J-1,1)+U(1,J))/AB(J)*XL*(U0OT(1,J,J)+WDOT(1,J+2,J))$
$T(15,J)=C1*(VOOT(4*J-1,1)+U(1,J))/AB(J)*XL*(U0OT(1,J,J)+WDOT(1,J+2,J))$
$T(15,J)=C1*(VOOT(4*J-1,1)+U(1,J))/AB(J)*XL*(U0OT(1,J,J)+WDOT(1,J+2,J))/AB(J)$
$T(15,J)=C1*(VOOT(4*J-1,2)+U(1,J,J))/AB(J)*XL*(U0OT(1,J,J)+WDOT(1,J+2,J))/AB(J)$
$T(15,J)=C1*(VOOT(4*J-1,2)+U(1,J,J))/AB(J)*XL*(U0OT(1,J,J)+WDOT(1,J+2,J))/AB(J)$
$T(15,J)=C1*(VOOT(4*J-1,2)+U(1,J,J)+U(1,J,J)+VDOT(1,J-2,J)/AB(J)$
$T(15,J)=C1*(VOOT(4*J-1,2)+U(1,J,J)+U(1,J,J)+VDOT(1,J-2,J)/AB(J)$
$T(15,J)=C1*(VOOT(4*J-1,2)+XL*(U0OT(5,J)+U(1,J,J)+VDOT(1,J-2,J)/AB(J)$
$T(15,J)=C1*(VOOT(4*J-1,2)+XL*(U0OT(5,J)+U(1,J,J)+VDOT(4*J-2,J)/AB(J)$
$T(15,J)=C1*(VOOT(4*J-1,2)+XL*(U0OT(5,J)+U(1,J,J)+VOOT(4*J-2,J)/AB(J)$
$T(15,J)=C1*(VOOT(4*J-1,2)+XL*(U0OT(5,J)+U(1,J,J)+VOOT(4*J-2,J)/AB(J)$
$T(15,J)=C1*(VOOT(4*J-1,2)+XL*(U0OT(5,J)+U(1,J,J)+VOOT(4*J-2,J)/AB(J)$
$T(15,J)=C1*(VOOT(4*J-1,2)+XL*(U0OT(5,J)+U(1,J,J)+VOOT(4*J-2,J)/AB(J)$
$T(15,J)=C1*(VOOT(4*J-1,2)+XL*(U0OT(5,J)+U(1,J,J)+VOOT(4*J-2,J)/AB(J)$
$T(15,J)=C1*(VOOT(4*J-1,2)+XL*(U0OT(5,J)+U(1,J,J)+VOOT(4*J-2,J)/AB(J)$
$T(15,J)=C1*(VOOT(4*J-1,2)+XL*(UOOT(1,J,J)+U(1,J,J)+VOOT(4*J-1,J)/AB(J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                WRITE (6,114) (ST(I,J),J=1,4)
WRITE (6,955)
5 FORMAT(/// SIGMA-Z MATRIX ')
DO 956 1=1,16
6 WRITE (6,114) (SZ(I,J),J=1,4)
ERTURN
       0002200
0002300
0002300
0002400
0002500
0002500
0002500
0002500
0003300
0003300
0003300
0003300
0003300
0003300
0003300
0003300
0003300
0003300
0003300
0003300
0003300
0003300
0003300
0003300
0003300
0004300
0004400
0004400
0004400
0004500
0005200
0005200
0005300
0005300
0005300
0005300
0005300
0005300
0005300
0005300
0005300
0005300
0005300
0005300
0005300
0005300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0006400.
```


C.4 Bar With Through-Thickness Central Crack

The computer program for the solution of problems in Cartesian coordinates can be conveniently divided into four parts. The schematic representation of these four parts for the bar with a through-thickness central crack computer program is shown in Figure 37. The main program is denoted as CCRAG while the subroutines are designated as CBITT, CMINV and CVECT. Subroutine CBITT-EIGEN calculates the eigenvalues, eigenvectors, modal matrices and the matrix functions required in the x-y-z directional differential equation solutions. Subroutine CMINV-MATINV uses the Gauss-Jordan maximum pivot strategy to numerically generate all the required matrix inverses. Subroutine CVECT-VECTOR is used to evaluate the coupling vectors in the x-y-z directions respectively.

The input for each routine is typed in at the beginning of each part using the DATA statements. Note that the subroutines CBITT-EIGEN and CVECT-VECTOR are each called three times, with the arguments of the call vector defining the coordinate direction along which the variables are evaluated. The program is completely general in that the dimensions of the bar or the selected grid increments can be changed by suitable changes in the DIMENSION, DATA and COMMON statements only. The program includes a large number of PRINT statements which are used to follow the execution of the program at the conversation terminal. Note that

Figure 37. - Schematic representation of the bar with throug-thickness central crack computer program.

most matrix multiplications in this program are performed in a column by column operation which is done solely to minimize the paging in the IBM-360 computer.

The output for this problem includes the displacements after each iteration and their derivatives $\{\mathring{u}\}$, $\{\mathring{v}\}$, $\{\mathring{w}\}$, and the normal stresses $\{\sigma_{\mathbf{x}}\}$, $\{\sigma_{\mathbf{y}}\}$ and $\{\sigma_{\mathbf{z}}\}$ after convergence of the successive approximation procedure has been obtained. Information about matrix function error checks, singularity of matrices and number of iterations is also displayed at the terminal.

```
SUBROUTINE EIGEN(XAI,XAZ,XA3,XI,HH,AI,AZ,JI,JZ,J3,J4,IFL)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION DXX(98,98),XAI(J4,J4,JI),XAZ(J4,J4,JI),XAZ(J4,J4,JI),XAZ(J4,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),PZ(98,98),PZ(98,98),PZ(98,98),PZ(98,98),PZ(98,98),PZ(98,98),PZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98),DZ(98,98
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         S1=F2*DFLDAT(1-1)
D0 40 J=1,NY
S2=FY*DFLDAT(J-1)
KNT+1
EL(KNT)=L1*(1,0D0-DCDS(S1))+C2*(1,0D0-DCDS(S2))
EL(KNT)=DSQRT(2,0D0*EL(KNT))
UNT=0
D0 40 M=1,NZ
S3=S1*DFLDAT(M-1)
D0 40 N=1,NY
S4=S2*DFLDAT(M-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 JNT=JNT+1
40 P(JNT+KNT)=DCOS(S3)*DCOS(S4)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PRINT 2001
2001 FORMAT(* END OF LOOP 40*)
00 404 J=1,MX
00 404 J=1,MX
404 PIV(J,1)=P(J,1)/FX
00 405 J=1,MX
00 405 J=1,MX
                                                                                                                                                                                                                                                                   C1=A1

C2=A2

NXM1=NX-1

NYM1=NY-1

NZM1=NZ-1

FX=DFLOAT(NYM1)

FY=PI/OFLOAT(NYM1)

FY=PI/OFLOAT(NYM1)

FX=A1(J-1,1) = 0.00

DO 2 J=1,94X

2 XA1(J-1,1) = 0.00

DO 3 J=1,94X

DO 3 J=1,94X

DO 4 I=1,94X

DO 4 J=1,94X

DO 4 I=1,94X

DO 4 I=1,94X

DO 6 J=1,94X

DO 7 I=1,94X

TXA1(I-1,1) = 1.50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DO 40 I=1,NZ
                                                                                                                                                                                         NY=J2
NZ=J3
MX=J4
H=HH
  00000100
0000200
0000200
0000200
0000200
0000200
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
0001100
```

```
M=MOD(1,NY)
N=MOD(1,NY)
IF((M-EQ-0.0R.M-EQ-1).AND.(N-EQ-0.0R.N-EQ-1)) GO TO 406
IF((M-EQ-0.0R.M-EQ-1).AND.N-E-0.AND.N-E-1) GO TO 407
IF((M-NE-0.AND.M-NE.).AND.N-NE.0.AND.N-NE.1) GO TO 407
GO TO 405
GO TO 405
FOR INT 2002
FOR INT 2002
FOR INT 2002
FOR INT 2002
FOR INT 2003
FOR I
                                                                                                                                                                                                                                                                                    DO 409 J=1,NV

DO 409 J=1,NV

DO 409 J=1,NV

DO 410 J=1,NV

HPI=H+1

DO 410 J=1,NV

HPI=H+1

DO 411 J=1,NV

HPI=H+1

DO 412 J=1,NV

HPI=H+1

DO 412 J=1,NV

HPI=H+1

DO 412 J=1,NV

HPI=NY+1

DO 412 J=1,HXY

HPI=NY+1

DO 412 J=1,HXY

HPI=NY+1

DO 412 DO 412 J=1,HXY

HPI=NY+1

DO 412 DO 3

DO 112 DO 412 DO 5

DO 112 DO 412 DO 5

DO 112 DO 412 DO 5

DO 10 DO 112 DO 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      2004 FORMAT(" END OF LOOP 42")
DO 48 J=1,MX
DO 48 J=1,MX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       PT1(I,1)=PIV(I,1)*04(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Y=Herial

Y=Herial

D0 41 J=1,MX

D0 42 J=1,MX

D4(J)=DCOSH(FL(J))

D6(J)=DCOSH(FL(J))

D6(J)=EL(J)*TEMP

IF (J=EQ,J)*TEMP

D5(J)=TEMP/EL(J)

G0 T0 42

3 D5(J)=Y
                                                                                                                                     407
                                                                                                     406
                                                                                                                                                                                              2002
                                                                                                                                                                                                                                                         408
                                                                                                                                                                                                                                                                                                                                                     404
                                                                                                                                                                                                                                                                                                                                                                                                                                   410
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 412
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 41
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          48
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                411
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2003
     0005500
0005500
0005500
0005500
0006500
0006500
0006500
0006500
0006500
0006500
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
0007300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0010400.
0010500.
0010600.
0010700.
```

```
CBITT 0010000. 148 PT21(1.3)=PYV(1.3)=D5(11)
0011200. 148 PT21(1.3)=PYV(1.3)=D5(11)
0011300. 248 PT31(1.3)=PYV(1.3)=D5(11)
0011300. 248 PT31(1.3)=PYV(1.3)=D6(11)
0011500. 2005 PT31(1.3)=PYV(1.3)=D6(11)
0011500. 2005 PT31(1.3)=PYV(1.3)=D6(11)
0011700. 2005 PT31(1.3)=PYV(1.3)=D6(11)
0011800. 2005 PT31(1.3)=PYV(1.3)=D6(11)
001200. 3006 PT31(1.3)=SVUH
001200. 491 SUM=SUM+PT11(1.1)=PY(1.3)
001200. 491 SUM=SUM+PT11(1.1)=PY(1.3)
001200. 491 SUM=SUM+PT21(1.1)=PY(1.3)
001200. 491 SUM=SUM+PT21(1.1)=PY(1.3)
001200. 492 SUM=SUM+PT21(1.1)=PY(1.3)
001200. 492 SUM=SUM+PT21(1.1)=PY(1.3)
001300. 492 SUM=SUM+PT21(1.1)=PY(1.3)
001300. 494 SUM=SUM+PT21(1.1)=PY(1.3)
001300. 494 SUM=SUM+PT21(1.1)=PY(1.3)
001300. 494 SUM=SUM+PT21(1.1)=PY(1.3)
001300. 494 SUM=SUM+PT21(1.1)=PYX
001300. 494 SUM=SUM+PT21(1.1)=PYX
001300. 494 SUM=SUM+PT21(1.1)=PYY
001300. 494 SUM=SUM+PT21(1.1)=PYX
001300. 494 SUM=SUM+PT21(1.1)=PYX
001300. 494 SUM=SUM+PT31(1.1)=PYX
001300. 494 SUM=SUM+PTX
001300. 494 SUM=SUM+PT
```

```
IMPLICIT REAL#8 (A-H,D-Z)

DOUBLE PRECISION K1,K2,K3,K4,K6,K7

DOUBLE PRECISION K1,K2,K3,K4,K6,K7

DOUBLE PRECISION K1,K2,K3,K4,K6,K7

DIMENSION OA1(35,35,14),DA2(135,35),DX1(135,35),14),DA1(70,70,7),-

C GA3(98,98,5),D22(135,35),DA1(135,35),DX1(135,35),DX1(135,35),-

DIMENSION DA3(70,70,70),T0,CA1(98,98,5),DC(135,35),DX5(135,35),DX5(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA8(135,35),DA1(135,14),DA1(170,7),SIG2(198,5)

DIMENSION U(35,14),SIGY(70,7),SIGZ(198,5)

DIMENSION DA1T(70,70),DA3T(70,70),D22(70,70)

EQUIVALENCE (VBW(1),VAL(1)),VVBW(35),VBE(1))

DATA KK,HY,HY,HZ /2,5D-1,1,53846153846154D-1,2,9166666666660-1,3,75D-1/

DATA KN,NY,NZ /14,75/

DATA NX,NY,NZ /14,75/

DATA NX,NY,NZ /14,75/

DATA NX,NY,NZ /14,75/

DATA NX,NY,NZ /14,75/
33 FORMAT(! END OF LOOP 1913 !)

SAX=0.D0

D0 28 N=1,MX

D0 28 M=1,MX

D0 28 M=1,MX

SAX=DMAX(|DABS(DXX(M*N)),SAX)

PRINT 29,V,SAX

29 FORMAT(! FOR',F8.4," ERROR = ",F15.9)

If (IFL-Ee,0) G0 TO 496

D0 497 J=1,MX

D0 497 J=1,MX

D0 498 J=1,MX

D0 498 J=1,MX
                                                                                                                                                                                                                                                                                                              PRINT 1014
FORMAT(* END OF D GENERATION
                                                                                                                                                                                            6 00 35 N=1,MX

00 35 N=1,MX

00 35 N=1,MX

00 39 N=1,MX

00 39 N=1,MX

00 36 N=1,MX

00 36 N=1,MX

00 36 N=1,MX
                                                                                                                                                 SUM=0.D0
D0 499 L=1,MX
SUM=SUM+PT4(L,1)*P(L,J)
XI(1,J)=SUM
                                                                                                                                                                                                                                                                                       XA3(M,N,II+1) = D3(M,N)
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   M1=(NX-1)*NZ
M2=(NY-1)*NX
M3=(NZ-1)*NY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NIC=KOC*NZ
                                                                                                                                                                                                                                                                                                                                    RETURN
                                                                                                                                                                                                                                                                                                                          1014
                                                                                                                                                                         664
                                                                                                                                                                                               496
                                                                                                                                                                                                                                                                                         198
    1503
                                                                                                                                                                                                                                                       39
  0016300
0016600
0016600
0016600
0016700
0016800
0017000
0017000
0017700
0017700
0017700
0017700
0017700
0017700
0017700
0017700
0017700
0017700
0017700
0017700
0017700
0017700
0017700
0017700
0017700
0017700
0017700
0017700
                                                                                                                                                                                                                                                                                                                       0002000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0001900
  CC RAG
CCRAG
CC RAG
CCRAG
CCRAG
```

```
CCRAG 00002600. KZ= KXY(14Y=YY)
CCRAG 00002600. KZ = XXY(14Y=YY)
CCRAG 00002600. KZ = XXY(14Y=YY)
CCRAG 00002600. KZ = XXY(14Y=YY)
CCRAG 00002600. CLLL E[GENIGA1.GA2.GA3.G22.H2.K2.K6.NZ.NX.NY.HZ.1F3)
CCRAG 00002600. CLLL E[GENIGA1.GA2.GA3.G22.H2.K2.K6.NZ.NX.NY.HZ.1F3)
CCRAG 0000300. DO 18 M=11.MZ
CCRAG 0000300. 18 SWH=SWH=CM1.MZ
CCRAG 0000300. 2099 FRMMT: FRO OF LOOP 18:1
CCRAG 0000300. 201 JI.NY
CCRAG 000000. 201 JI.NY
CCRAG 0000300. 201 JI.NY
CCRAG 000000. 201 JI.NY
CCRAG 000000. 20
```

```
PRINT 2007
2007 FORMATT! END OF LOOP 16!)
CALL EIGEN(OA1,OA2,OA3,U22,HX,K3,K2,NX,NY,NZ,MX,IF1)
DO 2 M=1,MX

                                                                                                 SUM= 0.500
MIX= M+NIC
DO 12 L=1.NIC
2 SUM=SUM+DA3(L,NIX,NY) # DX3(L,N)
1 DC(M,N) = DA1T (MIX,N) = SUM
CALL MATINV (DA,NUC)
DO 13 N=1,NIC
DO 13 M=1,NOC
                                    MIX=M+NIC

DO 10 L=1,NIC

DO SUM=SUM+DA3(L,MIX,NY)*DX2(L,N)

9 DB(M,N)=D031(HIX,NIX)-SUM

PRINT 2004

DO 11 N=1,NIC

DO 11 N=1,NOC
                                                                                                                                                                       MIX= M + NIC
DO 113 L=1,NIC
113 SUM=SUM+DA3(L,MIX,NY)*DXI(L,N)
                                                                                                                                                                                               13 Dx5(M*N) = S(UM

DD 14 N=1*NIC

DD 14 M=1*NOC

SUM = 0.DD

DD 114 L=1*NOC

114 SUM = SUM + DA(M,L) ≈ DX5(L*N)
                                                                                                                                                                                                                                                                    SUM= 0.DO

DO 115 L=1,NUC

115 SUM= SUM + DA(M,L)≠DB(L,N)

15 DAB(M,N)=SUM

DO 16 N=1,NIC

DO 16 M=1,NUC
                                                                                                                                                                                                                                                                                                                                                                                       SUM=0.00

DO 102 L=1,MX

102 SUM=SUM+0A3(M,L,NX) #022(L,N)

2 021 (M,N) SUM

PRINT 3000
7 DA(M,N)=DA1T(MIX,NIX)-SUM
DO 9 N=1,NUC
NIX = N+NIC
DO 9 M=1,NUC
SUM= 0.00
                                                                                                                                                                                                                                                                                                                  SUM= 0.00

DO 116 L=1,NOC

116 SUM+DA(M,L) ≎DC(L,N)
                                                                                                                                                                                                                                             14 DX6(M,N)=SUM
DO 15 N=1,NOC
DO 15 M=1,NOC
                                                                                                                                                                                                                                                                                                                                         16 DAC (M,N)=SUM
                                                                                                                                                                  SUM= 0.00
                                                                             2004
                                                      0.6
                                                                                                                          12
                                                                                                                                                                                                                                             0010300.
0010400.
0010400.
0010600.
0010600.
0011800.
0011500.
0011540.
0011540.
0011540.
0011580.
0011680.
0011680.
0011680.
0011680.
0011690.
0007400
0007500
0007500
00077000
0007800
0008100
0008200
0008280
0008280
0008280
0008280
0008280
0008280
0008800
0008800
0008800
0008800
0008800
0008800
0008700
0009700
                                                                                                                                                                       0009400.
                                                                                                                                                                                               0009700.
0009800.
0009900.
0010000.
```

```
CCRAG 0012000. 3000 FORMATI'END OF LOOP 2')

CCRAG 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 0012400. 001240
```

```
CERRE 0016460. DO 30 Maj.WX
CERRE 0016570. DO 130 Waj.WX
CERRE 0019570. DO
```

```
SUM2=SUM2+DX2(I,J)*B3(NIX,NY)+DX4(I,J)*(F4(NIX)+B4(NIX,NY))
F3(I)=SUM1-SUM2-B3(I,NY)
F3(I)=SUM1-SUM2-B3(I,NY)
F3(I)=SUM1-SUM2-B3(I,NY)
F3(I)=SUM1-SUM2-B3(I,NY)
F3(I)=SUM1-SUM2-B3(I,I)
F3(I)=F3(I)+B3(I,I)
F4(I)=F4(I)+B4(I,I)
F4(I)=F4(I)+B4(I,I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PRINT 3016
3016 FORMAT(' END OF LOOP 4050 ')
WRITE (6,52)
52 FORMAT ('/', V-MATRIX')
DO 53 I=1,MY
53 WRITE (6,34) (V(I,J),J=1,NY)
CALL VECTOR(U,UDOT,V,VDOT,NX,NY,HZ,HX,HY,MZ,MX,MY,0,T)
                                                                                                                                                                                                                                                                                                                                                                                                     SUM2=SUM2-DX-6(I,J)*VAL(J)+DAC(I,J)*(F4(J)+B4(J,NY))
F4(MIX)=SUM1-SUM2-B4(MIX,NY)
D0 47 I=1,NIC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DO 48 J=1,NIC
SUM1=SUM1+DX1(I,J)*VAL(J)-DX3(I,J)*(F4(J)+84(J,NY))
DO 49 J=1,NOC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0. SUMZ=0.000

0. 150 N=1,MY

0. 150 SUMZ=SUMZ+DAI(N,M,I)*H3(N)+DAZ(N,M,I)*H4(N)

0. 50 V(M,I)=SUMZ

10. 50 V(M,I)=3015

10. 50 V(M,I)=1000

10. 5
                                                                                                                                                                                                                                                                                                                                                                SUM1=SUM1+DA(1,1)*VBE(J)-DAB(1,1)*83(NIX,NY)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             4150 SUM1=SUM1+Dā3(N,M,1)*H3(N)+Dā1(N,M,I)*H4(N)
4050 VDDT(M,I)=SUM1
                                                                                                                                                                            VBW(KNT)=C2-C1*(UDOT(K,M)+WDOT(L,N))
DO 44 I=1,NOC
42 F4(KNT)=-C1*(UDOT(K,M)+WDOT(M,N))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            SUM1=0.D0
D0 4150 N=1,MY
                                                                                                                                                                                                                                                        SUM1=0.D0
SUM2=0.D0
D0 45 J=1,NOC
                                                                                                                                                                                                                                                                                                                                                                                           DO 46 J=1,NIC
                        KNT=0
DO 43 M=1,NX
L=M2+M
                                                                                                  DO 43 N=1,NZ
K=NY*N
KNT=KNT+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           NIX=NIC+7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  SUM1=0.00
                                                                                                                                                                                                                                  MIX#I+NIC
                                                                                                                                                                                                                                                                                                                                                                                                                 9 4 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      40
                                                                                                                                                                                                                                                                                                                                                                  45
                        0021000
00211000
00211000
00213000
00215000
00215000
00215000
00221000
00222000
00222000
00222000
00222000
00222000
00222000
00222000
00222000
00222000
00222000
00222000
00222000
00222000
00222000
00222000
00222000
00222000
00222000
00222000
00222000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
00223000
                                                                                                                                                                                                                                                                                                                                     CCRAG
CCRAG
CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                                          CC RAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CCRAG
CCRAG
CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CCRAG
CCRAG
CCRAG
CCRAG
CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CCRAG
CCRAG
CCRAG
CCRAG
CCRAG
```

```
CCRAG 0025700. DO 56 N=1,NZ
CCRAG 0025900. DO 156 N=1,NZ
CCRAG 0025900. DO 156 N=1,NZ
CCRAG 0025900. DO 156 N=1,NZ
CCRAG 002500. DO 158 N=2,NZ
CCRAG 002570. DO 59 L=1,NZ
CCRAG 002570. DO 4059 L=1,NZ
CCRAG 002580. DO 40 N=1,NX
CCRAG 002580. DO 40 N=1,NZ
CCRAG 00258
```

```
PRINT 3020
020 FORMAT(' END OF LOOP 4063')
WRITE (6,65)
6 FORMAT('//' W-MATRIX')
D0 66 I=1,MZ
6 WRITE (6,34) (W(I,J),J=1,NZ)
CALL VECTOR V'VDOT,WWDOT,NX,NY,NZ,HX,HY,HZ,MX,MY,MZ,O,R)
PRINT 69,KTR
69 FORMAT(IX,13)
IF(DABS(U(I,1)),GT.5.0D0) STOP
D0 70 I=1,NX
D0 70 I=1,NX
D0 70 J=1,NX
D0 70 J=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               KNT=0

DO 77 K=1,NX

DO 77 I=+NZ

KNT=KNT+1

DO 77 J=1,NY

LI=K+NX*(J-1)

LZ=J+NY*(I-1)

SIGY(KNT,J)=CI*VDOT(KNT,J)+XL*(MDOT(L1,1)+UDOT(L2,K))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                L2=J+NX*(I-1)
SIGX(KNT,J)=CI*UDOT(KNT,J)+XL*(VDOT(L1,I)+WDOT(L2,K))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       L2=J+NZ*(I-1)
SIGZ(KNI,J)=GI*WDOT(KNI,J)+XL*(UOOT(L1,I)+VDOT(L2,K))
                                                                                                                                                                                                                                                                                                         23
                                                                                                                                                                                                                                                                                                                                                                               23
                                                                                                                                                                                                                                                                                                                                            00 72 1=1,NZ
00 72 J=1,MZ
IF(DABS(W(J,I)-WX(J,I)).GT.1.0D-6) GO TO
                                                                                                                                                                                                                                                                     DO 71 I=1,NY
DO 71 J=1,MY
IF(DABS(V(J,I)-VX(J,I)),GT.1,0D-6) GO TO
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                WRITE (6,73) KTR
FORMAT(///".ITERATION NUMBER '',12,///)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PRINT 3021

1 FORMAT(' END OF JOB ')

WRITE (6.35)

5 FORMAT(//' UDOT-MATRIX')

00 36 I=1,MX
 4063 WDOT (M,I)=SUM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                  KNT=0
00 74 K=1,0NZ
00 74 I=1,0NY
KNT=KNT+1
00 74 J=1,0NX
L1=K+NZ*(J-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DO 80 K=1,NY
DO 80 I=1,NX
KNT=KNT+1
DO 80 J=1,NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       L]=K+N\#( 上])
                                                                                                                                                                                                                                                                                                                                                                                                 CONT INUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  KNT=0
                                                                      65
                                   3020
                                                                                                          99
                                                                                                                                                                                                                                                      2
                                                                                                                                                                                                                                                                                                                          1
                                                                                                                                                                                                                                                                                                                                                                                                    72
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 74
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3021
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               11
                  0029060.
0029120.
0029120.
0029120.
0029140.
0030900.
0030900.
0031200.
0031300.
0031500.
0031500.
0031500.
0031500.
0031500.
                                                                                                                                                                                                                                                                                                                                                                                                                                                    0032400.
0032500.
0032600.
0032800.
0033800.
0033800.
0033600.
0033600.
0033600.
0033600.
0033600.
0033600.
0033600.
0033600.
CCRAG
CCRAG
CCRAG
CCRAG
```

```
END
SUBROUTINE MATINY (X, MNM)
DOUBLE PRECISION X,Y,W,A,TEST,R,DELT
DIMENSION X(MNM, MNM), Y(35,35), K(35), W(35,35)
DATA DELT,LOOPS/1,00-8,2/
KSIG=0
M=NNM
MN=M-1
DO 1 J=1,M
                                                                             75 FORAT ( ) . SIGNA-X MATRIX !)

DO 76 I=1,NX

76 MRITE (6,34) (SIGX(1,J),J=1,NX)

MRITE (6,78)

78 FORNAT ( / / · SIGNA-Y MATRIX !)

DO 79 I=1,NY

WRITE (6,34) (SIGY(1,J),J=1,NY)

WRITE (6,81)

81 FORMAT ( / / · SIGNA-Z MATRIX !)
                      DO 55 I=1,NV

55 WRITE (6,34) (VDOT([1,J),J=1,NY)

WRITE (6,67)

67 MARIE (1,1/1, WDOT-MATRIX ')

DO 68 I=1,NZ

68 WRITE (6,34) (WDOT([1,J),J=1,NZ)
                                                                                                                                                        DO 82 I=1,MZ
WRITE (6,34) (SIGZ(I,J),J=1,NZ)
(6,34) (UDGT([,J),J=1,NX)
                                                                                                                                                                                                                                                                                          A=0.00
DO 2 J=1,M
IF (DABS(Y(J,1)).LE.A) GO TO
A=DABS(Y(J,1))
       WRITE (6,54)
FORMAT(/// VDOT-MATRIX *)
                                                                                                                                                                                                                                                                                                                                   CONTINUE
IF (A.EQ.O.DO) GO TO 18
N=K(L)
                                                                                                                                                                                                                                                                                                                                                                                                                           Y(I,J)=Y(I,J+1)/A
Y(I,M)=1,DO/A
DO 6 L=1,M
                                                                                                                                                                                                                                                          K(J)=J
DO 1 I=1+M
Y(I,J)=X(I,J)
DO 6 I=1+M
                                                                                                                                                                                                                                                                                                                                                                                           Y(I,J)=Y(L,J)
Y(L,J)=A
                                                                         WRITE (6,75)
                                                                                                                                                                                                                                                                                                                                                                   K(I)=N
D0 3 J=1,M
                                                                                                                                                                                                                                                                                                                                                                                                            A=Y(1,1)
DO 4 J=1,NM
                                                                                                                                                                                                                                                                                                                                                           K(L)=K(I)
                                                                                                                                                                                                                                                                                                                                                                                    A=Y(1,3)
       0034746.
0034746.
0034746.
0034756.
0034756.
0034756.
0034756.
0034760.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0035900.
0031500.
0035900.
0001500.
00001900.
0001100.1
                                                                                                                                                                                                                                                                                                                                                                                                                            $0062000
```

```
SUBROUTINE VECTOR(V1,V2,M1,M2,LX,LY,LZ,HX,HY,HZ,LD1,LD2,LD3,IFG,R1)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION VI(LD2,LY),V2(LD2,LY),W1(LD3,LZ),W2(LD3,LZ),V(98,14),-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FORMAT (' ERROR = ',D14.6)
FORMAT (' ERROR INDICATOR NUMBER ',11)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        KSIG=1
GO TO 20
KSIG=2
IF (KSIG.NE.O) PRINT 22, KSIG
RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                  TEST=0.00
00 12 J=1,M
00 12 J=1,M
R=0.00
00 11 L=1,M
R=R-X(I,L)*Y(L,J)
IF (I,EQ,J) R=R+1.000
IFST=0MAXI(TEST,0ABS(R))
W(I,J)=R
IF (TEST-LE,0ELT) GO TO 16
00 14 J=1,M
              A*Y(L,1)
DO 5 N=1,MM
Y(L,N)=Y(L,N+1)-A*Y(I,N)
Y(L,N)=X+Y(I,N)
Y(L,N)=X+Y(I,N)
Y(L,N)=A*Y(I,N)
Y(L,N)=A*Y(I,N)
DO 10 1=1,M
IF (K(I),EQ,I) GO TO 10
DO 7 J=I,M
IF (K(J),EQ,I) GO TO 8
CONTINUE
GO TO 19
DO 9 L=1,M
IF (L.EQ.1) GO TO 6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    A=0.00
D0 13 L=1,M
A=A+Y(I+L)*W(L,J)
Y(I+J)=Y(I+J)+A
CONTINUE
KSIG=3
PRINT 21, TEST
D0 17 J=1,M
X(I+J)=Y(I+J)
G0 T0 20
                                                                                                                                                                                                                                                                                    A=Y(L,1)
Y(L,1)=Y(L,J)
Y(L,1)=A
K(J)=K(I)
CONTINUE
DO 15 N=1,LOOPS
0003200.
0003300.
0003400.
0003400.
0003400.
0003400.
0003400.
0004100.
0004200.7
0004200.7
0004200.7
0004200.7
0004200.7
0004200.7
0004200.7
0004200.7
0004200.7
0004200.7
0004200.7
0004200.7
0004200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
0005200.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0007200.17
0007300.
0007500.18
0007600.19
0007800.
0007800.
0007800.
0007800.
0007800.
0008100.22
0008200.
  COURT OF COU
```

```
DO 102 J=2,NXH1
K=N7+J
L2=1>NZ
L3=L2-NZ
L3=L2-NZ
L3=L2-NZ
L3=L2+NZ
L3=L3+NZ
L3+NZ
L3
     VDOT(98,14),W(98,14),WDOT(98,14),R1(LD1,LX),R(98,14)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Q2=5.00-1/(HX*HY)
Q3=5.00-1/(HX*HZ)
Q4=Q1/2.000
Q6=Q1/2.000
D0 201 J=1.NY
D0 201 J=1.MS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 V(1,J)=V(1,J)

D0 202 J=1,NY

D0 202 I=1,NS

V00T(1,J)=V2(1,J)

D0 203 J=1,NZ

D0 203 I=1,NZ

N(1,J)=W1(1,J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            00 204 J=1,NZ

00 204 J=1,NZ

204 WDOT(I,J) = WZ(I,J)

00 101 I=1,MX

101 R(I,1) = 0,D0
                                                                                                                                                                                                                                                           NZM1=NZ-1
M1=NXM1#NZ
M3=NZM1#NY
M7=NYM1#NX
M2=(NX-2)#NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                               01=7.50-1/HX
                                                                                                                                                                                                        NXM1=NX-1
NYM1=NY-1
                               M6=LD1
M5=LD2
M4=LD3
NX=LX
NY=LY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              202
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      203
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          201
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0002700
0002800
0002800
0003100
0003100
0003400
0003500
0003600
                                                                                                                                          0000900
0001100
0001200
0001300
0001400
0001500
0001600
0001800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0002300.
0002400.
0002500.
0002600.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0003900
0004000
0004200
0004200
0004400
0004500
                            0000500.
0000600.
0000700.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0002000.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0004700.
0004800.
0004900.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0005000.
0005100.
0005200.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0005500.
0005600.
0005700.
     0000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00022000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0005300
COVECTION OF CONTRACT OF CONTR
```

```
R(2*NY,1)=Q1*(VDOT(2,NY)-VDOT(NZ+2,NY))+Q1*(WDOT(MT+1,2)-WDOT(MT+2,2))-Q2*(V(2,NY)-V(NZ+2,NY))
R(2*NY+1,1)=Q1*(VDOT(3,1)-VDOT(NZ+3,1))+Q1*(WDOT(1,3)-WDOT(2,3))+Q2*(V(3,1)-V(NZ+3,1))
R(3*NY,1)=Q1*(VDOT(3,NY)-VDOT(NZ+3,NY))+Q1*(WDOT(MT+2,3)-WDOT(MT+2,3))-Q2*(V(3,NY)-V(NZ+3,NY))
R(3*NY+1,1)=Q1*(VDOT(4,1)-VDOT(NZ+4,1))+Q1*(WDOT(1,4)-WDOT(2,4))+Q2*(V(4,1)-V(NZ+4,1))
R(4*NY,1)=Q1*(VDOT(4,NY)-VDOT(NZ+4,NY))+Q1*(WDOT(MT+1,4)-WDOT(MT+2,4))-Q2*(V(4,NY)-V(NZ+4,NY))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 R(I3,J)=04*(VDOT(L1,I)-VDOT(L3,I))+Q4*(MDOT(K1-1,NZ)-WDOT(K1+1,NZ))-Q6*(W(K1-1,NZ)-W(K1+1,NZ))
DO 104 K=2,NZM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     R(I,,)=Q4*(VDOT(I1,1)-VDGT(I2,1))+Q4*(WDOT(K1-1,1)-WDOT(K1+1,1))+Q6*(W(K1-1,1)-W(K1+1,1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    R(I+1,NX)=Q1*(VDOT(I1,1)-VDOT(I2,1))+Q1*(WDOT(NX-1,K)-WDOT(NX,K))+Q2*(V(I1,1)-V(I2,1))
R(I3,NX)=Q1*(VDOT(I1,NY)-VDOT(I2,NY))+Q1*(WDOT(M4-1,K)-WDOT(M4,K))-Q2*(V(I1,NY)-V(I2,NY))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   R(I+1,J)=Q4*(VDOT(L1,1)-VVDOT(L2,1))+Q4*(WDOT(J-1,K)-WDOT(J+1,K))+Q5*(V(L1,1)-V(L2,1))
R(I3,J)=Q4*(VDOT(L1,NY)-VDOT(L2,NY))+Q4*(WDOT(L-1,K)-WDOT(L+1,K))-Q5*(V(L1,NY)-V(L2,NY))
DO 104 L=2,NYM1
                                                                                                                                                                                                                 13=1+M3
R(I,NX)=Q1*(VDOT(M2+1,I)-VDOT(M1+1,I))+Q1*(MDOT(L-1,I)-WDOT(L,I))-
1 +Q3*(W(L-1,I)-W(L,I))
R(I3,NX)=Q1*(VDOT(M1,I)-VDOT(M5,I))+Q1*(MDOT(L-1,NZ)-WDOT(L,NZ))-Q3*(W(L-1,NZ)-W(L,NZ))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1 +Q2*(V(1,1)-V(NZ+1,1))+Q3*(W(1,1)-W(2,1))
R(NY,1)=Q1*(VDGT(1,NY)-VDGT(NZ+1,NY))+Q1*(WDGT(M7+1,1)-WDGT(M7+2,1))-
1 -Q2*(V(1,NY)-V(NZ+1,NY))+Q3*(W(M7+1,1)-W(M7+2,1))
R(NY+1,1)=Q1*(VDGT(2,1)-VDGT(NZ+2,1))+Q1*(WDGT(1,2)-WDGT(2,2))+Q2*(V(2,1)-V(NZ+2,1))
R(M3+1,J)=Q4*(VDDT(L1,1)-VDDT(L3,1))+Q4*(WDDT(J-1,NZ)-WDDT(J+1,NZ))-
1 +Q5*(V(L1,1)-V(L3,1))-Q6*(W(J-1,NZ)-W(J+1,NZ))
102 R(M6,J)=Q4*(VDDT(L1,NY)-VDDT(L3,NY))+Q4*(WDDT(K-1,NZ)-WDDT(K+1,NZ))-
1 -Q5*(V(L1,NY)-V(L3,NY))-Q6*(W(K-1,NZ)-W(K+1,NZ))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       R(I,J)=Q4*(VDOT(L1,L)-VDOT(L2,L))+Q4*(WDOT(K1-1,K)-WDOT(K1+1,K))
IF (IFG.NE.1) GO TO 107
R(1,1)=Q1*(VDOT(1,1)-VDOT(NZ+1,1))+Q1*(WDOT(1,1)-WDOT(2,1))-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      R(I,NX)=Q1*(VDOT(I1,L)-VDOT(I2,L))+Q1*(WDOT(I3-1,K)-WDOT(I3,K))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        DO 105 I=NY,M9,NY I3=I+NY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DO 105 J=2,NXM1
                                                                                                                         DO 103 I=2,NYM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     104 J=2,NXM1
                                                                                                                                                                                                                                                                                                                                        00 103 J=2,NXM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 [=NY*(K-1)+L
                                                                                                                                                                                        K=NX*(1-1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             L1=L2-2#NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            11=12-2*NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                L1=L2-2#NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 L2=K+J*NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              L2=K+J*NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       14=13-NX
                                                                                                                                                                                                                                                                                                                                                                                                                             L1=L2-NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   L3=L2+NZ
                                                                                                                                                                                                                                                                                                                                                                                                       L2=1*NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               I 1 = M2+K
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            12=M1+K
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3=[ *NX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          L+7M=1
                                                                                                                                                                                                                                                                                                                                                                        K1=K+J
                                                                                                                                                           I = NX = I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     105
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    103
                                                                                                                                                   0006400.
0006400.
0006600.
0006700.
0006800.
0006900.
                                                                                                                                                                                                                                                                                                                                                                                                                             0007200.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0007500.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0007700.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0008300.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0008700.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00089000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0009200.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00096000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .0007000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         .0008000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              .0098000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .0096000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         .0036000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              .0086000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0010200.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0010300.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0010400.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0010500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0010600.
                                                                 •0009000
                                                                                                0006100
                                                                                                                               0009000
                                                                                                                                                                                                                                                                                                                                                                                                 0007100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0007400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0008100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0008200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0008500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0009100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             •0066000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0010000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0010100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0010100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0010800
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0010900
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0011100
                                  0005000
  CONECT CO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CVECT
CVECT
CVECT
CVECT
CVECT
CVECT
CVECT
CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CVECT
CVECT
CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CVECT
```

```
R($*NY*1;1)=Q1*(VDOT($,1)-VDOT(NZ+$,1))+Q1*(WDOT(1,$)-WDOT(2,$))+Q2*(V($,1)-V(NZ+$,1))
R($*NY*1;1)=Q1*(VDOT($,NY)-VDOT(NZ+$,NY))+Q1*(WDOT(1,$)-WDOT(1,$)-WDOT(1,$)-V(NZ+$,1))
R($*NY*1;1)=Q1*(VDOT($,NY)-VDOT(NZ+$,NY))+Q1*(WDOT(1,$)-WDOT(1,$)-WDOT(1,$)-V(NZ+$,1))
R($*NY*1;1)=Q1*(VDOT($,1)-VDOT(NZ+$,NY))+Q1*(WDOT(1,$)-WDOT(1,$)-D2*(V($,1)-V(NZ+$,1))
R($*NY*1;1)=Q1*(VDOT($,1)-VDOT(NZ+$,1))+Q1*(WDOT(1,$)-WDOT(1,$)-WDOT(1,$)-Q2*(V($,1)-V(NZ+$,1))
R($*NY*1;1)=Q1*(VDOT($,1)-VDOT(NZ+$,1))+Q1*(WDOT(1,$)-WDOT(1,$)-WDOT(1,$)-Q2*(V($,1)-V(NZ+$,1))
R($*NY*1]
I=2*NY*1
I=2*NY*1
I=2*NY*1
I=5*NY*1
I=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                106
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 205
             0011200.
0011310.
0011320.
0011320.
0011340.
0011340.
0011500.
0011600.
0011910.
0011920.
0011920.
0011920.
0011920.
0011920.
0011920.
0011920.
0012300.
0012500.
0012500.
```

C.5 Bar With Through-Thickness Double Edge Cracks

Since the solution of this problem is very similar to that discussed in Appendix C.4, the enclosed computer program also follows the schematic diagram of Figure 37. The input and output data are handled identically to that of the central crack problem and only the initial value vectors are appreciably modified. Minor changes in the generation of the coupling vectors are also required.

COMPLETE PROGRAM LISTING

```
IMPLICIT REAL#8 (A-H,0-Z)
DIMENSION DXX(98,98),XAI(J4,J4,J1),XAZ(J4,J4,J1),XAZ(J4,J4,J1),TBLICIT REAL#8 (A-H,0-Z)
DIMENSION DXX(98,98),XAI(J4,J4,J1),XAZ(J4,J4,J1),TBLICIT REAL#8 (A-H,0-Z)
DIMENSION DIT(98,98),PTZ(98,98),PTZ(98,98),EL(98),FL(98)
DIMENSION DIT(98,98),DZT(98,98)
DATA PI /3.141592653589793D0/
SUBROUTINE EIGEN(XA1,XA2,XA3,XI,HH,A1,A2,J1,J2,J3,J4,IFL)
                                                                                                                                                                                                                                                                    KNT=KNT+1
EL(KNT)=C1*(1.0D0-DCOS(S1))+C2*(1.0D0-DCOS(S2))
EL(KNT)=DSQRT(2.0D0*EL(KNT))
                                                                                                                                                                                                                                                                                                                                   O P(JNT,KNT)=DCOS(S3)*DCOS(S4)
PRINT 2001
I FORMAT(* END OF LOOP 40*)
DO 404 I=1,MX
O 404 J=1,MX
4 PIV(J,I)=P(J,I)/FX
                                                                                                                              FX=DFLOAT (NYM1*NZM1)
                                                                                                                                     FY=PI/DFLOAT(NYM1)
FZ=PI/DFLOAT(NZM1)
OO 2 I=1,MX
                                                                                                                                                                2 XA1(J,1,1)= 0.D0

D0 3 I=1,HX

D0 3 J=1,HX

3 XA2(J,1,1)= 0.D0

D0 4 I=1,HX

D0 4 J=1,HX
                                                                                                                                                                                                                                                                                        JNT=0
DO 40 M=1,NZ
S3=S1*DFLOAT(M-1)
                                                                                                                                                                                                                                                                                                                      S4=S2*DFLOAT (N-1)
                                                                                                                                                                                                                                                S1=F2*DFLOAT(1-1)
                                                                                                                                                                                                                                                      DO 40 J=1,NY
S2=FY*DFLOAT(J-1)
                                                                                                                                                                                                    DO 4 J=1,MX
XA3(J,1,1)= 0.DO
DO 7 I=1,MX
                                                                                                                                                                                                                          XA1(I,I,1) = 1.D0
KNT=0
                                                                                                                                                                                                                                                                                                                                                                              DO 405 I=1,MX
                                                                                                                                                                                                                                                                                                              DO 40 N=1,NY
                                                                                                                                                           J=1,MX
                                                                                                                                                                                                                                         DO 40 I=1,NZ
                                                      NX=11
NY=12
NX=13
MX=14
H=HH
C1=H
C2=A2
NXM1=NX-1
                                                                                                                 NYM1=NY-1
                                                                                                                                                                                                                                                                                                                             JNT=JNT+1
                                                                                                                        NZM1=NZ-1
                                                                                                                                                   00 2
00 2
XA1(J
00 3
                                                                                                                                                                                                             4
                                                                                                                                                                                                                                                                                                                                     9
                                                                                                                                                                                                                                                                                                                                                                       404
                                                                                                                                                                                                                                                                                                                                                  2001
      0000200.
                   0002400.
00025500.
00025500.
0002600.
0002450.
0002750.
0002800.
0002800.
0002800.
0002900.
                                                                                                                                                                                                                                                                                                                    0003150.
0003250.
0003250.
0003270.
0003290.
                                                                                                                                                                                                                                                                                                                                                                              0003450.
                                                                                                                                                                                                     0002350.
                                                                                                                                                                                                                                                                                                                                                                       0003400
                                                                                                                                                                                                                                                                                                                                                               0003350
0000100
```

```
IF((M.EQ.O.OR.M.EQ.1).AND.(N.EQ.O.OR.N.EQ.1)) GD TD 406
IF(M.NE.O.AND.M.NE.1.AND.N.NE.O.AND.N.NE.1) GD TD 407
GD TD 405
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DO 412 J=1,MXY
MPJ=NY+J
PIV(MPJ,MPI)=PIV(MPJ,MPI)*2.0D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             PIV(MPJ,MPI)=PIV(MPJ,MPI)/2.000
                                                                                                                                           T 0003990, 2002 FORMAT(* END OF LOOP 405*)
T 0004000, 00 408 I=1,NY
0004150, 00 408 PIV(J,I)=PIV(J,I)?
                                                                                                                                                                                                                                                                                                  DO 409 I=1,NY
DO 409 J=1,NY
MPJ=M+J
IP V(MPJ,I)=PIV(MPJ,I)/2,0D0
DO 410 I=1,NY
MPI=M+I
                                                                                                                                                                                                                                                                                                                                                                                                                                            PIV(J,MPI)=PIV(J,MPI)/2,0D0
D0 411 1=1,NY
MPI=M+I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FORMAT(' END OF LOOP 412')
DO 10 II=1,NXM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PRINT 2004
2004 FORMAT(" END OF LOOP 42")
DO 48 J=1,MX
DO 48 I=1,MX
                                                                                         406 PIV(1,1) = PIV(1,1)/2,0D0
60 TD 405
407 PIV(1,1) = PIV(1,1)*2,0D0
405 CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              PT1(1,1)=PIV(1,1)*D4(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         D0 42 J=1,4X

D4(J)=DCOSH(FL(J))

TEMP=DSINH(FL(J))

D6(J)=EL(J)*TEMP

IF (J.EQ.1) G0 43

D5(J)=TEMP/EL(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  MXY=MX-2*NY
00 412 1=1,MXY
MPI=NY+I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Y=H*DFLOAT(II)
DO 41 J=1,MX
FL(J)=Y*EL(J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DO 411 J=1,NY
                                                                                                                                                                                                                                                                                                                                                                                                                          DO 410 J=1,NY
 ( YN . I ) OOM=H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PRINT 2003
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      D5(J)=Y
CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            HPJ=M+J
                                                                                                                                                                                                                                                                                                0004200

0004250

0004250

0004450

0004450

000450

000450

0004650

0004650

0004650

0004650

0004650

0004650

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000480

000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              48
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0005200
0005350
0005350
0005400
000550
000550
000550
000550
000570
000570
000570
                                                                                               0003800.
0003850.
0003900.
0003950.
                  0003600.
0003650.
0003700.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0005850.
                                                                              0003750
CB11T
CB1TT
CB1TT
CB1TT
CB1TT
CB1TT
CB1TT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CBITT
```

```
00 148 J=1,MX
00 148 I=1,MX
00 148 I=1,MX
00 148 I=1,MX
00 248 J=1,MX
00 248 I=1,MX
00 248 I=1,MX
00 248 I=1,MX
00 248 I=1,MX
00 249 I=1,MX
00 49 J=1,MX
00 49 I=1,MX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0007600. 1902 DZT(M,N)=DZ(N,M)
0007650. PRINT 1502
0007700. 1502 FORMAT(' END OF LOOP 1902')
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   SUMZ=SUMZ+DZT(L,M)*D3(L,N)
DXX(M,N)=SUM1-SUM2
DXX(N,N)=DXX(N,N)-1.0D0
PRINT 1503
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DO 1904 L=1,MX
SUM1=SUM1+DIT(L,M)*DI(L,N)
DO 1905 L=1,MX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     00 1913 N=1,MX
D0 1903 M=1,MX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SUM2=0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SUM1=0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1905
1903
1913
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0007950.
                                                                                       0006150
0006200
0006220
0006250
0006300
0006300
0006400
0006500
0006520
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0008050.
0008100.
0008150.
0008200.
       0005950.
0006000.
0006050.
0006100.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0007750.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0007800.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0007850.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .0067000
       LELECTOR DE CONTRACTOR DE CONT
```

```
IMPLICIT REAL*8 (A-H,O-Z)
IMPLICIT REAL*8 (A
                                                                                   PRINT 29.7,5AX

9 FORMAT(' FOR',F8.4,' ERROR = ',F15.9)

1F(IFL.EQ.0) GO TO 496

DO 497 J=1,MX

DO 497 I=1,MX

DO 498 J=1,MX

DO 498 J=1,MX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              PRINT 1014
FORMAT(* END OF D GENERATION *)
                                DO 28 N=1,4MX
DO 28 M=1,4MX
SAX=DMAX1(DABS(DXX(M,N)),5AX)
FORMAT(" END OF LOOP 1913 ")
                                                                                                                                                                                                                                                                              8 XI(I,J)=SUM
6 DO 35 N=1,MX
DO 35 N=1,MX
5 XA1(M,N=11+1)= D1(M,N)
00 39 N=1,MX
DO 39 N=1,MX
DO 36 N=1,MX
DO 36 N=1,MX
                                                                                                                                                                                                                                             DO 499 L=1,MX
SUM=SUM+PT4(L,1)*P(L,J)
                                                                                                                                                                                                                                                                                                                                                                                                                                            XA3(M,N,II+1)= D3(M,N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 KIC=NX-KOC
M1=(NX-1)*NZ
M2=(NY-1)*NX
M3=(NZ-1)*NY
                                                                                                                                                                                                                             SUM=0.00
DO 499 L=
                   SAX=0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                            CONT INUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RETURN
 1503
                                                                                                                                                                                                                                                               499
498
496
                                                                                                                                                                                                                                                                                                                                                                                                                                            901
                                                                                                                                                                                                                                                                                                                                    35
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1014
                                                                                                       53
                                                                                                                                                                                                                                                                                                                                                                                         39
                0008350.
0008850.
0008850.
0008850.
00088500.
0013300.
0013300.
0013300.
0013300.
0014500.
0014500.
0014500.
0014500.
0015200.
0015200.
0015200.
0015200.
0015200.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0000700.
0000800.
0001000.
0001200.
0001300.
0001400.
0001500.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0001700.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0002100.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0001850.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0001900
CCCRAG
CCCRAG
CCCRAG
CCCRAG
CCCRAG
CCCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CCRAG
CCRAG
CCRAG
CCRAG
CCRAG
```

```
SUM2=SUM2+GA1(L,J,M-1)*R(L,M-1)+OA1(L,J,M)*R(L,M)
B2(J,M)=B2(J,M-1)+HX*SUM2/2*0D0
PRINT 2008
FORMAT 2008
FORMAT 1 = ED OF LOUP 25')
D0 4025 M=2,NX
D0 4025 J=1,MX
SUM1=0.D0
                                                                                                                                                                                                                                                                                                                                                                        SUM1=SUM1-DAZ(L,J,M-1)*R(L,M-1)-DAZ(L,J,M)*R(L,M)
B1(J,M)=B1(J,M-1)+HX*SUM1/2,ODO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     VAW(KNT)=-C1*(VDOT(J,N)+WDOT(K,M))
DO 28 J=1,MX
DO 28 L=1,MX
F2(J)=F2(J)+O22(L,J)*VAW(L)-O21(L,J)*B1(L,NX)
DO 29 J=1,MX
      0011800. 102 SUM=5UM+0A3(M+L,NX)*D22(L,N)
0011900. 2 D21(M+N)=SUM
0011950. PRINT 3000
0012000. 3000 FRINT 3000
0012500. 3000 FRAT(! END OF LOOP 2!)
0012500. D0 20 N=1,NX
0012500. 20 R(M+N)=0.D0
0012700. 20 R(M+N)=0.D0
0012800. 20 R(M+N)=0.D0
0012900. 21 VOOT(M+N)=0.D0
001300. 22 N=1,NZ
0013200. 22 WDOT(M+N)=0.D0
0013300. 23 KTR=KTR+1
0013380. 3001 FORMAT(! END OF LOOP 23 !)
                                                                                                                                                                                                                                                                                                                                                                                           PRINT 3004
FORMAT(" END OF LOOP 4025")
KNT=0
DO 27 M=1,NZ
                                                                                                                                                                              00 24 M=1,MX

00 124 N=1,NX

00 124 M=1,NX

00 124 M=1,MX

B1 (M,N) =0.00

00 38 M=1,MX

F2 (M) =0.00

00 25 M=2,NX

00 25 J=1,MX

SUMZ=0.00

00 25 J=1,MX
                                                                                                                                                                                                                                                                                                                                                               00 4026 L=1,MX
                                                                                                                                                                                                                                                                                                                                                                                                                                           DO 27 N=1,NY
                                                                                                                                                                                                                                                                                                                                                                                                                                                     2*×2=×
                                                                                                                                                                                                                                                                                                                                                                                                                                 J=M1+M
                                                                                                                                                                                                                                                                                             26 25 1
                                                                                                                                                                                                                               124
                                                                                                                                                                                                                                                                                                                                                                         4026
4025
                                                                                                                                                                                                                                                                                                                                                                                                     3004
                                                                                                                                                                                          54
                                                                                                                                                                                                                                                 38
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      27
                                                                                                                                                                                                                                                                                                                           2008
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   28
                                                                                                                                                                               0013500.
0013400.
0013400.
0014100.
0014200.
0014300.
0014400.
0014400.
0014400.
0014500.
0015100.
0015100.
0015100.
0015100.
0015100.
0015100.
0015100.
0015100.
0015100.
0015100.
0015100.
0015100.
0015100.
0015100.
0015100.
0015100.
0015100.
0015100.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0015900.
0016000.
0016100.
0016200.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0015800.
CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                                          CCRAG
CCRAG
CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CCRAG
CCRAG
CCRAG
CCRAG
CCRAG
```

```
SUM2=SUM2+DA1(L,J,M-1)*S(L,H-1)+DA1(L,J,M)*S(L,M)
B4(J,M)=B4(J,M-1)+HY*SUM2/2.0D0
                                                                                                                                                                                                                                            SUM1=SUM1-DA2(L,J,M-1)*S(L,M-1)-DA2(L,J,M)*S(L,M)
B3(J,M)=B3(J,M-1)+HY*SUM1/2,0D0
                                                                                                                                                                                                                                                          FORMAT(" END OF LOOP 4040")
KNT=NOC
                                                                                                                                                                                                               PRINT 2009
FORMAT(" END OF LOOP 40
DO 4040 M=2,NY
DO 4040 J=1,MY
                                                                                                                                                                                                                                       DO 4041 L=1,MY
                                                                                                                                                                                  DO 40 M=2,NY
DO 40 J=1,MY
SUMZ=0.DO
DO 41 L=1,MY
                                                                                                                                                                                                      44
                                                                                                                                                                                                                    2009
                                                                                                                                                                                                                                                 4040
                                                                                                                                                                                                                                                           0020384. 3012
                                                                                                                                                                                                0019900.
0020100.
0020300.
0020330.
                                                                                                                                                                                                                                                      0020381.
                                                                                                                                                                                                                    0020360
                                                                                                                                                                                                                         0020363.
                                                                                                                                                                                                                              0020366.
                                                                                                                                                                                                                                   0020369
                                                                                                                                                                                  CCRAG
CCRAG
CCRAG
                                                                                                                                                                                                      CCRAG
CCRAG
CCRAG
CCRAG
  CCCRAGG
                                                                                                                                                                                                 CCRAG
                                                                                                                                                                                                                                            CCRAG
CCRAG
CCRAG
CCRAG
CCRAG
                                                                                                                                                                                                                              CCRAG
```

```
46 SUM2=SUM2+DX6(I,J)*VBE(J)+DAC(I,J)*(F4(MIX)+B4(MIX,NY))
44 F4(I)=SUM1-SUM2-B4(I,NY)
DO 47 I=1,NIC
NIX=NOC+I
SUM1=0.DO
                                                                                                                                                                                                                                                                                 48 SUM1=SUM1+DX1(1,J)*VBE(J)-DX3(1,J)*(F4(MIX)+84(MIX,NY))
                                                                                                                                                                                                                                                                                                   49 SUM2=SUM2+DX2(I,J)*R3(J,NY)+DX4(I,J)*(F4(J)+B4(J,NY))
47 F3(NIX)=SUM1-SUM2-B3(NIX,NY)
D0 50 I=1,NY
D0 51 J=1,NY
                                                                                                                                                                                                                                                                                                                                                                        SUM2=0.D0
D0 150 N=1.MY
SUM2=SUM2+DA1(N,M,I)*H3(N)+DA2(N,M,I)*H4(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0024740. 4150 SUM1=SUM1+DA3(N,M,I)*H3(N)+DA1(N,M,I)*H4(N)
0024744. 4050 VDD1(M,I)=SUM1
                                                                                                                                                                     SUM1=SUM1+DA(1,J)*VAL(J)-DAB(1,J)*B3(J,NY)
DO 46 J=1,NIC
                                              F4 (KNI)=-C1*(UDOT(K,MIX)+WDOT(MIX,N))
KNI=0
                                                                                                                     43 VBW(KNT)=C2-C1*(UDOT(K,M)+WDOT(L,N))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0024752. 3016 FORMAT(' END OF LOOP 4050 ')
                                                                                                                                                                                                                                                                                                                                                                                                                          0024708. 3015 FORMAT(' END OF LOOP 50')
                                                                                                                                                                                                                                                                                                                                            H3(J)=F3(J)+B3(J,I)
H4(J)=F4(J)+B4(J,I)
DO 50 M=I,MY
                                                                                                                                                                                                                                                                                                                                                                                                                                                      H3(J)=F3(J)+B3(J,I)
H4(J)=F4(J)+B4(J,I)
D0 4050 M=1,MY
                                                                                                                                                                                                                                                                                                                                                                                                                                   DO 4050 I=1,NY
DO 4051 J=1,MY
                                                                                                                             DO 44 I=1,NOC
SUM1=0,DO
SUM2=0,DO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DO 4150 N=1,MY
                                                                                                                                                                                                                                                              DO 48 J=1,NIC
DO 42 M=1,KIC
                                                                                                                                                             DO 45 J=1,NOC
                                                                                                                                                                                                                                                                                           DO 49 J=1,NOC
                            K=NY*(N-1)+1
                                                                   U0 43 M=1,NX
                  00 42 N=1,NZ
                                                                                       DO 43 N=1 NZ
                                                                                                                                                                                                                                                                                                                                                                                                      50 V(M,I)=SUM2
                                                                                                                                                                                                                                                                                                                                                                                                                 PRINT 3015
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            PRINT 3016
                                       KNI=KNI+1
                                                                                                           KNT=KNT+1
                                                                                                                                                                                          MIX=NOC+J
                                                                                                                                                                                                                                                     SUM2=0.D0
                                                                                                                                                                                                                                                                       M I X = NOC +7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SUM1=0.00
          MIX=M+KOC
                                                                              L=M2+M
                                                                                                  Z# \ Z | \
                                                                                                                                                                                                                                                                                                                                                                                             150
                                                 45
                                                                                                                                                                      45
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0024724. 4051
                                                                                                                                                                                                                                                                                                                                                                                                                                    0024712.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0024728.
                                                                                                                                                                                                                                                             0021750.
                                                 0020700.
                                                                                       0020900.
0020950.
0021000.
                                                                                                                                        0021150.
                                                                                                                                                                     0021300.
                                                                                                                                                                                                 0021450.
0021500.
0021550.
0021650.
                                                                                                                                                                                                                                                                                                                                                      0023900.
                                                                                                                                                                                                                                                                                                                                                                          0024200.
                                                                                                                                                                                                                                                                                  0021850.
                                                                                                                                                                                                                                                                                                                                                                                            0024500
                                                                                                                                                                                                                                                                                                                                                                                                       0024700.
                                                                                                                                                                                                                                                                                                                                                                                                                                                       0024720.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0024736.
                                                                                                                                                                                                                                                                                                                                                                                                                  0024704
          0020200
                                                                                                                                                                                         0021400.
                                                                                                                                                                                                                                                     0021700
                                                                                                                                                                                                                                                                                           0021900.
                                                                                                                                                                                                                                                                                                     0021950.
                                      0020650
                                                                   0020800.
                                                                             0020850.
                                                                                                                     0021050.
                                                                                                                               0021100
                                                                                                                                                             0021250
                                                                                                                                                                                                                                                                                                                002200
                                                                                                                                                                                                                                                                                                                        0023600
                                                                                                                                                                                                                                                                                                                                  0023700.
                                                                                                                                                                                                                                                                                                                                            0023800.
CCRAG
CCRAG
CCRAG
CCRAG
                                                CCRAG
CCRAG
CCRAG
CCRAG
CCRAG
                                                                                                                                                                                                                                                                                                                                            CCRAG
CCRAG
CCRAG
                                                                                                                                                                                                                                                                                                                                                                         CCRAG
CCRAG
CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                     CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                          CCRAG
CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                                             CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CCRAG
CCRAG
CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CCRAG
CCRAG
                                      CCKAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CCRAG
```

```
MRITE (6,52)
52 FORMAT (///' V-MATRIX')
00 53 1=1,47
53 WRITE (6,34) (V(I,J),J=1,NY)
CALL VECTOR(U,UDDOT,V',VDOT,NX,NY,HZ,HX,HY,MZ,MX,MY,O,T)
00 56 N=1,NZ
00 56 N=1,NZ
00 156 N=1,NZ
00 156 N=1,NZ
00 156 N=1,NZ
00 156 N=1,NZ
00 57 M=1,NZ
00 57 M=1,NZ
00 57 M=1,NZ
00 57 M=1,NZ
00 58 D=1,NZ
00 58 J=1,NZ
00 59 L=1,NZ
00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DO 4059 L=1,MZ
SUM1=SUM1-GA2(L,J,M-1)*T(L,M-1)-GA2(L,J,M)*T(L,M)
B5(J,M)=B5(J,M-1)+HZ*SUM1/2.0D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              F6(J)=F6(J)+G22(L,J)*VCM(L)-G21(L,J)*B5(L,NZ)
D0 62 J=1,MZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DO 163 N=1,MZ
SUM2=SUM2+6A1(N,M,I)*B5(N,I)+GA2(N,M,I)*H6(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                VCW(KNT) =-C1+(UDOT(L,N)+VDOT(K,M))
                                                                                                                                                                                                                                                                                                                                                                                                   DESCRIPTION OF LOOP 58 ')
DO 4058 M=2,NZ
DO 4058 J=1,MZ
SUM1=0,D0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PRINT 3017
FORMAT(* END OF LOOP 4058*)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3 M(M.1)=SUM2
PRINT 3018
8 FORMAT(' END OF LOOP 63')
DO 4063 I=1,NZ
DO 4064 J=1,MZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F6(J)=F6(J)-B6(J,NZ)
D0 63 I=1,NZ
D0 64 J=1,MZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             H6(J)=F6(J)+B6(J,I)
D0 63 M=1,MZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    L=M3+M
DO 60 N=1,NX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DO 61 J=1,MZ
DO 61 L=1,MZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DO 60 M=1,NY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                KNT=KNT+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SUM2=0.00
00254800. 52 F
00255000. 53 M
00255000. 53 M
00255000. 53 M
00255000. 53 M
0025600. 54 M
0025600. 55 M
0026600. 56 M
0026600. 57 F
0026600. 57 F
0026600. 57 F
0026600. 57 F
0026600. 58 M
0027460. 50 M
0027600. 50 M
0027600. 60 M
0028500. 60 M
0028500. 60 M
0028600. 61 M
0028600. 62 M
0028600. 62 M
0028600. 62 M
0028600. 63 M
0028600. 64 M
0028600. 64 M
0028600. 64 M
0029500. 63 M
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3018
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0029704.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0029712.
   CCRAG
CCRAG
CCRAG
CCRAG
CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CCRAG
CCRAG
CCRAG
CCRAG
CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CCRAG
```

```
3020 FORMAT('END OF LOOP 4063')
WRITE (6,65)
65 FORMAT(//'N W-MATRIX')
DO 66 I=1,MZ
66 WRITE (6,34) (W(I,J),J=1,NZ)
CALL VECTOR(V,VDOT,W,WDOT,NX,NY,NZ,HX,HY,HZ,MX,MY,MZ,O,R)
PRINT 69,KTR
69 FORMAT(1X,13)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                L2=J+N2*(I-1)
SIG2(KNI,J)=CI*WDOT(KNI,J)+XL*(UDOT(L1,I)+VDOT(L2,K))
                                                                                                                                                                                                                                                                                                                                                     SIGX(KNT, J) = CI = UDOT(KNT, J) + XL = (VDOT(L1, I) + WDOT(L2, K))
                                                                                                                                                                                                                                                                                                                                                                                                                              SIGY(KNT, J)=CI*VDOT(KNT, J)+XL*(WDOT(L1, I)+UDOT(L2,K))
                                    SUM1=SUM1+6A3(N,M,I)*B5(N,I)+6A1(N,M,I)*H6(N)
WDOT(M,I)=SUM1
                                                                                                                                                                                                                                                23
                                                                                                                                                                                                            23
                                                                                                                                                                                                                                    DO 72 J=1,M2
IF(DABS(W(J,I)-WX(J,I)),GT.1.0D-6) GO TO
CONTINUE
WRITE (6,73) KTR
FORMAT(/// ITERATION NUMBER ',I2,///)
                                                                                                                                                                                                            10
                                                                                                                                        IF(DABS(U(I,NX)).GT.5.0D0) STOP
DO 70 I=1.NX
DO 70 J=1.HX
IF(DABS(U(J,I)-UX(J,I)).GT.1.0D-6) GO
CONTINUE
                                                                                                                                                                                                            09
                                                                                                                                                                                       DO 71 I=1.NY
DO 71 J=1.MY
IF(DABS(V(J,1)-VX(J,1)).GT.1.0D-6)
CONTINUE
H6(J)=F6(J)+B6(J,I)
DO 4063 M=1,MZ
SUM1=0.DO
DO 4163 N=I,MZ
                                                                                                                                                                                                                                                                                             DO 74 K=1,NZ
DO 74 I=1,NY
KNI=KNI+1
DO 74 J=1,NX
LI=K+NZ*(J-1)
LZ=J+NX*(I-1)
                                                                                                                                                                                                                                                                                                                                                                                                             L1=K+NX#(J-1)
L2=J+NY#(I-1)
                                                                                                                                                                                                                                                                                                                                                                       DO 77 K=1,NX
DO 77 I=1,NZ
                                                                                                                                                                                                                                                                                                                                                                                          KNT=KNT+1
DO 77 J=1,NY
                                                                                                                                                                                                                             DO 72 I=1,NZ
                                                       PRINT 3020
                                                                                                                                                                                                                                                                                     KNT=0
                                    4163
                                                                                                                                                                                                                                                         72
                                                                                                                                                                                                                                                                            73
                                                                                                                                                                                2
                                                                                                                                                                                                                    7
                                                                                                                                                                                                                                                                                                                                                      14
                                                                                                                                                                                                                                                                                                                                                                                                                                11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          80
4064
                                  0029732.
        0029722.
0029724.
0029728.
                                                                                                  0030100.
                                                                                                                                                                                                0031500.
0031600.
0031700.
0031800.
                                                                                                                                                                                                                                                                                             0032500.
0032600.
0032700.
                                                                0029744.
                                                                                                                       0030700.
                                                                                                                                                  0031000.
0031100.
0031200.
0031300.
                                                                                                                                                                                                                                     0031900.
0032000.
0032100.
0032200.
0032400.
                                                                                                                                                                                                                                                                                                                                                                                                  0033600.
0033700.
0033800.
                                                                        0029800.
                                                                                                                                                                                                                                                                                                                         0032800.
0032900.
0033000.
                                                                                                                                                                                                                                                                                                                                                     0033100.
                                                      0029740.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0034600.
                                                                                                                                                                                                                                                                                                                                                                                0033400.
                                                                                                                                          .0090600
                                                                                                                                                                                                                                                                                                                                                                       0033300
                                                                                                                                                                                                                                                                                                                                                                                                                                0033900
                                                                                                                                                                                                                                                                                                                                                                                                                                                           0034200
                                                                                          0030000
                                                                                                                                                                                                                                                                                                                                                                                                                                        0034000
                                                                                                                                                                                                                                                                                                                                                                                                                                                  0034100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0034300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0034500
CCCRAG
CCCRAG
CCCRAG
CCCRAG
CCCRAG
CCCRAG
CCCRAG
CCCRAG
                                                                                                                                                                                                                                                                                                                                                                                         CCRAG
CCRAG
CCRAG
CCRAG
                                                                                                                                                                             CCRAG
CCRAG
CCRAG
CCRAG
CCRAG
CCRAG
                                                                                                                                                                                                                                                                                                                                                    CC RAG
CCRAG
                                                                                                                                                                                                                                                                                                                                                                      CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                               CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                 CCRAG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CCRAG
```

```
SUBROUTINE MATINY (X, MMM)

DOUBLE PRECISION X,Y,W,A,TEST,R,DELT

DIMENSION X(MMM,MMM), Y135,35), K(35), W(35,35)

DATA DELT,LOOPS/1,00-8,2/
KSIG=0

MR.SIMM

MR.MM-1

DO 1 J=1,M

K(J)=J
                                                                     DO 36 I=1,0X

36 WRITE (6,34) (UDOT(I,J),J=1,0X)

MRITE (6,54)

54 FORMAT(/// VDOT-MATRIX *)

DO 55 I=1,0Y

55 WRITE (6,67)

67 FORMAT(/// WDOT-MATRIX *)

DO 68 I=1,0X
                                                                                                                                                                                                                                         68 WRITE (6,34) (WDOT(I,J),J=1,NZ)
MRITE (6,75)
75 FORMAT(//' SIGMA—X MATRIX ')
DO 76 I=1,MX
76 WRITE (6,34) (SIGX(I,J),J=1,NX)
MRITE (6,78)
                                                                                                                                                                                                                                                                                                                                                       78 FORMAT(/// SIGMA-Y MATRIX *)
DO 79 I=1,MY
79 WRITE (6,34) (SIGV(I,J),J=1,NY)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       82 WRITE (6,34) (SIGZ(I,J),J=1,NZ)
Stop
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 DO 1 i=1,M

Y(1,J)=X(1,J)

DO 6 I=1,M

A=0,DO

DO 2 J=1,M

IF (DABS(Y(J,1)),LE,A) GO TO 2
                                                                                                                                                                                                                                                                                                                                                                                                                WRITE (6,81)
FORMAT(///* SIGMA-Z MATRIX *)
DO 82 I=1,MZ
PRINT 3021

021 FORMAT(" END OF JOB ")

MRITE (6,35)

35 FORMAT(///" UDOT-MATRIX")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        60 70 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      IF (A.EQ.0.DO)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                A=DABS(Y(J,1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Y(1,J)=Y(L,J)
Y(L,J)=A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            K(I)=N
DO 3 J=1,M
A=Y(I,J)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         N=K(L)
K(L)=K(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CONTINUE
0034705.
0034715.
0034715.
0034725.
0034735.
0034735.
0034735.
0034736.
0034746.
0034756.
0034756.
0034756.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
00347776.
0034776.
0034776.
0034776.
00347776.
00347776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
00347776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
0034776.
```

```
CHINV 0002200. 00.4 11,11
CHINV 0002800. 7(11,1) = 7(1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1) 1 / (1,1
```

```
1 +Q2*(V(M2+1,1)-V(M1+1,1))+Q3*(W(NX-1,1)-W(NX,1))
R(NY,NX)=Q1*(VDOT(M2+1,NY)-VDOT(M1+1,NY))+Q1*(WDOT(M4-1,1)-WDOT(M4,1))-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1 -02*(V(M2+1,NX)=V(M1+1,NY))+Q3*(W(M4-1,1)-W(M4,1))

R(M3+1,NX)=Q1*(VDOT(M1,1)-VDOT(M5,1))+Q1*(WDOT(NX-1,NZ)-WDOT(NX,NZ))-

1 +Q2*(VM1,1)-V(M5,1)-Q3*(W(NX-1,NZ)-W(NX,NZ))

R(M6,NX)=Q1*(VDOT(M1,NY)-VDOT(M5,NY))+Q1*(WDOT(M4-1,NZ)-WDOT(M4,NZ))-

DO 102 J=2,NXM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     R(1,NX)=Q1*(VDOT(M2+1,1)-VDOT(M1+1,1))+Q1*(WDOT(NX-1,1)-WDOT(NX,1))-
                                                        SUBROUTINE VECTOR(V1, V2, M1, M2, LX, LY, LZ, HX, HY, HZ, LD1, LD2, LD3, 1FG, R1)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION V1(LD2, LY), V2(LD2, LY), W1(LD3, LZ), W2(LD3, LZ), V(98, 14), M6=LD1
M5=LD1
M5=LD2
M4=LD3
Nx=LX
Nx=LX
Nx=LX
Nx=LX
Nx=LX
Nx=LX
NxH=Nx-1
NYH1=NY-1
NYH1=NY-1
   FORMAT (' ERROR INDICATOR NUMBER ',11)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           MI=NXMI=NZ

M3=NZMI=NZ

M7=NYMI=NX

M7=(NX-Z) *NZ

M9=(NZ-Z) *NZ

Q1=7.5D-1/HX

Q1=7.5D-1/HX

Q2=5.0D-1/(HX*HZ)

Q4=Q1/Z.0D0

Q5=Q2/Z.0D0

Q6=Q3/Z.0D0

Q6=Q3/Z.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       WDOT(I,J)=W2(I,J)
DO 101 I=1,MX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      W(I,J)=W1(I,J)
DO 204 J=1,NZ
DO 204 I=1,M4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     R(1,1)=0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    L2=J*NZ
L1=L2-NZ
I2=L2+1
I1=I2-2*NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        K=M7+J
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          204
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      203
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     101
0008100.22
0008200.
0000100.
                                                                                                                                                                  0000400.
0000500.
0000600.
                                                                                                                                                                                                                                                                                                                                                              0001000.
0001100.
0001300.
0001400.
0001500.
0001500.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0002400.
0002500.
0002600.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0002900.
0003000.
0003100.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0003300.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0001800.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0002100.
0002200.
0002300.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0002700.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0003600.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0004000.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0004200.
                                                                                                                                                                                                                                                                00000700.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0004600.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0004900.
0005000.
0005100.
0005200.
                                                                                                                                   .0060000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0003200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0003500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0003800
                                                                                                                                                                                                                                                                                                                                  •0060000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0002000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        .0068000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0004500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0004800
   CMINV
CVECT
CVECT
CVECT
CVECT
CVECT
CVECT
                                                                                                                                                                                                                                 COVECT
COVET
COVECT
COV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CVECT
CVECT
CVECT
CVECT
CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CVECT
CVECT
CVECT
CVECT
CVECT
CVECT
```

```
R(7*NY+1,1)=Q1*(VDDT(8,1)-VDDT(NZ+8,1))+Q1*(WDDT(1,8)-WDDT(Z,8))+Q2*(V(8,1)-V(NZ+8,1))
R(8*NY,1)=Q1*(VDDT(8,NY)-VDDT(NZ+8,NY)+Q1*(WDDT(M7+1,8)-WDDT(M7+2,8))-Q2*(V(8,NY)-V(NZ+8,NY))
R(8*NY+1,1)=Q1*(VDDT(9,1)-VDDT(NZ+9,1))+Q1*(WDDT(1,9)-WDDT(Z,9))+Q2*(V(9,1)-V(NZ+9,1))
R(9*NY+1,1)=Q1*(VDDT(9,NY)-VDDT(NZ+9,NY))+Q1*(WDDT(M7+1,9)-WDDT(M7+2,9))-Q2*(V(9,NY)-V(NZ+9,NY))
R(9*NY+1,1)=Q1*(VDDT(10,1)-VDDT(NZ+10,1))+Q1*(WDDT(1,10)-WDDT(Z,10))+Q2*(V(10,1)-V(NZ+10,1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         R(I,J)=G4*(VDOT(II,I)-VDOT(IZ,I))+Q4*(WDOT(KI-I,I)-WDOT(KI+I,I))+G6*(W(KI-I,I)-W(KI+I,I))
R(I3,J)=G4*(VDOT(LL,I)-VDOT(LZ,I))+Q4*(WDOT(KI-I,NZ)-WDOT(KI+I,NZ))-Q6*(W(KI-I,NZ)-W(KI+I,NZ))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         R(I+1,NX)=Q1*(VDOT(I1,1)-VDOT(I2,1))+Q1*(WDOT(NX-1,K)-WDOT(NX,K))+Q2*(V(I1,1)-V(I2,1))
R(I3,NX)=Q1*(VDOT(I1,NY)-VDOT(I2,NY))+Q1*(WDOT(M4-1,K)-WDOT(M4,K))-G2*(V(I1,NY)-V(I2,NY))
DO 105 J=2,NXM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     R(1+1,J)=Q4*(VDOT(L1,1)-VDOT(L2,1))+Q4*(WDOT(J-1,K)-WDOT(J+1,K))+Q5*(V(L1,1)-V(L2,1))
R(13,J)=Q4*(VDOT(L1,NY)-VDOT(L2,NY))+Q4*(WDOT(L-1,K)-WDOT(L+1,K))+Q5*(V(L1,NY)-V(L2,NY))
DO 104 L=2.NYM1
I=NY*(K-1)+L
                                                                                                                                                                                                                                                                                                                                                        R(I,NX)=Q1*(VDOT(M2+1,1)-VDOT(M1+1,1))+Q1*(WDOT(L-1,1)-WDOT(L,1))-
1 +Q3*(W(L-1,1)-W(L,1))
R(I3,NX)=Q1*(VDOT(M1,1)-VDOT(M5,1))+Q1*(WDOT(L-1,NZ)-WDOT(L,NZ))-Q3*(W(L-1,NZ)-W(L,NZ))
       R(1,J)=G4*(VDOT(I1,1)-VDOT(I2,1))+Q4*(WDOT(J-1,1)-WDOT(J+1,1))-
1 +Q5*(V(11,1)-V(12,1))+Q6*(W(J-1,1)-W(J+1,1))
R(NY,J)=G4*(VDOT(I1,NY)-VDOT(I2,NY))+Q4*(WDOT(K-1,1)-WDOT(K+1,1))-
1 -Q5*(V(11,NY)-V(12,NY))+Q6*(W(K-1,1)-W(K+1,1))
R(M3+1,J)=G4*(VDOT(L1,1)-VDOT(L3,1))+Q4*(WDOT(J-1,NZ)-WDOT(J+1,NZ))-
1 +Q5*(V(L1,1)-V(L3,1))-Q6*(W(J-1,NZ)-W(J+1,NZ))-WDOT(K-1,NZ))-
1 -Q5*(V(L1,1)-V(L3,1))-Q6*(W(K-1,NZ)-W(K+1,NZ))-WDOT(K-1,NZ))-
1 -Q5*(V(L1,NY)-V(L3,NY))-Q6*(W(K-1,NZ)-W(K+1,NZ))-W(L3,NY)-Q6*(W(K-1,NZ)-W(K+1,NZ))-W(K-1,NZ))-W(L3,NY)-W(L3,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ)-W(K-1,NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   R(I,J)=Q4*(VDOT(L1,L)-VDOT(L2,L))+Q4*(WDOT(K1-1,K)-WDOT(K1+1,K))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  R(I,NX)=Q1*(VDOT(I1,L)-VDOT(I2,L))+Q1*(WDOT(I3-1,K)-WDOT(I3,K))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IF (IFG.NE.1) GO TO 107
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DO 105 I=NY,M9,NY
                                                                                                                                                                                                                                                                                                                                                                                                                                               DO 103 J=2,NXM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      00 104 K=2,NZM1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  DO 104 J=2,NXM1
                                                                                                                                                                                                                                                                                                      ( I-I) #XN= X
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          11=12-2#NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             L1=L2-2#N2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        L1=L2-2#NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                L1=L2-N2
12=L2+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                L2=K+J#NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         L2=K+J*NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          14-13-NX
L3=L2+NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       L3=L2+NZ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   11=M2+K
                                                                                                                                                                                                                                                                                                                                13=1+M3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      L2=J#N2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  I 3 = I +NY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 K1=14+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             12=M1+K
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              [3=L*NX
                                                                                                                                                                                                                                                                         I =NX#I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       L+7M=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            K1=K+J
                                                                                                                                                                                          102
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            103
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   104
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               105
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0009000.
                                                                                                                                                                                          .0009000
                                                                                                                                                                                                                                                                                                   0006400.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         .00077000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0010104.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0010110.
0010120.
0010130.
                                                                                                                                                                                                                       0006100.
                                                                                                                                                                                                                                                                                                                                                                                                                                               .0069000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0007100.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0007500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   .0067000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .0008000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0008100.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0008300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   .0028000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0008700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .0088000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .0036000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 .0076000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         .0086000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0001000
                                               .0055000
                                                                                                         0005700
                                                                                                                                0005800
                                                                                                                                                             .0065000
                                                                                                                                                                                                                                               0009000
                                                                                                                                                                                                                                                                                                                                                                                                                  00089000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0007000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0007200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0007400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0007000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0008400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                00088000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               .0068000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              .0066000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    .0096000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      .0066000
                          0005400
                                                                         0005000
                                                                                                                                                                                                                                                                         .0069000
                                                                                                                                                                                                                                                                                                                                                           .0099000
                                                                                                                                                                                                                                                                                                                                                                                     0006700
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0007300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0007000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0008200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0006000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .0096000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0010100
                                                                                                                                                                                                                                                                                                   CVECT
CVECT
CVECT
CVECT
CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                            CVECT
                                               CVECT
CVECT
CVECT
CVECT
CVECT
CVECT
                                                                                                                                                                                                                  CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CVECT
CVECT
CVECT
CVECT
CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CVECT
CVECT
CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CVECT
CVECT
CVECT
CVECT
CVECT
CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CVECT
CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       CVECT
                                                                                                                                                                                                                                                                         CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CVECT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CVECT
```

```
R(10*NY,1)=Q1*(VDOT(10,NY)-VDOT(NZ+10,NY))+Q1*(WDOT(MT+1,10)-WDOT(MT+2,10))-Q2*(V(10,NY)-V(NZ+11,1))
R(10*NY+1,1)=Q1*(VDOT(11,1)-VDOT(NZ+11,1))+Q1*(WDOT(1,11))+Q2*(V(11,1))-V(NZ+11,1))
R(11*NY+1,1)=Q1*(VDOT(11,NY)-VDOT(NZ+11,NY))+Q1*(WDOT(MT+1,11)-WDOT(MT+2,11))-Q2*(V(11,NY)-V(NZ+11,NY))
R(11*NY+1,1)=Q1*(VDOT(11,NY)-VDOT(NZ+12,1))+Q1*(WDOT(11,12)-WDOT(2,12))+Q2*(V(11,NY)-V(NZ+12,1))
R(12*NY+1,1)=Q1*(VDOT(12,NY)-VDOT(NZ+12,1))+Q1*(WDOT(11,12)-WDOT(2,13))+Q2*(V(12,1)-V(NZ+12,1))
R(13*NY+1,1)=Q1*(VDOT(112,NY)-VDOT(NZ+13,NY))+Q1*(WDOT(11,13)-WDOT(2,13))+Q2*(V(13,NY)-V(NZ+13,NY))
R(13*NY+1,1)=Q1*(VDOT(114,1)-VDOT(NZ+13,NY))+Q1*(WDOT(11,14)-WDOT(2,13))+Q2*(V(13,NY)-V(NZ+13,NY))
R(13*NY+1,1)=Q1*(VDOT(114,1)-VDOT(NZ+13,NY))+Q1*(WDOT(11,14)-WDOT(2,14))-Q3*(W(11,14)-W(12,14))-Q1*(VDOT(114,NY)-VDOT(NZ+12,1))+Q1*(WDOT(11,14)-WDOT(2,14))-Q3*(W(11,14)-W(NZ+12,14))-Q1*(NT+1,11,14)-W(NT+1,11,14)-WDOT(2,14,NY)-V(NZ+13,NY))
DO 106 1=2*NYM1
L=NX*(I-1)+1
                                                                                                                                                          106
  0010140.

0010250.

0010350.

0010350.

0010450.

0010450.

0010450.

0010450.

0010450.

0010450.

0010450.

0010860.

0010860.

0010860.

0010860.

0010860.

0010860.

0010860.

0010860.

0010860.

0011860.

0011260.

0011260.

0011260.

0012500.
```

