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ABSTRACT

THE DETERMINATION OF REDUCED ORDER MODELS FOR

LOCAL AND GLOBAL ANALYSIS OF POWER SYSTEMS

By

John Frederic Dorsey

The nonlinear model of a power system is divided into two

parts called the study group (system) and the specified group.

Structural conditions on the power system are determined which cause

the specified group to remain strictly coherent and respond effectively

as a single generator for disturbances within the stugy_group. Three

conditions called strict synchronizing coherency (SSC), strict

geometric coherence (SGC), and pseudo-coherenty (PC) are identified.

The analysis is repeated for the linear model and it is shown

that if the structural conditions for any of the conditions SSC, SGC,

or PC hold in the linear model, then the coherent equivalent for the

specified group is identical with the equivalent determined by apply-

ing the rules of modal analysis.

The singular perturbation model for the power system is then

subsumed into the present theory by showing that the structural con-

ditions on the specified group of n generators necessary to apply

the singular perturbation method are exactly the structural conditions

for strict synchronizing coherency.

The concept of linear decoupling is introduced as the final

structural condition under which the modal and coherency equivalents
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John Frederic Dorsey

of the specified group are identical. Three types of linear decoupling

are determined. Two are classified as weak and one as strong.

A computationally efficient algorithm is found for detecting

the conditions strict synchronizing coherency, strict geometric co-

herency and strict strong linear decoupling, using an r.m.s. co-

herency measure in consort with a Zero Mean, Independent, Inertially

Weighted (ZMIIW) disturbance. Weak linear decoupling and pseudo—

coherency conditions are intentionally not detected.

The computational algorithm distinguishes two levels of models

by applying two ZMIIW disturbances. The first, a general ZMIIW dis-

turbance of all generators detects the principal groups of machines

satisfying strict synchronizing coherency, and provides a global model.

The second, a ZMIIW disturbance of a subset of generators detects

strict geometric coherency and strict strong linear decoupling and

provides a local model for disturbances confined to the subset of

generators used in the ZMIIW disturbance.

The theory and computational algorithm are satisfactorily

verified by testing on the 39 Bus New England System.
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CHAPTER I

IMPROVING THE THEORETICAL BASIS FOR THE COHERENCY METHOD

OF PRODUCING DYNAMIC EQUIVALENTS

I- The Basic Problem
 

The study of power system disturbances for the purpose of plan-

ning or security assessment requires the solution of potentially over

a thousand coupled differential equations. To obtain the time domain

'“353F>c>rnse of these equations, even in linearized form, for as little as one

59<2<3r1c1, is a very expensive computational task. Therefore, there has

been a considerable effort over the last ten years to reduce the number

of ecluations required to perform a satisfactory analysis of a power

s‘y's’tem's response to a disturbance.

Historically there have been two major approaches to this prob-

lem- In the coherency method, the full set of equations is solved

for a test disturbance. The accelerations of all the generators are

the“ checked, to see if a group of generators accelerate at the same

rate 4 thereby maintaining their initial angle differences with respect

to each other. Such a group Of generators is called coherent. Each

Coherent group is then replaced by one equivalent, or "aggregated"

gener-ator, thus reducing the numberof equations by reducing the number

“f generators. This reduced order model is then used to analyze the

Mer system response for all disturbances that occur in the general

a"ea of the test disturbance used to derive the equivalent.
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The modal analysis method defines the internal system as the

area of the power system where the disturbances will occur, and every-

thing else as the external system. A detailed model of the internal

system is retained; it is the external system that is reduced. This

is done by finding a linear model of the external system, transforming

it to canonical form, and then eliminating canonical states, or modes,

that have no impact on the internal system, using controllability,

observability, and fast eigenvalue arguments. That is, one follows

the standard Operating procedure of linear systems theory.

Both methods have advocates; both methods have certain ad-

vantages and certain disadvantages. The coherency method has great

int“-u‘it‘ive appeal because it yields a reduced order model composed of

equi Valent lines and generators. Further, the models for the equi-

V . . . .
a1 ent lines and generators can be either linear or nonlinear, and of

a

ny degree of detail desired. As will be shown, this degree of

f] -

e><‘I bility is not available in the modal analysis method.

The major shortcoming of the coherency method is that its

th
at) Y‘etical foundations are incomplete. This causes no operational

D

rob“ ems with using the method in its present form, but a more complete

u

ndQV‘standing of the theory of coherency equivalents would undoubtedly

Wead to a better means of implementing the coherency method.

The modal analysis method of producing reduced order equivalents

has no shortcomings theoretically, but it has some drawbacks from the

fullctional point of view. First of all, the reduced order model is not

f0Y‘mulated in terms of equivalent lines and generators, but in terms of

a Set of linear differential equations. This is not a serious problem
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to those who formulate the model, but it is to the operating personnel

0f the utility who have to use it. The second shortcoming of the modal

analysis approach is that it cannot provide a nonlinear reduced order

model of the external system.

If one method of forming equivalents produced good results and

the other did not, the issue would be settled. AS it would happen,

both methods have been used successfully. This argues strongly that

both methods are utilizing the same fundamental set of structural pro—

perties of the power system to form equivalents.

If the last supposition is correct, then what is required is to

S how that the coherency method can be used to (produce equivalents that

are modally correct, that is, equivalents that will preserve both co-

h«event properties and also retain the same modes as the modal analysis

method. This is the basic problem that will be addressed in the present

(”Ork. The details of the analytical approach to the problem are given

1 h the next section.

I I - Prior Work that Helps Show _th_e IE1 

There are several recent develOpments that point to strong

cohnections between the modal and coherency methods of forming equi-

va‘lents. The most significant is the work by Schlueter [5, 6, 7, 8]

Nh ich shows that by using an r.m.s. coherency measure and the

fitDtiropriate statistical disturbance, rules for aggregating coherent

9QIterators can be stated that are also rules for properly eliminating

"‘Odes in terms of controllability and observability argunents.

5‘3 gnificantly, for the appropriate statistical disturbance, the inter-

BEnerator coherency measures can be shown to depend only on the plant
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matrix, A, of the linear state model of the power system,

I=AI+EU.

A second important pre-cursor to the present work is the

results obtained by Dicaprio and Marconato [lO, ll]. These results

state conditions on the structure of the power system at time t = O

that cause a specified group of generators to remain perfectly coherent

for any t 1 O, for any disturbance that occurs outside the group.

This coherency can be shown to hold for the nonlinear model, making it a

Very powerful and Significant result.

Translated to the linearized model these conditions decouple

the equations for the specified group of generators from those for the

rest of the power system, and thereby divide the eigenvalues of the

s.)’S‘l:em into two groups, one associated with the equations for the

sF>"i‘<:'ified group, the other set with the equations for the remainder of

the system. This separation of eigenvalues is strong intuitive proof

th at when the structural conditions of Dicaprio and Marconato are

Satisfied, the coherency equivalent and the modal analysis equivalent

The the same. This is, in fact, shown in Chapter 4.

The results of Dicaprio and Marconato have importance also from

the standpoint of the strategy of the present research. The fact that

QhQ set of conditions exist which identify the coherency equivalent

“i th the modal equivalent, leads one to speculate as to whether there

are other conditions that produce the same result. In fact there are,

an<1 the initial thrust of this research is to find the complete set of

Str‘uctural conditions for which the modal equivalent and the coherency

eRuivalent are identical.
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The other current work of importance is the application of

singular perturbation techniques to power systems due to Kokotovic,

Ninkelman, Chow, Allemong, et al. [l2, 13, 15]. It will be shown in

Chapter 4 that this work has a natural place in the present research.

III. A Structural Outline 9_f_£h_e_ Present Research
 

The first phase of the analysis develops a set of structural

conditions on the power system, which if true, cause the modal and co-

herency equivalents to be identical. These conditions are called:

(1) Strict Synchronizing Coherency .

(2) Strict Geometric Coherency

(3) Strict Strong Linear Decoupling

(4) Pseudo-Coherency

(5) Weak Linear Decoupling

These conditions are all hypothetical in the sense they are

never exactly satisfied in a real power system. This hardly diminishes

their importance, because these five conditions are really archetypes

FOr system coherency. Actual coherency in a real power system will be

Qaused by near approximations to one of the five conditions or by

\QOmbinations of these conditions. Thus the five archetypes have great

value in conceptualizing coherent behavior in a power system.

Geometric coherency is simply a renaming of the Dicaprio-

Marconato conditions. The name is chosen to reflect the structural

‘ltbnditions that cause the Condition. Further, it is shown in Chapter

4’. that in the limit as the parameter p + O, the singular perturbation

model satisfies the condition for strict synchronizing coherency. Thus
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the theory developed in this present work is general enough to subsume

ifll the current viable theories on the formation of dynamic equivalents.

The second phase of the analysis demonstrates that the most

hmmrtant subset of the five conditions, namely strict synchronizing

coherency, strict geometric coherency and strict strong linear decoupling

can be detected by the r.m.s. coherency measure, in consort with a

properly selected statistical disturbance. These three conditions are

the most important because there are strong guarantees that if any one

(Jf’ these conditions exist in the linear model then that condition will

a1so exist in the nonlinear model. The same cannot be said for pseudo-

coherency and weak linear decoupling.

Further, by using the right sequence of statistical disturbances

i t is possible to distinguish between two .levels of aggregation. A

general statistical disturbance of all generators detects syn-

chronizing coherency and determines the principle, system-wide coherent

9"‘Oups. This is called the global model or aggregation. A second

ES""IZEI‘tistical disturbance of only selected generators detects geometric

QCherency and strong linear decoupling. This second disturbance can be

e‘S'smciated with a local or parochial model. The ability to distinguish

91 Qbal and local levels of aggregation has broad consequences that are

1 argely beyond the reach of this present work, but have great promise

fOr future research.

The third phase of the analysis is the integration of the theory

fir11:0 a formal reduction algorithm. This is done in the latter part of

tJ‘Iapter 5.' The results of testing the algorithm on the 39 Bus New

E“gland system are excellent and follow the theory very well, indicating

that the analysis is sound.
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IV. Background Preparation
 

The next chapter is wholly a review, in some detail, of the

coherency and modal methods of producing dynamic equivalents. The

reader will see some of the same phrases he has seen here. The

redundancy is regrettable, unavoidable, and to some extent beneficial.

To understand Chapters 3, 4 and 5 requires a good understanding, in

some detail, of both the coherency and modal equivalencing techniques.

Hopefully, that is what Chapter 2 provides.
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CHAPTER 2

A REVIEW OF METHODS OF PRODUCING DYNAMIC EQUIVALENTS

I. Introduction

The construction of dynamic equivalents for power systems

provides an excellent example of the difficulties inherent in modeling

and analyzing large scale systems. To improve the reliability of the

e1 ectric power distribution system, all the generators in the

eastern half of the United States are interconnected. Thus if

operating problems develop in one area and a particular utility finds

‘3 tself in a position where it cannot produce sufficient power to

meet the demand of its users, that utility can "borrow" power

temporarily from its neighbors through interconnecting lines. By

th us sharing the risk of operating problems the utilities provide

the user with a more reliable source of power.

Part of the price paid for this improved reliability is an

i '1 Crease in the difficulty of analyzing the dynamic behavior of the

pt)err system. There are approximately two thousand generators in

the eastern half of the United States, all connected in parallel.

wk)cleled in the simplest way possible, every generator requires a

SeCond order nonlinear differential equation. Even with modern high

SDeed computers, the pr05pect of numerically evaluating four

thousand coupled differential equations is not very appetizing.
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Traditionally, the analysis of the dynamic behavior of power

Systems has been reduced to a manageable level by finding some

simplified or lumped model for a large part of the system. This

approach has great appeal in the sense that it is consistent with

the usual questions asked about the stability of power systems. That

is, stability is normally analyzed from the perspective of a partic-

ular utility. That utility is interested in the dynamic stability of

its own generation and transmission network to disturbances, and

Primarily to disturbances that occur within its own network. A

Particular utility's interest in how disturbances impact the remainder

of“ the system is quite secondary to its interest in how its own

 

eq uipment is affected.

Because the perspective on stability is largely parochial,

the natural approach to analyzing dynamic behavior has been to divide

the overall system into an internal system, whose detailed behavior

1 s of interest, and an external system whose detailed behavior is

0‘: no interest but whose effect on the internal system must be

at(taunted for. The second step is to find a simplified model of the

e)K‘tlernal system that faithfully preserves the interaction between the

i nternal and external systems. Thus the simplification of the

ahallysis is done at the expense of losing information about the de—

ta 1‘ led behavior of the external system. The emphasis is on the _i_n_t_e_r_-

ac\"Zi_o_n_ between the internal and external system. Such an approach

has many ramifications. Some of these will be discussed at the close

of this chapter. However, the inmediate task is not to question the

a\DTJroach but to outline how the approach has typically been implemented.
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TO

Historically, there have been two distinct approaches to

finding simplified models of power systems. One approach, called the

coherency method, is based on the empirical observation that when a

power system is disturbed, groups of generators tend to accelerate

together maintaining the same relative voltage angles with respect

This is particularly true for generators electricallyto each other.

distant from the disturbance. In the coherency method the response

of the system to a particular disturbance is simulated and the groups

of generators that accelerate together are identified. These

"coherent groups" are then replaced by a single equivalent generator.

The size and response characteristics of the equivalent generator

a re chosen to best represent the aggregate behavior of the group.

The most obvious, and glaring, defect of the coherency method is that

i 1: requires the numerical integration of the differential equations

of the entire system, which is precisely the problem one wishes to

a Void. Some of the curse is removed by the empirical observation

that the coherency information can be obtained from a linearized

model of the system.

The other approach to forming dynamic equivalents for power

S‘A’Stems is to obtain a linearized model of the external system and

then reduce the order of this linear model by bringing to bear the

be SUI ts of linear systems theory, in particular the concepts of

fast modes, observability and controllability. This approach to the

problem of power system equivalents is called the modal method,

Si rice the model reduction is accomplished by discarding canonical

State variables or "modes". The modal method has the obvious defect

‘
5
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of providing only a linear representation of the external system. It

has other defects which will be detailed later in this chapter.

The two methods of constructing power system equivalents

cursorily outlined above represent the two main lines of research.

They have developed in almost complete isolation, and appear to be

unrelated. However, the fact that they both yield good equivalents

might lead one to speculate that the two methods are related. And,

in fact, some recent work [5, 6, 7, 8] indicates that, for the pro-

Per choice of coherency measure, the two methods are indeed closely

related.

One of the goals of the present research is to further

strengthen the connection between these two methods of forming

dynamic equivalents, and to show that, under certain circumstances,

the two methods yield identical equivalents. To reach this goal re-

qu i res a thorough understanding of both the coherency and modal

rue‘llhods of producing power system dynamic equivalents. The rest of

th ‘i 8 chapter provides this necessary background. In Section II a

1 i hear model of the power system is developed. This linear model

i 3 used throughout the subsequent development. Section III describes

the coherency approach to dynamic equivalents and Section IV does the

S.amve for the modal analysis method.

11 . 111.9. Form of the Linear Model
 

A linear power system model is introduced at this point. This

model will be used throughout the subsequent analysis. It represents

the power system in terms of a set of ordinary, linear differential

equations for the electromechanical motion of the generators plus a
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set of algebraic equations for the power flows among the generator

and load busses of the system. The differential equations are

M1. SEE: APMi - APE]. - Dimi i = l,2,...,N (2.1a)

93:1 = 2nf Aw- (21b)
dt 0 l -

where

i is the subscript for generator i in an N generator system

43 indicates that the variable is a small deviation about some

Specified (pre-calculated) steady-state Operating point

Mi is the inertia constant of generator i in p.u.

Audi is the speed deviation of generator i

, A5 .3 is the rotor angle deviation of generator i (in radians)

‘ Di is the damping constant of generator i (in p.u.)

r F0 is the synchronous frequency of the power system

APMi is the change in mechanical input power at generator i in p.u.

APG.‘ is the change in electrical output power at generator i in p.u.

The equations that represent the power flows in the power

System network are:

ago aEg/ag egg/3g A}:

= (2.lc)

Afl; BEL/3g aft/3g A3

Where

PGT = [PG PG PG ]__ ‘l’ 29.00, N

ELT-- [PL] ’Pngoo ogpLQ]
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0
3 I
I

[61,62’...,6N]

C
D

= [613629000960] 0

Some comments are in order about these equations. First,

there are two first order differential equations required to repre-

sent the dynamics of one generator. This is essentially the simplest

Inodel of these dynamics that there is. The behavior of the generator

can be modeled in much greater detail to account for all the electrical

and mechanical phenomena at work. Even a modest attempt at accounting

19c3r~ these phenomena results in a seventh or eighth order differential

QQUation for each generator. In dealing with large systems of a

t3housand or more generators this obviously results in an enormous

"t1r11t>er of differential equations. Thus for the analysis of large

F3‘3‘Mer systems there is really no choice but to use the simplest

heIi>r~esentation possible. The simpler representation used here

ne91 ects the effects of exciter and turbine governor control, at

1 east in detail. The damping constant D]. serves to represent in

a Qeneral way the overall effect of these control systems. In a

p<3V~Ier system the various control systems tend to dampen the response

01: the power system without greatly affecting its natural fre-

quencies [2]. In Chapter 4, it will be shown that the assumption of

u‘ni form damping, i.e. the ratio Di/Mi is the same for all generators,

‘eads to a precise formulation of this empirical idea. The assumption

ST? uniform damping will be made shortly when the equations for the

Power system are put in state-space form.

The second observation worth noting is that the real power

equations can be decoupled from the reactive power equations. This
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is a comnonly made'approximation, based on the following reasoning.

The changes in the complex voltages and power injections at the net-

work generator and load buses may be expressed as:

 

     

'- 7

fl 5'5 a? 5E a: As?-

DPL DPL BPL DPL

APL _: _: :. ; A9
— a§_ a_e_ a_E_ 31

Age 35. 19.3: 395 399— A;
as 39. a; 5T

A—Q—L i}... 3% 3: 3.]... AV

-' ag 3g a_E_ a! L- —-J

L. J

Where

£_G_, Qg real and reactive power injections at internal generator

 buses - p.u.

EL, ELL. real and reactive power residuals at the load buses -

p.u.

§, §_ voltages and angles at generator internal buses

y_, _6_ voltages and angles at load buses.

Now the first two equations can be written in the form

aB_G_ 33g 33g afig

=—--— +——— +—— -——agg 3,; Ag 39— ng 8.5. “3+3! A!

33!; a£_L_ 32L 33L

AEL‘EA-éwwfi-WEAEWIAY-

To first order, the power flows are largely dependent on the voltage

,\ angles at the generator and load buses, not the voltage magnitudes.
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This is the same as saying BEE/81 = BEL/31 = 2. Further, it can be

assumed that the generator voltages behind the transient reactances

are constant. That is, Ag = 0. These two approximations result in

egg 33g

Afi‘wi—‘S—Wfl‘i

agL_ BEL

Aye—WEN

These are the decoupled equations for real power flow.

With this background information, and assuming uniform damp-

ing, the equations for the power system can now be put in state-

sDance model form as follows.

First, a reference frame is chosen for the angles and Speeds

of the generators. The reference frame chosen is the generator angle

of the Nth machine, ASN. That is, one establishes N-l angle dif-

ferences:

A

A61: A51. - A6N ’ 1: l,2,...,N-1

and N-l speed differences

Ami =Awi - AUJN ’ 1 = 1,2,0009N'10

Next consider the N equations of the form represented by (2.la), and

Subtract equation N from equation i to get:

, , APMi APGi APMN APGN oi oN

mi’wN=(‘”T'lli—)'(W'W)'(”§A‘”"W‘”N)'

Now the left hand side of this equation is simply All} . However,

1

the right-hand side contains all N speeds. Making the assumption
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l6

of uniform damping allows the last term on the right hand side to be

written 0(Awi - Aw") = 0(Ami), where o ='Di/Mi = DN/MN. Thus under

the assumption of uniform damping, the power system can be repre-

sented by 2N-2 differential equations, Specifically the N-l de-

fining equations of the form

0
.
0
.

r
,
- A31 =Aai i l,2,...,N-l (2.2a)

and N-l equations of the form,

d A - 1—. - 1—. - - A ' = -
'3? Ami - Mi (APMi - APGi) MN (APMN APGN) koi, l l,2,...,N l

Di
Where o=M—-, i =l,2,...,N.

To make the model complete, the power equation must be

\nlr~itten in terms of the new variables, i.e.

 

    
  

.T

PAPGfi FBPG 33E {- A1

—‘ A ‘7.— AQ

= 3§_ 39- (2.2c)

32L. 33L

APL T -—"" A9:
L --.J 8_6_ 3_§_ L. .J

L. J

where, notationally,

61 = 51 - SN 1 = l,2, ,N-l

6k=ek-6N k=192900090

and

AT _ A A A AT- A A A

g " [61962900095N-1]9 9 ’[91,92,...,eq].
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The next step is to express Aflg in terms of A_3_ and All.

This can be accomplished by solving the second power equation in

(2.2c) for AE and substituting this expression for Ag into the

first equation in (2.2c). The result is:

 

we. afl.ut" mg:
AE§=TA§+T A All-TALE

3g a_e_ 3g ag

This can be rewritten as

we we @anfl.. am.afl.“
ALG= “7"“? T "‘7.— A§_+T 7— APL

a§_ a_8 3g 3g 3g a_e_ '—

or,

Xu)=5yn+auu) man

then follows inmediately with

A

 

A = -99... U = -ég‘tl.

@. ” Ml

r- m r- 1

Q(N-l)x(N-l) Zflfol Q Q

A = §_ = ...........

4i T -oI(N-1)x(N-]) E ’13—"

L-” " J L. J   
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l. _ 1..

M1 1 MN
_ 0 '

M _

. 2

n= ' -
.1 -1—

MN-Z MN

1 l
0 -———-— -..—

u" MN-l MN

629. 32.6. 81L. " 83L. . 432 all “
T = 7—"? “:- ‘T‘ L="‘"Z‘ A

3g 33 3g ag 33 as

This is the basic linear model of the power system that will

£362? used throughout the following development. In Chapter 4, it will

be shown that there is a more convenient reference than the Nth gen-

eY‘ator, but this change of reference will not alter the basic form

of the linear model. With rare exceptions, the first m gen-

e‘F‘ators will be considered the internal system, and the last

'1 = N-m generators, the external system. That is, the first m gen-

ei"ators correspond to the subsystem where the disturbances occur and

Whose detailed behavior is to be studied. The last n generators

(Itaierespond to the remaining part of the grid to which the internal

System is connected.

The linear model plays an important part in both coherency

and modal analysis, although the role in the two methods is quite

different. If the dynamic equivalent is produced using the modal

analysis technique, the internal system is represented in detail,

With each generator being described by high order (seven or eight)
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l9

linear or nonlinear differential equations. The external system is

divided into subsections and each subsection is represented by a

linear model. Linear system theory, in particular the concepts of

fast modes, controllability and observability, is then used to reduce

the order of each linearized subsection of the external system. In

the coherency method, a linearized model of the entire power system,

internal system and external system,is subjected to a disturbance and

the coherent generator groups determined. Those generators that

are coherent are then replaced by a single "equivalent" machine, and

a 1 inear or nonlinear model can be produced. Thus in the coherency

apl-‘H‘oach the linearized model is used only to determine which gen-

elr‘ators swing together in response to a disturbance. This coherent

behavior could just as .well be determined using a nonlinear model

0f the system, but this would, of course,be computationally much

m0Y‘e expensive. The justification for assuming that the linear model

01: the power system captures the coherency behavior of the system is

9‘3 van in reference [2] and is discussed in the next subsection.

1 I I . Reduced Order Eggivalents by themg Coherency

The coherency method of forming a dynamic equivalent of a

power system is based on the intuitive idea that a group of gen-

eY‘ators that maintain the same relative voltage angles to each other

in response to a disturbance act, in principle,like one large gen-

eV‘ator. In the strictest sense, two generators, or buses, are de-

fined as coherent if the ratio of their complex bus voltages is

\ constant over time. In practice this definition of coherency has

i been relaxed to only requiring that the voltage angle between two
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buses remain constant over time. The principal work in coherency has

been done by Podmore and Germond [2, 3, 14]. This section contains

a brief overview of the main points of reference [2], as they pertain

to the present research.

The procedure for forming power system dynamic equivalents

as outlined in reference [2] can be summarized into the following

steps.

(1) A disturbance is applied to the power system and the

(2)

(3)

coherent groups determined. The determination of

coherency is done at the terminal buses of the gen-

erator. It is assumed that the fictitious internal

generator buses are also coherent. This assumption

is crucial to the dynamic aggregation of the gen-

erators into a single equivalent generator.

The static network equations are reduced in order by

first replacing all the coherent generator terminal '

buses by a single equivalent bus, before eliminating

load buses. This replacement allows the order of

the network representation to be greatly reduced.

And the network reduction and dynamic equivalencing

problems are decoupled. In addition, the

reduced network representation is applicable to

whatever generator model, complicated or simple,

that one cares to choose.

The generators at the coherent buses are replaced by

one or a small number of equivalent machines at the

equivalent terminal bus. One equivalent machine will

be used at the bus if the set of coherent generators

are similar enough in response characteristics. A

"small number" of generators will be used if the co-

herent generators are of very different response

characteristics. For instance, if the set of co-

herent generators includes both steam and hydro units,

then two equivalent generators will be used at the

bus since it has been found empirically that a

satisfactory single machine equivalent for a group of

generators that include both steam and hydro cannot,

usually, be found. The equivalencing procedure

assumes that each generator in the group (or subgroup)

to be equivalenced can be represented by a block dia-

gram of transfer functions of the same form. The

equivalent machine is assumed to have a block diagram

of the same form and an identification procedure,
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based on least square error is used to identify the

parameters that best match the frequency response of

the equivalent machine to the cumulative frequency

response of the coherent group (or subgroup). [2]

The determination of the coherent groups is done using the

linearized model of the power system described in Section II of

this chapter. In early work on coherency, Podmore and GErmond used

a complete nonlinear model of the power system to determine the co-

herent groups. However, experience showed that a linearized model

of the power system would suffice. The justification, based on this

practical experience is the following. The assumption that a linear

undel can be used implies that coherency can be detected by small

disturbances, or viewed another way, that the length of the disturbance

does not change the coherent groups. This assumption is based on the

(abservation that if a certain bus is faulted, the coherency behavior

is not significantly changed by increasing the fault clearing time.

Since the lgggt_h_ of the fault essentially determines the size of the

d‘isturbance by determining how much energy is put into the accelera-

tion of the generator, the linear model will suffice. The second

important assumption is that in the linear model, the very simple

‘3<>nstant voltage behind a transient reactance model of the generators

can be used. The justification for this is based on the empirical

EVidence that the amount of detail in the generating unit model has

sOme effect upon the swing curve, particularly the damping, but does

‘NOt radically affect the more basic characteristics such as natural fre-

QUencies and mode shapes. Reference [2] illustrates this argument by

Showing that good estimates of system modes and mode shapes result from

considering the classical constant voltage behind transient reactance

 

 



;‘.e":r represert

='.a:":n reresert

iefial e:.atio'

affine-gown

F'fllre mig‘rt

Cree t'e <

Liza: of the ne“

W map of

i571, node elir

Lees as pcssitle‘

The replac

.295“ his is dope

Ether m at

:‘p.

“2:.

CO'lSlCEr t

.’ ‘ P

.l Y”

..3‘ = Ym1

  
:E “L:

"l‘hrgn+

‘ ” grOup



22

model of the generators and ignoring excitation system and turbine-

governor representations. This greatly simplifies the differential

equation representation by reducing the number of first order dif-

ferential equations per machine to two, whereas with the excitation

and turbine-governor represented the number of first order equations

per machine might very well be seven to ten.

Once the coherent groups are determined, step 2 is the re-

cmction of the network. This proceeds in two stages. First, each

coherent group of buses is replaced by a single equivalent bus.

Second, node elimination techniques are used to remove as many load

buses as possible.

The replacement of a group of coherent buses by a single co-

herent bus is done under a power conservation assumption. That is,

the power M at each boundary bus of the coherent group is con-

served, and the power production of the coherent group is also con-

ser‘ved.

 

E
4

Consider the following algebraic network equations

- #-

    

I

I
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O . : 0
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I

In ... LYnl Ynm : Yn(mfl) Ynn J bvn _.

Where the first m equations refer to the buses on the boundary of

the coherent group and the last n-m equations are for the buses of
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the coherent group. (Only one coherent group is considered because

the extension to several coherent groups is obvious and straightfor-

ward.) The current Ib, for a boundary bus is:

m n

Y Vk +I = X v v
b k=1 bk k=m+l bk k

the complex power injection at bus b is given by

*

Sb = Ibe, where * denotes the complex conjugate.

Substituting the expression for Ib into the formula for the complex

power results in:

n **

s ? v*v* v + 2 v v v (2 3 )= 0 o a

b k5] k bk b k=m+1 k bk b

The first term is the contribution to the power at bus b by other

buses in the boundary, and the second term is the power contribution

f.V‘om the generators of the coherent group.

Now, the algebraic network equations with the coherent buses

‘“‘3l>laced by one equivalent bus are:

     

q r— . a r- -q

1‘! Yll YTZ "° Y1m i Ylt V1
0 . I .

: : E . v2
I .
' C

= : .

I I

-32 "al----"---:1--Ym-LTr.nz_ .31:
I

ltd 31:1 Ytn: Yttg ..th

Repeating the analysis which was done for the unreduced equations

leads to
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m *1: +*Y*V

Sb - kg] kakab Vt bt b . (2.3b)

The first term in (2.3b) is the power contributed at b by the other

buses in the boundary and is identical to the first term in (2.3b).

The second term in (2.3b) is the power of the equivalent bus and

for power conservation must be set equal to the second term in (2.3a).

That is,

v*v* - E v*v* v
t bt b k=m+1 k bk b

which reduces to:

i V" <Y = — Y o 203C)

bt k=m+1 vt bk

'Tfan the equivalent impedance th can be determined once the voltage,

Vt, at the equivalent bus is selected. This voltage is normally taken

13C) be

M
:l " 1

| = _ e .
t n m k k

k=m+l

55C) far the equivalent Y-bus elements th, b = l,...,m have been

dfatermined. The next step is to make use of the conservation of

power of the buses in the coherent group to determine Ytb’ b = l,...,m

and Ytt' Let c denote a bus in the coherent group. Then the total

Power of the coherent group is:

n

s - Z 1*v

C c=m+l C c

Using the unreduced network equations Ic can be written as:
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b=m+l Cb b °

Substituting this expression into the power equation for SC, and

interchanging the order of summation results in

III fl

5 X y v*v* v § E v*v* v (2 4 )= + . . a

C b=l c=m+l b Cb C b=m+l c=m+l b Cb C

Repeating this same line of analysis for the reduced network results

in

m * *

S = X VbYt V

*‘k

+ v v v

C b=l
t t tt t ° (2'4b)

The first term in (2.4a) or (2.4b) is the power flow from

the coherent group, or the equivalent, to the boundary. Equating

these terms gives

m n

v*v v ~ ? v*v* v

which reduces to:

y = 2 y ( C) , b = l,2,...,m. (2.4c)

tb c=m+l Cth

The second term in (2.4a) or (2.4b) is the internal power of the

Coherent group, or the power of the equivalent. Equating these terms

‘ eads to:

=nan

Y ....

tt b=m+l c=m+l vt

V *
ch(vii . (2.4d)

Equations (2.3c), (2.4c) and (2.4d) give expressions for the equivalent

elements of the reduced bus admittance matrix, under the assumptions
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of power conservation. Note that Ytb f th.

In fact, the form of th and Ytb

shifting transformer has been introduced into the line from the

indicates that a phase

equivalent to each boundary bus b. The phase shift is half the

angular difference of th and Ytb [2].

Podmore and Germond provide a physical interpretation of the

coherency reduction that gives some valuable insight into the mathe-

nnticalresultsjust derived. The simple network of Figures 2.la to

2.le is used to illustrate the procedure.

§tgg_l. The voltage, Vt’ at the equivalent bus is defined.

Although V is essentially arbitrary the definition given in the

t

previous analysis is usually used. Each terminal bus (of the co-

herent group) is connected through an ideal transformer with complex

tuirns ratio to the equivalent bus. The turns ratio is directed as

Shown in Figure 2.lb and calculated as 3k = Vk/Vt' Under coherent

c0nditions, the ratio 5k is a constant for each bus in the group

and no circulating power flows through any of the phase shifters.

§t§g_g, The generator terminal buses, of the coherent group

will generally be connected radially through a step-up transformer

‘tC> the rest of the network. However, in some cases the low voltage

b"as may have been eliminated by combining the transformer reactance

“With the generator internal reactance. In this circumstance non-

‘Fadial buses may exist in the coherent group and a common branch may

Connect them. Thus, any intragroup branch, in this example the

branch between buses 2 and 3 in Figure 2.lb, is removed by replacing

it by equivalent shunt admittances. Consider the current flow in

 

 



-.- 731;“. t-Et'nEE.’

Se:a.se o.‘

'22 ::'.star.t are

72' :f either l‘.

L

'5 i“e:t of the

I

l "I ‘

"3‘5 5'19 retwcrk

‘p

l

U'

.
A

n ehr
..

"t IDUSES are

I?" l“ F1'Sure 2.

.2 .FinSfer. TIE



27

the branch between buses 2 and 3.

I23 = (V2 ‘ v3)v23 °

Because of the assumption of coherency in the group, Vz/V3

is a constant and the current, 123, can be written as a linear func-

tion of either V2 or V3. That is,

V2
I23 ‘ V3(Vg-- l)Y23 or

V3
123 = V2“ - V—Z‘)Y23 .

The effect of the branch can be replaced by a shunt admittance

(l - V3/V2)Y23 at bus 2 and (l - V2/V3)Y23 at bus 3. Figure 2.lc

Shows the network after the intragroup branch is removed.

The generation, load and shunt admittances on theStep 3.

COherent buses are transferred to the equivalent bus and sumned as

shown in Figure 2.ld. The generation and load are not modified by

the transfer. The shunt admittance is scaled to account for the off-

nominal tap ratio of the ideal transformer.

Step 4. The original coherent buses are eliminated by a

seer'ies combination of the original branch and the ideal transformer.

lb? several original branches connect to the eliminated bus, (see

tflls 2), the ideal transformer is combined with each of them.

At this point the network reduction is half complete. To

Complete it, load buses are eliminated. Algebraically, the elimina-

tion of load buses reduces the order of the bus admittance matrix

. The unreduced YBus is a very sparse matrix. Initially, the
YBus

 

 



REV;

WG’JlATlON CF COHERE

 

 

 
 

 



28

 

REMAINDER OF ORIGINAL NETWORK
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FIGURE 2-Io

COWIGURATION W COI'ERENT GENERATOR BUSES IN ORIGINAL NETWORK
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REMANDER OF ORIGINAL NETWORK
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REMAINDER OF ORIGINAL INETWORK
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FIGURE 2-le

ORIGINAL GENERATOR TERMINAL BUSES ARE ELMNATED BY SERIES

CWBINATION OF IDEAL TRANSFmIERS WITH ORIGINAL BRANCI'ES
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elimination of load buses further reduces the number of non-zero

terms in YBus‘ However, as more load buses are eliminated fill-in

can occur. That is,terms have to be added to account for the inter-

action of two buses that were both connected to a bus being eliminated,

but not directly to each other. Thus a point is reached at which

the elimination of additional load buses actually increases the

number of non-zero terms in Y Since the computation time is
Bus'

roughly proportional to the number of non-zero elements in YBus’

load bus elimination is ended at the point where the number of non-

zero terms in YBus begins to increase. By first applying the co-

herency based reduction to the coherent generator buses, and then

doing the load bus elimination, the number of branches in the equi-

valent network can be greatly reduced. To guard against fill-in,

certain non-essential nodes are selected for retention, to help mini-

mize the number of branches in the reduced Y The node reduction
Bus'

requires two passes. A first pass is made to determine the point in

the reduction process at which the minimum number of terms of YBus

is achieved. A second pass is then made and terminated at the point of

minimum terms [2].

With the coherent groups determined and the network reduction

complete, the next step is the modeling of the equivalent generators

that represent each coherent group.

In reference [2] Podmore and Germond give a detailed des-

cription of the identification procedure used to produce the model of

the equivalent generator. In the present research, only a very simple

classical model of the generator is used. This involves only the

rotor dynamics of the generator. The rotor dynamics for the
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equivalent generator are easily derived, and are shown below. The

reader interested in how more detailed equivalent generators are

fermulated should consult reference [2].

The basic differential equation representing the rotor

dynamics used throughout this research is:

2H ff(jg-14M -AP - D.Aw. (2.5)
j dt Mj 63- j J

with

Aw p.u. speed deviation from synchronous speed

H inertia constant (generator + turbine) in MWS/MVA

PM mechanical power in p.u.

PG electromagnetic power in p.u.

D damping constant in p.u.

j machine subscript

Because of the coherency assumption, all the machines of a group have

the same speed deviation. Thus summing over the machine equations

(2.5) of the group results in

2d—Aw— 2Hj=gAPMj-2APGj-AmZD.

dti .l J i3

Thus for the equivalent machine:

(a) The inertia constant is the sum of the inertia

constants of the machines of the coherent group.

(b) The damping factor is the sum of the damping

factors of the machines of coherent group.

(c) The mechanical power is the sum of the mechanical

powers of the machines of the coherent group.

(d) The electrical power is the sum of the electrical

powers of the machines of the coherent group.
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Results (c) and (d) are in agreement with the power conserva-

tion assumption already made for the coherent bus reduction. The de—

tails of the other transfer functions are given in reference [2].

Those details are not included here because they are not needed in

the subsequent analysis.

The method of forming equivalents by the use of coherency has

been studied in detail in this section. The motivation for doing so

is that this equivalent is the one most widely accepted and used. It

is sometimes referred to as the "averaged equivalent" or the

equivalent formed by the "method of averaging". In the next section,

the equivalent formed by using modal analysis will be investigated.

Having studied both of the primary methods of forming power system

equivalents, it will then be possible to begin investigating con-

nections between the two equivalents.

IV. Forming Equivalents by_Modal Analysis
  

The main work in forming power system equivalents by modal

analysis has been done OYUndriTIEIJ. This section summarizes that

work in a form that will be useful in the subsequent analysis. The

notation of reference [I] is retained for the convenience of the

reader who wishes to refer to this work.

In modal analysis the power system is divided into three areas

(or systems): l) The study area where the disturbance is assumed to

occur and which will be studied (and modeled) in detail; 2) The

external area, or areas, that part of the power system close enough

to the study area to be influenced by and in turn influence the study

area, and will be modelled in some degree of detail; 3) The
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electrically distant part of the power system which is first identified

and then represented by effective inertias and impedances. Both the

identification and representation of the "electrically distant" part

of the power system is done by experience and engineering judgement.

Thus the models of two of the three partitions of the power

system distinguished by modal analysis are determined at the outset

of the analysis. That is, the study area, or system , is modelled in

great detail, and the electrically distant part of the power system

is immediately reduced to a very simple equivalent. Thus the thrust

of modal analysis is determining the level of detail required in the

model of the external area, or system. For the moment it will be

assumed that there is only one external system. The generalization

to several external systems can easily be made once the basic ideas

have been elucidated for a single external system.

The key step in the modal analysis approach is to define the

buses that connect the external system to the study (internal)

system and the electrically distant parts of the power system. Since

the models for the study system and the electrically distant part of

the power system are well defined at this stage of the analysis, the

electrically distant part can with no loss of generality be made part

Of the study system, and hereafter will be considered so. The

ljgegg_differential and algebraic equations necessary to represent

the external system can be formulated as:

i=ex+§M§ new

ALT = 111' + 5 A1, (2.6b)
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where y_ is a vector of state variables sufficient to describe the

behavior of the external system, y} is a subvector of y_ and A11:

AMT are vectors of the current and voltage changes at the boundary

nodes between the study system and the external system.

Equations (2.6) are derived in reference [l] both for the

case where the generators are represented in detail and for the case

where the generators are represented in the classical form as a

constant voltage behind a transient reactance. The derivation for the

case where the generators are represented as a constant voltage behind

a transient reactance is outlined below.

The internal voltage of generator i is determined relative

to a network reference frame D-Q. That is,

<

I
I

-E Sln 61

<

I
I I

E cos 5i .

Taking small perturbations gives

_ I ’ __ I

AVD AE Sln 5i E (cos 61)A51

i

I _ u -
AVQ AE cos 5i E (Sln 6i)A6i .

i

But the classical generator model of constant internal voltage implies

that AE' = O, reducing the expressions for AVD. and AV to:

1 Qi

AVD (-E cos 6i)A6.
. ‘I

'I

- ' .

AVQi ( E Sln 5i)A6i .

This can be put in matrix form for a system of m generators as
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AV = ED A (2.7)

where §Q_ is a (2m x m) matrix with n non-zero 2 x l submatrices

on the diagonal for each generator being equivalenced.

The basic algebraic network equations are

AI 9' D' A_V_I

= (2.8)

A_I_ A 8 A11.

A
» I

.
.
. l

where Ale and All are vectors of changes in generator current

and internal voltage, and All and A\_/_T are vectors of changes in

current and voltage at the equivalent terminals, i.e. the terminals

on the boundary between the study system and the external system.

Substituting (2.7) into (2.8) gives

=C_'§_QA§+_D_'AV_T . (2.9)A16

The electrical power of each generator is given by

which leads to the perturbation equation

01+ v01 A101 + 101 Ain

t0.31:; ”art01;:

This can be put into matrix form for the m generators as

APi = VD1 AIDi+ 101 AV
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AP. = lo A! + [CALM (2.10)

where 10 and v0 are (m x 2m) matrices of (l x 2) diagonal

elements. The values of ID , IQ , VD and VQ can be calculated

1 i i '
1

once the generator internal voltage phasor Ei£§i has been specified

in terms of the network D-Q reference frame.

Substituting (2.7) and (2.9) into (2.l0) yields

Af.= 10 §Q_A§_+ yo C §Q_é§ + yo 0 AMJ

=.A_P_A§..§I3.A1T (2.11)

with

= l = I

AP. (10"XOEEQ’EP— 2.»

Now, the system differential equations are:

Im§=-EP__S_-A_E

. . (2.l2)

61 - w0(Si - SR) 1 = l,2,...,m

where Im = diagonal matrix of inertia constants

.QE_= diagonal matrix of damping coefficients.

Equation (2.ll) is an expression for Ag in terms of A§_ and A! .T

Putting (2.ll) into (2.12) results in
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r- . 'N r- | ‘5 r- - r- 0"

I

A3 ““0 -... ASE 0
I 0

5 mo “”0

0 i -w
_. , .

I

I o o

I o

I o

I

_ i o
-:- - ----;---1--------l--------- --- + ----;---- QYT (2-138)

5 -T' AP: -T" DP AS -T' BP

g-J 5—m—4 -m— ..JL—g L._m—_J 
Substituting (2.7) into (2.8) and solving for ALT gives

AI.1 = ALE Ass. + E'AMT. (2.13m

Equations (2.l3) are of exactly the same form as (2.6). It is these

equations that are subjected to modal analysis.

The equations (2.6) are next transformed to canonical form by

well known state-space analysis techniques. That is a matrix: §

whose columns are eigenvectors of the matrix A is found. Then the

transformation ‘y =~§p is made. This transforms equations (2.6)

to the form~

fi‘fAE + 9' AMT (2.l4a)

ALT = uBJ'P. + 5 AMT (2.l4b)

SR =_B"'p

where,

(l) g== §f1A S is the diagonal matrix whose nonzero

iagonaT Elements are the eigenvalues of .A.

(2) 3? is the rows of S. corresponding to the subvector

1' ofx

(3) B?’ is the row of §_ corresponding to SR, the reference

speed deviation of the external system.
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(4) g] is given by

9.‘ = 5‘8

Note that (1) assumes no zero or repeated eigenvalues. This

is a legitimate assumption for power systems. The algebraic equations

are obtained by extracting the rows from .§ that correspond to

the subvector yf of y_ and to the state SR which is the speed

deviation of the reference machine in the external system. SR must

be retained because it is required when the external system equations

are solved in combination with those of the study system.

The method used for the deletion of unimportant response modes

follows from an explanation of the transient and steady-state solu-

tions of (2.l4), to the step input AXT.

Assuming all the eigenvalues are distinct and have negative

real parts the steady-state solution is

= zit-19%.! .
-ss T

and the transient solution is

.. ”At '1 I

p_(t) - (.1. - e )A gill/4

_ At

- <_I_ - e- >255.

At

The matrix (1_- e-) is diagonal and thus the transient response of

each element p_ is independent of all the others. The response of

each element of 9, therefore, has a steady-state component and a

decaying transient component. These exponentially decaying components

are the natural modes of response of the system. The actual response
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of the system, y, is built up of linear combinations of the natural

modes. The order of the electromechanical equivalent can be re-

duced by rejecting from (2.l4) those rows and columns corresponding

to elements of .p which do not contribute significantly to .y_=_J1.

Some of the grounds for deleting specific modes are

a) The real part of the eigenvalue is such a large

negative number in relation to other eigenvalues

that the mode may be assumed to jump instantly to

its final steady-state value in response to a step

distrubance.

b) The corresponding row of A'Ie' contains such small

numbers in relation to othEr rows that the mode may

be assumed not to be excited by the input A2,.

c) The corresponding column of R" contains such

small numbers in relation to other columns that the

mode may be assumed to contribute nothing to the

state vector y:

d) The corresponding column of nR" contains such

small numbers in relation to other columns that

the mode may be assumed to have negligible effect

on the equivalent output vector A_¢.

In terms of linear system theory nomenclature these four con-

ditions can be categorized as follows. Condition a) is a fast mode

condition. Condition b) is a controllability condition. That is

the natural modes discarded by this condition are discarded because

they cannot be controlled by the input A11. Condition c) is an

observability argument that says the modes do not observably affect

the measured state of the external system. Condition d) is an

observability condition in the sense that modes discarded under this

condition have no observable effect on the output vector AI .

The application of labels such as "observability" and "con-

trollability" to the four conditions of mode elimination may seem
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trivial and at best redundant. However, in Chapter 4 it is shown

that if certain structural conditions are satisfied, the modal and

coherency methods yield an identical dynamic equivalent. The argu-

ments for this claim rest on the concepts of observability and con-

trollability. It is for this reason that the relationship between

these concepts and the four conditions for mode elimination is so

carefully, perhaps tediously, drawn.

Once the required selection of modes to be retained has been

made equation (2.7) can be rearranged in the form

  

        

£= Fe 7

El
(2.lSa)

L.E2_J

”a“ 2 9 2"? ”a“

E} = 9 t1 9 £1 + 04 Ml (2.l5b)

L.£;J IQQ' S2 $2_Ji_£2_J Lf%é

'9. m 11121 ”a“ (11“

E1 = ' (2.l5c)

31-3 114 254 32; 3:24      

where,

g_= subvector of .p to be retained

- subvector of _p assumed to jump immediately tov

I

steady state

subvector of _p assumed to be zero

'
k
D
'
U
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1,9? _a_, 91., g_, 11]. = submatrices of Ag' and S obtained

after reordering rows and columns.

For a step input p4 = Q_ and p2 = 9, Hence multiplying out

(2.l5b) yields

-l

B] " '93.] 9.] A11"

and

a] 1T9. AMT-

Equation (2.15c) yields

X0 =P£Q+Ili £1

_ -l

‘ 9.9.+ flj('§. 94 M1)

Since the speed deviation SR is one of the states that must

be retained in yo the vector yb becomes

The combining (2.l4b) with (2.l6) yields

ALT = 11 .0519. + (n E] + QAXT

SR=929+§2A1T

where 9H’ g, are all rows of g, g. except the last, and g2, §2

are the last rows of ‘g, g, Then the equations become:
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.9. =IQ+§A1T (2-173)

13.1. = 19.19.“ (11.8.1 i DAY; (2.l7b)

5R=923+§2 1%
(2.l7c)

Equations (2.l7) are the final form of the reduced equivalent of the

external system.

There are several points worth noting about the model equi-

valent. First, the dynamic simulation of the power system requires

the simultaneous integration of the differential equations of the

study system and the external system. The integration of these equa-

tions is straightforward, ongg_the input AYT has been determined.

The determination of the All requires the combined solution of the

algebraic network equation for the study system and the external

system.

Second, the modal analysis technique determines a linear

equivalent for the external system. In the coherency method, by

contrast, the equivalent can be either linear or nonlinear. In one

respect this is a drawback. However, an advantage is that a reduced

order equivalent can be found for a group of generators that are not

necessarily coherent.

Third, the input to the modal equivalent model, is the voltage

differences AY: at the boundary. This is in contrast to the linear

model developed in Section 2 of this chapter, where the input is the

step input in mechanical powers. The choice of the model in Section

2 results from the intent to relate coherency and modal analysis, but

from the coherency perspective.
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There are some real disadvantages to the modal approach that

also deserve some attention. First, the mode elimination procedure

requires the calculation of eigenvalues and eigenvectors. This is a

computationally expensive step. Even if one is willing to accept this

expense there is another difficulty. Thatis the fact that it is not

practical to compute eigenvalues for a system of more than lOOth

order. Using the simple classical model of each generator this means

that the external system cannot have over 50 generators. For a large

system the approach adopted by Undrill [l] is to break the external

system into sections and construct a linear model of each section.

Implicit in this approach is the assumption that specific eigenvalues

can be associated with specific sections. This automatically intro-

duces another approximation.

A second difficulty with the modal equivalent is that the

reduced order model of the external system is not expressed in terms

of equivalent lines and generators but in terms of retained canonical

states. This robs the equivalent of much of its physical insight.

It is particularly unappealing to power system operators and planners

who are used to thinking in terms of lines and generators.

This second disadvantage of the modal method is closely re-

lated to a third disadvantage which is that the available transient

stability programs are all written to accept dynamic equivalents ex-

pressed in terms of equivalent lines and generators. To implement

modal equivalent procedures involves modifying the existing transient

stability programs.

The fourth and most telling disadvantage of the modal approach

is that rules exist for aggregating on the basis of coherency while
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simultaneously preserving modal properties [5, 6, 7].

V. Summary

This chapter has established a linearized model for a power

system and then described, in some detail, the two primary methods

of forming power system equivalents, namely coherency and modal

analysis. Although lengthy, this chapter has provided the basic

understanding necessary to uncover the connections between these two

equivalencing procedures. Chapter 3 takes the first step in that pro-

cess by examining those system structure conditions that result in

a group of generators behaving as a single generator.
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CHAPTER THREE

STRUCTURAL CONDITIONS UNDER WHICH A GROUP OF

MACHINES BEHAVES AS A SINGLE MACHINE

I. Introduction
 

The concept of forming a reduced order dynamic equivalent

using coherency was first introduced by Chang and Adibi [4]. They

defined two machines to be coherent, ”to oscillate together" in their

terminology, if there exists a constant c.. such that

13

51(t) - 6j(t) z Cij for O < t < to. A group of generators is said

to be coherent if each pair_of generators in the group is coherent.

In the subsequent development two gradations 0f coherency

are distinguished. If 51(t) - 5j(t) = Cij for 0 < t < t0 then

the generators will be said to be strictly coherent. If the angle

difference is only approximately true, i.e. if 5i(t) - 5j(t).e cij

then the generators will be said to be coherent.

Chang and Adibi modeled the generators as current sources

and derived an equivalent that could not be expressed in terms of

equivalent power system components, i.e. equivalent lines and gen-

erators. However, some more recent work by Dicaprio and Marconato

[lO, ll] defines a strUctural condition under which a group of gen-

erators accelerate together and remain strictly coherent. Under this

condition it can be shown that the coherent group behaves as a single

generator. The work of Dicaprio and Marconato is described in detail

46
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in the next section because it is fundamental to an understanding of

the relationship between coherency and modal dynamic equivalents.

However, the structural condition of Dicaprio and Marconato

is only one of three rather hypothetical conditions under which a

group of generators behaves as if it were a single generator. Two

other structural conditions can be found which lead to this same result.

These conditions are explored in two subsequent sections of this

chapter.

A word here about nomenclature and notation. In this chapter

the coherency of a specific group of n generators will be considered.

This group of generators will most often be referred to as "the

specified group of n generators".] To be perfectly correct, the group

of generators should always be referred with this phrase. However, in

consideration of the reader's ears, "the specified group of n gen-

erators" will frequently be referred to as "the group of n generators"

and occasionally as simply "the group". (Somewhere right now Mary

McCarthy is smiling.)' Hopefully the meaning will be clear from the

context.

In terms of notation, the frequently encountered expression

K

I
I

—
I

0

N

v

..,m

means that i is an index over a set_of n elements and k is an

index over a different set of m elements.

 

1In discussing pseudo-coherency in Section IV, it will also be con-

venient to call the generators external to the specified group the

study group.
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II. Strict Geometric Coherency
 

Consider the simple power system model of Figure 3.la. Let

generators G3 and G4 and the admittances y1 through y8 be the

external system, with buses l and 2 the boundary between the internal

and external system. The generators 63 and G4 in the external

system will be considered constant voltages. E3 and E4. behind

transient reactances, y7 and y8. respectively.

In Figure 3.lb the transient reactances y7 and y8 have

been eliminated. This can be accomplished in the simple example of

Figure 3.1 by a series of star-mesh transformations, or in a more

general setting by writing a set of node equations I_= 1y for the

buses l,2,3,4,3',4' and then eliminating buses 3' and 4'.

Then the equations for buses l,2,3 and 4, with I1 and I

2

the equivalent current injections at buses l and 2, are
 

      

r11“ PY11 Y12 Y13 “141 PVI‘

I2 = Y21 Y22 Y23 Y24 V2

I3 Y31 Y32 Y33 Y34 E3

..14J J41 Y42 Y43 Y44s LEM

Dicaprio shows [10, ll] that if certain structural conditions exist

in the power system at time t = 0', then no matter what disturbance

occurs in the internal system at time t 3_0, generators G3 and G4

will remain strictly coherent, for all t 3_O. The conditions that

must exist in the system of Figure 3.1 at t = 0- are:

(:31
.00

e'J(53 64) = |E4i

M3 3T

Y (3.la)
M4 41



.. .,' uj

l
'
1

I
'
I



49

. 0 O

-J(6 -6 ) IE I

32 e 3 4 = ——£L- (3.lb)

where, M3 and M4 are the inertias of generators 3 and 4 and 63 and

62 the phase angles of internal generator voltages E3 and E4

respectively, at time t = 0'.

Now, express the admittances Y.. in polar form as Y.. =

. 1‘] . O O 1‘]

JYij . . 3(51'54
[Yi.|e . Multiply equat1on (3.la) by |51|€ and equation

3 . o o
3(62’64)

(3.lb) by IEZIe to obtain:

  

  

. 0 O - 0 0

J(51'53W31) J(51"54W41)
IE llE IIY le IE llE ||Y le1 3 31 _ 1 4 41

- 0 0 . O 0

IEIIEIIY IerZ'iWi?) IEIIEIIY [Eng-4444,)2 3 32 _ 2 4 42
M " M (3.2b)

3 4

Now equation (3.2a) can be rewritten as

 

(5111531131:
0 0 . . O O

(EIIIE4IIY41I
- 0 o 0 O O O

 

4

Equating the real parts of this expression yields

0 O O 0

M3 M4

  

O O 0 0

Now IE1||E3||Y31l Cos(a1 - a3 + Y3]) and IE1||E4||Y41| Cos(6]-64+y4])

are the synchronizing power coefficients between bus 1 and bus 3 and between
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bus l and bus 4, respectively, at time t = 0'. The conditions of (3.l)

show that for generators 3 and 4 to remain coherent after the dis-

turbance occurs, the synchronizing power coefficients between bus 1

and buses 3 and 4 are proportional to each respective generator”s

inertia. The same is true for the synchronizing power coefficients

between bus 2 and buses 3 and 4. The result is that when a disturbance

occurs in the internal system, the amount of that diSturbance energy

delivered by gagh_boundary bus to the generators of the external system

is prorated to each generator's inertia such that all the generators

of the external group accelerate at the same rate and remain per-

fectly coherent for any t_: 0.

It is easy enough to generalize from the simple example of

Figure 3.1 to the case of n generators in the external system and

m boundary buses. In the general case Dicaprio's conditions for

perfect coherency become

E. -j(a?-a§) En

e =-M; Ynk (3.3)

for: any i = l,2,...,n-l

any k = l,2,...,m

Dicaprio calls the conditions specified in (3.3) the condi-

tions for "theoretical coherency in the large", with "large” meaning

that the conditions imply coherency for the nonlinear representation

of the system used to derive (3.3), namely the algebraic equations

F1 .Y. Y __
—k = kk -—kn k (3.4a)

111 Ink inn -§n
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plus a second order differential equation of the form

PM1.= PG. + M. 25'. i = l,2,...,n (3.4b)
l l l

for each generator in the system with

1* a k x l vector of the currents injected at the boundary

buses

I“ a n x l vector of the currents injected at the internal

buses of the n generators of the coherent group

.yk a k x 1 vector of the voltages at the k boundary buses

g“ a n x l vector of the voltages at the internal buses of

the n generators of the coherent group each with magnitude

Ei’ phase angle 61, i = l,2,...,n.

-1kk a k x k matrix of the admittances between the k boundary

buses

an a k x n matrix of the admittances between the k boundary

buses and the n internal generator buses of the coherent

group

1“” an n x n matrix of the admittances between the n internal

generator buses of the coherent group

an = ilk

PMi the constant mechanical input power of the generator i

of the coherent group.

P61 = Re{Ei - 1:}

M. the inertia constant of generator i of the coherent group

Although Dicaprio calls the coherency that results from the

satisfaction of conditions (3.3) "Theoretical Coherency", in the
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remainder of this work it will be referred to as strict geometric

coherency (SGC). The reason for the name change is to distinguish the

coherency that results from the structural condition of strict geometric

coherency from the coherency that results when the generators of a

C

group are strongly interconnected electrically.

A proof that Dicaprio's condition (3.3) is both necessary

and sufficient for strict geometric coherency is now given. First,

assume

(l) buses k = l,2,...,m are the boundary buses con-

necting a group of n generators to the remainder

of the power system.

(2) buses i = l,2,...,n are the internal voltage

buses of the specified group of n generators.

That is, assume that the terminal buses of the

n generators,and all_load buses, have been removed

by a node elimination procedure.

(3) That the generators of the specified group are

referenced to generator n of the group.

(4) That the generator internal voltage magnitudes

are constant in the specified group.

To prove necessity, assume the n generators of the specified

group are strictly coherent. Then all the generators of the specified

group accelerate at the same rate, so that, using equation (3.4b) it

is possible to write

_ PMi - PGi " PM - PG

Si"'-_TT-_'= an =-—J%T———fl- i = l,2,...,n-l (3.5)

i

Now PMi - PGi is the difference between the mechanical power input

to generator 1 and the electrical power output of generator i. Thus

if the n machines are strictly coherent then the ratio of generator

power difference to generator inertia will be the same for all n

generators in the group.
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The complex power generated by a particular machine in the

specified group goes two places, to the other generators in the group

and to the m boundary buses. For a disturbance that occurs outside

the specified group the amount of power transmitted among_the gen-

erators of the group is the same before and after the disturbance.

This results from l) the fact that the voltage magnitudes at the

internal generator buses are constant, and 2) the assumption that the

voltage angles at these internal buses are strictly coherent.

As a result any change in the power distributed by a gen-

erator of the specified group after a disturbance occurs will be a

change in the power distributed by that generator to the m

boundary buses. This can be formalized as follows.

Let P61 + jQGi be the power injected by generator i of

the group. Then

P61 + 3031 = P61 + .1061. + PG: + JQGi

where PG; + jQG% is the complex power transmitted from generator i

to the other generators of the group and PG? + jQG; is the complex

power transmitted from generator i to the m boundary buses. For

a disturbance at time t = O, the system is in equilibrium at time

t = 0'. That is PMi(O-) = PGi(O'). Putting this information into

(3.5) gives

PGi(O') - PGi(t) = Pen(o') - PGn(t)

or,
Mi Mn
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Ps;(o') - Pe;(t) + PG;(0‘) - PG”(t)

 

 

Under the asSumption of strict coherency among the n internal gen-

erator buses, this reduces to

pG¥(0-) - peg(t) = PG;(0') - PG;(t)

Mi M

  (3.6)

n

for i = l,2,...,n-l, since the result is true at any generator bus

in the specified group.

The Dicaprio condition (3.3) is a restatement of equations

(3.6) in terms of network parameters and the steady-state load flow

conditions at time t = 0'. To see this write the dynamic equation

for generator i as

PMi - PGi PMn - PGn

1n 1 n Mi Mn

Now express the PMi in terms of the steady state load flow conditions

existing at time t = 0". That is

O

ja9m oe-jak ja? n -j6°
- - = 0 l * o 1 * o .

PMi - PGi(O ) Re{EiekX1Ykine + Ei e jZleiEj e J}

. o o

3(6 -6 ) m -J(6°- 0)
_ o i n * k n

. o o - o 0
3(a.-a ) n * -J(6.-5 )

o 1 n o J n
+ E1 e jZIleEj e }
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The first summation represents the power flows between generator i

of the specified group and the m boundary buses. The second summa-

tion gives the power flows between generator i and the other n-l

generators of the group. The superscript o designates the steady

state values at time t = 0-. Similar expressions can be written for

PGi’ PM", and PG”, namely,

3(6--<S) m .. -j(a - a)
_ 1 n k n

k-l

' 6.—6 n -' 6.-6

+ E eJ( ‘ n) 2 YI.E. e J( J ")}
j=l Jl J

. o o o o

m -j(6 -6 ) n j(6.-6 )
. = o * o k n o * 0 j n

PMn Re{En kgl Yank e + En jg] inEj e }

m * 'j(6k'5n) n * 'j(6"5 )

_ J n

Def1n1ng Gin = 61 - 6n, and expreSSIng bi" = ai - 6" 1n terms of

these four power expressions, results after some manipulation in,

m E * E. * j(a.-a ) j(a -a )
" _ _JQ ___1 1 n n k

6in “ Re{k§]{[nn Ykn Mi Yki e JVk e

5(6°—6°>

v° " k }}

(3.7)

E . I:1 . eiiirinl
E n

j=l Mn 3n 1 ji

j(a -a.)

JEJ e n 3

5° , E9 , j(6°—6°) j(a°-a9)
._Q -.;L i n o n J

n 1

for all i = l,2,...,n-l.
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Recall that the disturbances occur outside the specified

group of n generators and that the n terminal buses of the group

have been eliminated, leaving the internal bus voltages of expression

(3.7). That is, E9 = E.1 1 for any generator in the SPECified QFOUP-

Keeping these facts in mind, consider the expressions

E * E. * j(6.-6)
..fl .._1 , l n =
Mn Ykn Mi Yki e k l,2,...,m (3.8a)

1. :1,2,000,n-]

E E j(6.-6 )

._h -..1 * 1 n - =
Mn Jn Mi in e j l,2,...,n (3.8b)

i = l,2,...,n-l

Since the terms Ei’ E E in (3.8) refer to constant internal bus

3’ n

voltages within the specified group of n generators it is possible

to write:

E E j(6 ~6 )

-._h * _._1 1 n =

i = l,2,...,n-1

_ J _ _l_ 1 fl . =

bji(6in) - n an 1 YJ1 e j l,2,...,n (3.9b)

i = l,2,...,n-l

Substituting the expressions (3.9) into (3.7) yields

0 0 o

m 36 36
n _ . nk o 0 nk

6in ’ R9{k;] aki(5in)vk e ‘ aki(51n)vk e }

o (3.10)

n -j6. j6.

_ 3n _ 0 3n-
Re{_Z [bji(5in)e bji(5in)e JEj}

J=l

for i = l,2,...,n—l.
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Under the assumption of strict coherency in the specified group,

and equation (3.10) reduces to

H m iénk(t) _ 36nk(0 )

61" - Re{k§1 aki(6in)[vk(t)e - Vk(0 )e I}

or,

co m

5in = Re{ 2 aik(6in)uk(t)} 1 = l,2,...,n-l (3.11)

k=I

Because the n generators of the specified group are

strictly coherent, Sin = 0, i = l,2,...,n-l. Since the voltage

differences Uk(t) at the m boundary buses are arbitrary, the

satisfaction of (3.11) requires

aik(6in) = O for k = l,2,...,m (3.l2)

This proves necessity.

The proof of sufficiency proceeds in a straightforward way

from equation (3.10). Assuming that the conditions (3.3) are satisfied

or equivalently that conditions (3.12) are satisfied, consider that

since the disturbance occurs outside the specified group of n gen-

erators, the angles and speeds of this group cannot change in-

stantaneously. That is,

+

a 0 ) = a. 0 ) = a9 (3.13a)
in(

i = l,2,...,n-l

+

(.Sin(O )

I
I

0
'
)

_
I

3

A

O

V

I
I

0
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Further (3.l3a) implies that

0 ) = O i = l,2,...,n-l (3.l4)

Relationships (3.13) and (3.14) guarantee that

.. +

6in(t) = 6in(0 ) = D

o o +

5mm = a(o ) = o (3.15)

+ ..

5mm = 51M0 ) = 5m“) )

for all t > 0, completing the proof of sufficiency.

Dicaprio generalizes his results somewhat by eliminating all

load buses and the terminal buses of all generators in the power

system, both in the specified group and outside. This leaves only m

internal generator buses outside the specified group plus the n in-

ternal generator buses of the group itself. Under this configuration

Dicaprio uses deviations in the admittances to represent the application

of a disturbance. This is necessary since the internal bus voltages

are by assumption constant for all time. Dicaprio defines a general

"disturbance external to the group" of generator i = l,2,...,n and

then shows that conditions (3.3), with k representing now the m

generators external to the specified group, are necessary and sufficient

conditions for the specified group to be strictly coherent in response

to a disturbance "external to the group" [11]. The generalization is

Dicaprio's way of trying to identify coherent groups without having to
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specify the coherent group in advance. It is worth noting that this

is exactly the function fulfilled by a coherency measure.

The discussion of coherency in Chapter 2 established that if

a group of generators were strictly coherent, then it was possible to

replace the group by a single equivalent generator and perfectly pre-

serve the response of the system to a disturbance outside the group.

The equivalent derived by Podmore [2] required phase shifting trans-

formers in the equivalent lines connecting the single equivalent buses

to the boundary buses. That is Yke f Yek where e represents the

equivalent bus and k = l,2.,...,m is one of the boundary buses.

Dicaprio shows [11] that it is possible to replace the co-

herent group by a single equivalent machine, that perfectly preserves

the dynamic response, but does not require the phase shifter, i.e.

Y = Yek’ k = l,2,...,m. The choice of which equivalent to use is
ke

a matter of taste. Dicaprio's equivalent has some advantage in that

it does not require phase shifting transformers. The important point

is that if conditions (3.3) are satisfied then from the perspective

of the rest of the power system, the strictly coherent group of n

generators looks like one single machine.

The coherency that results from the satisfaction of con-

ditions (3.3) has been termed strict geometric coherency because it

results from the structural geometry (or topology) 0f the network and

load-flow conditions. This terminology distinguishes strict geometric

coherency from another type of coherency, namely the coherency that

results from two generators being very tightly interconnected. An-

other look at Figure 3.1 shows that generators 3 and 4 can be
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coherent without satisfying the conditions for SGC. Specifically, these

two generators can be coherent if the admittance Y5 of Figure 3.lb

is very large in relation to the other admittances Yi,

Yé. In fact, in the limit as Yé gets infinitely large, generators

Y5, Y4 and

3 and 4 become strictly coherent. The reader may find this to be

patently obvious, and hardly worthy of consideration. In addition,

actual admittances are not inifintely large in actual power systems.

However, in that regard, it is worth pointing out that the structural

conditions (3.3) for strict geometric coherency will never be satisfied

exactly in any real power system either. And, in point of fact, it

is far more likely that in a oeal power system generators 3 and 4 are

coherent because admittance Yé is very large compared to the other

admittances than because conditions (3.3) are exactly, or even

approximately, satisfied. For completeness, it is shown in the next

section that if n-l lines connecting all_ n generators of a group

are made infinitely stiff then the n generators are strictly co-

herent. The reader who considers this to be carrying coals to

Newcastle can proceed immediately to Section IV, which deals with the

less obvious data of pseudo-coherency.

III. Strict Synchronizing Coherency
 

Consider again a specified group of n generators connected to

the remainder of the power system through a set of m boundary buses,

and assume that the disturbances that occur are external to the

specified group. Consider the particular equation from (3.7) for gen-

erator l in the specified group. Now divide through this equation by

*

Y2], the admittance connecting generator 1 to generator 2 in the group,
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'k

and let |Y21| + m. The left hand side of (3.7) goes to zero and all

*

terms on the right hand side vanish except those containing Y2]. Thus

equation (3.7) reduces to

E E j(6.-6.) E

0 = Re{- el—g e 1 J +
 

Since Ei = E3, i = l,2,...,n this expression reduces to

. . O O

3(61-62) - 3(61'62)

Thus generators l and 2 are strictly coherent. As a next step take the

particular equation from (3.7) for generator 2 and repeat the steps

*

above this time letting |Y32| + m. This yields,

0

52 ' 63 52 53

so that generators l, 2 and 3 are now coherent. Proceding in this

way, at step i adding generator i+l to the group by letting

*

i+l,i

strictly coherent.

[Y | + m makes, after n-l steps the entire group or n generators

Next take the particular equation from (3.7) for generator i

of the specified group of n generators and let

*

IYkil + m, k = l,2,3,...,n, k f i , (3.l6)

in such a way that
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*

|v..|

WET=Cjk for j,k= l,2,...,n j.kfi
1

Then dividing through by Iv: and invoking (3.l6) reduces the equa-. I

tion for din to

n £959 (a.-d.)

0 = Re 2 {—l—J-C. [e 1 J - e

i=1 Mi 3*

. O O

3(61‘5j)

This expression is true for any 0i = l,2,...,n and for agy_steady

6.

state load flow conditions Ege 3, j = l,2,...,n. Hence it must be

true that

i = l,2,...,n

Thus the n generators of the specified group are strictly coherent.

It is easy to see at this point that choosing any set of n-l

lines that connect all_ n machines and letting these lines become

infinitely stiff results in the group of n generators being strictly

coherent.

The practical case, of course, does not allow for infinitely

stiff connections. However, from equations (3.7) it is clear that

if a group of n machines can be found whose interconnections are

very large relative to the interconnections between the group and the

rest of the power system, then the analysis carried through above

for strict synchronizing coherency is approximately true. It is also

clear from (3.7) that the approximation will be better if the number
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of boundary buses between the group and the rest of the power system

is small.

All of this may seem almost trivial. Part of the reason for

this is that most of the ideas presented here have been in the folk-

lore of power systems for a long time, and the ideas seem so obvious

that they hardly need justification. Nonetheless, Chapters 4 and 5

will prove this formalization to be a powerful conceptual tool.

The coherency due to a group of machines being tightly bound

will be called synchronizing coherency, and in the case of n-l in-

finitely strong interconnections, strict synchronizing coherency (SSG).

Synchronizing coherency is the predominant cause of coherency in real

power systems, and the time devoted to it here is probably well

spent.

The analysis of this section has resulted in a second set of

conditions that result in a specified group of n machines being

strictly coherent and appearing to the remainder of the power system

to be one single machine. In the next section conditions are formulated

under which the n machines of the specified group are no longer

coherent, but still appear_to the remainder of the power system to be

one single generator.

IV. Pseudo-Coherency
 

In Section II, strict geometric coherency resulted from net-

work structure and loadflow conditions that prorationed the dis-

turbance energy in such a way that all the generators of the specified

group accelerated at the same rate, causing them to appear to be a

single generator. A natural question to ask is whether this
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phenomena could work in reverse. That is, suppose a disturbance

occurs outside a specified group of n machines, and propagates into

the group, causing the generators to accelerate at different rates.

Can conditions be found such that the specified group although not

coherent, still "appears" to be coherent to the rest of the system?

Suppose, now, there are n generators in the study_group,

that is the part of the power system external to the specified group,

and m boundary buses between the study group and the rest_of the

power system, i.e. the specified group. Let i be one of the n

generators in the stugy_group. Then equation (3.7) can be inter-

preted as the acceleration of generator i,

. E . mi-an)
Y.. e

. j(6 -d.)
-._l n J

an M1 31 JEJ e
'2' IE"6. = -Re{ { -—-Y

in i=1 Mn

0 O - 0 0 ~ 0 0

'I

+ Ki(t) i = l,2,...,n-l

(3.18)

E° . E? . inf-5°) o ing-5:)

ki e JVk 9

Equation (3.17) is simply a rearrangement of the terms of equation

(3.7).
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The first summation in (3.17) is the contribution to sin due to the

energy transfers among the n generators of the study group. The

second term is the acceleration of generator i of the study group

due to the interaction at the boundary between the n generators of

the study group and the generators of the specified group. If the

generators of the specified group are to appear as a single gen-

erator k) the study group, then this second summation, which is the

acceleration of generator i of the study group relative to genera-

tor n of the study group caused py_the specified group must be
 

zero, i.e.

Ki(t) = 0 , i = l,2,...,n-l, (3.19)

fOr 911_ t > 0. In other words, the acceleration caused by the gen-

erators of the specified group is the same for every machine of the

study group.

It is assumed that the angles of the n generators of the

study group are not coherent. Therefore it is not possible to factor

the expression on the right hand side of (3.18) as was done for the

case of strict geometric coherency. It is apparent that the condi—

tions of (3.19) cannot be satisfied exactly for any arbitrary dis-

turbance, if they can be satisfied at all.

Now consider the following. Suppose that at t = 0' the

fbllowing relationships exist.

E. -j(d§ - 5°) E
n-__n_ = - =_;'Yike - Mn Ynk for 1 l,2,...,n l, k l,2,...,m (3.20)
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Further suppose that the disturbance that occurs in the area containing

the n generators of the study group is not large, so that the angle

deviations between the n generators are only a few degrees. Assuming

further the angle differences among the n generators and the m

boundary buses at steady state are not large, it follows that the con-

ditions of (3.20) are approximate1y_satisfied for all t > 0. It is
 

then possible to write

- 0_ O . - , o o

E * J<61 6n) 3(5n 6k) 3(5n-6 )m .

K1.(t) . Rd E n - ‘tfi Ykie J[vke - Vke " 1}}

E *

{[1 Y

k l Mn k

2 0 9 i = l,2,...,n-1.

Thus if the conditions of (3.20) are satisfied, then the relative

acceleration of the generators of the gtpgy_group does not depend on

the generators of the specified group.

The analysis above indicates that if the specified group of

n machines is not strictly coherent, then it cannot under any con-

ditions be represented by a single equivalent generator without dis-

torting to some extent the response of the remainder of the system.

However, the analysis also indicates that for small disturbances

withip_the study group, the specified group may, under conditions

(3.20), be quite adequately represented by a single generator. In

fact, it will be shown in Chapter 4, that the conditions (3.20) are

sufficient to decouple the linearized equations for the power

system, so that fer the linearized model, the n generators of the
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specified group behave exactly as a single generator. Since, from

the perspective of the remainder of the power system, the behavior

of the specified group of generators is identical to that of a group

of strictly coherent generators, the conditions (3.20) will be called
 

the conditions for pseudo-coherency. The absence of the adjective

strict means that these conditions result in pseudo-coherency only

for the linearized model of the power system.

V. Some Observations pf the Relative Utility p:_the Three Types pf
  

Coherency

This chapter has explored conditions under which a specified

group of n generators responds to a disturbance outside the group as

if it were a single generator. The first set of conditions (3.3) which

lead to strict geometric coherency are purely hypothetical in the

sense that they could probably never be satisfied exactly in any real

power system. The utility of an approximate satisfaction of these con-

ditions can only be answered empirically. It is interesting to note

that the most important use of the conditions (3.3) comes from their

trivial satisfaction when the Yik are very, very small. That is,

conditions (3.3) explain conceptually the well known empirical fact

that generators a long electrical distance from a disturbance

accelerate together, even if their inertias are widely different.

Strict synchronizing coherency is purely hypothetical for a

different reason, namely that real power systems do not have infinite

admittances. It is, however, by far the most important set of

conditions for coherent behavior of group. Its utility when

approximately satisfied has been well established by Podmore and
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others. Further, as will be shown in Chpater 4, in the linearized

model, the synchronizing coherency can lead to a separation of the

power system into fast and slow subsystems, through the techniques of

singular perturbation theory.

The third condition, pseudo-coherency, is by far the weakest,

applying only to small disturbances.

VI. Implications pf the Coherency Conditions
  

The three types of coherency discussed in this chapter have

important implications for understanding the connection between the

modal and coherency methods of forming dynamic equivalents.

For strict geometric and strict synchronizing coherency, the

fact that the specified group of n generators acts like a single

generator really means that the internal behavior of the specified

group is beyond the control of disturbances outside the specified

group. For the case of pseudo-coherency the internal behavior of the

specified group is undetectable by the rest of the power system, that

is, unobservable.
 

It was shown in Chapter 2, that observability and controllability

conditions are used to discard canonical states in forming the dynamic

equivalent of the external system. In Chapter 4, it will be shown

that for a linearized model of the power system, if the conditions for

SGC, $56 or PC are satisfied for a group of n machines then the

modal and coherency dynamic equivalents are identical. The results

in this chapter make this result seem fairly evident and it takes only

a little work to establish it.





CHAPTER 4

THE LINEAR MODEL IDENTIFYING THE COHERENCY

EQUIVALENT WITH THE MODAL EQUIVALENT

I. Introduction
 

In Chapter 3 conditions were found which caused a specified

group of n generators to behave, from the point of view of the

rest of the power system, like a single generator. This analysis was

done using a nonlinear model of the power system. One would expect

those conditions to yield the same result if the equations for the

power system are linearized about some stable operating point.

Section II is devoted to showing that this is in fact the case, for

a modified form of the linear equations developed in Chapter 2.

Section III then formalizes the concepts about controllability and

observability discussed in a qualitative way at the end of Chapter 3.

Specifically, it is shown that if the conditions for strict geometric

coherency or strict synchronizing coherency or pseudo-coherency are

met by a specified group of n generators, then the coherency and

modal analysis methods yield the same equivalent for the specified

group of generators. Section IV then extends these results by show-

ing that the structural conditions necessary to apply the techniques

of singular perturbation theory to a specified group of generators

are, in the limit as the parameter p +»0, the conditions for strict

synchronizing coherency of the specified group. Section V introduces

the concept of linear decoupling.
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An aside is required here about notation and nomenclature.

The notation used here follows that of Chapter 3, but perhaps needs

some clarification, because it is not presicely the orthodox notation

used with power systems; it has, however, some advantages which will

become clearer in Chapter 5. In the typical linearized, N generator,

power system model, the generators are numbered sequentially and the

last, or the N-th, generator is taken as the reference. That nota-

tion will be followed here, but with a second notation superimposed

over it. The first m generators will be termed the "study group",

and the last n = N-m generators will be termed "the Specified group

of n generators", as in Chapter 3. In general, the first m gen-

erators, or study group, corresponds to the area of the power system

where the disturbances occur. It can be identified with the "study

sytem " or "internal system" nomenclature typically found in the

power system literature. The specified group of n generators is the

group of generators whose behavior is being investigated for the pur-

pose of finding some property which will allow the group to be re-

placed by a reduced order model. In this chapter the analysis is

primarily aimed at showing conditions under which the specified group

can be represented by a single generator. As in Chapter 3, in order

to save the reader's sanity the term "specified group of n gen-

erators" will occasionally be shortened to "the specified group" or

just "the group". The meaning should be clear from the context.

This chapter also introduces the concept of an archetype. An

archetype is a hypothetical set of structural conditions on a group

of generators. The conditions are hypothetical in the sense that
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they are never exactly satisfied in an actual power system, although

they are assumed to hold for the archetype. In some cases the

structural conditions are achievable but have a probability of occurring

that is so small as to be considered zero. Dicaprio's conditions

(3.3) for strict geometric coherency are an example of this kind of

archetype.

In other cases the archetype is achieved by a limiting pro-

cess, such as making synchronizing power coefficients infinitely

large. In the linear model this limiting process will result in a

matrix going to zero or the product of two matrices going to zero.

The notation ad0pted to distinguish this case is A_+»Q_ or A§_+ 9,

This will avoid having to write limit Ail

t-mo

k

shorthand notation employed to make the monograph smoother for the

= Q, It is simply a

reader. It has the added advantage of helping remind the reader

that a hypothetical configuration is being considered.

The reader should not be concerned if the concept of an

archetype seems a little vague. That vagueness will dissipate as

various archetypes are considered.

II. Decoupling the Linear Model
 

The conditions found in Chapter 3, which cause a specified

group of n generators to behave as a single generator were

formulated using a second order nonlinear representation for the

generators in the system, and the nonlinear, algebraic, power equa-

tions for the system. The same result can be shown for a linearized

version of the equations, as follows.
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The linear model that will be used in the following discussion

is a slight modification of the model develOped in Chapter 2. That

model was a state-space representation of order 2N-2. Half of the

equations in that model are simply defining equations that relate the

generator angle excursions Adi to the generator speed excursions

Awi’ i = l,2,...,N-l. For the present analysis, it is more convenient

to rewrite the 2N-2 state equations as N-l second order equations,

@114 = ‘51 $55114 ‘ CAéN-i + E! (4")

where,

  

B = [I fit]

T
: lp [APM], APM2,...,APMN: APL1, APL2,...,APLQ]

n - Fl— 1 7
—' M 'M—

‘ L -11“.

M2 MN

' 1.__ -1.

L MN-l “NJ

313g aP_L ’1

L.‘ ' "77‘ ‘7:-

ap 3g

I_= N x N-l matrix of synchronizing power coefficients.
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The modification required concerns the representation of the

forcing function. The linear model of Chapter 2 assumes that load

buses can be in the following locations:

(1) In the part of the power system outside the specified

group of n-generators and not contiguous to this group.

(2) On the boundary between the group of n generators and

the rest of the power system and contiguous to both

areas.

(3) Inside the specified group of n generators and not

contiguous to the power system outside the group.

The analysis of Chapter 3 assumes that only buses of categories (1)

and (2) remain. That is, that all the load buses and generator

terminal buses of the specified group have been eliminated and only

the generator internal buses remain. In the following discussion,

the standard 2N-2 model will be rearranged into this semi-reduced

form to show how satisfaction of the conditions of Chapter 3 de-

couples the linearized equations.

First, with N = m+n, let,

1) 5n , i = l,2,...,n, be the internal generator angles of

the specified group.

2) 5m , k = l,2,...,m, be the internal generator angles of

thb m generators of the study group, i.e. the generators

outside the Specified group.

Partition the matrices of equation (4.1) to match the dimensions of

the vectors

gm = [6m ’6m 900.,6 gooogsm J

l 2 mk m

,...,5n.,...,6n ]= [6 ,6

'1 n1 n2 1 n-l

:5...

That is, the angles am of the vector gm are the internal generator

k

angles of the first m generators of the power system; the angles
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dni of vector én-1

overall power system. Generator N

Then the equations (4.l) can be written

     

 

  

 

.. ' f- . H r- '5

Agm ('31-’11 i ('Q D12 I Aém
-:- = .........r---;..... ----

féns-ld 379-921 i ("E D224 fén-lJ

r- A | -

m] 5010]

+ ----4.......

A ' A

.52 I'm-92.

where _E, in partitioned form, is,

I

r_l_ i

M1 :

1 E

E i
0 l

i
I

r- s ’ I

it in L‘_ _ I

111.--}? ”ms
' A

9 :flzz : l
\— ._J I M

l m+1

0 i
— I

I

I

L E

r- “N

Ln : L12

L.‘ ----f-----

L i l;
‘_-21 u 22“  

1m and ln-i

respectively.

 

  

 

A_P_M

 AP}.

is the reference.

 

  

I
I I l I I l I I l I I I I I I I

J

I I I I I I I I I I I l I I I I l I I I I I l l I I I I

are identity matrices of dimension m and n-1

are generator angles 6m+l""’6N-l of the

 

(4.2a)

(4.2b)
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fl] = [Elli flu] is m x N and consists of the first m rows of [1

”2 = [Q_E 822] is n-l x N and consists of the last n = N-m rows

of ._

(E L) = Q L + E L is m x Q and consists of the first m

(E_L)2 = BZZLZZ is n-l x and consists of the last n-l = N-m-l

rows of __L,

If we assume that equations (4.2) are in the semi-reduced form,

then the conditions for strict geometric coherency amount to the

condition (fi_L)2 = 9: To see why this is so consider the following.

Assume that the system is in the semi-reduced form of Chapter

3, i.e. the load buses have been eliminated from the group of n

generators, and that there are qm load buses left in the study

group, and qb load buses on the boundary between the study group

and the specified group of n generators. Consider the power

equation at generator i of the specified group of n generators.

. o o . o
n J(6.-6.-y..) §b 3(a.-e -y. )

= s 1 J 13 s 1 k 1k
PGi Re{ i EiEj yij e + _ Ein yik e }

J—l k-l

where yij = lYijl is the magnitude of the admittance Yéj between

buses i and j and y.. is the phase angle of Y§.. The SUper-
13 1

script 5 indicates the network is in the semi-reduced form.

The first summation represents the power exchanged between gen-

erator i and the other generators of the group. The second summation

is the power exchange between generator i and the m boundary buses.

Taking the partial derivative of PGi with respect to eh,

h = l,2,...,qb results in
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3P6.

36
" HEVhyhsmwi -6h-Yflp,i=l£”.um.h=lflp.u%

which are the synchronizing power coefficients between the boundary

buses and generator i.

Now take the partial derivative of P61 with respect to 91

where 92 is the voltage angle at one of the load buses not contiguous

to the specified group of n generators, then

339,

.____ = o i l,2,...,n (4.8)
86

l _

2 - l,2,...,qm

Let, .

l) 9 =[91,62,. . .,6h” meq ] be the vector of voltage

angles at the load buses o? boundary between the study

group and the specified group.

2) §q= [61,92,...,e£,....,eq ]T be the vector of voltage

angles at the load buses thernal to the study group.

3) 39m = [PG],PGZ,...,PGk,...,PGm]T be the vector of

electrical powers injected by the generators of the

study group.

4) fig" = [PG],PGZ,...,P61,...,PGn]T be the vector of

electrical powers injected by the generators of the

specified group.

T T
5 e = e ' 6 , PG = PG ' PG .)-[1m'-qb]—[-1n'—"]

Then,

I I

_§§: - 311 :-312 _ 311 : E12

39 If"??? ' '6""'f>"
—2l i -22 - ' —22
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where

E4] is m x qm

_P_12 is m x qb

32] is n x qm

E22 is n

The matrix 22] = Q_ by (4.8).

Now assume the conditions (3.3) are satisfied for the qb

boundary buses and premultiply egg/39, by Q. to Obtain

A A

BPG M M P P
9 : = —]l “12 —11 “-12

“ 39 o M o P
—- —22 —- —22

A : A A

fl11311: lfin-P42 + 9112322
I

= ------ r--: --------------

I

9- : fl22322

where

851 is m x m

852 is m x n

M22 is (n-l) x m

9_ is (n-l) x n

The elements in @22322 are cm the form

A t- tn'

=__1_l_.__:_l_ . = _ . ' ={flzzflzzhj Mi m 1 l,2,...,n 1, 3 l,2,...,qb

where the index i runs over generators of the specified group and the

index j runs over the boundary buses of the group.

But,
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aPGi

s . o o
t.. 39, E.V.y.. sm(a. - e. - y..)

13 - g - l J 1J l J 13

Assume the conditions (3.3) for strict geometric coherency are

satisfied, namely

. o o

Ei s _J(5i - 6n) _ En s
~—-Y..e - ——-Y . or,

Mi 1:] Mn "3

s i n ij

 

Eiyije _ En s JYnj

. — M ynje
"H n

where

jY-.
- = S = S 13

II 1,2,... ,n and Yij yije

l,2,...,qb

(
.
1
.

I
I

Now, moving all terms to the left-hand side of equation (4.3),

.00

3(5n-6.)

conjugating, and multiplying by Eje results in the expression

  

. 0 O . 0 0

a.-a.- .. a —5.- .

E.E.y§.eJ( ‘ J Y‘J) E E.ys.eJ( " 3 YnJ)

1 J 13 _ N J DJ. = 0 (4,4)

”1 Mn

Now note that the elements {@22222}ij are simply the imaginary part

of the expressions in equation (4.4). That is,



3m

8m

.7-

.fiKK.



 

S .

. 0

E.E.y. 3(5 -5 'y .) E 3(5 6 “Y -)
1 ij 1 J 1J _fl. 5 n 3 ”3Imag{——'h—i——e Mn EJynJe }

s o

EiEinj S1n(6i 613 Yij) EnEJ ys. sin(6o - 59 - Y -)1 Mn nJ n ”J

t. . t .

_ lJ "J --———-—-— 1 - 1,2,. 9", =1’2’ ’qM1 Mn
b

= 0 .

Therefore, if the conditions (3.3) for strict geometric coherency hold,

then the matrix 822222 = Q, As a consequence, it is now possible to

write, for the semi-reduced model, i.e. with the load buses in the
 

specified group or n generators eliminated,

3g ------- 4E ---------------- (4.5)

Now, if the disturbances are confined to the study group then equa-

tions (4.2b), the equations of the specified group of n generators,

are unforced. If it can now be shown that (-N_I)2] = Q. then, under

SGC, the equations for the specified group are completely decoupled

from the equations for the study group.

The condition (gfl_1)21 = Q_ can be shown to result from the

condition $22322 = Q_ as follows. Consider the unreduced equations



 

++

u
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r- d r- r- w

AEQJ egg1 33g1 33g,1 age1 33§_ Ag,

3A6 3A6 8A6 8A6 3A6
A3§2 -i —2 —l —2 —3 age

APL1 = 3392 3392 BEE2 3392 3392 ngl

§ZS“' 3A6 3A6 8A6 3A6 '
2 —2 —4 —2 —3

Age, 492

AELB BELl BELl BELJ BELJ BEL- A93 (4 6)
; _J L. ..J 'Bag] 2mg2 313g] 31ng 31x33

33L? BEL; aPL2 aggz agge

53:3' SZEE' 3A9, 3492 5353‘

333 333 3PL3 3P_L3 3_P_L3

L. 313g] aagz 2mg, aAgz 34939

where

fig] and Ag] are the internal generator power and angles for the

study group

PG and age are the internal generator power and angles for the

specified group of n generators

3L4 and qu are the load power and angles for the load buses of

the study group

2L2 and A92 are the load power and angles for the boundary buses

£53 and A93 are the load power and angles for the load buses of

the spec1f1ed group of n generators.

It is assumed here that the generator terminal buses have all

been eliminated and that there are no connections between the generators

of the study group and the specified group, and no connections between

the load buses of the study group and the load buses of the specified

group.

It is implicity assumed that no study group internal generator

buses are boundary buses. This causes no lack of generality because



ifa study

:ciszn in

As

 

Sen 6) in

by the SE



82

if a study group generator were a boundary bus, the corresponding

column in (-fi_1_)21 would, assuming conditions (3.3) are true, be zero.

As a consequence equations (4.6) can be put in the form:

      

      

A391 9-11 9 9—1 3 9—1 4 9— Ag]

1% 2 122 9 124 925 may.

ABE] = 93] 9. £33 934 9. A94 (4-7)

AP—Lz 941 942 943 944 945 A92

Jig-Lad -9- 952 9 954 955, _A93_,

To put (4.7) in the semi-reduced form assumed for equations (4.2)

requires the elimination of the load buses of the specified group.

Setting AELB = Q, solving fOr Aga, and eliminating A93 from the

first fbur equations of (4.6) yields

”A591“ Pin % E 913 {44“ FAQ]

AEEZ =, 9‘.....g??i--%’.....€25- Ag? (4.3)

ABE-1 i3i 9: é A33 {—34 A91

..A-EL—zs -941 942) 943 944.. £924

where

i.22 = 122 ' 92595952

924 "' 924 " 9259339434

942 = 942 ' 9459:5952

—44 = 944 " 9459315954

Next eliminate the load buses Alf];1 and ABE; from equations (4.8)

by the same procedure tg_ggt;
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ape J 0 J J A6
-—4 =< -41 :- - —-SH —512 5 -4

APG o J J J A6

a ‘24 t!) “224 ..‘521 “522.) c “'24

(in - is”) 21.512 Aé,

= ~
(4.9a)

-J (J - J ) Ag

~— ‘521 ‘22 ‘522 .4 ,_ 2..

where

is“ "‘ 3111911131 + Z42941) + 944(221-‘131 + 522941)

1312 = i132—12942 ” 5114222942

iL521 = 9—24‘521931 * 122941)
(4-9b)

9522 = 324222512 and

-1

—Z-n Z42 = 9—33 %34

121 -Z—22 943 944

Now 924 is the matrix 222, i.e. the synchronizing torque co-

efficients between the boundary buses and the generators of the

specified group of n generators. If the conditions (3.3) fOr strict

geometric coherency are satisfied then

A ~

E22 9-24 = 9 ’ and

A

[122 J52] = _o_ from (4.9b).

Now '98 , in turn, is the matrix of synchronizing torque coefficients

Zl

between the generators of the study group and the generators of the

=-Tspecified group for the fully reduced model. That is -J _2]

‘521
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where I_ is the N x N-l matrix of synchronizing torque coefficients

for the fully reduced model, with all_load buses eliminated, i.e.,
 

u
z
>

1‘“

= ("11141 + 512121) i n11142 * fl12122

--;---------------r-;--------------

I

fl22121 : M22122

Thus if condition (3.3) is satisfied then fizzéz4 = 9_ which

in its turn implies that @2295 = @2212] = Q, Thus it has been

2l

shown that the conditions (3.3) fOr strict synchronizing coherency

completely decouple the equations for the specified group from the

equations for the study group. That is, under the conditions of SGC,

(fl l_._)2 = (fl [)2] = 9_ so that equations (4.2) take the form

 

' .

- 313.312 A?" .. £923-- “€21- . ‘3}! ‘4 "’3’
I .

9_ :_§22 AG 9_ cl" A§n 0 (4 10b)

x ABM x

EH " [M 1]] Egg and Eij-(-nl)1j’ 19.] - 192

The term fié ABM does not appear in equation (4.l0b) because

disturbances on ABM are restricted to generators of the study group,

making .82 ABM = Q,

The initial conditions A§n(0’)==A§n(0') = Q_ combined with

conditions (3.3), the conditions fOr strict geometric coherency, are

sufficient to yieldlA§n(t) = Q_ fbr all t > 0. Thus equations (4.l0)
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reduce to the differential equations of the m generators outside

the specified group of n generators, referenced to generator n

of that group. Since the differential equations in (4.l0) now only

involve the first m generators, or the_§tugy group, and the last

generator of the specified group, the network power equations can be

reduced by setting APGi = 0, i = l,2,...,n-l, and eliminating

Adi, i = l,2,...,n-l. The resulting equations represent a system of

m+l generators, i.e. the m generators of the study group referenced

to generator n of the specified group. That is, the specified group

of n generators acts like a single generator, for disturbances out;

sjgg_that group. In (4.2) the system as a whole is referenced to

generator n of the specified group, resulting in the inertia of the

equivalent machine in equations (4.l0) being the inertia of machine

n of the original group. If the inertia is large, then this choice

of reference is probably adequate. It nay be advantageous, however,

to use a reference that yields an equivalent generator whose inertia

is more representative of the group as a whole, such as the sum of

the inertias of the group. This is the approach taken in the next

section.

The analysis so far has established that if the conditions

(3.3) fer strict geometric coherency hold, then in the linear model,

the specified group of coherent generators act like a single generator.

An analogous line of reasoning shows that the same result is true if

the conditions (3.20) for pseudo-coherency are satisifed. This time

the structural conditions exist between the boundary buses and the gen-

erator buses of the gtugy_group. Since the proof is very similar to

that just provided for SGC, it will not be given in full detail. Rather
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a careful outline of the steps will be provided. As will be discussed

later in the chapter, pseudo-coherency is a conceptual property whose

primary function is to lend completeness to the theory. It has very

little practical utility, at least in the present research.

Consider the matrix

 

__:-.- 2.1.5.422

3—1 l9 i P
—2l ' ~22

I T ‘

where E§_= [gem : Egn] as before, but now, the load buses are

eliminated from the study group so that

r- 6 H

‘qb

9] = '6'-

k. —qn ..J  

where qb is the number of buses in the boundary and qn is the

number of load buses in the specified group. As before assume all

generator terminal buses are eliminated. The dimensions of the sub-

matrices of 339/39_ are then

341 m x qb

342 m x qn

l’21 " X qb

-E22 n x qn

Then the 3_ matrix has the form
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Since, this time, the load buses in the specified group have no direct

effect on changes in generation in the study group. Next, change the

reference from the last generator of the specified group to the first

generator of the study group. This gives E_ the form

   

"-L l. : T
M1 M2 I

- L l. i 9.

M1 M3 E
° 1

I

: ,. '
14.. 1; 11,. .2

- m- 1 _ .........

fl """"""""""""5‘?""""""""" ' n n
1 —21 —22

imam

l. E

M1 i 1

. M
L. : m+n_'l

Then,

A A I I

egg 11.159. 2,152

89 " 7.0-:--------

fl12 E E22 E24 5 E22

_ I

‘ fl11P—11 5 9
———————————————T----—--

34—12511 ” M22321 l fl22322

where

351 is (m-l) x m

‘fl2l 15 n x m

N22 is n x n

and the Q_ is (m-l) x n.  
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The conditions (3.20) can be manipulated as was done in the case of

conditions (3.3) to yield

I
I

N '
ét- 't i

M_1k_-_fl= O for k

i 1 -

That is the subscript i runs over generators 2,...,m of the study

group, and the subscript k over the qb buses of the boundary. But

to

« A _ 1k tlk _

{unfinhk ‘ —M1. " T] " 0

so that the conditions (3. 20) yield

A

fl11311 = 9’

Just as the conditions (3.3) led to

A

M P
—22-22 = 9°

Now eliminate the load buses within the study group by setting
 

APE] = Q, in equation (4.7), solving fOr A94 and back substituting

      

to get:

r- - r-~ ' ~ 5 #- fl

ABE.2 111 9 5114 9 ABE]
I

I

A392 9.....%§i-€€&---§§§ 2%
= ~ : ~

A52 941 942! —44 945 A92
I

I

APL o J . J J A6
L—ag ..— —52; —54 —55 .. —3J

~

914 is the matrix of synchronizing torque coefficients between the

generators of the study group and the boundary buses where the network
 

has been reduced by eliminating the load buses of the study group.

 



 

"it )5 J1

75‘?)

  

I'E'E

I
r
.
.
.

1
c
.
.
.

But J

Cf the f

5‘.de g,

 



89

That is 844 is the matrix B4]. Hence, if conditions (3.20) hold,

then

”.944 = 9.

Now eliminate 3L2 and fits to obtain

A29. (1 - 9. > -2 4.5.

APG -J (J - g_ ) A6

where

13—51] = 442-11941

9-512 = 114911942 + £12152)

9-521 = 324111941 + i252—21941

51522 = 924(111942 + 512952) " i25(1219-42 + 122952)

2 z 3 J '1
—11 —12 [414 —45

321 12 J54 95

But 9512 = 142 the submatrix of synchronizing torque coefficients

of the fully reduced model, with the reference generator 1 of the

study group. That is

A I :

1“-11 i 9- l11 : 112

w."- :1:-
-21 :—22 —21 :-22

I

A I

9111111 E fl11112
I

= """""Z"""+"""""""""

I

fl21111 * fl22-7-21 : (321112 ” E22122)
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and

T

-12 = '—11"-s ‘ (”in-‘11:“Z
+Z J

I111 12 11—42—12—52)

=9.

when fill-1M = 9, Hence the conditions (3.20) are Sufficient to

decouple the equations for the study group from the equations for the

specified group of m generators. Thus, if the conditions of (3.20)

hold, equation (4.2) can be written.

.. - A -

T
-

A§m — (--M__)12Agm ”Ag... + [M E (fl_L_)11[A_13_M 5 11ng (4.lla)

.. = -A . ' + -.’2 u A

A2,. ( 2152134.. Cm4.. ( £159.52,“ + [11 LJZEAEL] (4.111))

Once again the term flz Am does not appear in (4.llb) because the

disturbances are confined to generators of the study group. Equation

(4.llb) shows that the specified group of n generators is definitely

not coherent. But (4.lla) shows that the motion of the specified

group is decoupled from that of the study group, so that the specified

group appears, to the study, group to be a single generator.

Next assume that the conditions for strict synchronizing

cOherency are satisfied, and that ({1}); exists. The inverse

0f (41 D22 can be written

 

( A ).1 1 Cofn Cof12 ... Cof1n

-M T = .
22 Det(-l_~i_ D22 C°f21 Cof22 Conn

L. Cofn] Cofn2 . . . Cofnn  
.4

where Cofij is the ijth cofactor of (181)”
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Assume as was dbne in Chapter 3 that n-l of the intercon-

nections that link all n generators of the Specified group are made

infinitely stiff. In the linear model, the corresponding n-l

elements of (-E D22 become infinitely large. Now (1&1)22 is

(n-l) x (n-l) so that Det(-_|E1: _T__)22 is the summation of (n-l)! terms,

each term being the product of n-l elements of (-_N_ _T_)22~‘. One

of these terms is the product of all n-l elements that are being

allowed to become infinitely large. Now each cofactor Cofij is,

in turn, the summation of (n-2)! terms each term being the product

of (n-2) elements of (-_N_ _T__)22. Hence no term in Cofij can be

the product of more than n-2 of the elements that are becoming

infinitely large. As a result Det(-fi _T_)22 dominates every term in

the summation of COfij’ i,j = l,2,...,n-l. Thus in the limit all

terms of (..fl 1);; tend to zero.

Now assume that (:14 D22 is finite and rewrite equation

(4.2b) as

_’\ _'| .. A .. A
- °

( 1"- l)2215-‘511-1 ‘ (‘11 D22('fl1)21A§m + Aén-i ‘ ”(‘8- Deg/Pm

+ (-E Dggmzam + (E 92113.]

Now letting the n-l elements of (-fi_l)22 become infinitely large

"ESults in

9=A§n~l for all t>0

“hi ch says that there is no perturbation of the specified group.

This result in turn reduces equation (4.2a) to the form
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egm = Ml l)11Aém—O-Aém + [N AP + (E L)1 _M APL].
1

Thus once again, assuming zero initial conditions, the specified group

of n generators behaves, from the point of view of the remainder of

the system, like a single equivalent generator.

The analysis to this point can be summarized as the following,

Result 1: Given the linearized model of an N-generator

power system (4.2) in the reduced or semi-reduced form. if any

of the three conditions $66, $56, or PC holds for a specified group

of n generators, that group of n generators can be replaced by

a single equivalent generator, and the response of the remainder of

the system to a disturbance outside the specified group of n gen-

erators will be perfectly preserved.

If the proper reference frame is chosen, the form of the

single equivalent generator is exactly that proposed by Podmore.

However, the N-th generator reference frame is not the proper

one. The proper reference frame is defined in the next section.

Result l is the first important step in reaching the goal

Stated at the end of Chapter 3, namely connecting the modal and

COherency equivalents via the concepts of controllability and

Observability. That goal is realized in the next section.

I] 1. Identifying the Coherency Equivalent with the Modal Equivalent

This section uses the results of Section II, to establish

c0"ditions under which the modal and coherency equivalents are

1dentic'al. As one might suspect the conditions that lead to identical

e(luivalents are the three conditions iof strict geometric coherency,

Strict synchronizing coherency and pseudo-coherency. There are two

l'ntermediate steps that simplify the proof of the main result. The
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first intermediate step is a lemma that gives expressions for the

eigenvalues of the model of equations (4.2) in terms of the damping

coefficient 0, and the elements of the matrix -fi 1, The second

step is to establish a more general referencing scheme for the model

of (4.2).

The following lemma provides some useful insight into the

way the system structure affects the eigenvalues of the linear model

of the power system.

Lemma. Let A be the plant matrix in the state s ace r
. . __ .

e re-
sentation of equat1ons (4.2), with the frequency expressedpin perp

un1t. If xi, Ai’ i = l,2,...,n-l, are the 2N-2 eigenvalues of A

 

and vi = l,2,...,N-l are the N-l eigenvalues of -fi_I, then

v02+4yi .AT=—§9- V02+4Yi
l

1 2

Proof: Putting the frequency in per unit results in

Then

Dett )._I_ - A] = Det 1.. 2 '1
.....L--------

E 1 i (A+o)I

Using the identity,

I

5-11 ; A12 _1

net ""7"" = Demfin ‘ 512522521H5223}

A21 1 A22

results in
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Det{>._I_ - A} = Det{[AI - (-fgfi1)][(x + o)_I_]}

=muuux+ml-cfip}

the last step indicates that if Yi’ i = l,2,...,N-l are the eigen-

values of £1, then the eigenvalues of _A_ are the solutions of the

equation A2 + AU - y = 0, or

.\

A. = - g-+ l—loz + 4y.
'I 2 2 T $

i=1,2,...,N-1

”it: '%‘12’°2+4Y1
 

It is the usual case with power systems that o is small.

Thus in most analysis, including Dicaprio [l0, ll] and Kokotovic [l5],

0 is set equal to zero. For the present analysis 0 will be re-

tdined, but the results of the lemma make it clear that the eigen-

valees of the linearized model are predominately imaginary and de-

Pend almost exclusively on the structure of the matrix -f1_T_.

The second intermediate step modifies the reference frame

0f ‘the linear model. To this point,the reference for the 2N-2

State equations has been 6", the angle of generator 11 of the

SPECified group, which corresponds to generator N in the state

Space representation. A reference that is more in line with the

aggregation of generators using in coherency equivalents is a

“Kbdification of the reference frame that Meisel [9], calls the

Uniform Center of Angle (UCA) reference frame. The reference frame

Used here will be referred to as the UCAn reference frame. The
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subscript n denotes the fact that the summations involved are taken

over the n generators of the specified group.

n M

Z pfi-éi, where the summation runs over theDefine 6e =

i=1 e

n generators of the group and Me = 1:] Mi' Assume the same con-

vention as before, namely that there are N = m+n generators in the

power system, the first m being the study group and the last

n = N-m being the specified group. Then in the notation of the state

model the summation above is over generators m+l,...,N.

Then, using the fictitious angle 6e ‘as the reference, the

system of N generators can be expressed as,

    

  

A61 = ankoi (4.12a)

‘ _ 1.. _ - l_. _ _ ~m1. - Mi (APMi APGi) Me (APMe APGe) 0 Am]. (4.12b)

r- s f" 1 f" a,“

ABE. BE§_ BE§_ ag

"" = ea a§_ "I," (4.l2c)

AP]; Jo
\_ _J 32-. BEL-

33 35
L.— —._J

“hare

~ \

51 = 6i ' 6e

61 = 6i ' 6e

~ = ~ 1:192...9N-1

w] mi - we ’

D.

o = 1

PE'

1 .J
 

~ ~ ~ ~ T ~ ~ ~ ~ T

a = =
\N'] [61,62,...

,6N-1] '9‘ [61,629..0
’60]

LG = [PG],PGZ,...,PGN]T 3L_ = [PL1,PL2,...,PLQ]T
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and M = 2 M.,
e i=1 1

96

n

E PMi, PGe =PM

9 i=l i "
M
:

1 PGi'

tm put in the form of a state-space model

where,

X= [2131.113

A = (I

-& 1

B = I9

1

with,

M = F.
Ffi'

.1.

M2

L. 

51¢!1
>
<
u

l
l

~ ~ ~ ~ T

2,...,A5N_],Aw],Aw2,-o-9AMN_1]

o— n-l

'QL-n-l

9.

EL.

_ 1.. _ 1..

Me Me

_ 1.. _ 1..

Me Me

.1.

Me

l l l

(————--—) —
Mm+l Me Me

l l l

-— (———-—)
Me Mm+2 Me

- 1..

Me

_1_ _i_

Me Me

These equations can

(4.12d)

3
|
—
‘

3
"
"
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3P_G_ 213g age '1 '1

T = .__.- .... .___ .___
~

—

353; a§ 35 3g aé a§

aPL ‘ 3% 3EL
L = - .::: .___

Note that the form of the equations in the UCAn reference is

exactly the same, as it was for the N-th generator reference frame,
 

vfith ‘fl_ substituted for ‘E. Thus equations (4.2) will be used as

the standard fbrm of the power system model, and the designation of

the reference frame will dictate whether E or E1 is used in the

equations.

There are two important observations to be made about these

equations. First the matrices I_ and L_ shown above are identical

to the I_ and L_ in the state model referenced to CM. That .1

and L_ are invariant under a charge of reference can be shown by con-

Sidering the electrical power output of generator i.

N

_ 2 -
PGi - EiGii + jg] EiEj(Bij Sln 5ij + Gij cos 5ij)’ (4.l3)

in

Where,

6ij = 6i ‘ 5j

Ei = voltage at generator i

Yii = Gii + jBii’ a diagonal element of YBUS.

Yij = Gij + JBij, an off-d1agonal element of YBUS.

'the that the sine and cosine expressions in (4.l3) are expressed in

term of angle differences. Thus for 31 = 61. - 6n and 5,- : 51 ‘ 6e’
 

the two referencing systems under consideration,

) = 5.. = 5.. = 8.. = 8. - 8. =8'. - ”. = . - - . -
'I 63 (61 6e) (63 69 13 1,] 13 1 J
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Thus the power equations are independent of the reference frame and

 

 

 

further,

3 Si" 5"
a sin 3..

——~—Ll = ~" = ~.. = 13 ° = -
Edi cos 613 cos 613 381 , 1 l,2,...,N 1

3 cos 5i' . ~
3 cos 8ij

——3——J'3i ‘ -s1n 61.] - -s1n 61.) T31. , 1 _ 1,2, ,N-l

Consequently

33-9 31’9- BP—G '1 3P3 83.6. 32g 3% “ aP_L_

T ' — _~_ ‘7 = T = T ' "7.- ‘— ,.

3g 3:6” 33 ea — 39 3.9. 3.3. as

A similar argument holds for the matrix L.

The second observation is that, even though a fictitious re-

ference angle, Ge, has been used, the linear model for the N generator

SYStem has only 2N-2 states. This is possible because the angles of

the specified group of n generators are not independent. This is not

a Property peculiar to the reference frame. It is true for any reference

1rTame, including the N-th reference frame used previously in this work.

This; angle dependence results from the fact that the sum of the power

changes generated by the machines of the system must equal zero [16].

The dependence of the n = N-m generator angles of the specified

9"‘OUp means that one of these angles can be eliminated as a state. A

Se(:ond state can be eliminated, namely the speed of one of the gen-

erators, under the assumption of unifbrm damping. For uniform damping

the n dynamic equations for the generators of the specified group can

be written:
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I2,: A - .. z '=A61 ( PMi APGi) 0A5i 1 l,2,...,n.

3

1

Now take each equation i and multiply it by Mi/Me and subtract

it from equation j where j is a specific generator in the specified

QVOUPs

2 n Mi 2 1 n Mi APMi-APGi :

A63 - 121 “8&1 = “TWMJ'TAPGfl - 121 M;(_—MT—)-CA63 (4 14)

E ”—4 '.. o ..

i=l Me 1

n ...

Now since 2 MiAd = 0, then also

i=1

n z n ~

_2_ 451:0, .E 1.31:0

1-l 1—l

so that equation (4.l4) reduces to

2 _" 1 _ - 2.

A53. — M—j-(APMJ. -APGJ.) - fie-(APMe APGe) 01353. (4.15)

n n

where APMe = X APMi, APGe = 2 AFC Multiplying the right hand side

~ i=l i=l 1'

of (4.l5) by NJ and then summing over j = l,2,...,n gives

11

(APMe-APGe) - (APMe-APGe) - o X M 113-0

i=1 3
J

Thus the dynamic equations of the specified group are dependent and

one generator speed can be eliminated. In equations (4.l2) the two

states eliminated are AS" and Ag" where n refers to generator n

of the specified group.

The conditions (3.3) for perfect coherency extends, as would

be expected, to the UCAn reference frame. Recall that in the last
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section it was shown that, condition (3.3) implies

(4.l6)

‘
3
‘
. ;

3
:
1
"
?

i
-

x
«
H
.

I
I

I
I

d
d

0
0

1
.

'
0

.
1
.

a
3

I

d

where the subscript i is over the generators of the specified group

and the subscript k can be over e_i_th_er the m generators of the

reduced system or the m boundary buses of the semi-reduced system,

as shown in the previous section.

Now consider an element of the submatrix (4i _T_)2] and use

(4.15) to show, that if condition (3.3) is true then,

~ 1 l n

{(-fll)2l}ik-N—— 11—32, tjk

=Fi'5.-1_. E git

Mi Me j=l Mn nk

._us-121<.1__§ ...

M1 M11 Me J=l J

...Ell‘.-}£'5.=0 1.=l,2,...,n-l

M1. Mn J = l,2,...,m.

Thus the submatrix (11:11),“ is zero. Using arguments com-

DTetely parallel to those given above for (1192, it can be shown

that the corresponding matrix (l1 Hz is zero. The arguments that

i"finitely stiff interconnections, and pseudo coherency decouple the

1'inear equations to produce a single machine equivalent are also

exactly parallel to those presented in the last section with El sub-

Stituted for fl_ in equations (4.2).
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Thus it is clear at this point that the UCAn reference frame

will yield all_the same results as the single machine reference frame,

and the fellowing convention is adopted. When the discussion spe-

cifically involves the system referenced to generator N or the UCAn

reference frame, fl_ or N, respectively,will be used. When the dis-

cussion is not concerned with a specific reference frame plain IE

will be used.

The UCAn reference frame is the most convenient for under-

standing the connection between modal equivalents and the particular

coherency equivalents derived by Podmore [2]. Assume that the

specified group of n machines satisfies the conditions for either

strict synchronizing coherency, strict geometric coherency, or pseudo-

Then the dynamic equations of the specified group can be

In the UCAn reference frame,

coherency.

elinfinated as discussed in Section II.

the dynamic equations for the generators of the study group are of

the form,

'«3 _1 _ l___ _ _ i .-.
ask - FIE-(11PM, - APGi) Me (APMe APEe) O'A6k, k l,2,...,m (4.17)

where

'1‘ '1‘ iAPM = APM., APG = APG , M = M ,

ei=1 ‘ ei=1“’1==1‘

and

This says that the specified group has been replaced by a

Single generator satisfying the following conditions

(l) The inertia of the equivalent machine is the sum of

the inertias of the n machines of the group.
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(2) The mechanical power of the equivalent machine is the

sum of the mechanical powers of the n machines of

the group.

(3) The electrical power of the equivalent machine is the

sum of the electrical powers of the n machines of the

group.

(4) The angle of the equivalent generator is arbitrarily

established as the weighted average of the angles of

the n generators of the group.

The equivalent generator is, in fact, the same equivalent that

would be formed by Podmore's techniques as presented in Chapter 2.

The important point is that if any of the conditions SGC, 556, or PC

holds for a specific group of n generators, then the application of

the rules of modal analysis to the equations for the group yields this

same single machine equivalent. That is under SGC, SSC, or PC, the

Imadal and coherency equivalents fer the group of n generators are

identical. This idea is implicit in Dicaprio's work [10, 11] and can

be shown explicitly as follows.

Assume first that the conditions for strict geometric coherency

are true for a specified group of n generators, in an N generator

SoflStem, and use the model (4.12) in the UCAn reference frame. Then the

Conditions for SGC cause the submatrix (~11 D21 to be zero. Therefore,

r

11 - (14. D” ($14.11,,

DetIAl - (fl 1)] Det

 g 1.1. - (511122

{Detm - (fl gunman; - (11 922]}.

This result shows that there are n-l eigenvalues Yi’ i = l,2,...,n-l

depending only on (E _'_|'_)22 and therefore strictly associated with the
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specified group of n generators. Using the lemma proved earlier in

this section this translates in the state model (4.12) to n-l eigen-

value pairs of the fbrm,

* -

Ai,A.=2—O:;—V02+4y. i=l,2,...,n-1.

These eigenvalues correspond to modes associated with inter-

nmchine oscillations within the specified group. However under SGC,

and for a disturbance outside the group, these modes are not excited.

That is the disturbance cannot "control" the intermachine oscillations.

It was shown in Chapter 2 that this condition of uncontrollability was

Precisely one of the rules for mode elimination in forming the modal

equivalent. Thus if the state space model is transformed to canonical

fOrnu under SGC, 2n-2 of the eigenvalues, representing canonical modes,

cu" states, that were uncontrollable for a disturbance outside the

Specified group would be eliminated. One pair of eigenvalues in the

tweduced system represents the motion of the group against the re-

ma inder of the system.

The elimination of modes under the conditions for SSC, is

aImost identical to that for SGC. Assume that the conditions for SSC

37%! satisfied by the specified group of n generators and note that

Det[ _1_ - (.111 1)] = Det{[Al - (€111.11 - (11 1.112111. ' ('fl 9223-19121} x

Det{>\l " (”fl I.)22}°

Now [1; - (111122)" AU ..1— (113221"

11; - [_I_+ M11 1511"}
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so that in the limit, when n-l connections are allowed to grow in-

finitely large,

-1 _

[Al - (ZN. l)22] 'T XE; ' l] T g

and

Det[A_I_ - (-1131 = Det[A_I_ - H11 DHJDetEAL - (£11221

Thus, once again, the eigenvalues are segregated precisely as

they were in the discussion of SGC, and there are no oscillations within

the group due to disturbances in the study group. Hence, as before

the modes eliminated as uncontrollable are those associated with

(~flI)22. Note that plain N. has been used to emphasize the eigen-

values are ppt_reference dependent. I

If the conditions for pseudo-coherency are satisfied for the

group of n generators then once again mode elimination leads to an

equivalent identical to the equivalent obtained by the coherency

method. Under PC the submatrix (efl_1)12 = 9, so that

Dem; - (n 1)] Detm - (E I)“ - (1111.)1201 - 1-411223'1('fll)21]

x veto; - 1-1 11221

DEtEAL " ('fl l)]]]Det[)\l "' ('M. .1322]-

The eigenvalues 1,, A: of the system model (4.12) that

rePY‘esent intermachine oscillations within the specified group are

again decoupled from the eigenvalues for the study group.

In pseudo-coherency, the n generators of the specified

group are no longer coherent but still appear to the remainder of the
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system to behave as a single machine. This implies that transformed

to the canonical form, the modes represented by the eigenvalues of

('51122 will be eliminated as unobservable. The m eigenvalue;

pairs associated with (M_I)]] represent the intermachine oscilla-

tions among the m+l generators of the reduced system which consists

of the m generators of the study group and the reference generator

which is just the single generator equivalent of the Specified

group.

The analysis to this point has now formally established the

following important relationship.

Result 2. Given a linear model of an N generator power

system (472 ), if any of the three conditions SGC, SSC, or PC hold

for a specified group of n generators, then the equivalents formed

by modal techniques and coherency techniques are identical. Further

in the UCA reference frame, the equivalent for the specified group

is of the Exact form proposed by Podmore.

~ Result 2 provides some very important insight into the re-

lationship between modal and coherency techniques by showing three

structural conditions under which the two methods produce identical

equivalents. Further each condition could be related to a con-

‘trollability or observability condition for mode elimination. Chapter

2 also listed "fast" eigenvalues as a rule for mode elimination.

Ft>r the second order generator models.used in this research, fast

eigenvalues, in the classical sense of modes that decay rapidly to

Zero are not present. This is apparent from the lenma proved earlier

1" this section which showed that all the eigenvalues have the gamg’

small real part, that is -o/2. Fast eigenvalues do occur in this

"“JCIel, however, if fast is interpreted as high frequency. The results

(VF. references [5, 6, 7] indicate that for a group of n generators
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n-l eigenvalue pairs can be associated with the intermachine

oscillations of the group. These oscillations are of high fre-

quency, relative to other eigenvalues in the system. Intuitively the

high frequency of these eigenvalues would seem to be due to strong

interconnections between machines of the group. But strong relative

to what? The next section provides some analysis of the case where

fast (high frequency) modes are present. The results of this analysis

help quantify the meaning of "strong" interconnections.

IV. Decouplinngjgh Frequency Modes
 

The analysis to this point has all been aimed at decoupling

the differential equations for the study group from those for the

specified group of n generators. A principal tool for decoupling

differential equations is singular perturbation theory. This section

investigates how singular perturbation theory can be applied to de-

coupling the equations of our example system (4.2).

Singular perturbation in the usual sense means that a system

contains a set of canonical modes or states that are highly damped

and decay rapidly to zero in a short boundary layer of time after a

disturbance has been applied to the system. The solution technique

is to set the derivatives of these fast modes to zero, changing a sub-

set of the dynamic equations for the system from differential to

algebraic form. These algebraic equations are then solved for the

fast modes and back substituted into the remaining equations to

eliminate the fast variables. The formalities of the procedure are

as follows.
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Consider the system

51 . 91151 + 9—1242 + 21’51 + 519

. 2..

p_§2 + C X

=9— X —22—2 T 119239221—1

where u is a sufficiently small scalar. The form of the equations

shown here is often referred to as the two-time scale form. It will

subsequently be shown that this form can be obtained not only for

the usual interpretation of singular perturbation but also for

systems with slightly damped, high frequency modes. The vector N,

can be identified with the study group of the example system used

throughout this chapter, and 52 with the specified group of n

generators.

In the singular perturbation approach the effect of the fast

transients is neglected by setting p = O in the second set of

equations. This makes these equations algebraic. Solving them for

1] and back substituting into the first set of equations yields

.0 - p ._1 °

51 ‘ (911 " £129- 29-21)-X—1 * 9-111 + £1”-

This provides a reduced order model of the overall system.

Notice that the aggregation is not equivalent to replacing the

specified group of n machines by one equivalent machine because

there is a change in the equations describing the relative motion

of the machines of the study group.

This analysis is not directly applicable to the power system

model, because, as was shown in the lemma of Section III, all the

eigenvalues of the model have the same, small real part._ Thus
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the power system model has no modes that are highly damped and decay

rapidly to zero. However, Chow, Allemong and Kokotovic have shown

[15] that this same approach can be applied to the case where a

system contains a set of lightly damped high frequency states. An

outline of the analysis of reference [15] is given here. The nota-

tion follows that of the reference for the benefit of those readers

who may wish to examine the subject in more detail.

Consider a system of first order differential equations of

the form

2=Al+§1 (1mm

g=px+pg (4mm

w1th 1n1t1al cond1t1ons 5(to) = 50, 2(t0) = go, and assume

(1) The norms of the matrices A,§,§,Q_are bounded about

u = O and the state 2 is 0 even dimension,

that is Z 6 Rzm

(2) The matrix D is of the form

9: 1‘91 22

-93 “92

where 92, 93 are m x m non-singular matrices and

thg matrix 9293 has simple and negative eigenvalues

-wi .

In reference [15], Chow, et al. first show that the eigen-

values of the matrix fi-Q_ are of the form

OI :Jwi/U 1 = l,2,...,m

where Oi is the i-th diagonal element of the matrix



 

 

4..

l

I
"
J
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31 = 1194 T 95]Qq__)lr] and I_ is such that 1-9293171 =

Diag(-w§,-w§,...,-w§). This establishes that as u + O the eigen-

values of the system

1114 = 2! + 9 (4.19)

approach infinity along asymptotes parallel to the imaginary axis.

'This guarantees that the states associated with the subsystem

1=2£+21

will be of high frequency, with §_§_ playing the role of p,

Chow next examines the system

w=21+£

where 9 satisfies assumption (2) given above, and shows that if

p(t) = EKt) + §(t) with EKt) the slowly varying part of p(t) and

||jl|5_c], H§]|< c2 for some fixed c],c2, then there is a finite

T](u) such that the slowly varying part EXt) of Kit) is

.4

ao=-§ mo+gm1

where

--l _ -l

D ' 9. 23

V10
.2 ..

This result is then applied to equation (4.l8b), with 9.5_

PTaying the role of y_(t), to obtain the slowing varying part Z of

Z as

-1

I
P
%

=-§ 21+MM-



 

 
 

"5':
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Next the slowly varying part of Z: is separated from Z. by

introducing the change of variables

e=gt221+e§121+11 (to)

and determining §_ such that equations (4.18) become

1= (50 - 11g _G_)z<_+ Be (4.20a)

Q
+ 11 EM] (4.201))

That is, the slowly varying part of Z_has been transferred to

equation (4.20a) in the sense that (4.20b) now only involves the

fast variable n.

To obtain the form (4.20) requires that g_ satisfy the re-

lation

-D G + (_D_"1£+@H%-u§9=0-

Invoking the implicit function gives the solution to this equation as

£3.=1)_ 2110+9hi)

=0-2CA +0(u)

where

_ _ ,4

50-11-1111 £-

The fast varying part of 1 is then separated by introducing

the change of variables

§_=X-u(g2"+u)=x_-uhe (4.21)

and choosing N such that



 
‘VOI

A
‘
U
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P1450 - 11298- 182+ HLE) = 9.

which by invoking the implicit function theorem is

- -2 —2 -2 -2

1205.2 ~32 -13.9. 952 +9111)

_— —-2 —-2 —-1
41,82 -e2 9.9.2 +94)

This completes the transfbrmation of variables given by (4.19) and (4.21)

which can be put in the form

g. L-uflt we. 1‘.

n = L 1 Z.

with inverse transformation

1 1 1111

l -L L - uLfl

Using the full transformation takes the equations (4.18) to the

fonn

g = A _g_ (4.22a)

up = 2 11 (4.22b)

Thus the slowly varying parts of 5_ and ;_ have been separated

in the sense that equation (4.22a) depends only on g_ and equation

(4.22b) depends only on n, Thus §_ embodies the slowly varying parts

01’ _X_ and _Z_ and _n_ the fast varying; or high frequency parts.

Neglecting the 9(u) terms in (4.22b),define the slowly varying

Sl1b$.)’stem of (4.18) as



  
1S]

1“-

n

\
u

'1A

1 i
1



)1= 19!. 2<_(t0) = 50 (4.23a)

Z= @491. (4.23m

The oscillatory subsystem

- _ -—-l 0

z-p. _2_(t0)-;o+g ex.) (4.2.)

is obtained from (4.22b) by neglecting 0(11) terms in Q.

It is interesting to note that the final results in equation

(4.23) are the same as would be obtained by setting u = O in (4.18b)

solving fer Z_ and substituting into (4.18a) g§_jf_the states of _g

were classic fast decaying states.

This overview of reference [15] highlights the main points ger-

mane to the fellowing discussion of high frequency modes in the example

Power system. It has been included to provide continuity and to give

the reader without immediate access to the reference some feel fer

Singular perturbation techniques.

The equations (4.23) show that if the conditions for "fast

8igenvalues" exist then the original system can be represented by a re-

duced set of dynamic equations for the lower frequency states and a

set Of’ algebraic equations. Further, the subsystem (4.24) provides

the QYW1amics for the fast eigenvalues, if this information becomes

Signif’icant. The ferm of the singular perturbation equivalent (4.23a)

is not: the Podmore or "averaged“ equivalent, since A0 = A_- §_Qf]£g

However, it will be shown next that when these results are

ElWHed to a power system, the term 8071;; is _Q_(u2) so that

A ‘= l\ and the singular perturbation and averaged equivalents are
\

9

identi cal.
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To put the example power system equations in the form of

(4.18), let

  

1).] = (_)_- _I_ _)(_1 + 9. Q l]
. a;

2 ~

12 ('MT)” '01 52 U ('M. 1)]2 9. l2

- . 42.11
+ [M1 :(ML)]] --- (4.25a)_ ' -.. A111;

1.2., .0. 9 £1 0— 1- Zl, = ~ ‘I' 2 ~ (4.25b)

Then the matrices 5,839.11 01‘ 14-18) are

f—

1 = 9 1 e = g 9.

LI'E I)” '01 U21'fl 1)]2 g

.- 4 r. —. (4.26)

_C_ = Q Q Q = 9. .1.

.. _, 2 ~

L.‘ -I_’1_I_)2] Q _J x.“ ('__ _)22 'UUl-J  

T0 inSure that these matrices satisfy the conditions necessary for

”During the singular perturbation transformations, it is necessary

t0 do the following.
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(l) Insure that u2(-B_I)]2 and (1MHI)21 are finite for

u + 0.

(2) Find the conditions on (-M_I)22 to insure that

~ 1

(E 922 "' ‘2 Q3
1.1

where 93 is nonsingular so that 9. of (4.26) satisfies the conditions

on 42_ in equations (4.18). To this end consider the four machine

system of figure 4.1. Let generator l, be the study group and gen-

erators 2,3,4 be the specified group of n generators. Use the UCAn

reference frame over the three generators of the specified group, and

discard the equation for generator 4 as redundant. The matrix (-M_I)22

can be written

    

  

r- “ir- a

1 1 1 1
(--- -1 - -—- - ——- t t
M2 Me Me Me 22 23

(-M T) =- t23 t33

"‘22 -1_ 1_._1__ -1. t ,
Me M3 Me Me 24 34

\. ...JL. _J

" t t t T

22. 22 T 23 T 24 t23 t23 T t33 T t34

2 e 2 e

+ + + +

{132 t22 Mt23 t24)}{f§§__ (123 t33 134)}

L. 3 e M3 Me .4  
The matrix (-fi]:)]2 can be written

(“51’12 T 4411112 T 9112122]

1 1 1 1 "T '1

-—{t t]-[--— -— -—1 t t
M1 12 13 Me Me Me 22 23
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so that,

t12 (t22 T t23 T t24) t13 (t23 T t33 T t34)1
[{M ' }{ ’ ]J

1 Me M1 Me

 (511 _1_)]2= - (4.23)

Consider first (-BI)]2. Making the substitutions

t22 T ‘t12 T t23 T t24 t33 Tt13 T t23 T t34 ’

it is possible to write (-M_I)]2 as

t t t t
~ _ 12 12 13 13

Here the symmetry of the matrix I_ has been used plus the fact that the

elements of any column or row of 1_ sum to zero. Note that (-M_I)]2

does not depend on the elements of the submatrix 122 of synchronizing

power coefficients between the machines of the specified group. The

same is true fer (~M:I)2]. Thus these matrices will always be finite,

since only elements {12211jT of 122 will be set equal to %- in the

subsequent development.

Now consider the matrix (-M_I)22. Make the substitution

t22 T ”t12 't23 ‘t24

t33 T ‘t13 ’t23 “‘34

then

P: '1

{_,(1___1._)-Ez_3_-£2.4_} {13.1.13}
( fi ) 12 M8 M2 M2 M2 M2 Me

-_1 =-

22 {122,312 {, (1..-1._, 122-133}

L.M3 Me T3 Me M3 M3 M3 .3  
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Suppose that only the interconnection between generators 2

l l

  

and 3 is strong and let t23 = -§3 and factor out -§u Then in the

u- u

limit as u2 + O, the matrix (-M.I)22 approaches

'1

-Lr-1_ 1..

“2 M2 M2

1_ _1_

M M

g 3 3.J

that is (-E_I)22 + - ié-QB where 93 is singular. The conditions for

applying the singular perturbation transformations are that Q. be
3

nonsingular. Now let both the interconnections between generators 2

and 3 and generators 2 and 4 be strong by letting t24 = t23 = l—-. In
2

u

this case, factoring out 1?. and letting u2 + 0 cause the matrix

~ 11

(ii D22 to approach

r“_2 1

n- 1.— 7
1 2 2

“‘2'

“ 1. -1_

."3 ”3..  

‘so that 93 is nonsingular.

Generalized to an» n dimensional case, it is easy enough to

show that the requirement for the non-singularity of Q_ is that a
3

set of n-l interconnections, linking pl] the machines of the

specified group, be set equal to 174 This is the same Specifica-

tion for stiff interconnections reguired by strict synchronizing co-

herency.

Now, returning to equations (4.23), and letting n-l inter-

connections among the machines of the specified group equal 5?. puts

the equations (4.23) in the form
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11 o I x o o z
—1 _ — — —1 + — — —1
O - ~ 2 ~ --

52 ('5 I’11 “0-1— 52 1‘ ('3‘- 1)12 9 £2

+13 :(fl L1,] 4111

--- (4.27a)

42L.

e i. 2 9. 3. e 1 2.
. = ~ + (4.27b)

P. .Z_2 (‘fl l)2‘| 9. £2 93 “(‘01) 12

which is the form necessary to apply the singular perturbation approaCh.

The form of Q_ in (4.27b) makes it easy to calculate the

eigenvalues of 111-Q

  

711 -T—I 7

1 ' T “T
Det{>\_I_- {1‘2} = Det

1

‘fig3 (4 +0);

K. _J

DefiUL - 17,132,110 + 0111}

Det{[(>.2T+ Ac); - (12— 23H}

11

d

Det{v I.- —§-Q_}, 93 nonsingular.

t

Thus the eigenvalues of Q_ are yi,y: = :_/7;' where Ai’ i = l,2,...,n-l

are the eigenvalues of 15-93 = (-E.I)22 which are known to have

infinitely large imagina:y parts as u + O.

The process of letting u + 0 corresponds to letting n-l

interconnections in the specified group become infinitely stiff. That

is u'+ O is the "vehicle" by which one "travels" back to the results

of Section II, namely that fbr n-l infinitely stiff connections among
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the members of the specified group of n generators, the specified

group behaves precisely as a single generator. That is, the process
 

gf_sending p tg_zero blends the singular perturbation concept 9f_

fast eigenvalues into the concept pf_strict synchronizipg_cohereppy.
 

In addition (4.23) shows that the approximation to a single

machine is very good even for u small, since it is only necessary

to drop terms 9(22) in order to have 50 = A. Thus it is possible

to state the following result.

, Result 3. If the states of a specified group of n generators

can be identified as high frequency, then the specified group of n

generators can be replaced by a single generator without affecting

the response of the remainder of the system. Further. in the limit

as u +-0, the singular perturbation concept of high frequency

modes merges with the concept of strict synchronizing coherency.

The singular perturbation equivalent is then identical to the modal

and coherency equivalent, and the equivalencing has not introduced

any error in the response of the study group.

At this point four conditions have been examined, strict

geometric coherency (SGC), strict synchronizing coherency (SSC),

pseudo-coherency (PC) and fast eigenvalues (FE). FE, however can be

identified with synchronizing coherency and hereafter the term

synchronizing coherency will stand for both these concepts. In the

next section, one last method of decoupling the linear model is in-

vestigated. At that point the theory of Chapters 3 and 4 will begin

to clearly point the way towards a theoretically sound, and com- I

putationally viable algorithm for generating reduced order dynamic

equivalents.

V. Linear Decoupling
 

So far in this chapter, three archetypal conditions have been

considered, each of which when satisfied causes a specified group of
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machines to behave, from the perspective of the rest of the power system,

like a single generator. Each of the archetypes, in turn, has been

associated with conditions on one of the submatrices of -fl_1, Strict

geometric coherency causes (-_M__I_)21 = p, Strict synchronizing co-

herency causes (fl 1);; + _o_ in the limit as the inter connections be-

tween machines are progressively stiffened. Pseudo-coherency has been

shown to cause (-M_I)]2 = g, All of these conditions, in turn, de-

couple the differential equations for the study group from those for

the specified group to allow a reduction in the order of the system of

equations that need to be analyzed fOr disturbances that occur within

the study system. As has been pointed out before, all of the arche-

types are hypothetical in the sense that they are never satisfied

exactly in any real power system. It is possible to achieve

near approximations to these conditions. That is,||(-fl_1)22H < e.

or “(91912“ <e or ||fl121||< e, where e is small.

Having been able to show that each archetype causes a sub-

matrix of -fl.I_ to either be zero or go to zero in the limit, it is

natural enough to ask if structural conditions can exist in the power

system that cause the multiplicative product of two of these sub-

matrices to be zero, and if so, does this result in a decoupling of

the equations for the specified group from those for the study group?

In particular, consider the fbllowing example system where

(ii- 1); CM. 1),,1 + 9-

Figure 4.l shows a four generator system. Let generator l be

the study group and generators 2, 3 and 4 the specified group, with

generator 4, the reference. First, multiply out the E11 matrix.
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FIGURE 4-1

FOUR GEMRATOR SYSTEM EXHIBITING

STRWG LIMAR DECOUPLING



A FL _L-a

El: "1} :14

M2 1 T4

M3 M4

k. .2

F-

: (£1.1-_t_l§.)1(:cl§.

Ml ”4 E Ml
............ T

(51-1)162—2

M2 "4 l M2

I

I

(3-3);(23

c."3 ”4 : M3

Nowlet t =1- t 't
24 u ' 23

Then,

t22 _ t24 _ ‘ti2 _ f____ _____

M2 M4 M2 M2

- 'tiz u

M2 M2

ELELML-
2 M4 M2 M

£22.- 325.. u_ - _l_.

M3 4 M2 “"4
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F-tll t12 ‘13-‘

t12 t22 t23

t13 t23 t33

t t t
L_ 14 24 34_J

.,

:23. (E13. 331)

"4 1 "4

E23. (:22. E35)

M4 M2 M4

E23. (E§§. t34)

”4 M3 "4 .J

= p, and t12 + tl4 _

2 + I3'4

t24 t2_4
M2 M4

a

u M2 M4

= b



 

 

____3&.='tl3- 23 34.-.;2
M3 M4 M3 M3 M3 M4

-t
l3 2 l

= -———-- u(--+ -—9 = d
M M3 M4

So that

d -b ‘q

(A ) a b (A )_l ad-bc ad-bc

M T = and M T =
——N c d ——H -c a

L_ad—bc ad-bcd  

Stiffen the connection between generators 2 and 4 by letting

u +0. Then note that

 

  

  

  

1 1 t13
limit u(ad-bc) = (M—— + M—)(F—) = Kd

n+0 2 4 3

This means that2

pt
13 2 2 1

’TT"' u (-—-+ -i

limit —‘-‘———= limit “d = limit 3 M2 M4 = 0
“+0 ad-bc “+0 ulcd-bcl “+0 Kd

-u2(l—-- l_9

limit 6;?“ = limit 7%??? = limit M2 K M = o
n+0 n+0 n+0 d

1 .

M— M M
. . - . . - 4 2 3

11m1t —-E'— =11m1t TEE—j- = =

ad-bc u ad-bc t (M + M) t

M M M

2 4

I (M2]+ M4) M3

limit a = limit —(—}‘———ya = =—

(—-+ —1—
"2 "4 M3

The matrix (EDZl is,

 

2 .
The condition t23 = t34 = u is not necessary to the final results

of this example as shown by a similar example in Chapter 5, but does

simplfy the algebra considerably.
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r- '1

(‘4‘ T) = 2-5.1

—--21 M2 M4

ELEM

t t + t

but fil§-= $2 + M14 so that

3 2 4

‘13 _ ‘14 = ‘12 ‘ ‘14 _ ‘14_= M4‘12 ‘ M4‘14 ' M2‘14 M4‘14

M3 M4 M2 + M4 M4 M4(M2 + M4)

‘12 M2‘14
 

 

Then in the limit as u +0, the matrix product (fi_I)£;(E_I)]2 can

 

    

be written r_ ..

'1 ‘12 ‘14

. -1» 0 0 (M—‘M—l
(M I) (M 1) == 2 4

22 2‘ M M M M t t

1—21—3— -—3—— ( 21(‘2 ‘4)
M +M t t M +M M M

L_ 2 4 13 13J L_ 2 4 2 4 _J

o

o

This result is hypothetical in the sense that letting p + 0 means

t24 + w causing the matrix (fi_1)£; to be singular which is impossible.

But the important point to note here is what happens by virtue

of the limiting process. As u-+ 0, generators 2 and 4 merge into

one machine, as predicted by strict synchronizing coherency. This

causes the synchronizing torque coefficient between generator 1 and the



124

composite machine 2-4 to become t12 + t14, while the inertia of the

composite generator is M2 + M4. In this particular system

‘12 " ‘14 ‘1 . . . .
-iE—;—fi;—-= fig— . Thus in the limit as u + 0 the compos1te gen-

erator 2-4 and generator 3 satisfy the conditions for strict geometric

coherency, and hence the whole group 2,3,4 acts like a single gen-

erator. In this particular case the phenomenon of (fi_1)22(fi_1)12 + g_

combines two archetypal structure conditions, namely SGC, and SSC.

Whether this is always the case, cannot be answered definitely here,

but is an interesting consideration fOr future research. What the

example does point out is that the condition (fi:I)22(fi_I)]2 +'9, can

cause the generators of the specified group to behave as a single gen-

erator. This is the condition that always previously has led to de-

coupling the differential equations of the specified group from those

of the study system with the consequent separation of eigenvalues

that allows the model and coherent equivalents to be identical.

Thus the example points to a new archetype that will cause strict co—

herency of the specified group. In a real system (fi_1)£;, of course,

would never be singular, but could have the form

A ‘1 - f_ q

(M122 ' 2:1 E2

M M M
2 3 3

{( ‘ + e } (- --'+ c )

\— ...J
  

where 8i < e, i = l,2,3,4 are all small. For instance, consider the

fbllowing data for the system of figure 4.l.
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u = 1 M2 = 2

1.12 = 1 M3 = 2

113 = .2 M4 = 1 -

t14 = .2

which yields

a = -.05 - .05 - 10(l.5) = -15.1

b = .1(-.5) = -.05

C = .05 6 10 = -9.95

d = -.l - .l(2) = -.3

t t

-13-- “15-: 05 - 2 - - 15

M2 4

‘13 ‘14 _ 1 2 _ 1

M—‘W" - --
3 4

and results in

"-.0744 .0124 " "-.15'“ ”.0099 "

N_2.467 -3 745. -.1 \_-.oo45_J
L- _J

      

Note that in this‘example t23‘ and t34 are moderately weak and t24

only moderately stronger than the other synchronizing power coefficients,

yet using the largest element as the norm for the matrices involved,

the norm of (f1 1);;(13. D21 is an order of magnitude smaller than the

norm of (M 1);; or (E D12. This may be a significant difference in
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the practical situation where coherent a group is determined by setting

a threshold value for some coherency measure.

The next question to be asked is whether the condition

([1 Dam D21 = _0_ results in the modal and coherency equivalents being

identical. Certainly the hypothetical example indicates that this is

the case. The answer is yes. The proof that is offered here is not

done in the most general setting, but it is general enough for the use

that will be made of this decoupling concept in Chapter 5. The proof

is analogous inmost respects to those given previously for the other

three archetypal conditions.

Assume first that the disturbances occur Only at generators of

the study group. This results in

[£4.21 (11.02] 42M =0

AEL ’

and,

1&1 5011.111 4211 =18142M1.

422

since AEL = 9, To simplify the notation in what fbllows, let

_4 ABM = 5494 and

r- -~ r- , '5

(M :1H (11. 1.112 A" 212

    

Then the equations (4.2) for the example power system can be written



Ao—ém = AIi‘ém + Aigén-CAém + .349] (4'283)

2153'“ = A ASS-m + Ana can (4.28b)

Introduce the change of variables

4'44. + 42.4.4.

Then equations (4.28) can be put in the form

afim = 565111 + _A_”;OAG + BIU] (4.29a)

: =A-22521A—8§m + (A—22 + AMA-215212 UZ- " A2253215491 (4'29"

where

50 = (A11 ‘ A12—22A—21)

If the structural conditions on the power system are such that

(_22_2]) + 0 then equations (4. 29) reduce to

A§m = _A_nagm +5122'°A§m + _13_1u1 (4.30a)

_Z_ = .5222. + Z. (4.30b)

IfA6_m(0)=Ac§_n(O) = _Q, then 2(0) = Q. Hence, for zeroinitial con-

ditions, the system (4.30) becomes

Ag" ("1“. 1h} ("1 1)]2 Aém

z 0 (~14. 1’2 2

flqAEM (4.3la)

 

g (4.31b)

This is precisely the form attained for the previous three

archetypal conditions. That is, the transformed specified group re-
 

quires no dynamics to represent it. Its effect upon the study group
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is perfectly preserved by the reference machine which is assumed to be

either a generator in the specified group, or the inertial average

of the specified group if the reference frame is UCA".

It has already been shown for the other archetypal conditions

that the form of the equations (4.3l) results in two sets of eigen-

values,one set associated with (-MLL)]]and the other set associated

with (1MHI)22. As before, rules of modal reduction will discard the

set of eigenvalues associated with ("M“I)22 using the argument that

the states associated with these eigenvalues are uncontrollable, and

thus, once again, in the limiting condition of structural conditions

that cause (11115.;(‘11111 + _0_, the modal and coherency equivalents for

the specified group are identical. These results can be summarized as

Result 4. For the model of equations (4.2) with the dis-

turbance confined to the generators of the study group, the condition

(all I)22("A1D21 + 9_ causes the specified group of n generators

to appear, to the study group, as a single generator, and the modal

and coherency equivalents for the specified group are identical.

The condition (fl Dam _T_)2] + 9_ will be called strict strong

linear decoupling (SSLD)4 The adjective strong is used to distinguish

this type of linear decoupling, from the linear decoupling obtained

by analyzing the conditions (M_I)]2(M_I)§; +-Q_ and

1.1111121115111112. ‘-> 9..

The analysis for these types of linear decoupling is not pre-

sented because these conditions, and the condition of pseudo-coherency,

are not tested in the formal algorithm for producing dynamic equivalents

presented in the next chapter. The analysis of Chapters 3 and 4 has

shown that pseudo-coherency is a concept that can only be strictly
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true in the linear model. The conditions for pseudo-coherency

depend upon the structure of the study group, or internal system, at

’1. This is reflected in the linear model by the fact thattime t = 0

the conditions for pseudo-coherency is (-M_I)]2 = 9, Since the

disturbances occur in the study group these conditions may very well

be destroyed by the disturbance. As a consequence, the presence of

pseudo-coherency in the linear model does not strongly guarantee that

the condition will persist in the nonlinear model. The two types of

linear decoupling not analyzed here depend,like pseudo-coherency,on

the conditions within the study system, through the matrix (-M_I)]2.

Hence, they are discarded along with pseudo-coherency.

In contrast, the conditions of strict synchronizing coherency

and strict geometric coherency transfer from the linear model quite

strongly because they are not directly dependent on structural condi-

tions within the study group. This is reflected in the linear model

by the fact that conditions for synchronizing and geometric coherency

are expressed in terms of the matrices M_I42 and (M_I)é2, namely as

(M .1121 = Q and M11514.

Strict strong linear decoupling depends on these same two

matrices. Thus it is reasonable to suppose that the structural con-

ditions fOr strict strong linear decoupling if present in the linear

Model will also be present in the nonlinear model. The hypothetical

example adds credibility to this argument since SSLD appears in many

cases to be a combination of strict synchronizing coherency and

strict geometric coherency.
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VI. Establishing a_Hierarchy gf_Structural Conditions for Coherency ‘
 

This very lengthy chapter, has traveled over a lot of material

and concepts. It is necessary at this point to summarize the results

of this chapter and point out how they might be used in producing dynamic

equivalents.

This chapter has used a basic example system consisting of a

study group and a specified group of n generators. The basic plan

of attack has been to establish thbse conditions that cause the

specified group to be strictly coherent, gr_appear_to be strictly

coherent to the study group. In other words, conditions were sought

under which the specified group could be replaced by a single equi-

valent machine without changing the response of the study group to

disturbances withjp_the study group. Those conditions can be

summarized as

(l) Synchronizing Coherency

(2) Geometric Coherency

(3) Pseudo-Coherency

(4) Linear Decoupling

In the process of establishing these various conditions, their

relative merits, in producing dynamic equivalents have been discussed

in an informal way. In the preceding section of this chapter, the

ranking of these conditions became less informal when pseudo-co-

herency and two types of linear decoupling were discarded as condi-

tions for determining dynamic equivalents.

The process of ranking these structural conditions is com-

pletely fbrmalized by figure 4.2. The position in the table indicates
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the value assigned to the condition in forming dynamic equivalents.

As can be seen strict cynchronizing coherency is ranked high-

est. It is easily the single most important condition to be tested

for in a power system, for the purpose of forming equivalents.

Tightly interconnected machines are coherent under a wide variety of

disturbances, because the tight interconnections force the machines to

remain in synchronism.

Geometric coherency and strong linear decoupling are ranked

second in importance. As will become evident in the next chapter,

these conditions will be of use in forming equivalents where the dis-

turbances are assumed to occur only in a particular area of the power

system. This is almost self-evident, because there is an immediate

and natural identification of the area in the power system where the

disturbances occur, with the study group of this chapter.

The concepts of pseudo-coherency and weak linear decoupling

rank lowest in importance. As discussed in the preceding section,

these conditions are not used in the algorithm presented in Chapter

5 for determining coherent groups.

The dotted lines in figure 4.2 that connect the two types of

linear decoupling to the other three conditions implicitly categorize

linear decoupling as a derivative of the other three conditions. This

is really an artificial choice. The example used to introduce strong

linear decoupling was a combination of both synchronizing coherency

and geometric coherency. Probably most cases of linear decoupling can

be broken down in this fashion, but there are potentially many cases

of strong lineardecoupling that cannot be categorized in this way.
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Thus one could just as well categorize SLD as an independent condi-

tion.

It is worth noting at this point that what has been termed

synchronizing coherency includes the singular perturbation ideas of

high frequency eigenvalues that can be associated with inter-machine

oscillations of the group, allowing the group to be represented as

a decoupled subsystem. As has been shown in this chapter the

singular perturbation approach is, in the limit of infinitely stiff

connections, indistinguishable from the previously introduced idea

of strict synchronizing coherency. The choice of terminology is

arbitrary, and those who prefer to use the terminology of singular

perturbation theory to describe this condition should do so. The

writer wishes in no way to obscure or detract from the very fine work

of Mssrs. Chow, Allemong, Kokotovic, Winkelman, et al.

Finally the reader may have noticed that the adjective strict

no longer modifies the conditions for declaring a group of machines

coherent. The idea of strict coherency has been very useful in

establishing some conceptual classes of conditions under which groups

0f generators are either coherent, or appear to some other part of the

system to be coherent.

In reality strict coherency is never aChieved, only approximate

coherency. In Chapter 5, a method is developed for measuring the

structural conditions presented in this chapter. Where it is a useful

aid to the analysis process, the conceptual idea of strict coherency

will be re-introduced. The goal, however, is a practical scheme for

measuring coherency conditions. The reader should recognize that the
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coherency that is actually measured is seldom, if ever, purely

synchronizing coherency or geometric coherency although in many cases

one or the other predominates. In all cases the coherency is never

perfect and one encounters the sticky task of establishing aggrega-

tion threshholds. That is, how big can the measure of coherency become,

before the group is no longer considered coherent?



CHAPTER 5

A REDUCTION ALGORITHM FOR DETERMINING DYNAMIC EQUIVALENTS

I. Introduction
 

Chapter 4 established five hypothetical conditions on the

structure of a power system namely,

(1) Strict Synchronizing Coherency

(2) Strict Geometric Coherency

(3) Strict Strong Linear Decoupling

(4) Pseudo-Coherency

(5) Weak Linear Decoupling

that allow a specified group of generators to be replaced by a single

generator. For brevity these five conditions will be given the

collective name "structural conditions for coherency", even though

for conditions (4) and (5) the specified group may not be coherent,

but only appear to be coherent.

Although it is not feasible to satisfy any of these conditions

exactly in a real power system, the assumption is that near satisfac-

tion will still preserve modal and coherent properties. There is

already empirical evidence to indicate that this assumption is true

[6, 7].

The conditions for structural coherency can be considered

rules for aggregation, and the next task is to find a means of

identifying these conditions when they are satisfied or nearly

135
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satisfied in an actual power system. Chapter 4 showed that all

five conditions could be expressed in terms of the submatrices of

-M I, The most direct approach would be to test the submatrices

themselves. While this is the most direct approach,

it may not be the best, or the most convenient to implement com-

putationally. An alternative is to find some other measure that can

also detect the structural conditions for coherency. As it turns out,

the r.m.s. coherency measure is one such measure. The first part of

this chapter shows that the r.m.s. coherency measure, when used with

the proper statistical disturbances, can identify a major subset of

the structural conditions discussed in Chapter 4. It is then a

straightforward task, one in fact that has already been accomplished,

to modify the software developed by Podmore and Germond for the

Electric Power Research Institute (EPRI) [2], to use the r.m.s.

coherency measure. This modified software is used extensively in

the study of the 39 Bus New England System discussed in Chapter 6.

II. The R.M.S. Coherency Measure
 

The possibility of using an r.m.s. coherency measure to de-

termine coherent groups of generators which could be aggregated into

single generators to form reduced order power system models, was

initiated by Schlueter [5]. Three subsequent papers [6, 7, 8]

strengthened the connection between modal and coherency equivalents.

An optimum form of disturbance for determining coherent groups was

also established. That is, disturbances were found that fOrm co-

herent groups that depend on the dynamic structure of the power

system but do not depend on the disturbance used to determine them.
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In this section the r.m.s. coherency measure is defined, and the re-

sults of references [5, 6, 7, 8] pertinent to the present discussion

are reviewed.

The r.m.s. coherency, th’ between generators k and 2 of

a power system is defined as

 

=/—‘-— E{ T [A6 (t) - A6 (t)]2dt}
°k2 Tn 0 k 2

where E is the expectation operator. The expectation operator

appears, because as shown in [7], the optimum disturbance for detect-

ing coherent groups that depend on the power system structure is ggt_

deterministic. In fact, it is shown in [7] that there is no single

deterministic disturbance that will adequately detect structural

coherency.

The next task is to define the form of the probabilistic input

u(t). This u(t) will then be used as an "input disturbance" to drive

the linear power system model of Chapter 2, for determining coherent

groups. >

First, decompose u(t) into two functions 24(t) and u2(t),

i.e. u(t) = yh(t) + u2(t). The function 34(t) is defined as

21“) =

Q_ for t < 0

That is, 24(‘) is a vector step function, initiated at time t = 0.

In the linear model u(t) represents deviations in mechanical

power on the generators and deviations in electric power at load buses.

Since u4(t) is a step function, non zero entries in u4(t) will
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model

(1) Loss of generation

(2) Loss of load due to load shedding

(3) Line switching

If 21(t) is to represent the random occurence of such events, then

it is necessary to define,

r- -

E12  
and

T _
W21“) - 111M940) - M2] 1 - 311 0

II

5
0

  0 322
_J

The reader should note that the vector matrix M1 is not the

same as the submatrix M] of the (N-l) x N matrix M_ that appears

in -_N_l_ L

The matrices Eh] and 54] describe the uncertainty in the

location and magnitude of generation changes ABM. The matrices £52

and 322 describe the uncertainty in the location and magnitude of

power injections on buses due to either loads being shed or lines

being switched.

The function u4(t) can only model disturbances that resemble

step changes. To model a fault, define

 

r

0 t > T1

22<tl=122 0991

0 t < 0

K
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That is u2(t) represents a pulse of duration T], occurring at time

t = 0. Recall from Chapter 2 that faults were represented by changing

the mechanical power to a generator. Thus

32(t) = ABM

0

so that the last Q elements of u2(t) are zero, where Q is the

number of load buses in the power system. If 32(t) is to be

probabilistic, then define

5‘22“”: -”—'21 ”52

and

1
m

r
d
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The initial conditions are also assumed to be random,

€{MKO)} =.Q

4WD) 1101‘} = MN)

This assumption reflects the idea that for a given steady-state

operating point, the power system is expected, on the average, to

be right at the operating point, although instantaneously it may be

subject to transient fluctuations. The initial conditions are

assumed to be uncorrelated with 34(t) and u2(t), i.e.

1

l
otwo) 9.10:1}

4121(0) MIMI 1

l
o
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Finally, it is assumed that 24(‘) and u2(t) are un-

correlated with respect to one another. This assumption is based on

the fact, that the model is only used to represent one type of con-

tingency at a time.

For the linear model of Chapter 2, the r.m.s. coherency

measure, ckg can now be written

1—-€{JT [A6 (t) - A6 (t)]2dt } g
Tn 0 k 2Ckz

_ r1 T
2 %_ ¥figjo [(A6k(t) - A6N(t)) - (A6£(t) - A6N(t)] dt}

 
_"1 a
' ggkz §x(‘) 2kg]

where §(t) is the state vector of the linear model, of the power

system, and

1 T T
_s_x(t) = 7 _x_(t)_(t) at - (5.1)

T 0

is a (ZN-2) x (2N-2) square matrix, with gki a 2N-2 vector de-

fined by

- r ' — k

{21(94}j — 1 J -

-l j = 2 for k f N, R f N

0 J 2 1

1 1 5 = k for k x N, 2 = N
k

 
0 i f

1 j = for k = N, 2 f N

KP j f R

For the input function u(t) = 24(t) + 32(t), 5(t) has the

form
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" t

351.1510) + (0 gAVB(1_J_1 + (121111 for t < 1]

_- A t Av A("T1) T‘ Av
e— (0) + e—-B u dv + e e— B u dv for t > T
—- —- O —1 0 —- —--2 1

K

Substituting this expression for {(t) into (4.1), carrying

out the expectation Operation, and utilizing the assumptions that

24(t11 u2(t) and [(t) are uncorrelated, leads to the expression

 

1T

3X11) =i—fi gA-Tyx101e-ATdT (5.2)
0

T1{ [11 T

+l_.0 eA.VB dv][R + R + m mT + m mT + m mT + m mT][ eflyB dv1T1dI
Tn ‘0 —- -4 -2 *1 1 —2-2—1—2-2—1 0

l T Av T Av
+.—— e— B dv][m m + R ][ Wgr- dV]T 1dr

Tn —- - —4—4 —4

0

T T

1 A(T-T) 1 Ali-T) 1

+ J.rT ( {[g‘ 1 I g—AV_B_ dv][m2mm+l 52113 I J _AvpvaT1dr

T JT] 0 0

T

T Av(T-T ) l T

+ 1.5. I {[g" 1 ( eflvg dv11p2mIJEJ gflvé vaTldT

T T.l 0 0

T
T T A(T-T ) 1

+ 1H {[1 QA‘CB. dV3[_"11[".;3[£— A I 9.53deJ1.1111
T T1 0 0

The integer n is chosen to be one if a load shedding, line

switching, or generator dropping contingency occurs and zero for a

fault. These choices guarantee a finite non-zero value of §X(t) for

an infinite observation interval.

Equation (5.2) gives the form of §x(t) for a very general

stochastic disturbance. However (5.2) is not much help analytically
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because it is not easy to get a closed form expression for §x(t).

The major cause of this difficulty is the pulse portion u2(t). If

the disturbances are restricted to step functions, i.e. u(t) = Eth)»

then as shown in reference [7] 1§X(t) can be put in closed form by

letting T +1w. That is

lm§(fl=§flfl=[fln

T-roo

5.1M T] (5.3)

where,

_ 1 1

511 "311’r pl11-"111+ L "‘12 -"-'-11+ m11512 ‘-

1 1
+ £822 + M22 9122);. J (5.4)

Equation (5.3) reveals that, for step disturbances the r.m.s.

coherency measure depends ODIV on power system structure through the

matrix C! [J']. However, it is also dependent on the nature of the

disturbance through the matrix Eu which contains the statistics

of the disturbance. The next section investigates some fundamental

properties of the r.m.s. coherency measure for the general case where

5“ depends on the statistics of u(t). In the subsequent section

it is shown that the proper selection of u(t) causes '5“ not to be

dependent on u(t). That is, the elements of Eu will no longer

be values specific to the statistics of u(t).

III. General Properties of -S-X(°°)'

Assume, as in Chapter 4, a power system with N = m+n gen-

erators, where the first m generators constitute the study group of

interest and the last n generators constitute a group of generators

whose coherency is to be investigated. FOr notational convenience let
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5111 912 (M1)

321 £12 ([1112] (MT)

where the partitioning is conformal with the dimensions m and n

of the study group and the specified group of n generators.

Similarly, partition

IS-11 K—12r|
'_

_7
<

K21 K22

where the submatrices Adj contain values that depend on the mean

and covariance matrices M1 and 34 of the statistical step dis-

turbance vector u(t) = AEM . To make K independent of these
_u

matrices would mean that the EQj submatrices always had the same

constant value, no matter what the statistics of u(t).

Assuming that 94] and 922 are nonsingular, the inverse

of M“: can be written as

  

r' ‘1
-1 -1 -1

9 "5111 912 3

[1111" =

1 -1 -1
p

L922 51219- _,

where

_ -1

9 " 5111' E112 $122 221

_ -1

3‘ $122 ' 5121 $111 912

Then the r.m.s. coherency measure .§x(w) can be written
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_sx (...) = EM _J“MutM 1.1“

F 9-] '911 9123 1M311 512“ P 9-“ '9-‘T921322T

- 9‘14229421971 3.] ,4 ._‘521 522- gfl-T511291I 3" _.

r-"S'x11 3‘12-7

L5‘ 21 3‘2'2_J

where

AX” = 9-45119-T ' 9.151234912111‘ " 9119-123-152194

+ 91141234522541.2211 (5.5.1

§x12 = “9-15119-T921922 ‘ 91-15121”:T ‘ 3119123452194921322

‘ £111511215152234 (535")

312, = 11225121945115;-T ‘ 9229219-‘5123-T91291I

+EMMVEM£EMUMM

§x22 = 92-29219-151194921922 "‘ 51229219515121’."T ' 245214431195;

1‘ BT‘MQZE'T (5.54)

Now consider §X , the submatrix that contains the informa—

22

tion on the coherency between the n generators of the specified

group whose coherency is being investigated. In the linear model for
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the power system, the condition of strict geometric coherency (SGC)

corresponds to 92] =.Q. If .92] =.Q, then

-1 -1__ -1 -1

i P 522?- ‘922522 922
x22‘—

so that §X22 depends only on the structure of the specified group

of n generators and not on the study group. This is exactly what

is implied by SGC. This means that for a disturbance within the

study group, that is, outside the specified group, 5&2 = 9_ which

in turn causes §_ - 0. Thus the r.m.s. coherency measure will
x -—

capture the conditggn of strict geometric coherency. The only defect

is that the expression for §X22 is dependent on the nature of the

statistics of the disturbance that occurs in the study group. That

is, it is possible that terms in §X22 would go to zero not because

92] = 9_ but because the particular statistics of the disturbance

cause fifij = Q, What is needed is a type or category of disturbance

that yields the same constant 5%. no matter how the details of its
J

statistics change. This type of disturbance is formulated in the

next section.

A parallel argument can be carried out on §X22 for the con-

dition of strict synchronizing coherency (SSC), which in the linear

model corresponds to 9;; +'9, FOr this case, using the matrix

identity (5.9),

-l’ 1-1 .. -1 -1 _- -1

F— 7 9.22 I322321‘911 '. S112922921J 212.922 '* 9 '

so that

41 "'9
22

for a disturbance either in the study group or within the specified

group of n generators.
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Now consider the condition of pseudo-coherency, which

corresponds in the linear model to 942 = Q, Examining §X11 in equa-

tion (5.5a), which measures the coherency of the generators of the

study group, shows that if the conditions for pseudo-coherency are

satisfied by the power system structure then

-1 _ -1 -T

5119- ‘ £1115115111

which depends only on the structure of the study group. Thus for a

disturbance that occurs outside the study group, i.e. in the specified

group of n generators, 51] = 9_ which, in turn, causes §X11 = 9,

so that the r.m.s. coherency measure will detect the condition of

pseudo-coherency if it exists in the structure of the power system,

but only by a ZMIIW disturbance of the specified group. It is worth

noting that pseudo-coherency does not eliminate terms in S This
...x '

is as expected since in the case of pseudo-coherency the speggfied

group is not truly coherent, but only appears coherent to the study

group.

Finally the case of strict strong linear decouplint (SSLD) is

detected by the r.m.s. coherency measure. In the linear model the

conditions for SSLD imply 95:92] +-g_ which causes

-1 -1
S + P P

so that S-X depends only on the structure of the specified group

22

and §X + Q, for a disturbance confined tg_the study group, as

22

was the case with strict geometric coherency. The weak linear de-

coupling conditions (94295;) +-Q_ and (942922921) +-Q_ are not
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detected by the r.m.s. coherency measure, for a disturbance confined

to the study group. Chapter 4 concluded by ranking the five structural

conditions for coherency and intimating that pseudo-coherency and weak

linear decoupling were not conditions that were necessarily worth de-

tecting. The foregoing analysis indicates that PC and WLD can be

left undected by using only 1) disturbances of the whole system to

detect synchronizing coherency and 2) disturbances confined to the

study system to detect geometric coherency and strong linear decoupling.
 

This is the strategy adopted in the reduction algorithm fOrmulated at

the end of this chapter.

It is apparent at this point that the r.m.s. coherency measure

is capable of detecting all the major, and most of the minor, system

structure conditions of Chapter 4, that permit generators to be

aggregated while preserving the modal and coherency properties of the

power system. The results in this section have been established using

a very general stochastic disturbance. As a result §X(m) is dis-

turbance dependent. In the next section, a particular stochastic dis-

turbance is chosen, which makes §x(m) independent of the disturbance.

That is, for the chosen disturbance §x(w) depends only on the

structure of the power system as embodied by the matrix -M_I, At the

same time the next section takes the first step towards the formulation

of a general algorithm fOr determining modal-coherent dynamic equi-

valents fOr a power system.

IV. 'The ZMIIW Disturbance
 

In Section II, the general form of §x(w) for step disturbances

was found to be



_ -l . -T

_S_X(w1 - 1M 11 Mum 11

where the expression for

1<-11 512

E“ = K K
L:21 —22_J  

as given by (5.3) depends on the statistics of u(t).

Suppose that a type of disturbance could be found that yielded

the same constant fifij submatrices when applied to different power

system models. That is, the specific details of the HM] and 5] matrices

would be particular to the power system, but the resulting 533 would

always be the same constant matrices that did not depend on 34 and

B]-

For such a disturbance the expressions (5.5) for the sub-

matrices of §x(w) would be ideal measures for determining aggregation

conditions that depend solely on system structure. There are, in fact,

as shown in reference [7] two particular disturbances that will

accomplish this very goal. One of these disturbances, called a ZMIID

disturbance has

311:1’322=9’ fl11:91-‘112‘9Jfl2239-

and results in

This disturbance has the potential liability that it is reference de-

pendent [7]. The second disturbance results in

4.. = 4.11 (54>
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where

2 for i = j

{5111M =

1 for i f j

The disturbance that yields the 51W of (5.7) is a zero

mean, independent disturbance over all_the generators of the system

with

. 2 2 2 2. _ _ =

= d1ag{M M M1"°°’M }a 322 ‘ Q, [11]“ 9. P112 9°R 1,2,0... m+n

-41

where the Mi's are thegenerator inertias of the system. For exposi-

tory convenience, this disturbance will be called a zero mean, inde-

pendent, inertially weighted (ZMIIW) disturbance.

It is worth noting at this point that the effect of the

stochastic ZMIIW disturbance can be obtained as the summation of n + m

deterministic disturbances [7]. That is, let §X (m) be the matrix

1

that results from a disturbance of M? per unit on bus i only.

 

Then

_S_ (0°) = X S ,(w).
X i=1 X.

FOr the ZMIIW disturbance, the resulting matrix EIW can be

partitioned, conformal with the dimensions m and n of the study

group and specified group, respectively, as

F' '1

K K

-4M

51M  22"
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Then substitution of the 51W for the 5,. in equations (5.5) pro-
.. 13

13

duces expressions for the submatrices of’ §x(m) that depend exclusively

on the structure of the power system, as embodied in the matrix M_I_'].

Having established that 51W is disturbance independent, the subscript

IW is now omitted and KIw will subsequently be referred to as .5.

The disturbance independent form of the equations (5.5) can now

be used to begin establishing an algorithm for producing dynamic equi-

valents. Consider again the expression (5.5d) for §X where the

22

K. are now the K . It was shown earlier that for a general dis-

turbance of all generators §X can be small only if 2“

22

is small.

Recall that

-1
5 = 922 " EL219115112 (5°31

Applying the matrix identity

+a- 1
1 -1-1al

41112322 ' 3219-1151121 —21-—11 (5'9)

-1 -1_ -1

[9-11 ' 312 222 921] ‘ 311

to (5.8) yields

-1
_1 _ _ _1

. 922‘l ‘ 9211911 ' £112512251211 151129.22] "' 92211 “ 5a] (5-101

Then,

-T

£1522? ”2‘2” + K11522111+ 1531735; (5.11)

Equation (5.11) indicates that the fburth term in the expression

for §x22 depends on-922 and 522, and for ||_22H not small,

§X 1+ 0 only if 9221+_O. For the ZMIIW disturbance over all gen-

-1
erators ||K H is not small. Hence S ‘+_Q only if + Q, A

similar argument holds for §X for 941 +'0.

11
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The condition g§;-+ Q. is the condition for strict synchroniz-

ing coherency, i.e. tight interconnections among a group of generators.

Thus a ZMIIW disturbance over all the generators of a system has the

effect of identifying groups of generators that are tightly inter-

connected because neither strict geometric coherency or strict strong

linear decoupling can cause szz + Q_ for such a general ZMIIW dis-

turbance. Only 9;; +19_ will cause §X22 +-Q, Stated another way, a

ZMIIW over all the generators of bpth_the study group and the specified

group of n generators would identify the study group and the specified

group as two tightly bound subsystems only if the norms of §K and

11

S were both small or zero.

-x22

Identifying the tightly interconnected groups of generators is

a primary step in forming dynamic equivalents since generators that

are very tightly interconnected tend to remain coherent in the face of

very strong disturbances. filrther, tightly bound groups are more

impervious to the location of the disturbance than groups formed by

satisfying the other structural conditions fbr coherency. For in-

stance, the specified group of n generators in the example system

would have a much greater tendency to remain coherent in response to a

disturbance within the specified group if the group coherency were

due to synchronizing coherency, as opposed to geometric coherency or

strong linear decoupling. Thus a ZMIIW disturbance of all generators

in the system would be the ideal first step in determining dynamic

equivalents.
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If the first step in forming dynamic equivalents is to find

the tightly bound group, the obvious second step is to test for the

other structural conditions for coherency, namely geometric coherency

and strong linear decoupling. How that step can be accomplished is the

subject of the next section.

V The Three Part Partition pf_the Example System
  

Consider again the expression (5.5d) for Sx . The first three

22

terms of §x depend on 95:92], the fourth term on 92;“ If a dis-

turbance cong be found which eliminated the fourth term in (5.5d) then

that disturbance would detect structural conditions where 9;; +-Q_ is

pgt_satisfied, but 922921 +-Q_ is. Since strict geometric co-

herency implies 942 = Q_ and strict strong linear decoupling results

from 95:32] +19, a disturbance that eliminates the fburth term in

§X22 could thus be used to detect these two structural conditions.

The requisite disturbance is a zero mean, independent, inertially

weighted disturbance such that

_ . 2 2 2 _ _ _
3.” - diag{M1,M ,...,Mm,O,...,O}. 322 " 9., M11204 £12 ‘9

that is a ZMIIW disturbance over the generators of the study group.
 

Such a disturbance gives K” the fOrm

r- H

-I-mxm 9'1an

= (5.12)

  

that is 542 = 52] = 522 = 0. This reduces §*22 to the fOrm

a =9229219 9.441.125; - (543)
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Befbre showing how this disturbance over the study group can

be used to detect strict geometric coherency and strict strong linear

decoupling, first consider a partition of the example system into three

parts as show below.

      

F-“ F '1 rx ‘1

A-1 1111 A12 fl13—1

3‘2 =' A21 A22 11-23 52 '

x M M M M_—3_J L_31 32 35st   
L..._J

+ [11: ML]

The inverse of the matrix h_= M_I_ can be written

  

-1 _ F' “1

111-11 ‘ E11 -‘—12 £13

I21 E22 123

f f f
L_’—-31 —32 -—33J

where,

_ -1

111 ' !11

f =(-111 11'111 V111 )v1
-21 —"21—21 —22—23—31 -31 41

f =(-V' +h1hV )v
—31—31-1‘—31—33—32-21—21 —11

f = (-v‘1h +h’1h v'111 )v‘1
—21 —12—12 —11—13—32—32 —22

f = v'1
—22 -22

f =(-v +11'111 v'111 )
—32 32 £132 —33—31-12-—12

_ - -1

:13 “ (111-13913 h111112—2311231-‘133

.. -1

153-23 422921 1113-13)

APM

APL
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i

l
l

<

—33 .33

v =111 -11 v"111 +11 11'111 111 11 ’111
—11 ~11 42—21—21 —12—22—23—31—31 —13—31—31

+h h'1 V.1h ]
—1 3—33-32 -21-21

v =111 -11 11'111 1
—12 --11 43—33—31

= [h - h h'1h 1
£13 —11 42—22—21

=[11 -11 v'111 +11 11'111 "111 -11 ‘111
£22 —22 —21-12—12 41—11—13—32—32 —23—32—32

-+ h h.1 V' h ]
—23—33—31 —1 2—1 2

_ -1

£21 ' [£22 ' £123£33£321

_ -1

11123 ' [£22 ' £21£11££121

v =m -11v'111 +11 '1 '111 +11 '111
—33 33 —31—13—13 —31-11-12—2323 -—32—22—21

_ -1

£31 ' Lh33 ' £32£22£231

v = [h - h h'1h 1
—32 —33 -31—11-13

5 111
3—13

-1

421233231

First consider a general ZMIIW disturbance over all the gen-

erators of both the study group and the specified group.

turbance, §*(m) can be written

§x1°°1 u. 11“ 511 11'1

r" H'r

' £11 £12 £13 £11

£21 £22 £23 £21

f f f K K
:31 —32 —33 _1 C31 -3   

~42

£22

2

£13

—23

-33_J    

For this dis-

(5.15)
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where

2 i = j

{K }. - , m = l,2,3

“"11 1 1111'

{l for all i,j, m,n = 1,2,3, m f n.
{Kmn11j

Consider §X which measures the coherency between angles of

33

the vector 33. Carrying out the multiplicationir1(5.l3) yields

_ 1

-S-x33 ‘ 1£31£11 1 £32£21 1 133£311£31

1 [£31K—12 1£32£221 £33£321£32 (5'16)

-1 T

£33 1£33£31 £13 1 £33£32£23 1 £331£33

It is possible to make the first two terms vanish. Assume that

the group of generators represented by 53 satisfy the conditions of

strict geometric coherency. Then he]

:3] = :32 = 9, For the third term in (5.16) to be small £33 must be

= Q32 = 9, which implies

small. The matrix £33 can be written

 

_ -1 1 1 -hl -1

133'1£33‘ £31£13£131£31£11£12£23£231 £32£22£21£11‘3—13 £32-23£231

F'- l -1 V_1-‘-]

‘ £33 " [£31 £321 £13 £11£12—23

-1 -1 1

’£22£21-1’-13 £23 ‘23 _J L.

-1

[£33 ' 131329-31 :1

Applying the matrix identity (5.9) yields

_-1-1-1 ‘1'e'=1111'1
£33 ‘ £33 1£33£1192 ' £3£33£11 -e—“3£33 £33 [111—(111'
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Thus the third term 111 _s_x depends on 11313 and 5x + 0 only if

'33 -' —'33 _'

fl5;‘1 Q, It is obvious that the same analysis holds for any §X ,

kk

k = l,2,3, using the other two groups as the "study group". This

establishes fer the three way partition of the model, the same result

shown for the two way partition, namely that for a ZMIIW disturbance

over all the generators of the system, the principal structural con-

dition detected will be the identification of tightly interconnected

groups of generators. This repetition of the analysis already done is

somewhat redundant, but it provides a very casual inductive proof that

the analysis can be extended to an n-way partition with the same result.

Next, assume that the ZMIIW disturbance is applied to the gen-

erators of group l, and that the reference is taken over a machine or

a group of machines in either group 2 or group 3 so that

  

'1 '1

lmxm 9 —

£11: 9 £11m 9—
1 1

Be 9 gnzxn21

where m, n1, 112 are the number of generators in groups l,2,3,

respectively. Then the expression(5.l6) for 1§X reduces to

1' 33

s =fkf1=2(f f1) (517d)

SImilar express1ons can be written for §X22’ §x23, and §X32 namely, .

s = f k f1 = 2(f 11 ) (5 17a)
—X22 ~21-11—21 —21-21 '

s =fkf1=2(f f1) (51711)
-X23 -21—11-31 -21-31 '

_ T _ T

£x '£31£11£21 ' 2(£31£211 15°17“)
32
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Note that for this disturbance,S and §X32 provide the same in-

423

fbrmation as §X and §X . In expanded form

_-1-1-1-1 1

§x33 ‘ 1"'£31£311 £33£32£21£211V—11£111V31h—31 1 £33£32V21£211 (5'18“

5 = (-v'1h + h111v 1h )v1 T(-11v1h + h'1hv 1h )1(5 l8b)
-x22 -21-21 —22—22V31-31 —11V11 41—21—22—22V31 —31 °

The expressions for 1:2l and f3] can be written as

      

if .1 1— v'1-'(h1h v1) rh 1
—21 -21 —22 —23 —31 -21

= 1 1 1 (5.19)

-_ -(11_ .11. v 1 I n
L. 3U L. 33 32 -21 31 _J L. 314

Note that the left matrix on the right hand side of equation (5.19)

 

is the inverse of the matrix

F

£11 £12

(5.20)

1132 £33
L. _J
  

In the present analysis the disturbances are confined to group

1. That is group l can be identified as the "study group", and

groups 2 and 3 are a two-way partition of the "specified group of n

generators". Equation (5.l9) is then very important because it

establishes that for a_ZMIIw disturbance over the study group_ §x(g0

provides exactly the same information as E _T_. The conceptual power

of (5.l9) is shown by some examples. Consider first that a 2111u dis-

turbance of all the generators has shown groups 2 to be a tightly

interconnected group. Equation (5.l9) indicates that if the generators

of groups 2 and 3 are, together, satisfying the conditions of
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geometric coherency or strong linear decoupling, then a ZMIIW dis-

turbance over the generators of the study group will show this, since

the matrix (5.20) is the 922 and the matrix [h2] 53131 the 92]

of the analysis done for the two part partition. If the primary in-

terest were in disturbances within the study group (group 1), then

groups 2 and 3 could be aggregated into a single equivalent generator.

Now suppose that the ZMIIW disturbance over all generators

does not indicate that either groups 2 or 3 are separate, tightly

interconnected groups. The ZMIIW disturbance over the generators of

the study group will still indicate whether groups two or three are

together, or individually, exhibiting strict geometric coherency (SGC)

or strict strong linear decoupling (SSLD). If all generators of the

two groups are exhibiting either SGC or SSLD, then equation (5.l9)

shows directly that these coherency conditions are satisfied.

If either of the two groups is exhibiting SGC or SSLD by it-

self, this will also be detected. Consider the expression for §X ..

33

The matrix V3} can be written in the fOrm

v'1 = [h'1 + h'1 h - h h1 h 1h h1
—31 -33 -—33 —22 -23 —33 —32 —23 —33

This allows §X . to be written as

33

- -l -l -l -lh -T -l -l

§x33 “{[£3315c1£33 £311 £33 £32V-21—h211£11 £11H£331 K-c1-1133 £31

-l -l T

1£33 £32 £21 £1211

Thus any one of the conditions

-1
(l) h33 + 0 (strict synchronizing coherency)



(2) [£31 E £3] = [Q_i 0] (strict geometric coherency)

(3) h3;[h31 E h32] + Q_ (strict strong linear decoupling)

will cause §X33 = Q_ or §X 4-9, In this case, h33 lS 1dent1f1ed

with 922 and, [£3] h32] with 92], so that groups l and 2 are

the "study system" and group 3 "the specified group of n generators."

One might very well ask how the last result can be obtained

when the ZWIIW disturbance is over group one, but both groups one and

two together are being identified as the study group. Suppose that

the ZiIIN disturbance is done over both groups one and two. §_X

33

will be modified by the addition of the term

-1 -1 -1 -1 -1

E’£32 £32 1'

-1

—311£12 £12 V22 V22['£32 £32 V

-1
1 h -12 £121

-1

1“ 43%1-33

This term can be rewritten in the form

-1-1 -1
[[h33 + K]h h +h

-1-1-T-1-1 h

-33 —32 —33 £12 £121£22 £2211£33 1 £a1£33 —32£31

-1 -1

—33 £31 £12

T

+ h h
-121

This additional term is also zero under precisely the same conditions

just analyzed. Hence the 2111w disturbance of group 1 is sufficient

to identify group 3 as coherent. Intuitively this seems to say that

ZiIIN disturbance of group 1 disturbs group 2 strongly enough to

detect if either the conditions for BC or SLD are satisfied between

groups 2 and 3.

An example of strong linear decoupling was considered in

Chapter 4; another is considered here. Figure 5.la shows a four gen-

erator system. Let generator l be the study group, generators 2 and
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FIGURE 5-l

FOUR GENERATOR SYSTEM
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3 be group 2 and generator 4 group 3.

   

 

Let the reference be generator

 

 

2. Then

A r' ‘1 F-
M T = £—- - 1—- t t t 11
-- — M1 M2 11 13 14

1__ _ 1__ t12 t23 t24

M M
3 2 t13 t33 t34

l. 1__

L 1111 1.12 _J L114 134 144J

r- . '5

. 1.1.1.1.- 1141115313 £13-23.)
M] 142 E M1 M2 E M] 142

------------r---—------OO-‘------------

l I

t t : t t i t t
13 12 1 33 23 1 34 24

(111——- 1.1 -———).(——-—-—1
3 1M2—1 3 1M3—1 M2 E M3 M2

------------E-------------‘:------------

(£13.- £121 1 (t§fl.- £231 1 (£35.- £25)

L_M4 2 : M4 M2 1 M4 M2 .4

t + t t
_ 1 12 13 14

Let t - —- and *-———

23 p M2 + M3 M4

Then

M3 M2 M3 3 M3 M2

= - l (M2 + M3) _ —t-J._3_. .. —..2..4_ = h

u ‘M§M§"' M M3 22

1.-

féfl - 2.4.. = h

M3 M2 23

3.4. - 3.2—3. .. - l 1 + t34 = h

M4 M2 u 112 M4 32
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134—1.4... _ 2.4. = h

M4 M2 33

Next write

Fh h 1‘1 "1133 - .123."
22 23 _3_' d

11 1. - .22. [‘22.
k-32 33.1 L. d d .4

M2 1 M3 h23 '
where d = h h - h h , and limit pd = (_ h + ___9 = d

22 33 32 23 “+0 M2143 33 M2

Then

h uh

limit —%§-= 1imit 33 = 0

“*0 111->0

-h -uh

limit -—§£ = limit (123 = 0

U20 n+0
1

'11 -1Jh Fi—

limit -—%g-= limit d£2 = a$.=.%

11*0 n+0

limit %£ = limit £3123 = M2 d. M3 = :3

u30 n+0

The condition (t12 + t13)/(M2 + M3) = tl4/M4 can be used to show that

 

 

 

    
 

M3 M2 M3 M4 M2 M3

Combining the above results gives

r" «_1 w- - r- ‘1 r—MZ + M3 ‘3 r- fl

h22 h23 hzl o 0 ‘ ( )c o

= M + M
h21 h33 "23 1 _( 2 M 3) 3 (5.21)

3 _ .

B- ..J h- ..4 K C 0

h. K .J ;. .J g..J
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t

where C = (-l£---—l§).

4

Figure 5.lb gives a physical interpretation of this result.

Letting p + 0 causes t23 + w, making the line between generators 2

and 3 infinitely stiff. This corresponds to aggregating generators 2

and 3 into one generator, called 2-3 in Figure 5.lb,whose inertia is

M23 = M2 + M3. The synchronizing torque coefficient becomes

t],2_3 = t12 + t13. Hence,in the limit as u + 0 generator 2-3 and

generator 4 satisfy the conditions for strict geometric coherency with

respect to generator 1.

The four generator model of Figure 5.1 is an example of the

case where group 2 satisfies strict synchronizing coherency, while

group 3 and the single generator equivalent for group 2 satisfy strict

geometric coherency with group 1. In the example group 3 contains only

one generator, but the generalization is clear. It is an instructive

exercise to consider a five generator model where generator 1 is the

study group, generators 2 and 3, group 2 and generators 4 and 5, group

3, where generator 2 is the reference and the power system structure

satisfies, t14/M4 = t15/M5 = t12 + t13/M2 + M3. The general form of

equation (5.2l) can be achieved without doing all the algebra, which

involves two 2 x 2 matrix inversions.

Acompletely parallel line of analysis can be developed for the

conditions of pseudo-coherency and weak linear decoupling of

the types (21 D1201 I) + 0 and (I1 D1201 122 + 9.- This
-l

22521

analysis is not presented here for two reasons. First, it is com-

pletely analogous to what has already been done. Second, the fbrmal

algorithm for producing dynamic equivalents which is presented in the
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next section does not test for these coherency conditions. The

rationale for omitting these conditions goes as follows.

It was shown in Chapters 3 and 4 that the pseudo-coherency

condition could only be exactly satisfied in the linear model and

that the transference of pseudo-coherent behavior observed in the

linear model to the nonlinear model could not be strongly guaranteed.

The weak linear decoupling conditions, like pseudo-coherency depend

on the submatrix (31)”. They are therefore, categorized with pseudo-

coherency and not detected. 0n the other hand, all the coherency con-

ditions that will be tested for in the formal algorithm are strong

conditions in the sense that satisfaction of any of the conditions

in the linear model strongly guarantees its satisfaction in the non-

linear model.

The detection of coherency conditions presented in terms of

the three-way partition<rfthe example system has used a sequence of

two disturbances, the first a ZMIIW disturbance over all the gen-

erators of the system, the second, a ZMIIW disturbance over just the

generators of the study group. The ZMIIW disturbance is designed to

detect what might be termed, global or principal groups, i.e. groups

of generators that are tightly interconnected and will remain coherent

for a large class of disturbances. The second disturbance detects

a more parochial kind of coherent behavior, that is, generators that

are coherent in response to disturbances located in a certain region

of the power system. This general procedure is the basis of the

formal algorithm for producing dynamic equivalents presented in the

next section, and is integral to the overall philosophy of viewing the

power system at two levels; the more general or global level,
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associated with the ZMIIW disturbance over all generators and the

specialized or parochial level, associated with the ZMIIW disturbance

over only a subset of generators.

VI. A_Formal Algorithm for Producing Reduced Order Qynamic Equivalents

The analysis of the previous sections has laid the ground-work

necessary to formulate a specific procedure for producing reduced order

dynamic equivalents of power systems. This section proposes a formal

algorithm for producing these equivalents.

Consider the power system, shown in Figure 5.2. Note that

three zones have been identified, the internal system, or zone, a

buffer zone, and a far system, or Zone. The internal system repre-

sents those generators about which detailed response information is

desired. It can be identified with what has been termed the study

group in the example system used in the previous sections of this

chapter. The buffer zone includes those generators that are

electrically close enough to the internal system to warrant some level

of detailed representation. The buffer zone can be generally

associated with the "specified group of n generators" of the pre-

vious sections. The far system represents those generators that are

electrically distant enough from the internal system to be lumped

into a single equivalent machine.

A general outline of the overall algorithm can be stated as

follows. The three zones are defined precisely and the far system

is aggregated into a single machine. A ZMIIW disturbance is then

applied to all the generators of both the internal and buffer zones

to determine the tightly interconnected groups. These groups then
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BUFFER ZOhE

 
FIGURE 5-2

THREE ZONE PARTITION OF POWER SYSTEM
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represent what is termed the global model of the power system. If

interest centers on disturbances in a specific area, generally

identified with the internal system or zone, a ZiIIN disturbance is

then conducted at the buses of the internal system. The purpose of

the second disturbance is to determine if further aggregation beyond

that indicated by the global model is possible for studying dis-

turbances confined to the internal system. There are a number of

questions associated with this general outline of the algorithm that

need to be answered in some detail before the algorithm can be stated

in a step by step manner. These questions are dealt with below, and

the algorithm is then stated in terms of a set of Operational

steps.

One of the first questions of interest is how the boundary

between the buffer zone and the far system can be determined. The

boundary between the internal system, or zone, and the buffer zone

is well defined, initially, although as will be shown, this boundary

may be subject to redefinition, depending on the results of the ZMIIW

disturbance over all generators of the internal and buffer zones. The

boundary between the buffer zone and the far system is not clearly de-

fined. Determining this boundary precisely involves an iterative

combination of experiment and engineering judgement.

It is a well established empirical fact that generators that

are, electrically, a long distance from the source of a disturbance

can be lumped into one machine. The analysis of this chapter and

the last helps explain this behavior, and also provides a constructive

experimental procedure for locating the boundary in question exactly.



168

Consider the example system of previous sections partitioned

into three subgroups. Identify group one with the internal system,

group two with the buffer zone and group three with the far system.

It was argued in Chapter 4 that generators a long electrical distance

from a disturbance satisfy the conditions for strict geometric co-

herency trivially,in the sense that the synchroniZing power coefficients,

t.., between a bus i near the distrubance- and a bus j electrically

lJ

distant are small. Hence these ti' are all about equal, in the

J

sense that they are all almost zero. This is precisely the condition

that makes the submatrix [931 C32] = [Q_ Q), implying strict co-

herency of the far system (group three). Now the boundary between

the buffer zone and the far system can be determined, approximately,

by inspection of the network, aided by any operating experience with

disturbances that may be available. If a 2411w disturbance is now

conducted over the buses of the internal system, the generators

electrically near the preliminary boundary can be checked for co-

herency. If they are coherent then the chosen boundary is adequate.

In fact it may be possible to improve the boundary by checking the

coherency of additional generators electrically closer to the internal

system. It the generators are not coherent in a neighborhood around

the preliminary boundary then it will be necessary to chetk the co-

herency of generators electrically more distant from the internal

system. In either case it should be possible in a few iterations

to define.quite accurately the boundary between the buffer zone and

the far system. The principle point, here, is that it is not

necessary to check the coherency of all the machines in the overall
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system, only those generators fairly close, electrically, to the pre-

liminary boundary.

Having established the boundary between the buffer zone and

far system, it is then possible to perform a ZMIIW disturbance over

all the generators of both the internal system and buffer zone, to

determine the tightly interconnected groups. These groups are based

on the greatest aggregation of machines that can be achieved and

still "adequately" reproduce the behavior of the unreduced system.

Piore will be said about the qualitative term adequately in the next

chapter. Once the level of aggregation is established and the co-

herent groups determined, it may happen that a tightly interconnected

group contains generators from both the internal system and the buffer

zone. If that is the case then a redefinition of the boundary be-

tween the internal system and buffer zone is required. There are two

choices, either include the affected generators of the buffer zone

as part of the internal system or include the affected generators of

the internal system as part of the buffer zone and aggregate the

group. The third choice of aggregating only those machines of the

group that belong to the buffer zone will not result in good equi-

valents as will be shown in Chapter 6.

Based on the foregoing discussion, it is now possible to state

a formal algorithm for producing dynamic equivalents. The steps are

the following.

(1) Define the boundary between the internal system and

the buffer zone formally.

(2) Find the boundary between the buffer zone and far

system. If necessary use a ZMIIW disturbance of the
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generators of the internal system to do an iterative

check of the coherency of generators near an estimated

boundary until the boundary is exactly defined.

(3) Use a ZMIIW disturbance of all the generators of the

internal system and buffer zone to determine the tightly

interconnected groups. If necessary, based on the

group membership, redefine the boundary between the

internal system and buffer zone.

(4) (Optional) Use a ZMIIW disturbance of all the gen-

erators of the internal system alone to see if any

further aggregation is possible.

VII. The Global and Local Perspectives
 

The four step algorithm proposed in the preceding section,

produces a reduced order dynamic equivalent for investigating dis-

turbances that occur within a pre-selected region of the power system,

the region designated in the algorithm as the internal system. In

other words, it is explicitly assumed at the outset that the only

generators whose detailed response is required are those generators

in the internal system. The behavior outside the internal system is

of no interest and any model of the buffer zone and far system that

accurately represents the effect of these zones on the internal

system would be acceptable.

This local or parochial view of disturbances is the traditional

view which has concnetrated on the transient stability problem from

the perspective of one generator. It is possible to take a broader

view of the problem, what might be called a global perspective. Step

(3) of the formal algorithm is a ZMIIW disturbance over all the gen-

erators of both the internal system and buffer zone, that is over all

the generators that are initially unaggregated. The purpose of this

disturbance is to find the principal groups of generators, generators
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that depend only upon tight intermachine connections. These groups

are called principal, because they are the groups that will remain co-

herent in response to the greatest variety of disturbances both in

terms of the size of the disturbances and the location of the dis-

turbances. Therefore, if interest centers on the large scale effects

of system behavior the best approach would be to do a ZMIIW over all

the generators of the system and find the principal groups. For a

particular disturbance, the principal group (or groups) nearest the

disturbance will have to be left disaggregated. The remainder of

the principal groups are aggregated into single machines. The

response to the disturbance then will indicate how the principal

groups of the overall system interact with each other. This type of

global analysis is increasingly an area of interest both for system

planning and security assessment. Performing the ZMIIW disturbance

to obtain the principal groups may seem like a formidable task.

Actually it is not so formidable. It is true that for a system of

n generators n deterministic disturbances are needed. However

these disturbances are not difficult to compute and in particular

require no matrix inversions. Further the n-disturbance sequence only

has to be done once.

Thus the algorithm of the previous section is really an

apprOpriate analysis tool for two very different problems. If the

perspective is global, then the first three steps of the algorithm

are used. If the perspective is local, the fourth step is added.
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VIII. Summary

This chapter has shown how the r.m.s. coherency measure, in

conjunction with the appropriate ZMIIW disturbance can be used to

detect all the important coherency conditions that lead to reduced

order equivalents which preserve both modal and coherency properties.

A formal algorithm was developed which can be used to produce both

global and local equivalents. In the next chapter the methods de-

veloped here will be applied to an analysis of a linearized version

of The 39 Bus New England System.



CHAPTER 6

TESTING THE REDUCTION ALGORITHM ON THE 39 BUS

NEW ENGLAND SYSTEM

1. Introduction
 

To test the ideas formalized in Chapter 5 as a reduction

algorithm, simulations were made using the 39 Bus New England System.

A schematic of this system, also referred to as just the "New England

System", is shown in figure 6.1. This system is one frequently used

as an example in the literature, and has been used fOr basic software

testing by Podmore [2].

As a first step to test the reduction algorithm, a ZMIIW dis-

turbance of all ten generators was used to identify the tightly inter-

connected groups, i.e. the principal groups exhibiting synchronizing

coherency. The output of the software routine used to do the ZMIIW

disturbance is a ranking table of the coherency measures between each

pair of generators, ordered from the most coherent pair of generators

to the least coherent. Table 6.l is an example of such a ranking

table.

The order of aggregation of generators is determined by applying

a commutative rule to this ranking table. The commutative rule means

that a generator must be coherent with all generators in an existing

group before it can be added to that group. To combine two coherent

groups requires that every member of the first group be coherent with
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every member of the second group. Beginning at the top of the ranking

table with the two most coherent generators and moving downward, apply-

ing the commutative rule at each row of the ranking table, generates

a get of aggregated models of the full system. Each level of aggrega-

tion reduces the number of generators by one and the order of the state

model by two. Moving down far enough will result in the aggregation

of all ten generators into a single generator.

Having identified the tightly inter-connected groups for all

levels of aggregation, a series of ZMIIW disturbances, over the internal

system generators and subsets of these generators, were used to see

if further aggregation was possible for disturbances confined to the

internal system. This is a test of the optional f0urth step of the

reduction algorithm. The internal system of the 39 Bus New England

System is generators l, 8, 9 and 10. Generator lO is used throughout

as the reference.

For each test disturbance, the first step in the data collection

and analysis procedure was to determine the coherent groups at each

level of aggregation. Then for each level of aggregation eigenvalues

and coherency measures based on the matrix [1 l of the aggregated
 

model are calculated. Finally, computer simulations are made, compar-

ing the response of the system at each level of aggregation to the

response of the full 39 Bus System, for various disturbances. Hope-

fully, the information provided by the eigenvalues, the coherency

measures and the simulations at each level of aggregation will be con-

sistent.
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All of the analysis in this chapter is based on a linearized

model of the New England System. For the eigenvalue and coherency

analysis phases of the data analysis the linearized model is a pre-

requisite. For the simulations, however, a nonlinear model would seem

to be preferable. However, a nonlinear simulation is more expensive

and in many situations may only show minor differences from the linear

simulation. It has to be remembered that a power system is nonlinear

but not pathologically nonlinear. A power system, operating at a
 

stable equilibrium point, when Subjected to a typical disturbance,

oscillates for a period of time, and then settles out to a new stable

equilibrium point. This line of argument is born out by Podmore's

comparison of linear and nonlinear simulation results for the New

England System [2]. Linear simulations were, therefore, considered

adequate.

II. General ZMIIW Disturbance g: the New England System
  

All the ZMIIW disturbances of the New England System were made

using a modified version of Podmore's linear simulation program,

LINSIM [2]. The modified version uses the r.m.s. coherency measure in

place of the min-max coherency measure used in the original version of

LINSIM.

Table 6.l is the ranking table for a ZMIIW disturbance of all

ten generators, sometimes referred to as just a general ZMIIW dis-

turbance.

Table 6.2 is a compilation of the magnitude of the imaginary

gggt of the system eignevalues at each level of aggregation. It was

shown in Chapter 4, that the system eigenvalues are complex conjugate
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Table 6.1. Ranking Table of R.M.S. Coherency Measures fbr ZMIIW

Disturbance of all Ten Generators

Aggregation

 
  

Ranking Generator Pair Coherency Measure

Ranking Generator Pair Coherency Measure Level

1. C(6,7) 2.6626 1

2. C(1,8) 2.8395 2

3. C(4,7) 3.1125

4. C(4,6) 3.1926 3

5. C(4,8) 3.7503

6. C(7,8) 3.8427

7. C(2,3) 3.8812 4

8. C(3,8) 3.9151

9. C(2,8) 3.9396

10. C(6,8) 3.9563

11. C(l,2) 3.9836

12. C(l,3) 3.9965 5

13. C(1,4) 4.0120

14. C(4,5) 4.0761

15. C(l,7) 4.1062

16. C(3,4) 4.1539

17. C(l,6) 4.2192

18. C(3,7) 4.2348

19. C(3,6) 4.3382

20. C(2,4) 4.3477

21. C(2,7) 4.4290

22. C(2,6; 4.5348 6

23. C(5,7 4.7821

24. C(5,6) 4.8373

25. C(4,9) 5.4666

26. C(8,9) 5.5026

27. C(7,9) 5.5085

28. C(6,9) 5.5801

29. C(5,8) 5.6626

30. C(1,9) 5.8902

31. C(3,5) 5.8976

32. C(l,5) 5.9590

33. C(2,5) 6.1038 7

34. C(3,9) 6.2177

35. C(2,9) 6.3621

36. C(5,9) 6.5344 8

37. C(1,10) 8.4657

38. C(8,10) 8.8583

39. C(2,lO) 9.0565

40. C(3,lO) 9.3828

41. C(4,10) 10.4496

42. C(7,10) 10.5294

43. C(6,10; 10.6120

44. C(9,1O 11.9256

45. C(5,10) 12.1987
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pairs of the form A1,A: = - %-:_jbi. For the linearized model of the

New England System used in the present data collection 0 was set at

.275. Since - g- is the same for all eigenvalues and very small,

all that is required to characterize the eigenvalue pair Ai,A: is

bi’ the magnitude of the imaginary part. Therefore, fOr expository

convenience, the imaginary part of the eigenvalue may occasionally be

loosely referred to as an eigenvalue.

At each level of aggregation in Table 6.2 the system model has

one less generator and one less pai§_of eigenvalues, until finally at

level 8 the system model consists of two generators, the aggregate of

generators 1 through 9, and the reference, generator 10.

The eigenvalue information shown for each level of aggregation

in Table 6.2 is calculated from EH14, the fl_l_ matrix for the level i

aggregation. An explanation is given here of how Ehlj is obtained

from the matrices fl_ and I_ of the Full New England System.

Table 6.3 gives the matrix -1 for the New England system,

with all load buses and all generator terminal buses eliminated. Only

the internal generator buses remain. The matrix 8_ for the New

England System, with generator 10 the reference is
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L

M4

L

M5

_L
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M7
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M8

L

L ”9

where,

M1 = .2228 M6

M2 = .1607 M7

M3 = .1899 M8

M4 = .1517 M9

M5 = .1379 M10

Then -fi31

matrices.

I

3
.
.
.
:

O

3
“

.
_
l

-
—
l

O
O

O
O

O
O

 10

.1846

.1400

.1289

.1830

2.6525

is, of course, just the multiplication of these two

To find the level 1 aggregation where generators 6 and 7 are

combined into a single generator, first form ~11 by 1) adding column

7 of I to column 6, and then 2) adding row 7 of this intermediate

matrix to row 6. The result is {1, shown in Table 6.4. To form
95
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add the inertias of generators 6 and 7 to get the inertia of the equi-

valent machine. Put the inertia of the equivalent machine in place of

the inertia for generator 6 in the matrix E_ and eliminate the row

of E that contains the inertia for generator 7. The result is
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The matrix -fiqiq is then just the multiplication of the matrix

131:1 above by the matrix -_T_1 in Table 6.4. Note that the 1 and 1]

matrices have one less column that row. The 1. matrix is actually

square, but the last column is always deleted because it contains

redundant infbrmation (found in the last row) about the reference

machine.

Returning now to Table 6.2, the arrangement of the eigenvalue

data shows clearly why the aggregation scheme used by Podmore is often

called an "averaged" equivalent. Each entry in row i of the table
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can berthought of as a weighted average of the entries directly above

it in row i-l. Table 6.2 can be interpreted as meaning that at each

level of aggregation a pair of eigenvalues has to be eliminated. The

new eigenvalues are a "best fit weighting" of the information available

fron1the level above.

A careful look at Table 6.2 indicates that the weighting can

heavily favor particular pairs of eigenvalues. Fbr instance, the eigen-

values in level 1 of the table are all very close to the eigenvalues

above to the left in level 0. That is, the eigenvalue pair with

imaginary part 9.984 is essentially discarded at the first 1evel«of

aggregation. Note that this is the highest frequency pair. This

means that the eigenvalue pair - %-:_9.984 can be closely identified

‘with the intermachine oscillations between generators 6 and 7. At Other

levels, as in going from aggregation level 4 to 5 the weighting is such

that no single eigenvalue absolute value is discarded. That is, there

is no single eigenvalue pair that can be associated, in this case, with

the oscillation between group 1-8 and group 2-3. Note that at level

1, 9.984 is discarded, at level 2, 9.811 is discarded. At level 3 all

the eigenvalues are retained except 8.288 and 9.542 which are averaged

into 8.373. At level 4, the eigenvalue 8.314 is discarded and at level

5, 8.372. The general pattern is to always discard the eigenvalue

pair of highest frequency. Since the ZMIIW disturbance of all ten

generators is designed to detect tightly interconnected groups, this

pattern makes sense, since what should be discarded are the high fre-

quency oscillations within the groups.
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It can be expected, then, that when an eigenvalue absolute

value is essentially discarded in going from level i-l to level i

that the resulting model at level i will be almost as good as the

model at level i-l. If this is not the case one might expect a

noticeable degradation in the model's ability to reproduce the actual

system response. Specifically, for the information about the New

England system contained in Table 6.2, one would expect the model to

be very good through aggregation level 4, i.e. the 1-8 2-3 4-6-7

grouping, but to deteriorate at about level 5. These predictions are

generally born out by the data presented in subsequent sections, but

bef0re examining those results, it is shown that the eigenvalue inf0rma-

tion of Table 6.3 is contained in the coherency measure matrix §( (99).

Table 6.5 shows the r.m.s. coherency measures between the

reference, generator 10, and the individual machines at each level of

aggregation. (Senerator 10 is a very "large" generator in the sense

that its inertia is approximately ten times that of any other gen-

erator in the system. It is also the last generator to be aggregated

so that r.m.s. coherency measures are available between it and all

other equivalent generators at each level of aggregation.

A few words of explanation of how to read Table 6.5 is perhaps

in order. The top row of the table contains the coherency measures

between generator 10 and the other nine generators of the full New

England System. That is, the number directly under (1,10) is the

coherency measure between generators l and 10, etc.

At the first level of aggregation the remaining machines, in

order, are l,2,3,4,5,6-7,8,9,10. The entries in row two, from left



T
a
b
l
e

6
.
5
.

C
o
h
e
r
e
n
c
y

D
a
t
a

f
o
r

Z
M
I
I
W

D
i
s
t
u
r
b
a
n
c
e

o
f

A
1
1

T
e
n

G
e
n
e
r
a
t
o
r
s

A
g
g
r
e
g
a
t
i
o
n

1
-
8

6
-
7

1
-
8

4
-
6
-
7

C
o
h
e
r
e
n
c
y

M
e
a
s
u
r
e
s

B
e
t
w
e
e
n

G
e
n
e
r
a
t
o
r
1
9

a
n
d

E
a
c
h

S
y
s
t
e
m

G
e
n
e
r
a
t
o
r

a
t
_
a
l
l

L
e
v
e
l
s

g
f
_
A
g
g
r
e
g
a
t
i
o
n

 

U
J
Q
I

L
L
1
0
)

(
3
,
1
0
)

(
4
.
1
0
)

(
5
.
1
0
)

(
6
.
1
0
)

(
7
.
1
0
)

(
8
5
1
0
)

.
0
4
5
9
1

.
0
4
8
8
8

.
0
5
0
5
1

.
0
5
6
1
6

.
0
6
5
2
0

.
0
5
4
1
8

.
0
5
6
5
3

.
0
4
6
3
5

(
9
.
1
0
)

.
.
0
6
2
1
4

.
0
4
6
1
1

.
0
4
9
0
4

.
0
5
0
7
1

.
0
5
6
6
4

.
0
6
5
5
3

.
0
5
7
2
8

.
0
4
6
5
5

.
0
6
2
2
9

.
0
4
7
5
9

.
0
4
9
1
6

.
0
5
0
8
4

.
0
5
6
7
9

.
0
6
5
6
3

.
0
5
7
4
3

.
0
6
2
4
5

.
0
4
8
0
4

.
0
4
9
5
5

.
0
5
1
2
9

.
0
5
9
6
4

.
0
6
6
5
3

.
0
6
2
8
1

1
-
8

2
-
3

4
-
6
-
7

.
0
4
8
1
7

.
0
5
2
2
2

.
0
5
9
7
9

.
0
6
6
6
3

.
0
6
2
8
8

1
-
2
-
3
-
8

4
=
6
-
7

1
-
2
-
3
-
4
-
6
-
7
-
8

.
0
5
2
0
8

.
0
6
0
4
3

.
0
6
7
0
6

.
0
6
3
6
0

.
0
5
9
5
7

.
0
6
6
4
7

.
0
6
4
9
4

1
-
2
-
3
-
4
-
5
-
6
-
7
-
8

.
0
6
2
3
4

.
0
6
5
7
6

1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9

.
0
6
5
7
1

L
e
v
e
l

NMQ'LOKDNQ

186



187

to right, correspond to the coherency measures between generator 10 and

each of the generators, in the order given. That is, the first entry

on the left is the coherency measure between generator 1 and 10, the

second that between 2 and 10, the sixth entry that between the

aggregated generator 6-7 and 10, the seventh that between generators

8 and 10, and so on.

As another example at level 5 the generators are the aggregate

1-2-3-8, the aggregate 4-6-7, and generators 5 and 9. The four entries

in this row, from left to right, correspond to the coherency measures

between generators 10 and generators 1-2-3-8, 4-6-7, 5 and 9, in that

order. The rule is to aggregate to the lowest machine in the group and

to list the coherency measures, left to right, from the lowest numbered

machine to the highest.

For the ZMIIW disturbance of all 10 generators, the coherency

measure inf0rmation in Table 6.5 is essentially the same as the eigen-

value inf0rmation in Table 6.2. For instance, the coherency measures

in the level 1 aggregation are all very close to the corresponding

values in level 0, with the exception of generator 6-7 which has a

larger coherency measure, with generator 10, than that f0r either machine

6 or machine 7 at level 0. The change in the coherency measure is an

order of magnitude greater f0r 6-7 than it is f0r any other machine at

that level. At lower levels there is an averaging of coherency

measures just as there was an averaging of eigenvalues in Table 6.2.

It is more difficult to detect because the entries in Table 6.5 are not

rank ordered as they were in Table 6.2.

The general interpretation of the shifts in coherency measures

is the fOllowing. If two generators with nearly the same coherency
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measure are aggregated the coherency measure for the aggregate is gen-

erally larger, but the behavior of the aggregate should follow that of

either of the generators aggregated.

If the coherency measures of the two generators being aggregated

are quite different the coherency measure of the aggregate may be close

to one of the two initial coherency measures or it may be somewhere in

between. If the coherency measure of the aggregate is close to one of

the two initial coherency measures, the aggregate's behavior will

probably be close to that of the generator whose coherency measure it

favors. If the aggregate's coherency measure is somewhere in between,

its behavior may follow that of neither of the generators being

aggregated. This is, generally, the same line of reasoning followed in

discussing eigenvalue averaging in Table 6.2.

Since each row i of Table 6.5 is generated by forming Ihili’

finding its inverse and then generating §xi(«0 = (@415)-15K8413I-T.

the information in this table is, computationally, no easier to obtain

than the eigenvalue information in Table 6.2. All that has been done

is verify computationally, what has been shown theoretically in

Chapters 3 through 5 of this present work and in references [5-8],

namely that the coherency information available from the §((w)

matrix is the same information available from the calculation of eigen-

values.

If coherency measure information is to be useful in assessing

the loss of system model accuracy at each level of aggregation, that

inf0rmation must come from the initial coherency calculation in the

LINSII program, modified to use the r.m.s. coherency measure. This
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computer program generates the matrix (ET)-1 of the unaggregated

system directly, i.e. without an inversion. The information available

from (3.7)-1 is the ranking Table 6.1. Note that to the right of

this table is the point at which each level of aggregation occurs.

Since the numbers in the table are all of roughly the same order of

magnitude there is no dramatic jump in the threshold level of the

coherency measure required to reach an additional level of aggrega-

tion. Intuitively Table 6.1 seems to indicate that the decay in the

quality of the system model will be fairly uniform, rather than taking

dramatic jumps.

Figure 6.2a shows a plot of the magnitude of the coherency

measure at each level of aggregation. Note the plateau at levels 4 and

5. This contradicts only slightly the qualitative assessment made above,

and seems to indicate that there might be a drop in model validity

around aggregation level 4, 5, or 6. Figure 6.2b is a similar plot

for the ZMIIW disturbance of generators l, 8, 9 and 10 discussed in the

next section. It's plateau is not as distinct. These results indicate

that it mgy_be possible to detect the aggregation cut-off level

directly from the ranking table.

III. The ZMIIW Disturbance gj_the Internal System
  

The internal system of the New England System consists of gen-

erators l, 8, 9 and 10 [2]. Table 6.6 is the ranking table f0r a

ZMIIW disturbance of these four generators.

The coherency measures thresholds for the first two levels of

aggregation are both very small in absolute value and of the same order

of magnitude. One would expect the system models at these two levels
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Table 6.6. Ranking of Coherency Measures for ZMIIN Disturbance of

Generators 1, 8, 9, 10

Ranking Generator Coherency Aggregation Level

Pair Measure

1. C(6,7) .0253 1

2. C(4,7) .0607

3. C(4,6) .0861 2

4. C(2,3) .3069 3

5. C(5,6) 1.1886

6. C(5,7) 1.2140

7. C(3,4) 1.2446

8. C(4,5) 1.2748 4

9. C(3,7) 1.3023

10. C(3,6) 1.3264

11. C(2,4) 1.5513

12. C(2,7) 1.6090

13. C(2,6) 1.6332

14. C(3,8) 2.3847

15. C(2,8) 2.4088 5

16. C(l,2)‘ 2.4794

17. C(3,5) 2.4855

18. C(l,3) 2.5064

19. C(4,8) 2.6775

20. C(7,8) 2.7145

21. C(6,8) 2.7302

22. C(2,5) 2.7888

23. C(l,8) 2.8385 6

24. C(l,4) 2.9826

25. C(l,7) 3.0262

26. C(l,6) 3.0446

27. C(5,8) 3.5920

28. C(1,5) 3.9924 7

29. C(6,9) 4.8028

30. C(7,9) 4.8045

31. C(4,9) 4.8090

32. C(5,9) 4.8748

33. C(3,9) 5.3451

34. C(8,9) 5.5017

35. C(2,9) 5.5044

36. C(l,9) 5.8884 8

37. C(2,lO) 8.2068

38. C(l,10) 8.3528

39. C(3,10) 8.5122

40. C(8,lO) 8.7396

41. C(4,lO) 9.7495

42. CE7,10) 9.8086

43. C 6,10) 9.8333

44. C(5,10) 10.9923

45. C(9,10) 11.8382
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to be very near that of the full New England System. The coherency

measure threshold used to reach level 3 is 3.56 times that at level 2,

but still rather small in magnitude, so that the model at level 3

could still be expected to be quite good. The coherency measure

threshold f0r the level 4 aggregation is 4.15 times that f0r level 3

and 14.8 times that for level 2. In addition, its relative size is the

same as that f0r the coherency measures of the general ZMIIW disturbance

of all ten generators. Therefore, a significant decay in the quality

of the system model might be expected to begin about level 4. The plot

in Figure 6.2b of the coherency thresholds for the levels of aggrega-

tion neither confirms not denies this supposition.

Since the coherency measure threshold to reach levels 5,6,7 and

8 are all of the same order of magnitude as the threshold for level 4,

the system model might be expected to decay rather slowly and uniformly

from level 4 onwards. Essentially the same inf0rmation can be de-

rived from either the eigenvalue information of Table 6.7 or the co-

herency inf0rmation of Table 6.8.

Table 6.7 shows that the imaginary part 9.984 is essentially

discarded at level 1, and 9.543 at level 2, and 8.314 at level 3.

Note, however, that the imaginary part 9.811 persists to level 4 and is

finally averaged into 9.054 at level 5. This is a somewhat different

pattern of eigenvalue elimination than was f0und préVIOUSIY where it

‘was generally the highest frequency eigenvalues that were eliminated.

first. In this case the modes being eliminated are those not excited

by the partial disturbance, which will not necessarily be the high

frequency, intenmachine oscillations of tightly interconnected groups.
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At level 5 the imaginary parts 7.546 and 9.054 are more clearly

averages of 7.287, 8.254, and 9.811. At level 6, 9.054 is essentially

discarded, indicating that it is representative of the oscillations

between generator 1 and the aggregate 2-3-8.

Table 6.8, the coherency measure data for the ZMIIW disturbance

of generators 1,8,9,10 yields the same inf0rmation as Table 6.7. The

coherency measures at level 1 are slightly larger, but essentially

the same as the coherency measures for the corresponding machines at

level 0. The biggest increase, as might be expected is the coherency

measure of the aggregate generator 6-7 that replaces generators 6 and 7

of level 0. The same analysis can be made of levels 2 and 3.

At level 4, the coherency measure for the aggregate 4-5-6-7

is very clearly an average of the coherency measures for generator 5

and the aggregate 4-6—7 at level 4. This could mean that the behavior

of the aggregate generator 4-5-6-7 will portray the average response

of all f0ur generators, rather than favoring either generator 5 or

the aggregate 4-6-7.

By contrast at level 5 the coherency measure for the aggregate

generator 2-3-8 is significantly closer to that of the aggregate 2-3

at level 4 than to the coherency measure of generator 8 at level 4.

Thus the behavior of the aggregate 2-3-8 may follow the behavior of

generator 2 or generator 3 more closely than that of generator 8. The

same analysis applies to generator 1 when it is aggregated at level 6

Figures 6.3a through 6.3f are simulations comparing the response

of the full 39 Bus New England System to the system models at the first

6 levels of aggregation dictated by the ZMIIW disturbance over generators
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Figures 6.3. Simulations of System Response to One Per Unit Step

Disturbances on Generators 8 and 9.

 

 

S S {3 designates the full 39 Bus New England

System

<> <> <> designates the aggregated model dictated

by the ZMIIW disturbance of generators

l, 8, 9, 10

Figure 6.3 Aggregation Level System Generators

(a) l l 2 3 4 5 6-7 8 9 10

(b) 2 l 2 3 4-6-7 5 8 9 10

(c) 3 1 2-3 4-6-7 5 8 9 10

(d) 4 1 2-3 4-5-6-7 8 9 10

(e) 5 1 2-3-8 4-5-6-7 9 10

(f) 6 1-2-3-8 4-5-6-7 9 10

Generator 10 is the reference
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l,8,9,l0. The disturbance used in the simulation is one p.u. steps on
 

bgth_generators 8 and 9. In all the simulation curves of this chapter

the curve designated by' Cl is the New England System and the curve

designated by O the aggregated model.

These simulations verify the conclusions reached by analyzing

the data of Tables 6.6 through 6.8. The system model starts to deviate

from that of the full system at level 4, although the model at level

4 is still very good for 3 seconds.

At level 5, the response quality has decayed badly on generator

8 and is not much better on generator l. By analyzing Table 6.8 it

was predicted that the response of the aggregate generator would

fOllow that of generator 2 or 3 more than that of generator 8. Figure

6.3e seems to verify this. The same result occurs, as hypothesized, fbr

the aggregate l-2-3-8 in Figure 6.3f. Note that the main degradation of

the model occurs when a generator is aggregated into a group with which

it is not very coherent. Note, in contrast, that the response of gen-

erator 9, is quite accurate through six levels of aggregation.

Tables 6.9, 6.l0, 6.11 and Figures 6.4a, and 6.5a through 6.5f

provide the standard data for a ZFHIW disturbance of generators 8 and

9. The same sort of analysis performed above can be performed here,

with about the same result.

Table 6.9 shows that the progression in the size of the coherency

measures is almost linear through the middle aggregation levels. It

takes a dramatic jump between levels 6 and 8 as shown by the plot of

coherency measure threshold magnitude versus aggregation level shown in

Figure 6.4a. This curve has a somewhat different shape than the cor-

responding curves for the previous two disturbances.
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Table 6.9. Ranking of Coherency Measures for ZMIIW Disturbance

, of Generators 8 and 9

Ranking Generator Coherency Aggregation Level

Pair Measure

l. C(6,7) .0021 l

2. C(4,7) .0050

3. C(4,6) .0072 2

4. C(2,3) .0500 3

5. C(5,6) .0996

6. C(5,7) .1017

7. C(4,5) .1068 4

8. C(3,5) .1346

9. C(l,4) .1630

10. C(1,7) .1655

11. C(l,6) .1666

12. C(2,5) .1833

13. C(3,6) .2299

14. C(3,7) .2320

15. C(1,5) .2338 5

l6. C(3,4) .2369

17. C(2,6) .2797

18. C(2,7) .2818

19. C(2.4) .2868

20. C(l,3) .3229

21. C(l,2) .3693 6

22. C(2,lO) .6290

23. C(3,10) .6789

24. C(5,10) .8079

25. C(6,10) .9068

26. C(7,10) .9090

27. C(4,10) .9140

28. C(1,10) .9878 7

29. C(l,8) 2.0472

30. C(4,8) 2.2072

31. C(7,8) 2.2104

32. C(6,8) 2.2118

33. C(5,8) 2.2764

34. C(3,8) 2.3241

35. C(2,8) 2.3549

36. C(8,10) 2.8131 8

37. C(4,9) 4.7526

38. C(7,9) 4.7569

39. C(6,9) 4.7587

40. C(l,9) 4.7694

41. C(5,9) 4.8421

42. C(3,9) 4.9745

43. C(2,9) 5.0197

44. C(8,9) 5.0326

45. C(9,10) 5.5806
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Figures 6.5. Simulations of System Response to One Per [hit Step

Disturbances on Generators 8 and 9

 

 

{3 {3 {3 designates the full 39 Bus New England

System

<> <> <> designates the aggregated model dictated

by the ZMIIW disturbance of generators

8 and 9

Figure 6.5 Aggregation Level System Generators

(a) l l 2 3 4 5 6-7 8 9 10

 

(b) 2 1 2 3 4-6—7 5 8 9 10

(c) 3 1 2-3 4-6-7 5 8 9 10

(d) 4 1 2-3 4-5-6-7 8 9 10

(e) 5 1-4-5-6-7 2-3 8 9 10

(f) 6 1-2-3-4-5-6-7 8 9 10

Generator 10 is the reference
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This same infbrmation is available from the eigenvalue data of

Table 6.10. Note that the imaginary parts 4.589 and 9.358 at level 6

are fairly close to the 4.461 and 9.541 values of level 0. The value

6.493 at level 6 appears to be an equal weighting of the values 6.296

and 6.921 at level 0.

The analysis of the data in Table 6.ll is almost a repeat of

that done for Table 6.10. Note in particular that when generator 1 is

added to 4-5-6-7 at level 5, that the resulting coherency measure for

the aggregate 1-4-5-6-7 is much closer to the measure for 4-6-6-7 at 2

level 4 than to the measure for generator l at level 4. This seems

to indicate that the behavior of the aggregate 1-4-5-6-7 will be closer *‘

to that of 4-5-6-7 than to that of generator 1.

The main reason for including the data for the ZMIIW disturbance

of generators 8 and 9, can be seen by comparing the eigenvalue imaginary

parts retained at levels of 5 and 6 of Tables 6.7 and 6.10. The

aggregations in these two tables are identical through level 4. At

 level 5, however the 8,9 disturbance retains a slightly higher fre-

quency eigenvalue, 9.384 versus 9.054 for the l,8,9,l0 disturbance. The

9.054 eigenvalue is discarded at level 6 by the l,8,9,lO disturbance

when generator 1 was added to the group 2-3-8. This, as stated earlier,

identifies the eigenvalue pair - %-:_9.054 with the oscillations be-

tween generators l and 8. Now note that for the 8,9 disturbance gen-

erator l is added to the group 4-5-6-7 at level 5 and the group 2-3

is added to the group l-4-5-6-7 at level 6. That is, generator l is

not added to a group containing generator 8 and this is reflected by

the retention through level 6 of the eigenvalue pair - %-:_j 9.358
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which represents the oscillations between generators l and 8. The

eigenvalue retention is clearly dependent on the geography of the

partial ZMIIW disturbance. Thus applying the commutative aggregation

rule to the r.m.s. coherency ranking table seems to provide selective

eigenvalue retention, based on the geography of the partial ZMIIW

disturbance. This is a rather remarkable result.

The 8,9 disturbance also touches on another issue, namely the

question of disturbing part of a tightly interconnected group. The

ZMIIN disturbance of all ten generators showed generators l and 8 to

be tightly interconnected. Tables 6.7 and 6.10 both show that the

greatest averaging of eigenvalues occurs when one of these generators

is aggregated into a group that does not contain the other. llore will

be said about this in the next section.

Figures 6.5a through 6.5f are the simulation results for one

per unit step disturbances on generators 8 and 9 for the first six

levels of aggregation as dictated by the ZMIIW disturbance of gen-

erators 8 and 9. The simulation results show that the system model

response has its first noticeable decay at level 4. The level 5 and

level 6 models are marginally better than those at the same level fbr

the ZMIIW disturbance of buses l,8,9,lO. But it is clear from Figure

6.5e that the degradation is pronounced once generator 1 is aggregated

with 4-5-6-7. This speaks directly to the matter of disturbing only

some of the generators in a tightly interconnected group. It is the

reason why the reduction algorithm contains a step in which the

boundary between the internal system and buffer zone is redefined in

order to avoid disturbing only part of a group of generators that are

tightly interconnected and cross the boundary between the internal
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system and the buffer zone. Recall that the ZMIIW disturbance of all

ten generators showed generators l and 8 to be tightly interconnected

at aggregation level 2. If generators 8 and 9 are considered to be.

the internal system then, then group l-8 crosses the boundary between

internal system and the buffer zone. The consequences of forming equi-

valents under these conditions are explored in greater detail in the

next section.

IV. ZMIIW Distrubances of Buses l and Bus 8
——————_——-—

Tables 6.12, 6.13, 6.14, Figure 6.4b and Figures 6.6a through

 

 

6.6f provide the standard information fbr a ZMIIW disturbance of gen-

erator 8. An examination of Figures 6.6a through 6.6d shows that the

quality of the system models response decays rapidly at level 4 when

generator 1 is aggregated with generator 9. A look at Table 6.13 shows

that the absolute values of the eigenvalue imaginary parts at level 4

are truly averages of those at level 3. This means that there is no

eigenvalue pair that can be associated closely with the intermachine

oscillation of generators l and 9. This is born out by Table 6.14

which shows that the coherency measures for generators 1 and 9 are

significantly different from each other.

All of this analysis seems to indicate that the process of re—

defining the boundary between the internal system and buffer zone is

a necessary step in the reduction algorithm fOr producing dynamic

equivalents. This conclusion is supported by a similar analysis for

ZMIIW disturbances of generators 8 and lo, and generator 9. However,

there are cases where the aggregation does seem to work, even though a

tightly interconnected group has been broken up.  
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Table 6.12. Coherency Measure Ranking for ZMIIW Disturbance at

Generator 8

Ranking Generator Coherency Aggregation Level

Pair Measure

1. C(6,7) .0012 l

2. C(4,7) .0029

3. C(4,6) .0041 2

4. C(2,3) .0235 3

5. C(l,9) .0268 4

6. C(3,5) .0300

7. C(2,5) .0536 5

8. C(5,6) .0573

9. C(5,7) .0585

10. C(4,5) .0615

ll. C(3,6) .0873

12. C(3,7) .0886

13. C(3,4) .0915

14. C(2,6) .1109

15. C(2,7) .1121

16. C(2,4) .1151 6

l7. C(4,9) .1351

18. C(7,9) .1380

19. C(6,9) .1393

20. C(l,4) .1620

21. C(l,7) .1649

22. C(l,6) .1661

23. C(5,9) .1966

24. C(l,5) .2235

25. C(3,9) .2267

26. C(2,9) .2502

27. C(l,3) .2535

28. C(l,2) .2771 7

29. C(2,lO) .3272

30. C(3,10) .3508

31. C(5,10) .3808

32. C(6,10) .4382

33. C(7,10) .4394

34. C(4,10) .4423

35. C(9,10) .5775 8

36. C(l,10 .6044

37. C(l,8) 2.0392

38. C(8,9) 2.0661

39. C(4,8) 2.2012

40. C(7,8) 2.2042

41. C(6,8) 2.2054

42. C(5,8) 2.2628

43. C(3,8) 2.2928

44. C(2,8) 2.3164

45. C(8,10) 2.6436
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Figures 6.6. Simulations of System Response to a One Per Uhit Step

Disturbance on Generator 8

{3 {3 £3 designates the full 39 Buss New England

System

<> <> *€> designates the aggregated model dictated

by the ZMIIW disturbance of generator 8

[figure 6.6 Aggregation Level System Generators r

(a) l l 2 3 4 5 6-7 8 9 10

(b) 2 l 2 3 4-6-7 5 8 9 10 H

(c) 3 1 2-3 4-6-7 5 8 9 10

(d) 4 1-9 2-3 4-6-7 5 8 10

(e) 5 1-9 2-3-5 4-6-7 8 10

(f) 6 l-9 2-3-4-5-6-7 8 10

Generator 10 is the reference
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Tables 6.15, 6.16, 6.17, Figure 6.7,and Figures 6.8a through

6.8f provide the standard data for a ZMIIW disturbance of generator 1.

A quick look at Figures 6.5a to 6.5f shows that the response of the

model matches that of the full system through six levels of aggregation.

A look at Table 6.15 shows that 5 levels of aggregation can

be achieved from the first 9 coherency measures in the table, and that

7 levels of aggregation can be achieved before the absolute value of

the coherency measure becomes very large.

An examination of Table 6.16 shows that there is definitely

an averaging of eigenvalues at levels 4, 5, and 6. However, the re-

sult at level 6 is imaginary eigenvalue parts 4.558, 8.248 and 9.808 that

are very close to the values 4.461, 8.287, and 9.541 of level 0. Note

also that a value near 4.5, one near 8.3 and one near 9.8 are pre-

served through all levels of aggregation. Thus it appears that these

latter three values are the imaginary parts of three eigenvalue pairs

that represent the intermachine oscillations between generators l, 8,

and 2-3-4-5-6-7-9 that are very close to the oscillations between gen-

erators 1,8, and 2 at level 0. This leads one to suspect that con-

ditions fbr geometric coherency, strong linear decoupling or a combina-

tion thereof are satisfied for the aggregate 2-3-4-5-6-7-9, for a dis-

turbance at generator 1.

An examination of Table 6.17 shows that the coherency measures

between generator 1 and generators 2,3,4,6,7 are very close to the same

at level 0, with coherency measures between 1 and 9 and l and 5 some-

what higher.. At level 6 the coherency measure between generator 1 and

the aggregate 2-3-4-5-6-7-9 is close to the coherency measure between
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Table 6.15. Ranking of Coherency Measures ZMIIW Disturbance of Bus 1

Ranking Generator Coherency Aggregation Level

Pair Measure

1. C(6,7) .0021 l

2. C(4,7) .0050

3. C(4,6) .0071 2

4. C(3,5) .0139 3

5. C(2,3) .0377

6. C(2,5) .0516 4

7. C(4,9) .0711

8. C(7,9) .0762

9. C(6,9) .0783 5

10. C(5,6) .0991

ll. C(5,7) .1012

12. C(4,5) .1063

13. C(3,6) .1130

14. C(3,7) .1151

15. C(3,4) .1202

16. C(2,6) .1508

17. C(2,7) .1529

18. C(2,4) .1580

19. C(5,9) .1775

20. C(3,9) .1914

21. C(2,9) .2291 6

22. C(8,9) .2754

23. C(4,8) .3466

24. C(7,8) .3517

25. C(6,8) .3538

26. C(5,8) .4529

27. C(3,8) .4668

28. C(2,8) .5046 7

29. C(2,lO) .5813

30. C(3,10) .6191

31. C(5,10) .6330

32. C(6,10) .7321

33. C(7,10) .7342

34. C(4,10) .7393

35. C(9,10) .8105

36. C(8,10) 1.0859 8

37. C(l,8) 1.9096

38. C(l,9) 2.1850

39. C(l,4) 2.2562

40. C(l,7) 2.2613

41. C(l,6) 2.2634

42. C(l,5) 2.3625

43. C(l,3) 2.3764

44. C(l,2) 2.4142

45. C(l,10) 2.9955
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Figure 6.8. Simulations of System Response to a One Per Lhit Step

Disturbance on Generator 1

[
J

[
D

designates the full 39 Bus New England

System

E
]

 

 

i" 0 3 3551323151?11“.?-23333253083231.3232?"

Figure 6.8. Aggregation Level ‘ System Generators

(a) l l 2 3 4 5 6-7 8 9 10

(b) 2 l 2 3 4-6-7 5 8 9 10

(c) 3 l 2 3-5 .4-6-7 8 9 10_

(d) 4 1 2-3-5 4-6-7 8 9 10

(e) 5 1 2-3-4 4-6-7-9 8 9 10

(f) 6 l 2-3-4-5-6-7-9 8 10
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l and the individual machines of the aggregate at level 0. The co-

herency measure between generators l and 8 are almost identical at

levels 0 and 6, while the coherency measure between generators l and

10 changes only moderately (about 8%) between levels 0 and 6.

This seems to verify the supposition that for a disturbance

at generator 1 either geometric coherency or strong linear decoupling

is at work. This says that the partial disturbance step of the reduc-

tion algorithm can pay a handsome return if the structural conditions 71

of the power system are satisfying geometric coherency or strong 1

linear decoupling. The other results in this section, however, offer

 
a strong caveat against ignoring the boundaries of tightly inter- i‘

connected groups of generators when doing ZMIIW disturbances over a

subset of generators. Despite the very good results for the ZMIIW

disturbance of generator 1, the best rule would be to disturb all

generators of a tightly bound group when determining a local model for

a particular generator within the group.

V. Summary gf_Results

The results in this Chapter verify quite conclusively that the

reduction algorithm for producing dynamic equivalents proposed in

Chapter 5.is a reasonable and viable approach to producing dynamic

equivalents. The importance of the general ZMIIW disturbance of all

generators in determining tightly interconnected groups has been sub-

stantiated, and the validity of the partial Z‘iIIN disturbance for de-

tecting the conditions of geometric coherency and strong linear de-

coupling have been verified. Embedded in this verification is the

necessity to be cautious in f0rming local equivalents based on the
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disturbance of only some of the generators within a tightly inter-

 connected group.

The ZMIIW disturbance over a subset of generator coupled to

the commutative rule for aggregation of the r.m.s. coherency ranking

table also showed the ability to do eigenvalue retention in a "geo-

graphic" way. That is, the eigenvalue retention seems to be based on

the modes most excited by a disturbance located in a certain area of the

power system. Hence, overall, the ZMIIW disturbance of only part of the

power system has proved to be a viable step in the overall reduction

algorithm.

 The question of whether the coherency measure thresholds in the

ranking table can predict the point of overaggregation is not answered

definitively by the data presented in this chapter. Most of the plots

of threshold magnitude versus aggregation level swing upward rapidly at_

or after level 6, while the proper aggregation level for valid system

response seems to be level 4 or 5. More data collection may help prove

or disprove this trend.

Although the data presented in this chapter is more than

adequate to verify the analysis of Chapters 3, 4 and 5 some important

work remains to be done. One interesting and necessary follow-on

would be to test the algorithm on a "large" system, one with at least

fifty generators. One reason for doing this would be to test the pro-

posed method of refining the boundary between the buffer zone and the

far system. This has not been possible in a ten generator system where

realistically all that is present is the internal system and the buffer

zone. Such a study would also determine if a general ZMIIW disturbance

of all generators will identify the same principle groups of tightly
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interconnected groups as the algorithm based on singular perturbation

theory proposed by Kokotovic and Winkelman [12, 13].

It would also be worthwhile to build some nonlinear system

models based on the aggregations dictated by the ZMIIW disturbances.

The easiest place to do this would probably be on the New England

System by implementing the software package developed for EPRI by

Podmore and Germond [2]. This would silence some of the criticism

that inevitably results from using linear system theory to analyze ‘ fl

nonlinear systems. It would help test the supposition put forward in 5

Chapter 4 that synchronizing coherency, geometric coherency and strong

 linear decoupling are structural power system conditions whose presence ‘“5

in the linear model strongly guarantees their presence in the nonlinear

model.

 



CHAPTER 7

REVIEW, CONTRIBUTIONS, AND TOPICS FOR FUTURE RESEARCH

I. Overview gf_1he§1§_

This research was initiated primarily to establish a stronger

theoretical connection between the two traditional methods of producing

reduced order dynamic equivalents for power systems, namely coherency

equivalents and modal equivalents. These two methods had both been

used successfully, and both had their proponents. The fact that both

methods could produce good equivalents was strong, intuitive evidence
 

that both methods must be utilizing the same fundamental properties of

the power systems's structure to produce dynamic equivalents. The

evidence that this was the case was strong [5, 6, 7, 8, 10, 11], but

far from complete.

The review of the two methods of producing equivalents in

Chapter 2 while aimed at delineating the differences between the two

methods also pointed up one similarity. In both methods the search

for an equivalent began by assuming that the disturbances would occur

in a particular area of the power system, called the internal system.

Everything else fell into the category of the external system. The

perspective, then, for both methods was to look outward from the

internal system and form a reduced order model of the external system.

One might call this a local or parochial perspective on the dynamic

equivalents problem. Through the course of this research, aimed

243~
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primarily at linking the two traditional techniques of forming equi-

valents, a broader, more global, perspective on the problem of dynamic

equivalents emerged. More will be said about this in later sections

of the chapter.

Chapter 3 began the hunt for theoretical connections between

the modal and coherency techniques, by reviewing one of the strongest

clues, namely the work of Dicaprio and Marconato, on what was to be

eventually termed, in this present work, "Strict Geometric Coherency"

[10, ll]. Dicaprio and Marconato diVided their example power system

into a study group and a specified, or in their terminology an

"evidenced", group. .They then stated structural conditions between

the study group and the specified group, which if true at time t = 0',

caused gll_the generators of the specified group to accelerate at the

same rate in response to ggy_disturbance within the stggy_group.

This meant that, from the viewpoint of the study group, the

specified group appeared to be one generator.

The striking feature of Dicaprio and Marconato's result is that

it holds for the nonlinear model. The rest of Chapter 3 investigated

other conditions that, like the Dicaprio-Marconato condition, might

cause the specified group to behave, from the perspective of the study

group, like a single generator; two were identified. The first was

called strict synchronizing coherency and depended upon progressively

stiffening, at least, n-l interconnections linking all n genera-

tors of the specified group, until these interconnections were infi-

nitely strong (zero impedance). The other condition called, pseudo-co-

herency, was a mirror image of the Dicaprio-Marconato conditions for strict
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geometric coherency, in that it also relied upon structural conditions

between the study group and the specified group of n generators at

time t = 0-. In pseudo-coherency, however, the specified group was

not coherent but only appeared to be coherent to the study group.

Thus Chapter 3, determined three hypothetical conditions under

which the specified group could be replaced by a single machine. The

three conditions are called hypothetical in the sense that they could

never be perfectly satisfied in a real power system. Strict synchroniz—

ing coherency relies upon infinitely stiff (zero impedance) inter-

connections between generators. Strict geometric coherency and pseudo-

coherency conditions can be realized with real components, but the

probability of the conditions being satisfied for a sizeable group

of machines is effectively zero.

It could be argued that strict synchronizing coherency is

hypothetical in-a different sense than the other two conditions be-

cause it relies upon non-finite components. This argument has

philosophical but not practical merit, because near approximations to

strict synchronizing coherency are more common in power systems than

are near approximations of the other two conditions. Further, the

argument becomes irrelevant by the end of Chapter 4, since at that point

it is evident that the real power of these three conditions is in their

use as conceptual tools f0r understanding the combination of conditions

that lead to coherency in a real power system. That is, the three con-

ditions, SSC, SGC, and PC can be viewed as archetypes for group co-

herency. In a real system a combination of these archetypes may be at

work simultaneously to cause group coherency.
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Chapter 4 re-examined the three conditions for coherency for

the linear model. One of the results of Chapter 3 had been that

satisfaction of the conditions for strict synchronizing or strict

geometric coherency at time t = 0', guaranteed coherency of the

specified group for all t > O. This could ngt_be shown for pseudo?

coherency and in that sense pesudo-coherency was a far weaker condi-

tion than the other two.

All three conditions did however decouple the ljgegr_equations,

leading to the specified group behaving as a single machine, for dis-

turbances withjg_the 539g) group. This decoupling provided the key to

showing that if any one of the conditions $50, $00 or PC were satisfied,

the modal and coherency methods produced the sgmg_equivalent for the

specified group. This result depends on the decoupling of the linear

equations which in turn separates the eigenvalues f0r the system model

into two sets, one set (of eigenvalues) associated with the equations

for the study group (of generators) through the matrix (-N__T_)H and

the other set with the equations for the specified group through the

matrix (-fi_1)22. 'The coherency method offinding an equivalent re-

placed the specified group by a single machine because it behaved

as a single machine from the perspective of the study group, for dis-

burbances withjg_the stggy_group. The modal analysis method produced

the identical equivalent by using controllability and observability

arguments to discard the modes (canonical states) associated with the

specified group of 'n generators, through the matrix (:flj[)22. In

the case of strict synchronizing and strict geometric coherency, the

modes were discarded as uncontrollable. In the case of strict (linear)
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pseudo-coherency the modes were discarded as unobservable. Thus Chapter

4, established the conditions under which the modal and coherency equi-

valents f0r a specified group of generators were identical.

This picture was made even more complete by l) incorporating into

the three hypothetical conditions for coherency the work of Chow,

Kokotovic, Allemong, Winkelman, et al., on singular perturbation equi-

valents, and 2) by introducing the idea of linear decoupling. It was

shown that the singular perturbation model, which discards high fre-

quency modes as unobservable is almost perfectly congruent with the

concept of strict synchronizing coherency. In fact, the limiting pro-

cess of sending the parameter p to zero in the singular perturbation

model was shown to coincide with the process of letting n-l intercon-

nections linking all n machines become infinitely stiff, so that, in

the limit, strict synchronizing coherency and the two time scale separa-

tion of singular perturbation become identical.

The concept of linear decoupling was then introduced to account

for those cases where the linear equations were essentially decoupled,

but the decoupling could not be attributed completely to any 939 of the

three conceptual conditions for coherency, i.e. SSC, $00 or PC.

Once again, the concept of linear decoupling was introduced as

a conceptual aid by showing how the specified group could be perfectly

decoupled by a combination of strict synchronizing coherency and strict

geometric coherency. Three types of linear decoupling were identified.

Two of these types were classified as "weak", since like pseudo-

coherency the presence of the conditions in the linear model did not

strongly guarantee the presence of the conditions in the nonlinear model.

 



248

One type of linear decoupling, however, did carry this guarantee and

could be classified with strict synchronizing coherency and strict

geometric coherency. This type of linear decoupling was termed strict

strong linear decoupling. It is best understood by an example.

Consider the five generator example of figure 7.1a and suppose

the following structural conditions hold.

where the tij's are synchronizing power coefficients and the Mi's

are machine inertias.

Let generator 1 be the study group, generators 2 and 3 group

2, andgenerators 4 and 5 group 3. The conditions (1) and (2) are not

sufficient to cause groups 2 and 3 to behave like one large coherent

group. That requires

or a tree of stiff interconnections among generators 2,3,4 and 5.

Neither of these conditions is implied by conditions (1) and (2). Thus,

the generators 2, 3, 4 and 5 are satisfying neither the conditions for

strict geometric coherency or strict synchronizing coherency.

Now let the interconnection between generators 2 and 3 become

infinitely stiff. This causes generators 2 and 3 to act like a single

machine of inertia M2 + M3. The synchronizing power coefficients be-

tween the aggregate generator 2-3 and generators l, 4, and 5 are as

shown in figure 7.1b.

  



 

  
 

 

  
FlGLRE 7-1

FIVE GENERATOR SYSTEM

«11315150111: AGGREGATION OF GENERATORS 2 AND 3

(”AFTER AGGREGATE]! OF GEMRATORS 2 AND 3

 

 



250

. 1‘12” t
Since fiE——;7MS—-= FT_'= FT_" generators 4, 5, and the

aggregate 2-3 Satisfy the conditions for strict geometric coherency.

for disturbances at generator 1. Thus a combination of strict
 

synchronizing coherency and strict geometric coherency will cause gen-

erators 2, 3, 4, and 5 to act as a single generator for disturbances

at generator 1. This example also illustrates the great conceptual

power of the archetypal conditions, strict synchronizing coherency and

strict geometric coherency. I

Chapter 4, then, contains two major accomplishments, l) a set

of conditions under which the modal and coherency equivalents were

identical and 2) a determination of which of these conditions were

worthy of being used to form a dynamic equivalent. Those chosen for

use in forming the dynamic equivalent were synchronizing coherency,

geometric coherency and the strong type of linear decoupling (SLD).

Chapter 5 next provided the means of detecting the selected

conditions. It was shown that a particular type of disturbance, called

a ZMIIW disturbance made the r.m.s. coherenCy measure depend only on

the structure of the linear model, i.e. on the -N_I_ matrix. Further

by using different ZMIIW disturbances one could distinguish synchroniz-

ing coherency from geometric coherency and strong linear decoupling.

Synchronizing coherency was detected by a general ZMIIW disturbance

of all generators. The other two types by a ZMIIW distrubance over a

specific subset of°generators called the internal system. This internal

system can be identified with the study group of Chapters 4 and 5.

The distinction between the types of disturbances leads in a

very natural way to a distinction between two types of reduced order
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models of a power system. The general ZMIIW disturbance over all gen-

erators detects those groups of generators that are tightly inter-

connected. That is, it divides the overall power system into areas,

called principal groups, that react in consort to distrubances any-

where in the system. Thus, if the main concern is how a disturbance

propagates among the principle groups, then the general ZMIIW disturbance

can provide the proper model. This model might be thought of as a

global model .

The ZMIIW disturbance over a specific subset of machines, on

the other hand, provides a means of finding what is coherent, looking

outward from that subset of machines. It is not hard to see that this

is congruent with the traditional perspective on forming equivalents,

discussed in Chapter 2.

Chapter 5, concludes by incorporating both the general and the

specific ZMIIW disturbances into a reduction algorithm for producing

dynamic equivalents. The results of testing the algorithm on the 39

Bus New England System were summarized in Chapter 6, and indicated

that the algorithm worked very well.

11. Contributions
 

The ideas of pseudo-coherency and linear decoupling are new.

In some limited sense strict synchronizing coherency is also new. The

knowledge that tightly interconnected generators remain coherent has

existed for a long time, but it was never formalized into a theoretical

concept requiring n-l infinitely stiff interconnections among n

generators to make them strictly coherent. It was this f0rmulation

that led to the result that, in the limit when the parameter 0 +10,
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the singular perturbation concept of two time scale separation is

identical to strict synchronizing coherency.

As important as the individual ideas are, the significant con-

tribution has been the integration of these individual ideas into a

general theory that provides a good conceptual understanding of how

a power system responds to a disturbance, both at the global level and

the local level. The generality of this theory is demonstrated by its

ability to encompass all the current methods employed in constructing

.
_
L
Z
Y

dynamic equivalents, including the singular perturbation approach.

This conceptual understanding can be directly applied to the

problems of security assessment and planning. The global modeling

 

level is of great interest for on-line system monitoring and control,

since it provides some insight into how major portions of the power

system interact in response to a disturbance. The r.m.s. coherency

measure may be capable of serving as a security measure that would in-

dicate when the system is vulnerable to an unstable condition (called

a contingency), so that corrective action can be taken. For power

system planning, both the global and local modeling aspects can be

utilized, since in planning, both global stability and transient

stability from the standpoint of a single machine are of interest.

The reduction algorithm itself has already been implemented by

making appropriate changes to the EPRI software package [2]. This

modified software package provides a computationally efficient means of

producing dynamic equivalents for systems of ggy_size. It's main

virtue is that it does not require the calculation of eigenvalues,

which is the main drawback to almost any modal analysis scheme for

producing equivalents, including the singular perturbation approach.
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The data collection done on the 39 Bus New England System not

only verified the analysis of Chapters 3, 4, and 5, it added some new

inf0rmation, in particular, the idea of eigenvalue retention tuned to

the location of the disturbance. This is in itself a very interesting

result.

III. (Topics for Future Research
 

The analysis in Chapter 4, indicates that the singular per-

turbation concept coincides with the concept of synchronizing coherency.

This means that the principle groups identified by the reduction al-

gorithm of Chapter 5 should coincide with the major groups determined by

Winkelman, Kokotovic, et al. in references [12, 13]. This is purely

computational work to be done on a system with at least fifty or sixty

generators. Two prime candidates are the 64 generator system used by

Hinkelman, Kokotovic, et al. [13], and the model of the western grid

used by Podmore [2].

Another useful investigation is the comparison of the performance

of the coherency equivalent, i.e. the averaged equivalent machine,

with the singular perturbation equivalent f0r the same generator

aggregation. The conjecture is that the coherency equivalent will per-

form better for short intervals and the singular perturbation equivalent

will be better for long intervals.

Some computational research can also be done to compare Podmore's

and Germond's results with the proposed reduction algorithm. Podmore

and Germond use a different coherency measure, a different aggregation

rule for determining coherent groups, and disturbances that are not

ZMIIW. It might be useful to use the model of the western grid provided
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by reference [2] and perform ZMIIW disturbances from the same locations

as the disturbances in Podmore and Germond's work and compare the

equivalents.

The present work also provides new insight into the problem of

on-line identification of the external system. The identification

problem requires an assumption about the structure of the external

system. That structure can be obtained from a general ZMIIW disturbance

of all the generators. It would provide first of all the order of the

state model of the external system and second, the appropriate locations

at which to make the measurements. That is, measurements would be

taken at machines that belong to the principal groups determined by

the general ZMIIW disturbance. It may even be possible to do the

identification based only on measurements taken within the internal

system and at the boundary between the internal and external systems.

Th future research possibilities out of the current work seem

fairly rich. The ones discussed here by no means exhaust the list,

but only serve to indicate some of the more promising avenues of

exploration.
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