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ABSTRACT

A CLASS OF TIME DOMAIN MODELS

FOR THE NUMERICAL SOLUTION OF

TRANSMISSION LINE PROBLEMS

by Thomas Lynn Drake

The requirements of modern technology necessitate

extremely large and complex systems which contain trans-

mission lines as components. These systems no longer are

composed of components which are described by linear

equations. Therefore, time domain techniques must be used

to analyze these systems. The equations which describe

these large and complex systems are most easily solved by

numerical techniques with large scale digital computers.

The specific subject of this thesis is the derivation

of three general classes of time domain models, using differ-

ence equations, which give the numerical solution to the

lossless transmission line of finite length. In addition to

giving the numerical solution along the line, any model re-

lates the voltage and current variables, corresponding to the

transmission line linear graph representation, in a manner

such that each graph element which represents each port of

the transmission line can be formulated in the system graph

as either a branch or a chord. The system for which the

transmission line is a component may be nonlinear as well as

linear.



Thomas Lynn Drake

One of the main results of this thesis other than

deriving the three classes of time domain models is the ap-

proach which is used in performing these derivations. In-

stead of directly approaching the general transmission line

problem, three transmission line problems, each having

certain identifying characteristics, are first treated by

standard numerical methods. The superposition principle,

even though the mathematical description of the boundaries

may be nonlinear, is then applied to combine the results for

these specific transmission line problems to obtain these

three classes of time domain models. This general approach

by-passes a number of the difficulties which are normally en—

countered by convential techniques.
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I. INTRODUCTION

1.0 Introduction

A lossless parallel transmission line of length L is

described mathematically by the telegrapher's equations

_%vgx,t) =lbet

x t

_bet=cvat

- x t

‘where 1 and c are the inductance and capacitance parameters

for the line. For a given set of initial conditions and an

appropriate boundary condition for each end of the line,

there are a number of techniques, both analytical and numeri-

cal, discussed in the literature for finding the solution to

these equations.

Most analytical techniques for finding the solution

to these equations are applicable only to a restricted class

of problems, generally those for which the mathematical de-

scriptions of the boundaries are linear. Numerical methods

on the other hand, are by no means so restricted. In fact,

most numerical methods of solution allow the mathematical de—

scriptions of the boundaries to be nonlinear as well as

linear. Hence, the subject of the thesis is concerned with

numerical methods of solution for these.equations.

l

 



Any numerical technique consists of a finite set of

equations, obtained by some method, for which the numerical

solution to these equations approximates V(xj,tk) and

I(§p,tk) respectively on the two sets of points in the x,t-

plane, (Xj'tk) and (xp,tk), where the two sets of points,

(xj) and (RP), are finite. The two sets of points, (xj,tk)

and (ip'tk) are respectively called the voltage and current

net points. In addition, the two sets of points, (xj) and

(§P)' are respectively called the voltage and current node

points. Normally, the sets of points, (tk), (xj), and (RP),

are chosen such that the points belonging to any given set are

equally spaced. Hence, if,Ax and At are the increments of the

variables x and t, the sets of voltage and current net points

are given by xj=x0+ij, tk=kA¢, where j=0,1,2,...,J and

k=0,1,2,..., and §p=§0+pr, tk=kDm, where p=0,l,2,...,P and

k=0,1,2,...,. Generally, x0 and E0 are related either as

or x nxoiAx/Z.
x0:320 o

The numerical techniques which are discussed in the

literature can be placed in one of three general categories.

The first such category contains numerical techniques which

employ a Fourier series. This technique simply uses numerical

techniques to find the Fourier coefficients of the series in-

stead of the normal analytical techniques. This method of

solution generally can only be used in cases where the mathe-

matical descriptions of the boundaries are linear.



The second category contains the methods which ap-

Proximate the transmission line by a passive lumped parameter

electrical equivalent network. The resulting network equa-

tions can then be solved by some numerical technique. This

approximate equivalent network approach is probably the most

'widely used by the engineering profession. The biggest

shortcomings of this approach are that all physically real-

izable passive networks either require a large number of ele—

ments to be a good approximation, an exceedingly small At to

solve the network equations numerically, or both.

The last category contains finite-difference methods

for the approximate numerical solution for problems of this

kind. This is the general approach which has been studied

extensively by applied mathematicians. The partial deri-

vatives are first approximated by difference equations at

the net points and the resulting difference equations are

then solved. Instead of attempting to solve the telegrapher's

equations, the literature is primarily concerned with solving

the wave equation by finite-difference methods. Summaries

of these methods are given by Richtmyer (l), Kunz (2), and

Fox (3). These methods are derived on the basis that each

end of the line is terminated in a voltage (current) source

which has a zero source impedance (admittance). If the line

is terminated differently, most of the properties which are

derived for these methods are no longer valid. Therefore,

their biggest shortcoming is that most practical problems



encountered in electrical engineering do not have boundary

conditions for which these methods were intended.

The specific subject of the thesis is the derivation

of three general classes of numerical time domain models,

using difference equations, which give the approximate nu-

merical solution to the lossless transmission line of finite

length. The equations, corresponding to any given time do—

main model, are generally not realizable as a passive lumped

parameter electrical network. In addition, these three

classes of models are applicable for the practical problems

encountered in electrical engineering. The mathematical

descriptions of the transmission line boundaries are allowed

to be nonlinear.

The mathematical development of the thesis treats a

normalized set of telegrapher's equations which are obtained

by introducing a change of variable. By letting

V(x,t) = yl/c E(x,t),

the normalized telegrapher's equations can be written as

._ b:(x,t) = VIE bigx‘tz

__O:(x,t) = VIE'OEflX,t).

The resulting set of equations has the properties that the

characteristic impedance has been transformed to unity and



the phase velocity vp remains unchanged. The quantity Vlc

is easily recognized to be 1/vp.

Each numerical time domain model is derived on the

basis that the transmission line, having finite length, is to

be a two port component in a given system. For any given

model, the set of equations which define this model are such

that the transmission line terminals can be represented as a

two part linear graph with one element in each part. In ad-

dition to giving the approximate solution at the node points,

these equations relate the voltage and current variables,

corresponding to the transmission line linear graph represen—

tation, in a manner such that each graph element can be

formulated in the system graph as either a branch or a chord.

Unless otherwise stated, the mathematical development

assumes that both linear graph elements are chords. Chapter

5 shows that the remaining three cases, one by symmetry, imr

mediately follow from this case.

For this case, the increment Ax is chosen as Ax=L/k,

where k is a positive integer. The set of voltage node

points, (xj), are defined as szij, where j=0,1,2,...,k.

In addition, the set of current node points, (Rb), are de-

fined as E§=pr+Ax/2, where p=0,l,2,...,k-l. These sets of

node points are defined differently for the cases where

either one or both graph elements are not in the cotree of

the system graph.



The node points in a given set are equally spaced.

Hence, standard numerical methods which use equally spaced

data points are applicable for the derivation of the time

domain models. On the other hand, these two sets of node

points are purposely defined so that the intersection of the

two sets is the null set. The basic reason for defining the

node points in this manner is that the derivations and the

construction of any time domain model is greatly simplified.

This will become evident during the derivation of these

methods.

1.1 ‘§uperposition Principle.

All three classes of time domain models are derived

on the basis of certain mathematical properties of the theo-

retical solution to the normalized telegrapher's equations.

One important property on which the derivations are based is

the superposition principle. Hence, certain specific appli-

cations of this principle must be discussed first in order

to indicate the develOpment of the three classes of time do—

main models.

For the purposes of this discussion, let us assume

that the transmission line is a component in a given system.

In addition, let us assume that the entire system can be

represented as a two part linear graph containing two ele—

ments in each part for which the linear graph which repre-

sents the transmission line is the cotree of the system graph.



As far as the solution of normalized telegrapher's

equations is concerned, the initial and boundary conditions

are given as

E(x,0) = hl(x) 0<x<L

Ibgm =hflx) OEXSL

E(0,t) = Esl(I(0,t),t) Ost<oo

E(L,t) = E52(I(L,t),t) Ost<oo

where hl(X) and h2(x) are specified functions of x. The

functions Esl(I(0,t),t) and ESZ(I(L,t),t) are determined in

some manner for tfi: 0 by the mathematical description of the

system components which correspond to the branches of the

tree.

Because of the linearity of the telegrapher's equa—

tions the superposition principle can be applied at t=tO as

long as the boundary conditions for the telegrapher's equa-

tions are properly defined. This property is used to sub—

divide the transmission line problem at t=tO into three prob-

lems, each having certain identifying characteristics.

Let us consider the three transmission line problems

which are described by the following sets of initial and

boundary conditions.

0<x<L 1.1.0I OEl(x,t0)

l OIl(x,t0) O<fo



l OEl(L,t) t fit-=00

O

El(0,t) = Esl(I(O,t),t) toft<00

11(01t0) = El(0lt0)

E2(X,t0) = O O<X<L l.

E2(L,t) = E82(I(L,t),t) toft<oo

I2(X,t0) = O OfX<L

E2(O,t) = 0 toft<oo

12(L,t0) = E2(L,t0)

Eflxfib)=fm&tw 0<x<L Ll.

I3(X,t0) = I(x,to) O<X<L

E3(O,t) = E3(L,t) = O toft<oo

I3(O,t0) = I(O,t0) - E(0,t0)

I3(L,t0) = I(L,t0) + E(L,t0)

It is quite clear that the solution for E(x,t) and I(x,t)

for t_>_tO is given as

E(x,t) = El(x,t) + E2(x,t) + E3(x,t)

I(x,t) = Il(x,t) + 12(x,t) + I3(x,t)

where all current orientations are from x=0 to x=L.



Upon examining these three transmission line problems,

one finds that there are two transmission line problems which

have zero initial conditions and one identically zero boundary

condition. The remaining problem has the boundary conditions

specified as zero but has initial conditions which may be

nonzero. For the purposes of simplifying the discussion

throughout the thesis, the transmission line problems which

have the identifying characteristics the same as the problems

which are described by Eqs. 1.1.0, 1.1.1, or 1.1.2 are

classified respectively as problems of type 1, type 2, or

type 3.

At t=tOAt, the same subdivision process can be ap-

plied to the solution of each of the two transmission line

problems which are described by Eqs. 1.1.0 and 1.1.1. These

two solutions at t=tO+At define two problems of type 3, a

problem of type 1, and a problem of type 2. This subdivision

process in effect states that the solution for E(x,t) and

I(x,t) for tit +At can be considered the sum of the solu-
0

tions of a problem of type 1, a problem of type 2, and three

problems of type 3.

Let us consider the two problems of type 3 which

were defined at t=tO+At. Both of these problems are deter—

mined respectively by some process which converts the

boundary conditions E(0,t) and E(L,t) for the interval

1: 5t4=t0+At into initial conditions for these two problems
0

of type 3 which were defined at t=tO+At.
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At t=t0+At, the three problems of type 3 can be com-

bined by superposition to define one problem of type 3. As

a result, the solution for E(x,t) and I(x,t) for t33t0+At

can also be considered as the sum of the solutions of a

problem of type 1, type 2, and type 3.

The specific approach of the thesis is then first to

derive two general classes of time domain models which are

applicable for obtaining the approximate numerical solution

for E3(x,t) and I3(x,t) at the defined node points. Next, a

method for converting the boundary conditions E(0,t) and

E(L,t) for the interval tojft<=tO+At into initial conditions

in order to define two problems of type 3 at t=tO+At is de-

rived. It is quite clear that a time domain model for the

problem of type 3 and the method for converting the boundary

conditions into initial conditions can be combined by super-

position to obtain a time domain model which is valid for

the original problem. This combination process introduces

three classes of time domain models.

1.2 The§is Outline.

According to the discussion as given in section 1.1,

it is necessary to derive a time domain model which is appli—

cable for the problem of type 3. In order to obtain these

models, the fact is used that a problem of type 3 has the

same solution as an infinite line with certain periodic

initial conditions for the interval 0:5x:EL. Therefore,
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instead of directly approaching the problem of type 3, the

infinite transmission line is treated extensively in

Chapter 2.

In Chapter 2, two classes of time domain models are

derived for the infinite line. One such class of models is

derived on the basis of a basic numerical solution which is

defined in this chapter. The other such class of models is

derived by obtaining a set of ordinary differential equa-

tions in t by approximating the partial derivatives with re-

spect to x at certain defined node points by difference

methods.

Chapter 3 shows that both classes of time domain

models which were derived for the infinite line can be trans-

formed into the finite line problem of type 3. As a result,

all the properties which are valid for the infinite line,

having periodic initial conditions, are also valid for the

problem of type 3. One important result of this chapter is

the derivation of a matrix which is called the transformation

matrix which transforms all the properties of the infinite

line to this finite line problem of type 3.

In Chapter 4, a class of methods is derived which

transforms the boundary condition, E(0,t), for a problem of

type 1 for the interval toiit-=t0+bm into an initial condi-

tion at t=t0+At. Each method derives a set of launching

numbers, one for each node, such that the initial condition

at each node point at t=t0+At is the product of E(0,nAt) and
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a launching number. Because of the similarity existing be—

tween a problem of type 1 and type 2, this class of methods

for obtaining these launching numbers is also valid for the

problem of type 2. The specific approach of this chapter is

the use of the superposition principle in order to show that

for a given problem of type 1, its solution at t=pAt is the

sum of the solutions of p problems of type 3 which are

staggered in time for 0'=x:EL. This class of methods is

then derived on the basis that the sum of these p solutions

for the p problems of type 3 must approximate the solution

to the problem of type 1 at t=pAt in a certain sense.

Since the results of Chapters 3 and 4 are valid only

for the case where both graph elements which represent the

transmission line are formulated as chords, Chapter 5 shows

that these results are also valid for the other three cases

which arise in the formulation. In order to obtain this re-

sult, the node points must be redefined such that the node

point at either x=0 or x=L is a voltage (current) node point

when the linear graph element which represents this port is

formulated as a chord (branch).

Since there is no current node point at either x=0

or x=L, there is no information present in these equations

about the approximate solution to I(x,t) at these points.

In order to provide this information, Chapter 6 derives some

properties which are valuable for determining an interpo-

lation formula which is applicable for determining the
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solution for the currents at these points. In addition,

these special properties are also applicable in certain situ-

ations for determining the solution of either E(x,t) or

I(x,t) at other values of x than the defined node points.

The principle objective of Chapter 7 is to apply the

superposition principle to combine the results of Chapters

2, 3, 4, 5, and 6 to obtain three classes of time domain

models which are applicable to the general transmission line

problems which occur in electrical engineering. Since there

are two classes of numerical time domain models defined for

the problem of type 3, the three classes of models are created '

by the method for which the results of Chapter 3 are inte-

grated with the results of Chapter 4. In addition, a trans-

mission line problem is worked to illustrate the concepts

which are presented in this chapter.



II. INFINITE TRANSMISSION LINE

2.0 Introduction.

An infinite lossless parallel transmission line is

described mathematically by the normalized telegrapher's

equations. In order to distinguish the infinite line case

from the finite transmission line case, the variables,

V(x,t) and S(x,t), are used in place of E(x,t) and I(x,t) to

represent the solution to these partial differential

equations.

The specific subject of this chapter is the defi—

nition of two general classes of time domain models, which

use difference methods, for the purpose of obtaining an ap-

proximate numerical solution to the infinite line. One such

class of models is derived on the basis of a basic numerical

solution while the other class of models is obtained by ap-

proximating the partial derivatives with respect to x at

certain node points and obtaining a set of ordinary linear

differential equations. In addition, certain properties of

the approximate solution such as periodicity will be

investigated.

Once the initial condition functions, V(x,0) and

S(x,0), are specified for -a><rx‘<oo, the analytical solution

for V(x,t) and S(x,t) can be immediately written for all x

14
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and t as

V(x—v t,0) + S(x—v 12.0)

V(x+vpt,0) - S(x+vpt,0)

2

V(x—th,0) + S(x—vpt,0)

S(x,t) = , 2 +

S(x+vpt,0) — V(x+vpt,0) .

2

Since the analytical solution for infinite line problem can

be immediately written from the specified initial conditions,

it may now seem of limited value to pursue the definition of

the two general classes of time domain models. The only

reason for treating the infinite line time domain models is

that all of these models and their properties are also valid

for the finite line problem of type 3. The main advantage of

treating the infinite line over the finite line is that there

are no boundaries which must be taken into consideration.

Hence, standard numerical methods which use more accurate

central differences can be used for the purpose of deriving

these models.

The voltage and current node points are defined re—

spectively as xj=ij, j=0hilhi2h13,..., and xp=pr-Ax/2,

p=0ailh12hi3,...,. In order to simplify the notation, the

functions f(2n,t) and:f(2nrl,t) are respectively the approxi-

mate solution for V(nAx,t) and S(nAx—Ax/2,t) which are ob—

tained by some time domain model.
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Each initial condition is allowed to be periodic in

x with period 2L or aperiodic in x. If an initial condition

is aperiodic in x, where either V(x,0) or S(x,0) is given by

h(x), for eoo<=x~=oo, h(x) is required to satisfy the Fourier

integral theorem and to be differentiable almost everywhere.

When V(x,0) or S(x,0) is periodic, this initial condition is

required to be differentiable almost everywhere.

2.1 Basic Numerical Solution.

The theoretical solution for f(n,t) for all t and

n=0hilh12hi3,..., in terms of the specified initial condi—

 

 

tions is

V(nAx/z-v t,0) + (-1)n V(nAx/2+v t,0) 2.1.0

f(n,t) = v .1 J: 2- a--- ..

S(nAx/Z—vpt,0) + (-1)n+1 S(nAx/2+vpt,0)

2

Let us assume that the specified initial condition

V(x,0) is known only at the voltage node points. In addition.

let us assume that S(x,0) is only known at the current node

points. The values of V(x,0) and S(x,0) at values of x

other than at their respective node points can be obtained

by means of interpolation. One method of interpolation is

to define two infinite series, Pv(x) and PS(x), which pass

through f(2n,0) and f(2n-l,0) respectively for

naqilhi2h13,...,. It is quite evident from the definition

of f(n,0) that Pv(x) and Ps(x) are the infinite series
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approximations to V(x,0) and S(x,0). Hence, an approximate

solution for f(n,t) can be obtained by replacing V(x,0) and

S(x,0) in Eq. 2.1.0 by Pv(x) and Ps(x). This approximate

solution for f(n,t) is then given by

n
Pv(nAx/2-vpt) f (-1) PV(nAx/2+vpt)

f(n,t) = 2 + 2.1.1 

PS(nAx/2-vpt) f,('l)n+l P§(nAx/2+vpt)

2
 

It is quite clear that there are a number of infinite

series which pass through the prescribed points but are not

equal at the remaining values of x. For example, Pv(x) is

given be the two infinite series

P (x) = f(2n 0).§in2 7T(XAAx-n)

v
' 7T2(X/Ax-n)2

nz—oo

°° ' 7T; éA 2' Sln X X‘n

PV(X) z: f(2n,0) ”(X x-n)

n=- 00

where both series equal f(2n,0) at x=nAx. In order to

correct this ambiguity, the exact form of Pv(x) and Ps(x)

must be defined. Once these two infinite series are uniquely

defined, Eq. 2.1.1 will be defined as the basic numerical

solution for f(n,t).

Let the operator érfor k=0,1,2,..., be defined as
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6k£(n,t) .-. (-l)i(]:) f(n—k+2i,t) 2.1.2

1::

where (E) is a binomial coefficient. Then the operator

6k.” has the property

6j+kf<nrt> = éjmkflmtn = (Sk((5jf(n,t)). 2.1.3

If AI corresponds to the standard central difference operator

(2) for fixed t, this Operator, AF, is related to the

operator 6k by

Akf(n.t) = (-1)k (5kf(n.t).

The most accurate interpolation polynomials for a

given interval are those which lead to interpolation at or

near the middle of the interval. These types of formulas

are called central-difference formulas. One such formula is

Stirling's interpolation formula (2) which represents an

interpolation polynomial that is based on tabulated values

symmetrically placed with respect to x0. Hence if x0=nAx

and §=(x-x0)/Ax, one method for finding Pv(x) is by using an

infinite degree Sterling's polynomial interpolation formula.

This formula for PV(§) can be written as
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pv(3’c) = f(2n,0) - x#6f(2n,0) + 2.1.4

k-l

7T (x2-j 2)

i=0? (2k): 62kf(2“'0) '
 

kTT: (x2-j 2)

x 1(2k-1)!#6

2k-1f n,0)

=2

where

2k-l 2k—l
#62k—1fl2mo) = (5 f(2n+l,0) :- 6 fun-1,0) ,

It is quite clear that Pv(§)=f(2n+2i,0) for x=i.

Another type of central difference formula is a

Bessel's interpolation formula (2). This interpolation

formula is also based on tabulated values symmetrically placed

with respect to xl=xO+Ax/2. By letting v=(x—xl)/Ax,

Pv(v) can be written in terms of a Bessel's interpolation

formula as

Pv(v) = #6Of(2n+l,0) - v6f(2n+1,0) + 2.1.5

k 2 2
7T [v ~(2j-l) /4]

El (2k): I” liézkflznfl'ol ‘
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k

7T [v2—<2j-1)2/4

(2k+1),—~ m— 62k+1f(2n+1,0)

where

2k 2k
uézkf(2n+l.0) = d f(2n+2.oré 6 jf(2n,0) ,

For v=i—l/2, Pv(v) = f(2n+2i,0).

Consider the even function with respect to t which

is given by

Py(nijvpt) + Pv(nAx+vpt)

2

 

By using Eq. 2.1.4, this function is given by

Pv(nAx-v2t) + Pv(nAx+vpt)

*2“ = f(2n,0) +

k-l ~ 2 ‘2

7T [(vpt/Ax) -j ]

.lio 2k

(2k), 6 f(2n,0)

k:

In the same manner, the odd function with respect to t, given

by

Pv(nAx+Ax(2-vpt) —‘Pv(nAx+Ax/2fvpt)

-. 2 _1
 

can be written terms of Eq. 2.1.5 as
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Py(nAx+Ax/2~vpt) - Pv(nAx+Ax/2+vpt) v t

 

 

2
= *E; f(2n+l,0) +

co k 2 . 2

V." V t ,7T (th/Ax) -(2J—1) /4

P 41:1 ‘ , 2k+l ,

L Ax i (2k+1): (S f(2n+1,0)

k=l

If the same interpolation formulas are used to find

Ps(x), then an approximate solution for f(n,t) is given by‘

2

f(n,t) = f(n,0) + v6f(n,0) + 525-.- (52f(n,0) 4- 2.1.6

 

2 2 2
V(V 3:141 63f(n'0) + l—(fi—i-fl 64f(n,0) +...+...

where v=vptAAx. It will later become evident that both

Stirling's and Bessel's formula give the same infinite series

for Pv(x). Since Eq. 2.1.6 is obtained directly from

Eq. 2.1.1 by replacing Pv(x) and Ps(x) by either their

Stirling's or Bessel's formula representation, Eq. 2.1.6

must be the basic numerical solution for f(n,t). When

Bessel's and Sterling's formulas are used to obtain inter-

polation polynomials of finite degree, Bessel's and Stirling's

interpolating polynomials respectively pass through an even

and an odd number of points. Hence, these polynomials are

generally different in the finite degree case. For the in-

finite degree case, these infinite series as given by

Eqs. 2.1.4 and 2.1.5 give the same function. In order to

show this result, it is necessary to write an alternate form

for Eqs. 2.1.4 and 2.1.5.
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Consider the polynomial p§n(x) of degree 2n which is

 
 

given by

g H “2]
. 1-——-———-

p?n(x) a ~1)3—;n! n! x p=l P%AX2 .

J . (n+3): (n—j): ij-x

This polynomial has the property that

P§n(X) = 0 x=pr, p=n,-n+l,...,j—l

2n . .

Pj (X) = 0 . x=pr, p=j+1,j+2,...,n

p§n(x) = l x=ij

By letting i=x-3Ax. an interpolating polynomial which

passes through f(23+2i,0) for i=0hilhi2,...hin, can be

written as

p2n(§) = f(2fi,0) pg“(§) +

n

[f(2'fi+2j,0) pinfit) + f(23-2j,0) p3?(§)] .

i=1

The polynomial p2n(§) is identical to all interpolation poly-

nomials of degree 2n which pass through the prescribed points.

Hence, p2“(§) is identical to a Stirling's approximation

which is centered about x=HAx. In the limit as n—+-oo,

p2n(§) is identical to the Stirling's approximation for

Pv(§) as given by Eq. 2.1.4.

Let us consider the limit as n-a-oo of
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Zn-

f(2n+2j, 0) pj (X )

for fixed j. According to Knopp (4), this limit is defined

and is given by

2n — . sinll §-' x x
lim f(2n+2j, O) pj (x) = f(2n+23,0) -————J-:JA—%fi%—— -

n~e-oo
71(x JAx x

Hence, the limit as n—e-aa of p2n(x) must be given as

. 2n - - Sin 773? x
11m p (x) = f(2n.0)'—-—?f14Le-+

n-era3 sz

oo _ A

— . sin fllg— ij)z x
Z [f(2n+23,0) 7T(x-ij)/Ax+

_ . si' 7T 32+ 'AX X -f(2n~23,0) (§+ij)AAx]

An interpolation polynomial which passes through

f(2fi+2i,0) for i=-n,-n+1,...,-l,0,+l,...,n,n+1, can also be

written as

2n+2

 

 

 

(n+1) p (X)
p2n+1 — 0

(X) = f(2n,0) n+1+x x +

n

[ (n+j+1> pj“+2(i)

f(2n+2j'0)ummnfin+1+x/Ax +

j=1

_ , (n-j+l) p23+2(x)]

“Zn-2L0) mm. +

_ (2n+2) p2n+2(§)

f(2n+2n+2,0) n+1+§AAx -

2n+l -

This polynomial, p (x), of degree Znfil is identical to a

Bessel's approximation which is centered about x=hAxtAx/2.
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The limit as n-—>oo is

lim p2n+1(§<) = f(2'fi,0) J—éfi—Smfl:: +

n—s-oo

.- . sin 32-' Axi [f(2n+23.0)W+

i=1

. - . sin 3':+jA Ax

f(zn'ZJ'O) (2+ij) Ax] ‘

It can be concluded that Eqs. 2.1.4 and 2.1.5 are equivalent

definitions of Pv(x).

Using this form of the interpolation formulas, Pv(x)

and Ps(x) respectively can be written as shown in Eqs. 2.1.7

sin x x
PV(X) = f(0,0)'———%¥§é%; + 2.1.7

. sin x-'Ax x . sin x+' x

2 [“23'0) (x-ij) Ax + “’23'0’ Wm;-x) x]

i=1

sin x—Ax 2 Ax

. sin x- Ax—Ax 2 X
[f(23+1:0) (x—ij—Ax/Z) AX +

j=1

. gin mx+jAXTé_léA_-AX2 Axf(-2]+l.0) 7TKX+jAX' x 2) X]

where —oo <X<OO.

 

An alternate form of the basic numerical solution for

f(n,t) which is identical to Eq. 2.1.6 can now be obtained by

Substituting Eqs. 2.1.7 into Eq. 2.1.1.

Sections 2.2 and 2.3 will use the expression for Pv(x)

and Ps(x) as given by Eqs. 2.1.7 to show that these



25

approximating functions are defined for all x. Therefore,

the basic numerical solution must also be defined for all x.

2.2 Periodic Initial Conditions.

In section 2.1, Pv(x) and Ps(x) are given by Eqs.

2.1.7. If an initial condition function is periodic in x

with period 2L, it will be shown that the approximating

function is defined for all x and that the approximating

function is a Fourier series on 2k sample points.

If the initial condition V(x,0) is periodic in x

with period.21u Ax is defined to be Ax=L/k, where k is a

ypositive integer. For this choice of Ax, the functions

f(2j,0) are given as

f(2j+2nk,0) = PV(ij,0)

for j=0,1,2,...,2k-1, and n=0,il,:2,...,. Hence, Pv(x) can

be written in terms of f(2j,0) for j=0,1,2,...,2k-l, as

  

2k-l

. _s_iun ”(x/Ax-j) I 1

Pvm = z “23"” 277k lx/zkAx-j/zk +

j=o

  

l 1

[x/2kAin/2k-i + x/2kAx-j/2k+i]

'
M
S

1.1.

.According to Knopp (4), the infinite series portion of the

expression is given by
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00

_____ll;___.+ .rl + .1 .11

x/2kAx-j/2k x/2kAx-j/2k-i x/2kAx—j/2k+i =

i=1

cot TT(x/2kAx-j/2k) .

 

Therefore,

2k—l

PV(X) = Z f(szO) Sjéffi ”(X/AX’J.) COt ”(x/ZW’j/Zk)

i=0

In order to simplify this expression for Pv(x), let

2 = (x/ZkAx) - (j/Zk)

_ ginLZkTTz) cos 7T2 .

y(z) - sinTTz

Upon‘substituting,

2k—l

_ f(2j,0) y(z) ,

,PV(X) I :E: 2k

j=0

 

But y(z) can also be written as

2 .

y(z) = COS ”gins”; ”ZR-'1 2 + cos 7T2 cos 7T(2k-l)z .

This expression for y(z) can be simplified by apply-

 

ing Lagrange's identity (5). Hence,

k-l

Y(z) = cos2 7T2 [1 + 2 Zcos 2m7Tz] +

m=l

cos 7T2 cos 7T(2k-1)z
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By means of trigonometric identities,

k—l

y(z) = l + 2 E: [cos ZTTmz + cos 27Tkz]

m=1

k—l

= l + 2 Z [cos m7Tx/L cos m7Tij/L] +

m=1

k-l

2 Z[sin mTTx/L sin m’ijAx/L] + cos k7Tx/L cos TTj .

m: .

pv(x) can now be written as

k-l k-l

A0 .
Pv(x) = -2- + Am cos mTTx/L + Bm Sln m 7Tx/L +

m=1 =1

-2-- cos k7Tx/L

where

Zk—l

Am =3]: Z f(2j,0) cos m7Tij/L

i=0

2k—l

Bm =_]_._ E: f(2j,0) sin m7Tij/L .

I k

i=0

This is a Fourier series on 2k sample points (6).
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If the initial condition S(x,0) is periodic in x

with period 2L and Ax=L/k, the same argument can be applied

to show that the approximating function Ps(x) can also be

written as a Fourier series on 2k sample points.

Since the initial conditions are differentiable

almost everywhere, in the limit as Ax-—+-0, the approximating

functions will approach the actual initial conditions al-

most everywhere.

2.3 Aperiodic Initial Conditions.

The purpose of this section is to show that the

approximating functions for the aperiodic case are defined

and that each approximating function approximates a Fourier

integral of the initial condition.

In section 2.0, an initial condition was required to

satisfy the hypothesis of the Fourier integral theorem (5)

for the aperiodic case. Hence at every point x(—a3<:x«=oo),

where V(x,0) has a right and left-hand derivative, V(x,0) is

represented by its Fourier integral as follows:

vg+o,0)g+rv(x—0_Loi _
2 _
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Consider the function V(x,0) which is given by

 

OO

Wm) 71% V(x’.0) Si“ xT-rff’XMA—x dx' -

—00

It is clear that V(x,0) and V(x,0) have the same frequency

spectrum for 05 O(<7T/Ax. For O(>777Ax, the function V(x,0)

contains no spectral components. In addition, if 7TKAX is

sufficiently large, V(x,0) is a good approximation to

V(x,0).

If the expression for V(x,0) is numerically inte-

grated using the trapezoidal rule (6), an approximate ex-

pression for V(x,0) is given by

 

oo

- é . gin 'TKijAx)/Ax ,
V(x,0) - V(ij,0) mx-ij)7LT:E

j='°°

At x=ij for j=0,_-_I-_l,_4_-2,j-_3,..., \7(x,0) is identically equal

to V(x,0).

Since V(x',0) satisfies the hypothesis of the

Fourier integral theorem, the approximate expression for

V(x,0) must be an absolutelyconvergent series. Upon re-

arranging this series, it can be seen that the approximate

expression for V(x,0) and the expression for Pv(x) which
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is given by Eq. 2.1.7 are identical. Hence, Pv(x) is an

approximate Fourier integral of V(x,0). In the limit as

Ax——v0, Pv(x) becomes the exact Fourier integral of V(x,0).

The same procedure can be applied to S(x,0) to show

the validity of the approximating function Ps(x).

2.4 Numerical Differentiation.

The standard approach for finding a set of difference

equations which give the approximate numerical solution to

an equation containing partial derivatives is to approximate

the partial derivatives with some numerical differentiation

scheme. A technique similar to this will be used to solve

the telegrapher's equations numerically. Hence, the purpose

of this section is to define a method of numerical

differentiation.

Consider the function g(x,t) which is given by

V(x+ij+A§/24t) — V(-x+jgx+Ax/2,t)

g(xlt) = *2 '

At t=t g(x,to) is an odd function with respect to x. In
OI

addition, at x=0, the partial derivative with respect to x

of g(x,t) is identical to the partial derivative with re-

spect to x of V(x+ij+/2,t). Therefore, the specific ap-

proach is to derive a numerical differentiation formula which
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approximates the partial derivative of g(x,t) with respect

to x at x=0.

Once the functional values of g(x,to) at

)fiiAx/ZhiBAx/2hiSAx/2,...hi(2n+l) Ax/2, are given, g(x,to)

can be approximated with a Bessel's interpolation polynomial

of degree 2n+l which passes through the prescribed points.

Hence, g(x,t0)=p2n+1(x), where p2n+1(x) is interpolating

polynomial. This polynomial in terms of the known values of

V(x+mAx+Ax/2,t0) can be written as

p2n+l(X) = - fi6f(2m+l.to) "'

 

n k 2 2
7T [(x/Ax) -(2j—1) M] 2,,“

3.31 0 f(2m+1,to) ..

Ax (2k+l)!

=1

It is evident that the interpolating polynomial is an odd

function of x.

The derivative of p2n+l(x) evaluated at x=0 is de-

fined as a 2n+l degree approximation for the partial deriva-

tive of V(ij+Ax/2,t0) with respect to x. This approximation

is given by

n+1 n1 2

.71 (21-3)

) = - ”=1 v . . 2m“'1f(2j+1,t )

Ax (-2)’“’1 (am-1): 6 °

 

p2n+1(O

m__. 2.4.0

613 ( jAX+Ax/2 . to)

= bxw _ fl 



32

In order to get an idea of the error which results by

using this numerical differentiation formula, a remainder

term will be derived. For the derivation, it will be assumed

that the (2n+3)th partial derivative of g(x,to) with respect

to x exists in the interval of interpolation,

-(2n+l)Ax/2§xf(2n+l)Ax/2. The function g(x,to) is given

exactly for all x in this interval by

g(x,to) = p2n+l(x) + h(X)

where h(x) is unknown function of x. Since p2n+1(x) is

equal to g(x,to) at x=0,iAx/2hi3Ax/2,...,i(2n+1)Ax/2, h(x)

must have real roots at these points. Therefore, h(x) must

be a function which is identically zero or an odd function

which has at least 2n+3 real roots in the interval of

interpolation.

The partial derivative of g(x,to) with respect to x

in this interval is given exactly by

bg(X.t0) '

FOX — p2n+l

 

(x) + h'(X)

where pén+l(x) is a polynomial of degree 2n. By Rolle's

theorem (7), h'(x) has at least 2n+2 real roots (21) such

that ‘zi «<(2n+1)Ax/2. Therefore, the partial derivative

 

of g(x,to) with respect to x can now be written as
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2n+2

'(x—z.)

09(xito)__ . 1:: 11 2.4.0

bx " p2n+1(X) + k(x) "t (26-1-2):

Consider the function w(y) which is defined by

 

2n+2

(y-2-)

()— 69(y't°)- ' ()-k(')''"'-'''""""""""'i7=T1l -
WY "' By p2n+l Y x (2n+2)!

By virtue of Eq. 2.4.0, w(y) has at least 2n+3 real roots

x.zl,...,22n+2. Upon choosing x in the interval of interpo-

lation such that these roots are distinct, Rolle's theorem

can be applied to show that w'(y) has at least 2n+2 distinct

real roots (2i) such that [Bil < (2n+l)Ax/2. Therefore by

successive applications of Rolle's theorem, k(x) can be

determined. Hence,

(2n+3)

b E(éi'to)

by(2n+3) fl w

 

k(x) =

where -(2n+l)Ax/2 < g < (2n+1)Ax/2.

The partial derivative of g(x,to) can now be written

as

2n+2

bg(x,t0) ézn+3’g(§.to) 77 ”'21)
l __ .31 ,

ax "' = P2n+1(X) + bxl2n+3) (2n¥2$:

Since our main interest is the partial derivative of g(x,to)

  

with respect to x at x=0, this partial derivative is given by
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2n+2

(2n+3)

7T ,(_zi)

bg<OItO)
I

b
9(§:to)

i=1

bxi’ z p2n+2(0) + bxi2n+§) _fi_p (2n+2):

But

2n+2

7T 2i

2

1:1 2) :3 1Ax)2:x~:2 LLLDLGYHLZn-i-l)
< 2M

n+ 1  
(AXE ,

(2)2n+2 (2) <4) <6)°°'(2n+2) " (2) “*3

It can now be concluded that

 
 

“YBKFV - p2n+l(0) " Ox(2n+3) 22n+3

whenever the (2n+3)th partial derivative of g(x,to) exists.

The same argument can be used to obtain a numerical

differehtiation formula for

ingsfiézlfl
X

at x=0 and t=t0.

2.5 Time Domain Models.

The preliminary material which was derived in the

previous sections can now be applied to obtain two general

classes of time domain models which represent the infinite

line. A time domain model is a set of equations for
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which the numerical solution is f(n,jAt), where n=0hilhi2,

i3,..., and j+0,l,2,3,..., and for which the solution

f(n,jAt) approximates the solution of the infinite line at

the defined net points for certain choices of,Ax and At.

One class of models is derived on the basis of ob-

taining a set of ordinary differential equations in t by re—

placing the partials with respect to x with difference

equations. The second class of models is derived on the

basis of the previously derived basic numerical solution.

.Qefinition: Class l-Numerical Time Domain Models:

A time domain model belongs to class 1 if and only if the

time domain model can be obtained by the following steps.

1. Write the appropriate telegrapher's equations at the

defined voltage and current node points.

2. Approximate both the partials for j=0,il,i2,...,

0V(ij+Ax/;,_g_)_ bstij, t)

ex and Ox
, by means of a 2n+l

degree numerical differentiation formula as given by

Eq. 2.4.0. For any given model, n is an integer

equal to or greater than zero which is fixed for all

j.

3. Replace the partial derivatives with respect to x

with their respective difference equation approxi-

mations.

4. The resulting set of equations is a set of ordinary

differential equations in time.
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It is quite clear that the initial conditions on the

line at t=0 provide the necessary initial conditions to solve

these equations.

The definition of the class l—numerical time domain

model gives a set of rules for the construction of a class 1

model. These rules in effect say that any model which be—

longs to class 1 can be written as

m+l In

i7:(2i-3)2

w- 52m‘1f(j,t) 2.5.0

1(2m- 1)' y

for all j and t where 2n+l is the degree of the numerical

 

differentiation formula. If these resulting differential

equations were solved by some analytical means, the error of

the solution would be of the order of (Ax)2n+2.

In order to illustrate class 1, let us look at some

particular examples of models from this class.

Example 1: n=0

. V

SQJJJEl.-._E . ._

dt - Ax 5f(3't)
J-Ozilli2._t3,...,

Example 2: n=1

0 V 3 a

(j,t) .

df =~B 0mm JS—U-L—lft j=o._~:1,s2,df AX 24

These examples respectively are obtained by employing a lst

and 3rd order numerical differentiation formula.
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Definition: Class 2-Numerical Time Domain Models:

A numerical time domain model belongs to class 2 if and only

if the model can be obtained by the following steps.

1. Given the basic numerical solution for f(j,t) which

is given by Eq. 2.1.6 and is written in terms of

f(j.0).

2. With this expression for f(j,t), write the solutions

for f(j,At), f(j,0), f(j,-At),..., and f(j,-j2At).

3. Derive a relationship for finding f(j,At) in terms

of f(j,0), f(j,-At),..., and f(j,-j2At).

4. Truncate this relationship. If (5kf(j,0) p(v),

where v=vat/Ax and p(v) is a polynomial in v, would

be the next nonzero term of this expression if the

series were extended, the remainder term can be ob-

k 0(k)V(-§ ,0)
 

tained by replacing (5kf(j,0) by (Ax)

ax“)

(k)

when k+j is even or by (Ax)k._3L__§i4£_LQL

Ox(k)

when k+j is odd where ij-kAx/2 <g§ <=ij+kAx/2.

5. Use the same truncated expression to find f(j,At)

for all j.

For j2=0, a model belonging to class 2 is just an ex—

pression for f(j,At) obtained by truncating the basic numeri-

cal solution for f(j,At) after n terms. For j2¢0. the model

is still a truncated version of the basic numerical solution
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for f(j,At) except that certain terms of the best numerical

solution have been replaced by known values of f(j,—At),...,

and f(j,-j2At).

Some examples of models from class 2 are:

Example 3:

v At

f(j,At) = fume) +—§;{— (Sumac) j=0._4:_1,_t2,....

Example 4:

v At

f(j,At) = f(j,0) +—§;— 5f(j,0) +...+...

vat

f(jI-At) = f(j,0) — Ax (5f(j.0) +...+... 

By subtracting these two expressions which eliminates all

even terms,

 

 

2v At

f(j,At) = f(j,-At)+' A: 5f(j,0) +...+...

Truncating,

f(j,At) = fun-At) +2323: 6f(j.0)

Example 5:

fl. _ . VpAt . M2 2 .
3,At) - f(],0) + Ax (5f(3,0) +_2(Ax)26 f(3,0) +...
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f(j.-At) = mac) “£3;- 5f(j.0) +4??? (5 mm) +...

2 x

By adding the two expressions which eliminates all odd terms,

f(j,At) is now given by

f(j,At) = 2 f(j.0) - f(j.-At) +

2

(v At)

-—jL———-(52f(j,0) +...+...

2(Ax)2

Truncating,

, 2

f(j,At) '= 2 f(j,0) - f(j.-At) +fl§ 62mm .
2(Ax)

This example from class 2 is the model which is given in most

numerical analysis books (1,2,3) as an approximation to the

‘wave equation.

For a model belonging to either class 1 or class 2,

the defining expression for f(j,t) for all j is independent

of j for fixed.Ax and At. If the nodes were divided into

mutually disjoint sets, different models from a given class

could be used to represent each set. From a mathematical

point of view, this is a perfectly valid way of obtaining a

time domain model for the line. In addition, two much larger

classes of models could be obtained. The only problem of de-

fining models in this manner is that the resulting models

would be far more complex in form and not nearly as practical
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for computer solution. There is no apparent advantage in

doing this. Hence, this thesis only considers models be-

longing to the presently defined classes even though the re—

sults of the thesis are generally valid for the more compli—

cated models.

2.6 Methods of Numerical Splution for the Time Domain Models.

Now that two general classes of time domain models

are defined, this section will discuss certain numerical

techniques for finding their solutions..

First of all, let us consider the models belonging

to class 1. It is quite clear that any numerical technique

for solving linear ordinary differential equations can be

used to solve the differential equations which are defined

'by any model belonging to this class. Because of the

linearity of the equations and the special properties of the

operators (5p, given by Eq. 2.1.3, these equations can be

converted to difference equations by treating each equation

individually once the method of solution is stated.

Let us now consider one differential equation belong—

ing to a given model for this class. This equation can be

written as

. V

df(],t) P 3 2m+1 .

H(Ax,At) f(j,t)
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where d2i+l is a constant for i=0,l,2,...,m, and H(Ax,At) is

an operator which is a function of Ax and At. If H(Ax,At)

is considered a constant, then any numerical technique of

solution that uses the values of f(j,nAt), f(j,(n-1)At),...,

and f(j,(n-j2)At) to find f(j,(n+l)At) can be written as

j2 mi

f(j.(n+l)At) = Z Z bi p(At) Hp(Ax.At) f(j.(n-i)At)

l=0 p=0

where bi,p(At) for l=0,l,2,3,...,]2, and p=0,l,2,...,mi, is

a function of At. By treating Hp(Ax,At) as a polynomial in

(5, f(j,(n+l)At) is given by

J
2

f(j,(n+1)At) = ai(Ax,At,6) f(j,(n—i)At) 2.6.0

l=0

where ai(Ax,At,éS) for i=0,l,2,...,j2, is an operator which

is a function of Ax,At, and(5. Equation 2.6.0 is simply the

resulting difference equation which is obtained from this

differential equation once the method of numerical solution

is specified.

If the same numerical technique is used to solve

each differential equation belonging to this model, then the

difference equation, Eq. 2.6.0, is valid for all j. In fact,

there is no apparent reason for using different methods on

different equations belonging to this model.
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A first order model belonging to class 1 is given by

df(j,t) __:p_ .

for j=0hilhi2,...,. Some examples that use the Runge-Kutta

methods (2) to solve this model are shown to illustrate the

construction process for obtaining Eq. 2.6.0.

Example 1: Runge Kutta first order:

(5H(Ax,At) =

5
1
:
5

For this technique of solution,

f(j,(n+l)At) [1 + At H(Ax,At)] f(j,nAt)

v At

f(j,nAt) + 7%;- 6f(j,nAt).

Example 2: Runge Kutta second order:

v At

_ .2..—
H(AX,At) - AX 6

 

2

f(j,(n+l)At) [1 + At H(Ax,At) + At Eggx,At)] f(j,nAt)

2
v At (vat) 2 .

l+-§}T—+—ZZ?—— (S f(j,nAt)

The definition of a class 2 model gives a difference

equation of the form

j2

f(j,At) = ai(Ax,At,(S) f(j,-iAt) -. 2.6.1

i=0
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where ai(Ax,At,(5) is an operator which is a function of

Ax,At, and(5. Since f(j,At) for j=0hil“:2,..., determines a

new initial value problem at t=At, this formula may be used

to find f(j,2At). Hence, Eq. 2.6.1 can be used recursively

to find f(j,nAt) for n=0,l,2,...,.

For certain models from class 1 and certain numerical

methods of solution for these models, there are models from

class 2 which give the same sets of difference equations.

 
But there are also certain cases where this is not true. For

 

example, consider the model from class 1 given by a third

degree approximation to the partials.

- V

film-155 [Of(j,t) - 63f(j,t)/24]

A Runge Kutta first order method for solving these resulting

differential equations gives the following difference equations.

f(j,(n+l)At) =

v At

f(j,n t) + 7%}— [O£(j,nAt) - (53f(j,nAt)/24]

Since this difference equation gives f(j,(n+l)At) in terms

of f(j,nAt), any model belonging to class 2 which would give

the same difference equation must be obtained by truncating

the basic numerical solution, Eq. 2.1.6. It is quite clear

that Eq. 2.1.6 can not be truncated to give the same dif-

ference equation.
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A number of these methods derive a difference equation

expression for f(n.(P+l)At) in terms of f(j,pAt),..., and

f(j,(p-j2)At) for n=0uilhi2,..., and j=0hilL12,...,. Such

difference methods are called difference methods with (j2+2)

levels (1) in t. For p=0 and jzfio, where are the values of

f(j,-At),..., and f(j,-j2At) obtained in the case where only

f(j,0) is specified? This question can only be answered by

saying that there is insufficient information present to find

f(j,At).

Let us consider a difference method which gives

f(j,(p+1)At) in terms of f(j,pAt) for all j. If f(j,0) are

specified for all j, then the values of f(j,t) for t=At,...,

(p+l)At, can be calculated for all j by this difference

method. Since the values of f(j,(p+1)At) are known for

m=0,l,2,...,p+l, a different difference method can be used

to find f(j,mAt) for m=p+2,p+3,...,. This new difference

method can be multi-level (j2#0) difference method in t.

2.7 §pecial Properties of Difference Equation Solution.

When the specified initial conditions have special

properties, the solution to any model belonging to class 1

or class 2 must also have special properties. This section

will derive some of these properties which will be used in

later chapters.

First, let the initial condition functions, V(x,0)

and S(x,0), be respectively an odd and an even function with

respect to x=mAx. For p=0,l,2,..., the relationships
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(Spf(2j+2m,0) = 6pf(—2j+2m,0)

(Spf(2j+l+2m,0) =—6pf(-2j-l+2m,0)‘

must be true for all j. Hence for j2=0, the solution any

difference equation for f(j,At) which is given by either

Eq. 2.6.0 or 2.6.1 must have the property

6pf(2j+2m,At) = —6pf(—2j+2m,At)

6pf(2j+l+2m,At) = 5pf(-2j-1+2m,At)

for all j. By means of induction, it can be seen that

Eqs. 2.7.0 must be true for all j and n=0,l,2,. 00,0

6pf(2j+2m,nAt) = (Spf(-2j+2m,nAt) 2.7.0

(5Pf(2j+1+2m,nAt) =-6pf(—2j-l+2m,nAt)

For the multilevel difference equations, given by

Eqs. 2.6.0 and 2.6.1, where f(j,nAt), f(j,(n-l)At),...., and

f(j,(n-j2)At) satisfy Eqs. 2.7.0 for all j, the solution for

f(j,(n+l)At) must satisfy Eqs. 2.7.0.

This same argument can be applied to the case where

V(x,0) and S(x,0) are respectively an even and an odd

function with respect to x=mAx+Ax/2. The result of this

argument is given by Eqs. 2.7.1.

(5pf(2j+2m+l , nAt) - (Spf(—2j+2m+l,nAt) 2.7.1

5Pf(2j+2m+2 , nAt) 6pf(-2j+2m.nAt)
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Now let us consider the case where V(x,0) and S(x,0)

are periodic in x with period L. In addition, letAx be

chosen such that Ax=L/k, where k is a positive integer. Be—

cause of this periodicity, the functions f(j,0) are given by

f(2j+2nk,0) = V(ij,0)

f(2j+l+2nk,0) = S(ij+Ax/2,0)

where n=0,ilhi2,..., and j=0,1,2,...,k—1. These equations

also imply that the following is also valid

épf(j+2nk,0) = (Spf(j,0)

for j=0,1,2,...,2k-l, p=0,l,2,..., and n=0hilhi2,...,. Hence

for j2=0, the solution to either Eq. 2.6.0 or 2.6.1 must have

the property that

(Spf(j+2nk,At) -_- (Spf(j,At).

By induction, this argument can be used to show that Eqs.

2.7.2 are valid for j=0,1,2,...,2k—l, p=0,l,2,..., and all n.

(Spf(j+2nk,mAt) = (Spf(j.mAt) ' 2.7.2

Equation 2.7.2 is also valid when multilevel differ—

ence equations are used to find f(j,p t).

2.8 Conclusion.

Two classes of infinite line time domain models have

been derived. Any model which belongs to class 1 is obtained
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by approximating the partial derivatives with respect to x

at certain node points and obtaining a set of ordinary linear

differential equations. On the other hand, any model which

belongs to class 2 was derived on the basis of a basic numeri-

cal solution which was defined in section 2.1.

In addition to deriving these two classes of time

domain models, sections 2.2 and 2.3 showed that the basic

numerical solution is defined and can be written as either a

Fourier series on 2k sample points, an approximate Fourier

integral, or a combination of both. Whereas, section 2.7

showed that whenever the specified initial conditions had

special properties, the solution to any model by the methods

of numerical solution which are given in section 2.6 must al-

so have certain special properties.

The findings of this chapter are extensively used in

the remaining chapters of this thesis.



III. TRANSMISSION LINE OF TYPE 3

 

A problem of type 3 is a lossless parallel trans-

mission line of length L for which a boundary condition at

each end of the line is defined to be zero for t20 but has

specified initial conditions at t=0. The line is defined

to start at x=0 and to end at x=L. This chapter will

specifically treat the case where the boundary conditions

E(0,t) and E(L,t) are specified to be identically zero for

tZO .

If E(x,0) and I(x,0) are the specified initial con-

ditions for this problem of type 3, an infinite line for

which the initial conditions are

V(x+2nL,0) = E(x,0) Ofxfl

V(—x+2nL,0) = -E(x,0) 0:x:L

S(x+2nL,O) = I(x,0) ijfL

S(—x+2nL,0) = I(x,0) OijL

where n=0,_-I;l,_-t2,:3,..., has the same solution for Offo as

the problem of type 3 for all t. Hence, an approximate

numerical solution can be obtained for this problem of type 3

by solving the infinite line problem for certain specified

initial conditions.

48
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Consider the functions V(x,0) and S(x,0). Both of

these functions are periodic in x with period 2L. If (V

f(j,nAt) is the approximate numerical solution to this in-

finite line by any difference method defined in Chapter 2,

then according to Eqs. 2.7.2, when Ax=L/k, the relationship

f(i+4pk,nAt) = f(i,nAt)

where i=0,l,2,...,4k-l, and p=0,il,.i2,..., is true.

Since V(x,0) and S(x,0) are also an odd and an even

function of x respectively with respect to x=0, Eqs. 2.7.0

state that this relationship further reduces to

f(2i+4pk,jAt) = f(Zi,jAt) 3.0.0

f(-2i+4pk,jAt)= —f(2i,jAt)

f(2i+l+4pk,jAt) = f(21+l,jAt)

f(-2i—l+4pk,jAt) = f(2i+l,jAt)

where p=0,j-_l,_-I;,..., and i=0,l,2,...,k—l. This relation—

ship also states that f(2pk,jAt) for all p is identically

zero independent of the difference method.

Because of these special infinite line properties,

any model or difference method derived in Chapter 2 can be

reduced to a set of 2k equations for which the numerical

solution is f(p,jAt), where p=0,l,2,...,2krl. Since f(0,t)

is identically zero, the actual equations which need be

solved can be further reduced to (2k-l) equations.
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If f(i,jAt) or f(i,t) is replaced by g(i.jAt) or

g(i,t) for i=0,l,2...,2k, these resulting (2k+l) equations

are defined as a time domain model for the given problem of

type 3. The functions g(2i,t) for i=0,l,...,k, and g(21-l,t)

for i=1,2,...,k, are defined as the approximate numerical

solutions for E(iAx,t) and I(iAwax/2,t) respectively.

Since the functions, g(0,t) and g(2k,t), must be identically

zero, only the remaining (2k-1) equations need by solved.

Hence, this chapter will investigate methods for deriving

these (2k-l) equations and their methods of solution.

3.1 Egansformation Matrix C.

The time domain models and difference methods de-

rived in Chapter 2 are all in terms of the operator (5m

for m=0,l,2,..... Because of the special infinite line

properties stated in sections 3.0 and 2.7, (5mf(j,t) for

jaoxih:2,..., can be written in terms of f(p,t) for

p=0,l,2,...,2k. This section will derive a transformation

matrix C such that if c? j is a typical entry of Cm, then

I

2k—1

6mf(p,t) = chJ f(j,t)

j=1

for p=l,2,...,2k-l.

If f(i,t) is substituted for f(i,jAt) in Eqs. 3.0.0,

then the relationship
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(Smf(2i+4pk,t) = 6m£(2i,t) . 3.1.0

5mf(-2i+4pk,t) = -6mf(2i,t)

(Smf(21+1+4pk,t) = (5mf(2i+l,t)

5’“f(-2i-1+4pk,t) = 6mf(21+l,t)

where i=0,l,2,...,k, and p=0,_tl,_-I;2,..., is valid. Since

5m£(2-pk,t) e -5’“£(0,t)

6mf(-2k+4pk,t) = ~6mf(2k,t)

for p=O,_-i_-_l,_-f_2, 6mf(2pk,t) must be identically zero for

all t.

Let us consider 6m+1f(i,t) for i=l,2,...,2k-l.

According to Eqs. 2.1.3, 6m+lf(i,t) can be written as

5m+lf(i,t) a 6mf(i-1,t) - (Smf(i+1,t).

But

6mf(0,t) .-. 6mf(2k,t)=0.

Hence 6m+lf(i,t) is given as

5m+lf(1,t) 6mf(2,t)

§m+lf(i,t) (Smfli-Lt) - 6mf(i+l,t) i=2,3, . . .,2k-2

6m+1f(2k~l,t) = 6m£(2k-2,t).
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This gives a direct linear relationship between (5m+lf(i,t)

and 6mf(i,t) for i=1,2,...,2k-1, which is independent of m.

This linear relationship can be expressed by means of a

(2k—l)x(2kv1) matrix C.

entry ci,j

c -1

i,i+l ‘

, . a

ci+l,1

c. . = O

1,]

This resulting matrix is

By definition,

6m+1f(l,t)

6m+lf(2,t)

 Lu—
5m+1f(2k-2, t)

5m+1f (2k—l , t)

of C is

-1

 —

It is quite clear that a typical

1:112, coeoZk-l

i=1,2,...,2k-l

i#j+1. j#i+l.

3.1.1

called the transformation matrix.

6mf(l,t)

6mf(2,t)

 L.—
5mf(2k-2,t)

5’“£(2k-1,t)

.q

 

3.1.2

Hence (5mf(i,t) for i=l,2,...,2k-l, can be written in terms

of 60f(i,t)=f(i,t) as
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~6mf(l,t) I —f(l,t) 7 3.1.3

6mf(2,t) f(2,t)

' = cm

5m£(2k—2,t) f(2k-2,t) ;

b6‘“f(2k-l,t)J Lf(2k-l,t)-J . 
It is quite clear that this is a very convenient means of ex—

pressing (Smf(i, t).

The matrix C has at least one nonzero entry and at

most two nonzero entries in each row or column. This

property indicates that special methods can be used to calcu-

late Cm+1. If C? is the ith row of Cm, then it is quite clear

that

cW+l = cw - c? i=2,3,...,2k—2 3.1.4
1 1—1 1+1

63131 = Cgk—Z.

In effect, this says that if this recursion method is em-

ployed to calculate Cm+l from Cm and C, then 2(4k2~6k+2)'ad-

ditions and no multiplications would be required. If the

product was taken in the ordinary sense, then (2k-l)(4k2-4k+l)

2
additions and (4k -4k+l) multiplications are required. If the

time to perform a multiplication is equal to or greater than
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the time required to perform an addition, the matrix product

in the ordinary sense takes at least k times longer to exe-

cute than the recursion formula.

3.2 Transformation of Time Domain Models Belonging to_Class 1.

Given a time domain model, belonging to class 1, for

the infinite line. There are two approaches for obtaining a

set of (2k—l) equations which give the approximate numerical

solution to the problem of type 3. The first approach is to

directly transform the infinite line time domain model, given

by Eqs. 2.5.0, to the finite line problem of type 3. This

process would give (2k-l) ordinary linear differential equa—

tions for which the solution approximates E(x,t) and I(x,t)

at the defined nodes. A numerical method of solution then

can be defined to solve these resulting differential equa—

tions.

The second approach is to define a method of numeri—

cal solution for the infinite line model. The resulting set

of difference equations, given by Eqs. 2.6.0, can then be

transformed to the finite line problem. As far as the end

result is concerned, both approaches are identical. This

section treats the first approach.

A time domain model for the infinite line belonging

to class 1 which is obtained by using a (2n+l)th degree

difference equation approximation for the partial deriva-'

tives with respect to x can be written as



55

. 2 _

df(j,t)_ [i=1 (21'3) ] (52m lf(j,t)

dt Ax (-2)m l(Zm- 1)!

where j=0hil.:2, .,. Because of the special infinite line

properties given by Eqs. 3.1.0, the solution to this infinite

set of differential equations can be obtained by solving the

finite set of (2k—l) differential equations which are

pLTrl(2i-3)2] '

df‘llt )__:vp i 62m.1f(jlt)

 

Ax (—2)m—l (2m-1)!

where j=l,2,...,2k—l.

If F(t) is a (2k-l)xl matrix

1N1,t)

F(t) =

  f(2k-1,th

with a typical entry of f(i,t), then these (2k-l) differential

equations can be written in matrix form as

n+1 m 2

Vp[ 7T (Zi— 3) ]

gi(t) = i=1 C2m'1F(t).
 

Ax (.2)m'1(2m-1):

m=1
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Let the (2k-l)xl matrix G(t) be defined as

Ar

g(l,t) 3.2.1

9(2.t)

G(t) =

g(Zk—th)

  g(2k-l,t) .

By replacing F(t) by G(t), a set of (2k-l) differential equa-

tions are obtained for which g(i,t), where i=l,2,...,2k—l, is

the solution. Since g(i,t) is the approximate solution for

E(x,t) and I(x,t) at the defined node points, this resulting

set of equations is a time domain model for the problem of

type 3 obtained by transforming the infinite line time domain

models belonging to class 1.

Since this time domain model is obtained directly

from the infinite line time domain model, the mathematical

properties are identical to those which were derived for the

infinite line. Probably the most important advantage of trans-

forming the infinite line model or difference method is that

all the approximations for the partial derivatives are ob—

tained by means of central difference formulas of degree

(2n+1). It is not obvious by approaching the problem of

type 3 directly that central difference approximations can

be used at all nodes.
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Any numerical technique can be used to find the numeri-

cal solution to these equations. One convenient procedure

for converting these differential equations to difference

equations is as follows. If the (2k-l)x(2k—l) matrix An is

 

given by

+ m

n 1v [Wm-39]
A __ P i=1 2m-1 3.2.2

n - m-l C

Ax (-2) (2m-l):

m=1

then this model can be expressed in matrix notation as

dG(t) _ An G(t). 3.2.3

dt "

If G(t) and An are treated respectively as a single variable

and a constant, then any numerical technique of solution that

uses the values of G(jAt), G((j-l)At),..., and G((j-jzAt), to

find G((n+l)At) can be written as

m .

lj2

G((j+l)At) = Z Z bi p(At) hfi G((j—flAt) 3.2.4

i=0 p20

where bi j(At) for i=0,l,2,...,j2, and p=0,l,2,...,mi, is a

function of the increment At. By treating G(t) and An as

matrices, Eqs. 3.2.4. give us the desired difference

equations.
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Some examples of difference equations derived from a

first order model belonging to class 1 are:

Example 1: Runge Kutta first order:

v At

G((j+l)At) = [u + -§;‘— 0] G(jAt)

Example 2: Runge Kutta second order:

vAt (vpAt)2

G((j+1)At) = U + —-P—- c +

2 Ax

2 02. G(jAt)

J

3.3 Transformation o ass 2 T'me Domain Models.

 

It was shown in section 2.1 by Eqs. 2.1.6 that the

basic numerical solution for the infinite line is

2

f(j,t) = f(j,o) + v6f(j,o) .,. v2 £413.21 .,.

2!

3 . 4 .

mat/4, fistula . v2(v2-1) 4.541491 .

where j=0hilh12,..., and v=th/Ax. Because of the special

infinite line relations given by Eqs. 3.1.0, it is only

necessary to consider the basic numerical solution for f(i,t)

for i=1,2,...,2k—1.

If the transformation matrix C and the matrix F(t)

are used, it is quite evident that this basic numerical solu—

tion can be written in matrix notation as
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2

F(t) = F(O) + v c 9(0) + v2 S—g-f-Ql + 3.3.0

2 c3}? 0
V(v -l/4) 3. +

If F(t) is replaced by G(t), the result is an alternative form

of the basic numerical solution at the defined nodes for the

problem of type 3.

The definition of a class 2 time domain model which

is given in section 2.5 can be applied to this form of the

basic numerical solution. The resulting equations are identi-

cally the transformed class 2 infinite line time domain model.

3.4 Transformation of Difference Methods.

Instead of transforming the time domain models as

shown in sections 3.2 and 3.3, the difference methods which

are given in section 2.6 by Eqs. 2.6.0 and 2.6.1 can be

transformed to the finite line case.

A difference method. given by either Eqs. 2.6.0 or

2.6.1, can be written as

32

f(j,(n+l)At) = zai(Ax.At.6) f(j,(n-imt)

i=0

‘where ai(Ax,Am,(5) is an operator. This operator can be ex—

pressed as

m .

l

_ ' P
ai(Ax,At,CS) - Z di’p(AX.At)6

=0



60

where 3i p(Ax,At) is a constant for fixed.Ax and At.

I

If the same procedure is used as was given in sec-

tions 3.2 and 3.3, this transformed difference can obviously

be written as

G(jAt) = di’p(Ax.At) cp G((j-i>At>.

3.5 Conclusion.

The time domain models which are presented in this

section are obtained directly from the infinite line time

domain models by means of a finite-infinite line transfor-

mation. Therefore, the mathematical properties of these

models are identical to those derived for the infinite line

models. The most important advantage of obtaining the models

in this manner is that all the approximations for the partial

derivatives with respect to x are obtained by more accurate

central difference formulas.



IV. LAUNCHING NUMBERS

4.0 Introduction.

A problem of type 1 is a transmission line problem

which has zero initial conditions and one identically zero

boundary condition. One such problem of type 1 has the

initial and boundary conditions specified as

Ebgm =Ihmm =0 0<fo . 4JLO

E(L,t) = O Oft<GD

I(0,0) = Esl(0)

EULU =Esflt) Oft<oo

where Esl(t) is a specified function of t.

In order to indicate the development of this chapter,

let us consider the problem of type 1 for which the boundary

and initial conditions are specified as follows:

En,l(x’0) = In,l(x’0) = O 0<fo

Emluufl =0 Ojt<a>

In,l(0’0) = Esl(nAt)

En,l(0’t) = O t<0

= Esl(t+nAt) o:t<At

=0 tiAt

61
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Since En l(0,t) is identically zero for tfjAt, it is possible

to define a problem of type 3 at t=At for which the initial

and boundary conditions are

En(x,0) = En,l(x’At) 0:5fo 4.0.1

In(x,0) = In,l(X’At) Offo

En(0,t) = En(L,t) = O ()ft:<CD

such that

En,l(x,t+At) En(x,t) 4.0.2

In,l(x’t+At) = In(X,t)

fm:0:t<a>am10:x:L.

Since the lossless parallel transmission line is a

linear problem, the superposition principle may be applied

at any time. Hence, it is quite evident that the relation-

ship

P

E(x,t) = Z En I(x,t-nAt) 4.0.3

=0

P

I(x,t) = Z In l(x,t-nAt)

n=0

is valid for pAtft" (p+1)At. If Eqs. 4.0.2 are substituted

into Eqs. 4.0.3, then the solution for E(x,t) and I(x,t) can

be written as
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p—l

E(x,t) = E: En(X,t-(n+l)At) + Ep’l(x,t—pAt)

n=0

p-l

I(x,t) :20 In(x,t-(n+l)At) + Ip’l(x,t-pAt)

where pAtft< (p+l)At. At t=pAt, the solutions for E(x,pAt)

and I(x,pAt) are given as

p-l

E(x,pAt) = Z En(x,(p-n-1)At) 0<x:L 4.0.4

n=0

p—l

I(x,pAt) = Z In(x,(p-n—1)At) 0<fo

n=O

E(0,pAt) = Esl(pAt)

p—l

I(O,pAt) = Z) In(0,(p-n-1)At) + Esl(pAt).

n:

Equations 4.0.4 simply state that the solutions for E(x,pAt)

and I(x,pAt), where 0<x__<_L, can be obtained by summing the

solutions for p problems of type 3.

The general method of numerical solution can now be

stated for the problem of type 1 which is specified by the

initial and boundary conditions given by Eqs. 4.0.0. The

nonzero boundary condition, Esl(t), at t=nAt is used to de-

fine a problem of type 3 at t=(n+l)At. The numerical method

of solution for a problem of type 3 was covered in detail in

Chapter 3. According to Eqs. 4.0.4, the numerical solution
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at the interior node points at t=pAt is the superposition of

the numerical solutions of p problems of type 3. If gn(j,0).

j=0,1,2,...,2k, where AxeL/k, are the initial conditions to

the problem of type 3 which was defined at t=(n+l)At, this

chapter specifically derives a class of transformations for

which

gn(3.0) = bj I(Ax,At) E81(nAt) j=0,l,...,2k 4.0.5

such that

p—l

g(j.PA¢) = :E: gn(j.(p-n-1)At) j=l,2,...,2k 4.0.6

n=0

9(0.pAt) = Esl(pAt)

are the approximate numerical solutions to E(x,pAt) and

I(x,pAt) at the defined net points. Any transformation from

this class of transformations defines the bj 1(Ax,At), where

j=0,1,2,...,2k, which are employed in Eqs. 4.0.5. These

quantities, bj l(Ax,At), are defined as launching numbers.

The specific approach for deriving this class of

transformations is to use the basic numerical solution, given

by Eqs. 3.3.0, to find gn(j,(p-n—1)At), and then compare the

functions g(j,pflm), given by Eqs. 4.0.6, for all p, to an

approximate Fourier integral, an approximate Foureir series,

and an analytical solution for this problem of type 1.
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4.1 'gpproximate Fourier Integral.

Part of this chapter is based on an approximate

Fourier integral. Hence, this section is devoted to the

derivation of the approximate Fourier integral.

The Fourier integral transform pairs are

00

g(CX) = [f(X') COS(O((X'-x)) dx'

"'00

0(

f(x) = lim(l/7T)[g(0(') dO('

0
0<-oo

where g(CX) and f(x) at present bear no relationship to the

functions g(n,t) or f(n,t).

Let us approximate g(CX) by 5(cx) where 5(cx) is

given as

6(a) = g(ou o:o<: TT/AX

5(00 = 0 CX>7T/Ax

It is quite clear that this is a good approximation ifAAX is

chosen sufficiently small. If g(CX) is used in place of

g(CX), the transform pairs are

00

6(0() =[f(X') COS(O((X'-X)) dX' 0:0(fTT/Ax

00
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5(():) = 0 CX:> 7TXAX

7T/Ax

7f(X) = (1/7T)[ §(0() dO<

0

where f(x) is an approximation to f(x) . If §( (X) is elimin-

ated from these equations. f(x) can be written as

oo 7T/Ax

f(X) = (l/TT) / f(X') dx' [coed O('(X'-X)) dO<'

'—oo 0

oo

= [f(x') gin TRx'-x)/ x dx' .
 

H(X'-X)/ x .

-00

If this integral is numerically integrated by means of the

trapezoidal rule, the function f(x) is then approximated by

 

w

.

f(x) = £3; E f(nAx') El“ $23k32§3§
4.1.0

-oo

where Ax' may or may not equal Ax. Equation 4.1.0 is defined

as the approximate Fourier integral of f(x).

If f(x) is given by Eqs. 4.1.0, it is quite clear

that f(x) approximates f(x) for Ax and Ax' (generally

Ax'SAx) sufficiently small. Since

s'n x'-x A

(n x'-x /Ax

contains no spectral components for O(>7T/Ax, f(x) can have
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no spectral components for CX>47XAX. In addition, when

Ax'=Ax, this is the same Fourier integral approximation as

was given in section 2.3.

4.2 ,Approximate Fourier Integral and Series Solution.

The main purpose of this section is to derive an ap-

proximate Fourier integral and series solution for E(x,pAt)

and I(x,pAt). In fact, special forms of an approximate

Fourier integral and series solution for E(x,pAt) and

I(x,pAt) are derived which will be used in later sections

of this chapter. The reasons for developing these special

forms will become evident in later sections.

First of all, let us consider the problem of type 1

for which the nonzero boundary condition is given by the

function E:l(t) where

p <
Esl(t) Esl(t) o_t<pAt 4.2.0

=0. tipm:

If the analytical solution for this problem is given by

Ep(x,t) and Ip(x,t), it is quite clear that

Ep(x,t) = E(x,t) 0ft<pAt, osfo

Ip(x,t) = I(x,t) Oft<pAt, 0:5fo

Ep(x,pAt) = E(x,pAt) 0<fo

Ip(x,pAt) = I(x,pAt) 0<fo
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is valid. In addition for tE:pAt, this problem corresponds

to a problem of type 3 where Ep(0,t) and Ep(L,t) are identi—

cally zero.

For tE:pAm, the analytical solution for Ep(x,t) and

Ip(x,t) can be written as

00

p _ p _ _ _ p _
E (x,t) — ZESl(t x/vp 2nL/vp) isslum/vp 2nL/vp)

n=-0‘0 H's-'00

00

p _ p _ _ p _
I (X,t) _i Esl(t x/vp 2nL/vp) +2 Esl(t+x/vp 2nL/vp).

n=-OO n=--—oo

Both the functions Ep(x,t) and Ip(x,t) are periodic in both

x, {-00 < X<oo) and t, (—00 < t< 00) even though the solutions

are valid for Offo and pAtft<oo. This forces Ep(x,t)

and Ip(x,t) to satisfy the finite-infinite line transfor-

mation as discussed in Chapter 3.

If we let t'=t-pA¢ and define the function Mp(-vpt')

as

p_ .___p .,
M ( vpt ) Esl(t +pAt), 4.2.1

then the solution for Ep(x,t') and Ip(x,t') for t'3:0 can be

written as
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OO

Ep(x,t') = ZMp(—vpt'+x+2nL) - i Mp(-vpt'-X+2nL) 4.2.2

n=-OO =-OO

{XL

Ip(x,t') = MP(-vpt'+x+2nL) +,Z_,MP(-th'—X+2nL).

n=-OO nz—oo

By letting

oo

Vp(x) = :E:Mp(x+2nL), 4.2.3

n=—co

Ep(x,t') and Ip(x,t') can now be expressed as

Ep(x,t') = Vp(-vpt'+x) - Vp(-vpt'-x) 4.2.4

Ip(x,t') = Vp(-v t'+x) + Vp(-V t'—X)

P P

where Vp(x) is periodic in x with period 2L.

Since Vp(x) is periodic in x with period 2L, this

function can be expanded in a Fourier series as

Vp(x) = 38/2 + [SE cos(nTTx/L) + 4.2.5

n:

SE sin(n7Tx/L)]

where



7O

2L

331: (l/L)[Vp(x) cos(n7Tx/L) dx

0

2L

bi = (l/L) /PVp(x) sin(n7Tx/L) dx.

0

If x=vpt and the trapezoidal rule is used to numerically

integrate the integrals to find the coefficients, it can

easily be shown that

t

3" = zip-$— Mp(jvat) cos(n7ijpAt/L) 4.2.6

J=l

v At
-p = . . _

bn “BI—L i: Mp(jvat) Sin(n7ijpAt/L),

j=l

The function Np(Ax',—vpt') is defined as the approxi-

mate Fourier integral of MP(—vpt'). According to Eqs. 4.1.0,

the approximate Fourier integral of MP(-vpt') is given as

Np(Ax',-vpt') = 4.2.7

v At sin TT(nv At+v t')/Ax'

_£L_. P P- P

M (nvat) TT(nv§At+vpt')/Ax'
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where,Ax'k'=L. The increment Ax' may or may not be equal to

the increment Ax used to solve the transmission line problems

of type 3. Hence an approximate Fourier integral solution

can be obtained by first rearranging the absolute convergent

series which are given in Eqs. 4.2.2 and then be replacing

Mp(-vpt') by its approximate Fourier integral

E§(x,t') = Np(Ax',-vpt'+x) - Np(Ax',-vpt'—x) + 4.2.8

00

ii: [NP(AX',-vpt'+x+2nL) + Np(Ax',-vpt'+x-2nL{] -

n=1

00

:E: [NPQAX',—vpt'-x+2nL) + Np(Ax',—vpt'—x—2mLJ

n=1

I§(x,t') = NP(Ax',-vpt'+x) + NPLAx',-vpt'-x) +

co

[Hp(Ax',-vpt'+x+2nL) + Np(Ax',-vpt'+x-2nLJ +

:
3

1
8

,'
.'
.L

[Np(Ax' ,-vpt'-—x+2nL) + Np(Ax' ,-vpt'—x-2nL)]

:
3 ll l
-
J

where E§(x,t') and-IE(x,t') are respectively the approximate

Fourier integral solutions for Ep(x,t') and IP(x,t') when

t'EZO.

By letting the function V§(x) be defined as

00

vim = Np(Ax',x) + Z [Np(Ax',x+2nL) + Np(Ax',x—2nL)]

n=1 4.2.9
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the approximate solution for E§(x,t') and I§(x,t') can be

written as

p. p_ . _p_ ._
Ef(x,t ) Va( vpt +x) Va( v t x) 4.2.10

P

P I_p_ I p- '.If(x,t ) — Va( vpt +x) + Va( vpt x).

This function is a periodic function in x with period 2L.

Therefore, it can be represented as a Fourier series. If

Np(Ax',x+2nL) is replaced by its defining equation, Eq.

4.2.7, then V§(x) can be written as

P

sin 7T( nvPAt-x)/Ax '

VP(X) * VpAt ‘_fi MP(nv At) 1"— +
a " Ax' p TT(nvat-x)/Ax'

n=1

 

w

\

'7 sin 7T(nvat-x—2iL)/Ax' sin ”(anAt*X+ZiL)/Ax'

L 77(nvat—x-2iL)/Ax' + 7TKnvat-x+2iLLZ§§T
   

 i=1

But according to section 2.2, Vg(x) can now be written as

k'—l

V§(x) = ag/Z + :2: [afi cos(nTTx/L) + 4.2.11

m=1

bi sin(n7Tx/L)] + [a£. cos(k'7Tx/L) + bp. sin(k'7Tx/L)] /2..
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where

vat

ai = L EZ: Mp(nvat) cos(m7Thvat/L). 4.2.12

m=1

P

v At

b: = pL E Mp(nvat) sin(m7Tnvat/L).

m=1

If the Fourier coefficients which are given by Eqs.

4.2.12 are compared to the coefficients as given by Eqs.

4.2.6, it can be concluded that these are the same co-

efficients. Therefore, by truncating Vp(x) after k' terms

and obtaining the coefficients by numerical integration, the

result is the function V§(x).

Let us examine briefly the solutions for E§(x,t')

and I§(x,t') at t'=0. If Eqs. 4.2.11 is substituted into

Eqs. 4.2.10, the solutions at t'=0 are

k'-l

E§(x,0) = Z bi sin(n 7Tx/L) + bp, sin(k'7Tx/L) 4.2.13

n=1

k'—1

Irf)(x,0) = a8 + 2 Z a5: cos(nTTx/L) + ai, cos(k'7Tx/L)

n=1

At the defined node points, the k'th term is zero and need

not be considered. If E§1(t) is discontinuous at tapAt, it



74

is quite likely that Vp(x) is discontinuous at x=2nL, where

n=0“11“12,...,. As a result, these approximations as given

by Eqs. 4.2.13 can tend to oscillate about the actual solu—

tions. These oscillations decreases slowly as we move away

from the discontinuity. This prOperty can not be overlooked

and is taken into consideration in this and a later section.

One method which helps to correct this situation is

the introduction of Lanczos' Cffactors (6). If E§(x,t') and

Ig(x,t') for t'=0 are truncated after the n'th term, the

introduction of these factors in effect replace these trun-

cated approximations by smoothed function which are given as

x+L/2n'

"'p _ I I I

Ef(x,0) — .n /L Ef'n.(x ,0) dx

x-L/Zn'

x+L/2n'

‘p _ I P I I

If(x,0) — n /L If,n'(x ,0) dx

x—L/2n'

where

nl

Eg’n.(x',0) = 2 bi sin(n7Tx/L)

n=1

nl

P l P P
If’n.(x ,0) a0 + 2 :E:an cos(n7Tx/L)

n=1
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and n'<:k'. Once this integration or averaging process has

been performed, E§(x,0) and I§(x,0) are given by

nl

E§(x,0) = 2 Unb‘: sin(n7Tx/L) 4.2.14

n=1

nl

’P _ P P
If(x,0) — a0 + 2:E: caan cos(n7Tx/L)

n=1

where

sin 7Tn 2n' .

CL ='—-—%7TE§§HT% 4.2.15

4.3 Concept of Consistent Initial Values.

First of all, let us consider the transmission line

problem of type 3 for which the initial conditions at the

defined nodes, gn(j,0), where j=0,1,2,...,2k, are specified.

If the solution for gn(j,(p-n-1)At) is obtained by some

method described in Chapter 3 from these specified initial

values, this chapter assumes that the increments Ax and At

are chosen such that gn(j,(p—n—1)At) approximates the basic

numerical solution as given in section 3.3 for all p such

that pf:n+l. Hence, the basic numerical solution is employed

to express gn(j,(p-n-1)At) in this chapter.
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If Ax and At are not chosen sufficiently small, re-

gardless of how the launching numbers, bj l(Ax,At) are chosen,

I

it is not likely that g(j,pAt) is an approximate solution to

E(x,pAt) and I(x,pAt) at the node points. In order to avoid

this situation when comparing the functions g(j,t) to either

the approximate Fourier solutions or the analytical solutions

for E(x,t) and I(x,t) which are given in section 4.2, the

assumption is always made that these increments have been

prOperly chosen.

The set of initial values gn(j,0) for n=0,l,2,...,p—l,

and j=0,1,2,...,2k, is a set of consistent initial values if

and only if the following conditions are satisfied:

1. Let gn(j,t) be obtained by using the basic numerical

solution as defined in section 3.3.

2. There exists a 3; such that if Ax-zAx, there corres~

ponds a At which depends on Ax such that if At<=At,

then g(j,pAt) approximates Ep(x,t') and Ip(x,t') for

all p at the defined node points when t'=0.

It is clear that the transformation defined by the

launching numbers bj l(Ax,At) defines a valid transformation

only if the set of initial values gn(j,0) are a set of con-

sistent initial values.

4.4 Derivation of g(j.PAt2.

Before the function g(j,pAt) can be compared to the

function Ep(x,t) and Ip(x,t) as given by Eqs. 4.2.2 or the
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Fourier approximations to these functions at t'=0, g(j,pAt)

must be placed in the pr0per form so that a comparison can be

made. This section develops such a form.

Given the initial values gn(j,0) for j=0,1,2,...,2k,

and n=0,l,2,.... whether these values are consistent initial

values or not. Since the functions gn(j,t), j=0,l,...,2k,

are the approximate solutions to a problem of type 3 at

certain node pointS‘WhiCh are obtained from the initial

values gn(j,0), j=0,1,2,...,2k, the functions gn(0,t) and

gn(2k,t) are required to be identically zero for all t. If

we let fn(j,t)=gn(j,t) for j=0,1,2,...,2k, and use the re—

lationships given by Eqs. 3.1.0, the problem of type 3 has

been transformed to the infinite line situation which was

described in Chapter 2. The functions fn(j,t) are used in

place of f(j,t) for identification purposes.

Consider the function zp(j,t) which is defined as

—1

zp(j,t) = fn(j,t—(n+l)At) 4.4.0

n=0

where j=ohi1,:2,...,. If we have a set of consistent initial

values, the functions zp(j+4mk,t) for j=0,1,2,...,2k, and

m=0h11h12,..., would give us the desired approximate numeri-

cal solution at t=pAt to either EP(ij,t) or IP(ij+Ax/2,t),

depending on whether j is odd or even.
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The basic numerical solution for fn(m,t) can be ob-

tained by substituting Eqs. 2.1.7 into Eq. 2.1.1. If this

basic numerical solution is used to represent fn(m,t) and

upon introducing the change of variable t'=t-pAt and i=p—n—1,

the function zp(m,t') can be written as follows:

 

p—l

' ' At+v t')/AXp ' _ Y“ 811‘! F(ivp P

z (m't ) “ '1‘?) fp-i-1(m’0) TI’(ivat+vpt')/Ax +

1:

fp_ i-l (m+l , 0) sin 7T( ivPAt+Ax/2+vpt' )/Ax
 

 

 

 

 

2 7T(ivat+Ax/2+vpt')/A§ -

fP- i_l(m+l, 0) sin ”(ivat-Ax/2+vpt' )/A)t +

2 7T( ivat—Ax/2+vpt' )/Ax

OO

fp_i_l(m+2j,0) sin 7T(ivat-ij+vpt' )/Ax +

2 7T(ivat+ij+vpt' VIE

j=1

fp_i_l(m-2j ,0_) _s_i_n F(iVPAt+ij+th' )/Ax +

2 7TKivat+ij+vpt')/Ax

00

fp—i—1(m+2jflgl sin flRivat+ij+vpt')/Ax +

2 , 7T(ivat+ij+vpt' )7Ax

j=1

fp_i_l(m-2j,0) sin flRivat-ij+th')/sz +

 

2 7T(ivat-ij+vpt' )/Ax

OO

5&1_l(m+2j+1, 0) sin TRiVPAt+ij+Ax/2+vpt' )/Ax

2 7T(ivat+ij+Ax/2+vpt' )/Ax

n=1

1 (m— 2j+1 , 0) sin m ivat-ij+Ax/2+:Pt ' )/Ax

2 TT( ivat- ij+Ax/2+vpt' )/Ax

f? i_
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00

f . (m+2j+1, 0) sin 7T(ivpAt-ij—Ax/2+v t' )/Ax
P-i— 1

2 771v:At--ij-Ax/2-I-vpt')7Ax+

j=1

fpuiulm"2j+1 , 0) sin TR ivPAt+ij-Ax/2+vpt' )/Ax

2 m ivat+ij-Ax/2+vpt' )/Ax

This expression for zp(m,t') as given by Eqs. 4.4.1

is quite complicated. The expression can be simplified

greatly if two new functions, Jp(j,x) and Hp(j,x), and their

properties are introducted. Let Jp(j,x) be defined as

Jp(j,x) = 0 xf-vat/Z

Jp(j,x) = 0 vat(n-l/2) EX<vat(n+l/2)

where j=0hilui2,...,. It is quite clear that

P - .

J (3.x) =f___ (3.0).

x=nvat p n l

The function Hp(j,x) is the approximate Fourier integral, de-

fined by Eqs. 4.1.0, of Jp(j,x). Therefore,

p-l

VpAt sin 7T(nvpAt-x)/Ax
p .

H (j,X)= T f...p_n1” 0) 7'[’(nvppAtv-x)/Ax

n=0

4.4.2
 

Because of the relationships derived in Chapter 3, given by

Eqs. 3.1.0, the following relationships for Hp(j,x) are

valid for j=0hilhi2,
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Hp(j+4ik,x) = Hp(j,x) i=0,_-1-_l,_-1-_2,..., 4.4.3

Hp(2j+l,x) = -Hp(—2j-l,x)

HP(2j.x) = Hp(-2j.x)

Let us now employ Eqs. 4.4.2 and 4.4.3 to simplify

Eqs. 4.4.1. It is quite clear that the expression for zp(m,t')

as given by Eqs. 4.4.4 is valid.

2k—1

p _ . _
zp(m't.) = 2VAxt Z H (n, vpt +(m n)Ax/2) + 4.4.4

m=1 I

(—1)“+’“ Hp(n,—vpt'+(n—m)Ax/2) +

(--1)n+1 Hp(n,-vpt'+(m+n)Ax/2) +

m+1

(—1) Hp(n,-vpt'-(n+m)Ax/2) +

00

Z [Hp(n,—vpt'+(m-n)Ax/2+2iL) +

i=1

Hp (n,—vpt'+ (m-n)Ax/2-21L)] +

(_l)n+m

'
M
8

H II l
-
‘

[Hp(n,-vpt'+(n-m)Ax/2+2iL) +

Hp(n,-vpt'+(n—m)Ax/2-2iL)] +

00

“+12 [Hp(n, -vpt' +(m+n)Ax/2+2iL) +

Hp(n,—vpt '+ (m+n)Ax/2-2iL)] +
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00

(-1)"‘+1 2 [Hp(n,—vpt'-(n+m)Ax/2+2iL) +

l=l

Hp(n,-vpt'-(n+m)Ax/2-2iL)]

This expression places zp(m,t') directly in terms of Hp(n,x)

for n=l,2,...,2k-l.

For simplification purposes, let us introduce two

new functions z§(m,-vpt'+2iL) for j=l,2, and i=0hiln12,...,

These functions are given as

2k—1

zp(m,-vpt+2iL) ='§4§E~':E: Hp(n,-vpt' +(m-nJAx/2+21L)

44.5

n=1

P I - _
22(m,—vpt +21L) — 4.4.6

Zk-l

'EiiA— 2E: ('_1)n+1 HP(n, vpt' +(m+n)Ax/2+2iL)

Therefore, Eqs. 4.4.7 is obtained by substituting these

functions into Eqs. 4.4.4.

P I = p _ I P _ I
z (m,t ) zl(m, vpt ) + 22(m,.vpt ) + 4.4.7

q

l p . p .
(-l)m+ [z (-m.-v t ) + z (-m.-v t ) +

1 P 2 P J

1

00

2:: [21p(m,-vpt' +2iL) + zp(m,-vpt'——ZiL) + 

p
.

3
.
:

[zp(m,-vpt' +2iL) + zp(m,—vpt' -21L{] +

l
"
-

|
-
‘
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oo

(‘1)m+1 Z [zp-m,~vpt'+ZiL) + z§(—m,-vpt'-21L)] +

I
-
'

00

_ 111+]. P _ _ I - P _ _ '—
( 1) 2E: [zz( m, vpt +2iL) + 22( m, vpt ZLLJ

Before this relationship, given by Eqs. 4.4.7, can be

investigated, the initial values, gn(j,0) or fn(j,0), must be

defined in some manner so that a comparison can be made.

Let gn(j,0) be defined by Eqs. 4.0.5. That is,

gn(j.0) = bjll(Ax,At) E81(nAt).

If this expression is substituted into Eqs. 4.4.2, the

function Hp(j,x) is now given as

Hp(j,X) =

P'1

v At sin 11(nv At-x)/Ax
P .

bj,1(Ax'At) Ax E E31“P'“'lmt) mépAti-x’fifix

n=0

  

If we let x=-vpt'+vat and compare the resulting expression

to Eqs. 4.2.7, it is evident that Eq. 4.4.8 is valid.

Hp(j.—vpt'-v t) = bj Ax,At) NP(Ax,-vpt') 4.4.8

p .1‘

If Eqs. 4.4.8 is substituted into Eqs. 4.4.5 and

4.4.6, then z§(m,~vpt'+ZiL) and zg(m,-vpt'+2iL) are now

given as

p_. =
zl(m, vpt +ZiL) 4.4.9

wl

x b 1(Ax,At) Np(Ax,—v t'+(m—n)Ax/2+2iL+v At)

2v t n, P p

P -1
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P _ I - =
22(m, vpt +21L) , 4.4.10

2k—l

2%:78? E (-1)n+lbn(Ax, At) Np(Ax,-vpt'+(m+n)Ax/2+2iL+vat) .

n=1

Therefore, z§(m,-vpt'+2iL) and z§(m,-vpt'+2iL) can be placed

directly in terms of the approximate Fourier integral of

Mp(—vpt') which is given by Eq. 4.2.7.

The function zp(m,t') can also be expressed in terms

of the quantity V§(x) which was defined by Eq. 4.2.9. In

order to show this result, let us define the functions

y§(m,-vpt') and y§(m,—vpt') as

P _ I = P _ I
yi(m, vpt ) zi(m, vpt ) + 4.4.11

00

P _ I - p _ I_
2E:[zi(m, vpt +21L) + zi(m, vpt ZiLfl.

i=1

By means of Eqs. 4.2.9, 4.4.9, and 4.4.10, it can easily be

shown that y§(m,-vpt') and y§(m,-vpt') can be written as

y§(m,—vpt') = 4.4.12

2k—l

Egg? an’flAxAt) v§(-vpt'+(m-n)Ax/2+vat)

n=1
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P I
," t = o o

2k—l

Ax b (Ax At) Vp(-v t'+(m+n)Ax/2+v At)
2vp t n,l ’ a p p '

[1:

Therefore,

P I _ _ I _ I
z (m,t ) _ y§(m, vpt ) + y§(m, vpt ) + 4.4.14

(-1)m+l [y§(-m.-vpt') + y§(-m,-vpt')] .

The desired expressions for zp(m,t') have now been

derived. In section 4.5, these expressions will be ins

terpreted. In sections 4.6 and 4.7, these expressions for

zp(m,t') will be compared to both the analytical solution

and the approximate Fourier solutions to obtain the launching

numbers.

 

4.5 Interpretation of zp(m,-vpt').

wv ww—vvvr‘rfv—wfi

In section 4.2, an analytical solution for Ep(x,t')

and Ip(x,t'), given by Eqs. 4.2.2, was derived. In section

4.4, a number of special forms for zp(m,t') were derived.

The objective of this section is to compare these two solu—

tions for the purposes of interpreting the results of section

4.4.
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First of all, the function wp(m,t') is introduced

for notation purposes. Let this function be defined as

follows:

wp(2m,t') = Ep(mAx,t') m=0,1,2,...,k 4.5.0

wp(2m+1,t') = Ip(mAx+Ax/2,t') m=0,1,2,...,2k-1

Therefore,

00

wp(m,t') ==§E:MP(—vpt'+mAx/2+2nL) + 4.5.1

nz—OO

oo

(~-1)m+1 2E:MP(-vpt'-mAx/2+2nL).

n=—00

If this problem was a semi-infinite transmission

line which was defined to start at x=0 and to extend to in-

finity in the positive x direction, the solution for

wp(m,t') would then be given as

wp(m,t') = Mp(-vpt'+mAx/2)

where m=0,l,2,...,. Therefore, for the finite line, the

remaining terms which appear in Eq. 4.5.1 for n positive re—

sults from reflections which occur at x=0 and x=L. The terms

which appear in Eq. 4.5.1 for negative n are always zero for

OijL and were introduced to obtain periodicity in x and t' .
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According to Eq. 4.4.7, zp(m,t') can be written as

p I __._. P _ I p _ I
z (m,t ) zl(m, vpt ) + 22(m, vpt ) +

q

A

l
-
‘ m+1 p _ _ . p _ _

) [zl( m, vpt ) + zz( m, vpt')] +

[
V
1
8

P _ I _ _
[21(m, vpt +2nL) + 25m, vpt' 2nL)] +

:
3 II P

[
\
4
8

[z§(m,-v t'+2nL) + z§(m,—v t'—2nLJ -+

n=1

r

(—l)m+l Lz§(-m,-vpt' +2nL) + zp(--m,,-vpt'—2nL) +

n=1

(—1)m+l i [zp(-m -v t'+2nL) + zp(-m -v t'-2nL)] J
2 I p 2 I p .

:
3 I! H

'I

In order to better interpret the functions z§(m,~vpt'+2nL)

and z§(m,-vpt'+2nL), let us look at zp(m,t') for the semi-

infinite transmission line case. For this case, zp(m,t') is

given as

P I _ P _ I P _ I
z (m,t ) — [21(m, vpt ) + 22(m, vpt )] + 4.5.2

_m+lp__. p__.
( 1) [z1( m, vpt ) + z2( m, vpt )] .

If z§(m,—vpt') and zg(m,~vpt') are respectively defined by

Eqs. 4.4.9 and 4.4.10, then for m=0,1,2,..., and t'ito, it

can be shown that z§(—m,-vpt') is approximately zero. For

the finite line case, it can then be concluded that the re-

maining terms in the expression for n positive result from

the reflections at x=0 and x=L. For n negative, the terms
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have no effect on the solution for 05fo and are added to

obtain periodicity in x.

Let us analyze the result which is given by Eq. 4.5.2.

First of all, z§(m,—vpt') and z§(m,-vpt') for m=0,l,2,3,...,

are incident waves traveling on this semi—infinite trans-

mission line. The remaining terms are reflected waves.

Therefore, z§(-m,—vpt') for m=0,l,2,..., can be interpreted

as a false reflected wave which is created by the definition

of the p semi-infinite line problems. By looking at Eq.

4.4.10, it can be seen that the incident wave which is given

by z§7m,-vpt') results from the reflection of z§(-m,—vpt') at

x=0. The function z§(-m,-vpt') was introduced in the process

of transforming the semi-infinite line to the infinite line

situation.

The main objective of this chapter is to find a set

of launching numbers, bj l(Ax,At), j=l,2,...,2k-l, such that

zp(m,0) s wP(m,0) 4.5.3

for all p and m=0,l,2,...,2k. Since both these functions

represent the solutions to problems of type 3, this relation-

ship is satisfied at m=0 and m=2k independent of the launch-

ing numbers.

If Eq. 4.5.3 is satisfied, then the two semi—infinite

line situations which have been discussed must also be satis-

fied. Therefore, it can be concluded that the relationship
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Mp(mAx/2) é z§(m,0) + z§(m,0) + 4.5.4

(—l)m+l[z§(-m,0) + z§(-m,0)]

for m=l,2,...,2k-l, and p=0,l,2,..., must be satisfied.

Conversely, if this relationship is satisfied, then Eq.

4.5.3 must also be satisfied for the finite line case.

In a later section, this relationship, Eq. 4.5.4,

will be used to obtain the launching numbers.

4.6 Fourier Integral Comparison.

The object of this section is to find a set of

launching numbers such that Eq. 4.5.4 is satisfied. Since

Mp(x) is generally discontinuous at x=0, then it is quite

clear that Np(Ax,x) is the approximate Fourier integral of a

discontinuous function. Therefore, in the vicinity of x=0,

NP(Ax,x) could be a very poor approximation to Mp(x) and

probably the assumption that

Np(Ax.x) _._ M1900

is invalid in the vicinity of this discontinuity. It will

be shown in this section that if this comparison is correctly

made that it is possible to avoid this problem.

Normally, the transmission line is found to be a two

port component in a larger system. For this system, only

the terminal variables, E(0,t), I(0,t), E(L,t), and I(L,t),
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are generally of interest. For example, when E(0,t) is

specified in some manner, the approximate numerical solution

for I(0,t) is generally required. At present there is no

information regarding this variable. In Chapter 6, it will

be shown that this variable is obtained by interpolation from

the values of current which are known at the defined current

node points located near x=0. Therefore, it is necessary

that in deriving these launching numbers that I(x,t) must be

determined very accurately at the defined current node

points which are used for interpolation purposes. In adv

dition, the launching numbers must be chosen such that the

terminal variables at x=L can be determined quite accurately.

As long as these terminal characteristics are determined

accurately, the accuracy is not as important at the interior

voltage nodes.

Before we can proceed with the comparison which is

indicated in Eq. 4.5.4, it is necessary to consider the

function y(x). This function is defined as

y(x) = Np(Ax,x+vam) + Np(Ax,—x+vat). 4.6.0

If Eq. 4.2.7 is substituted into this equation, y(x) can be

expressed now as



9O

 

p—l

v At sin.TT(nv At-x)/Ax

_ _E__ P P
Y(x) - Ax EM ((n+l)vat) ”(nvat—x)7Ax +

n=0

 

p—l

v At sin Tf(nv At+x)AAx

_E__ P p

Ax M ((n+l)vat) TT (nvat+X)/Ax '

n=0

By defining fip(x) as

Rpm) = Mp(vat+x) 0:X<oo 4.6.1

Mp(vat—x) —oo<_x f 0

and EP( x,x) as the approximate Fourier transform of fip(x),

y(x) can now be expressed as

V At .
P Sln gixéfix . 4.6.2

Ax MP(vat) x Ax

The function Ep(x) does not have a discontinuity at x=0.

 

y(X) = 31p(Ax,x) +

Before we proceed to derive the launching numbers,

let us introduce the quantities b. which are defined as

3.1

- .._Ax_
bj,l — v At bj,1(Ax’At)° 4.6.3

P

These quantities are called transformation constants. There-

fore, instead of deriving the launching numbers bj l(Ax,At),

the quantities bj 1 will be derived. It will become evident
I

that the discussion is greatly simplified as a result of the
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introduction of these transformation constants.

Let us now assume that

for j=0,1,2,...,k. By substituting Eqs. 4.4.9 and 4.4.10 in-

to Eq. 4.5.4, then for m=l,2,3,...,k, it can be shown that

this relationship reduces to

k

b

Mp((2m-1)Ax/2) =Z—3-‘3-3—l-‘i Y((m-n)Ax) + 4.6.4

n=1

k ~13

E 49-344 y( (m+n-1)Ax) .

n=1

In effect, Eq. 4.5.4 is being studied at the defined current

nodes.

If the increments Ax and At are chosen sufficiently

small, then the approximation

fip<Ax.x) :2 Rpm

is a valid approximation. In addition, if

vat/AX <¢= 1

then the approximation

y(X) é Rpm
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is also valid. Therefore, for m=l,2,3,...,k, the relationship

as given by Eq. 4.6.4 reduces to

k

b ..

Mp((2m—1)Ax/2) s Eligibl- EP((m-nmx) + 4.6.5

n=1

k

B

Z—Z-fl-EJ-J‘ fip((m+n-1)Ax) .

n=1

For discussion purposes, let us further assume that

b2j-1,1 =

for j=:j' where j' is a positive integer such that

lfj'fk.

For this assumption, let us first look at the relation which

is given by Eq. 4.6.5 for mf:j'. Since the arguments of

fip(x) are always positive, the function fip(x) can now be re-

placed by Mp(x+vat). By introducing the change of variable

x' = (2m-l)Ax/2 + vam,

this relation now reduces to
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i32n—l l
Mp(x'-vat) é '———§—L- Mp(x'—(2n—1)Ax/2) + 4.6.6

n=1

3 _

: b

anl,1
MP(X|+(2n—1)AX/2)o

n=1

This relationship states that the transformation constants

are certain constants of an interpolation formula which

gives Mp(x'—vat) in terms of MP(x'+(2n-l)Ax/2) and

MP(x'—(2n-l)Ax/2) for n=l,2,...,j'.

’ I

Let P3 (2) be an interpolation polynomial of degree

(2j'-l) which passes through the following points

Pj'(z)' = Mp(x'+z)

z=(2n-l)Ax/2 z=(2n-l)Ax/2

Pj'(Z) = Mp(X'+Z)

z=—(2n—l)Ax/2 z=—(2n—1)Ax/2 

where n=l,2,3,...,j'. This polynomial can be written by

means of a Bessels' central difference interpolation formula

as

.. 2_

1:3 (z) =uy0 + VOYO + Q zi/fluézyo + . -+-

where

v = -zAAx
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2p+l

<52p+ly0 = :E:—ln (2§+l) Mp(X"(2P+l)AX/2+nAx)

n=0

2

LU52PY0 = 'ln (2i) Mp(x'+Ax/2—pr+nAx)/2
+

n=0

Ef:—ln (2E) Mp(x'-Ax/2-pr+nAx)/2 .

n=0

This polynomial is an interpolating polynomial of degree

(2j'-l) which has the pr0perty that

Mp(x'+z) é pj'(z).

In addition, the coefficients are in terms of MP(x'+nAx/2)

for neilni2hi5,...ui(2j'-l).

Since it has already been assumed that vat<u=Ax,

the assumption can be made that

MP(x'—vat) é MP(x').

Therefore, the transformation constants can be obtained by

‘l

replacing Mp(x'—va ) with P3 (0) in Eq. 4.6.6 and then

equating coefficients. Therefore, these constants can be

found by means of the expression

jl

j' b2n- l l p

P (0) ————-L-IM (x'- (2n—l)Ax/2) 4.6

:ji}—;£-;Li MP(X'+(2n-1)AX/2)

n=1

.7
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where

j' n

. 2

' 77 (21—3) 2n—1
i=1 6 yO . 4.6.8

pj'm) = .

(-4>“"1(2(n—1>):

Some examples which use the results of this derivation

are as follows.

W: 3" = 1

Bl 1[Mp(x'+Ax/2) + Mp(x'—Ax/2)] /2~=Pl(0)

where

Pl(0) = [Mpix'+AX/2) + MP(x'-Ax/2)]/2

Therefore,

U
‘
l

1| 1
.
:

1,1

and

b1,l(AX’At) = vat/Ax.

Example 2: j'=2

bl l [MP(X'+AX/2) + Mp(x'-Ax/2fl,/2 +

B 3 1 [Mp(x'+3Ax/2) + MP(x'-3Ax/2)]/2 = 92(0)

where
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2 _ 5 IMP(X'+Ax12) + MPLX'sAX/Zfl
P (0) _ 8 _

MP(x'+3Ax/2) + MP(x'—3Ax/2)

 

8

Therefore,

31,1 = (5/4)

53,1 = -(1/4)

and

5v At

bl,l(Ax’At) =-ZjE;—

.. Knit.
b3’l(AXIAt) "’ " 4AX

If the transformation constants are determined by

Eqs. 4.6.7 and 4.6.8, then Eq. 4.6.5 is satisfied for

m=j',j'+l, j'+2,...,k. Let us now look at this relationship,

Eq. 4.6.5, for m=l,2,...,j'—l, when the transformation con-

stants have been determined by Eqs. 4.6.7 and 4.6.8. It can

be shown that the relationship now becomes

m

b

Mp((2m-1)Ax/2) 5-- Elia—LL;- -MP( (m-n)Ax+vat) + 4.6.9

n=1

3

B

:E:-—;E§l*i MP((m+n—l)Ax+vat) +

n$1_ '

bms11
'-—-§-‘-.Mp((n-m)Ax+vat) .

n=m+l
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Since the transformation constants have already been

determined, this relationship can no longer be interpreted as

an interpolation formula as was the case of Eq. 4.6.6. But

interpreting this formula in a different manner, it can be

shown that Eqs. 4.6.7 and 4.6.8 are still valid for these

constants.

In order to show that these transformation constants

also give the desired results at x=(2m—l)Ax/2 where

m=1,2,...,j', it is necessary to briefly discuss the subject

of linear filters (6). Such linear filters are used pri-

marily in data smoothing applications. For discussion pur—

poses, let us suppose that we have a time-varying function

h(t) and decide to smooth this function. By introducing a,

linear filter, the smoothed function h(t) is given as

pl

h(t) = :E:dj‘h(t+ij)

j=-p'

where

pl

:E:dj = 1. 4.6.10

It can be seen that this function, h(t), is a weighted

average of the functional values h(t+jAX) for j=0hilhi2,...nip2

IIt can be seen that the transformation constants,

determined by Eqs. 4.6.7 and 4.6.8, are independent of the

functional values of Mp(x). If we look at these equations
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for the case when Mp(x) is a constant, it can be concluded

that these transformation constants must also have the

property that

B . =' 1. 4.6.11

Therefore, the requirement which is given by Eq. 4.6.10 is

satisfied. It can be concluded that for m=1,2,...,j'—1, the

approximation, given by Eq. 4.6.4, is satisfied.

So far in this discussion it has been shown that if

b2j,l = 0 j=l,2,...,k—l

b2j"l,l = O 3:]

(VpAt)/AX <<l

and if the remaining transformation constants are determined

by eqs. 4.6.7 and 4.6.8, then Eq. 4.5.4 is satisfied when—

ever m=l,3,5,...,2k-l. In other words, Eq. 4.5.4 is satis—‘

fied at the current nodes. Let us keep the transformation

constants defined in the same way and let us investigate

Eq. 4.5.4 at the voltage node points.

The functions z§(m,—vpt') and z§(m,-vpt') are both

linear combinations of discontinuous functions. But at the

current nodes, these discontinuous functions can be combined

to produce continuous functions. At the voltage node points,

this is no longer the case. Even though this creates some
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minor problems, the relationship, given by Eq. 4.5.4, can

Still be investigated.

For the time being, let us assume that the assumption

Mp(x) é Np(Ax,X)

is valid for all x. For this assumption, it can be shown

that

"
0

Oz§(-m,0) m=2,3,...,2k-2

ll
-

0z§(-m,0) m=2j',2j'+2,...,2k-2

Therefore, by introducing the change of variable

i = mAx+vat,

Eq. 4.5.4 reduces to

j '

- B2n-l l —

Mp(X-VpAt) = '—-*§—L— Mp(X-(2n—1)Ax/2) +

n=1

3

i b

'-g£%l‘l Mp(x+(2n-1)Ax/2).

n=1

for m=2',2j'+2,...,2k-2. If we compare this result with Eq.

4.6.6, it can be seen that these equations are the same equa-

tions except that the variable x' has been replaced by i.

Since the transformation constants satisfy Eq. 4.6.6, they

must also satisfy this result. For m=2j',2j'+2,...,2k—2, the

discontinuity presents no problem since we are not evaluating
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Np(Ax,X) in the vicinity of the discontinuity. It can now

be concluded that these transformation constants satisfy Eq.

4.5.4 at the voltage nodes which are located at x=nAx, where

n=j',j'+l,...,k—l. In fact if j'=l, this equation is satis-

fied at all the voltage node points.

If we investigate Eq. 4.5.4 at the voltage nodes

which are located at x=nAx, where n=1,2,...j'—l, it can be

seen that z§(—2n,0) is no longer zero. In fact the sign

which appears in front of z§(-2n,0) is now a negative sign  
where in the current case, the sign was positive. It can

then be concluded that Eq. 4.5.4 is not satisfied at these

nodes. For the assumption that

upon =2- Np(Ax.X),

let us investigate this error. At x=nAx, zg(—2n,0) can be

written as

k

b .

z§(—2n,0) = ) -—31§lei Mp((j-n)Ax-AX/2+vat).

j=n+l

If g(2n,t') and Mp(nAx) are respectively the actual solution

and the desired solution at x=nAx, where n=l,2,...,k-l, then

it can be shown that

g(2n,0) e Mp(nAX) — 2 z§(-2n,0).
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By means of linear filter theory, it can be shown that

k

4 P _ '-
g(2n,0) — M (nAx) l :E:b2j-l,l 4.5.12

j=m+l

where Mp(nAx) is the desired solution. This says the actual

 

:

solution is the true solution multiplied by a constant. ;

So far in this section, the discussion has been based

on the assumption that '

_ I}

b2j,l = 0 j=l,2,...,k—l

For discussion purposes, let us assume that

b2j-l,l = O 3:] +1,j +2,...,k

'— _ '_l I __

b2j,l — 0 j—n +1,n +2,...,k l

Mp(x) é Np(Ax,x)

and that the remaining constants have not been determined.

Let us look at Eq. 4.5.4 for the case where m is greater

than both j' and n'. For this choice of m,

ll 0zll’(—m,0)

ll 0z§(-m,0)

Upon making the change of variable
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X' = mAm/Z + vat,

Eq. 4.5.4 now reduces to

jl

B ‘

Mp(x'-vat) 4- £111.31; Mp(x'—(2n-1)Ax/2) +

n=1

B2n—1 l p
-——3-4— M (x'+(2n-l)Ax/2) +

n=1

n' _

b2n l

'——§L— Mp(x'-nAX) -

n=1

nl

i52n 1

'——§‘- Mp(x'+nAX).

n=1

The method for obtaining these constants will be to consider

separately the terms which contain the constants BZj-l 1'

Let us first look at the terms which contain the con-

stants sz 1' If we look at these terms from the viewpoint

Of linear filter theory, the values of these terms should be

approximately zero independent of the value of the constants.

An alternate way of looking at these terms is to define a

Polynomial Pn.(z) of degree 2n' which passes through the

Points

Pn.(z)’ = nAx Mp(x'+nAX)

z=nAx
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where n=0hilh12,...h:n'. Let us look at the function Pn.(z)/z.

It is quite clear that this function passes through the

following points.

P I(z)/z = Mp(x'+nAx) n=1,2,...,n'

n z=nAx

Pn,(z)/z = Mp(x'-nAx) n=1,2,...,n'

=-— nAX 

Since the limit of this function as z—vo is defined, these

constants can be obtained by equating the limit as 29.0 of

this interpolation polynomial to the terms which contain the

constants 52' This function has the property

JIl'

lim P .(z)/z = lim P ,(z) - P .(—z) /22

24.0 n z—bo [ n n ]

where

[Pn.(z)-Pn}(-z)]/22 = Mp(x'+z) - MP(x'—z).

Therefore, the limit as z—>0 must be approximately zero.

Hence, the same conclusion is obtained as was the conclusion

obtained by looking at these terms from the filter theory

point of View.

Since the sum of the terms which contain the sz 1's

I

is approximately zero, the terms which contain the constants

BZj-l 1 must be defined in the same manner as was the case

when the constants, sz 1’ were zero.
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If we look at Eq. 4.5.4 for m less than both j' and

n‘, we have the same terms as we had in the case where sz l

but with some addition terms added since the constants sz l

are no longer zero. Let the function h((2j—l)Ax/2), 2j—ls m,

be the sum of these addition terms at the current nodes.

Hence,

nl

B

h((2j-1)Ax/2) £2 __2_;_1_,_l_ Mp((2j-1+2n)Ax/2) +

n=1
.1 _

b2n l p

L ”‘2“ M ((2j-1—2nmx/2) -

n=1

'-1

b

'-2%*l MP((2n—2j+l)Ax/2).

n=1

This result states that Eq. 4.5.4 can only be satisfied at

these current nodes when the sz 1's are identically zero.

Therefore, these constants must be zero in order to correctly

determine I(0,t).

4.7 Fourier Series Comparison.

In section 4.2, an approximate Fourier series solu-

tion for Ep(x,t') and Ip(x,t'), given by Eqs. 4.2.13, was de-

rived. In section 4.4, some special forms for zp(m,t') were

derived. The object of this section is to compare the ap-

proximate Fourier series solution as given by Eq. 4.2.13 to
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zE)(m,t') which is given by Eq. 4.4.15. Once this comparison

is; performed, a set of launching numbers can be obtained.

First, let us consider the functions E§(x,t') and

IE;(x,t') which are given as

E§(x,t') = y§(2x/Ax,-vpt') + y§(2xflAx,-vpt') - 4.7.0

y§(-2xflAx,-vpt') — y§(-2xAAx,—vpt')

I§(x,t') = y§(2xAAx,—vpt') + y§(2xAAx,-vpt') +

p I p '

Yl(-2XAAXI-vpt ) + y2(-2x/Ax,-vpt )

vv11ere y§(2xAAx,—vpt') and y§(2x/Ax,-vpt') are respectively

given by Eqs. 4.4.12 and 4.4.13. It is quite clear that

E§(mAx/2,t') zp(m,t') m=0,2,4,6,...,2k

zp(m,t') m=l,3,5,...,2k—lI§(mAx/2,t')

ls true.

By substituting Eqs. 4.2.12, 4.4.12 and 4.4.13 into

Ig‘lis. 4.7.0 and letting t'=0, E§(x,t') and I§(x,t') can now

13GB 'written as



p
I3(X.

valeere

B =

n

A =

n
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sin(n7Tvat/L) sin(nTTx/L) + 4.7.1

n cos(n7Tvat/L) sin(nTTx/L) +

n cos(n7Tvat/L) sin(nfo/L) -

sin(nTTvat/L) sin(nTTx/Li]+

(Ak/Z) bi cos(kTTvat/L) sin(kYTx/L) —

p . .
(AR/2) ak Sin(k7Tvat/L) 51n(k7Tx/L)

k-l

+2

n=1

0) (A0 ag)/2 [An a: cos(nTTvat/L) cos(dn&/L)+

cos(n7Tx/L) lsin(n7Tvat/L)

cos(nTTx/L) +n cos (n flvat/L)

+

p
(Ak/Z) ak

p

w 1.
..
:

2E: 2j 1 sin(n

L
.
)

|
-
‘

b

.k

b2j-1,1Z
l

sin(nTTvat/L)

cos(k7Tvat/L)

sin(kTTvat/L)

jTTAx/L)

cos(nTTx/LJ

cos(k7Tx/L)

cos(k7Tx/L)

cos(anR2j-1)Ax/2L).

+

.7.
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Since the kth term is zero at the defined node points, these

terms can be disregarded in the comparison.

The transformation constants would be best chosen if

Ep(x,0)
P

E3(x,0)

Ip(x,0) I§(X,0)

at the defined node points. This requirement is satisfied

only when the following relationship is satisfied for

n=0,l,2,...,k-l.

00

*P 'P ’ _

bn + :E: [-b2kj—n + b2kj+n] _ 4.7.3

B [afi sin(dnvat/L) + b5 cos(dnvat/L)] +

n

00

-p p p _

an + Z [a2kj—n + a2kj+n] ‘

1J:

A [bi cos(n77§/pAt/L) — arp1 sin(rflTvat/L)]

An [as cos(n77vat/L) + bi sin(n7Tvat/L)] _

B [bi cos(nn%pAt/L) - afi sin(mnvat/L)]
n

For a given Ax and At, there are no constants An and Bn such

that this relationship is satisfied for all p. Hence, this

relationship as it stands does not provide a means for obtain—

ing the transformation constants.
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An alternate approach is to use the approximate

Fourier series expressions for Ep(x,t') and Ip(x,t') which

are given by Eqs. 4.2.13. If we truncate these expressions

after the (k—l)th term, then it is possible to obtain an ap-

proximate Fourier series expression for Ep(x,t') and Ip(x,t')

’
5
7

which contains the same number of terms as does E§(x,t') and

I§(x,t'). Since Ep(x,t') and Ip(x,t') for t'=0 are generally

discontinuous functions at x=0, these truncated series may

 
tend to oscillate about the actual solution. In order to ?'

correct this situation, let us introduce the Lanczos'(j

factors which are discussed in section 4.2.

By performing a term by term comparison of the re—

spective series, it is possible to obtain the following re—

lationship between the coefficients.

ll E
D

Unbfi n a}; sin(n‘lTvat/L) + bi sin(anvat/L)] +

4.7.4

An [bi cos(n7Tvat/L) - ai sin(n7Tvat/L)]

O’nag = An [a2 cos(n7Tvat/L) +b§1 sin(n7Tvat/L)] +

Bn [bi cos(n7Tvat/L) - afi sin(n7Tvat/L)]

Upon performing the indicated mathematics, the

quantities Bn and An are given as
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B = o’n sin(n'ITvat/L) n=1,2,...,k—l 4.7.5

A = (in cos(n7Tvat/L) n=0,l,2,...,k—l

By substituting the defining equations for Bn and An’ Eqs.

4.7.2, into these relationships, it is possible to solve for

the transformation constants bj 1' Once these transformation

constants have been determined, the launching numbers,

bj l(Ax,At), can be determined by Eq. 4.6.3.

Let us investigate Eqs. 4.7.5. If the assumption

that

v t L <‘= lpA/

is made, then the assumptions that

"
0

Osin(n7Tvat/L) n=1,2,...,k-l

ll

Hcos(n7Tvat/L) n=0,l,2,...,k—l

are valid, Therefore,

B é O n=1,2,...,k-l

n

An = 6n. n=0,l,2,...,k—l

According to Eqs. 4.7.2, the quantity Bn is a linear combin-

I

ation of the transformation constants sz 1' Upon solving

for b we find that

2j,l’

b2j,l = o. 3:1,2,...,k-1
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This is the same result as was obtained in section 4.6.

In order to find the remaining transformation con—

stants, it is necessary to take the inverse of a (k)x(k)

matrix for which the quantity An corresponds to a row of

this matrix. By investigating this matrix, it can be seen

that these constants depend onwa or the size of the matrix.

For this reason, the transformation constants or launching

numbers as determined by section 4.6 are more useful.

4.8 Problem of Type 2.

A problem of type 2 is a transmission line problem

which has zero initial conditions and one identically zero

boundary condition at x=O. One such problem of type 2 has

the initial and boundary conditions specified as

E2(x,0) 12(x,0) = O O_<_X<L 4.8.0

0 O§t<ooE2(O,t)

-12(L,O) = 382(0)

E2(L’t) = E52(t) Oft-coo

where E52(t) is a specified function of t. The current

orientations for this problem are from x=0 to x=L. Because

of the similarity existing between this problem and a problem

of type 1, it is possible to use methods which have been de—

rived to obtain a set of launching numbers which are valid

for transforming the boundary condition for the interval

nAtft<(n+l)At to an initial condition.
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By letting

El(L-X,t) = E2(X,t)

Il(L-Xlt) “I2(X,t)

this problem of type 2 has been transformed to a problem of

type 1 for which the solutions are El(x,t) and Il(x,t).

Therefore, if bj 2(Ax,At), j=l,2,...,2k-l, are the launching

numbers for the problem of type 2 which is described by

Eqs. 4.8.0, these launching numbers are given by

_ _ jbj’2(Ax,At) _ ( 1) b2k_j’l(Ax,At) 4.8.1

where j=l,2,...,2k—l.

4.9 Conclusion.

Two classes of methods are derived which transform

the boundary condition, E(0,t), for a problem of type 1 for

the interval tOfEt¢=tO+At into an initial condition at

t=tO+At. Each method derives a set of launching numbers, one

for each node, such that the initial condition at each node

point at t=tO+At is the product of E(O,nAt) and a launching

number. This class of methods is also valid for the problem

of type 2.

Of the two classes of methods which are given in

sections 4.6 and 4.7, the general method as given by section

4.6 is the preferred method. There are two basic reasons
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for preferring this general method. First of all, any

launching number can be placed in terms of a transformation

constant by Eq. 4.6.3. For any given method from section

4.6, these transformation constants are independent of Ax

where as this is not the case in section 4.7. Secondly, the

sum of the solutions of the problems of type 3 is compared

to the analytical solution whereas in section 4.7, this com-

parison is made to an approximate Fourier series solution.

 



V. REMAINING CASES

5.0 Introduction.

In Chapters 3 and 4, the derivations are performed

with the assumption that both boundary conditions are speci-

fied voltages. The main object of this chapter is to demon—

strate that if the functions g(j,t) and f(j,t) are defined

in a slightly different manner, the derivations are equally

valid for cases for which the boundary conditions are either

both specified currents or a specified voltage and a speci-

fied current.

Let us consider the case where both boundary condi-

tions are specified currents. In this situation, Isl(t) and

Isz(t) are now specified boundary conditions instead of

Esl(t) and E52(t)' Let Ax=L/k, where k is a positive integer

equal to or greater than 1. In addition, let the functions

g(2n,t) for n=0,l,2,...,k, and g(2n+l,t) for n=0,l,2,...k—l,

be respectively the approximate numerical solutions for

I(nAx,t) and E(nAx+Ax/2,t). For the function g(j,t) defined

in this manner, this case is simply the dual of the case al—

ready presented. That is, the derivations for this case are

identical to the results derived in Chapters 3 and 4 except

that all voltages have been replaced by currents and all

113
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currents have been replaced by voltages. Therefore, the re-

sults are valid for the case where both boundary conditions

are specified currents.

The remaining portion of this chapter specifically

treats the case where one boundary condition is a Specified

3
1

voltage and the other is a specified current.

5.1 Chapter 3 Validity.

This section will specifically show that for the

case where the boundary conditions E(0,t) and I(L,t) are  
specified to be identically zero, the results derived in

Chapter 3 are still valid if the function g(j,t) is defined

in a slightly different manner. This case corresponds to a

lossless parallel transmission line for which a short is

located at x=0 and an open is located at x=L.

An infinite line for which the initial conditions are

V(x+4nL,0) = E(x,0) 5.1.0

V(-x+4nL,O) = ~E(x,0)

V(—x+2nL,0) = E(x,0)

V(x+2nL,O) =~E(x,0)

S(x+4nL,O) = I(x,0)

S(-x+4nL,O) = I(x,0)

S(—x+2nL,0) =-{(x,0)

S(x+2nL,0) =-I(x,0)

where 013fo and n=0,j—_l,i2,:3,..., has the same solution

for 0:5x;fL as this problem. Hence, an approximate numerical
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solution can be obtained for this problem by solving the in—

finite line problem for the initial conditions given by

Eqs. 5.1.0.

Both the functions V(x,0) and S(x,0) have special

properties as was the case in Chapter 3. First of all, both

functions are periodic in x with period 4L. Secondly,

V(x,0) and S(x,0) are respectively an odd and an even function

of x with respect to x=0. In addition to these two properties,

V(x,0) and S(x,0) are respectively an even and an odd

 function of x with respect to x=L. .;

Let the increment Ax be given as Ax=2L/k', where k'

is a positive odd integer. Because of these special proper-

ties, the functions f(n,t) have some very special relation-

ships. By means of Eqs. 2.7.0 and 2.7.1, one of these

special relationships can be written as

(Smf(-21,t)=-(Smf(2i,t) 5.1.1

(Smf(2i+1,t)=5mf(~21-1,t)

(Smf(2i+k' ,t)=-(§mf(-Zi+k' ,t)

(Smf(2i+1+k' ,t)=6mf(—2i-l+k' ,t)

where i=0,il,:2,..., and m=0,l,2,...,. Eqs. 5.1.1 in effect

state that Eqs. 5.1.2 are also valid.

6mf(0,t)=0 m=0,l,2,..., 5.1.2

(5mf(k',t)=0
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Let us now define the functions g(2n,t), n=0,l,2,...,(k'-l)/2,

and g(2n+l,t), n=0,l,2,...,(k'-l)/2, respectively as the

approximate numerical solutions for E(nAx,t) and I(nAx+Ax/2,tL

Since

6m9(i,t) = (Smf(i.t) i=0,l,2,...,k',

it is quite clear that if the quantity 2k is replaced by k'.

the proof for Cm and its properties as given in Chapter 3

are also valid for this case. Hence, the result is restated

as follows:

P'—

  

~ ‘1

9(1.t) (5mg(l.t) 5.1.3

g(z't) (5mg(2.t)

g(k'-l,t) 5mg(k'-1,t)  
In addition, the remaining properties except possibly those

given in section 3.0 are also valid.

5.2 Chapter 4 Validity.

This section specifically treats the case where the

boundary and initial conditions are given as

I(X,0) = 0 0<Xf_L 5.2.0E(x,0)

O Oft<00I(L,t)

'
7
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E(0,t) Esl(t) 0__t<oo

1(0,0) = Esl(0) .

This case corresponds to a lossless parallel transmission

line with a voltage driver at x=O and an open circuit at x=L.

The object of this section is to show that the results of F

Chapter 4 are valid for this case.

Let us first consider the lossless parallel trans—

mission line of length 2L for which the initial and boundary

conditions are given as  
E*(x,0) = 1*(2L,0) = o 0<x<2L 5.2.1

1*(0,0) = 1*(2L,0) = E (0)
$1

* *

E (O,t) = E (2L,t) = Esl(t). Oft<oo

It can be easily verified that the solutions for the trans-

mission line problem which is described by Eqs. 5.2.0 are

identical to the solutions for this problem for Offo.

Since this problem, defined by the boundary and initial

conditions as given by Eqs. 5.2.1, is a linear problem, the

superposition principle can be applied. Hence, it is only

necessary to solve the problem of type 1, having a length of

2L, for which the boundary and initial conditions are given

by Eqs. 5.2.2.

E:(x,0) = I:(x,0) = o 0<x:2L 5.2.2

EI(2L.t) = 0 Oft<oo
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*

Il(0,0)
Esl(0)

*

El(o.t> = Eslm 0_t<oo

It is quite clear that the solutions for E*(x,t) and 1*(x,t)

are given as

E*(x,t) E:(x,t) + E:(2L-x,t) 5.2.3

1*(x,t)

* *

Il(x,t) - 11(2L-x,t).

The problem of type 1 for which the boundary and

initial conditions are given by Eqs. 5.2.2 satisfies all

the requirements of Chapter 4. If Ax=2L/k', where k' is a

positive integer, the launching numbers bj 1(Ax,At),

j=l,2,...,2k'-l, are valid for this problem.

Let g; l(j,O), j=0,1,2,...,2k', be the initial con—

ditions to a problem of type 3 which was defined at

t=(n+1)At. Chapter 4 showed that if

* . _ ._ '—

gn,1(3:0) — bj 1(Ax.At) Esl(nAt) 3_1,2,...,2k 1

ll 0

*

gn’1(0,0)

* . _

gn’1(2k IO) — OI

then

p—l

g:(j.pAt) = Zg;’l(j.(p—n-1)At) j=l,2,...,2k'

n=O

91(0,pAt) = Esl(pAt)
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are the approximate numerical solutions to E:(x,pAt) and

II(x,pA¢) at the defined node points. Therefore, if g*(j,t),

j=0,1,2,...,2k', are the approximate numerical solutions for

E*(x,t) and I*(x,t) at the same node points, then the solu-

tion for g*(j,t), j=0,1,2,...,2k', can be written as

9*(j.t) = 91(j.t) + (-l)Jg:(2k'-j,t). 5.2.5

The result, given by Eq. 5.2.5, states that the i

 numerical solution for E*(x,pAt) and I*(x,pAt) at the in-

terior node points is the sum of 2p problems of type 3. By

applying the superposition principle, the two problems of

type 3 which were defined at t=(n+l)At can be combined to

form one problem of type 3 such that if

* _ _ j
bj’l(Ax,At) — bj l(Ax,At) + ( l) b2k'—j(AX’At) 5.2.6

and

§n(j,0) = b; l(Ax,At) Esl(nAm) j=l,2,...,2k'—l

§n(0.0) = o

gn(2k ,0) = 0

then

p-l

Z §n(j.(p-n-1)At) j=l,2,...,2k'-l

n=0

*

9 (0.13411) = Esl(pAt)

9*(j,pAt)

9*(2k'.p4¢) = Esl(p4¢)
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gives the same solution for g*(j,t) as does Eq. 5.2.6.

Let us now transform the problem of type 3 for which

the initial conditions are §n(j,0) to the infinite line case.

If fn(m,0), m=0uilhi2,..., are the initial condition for this

infinite line problem, when k' is odd, it can be easily

 

Bis
shown that the solutions fn(m,t) satisfy Eqs. 5.1.1. There- 1%

fore, if

. __ * -_ I_ 1,gn(j,0) — bj’l(Ax,At) Esl(nAt) j-l,2,...,k 1 .J

gn(0,0) = 0

gn(k',0) = 0.

then

p-l

g(j'pAt) = Z gn(j:(P"n"]—)At) j=llzlooolk'

n=0

9(0.pAt) = 231(pAt)

are the numerical solutions for E(ij/2,pAt),

j=0I214’ooo’(k'-l), and I(jAX/prAt)p j=l,3poo0(k'o In ad-

dition, if the same time domain model is used to obtain

gn(j,(p-n-1)At) as is used to obtain §n(j,(p—n-1)At), then

Eq. 5.2.7 must be true.

g(j.pAt) = g*(j.pAt) j=0,1,2,...,k' 5.2.7
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For the case where

bj ’1(Ax,At) = 0

for j=k'+l,k'+2....,2k', the launching numbers as given by

Eq. 5.2.6 are the same as those given in Chapter 4.

W

,
.
L
.
_
"
'

“
'

If the duality principle is applied to this result,

it can be easily seen that this result is equally valid for

j
=
fi
7
r
1

the case where E(L,t) is specified to be identically zero

 and I(O,t) is a specified function of t. :J

5.3 Conclusion.

It can be concluded that if the functions g(j,t) are

defined in a slightly different manner, the results of

Chapters 3 and 4 are equally valid for the three cases which

arise when both boundary conditions are not specified

voltages.

For the case when both boundary conditions are speci-

fied voltages (currents), the increment Ax is chosen as

Ax=L/k, where k is a positive integer. The functions

g(2j,t), j=0,1,2,...,k, and g(2j+l,t), j=0,1,2,...,k—1, are

defined respectively as the approximate solutions for

E(ij,t) (I(ij,t)) and I(ij+Ax/2,t) (E(ij+Ax/2,t).

When the boundary conditions at x=0 and x=L are re-

spectively a specified voltage (current) and a specified

current (voltage), the increment Ax is chosen as Ax=2L/k',

where k' is a positive odd integer. The functions g(2j,t),
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j=0,1,2,...,(k'-l)/2, and g(2j+l.t), j=0,1,2,...,(k'-l)/2,

are defined respectively as the approximate numerical solu—

tions for E(ij,t) (I(ij,t)) and I(ij+Ax/2,t)

(E(ij+Ax/2,t)). In addition, the launching numbers for

this case are defined by Eq. 5.2.6.

;
fl
;
7

 



VI. INTERPOLATION FORMULAS

6.0 Introduction.

In Chapters 3 and 4, there has been no mention of F3

I(O,t) or I(L,t). For a practical problem, the approximate

numerical solution for these two variables are generally of

particular interest. In addition to these two variables, a

 given problem might require the knowledge of the approximate

numerical solution for E(x,t) or I(x,t) at some value of x

other than at a node point. This chapter specifically de-

rives methods for obtaining these results.

If the knowledge of E(x,t) or I(x,t) are required at

t=to and x=x0. it is assumed that there is no information

present concerning the specified boundary conditions for

t=>tO except in the case where a boundary condition is speci-

fied to be identically zero for all t.

There are two general methods which can be employed

to find E(x,t) and I(x,t) at some value of x other than at a

node point. One such method is the use of interpolation or

extrapolation formulas. The other method is to numerically

solve the appropriate telegrapher equation at the point of

interest. The use of an interpolation or extrapolation

formula is by far more convenient to apply. Hence, this

chapter will only treat this method.

123
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The most obvious approach is simply to apply any

standard interpolation or extrapolation formula for which

g(j,t) are known quantities. For values of x near the ends

of the line, it is quite clear that this approach does not

result in central difference formulas. Hence, this chapter

derives some methods for which central difference formulas Ea

can by employed for every value of x for certain special

n
.
’

'
"
'

cases .

6.1 At Least One Boundary Condition Specified Zero. E

For the case for which at least one boundary condi-

 

tion is specified as zero, the solutions for problems of this

type have certain Special properties. These special pro-

perties can be employed to obtain central difference interpo—

lation formulas for values of x near the end of the line for

which the boundary condition is specified as zero.

Let us first consider the transmission line of length

L for which the initial and boundary conditions are given as

follows:

E(0,t) = Esl(t) Oft-ccn 6.1.0

E(x,0) = hl(x) O<fo

Ihmm =h2m0 Ofx<L

quU =0 Oft<m

It is quite obvious that the transmission line of length 2L

for which the boundary and initial conditions are given by
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Eqs. 6.1.1 has the same solution for Ofifo. Because of the

*

E*(2L-x,0) = E (x,0) = E(x,0) 0<x<L 6.1.1

-I*(2L—x,0) = 1*(x,0) = I(x,0) Offo

E*(2L,t) = E*(0,t) = Esl(t) 0ft<co

symmetry of this equivalent problem, the result as given by

Eqs. 6.1.2 must be valid. This result in effect states that

E(x,t) = E*(x,t) E*(2L—x,t) 0:5x:L 6.1.2

I(x,t) = I*(x,t) —I*(2L-x,t) ijfL  
the solution E(x,t) and I(x,t) can be considered respectively

as an even and an odd function of x with respect to x=L.

New, let us consider the transmission line of length

L for which the initial and boundary conditions are given as

follows:

EHLU =Egflt) Oft<® 6Ju3

E(x,0) = hl(x) 0<x<L

I(x,0) = h2(x) Offo

EUHU =0 Oft<a>

An equivalent problem which gives the same solution for

Offo is given as follows:

-E*(2L—x,0) E*(x,0) E(x,0) O<X<L 6.1.4ll

I*(2L-—x,0) 1*(x,0) = I(x,0) 0‘:fo

—E*(2L,t) = E(0,t) = Esl(t) 0<t<ao
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Because of the symmetry of this problem with respect to x=L,

the result as given by Eqs. 6.1.5. must be valid. For this

E(x,t) = E*(x,t) a E*(2L—x,t) 015fo 6.1.5

I(x,t) = I*(x,t) = I*(2L—x,t) 0:3fo

case, the solutions E(x,t) and I(x,t) can be considered re-

spectively an odd and an even function of x with respect to

x=L.

It can be concluded that when E(x,t) is specified to

be identically zero at a boundary, then E(x,t) and I(x,t) at

t=t0 can be considered respectively an odd and an even

function of x with resPect to this boundary. Likewise, when

I(x,t) is specified to be zero at a boundary, E(x,t) and

I(x,t) at t=t0 can be considered respectively an even and an

odd function of x with respect to the boundary. These

properties are independent of the boundary condition at the

other end of the line.

6.2 Both Boundary Conditions Not Identically Zero.
 

This section derives some preperties about the solu—

tion for the case for which the conditions of section 6.1 are

not satisfied.

Let us consider the transmission line of length L

for which the initial and boundary conditions are given as

E(0,t) = Esl(I(0,t),t) Oft<cn 6.2.0

E(x,0)= hl(x) 0<x<L
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I(x,0) = h2(x) OEXEL

E(L,t) = E82(I(L,t),t) O§t<ool

where the boundary condition on each end of the line is al-

lowed to be a function of the other boundary variable. It is

quite clear that if either Esl(I(0;t),t) or E82(I(L.t),t) are

not identically zero, this problem does not satisfy the con—

ditions as stated in section 6.1. If the specified boundary

conditions are a function of I(O,t) and I(L,t), it is

absolutely necessary that the numerical solution for these

two variables be known. Hence, it is necessary to derive

some properties about I(x,t) which can be used for interpo-

lation purposes.

The transmission line itself is linear. Hence, the

superposition principle may be applied at tatO in order to

divide this problem into two problems for which the sum of

the solutions of the two problems gives the solution to the

original problem. The initial and boundary conditions for

the two resulting problems are given as follows:

E1(O,t) = Esl(I(0,t),t) test-zoo 6.2.1

'El(x,t0) = o 0<x<L

Il(x,t0) - 0 Offo

E1(L.t) = 0 toft<oo
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E2(0,t) = 0 toft<ao 6.2.2

12(X.t0) == I(x,to) OSXEL

E2(X,t0) a E(x,to) O<X<L

E2(L,t) = ESZ(I(L,t),t) toft<oo

The initial condition I2(x,t0) for 0::fo contains all the

_
_

.
—

'
I
'

I

-
1

information about I(x,to). Since the problem for which the

initial and boundary conditions are given by Eqs. 6.2.2

 satisfies the conditions of section 6.1, the function I(x,to) LJ

can be considered an even function of x with respect to x=0.

A similar argument can be used to show that I(x,to) can be

considered an even function of x with respect to x=L as far

as interpolation is concerned.

Let us now consider the case where I(O,t) and I(L,t)

are specified functions of t. The duality principle can be

applied to show that E(x,t) can be considered for interpo-

lation purposes as an even function of x with respect to

both x=0 and x=L. For the remaining case when E(0,t) and

I(L,t) are both specified in some manner, I(x,t) and E(x,t)

can be considered even functions respectively with respect to

x=0 and x=L.

6.3 Conclusion.

The results presented in this chapter have indicated

that if one variable (either E(x,t) or I(x,t)) is specified
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at a boundary in some manner, the remaining variable can be

considered an even function of x with respect to this boundary

as far as interpolation is concerned. This specified variable

can be a function of the remaining variable. In addition,

the specified variable has no special property as far as be-

ing an even or an odd function of x with respect to this

boundary except when it is specified to be identically zero.

 



VII. GENERAL TRANSMISSION LINE PROBLEM

7.0 Introduction

The main objective of this chapter is to demonstrate

how the concepts of Chapters 3, 4, 5, and 6 can be combined

to derive three classes of time domain models which can be

applied to a very general transmission line problem. For

demonstration purposes, let us consider the transmission line

problem for which the initial and boundary conditions are

given as follows.

I(x,0) == hl(x) Offo 7.0.0

E(X,0) = h2(x) 0<x<L

E(0,t) = Esl(I(0,t),t) Oft<cn

E(L,t) = E52(I(L't)’t) Gift-=00

This problem allows E(0,t) and E(L,t) to respectively depend

on I(O,t) and I(L,t) in some prescribed manner. This de-

;pendence may be either linear or nonlinear.

Before any attempt is made to apply the results of

the previous chapters, let us discuss certain preliminary

aspects of the numerical solution. First of all, the incre—

ment Ax is chosen as Ax=L/k, where k is a positive integer.

In addition, g(2n,t), n=0,l,2,...,k, and g(2n+l,t),
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n=0,l,2,...,k—l, are respectively the approximate numerical

solutions for E(nAx,t) and I(nAx+Ax/2,t).

Since E(0,t) and E(L,t) are dependent on I(O,t) and

I(L,t), it is necessary to employ an interpolation formula

to calculate these variables. The results of Chapter 6 can

be directly applied in this case for the purposes of obtain-

ing such an interpolation formula. Hence, I(O,t) and I(L,t)

can be written as shown in Eqs. 7.0.1. The same formula

need not be used

I(O,t), a. rg'(1,t) 1 7.0.1
1,1 ’ ' i,i ' i,k

I(L,t) d2,l . . d . . . d2,k g(3,t)

g(Zi’llt)

  g(Zk-llt)

for both I(O,t) and I(L,t). It is quite clear that this

interpolation formula is independent of the difference method

employed to find the solution for g(j,t).

The functions g(0,t) and g(2k,t) must be specified as

9(0.t) = Esl(I(0.t).t) 0_<_t<co 7.0.2

g(2k,t) = E52(I'(L,t),t) Oftcoo

independent of the method of solution for g(j,t),
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j=l,2,...,2k—l. At t=0, the specified values of I(O,t) and

I(L,t) should be used to calculate these boundary conditions.

At all other values of t, the interpolation formula as given

by Eqs. 7.0.1 must be used to determine the values of I(O,t)

and I(L,t) in Eqs. 7.0.2.

In order to indicate how the results of the previous

chapters can be applied to this problem to obtain the solu-

tion for g(j,t), the superposition principle will be used.

At t=nAx, this problem may be subdivided into three separate

problems for which the initial and boundary conditions are

given as follows.

En(x,nAt) = E(x,nAt) 0<x<L 7.0.3

In(x,nAt) = I(x,nAt) Offo

En(0,t) = 0 nAtft<co

En(L,t) "' 0 nAt§t<OO

En'l(x,nAt) = 0 0<fo 7.0.4

In’l(x,nAt) = 0 Offo

Emluufl =0 r$tft<®

En’1(0,t) .. Esl(I(0,t),t) nAtft<oo

Emzhnm =0 Ofx<L * 7JL5

In,2(x'0) = 0 OEX<L
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0 nAtEt-cooEn,2(0't)

En’2(L,t) = E52(I(L't)’t) nAtft<CD

The solution to the original problem for tf:nAt is simply

the sum of the solutions to these three problems. That is,

E(x,t) and I(x,t) are given by

E(x,t) = En(x,t) + En,l(x’t) + En’2(x,t) 7.0.6

I(x,t) = In(x,t) + In,1(x’t) + In 2(x,t)

I

for tfinAt. The orientation of the three currents in Eqs.

7.0.6 are assumed to be from x=0 to x=L. The problem,

described by Eqs. 7.0.3, satisfies the conditions of Chapter

3. The remaining two problems, described by Eqs. 7.0.4 and

7.0.6, each satisfy the conditions of Chapter 4 as long as

the boundary conditions, En 1(0,t) and En 2(L,t), for tEZnAt

are properly defined.

Let the functions gn(j,t), gn l(j,t), and gn 2(j,t)

be respectively the numerical solutions to these three

problems for which the initial and boundary conditions are

given by Eqs. 7.0.3, 7.0.4, and 7.0.5. It is quite clear

that the following relationships must be true, independent

of the method of numerical solution.

g(j,t) = gn(j,t) + 9n,1(j't) + 9n 2(j,t) 7.0.7
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gn(j,nAt) = g(j,nAt) j=l,2,...,2k—l 7.0.8

gn(0,t) = gn(2k,t)= 0 nAtft<<D

gn'1(j.nAt) = 0 j=l,2,...,2k-l 7.0.9

9n,1(0.t) = g(0.t) nAtft<oo

gn,l(2k't) = O nAtEt<oo R

1

gn’2(j,nAt) = 0 . j=l,2,...,2k-l 7.0.10 .

9n,2(0.t) = 0 nAtft<oo j

gn’2(2k,t) = g(2k,t) nAtft<oo

The numerical procedure for finding g(j,(n+l)At),

j=0,1,2,...,2k-l, is essentially finding gn(p,(n+l)At),

9n 1(P.(n+l)At). and 9n 2(p,(n+l)At) for p=l,2,...,2k-l, by

the methods indicated in the previous chapters. According to

the results of Chapter 4, the quantities gn l(p,(n+l)At) and

gn 2(p,(n+l)At), p=1,2,...,2k-l, respectively depend only on

the values of gn l(0,nA.t) and gn 2(2k,nAt). Once all of

these values are determined, Eqs. 7.0.7 can be used to find

g(j,(n+l)At) for j=l,2,...,2k—l. By means of the interpo-

lation formula, Eqs. 7.0.1, and Eqs. 7.0.2, g(0,(n+l)At) and

g(j(n+l)At) can be determined. Since the functions

g(j,(n+l)At) corresponds to the approximate numerical solution

for E(x,(n+l)At) and I(x,(n+l)At) at certain prescribed node

points, the whole process of superposition can be repeated

to find g(j.(n+2)At).



135

The next sections Ofthis chapter indicate in detail

how the results of Chapters 3 and 4 can be employed to obtain

three classes time domain models for which g(j,t),

j=o,l,...,2k, is the solutions.

7.1 Classes A and B.

This section indicates how the results of Chapters 3,

4, and.6 can.be employed to obtain two classes of time do-

main models which use difference methods in both the x and t

dimensions. In order to obtain these models, it is first

necessary to find the solution for gn(j,(n+l)At),

gn 1(j,(n+l)At), and gn 2(j,(n+l)At). Once this result is

shoWn, this section demonstrates that the difference methods

for each of these three transmission line problems can be

combined to produce two classes of time domain models which

represent the transmission line.

Since the transmission.line problem, described by Eqs.

7.0.8, is a problem of type 3, the results of Chapter 3 are

valid for obtaining gn(j,(n+1)At) for j=l,2,...,2k-1, from

the specified initial conditions which are given at t=nAt.

There are two possible techniques for obtaining this result.

One technique uses any difference method, given by Eqs.

3.2.4, which is derived for a class 1 time domain model. The

other technique uses any class 2 time domain model. Regard-

less of the technique, the matrix equation, Eqs. 7.1.0, must
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be valid for obtaining gn(j,(n+l)At). The matrix A; is

n—

r—
d!

gn(1,(n+l)At) T gn(1,nAt) * 7.1.0

gn(2. (n+1)At) gn(2,nAt)

*
= A0

gn(2k*l,(n+l)At) gn(2k—l,nAt)     
determined by a given two level difference method which uses

either of the two indicated techniques. The entries of A;

are functions of both Ax and At.

The results of Chapter 4 can be directly applied to

the remaining two transmission line problems, described by

Eqs. 7.0.9 and 7.0.10, in order to obtain gn l(j,(n+l)At)

and gn 2(j,(n+l)At) for j=l,2,...,2k-l. The results of

Chapter 4 states that there are two sets of launching numbers,

(bj 1(Ax,At)) and (bj 2(Ax,At)), such that Eqs. 7.1.1 are

true for j=1,...,2k—l.

9n'1(j:(n+l)At) lajll(Ax,At) gn l(O.nAt) 7.1.1

9n’2(j.(n+l)At) bj 2(Ax,At) gn 2(2k,nA.t)

In Chapter 4, there is a general method for determining these

launching numbers. These launching numbers may be chosen by

the same specific method or by a different method. If the

same specific method is employed, then these two sets are

related by

 



137

_ j '-
bj’2(Ax,At) - (—l) b2k-j,l(Ax’At) j-l,2,...,2k-l.

Before gn l(0,(n+l)At) and gn 2(2k,(n+l)At) can be de-

termined, I(O,(n+l)At) and I(L,(n+l)At) must be known. By

means of Eqs. 7.0.7 and 7.0.1, I(O,(n+l)At) and I(L,(n+l)At)

are given as follows.

I(O,(n+l)At) d Ign(l,(n+l)At) 1 7.1.2
1,1

I(L,(n+l)At) d d gn(3,(n+l)At)
2,1 ' ° 2,k

gn(2k—l,(n+l)At)    K— _

._ .T _ _1\

9n,1(l.(n+l)At) gn'2(l,(n+l)At)

9n'1(3.(n+l)At) gn 2(3,(n+1)At)

1 >

     gn l(2k—l,(n+l)At) (?n'2(2k-l'(n+l)Atl

‘J I

Once these variables are known, gn l(O,(n+l)At) and

gn 2(2k,(n+l)At) can be determined by Eqs. 7.0.2.

New that the functions gn(j,(n+l)At), gn l(j,(n+l)At),

and gn’2(j,(n+1)At) are known for j=0,1,2,...,2k, g(j,(n+l)AtL

is given by Eqs. 7.0.7. With this knowledge of g(j,(n+l)At),

three new transmission line problems can be created at

t=(n+l)At). Therefore, the entire process can then be re-

peated for finding g(j,(n+2)At).

.
7

l
‘
T
f
’

9
‘
'
—
:
—
"
=

.
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The discussion has indicated how the results of

Chapters 3, 4, and 6 are applied to determine g(j,(n+l)At)

from g(j,nAt). It is clear that a number of the indicated

steps can be combined. Hence, the general form of the equa-

tions required to obtain a difference equation solution can

be written as follows.

rg(l,(n+l)At)

g(2,(n+l)At)

bl,1(Ax,At)

b2’1(Ax,At)

 b2k_l(Ax,At)
I(O,(n+l)At)

I(L,(n+l)At)

g(0,(n+l)At)

g(2k—l,(n+l)AtU

—q __

g(l.nAt)

9(2.nAt)

0 .

  
—

g(2k—1,nAt)

J- .4

T

 
In 2(Ax,At) 9(0.nAt)

g2,2

 b2k’l’2(Ax,At:

d1,1 . . d1,k

d d
2,1 ° ' 2,k

(Ax,At) g(2k,nAt)

~-<3(l.(n.+1)At)

g(3,(n+l)At)

 
= Esl(I(0,(n+l)At),(n+l)At)

g(2k,(n+l)At) = E52(I(L,(n+l)At),(n+1)At)

Lg(2k-l,(n+1)At)

7.1.3

_

7.1.45

 
7.1.5
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Equations 7.1.3 and 7.1.4 are simply a restatement of Eqs.

7.0.1 and 7.0.2.

The same argument can be directly applied for differ-

ence methods are greater than two level. The end result can

be obtained by replacing Eqs. 7.1.3 by Eqs. 7.1.6 where the

matrix G(t) is defined by Eqs. 3.2.1. The other sets of

J2

G((n+l)At) = 2A: G((n-i)At) + 7.1.6

k=0

Pbl’l(Ax,At) bl 2(Ax,At) g(0,nAt)

b2’l(Ax,At) b2’2(Ax,At) g(2k,nAt)

b (Ax,At)
*2k-1,l b2k-1,1(Ax’AtU  

equations remain the same.

New that certain results of the previous chapters

have combined, it is possible to define two classes of time

domain models which represent the transmission line.

Definition: Class ArTime Domain Model:

A time domain model belongs to class A if and only if the

model can be obtained by the following steps.

1. The model is described by Eqs. 7.1.3 or 7.1.6, and

7.1.4.

2. The matrices A3, A3,..., and A32 are obtained by a

difference method in both x and t which is derived

from a class 1 time domain model.
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Definition: Class B-Time Domain Models:

A time domain model belongs to class B if and only if the

model can be obtained by the following steps.

1. The model is described by Eqs. 7.1.3 or 7.1.6, and

7.1.4.

2. The matrices A6, A:,..., and Agz correspond to a

time domain model belonging to class 2.

The only difference between the two classes of models

is the technique for which the matrices A*, A1,..., and AI

32

are obtained. For a model belonging to class A, these

matrices have a class 1 time domain model as a basis. Class

B on the other hand have the class 2 time domain models as

its basis. Since these two classes are not mutually dis—

joint, it is possible for a model to belong to both classes.

7.2 Class C.

This section combines the results of Chapters 3, 4,

and£5 to derive a set of (2k—1) linear ordinary differential

equations for the solutions are g(j,t) for j=l,2,...,2k~l.

Let us first consider the problem of type 3 which is

described by Eqs. 7.0.8.' The approximate solution, gn(j,t),

to this problem can be found by solving a set of (2k—1)

ordinary differential equations which are given by Eqs. 3.2.3.

These equations for a (2p+l) degree approximation to the

partial derivations can be written as
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dGn(t)

“a?” = Ap Gum

where the matrices Gn(t) and Ap are respectively defined by

Eqs. 3.2.1 and 3.2.2.

If Eqs. 7.1.1 are restated, these equations state

that

gn’l(j.(n+1)At) bj’1(Ax,At) gn’l(0,nAt) j=l,...,2k-l

9n’2(j.(n+1)At) bj’2(Ax,At) gn’2(2k,nAt) j=l,...,2k—l

are true for the remaining two problems. This relationship

uses the fact that gn l(j,nAt) and gn 2(j,nAt) for

j=l,2,...,2k-l are zero. For any given method for finding the

launching numbers, bj l(Ax,At) and bj 2(Ax,At), Chapter 4

showed that these launching numbers can be written as

bj’l(Ax,At) = (VpAt/Ax) bj,1 j=l,2,...,2k-l 7.2.1

b. x,At = t x B. '—1,2,...,2k-l3,2(A ) (va /A) 3’2 3

where Ej l,and bj 2 are constants independent ofllx or At.

If Eqs. 7.2.1 are substituted into Eqs. 7.1.1, the

following relationships can be obtained.

 

 

gnll(j.(n+l)At) - gnJl(j,nAt) v __

At -"""'—_'= x bj,1 9n,1‘°'nA¢)

9nL2(j.(n+l)At) - gn 2(j,nAt) .XE _

= Ax bj,2 9n,2(2k'nAt)At
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But

dgn,1(j’nAt) . gn l(j,(n+1)At) - gn l(j,nAt)

dt = At

  

dgn12(j,nAt) . gn 2(j,(n+l)At) - gn 2(j,nAt)

dt = At

 
 

Therefore,

 

 

dg (j,nAt) v
n,l . E -

dg (j,nAt) v
n,l ; p -

If this relationship, given in Eq. 7.2.2, is combined with

Eqs. 7.2.0, the solution for g(j,t), j=l,2,...,2k—l, can be

found by solving the following (2k-l) ordinary differential

equations.

V __ _

.Q§1£1 _ ._E ' t

dt ‘ Ap G(t) + Ax b1,1 b1,2 g(0,t) 7.2.3

b2,1 b2,2 g(2k,t)

szk-1,1 b2k-1,f_a__  
In addition to Eqs. 7.2.3, it is necessary to use

Eqs. 7.0.1 and 7.0.2 to properly define the quantities

g(0,t), g(2k,t), I(O,t) and I(L,t). The third class of time

domain models can now be defined.
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.Qefinition: Class C—Time domain Models:

A time domain model belongs to class C if and only if the

model is described by Eqs. 7.0.1 and 7.2.3.

7.3 Discussion of Mggels.

Let us assume that this parallel line of length L is

a single component in a given system. Each port can be

represented by a linear graph of one part which contains

exactly one element. The variables el(t) and il(t) can be

associated with the graph representing the port at x=0. For

the port x=L, the variables e2(t) and 12(t) are associated

with its linear graph representation. These graph variables

are associated with the transmission line variables as shown

in qu. 7.3.0 where the minus sign is required because of

the

el(t) = E(0,t) 7.3.0

il(t) = I(O,t)

assumed current orientations.

Let us assume that a time domain model which belongs

to either class A or class B is employed to relate these

graph variables. If we assume that the increments,Ax and,At

are properly chosen for this transmission line model, it is
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quite clear that this model defines the relationship

11((n+1)At) h3(el(nAt),e2(nAt),nAt) 7.3.1

12((n+l)At) h4(el(nAt),e2(nAt),nAt)

where the functions h3(el(t),e2(t),t) and h4(e1(t),e2(t),t)

are given by Eqs. 7.3.1, may or may not be the desired rela—

tionship to represent the transmission line as a two port

component. The answer to this question is determined by the

methods of numerical solution which is to be used to solve the

 

system for which the transmission line is a two port

component.

For discussion purposes, let us assume that Eqs.

7.3.1 are the desired relationships. The most difficult

problem which occurs when using the results of section 7.1

is the problem of choosing the increment At once,Ax has been

chosen. For a given model for the transmission line, the

increment which is required is a function of this model and

a function of the mathematical description of the entire

system. 'For example, if At is chosen such that the trans-

mission 1ine model is stable for the case when e1(t) and

e2(t) are specified functions of t and are independent of

il(t) and 12(t), there is a strong possibility that the equa-

tions which describe the transmission line are unstable for

the case when el(t) and e2(t) depend on il(t) and 12(t) in

some manner .
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The transmission line time domain model which belongs

to class C relates these graph variables in an entirely dif-

ferent manner. In fact, this class of models gives the rela-

tionship

dil(t) _

EfiT——* = h3(el(t),e2(t),t) 7.3.2 E-

di2(t) _ 531..
dt _ Fl4(eJ-(t)7e2(t)lt)

where the functions h3(el(t),e2(t),t) and h4(e1(t),e2(t),t)

 
are determined by Eqs. 7.2.3 and 7.0.1. The method of . E5;

numerical solution which is used to solve the differential

equations, given by Eqs. 7.2.3, can be chosen so that it is

the same as the method of numerical solution which is em—

polyed to solve the entire system. For example, if the other

components in the system are described by a set of differen—

tial equations, then numerical method for solving these

differential equations can also be employed to solve Eqs.

7.2.3.

One advantage of using a class C model is that some

technique of numerical solution can be used which auto-

matically decides on the increment At,

7.4 Bgth Graph glements arefinot Chords.

All of the discussion so far presented in this

chapter is applicable to transmission line problems for which

the transmission line linear graph representation has been
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formulated as chords. The findings of Chapters 5 and 6 can

be directly applied to the results of sections 7.0, 7.1, 7.2.

and 7.3 to show that by modifying the equations which

describe the models, the models are also applicable to the

other cases which arise in formulation.

Upon applying the findings of Chapters 5 and 6, the

results are stated as follows:

 

Both Graph elements are branches:

 

l. Ax = L/k, where k is a positive integer. . -

2. The functions g(2j,t), j=0,1,2,...,k, and g(2j+l,t), -gJ

j=0,1,2,...,k—l, are respectively defined as the ap—

proximate numerical solutions for I(ij,t) and

E(ij+Ax/2,t) .

3. In Eqs. 7.0.1, replace I(O,t) and I(L,t) respectively

by E(0,t) and Eu;,t).

4. Upon performing these modifications, the three

classes of time domain models are valid for this case.

One qrgph element is a chord and the other is a branch:

1. Ax=2L/k', where k' is a positive odd integer.

2. When the port at x=0 is formulated as a chord

(branch), the functions g(2j,t), j=0,1,2,...,(k'—1)/2,

and g(2j+l,t), j=0,1,2,...,(k'wl)/2, are defined re-

spectively as the approximate numerical solutions for

E(ij,t)(I(ij,t)) and I(ijtAx/2,t)(E(ij+Ax/2,t)).

3. Replace the quantity 2k by k' in all equations in

sections 7.0, 7.1, and 7.2.
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4. In Eqs. 7.0.1, replace I(L,t)(E(0,t)) by

E(L,t)(I(0,t)).

 5. Use Eqs. 5.2.6 to recalculate the launching numbers.

6. Upon performing these modifications, the three

classes of time domain models are valid for this

case.

7.5 Example Problem.

In order to illustrate the concepts which are pre—

sented in this chapter, let us work a simple problem. This

 

problem consists of a lossless transmission line of length L

which is terminated respectively at x=0 and x=L with a speci—

fied voltage source and a matched load. In addition, it will

be assumed that the initial conditions on the line are speci-

fied to be zero.

For simplification purposes, the parameters of the

transmission line are specified as

Vl/c = 1 ohm

vp = 1 meter/second

L = 1 meter.

This choice of parameters forces the telegrapher's equations

to be in normalized form. In addition, the computations re-

quired to obtain any time domain model is simplified.

The linear graph for this problem can be drawn as

shown in Fig. l where elements 2 and 3 are associated

respectively
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Fig. l Oriented linear graph for example problem.

with the transmission line ports at x=0 and x=L. Elements 1

and 4 are associated respectively with the specified voltage

source and the matched load. If we let elements 1 and 4 be

the tree for this graph, the f—cut set, f—circuit, and ele-

ment equations are respectively:

  

  

1 0 1 OF. bil(t)1 7.5.0

o 1 0 1_J i4(t)

= 0

12m

i3(t).

-1 0 1 0 Elm)- 7.5.1

0 -1 o 1 e4(t)

= o

e2(t)

f3”).

el(t) - 2t Oft20.5 7.5.2

 

.
1
1
9



149

-m;+4 luSstszfi

e2(t) = E(0,t)

12(t) = I(O,t)

e3(t) = E(th)

i3(t) = -I(L,t)

e4(t) = i4(t)

Before any attempt is made to solve these equations, the

time domain model which is used to represent the trans-

mission line must be specified.

Since there are an infinite number of time domain

models which belong to each class of models, the transmission

line portion of the problem will be represented by a model

which belongs to class C because it is described by differ—

ential equations. To further illustrate some of the con-

cepts, this problem will be worked four times using two dif-

ferent models and 2 choices oszx for each model.

For this problem, the incrementzAx must be chosen as

Ax=l/L, where k is a positive integer, independent of the.

method of numerical solution. In addition, the functions

g(2j,t), j=0,1,2,...,k, and g(2j+l,t), j=0,1,2,...,k—l, are

defined respectively as the numerical solution for E(ij,t)

and I(ij+ x/2,t).
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According to section 7.2, any model which belongs to

class C can be written in general terms as

  

  
 

e121- —— — — ~
dt _ Ap G(t) + (VP/Ax) bl’l bl’z g(0,t)1

b2,1 b2,2 tg(2k,t)

. . 7.5.3 i1

LbZk-l,l b2k-1,2_ E .

I(O,t) d1 1 . . d1 1 d1 k g(l,t) 7.5.4 "7*

I(L,t) d2 1 . . d2 1 . . d2 k g(2i-1,t)

g(2k—l,t)

L .—  
Once the matrix AP' the interpolation formulas, and the

launching numbers or transformation constants are chosen,

the time domain model has been defined. In order to solve

this resulting time domain model, it is only necessary to

specify Ax, At, the method of numerical solution, and the

boundary conditions.

In order to find the terminal variable I(O,t), let

us define an interpolation formula in terms of the functions

g(l,t) and g(3,t). According to Chapter 6, the function

I(x,t) can be assumed to be an even function of x with re-

spect to x=0. Therefore, if
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I(x,t) a + a x

such that

g(l,t) = a0 + a2 (Ax/2)2

9(37t) = a + a (3Ax/2)2
0 2

then

I(O,t) 9 g(l,t)/8 — g(3,t)/8. 7.5.5

By using the same interpolation formula to find I(L,t) in

terms of g(2k-l,t) and g(2k-3,t), I(L,t) is then given as

I(L,t) = 9 g(2k—l,t)/9 — g(2k—3,t)/8. , 7.5.6

The interpolation formulas will remain the same when defining

both time domain models.

The matrices Ap, p=0,l,2,3,..., are defined by Eqs.

3.2.2. Therefore, once the value of p is chosen, this portion

of the domain model has been specified. For the two specific

models which will be solved numerically, p is chosen as zero.

Therefore,

A0 = k C 7.5.7

where C is the transformation matrix which is defined by

Eqs. 3.1.1 and k is a scalar.

Finally, two sets of transformation constants must

be specified in order to completely specify these two time
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domain models. One class of methods for obtaining these

transformation constants is derived in Section 4.6. If the

results are

section 4.6

such set is

I
I
I

II

used from the two examples which are given in

and the results of section 4.8 are applied, one

1 7.5.8

o j=2,3,...,2k—l

— -1

0 j=l,2,...,2k-2

and the other set is

U
‘
I

II

U
”

0
‘
!

II
ll

6
‘

II

5/4 7.5.9

-1/4

0 j=4,5,...,2k—l

0

= -5/4

l/4

0

0. j=l,2,...,2k—4
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Let us now solve Eqs. 7.5.0, 7.5.1, and 7.5.2 for

i2(t) and i4(t). The numerical solution for i2(t) and i4(t)

along with the analytical solutions for these variables are

shown for the interval 05t54 in Figures 2, 3, 4,.and 5

where the information concerning each technique of solution

is given as follows:

Figure 2:

1. At = 1/80 seconds.

2. k = 4.

3. Transformation constants specified by Eqs. 7.5.8.

4. Runge Kutta fourth order method of solution.

Figure 3:

1. At = 1/80 seconds.

2. k = 8.

3. Transformation constants specified by Eqs. 7.5.8.

4. Runge Kutta fourth order method of solution.

Figure 4:

1. At = 1/80 seconds.

2. k = 4.

3. Transformation constants specified by Eqs. 7.5.9.

4. Runge Kutta fourth order method of solution.

Figure 5:

1. At = l/80 seconds.
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3. Transformation constants specified by Eqs. 7.5.9.

4. Runge Kutta fourth order method of solution.

Let us now discuss certain aspects of the numerical

solutions for i2(t) and i4(t) which are given by Figures 2,

3,‘L and 5. If Figure 2 is compared to Figure 3 and Figure

4 is compared to Figure 5, the effect of the increment.Ax on

the numerical solutions is clearly shown. Hence, if Ax was

chosen even smaller, the accuracy of the approximation would

be improved.

Since the input current, i2(t), for all of the models

is obtained by interpolation from the calculated values of

current at certain interior node points, the time delay

property of the equations causes the calculated input current

to lag the theoretical solution. This time delay property is

corrected at the expense of overshoot to some extent by using

the transformation constants which are specified by Eqs.

7.5.9. This effect is also reduced by a smaller Ax since

the time delay between the input and the first current node

is reduced.

For tEEZ, the numerical solution for i2(t) is not

zero where theoretically this current is zero. The reason

for this result is that the time domain models do not truly

have a characteristic impedance equal to unity. As a result,

reflections occur at x=0 and x=L. This effect is also ob-

served in the solution for i4(t). The reduction of this ef-

fect by decreasing.Ax is shown by comparing the results for
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k=4 to k=8. This phenomena is generally present in all trans-

mission line approximations whether they are those derived in

the thesis or not.

The variable i4(t) corresponds to the output current.

Upon observing i4(t), we see that the model gives us the cor—

rect time delay. In addition, we see that i4(t) begins to

rise before the theoretical solution begins to rise. This

property can generally be expected from all transmission

line approximations.

It can then be concluded that for sufficiently small

Ax these models provide the desired representation.

7.6 Conclusion.

The findings of the previous chapters have been com-

bined in this chapter by superposition to obtain the three

classes of time domain models which are applicable to the

transmission line problems encountered in electrical

engineering. In addition, a numerical example was worked to

show certain aspects of the numerical solution which are

obtained by the use of these models.

 

+1.1

 



VIII. CONCLUSION

8.0 Conclusion

Three classes of time domain models have been de-

rived which are directly applicable to the practical problems

which are encountered in electrical engineering. Any model

which belongs to either class A or class B is defined by a

finite set of difference equations in both the x and t

dimension. On the other hand, a model which belongs to

class C is described by a finite set of ordinary differential

equations which are in normal form.

For the case where the transmission line linear

graph representation is formulated as chords, the general

form of the equation for any model which belongs to class A

or class B are given by Eqs. 7.1.3 or 7.1.6, and 7.1.4. The

general method for determining the matrices Ag, i=0,1,....j2.

which appear in these equations is one of the principle re—

sults of Chapter 3. The result of Chapter 4 is the deri—

vation of a general method for obtaining the launching num-

bers which appear in these equations. The remaining terms

which appear in these equations correspond to the interpo-

lation formulas used to find the numerical solution for

I(O,t) and I(L,t). Chapter 6 derives certain properties

which are useful in determining these interpolation formulas.

160
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The general form of the equations which describe any

model belonging to class C are given by Eqs. 7.0.1 and 7.2.3.

The terms appearing in these equations are found by applying

the results of Chapter 2, 3, 4, and 6 for the case when the

transmission line linear graph representation is formulated

in the cotree.

For the other three cases which result when both of

the linear graph elements which represent the transmission

line are not formulated as chords, the results of Chapter 5

and section 7.4 must be applied to slightly modify the equa-

tions which represent any model even though the general form

of the equations remains essentially the same.

One of the main results of this thesis other than de-

riving these classes of time domain models is the approach

which was used in the derivations. This approach consisted

of the specific use of the superposition principle to sub—

divide the general transmission problem into 3 transmission

line problems which are easily treated individually. One of

these resulting problems was treated by a finite—infinite

line transformation which provided an effective means for

approximating all of the partial derivatives with respect to

x by more accurate central difference formulas. The remaining

problems are treated by a transformation which transforms the

boundary conditions for a given interval to initial condi-

tions. This transformation is defined by a set of launching

numbers.

 



162

8.1 Limigagions.

It must be pointed out that the telegrapher's equa—

tions or the wave equation describe a two conductor trans—

mission line only when the algebraic sum of the currents in

any cross—section is zero. This condition must be satisfied

before any of the models can be expected to be a valid repre-

sentation. This requirement generally places some restric—

tions on the system for which one or more transmission lines

are components.

8.2 Additional Problems.

This thesis derives an infinite number of time domain

models. One subject which warrants further study is the

choice of a best model or models. It would first be neces-

sary to formulate a criteria for making this choice.

One additional problem would be to extend the find—

ings of this thesis to the lossy transmission line. By

making the appropriate change of variable, it is clear that

the distortionless line immediately follows. For the lossy

lines which are not distortionless, some of the findings of

this thesis can be easily extended while others are not.

First of all, the derivations in Chapters 2 and 3

which treat the time domain models, belonging to class 1,

can be readily modified to include lossy lines by the intro-

duction of the appropriate dissapation terms which appear in

the telegraphers equations. On the other hand, modification

of the derivations associated with time domain models which
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i

belong to class 2 can be quite dpmplex. The reason for this

is that the extention of the basic numerical solution to in-

clude lossy lines results in a very complicated expression.

Since the derivations in Chapter 4 are based on cer-

tain forms of this basic numerical solution, there is no easy

way to modify the launching numbers to include lossy lines.

The transformation constants which are given by

bl’l = 1

3,1 = o 3:2,3,...,2k-1

bmelfl l

133’2 = 0 3:1,2,...,2k-2

are valid for this lossy case.

Finally, the results in Chapters 5, 6, and 7 are

valid whenever the best numerical solution does not enter in

any way into the derivations. It can be concluded in order

to extend a large portion of the thesis, it would be neces-

sary to first investigate the basic numerical solution which

is applicable or the lossy infinite line and to secondly ob—

tain the Fourier approximations, used in Chapter 4, which

are valid for the lossy line. Once these items are deter—

mined, the same approach as was used in the thesis can be

'applied.
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