A MONTE CARLO INVESTIGATION OF THE ANALYSIS OF VARIANCE APPLIED TO NON-INDEPENDENT BERNOULLI VARIATES

Thesis for the Degree of Ph.D.
MICHIGAN STATE UNIVERSITY
JOHN DRAPER
1971

This is to certify that the

thesis entitled

A MONTE CARLO INVESTIGATION OF THE ANALYSIS OF VARIANCE APPLIED TO NON-INDEPENDENT BERNOULLI VARIATES

presented by

John Draper

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Education

Andrew C. Porter

Major professor

Date May 20, 1971

19185

ABSTRACT

A MONTE CARLO INVESTIGATION OF THE ANALYSIS OF VARIANCE APPLIED TO NON-INDEPENDENT BERNOULLI VARIATES

Ву

John Draper

The analysis of data from a repeated measures type of experimental design was considered for the case in which each repeated measure score was obtained as the sum of a set of evaluations for responses to a set of items. The analysis was considered separately for the case in which the items were included as a factor in the design and for the situation in which the items were ignored as a factor in the design. was shown that whether items were considered as a factor in the experimental design or not, they could provide a non-null source of variation, which if present would be confounded with the source of variation for repeated measures effects. The suggestion was made that the inclusion of items as a factor in the design and employment of the "quasi-F" statistic might result in an appropriate test for repeated measures effects, if the response evaluations could be considered independent and normally distrib-However, it was noted that a series of evaluations on a uted.

single subject are seldom independent and are frequently zeros and ones corresponding to incorrect and correct responses, that is, data which could be modeled by a vector of non-independent Bernoulli variates rather than a vector of independent normal variates. Because others had had success in the application of the Analysis of Variance (ANOVA) to independent Bernoulli variates, it was considered interesting and important to attempt to determine if ANOVA could be appropriately applied to the analysis of non-independent Bernoulli variates, particularly with respect to the subjects by repeated measures design with items either nested within or crossed with repeated measures.

A mathematical modeling of the situation of interest was undertaken, an algorithm was devised, and a computer program was written to simulate zero-one type data with any given desired consistent covariance structure and parameter configuration. For a given parameter configuration a Monte Carlo procedure was employed to determine the appropriate-ness of ANOVA for the analysis. Then the obtained empirical distributions of variance ratio tests were compared to Theoretical F-distributions, with respect to the probability of a type I error or relative power, for null effect or non-null effect conditions respectively. Particular attention was paid to the empirical distributions of the regular variance ratio test for repeated measures, the "quasi-F" test for repeated measures, and the regular variance ratio test for the subjects by repeated measures interaction.

There were 720 cases or parameter configurations which were investigated. For all cases investigated the number of items associated with a repeated measure and the number of repeated measures were fixed at three and four respectively. The items provided either a null source of variation or a non-null source of variation and were either crossed with or nested within the repeated measures. The number of subjects varied from 4 to 12. The probability of a one in the zero-one data was either .5, .2, or .1. The degree of subject heterogeneity was one of four values. And the effects of repeated measures and the subject by repeated measure interaction were either, both null or separately non-null.

The results indicate that the "quasi-F" should not be applied to the type of data investigated, that the power of variance ratio test on non-independent zero-one data is approximately half that for normal data, that in the absence of a confounded non-null source of variation the regular variance ratio test for repeated measures is appropriate given the number of subjects is large enough, and that the variance ratio test for the subjects by repeated measures interaction is appropriate only when the probability of a one in the data is close to .5.

A MONTE CARLO INVESTIGATION OF THE ANALYSIS OF VARIANCE APPLIED TO NON-INDEPENDENT BERNOULLI VARIATES

Ву

John Draper

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

College of Education

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my adviser, Dr. Andrew C. Porter, who served as chairman of my dissertation committee. His comments and aid in the revision of earlier drafts of this work were invaluable. I wish to thank the members of my committee Drs. Joe L. Byers, Maryellen McSweeney, William H. Schmidt, and Robert G. Staudte, Jr., for their assistance. I further wish to thank my colleagues in the Office of Research Consultation, particularly David Wright and Howard Teitlebaum, for their help and patient listening.

Finally I would like to thank my wife, Margaret, for her help, support, and understanding throughout this entire project.

TABLE OF CONTENTS

Chapte	r	Page
ı.	INTRODUCTION	1
II.	MODEL DEVELOPMENT	21
III.	A CONSIDERATION OF THE ROBUSTNESS OF THE F-TEST WITH RESPECT TO DEPENDENT BERNOULLI	
	VARIABLES	37
IV.	METHOD OF DATA GENERATION AND CASES GENERATED .	. 45
v.	RESULTS OF THE MONTE CARLO SIMULATIONS	54
VI.	IMPLICATIONS AND CONCLUSIONS	110
BIBLIO	GRAPHY	116
APPEND:	ICES	
Α.	Frequency data for variance ratio tests other than those included in Chapter V	118
В.	Empirical values of correlations between mean squares in ratios other than those presented in Chapter V	126
С.	The listing of the computer program employed in the Monte Carlo procedure	132

LIST OF TABLES

 Sources of Variation, Degrees of Freedom, and Expected Mean Squares for Design 2			Page
 Expected Mean Squares for the Suggested Design . 3. Sources of Variation, Degrees of Freedom, and Expected Mean Squares for the Suggested Design when Paired Associates are Fixed 4. Sources of Variation, Degrees of Freedom, and Expected Mean Squares for Design 1 5. Sources of Variation, Degrees of Freedom, and Expected Mean Squares for Design 2 6. Sources of Variation, Degrees of Freedom, and Expected Mean Squares for Design 3 7. The Empirical Frequencies, in α·1000 Rejection Region, of the F for Repeated Measures, Based on Normal and Dichotomous Data, Items Crossed, Interaction and Repeated Measure Effects Both Null 8. The Empirical Frequencies, in α·1000 Rejection Regions, of the F for Repeated Measures, Based on the Dichotomous Data Items Nested, Interaction and Repeated Measure Effects Both Null	1.	Expected Mean Squares for Data from a Design	4
 Expected Mean Squares for the Suggested Design when Paired Associates are Fixed	2.		5
 Expected Mean Squares for Design 1	3.	Expected Mean Squares for the Suggested Design	9
 Expected Mean Squares for Design 2	4.		14
 Expected Mean Squares for Design 3	5.		14
 Region, of the F for Repeated Measures, Based on Normal and Dichotomous Data, Items Crossed, Interaction and Repeated Measure Effects Both Null	6.		15
 Regions, of the F for Repeated Measures, Based on the Dichotomous Data Items Nested, Interaction and Repeated Measure Effects Both Null . 9. The Empirical Frequencies, in α·1000 Rejection Regions, of the F for Repeated Measures, Based on Normal and Dichotomous Data, Items Crossed, 	7.	Region, of the F for Repeated Measures, Based on Normal and Dichotomous Data, Items Crossed, Interaction and Repeated Measure Effects Both	58
Regions, of the F for Repeated Measures, Based on Normal and Dichotomous Data, Items Crossed,	8.	Regions, of the F for Repeated Measures, Based on the Dichotomous Data Items Nested, Inter-	63
	9.	Regions, of the F for Repeated Measures, Based on Normal and Dichotomous Data, Items Crossed, Repeated Measure Effects Non-null, Interaction	67

10.	The Empirical Frequencies, in α·1000 Rejection Regions, of the F for Repeated Measures, Based on the Dichotomous Data, Items Nested, Repeated Measure Effects Non-null, Interaction Null	68
11.	The Empirical Frequencies, in α·1000 Rejection Regions, of the Quasi-F for Repeated Measures, Based on Normal and Dichotomous Data, Items Crossed, Interaction and Repeated Measures Effects Both Null	74
12.	The Empirical Frequencies, in a 1000 Rejection Regions, of the Quasi-F for Repeated Measures, Based on Dichotomous Data, Items Nested, Interaction and Repeated Measure Effects Both Null	7 5
13.	The Empirical Frequencies, in the @.1000 Rejection Region, of the Quasi-F for Repeated Measures, Based on Normal and Dichotomous Data, Items Crossed, Repeated Measure Effects Non-null, Interaction Null	81
14.	The Empirical Frequencies, in a 1000 Rejection Regions, of the Quasi-F for Repeated Measures, Based on Dichotomous Data, Items Nested, Repeated Measure Effects Non-null, Interaction Null	82
15.	The Empirical Frequencies, in α·1000 Rejection Regions, of the F and Quasi-F for Repeated Measures, Based on Normal and Dichotomous Data, Items Crossed, Twelve Subjects	84
16.	The Empirical Frequencies, in α·1000 Rejection Regions, of the F and Quasi-F for Repeated Measures, Based on the Normal and Dichotomous Data, Items Nested, Twelve Subjects	85
17.	The Empirical Frequencies, in $\alpha \cdot 1000$ Rejection Regions, of the F for the Subjects by Repeated Measures Interaction, Based on the Normal and Dichotomous Data, Items Crossed, Interaction and Repeated Measures Effects Both Null	87
18.	The Empirical Frequencies, in α·1000 Rejection Regions, of the F for the Subjects by Repeated Measures Interaction, Based on the Normal and Dichotomous Data, Items Nested, Interaction	88
	and Repeated Measure Effects Both Null	00

19.	The Empirical Frequencies, in α·1000 Rejection Regions, of the F for the Subjects by Repeated Measures Interaction, Based on the Normal and Dichotomous Data, Items Crossed, Interaction Effects Non-null, Repeated Measures Null	93
20.	The Empirical Frequencies, in α·1000 Rejection Regions, of the F for the Subjects by Repeated Measures Interaction, Based on the Normal and Dichotomous Data, Items Nested, Interaction Effects Non-null, Repeated Measures Null	94
21.	The Correlations Between Mean Squares for Repeated Measures and the Mean Square Error Associated, Based on Dichotomous Data, Inter- action and Repeated Measure Effects Both Null .	104
22.	The Correlations Between the Mean Squares for Subjects by Repeated Measures Interaction and the Mean Square Error Associated, Based on the Dichotomous Data, Interaction and Repeated Measures Effects Both Null	105
23.	The Empirical Frequencies, in α·1000 Rejection Regions, of the F for Subjects Based on Normal and Dichotomous Data, Items Crossed, Interaction and Repeated Measures Effects Both Null	118
24.	The Empirical Frequencies, in $\alpha \cdot 1000$ Rejection Regions, of the F for Subjects, Based on Normal and Dichotomous Data, Items Nested, Interaction and Repeated Measure Effects Both Null	119
25.	The Empirical Frequencies, in α·1000 Rejection Regions, of the F for Subjects, Based on Normal and Dichotomous Data, Items Crossed, Repeated Measure Effects Non-null, Interaction Effects Null	120
26.	The Empirical Frequencies, in α·1000 Rejection Regions, of the F for the Items by Repeated Measures Interaction, Based on the Normal and Dichotomous Data, Items, Nested, Interaction and Repeated Measure Effects Both Null	121
27.	The Empirical Frequencies, in α·1000 Rejection Regions, of the F for Items, Based on the Normal and Dichotomous Data, Items Crossed, Interaction and Repeated Measure Effects Both	122
	Null	144

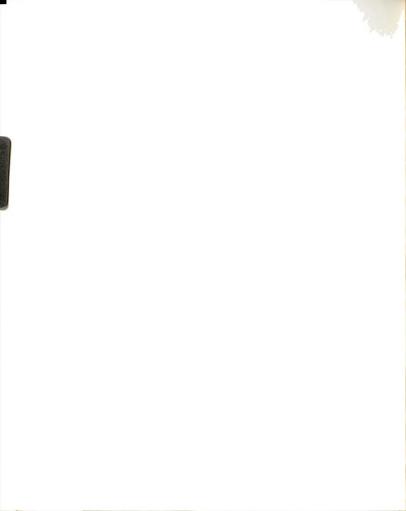
28.	The Empirical Frequencies, in α·1000 Rejection Regions, of the F for Items, Based on the Dichotomous Data, Items Crossed, Repeated Measure Effects Non-null, Interaction Null	123
29.	The Empirical Frequencies, in $\alpha \cdot 1000$ Rejection Regions, of the F for Items, Based on the Dichotomous Data, Items Nested, Interaction and Repeated Measure Effects Both Null	124
30.	The Empirical Frequencies, in α·1000 Rejection Regions, of the F for Items, Based on the Normal and Dichotomous Data, Items Crossed, Interaction and Repeated Measure Effects Both Null, Twelve Subjects	125
31.	The Empirical Frequencies, in α·1000 Rejection Regions, of the F for Items, Based on Normal and Dichotomous Data, Items Nested, Interaction and Repeated Measure Effects Both Null, Twelve Subjects	125
32.	The Correlations Between the Mean Square Items by Repeated Measures Interaction and the Mean Square Subjects by Items by Repeated Measures Interaction Based on the Dichotomous Data, Interaction and Repeated Measure Effects Both Null	128
33.	The Correlations Between the Mean Squares for Subjects and the Mean Square Error Associated, Based on the Dichotomous Data, Interaction and Repeated Measure Effects Both Null	129
34.	The Correlations Between the Mean Squares for Subjects and the Mean Square Error Associated, Based on the Dichotomous Data, Interaction and Repeated Measure Effects Both Null	130
35.	The Correlations Between the Mean Squares for Items and the Mean Squares for Subjects by Items Interaction Based on the Dichotomous Data, Items Crossed, Repeated Measure Effects are Non-null and Interaction Effects are Null	131
36.	The Correlations Between the Mean Squares for Subjects and the Mean Squares for Subjects by Items Interaction Based on the Dichotomous Data, Items Crossed, Repeated Measure Effects are Non-null and Interaction Effects	
	are Null	131

LIST OF FIGURES

		Page
1.	The interaction of the probability of a one and the number of subjects, with respect to the data in Table 7	61
2.	The interaction of the probability of a one, the number of subjects, and items fixed vs. random, with respect to the data in Table 8	65
3.	The interaction of the probability of a one and the number of subjects, with respect to the data in Table 10	77
4.	The interaction of the probability of a one and items fixed vs. random, with respect to the data in Table 10	78
5.	The interaction of the probability of a one and the number of subjects, with respect to the data in Table 12	80
6.	The interaction of the probability of a one and the number of subjects, with respect to the data in Table 17	90
7.	The interaction of the probability of a one and items fixed vs. random, with respect to the data in Table 17	91
8.	The interaction of the probability of a one and the number of subjects, with respect to the relative power of the test for the subjects by repeated measures interaction based on dichotomous data under Design 2	95
9.	The interaction of the probability of a one and items fixed vs. random, with respect to the relative power of the test for the subjects by repeated measures interaction based on	
	dichotomous data under Design 2	96

10.	The interaction of the probability of a one and the level of subject heterogeneity, with respect to the relative power of the test for the subject by repeated measures interaction based on dichotomous data under Design 2	97
11.	The interaction of the probability of a one and the number of subjects, with respect to the relative power of the test for the subjects by repeated measures interaction based on dichotomous data under Design 3	99
12.	The interaction of the probability of a one and items fixed vs. random, with respect to the relative power of the test for the subjects by repeated measures interaction based on dichotomous data under Design 3	100
13.	The interaction of the probability of a one and the level of subject heterogeneity, with respect to the relative power of the test for the subjects by repeated measures interaction based on dichotomous data under Design 3	101
14.	The interaction between the probability of a one and the level of subject heterogeneity, with respect to the correlations in Table 21	108
15.	The interaction between items fixed vs. random and items crossed vs. nested, with respect to the correlations in Table 21	126
16.	The interaction between the number of subjects and items crossed vs. nested, with respect to the correlations in Table 21	126
17.	The second order interaction between the probability of a one, items fixed vs. random, and items crossed vs. nested, with respect to the	127

CHAPTER I


INTRODUCTION

An experimental design which is often employed in psychological and educational research is the repeated measures design. 1 The essential characteristic of the repeated measures design is that each subject is evaluated more than Thus the simplest of repeated measure designs would represent a situation in which n subjects were evaluated t times, resulting in a data matrix with n rows and t columns. Variations on the simple repeated measures design include assigning subjects to treatment groups and classifying the repeated measures into levels of independent variables associated with them. In many instances an experimenter will, by necessity, have to evaluate the subjects on each of the t times in a manner such that the evaluations may take on only two values corresponding to, for example, correct or incorrect responses. When the evaluations can only take on two values (e.g. zero or one), a data matrix of dichotomous values results. Can the familiar analysis of variance, ANOVA, procedure be usefully applied to a data matrix of

¹The repeated measures design is sometimes referred to as a split plot design.

such dichotomous values? Of the assumptions on which the ANOVA procedure is based, clearly the assumption of normality is violated, and it will be shown that it is likely that the assumption of independence will be violated as well. The problem with which this paper will be concerned is, in general, the analysis of dichotomous repeated measure data, and specifically the applicability of the ANOVA procedure to the analysis of dichotomous repeated measure data.

The repeated measures type of experimental design allows not only for the experimental investigation and analysis of events over time, but also offers promise to serve as a vehicle for the investigation of individual differential response on the part of the subjects or experimental units with respect to the variables of experimental intervention (see Cronbach, Jensen, and others in Gagné, 1967). The importance of determining if it is likely that experimental units have differential responses with respect to the variables of experimental intervention is illustrated in an example referred to by Jensen (1967), of a study by Hovland (1939), who performed an experiment in which no statistically significant differences were found between massed and distributed practice on paired associate learning tasks. After reporting the above mentioned nonsignificance, Hovland went on to report that 44 per cent of the subjects in his study improved more rapidly with distributed practice, 28 per cent learned faster with massed practice, and 28 per cent showed no effect due to the type of practice.

percentages which Hovland reported suggest the possibility of a significant subject by type of practice interaction. A subject by type of practice interaction would indicate that the effect of type of practice was not null but rather different for different types of subjects.

In the Hovland study all subjects were measured on learning trials when given massed practice and on learning trials when given distributed practice. Table 1 presents the sources of variation, degrees of freedom, and expected mean squares for data from a study such as Hovland's. Note, there are tests for the type of practice main effects and the trials main effects, but no test for the subjects by type of practice interaction effects. Thus there is no test for what would appear to be an important source of variation in the Hovland data.

Examine an experimental design the Hovland study might have employed. In the suggested design subjects are arrayed in two groups (a massed practice group and a distributed practice group) where each subject is given five trials on four randomly selected sets of paired associates. Groups and trials have two and five fixed levels respectively and thus represent fixed sources of variation. Subjects and paired associates are randomly selected from supposedly infinite populations and therefore represent random sources of variation.

Table 2 contains the sources of variation, degrees of freedom and expected mean squares for a design such as that

Table 1
Sources of variation, degrees of freedom and expected mean squares for data from a design such as Hovland's

Source	đf	E(MS)
A (subjects)	s-l	2to ² A
B (type practice)	1	$t\sigma_{AB}^2 + st\sigma_{B}^2$
C:B (trials)	2(t-1)	$\sigma_{AC:B}^2 + s\sigma_{C:B}^2$
AB	l(s-1)	to ² AB
AC:B	2(s-1)(t-1)	σ ² AC:B

Note, not all of the above are variances, since there are some fixed effects.

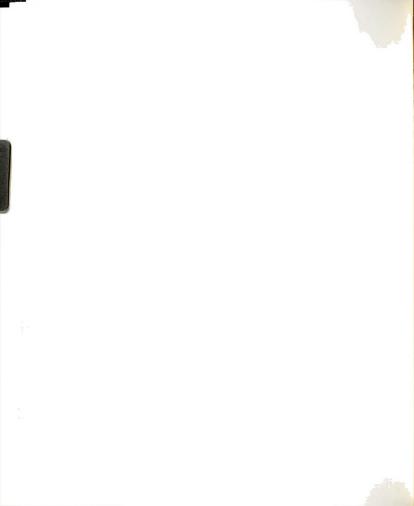


Table 2

Sources of variation, degrees of freedom, and expected mean squares for the suggested design

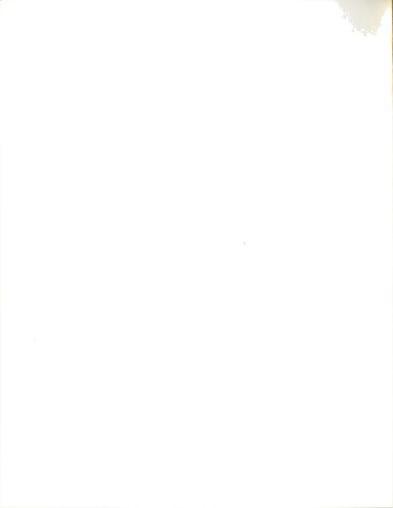
Source	df	E(MS)
A (groups)	1	$5\sigma_{\text{CS:A}}^2 + 5n\sigma_{\text{AC}}^2 + 20\sigma_{\text{S:A}}^2 + 20n\sigma_{\text{A}}^2$
S:A (subjects: groups)	(n-1)2	$5\sigma_{\text{CS:A}}^2 + 20\sigma_{\text{S:A}}^2$
B (trials)	4	$\sigma_{\text{BCS:A}}^2 + 4\sigma_{\text{BS:A}}^2 + 2n\sigma_{\text{BC}}^2 + 8n\sigma_{\text{B}}^2$
C (PA's)	3	$5\sigma_{\text{CS:A}}^2 + 10\text{n}\sigma_{\text{C}}^2$
ВС	12	$\sigma_{BCS:A}^2 + 2n\sigma_{BC}^2$
AB	4	$\sigma_{\text{BCS:A}}^2 + 4\sigma_{\text{BS:A}}^2 + n\sigma_{\text{ABC}}^2 + 4n\sigma_{\text{AB}}^2$
AC	3	$5\sigma_{\text{CS:A}}^2 + 5n\sigma_{\text{AC}}^2$
ABC	12	$\sigma_{BCS:A}^2 + n\sigma_{ABC}^2$
BS:A	(n-1)8	$\sigma_{\text{BCS:A}}^2 + 4\sigma_{\text{BS:A}}^2$
CS:A	(n-1)6	5σ ² CS:A
BCS:A	(n-1)24	σ ² BCS:A

Note, not all of the above are variances since there are some fixed effects.

mentioned in the previous paragraph, given that the assumptions on which the analysis of variance procedure is based, hold. Inspection of the expected mean squares in Table 1 indicates that the ratio,

would provide a test for the source of variation—subjects by trials interaction. The source of variation—subjects by trials interaction—would reflect the type of individual differential response to massed or distributed practice that was suggested in the Hovland data, that is the differences between the trial curves for subjects would be greater if there was a significant subjects by type of practice interaction than would be expected otherwise. Thus had the experimental design suggested in this paper been employed and the ANOVA consistent with it been used to analyze the data obtained, a test for the subjects by trials source of variation would have been available, which if significant would indicate the possibility of a subjects by type of practice interaction.

At least at first glance the ANOVA which Table 2 suggests as a possible means of analysis, appears to be a reasonable way to insure a means of testing for a differential response on the part of the two groups 2 as well as a means of testing for a subjects by trials interaction.


²By means of a synthetic variance ratio due to Satterthwaite (1941).

However, closer examination will indicate violations of the ANOVA assumptions.

In order to explain the nature and sources of the violations a digression must be indulged. The digression is necessary in order to discuss population distributions. Consider any population of entities, each entity may have as many as an infinity of attributes and if the number of entities in a population is so few as to be countable in a finite time, a frequency distribution of the entities with respect to any one attribute may be constructed. value can represent all of the entities in a population with respect to one attribute, the population can be said to have a point distribution with respect to that attribute. that the above same population may not necessarily have a point distribution with respect to some other attribute. Thus it is important when speaking of the distribution of a population to specify with respect to what attributes the population is distributed.

One of the assumptions of an ANOVA is that the response evaluations on dependent variables are independent for each subject or experimental unit. Another assumption of an ANOVA is that the dependent variables have a normal distribution. If the dependent variables have a multivariate normal distribution a zero correlation between them is necessary and sufficient to establish their statistical independence.

It will now be shown that it is likely that data

obtained from a design implied by Table 2 will violate the assumption of independence on which the ANOVA is based. Note in Table 2 that in order to have a test for the source of variation--subjects by trials interaction--it is necessary to regard the sets of paired associates as a random sample of sets of paired associates sampled from some population of sets of paired associates. Had the sets of paired associates been regarded as all of the sets of interest, "sets" would not have provided a random source of variation and the Table of sources of variation, degrees of freedom and expected mean squares would have been as in Table 3. inspection of Table 3 indicates no test for the source-subjects by trials interaction. If the source of variation, sets, is random, it is unlikely that the effect on the dependent variable would be null. In order for the effect of sets to be null when sets are random the distribution of sets would have to be a point distribution with respect to the attribute-effect on the dependent variable. effect of sets is non-null it is likely that there will be a positive correlation between subjects across sets. Similarly, if the effect of subjects within groups is non-null, which is very likely, it is likely that there will be a positive correlation between sets across subjects.

Why is it likely that there would be a positive correlation between sets, for example, if the effect of subjects on the dependent variable is non-null? The reason can be stated generally in terms of experimental design. In the

Table 3

Sources of variation, degrees of freedom, and expected mean squares for the suggested design when paired associates are fixed

Source	df	E(MS)
A (groups)	1	$20\sigma_{S:A}^2 + 20n\sigma_A^2$
S:A (subjects:groups)	(n-1)	20σ ² S:A
B (trials)	4	$4\sigma_{BS:A}^2 + 8n\sigma_B^2$
C (PA's)	3	$5\sigma_{\text{CS:A}}^2 + 10\text{n}\sigma_{\text{C}}^2$
ВС	12	$\sigma_{\text{BCS:A}}^2 + 2n\sigma_{\text{BC}}^2$
AB	4	$4\sigma_{BS:A}^2 + 4n\sigma_{AB}^2$
AC	3	$5\sigma_{\text{CS:A}}^2 + 5n\sigma_{\text{AC}}^2$
ABC	12	$\sigma_{BCS:A}^2 + n\sigma_{ABC}^2$
BS:A	(n-1)8	4σ² BS:A
CS:A	(n-1)6	^{5σ} ² CS:A
BCS:A	(n-1)24	σ ² BCS:A

Note, not all of the above are variances, since there are some fixed effects.

absence of a disordinal interaction between two independent variables in an experimental design whose levels are completely "crossed," a non-null effect of one independent variable, say A, will result in positive correlation between the levels of the other independent variable, say B, across the levels of the non-null independent variable, A. If the previous sentence is not intuitively sufficient, consider the following example. Let A and B be two independent variables whose levels are completely crossed. Allow the variance of A, B and error to be defined as, $\sigma_{\Lambda}^{2} > 0$, $\sigma_{\rm B}^{2}$ = 0, and $\sigma_{\rm e}^{2}$ > 0, respectively. If A and B are the only independent variables, then any observation is a function of the effect of a level of A and error. Then the covariance of two levels of B, for example level one and level two, across the levels of A will be equal to $E[(A+e_1)(A+e_2)] - E[A+e_1] E[A+e_2]$, which is equal to the variance of A plus the covariances of A and e_1 , A and e_2 , and $e_{\mbox{\scriptsize ,}}$ and $e_{\mbox{\scriptsize ,}}$. If the preceding three covariances are assumed to be equal to zero, the covariance of two levels of B is equal to the variance of A. Since $\sigma_{A}^{2} > 0$ and the variances of the errors is greater than zero the correlation will be greater than zero.

In case the reader is not familiar with what is meant by the term crossed, note that crossed as used above means that all the levels of factor A occur in combination with all of the levels of factor B so that the number of combinations is equal to the Cartesian product of the number of

levels of A and the number of levels of B. The term crossed is used in contradistinction to nested which implies a two stage selection procedure. Where, if the levels of A were nested within the levels of B, the levels of B would be selected first and the levels of A could then be freely selected (without replacement) within each of the levels of As a matter of definition, the levels of the factor which represents the subjects or experimental units are crossed with the levels of the factor which represents repeated measures in a repeated measures experimental type Recognize at this point that all "within" type of design. factors have levels crossed with or nested within the levels of the factor for repeated measures and have levels which are crossed with the levels of the factor which represent the subjects or experimental units. Thus in order to not violate the assumption of independence between the response evaluations for subjects or the experimental units the factor for repeated measures must not represent a non-null source of variation nor may any factor with levels crossed with or nested within the levels of the factor for repeated measures.

As previously mentioned only in the trivial case of a point distribution would a random source of variation be a null source of variation. If a factor does not represent a random source of variation, no generalization can be made to the levels of that factor which did not occur in a given experiment. This is a severe limitation, in that items are

almost always crossed with or nested within repeated measures and experimenters seldom wish only to make a conclusion that is restricted to the items which they actually use in an experiment.

Next consider the type of response which must be evaluated in an experiment designed to be consistent with Table 1. In a paired associate task a stimulus "word" is paired with a response "word," by the experimenter, for the subject, in the initial phase of the experiment. Thereafter when presented with the stimulus word a subject is to respond with the response word, which the experimenter has indicated should be associated with the stimulus word. It would often be very difficult for an experimenter to evaluate a response in any other than a dichotomous fashion. That is the subject either recalled correct response word or the subject did not.

Next consider the number of paired associates in a set. If the number is as small as two the evaluation of the set would be a discrete variable which could take on the values 0, 1, or 2, corresponding to both incorrect, one correct and both correct respectively. Thus the dependent variable would be a discrete variable with a three point distribution rather than a normal random variable with a continuous normal variate as assumed by the ANOVA.

In order to circumvent the problem associated with the random non-null source of variation, items, crossed with the source of variation due to subjects or experimental units, a

typical experimenter will sum the response evaluations for the stimuli to form a repeated measures score. He will then do his analysis on those repeated measures scores. In doing so, he has eliminated one problem, but caused another. In order to demonstrate this problem three repeated measures experimental designs will be defined and the analysis for them will be discussed when stimuli provide a random source of variation. It will be shown that when the response evaluations are simply summed and ignored as a factor in the design, the test within the ANOVA framework for a repeated measures effect is not correct. The first of the three designs is the simplest form of a repeated measures experimental design. It has only two factors: subjects and repeated measures. For the purposes of this paper this simple design will be called Design 1. If the repeated measures scores in Design 1 are formed as the sums of response evaluations to items, two more designs can be considered. The first of these two will be called Design 2 in which the factor items is crossed with the factor repeated measures. In the second which will be called Design 3, the levels of the factor items are nested within levels of the factor repeated measures.

Design 2 may be termed a three way factorial design with subjects crossed with repeated measures and items.

Design 3 is a three way factorial with subjects crossed with repeated measures and items and items are nested within repeated measures. Tables 4.5. and 6 represent

Table 4
Sources of variation, degrees of freedom, and expected mean squares for Design 1

Source	df	E(MS)
A (subjects)	s-l	$\sigma_{e}^{2} + r\sigma_{A}^{2}$
B (repeated measures)	r-1	$\sigma_{e}^{2} + \sigma_{AB}^{2} + s\sigma_{B}^{2}$
AB	(s-1) (r-1)	$\sigma_{e}^{2} + \sigma_{AB}^{2}$

Note, not all of the above are variances, since there are some fixed effects.

Table 5
Sources of variation, degrees of freedom, and expected mean squares for Design 2

Source	df	E (MS)
A (subjects)	s-1	$\sigma_{\rm e}^2 + {\rm r}\sigma_{\rm AC}^2 + {\rm tr}\sigma_{\rm A}^2$
B (repeated measures)	r-1	σ_{e}^{2} + σ_{ABC}^{2} + $t\sigma_{AB}^{2}$ + $s\sigma_{BC}^{2}$ + $st\sigma_{B}^{2}$
AB	(s-1)(r-1)	$\sigma_{e}^{2} + \sigma_{ABC}^{2} + t\sigma_{AB}^{2}$
C (items)	t-1	$\sigma_{\rm e}^2 + {\rm r}\sigma_{\rm AC}^2 + {\rm rs}\sigma_{\rm C}^2$
AC	(s-1)(t-1)	$\sigma_{e}^{2} + r\sigma_{AC}^{2}$
BC	(r-1)(t-1)	$\sigma_{\rm e}^2 + \sigma_{\rm ABC}^2 + {\rm s}\sigma_{\rm BC}^2$
ABC	(s-1)(r-1)(t-1)	$\sigma_{e}^{2} + \sigma_{ABC}^{2}$

Note, not all of the above are variances, since there are some fixed effects. $% \label{eq:controller}%$



Table 6
Sources of variation, degrees of freedom, and expected mean squares for Design 3

Source	df	E (MS)
A (subjects)	s-1	σ ² +σ ² _{AC:B} + trσ ² _A
B (repeated measures)	r-1	$\sigma_{e}^{2} + \sigma_{AC:B}^{2} + t\sigma_{AB}^{2} + s\sigma_{C:B}^{2} + s\sigma_{B}^{2}$
AB	(s-1) (r-1)	$\sigma_{e}^{2} + \sigma_{AC:B}^{2} + t\sigma_{AB}^{2}$
C:B (items)	(t-1)r	$\sigma_{e}^{2} + \sigma_{AC:B}^{2} + s\sigma_{C:B}^{2}$
AC:B	(s-1)(t-1)r	$\sigma_{e}^{2} + \sigma_{AC:B}^{2}$

Note, not all of the above are variances, since there are some fixed effects.

respectively for Designs 1, 2, and 3 their sources of variation, degrees of freedom, and expected mean squares. For Design 1, it can be seen by inspection of expected mean squares that a test statistic may be formed as the ratio

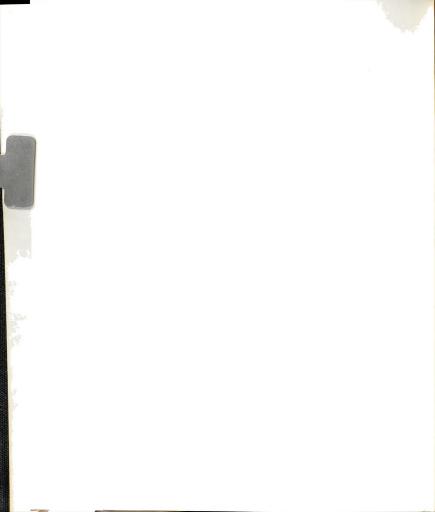
$$\frac{MS_{B}}{MS_{AB}}$$

to test the effect due to repeated measures. The computational formulas for these two mean squares with respect to Design 1 are

$$MS_{B} = \frac{\frac{r}{j=1} \frac{s}{(\sum X_{ij})^{2}} - \frac{r}{(\sum X_{ij})^{2}}}{\frac{j=1}{s} \frac{i=1}{rs}} \frac{x_{ij}}{rs}$$

and

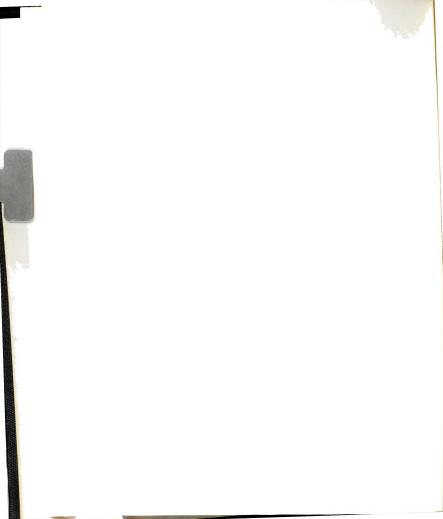
$$MS_{AB} = \frac{\sum_{\sum_{j=1}^{S} \sum_{i=1}^{S} x_{ij}}^{S} - \sum_{j=1}^{S} (\sum_{i=1}^{S} x_{ij})^{2}}{\frac{1}{(r-1)(s-1)}} - \frac{\sum_{j=1}^{S} \sum_{i=1}^{S} x_{ij}}{(\sum_{j=1}^{S} \sum_{i=1}^{S} x_{ij})^{2}} - \frac{\sum_{j=1}^{S} \sum_{i=1}^{S} x_{ij}}{(r-1)(s-1)}$$


where X_{ij} is an observation for repeated measure j on subject i, j = 1, 2, ... r, i = 1, 2, ... s. Noting the above formulas examine the computational formulas for the same mean squares with respect to Designs 2 and 3 (the formulas are identical for Designs 2 and 3). These formulas are

$$MS_{B} = \frac{\sum_{\Sigma}^{r} (\sum_{\Sigma}^{s} \sum_{\Sigma}^{s} X_{ijk})^{2}}{\sum_{j=1}^{r} \sum_{i=1}^{s} \sum_{k=1}^{s} \sum_{ijk}^{s}} - \frac{\sum_{j=1}^{r} \sum_{i=1}^{s} \sum_{k=1}^{s} X_{ijk}}{\sum_{j=1}^{r} \sum_{i=1}^{s} \sum_{k=1}^{s} \sum_{ijk}^{s}}$$

and

$$MS_{AB} = \frac{\frac{\sum\limits_{j=1}^{r}\sum\limits_{i=1}^{s}\sum\limits_{k=1}^{t}\sum\limits_{j=1}^{r}\sum\limits_{i=1}^{s}\sum\limits_{k=1}^{t}\sum\limits_{j=1}^{s}\sum\limits_{i=1}^{t}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{t}\sum\limits_{i=1}^{s}\sum\limits_{k=1}^{t}\sum\limits_{j=1}^{s}\sum\limits_{i=1}^{t}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{t}\sum\limits_{i=1}^{s}\sum\limits_{k=1}^{t}\sum\limits_{j=1}^{s}\sum\limits_{i=1}^{s}\sum\limits_{k=1}^{t}\sum\limits_{j=1}^{s}\sum\limits_{i=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{k=1}^{s}\sum\limits_{j=1}^{s}\sum\limits_{k=1}^{s}\sum\limits$$


where X_{ijk} is an observation on subject i for repeated measures j and item k. i = 1, 2, ... s, j = 1, 2, ... r, and k = 1, 2, ... t. By inspection of the two sets of computational formulas, it can be observed that the mean squares MS_b and MS_{AB} for Design 1 are linear transformations of the same mean squares for Designs 2 and 3, that is of

course given that the formulas are applied to the same data such as the X_{ijk} observations defined above and given that the repeated measures scores in the case of Design 1 were formed as a simple sum of response evaluations to the items which are associated with the repeated measures. Since the linear transformation for each mean square was the same, ratio 1.1 will be invariant across Designs 1, 2, and 3.

The invariance of ratio 1.1 provides interesting implications for the case in which items are a random nonnull source of variation, and yet Design 1 was considered appropriate and the analysis consistent with it was Inspecting the expected mean squares for the employed. source--repeated measures and the source--subjects by repeated measures interaction in Tables 5 and 6, it can be seen that ratio 1.1 is not the appropriate statistic to test for the effect due to repeated measures. Therefore, it should be apparent that if repeated measures scores are formed as a simple sum of response evaluations for items, the analysis which is implied by Design l is inappropriate. If the expected values for the mean squares are substituted in ratio 1.1 for Designs 2 and 3 the kind of errors which can arise becomes apparent. For Design 2 the substitution results in the ratio

$$\frac{2\sigma_{\mathrm{e}}^2 + \sigma_{\mathrm{ABC}}^2 + \mathsf{t}\sigma_{\mathrm{AB}}^2 + \mathsf{s}\sigma_{\mathrm{BC}}^2 + \mathsf{s}\mathsf{t}\sigma_{\mathrm{B}}^2}{2\sigma_{\mathrm{e}}^2 + \sigma_{\mathrm{ABC}}^2 + \mathsf{t}\sigma_{\mathrm{AB}}^2} .$$

For Design 3 the substitution produces

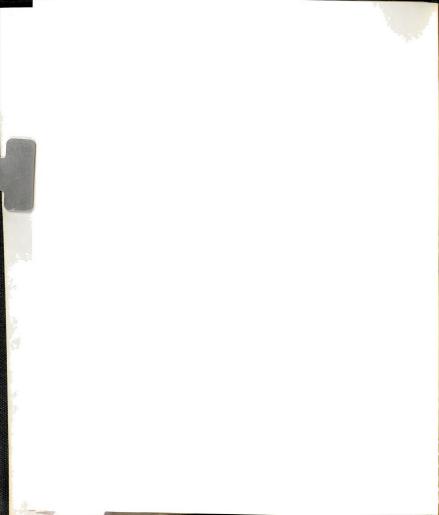
$$\frac{2\sigma_{e}^{2} + \sigma_{AC:B}^{2} + t\sigma_{AB}^{2} + s\sigma_{C:B}^{2} + st\sigma_{B}^{2}}{2\sigma_{e}^{2} + \sigma_{AC:B}^{2} + t\sigma_{AB}^{2}}.$$

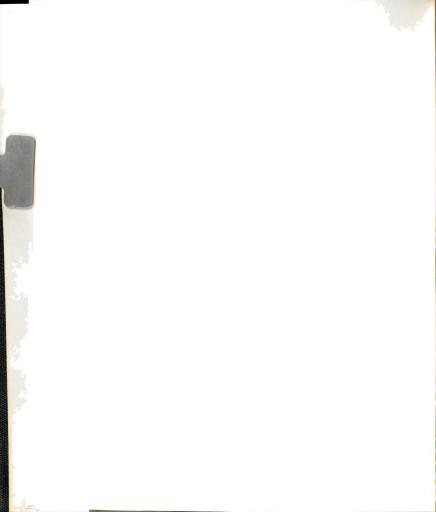
Thus, when ratio 1.1 is employed to test for an effect due to repeated measures an implicit assumption has been made. If Design 2 is appropriate the assumption is that $\sigma_{BC}^2 = 0$. If Design 3 is appropriate the assumption is that $\sigma_{C:B}^2 = 0$. If the implicit assumptions are not valid it is possible to obtain a spuriously high value of ratio 1.1. Because of the possibility that σ_{BC}^2 is unequal to zero or $\sigma_{C:B}^2$ is unequal to zero it appears important to include items as a factor in the design. When items are random, if the factor for items is included in a repeated measures experimental design, a result due to Satterthwaite (1941) provides that quasi-F ratios may be formed to test hypotheses concerning an effect due to repeated measures. To illustrate, if items are

crossed with repeated measures the ratio $\frac{MS_B + MS_{ABC}}{MS_{AB} + MS_{BC}}$ will

have a sampling distribution that approximates a central F distribution, when the effect of B is null. If on the other hand, items are nested within repeated measures the ratio

 $\frac{MS_B + MS_{AC:B}}{MS_{AB} + MS_{C:B}}$ has a sampling distribution which approximates

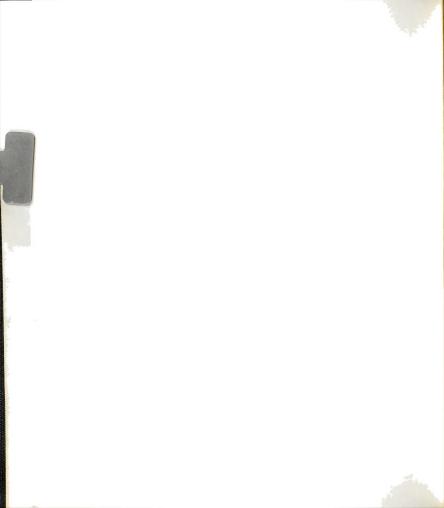

a central F distribution, for a null situation with respect to the effect of B. Hudson and Krutchkoff (1968) did a Monte Carlo study of the empirical probability of a Type I error and the empirical power of the quasi-F test based on


normal variates and concluded that the quasi-F had properties that were generally similar to the F-test.

When dependent variables are formed as the sum of response evaluations to several items, an approximation to normality may be pleaded on the basis of the central limit theorem. But, when the response evaluations to items themselves are the dependent measures it is then the response evaluations which must be distributed normally in order to meet the assumption. In many instances a response to an item is evaluated as either a one or a zero corresponding to either an acceptable response or one which is unacceptable, in which case the dependent measure would have a two point discrete Bernoulli distribution rather than a continuous normal distribution. The problem has now been shown. experimenter who would like to regard the items he employs in an experiment as a random sample from a population of items which has other than a point distribution with respect to the attribute of the items which effects the response evaluations, who sometimes must evaluate responses as zeros or ones, and who would like to employ the analysis of variance as a means of analysis is in a difficult position. If he fails to include items as a factor in his design one test in the ANOVA will be questionable. If he includes items as a factor he has two violations of the ANOVA model with which to concern himself.

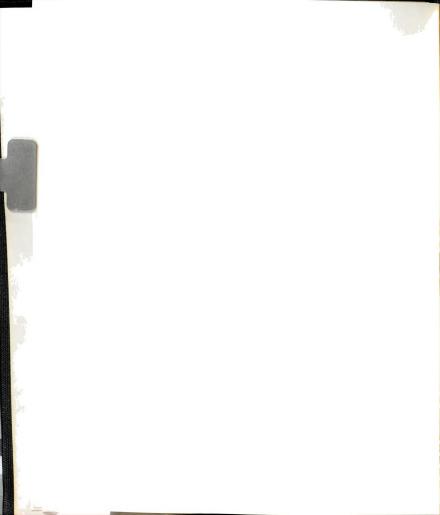
Thus it would appear that an attempt at a resolution of the above dilemma is justified. Two possible means of

dealing with the dilemma occurred to this investigator. The first would ignore the ANOVA and attempt to formulate a new model and analysis to fit the situation and Chapter II will follow this line of investigation. The second would be to demonstrate that the ANOVA is robust to violations of independence and normality and Chapters III, IV, V and VI will examine this possibility.

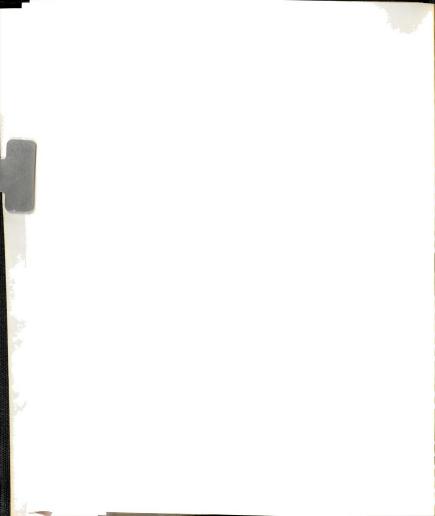


CHAPTER II

MODEL DEVELOPMENT


A series of models are developed in this chapter. The models are developed for two reasons. The main reason was to get a better understanding of the experimental situation and the insight necessary to develop the data simulation algorithms discussed later. The decisions which were made with respect to the techniques of data simulation, as outlined in Chapter IV, were directly influenced by the discussion and development presented in this chapter. The secondary reason was to examine the models with the hope that a method of data analysis would become apparent which had the advantages that an ANOVA would have when the ANOVA assumptions are met, but which did not require assumptions of independence and normality.

The first model to be developed in this chapter will represent the response evaluation of the response of a random subject to a random stimulus when the evaluation can only take on the values zero or one. The second model will be an extension of the first so as to represent the response evaluations of the responses of a random subject to a series of random stimuli. Then the model will be extended to


represent possible experimental intervention between any two stimuli in the series which are presented to a subject. Finally a model will be considered to represent the situation in the previous sentence for an arbitrary number of subjects.

To set the background for the first model attention must be given to specification of the nature of the population of subjects and of the population of stimuli. First consider the population of subjects. Each of the subjects in the population will be allowed infinitely many specific abilities. All subjects will be allowed all abilities albeit each in varying amounts. Thus the subjects in the population may be distributed with respect to each of infinitely many abilities associated with subjects and the distribution of the population with respect to each will have some density. Therefore, if ability u is of interest in any particular situation the subjects can be considered as distributed in the population with respect to u and have density f .. Now consider the population of stimuli. Each stimulus may be considered to have a potential with respect to eliciting a response within the domain of responses in which the experimenter is interested. The potential that a stimulus has to elicit a response within the domain of responses in which an experimenter is interested is in part conditioned on the understanding a subject has with respect to what is expected of him. The understanding or expectation that a subject has is a function of the instructions

which the experimenter provides and the atmosphere of the experimental situation. For example, if a subject, because of the instructions an experimenter gives him, understands that it is his ability with respect to u which is to be brought to bear in responding to say stimulus A, the potential of A may be different than if the subject thought that an ability other than u should be brought to bear in responding. A more concrete example would be represented by a situation in which the stimuli are words. If the subject thinks he is to give a free associate to, for example, the word girl when the experimenter wants a definition, the response potential of the stimulus word girl might be different with respect to the experimenter's criterion of an acceptable response than if the subject thought he should give a definition. Thus the stimuli in the population of stimuli may be distributed in infinitely many ways each with respect to the understanding respondents have about which of their infinitely many abilities should be brought to bear in responding. Let the respondent and the experimenter both understand that it is ability u which is to be brought to bear in responding to all stimuli. And, let p be the response potential of a stimulus with respect to ability u. Stimuli in the population of stimuli may be distributed with respect to p and have a density fp.

One further parameter may effect a response evaluation. Since, given a subject, a stimulus, and a joint understanding between experimenter and subject the response evaluation

is not determined. The remaining parameter is the criterion the experimenter has with respect to what is an acceptable response. Let the experimenter's criterion be a constant c for a given experiment.

established. Before the first model is developed, however, it will be useful to establish some conventions. For the balance of this chapter unless otherwise noted capital Roman letters will be used to represent variates. The corresponding lower case Roman letters will represent an evaluation or obtained value (a constant) of that variate. $\Phi(u)$ will represent the standard normal distribution function evaluated at u. $\Phi(u)$ will represent the standard normal density at u. $F_V(x)$ is the cumulative distribution function of the variate V evaluated at x; and $f_D(y)$ is the density of the variate D at y. With these conventions established the modeling of the response evaluations may begin.

Let the variate U represent a random subject, then u is the ability of a given subject which has been sampled.

Let P represent a random stimulus and p a given one. Then let b represent the response evaluation of the response of subject u to stimulus p made by an experimenter with criterion c. The response evaluation b may be defined as a

The term variate will be considered synonymous with random variable, as it is in much of the statistical literature.

²That is the cumulative up to u.

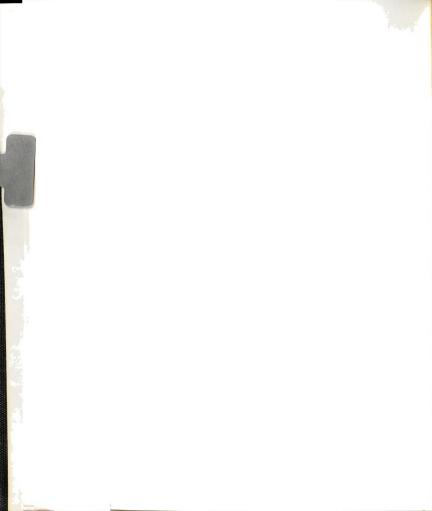
function of the three values u, p, and c, conditioned on no error in the evaluation and no misunderstanding of the subject. That is

$$b = f_1(u,p,c).$$

Analogously a random response evaluation may be defined as

$$B = f_1(U,P,c)$$

where B is a variate which may take on only two values (zero or one). B is thus a Bernoulli variate and has the familiar probability function


$$P_{B}(b) = \theta^{b}(1-\theta)^{1-b}$$

where θ is the probability that B = 1.

The value p has been defined as the potential that a particular stimulus has with respect to eliciting an acceptable response. It will be useful to define a value g', where g' = 1-p. Let the range of g' be specified as $0 \le g' \le 1$, where if g' = 0 no matter what u and c are, b will equal one and where if g' = 1 no matter what u and c are, b will equal zero. Thus g' is in some sense the potential difficulty of a stimulus, with respect to an acceptable response. Let the range of u be $-\infty < u < \infty$ and let the density of u be $\phi(u)$. The quantile rank, r, of u is given by $r = \phi(u)$, and has a uniform density on the interval (0,1). Note that r is the probability that the variate U is less than the value u, or in symbols,

$$\Phi(u) = Pr(U \le u)$$
, where $-\infty < u < \infty$.

Note that the inverse exists as well, $u = \Phi^{-1}(r)$, $0 \le r \le 1$. With the above values defined the function which will

represent one response evaluation, f, may be defined

$$b = f_1(r,g',c) = \begin{cases} 0, & r < g' + c \\ 1, & r > g' + c \end{cases}$$

The value c is really a part of the definition of an acceptable response, and so may be incorporated into the value which represents the stimulus' difficulty. So let

$$q = q' + c$$

then

$$b = f(r,g) = \{0, r \le g \\ 1, r > g \}$$

Observe that \mathbf{f}_1 is an expression of conditional probability if the variates corresponding to b, r, and g are substituted in the expression. Assuming that R and G are stocastically independent the conditional probabilities are

$$P_r(B = 0 | G = g) = P_r(R \le g) = F_R(g) = g^3$$

and

$$P_r(B = 1 | G = g) = 1 - P_r(R \le g) = 1 - F_p(g) = 1 - g$$

from which it is apparent that

$$P_r(B = b|G = g) = (1-g)^b g^{1-b}, b=0,1 \text{ and } 0 \le g \le 1$$
,

or more simply written in the shorthand notation

$$P_{B|G}(b|g) = (1-g)^b g^{1-b}$$
.

The joint probability density of B and G is

$$P_{B,G}(b,g) = P_{B|G}(b|g) f_{G}(g)$$

and the probability function of B is then

³Because r has a uniform probability density.

$$P_{B}(b) = 0^{\int_{B}^{1}} P_{B,G}(b,g)_{dg}$$
.

It will be possible to complete the development of the first model once $\mathbf{f}_{\mathbf{G}}(\mathbf{g})$ is specified. We will assume that $\mathbf{f}_{\mathbf{G}}(\mathbf{g})$ belongs to a family of Beta distributions (this family will be large enough to contain nearly all kinds of distributions for G that are encountered in practice). Thus we assume

$$f_G(g) = \frac{(s+f+1)!}{s!f!} g^s (1-g)^f, 0 \le g \le 1$$
,

where the parameters \boldsymbol{s} and \boldsymbol{f} are non-negative integers. Then

$$P_{B}(b) = \frac{(s+f+1)!}{s!f!} 0^{f1} (1-g)^{b} g^{1-b} g^{s} (1-g)^{f} dg$$

or

$$P_{B}(b) = \frac{(s+f+1)!}{s!f!} 0^{f^{1}} g^{s+1-b} (1-g)^{b+f} dg = \frac{\frac{s+1}{s+f+2}, b = 0}{\frac{f+1}{s+f+2}, b = 1}$$

which models the response evaluation of the response of one random subject to one random stimulus.

Observe that the expression f₁ which was shown capable of representing a probability conditioned on g may represent a probability conditioned on r as well. That is the


$$P_r(B = 1 | R = r) = F_G(r)$$

and the

$$P_r(B = 0 | R = r) = 1-F_G(r)$$

from which the conditional probability function

$$P_{B|R}(b|r) = (F_{G}(r))^{b} (1-F_{G}(r))^{1-b}$$

may be written. Let \underline{G} represent a vector variate $\lceil G_1, G_2, \ldots, G_n \rceil, \text{ where the } G_i, i=1,2,\ldots,n, \text{ are representative of } n \text{ stimuli sampled independently from the population of stimuli. Thus } \underline{F}_{\underline{G}}(g) = \prod_{i=1}^n F_{G_i}(g_i). \text{ Let } \underline{B}$

represent a vector variate $[B_1, B_2, \ldots, B_n]$. Then the conditional probability function for \underline{B} given R may be written as

$$P_{\underline{B}|R}(\underline{b}|r) = \prod_{i=1}^{n} (F_{G_{i}}(r))^{b_{i}} (1-F_{G_{i}}(r))^{1-b_{i}},$$

and since

$$f_{p}(r) = 1, 0 \le r \le 1,$$

the joint probability density function for $\underline{\mathtt{B}}$ and \mathtt{r} is


$$P_{\underline{B},R}(b,r) = P_{\underline{B}|r}(\underline{b}|r)$$

and the probability function for \underline{B} is

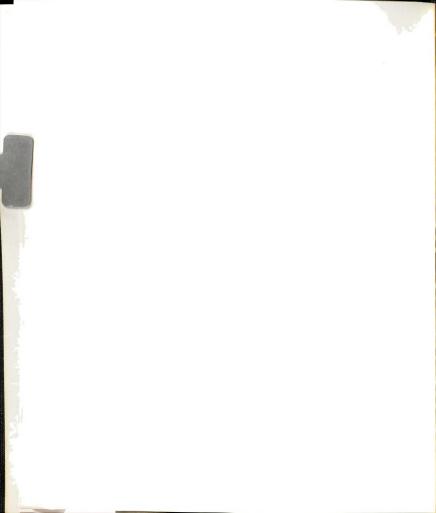
$$P_{\underline{B}}(\underline{b}) = 0^{\int_{1}^{1} \prod_{j=1}^{n} (F_{G_{j}}(r))^{b_{i}} (1-F_{G_{j}}(r))^{1-b_{i}} dr,$$

which models the response evaluations of a series of n responses made by a random subject to a series of n random stimuli.

In order to extend the model to take into account the effects of experimental intervention, consideration must be given to what the effects of intervention would be. It would be possible to conceive of the situation as one in which the stimulus potentials are changed by experimental intervention, but that did not appeal to this investigator. Experimental intervention was instead conceived of as something that could change the subject. For example, if no

intervention occurred the values which may represent a subject ability when the subject encountered each of n stimuli in a series of n stimuli, would all be u, u = u = ... = u = u. However, if an experimental intervention occurred between the presentation of stimulus j and stimulus j+1, the subject's ability at each of the n points in time may be represented as $u_1 = u_2 = \dots u_j$ and $u_{j+1} + K = u_{j+2} + K = \dots =$ $u_n + K$, where K is the change brought about in the subject's ability. Since r is a strictly monotone increasing function of u, $(r = \Phi(u))$ the same situation could be expressed in terms of r, but because of the wealth of knowledge about variates with normal or multivariate normal distribution it was considered advisable to discuss the model in terms of B, U, and a new variate V. The variate V will be defined as $V = \Phi^{-1}(q)$. The nature and distribution of the variate Vmay be shown by the following series of formulae. By definition $F_{v}(v) = P_{v}(v < v)$ and by substitution we may express $F_{V}(v) = P_{r}(\phi^{-1}(G) \leq \phi^{-1}(g))$. Then since $\phi^{-1}(G)$ is a differentiable strictly monotonically increasing function the

$$P_r(\phi^{-1}(G) \leq \phi^{-1}(g)) = P_r(G \leq g) = F_G(g)$$


(Wadsworth and Bryan, 1960), from which we may write

$$F_V(v) = P_r(G \leq \Phi(v)) = F_G(\Phi(v))$$

or

$$F_V(v) = 0^{\int_{0}^{\Phi}(v)} f_G(t) dt$$
.

Then taking the derivative of both sides

$$f_{V}(v) = f_{G}(\Phi(v)) d(\Phi(v))$$
,

by the chain rule and thus

$$f_V(v) = f_G(\Phi(v)) \phi(v)$$
.

Recall at this point that $f_G(p)$ is a member of the Beta family of distributions, that is

$$f_{G}(\Phi(v)) = \frac{(s+f+1)!}{s!f!} (\Phi(v))^{s} (1-\Phi(v))^{f}.$$

Let n = s+f, then f = n-s thus we may write

$$f_{V}(v) = \frac{(n+1)!}{s!(n-s)!} (\Phi(v))^{s} (1-\Phi(v))^{n-s} \phi(v)$$
.

Let γ = s+l and m = n+l then

$$f_{V}(v) = \frac{m!}{(\gamma-1)!(m-\gamma)!} (\Phi(v))^{\gamma-1} (1-\Phi(v))^{m-\gamma} \phi(v) .$$

We observe that f_V is the density of the γ^{th} order statistic of a sample of size M sampled from a population with standard normal distribution. Values of the first two moments of f_V have been given by Tiechroew (1956) for small values of γ and m.

Recall that the previous modeling was based on the function f_1 in such a manner so as to obtain a probability statement conditioned on g and r. Now that it is wished to account for a systematic change in u, it will be helpful to define a function which will lead to a probability conditioned on u. Before the new function is defined, note that since Φ^{-1} is a strictly monotone function, that

$$g \leq r \iff \Phi^{-1}(g) \leq \Phi^{-1}(r)$$
.

Therefore the function f_{2} defined as

$$b = f_{2} (\Phi^{-1}(r), \Phi^{-1}(g')),$$

$$= 0, \Phi^{-1}(g) > \Phi^{-1}(r)$$

$$= \{ 1, \Phi^{-1}(g) \leq \Phi^{-1}(r) \}$$

$$= 0, v > u$$

$$= \{ 1, v \leq u, \}$$

is strictly analogous to the function f. Again the conditional probabilities may be written,

$$P_r(B = 0 | U = u) = 1-P_r(V \le u) = 1-F_V(u)$$

and

$$P_r(B = 1 | U = u) = P_r(V \le u) = f_V(u)$$

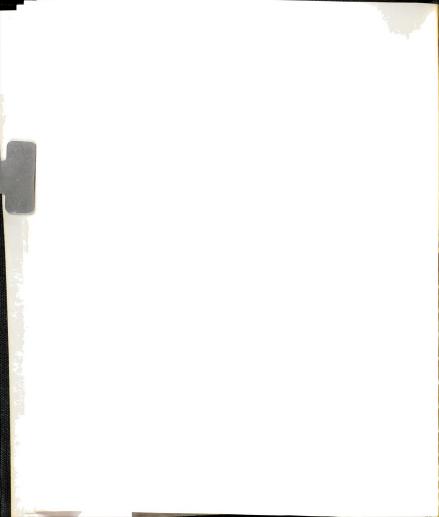
or

$$P_{B|U}(b|u) = (F_{V}(u))^{b} (1-F_{V}(u))^{1-b}.$$

The joint probability density of B and U is

$$P_{B,U}(b,u) = (F_{V}(u))^{b} (1-F_{V}(u))^{1-b} \phi(u)$$

and the probability function of B is


$$P_{B}(b) = \int_{-\infty}^{\infty} (F_{V}(u))^{b} (1-F_{V}(u))^{1-b} \phi(u) du$$
.

For a series of n stimuli sampled independently

$$F_{\underline{V}}(u) = \prod_{i=1}^{n} F_{V_i}(u)$$

and

⁴ If and only if.

$$P_B(\underline{b}) =$$

$$-\infty^{\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\dots-\infty^{\int_{i=1}^{\infty}\prod_{i=1}^{n}\left(F_{V_{i}}\left(u_{i}\right)\right)^{b_{i}}\left(1-F_{V_{i}}\left(u_{i}\right)\right)^{1-b_{i}}\phi\left(u_{i}\right)du_{1}du_{2}\dots du_{n}}.$$

Note that

$$F_{V_i}(u_i) = -\int_{\infty}^{u_i} f_V(t) dt$$

or

$$F_{V_{i}}(u_{i}) = K_{-\infty}^{u_{i}} (\Phi(v_{i}))^{\gamma-1} (1-\Phi(v_{i}))^{m-\gamma} \phi(v_{i}) dv_{i}$$

where

$$K = \frac{m!}{(\gamma-1)!(m-\gamma)!}.$$

Also note that

$$\Phi(v_i) = \int_{-\infty}^{V_i} \Phi(t) dt$$

or

$$(v_i) = \frac{1}{\sqrt{2\pi} \sigma^2} - \infty^{V_i} - \frac{t^2}{2}$$
 dt.

Observe that a complete expression of $P_{\underline{B}}(\underline{b})$ would involve a very complicated set of multiple integrals and could not be easily set upon one page. In any event the above expression for $P_{\underline{B}}(\underline{b})$ allows for a multiple value of a subject's ability with respect to forming acceptable responses to a series of n stimuli.

If a treatment intervention did occur between the presentation of stimulus V_j and stimulus V_{j+1} , it would be of interest to test a hypothesis about a change in the subject's ability with respect to responding in an acceptable

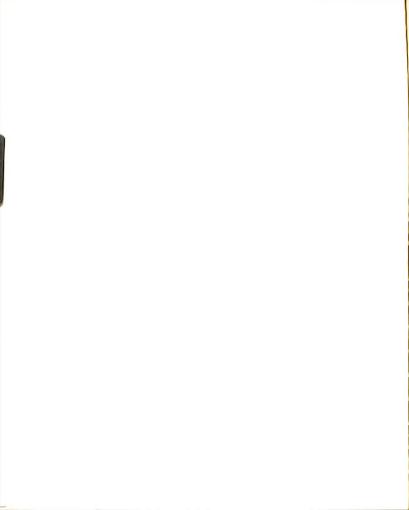
manner. Symbolically, if the subject's ability on n series of occasions were represented as u_1, u_2, \ldots, u_j , $u_{j+1}+K$, $u_{j+2}+K$, ..., u_n+K ; one hypothesis would be H_0 : K=0


to be tested against the alternative

$$H_1: K \neq 0$$
.

If K = 0 there should be no systematic difference between the first j response evaluations and the remaining n-j response evaluations under the above model, $P_{\underline{B}}(\underline{b})$. On the other hand if K \neq 0, the model below for $P'_{\underline{B}}(\underline{b})$ would apply.

$$P'_{\underline{B}}(\underline{b}) = -\infty^{\int_{-\infty}^{\infty} -\infty^{\odot_{-\infty}^{\infty} -$$


Under the model for $P'_{\underline{B}}(\underline{b})$, if $K \neq 0$, there would be a systematic difference between the first j response evaluations and the remaining n-j. Thus in order to test the hypothesis that K = 0, first assume the model for $P'_{\underline{B}}(\underline{b})$. Second, select a statistic which contrasts the first j with the remaining n-j response evaluations. Third, determine the distribution of the selected statistic under the condition of K = 0 and under the condition of $K \neq 0$. Fourth, determine some decision rule and then perform the experiment and let the results decide.

One statistic which has some appeal is n times the difference between the mean of the first i response evaluations and the mean of all n response evaluations. This statistic can be shown to have a binomial distribution with parameters p and n, if j = $\frac{n}{2}$, the evaluations are independent, and $p = \Phi(v_i)$, for all i, i = 1, 2, ..., n. The above restriction on v_i would be true only in what was previously called (in Chapter I) a trivial case, the trivial case occurring only when the variance of v is zero. However, the binomial gives a "good" approximation when the variance of v is "small." Unfortunately the binomial distribution does not hold up for a situation in which there is more than one experimental intervention. As the number of interventions increase the distribution of the above suggested statistic becomes more platykurtic. The short consideration of n times the "effect" statistic was given at this point to show that one promising statistic which this investigator tried, proved to be less than ideal.

Further complications in modeling occur, when the situation is considered in which ℓ random subjects respond to the same series of n random stimuli. Now a probability function for an ℓ by n matrix of response evaluations is desired. Let $[B_{\dot{1}\dot{j}}]$ represent the ℓ by n matrix of response evaluations.

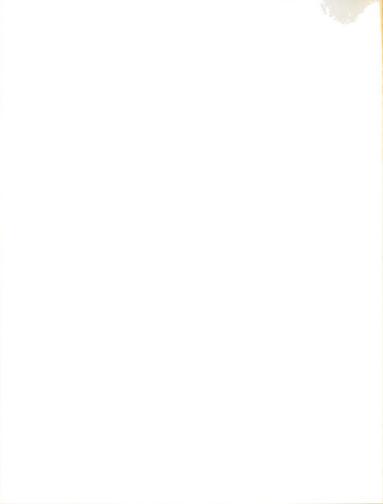
 $^{p}[B_{\dot{1}\dot{j}}]([b_{\dot{1}\dot{j}}]) = -_{\infty} ^{f^{\infty}} -_{\infty} ^{f^{\infty}} \cdots -_{\infty} ^{f^{\infty}} p_{[B_{\dot{1}\dot{j}}]|\underline{\underline{u}}}([b_{\dot{1}\dot{j}}]|\underline{\underline{u}}) \ \phi(\underline{\underline{u}}) \ d\underline{u}$ could express the desired probability function. The density $\phi(\underline{u}) \ \text{presents no problem for it is simply the multivariate}$

standard normal density, that is \underline{U} is distributed as a standard normal vector variate with mean vector \underline{U} and covariance matrix $\sigma^2 I$ (since subjects are sampled independently). However, the conditional probability density function $P_{[B_{ij}]} | \underline{U}$ can not be expressed as the product $\begin{bmatrix} \mathbb{R} & P_{B_i} | U_i & (\underline{b} | u_i) \\ \mathbb{R} & \mathbb{R} & \mathbb{R} & (\underline{b} | u_i) \end{bmatrix}$ since all subjects must respond to the same series of n stimuli. Note: if each subject responded to a series of n stimuli sampled for and only for that subject $P_{[B_{ij}]} | \underline{U} & ([b_{ij}] | \underline{u})$ could be expressed as the product $\begin{bmatrix} \mathbb{R} & P_{B_i} | U_i & (\underline{b}_i | u_i) \\ \mathbb{R} & P_{B_i} | U_i & (\underline{b}_i | u_i) \end{bmatrix}$ Note, however, that experimenters are i = 1 $\begin{bmatrix} \mathbb{R} & P_{B_i} | U_i & (\underline{b}_i | u_i) \\ \mathbb{R} & \mathbb{R} & (\underline{b}_i | u_i) \end{bmatrix}$ Note, however, that experimenters are usually reluctant to sample a separate set of stimuli for each subject.

Because of the inequality

$$P[B_{ij}] | \underline{U} \stackrel{\text{fl}}{=} \underline{R}_{i} | u_{i}$$

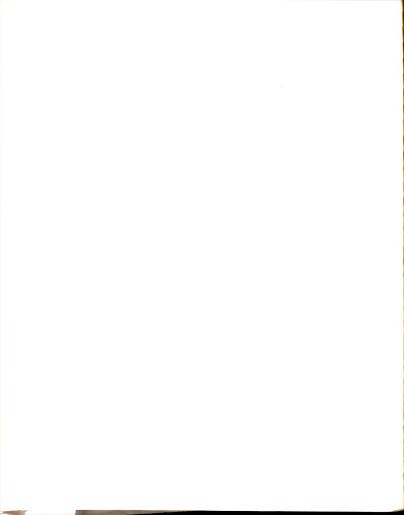
this investigator felt that the development of a new model and concomitant analysis was approaching a complexity which would preclude it as a practical means of dealing with the problems laid out in Chapter I. Although the attempts at modeling provided insight, which proved to be very helpful in selecting an algorithm to simulate the data considered in the following chapters, it would appear to this investigator at this point that a demonstration of robustness of the ANOVA model would prove a more fruitful means of finding an analysis for the situation in which several random subjects


respond to a series of random stimuli with experimental intervention.

CHAPTER III

A CONSIDERATION OF THE ROBUSTNESS OF THE F-TEST
WITH RESPECT TO DEPENDENT BERNOULLI VARIABLES

Several investigators have considered the problem of the application of the ANOVA techniques to the analysis of categorical data. Hsu and Feldt (1969) generated empirical sampling distributions of F-statistics calculated from ANOVA procedures for a simple randomized design with respect to four different discrete dependent variables. The four different discrete dependent variables had either five, four, three, or two point distributions. Hsu and Feldt concluded from their empirical data which was generated for a true null hypothesis, that in most of the cases they investigated, the probability of a Type I error, α , is very close to the tabled values of the F-distribution, for $\alpha = .1$, .05, and Lunney (1968) generated empirical sampling distributions of F-statistics calculated from ANOVA procedures for one and two way factorial fixed models under central (null hypothesis true) and non-central conditions, with respect to Bernoulli type dependent variables. Lunney concluded that in situations where the independent variables were fixed, the probability of a "one" was between .2 and .8, and the



degrees of freedom for mean square error were 20 or more; a good fit of the empirical sampling distribution of the F-statistic to the F-distribution had been obtained. Lunney also concluded that for situations in which the independent variables were fixed, the probability of a one was between .1 and .9, and there were 40 or more degrees of freedom for the mean square error, a good fit of empirical to theoretical F-values was obtained. For cases where the degrees of freedom were less than the above limits, Lunney indicated that the F-test was generally conservative.

Donaldson (1966) considered the power of the F-test for continuous non-normal dependent variables and for normal dependent variables with unequal cell error variances. Donaldson generated empirical central distributions and empirical power curves for the F-test, calculated with respect to fixed effects models where the dependent variable was either a normal, lognormal or an exponential variate. The reasonably good fit of empirical to theoretical F-distribution for the situations investigated was explained by Donaldson in terms of the effect of the central limit theorem on the mean square for a hypothesis, MS_h , and the correlation between the MS_h and the mean square error, MS_e , in the F-ratio:

(3.1)
$$F_h = MS_h (MS_e)^{-1}$$
.

Donaldson pointed out that the calculation of ${
m MS}_{
m h}$ is based on averages. Thus as the number of values being averaged increases the distribution of ${
m MS}_{
m h}$ becomes less

sensitive to non-normality, by the central limit theorem. The effects of non-normality, number of groups, and group size on the variance of MS_{h} , will be enlightening with respect to the statement made in the preceding sentence. Let k be the number of experimental classifications or treatment groups and n, the number of experimental units per group for a balanced fixed effects design. When the null hypothesis is true the variance of MS_{h} is given by the expression

Var
$$(MS_h) = \frac{2\sigma^4}{k-1} [1 + \frac{1}{2} y_2 (\frac{k-1}{nk})]$$
,

where σ^2 is the variance of the dependent variable and y_2^{-1} is the kurtosis of the dependent variable. When $y_2^{-1} = 0$, as for the normal variate, the var $(MS_h) = 2\sigma^4 (k-1)^{-1}$. Observe that as $n \to \infty$, var $(MS_h) \to 2\sigma^4 (k-1)^{-1}$. Thus the effect of non-normality on the variance of (MS_h) is diminished with an increase in n.

The situation with respect to the distribution of ${}^{MS}_{e}$ is very different than that for the distribution of ${}^{MS}_{h}$. The variance of ${}^{MS}_{\rho}$ is given as

Var
$$(MS_e) = \frac{2\sigma^4}{k(n-1)} [1 + \frac{1}{2} y_2 (\frac{n-1}{n})]$$
.

Observe that as n becomes large the effect of y becomes maximal (Scheffé, 1959). Thus as n becomes large, when $y_2 \neq 0$, the variance of MS_h for non-normal variates becomes closer to the variance of MS_h for normal variates, but as n

 $[\]frac{1}{y_2} = \sigma^{-4} \Sigma [(x - \Sigma[x])^4] - 3.$

becomes large the variance of MS for non-normal variates (y = 0) becomes less like the variance of MS for normal variates. It may be shown that when ${
m MS}_{
m h}$ and ${
m MS}_{
m e}$ are statistically independent, the variance of (3.1) is approximated by a function of σ and the sum of the variances of $\ensuremath{\mathtt{MS}}_h$ and MS_e . Therefore, if σ and var (MS_h) are held constant and the variance of MS is increased the variance of (3.1) will be increased. Thus the apparent result of an increase in var (MS_e), with no other concomitant change, would be to cause the distribution of (3.1) to become more platykurtic than the corresponding F-distribution (with k-1 and n(k-1) degrees of freedom). A statistic with a distribution similar to F, but more platykurtic than F, would give too many values in a tail rejection region based on the Fdistribution. It will be shown, however, that the correlation between ${\rm MS}_{\rm h}$ and ${\rm MS}_{\rm e}$ is principally a function of ${\rm y}_{_2}$ and that for $y_2 \neq 0$, MS_h and MS_e are not independent. Note that a positive correlation between ${\rm MS}_{\rm h}$ and ${\rm MS}_{\rm e}$ would cause the distribution of (3.1) to be more leptokurtic than a corresponding F-distribution. If the leptokurtosis due to a positive correlation were to balance the platykurtosis due to an increase in the var (MS_{ρ}) a robust situation with respect to the variance of F would be evident.

From Donaldson (1966) the

corr
$$(MS_h, MS_e) = y_2 \left[\frac{4n^2k}{(k-1)(n-1)} + \frac{2n(nk-1)}{(k-1)(n-1)} y_2 + y_2^2 \right]^{-\frac{1}{2}}$$
 and the

cov
$$(MS_h, MS_e) = y_2 \sigma^4 (nk)^{-1}$$
.

Then from Hansen, Hurwitz, and Madow (1953), the $var(MS_h(MS_e)^{-1}) \simeq \sigma^{-4} [var(MS_h) + var(MS_e) - 2 cov(MS_h, MS_e)].$

Then by substitution

$$\text{var}(\text{MS}_{h}(\text{MS}_{e})^{-1}) \simeq \sigma^{-4} \left[\left(\frac{2\sigma^{4}}{k-1} + \frac{Y_{2}\sigma^{4}}{nk} \right) + \left(\frac{2\sigma^{4}}{k(n-1)} + \frac{Y_{2}\sigma^{4}}{nk} \right) - \frac{2Y_{2}\sigma^{4}}{nk} \right].$$

Observe that the terms containing y_2 cancel (Donaldson, 1966). Thus the

var
$$(MS_h(MS_e)^{-1}) \simeq \frac{2}{k-1} + \frac{2}{k(n-1)}$$
.

Also observe that k-1 and k(n-1) are v_1 and v_2 the degrees of freedom for MS $_h$ and MS $_e$ respectively. Thus

Var
$$(MS_h(MS_e)^{-1}) \simeq \frac{2}{v_1} + \frac{2}{v_2} + \frac{2(v_1 + v_2)}{v_1 v_2}$$
.

The variance of F is given by,

$$var (F) = \frac{2(v_1 + v_2 - 2)}{v_1 v_2 - 8 + 16v_2^{-4} - 16v_2^{-2}}.$$

Observe that as v_2 increases the approximate variance of (3.1) approaches the var (F). As an example the var (F) for five groups with 20 experimental units each is .556+ and the approximate variance of (3.1) is .520.

It would appear that the F-test for fixed effects and balanced designs, is in general robust with respect to non-normality given the other assumptions on which the F-test is based, when n is sufficiently large. Recall that the question of robustness which is of concern in this paper is with respect to non-normal non-independent dependent variables, particularly non-independent Bernoulli dependent

variables. Recently Seeger and Gabrielsson (1968) and Mandeville (1970) have considered the problem of the applicability of the F-test to the analysis of zero-one data which arise from a situation which may be represented by a repeated measures design. Seeger and Gabrielsson employed simulation techniques to obtain empirical sampling distributions for Cochran's Q statistic (Cochran, 1950), the Fstatistic (3.1), and the F-statistic calculated following an arc sin transformation on the dependent variables, all with respect to a true null hypothesis of no repeated measure differences. The Seeger and Gabrielsson simulations were divided into 60 sets with respect to the degree of dependence between repeated measures, degree or absence of subject by repeated measures interaction, the number of independent observations on a subject repeated measure combination, and the number of subjects. The number of repeated measures was fixed at five for all of the above 60 sets of simulations. The conclusions reached by Seeger and Gabrielsson may be summarized as follows:

- For all cases investigated the arc sin transformation produced no significant improvement in the fit of the empirical F for repeated measures to the corresponding F-distribution.
- The Q test is applicable to the situations investigated only if no interaction of subjects by repeated measures is present.

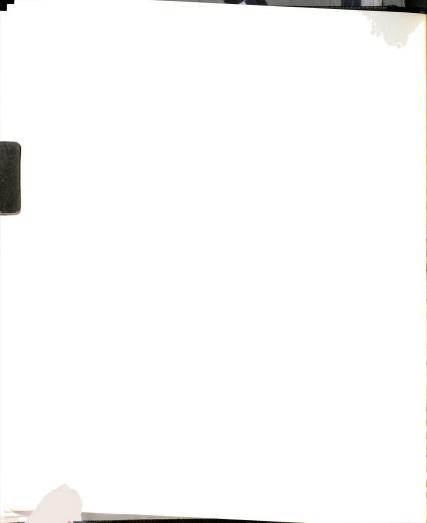
That is Seeger and Gabrielsson's data were simulated in such a way that a repeated measure score could be thought of as the sum of independent item (zero-one) scores.

3. In the presence or absence of an interaction the F-test gives a generally good fit to theoretical values, and a better fit than does Q in all but a couple of the 60 cases investigated.

Mandeville (1970) simulated data for a repeated measures design with subjects nested within groups, where the dependent variable was a Bernoulli variate. study Mandeville allowed the number of groups to be two or four, the number of repeated measures to be two, three, six or ten, the number of subjects per group to be five, ten or twenty, and the correlation between repeated measures to be 0, .2, .5, or .8. For the central cases he generated, Mandeville found generally good agreement between the corresponding F-distribution and the empirical sampling distributions of the F-statistics for groups, repeated measures and groups by repeated measures interaction tests. For the noncentral cases he investigated (non-null repeated measure by group interaction and non-null group effects) Mandeville found consistently less power than the nominal power of the F-test.

Although the Mandeville and the Seeger and Gabrielsson studies dealt with dependent Bernoulli variates with respect to experimental designs very similar to those which are of interest to this paper, they did not deal with precisely the situation of interest; that is the three (or more) way factorial design with two random non-null main sources of variation, subjects and items. Bradley (1968) has indicated that the robustness of a parametric test is idiosyncratic

rather than general with respect to any violation or set of violations. For example the F-test has been shown to be robust to heteroscedasticity for balanced experimental designs (equal cell "n's"), but generally not robust to heteroscedasticity for unbalanced designs. Thus the robustness or lack thereof, of the F-test, to the particular situation of interest in this paper, should be examined although the studies cited above indicate there is some hope that the F-test may be robust under the conditions of interest to this paper. In order to further examine the robustness of the F-test to non-independent Bernoulli variates, data were simulated and empirical sampling distributions of F-statistics were determined. The cases investigated and the means of data generation will be discussed in the next chapter.


CHAPTER IV

METHOD OF DATA GENERATION AND CASES GENERATED

Data were generated to simulte the results of experiments conforming to Designs 2 and 3 in Chapter I. The data were first generated as s·r·t pseudo random standard normal numbers (mean zero and unit variance) and then subsequently dichotomized. The above procedure allowed for the analysis of the normal data before dichotomization, which enabled the examination of the effects of item and subject heterogeneity on the ANOVA statistics based on the normal data and comparisons between the ANOVA statistics based on normal data and the ANOVA statistics based on Bernoulli type data. First, the method used to obtain pseudo random standard normal numbers will be discussed. Then it will be shown how the standard normal numbers were manipulated to obtain the desired data simulations.

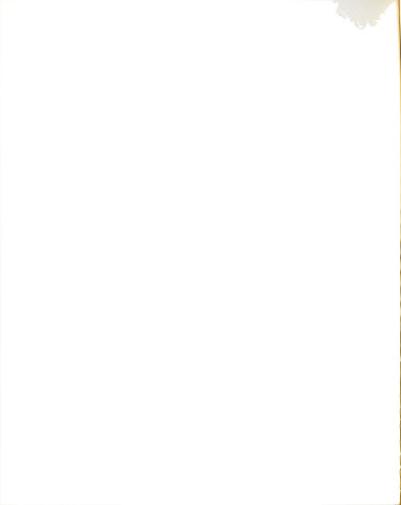
Many methods for the generation of random, pseudo random, and quasi-random numbers have been proposed. A book

Heterogeneity is used here in the strong sense implying that the subject or item effect with respect to the dependent variable is non-null.

by Hammersley and Handscomb (1964) discusses several of the methods and a review by Greenberger (1961) considered pseudo random number generators in detail. More recently Marsaglia and Bray (1968) have suggested fast composite generators which employ two stage procedures.

Although ANOVA statistics based on the normal data were calculated, the main interest of this paper concerned statistics based on the dichotomized data. Because of the main concern of the paper, the algorithm selected to generate the pseudo random normal deviates was chosen for speed and efficiency over other algorithms which give a slightly better fit to the normal density. In the first phase of the number generation algorithm a series of numbers which had a uniform distribution were obtained by the congruential method (Lehmer, 1951). The congruential method requires an initial value w; and the series is then generated by the recurrence relation, $w_{i+1} = a w_i + (modulo m)$, where m is a large integer and a, c, and w_i are integers between 0 and m-1. Once a series of 16 values had been obtained by the congruential method, their sum was formed and a linear transformation was performed on the sum to result in the value Z such that the E(Z) = 0 and $E(Z^2) = 1$. By the central limit theorem, the distribution of Z will be approximated by the standard normal density. Henceforth, the variate Z will be referred to as though it did have a standard normal probability density.

Now, the algorithm with respect to the establishment


of a s.r.t three dimensional array of normal numbers which could represent the results on experiments conforming either to Design 2 or Design 3 will be discussed. In the first step of the algorithm, a normal deviate was generated for each of the s subjects. Then each of the s normal deviates was rescaled to obtain the desired subject variance. In the second step r.t pseudo random normal deviates were generated to represent error scores, for the r·t observations made on each subject. These error scores were then rescaled to obtain the desired error variance. Then for each subject the subject deviate was added to each of the r·t error deviates associated with that subject to obtain r·t values which could be termed r.t "observed" normal deviates for that subject with variance equal to the sum of error and subject variances. Four different values of subject variance were employed in the series of simulations for this In each case the error variance was selected to compliment the subject variance so as to obtain "observed" deviates with unit variance. The subject and error variances for four levels of subject heterogeneity were as given below. These ratios of subject to error variance were deemed by the author as similar to those that often occur in practice.

Level 1: Subject variance = .2 Error variance = .8

Level 2: Subject variance = .3 Error variance = .7

Level 3: Subject variance = .4 Error variance = .6

Level 4: Subject variance = .5 Error variance = .5.

At this point in the algorithm a branching situation was dealt with, with respect to whether items were fixed and homogeneous or random and heterogeneous. If items were to be fixed there need be no changes made in the values with respect to the item. If items were random the algorithm dealt with another branching situation with respect to whether items were crossed with or nested within the repeated measures. If items were to be crossed, t deviates were obtained and rescaled to have the desired item Then each of the t deviates was added to each of the r·s deviates with which it was associated. If items were to be nested $t \cdot r$ deviates were obtained and rescaled, then each of the tor deviates was added to the s deviates with which it was associated. Three different values of item variance were employed in the simulations for this paper, they were .0808, .1514 and .1739. These variance values corresponded to the variances of certain order statistics. The reason for the selection of the variances of order statistics will be given later in this chapter.

The next step in the algorithm was with respect to the null or non-null effects of repeated measures and the null or non-null effects of subjects by repeated measures interaction. Three possibilities were allowed for in the algorithm:

(1) null effects for both the subjects by repeated measures interaction and the repeated measures main effect;

- (2) non-null repeated measure main effects, but null interaction effects;
- (3) non-null interaction effects, and null repeated measure main effects.

The preceding three options provided the means of generating both central and non-central sampling distributions of the F-statistics for the repeated measure and the subject by repeated measure interaction tests. interaction and repeated measure main effects were null, no further changes had to be made. If the repeated measures effect were non-null each of r repeated measure effects was added to the s·t values with which it was associated. the interaction was to be non-null the s.r.t values were divided into two arrays with respect to subjects; then r repeated measure effects were established for one array and r different repeated measure effects were established for the other array. The effects were established in such a way as to cancel each other out with respect to repeated measures main effect. At this point in the algorithm the s.r.t values were considered to represent simulated data from Design 2 or Design 3 with normally distributed response evaluations.

The next section of the algorithm dealt with the establishment of Bernoulli type data to represent data from Design 2 or Design 3. In order to do this another array was formed of the same dimensions of the array discussed above. Let the array with normal values be represented as $[X_{ijk}]$ and let the array with zeros and ones be $[y_{ijk}]$. The y_{ijk} elements of $[y_{ijk}]$ were formed by the rule

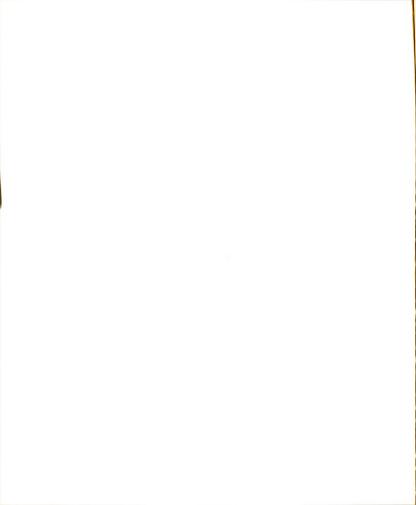
$$(x_{ijk}^{-h}) \le 0, y_{ijk} = 0$$

If $\{(x_{ijk}^{-h}) > 0, y_{ijk} = 1.$

Following the example of Lunney (1969) the probability of a one in $[y_{ijk}]$ was either .5, .2, or .1 (given all null effects) for which h took on the values of 0, .84, or 1.28 respectively.

Recall from Chapter II that the Beta family of variates may represent most of the distributions of random item difficulties that are encountered in practice. Also recall the relationship between a Beta variate and an Order variate, that is, that an item effect for normal data which is Order (γ , m) can produce an item effect for the same data after dichotomization, that is, Beta (γ -1, m- γ). In practice, this investigator has observed that tests which have mean item difficulties of .5, .2 and .1 often have a distribution of item difficulties which may be approximated by the densities of Beta (9,9), Beta (2,10) and Beta (1,14)

 $^{^{2}}$ Recall from Chapter II that s = γ -1 and f = m-s-2.


respectively. The corresponding order variates would have densities of Order (10,19), Order (3,13) and Order (2,16) and would have variances .0808, .1514 and .1739 respectively, the variances employed in this study.

In review, first subject heterogeneity was taken into account by the algorithm and four levels were employed.

Next, items were allowed to be fixed and null in effect or random and non-null in effect and crossed or nested. Then, the null or non-null effects of repeated measures and the null or non-null effects of subject by repeated measures interaction were allowed. Following the above, the normal data were dichotomized and three levels of a probability of a one in [y; t] were employed.

In this study interest did not center on the effect of varying the number of items or on the effect of varying the number of repeated measures; thus r and t were set at four and three respectively, values which were as small as would usually be found in practice. Five levels of s were investigated beginning with s=4, a very small value, and then s=6, 8, 10 and 12: values which were not unusual in practice. Three sets of expected repeated measure mean scores for the dichotomous data were selected for the non-null repeated measure effect cases. The means were:

(1) .75, .50, .50, .50; (2) .36, .20, .20, .20; and (3) .19, .10, .10. Note that since for a Bernoulli variate the variance is p(1-p) where p is the probability of a one, that for h=0, .84 and 1.28 the expected variances are .25, .16

and .09 respectively. Then note that for the non-null repeated measures cases defined on the dichotomized data the first expected repeated measure mean exceeded the others by the amount of the null case variance. Thus the non-centrality parameter given by the expression

$$\delta = \sqrt{\frac{r}{N \sum_{j=1}^{\beta} \beta_{j}^{2}}},$$

where β_j is the effect of the jth repeated measure, will be the same for all h.

For the non-null situation with respect to the interaction the same values were used to deviate the repeated measure scores from the rest as were used for the repeated measure main effect non-null cases. The first half of the subjects' scores were deviated in one direction and the other half were deviated in the other direction producing a null effect for repeated measures main effect, but a non-null interaction effect for which the non-centrality parameter should be the same on the dichotomous data for all values of h.

Once both $[x_{ijk}]$ and $[y_{ijk}]$ were in their final configuration an analysis of variance was performed on both. The values of the statistics obtained from each ANOVA were then used to increment various sums, sums of squares, sums of products, and counters associated with critical values of the statistics in question. Then the entire generation process was repeated 999 more times so as to result in the

generation of 1000 samples for each case of interest. Once 1000 samples had been generated the correlation between all mean squares for the dichotomous data were calculated and printed. Then for the statistics which were of interest the frequency of values larger than $\alpha.1000$ were printed for α = .05, .025 and .01.

Four levels of subject heterogeneity, three levels of a probability of a one, five levels of the number of subjects, items fixed or random, crossed or nested and one null and two non-null situations resulted in a 4×3×5×2×2×3 array of 720 cases for which data were generated. The results of those generations will be presented in the next chapter.

The entire list of the generation program may be seen in Appendix C.


CHAPTER V

RESULTS OF THE MONTE CARLO SIMULATIONS

In this chapter data will be presented with respect to the fit of F-distributions to the empirical sampling distributions of variance ratio test statistics for tests of repeated measures main effects and subjects by repeated measures interaction effects, under all of the conditions and parameter configurations outlined in Chapter IV. For each condition and parameter configuration the data will consist, in part, of the frequencies of 1000 test statistics based on 1000 simulated data samples which had values occurring in α = .05, .025, and .01 rejection regions.² presentation of the empirical correlations between the mean squares in the variance ratio tests for repeated measures main effects and the subjects by repeated measures interaction effects will complete the presentation of raw data. For each data table the significant trends within the table will be indicated, significant interactions graphed and

Both for the "ordinary" variance ratio tests and for the "quasi-F" variance ratio tests.

The rejection regions being defined by an F-distribution with the same degrees of freedom as the variance ratio test concerned.

summary mean statistics reported where appropriate. Because the correlations between the frequencies in α = .05, .025 and .01 rejection regions across all cases in each table of frequencies were generally greater than .9, detailed summary mean statistics will only be reported for frequencies in the α = .05 rejection region. Similarly significant interactions will only be graphed with respect to frequencies in α = .05 rejection regions.

The purpose of the Monte Carlo simulations discussed in Chapter IV was to determine if it was likely that ANOVA procedures could be "appropriately" employed for the analysis of data such as was simulated for this study. order to give a reasonable consideration to the results of the simulations, it is necessary to have some criterion for "appropriate employment" of ANOVA procedures. For the purposes of this paper "appropriate employment" will be adjudged in terms of hypothesis testing and two conditions will be considered as necessary and sufficient for it. first of the above two conditions requires that the empirical probability of a type I error, for a given hypothesis testing situation, is "reasonably close" to the nominal probability of a type I error as determined by ANOVA considerations. The second of the above two conditions requires that the power of a test of a true non-null hypothesis is not "unreasonably small." The phrases "reasonably close" and "unreasonably small" will be discussed below.

If 1000 samples are simulated so that a null hypothesis

is true and so that the assumptions of an ANOVA are met, the number of F-statistics testing the above hypothesis which have values which exceed the $F_{1-\alpha}$ quantile of a corresponding F-distribution will be approximately 1000α . If 1000 samples of data are simulated so that a null hypothesis is not true and so that the assumptions of an ANOVA are met, the number of F-statistics testing the above hypothesis which have values which exceed the $F_{1-\alpha}$ quantile of a corresponding F-distribution will be approximately 1000 times the nominal power $(1-\beta)$ for the situation simulated.

Let Xi be defined according to the rule

$$xi = \begin{cases} 1, & F_i > F_{1-\alpha} \\ 0, & otherwise \end{cases}$$

where F_i is the F-variate calculated on the ith sample, i = 1, 2, ..., 1000, and $F_{1-\alpha}$ is the 1- α quantile of the corresponding F-distribution. The variate Xi is then an indicator variable, which takes on the value one when F_i is in the α rejection region and which takes on the value zero when F_i does not occur in the rejection region. Note that the frequency of F_i 's which fall in the α rejection region,

F, may be represented by the expression f = ${\textstyle\sum\atop\Sigma}$ Xi. i=1

Observe that f is a binomial variate with parameters $p=\alpha$ and n=1000. The variance of f is then np(1-p) or for n=1000 and $\alpha=.05$, the var (f) = 47.5. Therefore a .95

³An F-distribution with the same degrees of freedom as the variance ratio for the test.

probability interval may be formed about the expected value of f, E(f) = 1000 α , which for α = .05 is Pr(36.5 < f < 63.5) = .95.

We now have a basis on which to define what "reasonably close" to the nominal probability of a type I error may be. If the empirical frequency of 1000 variance ratio test statistics, testing a true null hypothesis, which fall in an α rejection region as defined by ANOVA considerations, is a frequency which occurs in a .95 probability interval about 1000α , the empirical probability of a type I error may be considered reasonably close to the nominal α .

The problem of what an unreasonably small value of empirical power would be is more difficult to resolve than the question concerning the empirical probability of a type I error which was considered above. Clearly an empirical power less than or equal to α would be unreasonably small (a test with this property is sometimes called a biased test), but beyond that clear lower limit, the matter must in this investigator's judgment, be arbitrary. For the purposes of this paper it was arbitrarily decided that an empirical power of less than one third the nominal power would be unreasonably small.

Table 7 contains frequencies in α = .05, .025 and .01 rejection regions of variance ratio tests of repeated measure effects under conditions in which the repeated measure effects were null, items were crossed with repeated measures and there was no interaction between subjects and

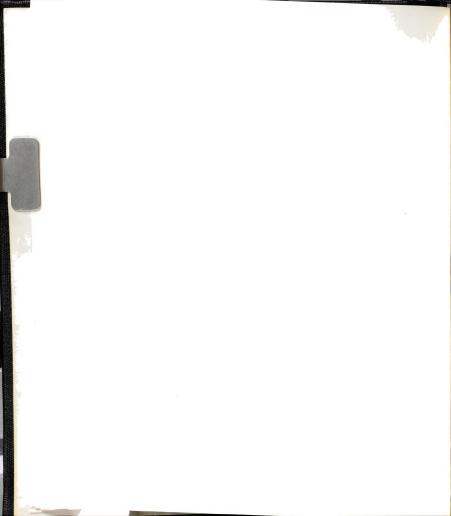
Table 7. The Empirical Prequencies, in \$6-1000 Rejection Regions, of the F for Repeated Measures, Based on Normal and Dichotomous Data, Items Crossed, Interaction and Repeated Measure Effects Both Null

robability of a One	ж - 1000	Dichotomous or Normal	Trems.	Day 1	. 4	Random			Fixed	9	Random			Fixed	&	Random		; 	rixed	10	Random			Fixed		77	Random	
		Level		. "	7 -	2	6 4	٦,	4 M	7 H	7 7	0.4		3 2	4 11	2 5) 4		3 6	4-	2 2	۳۷	•	7 7	۳.	, ,	2 7	n 4
	20	2	4 11	- 0	7 7	- 0	27 50 38 45	4	o 0	61 57 48 58	4 0	n ~	60	- 0	61 46	۲,	۰ ۸	٠٠	, v	53 52	• 1-	5.0	,			63 53 59 57		
	2	Δ	100	٠,	~ ~	. ~	1 18	2	יי הי	38	~	7	6	~ ~	38	~ `	, w	ω.	→ M	16	4 W	ο, ι	• (77	7	24	٦,	3 6
		2	0.	٠,	~ 4	· ~	30	σ,	7 8	27 1,		3 2	6	r 9	23 14		. 0	۰,	- 60	28	• • • • • • • • • • • • • • • • • • •	3 F	• •	- 6	_	. E	7	n J
	10	z					6 11 7 17		~	5 12	-			.~	111			-4 -		7 13	, ~	٠,	•			7 18	•	•
	20	Ω Ω		1 J	77	- 0-	27 20 2	3	o n	39		റെത	4	~ •	23		n 2×			496						υ 4 20 Γ~		
		a		n o	5	0 1	51 13	7	77	32 2	. 6	8 1 2 1	7		34		7	~ .	~ ~	53 10	- ~ - ~	7	•	~ ~	~	3 5 9 3	S	n ~
.2	25	Z	1				11 25 6 24	7	, o	1 15	. ~	-0	7		3 26	171	7 60	-4 :	. v	6 2 9	N (7)	m :	D (m 20	20	1 5 37	رن	ກ ⊶
	10	a a					m O	7	• o	7 5 [۰,	a w	7	10	9 ~	·m·	n 20			•				% ~	4	9 E1	52	10
		2	=	٠ ي	5.4	20	14	•	۰ o	30 v	. ~	0 v	4	4 4	1 00 1	~ ~ .	n ~	91	13	3.3	7 9	13	:	20 4	=	<u></u>	0	e ~
	20	Ω			-		£ 7		~ ~	.0 ^	100	328		ാ	100	٠ .	.000	30	N W	0.	4 9		•		ود	31	•	v 4
		Ω χ	1	n o	· o ·	 	56	0	. 0.	-	•	r 7 t	9	.v ≖			n t	6		20.0	יי א פ			53		50 45	_	50 12
1.	25	×	1				1 61				7	1 1			3			~	m ~	7	• ~	100	o	» •	4	4 ·U	70	3.0 3.0
	ន	Δ	_	4 V	יתו	7	~ · ɔ	~	øο	っト	- ~	m O	~	၁၁	999		7 -	13	c a	• - • ;	77	· ၁ ·	Э	4 ~	0 10	4 7	9	Ξ,
		*	cl	7 ~		7 2	د و.	,	m .n	n ~	٠ ₄	4 ~	,	4 :	.0.		4 V	70	• <u>-</u>	61.	9 4	0.	?	o 1	12	ر. رد د	~	N 4

repeated measures. Table 7 is laid out as a six-dimensional array with three left margins and three upper margins. The left-most margin indicates the number of subjects employed with respect to a given simulation of data. Proceeding from left to right the next margin indicates the nature of the items, whether fixed and null in effect or random and non-null, and the right-most of the left margins indicates the level of subject heterogeneity. The upper margins from top to bottom indicate: (1) the probability of a one with respect to a given simulation of data, (2) one thousand times nominal α , (3) an indication of whether the 1000 variance ratios with respect to a given cell were calculated from the dependent variables when they were variates with normal density (N) or from the subsequently dichotomized normals (D).

In order to test for trends in the data reported in Table 7, the margins were considered as fixed sources of variation and a multivariate analysis of variance was performed on the frequency data three-tuples within the table, employing the highest order interaction mean products as an estimate of error under the assumption that the highest order interaction is truly null.

From the first analysis of the data in Table 7 it was concluded that the frequencies for tests based on the dichotomous variates with overall mean vector 39.9, 18.5,


⁴For $\alpha = .05$, .025, and .01.

6.7⁵ were significantly different from the frequencies for tests based on the normal variates with overall mean vector 46.9, 26.4, 9.7. Then subsequent analyses were performed on frequencies with respect to dichotomous and normal variates separately.

With respect to the frequencies based on dichotomous variates, it was concluded that there were significant main effects due to the probability of a one and the number of subjects as well as an interaction between the two significant main effects. The significant interaction is represented in Figure 1. In the figure the two horizontal lines represent .95 probability limits for mean frequencies such as those graphed, given an expected value of 50. Observing Figure 1, it appears that a favorable comparison of nominal α and empirical probabilities of a Type I error occurred when the probability of a one was .5 and there were six or more subjects. Also a favorable comparison occurred when the probability of a one was .2 and there were ten or more subjects. However when the probability of a one was .1 no favorable comparisons occurred, although the graph suggests that a favorable comparison might occur given more subjects. The marginal mean frequencies for the α = .05 regions for probabilities of a one equal to .5, .2, and .1 were 50.9, 39.9, and 28.8 respectively, and for numbers of subjects equal to 4, 6, 8, 10, and 12 they were 27.8, 39.2, 40.9,

 $^{^5\}text{Ordered}$ for frequencies in α = .05, .025, and .01 rejection regions, respectively.

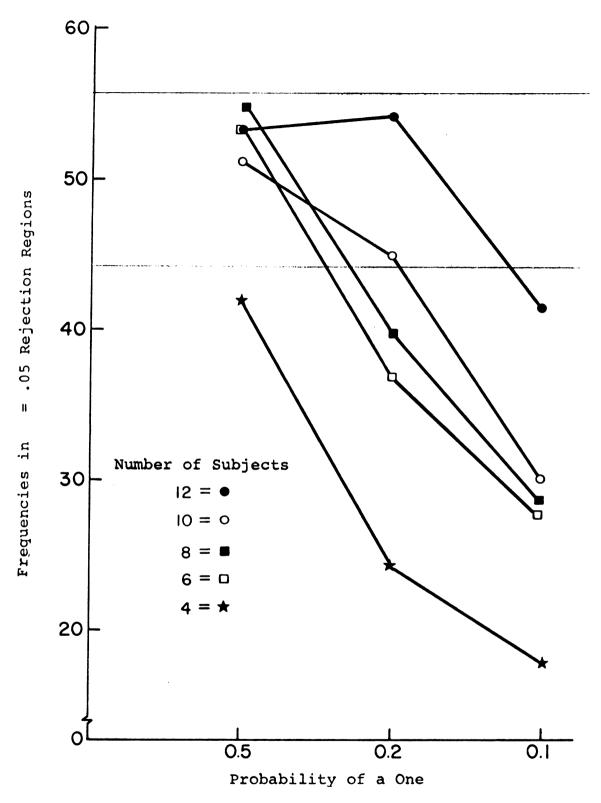


Figure 1. The interaction of the probability of a one and the number of subjects, with respect to the data in Table 7.

42.0, and 49.7 respectively.

With respect to the frequencies based on normal variates there was an unexpected effect due to the number of subjects. The marginal mean frequencies for α = .05 regions were 48.2, 34.4, 43.5, 55.1 and 53.0 for numbers of subjects 4, 6, 8, 10 and 12 respectively, where the mean frequency for six subjects differs significantly from the other mean frequencies. The only reason this investigator can give for the unexpected low mean frequency for six subjects is that it was a peculiar occurrence which would not reoccur if the simulations were repeated with a different starting value for the random number generator.

Table 8 is analogous to Table 7 in that it differs from Table 7 in only two aspects: (1) the values in the table were obtained by simulating data which could have arisen from Design 2 rather than Design 3, and (2) no frequencies appear with respect to tests based on normal variates. The reason that frequencies with respect to tests based on normal variates do not appear in Table 8 is that because of a programming problem, the early simulation runs on which the frequencies with respect to 4, 6, 8, and 10 subjects in Table 8 are based, did not allow for the influence of non-null items effects to show itself in the tests based on the normal variates. The simulation runs for 12 subjects, however, did not suffer from the above limitation and those data will be presented in Table 16. From the analysis of the frequencies in Table 8, it was

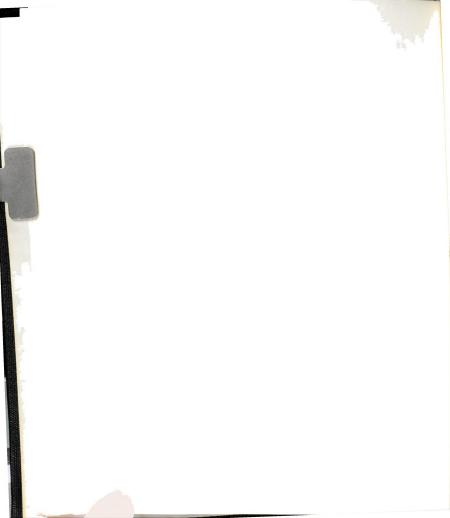


Table 8. The Empirical Prequencies, in \$4.1000 Rejection Regions, of the F for Repeated Measures, Based on the Dichotomous Data Items Nested, Interaction and Repeated Measure Effects Both Null. 7713000 20 4 5 C L O B L ន 0000000 22 18 18 122 122 96 96 42 25 42 37 22 18 18 69 87 20 400448005 84.42 22.22 22.00 22.00 22.00 20.00 60 39 36 177 177 177 174 160 47074040 4 4 101 123 107 2 119 119 119 119 25 S 41 12 12 12 12 72 72 69 000070000 2 202020 8 9 0 4 C 0 4 C 0 6 B 100001 25 ž 51 47 45 74 62 62 48 44 61 61 12 12 12 12 13 46 46 53 53 73 73 73 Level of Sub. Het. Random Random Random Random Random Fixed Fixed Fixed Fixed Fixed Probability of a One jo e ç 80 9 12 30. 6

concluded that there were significant main effects due to: (1) the probability of a one, (2) the number of subjects, and (3) items fixed and null in effect versus items random and non-null in effect. There were also significant interactions between the probability of a one and items fixed vs. random and a significant interaction between the number of subjects and items fixed vs. random. Both of these interactions were represented on one graph, Figure 2. horizontal lines in Figure 2 are .95 probability limits about 50 for means such as those graphed. An inspection of Figure 2 indicates that a favorable comparison of nominal α and empirical probabilities of a Type I error occurred when items were fixed and null in effect and the probability of a one was .5. Also a favorable comparison occurred when the items were fixed and null, the probability of a one was .2 and there were 10 or more subjects. In the absence of the above conditions, however, only unfavorable comparisons resulted.

The overall vector of mean frequencies for Table 8 was 86.6, 48.5, 24.0. The marginal mean vectors for items fixed-null vs. random--non-null were 40.0, 18.0, 6.3 and 133.2, 78.0, 41.7 respectively. The large mean frequencies for the items random non-null conditions confirm the contention made in Chapter I that non-null items effects associated with a design in which items are nested within repeated measures will cause the regular variance ratio test for repeated measures to have too many Type I errors.

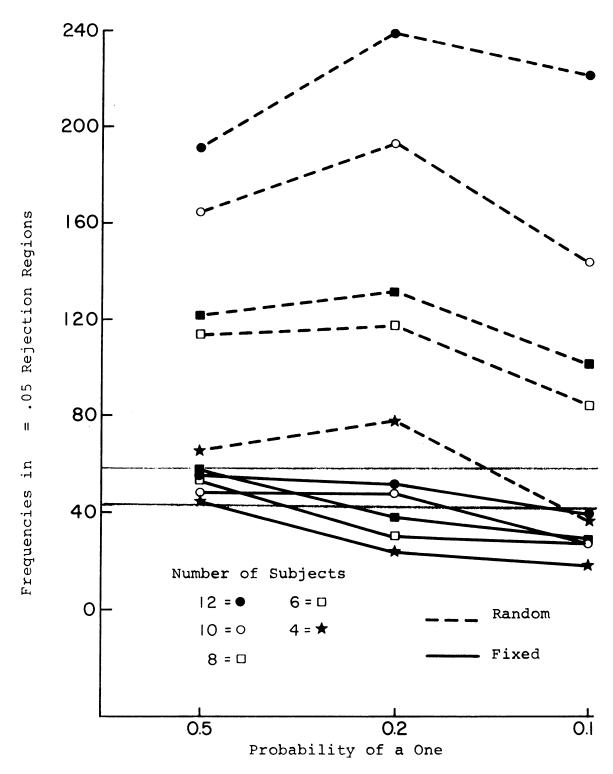


Figure 2. The interaction of the probability of a one, the number of subjects, and items fixed vs. random, with respect to the data in Table 8.

Note that when items are fixed-null the results in Table 8 are generally the same as those in Table 7, but when the item effect is random non-null the situation is quite different.

The marginal mean frequencies in α = .05 rejection regions for the probability of a one equal to .5, .2, and .1 were 91.9, 98.7, and 69.1 respectively, and for the number of subjects equal to 4, 6, 8, 10, and 12 they were 44.6, 74.0, 82.6, 104.3, and 127.5 respectively.

Tables 9 and 10 contain the frequencies in α = .05, .025, and .01 rejection regions of the variance ratio test statistics for tests of repeated measures effects when the data were simulated under the non-null repeated measures effect conditions indicated in Chapter IV. Table 9 contains frequencies with respect to tests based on both normal and dichotomous data, whereas the frequencies with respect to normal data were omitted from Table 10 for the same reason that frequencies with respect to normal data were omitted from Table 8.

The data in Table 9 which were with respect to normal variates with overall mean vector 517.5, 418.6, 308.7 were significantly different from the data in Table 9 which were with respect to dichotomous variates and which had an overall mean vector of 262.3, 185.6, 114.2. The data in Table 9 with respect to normal and dichotomous data were subjected to separate multivariate analyses of variance and very similar significant effects were found. For both

Table 9. The Empirical Frequencies, in < 1000 Rejection Regions, of the P for Repeated Measures, Based on Normal and Dichotomous Data, Items Crossed, Repeated Measure Effects Non-mull, Interaction Null.

Dichotomous or Normal No. of Items Sub.s Fixed 4		5	-	35	2	_	S	•	ų	:				;			;
No. of Items Sub.s Items 4 4 Fixed Rando	•	20		25	27	\dagger	S	7	25	의		20		- 1	2	25	25 10
ļ	Level of Sub. Her.	z	Ð	z	•		Z.	Δ	z	Ω	z	Q	z	. ٩	_	×	
		199 329	9 121	220	59 1	100	90 197	7 43	95	25	36	52	132	77	l.,		7.1
	. "	. 4		273	•	215				8.7	6 9	77	159	=	n C		0 7
Randor	4	2		356	~	- 56	2			^	7.	27	147	• ~	· ~		7.3
Randor	_	m (176	٦.	90	30			33	50	39	135	7	-		99
	3 7	7 "		152	⊸ -	6,3	5 0.			o (9 :	35	1 L d	⊸ .	~		19
	7 4	'n		352	-					8 8 8 8	V 20	2 Z	139		۸ د	o v	
-	-	2		3.83		53				3	100	9	173	^		, de 1	501
Fixed	2	326 600	0 217	475	124 3	308	143 335	5 85	207	36	126		198	• •	77	110	• ~
	٣	S		537		67			~	38	146	62	221		7	771 7	771 7
•	4	_		969		75		•	m	75	199	5 6	282	_	۵	0 166	0 166
		S		368		27			-	47	105	49	164	. •	Э	201 6	201 6
Random		3		438		- 65			~	43	127	47	175	_	_	7 116	7 116
-	m	9		543		64			~	53	139	9	216	-	10	241 6	241 6
	4	^		602		52			~	63	221	61	787	~		177	177
	-	•	Ċ				,		•		:	,					
ì	- (0 1	7 6			7 :	V 3		9 (·	107	 20 i	707	4	⊣ .	7/1	74 16
LIXED	. ~	- α	1 7			•	r c		٠.	0 7 7	3 3	n •	***	3		9 (77 8/7
00	, 4) a	, ,			2 1	, ,		* 4) d	2 2		0 7 0	•	١,	7 .	77 75
	-	424 717	7 307	2.0	171 4	1 1 1	256 419	9 179	327	10.4	207	7	201	9 4	٧ -	0 6	
Randon	_	_	35			70	45	-	(1)	80	263	7	2	7	• ^	3	20
	<u>-</u>	•	34			73	30	•	4	96	306	75	340	, S	1 ~) J	70
	4	∞	36			89	7.7		ď	117	376	82	410	3	\sim	16	16
	_	•		736	ç	-		_		143	366	121	37.3	,	_	2	
7000	3	• •		199	20			. ~		90	376	4 6	יו ט ט ס	1 -	4 0	N (
	_	0		876	7.7					200	2 4 4	1 0	2 7	7	, ,	2.5	2,4
10	4	0		934	2.5	7,0				7 4 7	9.0	2	000	2 0	١ ،		
	-	536 830		746	297 6	00				163	316	15.2	367		` `		7.
- Presd	2	80		811	11	37				159	375	138	-	9			200
		•		668	9	73				152	643	122	677	76	٠.	9	66 47
	4	٥	5 535	941	96	958	345 62	0 251	7.00	157	527	101	402	9	1 4	404	404 29 301
					;					į							
		619	# C	820	351 6	669	365 60	9 263	2C -	174	340	156	343	S B	~	544	11
Fixed	2		, c	80 6	9 2	9 7		3 52		133	104	125		46	7	25	55 44
	m -			676		75		92 1		191	512	147		2	~	27	57 36
77	•		6	696	6	9:		35		186	614	176		102		4 05	405 54
	-		47	835	33	61		3 25		157	349	150		7		255	555 54
Random	2		49	°2/	64	99		+ 20		185	604	166		Ξ		557	59 557
	۳		53	430	67	20.		5 2 5		176	486	157		117		248	248 41
	7		2 2 2	575	53					201	615	160				35	35 45

Table (6). The Empirical Frequencies, in $K \star$ 1000 Rejection Regions, of the F for Repeated Measures, Based on the Dichotomous Data, items Nested, Repeated Measure Effects Non-mull, interaction hull.

Probability	1	14.			ik,				4			æ					щ			uE,				M.			,E				SA.				_
of a	Items	Fixed			Random			Street	rixed			Random					Fixed			Random				Fixed			Random				Fixed	5000		- Contract	Manager
one	Level of Sub. Het.	2	m 4		~ ~) -3	-	. 7	6	4	-	2	m	4	,	10	. ~	4		4 6	7 47	,	2 2		47		7 6	1 47	-	2	. ~	. 4	1	2	m
20		199	274	528	6:3	252	200	326	345	30.00	375	355	1	437	0	290	697	910	521	23.5	575	516	546	585	662	200	6.61	689	619	623	199	161	656	969	134
25		121	132	17.3	131	166	0	217	232	266	244	271	269	317	294	330	340	371	3,50	300	100	403	435	462	211	200	266	999	154	500	632	636	5.50	065	949
10		5.6	t 4	75	9.9	9 9		124	116	250	138	150	161	202	4.	000	206	223	707	200	323	262	262	321	355	36.7	307	4.32	35.2	356	166	3,1,1	1.77	5.10	220
9	3	127	901	200	177	12		0.5	1 7	175	2.2	255	240	56€	34.3	234	25c	273	345	100	450	336	327	370	414	0 40	9 0	6.67	365	363	366	452	265	667	315
۲. ۲	2	2 4	3 6	100	32.	155	ě	0 1	0 67	134	177	176	172	592	6.0	185	163	198	0 0 0 0	272	292	263	245	262	306	367	0 0 0	377	263	250	585	320	100	404	422
5	24	25	no r	4	83	0.00		9 4	0 0	7.5	103	3.5	-13	106	0	116	9.0	66	7 1	100	171	104	162	189	187	697	263	247	74.	133	6	165	293	3:1	3.3
c u	2	25	24	. 2	12	22		30		9 0	9	0	15.	130		200	75	34	141	071	17	121	143	100	136	182	202	237	158	125	147	176	311	272	317
1. 30	67	22	01	0.0	67	35		200		18	2.4	90	59	67		1 5	4 1	35	- 0	110	16	72	200	To To	15	215	101	140	80 80	56	15	102	265	214	228
2	27		100	n :-	14	N 10		0.	**	4 (*	0 0	10	1,	30		0	12	5	- 0	0 0	e 30 - (%)	2.5	34	30	30		, ,	73	4.5	7.4	36	150	199	182	170

dichotomous and normal there were significant main effects due to the probability of a one (which you may recall is confounded with degree of non-null effects for repeated measures), the number of subjects, and the level of subject heterogeneity. Also in both there were significant interactions between the probability of a one and the number of subjects as well as between the probability of a one and the level of subject heterogeneity. In addition within the data with respect to the normal variates, there was a significant first order interaction between the number of subjects and the level of subject heterogeneity, and a second order interaction of the probability of a one, the number of subjects, and the level of subject heterogeneity.

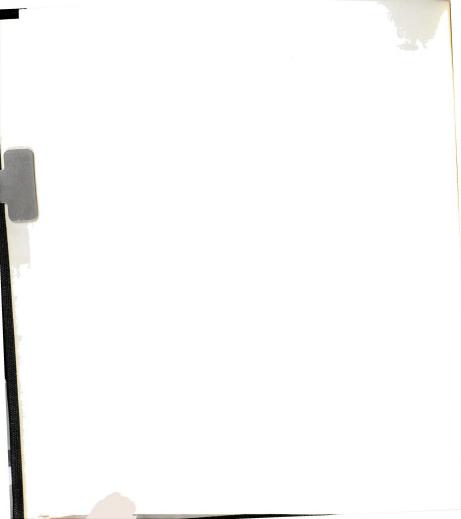
To find very similar effects in the data with respect to both normal and dichotomous data is somewhat reassuring, but the relationship of the empirical power of a test based on normal variates to the power of that same test based on the subsequently dichotomized variates requires further analysis.

Each frequency in Table 9 which was based on dichotomous variates was divided by the corresponding frequency in Table 9 which was based on normal variates to form a new variable which can be considered as the relative power of a test based on subsequently dichotomized variates with respect to the power of the same test based on normal variates before they were dichotomized. The relative power data were subjected to a multivariate analysis of variance and

three significant main effects and no interactions were The significant effects were (1) probability of a one, (2) the number of subjects, and (3) the level of subject heterogeneity. The overall mean vector of relative power variables was .45, .38, .32, which indicates that the relative power of the variance ratio test for repeated measures effects decreases as the nominal α level decreases, from .05, to .025, to .01. There was no interaction between nominal α level and the above significant effects so marginal mean relative power will be reported for $\alpha = .05$ only. For probabilities of a one equal to .5, .2, and .1 the mean relative powers for $\alpha = .05$ were .58, .49, and .28 respectively. For numbers of subjects 4, 6, 8, 10, and 12, the means were .39, .41, .43, .50, and .54. For the four levels of subject heterogeneity 1, 2, 3, and 4 the means were .52, .46, .43, and .41 respectively.

The differences in mean relative power show clear trends. As the probability of a one becomes smaller so does the relative power, which is the opposite of the trend which might have been expected, since as you may recall from Chapter IV the degree of non-null effect in the simulated data was selected to counter the effect of decreased variance corresponding to a decreased probability of a one. Thus the power of tests based on the dichotomous variates should not have changed across levels of a probability of a one, whereas the power of the test based on normals should have and did decrease across levels of a probability of a

one (and decreasing non-null effects). The results indicate however, that the power of tests based on the dichotomous variates fell off more rapidly across levels of the probability of a one than did the power of tests based on the The explanation of the above may be that as the normals. probability of a one becomes smaller the point of dichotomization is such that more of the "information" carried in the normals is lost. 6 Another clear trend is that as the number of subjects increases, the relative power does so The trend with respect to the number of subjects is most likely a function of the effect of the central The third trend indicates a loss in relative limit theorem. power with an increase in subject heterogeneity, a trend for which this investigator has at present no explanation.


A multivariate analysis of variance of the frequencies in Table 10 disclosed significant differences for almost all sources of variation. The interaction of items fixed vs. random and the level of subject heterogeneity was not significant nor were the two second order interactions which included the above two sources, the probability of a one by items fixed vs. random by subject heterogeneity and number of subjects by items fixed vs. random by subject heterogeneity, but tests of all other sources indicated significant differences. Relative power ratio variables were formed for

Recall from Chapter IV that the non-null repeated measure effects were added in before rather than after dichotomization.

all of the situations with respect to Table 10 for which there were frequencies based on normal variates that were not inappropriate. The relative power ratio variables that could be formed were analyzed by means of a multivariate analysis of variance with empty cells. The deficiency of the above analysis compared to the like analysis performed for Table 8 can be expressed in terms of which sources of The untestable variation are untestable due to empty cells. sources of variation are: all of the second order interactions and the first order interaction of number of subjects and items fixed vs. random. Of the testable sources of variation significant differences were found for: (1) the probability of a one, (2) the number of subjects, (3) items fixed vs. random, and (4) the level of subject heterogeneity. The overall mean vector of relative power was .47, .41, .34. The marginal mean relative powers for $\alpha = .05$ regions for probabilities of a one .5, .2, and .1 were .62, .51, and .30 respectively; for numbers of subjects 4, 6, 8, 10, and 12 they were .37, .41, .44, .50, and .54 respectively; for items fixed .45, for items random, .59; and for levels of subject heterogeneity 1, 2, 3, and 4 they were .53, .48, .45, and .44 respectively. The same trends in relative power were found in this analysis as were found in the above mentioned analysis of relative power plus an

⁷ Inappropriate frequencies based on normal variates occurred where the number of subjects was fewer than 12 and items were random--non-null.

effect for items fixed vs. random. The evidence that the relative power is greater for items random than for items fixed under Design 3 is unimportant, however, since other evidence strongly indicates the variance ratio test for repeated measures is too liberal under Design 3 when the null hypothesis is true and items are random.

Recall at this point that in Chapter I it was indicated that Satterthwaite's "synthetic variance ratios" or "quasi"-F tests could provide an appropriate test for repeated measures effects when in Design 2 there was a non-null items by repeated measures interaction or when in Design 3 there was a non-null items effect. The most startling result of this study concerned the empirical testing of the above contention with respect to dichotomous data.

Tables 11 and 12 contain the frequencies in α = .05, .025, and .01 rejection regions of the quasi-F ratio test statistics for tests of repeated measures effects when the data were simulated under null repeated measures effect conditions and null subject by repeated measure interaction effect conditions. That is, Tables 11 and 12 are the quasi-F analogs to Tables 7 and 8.

The data in Table 11 which were with respect to normal variates with overall mean vector 36.5, 16.6, 5.6, were significantly different from the data in Table 11 which were with respect to dichotomous variates with overall mean vector 65.9, 38.1, 18.2. The data in Table 11 with respect


Table //. The Empirical Frequencies, in K'1000 Rejection Regions, of the Quasi-P for Repeated Measures, Based on Normal and Dichotomous Data, Items Crossed, Interaction and Repeated Measures Effects Both Null.

Probability of	of a One							H			.2									
3 • 1000			\$0		25		01		20		25		01		20		25		10	
9	or Norma		Ω	z	Q	z	۵	z	Ω	z	Δ	z	Д	- z	۵	z	Δ	z	a	z
Sub. 8	Items		75	4.5	37	25	2	12	45	59	23		6	12		09	٥	3.3	\	12
	Fixed	2 5	63	4.	33	26	ο (12	61	77	35		15	9	1.6	24	. 4	5 7	ı ~	14
4		∩ -4 1	n .c	- 1	3 Y	ر ا د د	~ <	0 r	0 r	994	200		3 0 、	77	9.	9,	:O 1	20	၁	70
			6.8	57	, t	25) L	. 0	7 [9	7 20	n x		၁	D -	۳ م	4 t	v .		つ :	•
	Random	7 7	55	57	2.9	27	5	12	34	47	56		. c1	1 c		, v v) ∙∧	, t t	> ~	17
		7 4	, n or-	t 7	5 c	1.2 2.5	12	12	31 23	25 62	23 12	3 e 3 e	m m	010	2 5 1 8	2 2 2 0	<u>- 1</u>	23	D †	12
			7.8	39	45	1.8	9		74	3.5	3,6	1,7	2.1	.,	6.7	u U			-	ı u
	Fixed	2	œ)	34	47	13	57	. ~	80		20	17	29		n v t t	יש מי	, a	77	. .	n m
4		m ×	ا س د	45	40	25	18	61	. 17	. 32	15	3	16	5	56	52	а	7	-	t ı
>		, -	r	0 0	1 1	3 0	7 -		D 4		5 2	0 0	* .	n r	15	. t	۱ م	21	ο.	4 (
	Random	7	9	1 1	31	21	22	- 2) 1) ()) F	27	19	- 9	7 6	1 1 1 Մ		17	5 1	v -
		e .	83	43	64	21	56	•	69		1 1	26	13	. ~	9	5.6	1 7	? =	כי	• >
		4	•	20	42	27	27	9	55		30	13	12	<u> </u>	77	3.5		01	7	Э
			102	54	57	12	59	5	5.7		0	==	15	·	87	7.7	30	٥	11	2
	Fixed	7 7	9 1 6	ر د و	52	17	30	۲.	17:		67		13	0	41	97	21	77		0
80		7 4	. 6	23	t †		23	۰ ۲	ς ν ο ΄		1 5	16	1 7	- o o	3 6	7.2	5 2	<u>~</u> _	5	o :
		-	29	32	30	18	16	80	51		34		1.9		G .	7.7	5 6) ი
	Random	7 6	27	36	6 4	21	26		ν τ 4 α	8	3 G	Λ r	16	၁ (96	6.6	ים ה מי	12	ζς.	ာ
		. 4	49	7	10	. ~	16	. 0	9		38	n 0	19	00	υ τ 0	21	0 O			99
		1		9 0	65	19	ν.	0.7	76	5.8	76	9	31	9	t,	54	14	•		7
	Pixed	2 5	60	27	63	25	33	٠,	76	36	53	30 ?	32	00 (110	38	81	30	53	۳.
10		n 4		3.6	t 0	17	23	D 1	101 78	7 7 5	7 7	71	626	o 1	0 °	21	623	9 [n :
				7 7 7	62	77	26	. ~	2	5 6	9.0	٠ ٠	٠ • س	. ~	62	31	, 6	101	9 7	,
	Random	7		27	25	11	52	7	75	36	32	7	15	1	7.5	54	75	9	13	. ო
		m ×		62	1 0	12	24	•	96	27	63	~ (٠ 8	~ `	7 0	0.5	27	80 (<u>.</u>	41
		,	35	<u>.</u>	2	1	` .	<u> </u>	711	*,	0	>	•	<u> </u>	7 8	7 +	£ 3	77	17	
		7,	102	52	63	12	35	~ .	06	52	5.	10	27	-	87	30	7	16		Λ
	Fixed	7 -	o 0	0 0	ν ν Ο C	0 0	73	•	2 5	2.5	1 7 7	0 0	26	~ `	J (1	27	e e	22		~ •
12		1 4	80	28	23	و٠	35	10	6	13	9.1) r.	11	• •	4 4	31		1 5		o v
			6.5	39	96	19	34	e .	99	35	37	54	28	4	121	33	14	15	2	٥
	Random	7 6	1 L	7 2 7	→ 6	0 6	24	- ·	7 7	35	5	20	67.	r	101	17	7 .	٦. ن		~ u
		7 4	7.7	5 T	6.7	10	27	* ~	96	36	, t	15	2 ()	٦ -	ر د ع	7 7	1 2	1 .		n 1
		1										,)		,	:		

Table |2. The Empirical Frequencies, in \$\pi\$-1000 Rejection Regions. of the Quasi-F for Repeated Measures, Based on Dichotomous Date, Items Nested, Interaction and Repeated Measure Effects Both Null.


	01	2	00 m	0 1	⁻ 11 ⁻	m	0 50	7 1 8 0) II	11	15 22		11	50	13	41	112	3.5.	10	31	7 O	16 41	4.	31
-	25	}	-144	m 4 ;	198	54	0 61	247	77 72 72	25	30	18	35	36	7.2	9 6 7 8	38	34.7	4 t m	9	2 0	52 82	108	73
	90		0001	9 8 8	32 72	51	35	9 6 6	ţ, ţ	70	5.5	37	4 9	6 9	7.1	66 93	67	32.5	4 5	*	105	103	213	101
	10	i	13	٠ 91 غ	1 1 1 1	13	23	23 23	21	16	٥ ٢	24	. m .	27	35	3 28	35	122	3	53	9 7 7	12 23	52	ñ
	25		15 32 12	۶ <mark>۶</mark> ۵	13	36	38	1 2 5 6	37	19	35	47	9.	9 4	57	4 N	20	60 6	200	3,	47	4 4 6 6	3,5	9
	05		27 50 25	2 5 5	3 4 5	61	8 6 5	16.02	. 4	54	651	83	8 5	86	8	8 9	73	134	113	102	82	8 8 5 5	72	115
	01		17	4 4 5	113 113	17	15 2	288	16	23	8 7	16 33	34	7 %	22	53 52	21	4 6	58	3.0	27	5 7	6 a	, eo 5 4
	25		37 35 29	3 8 2	32	41	0 0 E	61 85 85	4	52	3 B	41	3.5	58	5	7 8 7 8	53	65	4	67	4 4	7.7	87	128
	S		61 59 62	L 00 4	2 4 W	77	6.8 6.8 8.5 8.5	108 36	27	92	73 66	102	92	119	85	100	88 106	102	8 7	101	7.7	123	122	174
		Level of Sub. Het.	3 5 7	4 - 1 0	167	٦,	v m 4	955	4	A (3 6	7 H	3 2	n 4	٦,	3 6	7 -1	3.5	4	, ,	· m ·	7 1	3 2	14
a One		Items	Fixed		Kandom		Fixed	Random			Fixed		Random			Fixed		Random		i	Fixed		Random	
Probability of a One	.ھ • 1000	No. of Sub.s		7			•	,				80					10					12		

to normal and dichotomous data were then put to separate multivariate analyses of variance.

The analysis of the data with respect to the dichotomous variates indicated significant effects due to: probability of a one, (2) the number of subjects, the interaction of (1) and (2), and the interaction of (1) and items fixed vs. random. The marginal mean frequencies in $\alpha = .05$ regions for probabilities of a one equal to .5, .2, and .1 were 77.7, 67.1, and 52.8 respectively and for the number of subjects equal to 4, 6, 8, 10, and 12 the marginal mean frequencies were 38.6, 57.5, 63.9, 83.6, and 85.8 all respectively. The above two significant interactions are represented in Figures 3 and 4 respectively. Both figures indicate that the empirical probability of a Type I error is not in general close to .05. Figure 3 indicates that although the frequency in the rejection region is less affected by the probability of a one as the number of subjects increases, the tests become rather liberal. Figure 4 is self explanatory.

The analysis of the data in Table 11 with respect to the normal variates was interesting in that it tends to contradict earlier findings. The analysis indicated a strong significant effect due to the number of subjects. The marginal mean frequencies in α = .05 regions were 53.8, 43.5, 24.3, 32.2 and 28.8 for 4, 6, 8, 10, and 12 subjects respectively, which indicates a general downward trend in the empirical probability of a Type I error with an increase

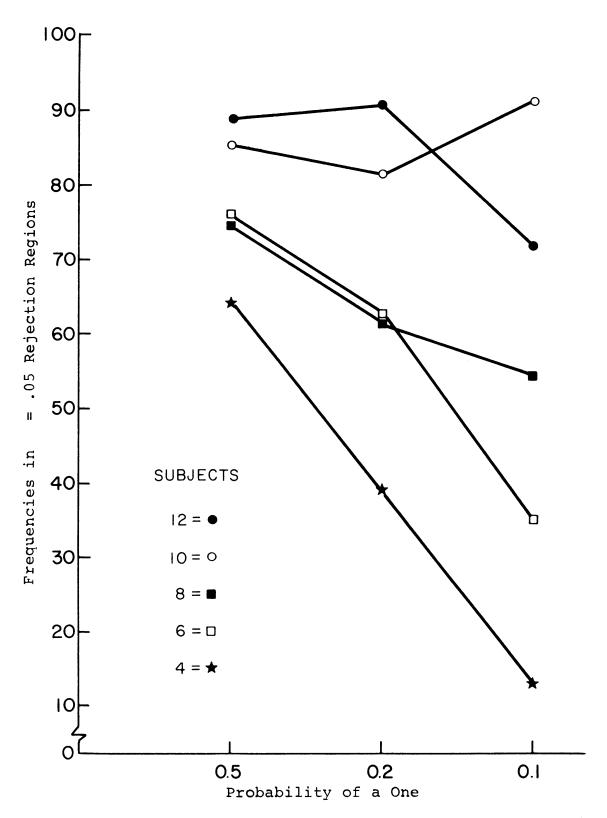
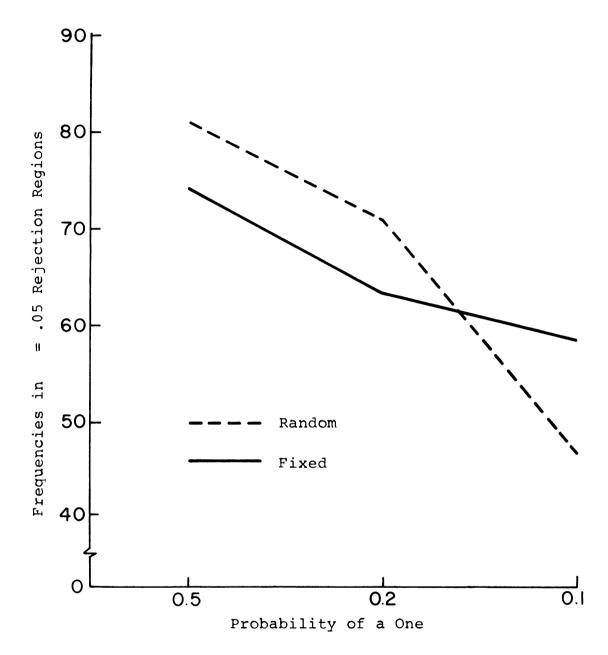
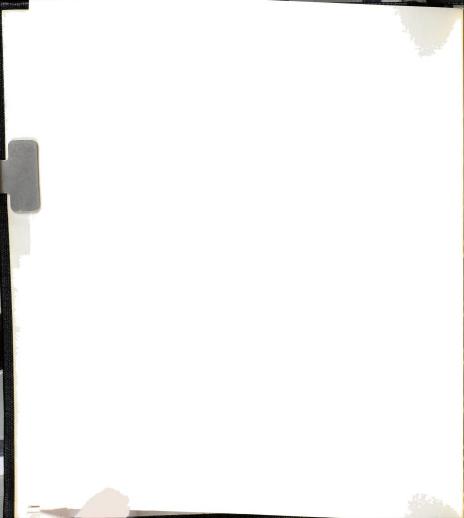



Figure 3. The interaction of the probability of a one and the number of subjects, with respect to the data in Table 11.





Figure 4. The interaction of the probability of a one and items fixed vs. random, with respect to the data in Table 11.

in number of subjects.

The data in Table 12 were analyzed by means of a multivariate analysis of variance and significant effects were found with respect to: (1) the probability of a one, (2) the number of subjects, (3) items fixed vs. random, and the interaction of (1) and (2). The overall mean vector for Table 11 was 72.8, 42.5, 22.3. For $\alpha = .05$ regions the marginal mean frequencies for probabilities of a one equal to .5, .2, and .1 were 88.4, 72.5, and 57.2 respectively, for numbers of subjects 4, 6, 8, 10, and 12 they were 37.5, 50.7, 75.6, 85.5, and 104.4 respectively, for items fixed and null the marginal mean frequency was 65.0 and for items random non-null it was 80.5. The significant interaction is represented in Figure 5 which is somewhat similar to Figure 3 and which in general lends itself to the same interpretation.

Tables 13 and 14 contain frequencies in α = .05, .025, and .01 rejection regions of the quasi-F test statistics for tests of repeated measure effects when the data were simulated under non-null repeated measures effect conditions. Thus Tables 13 and 14 are the quasi-F analogs of Tables 8 and 9. The results in Tables 13 and 14 are most startling for it is apparent that although the quasi-F tests based on normal variates responded in an appropriate manner to non-null effects that the quasi-F tests based on dichotomous variates did not. The quasi-F test based on dichotomous variates has significantly fewer frequencies in rejection

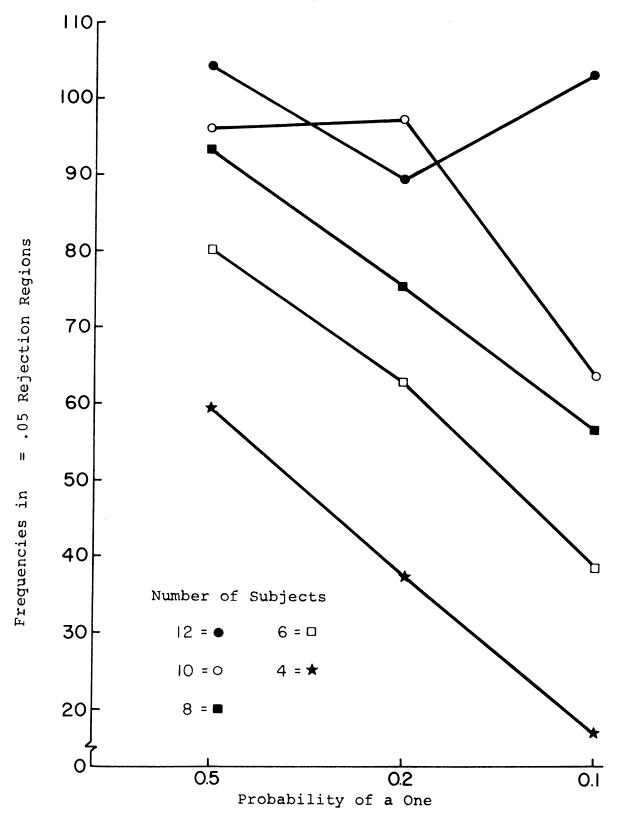


Figure 5. The interaction of the probability of a one and the number of subjects, with respect to the data in Table 12.

Table (3. The Empirical Frequencies, in the x-1000 Rejection Region, of the Quasi-P for Repeated Measures, Based on Normal and Dichotomous Data, Items Crossed, Repeated Measure Effects Non-null, Interaction Null.

Fixed State Stat	ا خ	of a One				2					.2					-:			
Fixed 2	a-1 000			50	7	2	2		S		25	2		20		25		10	
Fixed Sign Sign Sign Sign Sign Sign Sign Sign	Dichotomous	or Norma			Ω	z					Z	Ω	Z	۵	z	۵	z	۵	z
Fixed 2 20 228 9 19 19 19 10 10 10 10	No. of Sub.s	Items																	,
Fixed 3 Fixed 3 Fixed 4 5 <			7 ~	9 29	- ·	an A	٦-	7 0	0 4	9 3	6 (7 6	643		⊸ 0	17	7.9	71	36
Random 1		Fixed	, m	9 6		4 50	• ~•			• •	13	n ao	29	۸ ۵) 1	0 4	0 10	٥٨	9 5
Fixed 1 24 22 3 122 3 183 19 19 10 10 56 11 11 11 12 12 12 12 1	7		7	6 43		Š	~	. 9	2	م	R	m	95	· w	·v	'n	0 0	ı	
Randon 2 12 3 6 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			-	4 28	-1 ·	()	~	- 2	3	3 1	01	0.1	96		. 4	1	55	-	32
Fixed 1 1 1 4 12 6 275 2 150 11 20 1 1 194 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Random	٦ ٣	34.	~	~ ~			.	m 1		⊣ (رن در م			m o	19	7 3	32
Fixed 1 14 412 6 275 2 232 236 6 103 5 5 10 10 4 6 10 5 75 10 11 75 10 11 75 10 11 75 10 11 75 10 11 75 10 11 75 11 75 11 75 11 75 11 11 75 11 11 75 11 11 75 11 11 11 75 12 20 25 26 27 28 25 26 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28 28 </th <th></th> <th></th> <th>7</th> <th>3 46</th> <th>. •</th> <th>١ ١</th> <th>. 2</th> <th></th> <th>~~</th> <th>•</th> <th>•</th> <th>. O</th> <th>0 1</th> <th></th> <th>n or</th> <th>~ ~</th> <th>~ ? ? ?</th> <th>n -</th> <th>, ,</th>			7	3 46	. •	١ ١	. 2		~~	•	•	. O	0 1		n or	~ ~	~ ? ? ?	n -	, ,
Fixed 2 5 474 2 34.3 1 222 28 6			1	4.1		^	-		2 2	7	16	4	6.1	43	•	25	65	01	S.
Random 3 7 2 2 2 7 1 9 1 9 1 9 1 9 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 1 1 1 2 1 <th></th> <th>Fixed</th> <th>2</th> <th>7</th> <th></th> <th>\$ 0</th> <th>7 (</th> <th></th> <th>31</th> <th>9 0</th> <th>30</th> <th>S (</th> <th>66</th> <th>4.5</th> <th>0</th> <th>: 1</th> <th>۲.</th> <th>1</th> <th>1 1</th>		Fixed	2	7		\$ 0	7 (31	9 0	30	S (66	4.5	0	: 1	۲.	1	1 1
Fixed 1 10 5 4 5 5 5 5 5 5 5 5	•		n v	V V) -	7 6		9 F	o 1	2 4	۰ ،	123	52	~ ~	⊒ •	7 7	. 1	15
Random 2 6 439 6 309 9 200 18 257 6 139 7 84 122 20 200 19 7 84 122 20 200 19 7 84 122 20 200 10 94 36 122 10	0) 4		4 α	٠-		• v	.	7 -	v •	, r	1 -	4.0	· 1	D 1		; c
Fixed 3 7 5 + 4 4 15 2 2 2 2 2 2 2 1 1 1		7	. ~	4		\circ	٠ ٦		1 80	, ~		۰,	. 4	4 00		• •	1) n	,,,
Fixed 1 1 0 544 9 359 4 233 21 308 10 219 4 112 46 214 19 113 1 1		Rendom	m	5.4		~	7		6	2	19	13	90	3	~	1 P	ה ס	0	. 10
Fixed 1 10 544 9 389 4 233 21 508 10 219 d 112 46 210 113 11 10 544 9 297 2 39 32 342 17 241 6 145 2 20 22 10 29 9 29 1 29 20 22 10 11 4 27 22 10 11 11 6 20 20 22 10 11 11 6 20 20 22 20 10 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20 20			4	9		~	m		3		30	11	193	34	~	1.7	971	7.7	ر ص
Fixed 2 5 629 1 497 0 299 32 342 17 241 6 145 42 209 22 109 13 Random 2 797 2 5 627 1 697 2 697 <th></th> <th></th> <th>7</th> <th>5.4</th> <th></th> <th>-1)</th> <th>7</th> <th></th> <th>-</th> <th>80</th> <th>2.1</th> <th>70</th> <th>112</th> <th>46</th> <th></th> <th>0.</th> <th></th> <th>~1</th> <th>0</th>			7	5.4		-1)	7		-	80	2.1	70	112	46		0.		~1	0
Random 3 1 4 697 2 257 0 393 2 C 420 9 275 9 173 30 229 12 176 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Fixed	2	9		0	~		7	7	5,4	9	145	77	Ō	~	٠,	13	10
Random 2 11 614 6 497 3 314 18 253 4 241 3 147 247 24 132 24 11 11 614 6 497 3 314 18 253 4 241 3 147 247 247 247 132 24 133 24 134 24	•			9 6		0.0	'n		د د	5 4	77	י יכ	173	0.6	Ω.	~i	7	٠.	7.
Random 2 11 614 5 487 3 14 241 3 14 24 3 14 24 3 14 24 3 14 24 3 14 24 3 14 24 3 14 24 3 14 34 24 3 3 24 34 15 24 3 3 24 34	•		, ,	5.8		٠,	· ~		t 1	· ~	7.7	71	118	7 7	ריי		7	91	ე . 4 დ
Fixed		Random	2	1 61		an)	~		ພ	м	54	m	147	57	n	•	~	54	76
Pixed 2 5 5 291 29			m ×	7 67 H		~ ~	ė v		.	നേ		o c	194	57	1	2 4	200	3:	→ 0
Pixed 1 9 68 6 559 4 371 9 379 5 291 2 207 6 234 10 10 10 56 234 10 10 10 307 6 239 249 21 10 20 249 24 10 30 249 24 10 30 249 249 2 26 29 20 349 20 249			,			١.			,	,	,	•	3	•	•		4	•	.
Pixed 2 915 2 705 1 205 205 205 205 205			٦,	4 6 8		v z			э а	~ -	29	~ ,	0 '	200	m.	٥.	.0		7.7
Random 2 910 0 30 ct 0 588 11 620 2 475 0 299 20 343 7 231 5 1 1 223 10 10 11 1 223 10 10 11 1 223 10 10 11 1 223 10 10 11 1 223 10 10 11 11 1 1 223 10 10 11 2 2 2 2 2 2 2 2 2 2 2 2 2		Pixed	7 (- 01		3 (۰.	o r	•	, ,	۰ م	v :	ار م لا	* 2	4 -	o :		```
Random 1 3 689 1 534 1 347 24 356 18 247 2 197 41 223 16 10 11 230 43 26 36 15 11 10 31 31 32 36 37 37 36 36 46 36 46 46 36 46 36 36 36 36 37 37 37 37 36 37 46 36 46 46 46 46 46 46 46 46 46 47 39 31 22 13 22 13 22 13 22 36 </th <th>10</th> <th></th> <th>1 4</th> <th>6</th> <th></th> <th>•</th> <th></th> <th>- 00</th> <th>4</th> <th>. 0</th> <th>7</th> <th>0</th> <th>) T</th> <th>20</th> <th></th> <th></th> <th>ำ</th> <th>י י</th> <th>; ;</th>	10		1 4	6		•		- 00	4	. 0	7	0) T	20			ำ	י י	; ;
Random 2 5 760 3 620 0 440 10 314 1 230 43 266 30 156 15 15 15 15 4 2 911 2 784 0 644 10 432 6 313 3 173 46 353 14 225 0 11 23 14 225 0 11 23 14 225 0 11 23 14 225 0 11 23 14 225 0 11 23 14 225 0 11 23 14 225 0 11 23 14 225 0 11 23 14 225 0 11 23 14 225 0 11 23 14 225 0 11 23 14 225 0 11 23 14 225 0 11 23 14 225 1 13 21 24 1 2 274 1 2 274 1 2 274 1 2 274 1 2 274 1 2 274 1 2 274 1 2 274 1 2 2 274 1 2 2 274 1 2 2 274 1 2 2 274 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1		-	6 9		r)		7	1	9	2 9	7	\sim	4.1	~	D	٥	11	70
Fixed 3 1 5 6 7 7 6 6 4 4 10 43 2 6 313 3 173 4 255 30 33 0 14 22 5 0 1 1 Fixed 3 0 89 0 0 77 0 62 6 40 4 5 2 274 4 3 3 13 23 1 3 1 2 1 1 2 2 1 1 3 2 2 1 1 3 2 2 1 1 3 2 2 1 1 3 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 2 2 1 3 3 2 3 3 3 3		Random	2	76		~		0	ن ر	7 6	31	~	•	43	٠Ō	'n	Š	15 1	19
Fixed 3 734 0 622 0 444 10 432 6 313 3 173 46 353 13 231 9 24 1 1 432 1 1 579 0 497 1 2 462 6 313 3 173 46 353 52 119 24 1 1 479 0 497 1 2 462 6 313 3 208 36 254 25 139 24 1 1 3 7 0 625 4 0 497 1 2 462 6 31 3 2 0 8 8 7 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			m .	28		7 0		~ ~	⊶ (9,	. w	4 (v.	300	n .		N :	.	7.
Fixed 2 1 3 734 0 622 0 444 10 432 6 313 3 173 46 953 32 119 24 Fixed 3 0 897 0 497 12 462 6 331 3 208 36 294 20 139 24 4 0 937 0 728 0 626 0 519 0 347 47 350 31 24 18 1 0 514 0 357 0 279 13 494 6 365 0 163 52 261 34 13 1 Random 2 1 591 1 447 0 331 6 549 5 35 329 35 35 35 27 24 18 4 2 503 2 479 2 354 6 610 2 497 2 355 359 35 259 35 271 24 1			3	•		0		,	,		o \$)	•	63	.	•	^	^	10
Fixed 3 1 5 2 1 5 7 0 497 12 462 6 531 3 208 5 254 22 139 24				- 0		2	J .	z 1	0	~	31	е (173		so.	7	1 19	7.7	53
Random 3 C 503 C 477 C 354 C 666 C 519 C 517 C 278 C 666 C 619 C 519 C 517 C 278 C 666 C 619 C 519 C 517 C 278 C 666 C 666 C 619 C 610 S 52 261 34 151 21 C 678 C		Fixed	2 5	nα		· r	3 (v 4	N 0			208		ი -	n -	ر ا د د د	. 77	20
Random 2 1 526 C 420 C 279 13 494 6 369 C 221 45 261 34 131 21 1 591 1 447 O 331 6 549 5 391 O 246 33 318 9 239 7 1 4 2 503 2 479 2 354 6 610 2 497 2 345 35 329 35 271 24 1 24 1	;		^ <	•		. r.	7	٠. «		• •		J C	7,7		4.5	• -	17.	0 ^	7 -
2 1 528 0 420 0 279 13 494 6 360 0 221 45 267 22 146 6 3 3 1 591 1 447 0 331 6 548 5 391 0 246 33 518 9 239 7 1 4 2 503 2 479 2 354 6 610 2 497 2 345 35 329 35 271 24 1	71		, -	· r		• • • • • •	~ ~	. 60		~	. 6	0	163		v	• 10	15.1		• m
3 1 591 1 447 0 331 6 548 5 391 0 246 33 518 9 239 7 1 1 4 2 503 2 479 2 354 6 610 2 497 2 345 35 329 35 271 24 1		10710	2	5		2	~	•		,	36	ာ	221		•	7	9	ာ	17
503 2 479 2 354 6 616 2 497 2 345 35 329 35 271 24 1		TO DIE	7	5		4	~	_		m	3.9	0	545		-	ъ. Э	662	7	2
			4	\$		^	•	1		s	6.4	7	345		~	•	2 7.1	24 1	3.5

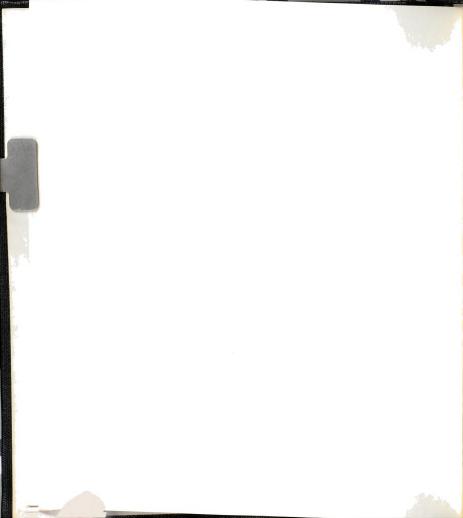


Table 14. The Empirical Frequencies, in 60·1000 Rejection Regions, of the Quasi-F for Repeated Measures, Based on Dichotomous data, Items Nested, Repeated Measure Effects Non-null, Interaction Null. 4000-nnm 20 8 8 9 7 E 4 8 9 12010411 25 32 23 23 24 26 20 ಬ 90 M C 7 7 M C 0 720007 9821786 6 1 3 1 C 0 1 N S 2 25 40 th 00 to 12399 www.000ww 8 2 00000440 00004694 25 S 25 12 8 4 30 30 16 13370 Level of Sub. Het. 43214321 Random Random Random Random Fixed Fixed Random Fixed Fixed Fixed Probability of a One · 000 of Sub.8 9 20 12

regions when the effect it is testing is non-null than when that effect is null and in the cases investigated the empirical power of the quasi-F test is consistently less than the nominal α level!

The data in Table 13 with respect to normal variates has an overall mean vector of 406.6, 300.2, 195.4 which is significantly less than the mean vector of the data with respect to normal variates in Table 9. The relative power of the quasi-F based on normal variates to the regular F was not analyzed, but it can be seen that it is somewhwere between .8 and .6 depending on conditions. The frequencies in Table 13 based on normal variates were analyzed in the same manner as in Table 9 and the same significant effects were found.

Relative power ratio variables were formed with respect to the data in Table 13 based on dichotomous frequencies and an overall mean vector was calculated. It was .10, .08, .06. Further analysis of the data in Table 13 or analysis of the data in Table 14 appeared superfluous and was not done.

Table 15 is a rearrangement of data which has been previously presented. The arrangement of data in Table 15 was established to allow easy contrast of data with respect to regular F and quasi-F tests based on normal and dichotomous variates under null and non-null repeated measures conditions.

Table 16 is laid out in the same manner as Table 15

Table 15. The Empirical Proquencies, in α :1000 Rejection Regions, of the P and Quasi-P for Repeated Measures, Based on Normal and Dichotomous Data, Items Crossed, Twelve Subjects.

	2	2		21,320,044	1.00 00 00 00 00 00 00 00 00 00 00 00 00	11 12 12 12 12 12 12 12 12 12 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	8 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		۵		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	177 177 177 177 177 177 177 177 177 177	14600011	778777
	_ ا	z		32.2.0.2.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	97 57 77 77 77 77 77 77 77 77 77 77 77 77	250 250 250 250 250 250 250 250 250 250	1119 1339 221 221 267 135 146 239 271
	25	Ω		22.55	4000000	85 94 75 102 117 115 92	2000000
		z		U 1 4 U 1 4 U U U U U U U U U U U U U U	2000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	353 254 319 330 261 261 318
	80	۵		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	101 101 68	158 1758 1759 1750 1750 1750 1750	2 W 2 T V V W V
		Z		8 7 11 7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40004HFM	344 407 6114 6114 615 615	173 208 274 367 163 221 246 345
	10	۵		138 138 100 100	27 28 28 11 19 26 40	174 133 191 191 186 157 185 176	mm N O O O O N
		×		222 222 242 242 242 242 242	10 10 7 24 25 20 21	507 556 656 656 712 712	313 3313 306 306 497
	25	Q		22442 2442 2444 2444 2444 2444 2444 24	044040 740404	255 255 255 255 255 255 308	00404860
		Z		2 4 0 4 0 4 6 0 4	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	609 771 854 558 558 664	44 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 4 4 4
	×	۵		400178704	90 74 79 79 67 87	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 M 4 0 0 E 4 3
		×		21 11 1 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~ w ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	699 746 936 719 766 941	4444 497 525 728 273 331 364
	9	۵		111 15 10 17 17	227	35 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0000000
		z		7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	20 20 20 10 10 10	820 878 929 969 835 878 970	622 679 777 878 387 420 447
3	25	a		258 259 259 338 338	500 500 731 731	6936 6936 6936 6936 6936 6936	04000048
	20	z		00000000000000000000000000000000000000	25 23 23 24 25 25 27 27 27	898 938 977 988 915 956	734 802 802 937 514 523
	٦	۵		4 2 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	102 83 94 90 90 78	615 623 661 751 611 583 666	##000 ##N
		-	Sub. Het.	43511	43514351	43214	43514351 43514351
a One			Items	Fixed Random	Fixed Randow	Fixed Random	Fixed
		Dichore	-	æ	- 1 sa 1 - B	£	Quast-
Probability of	× 1000	Normal or Dichotomous	Heasures	Central		Non-	

Table 16. The Empirical Frequencies, in << 1000 Rejection Regions, of the P and Quasi-P for Repeated Measures, Based on the Normal and Dichotomous Data, Items Nested, Twelve Subjects.

				T				
		z		2 1 2	200 300 400 400 400	200000000000000000000000000000000000000	1142 1252 227 227 227 240 574 676	99 91 153 197 110 06 111 152
	2	۵		3 7 1	0 4 0 4 3 W	######################################	7 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	14 0 L 1 3 L 4 A A A A A A A A A A A A A A A A A A
		z		36 25	0 4 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	200 100 100 100 100 100 100 100 100 100	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2006 305 1124 1124 1124
1.	25	۵		232	4 4 9 6 0	4 W W W W D Q 4	85 265 265 2014 2016 2016	2000 A 20
		z		53	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 40 40 110 110 110 110 110 110 110 110	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	259 200 200 200 200 200 200 200 200 200 20
	20	0		39	177 213 213 174	96 109 103 102 102	158 1258 147 176 311 272 272 204	000000000000000000000000000000000000000
		z		8 7 2	266 313 413 413	4442	00000000000000000000000000000000000000	250 273 341 466 136 137 144
	2	۵		1	101 2	28 22 22 22 33 31 31	174 3 1133 4 1133 4 1191 5 1296 6 1293 5 1317 6 1313 7	6 2 2 3 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		Z		l	233 410 426 456	7711 8 8 7 7 8 8 9 8 7 7 8 8 8 9 8 7 7 8 8 9 8 7 7 8 8 9 8 7 7 8 8 9 8 9	5507 5556 7756 7754 7720 871	360 413 513 591 173 1189 229
	25	Ω		l	1650	0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 2 3 3 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	W W W C C C C C C C C C C C C C C C C C
		z		2 6 5	7 4 4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	100 m m m m m m m m m m m m m m m m m m	6009 6009 771 771 7009 8018 8018	499 525 610 690 124 321
	20	Q		370 20	258 253 206 268	102 92 82 85 85 72 81	365 346 346 452 492 493 516	000000000 000000000000000000000000000
		z		£ 13 8	127 1127 1154 204	113 22 22 17 28 36	659 746 936 744 795 876	541 708 708 319 314 416
	10	_		l .	61000 61000 61000	33 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	33.00 33.00 33.00 444.3 444.3 50.00 54.1	0000
		z		27 39 27	33 207 217 245 304	111 77 66 52 66 53 66 55 66 55 66 55 66 55 66 55 66 55 66 55 66 66	90000000000000000000000000000000000000	639 745 745 828 914 445 524 524
3	25	Ω		28 25 23	24 163 126 148 128	67 48 49 69 77 89 128	494 633 633 550 550 661	04404008
		z		53 58 55	53 2.78 3.06 3.94 3.94	400 400 400 400 400 400 400	898 938 947 947 944 968 978 933	791 649 904 948 553 577 593
	\$	6		45 45 65	63 206 198 202 174	101 77 77 97 123 123 122 125 125	615 623 661 751 655 734 750	6 6 8 0 1 1 1
	٠	evel of	Sub. Het.	3	43214	435114311 435144351	¢3515	12842284
a One		i	Items S	Fixed	Random	Fixed Random	Fixed Random	F1xed Random
		Dichoto	ĹL.		ø2	Դրոս 1- B	a	Quast- B
Probability of	3 1000	Normal or Dichotomous Reposited	"easures		Central	 +	lion- Central	

and includes some new data, that with respect to normal variates under Design 3.

Tables 17 and 18 present frequencies in α = .05, .025, and .01 rejection regions for variance ratio tests of subject by repeated measure interaction effects, when the data were simulated under null repeated measure and null subject by repeated measure interaction effect conditions. The frequency data in Table 17 are with respect to Design 2 and the frequency data in Table 18 with respect to Design 3.

A multivariate analysis of variance indicated a significant difference between the data in Table 17 based on normal variates with overall mean vector 48.4, 24.9, 12.2 and the data in Table 17 based on dichotomous data with overall mean vector 73.3, 45.4, 25.5. Subsequent analysis of the data in Table 17 based on normal variates indicated a significant effect due to the number of subjects and a significant interaction of the number of subjects and the probability of a one, results that were unexpected. series of post hoc comparisons indicated that the unexpected results occurred only when the data were simulted for 8 subjects and the probability of a one for the dichotomous variates was .1. Since the probability of a one for the dichotomous variates cannot affect the data in Table 17 based on normal variates (this was checked very carefully) it must be concluded that the significant effects found in the frequencies based on normal variates are Type I errors and if the suspect simulations were rerun with a different


Table 17. The Empirical Frequencies, in \$\alpha\$-1000 Rejection Regions, of the P for the Subjects by Repeated Measures Interaction, Based on the Normal and Dichotomous Data, Items Crossed, Interaction and Repeated Measures Effects Both Null.

Probability of	∞ 1000	Dichotomous or Normal		<u>.</u>	6 F1	8 	10 F2 F3	12 F3	
a One		r Normal Level of	1264	Random 2 3 4 4	Fixed . 2 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 Fixed 2 3 4 4 1 1 Random 3	1 2 2 3 4 4 1 1 1 Random 3	Fixed 2 3 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	5	_	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	76.45	N Q Q Q W N Q Q M W D C 1 W C	0 0 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 4 4 6 6 9 6 9 6 9 9 9 9 9 9 9 9 9 9 9	446000	9 4 9
	20	z	4 4 6 6 4 4 6 6 4 4 9 4 9 4 9 4 9 4 9 4	5112	0 6 6 4 7 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	60000000000000000000000000000000000000	010200000000000000000000000000000000000	0 4 4 6 6 5 L	80 4
5.	22	Z.	2000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		222883212	7757	φ. o
		a		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10000000000000000000000000000000000000	11 12 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	99 113 33 113 113 113 114 115 4 110	8 111 8 110 0 0 1 1 1 1 1 1 2 0 0 1 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 1 2 0 0 0 0	ç.
	10	×	017	12 13 18 18	- w w w o o o v -	N I N O II O N E	010101	10 11 10 10 10 10 10 10 10 10 10 10 10 1	16
	٥	a	47 12 12 12	2 4 4 4 0 0	4 1 1 8 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1	# # # # # # # # # # # # # # # # # # #	10000 0000 0000 0000 0000 0000	911 011 010 010 010 010 010	62
	20	×	50 85 35	0 4 4 4 V	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 N M O M N B	4 4 W Q Q W W 4 Q Q W W H B W B W B	4 W W W W W W W W W W W W W W W W W W W	47
.2	25	۵	11-00	70757	W + W + W + W + W + W + W + W + W + W +	W4W444W W4W4WW	02480117	7 7 4 4 7 4 7 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	32
		z	2000	25 21 2	222222222222222222222222222222222222222	23 25 25 25 25 25 25 25 25 25 25 25 25 25	2010 2010 2010 2010 2010 2010 2010 2010	NE SE	
	10	z	171	ายพบา	22	23.25.25.25.25.25.25.25.25.25.25.25.25.25.	2219 119 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	11 12 12 12 12 12 12 12 12 12 12 12 12 1	ţ.
_		Q	0 4 1 0 0	66.00	70000000000000000000000000000000000000	1111 1221 1220 1220 1200 1200 1200 1200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	130 121 121 122 100 100 100	•
	20	z	0 to 0 to 0	W 1 4 W W	3000344 00	ᲠᲠᲒᲠᲫᲔᲠᲔ ᲝᲥ៧ᲥᲠᲠᲝᲠ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 W W W W W W W W W W W W W W W W W W W	4
.1	25	ρ	22.27	3 2 5 B B C	W > 1 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0	4 + 1 + 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	1 C D C C C C C C C C C C C C C C C C C	92 92 12,9 36 76	J J
		z	22.25	24 R 7 R 7 R 7 R 7 R 7 R 7 R 7 R 7 R 7 R	277 1 37 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100000000000000000000000000000000000000	236975	0 E 4.5 D C	6.13
	ន	Q		32 25	4444444 444444444444444444444444444444	900000 00000 00000	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	200400	82
	1	Z	4 4	7777	91093701	11410141	2 5 5 5 5 5 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1	101111111111111111111111111111111111111	-

Table (§. The Espirical Prequencies, in of-1000 Asjection Asjeons, of the P for the Subjects by Repeated Measures Interaction, have on the Normal and Utchoronous Date, Items Nested, interaction and Repeated Measure Effects Both Mull.

Company Comp	Company Comp	Company Comp	Company Comp	1 1 1 1 1 1 1 1 1 1	Company Comp
Treed Co. Co	Track	Track Trac	Track	Treed 20 20 20 20 20 20 20 2	Trace
	The state of the s	Tree Manager Control of Control o	The first state of the first sta	2001-000 1001-0000 1	Time to the second seco
Track to the control of the control	21-101-101-101-101-101-101-101-101-101-1	Manager Manage	21.00.1 100.110.1 10	The state of the s	11.00.1 10.01.00.1 10.
2004 10014001 10014001 1001600	Manual International Control of C	Truck design of the control of the c	Tree for the following state of the following	2004 2004 2004 2004 2004 2004 2004 2004	Tree of the control o
The desired and the desired an	2004 10041004 10041004 100910091004 10091004 10091004 10091004 10091004 10091004 10091004 100	Manage Ma	Manager Control of Con	The state of the s	Tr. Market
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	## ## ## ## ## ## ## ## ## ## ## ## ##	## ## ## ## ## ## ## ## ## ## ## ## ##	## ## ## ## ## ## ## ## ## ## ## ## ##	# # # # # # # # # # # # # # # # # # #	## ## ## ## ## ## ## ## ## ## ## ## ##
### ## ## ## ## ## ## ### ### ### ###	# # # # # # # # # # # # # # # # # # #	# # # # # # # # # # # # # # # # # # #	# # # # # # # # # # # # # # # # # # #	### ## ## ## ## ## ## ## ## ## ## ## ##	# # # # # # # # # # # # # # # # # # #
**************************************	### ### ### ### ### ##################	### ### ### ### ### #### #### ########	Maria	### ### ### ### ### ##################	227422 2620222 2620222 2720222 234422 262022 2620222 2720222 234422 262022 262022 272022 23442 262022 272022 23442 262022 27202 23442 26202 23442 26202 23442 23
	2011782 20037887 48894494 2011782 20037887 48894494		2011782 22027882 483914894 881 2101782 2202782 220278 231 2101782 220278 231	2011102F 02001020 02001201 0201	201102 2020202 2020202 2020202 2020202 2020202 2020202 2020202 2020202 2020202 2020202 2020202 2020202 2020202
011522 00007887 98001489 888587 38863373 5588678	### ### ### ##########################	11 11 11 11 11 11 11 11 11 11 11 11 11	211024 C001200 C001204 C01	### ### ### ### ######################	22722 1021022 222222 22222 23122 222222 222222 23222 23122 222222 22222 23222 23122 22222 23222 23222
## ## ## ## ## ## ####################	# # # # # # # # # # # # # # # # # # #	# # # # # # # # # # # # # # # # # # #		## ## ## ## ## ## ## ## ## ## ## ## ##	### ### ### ### ######################
### ### ## ## ### ####################	Manual Ma	Handan Truck Control of Control o	Manual Ma	### ### ### ### ### ##################	The state of the s
28. 28.037887 28.03489 28. 28.03783 28.0368 29. 20.1707 70.0707	200 200 200 200 200 200 200 200 200 200	M	# # # # # # # # # # # # # # # # # # #	28 28031880 88031831 8880 101 10111111 101111111 101111	22.22.2 2.22.22.2 2.22.22.2 2.22.2 2.22.2
m 1003-1003 1003-1603-1603-1603-1603-1603-1603-1603-	# # # # # # # # # # # # # # # # # # #	### ##################################	## ## ## ## ## ## ## ## ## ## ## ## ##	harman ha	The state of the s
Truck Market Mar	Manual Ma	Handon Mandon Ma	Tree of the control o	hard Man	22222 22222 22222 22222 22222 22222 2222
Transport of the control of the cont	Hand Hand Hand Hand Hand Hand Hand Hand	The state of the s	The state of the s	Time Management of the Control of th	Trade
The day of the control of the contro	Hand Mandam Mand	Hand A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tree and tre	Track Manage	The state of the s
Mandon 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Transfer of the control of the contr	Track Control of Contr	Manage Ma	Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The state of the s	T. C.	Manda	2001 1000100	and	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Randon 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tuesday	Mandam Ma	Track	Manual Ma	2022 2022 2022 2022 2022 2022 2022 202
Mandon 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Autoform 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Handa	Mandan T. Transf. Mandan T. Tr	Man	M. M
Fixed 1 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Tited 2 62 63 10 10 10 10 10 10 10 10 10 10 10 10 10	Fixed 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Flace Control	Franchisco Company	1 10 10 10 10 10 10 10 10 10 10 10 10 10
Fixed 2 60 05 7 60 05 80 00 05 80 00 00 00 00 00 00 00 00 00 00 00 00	Track 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fixed 2 0 02 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mandon 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mandon 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mandon 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Fixed 2 67 50 46 46 46 46 46 46 46 46 46 46 46 46 46	Fixed 2 66 750 224 3 68 46 36 4 6 9 46 36 1 6 9 46 36 1 6 9 9 46 36 4 9 9 54 62	Fixed 2 00 00 00 00 00 00 00 00 00 00 00 00 0	Fixed 2 007 000 000 000 000 000 000 000 000 0		Fixed 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
7 69 60 10 10 10 10 10 10 10 10 10 10 10 10 10	Mandom 1 67 46 96 16 36 18 18 18 18 18 18 18 18 18 18 18 18 18	Randon 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Random 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Randon 2 1 6 9 9 4 0 1	Randon 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Random 2 76 56 56 56 67 46	Random 2 76 56 51 34 51 34 51 34 51 34 51 51 51 51 51 51 51 51 51 51 51 51 51	Random 2 163 54 34 34 34 35 35 31 31 32 32 32 32 32 32 32 32 32 32 32 32 32	Random 2 2 55 56 67 67 67 67 67 67 67 67 67 67 67 67 67	Random 3 7 6 9 6 6 9 6 6 9 6 6 9 6 6 9 6 6 9 9 6 6 9 9 9 6 6 9	Random 2 2 75 55 75 75 75 75 75 75 75 75 75 75 75
3 67 46	2 3 57 4 99 54 62 62	2 76 56 51 3 99 54 66 36 4 99 54 65 36	3 2 2 4 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Random 2 75 65 67 66 75 67 66 75 67 67 67 67 67 67 67 67 67 67 67 67 67	Random 2 76 56 4 99 54 4 99 54 1 55 53 Fixed 2 44 59 1 70 52 1 62 70 1
3 67 46	4 67 46 36	33 957 46 36	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 67 46 4 99 54 1 50 53 1 60 54 1 72	7 1 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	79 56	1 50 53 51	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Fixed 2 84 72	Pixed 1 69 99 54 99 54 99 54 99 54 99 54 99 94 95 95 95 95 95 95 95 95 95 95 95 95 95
	Fixed 2 84 72 94 7	3 3 84 /2 4 779 52 1 62 79 8 mardon 2 44 52	Bandon 2 44 52	2 44 52	

starting point for the number generator the significant differences would vanish.

The multivariate analysis of the data in Table 17 based on dichotomous variates indicated significant effects due to: (1) the probability of a one, (2) the number of subjects, (3) items fixed vs. random, (4) the level of subject heterogeneity, the interaction of (1) and (2) and the interaction of (1) and (3). The marginal means for $\alpha = .05$ regions for the probabilities of a one equal to .5, .2 and .1 were 57.7, 72.0, and 90.3 respectively; for numbers of subjects 4, 6, 8, 10, and 12 they were 55.8, 68.3, 73.9, 86.3, and 82.3 respectively; for items fixed 79.4, for items random 67.2, and for levels of subject heterogeneity 1, 2, 3, and 4 they were 61.5, 70.3, 77.4, and 84.1 respectively. The two interactions are displayed graphically in Figures 6 and 7.

Inspection of Figure 6 indicates that a favorable comparison of empirical probability of a Type I error to nominal α occurred only for 6 subjects and a probability of a one equal to .5, and for 4 subjects and a probability of a one equal to .2 or .1. For all other conditions the test is too liberal. Figure 7 is self explanatory.

A multivariate analysis of the data in Table 18 indicated the same trends and significant effects that were found in Table 17, therefore only the overall mean vectors for the data based on normal and dichotomous variates in Table 18 will be reported in order to avoid tedious

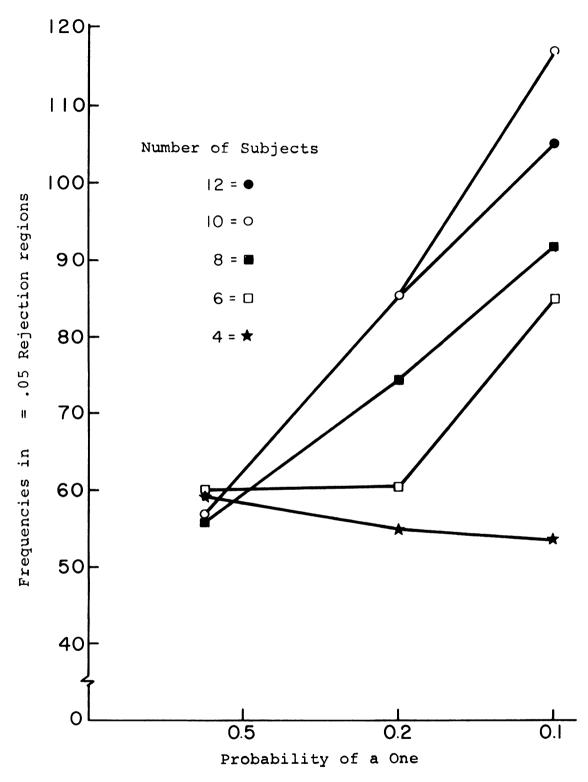


Figure 6. The interaction of the probability of a one and the number of subjects, with respect to the data in Table 17.

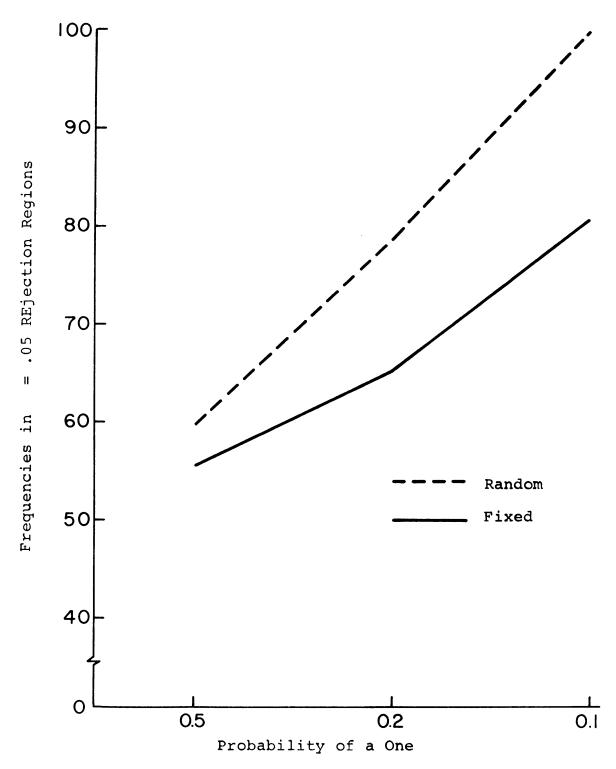


Figure 7. The interaction of the probability of a one and items fixed vs. random, with respect to the data in Table 17.

repetition. For the data based on normal variates the overall mean vector was 51.1, 26.3, 11.7 and for the data based on the dichotomous variates the overall mean vector was 78.3, 49.8, 28.2.

Tables 19 and 20 contain frequencies in α = .05, .025, and .01 rejection regions of variance ratio tests for subject by repeated measure interaction effects, when the data were simulated under the non-null interaction effect conditions indicated in Chapter IV.

Relative power variables were formed for both Table 19 and Table 20 and separate multivariate analyses of variance were performed on the relative power variables for both tables. In both analyses significant effects were found due to: (1) the probability of a one, (2) the number of subjects, the interaction of (1) and (2), the interaction of (1) and items fixed vs. random, and the interaction of (1) and the level of subject heterogeneity. In addition the analysis of the relative power variables from Table 19 disclosed a significant main effect due to items fixed vs. random.

For Table 19 the marginal mean relative powers for α = .05 regions for the probabilities of a one equal to .5, .2, and .1 were .57, .70, and .81 respectively and for numbers of subjects 4, 6, 8, 10, and 12 they were .67, .69, .64, .79, and .69 respectively. The three interactions are represented graphically in Figures 8, 9, and 10.

For Table 20 the marginal mean relative powers for

Table 19. The Empirical Frequencies, in ex-1000 Rejection Regions, of the F for the Subjects by Repeated Messures Interaction, Based on the Normal and Dichotomous Data, Items Crossed, Interaction Effects Non-null, Repeated Measures Null.

Probability of	c. 1000	36	Sino Gino	4				•	•					80						 21							;			_
● One		or Normal	Fixed			Kandom		Fixed		Random			Fixed			Rendom			Fixed			Rendom			N. V.				Mendon Mendon	
			2 2 3	14	7	e «		3 6	7 -	. 7	m 4	_	- 70	7 4	٦,	. m .	4		. "	7	1 0		7	7	2	e .	4 -	, ~		7
	×	Α	156	- Ф	\sim \sim	2	147	171	229	153	150 136	ì	182	199 228	169	228	217	181	222	267	997	215	226	213	563	250	210	221	253	
		z	230	0	0 m	0 0	2	279 347	0 6	O (319 395	,	359	4 00 0 0 0 0 0 0	283	415	453	337	437	534	364	421	513	403	463	064	541	6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	516	
3.	25	۵	91								83 112		u o		0 4	150		112	· an	α.	«	۰.	•	ς.	w	~	٠,	671		
		z	137	198	110	191	151	182 226	294	159	223 272		250	276 354	190	306	334	229	319	607	201	311	388					6:3		
	2	Q	5.8								50 1					104		96										70 62		
		z	2.23	2 = 2	2 % 3. %	53	92	9 6	52	. 3	123		9 9	1 6	117	172	0	135	. 6	187	67.	- 6	4	*	36	43	5.2	181	24	-
	S	Q	107	116	2 G	12.5	111	109	156	7.2	115		141	140	129	103	134	120	179	181	112	172	150	155	155	150	212	7 T	120	
		z	107	212	136	159	155	171	190	191	153		204	310	188	230	291	156	216	162	159	202	272	221	737	281	32.7	200	292	
.2	25	Δ	199	9 60	4 4 5 5	3					0 8					6.1		87	124	131	7 ?	2 0	115	58	117	118	134	2,	103	
		z	99	106	9 o	105	68	112	129	114	109		1 4 A	132 194	112	132	159	127	146	196	117	102 128	164	071	154	196	212	112	194	
	10	Δ	53 8	25	19	52	3.¢ 25	ე 1 ე ტ	89	23	3 E	: ;	36 53	52	٦ <u>۲</u>	33		30 -										35		
		z	43	2 3 2 3	36		, a	85	43	; 9	65	;	. o	5 5 8 6	29	2 6	7	77	0 0	6.3	0,4	0 2	39	83	06	51	56	200	13	
	20	۵	63	75	0,7	2 4 9	\$ 5 \$	100	137) (0	127	. ;	106	131	95	114	101	104	155	103	108	162	153	102	7.4	172	153	101	143	, ,
		z	114	25 117	112	123	124	113 128	139	23	125		119	126 184	601	111	167	112	121	132	107	9 7	118	122	129	141	209	101	137	
Η.	25	۵	# 4 4 6	25	27	36	4 v	57	62	αn αn	45	,	9 9 9	101	201	200	78	7.5	132	145	6 2) u	114	60	2	171	611	25	, ,	
		z	59	278	73	0 20 0 0	2 69	65 78	104	0 0 0	99		65 76	ير (6 ناخ بر،	10	t %	4	29	0 7	76	٠ ۲	~ ~	33	65	82	110	120	. 3	\ <u></u>	١
	01	۵	2,3	27	71	3,5	1 44	4.6	در د	7 0	35		16 34	\$ 0 \$	67	C 7	36	53	n 10	111	5 ·	5 0	9	74	1 2	67	٥ ا (37) 1) 1	,
		z	27		63	2.0	1 t	4 7 t t	52	√ 7 7	9.0	,	7 7 7	25	6	n n	96	85	1 1	;	3.5	7 6	1 1 20	9	7	0 0	9	;	? ~	•

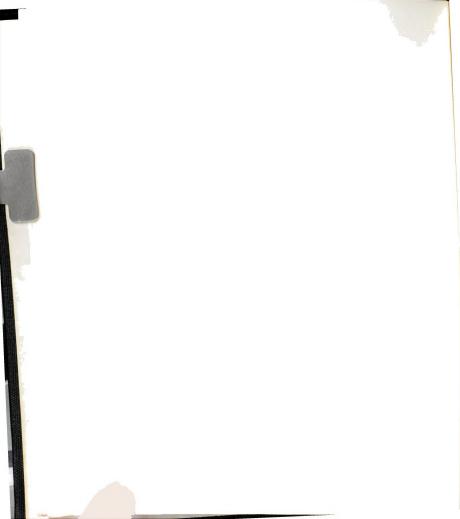


Table 20. The Empirical Frequencies, in << 1000 Rejection Regions, of the 7 for the Subjects by Repeated Measures Interaction, Based on the Normal and Dichotomous Data, Items Nested, Interaction Effects Non-null, Repeated Measures Null.

258 93 169 46 89 111 125 72 284 116 203 149 65 186 133 154 86 134 155 86 134 155 86 134 155 86 134 155 86 134 155 86 134 155 86 135 154 86 135 154 86 135 154 86 135 154 86 135 154 86 135 154 86 135 155 86 135 155 86 135 155 86 135 155 86 135 155 86 135 155 155 155 155 155 155 155 155 155	164 258 93 169 46 89 111 125 72 70 44 115 125	Probability of a One	of a One		\$0		25		101		8		2 2		s		%	1 1		1.	.1	.1
Fixed Sub Her 164 258 93 169 46 89 111 125 72 150 15	Fixed 2	Dichotomous No. of	or Norma	Level o	1	z	1	z				2		z		z		a		2	2	2 2 2
Fixed 2 156 259 163 169 65 86 133 156 86 133 156 86 133 156 86 133 156 86 133 156 86 133 156 86 133 156 86 133 156 86 133 156 87 156 157 168 163 46 162 247 168 27 168 173 167 168 27 168 173 110 272 90 163 163 162 163 168 173 171 173 171 173 171 173 173 173 173 173 173 173 173 174 175 173 174 175 174 175 170 173 174 175 176 176 177 176 176 177 176 176 177 176 177 178 176 1	Fixed 2 166 239 103 103 164 109 65 86 186 133 154 86 100 Random 2 166 239 103 103 17 124 100 103 113 164 163 100 113 Random 2 197 349 153 56 123 114 115 100 113 Fixed 2 167 26 113 12 116 123 11 11 11 11 11 11 11 11 11 11 11 11 11	Subs	Items	쀨	t	1	63	10	- 1	89	E			2	4.4	23		75	12	5 86	5 86 03	5 86 63 58 2
Fixed 1 197 249 131 231 27 124 134	Random 1 <th></th> <th>Fixed</th> <th>7</th> <td></td> <td></td> <td>103</td> <td>* (</td> <td></td> <td>9,6</td> <td>133</td> <td></td> <td></td> <td>0</td> <td>53</td> <td>90</td> <td></td> <td>99</td> <td>86 122</td> <td>9</td> <td>771 9</td> <td>6 122 66</td>		Fixed	7			103	* (9,6	133			0	53	90		99	86 122	9	771 9	6 122 66
Random 1 1 2 257 45 153 46 82 152 257 45 153 46 82 152 257 45 153 46 152 153 <	Fixed 1 132 237 99 163 66 82 93 115 152 65 102	4		n <			917	7 .		**	2 .					25		0 1	0	76 0	97 78	4 99 BL 76 0
Random 2 154 265 68 150 50 109 115 150 60 Fixed 2 173 314 109 25 74 154 150 101 Fixed 2 187 367 120 26 243 151 101 110 Fixed 2 200 394 134 268 79 154 163 167 169 171 110 Fixed 2 200 394 134 268 79 154 167 169 171 110 Fixed 2 200 394 134 268 169 176 169 177 169 178 169 177 169 177 169 178 169 178 169 178 169 178 169 178 169 178 178 178 178 178 178 178 178 178 178	Random 2 154 265 RB 150 109 115 150 <th></th> <th></th> <th></th> <td></td> <td></td> <td>4 6</td> <td>າເ</td> <td></td> <td>82</td> <td>* 6</td> <td></td> <td></td> <td>n 0</td> <td>70 6</td> <td>5 6</td> <td>•</td> <td>n a</td> <td>n a</td> <td>171</td> <td>5 121 51</td> <td>5 121 51 G1 2</td>						4 6	າເ		82	* 6			n 0	70 6	5 6	•	n a	n a	171	5 121 51	5 121 51 G1 2
Fixed 2 173 314 1C9 230 62 143 154 163 101 119 119 119 119 119 119 119 119 119	Fixed 2 1173 314 1159 230 62 143 1154 163 101 1130 1149 250 294 134 268 79 153 154 1139 171 119 130 115 130 11		Random	2 2			88	າ		. 6	115) (i	4 4	7 7	. , .,	0 4	0 4	700	5 120 23	5 42 55 54 L
Fixed 1 1 149 272 90 167 38 94 128 169 97 119 119 119 119 119 120 120 131 121 218 63 126 124 183 75 260 394 134 268 79 153 187 106 260 394 134 268 79 153 187 106 260 394 134 268 79 153 187 106 260 394 134 269 170 215 170 215 187 126 154 177 126 154 177 252 102 194 45 170 126 154 177 127 126 154 177 127 127 127 127 127 127 127 127 127	Fixed 1 1 149 272 90 167 38 94 128 169 90 105 105 106 3 2 200 394 134 268 79 153 153 153 117 119 130 105 105 105 105 105 105 105 105 105 10			· m			109	•		£3	154			13	2 1	62	1 2	٠.	`~	116	1 116 69	1 116 66 76 1
Fixed 2 180 313 121 218 63 126 124 183 75 126 164 183 75 126 125 134 135 153 126 124 183 75 126 124 183 75 126 124 183 75 126 125 137 1324 177 234 177 234 177 234 177 126 154 177 126 177 127 127 127 127 127 127 127 127 127	Fixed 2 190 313 121 218 63 126 184 183 75 122 200 313 122 218 126 183 75 122 200 313 122 218 126 123 153 110 123 110 1			4			126	3		24	139			30	5	73	00	1		107	7 101 7	4 107 70 65 3
Fixed 2 189 313 121 218 63 126 124 183 75 250 394 134 269 153 185 153 187 106 124 45 107 204 45 107 204 159 221 117 206 226 102 194 45 107 126 154 177 115 115 115 115 115 115 115 115 115	Fixed 2 180 313 121 218 63 126 124 183 75 122 200 313 125 187 105 123 187 105 125 125 125 125 125 125 125 125 125 12			1			96	167		76	128				36	53	7	•		109	109 43	109 64 65 1
Random	Random 3 200 394 134 268 79 153 163 187 106 123 Random 2 200 394 134 268 79 153 165 117 156 Random 2 105 206 102 194 45 107 126 126 124 177 115 117 156 Fixed 2 106 362 110 215 57 126 144 179 115 123 144 11 1 Fixed 2 106 382 122 271 66 154 176 210 132 144 11 1 Random 2 106 382 122 271 66 154 124 232 74 125 144 11 1 Random 2 26 31 116 218 271 66 154 118 218 167 112 118 167 118 118 167 118 118 167 118 118 118 118 118 118 118 118 118 11		Fixed	7			121	218	-	56	154				55	77	2	_			118	118 63 38
Random 1 156 295 171 324 107 204 169 221 117	Random 2 260 432 171 324 107 204 169 221 117 156 Random 2 175 362 102 194 45 107 126 146 177 115 Fixed 2 176 362 166 252 61 169 175 210 132 146 177 115 Fixed 2 16 362 166 352 66 154 179 171 180 176 209 177 179 171 180 177 149 172 160 177 141 180 176 177 149 178 141 180 176 179 171 111 170 171 170 171 170 171 170 171 170 171 171 171 171 171 171 171 171 171 171 171 171 171	_		<u> </u>			134	268	-	53	153				70	7.7	0.7	~		127	127 61	127 61 73 5
Random 1 152 295 102 194 45 107 126 154 77 178 209 1105 1105 1105 1105 1105 1105 1105 11	Random 1 10.2 295 102 194 45 107 126 154 17 110 Fixed 2 176 362 102 294 78 107 115	•		4			171	324	~	70	169				4	47	707			146	146 76	146 76 93 4
Random 2 173 292 110 215 57 126 144 179 115 Fixed 3 194 425 120 216 116 175 210 175 210 175 210 175 210 175 210 175 210 175 210 175 210 175 210 175 210 175 210 175 210 175 210 175 210 175 210 175 210 175 210 175 210 175 210 176 176 176 176 176 177 176 176 177 178 176 177 176 177 178	Random 2 1/3 292 110 215 57 126 144 179 115 123 Fixed 3 194 425 110 215 63 109 115 181 620 132 141 Fixed 2 196 307 114 231 63 109 115 181 620 122 145 Fixed 3 256 31 114 231 63 109 115 181 620 122 141 Random 2 256 31 170 431 162 27 66 154 138 250 96 134 Random 2 256 314 170 431 163 297 175 326 111 218 Random 3 250 37 144 22 28 65 146 115 237 86 132 Bixed 3 250 533 163 398 109 282 115 237 86 137 Bixed 3 250 533 163 398 109 282 137 272 86 137 Bixed 3 251 57 109 261 60 144 123 163 87 109 Fixed 3 252 470 190 446 129 330 179 320 138 227 Bandom 3 247 428 152 245 77 148 179 320 138 227 Bixed 3 3 4 4 4 Bixed 3 4 4 4 4 4 4 Bixed 3 4 4 4 4 4 4 10 10 11 Bixed 3 4			-			701	761	-	27	126				† †	26	g	_		133	133 57	133 57 60 3
Fixed 1	Fixed 2 176 362 106 252 61 169 176 209 122 145 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Random	7			011	215	٦.	92	144				79	63	6			108	108 58	108 58 59 B
Fixed 1 1 175 307 114 201 63 109 115 181 69 154 232 74 25 129 304 78 190 15 210 132 74 134 250 96 154 134 250 96 154 134 250 96 154 134 250 96 154 134 250 96 154 134 250 96 154 134 250 96 154 134 250 96 154 134 250 96 154 134 250 96 154 135 325 111 200 377 149 282 65 146 115 325 111 200 377 149 282 65 146 115 251 100 20 20 115 181 251 100 20 20 20 20 20 20 20 20 20 20 20 20 2	Fixed 2 194 425 129 304 78 190 175 210 132 141 1 1 175 307 114 201 65 154 124 232 74 125 210 132 141 1 1 196 382 122 271 66 154 124 232 74 125 216 419 148 317 86 194 138 250 96 134 250 95 134 12 204 343 126 232 49 130 127 214 77 121 218 218 219 219 219 219 219 219 219 219 219 219			6			106	252	~	69	176				85	84	109			122	122 71	122 71 77 4
Fixed 2 196 382 122 271 66 154 124 232 74 115 181 69 126 419 148 317 86 154 138 250 96 126 419 148 317 86 154 138 250 96 126 206 343 126 232 49 130 127 326 111 120 208 377 149 282 65 146 115 237 86 115 237 86 125 250 533 163 398 109 282 137 272 86 139 250 533 163 398 109 282 137 272 86 139 272 150 250 533 163 398 109 282 137 272 86 139 272 125 372 126 139 272 126 139 272 126 139 142 240 142 123 163 87 272 86 139 142 240 142 142 240 142 142 142 142 142 142 142 142 142 142	Fixed 2 196 382 122 271 66 154 124 232 74 125 216 5194 138 250 96 134 250 514 110 42 31 165 194 138 250 96 134 250 514 110 42 110 218 250 96 134 250 96 134 250 96 134 250 96 134 250 96 134 250 96 377 149 282 49 130 115 237 86 132 219 443 126 232 49 130 115 237 86 132 219 443 144 332 90 216 132 251 100 130 251 251 251 100 130 251 251 251 251 251 251 251 251 251 251			4			129	304	-	06	175			_	71	83	95		134		7.9	b4 79 u
## Fixed 2 1 196 382 122 271 66 154 124 232 74 232 27	Fixed 2 196 382 122 271 66 154 125 227 74 125			ŗ		70		201		0	315			4		-	70		č		4	
Random 3 216 419 148 317 86 194 138 250 96 250 96 138 138 250 96 1	Random 3 216 419 148 317 86 194 138 259 96 134 256 514 170 401 103 297 175 326 111 218 259 96 134 256 514 170 401 103 297 175 326 111 218 218 413 144 332 89 216 135 251 100 130 219 413 164 33 164 392 80 216 135 251 100 130 225 470 154 251 251 100 225 470 154 251 251 100 225 470 154 251 251 100 225 470 154 251 251 100 225 247 251 251 251 100 225 247 251 251 251 251 100 225 247 251 251 251 251 251 251 251 251 251 251			• •		82		271		54	124						9 -		133		, (
Random 256 514 170 401 103 297 175 326 111 Random 2 204 343 126 232 49 130 127 214 77 Fixed 3 219 443 144 332 90 216 135 251 77 Fixed 3 250 533 163 396 108 282 137 272 46 Pixed 3 225 109 261 60 144 123 163 87 Random 3 232 470 164 37 95 234 172 266 139 A 271 54 123 245 137 354 139 366 137 37 354 139 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37	Random 2 256 514 170 401 103 297 175 326 111 218 Random 2 204 343 126 232 49 130 127 211 218 171 121 Pixed 2 20 333 163 398 109 266 137 272 46 132 251 100 130 Pixed 3 250 533 163 361 109 261 137 272 46 137 272 46 137 272 46 137 272 46 137 272 46 137 272 46 137 272 46 137 272 46 137 272 46 137 272 46 137 272 46 137 272 146 177 272 146 177 272 146 177 272 146 177 274<		TYVER	. ~		19		317		76	138			34		200	1,5			145	145	100 000
Random 2 204 343 126 232 49 130 127 214 77 214 77 214 77 214 377 149 282 65 146 115 237 86 208 377 149 287 65 146 115 237 86 215 215 362 109 261 60 144 123 251 100 22 215 399 142 301 80 182 246 97 23 23 470 164 337 95 234 172 266 139 1 197 354 100 129 275 70 172 163 31 172 266 139 177 87 189 149 177 87 130 130 130 130 130 130 130 130 130 130 130 130	Random 2 204 343 126 232 49 130 127 214 77 121 Pixed 3 250 533 164 382 65 146 115 237 86 132 Pixed 3 250 533 164 382 65 146 115 237 86 132 2 255 533 163 261 60 144 123 169 174 174 86 174 174 166 174 174 266 139 165 174 174 166 174 174 166 174 174 166 174 174 166 174 174 166 174 174 166 174 175 266 139 166 174 175 266 139 166 176 176 176 176 177 166 177 177 167 177 1	80		٠ ٧		14		401		4	175			8			77			1	041	
Random 2 208 377 149 282 65 146 115 237 86 250 533 163 396 109 282 137 251 100 Pixed 3 225 339 163 396 103 282 137 272 86 3 235 379 162 374 181 148 246 139 4 271 579 190 446 129 334 179 330 179 320 139 Random 3 163 450 167 179 330 179 320 139 181 189 187 350 139 Pixed 3 356 247 437 152 324 94 187 187 187 187 187 187 187 187 187 187 187 187 187 187 188 148 148<	Random 2 208 377 149 282 65 146 115 237 86 132 Pixed 3 219 443 164 332 90 216 132 251 100 130 Pixed 3 220 470 164 36 26 164 173 265 130 130 Pixed 3 22 470 164 37 95 234 172 266 139 165 Random 2 271 570 190 446 129 364 177 87 111 1 197 354 123 245 17 149 149 149 165 8 4 271 270 170 356 107 234 149 175 350 138 8 163 450 170 356 107 234 149 157 209 <th></th> <th></th> <th>, _</th> <td></td> <td>43</td> <td></td> <td>232</td> <td></td> <td>0</td> <td>127</td> <td></td> <td></td> <td>2.7</td> <td></td> <td>. 59</td> <td></td> <td></td> <td>0 0</td> <td>•</td> <td>) (1 1</td> <td>100</td>			, _		43		232		0	127			2.7		. 59			0 0	•) (1 1	100
Time	Pixed 3 219 443 164 332 39 216 132 251 130 130		Bendan	. ~		77		282		94	115			32			9 9		11,6		, ,	77
1 186 362 109 261 60 144 123 163 87	Pixed 2 2 533 163 398 109 282 137 272 86 174 Pixed 3 215 399 142 361 80 181 148 246 97 146 232 470 164 337 95 234 172 266 139 165 1 27 354 164 129 370 371 180 179 370 180 1		National Property	. ~		ć,		332		91	132			30		. 59	9.0		120			91 62
Pixed 2 215 392 142 301 60 144 123 163 87 1 215 399 142 301 80 181 148 246 97 2 27 570 164 337 95 234 172 266 139 1 4 271 570 190 446 129 330 179 350 138 1 2 1 1 1 1	Pixed 2 215 399 142 301 60 144 123 163 87 109 2 215 399 142 301 80 181 148 246 97 146 4 271 270 164 337 95 234 172 266 139 165 1 1 271 160 460 129 330 179 320 139 165 1 1 270 410 160 466 172 266 139 165 1 1 270 420 120 470 172 140 179 170 111 120 170 141 179 170 180 170			4		33		398 1		82	137			74		105	130		178	178 89		70
Pixed 2 165 36.2 109 26.1 60 144 123 164 97 26 137 26 137 26 137 26 139 177 87 Random 3 163 450 170 356 107 214 143 253 90 127 187	Pixed 2 186 362 109 261 60 144 123 163 87 109 Pixed 3 235 470 164 37 95 234 172 266 139 165 Random 2 271 579 190 446 129 330 172 266 139 165 Random 3 163 450 170 356 177 21 172 266 139 165 Pixed 3 163 450 170 356 107 234 143 253 90 176 Pixed 3 569 247 437 152 323 167 209 177 209 Pixed 2 269 247 437 152 324 94 153 34 167 209 177 209 Pixed 2 286 499 194 376 <th></th> <th></th> <th>_</th> <td></td> <td></td> <td>•</td> <td>;</td> <td></td>			_			•	;														
Fixed 3 2.12 3.97 14.2 30.1 80.181 14.8 24.6 97 1 2.32 4.0 16.9 34.6 12.9 33.0 179 32.0 132 24.6 139 179 32.0 139 149 179 330 149 139 149	Pixed 3 247 146 341 148 246 197 146 1 271 579 190 446 129 334 172 266 139 165 Random 3 271 579 190 446 129 330 179 320 138 227 Random 3 163 450 170 375 179 320 138 227 Pixed 3 163 450 170 375 107 234 143 253 90 176 Pixed 3 569 247 437 152 323 167 297 127 209 Pixed 3 569 247 437 152 323 167 297 127 209 Pixed 3 569 247 437 152 324 143 234 94 153 Pixed 3 569 247 437 152 324 143 234 107 209 2 286 499 194 456 194 456 146 176 204 204 204 194			• •	90.0	205	60.	197		3 :	123	163		60		<u>-</u>	112		65		90	06 61
Random 2 275 470 1504 337 935 234 172 266 139 27 57 100 466 129 330 179 320 139 170 1504 354 129 330 170 320 139 170 120 130 140 129 275 70 172 132 216 88 163 245 170 172 134 149 177 87 163 269 247 437 152 323 167 297 127 127 127 127 127 127 127 127 127 12	Random 2 2.5 47.0 154. 157. 159. <		Fixed	. ~	642	, r	7+1	7 C			9 1	977		9		98	121		100		102	102 71
Random 1 271 274 120 446 129 346 179 350 138 Random 3 163 450 170 356 107 234 149 177 87 163 450 170 356 107 234 143 253 90 1 247 428 152 303 81 198 163 234 94 1 286 490 194 376 194 167 119 246 119 2 256 540 194 416 113 265 176 329 148 1 193 459 116 117 126 229 126 1 259 459 156 379 445 132 289 418 1 259 459 156 379 94 239 132 289 81 2 256 565 176 412 106 298 175 314 122	Random 2 2 219 410 129 219 410 163 450 163 450 163 450 163 450 163 450 163 450 163 247 163 247 17 247 247 428 18 198 198 490 <th>•</th> <th></th> <th>٠ ٧</th> <td>767</td> <td>) C</td> <td>101</td> <td>700</td> <td></td> <td>*</td> <td>7/1</td> <td>997</td> <td></td> <td>0</td> <td></td> <td>26</td> <td>178</td> <td></td> <td>113</td> <td></td> <td>129</td> <td>159 67</td>	•		٠ ٧	767) C	101	700		*	7/1	997		0		26	178		113		129	159 67
Random 2 197 354 123 245 71 148 149 177 87 Random 3 163 460 170 356 107 215 132 216 84 1 247 428 152 323 167 297 127 1 247 428 152 303 81 198 163 234 94 Pixed 2 26 540 194 376 117 265 169 246 119 2 2 5 5 191 410 117 265 169 246 119 3 3 5 5 191 410 117 265 169 246 119 4 3 3 5 5 191 410 120 294 126 8 4 9 191 410 101 101 102 103 103 8 4 9 193 459 156 376 175 314 122 8 4 9 106 5 176 298 175 314 122 <	Random 2 197 354 123 245 71 148 149 177 87 111 163 450 170 356 107 234 143 253 90 176 163 450 170 356 107 234 143 253 90 176 Pixed 2 247 428 152 303 81 198 167 297 127 209 Pixed 2 286 499 194 376 117 265 169 246 119 175 2 26 540 194 376 117 265 169 246 119 175 3 25 540 194 450 194 460 194 195 169 246 119 175 4 199 453 116 328 74 213 123 299 141 194 8 45 195 330 94 238 133 289 81 194 8 56 176 412 106 298 175 314 122 226 4 <t< th=""><th>2</th><th></th><th>, -</th><td>1/7</td><td>7 .</td><td>2 .</td><td>21.</td><td></td><td>0</td><td>6/1</td><td>320</td><td></td><td>121</td><td></td><td>31</td><td>173</td><td></td><td>149</td><td></td><td>138</td><td>138 83</td></t<>	2		, -	1/7	7 .	2 .	21.		0	6/1	320		121		31	173		149		138	138 83
Random 2 219 410 129 275 70 172 132 216 80 4 330 450 170 354 107 234 143 253 90 330 267 247 437 152 323 167 294 127 Pixed 2 286 499 194 410 117 265 169 246 119 2 266 540 191 410 113 263 170 294 126 4 395 271 557 185 419 204 329 144 199 459 186 459 176 421 122 329 144 199 459 186 419 122 329 144 1 259 459 156 339 94 233 132 259 175 250 565 176	Random 2 219 4.10 129 275 70 172 132 216 88 129 4 390 450 170 356 107 234 143 253 90 176 8 390 247 437 152 323 167 294 176 209 8 1 247 428 152 303 81 198 163 234 94 153 8 4 94 194 376 117 265 169 246 117 265 169 246 117 265 170 294 153 245 127 207 37 137 246 1175 245 140			٠, ٠	161	354	123	545		4.8	149	111		=		31	у Э		8		, , ,	50 67
## 163 450 170 356 107 234 143 253 90 ### 152 323 167 297 127 ### 2 247 428 152 303 81 198 163 234 94 ### 2 286 499 194 376 117 265 169 246 119 ### 2 256 540 191 41C 113 263 170 298 126 ### 3 345 695 271 587 185 419 204 329 149 ### 198 453 116 328 74 238 133 289 81 ### 2 259 459 155 337 94 238 133 289 81 ### 2 250 565 176 412 106 298 175 314 122	163 450 170 356 107 234 143 253 90 176		Random	7 (519	4 1 0	129	275		72	132	216		53		. 89	119		109		43	60 40
4 337 569 247 437 152 323 167 297 127 247 428 152 303 81 198 163 234 94 286 499 194 376 117 265 169 246 119 256 540 191 410 113 263 170 293 126 345 695 271 597 185 419 204 329 149 198 453 116 328 74 213 123 229 179 Random	Fixed 2 247 428 152 303 81 198 163 234 94 153 256 540 191 410 117 265 169 246 119 175 209 256 540 191 410 113 265 169 246 119 175 207 256 540 191 557 185 419 204 329 142 207 256 540 191 557 185 419 204 329 142 245 198 453 116 328 74 213 123 209 77 137 259 459 155 330 94 238 133 289 81 194 22 256 555 176 412 106 298 175 314 122 226 258 256 258 255 256 258 258 258 258 258 258 258 258 258 258			-	163	657	170	356		34	143	253		76		26	121		100		£.	43 64
Fixed 2 288 499 194 376 117 265 169 246 119 247 428 152 303 81 198 163 234 94 25 846 119 256 540 191 410 113 263 170 293 126 345 695 271 557 185 419 204 329 148 119 453 116 358 74 213 123 259 148 259 459 155 337 94 213 123 289 81 259 565 176 412 106 298 175 314 122	Pixed 2 7 428 152 303 81 198 163 234 94 153 Pixed 2 256 540 194 376 117 265 169 246 119 175 4 256 540 191 410 13 263 170 294 126 207 1 199 459 157 185 419 204 329 148 245 1 199 459 157 185 49 187 149 248 173 8andow 2 265 176 412 106 298 173 194 2 266 565 176 412 169 364 126 256 4 359 693 252 554 175 384 169 364 126 258			7	330	699	247	437		23	167	297		607		107	183		138	138 144		144
Fixed 2 286 540 194 410 117 263 169 246 119 264 119 265 540 191 410 113 263 170 294 126 271 557 185 419 204 329 148 119 459 116 358 74 213 123 289 148 204 329 148 259 459 155 337 94 233 133 289 81 22 256 565 176 412 106 298 175 314 122	Fixed 2 26 499 194 376 117 265 159 244 376 169 246 171 175 185 185 249 244 175 185 249 170 294 126 207 4 194 459 157 185 419 204 329 148 245 1 194 453 116 328 74 213 123 229 17 137 1 296 545 176 412 106 298 135 314 122 226 3 556 633 252 554 175 384 169 364 126 258			,		900	16.2	606		-	. 7.7			4		;			•			
Fixed 2 256 540 191 410 113 263 170 294 126 256 540 191 410 113 263 170 294 126 271 557 185 419 204 329 149 198 453 116 328 74 213 123 279 77 259 469 155 337 94 238 133 289 81 22 296 565 176 412 106 298 175 314 122	Pixed 2 265 540 104 417 403 109 246 117 403 117 203 109 109 119 100 294 110 294 102 204 329 148 245 207 Random 2 259 459 155 330 94 238 133 289 11 94 Random 2 256 545 115 339 94 238 175 314 122 226 4 359 633 252 554 175 384 169 364 126 258			-		9 0	7 6	, ,		0	3			2 1			707		4		9	70 00
3 256 549 141 416 113 263 170 294 126 4 345 695 271 587 185 419 204 329 149 1 198 453 116 328 74 238 133 289 81 Random 2 296 565 176 412 106 298 175 314 122	Andom 2 250 540 174 410 113 263 170 294 126 207 27 27 27 27 27 27 27 27 27 27 27 27 27		Fixed	7	-		5 7	0 0		6	697			5		91	147		144		111	111 105 6
A 345 695 271 557 185 419 204 329 148 1 199 459 116 328 74 213 123 229 77 259 459 155 337 94 238 133 289 81 296 565 176 412 106 298 175 314 122	Random 2 345 695 271 557 185 419 204 329 149 245 18 13 13 24 37 137 137 137 137 137 137 137 137 137			~		0.40	7 . 7	2		5	2			20.		54	177		170		120	120 78 5
Random 2 259 459 116 328 74 213 123 229 77 259 459 155 339 94 238 133 289 81 39 296 565 176 412 106 298 175 314 122	1 199 453 116 328 74 213 123 229 77 137 259 459 155 339 94 238 133 289 81 194 296 565 115 310 128 298 175 314 122 226 565 155 554 175 384 169 364 126 258	12		7	_	695	2 / 1	557		6.	5 0 7			45		58	156		215		119	lle 14i d
2 259 459 155 339 94 238 133 289 81 3 296 565 176 412 106 298 175 314 122	2 259 469 155 337 94 238 133 289 H1 194 3 296 565 176 412 106 298 175 314 122 226 4 359 693 252 554 175 384 169 364 126 258			_		453	116	328		13	123			37		68	121		127		49	7 02 79
3 296 565 176 412 106 298 175 314 122	3 296 565 176 412 106 298 175 314 122 226 4 359 683 252 554 175 384 169 364 126 258		Dendor		Ī	697	155	332		38	133			96		25	121		115		06	90 76 6
	693 252 554 175 384 169 364 126 258			~		565	176	412		86	175			56		121	122		149	149 77		11
683 252 554 175 384 169 364 126				۰ ۷		683	252	554		34	169			58		57	156		168		35	25 117 6

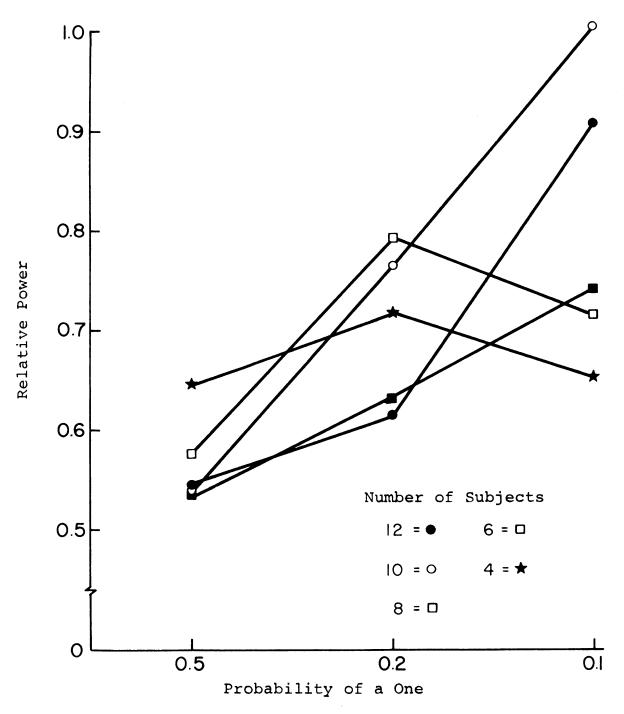



Figure 8. The interaction of the probability of a one and the number of subjects, with respect to the relative power of the test for the subjects by repeated measures interaction based on dichotomous data under pesign 2.

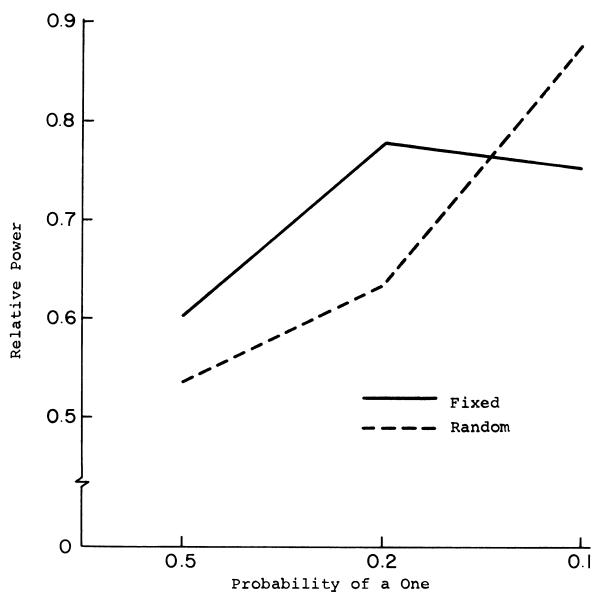


Figure ⁹. The interaction of the probability of a one and items fixed vs. random, with respect to the relative power of the test for the subjects by repeated measures interaction based on dichotomous data under Design 2.

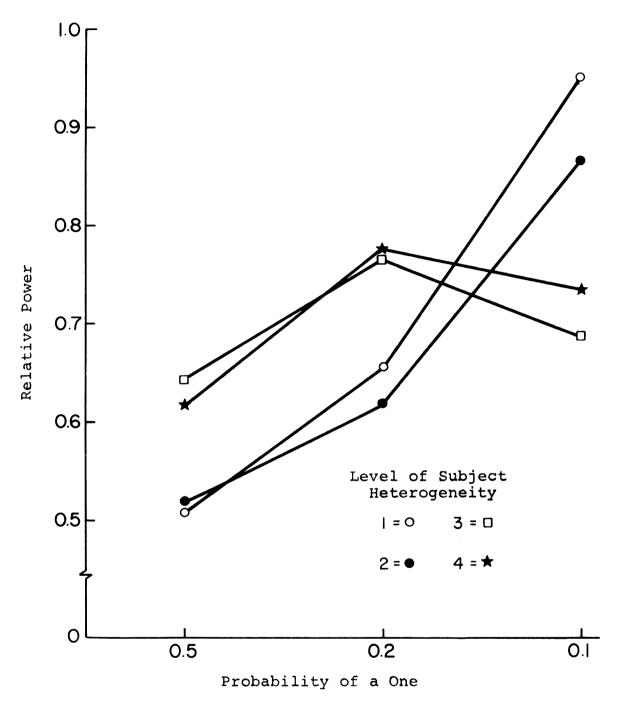
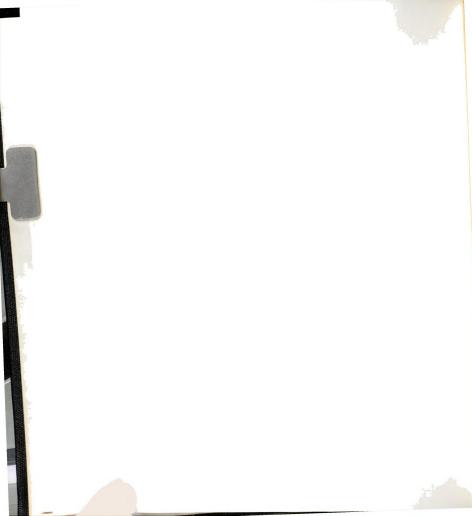
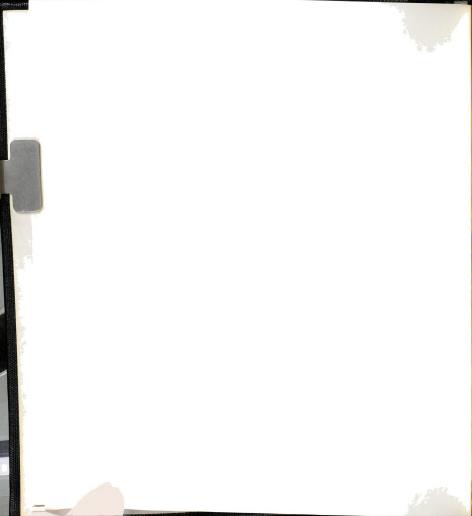



Figure 10. The interaction of the probability of a one and the level of subject heterogeneity, with respect to the relative power of the test for the subject by repeated measures interaction based on dichotomous data under Design 2.



 α = .05 regions for the probabilities of a one equal to .5, .2, and .1 were .53, .65, and .91 respectively, for numbers of subjects equal to 4, 6, 8, 10, and 12 they were .52, .71, .67, .82 and .68 respectively, and for items fixed the mean was .73 while for items random the mean was .67. The three interactions are graphed in Figures 11, 12, and 13.

A detailed interpretation of Figures 8 through 13 and the other results of the analysis of the relative power variables for Tables 19 and 20 will not be attempted because the results of the analyses of the frequencies in Tables 17 and 18 have indicated that the variance ratio tests for repeated measure by subject interaction effects are in most of the instances simulated, too liberal. In general it may be observed, however, that higher relative powers correspond to greater "liberalness" in the test of a true null hypothesis. Thus the general increases in relative power observed in Figures 8 through 13 across levels of a probability of a one .5 to .2 to .1 are in some sense specious.

Tables of frequency data for other tests under Designs 2 and 3 can be found in Appendix A.

Two tables of correlations between mean squares have been included in this chapter. The importance of the correlation between mean squares in a variance ratio test of a source of variation based on variates with a non-zero kurtosis, was indicated in Chapter III. As was indicated, the correlation between a mean square for a hypothesis and the associated mean square error in a ratio of mean squares

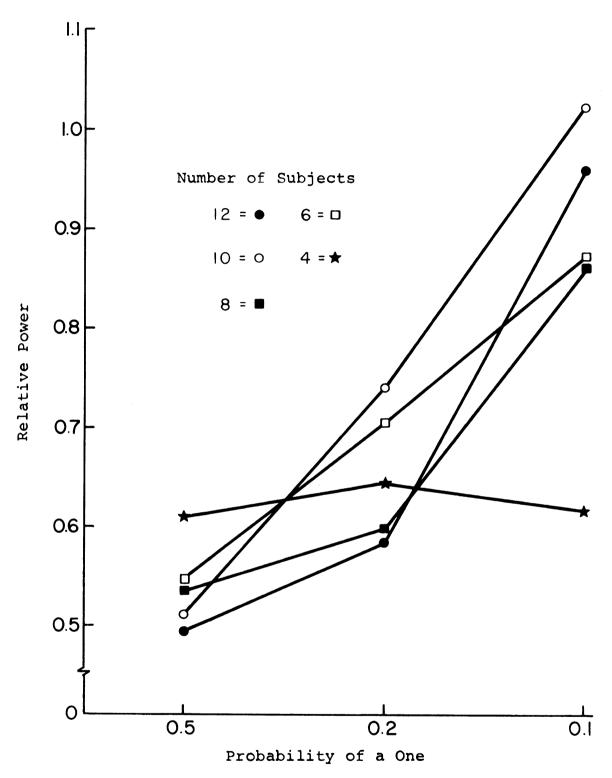


Figure 11. The interactiom of the probability of a one and the number of subjects, with respect to the relative power of the test for the subjects by repeated measures interaction based on dichotomous data under Design 3.

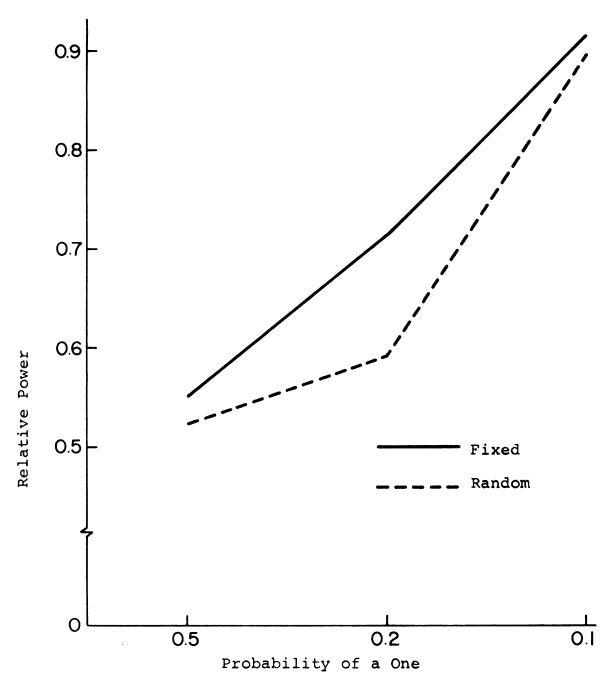


Figure 12. The interaction of the probability of a one and items fixed vs. random, with respect to the relative power of the test for the subjects by repeated measures interaction based on dichotomous data under Design 3.

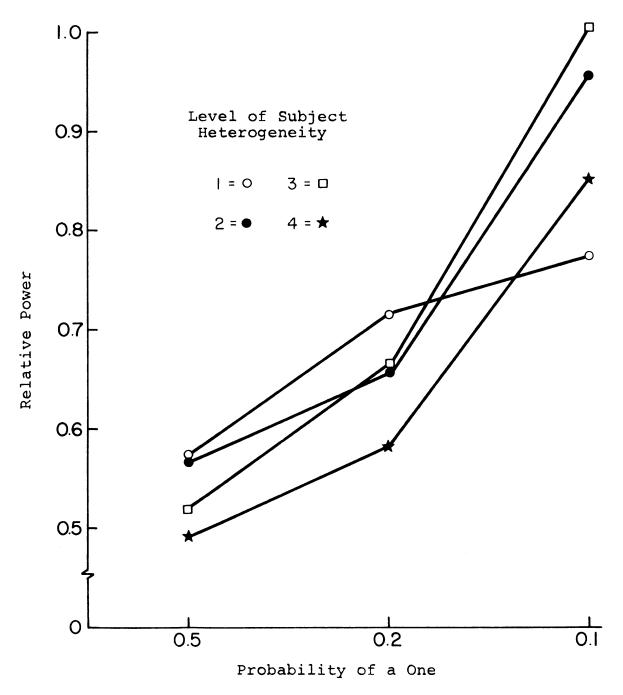


Figure 13. The interaction of the probability of a one and the level of subject heterogeneity, with respect to the relative power of the test for the subjects by repeated measures interaction based on dichotomous data under Design 3.

was not expected to be necessarily zero, when the dependent variable was not a variate with a normal probability density. The correlation between MS, and an associated MS, in a variance ratio would be expected to be zero only if the kurtosis of the dependent variable was zero and the dependent variables were independent from each other. kurtosis of the binomial variate is given by the expression: $y_2 = (1-6pq)(npq)^{-1}$, where p is the probability of a one on any trial, q = 1-p, and n is the number of trials. The Bernoulli variate is a binomial variate where n = 1. the kurtosis of a Bernoulli variate is (pq) -1 - 6. Bernoulli variates with parameters p = .1, .2, and .5 would have kurtoses 5.11, 0.25, and -2.00 respectively. If the dependent variables in the cells of Designs 2 and 3 were independent of each other, the expected values of the correlations between various mean squares could be calculated from the above information and the expression for a correlation,

corr [MS $_h$, MS $_e$] = y_2 [$\frac{4n^2k}{(k-1)(n-1)}$ + $\frac{2n(nk-1)}{(k-1)(n-1)}$ y_2 + y_2^2] $^{-\frac{1}{2}}$. However, since the dependent variables in the cells of Designs 2 and 3 were not generated in a manner so that they would be independent the expression for the correlation between mean squares given above is not appropriate.

The expression for the correlation between two mean squares for non-independent data involves complicated terms with many cross expectations which are non-zero. No attempt will be made in this paper to represent the expressions

mentioned in the previous sentence, but the empirical values of the correlations between mean squares in variance-ratio tests of repeated measures effects and subjects by repeated measure interaction effects will be presented.

Although the precise values of expected correlations between mean squares of interest were not calculated, it could be predicted that the correlations between two mean squares of interest would have a rank ordering with respect to the kurtosis of the dependent variable. That is, for three different data simulations where the kurtosis of the dependent variable for simulation i, y_{2_i} , i = 1, 2, 3; has rank ordering $y_{2_1} > y_{2_2} > y_{2_3}$, the rank ordering of the correlations, corr $(MS_h, MS_e)_i$, i = 1, 2, 3; may be expected to be

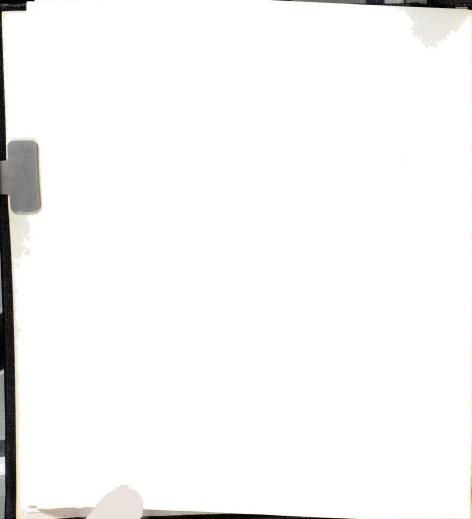
corr $(MS_h, MS_e)_1 > corr (MS_h, MS_e)_2 > corr (MS_h, MS_e)_3$. Recall that the kurtosis of the dependent variable is a function of p, the probability of a one in the data and observe that the expected rank ordering is borne out in Tables 21 and 22.

Tables 21 and 22 are six dimensional arrays of correlations with marginal labels. The labels crossed and nested in the far left margin of Tables 21 and 22 indicate respectively whether Design 2 (items crossed with repeated measures) or Design 3 (items nested within repeated measures) was the model for the data simulation. The next left-most margin indicates the number of subjects associated with a

Table 21. The Correlations Between Mean Squares for Repeated Measures and the Mean Square Error Associated, Based on Dichotomous Data, Interaction and Repeated Measure Effects Both Null.

Probability	of a	One				2			.,				1.		
Level of	of Subject Heterogeneity	eteroge	neity	-	7	٣		-	2	•	4	1	,		7
ltems	Repeated Measures	No. of Sub.s	Items									ı	ı	,	•
		4	Fixed	ი• c	00.	70.	•20	.25	3	٦	4.		1,0	20	19
			Kandom	ဂ ၀	0.		-	•21	35	4	•43	•	1 1	, 54	1,0
		9	Random	100.00 100.00	10.01	0°054	0.110	0.165	0.175	0.265	00.300	0.363	0.4.0	5.	50
		,	Fixed	•) :	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֓֓֡֓֓֡			7	7.	67.	•	• 34	4.	7.4
	Central	œ	Random	10	• · ·	200	61.	0	7 6	7,	46.	•	. 4 B	3:	. 25
			Fixed			5 6	•	. 7	9 6	٠.	, ,	•	. 4	74.	, t
		3	Random		90	200	12	0 4	9 0	: -	. 24	•	4 .	74.	1,
		12	Fixed	0.0	.07	.01	12		: _	. ~	25		, ,	1 .	• 1
700004		:	Random	0.0	٠.	.02	• 13	.17	15	•	.25	0.434	1 1	0.300	0.0
30000					1		l								
		4	Fixed	-0.093	10°0	0.060	0.184	5		Ŵ.	4.	.33	54.	5	10
			Kandon Freed	? -	٠ د	80	∹.	7	0.232	0.258	0.396	0.349	0.450	0.435	20000
		9	Pandom	• c	20.	9 6	. 15	12	5.2	•22	•26	.33	• 30	4	.52
_			Fixed) r		ြဲ့	* ! •	22.	35	.3	643	40	240	.30	,
_	Non-	œ	Dandon	•	3 6			``	ς.	. 33	2	1 1	74.	24.0	ść.
	central		Fixed	•		• -		77.	9 !	2	• 54	.38	38	٤,	.37
		01	Pandom	•) 1	7:	7.		77	57.	.32	28	.41	1	4.
) (1	•	•	` [9 !	67.		7 7	3	1,1
		12	Darie) (\$.	9	•	70.	•	7	•27	. 23	34	. 45	•
			RANGOR) •	1	• •	• 5 4	70.	5	. 29	.31	•	3.	7	t
			Panta		'	;	;	7	1 3	1 '				1	ł
		4	Random	10.01	0000	1 × 5 × 5 × 6 × 6 × 6 × 6 × 6 × 6 × 6 × 6	200	767-0	\$ 0	965-0	614.0	0.303	0.4447	0 • v d t	219-0
		,	Fixed	• 6) C	5 6		4 -	3.5	•	•	•	0 .	.	ζ.
		•	Random			•	170	1	- 0	•	•	•	• • •	•	
_		a	Fixed	0.1	्	02	13	17	: 7	•	• "	• •	9 4	• 1	
	Central	•	Random	0.0	ુ	20	60	9	17	2	, 1		1		Ý
		9	Fixed	J. 0	٦.	000	.12	0.0	8	7	. ~	•		1	4
		:	Random	0.0	3	.03	=	.06	14	.2		•	1	. 4	52
		12	Fixed	्	्	0	.12	5.	17	?	.2	•	.3.	7	3
			Kandom	က က	?	90.	. 15	• 25	54	?		•	39		• 55
Nested															
		4	Fixed	E50.0-	-0.014	00.	.18	•19	.25	.34	4	38	• 52	•	•
			Random		10.044	• 05	.12	5	0.126	•29	7	.37	.36	•	•
		9	Fixed		0.021	• 00	• 15	• 12	• 13	•22	.2	• 33	.30	•	•
			Random		-0.377	60.	•21	• 12	. 13	•26	۶,	• 34	.37	•	•
	Non-	œ	Fixed		-1.045	7.	•19	٠,	• 15	•33	7	7 7 .	74.	•	•
	central		Kandom		100.0-	. 12	• 14		40.	•25	7	.33	47	•	•
		2	Fixed		-0.032	= :	7	•	c•125	•21		• 28	•	٠	•
			RANGOE E		260.0-	3.		ລຸເ	•	91	?	.17	30	•	•
		12	rixed	00000	10.01		7 7 7	"	9/10	0-172	C - 27C	C • 23 8	0.347	0.452	0.423
			Natidom		1.001	3	:	?	1111	?	۲.	22.	•	• 1	•

Table λλ. The Correlations Between the Mean Squares for Subjects by Repeated Measures Interaction and the Mean Square Error Associated, Based on the Dichotomous Dats, Interaction and Repeated Measures Effects Both Null.


obabil	Probability of a One	One				\$.2				1	
evel of	evel of Subject Heterogeneity	Heterogen No. of	neity	٦.	7	e	4	4	7	e	4	7	7	9	4
Items	action	Sub. 6	Items					***************************************							
		4	Fixed	-0.212	£50.0-	3	0.157	0.263	.26	.34	4.	58	٠,		63
		7	Fixed	<u>`</u> `) .) .	•	70	۳,	9040	0.398	0.430	0.542	0.498	•	7
		0	Random	9 4	3 (3	• 12	?	.28	•35	.37	.53	3	•	5.
	Central	۰	Fixed	7 0) ·		7 0.	۳.	• 45	• 45	• 40	ુ •	ŝ	•	50
	1	0	Random	7 4	היים היים	<u> </u>	Ξ:	٣.	.32	99	64.	• 54	1	•	56
		9	Fixed	7 .) ·	9 0	. 18	•	4.0	.47	.50	13.	ů	•	0
		3	Random	` .	7 0	0	4.	7	• 22	• 58	• 36	4 4 B	1	•	Ü
		:	Fixed	יי)	5.5	• 16	1	• 40	• 4 8	• 4 B	58	3	•	19
	_	77	Dandom	22	်	٠ •	• 10	7	• 13	.32	.36	.42	1		,
Crossed			Halleon H	3	ຈ ດ• ວ	•17	• 18	4	70	4	• 4 8	.75	0.651	707.0	C • • 9 7
		7	Fixed	.26	C	3	1	1	F		'	1	1	1	
			Random		: -				• •) : •	•	٥	79.	ů	0.
		9	Fixed	-0.283	0	0 0	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.00	0.50	187.0	η.	0.461	0.479	366.0	0.547
			Random	6		9 0	10	• •	9.5	•	• • • • •	•	.54	Ĵ	.57
	Non-	80	Fixed	7			•	976	•	, ,	ζ;	3	4.	3	Š
	central		Random	, ,		<u></u>	• 0	٠ د د		•	44	·	52	•	3.
		10	Fixed	٠ د			9 0	• •	•		7	1	53	Ţ	. 5.
			Random			-	9 6	•		• •	9	Λ.	.51	·	٠ کر
		12	Fixed	3			9 -	9 7	,	•	. 0.	•	3	^	÷
			Random				9 0	•	• •	ָ י י	- ·	1,	24.	•	• 04
					•	•	•	•	•	•	t •	•	Š	•	,
			Fixed	,	3	:	1		1	1					
		,	Random	٧.	27.0	0.05	ુ '	• 19	• 25	•30	.33	•	0.571	• 4 0	4
		•	Fixed) r) ·		•		643	11.	.51	•	٠.	•	0.511
		•	Random	, ,	1 r	÷ (٠ د	97.	67.	. 35	39	•	ů	5	200
	Central	α	Fixed	, ,	4 -) (•	֭֓֞֞֜֜֜֜֝֓֜֜֜֜֝֓֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֜		24.	1	•	÷	7	•
		·	Random	•	-		• (77.	, ,) † •) ;	•	·	•	. 23
	_	10	Fixed	2		7	• -		•	7.	•	•	3 (3	70.
		}	Random	, ,	0	1000	: -	77.		• •		•		•	•
		12	Fixed				•		,	•	•	•	٥	•	0
			Random	7	-0.115	-0.018	740.0	7 4 4 0	0.462	0000	7.5.0	1.55	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	116.0	70.
Neated										•	1	•		•	•
		4	Fixed		٤ ٢	۱ 4	0	١,	2	1	;	١ ٠		1	1
			Random		0		2	•	٠ ،	•		D :		• • •	٥
		9	Fixed		1 2	} -	2 0	::	• •	,,,	7.	•		•	7,7
		,	Random	. ~	? -	• (֓֞֜֞֜֜֜֓֓֓֓֜֜֜֜֓֓֓֜֜֜֜֜֓֓֓֓֜֜֜֜֓֓֓֓֜֜֜֡֓֜֓֡֡֡֡֡֡	•	•		*	ָ מַ		· ·	· .
	Non-	60	Fixed	•	• •		10	• ^	•	7 .	•			1 1	2
	central	,	Random	. ~	7	Ċ		• •	•	* "	•	֓֞֜֜֜֜֓֓֓֜֓֜֓֓֓֓֜֟֜֓֓֓֓֓֓֓֓֓֓֜֟֜֓֓֓֓֓֓֡֓֜֜֡֓֡֓֡֓֡֓		• 05	000
		10	Fixed			2	֓֞֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	• -	•	•	•	Ġ.		70.	¥.
			Random			2	Ċ	•	•		•	9 (, ,	``
		12	Fixed	-0.331	-0.224	-0.012	0.015	0.160	(,,,,,	0.44.0	28.4	0.00	7.00	1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	414.0
			Random	^.	-	0.1	0.5	~							
					- 1			1	:						

given data simulation. The final column margin indicates whether items were considered fixed and null in effect or random and non-null in effect. The top row margin refers to the overall probability of a one in the data given no interaction or repeated measures effect. The second row margin refers to the level of subject heterogeneity. Each element in these two 2×2×5×2×4×3, six dimensional arrays is a correlation between 1000 pairs of mean squares calculated from simulated data in dichotomous (zero-one) form. The correlations in Table 21 are correlations between the mean square for the repeated measures source of variation and the mean square error associated. The correlations in Table 22 are correlations between the mean square for the subjects by repeated measure interaction source of variation and the mean square error associated.

The 480 correlations in each of Tables 21 and 22 were transformed by the "Fisher r to Z" procedure and then the transformed variables were considered as dependent variables in a six way factorial design with six fixed main effects and an ANOVA was performed on the transformed data from each table, 21 and 22, separately.

The analysis of the transformed data from Table 21 indicated significant effects due to the probability of a one, the number of subjects and the level of subject heterogeneity. For Table 21 the marginal mean correlations (reconverted from Fisher Z means) for the probabilities of a one .5, .2, and .1 were .04, .22, and .44 respectively; for

the numbers of subjects 4, 6, 8, 10, and 12 they were .27, .24, .24, .21, and .20 respectively and for the levels of subject heterogeneity 1, 2, 3, and 4 they were .14, .20, .26, and .33 respectively.

The analysis of the transformed data from Table 22 indicated significant effects for all of sources found significant with respect to Table 21 plus significant effects due to items fixed vs. random, the interaction of probability of a one and level of subject heterogeneity which is represented graphically in Figure 14, and three interactions involving the distinction items crossed vs. nested (see Figures 15, 16, and 17 in Appendix B) which were considered of marginal importance. For Table 22 the marginal mean correlations for probabilities of a one .5, .2, and .1 were -. 07, .34, and .55 respectively, for numbers of subjects 4, 6, 8, 10, and 12 they were .27, .26, .30, .25, and .28 respectively, for levels 1, 2, 3, and 4 of subject heterogeneity they were .18, .24, .30 and .36, for items fixed the mean was .26, and for items random the mean was .29.

As was expected the correlations increase across levels .5, .2 and .1 of the probability of a one (which corresponds to increasing kurtosis) in both tests of repeated measures (Table 21) and tests of subject by repeated measure interactions (Table 22). Also in both tables there is an increase in correlation as the subjects become more heterogeneous.

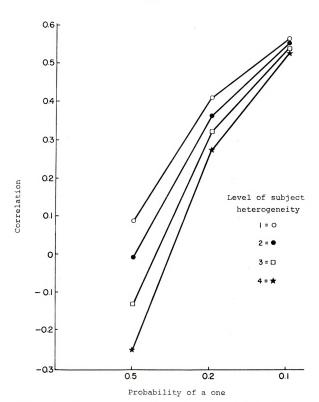
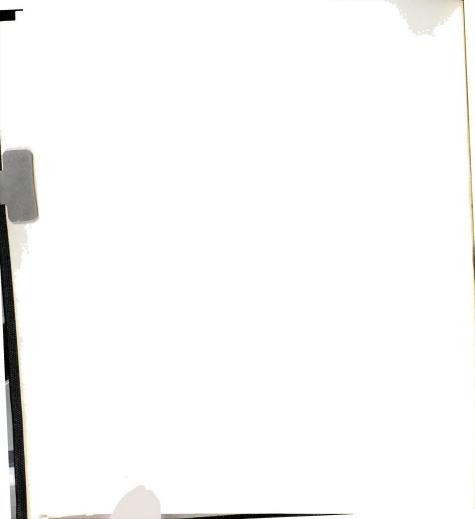



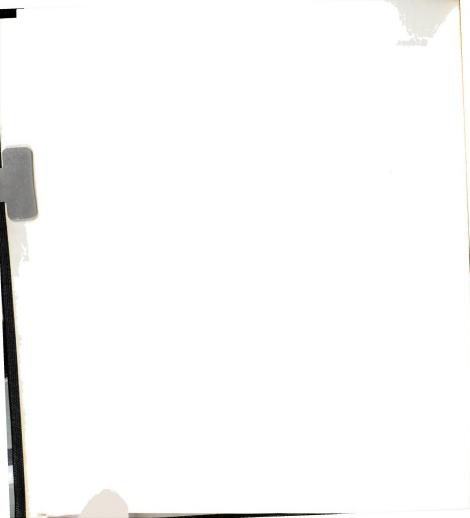
Figure 14. The interaction between the probability of a one and the level of subject heterogeneity, with respect to the correlations in Table 21.

Other tables of correlations between mean squares can be found in $\ensuremath{\mathtt{Appendix}}$ B.

CHAPTER VI

IMPLICATIONS AND CONCLUSIONS

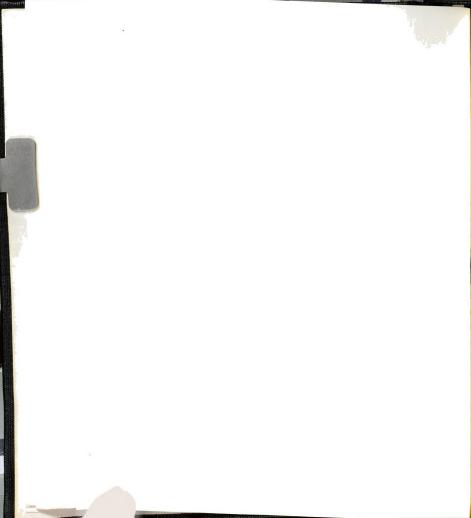
In general the implications of this study are, that although many individuals have had some success in demonstrating that variance ratio tests based on dichotomous data can be assumed to have probabilities of a Type I error very close to α when the 1- α th quantile of a corresponding Fstatistic is employed as a critical value to define a rejection region, severe caveats should be issued to potential employers of analyses of variance to dichotomous data in a repeated measures design. The most important warning concerns the use of the quasi-F test when the dependent variables are zero-one data; not only was the probability of a Type I error extremely variant in the data in this study, but the frequency of the quasi-F test based on dichotomous data in any rejection region was always less when a null hypothesis was false, than it was when the null hypothesis was true! Further, the "reverse power" of the quasi-F test based on dichotomous data was not a function of the presence or absence of a confounding source of variation.


In the absence of a confounding source of variation the usual variance ratio test of repeated measures based on

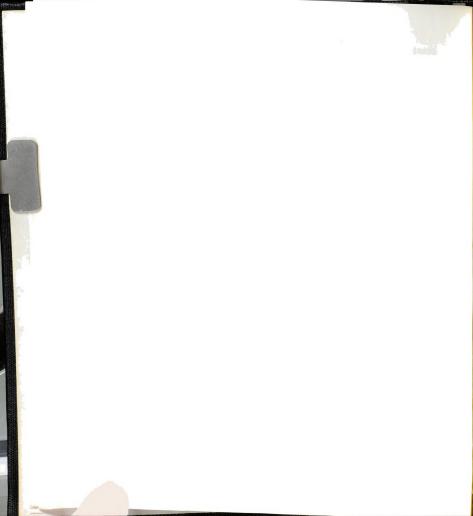
dichotomous data gave a good fit of a probability of a Type I error to the corresponding nominal α given a large enough number of subjects, a number that was somewhat fewer than usually occur in practice. When there was a confounding source of variation which was non-null (as was the case with random items in Design 3) the usual test of repeated measures based on either normal or dichotomous data was inappropriate just as was suggested in Chapter I. The power of the variance ratio tests for repeated measures based on dichotomous data were approximately half the power of the same tests based on normal data, where such tests were appropriate.

Although the results concerning the quasi-F were the most startling of the results of this study, the most disappointing results of the study were those concerning the tests of subjects by repeated measures interactions based on the dichotomous data. A good fit of a probability of a Type I error to a corresponding nominal α and a set of reasonable power characteristics for the variance ratio test of the subjects by repeated measures interaction based on dichotomous data would have been most useful in the investigation of individual differences and as an indication of the need of additional individual difference blocking variables, as was indicated in Chapter I.

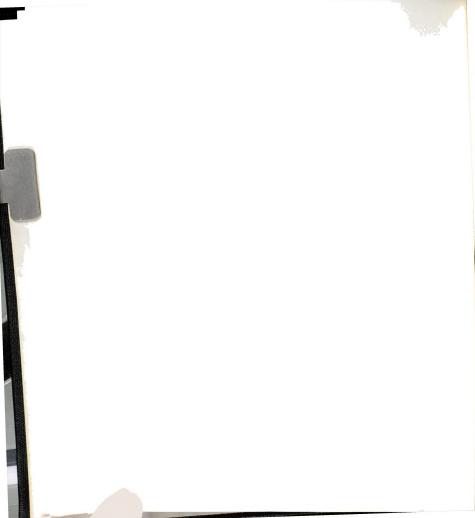
In order to examine the implications of this study more extensively, consider what the discussion and results in this paper might suggest to an experimenter who would like to do

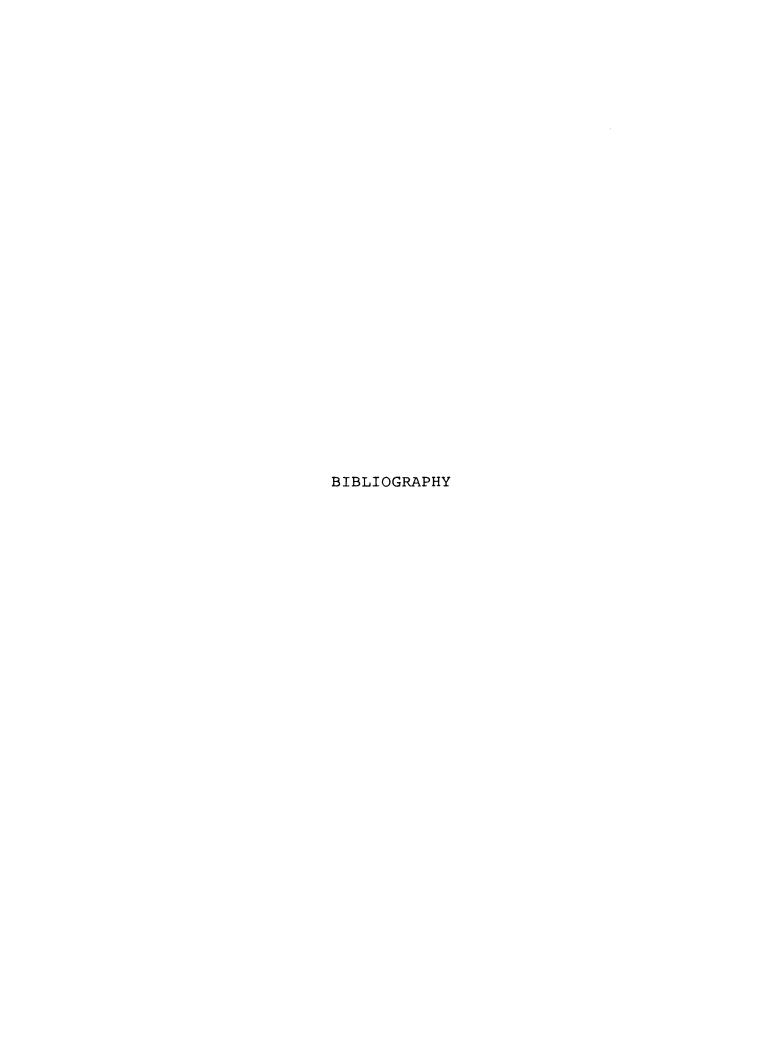

a repeated measures type of experiment and analyze his results with hypothesis testing in mind. It has been suggested that it is important for the experimenter to decide whether the experimental response evokers (i.e. items) he employs in his experiment are all of the response evokers of interest (that is all of the response evokers to which he would like to generalize his results) or a random sample of those response evokers he might employ. The above importance results from the likelihood that if the response evokers are a random sample, a non-null source of variation will be associated with them. A non-null source of variation associated with response evokers (i.e. items nested within repeated measures or an items by repeated measure interaction) may be confounded with the repeated measures source of variation in the ordinary analysis of variance tests for repeated measures effects (Chapter I, pages 17-18). Further, an experimenter may be unaware of the above confounding if he doesn't include the response evokers as a factor in his design (Chapter I, pages 13-18). The above contentions are supported by the results (Chapter V, pages 59 through 64) and are important considerations whether the dependent variables may be expected to have a normal probability density or not. Thus an experimenter who is considering doing a repeated measures type of experiment should consider the nature of the response evokers that will be employed in his experiment and examine for possible confounding, a design and analysis which includes the response

evokers as a factor.


If an experimenter must have confounding in the analysis consistent with the design of his repeated measures experiment, he is in a somewhat difficult position with regard to analysis of variance testing of the source of variation with which confounding is present. For even if he can expect his dependent variables to have a normal probability density, the results of this study suggest that the quasi-F test will not have particularly good properties (Chapter V, pages 76, 78). If, on the other hand, the experimenter must evaluate responses in such a manner that his dependent variables are dichotomous, the quasi-F test is completely unacceptable.

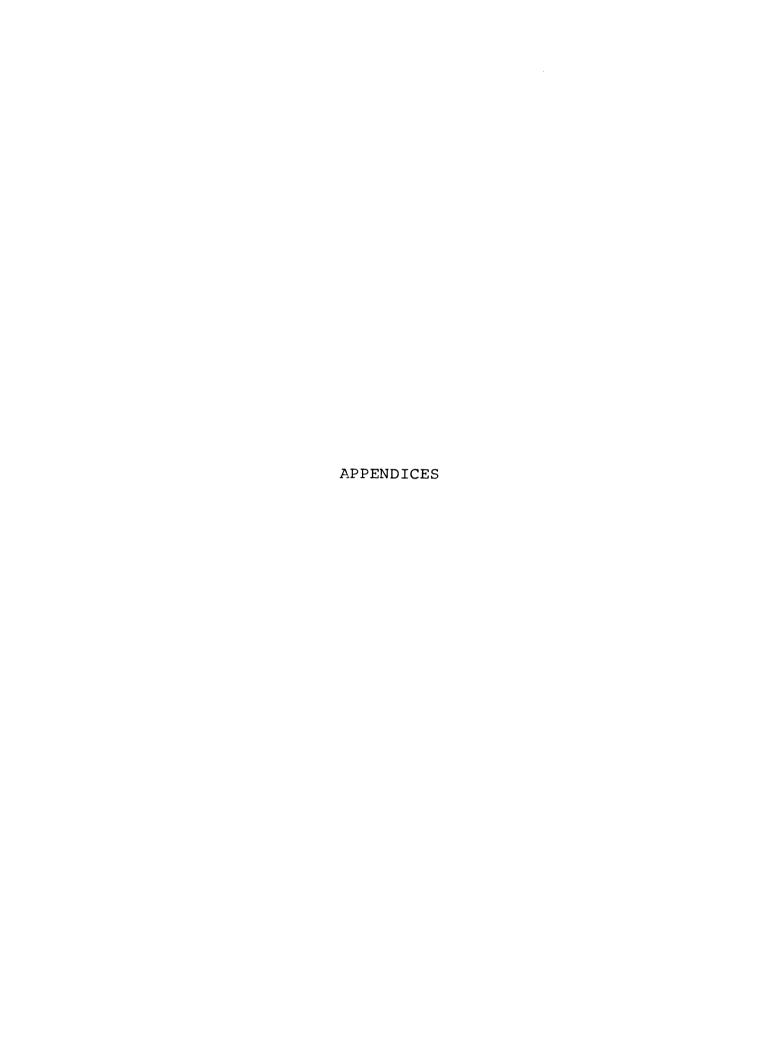
If an experimenter finds that he can expect to have no confounding such as that mentioned above, but must have dichotomous dependent variables the results suggest, he can expect to appropriately employ the ordinary analysis of variance, variance ratio test for the repeated measure effects under the following conditions. Appropriate employment is suggested, when there are more than three response evokers associated with a repeated measure, and when (1) the probability of one is close to .5 and there are six or more subjects in an experiment, or (2) the probability of a one is between .2 and .8 and there are ten or more subjects in the experiment, or (3) the probability of a one is between .1 and .9 and there are more than 20 subjects in the experiment. The results also suggest that the above experimenter


should expect the power of analysis of variance tests based on dichotomous data to be between one third and one half the power he could expect if his dependent variables had a normal probability density. The practical suggestion implied by the results of this study is, that if the above experimenter must have dichotomous dependent variables he should employ a larger number of subjects than he would if he could expect his dependent variables to have a normal probability density.


The results of this study with respect to the test of the subject by repeated measure interaction when based on dichotomous data, suggest that even a very large variance ratio statistic may not indicate that the null hypothesis is false if there are a large number of subjects and the probability of a one is not close to .5 (see Figure 6). For a probability of a one close to .5, however, it would appear that the probability of a Type I error is only approximately 1.2 times the nominal α level. Since the power of the test of the subjects by repeated measures interaction based on dichotomous data with a .5 probability of a one was greater than half the power of the test based on normal data, the results suggest that when the probability of a one is close to .5 the test may be appropriately employed. probability of a one is not close to .5, however, the results suggest the above test may not be appropriately employed. As a practical suggestion, an experimenter who could expect possible subject by repeated measure

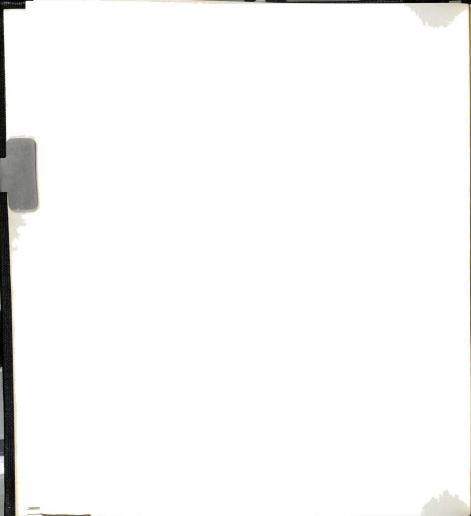
interaction and who must have dichotomous dependent variables should endeavor to employ response evokers which will give him an overall .5 probability of a one.

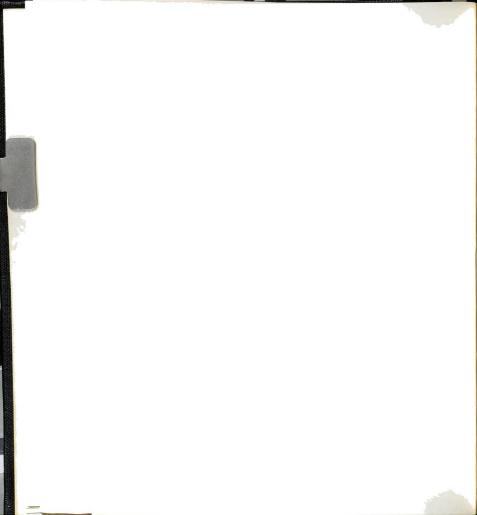
This investigator has no practical implications or suggestions to present with regard to the correlations presented in Chapter V. As far as he knows, the control of the correlations between mean squares is not in the hands of the experimenter. The results with respect to the correlations were interesting, however, and something of which many readers may have been unaware.


BIBLIOGRAPHY

- Bradley, J. V. <u>Distribution-Free Statistical Tests</u>. New York: Prentice-Hall, 1968.
- Donaldson, T. S. Power of the F-test for nonnormal distributions and unequal error variances. Rand Corporation research memorandum RM-5072-PR, September, 1966.
- Gagné, R. M. (Ed.). <u>Learning and Individual Differences</u>. New York: Merrill, 1965. 265 pp.
- Greenberger, M. Notes on a new pseudo-random number generator. "Journal Assoc. Comp. Mach.," 8, 163-67.
- Hammersley, J. M. and Handscomb, D. C. <u>Monte Carlo Method</u>. New York: John Wiley, 1964.
- Hansen, M. H., Hurwitz, W. N. and Madow, W. G. <u>Sample</u>
 <u>Survey Methods and Theory</u>. New York: John Wiley,
 1953.
- Hovland, C. I. Experimental studies in rote-learning theory. V. Comparison of distribution of practice in serial and paired-associate learning. "Journal Exp. Psychol.," 1939, 25, 622-33.
- Hsu, T. C. and Feldt, L. S. The effect of limitations on the number of criterion score values on the significance level of the F-test. "American Educational Research Journal," 1969, 6, No. 4, 515-28.
- Hudson, J. D. and Krutchkoff, R. G. A Monte Carlo investigation of the size and power of tests employing Satterthwaite's synthetic mean squares. "Biometrika," 1968, 55, 431-33.
- Jensen, A. R. "Varieties of individual differences in learning." In R. M. Gagné (Ed.), Learning and Individual Differences. New York: Merrill, 1967. 265 pp.
- Lehmer, D. H. Mathematical methods in large-scale computing units. "Ann. Comp. Lab.," Harvard Univ., 1951, 26, 141-46.

- Lunney, G. H. A Monte Carlo investigation of basic analysis of variance models when the dependent variable is a Bernoulli variable. Unpublished dissertation, Univ. of Minnesota, 1968.
- Mandeville, G. K. An empirical investigation of repeated measures analysis of variance for binary data. Paper presented at the annual meeting of the American Educational Research Association, 1970.
- Marsaglia, G. and Bray, T. A. One line random number generators and their use in combinations. "Communications of ACM," 1968, 11, 757-59.
- Satterthwaite, F. E. Synthesis of variance. "Psychometrica," 1941, 6, 309-16.
- Scheffé, H. The Analysis of Variance. New York: John Wiley, 1959.
- Seeger, P. and Gabrielsson. Applicability of the Cochran Q test and the F test for statistical analysis of dichotomous data for dependent samples. "Psychol. Bull.," 1968, 69, 269-77.
- Teichroew, D. Tables of expected values of order statistics and products of order statistics for samples of size twenty and less from normal distribution. "Annals of Math. Stat.," 1956, 27, 410-26.
- Wadsworth, G. N. and Bryan, J. G. <u>Introduction to Prob-ability and Random Variables</u>. New York: McGraw-Hill, 1960.





APPENDIX A

Frequency data for variance ratio tests other than those included in Chapter V.

1821 1821 1821 z Table £2. The Empirical Prequencies, in X'-1000 Rejection Regions, of the P for Subjects Based on Normal and Dichotomous Data, Items Crossed, Interaction and Repeated Measures Effects Both Null. 214 214 214 63 1133 224 224 217 217 322 322 1117 1117 263 283 283 329 329 166 166 266 267 267 267 2000 2000 2000 2000 2000 2000 z 375 497 497 497 497 497 497 497 Ω 672 766 766 769 769 936 947 947 947 947 947 958 909 909 900 777 900 966 z 510 510 547 547 547 548 548 Ω 796 910 910 787 904 973 300 300 300 300 300 300 300 530 671 801 271 271 66 683 804 z 225 327 327 327 327 327 327 435 704 226 367 511 490 693 273 579 657 11.46 12.46 13.47 14.47 _ 7755 7757 7777 7777 7777 72000 72000 70000 70000 z 215 22 23 24 23 24 13 11 21 25 25 25 212 222 223 223 223 223 223 a 931 986 989 970 910 761 750 730 952 953 z 294 359 423 423 176 237 321 688 688 688 783 783 653 653 653 653 653 653 653 2 8 2 2 8 2 2 3 2 4 2 5 3 2 4 517 714 714 331 563 660 870 877 877 871 970 325 421 569 1158 432 585 528 709 814 814 691 817 673 856 746 728 728 863 843 z 199 373 373 89 89 241 369 898797 8987 8987 8987 8987 328 483 483 155 155 460 551 610 648 792 792 744 731 462 581 729 729 434 434 712 751 9922 9946 7744 9924 924 924 924 924 684 6810 891 463 806 792 927 973 576 576 908 866 945 945 713 865 948 z 329 412 522 522 170 170 420 495 442 614 733 733 733 733 733 731 557 758 864 347 730 826 653 653 653 653 653 729 908 958 533 756 880 a 688 412 4115 6813 808 774 9862 933 754 754 939 9000 9000 9000 9000 z 718 718 832 832 834 857 653 643 6443 692 692 818 771 771 890 995 895 876 876 828 935 973 657 825 977 Ω الد در الدر Level or Normal Probability of a One Random Random Random Random Random Fixed Fixed Fixed Fixed Dichotomous of No. of No. of Sub.s a · 1000 œ

560 560 560 662 662 VE-11 VE-1V 1 V P E B VF C 1 V P E B 9957 77 8959 675 675 74 40 44 40 C z Table · . The Empirical Frequencies, in x-1000 Rejection Regions, of the F for Subjects, Based on Normal and Dichotomous Data, Items Nested, Interaction and Repeated Measure Effects Both Null. 200 m 476 605 1988 1683 Δ z 163 197 223 96 181 211 Ω 953 979 979 781 781 783 993 998 998 996 994 9355 976 976 978 978 S 504 504 606 606 607 607 133 243 243 261 261 261 490 699 404 705 705 Ω z 219 282 282 394 1117 1116 366 3335 437 537 174 406 546 430 691 244 444 603 730 721 721 827 325 717 717 991 991 875 963 963 474 474 432 633 663 663 9024 9004 960 783 963 z 375 463 170 259 466 520 522 522 534 534 617 532 680 763 348 559 765 733 733 747 747 747 7531 7531 7531 7532 7532 7532 7532 Α 975 991 1000 911 943 997 630 630 633 623 623 983 983 767 767 981 Z 444 675 675 675 639 440 629 760 839 940 986 1000 808 967 949 522 522 522 522 533 533 533 533 897 971 987 744 912 977 z 372 441 619 211 524 577 592 692 810 810 487 656 613 632 631 631 826 733 873 944 747 942 a 969 993 1000 866 979 996 644 644 644 639 8811 9529 7629 7689 768 895 975 967 736 910 996 938 938 939 942 ٥. 629 776 877 419 602 857 890 990 900 900 900 900 900 900 804 912 963 794 962 967 967 97 97 97 97 97 97 97 Ω 968 969 961 715 960 960 926 996 797 797 9980 9980 z S 916 9969 756 926 9965 772 924 970 676 801 927 855 987 857 857 Ω Level of Sub. Het. * 35 P * 35 P or Normal a One Random Random Random Random Random Items Fixed Fixed Fixed Fixed Fixed ŏ Dichotomous No. of Sub.e Probability 6× - 1000 œ

Table :: The Empirical Frequencies, in x-1000 Rejection Regions, of the F for Subjects, Based on Normal and Dichotomous Data, Items Crossed, Repeated Measure Effects Non-null, Interaction Effects Null.

Probability of a One	of a One																				
€.1000				20	25	_	10		05		7	25	10		50		25	,,	~		Π
Dichotomous or Normal	or Normal		۵	z	۵	z	0	z	6	z	-	2	-	2	٥	2	ı	ſ	ŀ		
No. of Sub.s	Items	Level of Sub, Het,			ı	i	1	:	1	:	•	5	a	5	a	E	2	Z	a	z	
		1	262	411	199	289	0 1	171	. ~ .		6	20	85	10	~	1	0	259	50	1	
	Fixed	• m	526	705	4 0 0 0 0 0 0 0	424	~ 0	315	- r	9 6	C/ a	9 1	136	20 4	9 1	0 1	2	4 18	73	7	
7		4	649	920	529	144	, r	611	- 00	- 0	00	- 0	333	n 🤈	301	~ ŭ	233	704	1 C	1 1	
			797	396	167	253	oc 1	160	7	6	0	7	39	•	æ	m	O	273	57	10	
	Random	ı m	523	710	367	4 62	237	867	307	572	151	50E	134	272	90	578 540	υ τ υ τ	1 1 0	7 ,	ာ ဖ	
		7	689	164	200	269	4	578	1	6	. ~	• •	201	0	203	1	157	0 0	113	700	
		-	393	575	a)	()	9	~	306	>	~	9	151	0	-	498	1,5	5 6 5	a)	_	
	Fixed	7 7	217	740	410	653	293	515	414	744	330	699	240	517	334	745	252	552	175	10	
.,		n .	969	363	0	0	\$	œ	249	7	(c)	ď	3 73	n	~	376	309	.0 ⊃ ~	3	Ų,	
0		4 -	797	933	0	0.	a)	2	641	3	6	→	804	~	$^{\circ}$	943	407	かいな	529	- 4	
		,	900	U 10 10 10 10 10 10 10 10 10 10 10 10 10	* (-4 1	S	 •	277	S		2	121	σ	^	500	152	372	o	9	
	Random	4 F	040	رد/ دورا	V 4	s v	× 0x	v :	329	\circ	.	<i>ر</i>	179	91	~	742	5:2	553	6 7 1	Q)	
		, 7	1 C	0 0	1	0 (٦ ۲	2	# G	0 () (o	765	_	~	852	0 47	755	n)	
•			0	,,,		•	_	v	787	~	~	~	3/3	~	C.	656	n C	,12	J	-	
			458	9	7	7	2	450	4	ñ	iñ	Š	Ś	390	241	S	7	575	134	380	
	Fixed	7 (671	9	S	w	~	654	æ	9	4	Š	4	9/9	426	7)	164	543	6 2 d	
a		า ヾ	910	Š	~	1	0	778	0	3	٥	ò	9	934	561	.#	Ω	910	163	K 3 3	
,			0 V	n (ο .	~ 0	J .	777	ø	ò,	20 (Ω I	, עם	945	636	n	9	272	40.0	かい	
		7	4 4	, ,	t ur	oα	4 C	707	n a	ŏ	9 4	٠.	ńς	87,7	757	7 C	~ ~	101	777	20 ·	
	HODURY	6	784	216	000	6 0 0 0 0) 4 (0) 4 (0) 4 (1) 4 (1	832	640	600	5.67	0	64.0	8 2 2 3	476	- 4	4 5	4 ()	700) d	
		4	878	ന	2	~	3	876	4	80	N	973	(0)	953	609	986	521	477	999	616	
			551	785	•	æ	a)	556	483	750	367	Š	Š	533	~	758	237	9	154	531	
	Pixed	7	58 4	046	-	æ	4	814	700	911	613	8	_	819	9	876	354	2	307	765	
۶		m ·	911	975	3	•	-	941	761	970	714	4	æ	668	3	177	521	4	433	922	
3		* -	959	766	۳۱ ر	no o	┏.	975	867	987	843	~	s.	756	-	186	643	~	267	407	-
		1 ~	700	† C	404	577	216	9 0	004	9 (\$ 1 t	107	212	558	327	729	1 5 2 5	652	110		
	Kandom	m	673	975	1 ~	S	- ~	931	736	971	633	- 4	r c	15.5	40	200	7 7 7	1	376	0 C	-
		4	585	989	0	00	.	596	825	984	748	~	. ~	962	679	066	521	· xo	454	970	
																•					

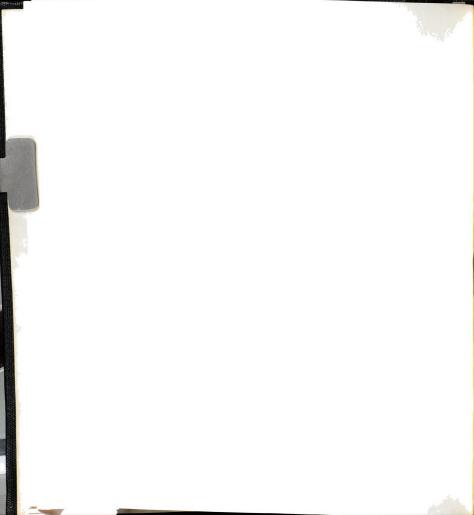


Table . The Expirical Frequencies, in ec.1000 Rejection Regions, of the F for the Items by Repeated Measures Interaction, Based on the Normal and Dichotomous Data, Items Mested, Interaction and Repeated Measure Effects Both Null

Probability	×-1000	Dichotomous No. of	Sub. s			7							9							00						10							7.7		
of a One		or Nornal	Itens	Fixed				Random				rixed.			Random				Fixed			Pandon			Fixed			Random			Fixed			Pandon	-
			Sub. Het.	7 7	3	4	-	2	3	4		4 6	1 4	7	5	3	4	-	7 6	-7	-1 0	16	-7		4 10	4		7 .	. 4	7	2	e -	4 -	2	-
	5	Q		62	57	45	54	52	1.7	47	61	0.5	7 5 7	1.7	36	43	36	66	0.0	25	7.5	35	4	1.7	50	3.0	0.4	64 6	434	4.5	2.7	*,8	0 0	5,6	200
	20	z		4 6	3 6	36	3	0,3	0.9	5.1	36	0 .	2 4	0 0	52	99	4.00	40	30	33	23	300	37	57	75	44	4.5	m e	5 2 0	95	33	51	6.5	0 6	7 2
٥.	25	Ω		30	200	20	27	56	23	20	31	27		10	53	00	2.1	4.1	23	17	17	57.	12	17	35	56	15	22	23	2.7	13	4.7	21	0 0	0 0
		z		31	24	16	200	20	30	5.9	2.5	0 0	200	0 0	3 6	6	30	5.6	25	12.	56	52	2.1	22	22	9	5.5	0 1	10	10	19	23	50	2,0	
	-	Ω		21	- 4	0 1-	0	11	6	-	13	0.	3 4	2 4	00	00	1-	10	13	10	07	27	00	4	0 7	0	5	6	0 %	3.6	20	17	9 !	50	
	01	z		13	0 :		2	2	0	6	11							7.	1.0		7	10	4	10	5	15	15	۲.	* r-	13	,,	6	e) 1	0 1-	
	5	۵		22	3,0	1 2	2 2	45	23	2.8	28	33	7:		3.5	77	3.6	5.6	28	53	52	30	5.6	28	1 2	33	5.5	30	0 4	7.7	32	22	25	100	
	20	z		72	0 0	2 8	7	0 00	95	25	99	00	9 .	1 0	7 0	99	67	3.6	75	63	1	1 1	34	38	4	16	5.5	9 9	336	44	9 9	37	0	0 0	3 0
1	25	٥			n u	n o	0	11	=	11	12	7.	13	0 4	212	26	12	20	40	0 0	27	. 0	\$	16	200	10	9	22	0	20	17	10	23	200	2 0
2	5	×		5.0	7	22	36	55	53	30	32	54	59	3 0	0 0	0	32	19	21	200	50	23	18	1.2	11	19	-	12	100	17	1	13	31	22	
	10	Q		0.	40	2 0	4 1	- 3	-	m	60	3		0.0	3 5		0	11	9 .	1 =	13	- 1	2	•	*	12	0	50	20 00	0	0 10	5	on .	*	
		z		20		77	2.	1.5	11	2.1	ю	7	12	0.0	0.0	26	7	10		, ,	-	- 2	9	30	20 (11	0	3	2 5	ď	0 4	1	01	1:	2 .
	Š	Q		1.9	2.			1 0	200	1.7	1.9	7.	9 1		10	1 -	25	9,	20	27	35	000	7	17	52	31	36	36	2 4 0	3.6	0 7	20	53	56	2 :
	20	z		65	0 0	3 2	000	6 3		1,0	5.1	9	57	25	2 4	3 3	3.6	28	30	3 5	4	5 2	30	34	90	25	4.5	31	300		32				
1.	25	۵		00	00	0 0	7	* ~		10	11	0	01	-	0.0		10	13	0	n .n	1	0 1	9	7	17	0.00	50	S	9 9	9		-	17	2 1	- 0
		z		3.1	52	7.0	7 0	200	2 6	3	5.5	30	53	9 .	31	9 0	13	91	22	77	56	18	21	0.7	0 :	210	90	4	11	140	1 1	7	15	9 9	07
	01	۵		3	0	01	70	40		4	6	0	0	7	7	- 0	16	0	2	90		4 4	0	93	3 6	0 10	7	in i	2	4	, ,	-	S.	12	- :
		z		5	4	4 5	2	9 0	40		5	99	7		3,0		, ,	4	7	n m	9	m 1-			-	97	-	-	2 5				7	-	•

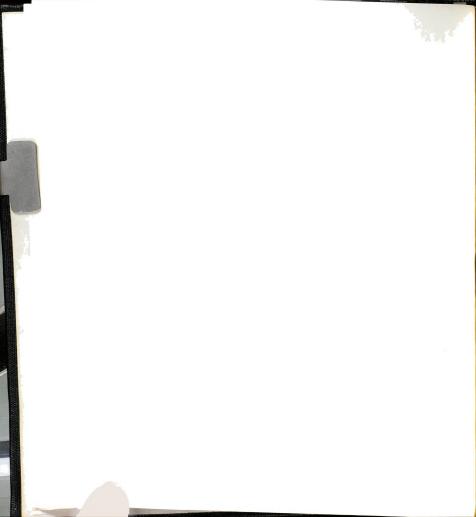


Table ... The Empirical Frequencies, in ex.1000 Rejection regions, of the F for Items, Based on the Normal and Dichotomous Dats, Item Crossed, Interaction and Repeated Measure Effects Both Mull.

robability of a One	of a One	1			5.			1			1,2									
cc - 1000			20		25		10		05		25		10		8		25	-	10	
No. of	or Norms	Level of	Q	z	Q	z	Q	z	Q	×	۵	z	Q	z	۵	z	۵	z	۵	2
Sub.s	Items	Sub. Het.						1												
		10	200	7.	18	56	9	7	38	54	13	3.5	-	=======================================	56	45	13	34	2	1
	Fixed		20	0	7	38	1.1	00	33	51	2	34	,	13	13	45	7	67	-	-
· ·		, .	40	9,	22	56	=	12	53	25	13	31	33	13	*	107	-	30		
,		,	38	94	17	21	89		20	43	0	58	0	0.1	2	96	0	37	3	,
		1	151	26	83	30	37	2	139	42	10.00	2.2	0,4	7	101	1,1	5.3	28	20	
	Randon	7	139	9	6.1	22	53	10	108	7,7	57	28	30	- 11	99	1.7	26	32	0	
		9	161	39	6.1	17	31	,	104	4.1	42	31	23		0.00	- 7	22	1 1 1		
		4	151	45	76	56	4.2	80	101	95	99	3.2	26		6.5	2	1 2	3.5	00	, ,
		-		,				,												
					0 :	0 1	0	7	4.0	,	1.6	57	3	20	52	37	11	53	,	0
	Fixed		25	20	57	22	2	0	17	4	3	27	-	12	3.8	42	1.1	18		,,
,		,	0.4	42	1,4	56	2	12	38	37	7	11	.7	9	17	38	-	21	G	_
0		4	25	51	19	56	S	16	50	75	9	23	-	va	3	44		22		-
		-	234	24	143	25	85	0	253	59	162	20	03		210	, ,				
	Bandon	2	242	36	180	13	00		200						2	0	77.	0	71	í
	moning.	3	26.7	9 9		200			200	200	200	0 1	00	0	0	74	1	31	2.0	0
_		7	000		* .	63	0 1	0	107	7	757		20	^	151	24	70	30	0,7	ä
		,	187	20	161	52	26	00	251	30	777	15	24	,	140	36	0,0	16	33	_
		1	6,0	30	3.6	3.6	:	0	2.3	č										
			1	60	**		1 0		67	97	25	9 !		9	31	50	^	18	9	^
_	rixed		200	,	0 0	500	0 5	2.5	, ,	0,0	63	1	0 :	^	7	58	16	67	:>	•
00			0.7	9 9	30	200	1:	1:	1 6					0 -	2	2	0		0	1
		_	200	2	320	000	21.	::	177	2	0 :	1 .		,	0	200	7		2	•
			200	::	22.0	2 .		2 .	110		177	0	2	^	434	17	10		7	•
_	Random		000	000	017	000	607	0 0	216	57	077	9 1	36	0	518	57	141		2.4	7
		, ,	1 0	70	000	20	***		35	97	100	2	671	7	477	36	34		90	
		,	336	4	507	67	1/6	^	373	20	250	12	777	0	514	54	1.3		15	14
		-	17	77						,	,			,						
				3 :						5			77	,	0	70	2	*	0	•
	Fixed		*	;	77	12	ŧ	•	-	7	20		61	0	0,1	61	1.1	3	1.1	
		-	3.5	0 7	52	54	20	01	51	24	57		61	,	5.8	20	1.2		0	
OT.		4	25	63	27	33	-	15	28	20	13		6	-	-	24	7		0	_
-		-	332	64	253	18	175	9	457	53	36.3		252	-1	299	64	211		3.1	
_	Bandon	2	381	26	294	30	103	*	417	5.5	333		25.5	. 7	36.0	6.3	776			
	Managara		378	9	200	33	104		717	, ,	200		0 70		200	,,	0 1			
-		7	1 4 7 7	2 5			,,,,			2	100	0 :	0 5 5		2 0	2 .	0 .	2:		
-		,	6	23	301	97	967	5	400	9	340		250	m	305	2	174		=	
_		-	67	0		0,	0			,,	,,									
				2 :					,	2	;			0	7.	;	*	77	0	
	Pixed	,	200	26	47	67		1.1	30	5.1	20			7	30	37	7.	97	*	1
		_	777	2	22	27		0	42	30	17			9	25	7,7	52	56	0	•
17		4	777	43	23	27		17	57	32	25			,	3.3	4.7	. 7	3.3	G	ľ
-		_	660	40.5	378	616			047	407	202				000	230	2.17		000	1
			7.66	26.3	26.7	663		10			100			4 6		2				7
	Random	, ,	0 0	000	200	100	8/12	0 1	473	747	33.5	/89	607	***	774	94/	300	77	111	2
		-	187	629	337	200	•	.63	461	159	383		-	54	390	783	271	726	11	2
			0.7.7																	

Table . The Empirical Frequencies, in $\alpha \cdot 1000$ Rejection Regions, of the F for Items, Based on the Dichotomous Data, Items Crossed, Repeated Measure Effects Non-null, Interaction Null.

Probability of a One	a One			٤.			.2			1.		
م ، 1000			20	25	10	20	25	10	90	25	10	
No. of Sub.s	Items	Level of Sub. Het.										
`	Fixed	1 2 3	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	100	3 C 4	39 17 10	12	204	31 16 13	15	3 N O	
ī	Random	4 H Z E 4	154 154 156 156	100 100 100 100 100	5 m t t t t t t t	155 133 133	8 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3	0 4 4 W W W W W W W W W W W W W W W W W	114 91 68 49	38 3 4 6 U	11590	
9	Fixed	F 3 5 H	0440	22 52 72 72 73 75 75 75 75 75 75 75 75 75 75 75 75 75	26 6 6	34 r c	5017	000	139	8 7 T	N N O	
· · · · · · · · · · · · · · · · · · ·	Random	7 T O E 7	218 259 269 289	175 172 181 198	85 93 101 88	2 5 2 4 2 5	1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	116 129 105 109	233 176 164 161	126 102 105 68	9 6 4 8 9 0 9 6 8 9 9 9 9	
ω	Fixed		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 12 12 12 12 12 12 12 12 12 12 12 12 1	2000 100 100 100 100 100 100 100 100 100	113111777	0 m 0 c m 0 m c	
. 01	Fixed	ি নেওলক	t t t t t	2240	o -	9 9 9 9 9	0 7 11	~	ማቴወቴ ሶ	n 6444	ρ ન ન	
	Random	4351	347 374 373 437	274 287 290 341	186 211 183 256	451 457 507 532	383 366 421	247 262 271 255	346 369 374 325	247 270 250 258	159 152 186 161	

Table · ′. The Empirical Frequencies, in ≪ 1000 Rejection Regions, of the P for Irems, Based on the Dichotomous Data, Items Nested, Interaction and Repeated Measure Effects Both Null.

																				-																					
	6							10	l	,	, t	v :				32		1						3 er 3 er		1)	w i	U 6	. 3	27	7	O	0	ာ	'n	55	121	70,	?
-:	37							U U O O			12					92								109					1										247		
	144	401	74	0.2	22	977	617	231	136		V V	37		261	236	234	127	d	10.5	08	98	293	317	318	127	5.	136	75	67	244	351	392	126	111	128	92	96	523	417	0 0	
	2	7	2	r	7	7	0 :	, (1)	٥		n (rc	۰ -	55	7 7	36	5	۰	0 0		2	25	79	8 9	4	12	6	9	0 8	1 2 2	107	131	4	-	7	~	5	135	131	162	
.2	37	77	53	23	21	011	107 0.3	5 6	30	1	e .	32	11	120	101	101	27	1,	- 00	5.4	23	156	161	137	25	18	50	13	7 7	2 7 7	242	289	24	17	17	11	12	273	257	, e	2
	144	711	133	116	101) () ()	27:	285	134	7	† 3 K	100	85	331	268	289 309	127	20	9.5	112	88	382	704	435	127	104	117	124	711	7 7	1 4	504	126	118	112	109	125	995	562	643	•
	6		20	o :	⊒:	- 6	0 0	52	٥	,	- 0		m	0,	5.6	6 0	2	٠	· ~	'n	'n.	9 û	7 5	1 00 V L-	7	3	,	Ξ,	7 05	- 6	63	9.4	7	7	4	2	4	95	55	120	
٠.	37	2,	0	8 2	35		9 6	. E.	2	12	3.7	55	52	108	96	128 118	27	4.5	28	52	17	156	7/1	171	25	31	20	34	177	179	153	192	24	7.5	20	7,	21	231	26.5	287	
	144	145	142	131	130	0.10	276	236	134	134	150	115	129	285	279	312	127	142	112	104	55	365	4 50	414	127	129	126	127	021	437	403	426	126	100	129	116	103	470	ν Ο ε	561	
																	-								,		-						_								
	¥ · 1000								oc ⋅ 1000								مر 1000								α ⋅ 1000								6 ⋅ 1000								
	Level of Sub. Het.	1	2	e .	3 -	10	٠, ٣	4			, 6	. "	4		5	m 4			. 2	n	4 '	٦,	7 ~	7 7		-	7	Μ.	4 -	۰ ۲	. 60	7		1	2	n	•	~ (7 (0 4	
of a One	Items		Fixed				Kandon					D AT L			Random				Pixed	,,,,,,			Random				Fixed				Malido				Fived				Random		
Probability of a One	No. of Sub.s			,	,								۵								x 0							5	2								12				

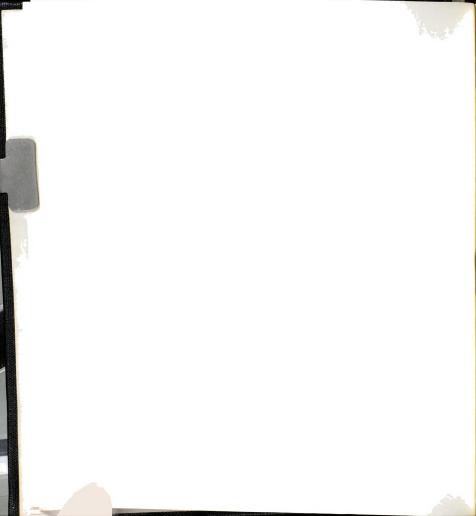


Table '. The Empirical Frequencies, in ∞·1000 Rejection Regions, of the P for Items, Based on the Normal and Dichotomous Data, Items Crossed, Interaction and Repeated Measure Effects Both Null, Twelve Subjects.

							ſ												
Probability of a One	y of a One									.2						-			
٨٠ 1000			20	25		10		50		25		10		0%		25		-	10
Normal or 1	Normal or Dichotomous Level of	Q	z	Q	z	۵	z	a	z	Δ	z	۵	z	۵	z	۵	z	۵	z
Items	Sub. Het.																		
		. 43	, O	17	19	80	6	17	33	2.1	15	4	0	7 7	4.1	14	22	ī.	٦
Fixed	2	9.0	58	24	53	9	1.7	30	27	20	15	4	2	30	37	7 7	16	7,7	6
	£	7,	51	22	27	13	o.	45	30	17	15	1,4	۰	55	7	52	56	0	,
	4	77	43	23	2.7	13	1.7	5.7	32	5 2	15	7	4	31	47	4	33	၁	7
	7	097	294	346	515	257	421	458	169	382	779	280	562	603	720	162	499	199	579
Random	2	. 465	635	357	551	278	458	493	742	388	687	289	594	422	746	308	702	717	629
	e	481	6 9 5	387	969	285	667	461	759	383	069	261	624	390	783	271	126	111	289
	4	894	727	394	655	326	570	473	197	374	761	275	689	335	829	250	758	164	099

Table . The Empirical Frequencies, in 1000 Rejection Regions, of the F for Items, Based on Normal and Dichotomous Data, Items Nested, Interaction and Repeated Measure Effects Both Mull, Twelve Subjects.

Probability of a One	of a One			٠:						.2						7			
1000		1	126	24		7		126	2	24		7		126	9	24		1	
Normal or Dichotomous	tchotomous	Q	z	Ω	z	۵	z	Q	z	۵	z	۵	z	Д	z	۵	z	۵	z
Items	Level of Sub. Het.				,														
	1	100	102	2.7	61	7	5	118	76	11	22	7	9	111	63	1.1	18	0	1.1
Fixed	2	129	115	20	27	4	9	112	99	17	2.1	~	9	128	7.7	9	16	ာ	0.1
		116	109	21	54	8	^	108	76	11	54	٦	,	9.5	6.5	O	20	•	11
	4	103	117	21	8 2	4	4	125	8.7	12	33	2	9	8.6	104	11	20	W	1.
	ı	470	634	231	417	82	972	586	851	273	979	135	472	523	998	741	740	9.5	523
Random	2	005	680	554	421	98	268	295	664	267	769	131	525	417	0.0	247	759	121	159
	3	518	140	265	505	103	330	623	910	360	193	130	630	461	935	215	827	18	673
	4	561	176	287	561	120	380	649	950	320	855	162	717	483	979	206	698	104	746

APPENDIX B

Empirical values of correlations between mean squares in variance ratios other than those presented in Chapter V.

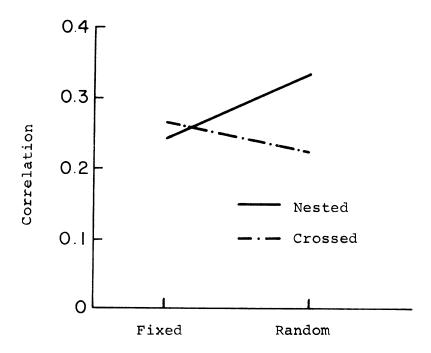


Figure 15. The interaction between items fixed vs. random and items crossed vs. nested, with respect to the correlations in Table 21.

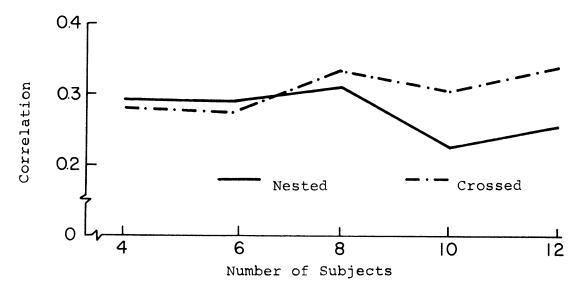


Figure 16. The interaction between the number of subjects and items crossed vs. nested, with respect to the correlations in Table 21.

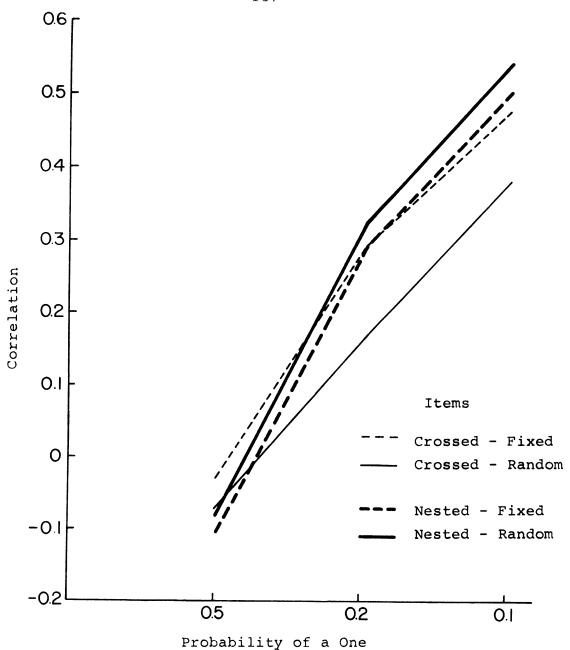


Figure 17. The second order interaction between the probability of a one, items fixed vs. random, and items crossed vs. nested, with respect to the correlations in Table 21.

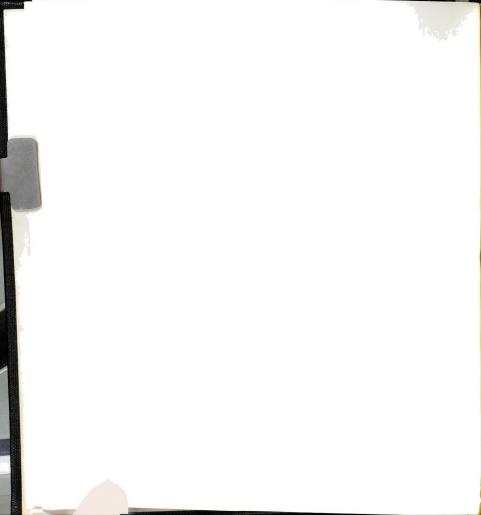


Table 31. The Correlations Between the Mean Square Items by Repeated Measures Interaction and the Mean Square Subjects by Items by Repeated Measures Interaction Based on the Dichotomous Data, Interaction and Repeated Measure Effects Poth Null.

											-		
Probability of a One	n One			٠.			•	.2			٠	.1	
evel of Subject	evel of Subject Netwrogeneity	-	7	m	4		7		4	1	2	-	7
No. of)		!))		•	•	,	•
Sub.a	Items												
4	Fixed	-0.200	-0.029	0.03	0.147	0.382	0.432	0.477	0.541	0.658	0.656	0.769	0.789
	Random	-0.162	-0.045	650.0	0.137	0.352	0.438	0.527	995.0	0.572	965.0	609.0	969.0
so	Fixed	-0.144	-0.038	0.015	980.0	0.267	0.299	0.421	0.527	0.480	0.578	0.650	0.0.0
	Random	-0.052	-0.002	0.123	0.186	0.274	0.387	0.333	994.0	0.498	0.546	0.568	0.525
∞	Fixed	-0.140	0.020	940.0	0.106	0.164	0.274	0.268	0.412	0.486	0.573	0.591	0.651
	Random	0.064	0.016	90.0	0.107	0.281	707.0	0.353	0.422	0.480	0.540	0.540	0.687
10	Fixed	-0.048	-0.047	970.0	0.151	0.250	0.265	0.381	0.359	0.533	0.488	685.0	165.0
	Random	-0.025	700.0	0.044	670.0	0.331	0.373	0.305	0.378	0.587	0.521	0.535	0.587
12	Fixed	-0.110	0.035	0.023	0.126	0.172	0.206	0.298	0.360	0.417	0.418	0.434	0.488
	Random	-0.051	-0.030	0.058	0.074	0.298	0.347	946.0	0.290	0.510	0.517	0.495	0.513

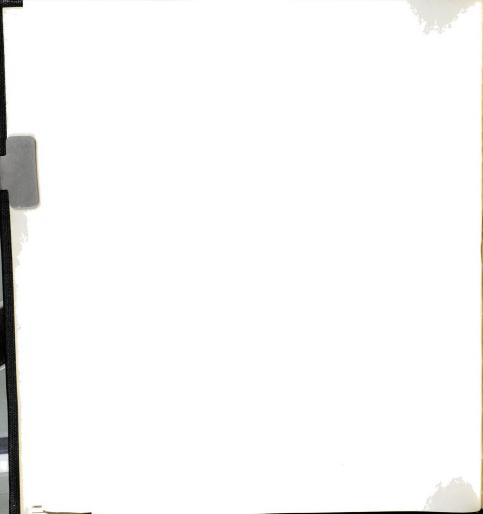


Table : . The Correlations Between the Mean Squares for Items and the Mean Square Error Associated, Based on the Dichotomous Dats, Interaction and Repeated Measure Effects Both Null.

Probability of a One	of a One				٥.			7				4		
Level of Subject Heterogeneity	ect Hete	rogeneity	7	2	٣	4	7	2	m	4	-	^	٣	7
Items	No. of Sub.s	Ltems						,	,	•	1	•	,	•
	7	Fixed	-0.026	-0.014	0.037	0.176	0.299	0.374	0.344	0.418	0.286	0.488	0.534	3.620
	r	Kandom	-0.052	0.373	0.140	0.148	0.230	0.382	0.426	104.0	0.520	0.584	0.665	0.721
	,	Pixed	-0.022	0.007	0.103	760.0	0.210	906.0	0.228	0.302	0.301	0.315	0.518	80¢•0
	۰ .	Random	-0.091	-0.049	0.071	011.0	0.257	0.50	0.396	0.414	0.401	0.402	0.491	0.034
3	. •	Fixed	0.012	0.023	900.0	0.083	0.190	0.217	0.354	0.412	0.349	0.375	0.475	0.509
2388072	•	Random	0.032	900.0	0.103	0.169	0.285	0.337	707.0	0.419	0.411	0.481	0.482	0.023
	Ç	Fixed	-0.020	0.048	0.138	0.073	0.055	0.152	0.221	0.333	0.267	0.337	0.406	0.432
	2	Random	-0.023	-0.063	0.092	0.063	0.191	0.268	0.360	0.462	0.492	0.619	0.000	0.720
	-	Fixed	-0.036	0.041	500.0	0.105	0.188	0.180	0.253	0.258	0.223	0.268	0.320	0.380
	7.7	Random	-0.083	-0.082	0.065	0.093	0.186	0.283	0.315	0.465	0.329	0.370	0.462	665.0
	4	Fixed	-0.248	-0.048	0.022	0.194	0.414	697*0	675.0	909.0	0.688	0.725	0.766	0.027
	•	Random	-0.226	4 70.0-	0.029	0.226	0.224	606.0	0.408	0.559	0.590	785.0	0.641	0.745
	<u> </u>	Fixed	-0.189	-0.053	0.051	0.151	0.332	0.370	0.482	675.0	0.9.0	0.651	0.751	689•0
	·	Random	-0.265	-0.105	0.032	0.182	0.224	0.319	0.454	0.553	0.451	667.0	665.0	599•0
Z	α	Fixed	-0.181	0.019	950.0	0.182	0.206	0.289	0.351	0.455	0.571	609.0	0.661	6.717
	,	Random	-0.208	-0.147	-0.024	0.100	0.331	904.0	0.488	0.556	0.534	0.631	669.0	0.665
	9	Fixed	-0-117	-0.055	0.068	0.172	0.270	0.302	0***0	0.441	0.567	695.0	0.618	0.656
	3	Random	-0.219	-0.106	0.012	860.0	0.270	0.264	0.437	864.0	767.0	775.0	0.570	0.041
	;	Fixed	-0.076	-0.057	-0.012	0.058	0.232	0.201	0.275	0.288	0.256	0.340	0.323	0.351
	;	Random	-0.165	-0.014	060.0	0.138	0.162	0.142	0.193	0.276	0.326	0.321	0.354	0.330

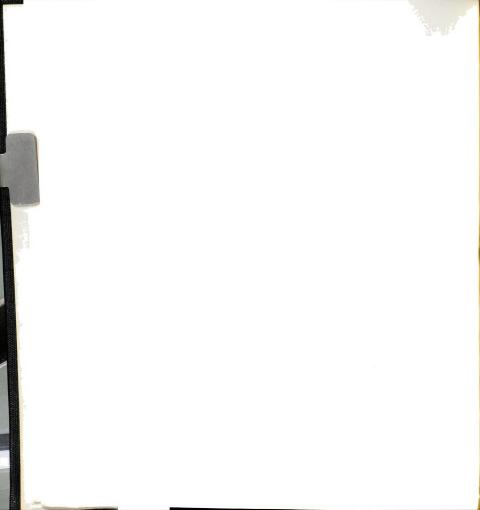


Table '. The Correlations Between the Mean Squares for Subjects and the Mean Square Error Associated, Based on the Dichotomous Data, Interaction and Repeated Measure Effects Both Null.

Probability of	of a One				.5			.2					1	
Level of Subject Heterogeneity	et Hete	rogeneity	-	7	e	4	-	7	m	4	1	7	· •	4
Items	No. of Sub.s	Items									I		,	
	7	Fixed	-0.244	-0.274	-0.284	-0.250	0.155	0.171	0.178	0.232	0.373	0.419	0.437	0.341
		Random	-0.132	-0.190	-0.268	-0.224	0.316	0.293	0.237	0.230	0.507	0.445	0.383	0.415
	9	Fixed	-0.270	-0.339	-0.355	-0.370	0.156	0.195	0.167	0.102	0.354	0.363	0.438	187.0
	, .	Random	-0.135	-0.199	-0.258	-0.298	0.198	0.186	0.276	0.280	0.389	904.0	0.413	0.384
2000	. «	Fixed	-0.255	-0.311	-0.345	-0.390	0.272	0.183	0.109	0.172	0.331	0.333	0.389	996.0
)	Random	-0.204	-0.249	-0.269	-0.316	0.281	0.282	0.216	0.205	0.439	0.44.0	0.491	0.441
	9	Fixed	-0.269	-0.315	-0.362	-0-343	0.103	0.139	0.141	0.220	0.374	0.321	0.343	0.421
	3	Random	-0.164	-0.251	-0:305	-0.293	0.265	0.264	0.359	0.262	605.0	0.480	0.457	0.378
	13	Fixed	-0.267	-0.350	-0.328	-0.443	0.129	0.123	0.136	0-141	0.359	0.259	0.354	0.378
		Random	-0.288	-0.293	-0.321	-0.402	0.219	0.271	0.278	0.243	0.564	0.473	0.411	0.441
	7	Fixed	-0.497	-0.592	-0.562	-0.571	0.270	0.289	0.264	0.337	0.539	0.586	0.584	0.502
		Random	-0.407	-0.478	-0.524	-0.521	0.246	0.271	0.251	0.292	064.0	0.512	0.551	0.453
	•	Fixed	-0.577	-0.650	699.0-	-0.644	0.185	0.192	0.214	0.150	0.477	167.0	0.536	0.523
)	Random	-0.476	-0.510	-0.539	665.0-	0.184	0.256	0.220	0.160	0.456	0.394	0.448	504.0
Neated	«	Fixed	-0.610	-0.677	-0.701	-0.711	0.259	0.208	0.161	0.207	0.465	486.0	0.451	804.0
)	Random	-0.504	-0.596	909.0-	-0.658	0.187	0.149	0.222	0.270	0.538	0.443	0.427	0.435
	Q.	Fixed	-0.639	-0.662	-0.739	-0-734	0.169	0.244	0.203	0.213	0.498	0.430	0.364	0.427
	}	Random	-0-477	-0.641	-0.652	-0.639	0.220	0.193	0.227	0.304	0.440	977.0	997.0	797.0
	1,	Fixed	-0.630	-0.737	-0.745	608.0-	0.133	0.156	0.154	0.157	0.483	0.472	154.0	0.426
	!	Randon	-0.577	-0.676	-0.725	-0.707	0.234	0.198	0.207	0.199	0.576	0.534	0.531	994.0

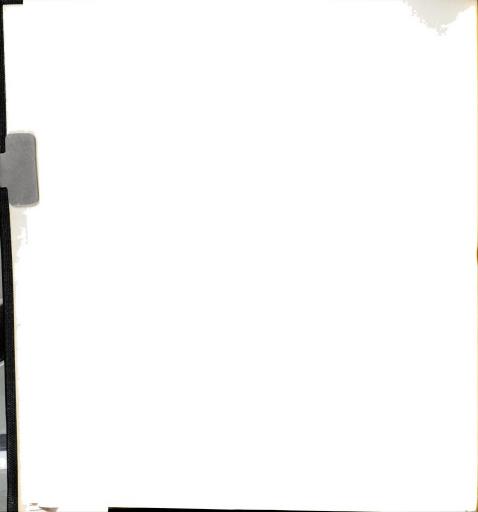
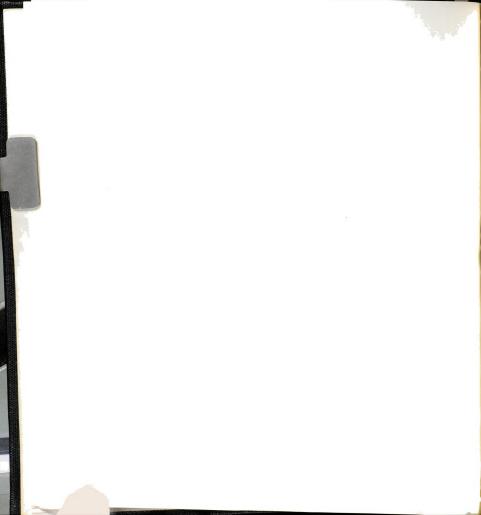



Table 27. The Correlations Between the Mean Squares for Items and the Mean Squares for Subjects by Items Interaction Based on the Dichotomous Data, Items Crossed, Repeated Measure Effects are non-null and Interaction Effects are Null.

											-	1226	
Probability of a One	ne ne		. 56	5625			. 2400	0			177		
level of Subject Heterogeneity	leterogeneity	1	2	3	4	1	2	3	7	7	2	e	4
No. of	7 + 0 = 0												
s.duc	Fixed	0.016	-0.038	700°0-	0.386	0.189	0.317	0.321	0.436	0.326	0.389	0.539	0.575
4	Random	-0.051	0.023	0.019	0.117	0.156	0.208	0.300	0.384	0 * * * 0	0.55	0.625	0.705
	Fixed	0.001	0.048	0.075	0.027	0.115	0.259	0.264	0.275	0.392	0.384	0.400	2445
9	Random	760.0-	690.0-	0.031	0.056	0.161	0.141	0.189	0.236	0.295	0.348	0.432	0.523
	Fixed	0.011	990.0	-0.024	900.0	0.002	0.221	0.287	0.262	0.264	0.285	0.410	0.431
80	Random	0.018	0.061	0.041	0.106	C.186	0.263	0.314	0.425	604.0	U.508	09**0	0.601
	Fixed	-0.024	-0.032	0.025	-0.018	060.0	0.195	0.186	0.249	0.146	0.221	0.248	0.324
10	Random	-0.017	-0.066	0.104	0.163	0.164	0.249	0.290	0.400	666.0		0.567	0.625

Table 36. The Correlations Between the Mean Squares for Subjects and the Mean Squares for Subjects by Items Interaction Based on the Dichotomous Data, Items Crossed, Repeated Measure Effects are Non-null and Interaction Effects are Null.

Probability of a One	a One			.5				.2			•	1,	
Level of Subject Heterogeneity	t Heterogeneity	1	2	3	4	1	2	3	4	н	2	e e	. 4
No. of Sub.s	Items												
7	Fixed	-0.239		-0.240 -0.246 -0.245	-0.245	0.122	680.0	0.133	0.057	0.289	0.345	0.428	0.377
	Random	-0.138	-0.182	-0.206	-0.206 -0.257	0.216	0.154	0.124	0.158	0.374	0.371	0.334	0.398
ď	Fixed	-0.218	-0.283	-0.343	-0.361	0.010	650.0	0.034	0.075	0.321	0.323	0.330	0.382
,	Random	-0.149	-0.211	-0.274	-0.276	0.130	0.143	0.168	0.129	6.398	0.429	0.374	0.367
œ	Fixed	-0.170	-0.266	-0.284	-0.323	0.042	0.076	0.111	0.078	0.275	0.280	0.275	0.297
,	Random	-0.196	-0.231	-0.207	-0.274	0.159	0.171	0.114	0.150	0.473	0.433	0.356	0.381
5	Fixed	-0.251	-0.227	-0.226	-0.376	0.005	-0.005	0.037	0.063	0.418	0.314	0.340	0.333
2	Random	-0.183	-0.186		-0.322 -0.361	0.176	0.221	0.179	0.214	954.0	0.482	9440	0.383

APPENDIX C

The listing of the computer program employed in the Monte Carlo procedure.


```
CART AVAIL PHY DRIVE
                                                                      # IOCS(1132 PRINTER.CARD.DISK)
# LIST SOURCE PROGRAM
# DIMENSION A(80)
DO 5 J=1.50
WRITE(3.1)
WRITE(3.2)
DO 5 I=1.45
                                  ACTUAL BK CONFIG BK
                                                                                                                                                                     WRITE(3.4)(A(K),K=1.80
                                                                                                                                                                                                                                                                                                   CORE REQUIREMENTS FOR COMMON 0 VARIABLES
                                                                                                                                                                                                      FORMAT(80A1)
FORMAT(20X•80A1)
CALL EXIT
END
 CART SPEC
                                                                                                                                                                                             FORMAT(8(/))
                                                                                                                                                                                                                                                             FEATURES SUPPORTED IOCS
                                                                                                                                                                                  FORMAT (1H1)
   LOG DRIVE
0000
                                      V2 M09
```


1 308 1

PAGE

// XEQ

END OF COMPILATION

168 PROGRAM


```
0,71
                                                                                                           200
                                                                                                                                                                                                                                                                                              220
                                                                                                                                                                                                                                                                                                                                                      250
                                                                                                                                                                                                                                                                                                                                                                                                        22.0
22.0
22.0
29.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         310
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                350
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             $10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     420
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 430
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     450
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               450470
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        520
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           540
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           440
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  480
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          064
                                                                                                                                   GEN
                                                                                                           GRN
                                                                                                                                                                                                                                            GEN
                                                                                                                                                                                                                                                                      GEN
SGEN
                                                                                                                                                                                                                                                                                                                                                      GEN
                                                                                                                                                                                                                                                                                                                                                                              GEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               GEN
GEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                0 0 E N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   GEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      GEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            GEN
                                                                                                                                                                                                                                                                                                                            GEN
                                                                                                                                                                                                                                                                                                                                                                                                   SER
PROGRAM GENN3 (INPUT.OUTPUT.TAPE60=INPUT.TAPE61=OUTPUT.PUNCH.TAPE6GEN
                                                                                                                                                                                                                                                                                              DIMENSION SUMMI(12) * SUMMI(4) * SUMMSR(5) * SUMI(12.4) * SUMM(12.5) * UMM(12.5) * MEANVI(4) * MEANVI(4) * MEANVI(12)
                                                                                                                                                                                                            DIMENSION PT(12) POIN(12) A(9) FMT3(8) FMT4(8) DF(9) R DIMENSION XX4(4.12) XX5(4.4) SX5(4.4) SX6(4.4) SX6(4.4) XX(12.12) DIMENSION SX(12.12) CORR(12.12) CHOL1(12.12) DIMENSION SUMRT(12) SUMST(4) SUMSR(3) SUMRT(12) SUMRK(12
                                                                                                                                                                                                                                                                                                                                                  EQUIVALENCE (H+H1)+ (PT+POIN)+ (20+21+22)+ (Y0+Y1+Y2)
                                                                                                         DIMENSION YO(144), Y1(12,12), Y2(3,4,12)
DIMENSION XXX(9,9), YYY(9), RHO(9,9), VAR(9), F(14)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DO PARAMETERS AND DEGREES OF FREEDOM
                                                                               20(144), 21(12,12), 22(3,4,12)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   .2..39.44.59.5.£71.88.9/
READ (60,106) NS,NR,NT,NUMSAM.INISH
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    READ (60,106) NU1, NU2, NU3, NU4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (60,108) EPS,START
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (60,107) FMT3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   4 LWI
                                                                                                                                                                                                                                                                                                                                                                            INTEGER COUNTABE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               DEFINITIONS OF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (60,107)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        A(1)=FMT3(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        NMIOSENMID+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    A(2)=FMT3(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              A(3)=FMT3(4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           A(6)=FMT3(6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       A(9)=FMT4(4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        A(4)=FMT3(5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    4(5)=FMT4(1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 A (8) = FMT4 (3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     A(7)=FM14(2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RANSE
                                                                                 CINERSION OF THE PROPERTY OF T
                                                          DISCUSSION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                S/SCHOLZN
                              2 # PUNCH 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RMSHINGER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       RMT BNT-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RMR=NR-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RNTENT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              RNARAK
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          SN=SNS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    READ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                READ
READ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CALL
```



```
009
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             092
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         880
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               900
                                                      580
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        780
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      840
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            860
                                                                                                                                                                                                                                                                                                 9009
NAME OF THE CONTRACT OF THE CO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        (NU3,NU4,CNTILE(5,J),POIN(J))
(DF(3),DF(5),CNTILE(6,J),POIN(J))
(DF(8),DF(9),CNTILE(7,J),POIN(J))
(DF(4),DF(7),CNTILE(8,J),POIN(J))
(DF(4),DF(9),CNTILE(8,J),POIN(J))
(DF(6),DF(7),CNTILE(10,J),POIN(J))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FDIST (DF(1)*DF(5)*CNTILE(1.J)*POIN(J))
FDIST (DF(1)*DF(9)*CNTILE(2.J)*POIN(J))
FDIST (DF(2)*DF(4)*CNTILE(3.J)*POIN(J))
FDIST (NU1*NU2*CNTILE(4.J)*POIN(J))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                WRITE (62,75) (CNTILE(1,J),J=1,12)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             READ (60,75) (CNTILE(1,J),J=1,12)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DF(I)=((CHANG*EPS)+.5)*10.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         DF(I)=DF(I)/10
IF (INISH+LE.O) GO TO
DO 2 I=1+10
                                                                                                                                                                                                                                                                                                                                                                                                           DF(7)#(RMS*RAR*RMT)
OF(8)#(RMT*RNR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DF(9) = (RMS*RMT*RNR)
                                                                                                                                                                                                                                                             0F(2) #RXR
0F(3) #RXM
0F(4) # (RMS*RXX)
0F(5) # (RMS*RXX)
0F(5) # (RMS*RXX)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CNTILE(I,J)=0.
                                                                                    NTOTENS#NR*NT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DO 2 I=1,10
DO 2 J=1,12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   01 · I = I · 10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DO 7 I=1.10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   CHANGEDE (1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    00 1 1=1,9
                                                                                                                                                                                                          RNTOTENTOT
OF (1) ERMS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FDIST
とのからい ないないだい というせい さいしょう ときしょう
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FD1S
                                                             トスキススコトなど
                                                                                                                                          RNST#NST
RNRT=NRT
                                                                                                                     RNSAHASR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            CONTINCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   BUNITACO
FINAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             GO TO 6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CALL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CALL
```



```
1030
          1060
              1080
                                                                    1330
1340
1350
DO 19 Jel+3
CORR(1+J)=EL1
CORR(1+3+J+3)#EL
CORR(1+6+J+6)=EL
                                                                                            CORR(1+9*J+9)#E
CORR(1+3*J)#EL2
                         Sx6(1
                                            C) XXX
                                                                  8
```


GEN

```
CALL CHOLM (CORR, CHOLL, NRT, NRT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Y2(1°J*K)=Y2(1°J*K)+MEANV1(J)
                                                                                                                                                     BEGIN SAMPLING ITERATIONS
                                                                                                                                                                                                                                                                                                                                                                                                                              Y1(I,O)=Y1(I,O)+MEANS(O)
                                                                                                                                                                                                                                                                                                                                                                                                                 YI(I,))=YI(I,U)*SIGMAD
                       +6,J+9)=EL2
                                                                                                                                                                                                               666666*ddddadddc
1+31=EL2
                                   .J+6)=EL3
                                              +3.0.00 JaE
                                                         +6.J)=EL3
                                                                                                                                                                                                                                       SEC=(SEC*2.)+1.
                                                                                                                  CORP (K+K)=1.0
                                                                                                                                                                                                                                                                                                                                                                                                       23 I=1,NRT
                                                                                                                                                                                                                           SEC=PPPP/SEC
                                                                                                                                                                                                                                                                         =1,NS
                                                                                                                                                                                                                                                                                                                                                                                            DO 23 J=1,NS
                                 ORP (
           ORR (
                                             089(
                                                                                ORR
                                                                                           ORR (
0.8.2.
                                                          088
                                                                     103R (
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             54
                                                                                                                                                                                                                                                                                                                                                                                                                              23
                                                                                                                    5
                                                                                                                                                                                                                                                                                     20
```

```
930
                   950
                         960
                                           066
                                                  2000
                                                              2020
                                                                          2040
                                                                                2050
                                                                                      2060
                                                                                                  2080
                                                                                                                                                                                       2220
GEN
                                                                                                                                                                                                                                        GEN
                                                                                                                                                                                                                                              S E N
                                                                                                     DICOTOMIZATION PROCEDURE H(K.J.I) IS A QUANTILE AT WHICH DICTOMY DO 32 K=1.NT
             NON-CENTRAL ITEMS AS CROSSED
                                                                                                                                                                                                                     BEGIN THE ANALYSIS OF VARIANCE
                                                                                H(K, J, I) = (SIGMAV * RANN(-1)) +DIFF
                         H(K+1+1) = (SIGMAV*RANN(-1))+DIFF
 Y2(I.J.AK) = Y2(I.J.K) + MEANV2(J)
IF (NEST.EQ.I) GO TO 27
                                                       NON-CENTRAL ITEMS AS NESTED
                                           H(K) (1) = H(K) 101)
                                                                                            エ(Kゥし・1)=エ(K・し・1)
                               DO 26 J=1,NR
DO 26 I=1,NS
                   DO 26 K=1,NT
                                                                         DO 28 J=1 NR
                                                                                      I=1 NS
                                                                    DO 28 K=1+NT
                                                                                                                            1=1 NS
                                                                                                                                                                                                   Z0(I)=\0(I)
                                                                                                                                                                                                                                  SUMALL=0.
                                                  GO TO 29
                                                              CONTINUE
                                                                                                   CONTINUE
                                                                                                                                                                CONTINCE
                                                                                                                                                                                                          CONTINCE
                                                                                                                                                                                                                                                                       SQACEO
                                                                                                                                                                                                                                              S0A=0.
                                                                                      50 28
                                                                                                                           56 00
                                                                                                                                                                                                                                                                SGAB#O
                                                                                                                                                                                                                                                          SOCEO
                                                                                                                    00 32
                                                                                                                                                                                                                                        50=0
                                                                                                                                                         33
                                                                                                                                             S
                                                                                                                                                                                                   0 0
0 4
  25
                                                                                            28
                                             56
                                                              27
```


2550

2370 2380 2390

400

430 450 94 480 064

470

420

```
GEN
GEN
GEN
                                                                                                                                                                                                                                                                 GEN
                                                                                                                                                                                                                                                                                                                              GEN
GEN
           SEN
                                                                                                                                                    アルシ
                                                                                                                                                                 GEN
                                                                                                           GEN
                                                                                                                    GEN
                                                                                                                                                                                                                                                                                                                                                                                       (7)=((BY+BRSR)=(BRR+BR8)}=EFCT(4)
                                                                                                                                                                                                                                                                                                                                                                                                   EFCT(8)=BRS-BRST
EFCT(9)=(BY+BRST)-(BRT+BRS)
SGALL=SUMALL*SUMALL
                                                                                                                                                                                                                                                                                                                                                                                                                                                GA+SUMRT(I) *SUMRT(I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SQB=SQB+SUMST(J) *SUMST(J)
                                                                                                                                                                                                 SUMR ( 1 • K ) = SUMR ( 1 • K ) + I
SUMS ( J • K ) = SUMS ( J • K ) + I
                                                                                                                                                                                                                                                                                                                                                                               EFCT(6) = (BRS-RP5R) = E
                                                                                                                                                                                                                                                                                                                                                       EFCT(4) = (BRT-BRST) -E
                                                                                                                                                     SUMRT (I) = SUMRT (I)+P
                                                                                                                                                                          SUMSR (K) = SUMSR (K)+P
                                                                                                                                                                                     C. I) TMUS = (C. I) TMUS
                                                                                                                                                                                                                                           BRRT = SUMRT(1)/RNRT
                                                                                                                                                                                                                                                                  BRSR=SUMSR(1)/RNSR
                                                                                                                                                                                                                                                      BRST = SUMST (1) / RNST
                                                                                                                                                                                                                                                                                       BRR=SUMR(1,1)/RNR
                                                                                                                                                                                                                                                                            BRT = SUMT (1,1)/RNT
                                                                                                                                            SUMALL=SUMALL+P
                                                                                                                                                                                                                                                                                                                                                                                                                                     = 1 .NS
                                                                                                                                                                                                                               87=22(1:1:1)
                                                                                                                                P=22(K.J.I)
                                                     SUMSR(K)=(
                                 SUMRT (
                                          SUMST (
                                                                SUMT
```

2610


630

2600 2620 949 2650 999

2590

670 2680

059


```
0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ر
ز:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ر
::
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       133
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ر
3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             $$q_*$QBC_$QB_$QC+$QALL
$A8C_*$G~$GAB~$QAC_$QBC+$QA+$QB+$GC-$GALL
                                                                                                                                                                                                                                     (つ・1)上述のの4(つ・1)上述ので・2々ので・2々ので
                                                                                                                                                                                                                                                                                                                                                                                                       (3・1)との0・1ととことないい・しょうこれには、といい
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        SOBO-SOBC+SOMS (J.K) *SOMS (J.K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          n in in alternation and enteretable in income and a second a second and a second and a second and a second and a second an
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        こかいとのもこれをもいては こくがいしょうしゃしゃしてい
                                                    (火)を見来口いす。(火)といえつによしのいましので
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ココマウシャングじゃくのじょ じくのじず ロイじ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1942 - 407 - 408 - 416 + 416 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1844-2481/8482-PASU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ことの ウェスのコインドン ひゃしょうこう
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.40.45.50.75.45.51.51.75.65
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           5AC49+55AC+55ABC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      50411-50411.788701
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              30,484,500 estable
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       11,47,840,5 - 1140,5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           19.80 - 1.52 F / FP 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1946/3000-3000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        21402 402-12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 17765-665-65
                                                                                                             60 60 1-1-MS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      11/03-100-10
                                                                                                                                                                            NO 40 Joint
                                                                                                                                                                                                                                                                                              00 41 THIND
00 41 KAIANT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.1.1.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    140 147 14111
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              William State of the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ひろが/ はじなーじこのの
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      50A+10A/RhaT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            けいロインけい しょじくむ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          144/00/10/54
00 39 K-1-NT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1046/800-909
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       かくいとう・・・・・
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              15. C + 17 . . . C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            75.40.40.40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    (4 )
                                                         ç
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      21
                                                                                                                                                                                                                                              5.7
                                                                                                                                                                                                                                                                                                                                                                                                                          ...
```


3440 3450 3460 3470 3480 3490 3510 3520 3530 3550 3560

GEN GEN

GEN

GEN GEN

3430

GEN

GEN

3330

3360

3390 3400 3410 3420 3410 3500

いこのこと GEN 3540

GEN

GEN

3580 3590

2 W W W GEN GEN

CEN

3600 3610 3630 3640 3650 3660 3670 3680

GEN

GEN GEN GEN GEN GEN

3620

```
DO 43 I=1.9
IF (RM(I).LE.0.0) RM(I)=1.0E=100
                                                                                                                                                                                                         QFBC=(RMSABC+RMSB)/(RMSAB+RMSBC)
                                                                                                                                                                                                                       OFBN= (RACNB+RMSB) / (RMSAB+RCNB)
                                                                                                                                                                                                                                                    OFEN= (RACNS+RMSB) / (RMSAB+RCNB)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      RNU2=RNU2/(RMS*RMR*RMT)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         RNU1=(RMSABC+RMSB)**2
RNU2=RMSABC**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              RNU1=(RMSAB+RMSBC) **2
                                                                                                                                                                                                                                                                                               FABC=RMSA3/RMSABC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                NU1=(RNU1+.5)*10.
                                                                                                                                                                                                                                                                                                              FABN=RMSAB/RACNB
FBC=RMSBC/RMSABC
                                                                                                                                                                                                                                     FCC=RMSC/RMSAC
                                                                                                                                                                                                                                                                 FCC=RMSC/RMSAC
                                                                                                                                                                                                                                                                               FCN=RCNB/RACNB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     RNU2=RNU2+RNU3
                                                                                                                                                              PAC=RMSA/RMSAC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 RNU1=RNU1/RNU2
                                                                                                                                                                             FAN=RYSA/RACNE
                                                                                                                                                                                           FB=RMSB/RMSAB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      RNU3=RNU3/RMR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             RNU2=RMSAB**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          RNU3=RMSBC**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         RNU9=RMSB**2
                                                                                                                   RMSABC=RM(7)
RCNB=RM(8)
                                                                                                                                                RACNB=RM(9)
                                                                         RMSAB=RM(4)
                                                                                       RMSAC=RM15
                                                                                                      RMSECHRM (6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                NU1=NU1/10
                               RMSA=RM(1)
                                           RMS8=RM(2)
                                                            RMSC=RM(3)
                                                                                                                                                                                                                                                                                                                                                                                     F(4)=QFBC
                                                                                                                                                                                                                                                                                                                                                                                                    N(S)=0FBN
                                                                                                                                                                                                                                                                                                                                                                                                                                              F : 8) = FABC
                                                                                                                                                                                                                                                                                                                                                                                                                                                               F(9)=FABN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             F(10)-F3C
                                                                                                                                                                                                                                                                                                                                                                                                                               F(7)=FCN
                                                                                                                                                                                                                                                                                                                                          F(1)=FAC
                                                                                                                                                                                                                                                                                                                                                          F(2)=FAN
                                                                                                                                                                                                                                                                                                                                                                                                                  F(6)=FCC
                                                                                                                                                                                                                                                                                                                                                                       F(3)=FB
                 40
```



```
3920
                 3710
3720
3730
                                                 3750
                                                                          3780
                                                                                                                                                                3880
                                                                                                                                                                        3890
                                                                                                                                                                                3900
                                                                                                                                                                                        3910
                                                                                                                                                                                                        3930
                                                                                                                                                                                                                3940
                                                                                                                                                                                                                         3950
3960
                                                                                                                                                                                                                                                  3980
3990
                                                                                                                                                                                                                                                                   4000
                                                                                                                                                                                                                                                                            0104
                                                          3760
                                                                                    3790
                                                                                             3800
                                                                                                            3820
                                                                                                                     3830
                                                                                                                                                       3870
                                                                                                                                                                                                                                          3970
                                                                                                                                                                                                                                                                                     4020
                                                                                                                                                                                                                                                                                                                                               4080
                                                                                                     3810
                                                                                                                                      3850
                                                                                                                                               3860
                                                                                                                                                                                                                                                                                             4030
                                                                                                                                                                                                                                                                                                            4050
                                                                                                                                                                                                                                                                                                                              4070
                                                                                                                                                                                                                                                                                                                                       4080
                                                                                                                                                                                                                                                                                                                      4060
                                                                                            GEN
                                                                                                                                                                                                                                                                                   IF (F(U), GE, CNTILE(U,I)) UCOUNT(U,I) * UCOUNT(U,I) +1
                                                                                                                                                                                                                                                                                                                   IF (PROI-GE-PT(I)) NCOUNT(I-I)=NCOUNT(I-I)+I
IF (PROZ-GE-PT(I)) NCOUNT(2-I)=NCOUNT(2-I)+I
CALL COVAR (21-NRT-NS-XX-SX+NRT-NS)
                                                                                                                                                                                                                                        PRO1=FPROB(RRNU1,RRNU2,F(4))
                                                                                                                                                                                                                                                 PRO2=FPROB(RRNU1,RRNU2,F(5))
                                                                                                                                                                                                                                                          F (NTIME, EQ.1) GO TO 45
                                                                                                                                                                                                                                                                                                    F (NTIME.EQ.1) GO TO 47
                                                                                                                                                                                                                                                                                                                                               F (NTIME.E0.2) GO TO 55
                                                                          RNU2=RNU2/(RMS*RMT*RNR)
RNU3=RNU3/RMR
                                                                                                                            RNU1=(RCNB+RMSAB)**2
RNU2=RCNB**2
                                                  RNO1=(RKONB+RMSB)**2
       RNU3#RNU3/(AMR#RMT)
RNU2=RNU2/(RMS*RMR)
                                                                                                                                                      RECOMPROS (RETARKE)
                                                                                                                                                              R M D D = R M D D / (R M R R R M R )
                                 NU2# (RNU1+.5)*10.
                                                                                                          NU3=(RNU1+.5)*10.
                                                                                                                                                                                        NU4=(RNUH+.0)*10.
                 ひり スカース アンファイ かいしい
                        RNU1=RNU1/RNU2
                                                                                            ストロショ おいじ フォル ひしん
                                                                                                                                                                              RNU1=RNU1/RNU2
                                                                                                   RAULERNUL/RNU2
                                                                                                                                                                       スペロショストロンナストロッ
                                                          34*87078**2
                                                                                                                                             RNU3=RNSAB**2
                                                                                                                                                                                                                                                                           DO 44 I=1,12
                                                                                                                                                                                                                                                                   DO 44 J=1,10
                                                                                                                                                                                                                                                                                                            48 1=1,12
                                                                                                                                                                                                                                                                                                                                                       48 1-1,12
                                                                   RNUU=RM00**2
                                                                                                                   NU3=NU3/10
                                         NU2=NU2/10
                                                                                                                                                                                                NU4=NU4/10
                                                                                                                                                                                                        RRNU1=NU1
RRNU2=NU2
                                                                                                                                                                                                                         RRNU3=NU3
                                                                                                                                                                                                                                 RRNU4=NU4
                                                                                                                                                                                                                                                                                            CONTINCE
                                                                                                                                                                                                                                                                                                                                      FORT INCH
                                                                                                                                                                                                                                                                                    10 t
1 t
                                                                                                                                                                                                                                                                                                                             470
                                                                                                                                                                                                                                                                                                                                                                        48
```



```
4230
                                                                                                               4280
                                                                                                                       4250
                                                                                                                                       4310
                                                                                                                                              4320
                                                                                                                                                                       4350
                                                                                                                                                                               4360
                                                                                                                                                                                      4370
                                                                                                                                                                                                      4390
                                                                                                                                                                                                              74400
         4150
4160
4170
4180
                                          4190
                                                        4220
                                                                                4240
                                                                                        4250
                                                                                                4260
                                                                                                       4270
                                                                                                                                                                4340
                                                                                                                                                                                                                      4410
                                                                                                                                                                                                                               4420
                                                                                                                                                                                                                                     4430
                                                                                                                                                                                                                                              0777
                                                                                                                                                                                                                                                      4450
                                                                                                                                                                                                                                                             4460
                                                                                                                                                                                                                                                                              4480
                                                                                                                                                                                                                                                                                    4490
                                                                                                                                                                                                                                                                                             4500
                                                                                                                                                                                                                                                                                                     4510
                                                                                                                                                                                                                                                                                                             4520
                                                 4200
                                                                                                                                                                                                                                                                                                                              4540
                                                                                                                                                                                                                                                                                                                                     4550
                                                                                                                                                                                                                                                                                                                      4530
                                         GEN
                                                                                                              IF (EFCT(U), GE.POINT(I)) ICOUNT(I.U)=ICOUNT(I.U)+1
DO 53 J=1,NR
                                               F (F(J), GE, CNTILE(J, I) COUNT(J, I) #COUNT(J, I)+1
                                                                                                                                      XX4(J,K)=22(1,J,K)+22(2,J,K)+22(3,J,K)
CALL COVAR (XX4,NR,NS,XX5,SX5,NR,NS)
                                                                       (T) FUR (I) WU+(D · I) XXXT(D · I) XXX
                                                                                                                                                                                                                                                                                                                                                           RNUM=RN*(DIAG-AAL)*(DIAG-AAL)
                                                                                                                                                                       (P•1)5x5+(P•1)9x5=(P•1)9x5
                                                                                                                                                                                                                                                                                                                             SOOFSOO+SX6(1.1) 48X6(1.1)
                                                                                                                                                                                                                                                                                                                     &N&/(∩•1)9XS+(∩)&U=(∩) ¥U
                                                                                                                                                                                                                                                                                   DO 59 I=1.NR
DIAG=DIAG+SX6[I:]/RNR
                                                                                                                                                                                                                     SX6(I . 1) = SX6(I . U) / REAN
                                                                                                                                                                                                                                                                                                            AAL=AAL+SX6(I:J)/RN
                                                                                       []=YYY([])+RM([)
                                                                                                                                                                                                                                                                                                                                           CSD=CSO+CW(I) *CW(I)
EFCT(10) #5X(1.2)
EFCT(11) #5X(1.4)
EFCT(12) #5X(1.7)
EFCT(13) #5X(1.10)
                                                                                                                                                                                                                                                                                                                                                    CSO=CSO*RNR*2.
                               DC 49 J=1,10
DO 49 I=1,12
                                                                                                                                                                                                                                                                                                     DO 59 J#1.NR
                                                                                                                                                                                                                                                                                                                                     DO 60 I=1,NR
                                                                                               DO 52 I=1:19
                                                                                                       DO 52 J=1:13
                                                                                                                              DO 53 K#1,NS
                                                                                                                                                                                                                                     DO 58 I=1.NR
DIAG=0.
                                                                                                                                                      DO 54 I=1+4
                                                        DO 50 1=1.9
DO 50 J=1.9
                                                                                                                                                              DO 54 J=1.4
                                                                                DO 51 I=1.9
                                                                                                                                                                                             00 57 1=1.4
00 57 J=1.4
                                                                                                                                                                                                              REFERENCESAM
                                                                                                                                                                                                                              ピピーのとの * といと
                                                                                                                                                                              MONITUROD
MONITUROD
                                                                                                                                                                                      BONHENOU
                                                                                                                                                                                                                                                    CM(1)=0.
                                                                                                                                                                                                                                                                      カムトョン・
                                                                                                                                                                                                                                                                             CS0=0.
                                                                                        1) 4 4 4
                                                                        S
                                                                                                               50
                                                                                                                                                                       2000
                                                                                                                                                                                                                                                    58
                                                                                                                                                                                                                                                                                                                            59
                                                                                                                                                                                                                                                                                                                                           9
                                                                                                                                       S
S
```



```
4650
                                                                     4670
                                                                               4680
                                                                                        4690
                                                                                                                                                                                               4810
                                                                                                                                                                                                                                                                      4890
                                                                                                                                                                                                                                                                               4900
         4600
                          4620
                                   4630
                                            4640
                                                                                                                                                                                      4800
                                                                                                                                                                                                         4820
                                                                                                                                                                                                                 4830
                                                                                                                                                                                                                                   4850
                                                                                                                                                                                                                                                    4870
                                                                                                                                                                                                                                                             4880
                                                                                                                                                                                                                                                                                        4910
                                                                                                                                                                                                                                                                                                4920
                                                                                                                                                                                                                                                                                                         4930
                                                                                                                                                                                                                                                                                                                          4950
                                                                                                                                                                                                                                                                                                                                   4960
                                                                                                                                                                                                                                                                                                                                                     4980
                                                                                                                                                                                                                                                                                                                                                             0664
                                                                                                                                                                                                                                                                                                                                                                      5000
                                                                                                                                                                                                                                                                                                                                                                               5010
                                                              4660
                                                                                                                                                                                                                                           4360
                                                                                                                                                                                                                                                                                                                  4940
                                                                                                                                                                                                                                                                                                                                            4970
                                                                                                                                                                                                                          4840
                                                   0 0 0
0 0 0
0 0 0
0 0 0
                                                                                                                                                                                                                                                                                                                          GEN
                                                                                                                                                                                                                                                                                                                                  GEN
                                                                                                                                                                                                                                                                                                                                                    GEN
GEN
                                                                                                                                                                                                                                                                                                                 GEN
                                                                                                                                                                                                                                                                                                                                           GEN
                                                                                                                                                                                                                                                                                                                                                                     GEN
                                                                                                                                                                                                                                                                                                                                                                                              (61,81) NS.NR.NT.NUMSAM.NEST.SIGMAV.SIGMAD.SIGMAM.DIFF
                                                                                                                                                                                                                                   NS.NR.NT.NUMSAM.NEST.SIGMAV.SIGMAD.SIGMAM.DIFF
                                                                                                                                                                                                                                                                     (MEANVI(U) + C#1+NR) + (MEANV2(U) + C#1+NR)
                                                                    [COUNT (20-1.01) # [COUNT (19-1.01) - I COUNT (20-1.01)
                                                                                                                                                                                                                                                                                                                                                                     A(I) . (RHO(I.J) . J=1.9)
                                                                                                                         ((C) \\\*(I) \\\\\) | (C*!) OHU=(C*!) OHU
                                                                                      ICCUNT(1,1) = NUMSAM-ICOUNT(1,1)
DO 64 I=1,9
DO 64 U=1,9
                                                                                                                                           /AR(I)=VAR(I)-(YYY(I)*YYY(I))
                                                                                                                                                            (C)=\A\\\(C)\A\\\)+(C)\&\\\=(C)\&\\
                                                                                                                                                                                                                                                                                                                                  (61,88) (VAR(I), [#1,9)
                                                                                                                                                                                                                                                                                                        61.67) (YYY(I).1=1.9)
                                                                                                                                                                                                                                                   NWID . NMIDS . NS
                                                                                                                                                                                                                                                                                                                                                    (51,986) (A(I),I=1,9)
                                                                                                                                                                                                                                                                                                (A(I),I=1,9)
                                          ICOUNT (20,1) = ICOUNT (19,1)
                                                                                                                                                                                      RHO(I . J)=RHO(I . J)/VARR
                                                                                                                RHO(I • J) = REAN * XXX(I • J)
       RDEMARDEM+(RN*AAL*AAL)
                                                                                                                                 VAR(I)=REANAXXX(I•I)
                                                                                                                                                    VAR(I)=SORT(VAR(I))
                                                                                                                                                                                                       YYY(I)=YYY(I)/REAN
                                                                                                                                                                    VARR=VAR(I)*VAR(U)
                RDEMARDEM* (RNR-1..)
                                                                                                                                                                             VARR=SORT (VARR)
                                                                                                                                                                                                                                  (61,81)
                                                                                                                                                                                                                                                                                                                                                                     61,90)
                                                                                                                                                                                                                                                    61,631
                                                                                                                                                                                                                                                                                                 61,86)
                                                                                                                                                                                                                                                                     61,84)
                                                                                                                                                                                                                                                                                                                                           61,891
                                                                                                                                                                                                                          (61•16)
                                                                                                                                                                                                                                                             61:78)
                                                  DO 62 1=1:13
DO 62 J=1:13
                                                                                                                                                                                                                                          61,78
                                                                                                                                                                                                                                                                               61,73
                                                                                                                                                                                                                                                                                        61,85
                                                                              DO 63 1-1:13
                                                                                                                                                                                                                (61,77
                                                                                                                                                                                                                                                                                                                                                                             61,77
                                  DO 61 I=1:13
                                                                                                                                                                                             5 t = I
                                                                                                                                                                                                                                                                                                                  6 1 =
                                                                                                                                                                                                                                                                                                                                                             -1,99
                                                                                                                                                                                                00 65
                                                                                                                                                                                                                WRITE
                                                                                                                                                                                                                          WRITE
                                                                                                                                                                                                                                                                                                                  DO 66
                                                                                                                                                                                                                                                                             WRITE
                                                                                                                                                                                                                                                                                      WRITE
                                                                                                                                                                                                                                                                                                         WRITE
                                                                                                                                                                                                                                                                                                                                   MULTER
                                                                                                                                                                                                                                                                                                                                                    MRITE
                                                                                                                                                                                                                                           MRITE
                                                                                                                                                                                                                                                                                                                                           WRITE
                                                                                                                                                                                                                                                                                                                                                            D0 67
                                                                                                                                                                                                                                                    WRITE
                                                                                                                                                                                                                                                             ERITE
ERITE
                                                                                                                                                                                                                                                                     WRITE
                                                                                                                                                                                                                                                                                                                                                                      27.18X
                                                                                                                                                                                                                                                                                                                                                                                                WRITE
                                                                                                                                                                                                                                                                                                STIES
                                                                                                                                                                                                                                                                                                                                                                              WRITE
                                                                                                                                                                                                                                                                                                                                                                                      WRITE
                                                                     62
                                                                                      63
                                                                                                                                                                                                        65
                                                                                                                                                                                                                                                                                                                           99
                                                                                                                                                                                      49
                                                                                                                                                                                                                                                                                                                                                                     67
                                           61
```



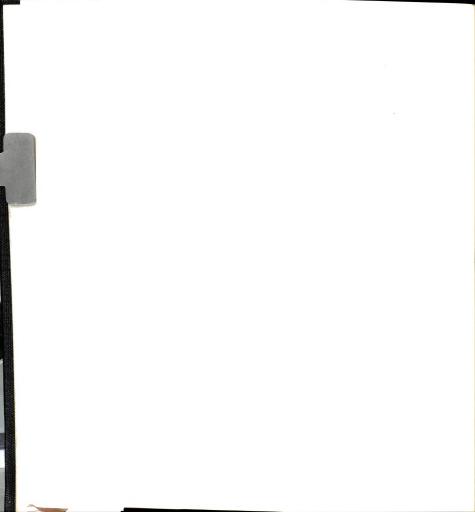
0.00 S NUU D O O O O O O O O O O O O O O O O O O	500	508	5 C	2.4	515	53	514	515	516	27.5	5,18	1 4	522	522	523	524	500	GEN 526	520	510	530	531	532	533	1 0	50.0	537	538	539	540	GEN 541	545	5. 4.0 6.0	7 u	OTO NIED	■1 ● NR)
NMID+NMIDS+NS	(MEANVI(I) . I = 1 . NR) . (MEANV2(I)						Teleconomic to the contract of	3(2) * (COUNT (3, U) * U = 1 * 12	• T # 7 • (7 • T) L Z D Q Z Z • (8) 9 L Z	1. I = 0. (0. 0) NOOD . (+) 10 2	FX19(v) + (COONT(8+J) + J=1+12) FX19(v) + (COINT(10+J) + J+12)		•		NS.NR.NT.NUMSAM.NEST.SIGMAV.S		NAID•NAIDS•NS		(MEANVI(I) • I#1 • NK) • (MEANV2(I)	ſ	3			10101000000000000000000000000000000000		9(9) • (NUOCNT (8) 8	T3(4), (COUNT(7,0),0=1,1	MT3(5).				NS.NS.NT.NUXSAM.NEDT.SIGMAV.S		NAID•NAIDS•NS	TANKSANVI (IV-IT-VI) - NOV- (HEANVI) (IV-I	-
4-4-	(51,34)	0) (3 4 ctr) 6 4 (1	8	50.1	٠ -١،	<u>.</u> ,	م را،	۰	Ĵ.	(26, 19)		(61,77)	-1	e	å.	(61,83)		<u> </u>	4		•	. 4	(61,94)		41	, 1	r-1	1 , 9	1,7	107	<u>.</u>		00 C) (• •	(+8.19)
WRITE SALTE	1 W 1 K 2 K	2.20 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.4	三大 二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	WRITE	131 131 131 131 131 131 131 131 131 131	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lu 	MILLY I	11 12 1 12 1 13 1	χ Σ	111 to 121 121 121 121 121 121 121 121 121 12		SET E	22118 22118	NR 14E	2011 1011 1011	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	X X X X X X X X X X	11 K 1 K 1 K 1 K 1 K 1 K 1 K 1 K 1 K 1	N N N N N N N N N N	WRITE	NO.	W817E	ш и н н ж ж ж ж	10	28 TE	1100	WRITE	200	WRITE	KR11E	B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 to 12 to	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	




```
5590
                                    5550
                                                                                                                   5660
                                                                                                                                                                                                                                      5820
5830
5840
                                           5560
5570
                                                         5580
                                                                               5610
5620
                                                                                             5630
                                                                                                     5640
5650
                                                                                                                          5570
                                                                                                                                  5680
                                                                                                                                         2690
                                                                                                                                                5700
                                                                                                                                                       5720
5720
5730
5740
                                                                                                                                                                                   5750
5760
                                                                                                                                                                                                  5770
                                                                                                                                                                                                         5780
5790
                                                                                                                                                                                                                        5800
                                                                                                                                                                                                                               5810
                                                                                                                                                                                                                                                            5850
                                                                                                                                                                                                                                                                   5850
                                                                                                                                                                                                                                                                           5870
                                                                                                                                                                                                                                                                                  5880
                                                                                                                                                                                                                                                                                                5900
                                                                                                                                                                                                                                                                                                      5910
                                                                        5600
      GEN
                                                                                                                                 GEN
                                                                                                                                                                                    0 0 0 0
0 0 0 0
0 0 0 0
                                                                                                                                                                                                                                                                                        0 0 0
0 0 0
0 0 0
0 0 0
                          NS.NR.NT.NUMSAM.NEST.SIGMAV.S.CMAD.SIGMAM.DIFF
                                                                                                                                                                     61,81) NS,NR,NT,NUMSAM,NEST,SIGMAV,SIGMAD,SIGMAM,DIFF
                                                                                                                                                                                                  .61984) (MEANVI(I) I = 19NR) + (MEANV2(I) + I = 1 + NR)
                                                       (61064) (MEANV1(1) . I = 1 . NR) . (MEANV2(1) . I = 1 . NR)
                                                                                           FMT4(6) ((ICOUNT([.11), IB1,20)
FMT4(7), (ICOUNT([.12),IB1,20)
                                                                                      FMT4(5) . (ICOUNT!I.10) . I=1.20
                                                                                                         FMT4(8) + (ICOUNT(I+13) + I+1+20
     (61:100) A(J).(ICOUNT(I.J).I=1.20)
                                                                                                                                                                                                                       (61+72) (JCOUNT(I+J)+J=1+12)
                                                                                                                                         (#• [#]•(]•[]•XS) (#C[•[9]
                                                                                                                                                                                                                                                                                 (45X+13HCENTILE CHECK+/)
                                         SU-831 NMID+NMIDS+NS
                                                                                                                                                                                   NMID , NMIDS , NS
                                                                                                                                                                                                                                                                                               (8F10.6/4F10.6)
                                                                                                                                                                                                                                                                                        (6X,12F9,5/)
                                                                                                                  (61+102) EPS
                                                                                      61,1001
                                                                                             61,100)
                                                                                                    51:100)
                                                                                                           61,100)
                                                                                                                          61,103).
                           610619
                                                                                                                                                                                                                                                   WRITE (61,105)
                                                                       61,101
                                                                                                                                                                                    61,831
                                                 61,501
                                                                              (81.99)
                                   61,080)
                                                               61,82)
                                                                                                                                                       62077)
                                                                                                                                                               610791
                                                                                                                                                                                          61,800)
                     (61:19)
1:1,9
                                                                                                                                                                                                                                                                                                              1141)
                                                                                                                                  11144
                                                                                                                                                                                                                                            CONTINUE
                                                                                                                                                                                                                                                                          FORMAT
                                                                                                                                                                                                                       WRITE
                                                                                                                                69 00
                                                                                                                                                                                                               02 00
                                                                                                                                                                                                 KRITE
KRITE
                                                                                                                                                                                                                                                                                 FORMAT
                                                                                                                                                                                                                                                                                        FORMAT
                                                                                                                                                                                                                                                                                                              FORMAT
                                                                                                                                                                                                                                                                                                                    FORMAT
                                                                                                                          36118
                                                                                                                                                                                                                                                                                               FORMAT
                                         WRITE
                                                        BELL CENTRE
                                                                                                   WARITE
WARITE
                                                                                                                                                                                                                                                                                                      FORMAT
                                                                                                                                                                    WRITE
                                                                       WRITE
                                                                                                                                                                                  WAITE
                                                                                                                                                                                          WRITE
                                                                              WRITE
                                                                                                                                                                            WRITE
                                                                                                                                                       11.23
                                                                                                                                        WRIT
                                                                                                                                                こことに
                                                                                                                                         69
                                                                                                                                                                                                                        6
                                                                                                                                                                                                                                            77
                                                                                                                                                                                                                                                                          75777
       68
```

υv


```
5970
                                                                                                                                                                                                                                     6110
                                                                                                                                                                                                                                                                                                          6160
                                                                                                                                                                                                                                                                                                                                                   0619
              5950
                             5960
                                                                    9990
                                                                                  0009
                                                                                                                                                     6050
                                                                                                                                                                                6070
                                                                                                                                                                                                          0609
                                                                                                                                                                                                                         6100
                                                                                                                                                                                                                                                                                6140
                                                                                                                                                                                                                                                                                            6150
                                                                                                                                                                                                                                                                                                                                     6180
                                                                                                                                                                                                                                                                                                                                                                6200
                                                                                                              6020
                                                                                                                           6030
                                                                                                                                        6040
                                                                                                                                                                   0909
                                                                                                                                                                                               6080
                                                                                                                                                                                                                                                                                                                                                                                                                                                   $260
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         6300
                                                                   GEN
                                                                                  GEN
                                                                                                            GEN
                                                                                                                        GEN
                                                                                                                                     1
2TO./IIX:45HDICOTOWAZATION FOR SUBJECTS NUMBER 1 THROUGH .12.23X.34GEN
3HDICOTOMAZATION FOR SUBJECTS NUMBER.13.8H THROUGH.13) GEN
FORMAT (9X.4(2X.F9.5.2X).22X.4(2X.F8.5.2X)) GEN
                                                                                                                                                                                                                       GEN
GEN
                                                                                                                                                                                                                                                 GER
                                                                                                                                                                                                                                                                GEN
                                                                                                                                                                                                                                                                                                                     0 0 0
0 0 0 0
0 0 0 0
                                                                                                                                                                                                                                                                                                                                                               GEN
                                                                                                                                                                                                                                                                                                                                                                              GEN
GEN
                                                                                                                                                                                                                                                                                                                                                                                                        GEN
GEN
                                                        GEN
                                                                                                                                                                                            85 FORMAT (33X,54HTHE MEANS AND STANDARD DEVIATIONS OF THE MEAN SQUARGEN 1ES ,/)
                                                                                                                                                                                                                                                                                                          GEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            GEN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    6 EN
6 EN
6 EN
               SAMPLES GEN
                           POPULATION
                                                                                                                                                                                                                                                                                                                                                                                                                        7
                                                                                                                                                                                                                                                                                                                         ŝ
                                                                                                                                                                                                                                               (14x*10HSTD- DEV.S.9F10.2//)
(46X*46HTHE INTERCORRELATIONS BETWEEN THE MEAN SQUARES./)
                                                                                                                                                                                                                                                                                                                                     .010
+3(10H STANDARD 1,21H
                                                                                                         32 FORMAT (777)
83 FORMAT (12X+118HTHE REPEATED MEASURE MEAN SCORES ANTECEDENT TO
                                                                                                                                                                                                                                                                                                                                                                                   (/Alo,12(IX,15,3X)/)
(39X,42HTHE EMPIRICAL DISTRIBUTIONS OF THE EFFECTS,/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                              CORRELATIONS.//
                                                                    SUBJECTS 1/1
                                                                                                                                                                                                                                                                                                                                                                                                                                    1.001
                                                                                                                                                                                                                                                                                                                                                                          (38X,41HFOR ITEMS NESTED WITHIN REPEATED MEASURES,/)
                                                                                                                                                                                                                                                                                          (42X*36HTHE EMPIRICAL SAMPLING DISTRIBUTION */)
(39X*46HFOR ITEMS CROSSED WITH REPEATED MEASURES./)
                                                                                                                                                                                                                                                                                                                                                                                                                                                            (38x;42HFMPIRICAL DISRIBUTIONS OF THE CORRELATIONS (/40x;24HTHE VALUE OF THE BOX CORRECTION IS;66.3/) (47x;26HCALCULATED FROM THE MATRIX;/)
                                                                                                                                                                                                                                                                                                                         9
              ITEM
                                                                                                                                                                                                                                                                                                                                                                                                                                   ٥.
                                                                                80 FORMAT (/)
31 FORMAT (15X,3110,2X,110,18,5X,3(lX,F7,5,2X),6X,F7,5)
                                                                                                                                                                                                                                                                                                                                                                                                                                   8
                                                       TRUE
79 FORMAT (20x+4(104NUMBER OF )+104 ONE IF +3(10
1MEAN LEVEL OF ITEM+/20x+504 SUBJECTS REPEATED
                                         ) • 18H
                                                                  •2(10H SCORES 1+14H
                                                                                                                                                                                                                                                                                                                                                                                                                                   .
                                                   ERROR
                                                                                                                                                                                                                                      .9(F9.3.1X)//)
                                                                                                                                                                                                                                                                                                                                                                                                                                      9
                           NESTED $3(11H DEVIATIONS) 20H
                                       SSURES .20X:10H ZERO IF .3(10H
                                                                                                                                                                                                                                                                             (15X, A10, 9(Fe. 3, 2X) //)
                                                                                                                                                                                                                                                                                                                       6
                                                                                                                                                                                                                                                                                                                                                                (/179 (1H-)/178 (1H-)/)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (55X, 10HFND OF JOB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (40ו4(F8•3•2X)//)
                                                                                                                                                                                                                                                                          90 FORMAT (15%, A10, 90 (F3, 3, 2%, 91 FORMAT (42%, 36HTHS EMPIRI 92 FORMAT (59%, 40HFOR ITEMS 93 FORMAT (115H FOR ALPHA = 1 °,4 °.3
                                                                                                                                                                                                                                     (13X,10H MEANS
                                                                                                                                                                                                                                                                                                                                                                                                                                                  (5X,A10,2015//)
                                                                                                                                                                                                                                                                                                                                                (1X,117(1H-)/)
                                                                  50F3/370X 10H POINTS
                                                                                                                                                                                                                         (25X,9A10//)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              (16F5.3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (1615)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (8410)
                                                                                                                                                                                                                      85 FORMAT
87 FORMAT
                                                                                                                                                                                                                                                                                                                                               94 FORMAT
95 FORWAT
96 FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                        93 FORMAT
99 FORMAT
                                                                                                                                                                                                                                                 SB FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                             FORWAT
FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                 1,000 I
                                                                                                                                                                                                                                                                                                                                                                                          FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                  .00 FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                FORMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             102
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        103
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        40
```

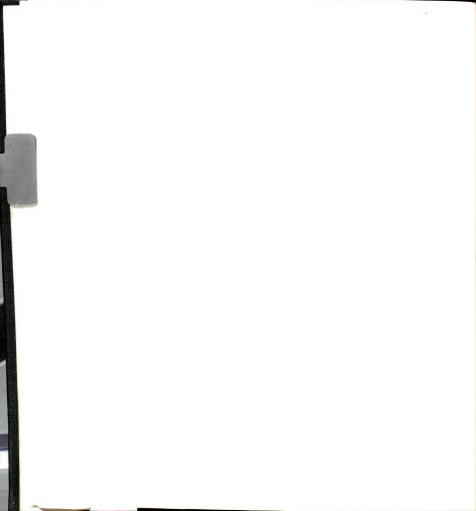


4 4 4 4 0 0 0 0 0 0 0 0 0 0

```
SUBROUTINE FDIST (MM.NN.FX.PROBX)
CLARK HOLLOWAY AND W.B.CAPP. AUGUST 31.1959
REVISED APRIL 1.1961 R.J.MCKELVEY
                                                                                                                                                                                                                                                                                                                                                                                             IF (PROB-1.) 10,48,48
                     REVISED APRIL 1.1961
DIMENSION B(2)
NOUTES
                                                                                                                                                                                                                                                                                                       F (PROS-0.5) 7.7.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  8(1)=(XM-2.0)/2.0
                                                                                                                                                                                                                                                                                              F (PROS) 48,48,6
                                                                                                                                        F (F-1.0) 2,2,4
                                                                                                                                                                                                       DELTA#FL0/500.0
GO TO 11
                                                                                                                                                                                                                                                                                                                                                                       DELTAPPLO/200.0
                                                                                                                     (F (F) 48,501
                                                                                                                                                                                                                                                                                                                                                                                                                                      PLO=1.0-PR08
                                                                                    PROBEPROBX
                                                                                                                                                                                                                                                                                   SPROSEPROB
                                                                 SPROB#0.0
                                                                                                                                                                                                                              FL041.0/F
                                                                                                                                                                                                                                                                                                                                                                                                                                                             FACTL#0.0
                                                                                                                                                                                                                                                                                                                                                   PLOSPROB
                                                                                                                                                                                                                                                                                                                                                                                  70 11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FACT=1.0
                                                                                                                                                                                              PL0=0.0
                                                                                                                                                                                                                                                                                                                                                           FL0=0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                   50 70 8
                                                      0.0×1.
                                                                                                                                                                                                                                                                                                                                                                                                                             LOW=0
                                                                                                                                                                                                                                                               LOW=0
                                                                           XIL
                                                                                                                                                                                                                                         スポンド
                                                                                                                                                                                                                                                                                                                                         LO::=1
                                                                                                                               (L
#
!J.
                                                                                                                                                                           医=アス
                                                                                                                                                                                                                                                                                                                                                                                                        と言えい
                                                                                                                                                                                                                                                                                                                                                                                                                   医せど人
                                                                                                            アンコン
                                                                                                                                                     医非某人
                                                                                                                                                                                                                                                                                                                               ニョマ×
                                                                                                                                                                ビョに ス
                                                                                                                                                                                                                                                                                                                     スコモス
                                                                                                                                                                                                                                                                                                                                                                                              60
                                                                                                                                                                                                                                                                                                                                                                                                                                                             H
```

U U

1100 120 130



9 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	$v \sim v \sim$	こうりらくううちょうこう	00000000000000000000000000000000000000	1 1 4 4 4 4 4 4 4 4 4
			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
		104 PEAN TO PER AND TO PER AND)ELTA)
		0 0 1 STP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		XN) + ALOG (C
		T. SAMPLING	- 2	×π×π×+0•1
		2 (2))	6 925 ACT) ALOG(XM/X	- 73*ALOG(2.32 4
XN-Z.0)/2.0 XN-Z.0)/2.0 0.2) 12.48.1 0.31830939 27 14.48.1 15.0 1 1.0 1	7-0-2 19-4 7-0-2 19-4 7-0-8 6 2 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	JE 00-7) 25:#8.2 4CT*A/18(1)* CT-99999990 CT-1.0E-81'2 (1)*100'	10.2) 27.48.2 74.7.7.4.0.53.6.2.6 11.0	Y1+Y2*ALOG(F) FDL+20.) 31.3 0.0 33 XP(HFDL) UM+HFD ELTA FLO) 30.30.3
		2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CKONPTAND	


```
DIS 10000
DIS 10000
DIS 10000
DIS 10000
DIS 10000
DIS 11100
DIS 11
```

```
IF (ALOG(PLO) + HFDL - 4.604) 37,38,38
DELTA = DELTA / 2.0
GO TO 29
IF (CUM - PLO) 30,39,39
FLO = F - DELTA
IF (SF) 48,43,40
PLO) 48,39,35
HFD) 48,38,36
                                                                             IF (LOW) 48.42.41
PROB=CUM
                                                                                                                         PROB#SPROB
IF (LOW) 48,45,44
                                                                                                       PROS=1.0-CUM
GO TO 46
                                                                                                                                                   GO TO 46
F=1.0/FLO
PROEX=PROB
                                                                                                                                                                                     RETURN
GO TO 47
END
                                                                                                                                          F=FLO
                                                                     17
17
17
                                                                                                                                                                             たのとは
$ 0 0 F
                                           0
0
0
0
                                                                                                                                                            4 to 0
                                                                                                                                                                                      43
                                                                                                                                           77
                                                                                                       42
                                                                                                                         3
```



```
SUCROUTINE CHOLM (R.F.NP.N)

DIMENSION R(N.N), F(N.N)

DO 1 1=1.0NP

DO 1 J=1.0NP

F(1.J)=0.

F(1.J)=0.

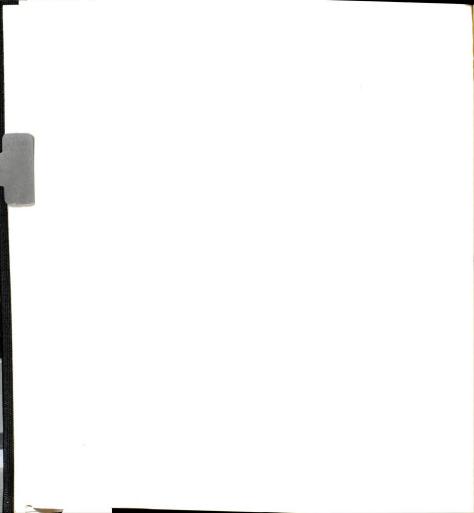
CO 2 J=K.NP

F(1.J)=R(N.N)

F(1.J)=R
```

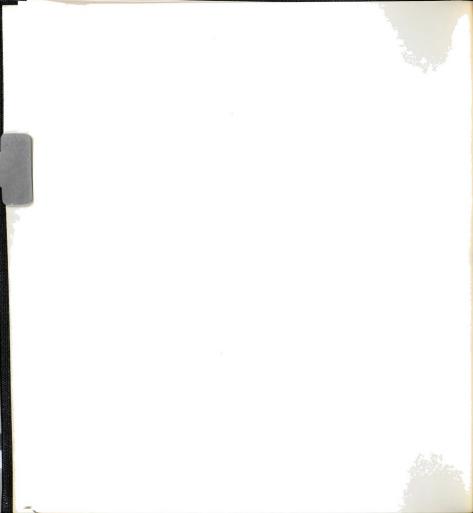


```
DIMENSION Y(NV*NS)* YR(100)* XX(NV*NV)* SX(NV*NV)
RENR
                                                                                                                                                                                                                                                                                                                                                                                                                                                 DO 5 U=L+NP


5X(I+U)/(SQRT(XX(I+I)*XX(U+U)))

5X(U,I)=5X(I+U)

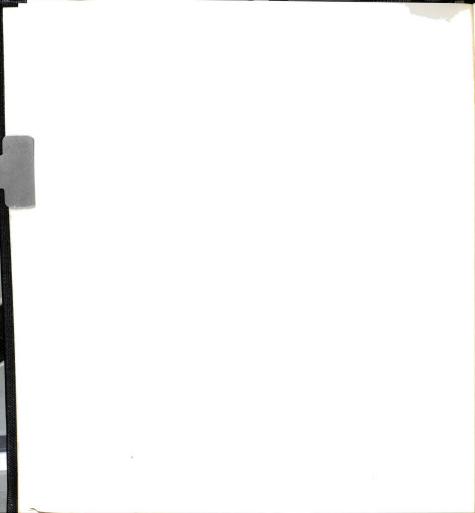
CONTINUE


RETURN

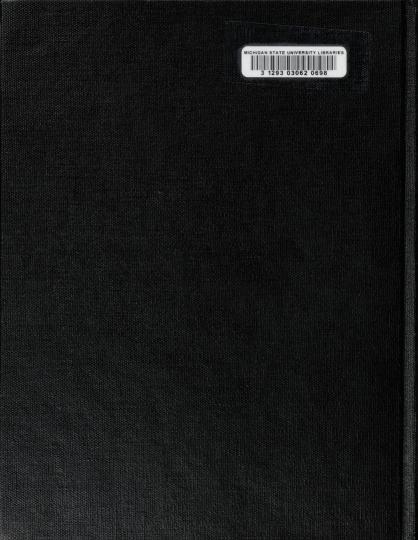
END
SUBROUTINE COVAR (YONPONROXXOSXONVONS)
                                                                                                                                                                                                                                                                                                                                                                                       IF (XX(1.J).EO.O.O) XX(I.J)#1.OE-100
                                                                                                                                                                                                                                                                                 XX(1;0)=(R*XX(1,0)-YR(1)*YR(J))/RR
                                                                                                                                                                                                                                                               (Y \circ \Gamma) \downarrow \Leftrightarrow (Y \circ I) \downarrow + (\Gamma \circ I) \times X = (\Gamma \circ I) \times X
                                                                                                                    DO 1 K=1,NR
YR(1) = YR(1,K)
                                                                                                                                                                                                                                                                                                       ( T • 1 ) XX = ( I • T ) XX
                                                                                                                                                              DO 3 :=1,NP
                                                                                 00 1 I=1.NP
                                                                                                                                                                                                                                            O 2 K=13NR
                                                                                                                                                                                                                                                                                                                                                                     01=1=0
                                                                                                                                                                                                                                                                                                                                                                                                          30 5 1=1.NP
                                                                                                                                                                                                        ひといういつ
                                                                                                                                                                                                                                                                                                                                                  1=1.NP
                                                                                                                                                                                                                         0=(C:1)XX
                                                            RR*R*R-R
                                                                                                     Y2(1)=0°
```



```
PRE
                                                                                                              PRB FPROB=CON+SGN*EXP(A*ALOG(X)+B*ALOG(XC)+GAML(AB)-GAML(A)-GAML(B))*SPRB
                                                                                                        SGN=+1.
CONVERGENT SERIES EXPANSION - SEE AMS-55 PG. 944
                                                                                                                                           ERM# TERM# (TOP / BOT) #XC
FUNCTION FPROB(U.V.F)
                                                              所 (F-1・) 3・4・4
EHP=A
                                                                                                                                                 SUM=SUM+TERM
                          (火) 10162
               TEMPAGAA4F
Xaaaminemp
                                                                                                                                                           OT=80T+1.
                                                                                                                                                     CP=TOP+1.
                                         XC+8/TEMP
                                                                                                                                       EXP=SUM
                                                                                                                       BOT=8+1.
                                                                             B=TEMP
TEMP=XC
                                                         SGN=+1.
                                                                                                                                  BRIGHT.
                                                                                                                                                                           1UM/B
RETURN
END
         9= . 3 %V
                                                                                                                  OPSAB
                                                                                                                            SUMm10
                                                                                                  CONSI
                                                    CONSO
                                                                                         XSUX
                                                                                                                                       'n
```


·

	FUNCTION GAML(A)	S A M	110	
		GAM	130	
	JUNCTION GAME	GAM	140	
		GAM	150	
		GA:	160	
	STUBLES THE NATORAL LOGARITHA OF THE GAMMA FUNCTION	0 V V	170	
		GAM	180	
		GAM	190	
		G A.M	200	
	= GAML(A)	2 Y X	210	
	ARAMETERS	5 X X Y Y	230	
		GAM	240	
	NATURAL LOGARITHM OF THE GAMMA FUNCTION OF A	GAM	250	
		¥ U V	260	
	REMARKS	GAM	270	
		GAR.	280	
		GAM	290	
	SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED	GAM	300	
		GAM	310	
		GA₩	320	
)	GAM	330	
		GAM	340	
		GAM	320	
		GAM	360	
	16) 19193	GAM	370	
r-1		GAM	380	
		GAM	980	
		GAM	007	
		GAM	410	
8		Ω∀W	420	
	LOG(TEMP)	¥ ₹ 8	430	
ന		GAM	077	
	.0027777777000793650793/W2)/W2)/W+.918938533	33GAM	450	
-1	•5)*ALOG(W)-TEMP	GAM	460	
	THE STATE OF THE S	GAM	470	
		GAM	480	


RANN 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	X X X X X X X X X X X X X X X X X X X	40014 32 003	000 X X X X X X X X X X X X X X X X X X	200012743214774131558 200012743214774131558 2000000000000558458 164367351727205411456 0000400000000000000
のといくべんコ	U U U U U U U U U U U U U U U U U U U	BUXBOL	N 0 0 0 0 0 1	000000 A C C C C C C C C C C C C C C C C C C C
A ANN N		RANST	ر د د	RAND RANDOM RANDELT STORELT TW47

