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ABSTRACT

A MONTE CARLO INVESTIGATION OF THE ANALYSIS
OF VARTANCE APPLIED TO NON-INDEPENDENT
BERNOULLI VARTATES
By

John Draper

The analysis of data from a repeated measures type of
experimental design was considered for the case in which each
repeated measure score was obtained as the sum of a set of
evaluations for responses to a set of items. The analysis
was considered separately for the case in which the items
were included as a factor in the design and for the situation
in which the items were ignored as a factor in the design. It
was shown that whether items were considered as a factor 1in the
experimental design or not, they could provide a non-null source
of wvariation, which 1if present would be confounded with the
source of variation for repeated measures effects. The suggestion
was made that the inclusion of items as a factor 1in the design
and employment of the '"quasi-F" statistic might result in an
appropriate test for repeated measures effects, if the response
evaluations could be considered independent and normally distrib-

uted. However, it was noted that a series of evaluations on a
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single subject are seldom independent and are frequently
zeros and ones corresponding to incorrect and correct
responses, that is, data which could be modeled by a vector
of non-independent Bernoulli variates rather than a vector
of independent normal variates. Because others had had suc-
cess in the application of the Analysis of Variance (ANOVA)
to independent Bernoulli variates, it was considered inter-
esting and important to attempt to determine if ANOVA could
be appropriately applied to the analysis of non-indepeﬁdent
Bernoulli variates, particularly with respect to the sub-
jects by repeated measures design with items either nested
within or crossed with repeated measures.

A mathematical modeling of the situation of interest
was undertaken, an algorithm was devised, and a computer
program was written to simulate zero-one type data with any
given desired consistent covariance structure and parameter
configuration, For a given parameter configuration a Monte
Carlo procedure was employed to determine the appropriate-
ness of ANOVA for the analysis. Then the obtained empirical
distributions of variance ratio tests were compared to
Theoretical F-distributions, with respect to the probability
of a type I error or relative power, for null effect or non-
null effect conditions respectively. Particular attention
was paid to the empirical distributions of the regular
variance ratio test for repeated measures, the "quasi-F"
test for repeated measures, and the regular variance ratio

test for the subjects by repeated measures interaction.
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There were 720 cases or parameter configurations which
were investigated. For all cases investigated the number of
iteﬁs associated with a repeated measure and the number of
repeated measures were fixed at three and four respectively.
The items provided either a null source of variation or a
non-null source of variation and were either crossed with or
nested within the repeated measures. The number of subjects
varied from 4 to 12. The probability of a one in the zero-
one data was either .5, .2, or .1. The degree of subject
heterogeneity was one of four values. And the effects of
repeated measures and the subject by repeated measure inter-
action were either, both null or separately non-null,

The results indicate that the "quasi-F" should not be
applied to the type of data investigated, that the power of
variance ratio test on non-independent zero-one data is
approximately half that for normal data, that in the absence.
of a confounded non-null source of variation the regular
variance ratio test for repeated measures is appropriate
given the number of subjects is large enough, and that the
variance ratio test for the subjects by repeated measures
interaction is appropriate only when the probability of a

one in the data is close to .5.
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CHAPTER I

INTRODUCTION

An experimental design which is often employed in psy-
chological and educational research is the repeated measures
design.l The essential characteristic of the repeated
measures design is that each subject is evaluated more than
once. Thus the simplest of repeated measure designs would
represent a situation in which n subjects were evaluated t
times, resulting in a data matrix with n rows and t columns.
Variations on the simple repeated measures design include
assigning subjects to treatment groups and classifying the
repeated measures into levels of independent variables asso-
ciated with them. In many instances an experimenter will,
by necessity, have to evaluate the subjects on each of the t
times in a manner such that the evaluations may take on only
two values corresponding to, for example, correct or incor-
rect responses. When the evaluations can only take on two
values (e.g. zero or one), a data matrix of dichotomous
values results. Can the familiar analysis of variance,

ANOVA, procedure be usefully applied to a data matrix of

lThe repeated measures design is sometimes referred to
as a split plot design.



such dichotomous values? Of the assumptions on which the
ANOVA procedure is based, clearly the assumption of nor-
mality is violated, and it will be shown that it is likely
that the assumption of independence will be violated as
well. The problem with which this paper will be concerned
is, in general, the analysis of dichotomous repeated measure
data, and specifically the applicability of the ANOVA pro-
cedure to the analysis of dichotomous repeated measure data.

The repeated measures type of experimental design
allows not only for the experimental investigation and
analysis of events over time, but also offers promise to
serve as a{vehicle for the investigation of individual dif-
ferential response on the part of the subjects or experi-
mental units with respect to the variables of experimental
intervention (see Cronbach, Jensen, and others in Gagné,
1967). The importance of determining if it is likely that
experimental units have differential responses with respect
to the variables of experimental intervention is illustrated
in an example referred to by Jensen (1967), of a study by
Hovland (1939), who performed an experiment in which no sta-
tistically significant differences were found between massed
and distributed practice on paired associate learning tasks.
After reporting the above mentioned nonsignificance, Hovland
went on to report that 44 per cent of the subjects in his
study improved more rapidly with distributed practice, 28
per cent learned faster with massed practice, and 28 per

cent showed no effect due to the type of practice. The






percentages which Hovland reported suggest the possibility
of a significant subject by type of practice interaction. A
subject by type of practice interaction would indicate that
the effect of type of practice was not null but rather
different for different types of subjects.

In the Hovland study all subjects were measured on
learning trials when given massed practice and on learning
trials when given distributed practice. Table 1 presents
the sources of variation, degrees of freedom, and expected
mean squares for data from a study such as Hovland's. Note,
there are tests for the type of practice main effects and
the trials main effects, but no test for the subjects by
type of practice interaction effects. Thus there is no test
for what would appear to be an important source of variation
in the Hovland data.

Examine an experimental design the Hovland study might
have employed. In the suggested design subjects are arrayed
in two groups (a massed practice group and a distributed
practice group) where each subject is given five trials on
four randomly selected sets of paired associates. Groups
and trials have two and five fixed levels respectively and
thus represent fixed sources of variation. Subjects and
paired associates are randomly selected from supposedly
infinite populations and therefore represent random sources
of variation.

Table 2 contains the sources of variation, degrees of

freedom and expected mean squares for a design such as that



Table 1

Sources of variation, degrees of freedom
and expected mean squares for data
from a design such as Hovland's

Source df E (MS)
A (subjects) s-1 2tc£
B (type practice) 1 to;BY+ stog
C:B (trials) 2 (t-1) orc.p T SO&.p
AB 1(s-1) torp
AC:B 2(s-1) (t-1) OnC:B

Note, not all of the above are variances, since there
are some fixed effects.






Table 2

Sources of variation, degrees of freedom, and
expected mean squares for the
suggested design

o

——

Source df E (MS)
A (groups) 1 ScéS:A + 5n0;C + 200é:A + 20no;
S:A (subjects: (n-1)2 SOéS:A + ZOGé:A
groups)
B (trials) 4 OECS:A + 40éS:A + ZnOEC + 8noé
C (PA's) 3 Soés:A + 10noé
BC 12 GECS:A + 2ncf3C
AB 4 8cs:a * 49Bs:a * MOapc * 4n9ap
AC 3 SoéS:A + Snc;c
ABC 12 OéCS:A + no;BC
BS:A (n-1)8 oécs:A + 400c. A
CS:A (n-1)6 505,
BCS:A (n-1) 24 Oécs:A
Note, not all of the above are variances since there

are some fixed effects.






mentioned in the previous paragraph, given that the assump-
tions on which the analysis of variance procedure is based,
hold. Inspection of the expected mean squares in Table 1
indicates that the ratio,

MSBS:A

MSpes:a
would provide a test for the source of variation--subjects
by trials interaction. The source of variation--subjects by
trials interaction--would reflect the type of individual
differential response to massed or distributed practicejthat
was suggested in the Hovland data, that is the differences
between the trial curves for subjects would be greater if
there was a significant subjects by type of practice inter-
action than would be expected otherwise. Thus had the
experimental design suggested in this paper been employed
and the ANOVA consistent with it been used to analyze the
data obtained, a test for the subjects by trials source of
variation would have been available, which if significant
would indicate the possibility of a subjects by type of
practice interaction.

At least at first glance the ANOVA which Table 2
suggests as a possible means of analysis, appears to be a
reasonable way to insure a means of testing for a differen-
tial response on the part of the two groups2 as well as a

means of testing for a subjects by trials interaction.

sz means of a synthetic variance ratio due to
Satterthwaite (1941).



However, closer examination will indicate violations of the
ANOVA assumptions.

In order to explain the nature and sources of the
violations a digression must be indulged. The digression is
necessary in order to discuss population distributions.
Consider any population of entities, each entity may have as
many as an infinity of attributes and if the number of
entities in a population is so few as to be countable in a
finite time, a frequency distribution of the entities with
respect to any one attribute may be constructed. If one
value can represent all of the entities in a population with
respect to one attribute, the population can be said to have
a point distribution with respect to that attribute. Note
that the above same population may not necessarily have a
point distribution with respect to some other attribute.
Thus it is important when speaking of the distribution of a
population to specify with respect to what attributes the
population is distributed.

One of the assumptions of an ANOVA is that the
response evaluations on dependent variables are independent
for each subject or experimental unit. Another assumption
of an ANOVA is that the dependent variables have a normal
distribution. If the dependent variables have a multivari-
ate normal distribution a zero correlation between them is
necessary and sufficient to establish their statistical
independence.

It will now be shown that it is likely that data






obtained from a design implied by Table 2 will violate the
assumption of independence on which the ANOVA is based.
Note in Table 2 that in order to have a test for the source
of variation--subjects by trials interaction--it is neces-
sary to regard the sets of paired associatés as a random
sample of sets of paired associates sampled from some popu-
lation of sets of paired associates. Had the sets of paired
associates been regarded as all of the sets of interest,
"sets" would not have provided a random source of variation
and the Table of sources of variation, degrees of freedom
and expected mean squares would have been as in Table 3. An
inspection of Table 3 indicates no test for the source--
subjects by trials interaction. If the source of variation,
sets, is random, it is unlikely that the effect on the
dependent variable would be null. 1In order for the effect
of sets to be null when sets are random the distribution of
sets would have to be a point distribution with respect to
the attribute-effect on the dependent variable. If the
effect of sets is non-null it is likely that there will be a
positive correlation between subjects across sets. Simi-
larly, if the effect of subjects within groups is non-null,
which is very likely, it is likely that there will be a
positive correlation between sets across subjects.

Why is it likely that there would be a positive corre-
lation between sets, for example, if the effect of subjects
on the dependent variable is non-null? The reason can be

stated generally in terms of experimental design. In the



Table 3

Sources of variation, degrees of freedom, and
expected mean squares for the suggested
design when paired associates
are fixed

Source df E(MS)

A (groups) 1 200§:A + ZOHU;
S:A (subjects:groups) (n-1) 200é:A

B (trials) 4 4OES:A + 8n0é
C (PA's) 3 SoéS:A + 10noé
BC 12 céCS:A + 2nc§c
AB 4 40%. . + 4nonp
AC 3 SOéS:A + Snc;C
ABC 12 %Bcs:a * MOanc
BS:A (n-1)8 4c:1233:A

CS:A (n-1)6 SOéS:A

BCS:A (n-1) 24 OBcs:a

Note, not all of the above are variances, since there
are some fixed effects.
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absence of a disordinal interaction between two independent
variables in an experimental design whose levels are com-
pletely "crossed," a non-null effect of one independent
variable, say A, will result in positive correlation between
the levels of the other independent variable, say B, across
the levels of the non-null independent variable, A. If the
previous sentence is not intuitively sufficient, consider
the following example. Let A and B be two independent vari-
ables whose levels are completely crossed. Allow the
variance of A, B and error to be defined as, GAZ > 0,
OBZ = 0, and oez > 0, respectively. If A and B are the only
independent variables, then any observation is a function of
the effect of a level of A and error. Then the covariance
of two levels of B, for example level one and level two,
across the levels of A will be equal to
E[(A+e1)(A+e2)] - E[A+e1] E[A+e2], which is equal to the
variance of A plus the covariances of A and el, A and ez,
and e1 and el. If the preceding three covariances are
assumed to be equal to zero, the covariance of two levels of
B is equal to the variance of A. Since OAZ > 0 and the
variances of the errors is greater than zero the correlation
will be greater than zero.

In case the reader is not familiar with what is meant
by the term crossed, note that crossed as used above means
that all the levels of factor A occur in combination with

all of the levels of factor B so that the number of combina-

tions is equal to the Cartesian product of the number of
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levels of A and the number of levels of B. The term crossed
is used in contradistinction to nested which implies a two
stage selection procedure. Where, if the levels of A were
nested within the levels of B, the levels of B would be
selected first and the levels of A could then be freely
selected (without replacement) within each of the levels of
B. As a matter of definition, the levels of the factor
which represents the subjects or experimental units are
crossed with the levels of the factor which represents
repeated measures in a repeated measures experimental type
of design. Recognize at this point that all "within" type
factors have levels crossed with or nested within the levels
of the factor for repeated measures and have levels which
are crossed with the levels of the factor which represent
the subjects or experimental units. Thus in order to not
violate the assumption of independence between the response
evaluations for subjects or the experimental units the
factor for repeated measures must not represent a non-null
source of variation nor may any factor with levels crossed
with or nested within the levels of the factor for repeated
measures.

As previously mentioned only in the trivial case of a
point distribution would a random source of variation be a
null source of variation. If a factor does not represent a
random source of variation, no generalization can be made to
the levels of that factor which did not occur in a given

experiment. This is a severe limitation, in that items are
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almost always crossed with or nested within repeated
measures and experimenters seldom wish only to make a con-
clusion that is restricted to the items which they actually
use in an experiment.

Next consider the type of response which must be
evaluated in an experiment designed to be consistent with
Table 1. 1In a paired associate task a stimulus "word" is
paired with a response "word," by the experimenter, for the
subject, in the initial phase of the experiment. There-
after when presented with the stimulus word a subject is to
respond with the response word, which the experimenter has
indicated should be associated with the stimulus word. It
would often be very difficult for an experimenter to evalu-
ate a response in any other than a dichotomous fashion.

That is the subject either recalled correct response word or
the subject did not.

Next consider the number of paired associates in a
set. If the number is as small as two the evaluation of the
set would be a discrete variable which could take on the
values 0, 1, or 2, corresponding to both incorrect, one
correct and both correct respectively. Thus the dependent
variable would be a discrete variable with a three point
distribution rather than a normal random variable with a
continuous normal variate as assumed by the ANOVA.

In order to circumvent the problem associated with the
random non-null source of variation, items, crossed with the

source of variation due to subjects or experimental units, a
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typical experimenter will sum the response evaluations for
the stimuli to form a repeated measures score. He will then
do his analysis on those repeated measures scores. In doing
so, he has eliminated one problem, but caused another. In
order to demonstrate this problem three repeated measures
experimental designs will be defined and the analysis for
them will be discussed when stimuli provide a random source
of variation. It will be shown that when the response
evaluations are simply summed and ignored as a factor in the
design, the test within the ANOVA framework for a repeated
measures effect is not correct. The first of the three
designs is the simplest form of a repeated measures experi-
mental design. It has only two factors: subjects and
repeated measures. For the purposes of this paper this
simple design will be called Design 1. If the repeated
measures scores in Design 1 are formed as the sums of
response evaluations to items, two more designs can be con-
sidered. The first of these two will be called Design 2 in
which the factor items is crossed with the factor repeated
measures. In the second which will be called Design 3, the
levels of the factor items are nested within levels of the
factor repeated measures.

Design 2 may be termed a three way factorial design
with subjects crossed with repeated measures and items.
Design 3 is a three way factorial with subjects crossed
with repeated measures and items and items are nested within

repeated measures. Tables 4, 5, and 6 represent
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Table 4

Sources of variation, degrees of freedom, and
expected mean squares for Design 1

Source af E(MS)
; L 2 2
A (subjects) s-1 Og * T0,
= 2 2 2
B (repeated measures) r-1 ol + ofy + so}
= = 2 2
AB (s-1) (r-1) ol + o3y

Note, not all of the above are variances, since there
are some fixed effects.

Table 5

Sources of variation, degrees of freedom, and
expected mean squares for Design 2

Source daf E(MS)

A (subjects) s-1 cé + rc;C + trcg

B (repeated r-1 oé + gBC + to;B + scéc + stcg
measures)

AB (s-1) (r-1) c; + GQBC + tc;B

C (items) t-1 o2 + rugc + rsoé

AC (s-1) (t-1) o; + rcgc

BC (r-1) (t-1) c; + G;BC + soéc

ABC (s-1) (r-1) (t-1) cé + cch

Note, not all of the above are variances, since there
are some fixed effects.
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Table 6

Sources of variation, degrees of freedom, and
expected mean squares for Design 3

Source af E (MS)
. b 2 2 2
A (subjects) s-1 Og ¥9ac.p * trcA
B (repeated r-1 o2 + 02, _ + to? + so? _ + so}
measures) e AC:B C:B B
= x 2 2 2
AB (s-1) (r-1) Oc ¥ Opc.p t
) : .4 2 2
C:B (items) (t-)r Oe * 9pc.p * 598
. o - 2 2
AC:B (s-1) (t-1)r Oc * %ac:B

Note, not all of the above are variances, since there
are some fixed effects.
respectively for Designs 1, 2, and 3 their sources of varia-
tion, degrees of freedom, and expected mean squares. For
Design 1, it can be seen by inspection of expected mean
squares that a test statistic may be formed as the ratio
MSB

MSAB

(1.1)

to test the effect due to repeated measures. The computa-
tional formulas for these two mean squares with respect to

Design 1 are

b 3 s ) S
5L T HE e, X
=1 4i=1 M 4=1 i=1 *J
s rs
MS, =
2 p S A
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X S r S
b I X.. 2 T (I X..)2
j=1 i=1 *3  4=1 ji=1 *J
1 S
MSap = T - D =D
S r r S
I (Z X..)? (2 T X..)?2
i=1 4=1 *J j=1 i=1 *J
rs

+
r
(r = 1)(s - 1)

where Xij is an observation for repeated measure j on sub-
ject i, j =1, 2, ... r, i=1, 2, ... s. Noting the above
formulas examine the computational formulas for the same

mean squares with respect to Designs 2 and 3 (the formulas

are identical for Designs 2 and 3). These formulas are
r S t ) r s t ,
jil(iil kzlxijk) _ (j£1 iil kflxijk)
MS, = st — rst
and
r S t , r s t ,
j£1 iil(kilxijk) _ jil(iil NSy
MSap = - (r - 1)(s - 1) =
s r t r s t

T (I z xi.k)2 (z )X I X..
i=1 j=1 k=1 *J 4=1 i=1 k=1 *J
rt rst
(r - 1)(s - 1)

2
x’

where Xijk is an observation on subject i for repeated
measures j and item k. i =1, 2, ... s, =1, 2, ... r,
and k = 1, 2, ... t. By inspection of the two sets of

computational formulas, it can be observed that the mean

squares Msb and MSAB for Design 1 are linear transformations

of the same mean squares for Designs 2 and 3, that is of
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course given that the formulas are applied to the same data
such as the Xijk observations defined above and given that
the repeated measures scores in the case of Design 1 were
formed as a simple sum of response evaluations to the items
which are associated with the repeated measures. Since the
linear transformation for each mean square was the same,
ratio 1.1 will be invariant across Designs 1, 2, and 3.

The invariance of ratio 1.1 provides interesting
implications for the case in which items are a random non-
null soufce of variation, and yet Design 1 was considered
appropriate and the analysis consistent with it was
employed. Inspecting the expected mean squares for the
source--repeated measures and the source--subjects by
repeated measures interaction in Tables 5 and 6, it can be
seen that ratio 1.1 is not the appropriate statistic to test
for the effect due to repeated measures. Therefore, it
should be apparent that if repeated measures scores are
formed as a simple sum of response evaluations for items,
the analysis which is implied by Design 1 is inappropriate.
If the expected values for the mean squares are substituted
in ratio 1.1 for Designs 2 and 3 the kind of errors which
can arise becomes apparent. For Design 2 the substitution
results in the ratio

+ s02

2 2
20e + O + t BC

2 2
ABC OAB + stog

2 2 2
ZOe + GABC + tOAB
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For Design 3 the substitution produces

202 + + t + so? + stcé

2 2
%ac:B 9aAB C:B

204 + + t

D N0

%ac:B * t9ap

Thus, when ratio 1.1 is employed to test for an effect due
to repeated measures an implicit assumption has been made.
If Design 2 is appropriate the assumption is that céc = 0.
If Design 3 is appropriate the assumption is that oé:B = 0.

If the implicit assumptions are not valid it is possible to

obtain a spuriously high value of ratio 1.1. Because of the

2 2
BC C:B

to zero it appears important to include items as a factor in

possibility that o is unequal to zero or o is unequal
the design. When items are random, if the factor for items
is included in a repeated measures experimental design, a
result due to Satterthwaite (1941) provides that quasi-F
ratios may be formed to test hypotheses concerning an effect

due to repeated measures. To illustrate, if items are

MSB + MSABC

MSAB + MSBc

will

crossed with repeated measures the ratio

have a sampling distribution that approximates a central F
distribution, when the effect of B is null. If on the other
hand, items are nested within repeated measures the ratio
MSB + MSAC:B

MSAB + MSC:B

has a sampling distribution which approximates

a central F distribution, for a null situation with respect
to the effect of B. Hudson and Krutchkoff (1968) did a
Monte Carlo study of the empirical probability of a Type I

error and the empirical power of the quasi-F test based on
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normal variates and concluded that the quasi-F had
properties that were generally similar to the F-test.

When dependent variables are formed as the sum of
response evaluations to several items, an approximation to
normality may be pleaded on the basis of the central limit
theorem. But, when the response evaluations to items them-
selves are the dependent measures it is then the response
evaluations which must be distributed normally in order to
meet the assumption. In many instances a response to an
item is evaluated as either a one or a zero corresponding to
either an acceptable response or one which is unacceptable,
in which case the dependent measure would have a two point
discrete Bernoulli distribution rather than a continuous
normal distribution. The problem has now been shown. The
experimenter who would like to regard the items he employs
in an experiment as a random sample from a population of
items which has other than a point distribution with respect
to the attribute of the items which effects the response
evaluations, who sometimes must evaluate responses as zeros
or ones, and who would like to employ the analysis of
variance as a means of analysis is in a difficult position.
If he fails to include items as a factor in his design one
test in the ANOVA will be questionable. If he includes
items as a factor he has two violations of the ANOVA model
with which to concern himself.

Thus it would appear that an attempt at a resolution

of the above dilemma is justified. Two possible means of
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dealing with the dilemma occurred to this investigator. The
first would ignore the ANOVA and attempt to formulate a new
model and analysis to fit the situation and Chapter II will
follow this line of investigation. The second would be to
demonstrate that the ANOVA is robust to violations of inde-
pendence and normality and Chapters III, IV, V and VI will

examine this possibility.






CHAPTER 1II

MODEL DEVELOPMENT

A series of models are developed in this chapter. The
models are developed for two reasons. The main reason was
to get a better understanding of the experimental situation
and the insight necessary to develop the data simulation
algorithms discussed later. The decisions which were made
with respect to the techniques of data simulation, as out-
lined in Chapter IV, were directly influenced by the
discussion and development presented in this chapter. The
secondary reason was to examine the models with the hope
that a method of data analysis would become apparent which
had the advantages that an ANOVA would have when the ANOVA
assumptions are met, but which did not require assumptions
of independence and normality.

The first model to be developed in this chapter will
represent the response evaluation of the response of a
random subject to a random stimulus when the evaluation can
only take on the values zero or one. The second model will
be an extension of the first so as to represent the response
evaluations of the responses of a random subject to a series

of random stimuli. Then the model will be extended to

21
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represent possible experimental intervention between any two
stimuli in the series which are presented to a subject.
Finally a model will be considered to represent the situa-
tion in the previous sentence for an arbitrary number of
subjects.

To set the background for the first model attention
must be given to specification of the nature of the popula-
tion of subjects and of the population of stimuli. First
consider the population of subjects. Each of the subjects
in the population will be allowed infinitely many specific
abilities. All subjects will be allowed all abilities
albeit each in varying amounts. Thus the subjects in the
population may be distributed with respect to each of
infinitely many abilities associated with subjects and the
distribution of the population with respect to each will
have some density. Therefore, if ability u is of interest
in any particular situation the subjects can be considered
as distributed in the population with respect to u and have
density fu' Now consider the population of stimuli. Each
stimulus may be considered to have a potential with respect
to eliciting a response within the domain of responses in
which the experimenter is interested. The potential that a
stimulus has to elicit a response within the domain of
responses in which an experimenter is interested is in part
conditioned on the understanding a subject has with respect
to what is expected of him. The understanding or expecta-

tion that a subject has is a function of the instructions
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which the experimenter provides and the atmosphere of the
experimental situation. For example, if a subject, because
of the instructions an experimenter gives him, understands
that it is his ability with respect to u which is to be
brought to bear in responding to say stimulus A, the poten-
tial of A may be different than if the subject thought that
an ability other than u should be brought to bear in respond-
ing. A more concrete example would be represented by a
situation in which the stimuli are words. If the subject
thinks he is to give a free associate to, for example, the
word girl when the experimenter wants a definition, the
response potential of the stimulus word girl might be differ-
ent with respect to the experimenter's criterion of an
acceptable response than if the subject thought he should
give a definition. Thus the stimuli in the population of
stimuli may be distributed in infinitely many ways each with
respect to the understanding respondents have about which of
their infinitely many abilities should be brought to bear in
responding. Let the respondent and the experimenter both
understand that it is ability u which is to be brought to
bear in responding to all stimuli. And, let p be the
response potential of a stimulus with respect to ability u.
Stimuli in the population of stimuli may be distributed with
respect to p and have a density fp

One further parameter may effect a response evaluation.
Since, given a subject, a stimulus, and a joint understand-

ing between experimenter and subject the response evaluation
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is not determined. The remaining parameter is the criterion
the experimenter has with respect to what is an acceptable
response. Let the experimenter's criterion be a constant c
for a given experiment.

The background concepts for modeling have now been
established. Before the first model is developed, however,
it will be useful to establish some conventions. For the
balance of this chapter unless otherwise noted capital Roman
letters will be used to represent variates.l The corre-
sponding lower case Roman letters will represent an evalua-
tion or obtained value (a constant) of that variate. ¢ (u)
will represent the standard normal distribution function2
evaluated at u. ¢ (u) will represent the standard normal
density at u. Fv(x) is the cumulative distribution function
of the variate V evaluated at x; and fD(y) is the density of
the variate D at y. With these conventions established the
modeling of the response evaluations may begin.

Let the variate U represent a random subject, then u
is the ability of a given subject which has been sampled.
Let P represent a random stimulus and p a given one. Then
let b represent the response evaluation of the response of
subject u to stimulus p made by an experimenter with

criterion c. The response evaluation b may be defined as a

lThe term variate will be considered synonymous with
random variable, as it is in much of the statistical
literature.

2That is the cumulative up to u.
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function of the three values u, p, and c¢, conditioned on no
error in the evaluation and no misunderstanding of the
subject. That is

b = fl (u,p,c).
Analogously a random response evaluation may be defined as

B = fl(U,P,c)
where B is a variate which may take on only two values (zero
or one). B is thus a Bernoulli variate and has the familiar
probability function

_ aP(q_ay1-b
PB(b) = 06 (1-9)

where 6 is the probability that B = 1.
The value p has been defined as the potential that a

particular stimulus has with respect to eliciting an accept-

able response. It will be useful to define a value g',

where g' = 1l-p. Let the range of g' be specified as
0 <g' <1, where if g' = 0 no matter what u and ¢ are, b
will equal one and where if g' = 1 no matter what u and c

are, b will equal zero. Thus g' is in some sense the poten-
tial difficulty of a stimulus, with respect to an acceptable
response., Let the range of u be -» < u < » and let the
density of u be ¢ (u). The quantile rank, r, of u is given
by r = ¢(u), and has a uniform density on the interval (0,1).
Note that r is the probability that the variate U is less
than the value u, or in symbols,

¢(u) = Pr(U < u), where -» < u < « |
Note that the inverse exists as well, u = ¢—1(r), 0 <r <1.

With the above values defined the function which will
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represent one response evaluation, fl, may be defined

= w 105 +
b =f (r.,g'c) = {1, +

g' c
g' C;
The value c is really a part of the definition of an accept-
able response, and so may be incorporated into the value
which represents the stimulus' difficulty. So let

g =g+ ey
then

B el = o g

Observe that fl is an expression of conditional probability

if the variates corresponding to b, r, and g are substituted
in the expression. Assuming that R and G are stocastically

independent the conditional probabilities are
P (B = olg = g) = P (R<g) =Fpl9) =g
P.(B =1]/G=g) = 1-P_ (R < g) = 1-Fp(g) = 1-g
from which it is apparent that

P (B=blc=9 = (1-9)® ¢*®, p=0,1and 0 < g < 1,

or more simply written in the shorthand notation
_ 1_\b _1-b
PBIG(b[g) = (1-9)" g .
The joint probability density of B and G is

Py g(0:9) = Py (blg) £4(9)

and the probability function of B is then

3Because r has a uniform probability density.
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Py (b) = of Py o(b,g)gy
It will be possible to complete the development of the first
model once f;(g) is specified. We will assume that f;(g)
belongs to a family of Beta distributions (this family will
be large enough to contain nearly all kinds of distributions

for G that are encountered in practice). Thus we assume

|
. £
folg) = B o5 ghf, g g <1,

s.f.
where the parameters s and f are non-negative integers.

Then

b !'-b s

_ (s+f+1): 1-9)P g g (1_g)fdg

1k

Py (b) of

s.fl
or

s+1 b =0
_ (s+f+1)! 1 s+l-b b+f _ (s¥f+2’
= ASFEEL): ol g (1-g)"""dg = (T4

0 =
s2f: s+rrzr P =1

Py (b)

which models the response evaluation of the response of one
random subject to one random stimulus.

Observe that the expression fl which was shown capable
of representing a probability conditioned on g may represent
a probability conditioned on r as well. That is the

P (B = 1|R = 1) = Fg(r)
and the

P (B = 0|R = r) = 1-Fg (),

from which the conditional probability function

Py pbln) = Fg)® A-Fo@)1™P
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may be written. Let G represent a vector variate
[G,G, ..., G 1', where the G,, i =1, 2, ..., n, are
 § 2 n &
representative of n stimuli sampled independently from the

n
population of stimuli. Thus FG(g) =0 Fq (gi). Let B
= i=1 i
represent a vector variate fBl, Bz' Sadreny Bn1'. Then the
conditional probability function for B given R may be written
as
n
b
= i
PB[R(EIr) T
= i=1

bj 2
G, (8 (-F, (x))?
1 1

and since

fR(r) e VIRV S e S T

the joint probability density function for B and r is

Py p(bx) = Pg[r‘2|r)
and the probability function for B is

1:

n
® = ofF T F, enPamFg ()P ar

B
B 1 i b

i
which models the response evaluations of a series of n
responses made by a random subject to a series of n random
stimuli.

In order to extend the model to take into account the
effects of experimental intervention, consideration must be
given to what the effects of intervention would be. It
would be possible to conceive of the situation as one in
which the stimulus potentials are changed by experimental
intervention, but that did not appeal to this investigator.
Experimental intervention was instead conceived of as some-

thing that could change the subject. For example, if no
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intervention occurred the values which may represent a sub-
ject ability when the subject encountered each of n stimuli
in a series of n stimuli, would all be u, W TR RS

u, = u. However, if an experimental intervention occurred
between the presentation of stimulus j and stimulus j+1, the
subject's ability at each of the n points in time may be

= = el 0k R = ui K= L., =
represented as u, u, uj and uJ+l K uj+2 K

un+K, where K is the change brought about in the subject's
ability. Since r is a strictly monotone increasing function
of u, (r = ®(u)) the same situation could be expressed in
terms of r, but because of the wealth of knowledge about
variates with normal or multivariate normal distribution it
was considered advisable to discuss the model in terms of

B, U, and a new variate V. The variate V will be defined as
vV = Q_X(g). The nature and distribution of the variate V
may be shown by the following series of formulae. By defini-
tion Fv(v) = Pr(v < v) and by substitution we may express

1

Fy(v) = P07 (@) < ¢7'(g)). Then since 7' (G) is a differ-

entiable strictly monotonically increasing function the
-1 =1
P.(e (G < ¢ (9)) =P.(G<g) =Fglg)

(Wadsworth and Bryan, 1960), from which we may write

Fyv) = P (G < o(v)) = Fg(2(v))

or

- o)
Fy(v) = of fgB)dt .

Then taking the derivative of both sides
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fv(v) = fG(¢(v)) da(e(v)) ,
by the chain rule and thus

fv(v) = fG(¢(v)) ¢ (v)

Recall at this point that fG(p) is a member of the Beta
family of distributions, that is

- (s+f+l)J

£ (3(v)) (e (1-o(v)) T .
s.f.
Let n = s+f, then f = n-s thus we may write
I _
£, 00) = =L (0(0))5 (10 ()78 4 (v)
s. (n-s).
Let Yy = s+]1 and m = n+l then
£,(v) = - (e (v (1-e(v))™Y ¢ (v)
(y=1) . (m-v).

h order statistic

We observe that fV is the density of the Yt
of a sample of size M sampled from a population with
standard normal distribution. Values of the first two
moments of fV have been given by Tiechroew (1956) for small
values of y and m.

Recall that the previous modeling was based on the
function f1 in such a manner so as to obtain a probability
statement conditioned on g and r. Now that it is wished to
account for a systematic change in u, it will be helpful to
define a function which will lead to a probability condi-

tioned on u. Before the new function is defined, note that

since ¢7!is a strictly monotone function, that
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g <r«~=10"1(g) <o 1(r)

Therefore the function f2 defined as

b = f (=1 (r), o '(g")),
0, ®='(g) > ¢~ (x)

1, ¢='(g) < ¢! (r)

0, v >u

= {

l, v < u,

is strictly analogous to the function fl. Again the condi-

tional probabilities may be written,

o)
@
il
o
c
il
c
[
|—I
!
L)
<
A
c
I

l—Fv(u)

and

P (B=1JU=mu) =P (V<u = £f,(u)

or
Pyip®lw = (Fy )P (1-Fy(w) >,
The joint probability density of B and U is
Py g(bsuw) = (Fy ()P (1-F )10 ¢ (u)
and the probability function of B is

Py(b) = __s7(F, ()P (1-F ()P ¢ () du

For a series of n stimuli sampled independently
n
F,(u) = E F., (u)

and

4If and only if.
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PE(Q) =
o) o) oon b 1-b
ia_ SR
ot ol oS iEl(Fvi(ui)) (1 Fvi(ui)) 1¢(ui)du1du2...dun.
Note that
— Uy
Fvi(ui) = _{* f,(t) dt
or
- uj Y-1 _ m=y
Py, (uy) = X ACINCICI) (-0 (v, N o(vy) dv, ,
where
|
K = Lk .

(Y~l)l(m-Y).
Also note that

o(v) = _ SV ¢(t) at

- 00

or

|
Nf ct

- 1 Vi
(vi) = S dt

Observe that a complete expression of PB(E) would involve a

very complicated set of multiple integrals and could not be
easily set upon one page. In any event the above expression

for PB(Q) allows for a multiple value of a subject's ability

with respect to forming acceptable responses to a series of
n stimuli.
If a treatment intervention did occur between the pre-

sentation of stimulus Vj and stimulus Vj+ it would be of

lI
interest to test a hypothesis about a change in the

subject's ability with respect to responding in an acceptable
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manner. Symbolically, if the subject's ability on n series

of occasions were represented as ul, uz, e ooy uj,
uj+l+K' uj+2+K, .-+, u +K; one hypothesis would be
HO: K =20

to be tested against the alternative

Hl: K =20

If K = 0 there should be no systematic difference between
the first j response evaluations and the remaining n-j

response evaluations under the above model, PB(Q). On the

other hand if K # 0, the model below for P'B(g) would apply.

oo oo [ee) J
P' (b)) = _ J _ S -.._ ] E PB.’U‘ (b; ,uy)
- i=1 i’ 1

J
n
S S ... S g (P (bi,ui+K)]

B.,u.+k
i’7i

d d

uj+l’ uj+2, ey

Under the model for P'B(E), if K = 0, there would be a
systematic difference between the first j response evalua-

tions and the remaining n-j. Thus in order to test the

hypothesis that K = 0, first assume the model for P'B(Q).

Second, select a statistic which contrasts the first j with
the remaining n-j response evaluations. Third, determine
the distribution of the selected statistic under the condi-
tion of K = 0 and under the condition of K # 0. Fourth,
determine some decision rule and then perform the experiment

and let the results decide.
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One statistic which has some appeal is n times the dif-
ference between the mean of the first j response evaluations
and the mean of all n response evaluations. This statistic
can be shown to have a binomial distribution with parameters

p and n, if j = the evaluations are independent, and

L
p = ®(vi), for all i, i =1, 2, ..., n. The above restric-
tion on vy would be true only in what was previously called
(in Chapter I) a trivial case, the trivial case occurring
only when the variance of v is zero. However, the binomial
gives a "good" approximation when the variance of v is
"small." Unfortunately the binomial distribution does not
hold up for a situation in which there is more than one
experimental intervention. As the number of interventions
increase the distribution of the above suggested statistic
becomes more platykurtic. The short consideration of n
times the "effect" statistic was given at this point to show
that one promising statistic which this investigator tried,
proved to be less than ideal.

Further complications in modeling occur, when the
situation is considered in which 2 random subjects respond
to the same series of n random stimuli. Now a probability
function for an % by n matrix of response evaluations is
desired. Let [Bij] represent the % by n matrix of response
evaluations.

e B G Y )

N A da
P[Bij]([bl]]) e st [Bij”H([bU”E) ¢ (u) du

could express the desired probability function. The density

¢ (u) presents no problem for it is simply the multivariate
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standard normal density, that is U is distributed as a
standard normal vector variate with mean vector U and
covarianée matrix oc2I (since subjects are sampled indepen-
dently). However, the conditional probability density

function P[B 1lu can not be expressed as the product
ijt =
2

I PB

(glui), since all subjects must respond to the
i=l =i

o

same series of n stimuli. Note: if each subject responded

to a series of n stimuli sampled for and only for that

subject Prg .1|Y ([bijllg) could be expressed as the product
ij
2
I P (b.|u.). Note, however, that experimenters are
=1 BylU =i

usually reluctant to sample a separate set of stimuli for

each subject.
Because of the inequality

L

+ T P
i=1 B

lu;
i

this investigator felt that the development of a new model
and concomitant analysis was approaching a complexity which
would preclude it as a practical means of dealing with the
problems laid out in Chapter I. Although the attempts at
modeling provided insight, which proved to be very helpful
in selecting an algorithm to simulate the data considered in
the following chapters, it would appear to this investigator
at this point that a demonstration of robustness of the
ANOVA model would prove a more fruitful means of finding an

analysis for the situation in which several random subjects
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respond to a series of random stimuli with experimental

intervention.






CHAPTER III

A CONSIDERATION OF THE ROBUSTNESS OF THE F-TEST

WITH RESPECT TO DEPENDENT BERNOULLI VARIABLES

Several investigators have considered the problem of
the application of the ANOVA techniques to the analysis of
categorical data. Hsu and Feldt (1969) generated empirical
sampling distributions of F-statistics calculated from ANOVA
procedures for a simple randomized design with respect to
four different discrete dependent variables. The four dif-
ferent discrete dependent variables had either five, four,
three, or two point distributions. Hsu and Feldt concluded
from their empirical data which was generated for a true
null hypothesis, that in most of the cases they investigated,
the probability of a Type I error, &, is very close to the
tabled values of the F-distribution, for o = .1, .05, and
.01. Lunney (1968) generated empirical sampling distribu-
tions of F-statistics calculated from ANOVA procedures for
one and two way factorial fixed models under central (null
hypothesis true) and non-central conditions, with respect to
Bernoulli type dependent variables. Lunney concluded that
in situations where the independent variables were fixed,

the probability of a "one" was between .2 and .8, and the
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degrees of freedom for mean square error were 20 or more; a
good fit of the empirical sampling distribution of the F-
statistic to the F-distribution had been obtained. Lunney
also concluded that for situations in which the independent
variables were fixed, the probability of a one was between
.1 and .9, and there were 40 or more degrees of freedom for
the mean square error, a good fit of empirical to theoreti-
cal F-values was obtained. For cases where the degrees of
freedom were less than the above limits, Lunney indicated
that the F-test was generally conservative.

Donaldson (1966) considered the power of the F-test
for continuous non-normal dependent variables and for normal
dependent variables with unequal cell error variances.
Donaldson generated empirical central distributions and
empirical power curves for the F-test, calculated with
respect to fixed effects models where the dependent variable
was either a normal, lognormal or an exponential variate.
The reasonably good fit of empirical to theoretical F-
distribution for the situations investigated was explained
by Donaldson in terms of the effect of the central limit
theorem on the mean square for a hypothesis, MSh, and the
correlation between the MSh and the mean square error, Mse’
in the F-ratio:

= =1
(3.1) F,. = MSh(MSe) .

h
Donaldson pointed out that the calculation of MSh is
based on averages. Thus as the number of values being

averaged increases the distribution of MSh becomes less
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sensitive to non-normality, by the central limit theorem.
The effects of non-normality, number of groups, and group
size on the variance of MSh' will be enlightening with
respect to the statement made in the preceding sentence.

Let k be the number of experimental classifications or
treatment groups and n, the number of experimental units per
group for a balanced fixed effects design. When the null
hypothesis is true the variance of MSh is given by the
expression

_ 20" 1
var (MSh) = k=1 [1 + 3 yz (—)] ’

where 02 is the variance of the dependent variable and y2l
is the kurtosis of the dependent variable. When y2 = 0, as
for the normal variate, the var (Msh) = 20% (k-1)"1.
Observe that.as n >, var (MS,) - 20% (k-1)~!. Thus the
effect of non-normality on the variance of (MSh) is dimin-
ished with an increase in n.

The situation with respect to the distribution of MSe
is very different than that for the distribution of MSh'

The variance of MSe is given as

— l ——
var (MSe) Tn—_—- [1 + 5 ) ( )]

Observe that as n becomes large the effect of y becomes
2

maximal (Scheffé, 1959). Thus as n becomes large, when

h

closer to the variance of MSh for normal variates, but as n

y = 0, the variance of MS,_ for non-normal variates becomes
2

y, = o zl0x - zlx)*] - 3.
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becomes large the variance of MSe for non-normal variates
(y2 # 0) becomes less like the variance of MSe for normal
variates. It may be shown that when MSh and MSe are statis-
tically independent, the variance of (3.1) is approximated
by a function of ¢ and the sum of the variances of MSh and
MSe. Therefore, if o and var (MSh) are held constant and
the variance of MSe is increased the variance of (3.1) will
be increased. Thus the apparent result of an increase in
var (MSe), with no other concomitant change, would be to
cause the distribution of (3.1) to become more platykurtic
than the corresponding F-distribution (with k-1 and n(k-1)
degrees of freedom). A statistic with a distribution simi-
lar to F, but more platykurtic than F, would give too many
values in a tail rejection region based on the F-
distribution. It will be shown, however, that the correla-

tion between MS, and MSe is principally a function of y2 and

h

that for y2 # 0, MS, and MSe are not independent. Note that

h

a positive correlation between MSh and MSe would cause the
distribution of (3.1) to be more leptokurtic than a corre-
sponding F-distribution. If the leptokurtosis due to a
positive correlation were to balance the platykurtosis due
to an increase in the var (MSe) a robust situation with
respect to the variance of F would be evident.

From Donaldson (1966) the
1
4n’k 2n (nk-1) 2, 2
+
tED e Y, T Y]

he M8 =Y, e meD

corr (MS

and the

_ u -1
cov (MSh, MSe) = yzo (nk) .
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Then from Hansen, Hurwitz, and Madow (1953), the

-1y . -4 _
var(MSh(MSe) ) = ¢ [var(MSh) + var(MSe) 2 cov(MSh,MSe)].

Then by substitution

4
2
20" Y2y 2° 1.

y
nk nk

1 ~ 4
var(MSh(MSe) ) = o0 [(k—l My )+(k(n—l)

Observe that the terms containing y2 cancel (Donaldson,
1966). Thus the

-1y . _2 2
var (MS, MS_)7") = o= + Kn=D)

Also observe that k-1 and k(n-1) are v1 and v2 the degrees

of freedom for MSh and MSe respectively. Thus

2(v +v )
1y L 2 2 12
Var (MSh (MSe) ) = v—— + ;—7—— + —V\-f——— o
1 2 1 2
The variance of F is given by,
2(v + v = 2)
1 2
var (F) = .
vv -8+ 1lev ~% - 16v 72
1 2 2 2

Observe that as v, increases the approximate variance of
(3.1) approaches the var (F). As an example the var (F) for
five groups with 20 experimental units each is .556+ and the
approximate variance of (3.1) is .520.

It wouid appear that the F-test for fixed effects and
balanced designs, is in general robust with respect to non-
normality given the other assumptions on which the F-test is
based, when n is sufficiently large. Recall that the
question of robustness which is of concern in this paper is
with respect to non-normal non-independent dependent vari-

ables, particularly non-independent Bernoulli dependent
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variables. Recently Seeger and Gabrielsson (1968) and
Mandeville (1970) have considered the problem of the applic-
ability of the F-test to the analysis of zero-one data which
arise from a situation which may be represented by a
repeated measures design. Seeger and Gabrielsson employed
simulation techniques to obtain empirical sampling distribu-
tions for Cochran's Q statistic (Cochran, 1950), the F-
statistic (3.1), and the F-statistic calculated following an
arc sin transformation on the dependent variables, all with
respect to a true null hypothesis of no repeated measure
differences. The Seeger and Gabrielsson simulations were
divided into 60 sets with respect to the degree of depen-
dence between repeated measures, degree or absence of sub-
ject by repeated measures interaction, the number of
independent observations on a subject repeated measure
combination,2 and the number of subjects. The number of
repeated measures was fixed at five for all of the above 60
sets of simulations. The conclusions reached by Seeger and
Gabrielsson may be summarized as follows:

1. For all cases investigated the arc sin transforma-
tion produced no significant improvement in the
fit of the empirical F for repeated measures to
the corresponding F-distribution.

2. The Q test is applicable to the situations inves-

tigated only if no interaction of subjects by
repeated measures is present.

2That is Seeger and Gabrielsson's data were simulated

in such a way that a repeated measure score could be thought
of as the sum of independent item (zero-one) scores.
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3. In the presence or absence of an interaction the
F-test gives a generally good fit to theoretical
values, and a better fit than does Q in all but
a couple of the 60 cases investigated.

Mandeville (1970) simulated data for a repeated
measures design with subjects nested within groups, where
the dependent variable was a Bernoulli variate. 1In his
study Mandeville allowed the number of groups to be two or
four, the number of repeated measures to be two, three, six
or ten, the number of subjects per group to be five, ten or
twenty, and the correlation between repeated measures to be
0, .2, .5, or .8. For the central cases he generated,
Mandeville found generally good agreement between the corre-
sponding F-distribution and the empirical sampling distribu-
tions of the F-statistics for groups, repeated measures and
groups by repeated measures interaction tests. For the non-
central cases he investigated (non-null repeated measure by
group interaction and non-null group effects) Mandeville
found consistently less power than the nominal power of the
F-test.

Although the Mandeville and the Seeger and Gabrielsson
studies dealt with dependent Bernoulli variates with respect
to experimental designs very similar to those which are of
interest to this paper, they did not deal with precisely the
situation of interest; that is the three (or more) way
factorial design with two random non-null main sources of
variation, subjects and items. Bradley (1968) has indicated

that the robustness of a parametric test is idiosyncratic
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rather than general with respect to any violation or set of
violations. For example the F-test has been shown to be
robust to heteroscedasticity for balanced experimental
designs (equal cell "n's"), but generally not robust to
heteroscedasticity for unbalanced designs. Thus the robust-
ness or lack thereof, of the F-test, to the particular
situation of interest in this paper, should be examined
although the studies cited above indicate there is some hope
that the F-test may be robust under the conditions of
interest to this paper. In order to further examine the
robustness of the F-test to non-independent Bernoulli vari-
ates, data were simulated and empirical sampling distribu-
tions of F—statistics were determined. The cases
investigated and the means of data generation will be

discussed in the next chapter.



CHAPTER IV

METHOD OF DATA GENERATION

AND CASES GENERATED

Data were generated to simulte the results of experi-
ments conforming to Designs 2 and 3 in Chapter I. The data
were first generated as s°*r*t pseudo random standard normal
numbers (mean zero and unit variance) and then subsequently
dichotomized. The above procedure allowed for the analysis
of the normal data before dichotomization, which enabled the
examination of the effects of item and subject hetero-
geneityl on the ANOVA statistics based on the normal data
and comparisons between the ANOVA statistics based on normal
data and the ANOVA statistics based on Bernoulli type data.
First, the method used to obtain pseudo random standard nor-
mal numbers will be discussed. Then it will be shown how
the standard normal numbers were manipulated to obtain the
desired data simulations.

Many methods for the generation of random, pseudo

random, and quasi-random numbers have been proposed. A book

1Heterogeneity is used here in the strong sense
implying that the subject or item effect with respect to the
dependent variable is non-null.
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by Hammersley and Handscomb (1964) discusses several of the
methods and a review by Greenberger (1961) considered pseudo
random number generators in detail. More recently Marsaglia
and Bray (1968) have suggested fast composite generators
which employ two stage procedures.

Although ANOVA statistics based on the normal data
were calculated, the main interest of this paper concerned
statistics based on the dichotomized data. Because of the
main concern of the paper, the algorithm selected to
generate the pseudo random normal deviates was chosen for
speed and efficiency over other algorithms which give a
slightly better fit to the normal density. In the first
phase of the number generation algorithm a series of numbers
which had a uniform distribution were obtained by the con-
gruential method (Lehmer, 1951). The congruential method
requires an initial value Wy and the series is then gener-

ated by the recurrence relation, Wipp S @Wy + (modulo m),

where m is a large integer and a, c¢, and w, are integers
between 0 and m-1l. Once a series of 16 values had been
obtained by‘the congruential method, their sum was formed
and a linear transformation was performed on the sum to
result in the value Z such that the E(Z) = 0 and E(2%?) = 1.
By the central limit theorem, the distribution of Z will be
approximated by the standard normal density. Henceforth,
the variate Z will be referred to as though it did have a
standard normal probability density.

Now, the algorithm with respect to the establishment
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of a s*r-t three dimensional array of normal numbers which
could represent the results on experiments conforming either
to Design 2 or Design 3 will be discussed. In the first
step of the algorithm, a normal deviate was generated for
each of the s subjects. Then each of the s normal deviates
was rescaled to obtain the desired subject variance. In the
second step r-t pseudo random normal deviates were generated
to represent error scores, for the r-t observations made on
each subject. These error scores were then rescaled to
obtain the desired error variance. Then for each subject
the subject deviate was added to each of the r-t error
deviates associated with that subject to obtain r-t values
which could be termed r-t "observed" normal deviates for
that subject with variance equal to the sum of error and
subject variances. Four different values of subject vari-
ance were employed in the series of simulations for this
paper. In each case the error variance was selected to
compliment the subject variance so as to obtain "observed"
deviates with unit variance. The subject and error
variances for four levels of subject heterogeneity were as
given below. These ratios of subject to error variance were

deemed by the author as similar to those that often occur in

practice.
Level 1: Subject variance = .2 Error variance = .8
Level 2: Subject variance = .3 Error variance = .7
Level 3: Subject variance = .4 Error variance = .6

Level 4: Subject variance = .5 Error variance = .5.
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At this point in the algorithm a branching situation
was dealt with, with respect to whether items were fixed and
homogeneous or random and heterogeneous. If items were to
be fixed there need be no changes made in the values with
respect to the item. If items were random the algorithm
dealt with another branching situation with respect to
whether items were crossed with or nested within the
repeated measures. If items were to be crossed, t deviates
were obtained and rescaled to have the desired item
variance. Then each of the t deviates was added to each of
the r-s deviates with which it was associated. If items
were to be nested t:r deviates were obtained and rescaled,
then each of the t-.r deviates was added to the s deviates
with which it was associated. Three different values of
item variance were employed in the simulations for this
paper, they were .0808, .1514 and .1739. These variance
values corresponded to the variances of certain order
statistics. The reason for the selection of the variances
of order statistics will be given later in this chapter.

The next step in the algorithm was with respect to
the null or non-null effects of repeated measures and the
null or non-null effects of subjects by repeated measures
interaction. Three possibilities were allowed for in the
algorithm:

(1) null effects for both the subjects by repeated

measures interaction and the repeated measures main effect;
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(2) non-null repeated measure main effects, but null
interaction effects;

(3) non-null interaction effects, and null repeated
measure main effects.

The preceding three options provided the means of
generating both central and non-central sampling distribu-
tions of the F-statistics for the repeated measure and the
subject by repeated measure interaction tests. If both
interaction and repeated measure main effects were null,
no further changes had to be made. If the repeated measures
effect were non-null each of r repeated measure effects was
added to the s+t values with which it was associated. 1If
the interaction was to be non-null the s-r-t values were
divided into two arrays with respect to subjects; then
r repeated measure effects were established for one array
and r different repeated measure effects were established
for the other array. The effects were established in such
a way as to cancel each other out with respect to repeated
measures main effect. At this point in the algorithm the
s'r+t values were considered to represent simulated data
from Design 2 or Design 3 with normally distributed

response evaluations.
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The next section of the algorithm dealt with the
establishment of Bernoulli type data to represent data from
Design 2 or Design 3. 1In order to do this another array was
formed of the same dimensions of the array discussed above.
Let the array with normal values be represented as [Xijk]
and let the array with zeros and ones be [yijk]' The yijk
elements of [yijk] were formed by the rule

(Xjg7h) £ 0, vy =0
I€
-h) > 0, vy, =1

(X5 5% ik

Following the example of Lunney (1969) the probability
of a one in [yijk] was either .5, .2, or .1 (given all null
effects) for which h took on the values of 0, .84, or 1.28
respectively.

Recall from Chapter II that the Beta family of vari-
ates may represent most of the distributions of random item
difficulties that are encountered in practice. Also recall
the relationship between a Beta variate and an Order
variate, that is, that an item effect for normal data which
is Order (y, m) can produce an item effect for the same data
after dichotomization, that is, Beta (y-1, m-y).2 In prac-
tice, this investigator has observed that tests which have
mean item difficulties of .5, .2 and .1l often have a dis-
tribution of item difficulties which may be approximated by
the densities of Beta (9,9), Beta (2,10) and Beta (1,14)

zRecall from Chapter II that s = y-1 and £ = m-s-2.
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respectively. The corresponding order variates would have
densities of Order (10,19), Order (3,13) and Order (2,16)

and would have variances .0808, .1514 and .1739 respectively,
the variances employed in this study.

In review, first subject heterogeneity was taken into
account by the algorithm and four levels were employed.
Next, items were allowed to be fixed and null in effect or
random and non-null in effect and crossed or nested. Then,
the null or non-null effects of repeated measures and the
null or non-null effects of subject by repeated measures
interaction were allowed. Following the above, the normal
data were dichotomized and three levels of a probability of

a one in [y.. ] were employed.

ijk
In this study interest did not center on the effect of
varying the number of items or on the effect of varying the
number of repeated measures; thus r and t were set at four
and three respectively, values which were as small as would
usually be found in practice. Five levels of s were inves-
tigated beginning with s = 4, a very small value, and then
s = 6, 8, 10 and 12: values which were not unusual in
practice. Three sets of expected repeated measure mean
scores for the dichotomous data were selected for the non-
null repeated measure effect cases. The means were:
(1) .75, .50, .50, .50; (2) .36, .20, .20, .20; and (3) .19,
.10, .10, .10. Note that since for a Bernoulli variate the
variance is p(l-p) where p is the probability of a one, that

for h = 0, .84 and 1.28 the expected variances are .25, .16
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and .09 respectively. Then note that for the non-null
repeated measures cases defined on the dichotomized data the
first expected repeated measure mean exceeded the others by
the amount of the null case variance. Thus the non-

centrality parameter given by the expression

where B. is the effect of the jth repeated measure, will be
the same for all h.

For the non-null situation with respect to the inter-
action the same values were used to deviate the repeated
measure scores from the rest as were used for the repeated
measure main effect non-null cases. The first half of the
subjects' scores were deviated in one direction and the
other half were deviated in the other direction producing a
null effect for repeated measures main effect, but a non-
null interaction effect for which the non-centrality para-
meter should be the same on the dichotomous data for all
values of h.

Once both [xijk] and [yijk] were in their final con-

figuration an analysis of variance was performed on both.
The values of the statistics obtained from each ANOVA were
then used to increment various sums, sums of squares, sums
of products, and counters associated with critical values of
the statistics in question. Then the entire generation

process was repeated 999 more times so as to result in the
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generation of 1000 samples for each case of interest. Once
1000 samples had been generated the correlation between all
mean squares for the dichotomous data were calculated and
printed. Then for the statistics which were of interest the
frequency of values larger than 0.1000 were printed for
a = .05, .025 and .01.

Four levels of subject heterogeneity, three levels of
a probability of a one, five levels of the number of sub-
jects, items fixed or random, crossed or nested and one null
and two non-null situations resulted in a 4x3x5x2x2x3 array
of 720 cases for which data were generated. The results of
those generations will be presented in the next chapter.

The entire list of the generation program may be seen

in Appendix C.






CHAPTER V
RESULTS OF THE MONTE CARLO SIMULATIONS

In this chapter data will be presented with respect to
the fit of F-distributions to the empirical sampling dis-
tributions of variance ratio test statistics for tests of
repeated measures main effectsl and subjects by repeated
measures interaction effects, under all of the conditions
and parameter configurations outlined in Chapter IV. For
each condition and parameter configuration the data will
consist, in part, of the frequencies of 1000 test statistics
based on 1000 simulated data samples which had values
occurring in o = .05, .025, and .0l rejection regions.2 The
presentation of the empirical correlations between the mean
squares in the variance ratio tests for repeated measures
main effects and the subjects by repeated measures inter-
action effects will complete the presentation of raw data.
For each data table the significant trends within the table

will be indicated, significant interactions graphed and

lBoth for the "ordinary" variance ratio tests and for
the "quasi-F" variance ratio tests.

2The rejection regions being defined by an F-

distribution with the same degrees of freedom as the
variance ratio test concerned.
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summary mean statistics reported where appropriate. Because
the correlations between the frequencies in o = .05, .025

and .01 rejection regions across all cases in each table of
frequencies were generally greater than .9, detailed summary
mean statistics will only be reported for frequencies in the
a = .05 rejection region. Similarly significant interactions
will only be graphed with respect to frequencies in o = .05
rejection regions.

The purpose of the Monte Carlo simulations discussed
in Chapter IV was to determine if it was likely that ANOVA
procedures could be "appropriately" employed for the
analysis of data such as was simulated for this study. 1In
order to give a reasonable consideration to the results of
the simulations, it is necessary to have some criterion for
"appropriate employment" of ANOVA procedures. For the
purposes of this paper "appropriate employment" will be
adjudged in terms of hypothesis testing and two conditions
will be considered as necessary and sufficient for it. The
first of the above two conditions requires that the
empirical probability of a type I error, for a given
hypothesis testing situation, is "reasonably close" to the
nominal probability of a type I error as determined by
ANOVA considerations. The second of the above two conditions
requires that the power of a test of a true non-null hypo-
thesis is not "unreasocnably small." The phrases "reasonably
close" and "unreasonably small" will be discussed below.

If 1000 samples are simulated so that a null hypothesis
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is true and so that the assumptions of an ANOVA are met, the
number of F-statistics testing the above hypothesis which
have values which exceed the Fi o quantile of a correspond-
ing F-distribution3 will be approximately 1000a. If 1000
samples of data are simulated so that a null hypothesis is
not true and so that the assumptions of an ANOVA are met,
the number of F-statistics testing the above hypothesis

which have values which exceed the F quantile of a

1-a
corresponding F-distribution will be approximately 1000
times the nominal power (1-B) for the situation simulated.
Let Xi be defined according to the rule
1, Fi > Fl—a

0, otherwise

Xi =

th

where Fi is the F-variate calculated on the i sample,

i=1, 2, ..., 1000, and F is the l-a quantile of the

1-a
corresponding F-distribution. The variate Xi is then an
indicator variable, which takes on the value one when Fi is
in the o rejection region and which takes on the value zero
when Fi does not occur in the rejection region. Note that
the frequency of Fi's which fall in the o rejection region,
1000
F, may be represented by the expression f = LI Xi.
i=1
Observe that f is a binomial variate with parameters p = a

and n = 1000. The variance of f is then np(l-p) or for

n = 1000 and oo = .05, the var (f) = 47.5. Therefore a .95

3An F-distribution with the same degrees of freedom
as the variance ratio for the test.
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probability interval may be formed about the expected value
of £, E(f) = 1000 o, which for o = .05 is
Pr(36.5 < £ < 63.5) = .95.

We now have a basis on which to define what "reason-
ably close" to the nominal probability of a type I error may
be. If the empirical frequency of 1000 variance ratio test
statistics, testing a true null hypothesis, which fall in
an o rejection region as defined by ANOVA considerations, is
a frequency which occurs in a .95 probability interval about
1000a, the empirical probability of a type I error may be
considered reasonably close to the nominal a.

The problem of what an unreasonably small value of
empirical power would be is more difficult to resolve than
the question concerning the empirical probability of a
type I error which was considered above. Clearly an
empirical power less than or equal to a would be unreason-
ably small (a test with this property is sometimes called a
biased test), but beyond that clear lower limit, the matter
must in this investigator's judgment, be arbitrary. For the
purposes of this paper it was arbitrarily decided that an
empirical power of less than one third the nominal power
would be unreasonably small.

Table 7 contains frequencies in o = .05, .025 and .01
rejection regions of variance ratio tests of repeated
measure effects under conditions in which the repeated
measure effects were null, items were crossed with repeated

measures and there was no interaction between subjects and
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repeated measures. Table 7 is laid out as a six-dimensional
array with three left margins and three upper margins. The
left-most margin indicates the number of subjects employed
with respect to a given simulation of data. Proceeding from
left to right the next margin indicates the nature of the
items, whether fixed and null in effect or random and non-
null, and the right-most of the left margins indicates the
level of subject heterogeneity. The upper margins from top
to bottom indicate: (1) the probability of a one with
respect to a given simulation of data, (2) one thousand
times nominal o, (3) an indication of whether the 1000 vari-
ance ratios with respect to a given cell were calculated
from the dependent variables when they were variates with
normal density (N) or from the subsequently dichotomized
normals (D).

In order to test for trends in the data reported in
Table 7, the margins were considered as fixed sources of
variation and a multivariate analysis of variance was per-
formed on the frequency data three-tuples4 within the table,
employing the highest order interaction mean products as an
estimate of error under the assumption that the highest
order interaction is truly null.

From the first analysis of the data in Table 7 it was
concluded that the frequencies for tests based on the

dichotomous variates with overall mean vector 39.9, 18.5,

4or o = .05, .025, and .0l.
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6.75 were significantly different from the frequencies for
tests based on the normal variates with overall mean vector
46.9, 26.4, 9.7. Then subsequent analyses were performed on
frequencies with respect to dichotomous and normal variates
separately.

With respect to the frequencies based on dichotomous
variates, it was concluded that there were significant main
effects due to the probability of a one and the number of
subjects as well as an interaction between the two signifi-
cant main effects. The significant interaction is repre-
sented in Figure 1. 1In the figure the two horizontal lines
represent .95 probability limits for mean frequencies such
as those graphed, given an expected value of 50. Observing
Figure 1, it appears that a favorable comparison of nominal
o and empirical probabilities of a Type I error occurred
when the pfobability of a one was .5 and there were six or
more subjects. Also a favorable comparison occurred when
the probability of a one was .2 and there were ten or more
subjects. However when the probability of a one was .1l no
favorable comparisons occurred, although the graph suggests
that a favorable comparison might occur given more subjects.
The marginal mean frequencies for the o = .05 regions for
probabilities of a one equal to .5, .2, and .1 were 50.9,
39.9, and 28.8 respectively, and for numbers of subjects

equal to 4, 6, 8, 10, and 12 they were 27.8, 39.2, 40.9,

5Ordered for frequencies in o = .05, .025, and .01
rejection regions, respectively.
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Figure 1. The interaction of the probability of a one and
the number of subjects, with respect to the data in Table 7.
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42.0, and 49.7 respectively.

With respect to the frequencies based on normal
variates there was an unexpected effect due to the number of
subjects. The marginal mean frequencies for a = .05 regions
were 48.2, 34.4, 43.5, 55.1 and 53.0 for numbers of subjects
4, 6, 8, 10 and 12 respectively, where the mean frequency
for six subjects differs significantly from the other mean
frequencies. The only reason this investigator can give
for the unexpected low mean frequency for six subjects is
that it was a peculiar occurrence which would not reoccur
if the simulations were repeated with a different starting
value for the random number generator.

Table 8 is analogous to Table 7 in that it differs
from Table 7 in only two aspects: (1) the values in the
table were obtained by simulating data which could have
arisen from Design 2 rather than Design 3, and (2) no fre-
quencies appear with respect to tests based on normal
variates. The reason that frequencies with respect to
tests based on normal variates do not appear in Table 8 is
that because of a programming problem, the early simulation
runs on which the frequencies with respect to 4, 6, 8, and
10 subjects in Table 8 are based, did not allow for the
influence of non-null items effects to show itself in the
tests based on the normal variates. The simulation runs
for 12 subjects, however, did not suffer from the above
limitation and those data will be presented in Table 16.

From the analysis of the frequencies in Table 8, it was
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concluded that there were significant main effects due to:
(1) the probability of a one, (2) the number of subjects,
and (3) items fixed and null in effect versus items random
and non-null in effect. There were also significant inter-
actions between the probability of a one and items fixed vs.
random and a significant interaction between the number of
subjects and items fixed vs. random. Both of these inter-
actions were represented on one graph, Figure 2. The
horizontal lines in Figure 2 are .95 probability limits
about 50 for means such as those graphed. An inspection of
Figure 2 indicates that a favorable comparison of nominal a
and empirical probabilities of a Type I error occurred when
items were fixed and null in effect and the probability of
a one was .5. Also a favorable comparison occurred when the
items were fixed and null, the probability of a one was .2
and there were 10 or more subjects. In the absence of the
above conditions, however, only unfavorable comparisons
resulted.

The overall vector of mean frequencies for Table 8
was 86.6, 48.5, 24.0. The marginal mean vectors for items
fixed-null vs. random--non-null were 40.0, 18.0, 6.3 and
133.2, 78.0, 41.7 respectively. The large mean frequencies
for the items random non-null conditions confirm the con-
tention made in Chapter I that non-null items effects
associated with a design in which items are nested within
repeated measures will cause the regular variance ratio

test for repeated measures to have too many Type I errors.
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Note that when items are fixed-null the results in Table 8
are generally the same as those in Table 7, but when the
item effect is random non-null the situation is quite
different.

The marginal mean frequencies in a = .05 rejection
regions for the probability of a one equal to .5, .2, and
.1 were 91.9, 98.7, and 69.1 respectively, and for the
number of subjects equal to 4, 6, 8, 10, and 12 they were
44.6, 74.0, 82.6, 104.3, and 127.5 respectively.

Tables 9 and 10 contain the frequencies in o = .05,
.025, and .01 rejection regions of the variance ratio test
statistics for tests of repeated measures effects when the
data were simulated under the non-null repeated measures
effect conditions indicated in Chapter IV. Table 9 containé
frequencies.with respect to tests based on both normal and
dichotomous data, whereas the frequencies with respect to
normal data were omitted from Table 10 for the same reason
that frequencies with respect to normal data were omitted
from Table 8.

The data in Table 9 which were with respect to normal
variates with overall mean vector 517.5, 418.6, 308.7 were
significantly different from the data in Table 9 which were
with respect to dichotomous variates and which had an
overall mean vector of 262.3, 185.6, 114.2. The data in
Table 9 with respect to normal and dichotomous data were
subjected to separate multivariate analyses of variance and

very similar significant effects were found. For both
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dichotomous and normal there were significant main effects
due to the probability of a one (which‘you may recall is
confounded with degree of non-null effects for repeated
measures), the number of subjects, and the level of subject
heterogeneity. Also in both there were significant inter-
actions between the probability of a one and the number of
subjects as well as between the probability of a one and
the level of subject heterogeneity. In addition within the
data with respect to the normal variates, there was a sig-
nificant first order interaction between the number of
subjects and the level of subject heterogeneity, and a
second order interaction of the probability of a one, the
number of subjects, and the level of subject heterogeneity.

To find very similar effects in the data with respect
to both normal and dichotomous data is somewhat reassuring,
but the relationship of the empirical power of a test based
on normal variates to the power of that same test based on
the subsequently dichotomized variates requires further
analysis.

Each frequency in Table 9 which was based on dichoto-
mous variates was divided by the corresponding frequency in
Table 9 which was based on normal variates to form a new
variable which can be considered as the relative power of a
test based on subsequently dichotomized variates with
respect to the power of the same test based on normal vari-
ates before they were dichotomized. The relative power data

were subjected to a multivariate analysis of variance and
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three significant main effects and no interactions were
found. The significant effects were (1) probability of a
one, (2) the number of subjects, and (3) the level of sub-
ject heterogeneity. The overall mean vector of relative
power variables was .45, .38, .32, which indicates that the
relative power of the variance ratio test for repeated
measures effects decreases as the nominal a level decreases,
from .05, to .025, to .01l. There was no interaction between

nominal a level and the above significant effects so marginal

mean relative power will be reported for o = .05 only. For
probabilities of a one equal to .5, .2, and .1 the mean
relative powers for a = .05 were .58, .49, and .28 respec-

tively. For numbers of subjects 4, 6, 8, 10, and 12, the
means were .39, .41, .43, .50, and .54. For the four levels
of subject heterogeneity 1, 2, 3, and 4 the means were .52,
.46, .43, and .41 respectively.

The differences in mean relative power show clear
trends. As the probability of a one becomes smaller so does
the relative power, which is the opposite of the trend which
might have been expected, since as you may recall from
Chapter IV the degree of non-null effect in the simulated
data was selected to counter the effect of decreased vari-
ance corresponding to a decreased probability of a one.

Thus the power of tests based on the dichotomous variates
should not have changed across levels of a probability of a
one, whereas the power of the test based on normals should

have and did decrease across levels of a probability of a
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one (and decreasing non-null effects). The results indicate
however, that the power of tests based on the dichotomous
variates fell off more rapidly across levels of the proba-
bility of a one than did the power of tests based on the
normals. The explanation of the above may be that as the
probability of a one becomes smaller the point of dichoto-
mization is such that more of the "information" carried in

6 Another clear trend is that as the

the normals is lost.
number of subjects increases, the relative power does so

as well. The trend with respect to the number of subjects
is most likely a function of the effect of the central

limit theorem. The third trend indicates a loss in relative
power with an increase in subject heterogeneity, a trend for
which this investigator has at present no explanation.

A multivariate analysis of variance of the frequencies
in Table 10 disclosed significant differences for almost all
sources of variation. <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>