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ABSTRACT

SOME PARTIAL DIFFERENTIAL EQUATIONS WITH DELAY

By
David Richard Hale

This thesis is primarily concerned with some partial

differential equations with delay, for example

t
(.g_:.) (x,t) = chu(x,t) - I g(t-s)pu(s)ds

-
where A denotes the Laplacian. In the first chapter,
several physical models are discussed, which lead to

equations of this type.

In the second chapter, a more general equation

t
(é% u) (t) = cAu(t) - f g(t-s)Au(s)ds

-®
where A 1is an infinitesimal generator and is considered

at first. This equation is formally transformed into a

second equation.

This second equation is shown to have a unique solution
for appropriate initial conditions. A semigroup is defined

using these solutions. The infinitesimal generator for this



David Richard Hale

semigroup is found, and its spectrum computed. In the
last section it is shown that the solution of the modified
equation gives solutions of the original equation when

A = A and the solution is in a weak sense.

The third chapter discusses existence and uniqueness
for the nonhomogeneous linear equation and the perturbed

equation.

The last chapter involves a saddle point property

for the perturbed equation.
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CHAPTER 1
INTRODUCTION

Functional differential equations have been well
studied by various writers. Such equations arise in phys-
ical models where the rate of change of a system depends
not only on the present state of the system, but also on the
past state or "history" of the system. A natural general-
ization of functional differential equations, which are
ordinary differential equations where the derivative depends
on the history of the system [1ll], are equations involving
partial derivatives and the history of the system. These
equations occur as models in some physical and biological
problems. In this introduction models of 1. Gene frequency,
2. Heat conduction, 3. The "dangling spider," and 4. Visco-

elasticity will be considered.

1. Gene frequency.

Fleming [9] has used the equation

2
ge I8 I
= p-B
t sz

to describe the frequency of a selectively-neutral gene, in
a habitat consisting of a number of colonies of animals

arranged in a row. Here p(t,x) is the frequency of the



gene type at time t and position x, a 1is a positive
constant depending on the rate of reproduction and death,
and B 1is a positive constant taking into account other

variables. The migration from colony to colony is

p(t,x+h) + p(t,x-h) - 2p(t,x)
2h

2

which is approximated by ng-. Note that this model
X

assumes that the rate of change of the gene frequency

depends on the migration at the present moment only. To

relax this assumption a more realistic model might be

3 32 Jt EEB
= + | g(t-s) (—5) (s,x)ds + ap - B,
5% ;x% - ax>

where g(s) 0 as s #+ ®,g(s) > 0. This integral in-
volves the past history, and thus takes into account the
rate of migration in past times. Since g(s) + O as
8 %+ o, the system is of fading memory type. That is,
although the value of p in the distance past doesiaffect
the integral, it does so less than the value of p in the
immediate past.
This model also assumes that the colonies are arranged in a
row. It is more valid to consider colonies arranged in a
Plane. By reasoning similar to that in the preceding model,

this can be represented by

3 t
st = Mo+ I g(t-s) Ap(s,x)ds + ap - B,

-C0



where all the variables have the same meaning as before,

except x is a two vector.

2. Heat conduction.

Jace W. Nunziato [21] has studied a similar equation in
regard to heat conduction in materials with memory. Let M
be a homogeneous heat conductor with memory. For each x € B,
there are three response functionals: the free energy E,
the entropy N, and the heat flux Q. Each of these depend
on the temperature T and the temperature gradient ¢T, both
at the present time and the past history.

To be more specific, let TT(s) = T(s-t) and VTt(s)
= vT(s-t), considered as elements of a function space. Let
H = (g:(-=,0) + R such that j: g(s)h?(s)ds < ). (Identify-
ing functions equal except on sets of measure O0.) h(s) is
a positive function decreasing to 0. T(x,t) is the tempera-
ture at position x, time t. T(t) is the same function
considered as a function from the real numbers into a Hilbert
space H. For each t, T(*,t) € H. H 1is a Hilbert space.
Let <, > Dbe the inner product in H. Then Q (similarly
E and N) is a function of

(T.VT.Tt.VTt) €R x H x R3 X H3.

E is assumed twice Freéchet differentiable, N and Q each

once Frechet differentiable.



Define G = E + TN, where G the internal energy.

Then G and Q must satisfy the energy balance equation
G=-vWQ +r

where r 1is the heat supply from the body's surroundings.
The second law of thermodynamics gives the Clausius-

Duhem inequality [3]
N > ; - v(% Q).

To obtain constitutive equations these equations are

linearized. This gives after considerable computation

Q = -K(0)vT - [° K*(s) vT(t-s)ds.
(0]

In the same way
(-
G = Gy + a(0)T + j a’(s)T(t-s)ds.
o)

Here K is the heat conduction relaxation function and Q
is the energy temperature relaxation function.
Combining these equations and using the energy balance

equation results in

a(o)i(x,t) + I.cx'(s)&(x,t-s)ds
(o]

= K(0) vz'r(x.t) + J" K‘(s)vz'r(x,t-s)ds + r(x,t).
(o)

If a’(s) = 0 (in other words if the energy tempera-

ture relaxation function is constant) then the equation becomes
. [ ]
T(x,t) = aAT(x,t) + j g(s) AT (x,t-8)ds + r(x,t)
o

an equation similar to the previous one. Paul Davis has

studied this equation [7], [8].



3. The "dangling spider."”

Another example of a model where such an equation
appears is the "dangling spider," studied by B. Coleman and
D. Oowen [ 5 ] among others. A mass M hangs from a ceiling
by a massless but strechable filament of length z. The
forces acting on the ball are the tension T in the fila-

ment and a body force F in the z-direction. It can in

many cases be assumed F = - é%%fl. where h is indepen-
dent of time, that is, F is a potential.

Assume T at time t is given by a function g of
the history of z up to t: T(t) = g(zt). Using Newton's
second law, the equation of motion for the ball is

MZ= F(2) -g(zt).
If
— ’ -
T(t) = G(0)z,(0) + | 6'(s)z (-s)ds
(o]
(this form appears in the linear theory of viscoelasticity

[4]) where G is the relaxation function, and G(0) the

equilibrium modulus, then the equation becomes
-]
MZ= F(z) - G(0)z,(0) - J;)G'(s)zt(-s)ds.

For F, the simplest nontrivial case, and also a case
with physical importance, is when F = gM, the gravitational

case. In more general cases, F does depend on =z.



4. Viscoelasticity.

Another example is linear viscoelasticity of the Boltz-
Mann type, considered by Dafermos [6] and Coleman [4].
Consider a one dimensional homogeneous body with density
p > O, stress at position x at time t = o(x,t), displace-
ment from position x at time t = u(x,t), satisfying the
constitutive equation o(x,t) =c:ux(x,t) - Itg(t-w)ux(x,w)dw

where g(® >0, g'(§ <0, and  c-][ g(9ag>o.
o)

The body has endpoints b and d, which remain fixed,
so u(b,t) =u(d,t) =0, for all t € R.

The state of the body at time t is described by the
displacement u(x,t), the momentum v(x,t), and the history
of displacement ut(x.s).

The equation of motion is

t
pi(x,t) =cu  (x,t) - [ g(t-nu (x,naT.

In the following chapters, a generalization of the
equations which appear in the first two models will be studied.
Chapter 2 is concerned with the homogeneous linear equation.
Existence and uniqueness is shown for a related equation. A
semigroup is constructed using solutions to this equation,
and its infinitesimal generator is computed. The spectrum
is of the infinitesimal is computed. In the last section of
chapter two, the solution of the modified equation is shown

to give solutions of the original equation in a weak sense.



The third chapter is concerned with the nonhomogeneous
equation and the perturbed linear equation. Basic exist-
ence and uniqueness theorems are proven for these.

In the fourth chapter a saddle point property is
established for the perturbed equation. This involves more

accurate determination of the spectrum of the semigroup.



CHAPTER II

EXISTENCE, UNIQUENESS AND THE
INFINITESIMAL GENERATOR

§1. Introduction.

In this chapter we consider some partial differential
equations with delay, for example

3u O
(2.1) E(x,t) = cMu(x,t) -I g(t-s) u(x,s)ds, t > 0

-0

where u is a scalar function of x €R" and t €R. "A"
denotes the Laplacian with respect to x and g is a

scalar function defined on (-« ,0] and c¢ is a positive real
number.

Let (Q Dbe an open, bounded, connected subset of R
with boundary 3 Q. Let Q be the closure of Q. Let 23Q
be locally Lipschitz, that is, if x€3(Q, there is a neigh-
borhood U  of x in R® such that Ux N3Q is the graph
of a Lipschitz function. Together with (2.1) we impose the

following initial-boundary conditions:

u(x,t) (o] Xx €930, t>0

u(x,t) w(x,t) x €Q, t<o

where w(x,t) 1is a given function.



The solutions to (2.1) found here will be solutions in
the sense of distributions, or a "weak solution" [15], with
the solution u(x,t) defined on a Sobolev space [1].

Let CJ(q) be the infinitely differentiable functions

into R with compact support in (), and define

Ja] 1 =,/I |lgraa uli. Let H;((» be the completion of C>
H 0 0 0
0

in the norm |[:| ;. Then Hé(n) is a Hilbert space [15].

H
(0]

The Laplacian is defined on C2

(o]
closed self-adjoint operator on a dense subset of Hé(ﬂ). [15]

and can be extended to a

Now the solution u(x,t) will be considered as an
element in a Hilbert space. Let a > O be a positive number
such that f. ezatlg'(t)lzdt < =

o

Let X=1L at[-..o:n(l)(o)], be the Hilbert space of
2,e

functions from (-»,0] into Hé((» with inner product
(0]
<t = [ e¥%e(t),g(t)> ) at

where <, > 1 is the inner product in Hé(n).
H

0O
The space Hé(o) is used to correspond to the boundary
condition

u(x,t) =0, x €230 t>o0.

Elements in cg(n) clearly satisfy this condition, so
the condition u(*,t) € Hé(n) corresponds to u(x,t) = O,

by the trace theorem [15]. Also let V = X x Hé(ﬂ).
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W will be used as the space from which the initial condition
will be taken. If (w,p) €w, W € X, p € HS(0), then
u(x,t) = w(x,t) for t <0, and u(x,0) = p(x). Since
w € X does not imply w is continuous, both w(x,t) for
t <0 and w(x,0) must be specified.

The first question concerning (2.1) and the related
initial boundary condition is naturally, "Does a solution
exist and is the solution unique?" To show (2.1) has a
solution in the sense of diétribution under the previously
mentioned restrictions, we will use semigroup theory.

A semigroup is a one parameter family of continuous

linear operators T(t) on a Banach space E such that [13]

(1) T(t+s) = T(t)T(s) for t,s > O.

(2) For any fixed x, T(t)x is a continuous function in ¢t

for t > 0, in norm on the space E.
(3) T(O) = I, the identity operator on E.

The infinitesimal generator of the semigroup T(t) is

defined by

A) = 1lim TEE=X 4 ¢ pa,
t+ot

where the domain of A,D(A), is given by

D(A) = (x| 1lim 1(1:_)tx_-_x_ exists].

x=0t
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It can be shown that A is a closed linear operator
with dense domain and that the semigroup is uinquely
determined by the infinitesimal generator [13].

In the next sections a semigroup will be found using
solutions of an equation related to (2.1). The infinitesimal
generator of this semigroup will be found and its spectrum
computed. Then using a special case of the general equation,

it will be shown _weak solutions of (2.l1l) are obtained.

§2. The modified equation.

Let E be a Banach space and A the infinitesimal
generator of a semigroup on E. The semigroup generated
by A will be denoted by eAt. Let a >0, set
K=L _.(-=0;E). The Banach space E in applications
can bz'zhosen to correspond to boundary conditions, for
instance Hé(ﬂ) will correspond to the boundary condition
u(x) = 0, x € 3.

Now consider the equation

(2.1) %% = CAu - It g(t-s)Au(s)ds
-®

with g differentiable

[® lg(s) |? 2% ds < w, and
0

J\' lgo(s) l2 e2as ds < »
(o]
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for some a > O. Suppose this equation has a unique solu-

tion for any initial condition (w,p), w € K, p € E.

the variation of constants formula [12] gives

cAt

Then

t s
u(t) = e " p + %-I eCA(t_s)( I g(s-s)Au(s’)ds )ds

0 -0

for t > 0. 1Integration by parts gives

(2.2) u(t)==eCAtp + é ft g (t-s)u{s)ds

(0] t
- % eCAt( J g(-s Hu(s’as?’) - %( I eCA(t-s)u(s)ds)g(O)

- (o)

t s
- % I eCA(t-S)( I g'(s-s)u(s’)ds Has .

O - -

This is the equation that will be studied in the next

two sections.

§3. Existence and uniqueness.

First, it will be shown that equation (2.2) has a unique

solution for (w,p), w € K, p € E.

Lemma 2.1. Let w €L at(--.O;E)-

o) 2,e

Then

G(t) = I g(t-s)w(s)ds is a continuous function of t for

t > 0.

Proof: For any t,,t, > O, IG(tl) -G(t,) |

0
< U (gity-s)-g(t,-a))ws)as | < ([ lg(ty-s)-g(t,-s) | %

(0]
(fw ezas!w(s)lé ds)i.

-2asd

8)

%
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-2as

0]
. 2
Since Jﬂne (g(tl-s)-g(tz-s)) ds + 0 as t1-0t2,

G(t) 1is continuous.

Theorem 2.1. Let E be a Banach space, let A be the
infinitesimal generator of a semigroup on E and let

g[o,») % R satisfy

1) [ raer1%e® et < =

o)
(ii) g’(t) exists for 0 < t < =; and
[}

(iii) f [g'(t)1%at < = .
0

Then the equation

t
(2.2) u(t) = eSAtp 4 % j g(t-s)u(s)ds

0 t
) (o) -®

t
u(s)ds )ds - %[f eSB(t-8), (5)ds]g(0)
(o]

has a unique solution on [o,tl] where t; >0 is

arbitrary.

Proof: Let C[O,t1; E] Dbe the Banach space of con-
tinuous functions from [O,tl] to E, 0K t1 < ® with

norm

-kt
lul = max e Tru(t)
o tG[O.tl]l le
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where k 1is some positive number. Define

M(w,p)V](t) = eCAtp + % Io g(t-s)w(s)ds
-»
= 1 t
+ %'. g(t-s)v(s)ds - E-eCA fo. g(-s)w(s)ds
o -
R 0
-1 eCA(t-s) f g(s-s')w(s ') ds)ds
0 -C0
'lt s
- % eCA(t-s)I g(s-s’)v(s’)as’
o (o]
1 t cA(t-s)
- E'[I e v(s)ds]g(0).
0]

It will be shown M(w,p) is a contraction for k chosen
correctly.

Note that eSAt

o]
(p+-I g(-s)w(s)ds) is continuous in t
t - 00
and f g(t-s)v(s)ds is continuous (since both g and v
0]
are continuous). By Lemma 2.1, é Io g(t-s)w(s)ds is contin-
- ®
uous. For the other terms in M(w,p) continuity is shown
t cA(t-s)
using the theorem that I e f(s)ds 1is continuous if
(o]
f is continuous [12]. Hence, M(w,p): C[O,t;E] =+ Cc[O,t;E].

Next, we have for any v(t),r(t) in c[o0,t;E]

sup |e-kt[M(w,p)v(t) - M(w,p)r(t)]

tG[O.tl]
t
<  sup e Kt %-I lg(t-8) ||v(s) - r(s)|das
tG[O,tl] (o)

+ sup t ]
te[o,tl]e'kt %-f |e°A(t's’| (I lg(s-s’) |[v(s')-v(s’) |as ‘) as
(o) (o)
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t
-kt 1 cA (t-s)
+ te[saJp ]e Elg(o) | Io le ||v(s) -v(s) |as
-kt 1 * ks_-ks
< te[soulz: ]e 3 I e g (t-8) | |v(s) -r(s) |ds
o sup e L [FIAS) (g oot [|y(s ) -x(s ) as ) as
tefo,t,] €0 o
kt 1 t k k
+ sup |g(0) |e = I 8e- s|v(s) - r(s) |ds.
te[o,t, ] o)

Now, |eCAt| < Re®t for some R > 0 and some a. [13]

Using this
kt 1 ty k
sup _e~ —I e'®e™™® |g(t-s) | |v(s) - r(s) |as
tE[O.tl] c o
8
t1l CA(t-S) ’ ' ¢ '
+ = ( (s-s ") | |lv(s?)-xr(s ) |ds ) as

t
+  sup |g(0) [e™* 2 [ e*®|v(s) - x(s) |as

tefo,t, ] 0
1kt J‘t ks | | 9 () |
<= e " v -r| ds) ma g(s)
- ¢ 0 ae[o.tl
s )
+ % —kt I 43¢ f Max |g(s) Ieks |v-r|cds %) as
o o
Xt 1 [° %
+ tefo up (lg(O) le” 3 .[ e slv —rlcds)
ot o

Max|g(s) |.s€[o,t,]1 Max|g(s) |s€[o,t;] «at
( kc L + c (k+c) : Re 1+‘-];-|g(0) l%)"’-rlc'
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Choosing k large enough so that

at

R__o 1y, |g(0)|%<k

max ‘g(s)l(%+m

s€[0,t1]
makes M(w,p) a contraction. Therefore M(w,p) has a unique

fixed point. Since tl can be any positive number, this

gives a unique solution to (2.2), for all t > O.

Theorem 2.2. Let w € K, and p € E, K and E

the same Banach spaces as in Theorem 2.1. Let u(t) be

the solution of (2.2) with initial value (w,p). Then

lu(t) | < c(t) | (w,p) IKXE where C(t) depends on t but

not on (w,p).
Proof: By (2.2) after taking norms

0]
late) g < Re®®[p|y + 2 [ lg(t-s) ||w(s) | gas

t
+ L [ lgtt-9) |Ju(e) | a8 + Re®talwl
(0]

t 8
+ B 08 ([ g?(a-s |lu(s” | a8 ") as
o 0

t
NEVCTOT Y RCIC
o

IN

Reat[lplE + 6lwl,.] + -};G(t)

t

1
+ = Max (g(s) lu(s) | _ds
¢ [o,t] ! 'L E
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t
I
+ %‘ 1 e(a+a)t G I u(s:)e-(o&a)s ds !
v 2a 0

t
+ &lzégl_lj e (87%) |u(s) | as.
(0]

at oLt].
Now fix ty. O <t <=. Then on [O,tl], e { e .

So using Gronwall's inequality on the above equation,

hae) Iy < Re™(llplly + clwll ] + £ a(e)

t

1 1 R 1 (a+a)tl -(a+a)t
+ (exp [ Max g(s)) =+ =—— e e
J;) [oltl c c \/23
a(t,-t)
+ BIOD o Taey Iplg
<et) | w,p) [ p -
Now define T(t) for t > O by
(2.3) T(t) (w,p) = (ut.u(t))

where u 1is the solution of (2.2) for the given (w,p)

and

ut(s) w(t-s) t < -s

ut(s) u(t-s) t> -8

Theorem 2.3. T(t) defined by (2.3) is a strongly

continuous semigroup of linear operators on K xE.
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Proof: For each ¢t,T(t) is linear since equation
(2.2) is linear. T(t) 1is bounded by Theorem 2.2.

T(t) (w,p) 1is continuous by Theorem 2.1.

So to show T(t) is a strongly continuous semigroup,
only T(tl)T(tz) = T(t1+t2) must be checked. Let w € K,
P € E, then
u(t,+t,) =eml\(tl+t2)p+l f g(t,+ 2—s)u(s)ds

cA(t,+t, -8) g
_% e 1 72 J' g -s)u(s)ds
-

t
_% [ eCA(t-S) (Ii g’(s-s’)u(s’)ds ‘)ds
O (. ]

+t cA(t1+t2~s)

(0)‘]' 1% e u(s)ds

CAt 1 5o
p+z [° gl(t,-s)u(s)ds

cA (t,-s)
- ?1:. e 2 _['O g(-s)u(s)ds

t, cA(t,-s)
_%- I 2e 2 (I g'(s-s')u(s')ds')ds
t cA(t,-s) t,+t
~2f2%2e 2 u(s)aslg()) +3 j_i 2g (t,+t,-s)u(s)ds
t.+t, CA(t,+t, -s)
- é It; 2 e 172 (j'i.g'(s-s ‘Yu(s ‘)ds ’)ds
t. .+t cAt t
-7 1 2 CA(E1+t)-8)y(s)asg(0) - e L2 = g(t -s)u(s)ds
c
t

2
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cAt 1 tl
= e u(tz) + 3 I g(t,-s)u_ (s)ds
™ 2

=

cAt 0
e 1 f g(-s)ut (s)ds

- 2
cA(t,-8)
e 1 (Is g'(s-s")ut (s*)ds”)ds
-» 2

|
Qi

%

|
QI

(0]
tl cA(tl—s)

- = { e u
IQ ts

=

(s)ds)g(0)

n

making the change of variables -t,+s + s, and tzi-s' + s’
So T(t1-+t2)(w.p) = T(tl)(T(tz)(w.p)). and so T(t) 1is a

semigroup.

§4. The infinitesimal generator.

Now the infinitesimal generator of T(t) will be found.

Theorem 2.4. Let T(t) be the semigroup given in

Theorem 2.3. Then the infinitesimal generator of T(t) is

. o
(2.4) @(w,p) = (w,A(cp - [ g(-s)w(s)ds))

where the domain D(A) of & is given by

D) = {(w,p)|w.w € K, p € E, limw(t) = p, and
(o) t-+0

(cp - [ g(-s)w(s)ds) € D(a)}.

-0
Proof: Let d(w,p) Dbe the infinitesimal generator of

T(t). Then for (w,p) € D(Q)

u, - w
@ (w.p) = lim :r_.(_t_uw_;:m_:_(v_',.m.= lim (=t u(t) -p,

£-0 tv0 °© t
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W, -W .
By definition 1lim tt = w where w is the weak deriva-
t-0 ]
tive of w [15]. For w to exist, 1lim w(t) must exist. [20]
t-+0
Since
CAt 1 t
lim u(t) = lim [ p+ 2 [ g(t-s)u(s)ds
t=0t t=0 o
1l cAt 0 1 * cA(t-8)
-1 [ gouisias - 2 ([ ePEFus)angio
P - -] O

-2 eCA(t‘S)( Is g*(s-su(sHdas’)lds=p, 1lim u(t)
3 20

= lim w(t) =p .
t-+0

For the second component of %(T(t) (w,p) = (w,p)),

)
T -p) = (P p+ -2 [ gl-s)w(sas)

o 0
- (p+- % f g(t-s)w(s)ds) + %I g(t-s)w(s)ds

ot t
+ %— J g(t-s)u(s)ds —%— ( I eCA(t's)u(s)ds)g(O)

o) o)

't

(0]
eCA(E-8) j‘ g’(s-s’)w(s’)ds’)ds
0 -0

1
c

t s
eCA(t-s)( I (s-sYw(s’)ds ) as) %:'-
(o) (0]

Q=

L

0 o
= Leont-8) (p L [ g(_s)w(s)ds) - (b -2 [ g(-s)w(a)ds)]

0 t 0
([ Tg(t-8)-g(-5) Jw(s)as -2 foec"“t's’ ([ g’ s-sw(s1as")
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* 215 [f: (g (t-s) - g (0))u(s)ds]g

38 - e 15000 ang

+3 [J'; e“A(t5) 50)[p [ u(s) Jas]}

+ - é ‘I: oCA (t-3) (.f: g (s-s )u(s *)ds ,)ds)%

We will denote these terms by

(o) (o]
(i) % (eCAt(p'% J‘-. g(-s)w(s)ds) - (p-é ‘['-Q g(-s)w(s)ds)

(ii) & J‘o [g(t-s) -g(-s) Jw(s)ds

g‘’(s-s’)w(s ’)ds
(]

é J‘t ecA(t-S)J-(j

t
(i) 3 [ (g(t-s) -9 (0))u(s)ds]g
t -
(iv) 2 (. [1-e2(5%) 15(0)p as)g
t -
v) [ eCR (E-8) g(o)[p-u(s)ds]g—;

(o)

(vi) (1:' [_[‘; eCA (t-s) (I: g’(s-s8’)u(s’ds ‘)ds]%:

each of these terms will be considered separately.
As t + 0, term (vi)

t - ’ . o 4
-clt' Ifo eCA (t-8) (J‘Z g “(s-s*)u(s ’)ds ‘)ds|

L ¢ re?t([* g%(e)? ds)i(f; u(s)? as)
o)

n

ct

!
iR

([ gt an ¥([" uierZaer ¥ 4 0.
(o] o
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For term (v), since u(s) is continuous for s > O,

for any € > 0, there exist § such that
0<s<&=|p-u(s)| <e.
And so

a

t -
gle L PP p-u@ae) g | <t - 3R g0

< ReO‘6 g(0)e + 0 as t 4+ 0, since ¢ is arbitrary.

For the term (vi)

t ot-
= (. [1-e%2°t5) 15 4g)g (0)

1
c

1 t t
=i é g(o)J‘o (l-eCAs)p dsl% = -9g(0) ‘]'o(l-ecAs)p ds |

g%-c-g(o) -t sup |eCAs p-pl.

o<s<t

Since eCAsp is a continuous function of s, this -+ O as

t + 0.
For the term (iii) _
I% f: (g (t-s) - g(0))u(s)ds|
(e s(e) -9 @ [lute D 1.ta0
as s -+ 0, since g and u are continuous for s > O.
Next, for the term (ii),
[;1: JD [g(t-8) -g(-s) w(s)ds
-®

1 st cA(t-s) © ’ . , N 1
T ¢c f; © (f_. g*(s-s‘)w(s‘)ds “)as]i

Qi

fo [g(t-8) -g(-s) ]% w(s)ds -%’ ‘['?' g’(-s’)w(s’)ds’



23

t 0
Iof_a(g *(s-8) - g(-s Jw(s ‘)ds )ds }

Q= Ol

ft (ecA (t-s) _ 1) (j‘o g’(s-s *)w(s *)ds “ds
(o) -®

O
=2 [ lg(t-s) -g(-9) ]} w(s)as -3 j‘j“g%-s')w(s')ds

t
- %5 [ (6(s) -g(0) |as
(o)

- -cl—t It(ecA(t-s) -1)G(s)ds.
(0]
Now,
- - (0]
iig %- J‘?e g(t-S)t g(-s) w(s)ds = %‘ J‘-c g'(—s)w(s)ds
so '
(o) - - - o
il.:-n’.g 3—__" ‘['-’ g(t s)t g(=s) w(s)ds-é J’_o g’(-s)w(s)ds =0.
Also,
1im = [° (6(s) - G(0))ds = 0
tso St ‘o '
and
.1 ot ca(t-s) -
1]_:_J;x(t; pr j'o (e -1)G(s)ds =0,

since G 1is continuous. Therefore

Ug =P : cAt 1
lim = lim (e [p-= g(-s)w(s)ds]
tso °© £+0 c J’i..
- p-E]-:' J'o g(-s)u(s)ds)%

and the existence of either limit implies the existence of

the other. By semigroup theory, the right hand side equals

acp- [° g(-s)w(s)as),

and so (w,p) € D(A) iff w,w € K, limw(t) = p. and
t-+0

A(cp-JvO g(-s)w(s)ds) € E.
-
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In this case

. (o)
A(w,p) = (w.A(cp-j w(s)g(-s)ds)).

Now the spectrum of & will be found. First a few
definitions are needed.

Let R(\ V) = (V-XI)-l. where )\ is a complex
number, and V 1is a linear, not necessarily continuous
operator on E. Let p(V) = {A € €|R(\, V) exists, is
continuous, and domain = E}] and let 0(V) = complement in

€ of p(V). 0o(V) 1is divided into three subsets.

Po(V) = {1 € €|R(A, V) does not exist]}.

co(V) = {A € €|R(\,V) exists with dense domain,
but is not continuous}.

RO(V) = (A € €|R(A, V) exists, but its domain

is not densel.
p(V) is called the resolvent of VvV, 0J(V) the
spectrum of VvV and Po(V), €0(V) and
Ro(V) the point, continuous, and residual

spectrum respectively.

We have the following lemma
Lemma 2.2. For Re(\) > -a, define

t
Mx(u)(t) = f eh(t-s) u(s)ds.
(o]
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Then MX: K » K is a bounded linear operator and
1
| <355 -

Proof: Using the Cauchy-Schwarts inequality and

Fubini's theorem, we have

IN

IN

IN

0 t
l I e2at( I ex(t-s)u(s)ds)zdtlE

o)
f o2at .foe”
- t

0 (0]
[ ([ eMa)(e=8)eas 1y (q) | de) 2at
-0 t

(o) 0 (o]
.[ ( I e()\+a) (t-s)ds) o J‘ e()\+a) (t-s)e2as |u(s) 'é ds) dt
t

- t

(0)
t-s) lu(s) |gds) 2at

o . 2
1 .[ ( J‘ e(x+a) (t—s)ezas Iu(s) lE ds) at

o) t
1 I ( I o (M*a) (t-s)  2as u(s) |;dt) ds

A+a
-0 -0
(0] 2
1 2as 2 1
= ———— | e“?®u(s) |“ds = ——|u],, .
x+a)2‘[_,, (A+a)2 K
1
so M| <335 -

The next theorem describes the spectrum of ¢ in

terms of the spectrum of A.

Theorem 2.5. Let & be the operator in Theorem 2.4.

Let
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w=—2— ., 3, =R(LAA
c-g(d)

]
]

."{ R(wA)v + -“)-’: J'?Q g(-s)MkJ)\u(s)ds

where v € E, u € K. Let

Q
Il

1 {A]|Re A\ £ -a}

Q
fl

2 (AMu € o@)]}

Q
i

3 = (Ae-g( = o}.

Then

o(R) = oy u 02 U 03.

A\t

Also, if A € p(4), then R(\ Q) = (Mku+e pP.P) -

Proof: First, g()\) exists for Re()\) > -a and

1”& geras] < (7 o(-ReX-2)28 gq)8
o)

!J’; eZas gz(s)dslis 1 e

\/(Re \+a)

Now, suppose (& - M) (w,p) = (u,v). Then W - )W = u.

So

= j't e"(t-s)u(s)ds + e"tp,
(o]
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—L ., g, =R(LAA
c-g(\)

el
I

-“{R(u.A)V + L{ j'oa 9(-S)M)\J,\U(s)ds

where v € E, u € K. Let

o, = {A|[Re \ £ -a]

Q
n

, = (Mueo@)

o, = {Ae=-g(n) = o0}.

Then

0(R) = oy U 02 U 03.

P\

Also, if A €p(4), then R(LA) = (Mu+e to.p).

proof: First, g()\) exists for Re()\) > -a and

10 &7 gras] < (7 o(-ReM-a)25 4q)

Hto. e2as g2 (s)dslig 1 .G

,/(Re \+a)

Now, suppose (& - M) (w,p) = (u,v). Then W - W = u.

So

w = J’t e)‘(t-s)u(s)ds + e)‘tp ,
(o)
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since 1lim w(t) = p. Substituting this for w in the
-0
equation gives

o s . ©
CAp - [ g(-s) (I ex (s-s )Au(s yds )ds - (I e-)‘sg(s)ds)Ap -Ap=vV.
- fo) (o)

So

(0]
[c-g(\)]ApP -Ap = V + .[ g(-s) (MkAu) (s)ds .

If c-g()\) # 0, dividing by c-§(\) gives

(o)
Ap - —-.:X-—p = ——,,!— + ( I g(-s) (M)\Au) (s)ds) +
c-g (1) c-g (1) —o c-g (1)
1f —A - | cp(a), then
c-g(A)

o
P = (R(u,A)V) %+ Ji—‘ I g(-s)mk(n(u,A)Au) (s)ds .
A

c-g(n)
function of (u,v) where (u,v) € K x E. Also

If € o(A), then p will not be a continuous

if Re(})) £-a, M, is not a bounded linear operator, so

again )\ € o(&?) .

1f c-;(x) = 0, then the equation for p becomes

)
- Ap =v + _f g(-s) (M,Au) (s)ds .

So
v 1 0
P=-3-% ‘[ g(-s) (MXAu) (s)ds.
1 (o)
= - % -5 A J‘ g(-s) (M,u) (s)ds
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Since A is an infinitesimal generator it has dense
domain and so R(A,&) is defined here with dense domain, but
is not continuous. So )\ € Co(a) .

Now suppose U € Po(@), and Re()) >-a. Then if
(A-uI)g = 0,(a-11) (e*q,q) = (0,c(a-uD@ = (0,0), so
AN €EPO() .

Finally, for Re A < -¢@, since functions vanishing
for s < t,,t; variable are dense in K, it can be shown
A € Co(@) . Since this is not actually used in what follows,

details won't be given.

§5. Decomposing W into subspaces invariant under ¢«.

In this section, it will be shown W can be decomposed
into subspaces invariant under ¢ for the case where
A = the Laplacian A, and H(])‘(Q) = E. To do this, several
definitions are needed.

Let E Dbe a Banach space and V be a linear operator
on E with domain D(V). Let the null space of V Dbe
denoted by 7N(V) and the range of V by R(V). Also let
A be a complex number, and let the generalized eigenspace of
A, denoted by m)‘(v), be [:_clx € E, (V-AI)kx = 0 for
some k > 1, k an integer].

A point )\ € Po (V) 1is said to be normal [1l0] if
1. mx (V) 1is finite dimensional.
k
2. ?RX(V) = NV -1I) for some integer k.

3. E = m)\(V) @ N (V-KI)k
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The set of all normal eigenvalues of V will be
denoted by No(V).

The decomposition of W will depend on the normal
eigenvalues of &, the operator defined in Theorem 2.4.
So it must be shown that & has normal eigenvalues. This
is done using the theory of Banach space valued functions
of a complex variable.

Let E Dbe a Banach space. A function f£f:C #+ E is

analytic in an open subset G cC if 1lim _f_LE)_-_%QL
oy BT

exists at all points )\ € G [24].
A function f has a pole at a point )\ € C if £
is analytic in a deleted neighborhood of )\ and

lim (u- Vi f(yp exists for some integer n > 1 [24].
12N

ILemma 2.3. Let A and & be the same operators as
in Theorem 2.4. Let |y € No(A), and a be as in

Theorem 2.4. Suppose Re )\ > -a. Then )\ € No(Q4).

Proof: By Theorem 2.5,

A

R(A, &) (u,v) = (qu‘Fe p)‘;p)‘)

where

P, = 1{ R(wA)v + ; j‘j. g(-s) (M)‘AR(H.A)u) (s)ds.
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Now if My € No(A), then R(u,A) has a pole at
Hy [24]. Since u 1is an analytic function of )\ and
R(u,A) has a pole at M, as a function of u, R(u4,3)
as a function of )\ has a pole at 1% [24], where N

is a number such that

N ’
c-g(rhy) 1
Thus, for some n,
. n
lim R(u.A)(k-—Xl)
X*kz
exists. Also, if we let J, = AR(u,A), then

A

JX = AR(M, A) = I + puR(u4, A),

and so

n
lim (x-xl)na,‘ = lim (A-1%)) [I+uR(u,A)]

X*Xl x»xl

= 1j - n ) ‘
X_:L{nl( A\) T R(u, A)

Thus JX has a pole at xl.

Now

lim p, A =AD" = Lim & R(ua) (A -2)"

Ay Ay
W (0]
+ Il‘f g(-s)M, ( lim (\ -2\ )n J,) (w) (8)ds
1 Lo Xl X4X1 1 A

and since the limit on the right exists, Py has a pole

at Xl . Now
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lim (A =2 R (A, @ (w,p)
A0y

. At n n
=lim ((A-2)" Mw + e " (0 =2)"p,, (A =2,) "))

and since the right-hand side has a limit, the limit on
the left exists, and so R()\,&) has a pole at xl . Since

R(\,4) has a pole at )‘1 ¢ A, ENO(Q) [24].

1

Now consider the case where A = the Laplacian A,
and Hé(ﬂ) = E. This is done not only to correspond to the
models in Chapter 1, but also to make E a Hilbert space
and A self-adjoint. These properties will be used in the
following theorems.

For the Laplacian, if (Q is an open, bounded region
with boundary, then A has only normal eigenvalues, which
consist of negative real numbers [16]. Thus by Theorem 2.5,
if @ 1is the operator defined in Theorem 2.4, for the
case where E = Hg(ﬂ) and A=A and )\ 1is a complex

number, then )\ € 0(@) if and only if one of the three

following conditions are satisfied:

l. Re A < -a

2. —X __ ¢ o(8)

c-g(})
3. c¢-g()) =o0.

Now for the Laplacian on H%(Q), o(A) = No(d). So

for A=A and E = Hé(ﬂ), Lemma 2.3 gives if
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— € 0(8)
c-g(\)

then A € NoO(Q).

Now define

lu| _; = sup ( _[uv, vl ; = 1)
H HO

for u an infinitely differentiable function with compact

1

support in Q. Let H = be the completion of this space

in the norm | | _1 - Also define
H

<a,b>H=Iab.
Q

Then H is the dual space of Hé‘ using the duality pairing

< ' >H . Also, A 1is a continuous linear operator from

H to ml [ ]. This space is used to define a bilinear

(o)
form on W and it will be shown later that if u(t) 1is a
solution of (2.2) with E = Hcl)(ﬂ) and A = A, then for
t>0, u(t) is in H Y (M.
Recall the definition of W. 1In this case,
_ - .l 1

Now a symmetric bilinear form will be defined on W by

(2-5) < (pr): (ulv) >a = C<PoV >H
(o) (0]
- I ( I < w(s-s') , du(s’) >Hds')g(—s)ds.
-l -}

Since A 1is a continuous linear operator from Hé into
H™l, this is defined.



33

This bilinear form is similar to the one defined by
Jack Hale for ordinary delay differential equations [11],
and is used for a similar purpose, to decompose W into
subspaces which are invariant for (2.1).

First, it will be shown that & 1is "self-adjoint"

with respect to the bilinear form (2.5).

Lemma 2.4. Let & be the operator defined in

Theorem 2.4 for the case where E = Hé(ﬂ) and A = A.

Let < , > be the bilinear form defined by (2.5). Let

a

w and u be elements of L . (-=,0;: H(l)(ﬂ)). where a
2,e
is as in Theorem 2.4, let p and g be elements of

H(l)(ﬂ), let (w,p) € D(@) and (u,q) € D(@). Then
< d(w,p), (u,v) > =< (w,p),a(u,v) >.

Proof:

o
< a(w,p), (u,v) >q = < (w,cbp - f g(-s)w(s)ds), (u,v) >a

(o]
=< clAp- [ g(-s)Aw (s)ds, v>H

-0

(o] o
- I ( J. < w(s-s’) , Au (8) >H (-8)ds *)ds

- 8

(o}
=< c Ap,V>H - ]. g(-8) < Aw(s) .v>Hds

(0] (o] .
- f ( I < w(s-s”), du(s’) >Hg(-s)ds')ds .
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Since the Laplacian is self-adjoint in the < , >H

inner product, and since

a
ds’ <mr(s-s’),u(s’)>; = - <MW (s-8*) ,u(s ) >

+ <M (s-s’),u(s”) .

we have

<CAP:V>H = <P.cAv>h
0 0
- j'-” £(-8) <mw(s),v>ds = J'_’ g(-s)<w(s), avids.

Integration gives

<tw(0),u(s) >y - <A'w'(as).u(0)>l_I = -_[: <M (s-s’),ul(s ')>HdS'

+ fz < (s-8°),0(s ") >y

where w(0) = lim_w(t) and u(0) = lim_ u(t). Since (w,p)
t-+0 t-+0

and (u,q) are in D(Q), Theorem 2.5 gives w(0) = p and

u(0) = gq. This gives

<Ap.u(s)>H - <Aw(s).q>H =

- [ <ow(s-s’),u(s’)> ds’ + [ <w(s=s),u(s’)>,.
Js w "+ g :

Using this,
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0
<CAp.v>H- J g(-s) < Aw(s) ,V>Hds
o 0.
- f<w(s-s‘) . Bu(s’) > 9(-s)ds’)ds
- S

o)
=<p,cC AV>H - I g(-s) < Aw(s) .V>Hds

-C0

(0] (o]
+ ‘[ g(-s) < Aw(s) V> ds - [ g(-s) <p,Bu(s) >yds
-0 - 00
0 0
- J ( J <w(s-s"),A0 (s’) > g(-s)ds’)ds .
- S
Making the change of variables s” = s-s’ in the last

integral, we have

0
<a(w,p), (W,v) >, = <p,cAv>y -j g(-s) <p,Au(s)>,ds

o .0 .
- J ( I <u(s-s”), Aw(s”) >ds”)g(-s)ds
*® s

=< (Wop)'d(uov) >d .

This result is used in later calculations.

Lemma 2.5. Let ¢ be the operator defined by (2.4)
with E=HJ(Q) and A=A and let k be an integer > 1.

Then a necessary and sufficient condition that the equation
k
(d-XI) (wop) = (u,v)
has a solution for some given (u,v) is that
(2.6) < (u,v) ,(s,q) >0 =0

k
for all (s,q) € N(@-2\1I) .
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Proof: It is easy to show (2.6) is necessary. If

(d-XI)k(w,p) = (u,v), then using Lemma 2.4,

< a- u)k(W.p) ., (s,q) >a

< (wl P)o (d- )\I)k(s,q) >a <(W.P)o (OIO)>a =0

for (s,q) € W((d-—XI)k)-
To show the condition (2.6) is sufficient, a
characterization of ﬁ((d-ll)k) is needed.

If (4- u)k(w,p) = 0, then (a%- u)kw

0. So for some

1l
"j+1 € Hy ().,
w = Y = t°.
j=0 J+1 3¢
Also, for 0 < i<k
(@-21)* (w,p)
. k-1 \E . k-1 At L
= ((-é%-u)l Z Y51 ej—,t:' , lim (%-u) R2 Yi+1 %—,—tj))
j=0 ) t-0"~ j=0
k-i-1 At . )
= Z Y' . eo_ tJ ’ Y. .
( j=0 Jj+i+l 3! i+l )
Since
(@-AD) (@-AD)  w,p) = (@-3D) L w,p) ,
this gives
k-i=1 ) k=-i-2 At .
_ e .3 - ) e__J \
(@ XI)( jzg Yi+i+l 37 e Yin )"( jzg Yi+iv2 37 e Y42

which gives, using (2.4),
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Proof: It is easy to show (2.6) is necessary. 1If

(d—XI)k(w,p) = (u,v), then using Lemma 2.4,

< a- u)k(w.p) . (8,9) >a

< (w, p)s (@-21) K (s.q) >,= <(,p), (0,005, =0

for (s,q) € ﬂ((d—XI)k) .
To show the condition (2.6) is sufficient, a
characterization of 7% ((d- XI)k) is needed.

If (4- u)k(w,p) = 0, then (-age- u)kw = 0. So for some

1
N+1 € B (),
k-1 At 5
e J
w = Ya - t
j=0 J+1 3J!
Also, for 0 < i<k
(@-21) " (w,p)
k-1 \E k-1 At .
3 d
= ((-adT__--lI)l z Y41 %-;— td, 1lim FE -2 _73 Y41 ‘e—jT"CJ))
j=0 ) t-0" j=0
k-i-1 At . .
= Z Y- o g.._._ tJ ’ Yv .
( j=0 J+i+l 3¢ 1+l>
Since
(@-21) (@-A1) (w,p) = (@-21) *Lw,p) ,
this gives
k-i-1 X k-i=2 At .
(@-11) DIV £ ¢, v. = 2 Yi. . E—td,y.
( j=0 j+i+l j! 1+1) ( j=0 J+i+2 3¢ i+2

which gives, using (2.4),
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k-i-1 )\ J
cby;, J g(-s) 2 Ayrivl 3T 3 ds AYij41 T Yieo

for 0<1i<%k-2, and

c Ayk—( J‘ g(—s)e)‘sds)Ayk-)\ Y =0

-0

for i =%x-~-1.

The last equation gives

The equation for i = k-2 1is, after some simplifica-

tion,
~ ~
le-=g(M) ]y 1 -9 MBY - Ay =%
or
~
c-g (1) c-g (1)

Applying (A-puI) to this gives

2 =
(A-HI) Yk—l =0

and so Ye-1 € N(A- u.I)z. But since the Laplacian is self-

adjoint, N(A-upI)2 = M(A-uI) and so vy, _, € M(A-ul).

Proceeding by induction, Y € N(A-p1) for 1< i<k,

~(1i) 1

also (-1)% 1, =1. soif (w,p) ¢ n(@-21)%, then
k-1 3
A\t t .
2.5 = 2. Y. -, d = , h .
( ) w i20 Y3+l e 37 an P Yl where YJ is

an eigenfunction of the Laplacian, with eigenvalue )\, and

and
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(-1)j 9—(-]1;).—$-)‘—)- = % . Direct computation shows this is
also sufficient.

Now if <(u,v), (s,q) >, =0 for all (s,q) Gﬂ(d—XI)k '
then by equation (2.5)

o O k-1 e)\(s-s ) " ,
c <V, Yy 2y _-[_f(-s)( _fs j§o<vj+1 37— (s-s )7, Au(s")>ds)
k-1 o Y ’ 0
- A(s-s ") (s-s’) ¢
= c<v,yk>H—j§0<Yj+l, I_wg(—s) Jse 37 Au(s”)
>ds =0
where each Y is any element in 7N(A-uI). Since the

v;'s are arbitrary elements in 7N(A-uI), this means

(0] o ’
C<V.Yk>H -<Yk. J‘ g(-s) ( je)‘(s"s )Au(S') dS')dS>H =0

- s
for all Yy € N(A-puI). Since A-ul satisfies Fredholm's

alternative [ ], this means

(0]
cv - J. g(—s)Mx Au(s) ds € R(A - puI)

and so,

0
cv - J' g(-s)M, A(s)ds = (A-uD)L

for some L € H(]; .

Also, since each Yy is arbitrary,

) ,
<ve | at-e) ([ er 3V pu(shashds > =0

)
S

for each Y € N(A-uI). In the same way
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o]
f g(—S)M;Au(S)ds= (A-uIHli

for some Wi €EH

Let p = %‘L, and let
2

e+ mfu) o .

Then direct calculation shows
k
(@-21) (w,p) = (u,v) .
k
Thus, (u,v) € R(A@- A1) .

Theorem 2.6. Let [)‘l"""‘n} be a finite set of

eigenvalues for the operator ¢, @ the same operator as in
Theorem 2.4, for the case E = Hé(n). and A = the Laplacian.

Let 771)“ (@) be the generalized eigenspace of ¢ for
i

)‘i and 7 = 772)\

(@ enm (@) @ (@). Also let
1l x2 m)‘n

7710=[Y€W|<y.z>a=0 for all z€en}.

Then 7 and 7)(0 are invariant under the map e“t, i.e. if
Yy €m, then eatyem, and if zGWP, then eatzemo
for all t > O.

Let [col,- ~°,com} be a basis for 7M. Then there is

another basis {wl,-'-,wm} for M such that
<®i.'¥i>a=1 and <cpi,¢j> =0 |if i;{j.

Define P: W * W by

m
(2.7) PZ = 2 <Yy, 2>, 0.
i=1
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Then P 1is a projection onto 7, that is, if z € W,

Pzenm, and if z €M, Pz = z. Also for any t > O

edtP - Peat

. . . (0]
Also I -P is a projection onto 7, and
“ti1-p) = (1-p)t.

Proof: First, since the Laplacian has only normal
eigenvalues, each )‘i is a normal eigenvalue. Thus, each of

the 771)\ (@) 1is finite dimensional and so is their direct
i k.
i

sum. Also each 772)\ (@) = N(a-\1) for some ki . Since
i

My (@) N My () = {0}, Lemma 2.3 and the definition of
i J

normal eigenvalue give

n
.ﬂ na-1y) .

(2.8) w=m (@eéen (@ @--&m (@ & |
n i=

1l 2
Now assume { o ,~--,com] is a basis for M. 1f for
every § €M, V#0, there is a o such that

<¥,0>, #0, that is, if < , >_ 1is nondegenerate

a
on 7 [14], then the Gram-Schmidt process will give a

basis [Wl,---,wn] such that <cpi,¢i>d=1 and
<oj.45> =0 if i#3.

Now suppose < ¢.coj >=0 for j=1,°**°,m. Then by
K.
Lemma 2.4, y€R(#-\;I) ¥ for i=1,""",n. But then,

n k.
since yem and Y€ N R(@-2I) °, ¥=0. so < ,

>
i=1 a

is nondegenerate on 7.
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n
Let P(x) = 2 <X,¥;>; 9;- Then Px € M. Also
i=1

P(cpi) = i-t--z‘;l <Cpia’&i>“ ®; = @;- Since P is linear and
sends each element of a basis of 7 into itself, le is
the identity. So P: W+ W is a projection onto 7.

Now let y ¢ mo. Then since <y,9p> = O for any
®» €M <y,§;>=0 for all i. So Py = O.

Conversely, suppose Py = O. Since the ®; form a
basis, they are linearly independent. Using equation
(2.7), <y,¥;> =0 for each y;. Since the y;, form a
basis of 7, <Ky,z2>=0 for any 2z €7, and y € 'mo. Thus
n(p) = mo. Since P 1is a projection, N(P) = R(I-P),

which shows that I -P 1is a projection of W onto mo.

0 n k.
Now, 7 = (\ R(@-) * by Lemma 2.5. Since
i=1
e ta(x) = ae® ) (x) for x eD(@) and, ffR(a-rD)* (x)

= R(4 - ).I)k e“tx, R(A - x:[)k is invariant under e“t.

Now let x € W. Then by (2.8)
X =y+2, where y ¢ and =z emo and
peftx = pe?t (y+2) = Pe“ty + Pem:z
S

In the same way

(I-P) e“tx = e“t(I - P)x.
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§6. The operator ¢ and solutions of (1l).

Now the connection between the operator ¢ and
solutions of (2.1) will be shown in the special case where
A=05 and E=H (D).

Theorem 2.7. Let X =1 t(-w.OyHl(Q)).
2,ea (o]

X xHé(Q). let w €e€X, and p € Hé(ﬂ).

=
i

Define Plz W + X by Pl(w,p) =w, and P2:W-¢Hé(0)
by P,(w,p) =p.

Let @7 Dbe the operator defined by equation (2.4), with
A=A and E = Hé(Q). Then for any given initial condition
(w,p) € W, the equation

t
(2.9) u(t) = Alcul(t) -_[ g (t-s)u(s)ds)

1

with u(t) € H 7 (0) has a unique solution given by

(2.10) u(t) = Pzeat(w,p), t > o0.

Proof: By semigroup theory [13], if (v,q) € D(&),
then eat(v,q) € D(?) for all t > 0 and

Se®w.a) = ae®v.@).
Now let
e (v.a) = (vit).a(e)),

where V(ti) € X for each t, and qg(t) € Hé for each ¢t.
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By Theorem 2.4,

a _ 4

Thus
v(t,s) = v(t+s).
Also since

lim_ v(t,s) = lim_ v(t +s) = q(t),
s-0 s-0

it follows that v(t) = q(t), for t > 0. From this,

it follows that

ae at) - [° g(-s)v(t,s)ds)

q(t)

Ale q(t) - _[D g(-s)g(t +s)ds)

Alc q(t) - j‘t g(t-s)q(s)ds)

Also, by definition,

q(t) Pze“t (w.p) .

Now take any (w,p) € W. W(Q) is dense in W [13],

so there exist xn‘e W such that

lim X, = (w,p) .
N4e
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Then each Pedtxn satisfies

t
a
é%(Pze txn) = A(c(Pzea%xn) - I g(t-s)(Pzeasaﬂo ds).
A 1is a continuous linear operator from Hé to
Bl and |eat|_g ke®t for some constants k and a

at

not depending on t [13]. Thus e X eat(w,p) uniformly

on any interval [O,T], T < =, and

a

t
A(c(Pzeatxn) - j' g(t-s) (p,e%x ) ds)

-0

1

converges uniformly in the norm of H ~ on [0,T]. Therefore
d dt d adt
Fe(Pae %) * gg (Pye X)

by the theorem on uniform convergence of derivatives [15].

So Pzeat(w,p) = u(t) satisfies
t
u(t) = Alcu(t) - I g(t-s)u(s)ds)

Pix, W, and Px +p, so u(t) = w(t) for t <O
and u(0) = p. So u satisfies the initial conditions.

Also, u is unique since if u satisfies (2.9) with

-1

1 the variation of constants formula gives

u(t) € H

t s
u(t) = eCAtp - I AecA(t's)( I g(s-s)u(s’)as*as .

Integration by parts gives u(t) is a solution of (2.2)

which by Theorem 2.1 is unique.



CHAPTER III1

NONHOMOGENEOUS LINEAR PROBLEMS AND PERTURBED
NONLINEAR PROBLEMS

§1. Introduction.

This chapter will first be concerned with nonhomo-

geneous linear equations of the type

t
(3.1) U(t) = c Au(t) - j g(t-s)Au(s) ds + £(t).

-0

A solution will be in the same sense as in section 2.6,
that is, u(t) will be in Hj(Q) for each t, u(t) will
ve in H 1 (n).

Once a result has been obtained for (3.1), it will
then be used to obtain a result on equations of the fdrm

t
(3.2)  a(t) = c du(t) - J' g(t-s)Au(s) ds + £(t,u ,u(t)

- C0

These results come easily from the variation of constants

formula for semigroups.

Theorem 3.1. [13]. If A 1is an infinitesimal generator
on a Banach space E, f: [0,T] » E a differentiable

function, and x € D(A), then the equation

u(t) = Au(t) + £(t), u(0) = x

45
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has a unique solution

t
(3.3) ut) = ePtx 4 j P (t-8) £ig)as .
(o]

§2. The inhomogeneous linear equation.

Theorem 3.2. Let 1 and Hé(ﬂ) be as in section 2,5.

Let a > 0O,

X =L ¢l

-®,0 :Hé(ﬂ) and
2,e

w

1
Xxnoﬁn-

Let g:(-»,0] » R be differentiable and satisfy

- -]

W [ [g(s) ]%e?3%4s < =,
(o]

(ii) j [g’(s)]%%2%as < .
0

For any T > 0, x € X, p € Hé and continuous

f: [o,T] =+ Hé(ﬂ), the equation
t
(3.1)  u(t) = c Au(t) - f g(t-s) Mu(s)ds + £(t)
u(t) =w(t), t<o

u(o) =p

has a unique solution on [0,T], with u(t) € Hé(Q) and
u(t) € B 1(n) for each t > o.
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Proof: Let & Dbe the infinitesimal generator defined
by equation (2.4) in the case where E = Hé(Q) and A = A.
Let v €X, g €Hy, (v,q) €D(@ , and r: [0,T] = Hé be
differentiable. Then h: [0,T] » W defined by

h(t) = (0,r(t)) 1is differentiable so the equation

(3.4) o(t) = @ o(t) + h(t)

with initial condition

©(0) (v,q)

has, by the previously stated theorem, the unique solution

t
o(t) = eat(V.q) + I ea(t‘s)h(s)ds.
o)

Now, as in section 2.6, if w € X, and p eI-Il ,» then let
Py(w,p) =w P,(w,p) = p.

For each t > O, o(t) € Ww. So Plcn(t) € X. This means
Plco(t) is a function on (-»,0]. Let \(t,s) = [Plcp(t)](s),
for s < 0. Then A is defined for s <0 and t > 0. Also
let P o(t) = u(t). Then o(t) = (A(t,:), u(t)).

By equation (3.4) and equation (2.4), since

o) = (e, -, FEw,

(2 V) (t,8)

) (t,8)

SO

r(t,s) = X(t+s).
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Also by Theorem 3.1, (X(t,-),u(t)) €D(4) for each t > O.

Thus 1lim X(t,s) = u(t). From this \(t) = u(t) and hence
s40"

p(t) satisfies &

u(t) = cou(t) - I g(t-s)Au(s)ds +r(t) ,

setting u(t) = v(t) for t < 0. Also

ea(o) (v

H(0) = P2 d) =q.

Now D(#) 1is dense in W. Also, the differentiable
functions from [0,T] into Hé(ﬂ) are dense in
clo,T: H3 (W] [15]. So let (w,p) €W and let
£(t): [o,T] =~ Hé(ﬂ) be continuous. Choose (vn,qn) €ED(a) ,

such that 1lim (v_,q.) = (w,p), and let r, be differentiable

neo D7D
and r_ - f uniformly on [O,T] as n =+ . Then
a T()
t a(t-s
e (Vnoqn) + j e (O,Vn(s))ds -+
(0]
T
At (w,p) + [ e?(t=8) (5, £(s))as
o v

, . _ o Rt
uniformly on [O,T]. Also, if un(t) = Pze (vn,an)

t
w (8) = pe?C (v ,q) + J’o ?(t=9) (0, £(s)) as,

then
) t
un(t) = A((c un(t) - J g(t—e)un(s)ds) + vn(t)

1

converges uniformly on [0,T] in the norm on H ~. Therefore
d at ¢ a(t-s)
o (0) » 5 2y (8 wp) + [ 9579 (0, £(s))as)

o)
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and thus
a t
(3.5) u(t) = P2(e t(w,p) + f ea(t-s)(o,f(s))ds
(0]
satisfies
u(o) =p = Pzea(O) (w,p)

u(t) =w(t), t <O
t

c Au(t) - I g(t-s) Au(s)ds + £(t).

-0

u(t)

This not only shows a solution of (3.1) exists, it gives a
formula (3.5) for obtaining the solution. Uniqueness comes

from the uniqueness of the homogeneous equation.

§3. The perturbed linear equation.

In this section the equation

t
c Au(t) - J g(t-s) Au(s) ds + f(t,ut,u(t))

(3.2) u(t) =
-0
\J(t) =w(t), t <O
u(o) =p
will be studied. Again, for each t > O, u(t) € Hé and
ﬁ(t) € H"l . Using the variation of constants formula in

section 3.2, we have

t
(3.6) u(t) = b, (7 w,p) + [ 5% (0,£(s,u .u(s))as) .
)

Conversely, if a solution to (3.4) can be found, then by

Theorem 1, (3.2) has the solution u(t).
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Theorem 3.3. Let & be the infinitesimal generator

in Theorem 2.4 for the case where A = A and E = Hé.

Let

— . gt
X =1L at(- .O.HO(Q)). and

2,e

W

l
X XHO(Q)r

U be an open set in W, f: R x U = Hé . Assume that

f satisfies

l. f is continuous in t.
2. There is an L > O such that for any tl' for any
€U,

x1'x2

|£(ey0%)) - £t %) 'H, ST xy-x,l,
o

If (w,p) €U, then

t
c Au(t) - [ g(t-s)Au(s) ds

(3.2) u(t) =
+ £(t,u ,u(t))
u(t) =w(t), t <0
u(0) =p

has a unique solution in [O.tl], for some t, > o.

Proof: This is just using the variation of constants

formula (3.4) and Banach's contraction mapping theorem.
K, t
There are K;,K, such that |e?| < Kye 2" nsj.
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Choose § >0 and T > O so that

((s.a@) ||(s,@) - (w,p) |, < 8)cuU

and
| (e?® _ 1) (w,p) |, <2 for 0<h (T,
(Since eat(w,p) is continuous in t, this can be done).
K,.T
= 2 8
Also let B =max |£(t,w,p) |y gy TKje © (B+LB) < 7,

T<1,|w-wT|<-3-, and TeaT<%.

Let S = {qec[o,T;W]||g(t) - (w,p)| < & for all
t € [0,T], (P,g(t))(s) =P,g)(s), 0 < s < t}. Then S Iis
is a complete metric space since it's a closed subspace of
cfo,T:Ww].

Define G: S 4 S by G(v(t)) = (gt, g(t)), where
t

g(t) = Py (e®w,p) + [ P e(s,v(s))as).
o)

It will be shown that G 1is a strict contraction on S . First,

lew)) (t) - wp) | < (EE-1) wop) |
w w

K2T

t
+ | j. ed(t-s)f(s,v(s))dsl _<_-2-+ (TKle ) (B +L§) <%5.

o]

by the choice of T. Also
° 2as 2. . %
=P W) [(0) ] < w-w | + ( f_te p, lov(s) |*ds)

) at | 1
<z+te 65(6.

Clearly (Pl(Gv) (t))s = Pva(s), so G: S +S. Also, G
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is a contraction. Let v and gq Dbe elements of S. Then

t
lov-c |_< suwp |, [ e?*7% (£(s,v(s)) - £(s,q(s)) @8]

9's = tefo,T) o Hy
KT
SKfeth-ql <%|v—q|
S

by choice of T, and thus, G 1is a contraction, and so has
a unique fixed point. This fixed point gives a solution of

(3.6), which by Theorem 3.2 gives a solution of (3.2).



CHAPTER IV
THE SADDLE POINT PROPERTY

§1. The spectrum of the semigroup.
This chapter will be concerned with the saddle point
property for the equation

t
(4.1) u(t) = c Au - J' g(t-s) Au (s)ds + £(t,u_,u(t))

with 1lim £(t,w) = o(|w]).

w0
To prove the saddle point property for (1), the
spectrum of eat' must be found. By a general theorem on

semigroups [13], if X\ € o(@), then et ¢ 0(e?Y. also,

if e"t € Pc(eat) then 1\ + E%EEL € Po(@) for some

integer n. But ealt

has continuous spectrum besides O,
which for a general semigroup does not necessarily arise
from the spectrum of the infinitesimal generator. Hence,

something more is needed to find the spectrum of eat.

When the spectrum of eat is found, this can be used
to determine the rate of growth of ea% restricted to
invariant subspaces.

First, a lemma is needed.

Lemma 4.1. Let g and A be as in Theorem 2.1 with

the additional restrictions:

53
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1. g 1is decreasing
2. ¢ -g(o) > o0.

3. There exists a K such that |[R(a,)\) ]| < -)\—i? for

A> -k,

(This means A + kI generates a contractive semigroup [13]).

Assume there is a root )\ of

A= k(@) -c) + 220
with Re A > -a and let

)\1 = max {Re\ |\ = k(E(X) -c) + 39&52)].

Then there is a constant M > 1 such that, for w €K and
P €E the solution u of equation 2.2 with initial condi-

tion (w,p) satisfies

Xlt
'u(t) l L Me l(wlp) lKXE .

Proof: We have that u(t) satisfies eguation 2.2 so

(0) t
utt) = ePEp-3 [ gl-awiede) + 5] glt-awis)as

t
_ % J‘ ecA(t—s)(
0 -0

t t
I g(t-s)u(s)ds - 9_(c9_L I eCA(t’s)u(s)ds
o o

g'(s-sYw(s’)ds *as

+

(o) [
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t s
- % ‘[ oA (t-s) ( r g'(s-sY)u(s’)dsyas .
o) 0

Since A + kI generates a contractive semigroup,

|eCAt ‘ -ckt

< e for t >0 [13]. Also, since g(s) >0

and g’(s) < 0, we have, by taking norms, that

o
(4.2) latt) |, < e™Fp-2 [ g-s)wis)as|
10 ° 1Y kel 0
+ |'5I 9(t—s)w(s)ds|E+-é- [ e~ c(t-s) l]‘ g'(s-s ')w(s')ds'IEds
1 (" Y ket
e L g(t-s) |u(s) |gds + SJCQ)— L e 7K (E-5) 1y (s) |gds
1% ket S
*EI e7kel _s)(f -g'(s-s’) Ju(s’) |as " as .
o 0

Using integration by parts on (4.2) gives

. 0]
lae) | < e*%|(p-2 fwg(-s)w(s)ds) g
(o) t O
+ —i—l[ g(t-s)w(s)ds |, + % l‘ gkc(t-s) |[ g'(s-s")w(sas’|;

-0 )

t s
+ k< J e-kc(t-s)J‘ g(t-s) |lu(s) |Eds
(0] (0]

t
+ 2 c0) [) e~Ke (t-8) | (s) |Eds .

Let
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o
([ g-en? e B2t

G =
and
0 2 -2as . %
G, = Im[g’(_s)] e”43%35) % |
Then
1 (0]
|p——c- Img(—s)w(s)dle < (g+1) | (w,p) leE .
Also
o o , "
| [ gtt-swisras| < ([ gP(t-s)1e™*2%as) Fiwl, -
Since

(o) t
I gz(t-s)e-zasds_g I g2(t—s)e-2asds

t
-2at [
e

.—m

gz(t_s)eZa(t-s)dS - e-2ath

o
[ g2 (t-s) e 22%as) <e?%.

Next, consider the term

J

(0)

t (o]
e-kc(t-s)| I g'(s-s“)w(s’)ds’|as .

Now as above,

0
IJ._mg'(s—s "Yw(s')ds 'IHl < G+ 1) Wl e™
0
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and so
t o)
[ eele-s)) [ g’(s-s"yw(s")as’|as

Ite-kc(t-s)e-as(

IN

G1+ 1) |w |de

(o]
t

= I e-kCte (ke-2a) s (Gy + 1) |w |de
(o]

1
< (a-kc)

~ket
e7ke IGl+1“w|K .

From this

fo) (o)
ket lp _% J‘ag(-s)w(s)ds |E+%| Icg(t—s)w(s)ds |E

t o
+ _:(L:_ |I e-kc(t—s) J‘ g'(s-8")w(s ')ds')dle
o - OO0

X
<Qe °t | (w,p) |KxE

where

1

Q= (G+1) +‘é’G+—E—a}c (Gl+1):

i.e. Q 1is a constant not depending on (w,p). Thus
-kct

t X s
+ K J‘ e~Nc(t-s) ( f g(s-s’) lu(s? |Eds "y as
(0] (o]

t
N ggéjgl Le.kc(t-s) lu(s) lEds .
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Let v(f) be the solution of

(4.3)

V(t) = Ql (W,p) leE e-kct_'_KJ\t e-'kc (t-S) (IS g(s_s ‘)V(S ')dS ')ds
0] o

+ 22égl It e_kc(t_s)v(s)ds
o

then Iu(t)lE‘S v(t) for t > O by a comparison theorem
for vVolterra integral equations [19]. But if v satisfies
(4.3) for t >0, setting v(t) =0 for t <O and

differentiating gives
(4.2)  v'(t) = kev(t) + 22Ol v() + k[T g(t-s)v(s)ds

with v(t) satisfying the initial condition

v (t) o t<o

v(0) = lw,p) |y

Hence, by [20], v(t) increases no more rapidly than the
real part of the root of the characteristic equation for
(4.2) with largest real part, to be exact,
Mt
v(t) < Me el w.p) |,
where My > 1 is some positive number. Since \ > Al,

and lu(t)lE‘g v(t),
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Mt At
lu(t) [ < Mye = Ql(w,p) | . <MOE™ |(w,p) |, -

Now a few definitions are needed. In section 2.5 the set

of normal eigenvalues N o(V) of an operator V on a
Banach space E was defined.
The essential spectrum of V , denoted by OG(V)' is

defined as
oe(v) = 0(V) - NOo(V)

and the essential spectral radius of V by
rE(V) = sup {|x|| A € OE(V))

when this exists. If V is a bounded operator, then o(V)
is bounded, so rG(V) exists.

The Kuratowski measure of noncompactness a(B) for a
bounded subset B of a Banach space E is defined by
a(B) = inf (r|B can be covered by a finite number of balls
of radius r} [23].

If VvV is a bounded linear operator from E to
E, the measure of noncompactness, a(V), of V 1is defined

by
a(v) = inf (r |a(V(B)) < ra (V), for all BCE].

Clearly a(v) < |v|. Also let MyrHys " *  be the eigenvalue
of the Laplacian on (1, arranged in decreasing order, with
multiple eigenvalues listed once for each multiplicity and

YRR W be the associated eigenvectors.
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If Bn = span {mlo e .CDn] let Vl.n be the

orthogonal projection of Hé(ﬂ) onto B and let

V2,n = I"Vl,n' Now let Pl,n: W W be defined by

Pl,n(w'p) = (u,vl'np) where u(s) = Vl,n w(s). Then
Pl,npl,n(w'p) = Pl'n(w,p), SO Pl,n is a projection.
Let Pz,n =1 -Pl,n‘ These definitions and projec-

tions will be used in the following theorem

Theorem 4.1. Let g,1, H(].‘)(Q), X, W and ¢ Dbe as

in Theorem 2.6. Set

g\ = I e-xsg(s)ds.
(o)

Assume g also satisfies
(i) g 1is decreasing
(ii) ¢ - g(0) > o.

Then the equation c¢ - E(X) = 0 has a largest real root
at at UPX
Xl' d generates a semigroup e and re(e ) = e

Also, if u > xl. there are only finitely many
elements in o(@) N [XIReX.)Lﬂ. All these points are
elements in the normal spectrum. If P is the projection

defined in Chapter 2, section 5.4, then |(I-P)é‘t| sx eHt

for some constant K > O.

Proof: By Theorem 2.4, ¢ 1is an infinitesimal gener-

ator. Let W =P (W) and W =P (W) If

2,n 2,n
(), then

l1,n 1,

vené(ﬂ) and Ave€EH

oD
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o.
- i 1 Vi
i=]1 Ho
and
@™
i=]1 H
(0]
Hence
n
Vinhv = T ou<veop> gy = AV v
i=1 HO

0
Pl,nd(wlp) = (V w.Vl'nA(cp —J‘“g(—s)w(s)ds)

l1,n

0
(V) . 8evy - [ g(-s) v, | w(s)ds)

-C0

d Pl'n(wlp) .

Also,
Py pndw.p) = (I-Py ) @ (w,p) = @(I-Py ) (w,p)
=dP, , (w,p) .
ALt
Now suppose ré(e“t) > c-:-)‘t and e 37 . re(eat).
x1+ x3
Let xz == Since g(s) is decreasing and positive,
g(\) is decreasing for ) real and |g(\) | < g(Re1). Let
- 29(0)
X c
kK = 2

c -g(x,)
and z be a solution of k(c-g(z)) = z - 29(0) .

c
Then
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k(c-Re§ (z)) = Re(z) - 299

Now
c-Reg(z) > c - |g(z)|2c—§(Rez).

Since c-g(Re(z)) >0, and K < O, we have that

-29(0)
c
x > Re(z‘)v
c -g(Re 2)
\ - 29.(0)
Since ——S— is increasing on [).1.25-5:9-2-]. Re z < A,-
c-g(a\)

Suppose X € B*. Then

2 2
<ax,x> <+ () |x | o S+ K|x| o -
H H
1 1
and hence A + kI generates a contractive semigroup [13].

Also W2 n is invariant for &, since
]

ax =aPp x for x € D(@). Define

P2'n zln

= 1 - L
B + = {v €H0(0)|<v.s>Hl—O for all s eBn] (Bn is
(o)
the orthogonal complement of Bn) .

If vGB;’ and Avel-lé(ﬂ), then

<x,Ax>H1=< > <x,0, >0, z ui<x,coi>cn_l>

o n+l n+1l
> 2 el el
= M <X,00, > < W X < K|x
n+1l 1 1 n+1l Hé(n) H(l)-

So (A + k1) ‘B L generates a contractive semigroup [13].
n
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Also if x € D(G) n w2,n’

(o]
d‘wz n(wnp) = (W.A|Bn1 (CP-I-mg(—S)W(S)dS))-

since Al, 1 satisfies the requirements for A in Lemma
n
a _k -\t
le® 1y = 1p,e® | <oeT* <o 2
W 2 =
2,n
where Q is some constant > O.
Recall the definition of the measure of noncompactness

a of an operator. From inequality (4.4),

a At

a(P t) <Qe 2

2,ne
Now consider d]w - On B, the Laplacian is a continu-

1,n
ous linear operator and hence

. (]
L= Gbletep - [ at-srwisras).
n -

Thus & | is the infinitesimal generator of the solution

wl,n
semigroup to an ordinary delay differential equation and by

a general theorem [20],

where a 1is the positive number such that

I g(s)zezasds { o,
o

By another theorem [22], for any bounded operators V and

S on a Banach E,
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n ——
r.(v) = lim /a(" .
n-o
Also
a(v+Ss) < a(V) + a(s).
Therefore
1
role ®) = lim (@™ < lim (a(p; ™) +a(p, &Y)
n- n-= 0 N
1
A.nt =
< lim (e 2 +a(p, ne’“‘“:))rl
n-o ’
1
ALt -A.t =
= lim e 2 (1 + e 2 a(P2 en«t))n
n-e n
Now
1l
-A,+n =
lim (e 2 a(P2 en“t)n
n- N
-\, t (a=-2,)t
- e 2 eat - e 2 <1,
since xz > a and hence,
-A,tn
lim (¢ 2 a(p, &™) =0
n- 0
and
at At —A,t ndt. &
re(e ) L e lim (1+e a(P, ))
n-o A
At Lot
= e lim (1 +0) = e
I “b
At P
This implies that re(e“t) Le 2, contracting re(eat) =e >
\t A\t YR
Hence, ré(e“t) e 17 since e ! ¢ ce(a). rc(eat) —el.
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For any u > )\, e“t has only finitely many normal

cigenvalues A with |r| > e*®, since
Qa
No(e“T) n(a ||| > ¥t} = Nou(e“t)

is a compact subset of the normal eigenvalues and so has

At

a
only finitely many points. If e € Ncu(e t), then

2T in
t

otherwise 2\ would have an infinite eigenspace, contradict-

only finitely many X + can be eigenvalues of @, as
ing 1\ € No(e“t). Also, each such point is a normal eigen-
value of ¢ [13]. Thus, & has only finitely many points of

spectrum with real part greater than |, all normal eigen-

values.
Now let A;,° "/}, be all these eigenvalues, and P
the projection defined in Theorem 2.6. Then Pe“t = e“tP,
at at at 't

o(Pe’ ") = ole ") - (A,-e,n,} [16]. so r_(pe"") < e

< eut, since

n /——T—
rU(Pe“t) = lim V’ Pe nt , and lim (Pe“t)e ut 0.
n-e te
Since 1lim (Pé“t)e—ut exists,
t 4o

I(Pe“t)e’“tl - e-ptlpeﬁtl

is bounded for t > 0. Therefore for some M >0, e “%|pe?t|

<M for all t >0, that is |Pe?t| < MMt for t > o.

Results similar to this are given in [17] and [18].
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§2. The Saddle Point property.

In this section, we consider the equation
. t
(4.4) u(t) = c Au - J g(t-s)Au(s) ds + h(t, (u ,u(t)))

where g satisfies the hypotheses in Theorem (2.1), and

h: R X W = Hé is continuous and satisfies:

(4.5) In(t,z) - h(t,@)| ; <a(Q) |z-al;

H

0
for all |z|,, lg|, < (, where a is continuous and
lim a({) = 0. Let ¢ be the infinitesimal generator
¢-0
associated with the linearized equation (2.1), and
[Xl.-",kn] the first n eigenvalues of this operator

(counting multiplicities), arranged in order of real part.

Suppose that
(4.6) Red; > u> 1\ =max (Ale-3O) =0} i=1,-"-,n.

The projection from W onto the subspace generated by
the generalized eigenspaces corresponding to the eigenvalues
{11,-'-,xn} will be denoted by P. The projection I -P
will be denoted by Q.

We can now state the saddle point property for equation

(4.4):

Theorem 4.2. Consider the equation (4.4). Assume
that all of the above hypotheses are satisfied. Then there

are constants § > 0 and M > 1 such that

(1) Let S(u) denote the set of initial values

(w,p) € W such that
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(@) lw.p) |y < 35

(b) If u(t) is the solution of (4.4) with initial

value (w,p), then Ie_u't u(t) | 1 <& for all t >oO.

)
Then S(u) is homeomorphic under the mapping QIS to the
closed ball of radius fﬁ- in Q(W). Also S 1is tangent

to Q(w) at zero, that is

0
la (W) |0 1w p) Iy

and lim e Mt |u(t) | 1 = O-
tte H
o
(2) Let U(W) denote the set of initial values

(w,p) € W such that
(€ 1w.p |y, < 55

(d) There is a solution u(t) of (4.3) defined for
all real numbers t, such that w(t) = u(t) for t <O,
and u(0) = p.

(e) le™ u(t)| < 6 for all t <o.
Then U(y) is homeomorphic to the closed ball of radius £

2M

in P(W), under the mapping P| U is tangent to P (W)

U’

at 0 and 1lim leut u(t)] » o.
t4-e

Proof: Let «l = pa.az = 4, W, = P(W) and
W2 = Q(W).
First, let (w,p) € S(y). Then for each t by

Theorem 3.1,
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t
(ut,u(t)) = e“t(w,p) + J e“(t—s)(O,h(s,(us,u(s)))ds.
(0]

Now, (ut,u(t)) = P(ut,u(t)) + Q(ut,u(t)). Using these
projections,

Q. tp t 4. (t-s)
e 1 (w,p) + f e 1

o

P(u ,u(t))

P(us,u(s))ds.

«lt
Since PJ = G&

exists for all t, positive and negative. So

is a bounded linear operator, e

Q. .t t s
e 1 P(u,,u(t)) =Pw,p) + [e !

o

P(O,h(s,(us.U(s))))ds.

Now dllwl has spectrum (X;,"**,% }. From this

-dlt -xnt
| (e W)l <e for t > 0. So
1
4.t (-2 +p) t
. 1l . n -ut _
lim e P(u_,u(t)) |, < lim e sup |e ™" (u_,u(t)) | =o0.
£ t W= e te[o, =) t w
This gives P(w,p) = - I e™'% p(0,h(s, (u_,u(s))))ds.
o

Substituting this into the equation for (ut,u(t)) gives

a,t t a,(t-s)
(4.7) (ugu(t)) =e 2R+ [e Q(0,h(s, (u,u(s))))ds
o
© &, (t-8)
-] e P(0,h(s, (u ,u(s))))ds
t

where R = Q(w,p).

Now suppose R € W Then it will be shown (4.7) has

5
a unique solution u(t) for each R with |[R], g_{% '

for p small enough.
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Let C = {z| z: [0,®) » W, 2z continuous,
|e"utz(t)|w -0 as t #4 «)}. It will be shown

a,t t @, (t-s)
(Tgz) (1) =e 2R+ [ e Q(0,h(s (u_,u(s))))ds

0]

* Gl(t-s)
- [ e p(o,h(s.(us.u(S))))ds
t

is a contraction for |R|, small enough.
First, Tpz is continuous. e R 1is continuous in

t, and
t dz(t—s)
[e Q(0,h(s,u ,u(s))ds
0]
is continuous in t by the same argument as in Theorem
(2.1) . The last term is continuous by the usual theorem on
continuous dependence of an integral on a parameter. Now
A,t
by Theorem 4.1, le 2 | <Me™ for all t >0, where
M is a positive constant > 1. So
sup |ez-u't T z(t) | < =,
t20

since

sup e Mt (Tpz(t)) < sup e “Hty n+1M|R|

t=0
(t-s)
e Mt [ e *n+1 |P|e-“sds)a(p)|z|c
(o]
® ~\_(t-s)
e HE( j e O |Q|e-“sds)a(p)|z|c
+

< |rRIM + a(p)[ﬁ:¥i£z-+ ik¥ﬁ1|z|c
n



70

So Tpz: C + C. Also let BC(p) = (z € C||z|, < p). Then

if 2z € BC(p), from (4.5),

le| lol 1
|RRz|c g_Mlle + a (p)()\n_Ll + ) |z|c‘g M|R|w4~5p,

H=dny
if p 1is chosen so small that K(p)(Ipl JQ .
x M= n+1 2
So choosing [R] 2M ,
TR:BC(p) <+ BC(p).
Also TR is a contraction on BC(p). Using (4.5),
£ (t-8)
IRRz - Tpd | < sup e “ME[ [ o Tntl a(p) |ple ¥ |z-q| as
L c
t20 o
@ =) (t-s)
+ |Q|f e " a(p)eu(s)|z-q|cds
t

by choice of p. So TR has a unique fixed point z in

BC(p). Hence, 2z satisfies

42 t dz(t-s)
z(t) = e 2R + J' e Q(0,h(s,z(s)))ds
(o]
@ al(t—s)
- J' e P(0,h(s,z(s)))ds
t
or
K.s
z(t) = f O R-[ e 1p(0,h(s,2(5)))05)

f A(t-3) (5,h(s,z(s))ds .
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By Theoren 3.1, Pzz(s) gives a solution of (4.3). Also

t
lim |e™™%2 (1) | < e’*“"ekn+1
t4e

A -ut (u-2)t
+ e n+l ——lg%r— a(p) + e 4y
Ml "M

as t + «. PFurthermore, if (w,p) € s(u), then

M|R]|

P
TR WC a(p) » O

Q(W:P) - (ch) = -P(W:P)

® als
= [ e~ P(0,g(s,us,u(s)))ds.
(o]

Since, if |R] g<§§, Iu(t)lc < p by definition of S(yu),

® -«ls
lfo e P(0,g(s,u_,u(s)))ds]
1
< - k(lug,u(t) ) luguce) |
< 1

o k@Mlp| (v.p))2M[p] (w. )

Hence

_ | w.p)-Q(w,p) |,
lim (w.p) |
| (w, p) |*0 [ w.p)l,

<K@M|p|[w,p) [) + o0,

and S(y) is tangent to W, at o.

For the unstable manifold, if (w,p) € U(p), then

since u(t) exists for all t O, if tl < t,
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& (t-t,)
(we.u(t)) =e (a ~ultp)
tat
+ f e (t-s) (O.h(s, (us,u(s))))ds.
t

Taking projections of this gives

dz(t-tl)
Q(u ,u(t)) =e Q(utl.u(tl))
t dz(t—s)
+ [ e Q(0,9(s, (ug,u(s))))ds.
£
Since
A, (t-t,) -t
le 27 Yo, st | < pe™e M ulol|,
1
£ —Xnt
and lim pet"e ™ M|o| = 0, letting t 4+ -= gives
t
t az(t-s)
Qluu(e) = [ e Q(0,h(s, (u_,u(s))))ds .
Also

0o
w.p) = e XEu ue) + [ F % (0,h(s, (u . u(e)))as.

t
So
P(w,p) =e T P(u,u(t) + [ e P(0,h(s, (a_,u(s))))ds
t
a.t
since e exists for all t, this becomes
«lt (0] dl(t-s)
Plu,u(t)) =e L pwp) - [ e P(0,h(s, (u_,u(s)))).
t

Adding the equations for Q(ut,u(t)) and P(ut,u(t)) gives
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(4.8) (u ,u(t)) = P(u ,u(t)) + Qug,u(t))
«lt 0 dl(t-s)
—elpwp - [e P(0,h(s, (u_,u(s))))ds
t
ta,(t-s)
+ [ e Q(0),g(s, (u_,u(s))V)ds.

.-}

Now computations similar to the ones for (4.4) give the

results for the set U(u).

§3. 1Illustration of the projections in section 4.1l.
Now an example will be given of the projections in
section 1, in the case where R" is R. This is slightly

simpler than the general case.

Let Q = [0,2r]. Then ecuation (2.1) is

2 t 2
(g W (x,8) = c(25 w (x,8) - [ glt-s) (25 w) (x,5)ds
x _® 9s
u(o,t) = u(2r,t) =0
u(x,t) = w(x,t) t L oO.
- 2 _ . 1
Here pJu_ = - n and o = (sin nx) ——.
n n \/"F
Any w(x,t) €L at(-w,o ;Hé(o,zn)) can be written
2,e
in the form
@
wix,t) = £.(t) sin (jx).
j=1
Thus
n
Pl'n(w(x,t)) = jZi fj sin (jx)
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and

P, ,(W(x,t)) = 2 f.(t) sin (jx).
2 j=n+1

If u(t,x) 1is the solution of (2.1) with initial wvalue

w(t,x), then

u(t,x) = hj(t) sin (j x)

L

where hn(t) satisfies

. t
ho(t) = -cnzhn(t)-+n2j_ g(t-s)h_(s)ds.
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