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ABSTRACT
A STOCHASTIC APPROACH TO POPULATION BALANCE MODELS
By

Anilkumar Narayan Kharkar

Population balance models are extremely important in the
quantitative analysis of chemical process systems characterized

by aggregates of matter, as well as ecological systems. A principal

aim of this work is to cast these models into a very general
stochastic framework.

By and large the development of population balance models in
chemical engineering thus far has been based upon purely deterministic
considerations and analogies with molecular processes. In this
dissertation a probabilistic approach has been presented to develop
a common basis for the population balance models used in the
residence time distribution analysis of process vessels, various
particulate processes and a large class of problems in ecological
systems.

The development of the population balance models is based
upon the theory of stochastic population processes. The state of
each entity in a population is represented by a point in a n-
dimensional Euclidean space and the dynamics of the population is

characterized by birth, death and movement of the entities in a

closed domain in this state space.
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In the context of populations of reproducing entities, the
process of crystal growth with secondary nucleation and the dynamics
of biological populations with reproduction are of particular interest.
A common feature of the crystallization process with the state of a
crystal described by its characteristic length and many biological
populations with individuals characterized by a measure of their
maturity is that all the entities in the population are in a particular
fixed state at the instant of their first appearance in the popula-
tion as a result of reproduction, irrespective of the state of the
parent. To account for the fact that identical entities do not
necessarily grow at the same rate, the growth of each entity is char-
acterized by a nonhomogeneous diffusion process on the interval
[0,d], where & can possibly approach infinity. Some types of
boundary behavior of practical interest are discussed. Backward
diffusion equations for the probability generating functional and
the first two factorial moment distributions, as well as forward
diffusion equations for the first two factorial moment densities are
derived for a population of reproducing entities with no external
input .

The diffusion equations for the moment distributions have been
analyzed for some simple cases. The following results have been
obtained under mild conditions: i) a general solution for the first
moment density in terms of an infinite series of eigenfunctions of
the diffusion operator; ii) after a sufficiently large time the
first and second factorial moment of the number of entities in any

subinterval in [0,3] grow exponentially with parameters and

1

20, respectively, where o, is the dominant eigenvalue of the
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diffusion operator; and iii) the coefficient of variation of the
number of entities in any subinterval in [0,d] reaches the same
constant value after a sufficiently large time. Moreover, this
asymptotic value in (iii) has been shown to be inversely propor-
tional to the square root of the initial number of entities in the
entire population. An interesting facet of the diffusion process
in the context of reproducing populations is that under certain
conditions the location of the boundary & will determine whether
the population will increase or decrease. A graphical solution for
the determination of this critical value of 3 has been obtained
in terms of dimensionless parameters for the case where & is an
absorbing barrier. The diffusion equation for the probability
generating functional has been solved numerically to obtain the
extinction probability of a population. These results had not been
obtained thus far for the particular cases considered.

In general, a population will also have an input of entities
from a source external to the population. Expressions have been
derived for the probability generating functional and the first two
factorial moment distributions for a population with a nonhomogeneous
Poisson input. It is shown that in the case of a population of non-
reproducing entities if the birth, death, and movement of entities in
a n-dimensional spatial domain can be characterized by a Markov pro-
cess, and if the population receives an external input in the form
of a nonhomogeneous Poisson process, then the number of entities in
any set in the spatial domain at any time is a Poisson-distributed
random variable. The use of this result in validating some assump-

tions behind the models developed in this work has been demonstrated

by means of a simple experiment.
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The theoretical results obtained in this work are of con-
siderable importance in a broad class of problems related to chemical
engineering and ecological systems. Several examples of practical

interest are also discussed along with the results.
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CHAPTER I

INTRODUCTION

The use of mathematical models in the analysis of dynamic
systems has become a common practice since the advent of high-speed
large-capacity computers. The mathematical models used in chemical
engineering practice can be classified into three broad categories:

(a) Transport phenomena models, (b) Population balance models and

(c) Empirical models. The transport phenomena models use physico-
chemical properties of matter such as diffusivity, thermal con-
ductivity and viscosity to obtain a dynamic description of the

system in the form of equations for conservation of mass, momentum

and energy. Systems comprised of ensembles of discrete entities
are described by the population balance models. The dynamic
description of these systems involves conservation equations for
the number of entities in the population. The empirical models
are comprised of purely empirical equations or regression analysis
of data to describe the system. In particular, the applications
of the population balance models include the residence time dis-

tribution analysis of imperfectly mixed process vessels (e.g.,

Levenspiel and Bischoff, 1963; Bischoff, 1966), and various
particulate processes such as crystallization (Randolph and Larson,
1971), size reduction (Randolph and Durando, 1971), particle
agglomeration (Hulburt and Katz, 1964), fermentation (Tsuchiya

et al., 1966) and liquid-liquid extraction (Ramakrishna, 1972).
1







The polymerization processes can also be described by population

balance models (e.g., Funderburk, 1969).

Typically, the population balance models describe the
entiti;es in a population as being distributed in a n-dimensional
Euclidean space E according to a density x(zl,zz,. ,zn,t) at

time t. The spatial co-ordinates Zyseees2, represent the

n

relevant properties of the entities such as geographical location,

size, shape, activity in case of catalyst particles, etc. Thus,
x(zl,...,z“,t)dzl...dzn represents the number of entities in the
infinitesimal volume element dzl...dzn located at the point
(Zl""’zn) in E at time t. The "movement'" of the entities
along the i-th co-ordinate (i =1,...,n) of E is characterized
by a rate of change of position vi(zl,...,zn,t) in that direction.
The rate of addition of entities to the infinitesimal volume

element dzl...dzn from a source internal or external to the
population is expressed as the birth rate B(zl,.“,zn,t) of
entities per unit time per unit volume of E. Similarly, the rate
of change in the number of entities in the infinitesimal volume
element representing a permanent loss to the population is char-
acterized as the death rate D(zl,...,zn,c). If a number balance is
written for the entities in the infinitesimal volume element at

(zl,...,zn) at time t by equating the net rate of change in the

number of entities due to birth, "movement" along any of the co-

ordinates of E, and death to the net rate of accumulation of

entities, the following conservation equation results (Himmelblau

and Bischoff, 1968):




ax(zl,...,zn,t) 4 ;a[vi(zl,...,z“,t)x(zl,...,zn,t)] ’

at i=1 3%y

B(zpsees2,8) = D(zp,eenz ) - (L1)

The movement of the entities is restricted to a closed domain in
E, enclosed by a boundary TI'. The behavior of the entities at
the boundary determines the boundary conditions and the density
xo(zl,...,zn,O) at time zero describes the initial condition
for (T 1)%

In general, the quantities x, v, B and D will be func-

tions of other variables as well, such as temperature, concentration

of a chemical in the medium surrounding the entities, etc. In
addition, B will be a function of x when the entities themselves
act as sources (reproducing populations). The quantities vy and
D may also depend on x. It should be noted that in the derivation
of (1.1) it is assumed that all the entities at a given point in

E move in any given direction at essentially the same rate.

In the context of residence time distribution of a process
vessel, (1.1) represents a case analogous to a plug flow vessel,
where all the fluid elements at a given cross-section of the vessel
move toward the outlet at essentially the same velocity. The study
of nonideal vessels, i.e., vessels which cannot be characterized

by perfect mixing or plug flow, commonly involves a tracer analysis

of the flow system. A known input such as a pulse of a tracer is
introduced in the inlet stream of the flow system or its scale

model and the concentration of the tracer in the outlet stream is
measured as a function of time. A mathematical model is then con-

structed to give the same input-output relation as that obtained




in the tracer experiment. Two distinct methods are available to

achieve this: The first method characterizes the flow system as

a combination of a number of perfectly mixed vessels connected in
series (and parallel, if necessary). This approach is commonly
known as the mixing cell approach. The second method assumes that
the flow is essentially a modification of a plug flow caused by an
effective "diffusion" of the fluid elements in the axial and trans-
verse directions in the flow vessel. The models used in this method
are commonly called the dispersed plug flow models. The equations
for the concentration of the tracer in the outlet stream are

de. [- {

R 2 e R
qo T ke g te)s 1mL2nm, [N A

for the mixing cell model with only a series combination of the

perfectly mixed (hypothetical) vessels of equal volume, and

2.2 2
3c(zy,25,t) B o 3 c(zy52,t) T R A [1_ ac(zy,2,,t) )
at 2 azi 2z, 3z, “z, 3z,
3¢(zy52,,t) - 3c(zy,2,,t) o
i 32, R 22, .

for the case of a dispersed plug flow model for a cylindrical
vessel. 1In (1.2) c; represents the concentration of the tracer
in the i-th vessel, t denotes time , k is the mean residence
time of the fluid in a single vessel and cq is the inlet concentra-
tion of the tracer for the first vessel. In the mixing cell models
all the vessels in a series combination are often assumed to be of
equal valume to keep the model as simple as possible. In (1.3)

the quantities 2 and z represent the axial and radial co-~

2

ordinates respectively, c(zl,zz,t) denotes the concentration of




the tracer at a given point in the vessel at time t, 0 and

NIQ

are the dispersion coefficients in the axial and radial directions
respectively, r; and r, are the velocities in the two directions,
D denotes the rate of loss of the tracer per unit volume per unit
time due to chemical reaction, absorption, etc., and t denotes
time. It should be noted that (1.1l) thru (1.3) are essentially
deterministic in nature.

Since (1.1) represents the conservation equation for the
members of the population in a very general sense, it can be seen
that the equation can be used to describe any biological population
as well. 1Indeed, the equation has been used to characterize
populations of daphnia (Sinko and Streifer, 1969), a species of
worms which divide by fission (Sinko and Streifer, 1971), shrimp
(Billups, et al., 1971) as well as an insect pest population
(Barr, Kharkar and Lee, 1972). Equations similar to (1.2) and
(1.3) have also been proposed (Weiss, 1968; Kendall, 1948) and used
(Takahashi, 1968; Stuart and Merkle, 1965) to describe cell popula-
tions. A detailed discussion of the applicability of the "mixing
cell" and "dispersion" analogies in describing a general population
is given later in the text. Mathematical modeling of biological
populations has become all the more important today in view of the
pressing need for mankind to engineer the effects of urbanization
and industrialization on the ecological systems. Equations (1.1)
thru (1.3) are commonly used in the modeling of chemical engineering
systems and the methods of parameter estimation are quite well
established. A direct analogy of these models with the models for

biological systems makes it possible to think of analogous methods

of parameter estimation as well.




Literature in the fields of ecology, applied probability and
mathematical biology abounds with works on the dynamics of biological
populations. The models for single-species population dynamics
used in these fields can be classified into three broad categories:

(i) models which treat all the members of a population as

identical entities. These models usually consist of

a single difference or ordinary differential equation;
(ii) models which divide the population into distinct groups

according to age, maturity, etc. (i.e., define a dis-

crete state space to describe an entity) -- these

models commonly use a system of difference or ordinary

differential equations;

(iii) models which allow the individuals in the population

to occupy any arbitrary point in a n-dimensional
Euclidean space E with the relevant descriptors such
as age, location, etc. as co-ordinates (i.e., define
a continuous state space to describe an entity), as is
done in the development of (1.1). These models involve
the use of integral or partial differential equations.
All the models can be further classified into stochastic and
deterministic types. In the partial differential equation approach
for a deterministic analysis, use is made of a form of (1.1) or
(1.3). The integral equation approach uses the renewal theory
(see e.g., Feller, 1966) quite extensively and is a very convenient
alternative to models using (1.1) for the case where n =1 and
Vy 1s a constant. In more complex situations the integral equa-

tions for the system lose their simple character. As far as the




deterministic models are concerned, models of types (i) and (ii)
can be shown (Kharkar, 1971) to be approximations of the partial
differential equation approach. As regards the stochastic models,
much of the work deals with characterizations of type (i), (ii),
or simple cases of (iii) in which the individuals are characterized
by only one descriptor, namely, the age of an individual. The use
of integral equations is very convenient for obtaining a stochastic
description of the age distribution of a population (in terms of
moments of the age distribution), and is used in almost all cases.

Relatively little work has been done in the stochastic

modeling of biological populations characterized as in case (iii)
with descriptors other than age. Adke and Moyal (1963) developed
a stochastic model for a population diffusing on the real line to
characterize the spatial migration of the population. Birth and
death rates were assumed to be constant. Adke (1964a) extended

the model to the case where the birth and death rates can be func-
tions, and later (Adke, 1964b) to the case where the movement of
the diffusing individuals is restricted by absorbing or reflecting
barriers. Sevast'yanov (1958, 1961) studied the extinction proba-
bility of a population diffusing in a compact region with an
absorbing boundary for the case where the individuals in the popula-
tion reproduce by a branching process. Davis (1965, 1967a, 1967b)
studied the asymptotic properties of a population diffusing in an
abstract space, and multiplying according to a branching process,
i.e., an individual was assumed to produce & random number of off-
spring only at the end of its life. As in the model of Adke and

Moyal (1963), Davis assumed that the offspring are in the same

— P



state as their parent. Radcliffe (1972) extended the results of
Davis (1965) by allowing immigration into the population in the
form of a nonhomogeneous Poisson process.

Population models are also of relevance in some areas of
physics. A great deal of work has been done on stochastic descrip-
tions of processes involving transport of elementary particles
(see e.g., Brockwell, 1966 for a class of related problems and
bibliography). In a sense, these processes are analogous to the
branching processes discussed in the previous paragraph: an
elementary particle in motion imparts some or all of its momentum
to other particles in its way. The new particles produced are in
the same location as the parent particle. When a particle with
energy ¢ sets k new particles in motion after a collision, the
sum of energies of all the new particles must be equal to ¢. Thus
even in the case where the parent elementary particle does not come
to rest, it may be necessary to assume that the parent is replaced
by a "new" particle with an appropriate energy level, when the
energy distribution of the particles is being studied.

While some problems of chemical engineering interest can
possibly be described as branching processes and some phenomena in
the biological world besides spatial migration can also be cast in
this framework, this analysis is often too cumbersometo use. This
is true of a large class of problems related to biological and
chemical engineering systems, namely, the processes in which the
parent and the offspring are in different states and the parent does
not die while giving birth to an offspring. In a biological

population of higher organisms this is the case when the individuals




are described by their maturity in terms of their size, weight, etc.
An example of a chemical process of this type is the production of
nuclei in a crystallizer. Under certain conditions the crystals
present in a crystallizer produce new nuclei ("offspring") without
any effect on the size of the parent crystal. Theoretical studies
on populations often concentrate on the asymptotic properties of
the population, i.e., the behavior of the population for large
values of time, because an analytical treatment of the problem for
short times is not possible in many cases with the currently avail-
able methods. Also, the dynamics of the system are often described
by assigning stationary transition probabilities to the dynamic
changes in the population, thus resulting in a model with time-
independent parameters. In contrast, the short-term behavior of

a system may be of crucial importance in a problem of engineering
interest when the model is used to evaluate control alternatives.

+

In many cases the time-depend of the na underlying the

dynamics of a process cannot be ignored. This is particularly true
of ecological systems due to seasonal changes in temperature, solar
radiation, etc. Although a general model of a population of
engineering interest may be too complex to be solved analytically,
a numerical solution of sufficient accuracy can usually be obtained.
The need for population balance models which are cast in a
very general stochastic framework and can be directly applied to
systems of engineering interest, has motivated this research.
Such models are of great value in studying a broad class of problems
related to the design and management of ecological systems. In

this context the descriptors for the individuals in the population
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may be size or weight in the case of fish and plankton in a lake,

productive value for trees in a forest or orchard, maturity in case

of insect pests and their parasites or predators in a farmland, or

the level of acceptance of a new idea or economic status in human

populations. To have a greater confidence in the management and
control policies derived from the models of these systems one would
like to know the expected behavior of the populations as well as a
measure of deviations from the expected behavior due to random
phenomena. A general stochastic formulation of population balance
models is also of value in the analysis of systems encountered in
chemical engineering practice. The importance of this approach
to particulate processes has been recognized only recently (Curl,
1967; Katz and Shinnar, 1969). Probabilistic models of flow in
packed beds, where the fluid elements are assumed to move in dis-
crete jumps, have been used quite successfully for describing the
residence time distributions for some time (see e.g., Levenspiel
and Bischoff, 1963; Buffham et al., 1970; Schmalzer and Hoelscher,
1971; Srinivasan and Mehata, 1971).

As indicated above, one use of a stochastic model is in pre-
dicting the fluctuations in the properties of a population. For
small populations the stochastic fluctuations are always important
if the rate processes such as birth, growth and death are random
in nature. A stochastic model enables one to determine how large
a population must be for the random fluctuations to be unimportant.
Data on many biological systems shows a considerable scatter and
hence the observations are often recorded in the form of means and

standard deviations. If the contribution of the errors due to

__‘
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crudeness of observations, subjective judgement of the observer,
etc., to the scatter in the data is known, the variance in the
repeated observations due to random phenomena alone can possibly
be estimated and used as an additional parameter in testing the
mathematical models. This particular facet of stochastic modeling
is demonstrated in this work by a controlled experiment, which is
discussed later in the text.

Experimental data on particulate processes and residence
time distribution analysis of process vessels often exhibits an

appreciable amount of scatter. Since the population balance models

currently used to characterize these processes are largely based
upon purely deterministic considerations and analogies with
molecular processes, these models cannot account for the scatter.
In molecular processes the number of molecules involved in an
experimental setup is almost always very large and consequently,
the stochastic fluctuations are insignificant. On the other hand,
a very much smaller number of entities (i.e., particles, fluid
elements, etc.) are encountered in the experiments with particulate
processes and residence time distribution analyses. This fact
coupled with a stochastic nature of certain phenomena such as
formation and growth of the particles or movement of the eddies of
the fluid inside the experimental vessels is responsible for at
least a part of the scatter in the data. Stochastic models for
such systems provide a useful means for the theoretical analysis
of such data.

For the case of reproducing populations with no external

input, the coefficient of variation (/variance/mean) of the

e— 4



12

population, which is often taken as a measure of stochastic
fluctuations, is alwasy significant if the initial population is
small, irrespective of whether the population becomes very large
at a later time. Bartlett (1969) indicates this to be the case
for age distribution in biological cell populations. A similar
result is obtained in this dissertation for a more general des-
cription of a population. This fact is quite important in the con-
trol of many ecological systems. For example, in the biological
control of insect pests, often a small number of parasites or
predators is released in the infested area. Control of the pest

is usually achieved after a certain time lag required for the
parasite (or predator) population to build up to a significant
level. A stochastic model for such a system would enable one to
estimate a priori the chance of success of such a biological control
strategy.

A similar situation may arise in chemical processes of
industrial importance. The phenomenon of secondary nucleation,
which is a significant factor in industrial crystallizers, serves
as a good example to illustrate this. In secondary nucleation new
nuclei are generated by the breakup of dendritic growth on the sur-
faces of a growing crystal or release of micro-clusters of particles
during the growth of the parent crystal. Thus, if the initial
number of seed crystals is small, the fluctuations in the crystal
size distribution will always remain significant. Kane (1971)
studied the rates of secondary nucleation of ice crystals in brine.
He used a stirred batch crystallizer with liquid isobutylene added

directly to the supersaturated brine as a coolant. The experiment

pr—e—es
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was started with a single ice crystal and the number of crystals
in the crystallizer (counted using a photographic technique) and
the bulk temperature of the contents of the crystallizer were
monitored throughout the experiment. The data on the induction
period (i.e., the time required to form a sufficiently large number
of crystals from the solution to significantly affect the concentra-
tion of the brine so that the freezing point of the solution begins
to change) shows a considerable scatter. Expressing the nucleation
process as a linear birth process (cf. Parzen, 1962, p. 296), he
obtained an estimate of the contribution of the stochastic nature
of the process to the scatter in the data. His model was based on
the total number of crystals. The rate of formation of new nuclei
per parent crystal per unit time was assumed to be a constant. In
reality, this rate may be a function of crystal size. The equations
developed in this dissertation are applicable to more general
situations where the rates of nucleation, growth as well as removal
from the crystallizer are functions of size as well as time. By
solving these equations one can obtain the mean and variance of
crystals in any size range at any point in time. Other situations
of industrial importance where similar considerations may apply
include failure of a chemical or biochemical reaction due to the
catalytic activity of trace quantities of an impurity and gvowth
of mutants of the micro-organisms in a continuous fermenter.

Even in situations where one is not interested in the
stochastic fluctuations in the population, a probabilistic approach
to the problem offers a certain conceptual convenience in building

postulates related to the mechanisms involved in the rate processes,
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as well as the relevant properties of the population. In this
context, the fraction of the total number of individuals having a
certain property may sometimes be interpreted as the probability
that an individual has the property. Similarly, the rate of
occurrence of a certain event may be looked upon as the rate of

the corresponding random phenomenon. In some cases such phenomeno-
logical descriptions may not be possible in a deterministic frame-
work. For example, the formulation of (1.1) is true only when the
population is large enough to justify the use of the density func-

tion x(z ..,zn,t). It will be shown later in the text that this

128

restriction can be removed if the quantity x(zl,...,zn,t) is

looked upon as the density of the first moment measure of the popula-
tion, i.e., when x(zl,...,zn,t)dzl...dzn is taken to be the
expected number of individuals at time t in the infinitesimal

volume element rlz1

.dzrI located at the point (zl,...,zn) in
the space E.

The outline of this thesis is as follows: Chapter II is
devoted to the mathematical background necessary for the development
of population balance models in a general stochastic framework. In
particular, a general probability space is defined for the population.
Concepts of counting measures, moment distributions and generating
functionals are developed, and the relation between the generating
functionals and the moments is discussed.

The analogy between different approaches to the residence time
distribution studies and modeling problems related to other popula-
tions (e.g., crystals, insects, trees, cells, etc.) is discussed in

Chapter III in order to cast all population balance models in a
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common framework. Following this discussion, general considerations
for the selection of a proper type of model are presented.
A diffusion model for a population in which the individuals

are described by one descriptor is derived in Chapter IV. The back-

wvard diffusion equation for the probability generating functional,

as well as the backward and forward diffusion equations for the

first two moments for a reproducing population with no external

input are derived and the relevant boundary conditions are discussed.
Solutions to these equations for some simple cases are presented in
Chapter V.

A general model for a population must also include an input
of entities from a source external to the population, i.e., an input
other than reproduction. This is dealt with in Chapter VI. Some
interesting results for a population with external input and no
reproduction are proved and their application to problems of
practical interest is discussed.

A controlled experiment performed to demonstrate the use of
a result obtained in Chapter VI in testing the validity of some
common assumptions behind the mathematical models developed in this
thesis is described and discussed in Chapter VII. Chapter VIII is

devoted to conclusions and recommendations for future research.
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CHAPTER IL

MATHEMATICAL BACKGROUND

To cast the problem of modeling a population into a stochastic
framework it is necessary to consider the dynamic changes in the
population as a stochastic process. A stochastic process
{X(t): t € T} 1is defined as a family of random variables X(t)
indexed by a parameter t varying in an index set T. In the pre-
sent context, the index t refers to time and T wusually refers
to the set of nonnegative real numbers or the set of nonnegative
integers. When all the entities in the population are identical,
as is the case in the population models of type (i) in the previous
chapter, X(t) 1is a nonnegative integer at any given time, represent-
ing the total number of entities in the population. Similarly, for
models of type (ii) where each entity in the population must belong
to one of finitely many categories (such as age groups), X(t) is
a finite vector of nonnegative integers defining a measure on the
set of age groups. In models of type (iii) each entity can occupy
any point in the n-dimensional Euclidean space E, and an analogous
description of X(t) will be in terms of measures defined on the
subsets of the Euclidean space E. At each point in time the con-
figuration of individuals in the space E is a random distribution.
The mathematical tool for the analysis of such processes is the

theory of stochastic population processes developed by Moyal (1962).

16
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An excellent review of the work done in this theory is provided by

Daley and Vere Jones (1972).

2.1 Point Processes

For the most general description, the state of an entity in
the population is described by a point E in an abstract space f'f,
called the individual state space. In case of population balance
models of type (iii) discussed in the previous chapter the individual
state space is an n-dimensional Euclidean space. The population state
space & is the union of disjoint spncesﬁk, k =0,1,...,o, where
gk is the k-fold cartesian product E x £ x...x £, for k = 1. By
convention EO represents a single point, corresponding to zero
population. A point gk € ﬁk represents a population with k dis-
tinguishable individuals. It is a k-tuple (El,...,gk) of points
in E. On each EX is defined the minimal g-field BX containing
all product sets ey % ey Ristaaik e where each set e; € B, the
o-field of Borel subsets of E. The minimal g-field defined on the
population state space 4§ containing ;Bk consists of all sub-
sets e of 8 whose intersections wiltzleach gk are members of
B¥. A measure space (8,8) can thus be defined from the pair
(E,B) and its k-fold cartesian product (Ek,Bk), ke Lo viyme A

probability measure & can then be constructed on the measure space

(8,8) either directly, or by constructing measures P(k) on
S
~ ~k
E* 55 which saisty £ P EY =1.
k=0
K) o
Py = P( )(Es (2.1)

is the probability that the population consists of k entities.
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The triplet (4,3,9) constitutes a model of a stochastic population
process, and is called a point process.

Physical interpretations of @&, B and ¢ are as follows:

the population state space § 1is the collection of all possible

states of all the entities in the population, the g-algebra 73

refers to the collection of all possible "events" (e.g., all possible
combinations of individuals in a biological population being in all
possible (denumerable) age groups) and @ denotes the probability
measure defined on the collection of all possible events in the
population state space @. Similar interpretations can be given

k P(k)

to £, B, P and Ek, B, in the context of a single entity

and a population of k entities respectively.

If the population is comprised of indistinguishable entities,
the population state space 65 consisting of unordered sets of
points in E is a more appropriate basis for the description of

the process. The subspace of as of populations with k individuals

is denoted by E(k>, and a point in E(k), which is an unordered
set g(k) = {gl,gz,...,gk} represents a population with k indis-

13
tinguishable entities. The g-algebras B( )

(k)

and @S are comprised

of Borel subsets of E and 8 respectively. The probability

()

measures P(k> and 95 on the members of B and BS

s
respectively can be defined in the same way as for the case of
distinguishable entities. There is an obvious natural mapping of

8 onto 55, and to each probability measure 95 on 8 there

corresponds exactly one symmetric probability measure on §.
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2.2 Counting Measures

An alternative to the point process description of a popula-
tion is the counting process. For any subset A of the individual
state space E, let N(A) be the number of entities in A. Formally,
a counting measure N is any non-negative, integer valued measure
defined on the class U of all Borel subsets of E. The elements

of the space § define certain counting measures, namely,

N =

e
Mo

I(A|E) (2.2)
1

where I(A|:) is the indicator function of the set A:

1 if x €A
I(Als) = {

0 if x ¢A.
Note that all points in @& which correspond to the same unordered
set E(k> = {51""’51(} in ds lead to the same counting measure
(2.2). Moyal (1962) has proved that (2.2) defines a one-to-one
correspondence between ds’ and the space 7 of all counting
measures on the class U. Every probability space (8,5, 9 has
an equivalent counterpart (ﬂﬁN,ON%

It is useful to exhibit this last equivalence explicitly. If

Al""’Ar are disjoint subsets of E whose union is E, the proba-

o

bility that there are k; entities in Al Ky entities in A,

and iti i i
k. entities in A, is

k k
5 1
PUN(AD) = Ky, N = k3= Pi )((Al Kok Arr)s)

K K
L! @) ale...xa Ty (2.3
Tk B (A X XA ) (2.3)




de

e]
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k.
where L =k +...+ ko, Ail is the k;-fold cartesian product of
Ai with itself, and in the first expression on the right hand side,

(C)S is the symmetrization of the set C, i.e., the union of all

possible distinct cartesian products €y XeuuX CL, where k., of

1
the Cj‘s are equal to Al’ k2 are equal to Az, etc. There are
L /kl! kp!...k.! such possibilities, and thus the second expression

on the right hand side is obtained.

2.3 Moment Measures and Moment Densities

The expected number of entities in a measurable set A is
© s ©
L L ~L-1
ww =z = z [, zrejsprP @@=z e x B e
L=1 "E i=1 L=1

Moyal (1962) has shown that (2.4) can also be derived using (2.3).
Note that M(A) is a non-negative, monotone nondecreasing and
countably additive set function, and hence a measure on (E,B).

M(A) is therefore called the first moment measure or the first
moment distribution. When there are only a finite number of entities
in every bounded set A with probability one, it is often possible
to define a density m(-) of the first moment measure in the case

where E is a n-dimensional Euclidean space. Thus, the quantity

m(g)dg = M(dE), @-5)

denotes the expected number of entities in the infinitesimal volume

element dg = dz,dz,...dz; located at § = (z;,2zy,--+»2,) 0 E.

k _k.
Higher order moment measures are defined on E",B) by

taking expected values of the k-th product counting measure




L
Nk(A(k)[g(L)) S T I(A(k)[(tzi o058, )), k< n, (2.6)
i i 1 k

here 4% =4 1 EY forany AcE ana @ - AR
The use of these higher-order moment measures is complicated by

the fact that they contain "mass' concentrations on subsets of

EX. For this reason it is more convenient to deal with a factorial

moment measure M defined as the expected value of

(€3]

NP = 5 2 oz 1a®e gy, ek @
(k) i i

z
i#iy#. .,#ik
=N(A) (N(A)-1)...(N(A)-k).

The two types of moment measures may be contrasted as follows: The
sum on the right hand side of (2.6) is taken over all samples of

size k from the population §(L). The sampling is dome "with
replacement", and (2.6) therefore contains Lk terms. In (2.7)

the sum is over all samples 'without replacement', and there are

(]..)k = —(LE—')‘— terms. The convenient relationship
o (ktj) ~j
Mo @0 =z e p @™ xEh )
(k) e k's
j=0
holds,

In the case of a n-dimensional Euclidean space, the k-th
: =k h
factorial moment measure often has a density on E~ when the
probability of having more than one entity in an arbitrary interval
(5,6+dE) is o(sE), i.e., this probability is of a smaller order
of magnitude than 6f. When such densities exist, the point pro-

cess is said to be orderly.
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2.4 An Illustrative Example

At this point it will be worthwhile to consider an example to
illustrate some of the concepts developed so far. Consider the case
where the entities in the population are described by a single
descriptor. To be specific, let the descriptor be the size of the
entity, which may increase indefinitely. In this case E is the
nonnegative real line and B is the g-algebra generated by open,
closed or half open intervals on the real line (representing ranges

(k)

of sizes). The product space ﬁk (or E'’) and the corresponding
o-algebra Bk (or B(k)) are necessary to define the joint proba-
bility distribution of k distinguishable (or indistinguishable)
entities being in k overlapping and/or disjoint size categories.
Similarly, the counting measure N(A) denotes the number of entities
in the size range A and the first moment measure M(A) represents
the expected number of entities in A. Note that for a fixed A,
N(4) is a random number. The product counting measure is necessary
for defining product moments, as mentioned in the previous section.
To illustrate a product counting measure, consider a sample
realization of the process as shown in Figure 2.la. There are four
entities in the population, of which three are in the set A, so
that k = 4 and N(A) = 3. To get the second moment measure, it
is necessary to evaluate the expectation E(N(A)Z) =EN(A) X N(A).
Note that the product counting measure on the set A X A is equal
to (N(A)2)~ Applying (2.6) to the realization of the point process

in Figure 2.la,

4
z

4 4 4
Nyaxaghy = 3z T(AXA|(5;,8)) = £ TMEDTA[E) -
i j=1 1 j=1

i=1 b
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le measure NZ(A X A\gk) thus has a contribution of 1 from every
lirwise combination (gi,gj) of the sizes of the entities in a
mple realization of the process, when g and gj both lie in

le range A. The combination (gi,gj) refers to the joint
rcurrence of an entity at g and another at gj. The sample
ralization of the process illustrated in Figure 2.la thus
rresponds to N(AZ) = 9. Different pairwise combinations (§i,§j)
rresponding to this particular realization of the process are
lustrated in Figure 2.1b. Note that corresponding to every point
in Figure 2.la there is always a point (gi,gi) in Figure 2.1b.

. the particular case where the existence of one entity at gl

- in no way dependent upon the existence of another at §2, if

€)dE denotes the probability that an entity lies in the size

nge (€,E+dE) for an orderly point process, then the joint

‘obability that an entity lies in (§1,§1+d§1) and another in
;2,§2+d§2) is f(gl)f(gz)dgldf—;z. Thus, while the probability of

ving a point on the diagonal of A X A is f(E)d§, the probability
 having a point (gl,gz) in A X A is only f(;l)f(gz)dgldg2 = o(dg),
quantity of a smaller order of magnitude than the corresponding
obability for the diagonal. This results in the '"mass" concentra-

(2

on of the second moment measure on a subset of E -=- the
agonal of any set A X A. This mass concentration has a density
€) with respect to E, while the points of increase of the
cond moment measure corresponding to a pairwise occurrence of

e entities in the size range A have a density with respect to
2)

. The second moment measure can thus be expressed in terms of

sum of two component densities -- a demsity with respect to E




Figure 2,1

FiBure 2.1
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k = total number of entities = 4

N(A)= number of entities in A =3

51 g, 13 g,
X% ¥ 3 e
€ (size)
= A
‘igure 2.1a Counting measure for a sample realization of a point
process
wh X X X X
O it
X X b { X
(8,585
<
X X X
(62585 (E35E,) N, (AXA) = number
f points
X X x e
in AXA
€587 (€38 AxA - 9.
[y e ]
1 1
1 [
! '
I 1
' 1
|
- }
(¢ A > §1
igure 2.1b  Product counting measure for the sample

realization of the point process

Figure 2.la

in
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representing the mass concentration on the diagonal and a density
with respect to ﬁ(z). Similar mass concentrations also exist for
the higher moments of the counting measure along the diagonals of
the corresponding volume elements. For an orderly process the

k-th order factorial moment measures (k = 2,3,...) do not have such

(k)

concentrations on subsets of E , and thus the use of densities
of factorial moment distributions are much more convenient than
that of product moment measures.. A good discussion of the moment
densities is given by Ramakrishnan (1950). When the point process
is not orderly, i.e., when the probabilities of having twins,
triplets, etc. in (§,€+dE) is of the same order of magnitude as
dg, even the factorial moment distributions have concentrations

on the diagonal subspaces of fk. In this case it is still possible
to express the moment measures in terms of deunsities if each pair,
triplet, etc. are treated as distinct populations with each pair,
triplet, etc. considered as single entities. Ramakrishnan and
Srinivasan (1958) have illustrated this for the case of age dis-
tributions in a population. However, even for the case of a
population containing only singlets and twins, the mathematics

involved was rather elaborate.

2.5 Generating Functionals

A complete description of a point process in the form of the

(k)

probability distributions PS or the moment distributions

HCK
(k=0,1,...,0) can be obtained in terms of a single generating

functional -- the probability generating functional. The proba-

bility generating functional (PGF) is a natural generalization of
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the probability generating function from an integer-valued random
variable to a random veriable taking values in a population state
space defined in Section 2.1. Analogous extension of the Laplace
transform of the probability distribution of an integer-valued
random variable (or the moment generating function), namely, the
moment generating functional (MGF), and the characteristic func-
tional are also used instead of a PGF.

Let © be a bounded complex-valued function on &. Define
k
WE) = 8(5) .85
on Ek for every k, and therefore on @§. The PGF
6@ =E@E = ], eEpeey ..o r P .9
k=0"E

is defined for all measurable functions § such that

supgeﬁle(g)\ < 1. In (2.9) the product (5 ) ...8(5,) is defined
to be equal to one when k = 0. The measures P(k)
(k)

s

in (2.9) can
be replaced by P without changing the result. Moyal (1962)
has proved that there is a one-to-one correspondence between

probability distributions P, on (8 ,8,) and the PGF of the

form (2.9). If (Al,...,Ar) is a finite measurable partition of

E, then taking
r
8(€) = T C; IA[D), (2.10)
i=1

the PGF reduces to a multivariate probability generating function

of the random variables N(Ap),...,N(A)

E r r N(QA))
G(e) =Efexp z [ log{ T ¢.8(A |E)WNE)=E[n¢, ]- @
i=1"A. j=1) i=1

i
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The probability distributions P:k) and the factorial moment dis-
tributions M(k) can be expressed as functional derivatives

(variations) of G:

(k) B
BT XX A =T 60 6(0), (2.12)
k
M, (A Xo.X A) = lim 65 a(T), (2.13)
()1 K 1
when
8(E) = T(A[D)T(A,[E)...T(A|E) . (2.14)

In (2.12) and (2.13) the k-th functional derivative e‘e‘c(m is

defined as (cf. Hille and Phillips, 1957, p. 111)

k
sfeam = d—g&“—(mu—\ (2.15)
d

=0
The MGF (when ©(§) has a nonpositive real part) and the char-
acteristic functional (for all §(§)) are obtained from (2.9) by
replacing 9(E) by exp(6(E)) and exp(ig(§)) respectively.

Thus, for example, the MGF of a point process is given by
k ® k (k)

5(® =Elexp( 2 8] = = [ exo(z oM@ . e
i=1 k=0"E i=1

k
The summation 3 a(gi) can also be written as an integral of
i=1
8(E) with respect to the counting measure N(-) on £, i.e.,
k
8(E) = [ 8GN(E) . (2.17)
= E

i=1

The k-th product moment measure M is related to the MGF by

_ Kk k
M (A XX A = (<D 5 ¢(0), (2.18)

where

8(E) = L(A|E)T(Ay|E).. .T(A[E). (2.19)
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6 Stochastic Population Provesses

The discussion in this chapter thus far dealt with a proba-
listic description of a population only in a static sense. The
iplet (4,8,9) thus refers to the population state space, the
llection of all possible events and the probability measure only
a given point in time. For a complete stochastic description of
> dynamic changes in a population one needs to know the joint
obability distribution of all finite combinations
SRS IE ,...,itk} of sample realizations E[ of the pro-

2 t

s at times ¢, where £ € §. It can be seen thait the problem
achieving this is furmida}!le. Moreover, in practice, one is often
erested in the first few (usually two) moments of the population
a given subset of the individual state space E, and thus a

lel describing these moments of a counting measure on £ is

ally sufficient for most practical purposes. If transition
babilities can be assigned to describe the changes in the state
an entity during a small time interval (t,t+st) (or during the
erval (t,t+l) when the time parameter is discrete), it is often
sible to write down equations for the moment distributions (or
ent densities) of the counting measures on E. The generating
ctionals prove to be extremely convenient tools in the deriva-

n of such equations. The generating functionals are also useful
evaluating another quantity of interest, namely, the probability
having no entities in a given set A € £ at any time t. For
mple, this can be obtained from the PGF by setting 8(§) =

1(alg).
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CHAPTER ITI

THE IDENTIFICATION PROBLEM

Before constructing a model for a population it is necessary
identify the relevant descriptors of an entity in the population
| thus define the individual state space E. The analysis of
ange in the descriptors of an entity (e.g., maturity, productivity,
>.) with time, representing the movement of entities in E, is
> next step in the modeling process. In a deterministic model,

. movement of the entities in E is described by rates of change
the descriptors, whereas in a stochastic description this move-
1t is characterized by transition probabilities when the process
Markovian. Whether the population can be characterized by a

it inuous movement of the entities in E or whether the popula-
n has to be grouped according to location, size, productivity,
., depends on the particular system itself. The example of
sidence time distribution analysis of flow vessels may be cited
illustrate this. Equation (1.3) describes the movement of fluid
ments inside the flow vessel by a continuous motion, whereas a

(ing-cell model described by (1.2) essentially lumps the fluid

. - "
ments in the vessel into a number of hypothetical "mixing cells™.

some situations (1.2) is a more appropriate description of the
tem than (1.3). Analysis of data collected in tracer experiments
well as the physical structure of the flow vessel are often used

decide the type of model best suited for the purpose. The

29
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alogies between the models for residence time distributions and
> models for other populations, which were mentioned in Chapter I,
<e it possible to cast the methods of analysis of both the classes

models in a common framework.

. Residence Time Distribution of Flow Vessels

The residence time distribution (RID) C(t) of a flow vessel
defined as the age distribution frequency of the fluid elements
1ving the vessel under steady flow conditions. Thus, the
ntity C(t)dt denotes the fraction of the fluid in the exit
eam which has spent between t and t+dt units of time inside
> vessel. The RTD can also be interpreted as the probability
it the age of a fluid element leaving the vessel is between t
| t+dt, or the probability that a fluid element entering the
sel would take between t and t+dt units of time to reach the
let. The RTD C(t) is thus synonymous with the residence time
bability density. Sinclair and McNaughton (1965) have used this
erpretation in a discussion on the calculation of the RTD of a
ies-parallel network of flow vessels, when the RTD of each
ponent vessel is known. If two vessels with RTD's Cl(t) and
t) are connected in series and if the residence times are
ependent of each other, the RTD Clz(t) of the combination can

expressed as a convolution

t
= = 3.1
1o (0 t[clch(c ndr
ce the length of time spent by an element in the composite system

t equal the sum of the times spent in each of the vessels. For
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perfectly mixed vessel the exit age of a fluid element has an
ponential probability distribution, i.e., the exit age probability
nsity (RTD) is Ma—/@-, where o is the mean residence time.
case of a plug flow vessel this probability density is a Dirac
function, with a delay « corresponding to the residence time.
Imperfectly mixed vessels have flow patterns intermediate
tween the two ideal cases described above. The mixing inside such
vessel may be such that a small fraction of the fluid can reach
e outlet much faster than the remaining bulk, resulting in by-
ssing; or a small portion of the fluid may be caught in stagnant
1es in the vessel and reach the outlet after a very long time
lative to the bulk of the fluid. The magnitude of bypassing and
ad space can be quantified by analyzing the data collected in
nple tracer experiments performed on the flow system or its scale
lel (Himmelblau and Bischoff, 1968, p. 71). In flow systems such
packed beds with size of the packing much smaller than the char-
reristic dimensions of the bed itself, the fluid elements must
|low a long tortuous path before reaching the outlet, and the
rall effect may be similar to that of a "diffusion" of the fluid
ments relative to the mean velocity toward the outlet. Use of
> diffusion equation such as (1.3) can be justified when the move-
it along a direction z is characterized by a Markov process and
: incremental distance &z covered along z in a small time

erval (t,t+§t) can be looked upon as a random variable with

mean E(8z) = r(z,t)6t + o(8t),
variance V(sz) = az(z,t)ﬁt + o(bt) , 3.2)

and  E(sz") = o(st) for n =3 .
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many cases the mixing cell models give a more realistic repre-
tation of the RTD. In the mixing cell model, the flow vessel is
umed to be composed of a number of hypothetical perfectly mixed
sels connected in series and/or parallel. In the particular case
k perfectly mixed vessels connected in series the RTD of the
bination is a convolution of k exponentials and when all the
sels have the same mean residence time o, the RTD of the combina-

n is the density of the gamma distribution

k-1
N o
e = gt/%k)_l)!ezgg t/a) X (3.3)

s, in this case, the exit age of the fluid elements has a gamma

tribution.

Life-Span Distributions in Biological Populations

Probability densities of life-spans of individuals in a wide
iety of biological populations show a similarity with the RTD
imperfectly mixed vessels, and analogous models have been pro-
ed and used for some biological populations. To account for the
= that the age at which cells divide is randomly distributed about
an, Stuart and Merkle (1965) described the dynamics of cell

1lations by the diffusion equation

2 2
o ac(z,t) o ac(z.t) _ aclz,b) 3.4)
2 2 3z 3t ’ c

32z
e c(z,t)dz is the expected number of cells with physiological

between (z,ztdz), the drift coefficient r denotes the mean

of maturation and the diffusion coefficient g* accounts for

variability in the rates of maturation among the individual
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ells. The cells were assumed to divide when they reached a certain
ixed maturity. Takahashi (1968) divided the complete life cycle of
cell into a number of hypothetical growth stages, and assumed that
he time spent by the cell in each of the stages was exponentially
istributed with the same mean . The number of stages and the
ean residence time o for an individual stage could then be ad-
usted to match the output of the model with the corresponding
bservations in a radioactive tracer experiment. Takahashi's
pproach can be seen to be an exact analog of a mixing cell model
or RTD analysis where vessels with equal mean residence time are
onnected in series, and thus this model results in a gamma dis-
ribution for the life-spans of the cells. Weiss (1968) proposed
general deterministic formulation for cell population dynamics,
here a cell was characterized by its chronological as well as
1ysiological age. This model is equivalent to the formulations of
cuart and Merkle as well as Takahashi for the first moment of the
>pulation.

As regards other biological populations, a gamma distribution
r the maturation periods of insect life-stages was used by Read
id Ashford (1968). 1In a study of productivity of perennial crops
ich as cocoa and palm, Abkin (1972) divided the life-spans of the
‘ees into a number of stages according to their productive value.
1 the trees in a given stage were assumed to have the same pro-
ctivity and the time taken by a tree to mature from one stage
the next was assumed to have a gamma distribution. In both these

ses each life stage (of insects and trees) was implicitly taken

be equivalent to a number of identical sub-stages with exponentially
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distributed residence times. Fish populations are known to exhibit
an elastic growth. The size distribution of the fish born during a
single spawning season widens with time, due to differences in the
growth rates among individuals (see e.g., Cooper and Latta, 1954;
Cooper, Latta and Schafer, 1956). The magnitude of the spread
occurring in a given length of time gets smaller with smaller amounts
of food available to the fish (Hall, Cooper and Werner, 1970). No
models have been proposed to account for the elastic growth. 1In
general, it can be said that in any vertebrate population the age

at which reproduction starts and the age at which an individual dies
of 0old age are randomly distributed about some average values. As

in the case of fish, size or biomass of an individual may be used

to represent maturity in some cases, or it may be necessary to use
an abstract maturity scale [0,1], with the maturity of a newborn
individual to be 0 and the end of the life cycle corresponding |

to the maturity 1 (Stuart and Merkle, 1965). It seems possible to

lescribe these populations by a diffusion equation such as (3.4)
7ith an additional term corresponding to death. In many biological
bopulations the life-spans are randomly distributed due to the
genetic variations among individuals. Another factor influencing w
he variability in growth rates is the availability of food, as

ientioned above for the case of fish populations. Leftkovich and

urrie (1963) studied the effect of food availability on the larvae

f the cigarette bettle, Lasioderma serricorne(F.) and found that

he mean as well as the standard deviation of the maturation period

f the larval stage of the insect increase with a decreasing supply

f food. It is likely that food availability has an effect on the

ife-span distributions of many other populations as well.
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3.3 A Dispersion Phenomenon in Crystallization

It has been observed that the product crystals from an
industrial sugar crystallizer exhibit a much larger spread in the
size distribution than that of the seed introduced initially, even
vhen there is no appreciable nucleation during the growth of the
seed crystals. Wright and White (1969) and White and Wright (1971)
studied the growth rates of sucrose crystals under different con-
ditions to specifically analyze the phenomenon of size dispersion.
Starting with a uniform seed size in a batch crystallizer and care-
fully monitoring the process to see that no nucleation occurred,
they measured the crystal size distribution (using characteristic
length of a crystal as a basis) at different times. The crystal
size distributions obtained under different temperatures, super-
saturations and syrup purities were plotted on a normalized scale --
the ratio of the deviation from the mean with the standard deviation
of the size distribution. Although the shapes of individual curves
vere slightly different from one another, the average of twenty six
such curves was very close to the density of normal distribution
7ith zero mean and unit variance. The difference in the shapes of
he individual size distribution curves was at least partly due to
he fact that sieve analysis was used to determine the size dis-
‘ribution for many samples. Since the shapes of individual crystals
vere non-uniform, conversion of weight-size relation to a number-
3ize relationship resulted in an inaccurate determination of the
rystal size distribution. Let the growth of crystals be char~
icterized by (3.4) with c(z,t)dz denoting the expected number of

rystals between sizes -(z,ztdz), the drift coefficient r
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epresenting the (ensemble) mean growth rate and the diffusion co-
2

fficient ‘27— being equal to half the value of the variance of

ndividual growth rates. The expected number of crystals crossing

L point z per unit time can be shown to be

Flz,t) = re(z,t) - 5o? aﬂa%ﬁ)_

> 3.5)
cf. Kimura, 1964, p. 185). Since there is no nucleation, this

'flux'' across the point z = 0 must be zero. Thus, the boundary

ondition at z = 0 is

@ =0 . (3.6)

ecause of the size dispersion phenomenon, the function c(z,t)
ust be finite for a sufficiently large =z at all times. Thus,

he second boundary condition is

c(o,t) = finite . (357)

he solution of (3.4), (3.6) and (3.7) with all seed crystals of

ize z

o 2t time zero is approximately proportional to the density

f normal distribution for a sufficiently large 2, (cf. Cox
nd Miller, 1965, p. 224). Thus, the diffusion model does seem
o agree with the experimental observations.

White and Wright postulated that the size dispersion occurs
ue to an uneven distribution of lattice dislocations on the sur-
aces of different crystals. These imperfections have a marked
ffect on growth rates of crystals, thus resulting in a random

istribution of individual growth rates.
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.4 Generalizations

In the context of a general population balance model where

ach entity is represented as a point in the individual state space

., the random variations among individual rates of movement of the

ntities along any given direction in E may occur due to three

listinct reasons:

(i)

(i)

(iii)

The entities may be present in a uniform honogeneous
environment, with the entities themselves having a
random distribution in their potential capability to
move along any given direction. The random life-span
distribution in biological populations occurring due

to genetic variability falls in this category.

The entities may be present in a uniform homogeneous |
environment and the process of movement along any
direction itself may be random in nature. The
phenomenon of size dispersion in sucrose crystals is
perhaps of this type, with the number of dislocations
on the surfaces of each crystal itself varying randomly
as the crystal grows.

The entities and the process of movement along any
direction (under uniform conditions) may be uniform,
but the environment is heterogeneous and the entities
spend random lengths of time under different environ-
mental conditions due to the heterogeneity of the
environment. This will be the case when there are
regions of different supersaturation in a crystallizer

and crystals spend random lengths of time in these
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regions, giving rise to a size dispersion. A similar
situation exists in the RID analysis of imperfectly
mixed vessels -- for example, the RTD of a packed bed
differs from that of the ideal cases of perfect mixing
and plug flow because the fluid elements spend random
amounts of time in the crevices between the packing
elements, resulting in little movement for random
periods of time.

iously, different combinations of these cases will occur in some

uations .

Depending upon the inherent variability among individual
ities, their rates of movement in E, or the coarseness of the
erogeneity of the environment, situations analogous to dead space
bypassing may occur in any general population. In a study of
ferent animal populations in fresh water ponds, Hall, Cooper and
ner (1970) introduced approximately a cohort of fish in each of
ponds, and the size distributions of the fish were measured at
end of the experiment. The size distributions show a long tail
h a slight peak in the tail, suggesting the possibility that the
h which get a head-start in their growth continue to grow at a
ter rate than the others. This is analogous to the phenomenon
bypassing in a nonideal flow vessel, where a small portion of
fluid moves much faster relative to the bulk. Similarly, in
study of economic mobility or acceptance of new ideas in social
tems one may encounter a situation where a small portion of the
ulation, possibly representing certain ethnic groups, progress

accept new ideas much faster (or much slower) than bulk of the
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1lation, representing a situation analogous to bypassing (or
1 space) in imperfectly mixed flow vessels.
The nonideal flow vessels and analogous systems involving

er populations may be denoted by a common term -- the nonideal

ulation-flow systems. In the general case, the word “flow"

ers to the movement of entities in the population along any given
ection in ﬁ, with the 'directions' specified by the relevant
criptors of an entity, i.e., the co-ordinate axes of E. It

uld be noted that in the general context, a perfectly mixed

sel is analogous to a situation where all the entities contained
a region in E are assumed to be identical in all respects

. the time taken by an entity to leave this region has an
onential distribution. This description thus involves lumping
"averaging' the individuals in the appropriate region of E.
ure 3.1 illustrates this lumping for a biological population
h the relevant domain in E consisting of a two-dimensional

graphical area and a range of maturities corresponding to the

e-span of an individual.

Selection of a Proper Model

The movement of the entities along the i-th co-ordinate axis
of E can be characterized as a diffusion in that direction if
movement of an entity along z, is Markovian in nature and the
ance 5zi covered in a short time interval &t satisfies (3.2).

implies that the rates of movement of the entitites along z,
a short period of time should have approximately a normal dis-

ition. It is necessary to study the nature of the individual
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jability among the entities, the process of movement along Zi»
the heterogeneity of the environment to see whether this con-
ion is satisfied: When the inherent variability among the

ities alone is the cause of the randomness in the movement, i.e.,
n each entity moves at essentially a constant rate at all times
h a random distribution of such rates among different entities,
overall effect of movement of all the entities over a short
iod of time may be analogous to a diffusion if the number of
ities as well as their individual growth rates are such that
- assumption of a normal distribution of movement of entities over
hort time interval can be justified. In the case where the
cess of growth is random in nature, it would be necessary that
- movement of an individual during a short interval of time be
racterized by a number of independent random increments, or as
ontinuous ‘stochastic process. In the situation where the
erogeneity of the environment is the cause of random movement
the entities, it may be necessary to put a constraint on the
rseness of the heterogeneity for the diffusion model to be
tified -- for example, while the diffusion equation (1.3) can
isfactorily describe the RTD in a packed bed where the char-
eristic dimension of the packing is much smaller than that
he bed, it is a poor model for short beds with large packing
icles or for fluidized beds. It should be noted that when the

2

usion coefficients %— for the n-dimensional diffusion process
zero, the equation for the mean reduces to the case commonly

in the population balance models in chemical engineering

tice, namely, (1.1), where all the entities at a given point
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E move along any given direction at essentially the same
e,

When the conditions for a diffusion equation are not
isfied, it may be necessary to lump the entities in different
ions in E and specify transition probabilities (or rates) for
- movement of entities from one region to another, as mentioned

the previous section. The mixing cell models used in the RTD
1lysis and the model proposed by Takahashi (1968) for cell popula-
n dynamics are examples of this approach.

Experiments similar to tracer analysis in RTD studies, along
h a careful analysis of the potential causes of random movement
the entities in the individual state space would usually be
essary to decide the type of model best suited for the purpose.
- example, the analysis of sucrose crystallization study of
te and Wright (1969, 1971) clearly suggests the applicability of
- diffusion equation, whereas the growth rates of fish may need
ore careful study to decide whether the 'bypassing" effect in

growth of fish populations is of significance.

A stochastic description of a population characterized by
iffusion process would rely on the theory of stochastic popula-
n processes. The discrete cases such as the perennial crop
luctivity model of Abkin (1972) will involve the use of discrete
rontinuous parameter Markov chains when the transition proba-
.ties for the movement of the entities from one state (char-
rized by the productivity, maturity, etc. of the entities in a
P) to another does not depend on the past history of the

ties. For the purpose of the models considered in the next two
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1apters it will be assumed that the movement of the entities in
can be described by a diffusion process. A stochastic descrip-
ion of the diffusion of the entities includes the stochastic
ounterpart of the process described by (1.1), i.e., the case where
11 entities at a point in E move in any given direction at the

ame rate, as a special case.




CHAPTER IV

DERIVATION OF THE DIFFUSION EQUATIONS

As a specific example of a general population balance model,
he case where the individual state space E consists of the non-
egative real line will be considered in this chapter. This case
pplies to populations in which the entities are characterized by

 single descriptor =z, denoting a property of an entity such as

ocation, age, maturity or size. The model can be readily extended
o the case where E is a n-dimensional Euclidean space for which
he properties of an entity representing the co-ordinate axes are
ndependent of each other. The total number of entities in a
opulation can increase due to reproduction by the existing entities
n the population, or by virtue of an external input. In the
erivation of the equations in this chapter it will be assumed that
here is no external input of entities to the population. Moreover,
11 the "newborn" entities are assumed to appear at the origin of
at the instant of their birth. The descriptions in this chapter
ill have to be modified slightly in case of populations where the
offspring" is in the same state as the parent, as in the spatial
igration of a biological population via a diffusion process (cf.
dke and Moyal, 1963). The effect of external input will be con-
idered in Chapter VI. In the following discussion the creation of

0 entity by reproduction will be called birth of the entity and

44
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oval of an entity will be termed as death of the entity.

Description of the Process

At time s the population is started with a single entity

an arbitrary point y € E. The process of movement of an entity

any point 2z € E 1is assumed to be a continuous Markov process,

:., as the time interval §t becomes small, so also does the

tes
tance 6z covered by the entity during that interval, and the
:ure locations of the entity depend only on its present location,
: not the past history. The distance &z covered by an entity
a small time interval (t,t+5t) conditional on its survival
‘ing this interval is a random variable with a density g(6z;z,t)

| satisfies the conditions specified by (3.2), i.e.,

(mean) E(6z) = r(z,t)dt + o(st),
(variance) var(sz) = uz(z,t)ét + o(st), (4.1)

E(6zk) = o(6t) for k = 3.

“ing the interval (t,t+6t) the entity at z has a probability

.,t)6t + 0o(6t) of dying and a probability )\i(z,t)ét + o(st),
i new entities at z =0 with

=1,...,0, of producing

®

i

T Azt) sA<e . (4.2)
i=l
1S,
‘obability that an entity will not reproduce during (t,t+5t)} =
©
1-z )\i(z,t)ét + o(dt) . (4.3)

-

 state z of an entity is unaffected by giving birth to an "off-

ing".
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 process of change of position of an entity as well as its re-
duction and death proceed independently of other entities in the
yulation. In view of the independence of the entities, the case
re the initial population contains k entities (k > 1) can be
1dily modeled by a superposition of k populations, each starting
h a single ancestor in the appropriate location corresponding to
> initial distribution.

Two obvious cases where this description applies directly
> the dynamics of biological populations of individuals char-

terized by maturity, and crystallization processes involving

condary nucleation. In biological populations the probability of
rth refers to reproduction and the probability of death refers to

> processes of natural death, predation, parasitism and harvesting.
crystallization processes, reproduction refers to secondary
cleation and death corresponds to precipitation,or loss of the
ystals from the crystallizer due to mechanical removal or bulk

ow of the magma. Most particulate processes in chemical engineering

tain entities which do not reproduce. It can be seen that these

cesses correspond to the case where the birth rates }\i(z,t) =
J,...,@. In processes such as degradation of polymer molecules,
e reduction of solids, etc., every breakage of an entity normally
duces a number of entities of different sizes, thus generating
andom size distribution of the pieces. The models derived in
s chapter can possibly be generalized to include this case, but
analysis of this general case will be much more complicated.
For the quantitative description of the population, a count-

measure N(A,t|y,s), t 2 s, is defined as the number of entities
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he set AcCE at time t, given that there was one ancestor

he point y at time s. Obviously,
N(A,s|y,s) = I(Aly) (4.4)

1 probability one. 1In (4.4), I(A|.) 1is the indicator function
the set A. Starting with (4.4) the description of the temporal
1ges in the population can proceed in two directions. One way
describing the population dynamics is to express the counting
sure for a fixed arbitrary set A and a fixed time t, as a

ction of s and y. Since -» <s <t, and since the dynamics

the population is expressed relative to the condition specified
(4.4), i.e., with s =t as the reference point in time, it

be seen that this is a description of the population obtained
noving 'backward" in time. This description is therefore called
backward description. Another way of describing the changes
the population is to express the counting measure corresponding
an infinitesimal set dz located at z € E for fixed arbitrary
nd s as a function of z and t. Since this description
lves moving "forward" in time with respect to the reference

t t =s, this is called the forward description. Accordingly,
) is a forward description of the population because it des-
es the population in an infinitesimal interval (z,ztdz) as

nction of z and t.

Boundary Con ions

Thé movement of the entities is restricted to a domain in

alled the spatial domain D. The spatial domain may be a subset
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E, or the entire space E itself. In the present context,
s taken as the closed interval [0,5], where 3@ may possibly
oach infinity.

In the derivation of the model, the behavior of entities at
boundaries must be considered. The possible modes of boundary
avior of an entity diffusing on the real line were considered
“eller (1954). Some possibilities of practical interest are:
reaching a boundary, the entity may be instantaneously returned
the interior of ﬁ, i.e., the entity is always restricted to stay
the interior of D, resulting in a reflecting barrier. Another
sibility is when the entity is removed from the population as
1 as it reaches a boundary, representing an absorbing barrier.
1ird possible type of behavior at the boundary occurs when an
ity reaching a boundary stays there for an exponentially dis-
outed random length of time, and then jumps to a point in the
rior of D, or to the other boundary. It may be added here that
1 E is a multidimensional Euclidean space, there is a fourth
ibility, namely, the case where an entity reaching a boundary
s along the boundary according to a Markov transition proba-
ty.

In the context of biological populations and crystallization
esses described above, the boundary at z =0 1is a reflecting
ier, because no entity can cross this boundary and moreover,
moment an entity appears at z = 0, it starts to "grow", i.e.,
s to the interior of D. When D is a finite interval
], one may encounter a reflecting or an absorbing barrier at

the third type of boundary behavior, where an entity can take
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inite jump into the interior of ) may be encountered in rare
es. It is intuitively obvious that as & approaches infinity,
state of the population in any finite interval at any finite
le would not be dependent upon the type of boundary behavior at 3.
Fish are known to exhibit stunted growth if the population
sities are too high (Beckman, 1940). This may be interpreted to
n that there is an upper limit on the size that an individual
h may attain depending upon the availability of food. This
1iting size can possibly be viewed as a reflecting barrier re-
icting further growth of the fish. However, it should be noted
t since the stunted growth phenomenon occurs due to a severe
eraction among individuals for the available food, the stochastic
mulation of the population process may perhaps be only a crude
roximation in this case. In an intensively exploited fishery
a forest resource) few individuals above a certain size (or
ductive value) may survive, enabling one to imagine an absorbing
rier at a finite size (or productive value). Similar considera-
ns will apply to any intensively exploited biological population.
some biological populations all the individuals above a certain
irity can be considered identical in all respects. In such cases
is possible to consider this maturity to be an absorbing barrier
assume that an individual reaching this maturity is removed
1 the original population to become a member of another population
isting of identical individuals. An absorbing barrier can be
ified in case of particulate processes in chemical engineering
tice when the particles precipitate out of the system, or are

ved mechanically by some separation technique when they reach
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ertain size, weight, etc. The flow of fluids through packed beds

ers an interesting possibility of an application of the third

e of boundary behavior. The movement of fluid elements near the

s of the bed cannot be characterized by a diffusion equation

n in long beds, because the random velocity patterns of the eddies
essary for an effective diffusion are not fully developed in the
zones. The distance covered by an eddy at a boundary (i.e.,
inlet or exit end of the bed) in a short time interval will not
e a normal distribution as indicated by (4.1) -- instead, the
tribution may perhaps look more like an exponential. To account
the end effects it may be worthwhile to consider an idealized
w behavior where a fluid element at a boundary is capable of
tantaneously jumping to a point in the interior according to a

wn probability distribution. When the volume of the headers of

packed vessel is rather large, it may be possible to assume the
ders as perfectly mixed (hypothetical) vessels at the boundaries,
ing rise to finite exponentially distributed times of stay at the

daries. A detailed mathematical description and verification of

' boundary behavior is beyond the scope of this dissertation.

The Backward Diffusion Equations
A stochastic model for the process described in Section 4.1

be derived here in the form of a backward diffusion equation

the probability generating functional of the population. Let

»t|y,s), t = s, denote the number of entities in [0,z] at

t, given that there was one entity at y at time s. Define
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(8,t]y,5) = E{[I 6(z)],t|y,s} = E{exp [ [log 6(z) W(dz,t]y,s)} (4.5)
4 D

s the conditional probability generating functional for the popula-
ion at time t, given that there was one entity in the population
t y at time s. The product on the right side of (4.5) has

ne term e(zi) corresponding to each entity at z; at time t.

n view of the independence of the entities in the population a

GF conditional on k entities at Yy oYy at time s can be

hown to be equal to

k
G(B5t]ypseeesyy38) = ‘nlc(e,t\yj,s) . (4.6)
3=

he proof of (4.6) follows from the definition of the conditional

ounting measure with k ancestors
k
N(A,t[yyseee5yy58) = j‘:“lN(A,t\yj,s) (%.7)

nd the second expression on the right side of (4.5) (Moyal, 1964).
len there are no entities in the population at time t, G(8,t|y,s)
juals one (cf. Equation (2.9)). As mentioned before, the spatial
main D is taken as the interval [0,d]. The case where D
- the semi-infinite interval [0,») is obtained by letting 3
proach infinity.

Consider the change in G(e,t\y,s-és) brought about by a
all change in the ancestor during the time interval (s-§s,s).
view of the fact that the ancestor can move from y to y+8y
the time interval (s-§s,s) with probability g(6y;y,s)d(sy)

ovided it survived during the interval,




,t|y,s-8s) =

© a
-z )\i(y,5>6s)(1-u(y,s)ﬁs)gg(éy;Y:S)G(e,tlwéyys)d(éy)
i=1

@ 1
1-u(y,8)68) I A;(y,8)6s G(e,tlo,S)lgg(éy;y,S)G(e,tly‘*éy.S)d(éy)
i=1

(y,s)és + 1, (4.8)
>

7 at t|ancestor P[ancestor neither died nor reproduced

y at time s-§s| = | during (s-65,s)]§{P[ancestor moved to

y+by during (s-bs,s)][PGF at t|ancestor
at y+oy at time s]}

Plancestor did not die during (s-6s,s)]P[ancestor produced
i offspring during (s-6s,s)][PGF at t with the i offspring

as ancestors at 0 at time s]J“[P[ancestor moved to y+by

during (s-8s,s)]}{PGF at t|ancestor at y+ty at time s}

.P[the ancestor died during (s-6s,s) without producing any]

_offspring][PGF for no entities in the population]

probability of the ancestor dying and also producing any off-
#

ng in an interval §s is o0(8s) , and hence the corresponding

is omitted from (4.8). Expansion of G(8,t|y+by,s) in a

or series about y gives

2 2
|3y ,8) = Glayt|y,s) + BG_LB.;.;.}’LE)GV + a.G_(a;g.u_.ﬂmzr_

Jy
+ oyt .9

 function f£(t) = 0(t) if [f(t)/t] sk<we as t -0 (e.g.,

uantity E(6z) in (4.1)). The function £(t) = o(t) if

t~0 as t -0, i.e., f(t) is of a smaller order of magnitude
t, as in case of E(3zK), k = 3 in (4.1).
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stituting (4.9) in (4.8), using (4.1) and omitting terms of

ler higher than §s, one obtains
),t|y,s-85) = G(6,t|y,s) + 6s[ayc(e,t|y,s> +u(y,s)

- Z2;(5,9)6(8,t]y,s)
i=1

+ T xi(y,S)G(e,clo,s)ic(e,t\y,s)], (4.10)
i=1

re the operator dy is defined as

2 2
a, =1L a4 ry,e) 2 - uGy,e)] - (4.11)
i 2oy %

tracting G(¢,t|y,s) from (4.10), dividing by 6s and letting
g Y

approach zero, the backward diffusion equation for the PGF

CRLLE) g 6Ga,t]y.e) + (39 - T A 096(0.t]y.0)
i
+ 5 (7,9)6(0,£]0,9) 6 (8,¢]y,9) .12
i=1
obtained.

It may appear that if E(&zk) = 0(st) (instead of o(st))
(4.1) for say, k = 3, then one would be able to get a third
er partial differential equation instead of (4.12) by truncating
Taylor series expansion of G(8,t|y+dy,s) in (4.9) after the
rd derivative term. However, Pawula (1967) has shown that if
z3) = 0(6t), then E(6zk) = 0(st) for all k >3, thus demanding
infinite Taylor series expansion in (4.9) and consequently an
inite-ordered partial differential equation.

When y = & is an absorbing barrier, in view of the condition

t every entity at the absorbing barrier is immediately removed
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om the population, i.e., the number of entities at the barrier
- always zero with probability one, the corresponding boundary

ndition is
G(e,t|d,s) = 1. (4.13)

As explained in the previous section, the boundary at y =0
a reflecting barrier. For a reflecting barrier at y =0 the
tity at the boundary is assumed to jump instantaneously to an

terior point §y. Thus,
G(8,t|0,8) = G(8,t|sy,s)

nce,

G t
G(8,£]0,8) = 6(8,€(0,0) + oy BBLLLY

0. (4.14)

aG(e,tly,s l
3y

y=0 ~

milarly, if y = @ is also a reflecting barrier,
2ot (4.15)

nce there is only one entity at y at time t =s,

(me(z,)],t|y,t)} = 6(y). Hence, the initial condition is given by
i

G(o,t|y,t) = 8() - (4.16)

If (4.12) can be solved analytically with the initial con-
tion (4.16) and boundary conditions (4.14) and (4.13) or (4.15),
e solution G(8,t|y,s) would contain a complete stochastic

i A iSs
scription of the population with one ancestor when there i
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put of entities to the population from an external source. How-
er, because of the nonlinear nature of (4.12) and the occurrence

~the arbitrary function ¢(y) in the initial condition, such

alytical treatment is not possible.
Remark 4.1: If there are k entities initially at ‘

»¥ps+++sYy; then the complete PGF for the population is obtained

solving the backward diffusion equation for G(e,t\yj,s) for

=1,...,k and substituting these in (4.6).

Remark 4.2: 1In view of the definition (2.9) for a PGF, the

obability of having zero entities in the population (i.e., the

tinction probability) is given by the solution of (4.12) with

y)=0. Similarly, choosing

(4.17)

1

8(y)

G(g,t|y,s) and solving (4.12) one obtains the probability

nerating function
[ ) = K
t s
NREE E{QN ,tlys, }= kz L (4.18)

the number of entities in the set A c D at time t, when there
one ancestor initially at y. In (4.18) the quantity p, refers

the probability of having k entities in A at time €, given

e ancestor at y at time s.

Remark 4.3: The diffusion equation can also be derived by

nsidering a random walk of the entities in E, where each entity

assumed to jump a random (or fixed) distance forward or backward,

i i i i with
stay in the same position during a small time interval 6s
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own probabilities, and taking a limit as the jump size reduces to
ro, if the jump probabilities satisfy (4.1) (cf. Cox and Miller,
65) .«

It should be noted that a similar set of equations can be
rived for the moment generating functional or the characteristic
ictional as well.

By comparing the population process with a linear birth and
ath process having birth rate = )\ and death rate equal to the
1imum value taken by u(y,s), it can be seen that the first and
cond factorial moments of populations in any subset of E exist.
> backward equations for the first and second factorial moments
> readily obtained by using (2.13) and (2.14). Thus, the first
ent of the number of entities in the set A, C D is given by
RE(N [Nz + oz 15t]y s}

i \

(HCQ,t|y.8) | =
ElY b1 AC I
=0 =0
=E )1: e(zi){vgi[ﬂ(zj) + Qe(zj)],tly,s}‘nﬂl
j =0
= E[N(Al,t\y,s)] = MI(A1’tlY’S) (4.19)

choosing 6(z) = I(Allz). Similarly, the second factorial
lent corresponding to the product counting measure for the set

x &y ©B x T (cf. Figure 2.1b), is given by
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af 'H_[ﬂ(zj)+ge(zj)] Jt|y.s)

= E{[s 8(z,)] —& |
i #) 3¢ l““l}

=E[£ 8(z) T 8(z)
i Uk L
= E[N, ((AxA)) ,t|y,s) -N((A,0A,) ,t[y,s)]
= Mgy By X Ay stlyss), (4.20)

re @(z) = I(Allz)I(Azlz), or equivalently, when e(zi) =

11z and e(zj) = I(Azlzj). The indices i and j in (4.19)
(4.20) refer to all the entities in the population at time t.
can be seen that the quantity N(A; N AZ),qy,s) is subtracted
m N((A1 X AZ)’t‘y’s) to deduct the contribution of the entities
responding to the terms e(zi)e(zi). When A1 = AZ’ (4,20)

es the second factorial moment of the population in the set

X AL, deen, ENAD MG - D).

Remark.4.4: It should be noted that in the derivation of

19) and (4.20) it was necessary to commute the partial dif-
ential operator gz with the expectation operator. This is

tified by virtue of the following proof:

1 G ) o(z ) )7} = ;_f o e Sty el sy
1 2 8(z.),tly,s = % 7555 >
o Pl e sl &

ml g i (N2 8z ) 5t y,99P ™ (82
im = pe; z. Z2:)>t|Y,
0 Mo B =1 b

(=K

2 15
- 5§y (n<zi>+ge<zi),tly,s>1’( )(dzlﬂ
k=0"E" i=1

® k
il QRS
im < £ [ 0 (n(z)¥ge(z,),t]y,s)P 7 (dz
. k—-()IEk =1t '
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® K
ay 2. (k)
+ kgofgk[a ac[izl(‘ﬂ(zi)"'(gﬂm)e(zi),tly,S)]+0(A y7e 0 (a2

(k)

© k
STl T (gt ely,or® @)
k=0 E  i=1

ere 0 < h <1, by the mean value theorem. Hence, by the dominated

wvergence theorem (cf. Parzen, 1962, p. 274),
k ® 3t oK

EL T (n(z)+ce(z)5t|y,s)]} = = [ {lim [2=C 1 (W(z))
i g k=o‘rxk a0 38 =1 1

+(Eare(z,) tly,s)) + 0@ e ™ (@)

k
= ped_
=Bl [131m(zi) +08(z,),t|y,9)1} -

In particular, taking A, and A, to be the intervals [0,z1]

1 [0,22] respectively, defining
%
M) (z5t]y,s) =M (L0,2,],¢]yss) (4.21)
¥
= 4.22
M, (z),2,,t]y,s) M(z)([o,zlj x [0,2,7,t[y,8) ( )

1 using (4.19) and (4.20), the backward diffusion equations for
. first and second factorial moment measures of the population in
2,] and [0,21] x [0,2,] respectively can be obtained. The

kward diffusion equation for the first moment measure is

*

M (z,,t|y,s) i % &
By s i ok b S i ,elo, 4.23
- = q, M Gpotlyes) ¥ E M (z),t[0,8)  (4.23)

h the initial condition

M:(zl,tly,t) = 4:29)







d the boundary conditions

*
aMl(zl,tly,s)

~ y=0 = 0 (4.25)
* k3
M (z;,t|y,s)| _ =M (z,,t|y,s)
1ot ly_ZH 1z pstlys ly=zl_ (4.26)
g *
aMl(zl,tly,S)‘ 3 aMl(zl,t\y,s)‘ i
Ay ly=z, 3y ly=z,_ :
d
* ~
M, (z,t[E,8) =0 (4.28)

r an absorbing barrier at y = &, or

%
M, (z,,t|y,s)
__1;~ =0 (4.29)

3y y=2
r a reflecting barrier at y = &. The continuity conditions
-26) and (4.27) at y =z, for M’I(zl,qy,s) and its derivative
th respect to y are necessary in view of the fact that the
itial condition (4.24) essentially divides D into two regions,

<y <z, and z, <y < &. Conditions (4.26) and (4.27) follow

1 i K
om the continuity of G(@,t|y,s) and its derivative with respect
y throughout D. Similarly, the diffusion equation for the

cond factorial moment measure is
*
M, (2152, ,t|y,8)

*
e = dyMz(zl,zz,t\y,S)
it x e 0,s) + by (7,0 (2,2 tly,s)
121(1—1))\1()’,S)Ml(zl,tlo,s)Ml(zz,tl »8) 12117\1 y,8)My (2,52, s

beod *
IO, (7,900} (2 3,0 (25, £ 0,8) + M) (2, €]0,80M) (23,90 (4:30)
i=1




7ith the initial condition

*
My(2152,,t]y,t) =0

and boundary conditions

o
aMz(zl,zz,t\y,s)

=0
3y y=0 7’
and
b s
Mz(zl,zz,t\a,s) =0
for an absorbing barrier, or
3
BMZ(zl,zz,t\y,S)\ ey

¥y y=a

(4.31)

(4.32)

(4.33)

(4.34)

for a reflecting barrier at y = &. Since the initial condition

does not divide the spatial domain into different regions, the con-

tinuity conditions for the points zq

2 which follow from

(4.19) and (4.20) will always be satisfied, and thus need not be

cons idered separately.

5
Knowing Ml(zl,t‘y,s) , the expected number of entities in

ny arbitrary interval (21,'52] can be calculated from the dif-

% %
ference Ml‘(zz,:\y,s) - Mj(,.t|y,s). Similarly, the second

actorial moment for the number of entities

(@) (EE,IXE 5,15ty 58) = M, (0,5,1%(0,%, 15ty ,9)

is given by

+ M(z)((o,zl]x(o,zlj,c\y,s) - ZM(Z)((O,El]x(o,iz],t]y,s)

o
= Mz(zz,zz,t\y,s)

Mz
Mz(z

e
- My (F,%, 5ty ,8)

(4.35)
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owing the first two factorial moments, the variance of the popula-
ion in any interval A can be calculated by using the relation
ax (N (8) = My (B X ) +1,0) - Gy’ |
Remark 4.5: When the transition probabilities related to l
irth and death, as well as the transition probability density for
he movement of an entity in D do not depend upon time, i.e.,
hen the stochastic population process is stationary in time, the
ependence of G(e,t\y,s) on t and s will enter only through

he difference (t-s). In view of this,

G(8,t|y,s) = G(o,t-s|y,0)

= G(8,t-s|y)

imilar relationships for the moments follow immediately from the
GF. This makes it possible to define a new time scale ft = t-s,
o that g; = - SF' The backward diffusion equation for the PGF
or the stationary process and the initial as well as boundary con-
itions are given by replacing the partial derivative - %; by

and G(e,t\y,s) by G(e,-r\y) in (4.12) thru (4.16). Similarly,
e corresponding equations for the first two factorial moment

g 1
3s 37

% g *
(z,t|y,s) and M, (z;52,,t|y,8) by My(z,7|y) and M, (z,z,,7y)

asures are given by replacing , as well as

spectively, in (4.23) thru (4.34).

.4 The Forward Diffusion Equations

The derivation of the forward equation for the generating
nctionals is much more complicated than the backward equations

cause in the derivation of a forward equation it is necessary to
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scribe the changes in the generating functional due to the changes
1 positions of all the entities in the population at time t during
small time interval (t,t+6t). On the other hand, only the changes
1 a single ancestor had to be considered while deriving the backward
juation. As indicated in Section 4.1 a forward description is in
2rms of the number of entities in an infinitesimal interval
2 ,zHdz) C ﬁ The forward equation for the moments is thus in terms
f densities of the moments. The derivation of the forward diffusion
juation therefore depends upon the existence of these densities.
1 the following derivations the moment generating functional (MGF)
i1l be used for obtaining the forward equations for the moment
ensities (for the cases where these densities exist). The PGF or
e characteristic functional can also be used in place of the MGF.
Kendall (1949) first derived the forward differential equa-
ions for the first moment (mean), variance and covariance densities
or the age distribution of a population, using a generating func-
ional. The equation for the first moment density was the same as
.1) with i =1, v, = 1, and the birth rate appearing only in a

i

undary condition. The densities were defined as

(mean) E@(dz,t)) = fy(z,6)dz + o(dz),
(variance) Var(N(dz,t)) = EQN(dz,0)2) - EN(dz,0)))2,
= f,(z,6)dz + o(d2)

d (Covariance) Cov(N(dzl,l:)N(dZ2 SEY) o= E(N(dzl,t)N(dzz,t))
- E(N(dzp,6))EW(dz,,t)) = @, ,(2y,2,,t) + o(dzy,dz)),

ere N(dz,t) denotes the number of entities in the interval

,ztdz) at time t. It can be seen that in the terminology of
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the theory of stochastic population processes the individual state
space E for Kendall's problem consists of the non-negative real
line denoting the age of an individual. The variance density is
connected with the density of the second moment measure with respect
to the diagonal of £ x £ and the covariance density is related to
the density of the second moment measure with respect to & X £
itself (cf. Sections 2.3 and 2.4). The method of derivation of the
equations in this section will be similar to that of Kendall.

Let ¢[a,t21N0,c1] denote the MGF for the population at time
ty given the measure NO denoting the distribution of entities
in D at time tl' In view of (4.4), when there is only one

ancestor at y at time s,

#l6,s|N,s] = Elexp [0(2)I(dz|y)] = 8(y) - (4.36)
b

It can be seen from the properties of conditional expectations that

¢le,t+oe|Ng,s] = Elexp j‘ﬁ 8(z)N(dz, e486) [N 1,8) ]

E{E(exp [ 8(2)N(dz,t+st) \N(z,t)]\uo,s}. (4.37)
D

Noting that the integral with respect to the counting measure repre-

sents a sum over all the entities in the population,
Elexp [_ 8(2)N(dz,t+6t) |N(z,t)] = EL 1 exp 8(z ) [N(z,0)]
) st 3
= 1 Elexp 8(z)|N(z,0)], (4.38)
st 4

where the product has one term corresponding to each entity at
Zj ceb ac time t+pt, and the second expression on the right follows

from the independence of the entities. It is easy to see that
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+52)) ]

1 Elexp 8(z,) |N(z,t)7= I {(1-u(z,,t)6t)E[exp(a(z
st B t 3 3

® ®

+ u(zj,t)ét][l- b, \i(zj,t)ét + g ki(zj,t)bt exp(ig(0))}. (4.39)
i=1 i=1

The quantity E[exp(e(zj+5z))] can be written as

Efexpl6(z;+62)7) = [ g(s2; 2z550)exp(8(z+62))d(s2)
5 3 3

= exP(e(Zj)){1+6t[B (zj)t(zj,t)

uz(z. >t) 2
T (@GP ENDTF 0D}, (4.40)

The second expression on the right side of (4.40) is obtained by
expanding exp(e(zj+5z)) in a Taylor series about zj and using
(4.1). The quantities e'(zj) and e"(zj) denote the first two
derivatives of §(z) evaluated at z = zj. Substituting (4.39)

and (4.40) in (4.38) and simplifying,

1 Elexp(8(z,) |N(z,£)] =~ T exp(s (2,))
| st ) t ]

*
= exp[[_ 8 (2)N(dz,0)], (4.61)
D
where

2
@) = s@totirz,00' () + T [g16) + 97 ()]

- u(z,t)[1-exp(-8(2))] + £ %;(z,t)[exp(is(0))-1]} . (4.42)

1=y

Using (4.41), (4.37) can be written as

*

plo,eroe|N .s 1 = gle ,t|Ny.s] . (4.43)
Equation (4.43) along with the initial condition (4.36) represents
a complete forward description of the population in terms of the

MGF. Further simplification of (4.43) is not possible.
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The first moment of the population in the set A cD is

obtained from the MGF by using (2.18) and (2.19):

aslce,t|Ny s

0) = -
5eo( ) 3¢ =0
— gz {E(exp IE ge(z)N(dz,t))lNo,s)]]
= -jﬁ 8(2)E[N(dz,t) |Ny»s)] = j‘AMl(dz,thO,s), (4.44)
when ¢(z) = -I(Alz). In the derivation of (4.44) it was required

to commute the operator :—E with the expectation and integral

operators. This can be justified by using an argument similar to
that in Remark 4.4. 1In the case where the number of entities in a
small arbitrary interval dz is finite with probability one, the
first moment density with respect to z exists and Ml(dz,qNO,s)
can be written as ml(z,t[NO,s)dz, where ml(z,thO,s) denotes

the density of the first moment measure. When 6(z) in (4.37) is

replaced by co(2), (4.43) changes to

oLgo, e[ ,e) = gle ™ ot[Ng,8)] (4.45)
where
2 2
87 @) = olarHstir(z,0 o' () + T Jo"+ce" ()]

- u(z,t)[L-exp(-6(2))] + A(z,t)[exp(go(2)-D ]} (4.46)

Using (4.44) and taking the set A to be an arbitrary interval

(21,22], (4.45) leads to

% %

Vs t|N_,s)dz 2

I é.m(z—w__ f m (z,t|N_,8)dz (4.47)
3 m. 0

“1 1
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*
where the operator az is given by

2 2
d-palenl. L——J—l[r(;‘zt)' - (a0 13 (&.48)
Az

It should be noted that although the indicator function I((i’l,iz]\z)
has jump discontinuities at 51 and 'iz, and thus the derivatives
8'(z) and 9'"(z) in (4.46) cannot be defined at these points of
discontinuity, it is possible to define an infinitely differentiable
function £(z) which agrees with the indicator function with an
arbitrarily small error ¢ > 0, (defined as the integral of the
absolute value of the difference between the two functions) over a
closed interval [&1,&2] containing ("z‘l,'z“z] and is zero outside
(8158,) © [El,&zj (see e.g., Indritz, 1963; p. 254). The function
f(z), instead of the indicator function itself, has to be used in
the derivation of (4.47). Since the limits of integration ’z‘1
and ‘z‘z in (4.47) are arbitrary, the integrands must be equal,
and hence

R @ m (z,t|N ,s) (4.49)

at o sl B o °

When the interval (21,'2‘2] includes one of the boundaries, i.e.,

z=0 or ¥, the following boundary conditions result:

2
3l (0,t)m (0,t|N_,s)]
£(0,6)my (0,£[N,,8) - & alo” @, 0m ©0,¢ [Ny, )

dz
i
=£ Ei)‘i(z,t)ml(z,t!No,s)dz, (4.50)
i=1
and
oo™ (G tymy (&[N ,9)]
P E,E|Ny,8) -y = 0 (4.51)

for a reflecting barrier, or
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my (3,E|Ng,8) = 0 (4.52)

for an absorbing barrier. The initial condition is obtained from

(4.36) as the Dirac=p function
my(2,5|Ng,s) = 8(z-y) (4.53)

when there is one ancestor at z =y at time s. When there are
k ancestors located at yj, j =1,2,...,k, the initial condition

will be the sum of k §-functions
k
ml(z,slNO,s) = jzla(z - yj) s (4.54)

It can be seen that the forward diffusion equation (4.49)
for the first moment density is the same as the diffusion equation
(3.4) with an additional term accounting for the death of entities,
and has the same form as (1.3) where c}f i 0 and the death
term D replaced by the corresponding term in (4.48). The deriva-
tion of (1.3) has been mainly based upon an analogy between mixing
of eddies of a fluid in a process vessel and molecular diffusion
(cf. Levenspiel and Smith, 1957). Use of the diffusion equation in
population balance models in chemical engineering has been restricted
to only the residence time distribution analysis of some process
vessels. A major reason for not using the diffusion equation to
characterize particulate processes such as sucrose crystallization
thus far is perhaps a lack of a full appreciation of the stochastic
nature of the diffusion process.

The development of (1.1) is based upon purely deterministic

considerations, with x denoting the number density of the entities
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in the Euclidean space E. To account for the fact that an integer-
valued population is characterized by a continuous density function
x, it is always assumed that the population must be large in order
to justify the "continuum approximation' (Randolph and Larson, 1971;
p. 13). Thus, it is assumed that (1.1) is not valid for small
populations. Moreover, (1.1) cannot be used to describe any popula-
tion where the movement of all the entities at a given point in E
at time t is not identical in all respects. When the diffusion
coefficient g—- is zero, (4.49) has the same form as (1.1), and
thus (4.49) represents a generalization of (1.1). In view of this,
(1.1) can be seen to be rigorously true even for small populations
if x 1is interpreted as the first moment density instead of a
number density and other parameters are given the appropriate
probabilistic interpretations, and if the initial population is char-
acterized as a sum of Dirac-§ functions instead of a smooth density.
Evidently, the assumption of independence of entities underlying
the stochastic formulation implies that the resulting partial dif-
ferential equations and the boundary conditions cannot have any non-
linearities with respect to the first moment density. When the
initial population is large, the assumption of a smooth density
function may be justified. It is only in this sense that the initial
population must be large in order to justify the "continuum approxima-
tion" in (1.1).

Derivation of the forward equation for the second moment
density is complicated by the fact that the second moment distribution
has a "mass concentration" along the diagonal of the domain § x §

(see Section 2.4). The second moment of the number of entities in
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he set Al X A2 cD xD can be calculated using (2.18) and (2.19):

2
2
83 (0) = :? [E exp J‘Bge(z)u<dz,cm0,s)]\g=o

= E[_8(z)N(dz,t|N,s) [_6(z,)N(dz,,t [Ny ,s)
D D

=E 9(z.)6(z,)N, (dz, X dz,,t|N_,s) (4.55)
fﬁxﬁ 51 2752 L 2 lcp

y Fubini's theorem on summations with respect to product measures
see e.g., Feller, 1966; p. 120). As discussed in Sections 2.3 and

.4, the second product moment can be expressed as a sum of a density

2(z,tho,s) with respect to the diagonal of D x D (i.e., the
ine z) = z,) and a density with respect to D x D. Use of these

ensities in (4.55) yields
B[ 8(z)6(2))N,(dzg X dz,,t|N,s)
DXD

2
- 8(z)) 2m, (2 ,t|N, ,5) dz
{zlxzz}ﬂ{ﬁxﬁ) ERile

|
6(z,)e(z,) (z_,z,,t|N_,s)dz.dz, . (4.56)
o TR (e T P B Mo 12

in the case of the equation for the first moment density, taking

z) to be the infinitely differentiable function approximating
Allz)I(AZ]z) (or equivalently, taking e(zl) and e(zz) to be
e infinitely differentiable functions approximating —I(A1|zl)

d -I(Az[zz) respectively), the second moment of the population
the set Al X A2 can be obtained using (4.45), (4.55) and (4.56).

us, for the density s
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amlz(zl’zz’two’s) ' ok
)H‘A o mee T dz,dz, = £ £A (a, +az )mlz(zl,zz,qno,s)dzldzz,
142 T T
(4.57)
* *
where ¢, and g, denote the operator defined in (4.48). An
1 2

additional condition that
ml(zl,t\No,s) = mz(zl,tho,s) (4.58)

needs to be satisfied in the course of the derivation to obtain the

equation for the density m,

. amz(zl,thO,s)
N 3
121’22]“{“1’“\2} 2

2P @ m

I 2t Ngo®) + (20 lmy (NG )
1722 )0(8, %4,

- my (21>t |N,8) 1}z, - (4.59

As weuntioned in Section 2,4, the second factorial moment of the
product counting measure NZ(A X A) does not have a concentration
along the diagonal of D x D only when the point process describing
the population is orderly. Since the second product moment equals
the sum of the first moment and the second factorial moment, it can
be seen that (4.58) is satisfied only for an orderly process. When
this is the case, mlz(zl,zz,tho,s) completely describes the second
factorial moment of the population. In view of this discussion and
the fact that A and AZ are arbitrary, the forward diffusion

i,

equation for the second factorial moment density is

amy 5 (295255t [N »8)
dt

* *
- {dzl + azzl M (2152):E [N ss) (4.60)
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for the case where the point process describing the population at
any given time is orderly. When A1 or A2 include the boundaries,
the following boundary conditions result:

2
alo” (0,t)m , (0,2, ,t|N ,5)]

= -
wzl(O’ZZ’t) - r(o)t)[nlz(o)zz’t\No’s) 2 azl
I o
= g iilixi(zl,t)mlz(zl,zz,t\No,s)dzl (4.61)
@
i=1
d o
'yz (Zl3oat) =é Z 1)\1(221t)m~12(21,22’t\N0)5)d22
2 i=1
+ iElixi(zl,t)ml(zl,t\NO,s) (4.62)
and
b, (@:25,0) =y, (z1,8,8) =0 (4.63)
1 2
for a reflecting barrier, or
mlz('é:zz)t\NOsS) = “iz(zl:aat\Noas) =0 (4.64)

for an absorbing barrier. In view of (4.58) it is no longer nec-
'ssary to solve for mz(z,tho,s) separately. When there is only

e ancestor at y at time s, the initial condition will be

m 5 (z52,,8|Ngs8) =0 . (4.65)

£ at time s there are k ancestors located at distinct points

j, j=1,...,k, the initial condition will be
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_ * * *% *
n12(21,22,S\N0,8) = izjs(zl-yi)é(ZZ-yj) + izjé(zl 'yi)5(22 ‘yj)s
vhere

* %
z,,2z, € [0,2;] n[0,2,]

and s v
zl 6 {[0321] U [0122] = [0,21] n [0)22]} (Cf. Figure 2.1b).

Jariance of the number of entities in any interval A can be

readily calculated by using the relation

Jar(N(A)) = ix}gmlz(zl,zz,tho,s)dzldz2 + iml(z,t\NO,s)dz
- {iml(z,t\NO,s)dz}2 . 4.67)

+.5 Comparison of the Backward and Forward Equations

It is not possible to obtain an explicit forward partial dif-
‘erential equation for a generating functional, whereas the backward
quation can be readily derived. Although an analytical solution of
his equation cannot be obtained, the extinction probability as
'ell as the probability generating function for the number of entities
n any set A c D can be calculated numerically. This possibility
as broad implications in the management and control of biological
opulations. For example, in the biological control of insect pests,
. small number of parasites or predators are usually released in an
nfested area. The extinction probability for the controlling popula-
ion can serve as a measure of the failure probability of the control
trategy.

In case of a finite spatial domain D and constant parameters,

he forward diffusion equation can be solved by using separation of
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ariables to yield an infinite series, as illustrated in the next
chapter. The coefficients in the infinite series have to be
valuated by using the initial condition. The initial condition is
sually in the form of a sum of Dirac-§ functions, and thus cumber-
ome to handle in general -- when the parameters are constant, as
ell as in the general case when a numerical solution has to be
attempted. In case of a numerical solution the integral in the
boundary condition increases the computational effort considerably.
As in the case of the corresponding backward equation, the solution
of the forward equation with more than one ancestor can also be
expressed as a sum of the required number of solutions, each with
one ancestor in an appropriate location corresponding to the initial
distribution, but this does not simplify the solution to any
appreciable extent. When the initial population is large, the
assumption of an initial density may be justified and the solution
wvould be much simpler. On the other hand, the backward equation is
nuch simpler to handle when the initial population is small. Although
a general analytical solution of the backward equation would be
juite difficult, a numerical solution is relatively easier than the
forward equation because of the simpler boundary conditions and the
fact that the initial condition is a step function rather than a
dirac-§ function. It should be noted that the solution of the back-
vard equation for the first moment gives the value of the expected
wmber of entities in [0,z] for a fixed z € D at time t, as a
function of the initial location of the ancestor and the initial
“ime s. In order to obtain the complete distribution of the expected

~

wumber of entities in D it is necessary to solve the diffusion
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quation for a number of values of 2z. In addition, when there are
ore than one ancestor at the initial time s, an appropriate number
f solutions each with a single ancestor in a location corresponding
o the initial distribution have to be added to obtain the final
nswer. On the other hand, the forward equation gives the entire
istribution of the expected number of entities in the population

t time t directly. Thus, when the initial population is large
nough to justify a smooth initial density, the forward equation
vould be computationally more efficient than the backward equation.

The forward equation (4.60) for the second factorial moment

lensity is a linear second order partial differential equation with
hree independent variables. In spite of its linearity an analytical
olution is not possible even in case of constant parameters because
f the coupling with the first moment in the boundary conditions.

\ numerical solution will be cumbersomebecause of the three independent
ariables and the integrals in the boundary conditions. Moreover,

0 get the variance of the population in any interval, the densities
ave to be integrated over a two dimensional domain (cf. Equation
4.67)). On the other hand, the backward equations for both the
oments have only two independent variables and the moments of the
opulation in any interval can be readily computed from two (or three)
olutions corresponding to the boundaries of the interval, as dis-
ussed earlier in this chapter. Thus, the total computational effort
ill be much less than that for the forward equations when the

nitial population is small. Furthermore, the backward equation is
alid even if the population is not orderly and does not need the

ontinuity of r(z,t) and oz(z,t) as well as the continuity of
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the first derivative of cz(z,t). Thus it can be seen that the
backward equation is a more convenient tool for obtaining the moments
of the population when the initial population is small. When the
initial population is large, the forward equation for the first
moment is often much easier to handle and since the second moment
will always be rather insignificant in this case, its evaluation

will no longer be necessary.




CHAPTER V

SOLUTION OF THE DIFFUSION EQUATIONS

Solutions of the diffusion equations for the first two
moments and the PGF for a population with a one-dimensional

individual state space E are presented in this chapter.

5.1 General Considerations

As in the last chapter, the spatial domain D is taken
as the interval [0,3]. Analytical solution of the equations for
the moments is possible when the parameters are constant. For
the analytical treatment, values of the parameters are taken as

follows: For the entities at z € D at time t,

2 2
g (Z,t) =g > 0)

r(z,t) =T,

w(z,t) =u, (5.1)
0 for 0 <z < b

)\i(z>t) =

\. for bsz<a, i=1,2,...,».
i

The parameters as given by (5.1) are quite realistic for a
broad class of problems. 1In the crystallization process with =z
denoting the characteristic length of a crystal, the assumption of
a constant growth is very common when the supersaturation of the
magma is relatively constant. A constant diffusion coefficient

may also be justified under a steady flow of magma into and out
76
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of the crystallizer and constant supersaturation. A constant death
rate reflects a perfect mixing in the crystallizer and a constant
efflux of the magma, and the assumption of a zero birth rate for
0sz<b implies that a nucleus must grow to a certain size before
it can breed new nuclei by secondary nucleation.

In biological populations with z representing the weight of

an individual, the growth rate as measured in terms of the rate of

increase of biomass of an individual is high when the individual

is young and reduces progressively as the biomass increases. How-
ever, it can be seen that by choosing z to be a proper maturity
variable the dependence of the mean growth rate r(z,t) oa z can
be eliminated. In cold-blooded organisms and plants the metabolic
activity is a function of the body temperature of the individual.

Due to the diurnal and annual fluctuations in the atmospheric

temperature and solar radiation the growth rates of such individuals
in a general ecological system are functions of time. In all
poikilothermic species (i.e., cold-blooded organisms and plants) the
temperature-growth relation shows a characteristic behavior, which
can be used to define a physiological time scale from the chronological
time-temperature relationship, so as to have a constant mean growth
rate with respect to the physiological time. A constant death rate
for individuals in a biological population may be a reasonable first
approximation in many cases. Similarly, the assumption of zero re-
production rate until a certain value b of =z (corresponding to
the "age" of puberty) and a conmstant rate thereafter can also be
seen to be a reasonable assumption for many populations. The re-
lationship of physiological and physical activities such as repro-

duction and locomotion with temperature also shows a pattern similar
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to the temperature-growth rate relationship. Hence, it may be assumed
that the temperature dependence (and thus, to a large extent, the
dependence on chronological time) of these parameters for poikilo-
thermic species can be removed by the use of physiological time.
A detailed discussion of the physiological time is given in Appendix A.
Use of a constant diffusion coefficient in flow through packed
beds is very common. Little work has been done so far in the applica-
tion of the diffusion equations in the modeling of biological popula-
tions. A constant diffusion coefficient is usually used in the
spatial migration studies. Stuart and Merkle (1965) also used a
constant diffusion coefficient in their study of cell dynamics.
However, a careful study of the relationship of the diffusion co-
efficient with temperature and the state z of an individual must
be made to check whether the same transformations in z and t
to yield new maturity and physiological time variables lead to comn-
stant values for all parameters including the diffusion coefficient.
In the case where the diffusion coefficient is zero and the
other parameters are given by (5.1), it can be seen that a simple
transformation on z by defining % = z/r reduces the rean rate
of change r to unity in terms of Z. 1In this case the equations
for the moment distributions are the same as those for the age dis-
tribution of a biological population, and the results on the age-
dependent birth and death processes can be used directly (see e.g.,
Kendall, 1949; Goodman, 1967 ; Bartlett, 1969). 1In the solutions
presented in this chapter it is assumed that the diffusion co-

efficient is always positive.




7.9

It should be noted that (5.1) implies stationarity of the
diffusion process (i.e., that the parameters are not time-dependent)
and the abbreviated notation defined in Remark 4.5 can be used. For
abbreviation, the first moment density ml(z,t\NO,s) is denoted
by ml(z,-r), where T = t=-s. The initial distribution No of the
entities in D is expressed as a Dirac-§ function for a single

ancestor. It may be possible to characterize N, by a smooth

0
density function for a large initial population. Also, the
© ©
*
quantities b3 i)\i and i(i-l))\‘, are abbreviated as ) and
i=1 i=1

ke
A respectively.

5.2 Solution of the Diffusion Equations for the First Moment

The forward equation is used to obtain a solution for the
case where D is finite. For the case of a semi-infinite spatial
domain the backward equation is used to obtain an explicit analytical
solution when B = 0 and the process starts with a single ancestor
at y = 0.
Case 1. Finite Spatial Domain [0,&] with a Reflecting Barrier at a&.
The forward diffusion equation and the corresponding boundary

and initial conditions for this case are

2

2 3'm (z,7) am, (z,7) am, (z,1)

A 100 i

- e =, .2)

ZZZ 3z 1 T
2 am, (3,1)
- ot ™ -

my E,1) -5 % 0, (5.2a)
2 am, (0,7) % 2

0, - - ——— =\ [ w0 (5.20)

5
and
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ml(z,O) = mo(z) 5 (5:2¢)
Let ml(z,'r) be expressed as a product
my(z,7) =2(2)T(1), (5:=3)

where Z(z) and T(7) are functions only of z and T respectively.

Substitution of (5.3) in (5.2), (5.2a) and (5.2b) yields

2 2
%—LZZ@l-r%(ﬂ-uz(z) = aZ(2), (5.4)
dz 5
2 e
rZ(3) - ‘2’—&;15)—=0, (5.4a)

2 4
2 - &L 3" P2y,

i J (5.4b)
b
and
dT
LW - o, .5)
where « is a constant. When o > _<r_2 + 1), the general solution
2g
of (5.4) is given by
Z(z) = A; cosh 8z + A, sioh Bz, (5.6)

where

TR
8= 7 )

o]

(5.7)

2

and Al, A2 are constants. Similarly, when o« s-(r_2+ W), the
20

general solution of (5.4) can be written as

Z(z) = Ay cos Bz + A, sin Bz, (5.8)

where




2
B= 0 s (5.8a)

and A3, A4 are constants. Using boundary condition (5.4a) it is
possible to eliminate A, and A, from (5.6) and (5.8) respectively.
Thus, (5.6) yields
_a“_rr___(e_l
£,(2) = = a,[ (iiztanh )cosh(gz)+smh(az)]exp< (5.9)
o’gtanh (g8) -r

Similarly, (5.8) leads to the expression

Z(z) = A [(M)cos(ﬂz) + sln(EZ)]exp(—) . (5.10)
54 Btan's

When the boundary condition (5.4b) is applied to (5.9) and (5.10)
to evaluate the admissible values of «, an infinite set [ak} of
eigenvalues is obtained. The largest eigenvalue oy corresponds to

the solution (5.9) and is given by the root of the equation
(ortp) s inh () = Veexp(rB/o2)s inh[ g (3-5) ] (5.11)

with the largest real part. Note that when o, is complex, there
can possibly be more than one distinct dominant eigenvalues in
general. The non-dominant eigenvalues are obtained from (5.10) as
the roots of the equation
in(83) = 1 2yei 5.12

(artp)sin(§3) = A exp(rb/c’)sin[B(@-H)] - (5.12)
The solution of (5.5) is
(5:13)

T(1) = Tyexp(ar),

where T is a constant. The eigenfunction corresponding to oy

is given by substituting the value of oy in (5.9). The eigenfunctions
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f,(z) corresponding to the nondominant eigenvalues o, k = 2,3,...,®s
are given by substituting the value of @ in (5.10). The general
solution of (5.2) is thus given by the generalized Fourier series

(cf. Indritz, 1963)
®
m(z,7) = izlakfk(z)exp(a{k’r)- (5.14)

The coefficients a, have to be evaluated by applying the initial

condition (5.2c). Thus,

my(2) = k§1akfk(z). (5.15)

When there is only one ancestor initially at z = zg» mo(z) =

6(z - zo) and (5.15) would represent the generalized Fourier
series of the Dirac-§ function. Since the nondominant eigenvalues
@) correspond to the case o s~(;—2 FX ) o < 0, and hence for a
sufficiently large value of T thedcantributions from only a finite
number of terms in (5.14) will be significant,which can be used to
determine the criteria for the number of coefficients 2, to be
determined in (5.15). For very large values of T, the contributions
from all the terms in (5.14) except those corresponding to the
dominant eigenvalues will be negligible, irrespective of the initial
distribution. Thus, when the dominant eigenvalue is unique,
asymptotically, the first moment density of the number of entities

in D will be given by
Lim [m)(z,m)] = a;f,(2)exp(a;7) (5.16)
T

irrespective of the initial condition. In view of (5.16), it is

easy to see that for a sufficiently large T the first moment density
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is always proportional to £1(2), which is given by (5.9) and (5.11).
Similarly, integration of (5.16) over an arbitrary interval

[21’22) €D leads to the result that when oy is real and distinct,
asymptotically, the expected number of entities in any subset of

D will vary exponentially with the parameter oy

Remark 5.1: It should be noted that the eigenfunctions

fk(z), k=1, ,o in (5.14) are linearly independent of each other

but not mutually orthogonal. To evaluate as ) L (R I &1 )]
is multiplied by fj (z), j=1,...,0, and integrated with respect

to z over the interval [0,d] to yield an infinite system of
linear equations, which has to be solved for ak. For computational
purposes the series has to be truncated after a finite number m

of terms and the system of m equations with m unknowns a.

k=1,...,m, has to be solved to give the best approximation to a

k

in some sense. If the series (5.15) converges rapidly, only a few
terms in the series will be significantly different from zero and
the evaluation of a, is simple and accurate. On the other hand,
when the initial condition is in the form of a Dirac-§ function,
the series (5.15) will not converge for a finite number of terms,
and hence accuracy of such an approximate solution can be expected
to be very low.

When b = 0, the eigenvalues can be calculated analytically
and the solution has a much simpler form. In this case the eigen-

values are

*
oy Ao-p

2 2222
I TR S &
ktl 2 =2

20 a
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and the general solution is

2

% o By T tanh(aoia‘)

m(z,T) = {alexp[()\ ~u)1][(T—————-———)cosh(aoz)+sinh(eoz)]
o sotanh(aoﬁ)—r

2] kﬂuz
ar

2knz
a

2knz
E

+ kElan+1exp(aHlT)[ cos ( )+sin( )]}exp(rz/cz) , (5.17)

where

gy = N+ Daran (5.18)

Since the eigenfunctions are not orthogonal to each other, Remark
5.1 applies in this case as well.

Remark 5.2: Note that in the infinite series solution of
the diffusion equation it has been tacitly assumed that the eigen-
functions form a complete set (see e.g., Indritz, 1963) and that
all the eigenvalues are distinct. Also, the statement that
asymptotically the expected number of entities in any set A<D
increases exponentially with time is true only when the dominant
eigenvalue (i.e., the eigenvalue with the largest real part) is
real and distinct. It would be quite difficult to prove the complete-
ness of the set of eigenfunctions and distinctness of the eigen=~
values in general. Nevertheless, it is easy to see that for the
case of a reflecting barrier at 3 with 5 =0 discussed above,
the eigenvalues are all real and distinct, and the eigenfunctions
form a complete set over a class of functions continuous over a
finite interval. Although the hypothesis that the dominant eigen-
value is real and distinct may be very difficult to prove analytically,
it is easy to show that there must always be at least one real

dominant eigenvalue. The proof of this is as follows: If all the
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dominant eigenvalues are distinct and have the form R 13 mlj’

J=1k @y >0 and ki =71, then the asymptotic solution will

be of the form exp(alR'r) ElAjexp(iorlj'r), which will be an oscillating

function of time assuming negative values during certain time

intervals. The same is true even for the case where the dominant

eigenvalues are all complex, but not necessarily distinct. Since

the first moment distribution must be a nonnegative quantity, at

least one of the alj's must be zero, and the corresponding co-

efficient A_‘i large enough as compared to the other coefficients

so as to compensate for the negative contributions from all the

terms involving the complex eigenvalues.

Case 2. Finite Spatial Domain [0,d] with an Absorbing Barrier at 3.
The forward diffusion equation, its initial condition and the

boundary condition at z =0 will be the same as in Case 1. The

boundary condition (5.2a) will be replaced by
m (3,7) =0 . (5.2d)

Equations (5.3), (5.4), (5.4b) and (5.5) also apply in this case.

Equation (5.4a) will be replaced by
Z(@) =0 . (5.4¢)
2
When o > _[r_z + ], the following expression is obtained by apply-
20
ing (5.4c) to the general solution (5.6):
Ajcosh8d + A,s inhgd = 0
Hence,

fl(z) =2(z) = Az[s‘mh(az) - tanh(sﬁ)cosh(az)]exp(rz/cz)‘ (5.19)
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2
Similarly, when o < «(r—z +),
2g
Z(z) = AA(Sin(Ez) - tan(EE)cos(Ez))exp(rz/cz). (5.20)

When the boundary condition (5.4b) is applied to (5.19), it is

found that the dominant eigenvalue is the root of
(orh) (B3 inhgE+peosha) -1 exp (5/0%) Ly tnh[ 8 (2-6) ]
9 o
2 * 2
+ Beosh[8(d-6)]} + B exp(ra/g’) =0, (5.21)

with the largest real part. If the dominant eigenvalue is unique
and real, it can be seen that as in the case of a reflecting

barrier, asymptotically the expected number of entities in any set
A<D varies exponentially with parameter ay. When the boundary
condition (5.4b) is applied to (5.20), the following expression for

the nondominant eigenvalues results:
r 2 2 * =7 2, cr O o
(orty) (%5 sinBd + B cosBa} - A exp(rb/o") {77 sin[B(3-6)]
- ¢ (- 4
+ 8 cos[B(E-5)) + 1B exp(ra/cD) = 0 . (5.22)

It should be noted that Remark 5.2 is applicable in this case also.
Similarly, in view of the fact that the eigenfunctions are mutually
independent but not orthogonal, Remark 5.1 is also applicable. An
explicit analytical solution for the eigenvalues is not possible
even when b =0.
Case 3. Semi-Infinite Spatial Domain [0,0) .

When b is finite and 3 » » with an absorbing or reflecting
barrier at 3, proceeding exactly as in Case 1 and Case 2, it can

be shown that regardless of the initial condition, the asymptotic
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value of the first moment density is
my(z,7) ~ £ (2)explaym),
where oy is the root of the equation
* 2 4 2.2 (uh
J o~
oA exp{(f—fz_uu)_)b} =i (5.21a)
o

with the largest real part,

fl(z) N aleXP(pZ) s

and a is a constant.

In this case it is also possible to obtain an explicit
analytical solution for the first moment distribution when b =0
and the ancestor is initially at zero (Brockwell, 1972). The
backward diffusion equation and the corresponding initial and
boundary conditions for the first moment distribution are

M) (2| y)

il;;ﬂy = ayMi(z,r\y) + X*Mt(z,rlo), (5.23)

where the backward diffusion operator ay is given by (4.11),

1. for 'y 5.z
*
M1<Zroly) ={ (5.23a)

0 for y >z,

%
M N (5.23b)
3y

%
M) (a2, = MGz (5.23¢)




.
M *
i R - M (z,1|y)
v ly=z, Py

£3 o
My (z,7]e) =0 .

€

(&)

Taking Laplace transforms of (5.23) thru (5.23e) the partial

.23d)

.23e)

differential equation can be transformed into the following ordinary

differential equations and boundary conditions:

2— o
o2 4y (zp|y) M, (z,p|y) =
o7 e e 5 - (WM, (z,p|y)

fo 1 for y<sz
+A Ml(z,p\o) ={
0 for y >z,

di, (z,p|y)
1 0
dy y=0 =

ﬁl(Z,p\z+) = ﬁl(z,p[Z_) .

dyply) G|y

y=z, dy ly=z_

P_'ll(z,p]m) =0,

where p denotes the Laplace transform variable and

(€

{7

(€]

€]

M, (z,p|Y)

* g
is the Laplace transform of Ml(z,"r]y). The general solution of

(5.24) is
M (z,p|0)+1 :
___l,;;;_»___ + ajexp(By)ta,exp(Byy) s ¥ < 75 (€]
El(z,ply) S x*ﬁ (erp|
_t#__ + azexp(py) + a,exp(Byy)» ¥y > 23 G

.24a)

.24b)

.24¢)

.24d)

.25a)

.25b)




where

o +‘/r2 +. 2512( +p)
81 7
o

-r N rz o+ 2g2g +p)
2

o]

(5.26)

By =

and a are constants to be determined from the boundary

1,32,33,%
conditions. In addition to these, ﬁl(z,pm) is to be evaluated
by setting y =0 in (5.25a):

e

Ay (z,p[0) + 1

e (5.27)

M (2,p|0) = aj +a, +

In view of (5.24¢), a, = 0. Applying other boundary conditions, one

obtains
a,exp(8,y) = “,%5 + aexp(8,y) + 2,exp(8,y), (5.28)
3,2,exp(B,y) = B13,exP(Byy) + B,a,exp(Byy) (5.29)
and
(5.30)

Blal o BZaZ =0 .

Solution of (5.27) thru (5.30) for a ,a,,a, and ﬁ1<z,plo) yields

2 exp(-8,2)
M, (z,p|0) = ‘l;— - —*—1—
p-x o p-h

IR 2
1 exv(-rZ/cz)exp(F g W /eT) | (5.31)
= *
p-x*m p-N tu
221, Equations

Taking inverse transform (cf. Cox and Miller, 1965; p.

73 and 75), the analytical solution




W (z,r]0) = expl w1 - g—_.._—lex"[ Au-(zra) (20 ] gyt (5.9

is obtained.

5.3 Solution of the Diffusion Equations for the Second Moment

As mentioned in the previous chapter, it is not possible to
obtain a complete analytical solution of the forward or backward
equation for the second moment distribution. However, an asymptotic
solution (i.e., a solution for large values of time 1) of the back-
ward equation can be obtained by using Laplace transformations. In
this section asymptotic solutions for the second factorial moment
distribution will be obtained for the case where there is only one
ancestor initially. These can be used to evaluate the second

factorial moment distribution for a population with k ancestors

initially at yj,...,y,, from the relation
* ko,
M, (215295T| Y50 5yy) = Z My (zpozpeTlyy)
i=1
k *
+ I M (z,7(y)) ): M (z ,’r\y ) - (5.33)
Pt s & 2
i=1
jh

Equation (5.33) readily follows from (4.6) and (4.20).

Case 1. Finite Spatial Domain [0,d] with a Reflecting Barrier at Z.
The backward diffusion equation and the corresponding boundary

conditions are given by

*
My (z52957(y)
T

= ayu’;(zl,zz,ﬂy) for 0<y<b, (5.3a)




*
My (z152,,T|Y)

o * ok % *
po =AM,y (2529,7[y) + A M) (21, 7|0, (z,,7]0)

* ok kK *
T AM,(2y52,,7]0) + ) [Ml(zl,'r]O)Ml(zz,'rly)

* *
+ Ml(zz,T.O)Ml(zl,T‘y)], for Bsy <3 (5.34b)

where dy is the backward diffusion operator defined in (4.11);

*
M,y (21,2, ,y)
b Ll S Sddd

> v=0 =0, (5.34c)
% ~ k3 ~
Mz(zl,zzmlb_) = Mz(zl,zz,T1b+), (5.344d)
M* W
3 2(z1,z2,11y)\ e a}’lz(zl,zznly)l
3y ly=b_ 3y ly=b, (5.34e)
and
*
;,Mz(zl,zzﬂly)l .
4 y=3&

Since 1" and 2" are step functions defined from A, (z,7) in
(5.1) with a jump discontinuity at y = b, the backward diffusion
equation has to be split into two parts (5.34a) and (5.34b). The
conditions (5.34d) and (5.34e) follow from the fact that the second
moment distribution and its derivative with respect to y must be
continuous on [0,d]. Taking Laplace transforms of (5.34a) thru
(5.34f) with respect to time, the following set of equations is
obtained:

92— =
2
2 A, (25,0 y) o M, (252, .p|Y)
2

& - AP, (257,00 |y) = 0

dy

for 0<y<b, (5.35a)

(5.34£)
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2= =
o2 4, (21,2,,p(Y) - M, (2152, ,p|y) et 2
o 7 % - 2.52,,P|Y
2 ay dy 3 ety

*% Fo—
A 3y(21,2,,p]0) + 2 M, (z1,2,,p|0)
* ~
t A le),(2152,50[0,9) + 8y, (2,2,,p|y,00] for b <y <3,
where
5 % *
8, (2y,2,,p|0) = £T[M1(z1,r§0)M1(zz,-r|0)],

k3 *
le(zl,zz,plo,y) = £T[M1(z1,"r\0)}'11 (Zz.le)],

8,1 (215255p|y,0) = iT[Mi(Zl,T\Y)M;r(ZZ,T\O)]

and £T[f(z,1\y)] = Laplace transform of [f(z,7|y)] with respect

®

= gexp(-pt)f(z,t‘y)dt 3

(5.

(G

(&N

The boundary conditions corresponding to (5.35a) and (5.35b) are

dﬁz(zl,zz,ply) .
dy y=0 ¢
M, (zq52,,p(b ) =M, (2152,,P[0)
sz(zl,zz,p\y)y K =dM2(zl,zz,ply)l 3
dy lysb_ dy ly=5,

sz(zl,zz,p\Y)\ e
dy y=a

The general solutions of (5.35a) and (5.35b) are

.35b)

.36a)

36b)

36¢)

to T,

37)

.35¢)

.35d)

.35e)

.351)

5 e b (5.38a
M, (z)52,5p]y) = aexp(8,y) + a,exp(Byy) for 0sy<bh( a)
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M, (21,2,,p|y) = azexp(B)y) + a,exp(8,y)

F— sk
5 A M, (21,2,,p|0) + A2, (2),2,,p|0)
ptup

*
+ 2 {0;(z152,,p]y,0)exp(By) - ©,(2;,2,,p|y,0)exp(8,y)}

2
o (B - By
for bsy<id (5.38b)

respectively, where

91(2)525,p|y,0) = [exp(-g1y)[8),(2;52,,p|0,y)

+ 8,,(2),2,,p|y,0)]dy
(5.38¢)
®2(zl,zz,P[}’:0) = j‘exp(—azy)[q;lz(zl,zz,],‘g)y)

+ 8y (21,2,,p|y,0) ]Jdy

and 1,8, are given by (5.26). The constants aj,ay,ay,a, are
to be evaluated by using the boundary conditions (5.35c) thru (5.35f).
In addition, ﬁz(zl,zz,plo) is evaluated by setting y =0 in

(5.38a), i.e.,

M = 5.35
M, (z1,2,,p|0) = a; +a,; - ( 8)
As discussed in the previous section, the asymptotic solution is

independent of the initial location of the ancestor. It is there-

fore sufficient to obtain an explicit expression for Mz(zl,zz,plo)
Applying the con-

in order to evaluate the asymptotic solution.

ditions (5.35¢) thru (5.35g), the following expression is obtained:
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M, (zq,2,,p|0) =

)®)
5 18,(2,,2,,p|3,0)

%3 exp (B, &) exp (B,
2 s P (8,
—ﬁ‘—m’fP)[—-Bz‘l—[@l(szz:Pli)O)-®1(21»22’P\‘>»°>]‘ )

[} A

~ Fok
-9y (21525 ,0|B,00HN 8, (z,2,,p|0)[exp[ 8, (a-5)]-expln, (2-5) 1)

(up) [exp (8,3) ~exp (8,8 ] - \"[exp[p, (-5)] - expl8, (@-5)])
(5.39)
It should be noted that the quantities @,(z;,2,,p(0),
@l(zl,zz,ply,o) and @2(zl,z2,p\y,o) are simply abbreviations of
more complicated expressions and would also contribute some terms
to the denominator of (5.39).

An important property of the Laplace transforms is that the
dominant root of the denominator (i.e., the root with the largest
real part, or the dominant pole) of the transform of a function is
related to the asymptotic behavior of the function (cf. Carslaw and
Jaeger, 1948). For example, if the Laplace transform T(p) of a
function £(r) is given by

hl(p)

fp) = —— (5.40)
£(p) i, @

where hl(p) is an analytic function of p and the largest root
of hZ(P) is distinct, real and equals q, then for large T,

f(1) is given by

(p-adh (@) ¢ hl(q>eqt gy
£(1) ~ T G R e (5%
(a Jo=a

It is easy to see that in the context of the solution of the dif-

fusion equation, the dominant pole of the Laplace transform corresponds

to the dominant eigenvalue o of the diffusion operator. In view
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of Remark 5.2, at least one dominant eigenvalue must be real. It
seems extremely unlikely that the functional expressions (5.11),
(5.21) and (5.21a) would have multiple real dominant roots. Unique=-
ness of the dominant eigenvalue remains to be proved. 1In the follow-
ing development it is assumed that oy is always real and unique.

As indicated by (5.16) and the discussion following that
equation, asymptotically, the first moment distribution M’;(zl,w]w
changes exponentially with respect to time, with parameter oy
Thus, asymptotically (i.e., as p — ozl),

Fi(zp

= Vy (cf. (5.16)) (5.42)

M (z,p]y) -

z
where F.(z.) = [ £ (£)dE (5.43)
4571 6 1
and f£1(z) is defined by (5.9). It follows from the asymptotic
*
behavior of Ml(zl,-r\y) that the asymptotic change in
k3 * * £ o *
My (20,7 O (2),7[0) 5 My (2q,T|OM, (2 ,m|y)  and My ()57 [N, (2,,7|0)
must be exponential with parameter Z(yl. The dominant root of
denominators of @1, @12, and ?21 is therefore equal to 20{1‘

Hence,
{

L %
@l(zl,zz,plo) = ;&TLMI(ZI,T\O)Ml(zZ,Tio)]

F.(z))F(z
IR
5rE g (5.44)
1
and similarly,
F (z)F,(z,)
ZLodie1r 25 (5.45)

81,5(21529,p]0,) ~ &,y (z)525,p]y,0) ~ o 2]

*
Since M (z,7|y) is a bounded function of y for all y and

z € B, it follows that & ,(z;,2,,p|0,y) and 8,1 (z152,,p]y,0)
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are also bounded functions of y, and therefore
01(2152,50|y,0) = [{8;,(2152,,p[0,y) + 8,;(2,,2,,p[y,0) Jexp(-8;y)dy
is bounded for all y € D. Hence, by the dominated convergence
theorem (see e.g., Parzen, 1962; p. 274)
um[[l[@ (z1,2,,p|y,0)1}
- [01(z1525,p(y,0)]
Towo
]
= film{{r L&) (215295p0,9)%8,; (2)52,,p|y,0) Jexp(-B,y) dy} (5.46)
o

and therefore,

-2F. (z)F. (z,)exp(-B.y)
s e i 1
8;(25525,p|y,0) ~ B e T T Ty 8y 5 (5.47)

Similarly,

-2F (29)F (z,) exp(-B,Y)

8,(21,25:p|,0) ~ —5 %08,

Substitution of (5.45), (5.47) and (5.48) in (5.39) yields p = 2u,

as the dominant pole of the resulting expression. Hence,

k3
M,y (29,2,,7|y) |

L™ 420") (expl8] (B-5) J-expl B, @-B) DF (2)F (2 )exp2y D) (5 g

* *, * e *,
(u20) [exp (13) -exp (8, 8) ]-\ [exp (B, [E-5]) -exp(8,[2-5])]

* *
where Bl and BZ denote Bl and 52 respectively (see Equation
(5.26)), evaluated at p = ZulA

The asymptotic value of the second factorial moment of the

number of entities in any given set A = (21,22] c D can be easily

obtained from (5.49) by using (4.35). Thus,
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Mo @G x E,7|y)

BN IERCAE (&) *Lexp (8] (@-6))- exp(Bz(ﬁ-S))]e)cp(Za ”
.1 (5.50)

(Zulm)[eXP(Bla)-exP(Bzan A [EXP(El(a-b)) exp(Bz(a 5))]

Similarly, the asymptotic value of the expected number of entities
in the set 4 = [21,52) is given by

Ml(x,’r\y) = [Fl('iz) : Fl(il)]eXP(al'T) - (5.51)
The variance of the number of entities in the set A can be readily
obtained from the two factorial moments (5.50) and (5.51). The co-
efficient of variation CV(A) of the number of entities in &

gives a measure of the stochastic fluctuations in the population

N(A) of the set A, and is defined as
(@ = [Var @)1 /EN®),

where Var(N(A)) is the variance of the number of entities N(A).
Thus, using (5.50) and (5.51) the asymptotic value of the coefficient

of variation can be seen to be

cv(Z)

{Ythlm)[eXP(aza) exP(Sla)]'*(x 43 ){exp(8 [6-5])-exp(62[3 5])]}
(5.52)
(20 u) [exp (5,8) -exp (8,311 [exp (5, (@-5]) -exp (8, (a-6]) ]

When the initial number of ancestors is k, located at Ypa¥preeea¥is

from (5.33) one obtains

(& x A,T\yl,,,_,yk) ~ k M(Z)(l‘( x Boly) + k(k-l)[nl(:&,mm]z (5.53)

o)
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where M(Z) (& x K,»|y) and MI(K,m[y) are given by the expressions

on the right side of (5.50) and (5.51) respectively. Since

My B,r]y ayyseeny) < kM Rely), (5.54)
it follows from (5.53) and (5.54) that the asymptotic value of the

variance of the population in any set A cC D with k ancestors is

k times the corresponding value of the variance with a single

ancestor. Hence, when there are k ancestors initially,

CV (A)
{ (arphs) Lexp (88) -exp (8,8 T+ “+30") {exp (8}T8-6]) -exp (8, (35 } } b

* x_, * L * o
kQayh) [exp (578 -exp (8,8 1\ (exp(3 [8-5]) -exp (g, (26D} (4o

When b = 0, (5.55) assumes a particularly simple form:

Fk & % 4 %
cv(a) ~ 1\—;2\———*1} ; (5.56)
k(A - w)

Case 2. Finite Spatial Domain [0,3] with an Absorbing Barrier at 3.

The evaluation of the second factorial moment distribution

as well as the variance and the coefficient of variation of the

number of entities in any given set A C D proceeds exactly as in

Case 1. The diffusion equation and the boundary conditions are the

same except (5.34f) and (5.35f), which must be replaced by

*
Mz(zl,zz,rla) =0 (5.34g)

=0 (5.35n)

ﬁz(zl,zzyvla)

The asymptotic solution for M(Z) @A x Z,le), where

respectively.
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A= (21,'2'2] for this case is given by

Mg & x E|y) ~
o~ o2 Lo G N #os t
[F)(F)-F1(F)] exp QoD {(N +2) ) [yexplp (3-D)]

% s % *,
- ByexplB, E-D)] - 8, + 11} (5.57)

* *, * *_ *_x Kt A
(aytu)[8yexp(,3) -p exp(B,8)]-A {B,exp[B; (3-B)]

* K PR3 *,
- 8,explp, (-5)1} + 1 (8, - B))

where oy is the dominant eigenvalue given by the root of (5.21).
The asymptotic value of the coefficient of variation of the population

in any set Ac— D with k initial ancestors is

(77430 [pyexp (871 8-57) -8 exp (8,[5-5) -8 +3; ]

(agh) [8yexp(8,3) - Brexp(B38)]
- (2 exp(B,d) - B,exp(B,a
L2 L 1 _ 2 (5.58) |

cv(a) ~ * *_ * *, *_ x *
k{(Zalm)[Bzexpfsla) -8,exp(8,8) ]2 [BZeXP[Bl(a-E)]

- Bexel8, (A-6)1] + A" (B - 8)) ,

Case 3. Semi-Infinite Domain [0,=).

Proceeding exactly as in Case 1 or Case 2, the following
*
expression is obtained for the Laplace transform of Mz(zl,zz,r|0):
*
ek 2 o
A <§1(z1,z2,p10>-426L ©)(2,,2,,p|5,0)exp (8,6) (utp)
ol . (5.59)
~ *
(e p)exr’(Blb) Uk

1‘qz(zl,zz,plo) =

Noting that o is the dominant eigenvalue given by the root of
e 1

(5.21a), as before,

Fi ()P (2))

89 (2152,,7[0) ~ %

1
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Also, noting that
9)(z,,2,,p|5,0) = {f[@lz(zl,zz,p\O,y>+¢21(zl,zz,p[y,o>]exp(-aly>dy}y=.s

vhere 8 = 0, so that exp(-8y) is bounded on [0,=), similar

argument as before can be used to show that

—2F1(21)F1(z2)exp(-61b)

9 D s
8(z,52,,p[b,0) ® - 2aps,

Hence, for the set A = (Z;,%,] €D with one ancestor initially,

B ibiam S
PG FGPI G0 + 20 )exp2aym)

My (AxA,t|y) ~ (5.60)

Fes *
(b + 20p)exp(8;b) - )

and when there are k ancestors initially, the coefficient of

variation of the population in any set A in D is given by

sk * e %
O +30) - (ut2ap)exp(8,b)
CV(A,T|y) ~ = = . (5.61)
K[ (w20 exp(815) - \7]

At this point it is worthwhile to summarize the important
analytical results obtained thus far regarding the solutions of the
diffusion equations for the first and second factorial moment dis-
tributions with parameters given by (5.1)

(i) A complete analytical solution (5.32) has been obtained

for the first moment distribution for the case where
i =w, b =0 and at time 0 there is one ancestor at
¥= O

(ii) General solutions for the first moment density in the

form of generalized Fourier series of eigenfunctions

(assuming that the eigenfunctions form a complete set)
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have been obtained for the case of a finite interval

[0,4] with absorbing and reflecting barrier at @.

It has been shown that asymptotically the expected
number of entities in any set Ac D changes

exponentially with a parameter « (cf. (5:16)) -

1
Here the parameter ay is given by the dominant root
of (5.11), (5.21) and (5.21a) for the cases of a
reflecting and an absorbing barrier at a finite 3
and a semi-infinite spatial domain [0,©) respectively.
Similarly, the asymptotic change in the second factorial
moment of the number of entities in any subset of D
is exponential with respect to time, with parameter
2¢;  (ef. (5.50), (5.57) and (5.60)).

(iv) The asymptotic behavior of the coefficient of variation
with a given number k of aacestors at time 0, as given
by (5.55), (5.58) and (5.61) constitutes a result of
particular importance regarding the limiting behavior
of the population: The coefficient of variation of the
number of entities in any set A c D attains the same
(constant) value depending upon the boundary conditions
and the initial number of ancestors. Furthermore, the
asymptotic value of the coefficient of variation is
inversely proportional to the square root of the initial
number of ancestors.

Of course, as indicated before, these results are based upon the

hypothesis that oy is real and distinct.
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In view of the result regarding asymptotic behavior of the
coefficient of variation it can be said that if the initial popula-
tion is small, the stochastic fluctuations in the population of any
subset of D will always be significant even if eventually the
population becomes very large. On the other hand, when the initial
population is large, the stochastic fluctuations will be small and
the equations for the first moment alone may be adequate to describe
the dynamics of the population. For example, if in the study of
the secondary nucleation process in a crystallizer the experiment
is started with a small number of crystals, the number of crystals
in any size range will always tend to exhibit relatively large
fluctuations. This will lead to an appreciable amount of scatter
in the data on the induction periods as observed by Kane (1971).
Similarly, the results indicate that a biological population started

with a small number of ancestors will always tend to exhibit

relatively large stochastic fluctuations.

5.4 The Problem of "Critical Length'

Referring to (5.11) and (5.21) it can

dominant eigenvalue

oy is real, for a given

2 * = 2
parameters ¢ , r, A and b, there exists a
of &, such that if 3 < Ecr’ oy < 0 and the

entities in the population of any subset of
crease with time. The problem of determining
of the boundary (the "critical length" of D)

tions in case of biological populations. For

be seen that when the
set of values of the
critical value &

cr
expected number of

D will always de-
this critical location
has important

implica-

example, in an

intensively exploited fishery or a forest resource, few individuals
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in the population can be expected to survive beyond a certain maturity
4. In this context, y and 2z correspond to the maturity of a tree
(measured in terms of its height or productive value) or the length
or weight of a fish at times 0 and T respectively, \* denotes
the expected number of births per unit time, and p refers to the
death rate due to natural causes as well as harvesting. Of course,
it is assumed here that the growth of an individual can be char-
acterized by a diffusion process. 1In these cases it is reasonable
to construct a mathematical model with an absorbing barrier placed
at 3. As the harvesting pressure increases, the maturity correspond-
ing to the absorbing barrier decreases. If the absorbing barrier
corresponds to too short a life-span, the recruitment due to repro-
duction would be too low to have a self-sustaining population.
Evaluation of the maturity corresponding to this critical life-
length would be of a great help in determining the necessary manage-
ment and control policies such as the legal size-limits on fish so
as to avoid extinction of the species.

An opposite situation may occur in a continuous crystallizer
where the crystals from the product stream are classified and all
the crystals below a certain size & are returned to the feed stream.
In the context of a crystallizer, y and z denote the size of a
crystal (usually expressed in terms of a characteristic length of the
crystal), )\* characterizes the expected number of nuclei generated
due to secondary nucleation and p refers to the rate of removal
of crystals from the processing system. As in case of the biological
populations mentioned above, the crystals are assumed to grow

according to a diffusion process. For a stable operation of the
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system the number of crystals in the crystallizer must remain con-
stant. To achieve this it may be necessary to regulate the maximum
size @ of the crystals returned as the feedback. Another way of
achieving the control would be to fix 3 and regulate the fraction
of the total number of crystals of size less than or equal to &
to be returned. Thus, the problem reduces to that of determining
the critical size for a fixed '"death rate" or that of evaluating
the '"death rate' to make a given size & a critical one so as to
have a stable operation of the crystallizer. In view of these

possible applications, the problem of '

critical length'' was
solved for the case of an absorbing barrier with parameters given
by (5.1).

In the case of a reflecting barrier at 3 with 5 =0,
the criticality of the change in the population will be dependent
upon 3° and , alone. However, when b > 0, for given values of
A" and |, there may be a critical location &, of the boundary
such that for 3 < Ecr’ the population will (asymptotically) de-
crease monotonically with time. The computation of Ecr in this
case will be similar to that given below for an absorbing barrier.

Asymptotically, the expected number of entities in the

population changes exponentially with a parameter (i.e., the

%
largest eigenvalue of the diffusion operator), which is given by

the dominant root of (5.21) for the case of an absorbing barrier at
4. It can be seen from (5.21) that oy is a continuous function of
the location @ of the barrier. The critical length is thus given

by setting o =0 in (5.21) and solving the resulting expression for

@, subject to the condition that the root should be greater than or
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equal to b. A solution Ecr < b would represent a physically
impossible situation in view of the fact that no entity in [0,b)
is capable of reproduction (cf. (5.1)).

Since (5.21) is nonlinear in &, the solution has to be

obtained numerically. Equation (5.21) can also be written as
% *
() [B1exp(8,)®) - Byexp(8,3)] - X' (B expls,(@-5)]

- Bpexlpy EH) 1) - (8,08 =0, (5.62)

where
_ = V% 4 2k - Ve 4 255k
8y = 7 and 8, = 7

4 o

Equation (5.62) has to be solved for ¥ after setting oy =0 to
give Ecr' If the solution to the problem of critical length is to
be obtained in the form of a set of families of curves, the para-
meters in the graphical solution will be 02, £ 1*, w and b.

The total amount of computation required to evaluate the solution
over a range of values of all these parameters can be substantially
reduced if the diffusion equation for the first moment density is

written in terms of the following dimensionless variables:

% =2z/a T =r7/d
B = 2rd/g b =6/
2 (5.63)
§=yla i o= pd/r
X= X*E/r

and an expression analogous to (5.62) is derived in terms of these
dimensionless variables. This simplification reduces the problem of

evaluation of the critical length to that of solving the equation
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(E/i)[vlﬁexp(vzﬁ) - voPexp(v )] + \,Z?exp[\,l(ﬁ-fs)]

- leexp[vz(P-Pb)] + Vlﬁ -v,f =0 (5.64)

for P. 1In (5.64)

and
vy =

The computer program used to solve (5.64) is given in Appendix B.
It should be noted that the quantities [/, vy» v, and b are
all independent of &. Figure 5.1 gives the solution in the form
of a family of curves for 3 corresponding to the critical value
of &, plotted against {/P, with $6 and R/i as parameters.
Given the parameters g—z s T fhy )\*, and B, the graph can be used
to evaluate Ecr as follows: First, the dimensionless parameters
%0 and BB are computed and the curve corresponding to these
values of the parameters is located on the graph. The value of
ﬂ/ﬁ is calculated and the corresponding value of B is obtained2
from this curve. Knowing the critical value of B as well as ‘21“
and r, §cr can be readily computed.

As may be expected, the curves indicate that the value of
Ecr is less sensitive to the changes in the death rate when the
ratio of birth rate to the death rate ');/ﬁ, is high or when the value
of Pb is low, which would occur if B is close to zero or if the

mean rate of movement r toward the absorbing barrier is small as

compared to the diffusion coefficient.
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Figure 5.1 Graphical solution of Equation (5.64) for "Critical Length"
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Although the main purpose in presenting Figure 5.1 is to
demonstrate the method, care was taken to have a realistic range cf
values of the parameters. The data of Cooper and Latta (1954) and
Cooper, Latta and Schafer (1956) on populations of bluegills Lepomis
macrochirus was used to obtain crude estimates of the diffusion and
drift coefficients and the death rate. Assuming a constant death rate
estimates of the yearly total mortalities were obtained by Cooper
et. al., which were used to calculate the death parameter . The
data consisted of the size (length) distribution of the various age
classes of the fish for several years. The age classes were char-
acterized according to the age of the fish in years. Since spawning
occurs during a relatively short period of time during each year, it
was assumed that the size distribution of the fish in each age group
had resulted from a large number of identical young ones born at the
same instant of time. If the temporal changes in the expected size
distribution of the fish can be characterized by a diffusion equation
with constant parameters, the size frequency of the fish grown from
a cohort should be approximately normal at all times if the effect
of the reflecting boundary corresponding to zero size can be
neglected. This may be the case when the drift coefficient is much
larger than the diffusion coefficient. Under these conditions the
changes in the mean and variance of the size frequency distribution
during a time interval At will be rpt and qut respectivel%’, and thus
the drift coefficient r and the diffusion coefficient I~ can be
readily estimated. The assumption that the size distribution was

normal at all times was indeed rather crude, and since the purpose
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here is mainly to demonstrate the technique, no further refinements
in the estimates of the parameters were attempted.

As discussed by Cooper et. al., horizontal as well as vertical
estimates of the parameters were obtained whenever possible. A
horizontal estimate is obtained by following the same age cohort
year after year, e.g., by considering the two-year old fish in 1954
and the three-year old fish in 1955, assuming that the population
estimates for the successive years were obtained with the same accuracy.
A vertical estimate uses the different age groups counted during the
same season, based on the assumption that the population is in a
steady state as regards the yearly recruitment, mortality and growth
patterns. The horizontal and vertical estimates were comparable to
each other. Different estimates of the parameters are summarized
in Table 5.1. It was assumed that the fish were capable of repro-
duction after they reached a length of 2.5 inches. The values of
birth rates were chosen to be simple multiples of the death rates.
Based on these estimates the dimensionless parameters for the dif-
ferent curves were chosen to include the ranges of parameters re-
presented in Table 5.1.

Since all the parameters in Figure 5.1 are dimensionless, the
same curves can be used to calculate the critical value for any
population with any arbitrary units (such as productivity, biomass,
etc.) for 3. However, it must be remembered that in many cases the
constant values for cz, r, and )\* are only an approximation to
the real situation and due caution should be exercised in using such
charts for practi;al purpose. For example, it can be seen from

g

Table 5.1 that 5 and r are functions of the size of the fish.




110

TABLE 5.1: Model Parameters for the Dynamics of Populations of
Bluegills (Lepomis macrochirus)

A. Mean Growth Rate r in Inches/Year (Vertical Estimate)

Age Class (years)
i3 2 3 4 D) 6 Remarks
215252 1:.0; 0.8 1.0 0.6 Sugarloaf lake, Michigan 1954
2.2(2.0 |1.2 | 1.0 [0.9 |0.6 Sugarloaf lake, Michigan 1955
2.512.3 | 1.43]1.35(0.78]0.26 Whitmore lake, Michigan 1955
2.412.16]/1.21| 1.05| 0.89| 0.47 Average of the estimates above

2 2 ok
Diffusion Coefficient g /2 in (inches) /year

B.
First two years Third year Fourth year Remarks
0.0417 0.0245 0.0264 Vertical estimate (1954)
--- 0.0201 S Horizontal estimate (1954-55)

ke
for Sugarloaf lake, Michigan

C.

Average Death Rate u in (yeenrs)-1

Vertical estimate

Horizontal estimate

Remarks

0.892

0.415

0.655

Sugarloaf lake, Michigan,
1952, 1954 and 1955.
Whitmore lake, Michigan,
1953-1956.

Fine lake, Michigan, 1955

Fife lake, Michigan, 1956
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Similarly, many fish spawn only once in a year giving rise to a
"pulse" of young ones. In contrast, the model defines A ST as
the probability of producing i offspring in the time interval
(1, +671) irrespective of whether the individual had reproduced

at any time in the interval (-o,T).

5.5 Solution of the Diffusion Equation for the PGF -- Computation

of Extinction Probabilities

As mentioned in Remark 4.2, G(8,7|y) gives the probability
that there are no entities in the population, given that there was
one ancestor initially at 1y, if the arbitrary function ¢(z) is
taken to be identically zero. To obtain this the backward diffusion
equation for the PGF was solved numerically using finite differences.
As in the previous section, the main purpose of these simulations
was to study the nature of the solution for some simple cases and
hence constant values were chosen for g—- , t and p from the range
of values covered in Table 5.1. Moreover, the probability of having
more than one birth in a short time interval &7 was assumed to be
negligible, i.e., only A vas assumed to be a significant parameter.
Furthermore, kl(y,s) was assumed to be independent of time. Equa-

tion (4.2) was written in the finite difference form as

G (R.mHsr|y) C(a,rly) _ o (840 rt3) 26 8,110 (Buly-63)
2

ST oy

+ r[%luz_ilﬁiﬂ_:_ﬂl)_] +ull - 6(e.1|y)] (5.65)

- A ME(e,T YL - 6e,r|0)]
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for by sy € 3-y and 1 2 0. For y =0 or &, (5.65) has to

be modified to include the boundary conditions. For the stability
5 2

of the numerical computation scheme a ratio of J_b'r = 4 was chosen.

Different time and space increments were tried and values of &t

and &y were chosen so as to give results agreeing up to the first

three decimal places with those for a much finer discretization.

The values of the simulation parameters are summarized in Table 5.2.

The results of simulations 1 thru 7 are presented in Tables 5.3
thru 5.9 respectively. A computer program used for the simulations
is presented in Appendix C.

It can be seen that in case of a reflecting barrier at &

and constant birth and death rates per individual throughout its

TABLE 5.2: Simulation Parameters for the Computation of Extinction

Probability for a Population

Simulation | Death Rate Birth Rate Nature of Remarks
No. w (years) -1 A (years) -1 Boundary
at a

1 0.6 0.6 absorbing For all simula-
2 0.6 .6 reflecting | tions o</2 =
3 0.6 1.2 absorbing | 0.025 inch?/year
4 0.6 20sech(y-10) reflecting r = 1 inch/year
5 0.6 50sech(y-10) absorbing 6x = 0.2 inch

6 0.6 50sech (y-8) absorbing 6T = 0.01 year
7 0.6 50sech(y-6) absorbing 3 = 20 inches

o

life-span, the changes in the total population will be the same as that
for a linear birth and death process. The extinction probability for
the linear birth and death process with one initial ancestor is equal

to

b= oexpl-(h ) t)
A - woexpl-Ov-p)7]
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when #u and )\11/(1 + )\11') when A = where A, p and
7 denote the corresponding quantities defined in this section
(Cox and Miller, 1965; p. 166). This result for a linear birth and
death process checks with that of Simulation 2 for all initial
states of the ancestor. Comparing the results of Simulations 1 and
2 it can be seen that when the initial location of the ancestor is
sufficiently away from the absorbing boundatz'y (note that this distance
from the boundary will be dependent upon 521—, r and ) the extinc-
tion probability at any time is the same as that for a reflecting
boundary. Thus, the effect of the boundary is apparent only near
the boundary itself.

Simulations 4 thru 7 were conducted to represent the situa-
tion where each individual has a very high reproduction rate for a
small portion of its life-span. In Simulations 4 and 5 the peak
reproduction was assumed to be at the midpoint of an individual's
life-span. The results of both simulations show that although the
extinction probability immediately following the introduction of
the ancestor in its peak reproductive state is quite low, it in-
creases to a high value as time progresses. The results of Simula-
tions 6 and 7 are more interesting. Simulation 6 shows that if the
ancestor is '"too young" or "too old" at the time of its introduction,
the probability of extinction of the population is very high. In
Simulation 7 a steady state was reached after a period of about ten
years. Similar steady state solutions can be obtained for other
simulations if the period of simulation is long enough. In general,
it can be said from Simulations 4 thru 7 that for a population with

constant diffusion and drift coefficients, a constant death rate
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and the reproduction rate per individual having a functional form
similar to that used in Simulations &4 thru 7, the extinction proba-
bility at any given time is the lowest if the ancestor is in its

peak reproductive state at the time of introduction. As mentioned

in Section 4.5, an important application of the extinction probability
is in the biological control of pest species. Simulations 4 thru 7
indicate that the maturity of the parasites or predators introduced
for achieving the control may be a crucial factor in the survival

of the controlling population and hence the chance of success of the
biological control strategy.

When the parameters in the diffusion equation are not constant
the method described in the previous section cannot be used to find
the "critical length'". 1In such cases computation of the extinction
probability can be used to find the critical length by using the
criterion that when & < Ecr, the probability of ultimate extinction
is one.

Remark 5.3: Application of the results of this chapter to

biological populations involve description of the growth of an
individual by a diffusion process. The individuals in the population
are often characterized by their maturity or a measure of their

size such as a characteristic length, which are essentially non-
decreasing quantities for each individual in the population. On

the other hand, realizations of a diffusion process are not strictly
monotone in nature. Thus, for example, when the growth of a fish in
terms of its length is represented by a diffusion process, there will

be a nonzero probability that the length of the fish as described

by the model will decrease sometime during its lifetime. In this
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sense the diffusion representation is essentially approximate in
nature, and it is instructive to know the probability of a given
decrease in the length, maturity, etc. of an individual if a dif-
fusion model is used. Brockwell (1972b) has derived an expression
for the probability of such deviations from monotonicity for a dif-
fusion process on the real line (~w,o). In particular, let the
growth of am individual in the maturity interval [0,&] be char-
acterized by a diffusion process on the real line with constant dif-

2

fusion and drift coefficients g— and r respectively, the death

parameter pu = 0 and let 2z denote the location of the individual

in [0,d] at time t. If T, denotes the time taken by the

individual to reach & for the first time (i.e., the first passage

time) and M(t) = max z(7), then maxM(t)-z(t)) represents the
O<srst 0<st<T

. . . . a L . .
maximum decrease in maturity experienced by an individual during its

lifetime. The distribution of this quantity is given by

F_(w) = B[ max a” ((t) -z (t)) < w] = exp[-¢ 2 (expwc 2 -1) 1)1, (5.66)

OstsTa

where ¢ = ___g_%_ Thus, for the example of fish population char-
(23r) 2

acterized by the parameters ¥, r, and g— in Table 5.2, (5.66)

predicts that while the probability of a maximum decrease in length
of greater than one inch during the lifetime of a fish is close to
zero, the probability that a fish will decrease in length by more than
one fourth inch during its lifetime is 0.036. This probability
changes drastically with small changes in c¢. It is interesting to
note that if the diffusion coefficient in the example just considered
was 0.05 instead of 0.025, with the other parameters unchanged, so

that the parameter c¢ 1is 0.05 instead of 0.03536, the probabilities

of a decrease in length greater than one inch and one fourth inch would

be 8.24 x 10-7 and 0.93 respectively.
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CHAPTER VI

POPULATIONS WITH AN EXTERNAL INPUT

In general, a population will also have an input other than
reproduction by its members. In biological populations this external
input usually takes place in the form of an input of individuals
across the boundaries of a geographical domain due to locomotion in

case of mobile species; or due to passive motion along with the

carrying medium such as water for aquatic organisms or air in case of
flying insects. The examples of external input in case of particulate
processes in chemical engineering systems include an input of particles
along with the carrying fluid for suspensions, nucleation of bubbles
or crystals at the imperfections on the surfaces of a vessel and a
homogeneous nucleation of crystals occurring at very high super-
saturations of the magma. Formation of free radicals by the
initiation reaction in polymerization processes can also be looked
upon as an external input of molecules of zero chain length.

Radcliffe (1972) considered the problem of external input
(immigration) in the form of a nonhomogeneous Poisson process into a
population where the individuals move within an abstract state space
according to a Markov transition probability and multiply according
to a branching process in which the offspring are produced at the end
of life of the parent and are in the same state as the parent.

Radcliffe also assumed that all the individuals entering the state
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space at any time due to migration are located at the same point in
the state space at the instant of their arrival. This description
does not apply to many processes which are considered in the present
work. In the processes described in the preceding paragraph the
entities may be located at any point in the spatial domain at the
instant of arrival and in the general process of reproduction des-
cribed in Chapter IV an offspring is in a state different from its

parent.

6.1 Description of the Process

For the analysis of populations with an external input, the
individual state space E for the existing (or "live'") entities is
taken as an n-dimensional Euclidean space. When the entities are
removed from E by the process of "death" they are considered as
being absorbed into a single point g* ¢ E. The union F-= E U g*
constitutes the individual state space for the existing and dead
entities together. The movement of entities is restricted to the
spatial domain /g =D U §*, where D is a closed nonempty set in E
with a boundary [' (cf. Section 4.2). The location of an entity
in D is denoted by £. Only the entities in D may possibly move
to another point in %, or produce new entities by reproduction.

In the context of a chemical process such as crystallization,
E may consist of a four-dimensional Euclidean space with three co-
ordinates denoting the geographical location of a crystal and the

fourth co-ordinate representing the size of the crystal in terms

of its characteristic length. The domain D may refer to the pro-

cessing system itself, such as the interior of a crystallizer (with
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the size co-ordinate possibly varying from O to ). All the crystals
that are removed from the system by flow or by mechanical means (i.e.,
by '"death") are considered as being transferred to the absorbing
state £° ¢ E. Similarly, in the case of a biological population £
may consist of a four-dimensional Euclidean space of three geo-
graphical co-ordinates and a maturity co-ordinate, D may be a given
geographical domain of interest and 'death" may be interpreted as
the combined effect of natural death, emigration and harvesting.
The process is started at time S with k, entities in
D. Ac subsequent times i s S S kj entities enter D
from a source external to the population. Each entity present in
B at time s, and the entities entering D due to external input

at any time Sj > s, serve as ancestors of the entities generated

due to reproduction. The initial locations of these ancestors are
denoted by the superscripted variable 50. The movement of each
entity in D is characterized by a Markov transition probability
x(A,tlg,tO) denot ing the probability that an entity at £ at time
to will be in the set A =] at time t = to. Moreover, the
probabilities of producing any new entities due to reproduction at
any time are also assumed to be Markovian in nature, i.e., the
probability that an entity will produce any offspring at any time in
future depends only on its present state and not the past history.
It is also assumed that the input of entities to 5, their movement
within %, as well as their reproduction proceed independently of
other entities in the population. It can be seen that the process

described in this section includes the process discussed in Chapter

IV as a special case. In the model considered in Chapter IV, E is
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the nonnegative real line, the movement of an entity in B is char-

acterized by a continuous Markov process satisfying (4.1) and the

Markov probabilities of producing any offspring, or dying (i.e., of
moving to g*) are defined in Section 4.1.

For a complete description of the process the rate of input
of entities and the points in D where they first appear must also
be known. It is assumed that the arrivals of entities into the popula-
tion due to external input occur according to k simultaneous

ind d
indep t

h Poisson pr es, where k is finite.

The Poisson inputs are characterized by the following axioms (see
e.g., Parzen, 1962; Chapter 4):

(i) The process has independent increments, i.e., the numbers
of entities arriving during disjoint intervals of time
are independent of each other.

(ii) For any time interval (no matter how small) there is a
positive probability that some entities will arrive in
ﬁ, but it is not certain that an arrival will occur.

(iii) The probability that one entity appears in D during
the time interval (s,s+§s) from an external source
through the i-th Poisson stream, i =1,...,k, is
v;(s)ss + o(6s), and

(iv) The probability of more than one arrival in D during
the time interval (s,s+§s) from any of the input
streams is o(8s).

It can be seen that in view of axiom (iii), the number of entities
kj appearing in D at time 55 must be equal to one for a finite

number of Poisson inputs. When axiom (iv) is dropped so that the

R R T
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probability of more than one arrival during (s,st§s) is 0(ss),
one obtains a generalized Poisson process. The material in this
chapter can possibly be gencralized to include an input in the form
of a generalized Poisson process, but the analysis will be much
more complicated.

The location of an entity at the instant of its arrival in
D at time s (which is obviously conditional on the fact that an
arrival has taken place) from the i-th Poisson input is described
by a probability density wi(g,s). The transition probability
X(A,t“go,s) can thus be looked upon as the probability that an
entity is in the set A CD conditional on its first appearance
in D at the point € at time s.

Remark 6.1: It can be seen that when the number of Poisson
streams k is a constant, the net effect of the k Poisson pro-
cesses with rates vi(s) and conditional probability densities
wi(g,s), i =1,...,k, characterizing the location & where an
entity entering D via the i-th stream appears first, is equivalent
to a single Poisson process with rate

k
v(s) = £ v.(s) (6.1)
i=1 *
and a conditional probability density
k

iElwi(é »8)v, (s)

w(g,s) = (6.2)

k
T v;(s)
i=1

for the initial location of an entity at the time of its arrival.

Similarly, when the process has a random number K of independent
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Poisson inputs (fixed for each realization of the process) with all
rates vi(s) and the probability densities wi(g,s) of the initial
location of an entity being equal to %(s) and W(E,s) respectively,
if K=k is given, the input streams can be replaced by a single
stream with rate kV(s) and a probability density @(E,s) for the
initial location of an entity at the time of its arrival.

To summarize, the process described in this section is a
Markov population process with a Poisson input. The main difference
between the description here and the process considered by Radcliffe
(1972) is that here an entity is assumed to appear at any point in
D at the time of its arrival. Moreover, the locations of the
entities produced by reproduction have been left unspecified in this
description, and therefore can be arbitrary. As mentioned earlier
in this chapter, Radcliffe assumed that all the entities are located
at a single point in D at the time of their arrival, and that the

entities reproduce according to a branching process.

6.2 The Probability Generating Functional of the Process

For a quantitative description of the process, let
denote the number ofoentities in the set A cd at time t, given
that there was one ancestor arriving at each of the points g?j
at time s,, 1 = 1,...,kj; j=0,1,...,r. The points §20 denote
the initial locations of the entities present in the population at
the start of the process at time so and g?j, j=1,...,r, denotes

the initial location of the i-th entity arriving into D at time

s. from an external source. Using the conditional counting measure
i
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0 0 0
P - S RERY |- SUPPPRN -»8,) s the PGF for the
o

process can be defined as

0 o ., .0 0
G(B,E[Ey o5y 338 gt By pSgaeeess) =
o T

0 0 0 0
E 1 d ;
fexp ID og 8(E)[N(dg, t|g B 03 BBy o Sree s 1)
(6.3)
In view of independence of the entities,
0 0 0 0
N(A,E[8 500056y 03 3B qpr e aBy p3 Sgeeeens) =
o b o
x ] 0
Z L N(At|E L5 sy (6.4)
j=0 i=1 A
from which it follows that
0 0 0 0
G(e,t§§10,...,§k 03 v e 38ypare By g3 Sgreeens ) =
o b 3
k.
E -} ] 0
T 1 Get|g 58, (6.5)
3=0 i=1 473

where c(e,c\ggj,sj) is the PGF of a population starting with one
ancestor at gij at time sj and allowing no external input. Equa-
tions (4.7) and (4.6) are special cases of (6.4) and (6.5) respectively
when r =0 and k() = k. The co-ordinates £ and §0 in (6.3)

thru (6.5) correspond to z and y respectively in (4.5) thru (4.7).
Note that when the input consists of a Poisson stream, by Axiom (iv)
in the previous section ki =1 for i=1,...,r in (6.3) thru
(6.5). For an input stream in the form of a generalized Poisson
process, the numbers ki’ i=1,...,r can be greater than one. The
conditional PGF (6.5) has to be summed over all possible initial

locations go of the externally introduced entities at all instants
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of arrival s, sy < s < t, and all input streams in order to obtain
a complete description of the process.

For the case discussed in Remark 6.1 the external input can
be characterized by a single Poisson stream of entities. Thus, for
the case where k is a constant, the PGF of the process can be

written as

0 0 : 0 o .
c(e,tlgw,...,ikoo; sg) = Efexp Jﬁlog e(;)[N(dg,t.glO,...,§kn0, 50])

= E[[_...[ fexp [ log 0(9)IN(AE,E[E0 -5y of
D D o
0o .0 o . 0 0
511,512,‘--@“, 50,~--,Sr]}w(éu,sl)w(f_,lz,sz)....

0 0
w(g), s )dgd dgd . ag)
k
O R T 0 s’ ,s)de, (6.6)
IR L s0) (jL‘lJS (0:t]8g3sw By 50065}

i=

Equation (6.6) follows from (6.4) and (6.5).

Remark 6.2: Given the number of arrivals r during the

interval [so,c] due to a single Poisson stream with rate v(s), the

instants at which the arrivals occur can be regarded as independently
distributed random variables with the probability density v(s)/V(so,t)
where sj < s <t and
t
v(so,t) = _1 v(s)ds (6.7)
%o
This statement can be proved as follows:

The joint probability that there will be one arrival each

during the infinitesimal intervals (sl,sl+651),-.-,(sr,sr“"ésr) c

[so,t] and none during [so,t] -((sl,sl+5sl),~~-,(Sr,5r+55r)}»
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where Si» i=1,...,r, constitute an unordered set of distinct

points in [so,c], is given by

v(sv(sy) .. V(s )bsy8s,.. -6s_exp(V(s(,t))

r!

(6.8)

Hence, the conditional probability that there will be one arrival
each duri the i e i
uring e intervals (51,51+651) 5 ,(sr,sr+[>sr) given that r

arrivals occur during the interval [So,t] is

V(s DV(sy) .. V(s )68 b5, .ésrexp(V(so,t))r!

! [V(sy, ) ]rEXP(V(SO ,6))

” v(sl)v(sz) S ..v(sr)sslész., .88

[V(sg:0)1"

from which it follows that the joint probability density of one
arrival each at times s;,5,,...,5_ € [so,t] given that r arrivals

occurred during [so,t] is

v(sl)v(s Yivo .v(sr)
V(sg.01"
which is the joint probability density of r independent random
variables with densities v(s‘.)/V(so,t), LT B (Q.E.D.)
In view of Remark 6.2, averaging (6.6) over 55 conditional
on r, the following equation is obtained for the case where the

number of Poisson streams k 1is a constant:
0 0 .
c(e,qgw,...,;koo, so)
o o T £ 0 0 0 v(s,)ds,
= 1 G(e’tlgm;so)E{‘I_] [‘]' J'_G(e,tlgj.sj)w(ij,sj)dgj V(s,.6)
i=1 j=1 s D

k
Zjh=s 0 [x(e,so,o]f
ARl ovone or

-;—‘
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where

{4

X(8,50:8) = [ [ 6(o,¢]2%,9) ws,0)v(s)ac s (6.10)
s
0

Noting that r is a Poisson-distributed random variable with a

X(8,5,,6) )"
over r yields

t i Bl A
parameter V(so,t), averaging {V(so,t)

X(0,s,t)

o [V(s,,t) ) expl V(s ,t)J[X(8,s,6)]"
(] 0
B0 L N 8 .

r

r=0 r! [v(so,c)]’

exP{X(S,so,:) - V(so,t)],

so that

=

0

G(e,:lglo,.

o
.,Eg 0°59) = T G(8,E[5 0,5 )exp(X(8,50,6)=V(sy,t) ] (6.11)
o i=1

When w(go,s) = 5(go-§g), i.e., when all the entities arriving
in D first appear at gg and when there are no entities in the
population at time sq (i.e., k, =0), the expression for the PGF ;
reduces to

-4
G(at[sy) = expl[ v@LG@,t|5gs s - 11}, (6.11a)
s

0
which is essentially the result obtained by Bartlett (1966) for a

population of individuals characterized by their age, as well as
that of Radcliffe (1972).

When the number of Poisson streams K is a random variable
(fixed for each realization of the process) as specified in Remark
6.1, given K = k, the analysis is the same as that for a fixed k
with v(s) and w(E,s) replaced by ki(s) and @(E,s) respectively.

Thus,
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0 0 ‘o i(e,so,t) N
G(8,t|E e v By 35)) = 1 G(e’t\gio;so)E{E?TC§‘73"ﬂ 1, (6.12)
[o) i=1 0’
where
t 0 o .
i(essoat) =J“Y~G(e,tl§ ;s)ﬁ(g )s)k’\VI(S)dg ds
sO D
t 0 0 o
= k[ [ G(8,t|§ ;s)(E ,5)¥(s)dE ds
s. D
0
= k§(9,80,t) (6.13)
and
- t
V(s,,t) = I k¥ (s)ds
s
0
= k ?(so,t) : (6.14)
Averaging over r yields
0 0
G(e,tlglo,...,gk 0’ so)
o]
kO
= 11G(8,t|§, 35, E{exp[X(8,50,6) = V(sy,.t)]])
i=1
kO
= G(G,t\§iO;SO)E{exP[k(§(G,SO,t) - 7(30’t))]}
i=1
k
o " o k
= 1 G(e,t\%io;so)E{[exp(i(e,so,t) - V(spst)7 3 (6.15)
i=1

If K 1is characterized by a probability generating function

Y(u) = E[(u)k], 0 <u < 1, then by averaging over k, (6.15) reduces

to
0 0o
G(8:t]5 gs 36 0350
(o]
k
; 5 ~~
= Ie(et]g 555 )Y explX (8,54, - V(sph0)T) (6.16)

i=1
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6.3 Moment Distributions of the Population

In order to obtain the factorial moment distributions of the
population it is necessary to apply (2.13) to (6.11). Thus, when

the number of Poisson inputs k is fixed, the expected number of

~
entities in the set A C D is given by

: a_ 0 o
M, (8, tl°10""’gk00’30) G(“+§e\§1o""’gkoo’so)‘n=1,g~o

k
o

0
LM (At|E  ,s )
j=1 ! i0" 0

t
0 0 0
+ {f v(s)[ My (A, e|§7,s)w(E",5)dE ds}, (6.17)
s D
0
when @ = I(A\g). Thus, the expected number of entities in A < D

at time t is simply the sum of the expected number due to the

entities present in the population at the initial time s and the

~

expected numbers arising from all the entities entering D during
the interval (so,t) due to all the individual Poisson streams. The

second factorial moment of the number of entities in the set

Alezc'f)'x‘ﬁ’ is

0 0 a_ U
M(z)(Alez,c\glo,...,gk 035¢) = 9% G(n+ge\§ "’gkOO’So)\n=1,g~o

k
o

0 0
T My (A xAz,t\g 105590 F j v(s)| M(Z)(A XA, ,t|E 38)w(E ,5)ae%s

k
0]
+ I M (Al,t\§ ’%Qf v(s)j M (Az,t\g ;5 w(e’,s) g ds
i=1
ko 0
+ T My(A,,tl|E] O,SOX v(s)j M, (A ,c\g s)w(§ ,s)dg ds
i=1

0
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ko kg . .
I M (ALe[E 0580, (Ay,t|E 58 )
i=1l j=1
j#i
2 ¢ A 0 0 .0
+ T V) My (AL t[ET5s)u(E,s)dE ds] (6.18)
j=1 5o D

In the context of the problem considered in Chapter IV,
where E is the non-negative real line and the movement of entities
in E is characterized by a diffusion process; when a fixed number
k of Poisson inputs with rates vi(t) are added, the forward
diffusion equation (4.49) for the first moment density of the
population has to be modified to

aml(z,t\NO,s)

at

= d.n (2, |N,8) + v(D)u(z,0), (6.19)

%
where &; is the forward diffusion operator defined in (4.48),
and v(t) and w(z,t) are defined by (6.1) and (6.2) respectively.
The initial and boundary conditions will remain unchanged. The equa-

tion for the second factorial moment density will be more complicated.

The backward diffusion equations for the first and second factorial
moment distributions of the population as well as the corresponding
initial and boundary conditions will remain unchanged. The correspond-
ing solutions Ml(A,tlgo,s) and M(Z)(Al X Az;t|§o,s) will have
to be substituted in (6.17) and (6.18) to obtain complete solutions
for the moment distributions.

It can be seen that while the diffusion equation for the
first moment of the population is quite simple, the equation for
the second factorial moment is rather complicated. However, as far
as the asymptotic behavior of the coefficient of variation is con-

cerned, it can be expected that normally, the total number of entities
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entering D due to an external input in a large finite time interval
will be sufficiently large, and since these entities act as ancestors
for the entities generated by reproduction, the asymptotic value of
the coefficient of variation of the number of entities in any set
AcD will always tend to be low.

When there are a random number K of Poisson inputs as de-
fined in Remark 6.1, given that K = k, the conditional first and
second factorial moment distributions are given by (6.17) and (6.18)
respectively by changing v(s) and w(€,s) to kV(s) and @(E,s)
respectively. These have to be averaged over k in order to obtain
the desired moment distributions. Thus, if E(K) = k and

2 =
E(K') = k, then it can be seen that

k
[o]
0 0 . _ 0 .
Ml(A’t\€].0’.”’§k00’ So) - IEIMI(A)t\glo) SO)
- € 0 0
k £ V(s)jﬁml(A,t\g ; s)dE ds (6.17a)
and
k0
0 0 _ 0 .
M(Z)(Alez,t\glo,...,gkoo,so) = iElm(z)(Alez,t\gio, sg)
_t
+ k j (s)f M (Alez,c\g ,s)w(g ,s)dE Ods
0
“o 0 L 0 0 0
DM (ALt|E 038 k[ T(s) [ M (A, E[€7,8)F(E,5)dE ds
i=1 o D
k t
+ g (A e|g 58 VK[ ¥(s)[ . (A e)e%ss)a (e’ ,s) aglas
j=p b 271070y gis e ’
kK k 0
(o] (o] 0
+ E lem (Al,t\gio,sO)Ml(AZ,tlgjo,so)

j#i
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+k

o
[R=N}
-

b 0 0 0
[J‘ v(s)j‘_,Ml(Aj,:lg 58)W(E " ,s)dE ds} . (6.18a)
s D

0

The quantitative description of the population in terms of the PGF
assumes a particularly simple form in the case where the entities
in the population do not reproduce and when the number of entities

in the population at the initial time s0 is zero.

6.4 External Input in Populations of Nonreproducing Entities

As mentioned earlier, a large number of processes of chemical
engineering interest involve populations of nonreproducing entities.
It will be seen later that some problems related to biological
populations can also be looked upon as the dynamics of nonreproduc-
ing entities.

Given a nonreproducing entity at go €D at time s, there
will be only one entity in D at all times t > s in the absence
of an external input, because if the entity is not in ﬁ, it must be
in §*, and thus the entity is always restricted to stay within 5.
In view of this, the PGF G(e,:[go,s) for the population starting
with one nonreproducing entity at go at time s and allowing no

external input can be written as

6(e,t]e%s) = ELo(8),t[60,5]

"

PRIGMCRILION (6.20)
D

where € denotes the location of the entity (the "ancestor') at
time t (cf. Equation (2.9)). Substitution of (6.20) in (6.11)

yields
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0 0
G(e,tlglo,...,gk 0;sO)
o
k

gﬁse<g)x<dg e|g” ,s0)>(exp{j v(s) j g x(dg, t\g »S0)
=1 0 D

i=

w(@?,s) (a(g)-1)deds)) . (6.21)

When there are no entities in the population initially, i.e., when
ko = 0, and the number of Poisson inputs k 1is a constant, in view

of Remark 6.1,

G(e,t|sy) = exp{jv(s){ [ x(dg,e]6°,)w(g%,5) [0(8) -17dg "ds}} €6.22)
€D

E €D
When
¢ if C€A .
e(g) = (6.22a)
1 if ¢ A

~
for an arbitrary set A C D, (6.22) reduces to

G(8,t|s,) = exp{j v(s)[ J x(a,c]g,s)u(e’ ,9)dg%ds (¢-1) (6.23)
°0 € cD

which is the probability generating function for a Poisson process
with mean

t
j v(s)[ j x(A, t\g s)w(§ ,s)dg 1ds

°0 e0ch

(see e.g. Parzen, 1962; p. 125). This is an important result and

may be stated as

Theorem 6.1: Suppose that the population in the spatial
domain D defined in Section 6.1 contains no entities at time Sy

and that
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(a) Entities appear in D according to k simultaneous
independent nonhomogeneous Poisson processes with rates
vi(s), i=1,...,k from an external source, where the
number k 1is a constant.

(b) The location §2 at which an entity first appears at
time s due to the i-th Poisson stream is distributed
in D according to a probability density wi(§2ss)
with respect to g?.

(¢) Each entity moves in b independently of others
according to a Markov transition probability distribu-
tion x(A,t\g,s) denoting the probability that the
entity at £ at time s will be in the set A cD
at time t = s.

(d) The entities do not reproduce.

Then the number of entities in any set A cD at time t 2 5 is

a Poisson-distributed random variable with mean

t
My (A, t)s.) = j v(s)[ j X(A,t\go,s)w(go,s)dgo]ds, (6.24)
°0 e'ch

where wv(s) and w(go,s) are related to vi(s) and wi(go,s),
i=1,...,k, by (6.1) and (6.2) respectively.

Bartlett (1966) has indicated that when a population of non-
reproducing individuals has an external input in the form of a
Poisson process, the total number of individuals in the population
at any time is a Poisson-distributed random variable if there are no
individuals in the population initially. This observation corres-

ponds to a special case of Theorem 6.1 with A =D 1in (6.24).
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Remark 6.3: To obtain the r-th factorial moment of the number
of entities in the set A cC D, it is necessary to evaluate the r-th
derivative of the probability generating function (6.23) at ¢ =0,

which yields the result
T r

Remark 6.4: By choosing the set A to be the single point

*

£ , it can be seen that when the hypotheses (a) thru (d) in Theorem
6.1 are satisfied, the number of entities which have been removed
from D during the time interval (so,t) due to death is a Poisson-
distributed random variable.

Many problems of practical interest can be looked upon as one
of the following special cases of Theorem 6.1:

Case 1: When the initial location of each entity at the time of its

. . . 0 . &
first appearance due to any input stream is a fixed point go €D,

the number of entities in any set AcD at any time t 2 0 has
a Poisson distribution with mean
t 0 )
M (A, t|sy) = £ v(s)x(A,t|E,,8)ds, (6.26)
0 0
which readily follows from the fact that in this case w(§ ,s) =
6(§0 - gg) and hence

0
[xtag,t]e%,0w(e®,9)de” = x(ds,t(g .9) -
D

Case 2: When the initial location of each entity at the time of its

first appearance in D due to the external input from the i-th

Poisson stream is located on the boundary I' of D with a proba-

bility density wi(g,s), i=1,...,k; where € denotes a point on




148

', the number of entities in any set AcC D at any time ¢t = S0
has a Poisson distribution with mean

t :
M, (A, t|s)) = £ v(s)iX(A,tlg,s)w(é,s)d%ds, (6.27)
0

where v(s) and w(s) are related to vi(s) and wi(s) by (6.1)
and (6.2) respectively.

In the case where the number of Poisson streams is a random
variable with the process parameters ¥(s) and W(E,s) defined

in Remark 6.1, substitution of (6.20) in (6.16) yields the expression

t
G(e,t\so) = Y{exp[f j I V(s)x(dg,t\go,s)ﬁ(go,s)[e(g)-l]ds]} (6.28)

%0 £ £
for the PGF of a population of nonreproducing entities with no
entities in the population initially. When ¢(E) 1is given by
(6.22a) for the set A C;E, the PGF reduces to the probability gen-

erating function ?(g,tlso) of the number of entities in the set

A, given by

t
¥(Cot|sy = v{expl[ [ T()x(a,t]e%,9)9E ,9)d%s (c-1)] . (6.29)

6.5 Applications

Most problems related to the population balance models of
chemical engineering interest can be cast in the theoretical frame-
work of the last section. For example, when a homogeneous nuclea- -
tion of crystals or other suspended particles (as in a flocculation
process) occurs in a process vessel, a Poisson rate of production
with a certain probability density for the location of the particle

in the vessel at the time of formation may be a reasonable assumption.
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When uniform conditions prevail throughout the contents of the vessel,
a uniform probability distribution for the initial location of a
particle at the instant of its formation can Be assumed. A similar
degcription can also be used to characterize atmospheric pﬁenomena
such as formation of smog. In many chemical processes such as
crystallization, nucleate boiling of fluids, distillation and liquid-
liquid extraction the particles (i.e., crystal nuclei, bubbles of

a vapor or droplets of a liquid) are formed at the surfaces enclosing
the fluid. 1In these cases a Poisson rate of formation with a certain
probability density for the initial location of the particles may

be a reasonable description. In case of processes carried out in
perfectly mixed vessels, the size or weight of a particle is often
the only quantity of interest -- in such cases the individual state
space for the particles in the population consists of the non-negative
real line, and the formation of particles can be characterized as

a Poisson input occurring at a single point in the state space, such
as nuclei of zero size appearing in the vessel due to a homogeneous
nucleation process. In many cases it may be necessary to consider
the input of entities as consisting éf a number of independent Poisson
processes occurring in parallel. For example, in nucleate boiling

of a fluid or in the case of a crystallizer where nucleation is
taking place at the surfaces of the vessel, the local temperature at
any point on the surface as well as the nature of the surface itself
determines the rate of formation of the bubbles or crystal nuclei.
Similarly, in processes such as distillation in a plate column the
rate of bubble formation at the bubble caps or at the heles in a

sieve plate will be dependent on the height of the liquid column
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above the bubble cap or the respective set of holes in the sieve
plate. Since the height of the liquid over a plate changes from the
inlet to the outlet weir on the plate, the rates of bubble formation

will be different at different points across the plate.

As discussed earlier in this chapter, the stochastic descrip-
tion of a population with an external input is quite involved in
case of reproducing populations and therefore application of the
theory of Section 6.3 to a crystallization process will be quite
difficult when homogeneous nucleation, nucelation &t the surfaces
of the vessel, as well as secondary nucleation are occurring

simultaneously at significant rates. Most particulate processes of

chemical engineering interest involve particles of nonreproducing
entities, for which the simpler results of the previous section may
apply. Thus, in general, it can be said that if
(i) At the start of a particulate process there are no
particles present in the process vessel.

(ii) The input of the particles into the process vessel can
be characterized by a fixed number k of Poisson streams,
with a probability density assigned to the particles
in each stream for their states (such as the location
inside the vessel as well as other characteristics such
as size, shape, weight, etc.) at the time of their first
appearance in the vessel,

(iii) The future states of a particle and also the probability
of its removal from the population depend only on its

present state and not the past history,
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(iv) The changes in the state of a particle as well as its
removal from the population proceed independently of
other particles,

then the number of particles in any given set of states such as a
size class, a volume element inside the vessel, etc. at any time is
a Poisson-distributed random number.

In case of biological populations the external input commonly
manifests itself in the form of a migration of individuals. As dis-
cussed before, the analysis of the stochastic fluctuations in a
population with reproductive as well as migratory inputs is quite
complicated. However, the study of migration of a single generation
of individuals is also of importance in many problems of practical
interest and in these cases the simpler analysis of the previous
section can be applied. The example of the cereal leaf beetle (CLB),

Oulema melanopus (L.) may be cited in this context. The CLB is an

economic pest of the small grain crops in the North American con-
tinent. It has only one generation every year. In early spring the
hibernating adults emerge from their overwintering sites in wooded
areas surrounding grain fields and move to the succulent grain crops.
They feed on the plant leaves for some time before starting their
mating and egg-laying activity. Most of the damage to the plants is
done by the larvae emerging from the eggs. Among other things, a
detailed study of the movement patterns of the adults is necessary
to arrive at efficient strategies for the control of the pest.
Ruesink and Haynes (1972) studied the distribution patterns of the
CLB adult populations in grain fields under different population

densities. Their obsexvations indicate that the adults are scattered
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in a field according to a Poisson distribution only at medium
densities. The mean and variance of the number of adults caught in
a number of samples in the same field are significantly different
from each other at very high and very low densities indicating that
the spatial distribution is not Poisson at these densities.

If the rate of emergence of the CLB adults is assumed to
occur according to a Poisson process with the points of emergence
(i.e., the overwintering sites) distributed along the boundary of
the field with a certain probability density and if the movement of
a beetle within a field as well as its death are assumed to occur
independently of otﬁers according to a Markov transition probability,
then the number of beetles in any section of the field at any time
should have a Poisson distribution. This description may be a good
starting point in the quantitative study of the migration of the CLB
adults. It is likely that the assumption of a Poisson emergence rate
is not justifiable at low densities (cf. Section 6.6) and there may
be a significant interaction among the individuals at high densities.

The analysis of external input to populations of nonreproduc-
ing entities can also be applied to problems other than spatial
migration of biological populations. For example, in the study of
the CLB population dynamics, the egg-laying activity of the over-
wintering adults can be considered as an "external" input to the new
generation of the insects. In this case the individual state space
E consists of the positive octant of a three dimensional Euclidean
space with co-ordinates z152, and Zq; with z, representing the
maturity of an individual and Z, 524 denoting its geographical loca-

tion in the field. The egg-laying activity of an adult located at
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the point (22,23) in the geographical domain constitutes an
"external' input of individuals of new generation at the boundary
point € = (0,z2,z3). Since the eggs and pupae are not translocated
and since the migration of larvae is small relative to the dimensions
of the field, the (Markovian) transition probability x(A,t|E,s)
characterizing the movement of an individual in E can be looked
upon as the transition probability of movement along the maturity
co-ordinate alone. Thus, x(A,tlg,s) is independent of the geo-
graphical co-ordinates of an individual. In view of this, the

quantitative description of the population in a fixed geographical

area can be written in terms of alone.

%1
It should be noted that when the diffusion equation can be
used to characterize the growth of an individual, the transition

probability x(A,t\zl,s) is given by the solution of the backward

diffusion equation

BX(A,t\Zl:S)
- s = dz X(A,t‘zl,s) (6.30)
1

with the initial condition
X(4,¢t|z1,6) = I(A|z))
and the boundary conditions

ax(A,t]|z;,s)

=0
3%y Z1”
and
3x(4,t|a,,s) .

azl Zl=a -

for a reflecting boundary at z; = &, or
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X(A,t\ﬁ,s) =0
for an absorbing boundary at zy = 3. The operator & is the back-

z
1
ward diffusion operator defined in (4.11). Alternatively, the transi-

tion probability can also be expressed in terms of the solution of
the corresponding forward diffusion equation for the transition
probability density.

The problem is complicated by the fact that the number of
egg-laying adult females in any fixed area in a grain field is a
random number. If the overall effect of the egg-laying females can

be characterized as a random number k of Poisson inputs, each with

the same rate V(s), such that the number of inputs k varies from
one part of the field to the other, but does not change with time

in any fixed area within the field, and if the random number k has
the probability generating function VY, then the number of individuals
of the new generation in any given maturity range is given by (6.29).

In the case where it is necessary to assume that the number of Poisson

inputs k for any fixed area also changes with time, an additional
transition probability describing the change in k must also be

included in the description, thus further complicating the problem.

6.6 Justification of a Poisson Input

Throughout this chapter the external input to the population
has been assumed to be in the form of a Poisson process. Besides the
obvious advantages of its nice analytical properties, the assumption
of a Poisson process is often justified on the basis of the fact that
a stochastic process formed by a superposition of a number of

independent sequences of events converges in distribution (see e.g.,
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Feller, 1966; p. 243 for a definition of convergence in distribution)
to a Poisson process if the individual sequences satisfy certain
simple conditions (Jagers, 1971).

Connin (1971) studied the rate of egg-laying by CLB females
under constant environmental conditions. The females were caught in
the field and kept under controlled conditions at 80°F, 40% relative
humidity and a 16 hour day-8 hour night cycle. The same experiment
was also performed using adults reared and mated under laboratory
conditions. A typical sequence of the daily egg-input by a CLB
female is shown in Figure 6.1. A mated female starts to lay eggs at
a relatively small number per day, quickly reaching a plateau, after
which it continues to lay eggs at a more or less steady rate for
two or three weeks (or even longer) before reaching a low rate again.
The rate of egg output of a female is mainly a function of temperature
(Yun, 1967) but the average rate during the egg-laying period varies
from individual to individual, with an average of about 12 eggs per
day at 80°F. It can be seen that under constant temperature condi-
tions, if the female lays ten or twelve eggs during one day, it is
very likely to lay about the same number of eggs during the next day.
Since the number of eggs laid in disjoint intervals of time are not
necessarily independent of each other and since it is possible to pre-
dict with certainty that an egg will be laid during certain time
intervals, axioms (i) and (ii) of a Poisson process (see Section 6.1)
will not be satisfied if the egg input is provided by a single female.

Wellso (1972) studied the egg-laying and feeding behavior of
CLB adults. He enclosed the females in individual cages set up on

oat plants in a field. The number of eggs laid by each female were
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Figure 6.1 A typical sequence of the daily egg-input by a single

cereal leaf beetle female.

(Source: Connin, 1971)




157

counted every day. The x? test (see e.g., Himmelblau, 1970; p. 74)
was performed on this data to see how well the combined net daily
input of eggs by all the females in the experiment can be represented
by a Poisson process. The computed values of xz were compared with
those for a XZ distribution with a 10% level of significance for
the appropriate number of degrees of freedom. The results of the
statistical analysis of Wellso's data are summarized in Tables 6.1
and 6.2. 1In the results reported in Table 6.1, all the females taken
for the experiment were considered whereas in the results listed in
Table 6.2, only the females which laid eggs during each day were
analyzed. When all the females in the experiment were considered in
the analysis, the computed values of xz were greater than those for
the XZ distribution in four out of ten cases. When only the egg-
laying females were considered, the computed values of x2 were
greater than those for a xz distribution in only two cases. This
indicates that the total egg-input from all the females in the
experiment may be only a poor approximation to a Poisson process, but
when only the females which lay eggs are considered, the overall pro-
cess may be a good approximation to the Poisson process. It should
be noted that all the females used in the experiment were already
mated and ready for oviposition. In the field populations there will
also be a population of adults who have just emerged from their

hibernation sites and have just begun their feeding and mating activity.

" ”

However, if the adults are described in terms of their '"age'' since
the time of emergence, it should be possible to differentiate the
egg-laying adults from others, and when the number of egg-laying adults

in a given area is sufficiently large, a Poisson rate of egg-input can

be justified.
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Remark 6.5: It should be noted that the xz test for good-
ness of fit of a collection of random numbers to a given distribution
is only an approximate test. Thus the results of the test for CLB
oviposition data can only be interpreted to mean that there is no
reason to reject the hypothesis that the number of eggs laid by a
collection of ovipositing females each day does not differ significantly
from the Poisson distribution.

In the context of the particulate processes in chemical
engineering systems, the number of '"active sites' responsible for

the generation of the particles (such as the number of surface

imperfections on a heating surface in the case of nucleate boiling)
is usually much larger than the number of '"sources" (i.e., the CLB
females) considered in the analysis above. Hence, a similar
reasoning of a superposition of a large number of independent
Sequences‘of events converging to a Poisson process can be used to

justify a Poisson input at least in an approximate sense in many

particulate processes as well.




CHAPTER VII

AN EXPERIMENT BASED ON THE THEORY

7.1 Motivation

It was shown in Chapter IV that a diffusion equation can be
used to characterize the moment distributions of a population if the
movement of each entity in its spatial domain D can be represented
by a Markov transition probability satisfying (4.1), the birth and
death processes are also Markovian -- defined as in Section 4.1 and
the movement of an entity in D as well as its reproduction and death
take place independently of others. It is therefore necessary to test
the validity of these conditions before the use of the diffusion equa-
tion can be justified in the modeling of a population. The inter-
dependence between the members of the population may not necessarily
be in the form of a physical interaction. For example, the insects
feeding on the leaves of a grain plant may be located on different
leaves of the plant with no physical interference between the feeding
activity of each other. However, the feeding by each insect affects
the condition of the plant in terms of the growth rate and succulence
of the plant tissues, which in turn affects the new leaf surface area
as well as the quality of food available to all the insects feeding
on the same plant. The result obtained in Theorem 6.1 in the last
chapter can be used to test whether the conditions of Markov transition

probabilities and independence of entities in the population are

161
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satisfied. To demonstrate this with the help of a simple problem of
practical interest, a controlled experiment was performed on the cereal
leaf beetle (CLB) populations.

The life-cycle of the CLB can be divided into seven distinct

"instars"

stages -- eggs, four stages of development (commonly called
by the entomologists) of larvae, pupae and adults. Most of the damage
to the crop is done by the larvae, mainly because they feed on the
plant leaves in the early stages of development of the plant, thus

severely affecting the plant growth at high larval densities. Thus,

for the within-generation dynamics of the CLB population and its

impact on the plants the range of maturities of the CLB from the
beginning of the egg stage'to the end of the fourth larval instar is
of interest. The survivals in the pupae and the adults are related to
the supply of eggs for the succeeding season.

When the egg-input occurs according to a Poisson process, the
maturation and death of any individual are characterized by Markov
transition probabilities and the change from one life-stage into another
occurs at fixed levels of maturity, then by Theorem 6.1 the number of
individuals in any life-stage at any time must be a Poisson-distributed
random number. Thus, if a Poisson input of eggs is generated and if
the population of any particular life-stage at any time in a large
number of replicate experiments do not have a Poisson distribution,
then it can be said that the conditions mentioned above are not satis-

fied for the population of that life-stage.

7.2 Methods and Materials

The CLB eggs are about one millimeter in length. The larvae

grow from approximately the size of an egg to a length of about six
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millimeters. In an experiment aimed at testing the independence of
individuals and Markov tramsition probabilities it is necessary to
have a large number of replicate experiments and to count the popula-
tions of different life-stages of the CLB at different points in

time without disturbing the plants or the insects. Since the experi-
ment is based on the measurement of the sample realizations of a
stochastic process, the accuracy in counting the number of individuals
is also very important. For the ease and accuracy of counting and

to ensure a better control over the dynamic processes in the popula-
tion, the experiment was conducted in a controlled atmosphere room

in a laboratory. Two sets of experiments were performed: Experiment
A and Experiment B. 1In Experiment A an abundant supply of food was
provided to the insects so as to have little interaction between
individuals. In Experiment B the food supply was severely restricted
so that growth and death of an individual may be significantly in-
fluenced by other individuals in the population. Thirty replicates
of each experiment were run to have a sufficient number of sample
realizations of the process.

Although a large number of beetles laying eggs simultaneously
lead to approximately a Poisson input of eggs (cf. Section 6.6), the
experiment was performed with an artificially generated Poisson input
by manually transferring the newly laid eggs onto the experimental
plants to ensure a better control of the input. A sequence of 30
random numbers having a Poisson distribution with mean = 10 was
computed using a table of random numbers. Each number in the sequence
represented the total number of eggs to be used in a replicate experi-

ment. Adult beetles were allowed to lay eggs on plants enclosed in
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a cage in the laboratory for a period of eight hours, thus generating
approximately a cohort of eggs. The required number of eggs was then
carefully transferred on the experimental plants. The eggs have a
layer of an adhesive on the outside, which made the transfer of eggs
relatively easy. The same sequence of Poisson-distributed random
numbers was used to generate the egg input in Experiments A and B.
Pots with barley plants having a uniform height of about 3.5
inches were chosen for the experiment. The number of stems per pot
was chosen to be 40 for Experiment A and 25 for Experiment B. Plaster
of Paris suspension was poured in each pot to ctover the soil. The
larvae have to go underground to form pupae. At the appropriate time
a layer of vermiculite (a mineral normally used as a soil conditioner)
was spread over the plaster of Paris surface. The plaster of Paris
surface acted as a barrier restricting the insects to form pupae in
the vermiculite layer. The required number of eggs were transferred
to the plants and the pots were kept well separated from each other
in large metal trays. Water was added to the trays every day to
irrigate the plants through the holes at the bottoms of the pots. The
atmospheric conditions in the room were set at 16 hours of daylight
provided by fluorescent light and 8 hours of night, with the temperature
being 80°F and 76°F during the day and night respectively. The
relative hunidity in the room was kept at 40%. Under these conditions
the eggs began to hatch on the seventh day. Several hours before the
actual emergence of the larvae from the eggs, the eggs had turned
dark brown and the heads of the larvae could be clearly seen through
the shells. After the eggs were ready to hatch the number of

individuals in each life-stage were counted every day.
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Each larval instar of the CLB is characterized by its head
capsule diameter, which changes only during transition from one instar
to another, when the insect sheds its head capsule and a part of its
skin, and forms a larger head capsule. The head capsule diameter
changes from one instar to the next by only a few microns. It is
therefore difficult to distinguish between an insect which would molt
shortly and one which has just molted without a microscope. More-
over, the molting process lasts several hours. Since the counting
was to be done without disturbing the insects or plants, the larvae
had to be classified according to the instars only by a visual observa-
tion. However, the presence of shedded head capsules and skins on
the leaves often provided a clue regarding the number of individuals
undergoing transition.

The larvae can crawl from one plant to another. When the larvae
grew large enough to crawl from one pot to another, the plants in each
pot were enclosed in lantern globes covered with pieces of cloth.
Plants in Experiment A were sprayed periodically with water by means
of a spray bottle to simulate rain. However, this did not seem to
affect the larval mortality. In spite of the limited food availability
in Experiment B, the larval mortalities were not noticeably different
from that in Experiment A. In view of this the number of stems per
pot in Experiment B were reduced progressively to four per pot. At
this point in time however, all the available green foliage in almost
all the replicate experiments was readily consumed by the larvae.

After this stage only a limited amount of food (one stem per day or
less) was supplied to the larvae in Experiment B. Figure 7.1

illustrates the difference in the condition of the plants in Experiments
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A and B on the l4th day for pots, each of which had 14 eggs initially.
The laboratory was also being used for other experiments, for which it
was necessary to change the environmental conditions in the room.

All the pots were therefore moved to growth chambers (i.e., small
controlled-atmosphere cabinets) where the same temperature and day-
light cycles were used. At the time of this transfer most of the
insects had already formed pupae. All the pupae were left undisturbed
until the adult emergence was complete, aftef which the pupal cases
were removed from the vermiculite in the pots and opened to make sure
that any insects left inside the cocoons were dead. The important
steps in the experimental procedure are summarized in Table 7.1.

The daily emergence of the adults did not show the expected
behavior -- in some replicates the emergence took place much earlier
than the others, while in some replicates there was no emergence at
all. The humidity in the growth chambers was not controlled. More-
over, the presence of a stagnant mass of air enclosed by the lantern
globe and the covering cloth over each pot created conditions sig-
nificantly different from those outside the lantern globes. The
moisture evaporating from the soil was condensing on the inner sur-
faces of many lantern globes, thus creating almost a complete reten-
tion of moisture inside the globes. The presence of the condensate
indicated that the air inside the globes was saturated with modsture.
The temperature of vermiculite in the pots was also found to be sub-
stantially different from that of the ambient air inside the growth
chambers, and varied from pot to pot. The vermiculite temperature
was found to be as high as 98°F in some pots. In general, the pots

with drier soil tended to have higher temperatures.
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Table 7.1. Important Steps in the Experiments with CLB Populations

Day Procedural Step
1 Experiment started with 40 barley plants per pot
7 Eggs began to hatch -- daily counting of populations
started
10 Put lantern globes on all pots
< 11 Sprayed water on the plants to simulate rain
o
e 12 Sprayed water on the plants to simulate rain
: 13 Sprayed water to simulate rain, covered lantern globes
i with cloth
-
v 14 Sprayed water to simulate rain
: 15 Added vermiculite to all pots for the insects to pupate
" 18 Moved all pots to growth chambers
33 Experiment terminated
1 Experiment started with 25 barley plants per pot
7 Eggs began to hatch -- daily counting of populations
started
9 Put lantern globes on all pots
10 Reduced number of plants to 16 per pot
- 11 Covered lantern globes with cloth
o 12 Reduced number of plants to 9 per pot
-]
v 13 Added vermiculite to all pots for the insects to
E pupate, reduced number of plants to 4 per pot
ol
H 14 Added one stem of barley as food
(V]
o 15 Added one stem of barley as food
H]
5] 16 Moved all pots to growth chambers
3 Experiment terminated
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The effect of moisture on growth of the CLB is not well
understood. The vermiculite in many pots exhibited fungus growth.

The fungus growth was more significant in pots with a higher moisture
content. The fungus was probably responsiblé for a part of the pupal
mortalities, and thus the nonuniform humidity in different replicate
experiments may have resulted in nonuniform mortalities in the pupal
populations in the different replicates. However, since Experiments
A and B were conducted under almost identical environmental conditionms,
it is reasonable to assume that if the difference in the food supply
to the larvae did not have any effect on growth and mortalities of
the insects in the two experiments, the effect of nonuniformities

in humidity in the different replicates of Experiments A and B should
also be identical.

The growth rate of an individual is directly related to the
temperature (cf. Appendix A), which is believed to be a principal
reason for the deviations from the expected emergence behavior of the
adults. However, the result of Theorem 6.1 is still applicable if the
total number of adults that ever emerged from the pupae are chosen
as the quantity of interest by considering the range of maturities
corresponding to the entire population coupled with an additional
absorbing state g** to characterize all the individuals that died
during the adult stage (cf. Section 6.4) and by taking the time of
observation to be such that no live individuals are present in any
stage except the adults. In view of this only the total number of

adults which emerged from each pot were analyzed instead of the daily

number of emerging adults.
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7.3 Results and Discussion

The data on the daily population counts of each life-stage
in Experiments A and B is listed in Tables 7.2 and 7.3 respectively.

This data was analyzed using an IBM 1800 computer. The x? test was

used to see whether the observed numbers in each life-stage at any
given time had a Poisson distribution. The results of Experiments
A and B are summarized in Tables 7.4 and 7.5 respectively. The com-
puter program is listed in Appendix D. It can be seen from Tables
7.4 and 7.5 that the populations of all life-stages from the eggs to

the pupae show a good fit to the Poisson distribution with few

exceptions. The poor fit in these exceptional cases could be
attributed to errors in distinguishing between successive instars.
Better results were obtained in some instances when the dark-colored
eggs which were ready to hatch were counted as larvae.

Although the degree of starvation of the insects in quite a
few replicates of Experiment B was extremely severe, the mortality
as well as the xz statistics of all stages up to the fourth instar
did not exhibit any significant difference from that iﬁ Experiment A.

All the fourth instar larvae which went underground were counted as

pupae. Since the number of pupal cases recovered at the end of
Experiment B was less than the number fourth instar larvae in many
replicates, it is likely that some of the starved larvae could not
form complete cocoons, or died in the early part of the pupal stage
and were completely decomposed by microbial activity. The total pupal
mortality in Experiment B was much higher than Experiment A. It can
be seen from the results that while the final population of the

emerging adults in Experiment A was not a good approximation to a
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Poisson distribution (possibly due to the nonuniformity of temperature,
humidity, etc. resulting in different death rates in the replicates),
the adult population in Experiment B was even worse. Since the higher
pupal mortality in Experiment B could be directly related to the
amount of feeding done by the insects during the larval stages, i.e.,
the past feeding history, it can be said that the probability of death
in the pupal stage was not Markovian, and therefore the Poisson char-
acter of the adult population was further distorted in Experiment B.

Remark 7.1: In view of Remark 6.5, the goodﬁess of fit of
the population data to the Poisson distribution can be inferred only
in an approximate sense. The results of the XZ test can be taken
to mean that the hypothesis regarding the independence of individuals
and Markov nature of the dynamic processes in laboratory populations
of the CLB may be true for any life stage up to and including the
fourth instar even under severely stressed conditions. If growth of
an individual can be characterized by a continuous Markov process
satisfying (4.1) and the probability of death can be defined as in
Section 4.1, then the diffusion equation can be used to describe the
changes in the population in the range of maturities from the
beginning of the egg stage to the end of the fourth instar. This is
the case when the egg input is known and only the impact of the beetle
on the crop for a given season has to be studied.

Barr, Kharkar and Lee (1972) have used the diffusion equation
to characterize the first moment density of fieid populations of the
CLB. Remark 7.1 will hold for their model if the behavior of the
insects in field populations is similar to that observed in the

experiments. In practice, the CLB population densities in the grain
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fields will newer be allowed to reach a stage of a complete de-
foliation of the plants. Chemical controls will normally be applied
at a very much smaller level of damage to the plants than that
observed in Experiment B. It is therefore possible that in field
populations the conditions of independence of individuals and Markov
transition probabilities will continue to hold even for the pupae

and the adults at all the densities normally encountered, and the

use of the diffusion equat ion may be justified for describing the
entire life-cycle of the insect. However, it is also likely that
under field conditions the solar radiation, wind and humidity will
play a significant effect on the mortalities of larvae under stressed
conditions. When there is a significant defoliation of the plants due
to insect feeding, the larvae have to move larger distances on a plant
or in a group of neighboring plants to find suitable food, and in
this process they are more likely to be blown or shaken off the plant
due to the action of wind. This increases the chances of a higher
metabolic stress as well as mechanical damage to the tissues, re-
sulting in a greater chance of dying at the time of molting due to
inability of a 1larva to shed its head capsuleand skin. Moreover,
the larvae on defoliated plants are directly exposed to the sun for
longer periods of time and the effect of dehydration due to solar
radiation is also likely to be more pronounced, particularly when
the humidity of the ambient air is low. A careful investigation of
the effect of these factors is needed before a definite conclusion

about the justification of the diffusion equation to describe the CLB

field populations can be drawn.







CHAPTER VIII

CONCLUSIONS

8.1 Summary of the Contributions of this Dissertation

This work has cast the population balance models in a very
general stochastic framework. Applications of the models considered
in this dissertation include the residence time distribution analysis
(RTD) of fluids in process vessels under steady flow conditioms,
dynamics of particulate and polymerization processes in chemical
engineering systems as well as dynamics of populations in biological
and social systems. A probabilistic treatment of the population
balance models in chemical engineering has been restricted only to
some simple cases thus far (e.g., Kane, 1971; Shinnar and Katz,
1969; Schmalzer and Hoelscher, 1971). The "continuous stirred tank"
and "dispersion' approaches in the RTD analysis have been shown to
be applicable for a large class of general populations. Although
analogous models had been proposed and used for some biological
populations, the generality of these approaches had not been fully
appreciated so far. Since the methods of parameter estimation are
well developed for the RTD analysis, the possibility of use of
analogous models to other populations makes it possible to use analogous
methods for the evaluation of parameters as well.

Diffusion equations have been derived for the probability

generating functional as well as the first two factorial moment
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distributions and densities for a population of reproducing entities.
These equations represent a more general situation than similar equa-
tions previously reported in literature. The backward equations are
used only very rarely in engineering applications =-- the value of
these equations in some cases of practical interest has been demon-
strated. It is a common engineering practice to use Monte Carlo
methods to characterize the stochastic fluctuations in the model of

a process. These methods use models where the parameters are assumed
to be random numbers with known distributions (the normal distribution
is often used for this purpose). The values of the parameters are
generated with the help of a random number generator and a number of
solutions are obtained by using different values of the parameters
thus generated. The mean and variance of the output of the model are
then computed from the replicate solutions. Coulman, Riece and
Tummala (1971) have used this method in a model for a species of
freshwater shrimp to characterize the mean and variance of the
population as functions of time. The equations for the moment dis-
tributions derived in the present work represent an alternative to
the Monte-Carlo techniques. The simple cases of practical interest
for which the analytical and numerical solutions have been obtained
in the present work represent new results and demonstrate the value
of the stochastic approach to the population balance models.

A very general analysis for populations of reproducing
entities has been presented to include the effect of external input
on the probability generating functional and the first two factorial
moments of the population. In this analysis the external input is

assumed to be in the form of a nonhomogeneous Poisson process, the
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entities in the population are considered to be independent of one
another and the movement of each entity in its state space is char-
acterized by a Markov transition probability. An explicit partial
differential equation has been obtained for the first moment density
of a population of reproducing entities with an external input,

with the movement of each entity in its one-dimensional state space
being characterized by a diffusion process. An important result
(Theorem 6.1) has been obtained for the particular case of popula;
tions of nonreproducing entities, and its application to several
cases of practical interest has been discussed.

The models derived in this dissertation are based upon two
key assumptions: mutual independence of entities in the population
and Markov transition probabilities characterizing the death, re-
production and movement of each entity in its state space. Possi-
bility of using the theory developed in this thesis in validating
these assumptions for the particular case of nonreproducing popula-

tions has been demonstrated by means of a simple experiment.

8.2 Areas for Future Research

The analytical results in Chapter V were based upon the
hypothesis that the dominant eigenvalue of the diffusion operator
(with parameters defined by (5.1)) is unique and real. Although
the existence of a real eigenvalue has been proved, it remains to be
shown that this eigenvalue ié the only dominant eigenvalue.

The processes for which the present work does not apply
include the size reduction processes in chemical engineering systems

and degradation of polymer molecules, where every breakage of an
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entity maf result in apoint process, i.e., a random distribution of
sizes of the '"pieces' may be generated at every breakage. Possi-
bilities of extending the present anaiysis to describe these pro-
cesses need to be explored.

Another situation not covered in this dissertation is the
case of a population with an external input in the form of a gen-
eralized Poisson process. Incorporation of such an input in the
analysis will greatly add to the generality of the present work.

In industrial processes involving particulare matter the
number of particles in the system is usually very large and con-
sequently the stochastic fluctuations in the dynamic characteristics
of the process system are almost always of a minor importance.
However, the data needed for the design of these systems are usually
collected in a small experimental setup where the number of particles
is rather small, and the scatter in the data is often rather large.
Use of stochastic models in the analysis of such systems instead
of considering the scatter to be "noise" in the data may lead to a
better understanding of these systems. Similarly, in systems such
as fluidized beds often it is not possible to use a purely deter-
ministic approach to characterize certain phenomena like the formation
and breakup of large bubbles and the relationship of these phenomena
to the characteristics of the fluidized particles. The stochastic
framework provided in this thesis, or other formulations based upon
the theory of stochastic population processes offer alternative ways
to describe a broad range of such problems of chemical engineering
interest. In order to fully appreciate the value of a stochastic

approach such applications need to be explored in detail.
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As mentioned before, the stochastic framework for the popula-
tion balance models makes it possible to formulate the models based
entirely upon phenomenological descriptions of the processes involved.
In the analysis of crystallization processes the growth and nuclea-
tion rates are commonly expressed by empirical kinetic expressions.
Hypotheses treating these phenomena as stochastic processes would
be a natural next step in gaining a better quantitative understanding
of the crystallization processes. It would be beneficial to carry
out similar investigations regarding the dynamics of other particulate
processes also.

The possibility of an application of the models developed
in this thesis to social systems needs to be explored. For example,
orthodox or enterprising nature of certain ethnic groups can possibly
be quantified by using the concepts developed in Chapter III: Thus,
if the post-world war II boom in the U.S. economy is considered as
a known change (such as a step or a ramp change) in the available
opportunities, a comparison of the economic (or educational) status
of different ethnic groups can be made to quantify how well each
group has used the opportunities. A group significantly surpassing
(or lagging behind) the rest of the population in reaping the benefits
from the opportunities can be seen to make the system a '"nonideal
population-flow system'" (see Section 3.4), since all the individuals
in the population do not progress at the same rate. The opportunistic
groups in the population can be characterized by the '"bypassing"
phenomenon whereas the groups lagging behind the rest of the popula-
tion can be described by the phenomenon of ''dead space" in the

population. The quantitative models for the social systems based
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upon such considerations can then be used to derive alternatives to
the current means of social control aimed at achieving a more equit-
able progress in the society.

Of the possible boundary conditions for diffusion equations,
the absorbing and reflecting boundaries have been used extensively
in various applications. The residence time distribution analysis
of flow in short packed beds offers a unique possibility of applica-
tion of a third type of boundary condition describing the possibility
that a fluid element at a boundary can jump to an interior point,
as pointed out in Section 4.2. The application of such a boundary
condition needs to be studied in greater detail.

The formulations presented in this work are based upon the
assumption that the entities in the population are independent of
one another. However, many phenomena in the dynamics of biological
populations result from interactions among individuals in the form
of competition for a certain vital resource. Similarly, chemical
engineering systéms such as liquid-liquid extraction and gas
absorption involve liquid droplets and gas bubbles which coalesce and
break-up again, thus violating the assumption of independence of
the entities. Application of the theory of stochastic population
processes to populations of interacting entities represents an un-
charted area in the study of stochastic processes. Development of
even approximate techniques for the calculation of the first two
moment distributions will represent an important milestone in the

mathematical modeling of populations.
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APPENDIX A

SIMPLIFICATION OF THE DIFFUSION MODEL FOR
SOME BIOLOGICAL POPULATIONS

The physiological processes such as growth and reproduction
in poikilothermic ('"cold-blooded") organisms exhibit a common char-
acteristic dependence on temperature. The rate of these processes
is negligible below a certain threshold temperature TL’ which de-
pends upon the species and the process, and increases more or less
linearly with temperature up to an upper threshold Tu. The rate
decreases with temperature above the upper threshold. However, for
a species adopted to a particular climate, the threshold temperatures
are often such that the total length of time spent by the organism
at temperatures above the upper threshold during a year is rather
small. For example, the upper and lower threshold temperatures for
the rates of growth and egg-laying for the cereal leaf beetle, a
major pest of the small grain crops in midwestern United States, are
about 48°F and 90°F respectively (Yun, 1967). The number of days
in a year with temperatures in the nineties 18 indeed small in this
part of the United States.

The commonality in the temperature dependence of poikilo-
thermic organisms is used to define a physiological time in terms of
"degree days". The use of degree days often leads to clearer bio-
logical insights into a system (see e.g., Wang, 1960), and is widely

used by biologists to study population data. The profound effect of |
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temperature on the physiological processes in poikilothermic organisms
implies that except for constant temperature studies, the para-
meters in the mathematical models of such populations must be
functions of temperature. Barr, Kharkar and Lee (1972) have shown
that the temperature dependence of the model parameters can often
be eliminated by using degree days instead of chronological time in
the quantitative descriptions. They have discussed this simplifica-
tion for the forward diffusion equation for the first moment density
of a population where each individual is characterized by only one
descriptor, namely, maturity. The same argument can be used to show
that the diffusion equation for the probability generating functional
(PGF) can also be greatly simplified by the use of degree days, and
hence the simplification applies to all the moment distributions of
the population.

Consider the backward diffusion equation for the PGF with vy

denoting the initial location of an ancestor at time s:

_a6(e,tly,s) _ g 2 (y.8) a’c(a, tly,§1,+ r(y,s) a_Lﬂ;_l14_L
3s 2

By
= u(}’aS)G(O,t\Y,S) + H:(y:s) - Z )\i(y’S)G(e:t\YaS)
i=1
+ z A (7,8)G(8,t]|0,8) 6(0,t]y,s) (4.12)

i=1

with the initial condition

G(o,t]y,t) = 8(y) (4.16)

and boundary conditions

EL.LQ;.JJLL_l\ 0, (4.14)

y—O
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and

QG(e,tlz,S)\ -
Y y=a

for a reflecting barrier at vy

G(e,t\ﬁ,s) =1

I

for an absorbing barrier at y
2

(4.

d. Moreover, let the parameters

g—, r, p and xi’ i =1,2,... be piecewise linear functions of

temperature with the same lower threshold temperature, i.e., for

temperatures T(s) below the upper threshold let

2 2

e 008) - £11(s) 1T
r(y,s) = f[T(s)]E(Y),
w(y,s) = £[T(s)p (),
and A (758) = f[T(s)]{i(y), i=1,2,...

where

T(s) - T& for T(s) = T£

£[T(s)] =

0 for T(s) < T&

and define the physiological time variable T as

S
7 = [ £[T(w)]dw ,

for a fixed ¢t.

(A.

(A

(A

(A

(A.

(A.

Since df = £[T(s)]ds, it follows that (4.12) thru (4.16) can be

written as

13)

)

.2)

.3)

)

5)

6)
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_a6o,tly,T) _ ARC)) RZG(QJL‘L,"F) + 2y 260ty D)
T 2 2 3y
Y
- E6e,tly,® + () - L, ()6(8,t]y, )
i=1
+ £ X, 68,0, 6(a,t]y, D), .7
i=1
G(s,t|a,0) = 8(y), (A.8)
aQ£94£l£JEL\ =0, (A.9)
dY y=0
aGge,tla,?2| =0 (A.10)
3y y=2
and
G(o,t|d,7) =1 (A.11)

respectively. Note that the temperature dependence of the parameters
has been eliminated in (A.7) thru (a.ll) because f£[T(s)] has been
cancelled from each term in the equations.

In view of the fact that xi(y,s), i=1,2,... essentially
describe a physiological process, (A.4) is a realistic approxima-
tion for reproduction in poikilothermic organisms. The actual
temperature dependence of growth or maturation would very likely be
such that the random increment &8y in the maturity of an arbitrary
individual during a time interval §s is a piecewise linear func-
tion of temperature. The incremental growth §y is related to the
diffusion and drift coefficients by (4.1), from which it follows
that r would be characterized by a piecewise linear function as

2

in (A.2) and %— would be a quadratic function of temperature.

Analysis of the data of Yun (1967) and Helgesen (1969) for maturation

of the cereal leaf beetle lends some support to this conjecture.
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In spite of the quadratic dependence of the diffusion coefficient

on temperature, it may be possible to obtain a fair piecewise linear
2

approximation for g— as shown in (A.1).

The term p(y,s)ds 1is the probability of an individual of
maturity y being removed from the population by death or emigration
during the time interval (s,s+ds). 1In fact, it can be viewed as a
sum of three different terms representing loss of individuals to the
population from (i) emigration, (ii) death due to old age, disease,
etc. and natural enemies such as parasites and predators, and (iii)
artificial removal by harvesting, pestiaide application, etc. The
following discussion considers (i), (ii) and (iii) in sequence as
if each occurred alone:

When emigration of individuals occurs solely due to locomo-
tion, (A.3) can be justified in view of the fact that locomotive
activity of an individual is essentially a physiological process and
hence dependent upon temperature. For natural death and death due to
natural enemies, (3.4) does not at first seem to be an accurate re-
presentation. However, in some species these mortalities are often
considered to occur at those particular discrete maturities which
define the transitions between the various life stages of an organism.
For such a situation (4.12) may be used to describe the behavior
between each of these transitions with ;(y,s) being 0. Thus (A.3)
is trivially satisfied with J(y) = 0. When this form of analysis
is employed, these mortalities are used to determine boundary condi-

tions at each of the transitions. The assumption of mortalities







197

occurring enly at maturity transitions seems to be particularly good
for natural death and parasitism, as compared to predators. Never-
theless, since a prey may be less mobile at transitions between life
stages, it could be more vulnerable to predators. Artificial re-
moval by harvesting and pesticides is essentially independent of
temperature and thus for this case (A.3) is invalid, and the func-
tion w(y,s) 1in (A.7) must be replaced by

“—(Y-:—Lf[T(:)] . (A.12)

If w(y,s) = 0 whenever f£[T(s)]

0, then the analytical form of
(A.3) and the resulting (A.7) are well posed. This supposition is
true when harvesting, pesticide application, etc. do not occur at
temperatures below the lower threshold TL' When f[T(s)] >0,
(A.5) describes a one-to-one relationship between s and 7, and
thus in (A.12) s may be replaced by T. The resulting form of
(A.7) is simpler than (4.12) in the sense that only one parameter is
dependent upon temperature. When (i), (ii) and (iii) occur simul-
taneously, all the remarks above must hold for the simplification
to be possible.

When (A.1) thru (A.4) are valid even after a suitable choice
of a maturity variable y to remove the dependence of parameters
on y, (A.7) reduces to an equation with constant coefficients, and
the analysis of Sections 5.2 and 5.3 can be used to solve the moment
equations derived from the diffusion equation for the PGF. 1In practice,

2

the parameters %—, r, p, and ki have to be taken as being in-

dependent of maturity over the respective maturity intervals. For

example, the data of Yun (1967) and Helgesen (1969) on the growth
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characteristics and egg laying behavior were obtained in the form
of the mean and standard deviation of the developmental times for
each of the life stages, and mean number of eggs per adult per day
respectively. 1In such cases elimination of temperature dependence
of the parameters again leads to a diffusion equation with constant

or piecewise constant parameters.







APPENDIX B

NUMERICAL COMPUTATION OF THE '"CRITICAL LENGTH"

As discussed in Section 5.4, the critical location & of
an absorbing barrier for a population of reproducing entities char-

acterized by a diffusion process is given by solving

(ﬁ/i)[le exp(vzﬁ)-vzﬁ exp(vlﬁ)] + vz? exp[vl(ﬁ-?ﬁ)]

- \)lP exp[\)z(P~Pb)] + \)lP - \)ZP =0, (5.64)
with
_ -1 /14 ap/p
V1 2
and
-1 -4/1 + 45/
\)2 = 2 ’
~ 2% 2
for P = —E§ and substituting for the diffusion coefficient %—
o}

and the drift coefficient r. The computer program CRITL was used
to obtain the family of curves in Figure 5.1 by solving (5.64) for
3 with a number of values of other parameters. In the program the
variables XM, PB, XMP and X1 correspond to the quantities
o, B6, 0/P and the assumed value of P (for an iterative solu-
tion) respectively from (5.64).

Since P must be larger than PB for a physically meaningful
solution (cf. Section 5.4), the iterative procedure in CRITIC is

started with X1 = PB. The function on the left hand side of (5.64)
199







200

is generated by the function subprogram FNC. The root P of (5.64)
is computed by using the subroutine CVGl available on magnetic tape
on the CDC 6500 computer at Michigan State University. The subroutine
works as follows: X1 and X2 are two trial values of a root of (5.64).
If both X1 and X2 lie on the same side of the root, the values Y

1
and Y of the function FNC evaluated at X1 and X2 will have the

2

same sign. When this is the case, the subroutine sets IND to -1 and
returns to the main program, to take a new value of X2. This pro-
cedure is repeated until X1 and X2 lie on opposite sides of a root.
If this procedure leads to too large a value of X2 to be physically
meaningful, the iteration is stopped and after printing a message to
that effect, the program proceeds to the next set of values of para-
meters. Once a value of X2 is found such that the root lies between
X1 and X2, the subroutine computes the point where the straight line
connecting the points (X1,Y1l) and (X2,Y2) crosses the X-axis. The
value of X corresponding to this point is taken as the new value of
X2 and the iteration is continued until Y1 or Y2 is sufficiently close
to zero. This iterative procedure is illustrated in Figure B.1l.

Since the subroutine CVGl gives only one root of the function
depending on the initial guesses of X1 and X2 and the iteration scheme
for changing the values of X2, the reliability of this computer pro-
gram hinges on the uniqueness of the solution to the problem of
critical length. The shape of the function was studied for a large
number of values of the parameters using an IBM 1800 computer coupled
with a plotter and it was found that only one root P of (5.64)
occurred for P > Pb. Although the uniqueness of the solution to

the problem of critical length was not proved theoretically, these

results were taken as an indication of the uniqueness.







Y = FNC ——
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Figure B.1

Iteration scheme for obtaining a root of Equation (5.64)
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APPENDIX C

COMPUTATION OF EXTINCTION PROBABILITY FOR
A POPULATION OF REPRODUCING ENTITIES

As discussed in Section 5.5, the extinction probability for
a population of reproducing entities characterized by a diffusion
process with parameters as in Table 5.2 (given one ancestor initially
at y) was computed by solving the backward diffusion equation for
the PGF with the init ial condition G(e,0|y) = 0. In view of the
nonlinear nature of the diffusion equation, the solution was obtained
numerically using finite differences. The difference equations for

the simulations with conditions described in Table 5.2 are

G(o, 61| i6y) -G(Q,T|idy) _ gi G(ﬁ4$l£i+l)5Y)'2G(9,T\iGY)+G(9,Tl(i‘1)5Y)}
CeT N =2 | ' 2
6y
- A (16Y)G(8,7|16y)[1-G(8,T[0)] for &y < idy s @-by, .1

G(0,T+67|0)-G(0,7]0) _ GZ{G(Q,TlQY%-G(G,TLO)} + r{giagdjdgjgiﬁzLUDq

6T by

+u[1-G(e,7|0)] - A, (0)G(0,T|0)[1-G(p,7{0)] (C.2)

and

G(8,T+o1|8) -G(Q,1|®) _ GZ{G(elTL§f6Y%‘G(9,Tl§)}
6T 5y

(ST E=o3) 0. TIDy 4 11 G(g,r|E)] - A, @C(B,T|D[1-6(8,7|0)]
v 1 (.3)
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when there is a reflecting barrier at y = 3, or

G(o,7|®) =1 (C.4)

for all T > 0, when there is an absorbing barrier at &. As

ment ioned above, the initial condition for the difference equations is

G(8,0]y) =0 . c.5)

Equations (C.1) thru (C.5) were solved using program PROB.
The notation for PROB is as follows: The arrays G(I) and XG(I)
contain values of G(e,T\iby) and G(e,T+6T\iéy) respectively.
Similarly, the quantities BH(I), S, R, DH, DT and DX denote
xl(iéy), %i, r, b, 67, and 8y respectively in (C.1l) thru (C.5).
The number M represents the total number of mesh points in the
discretizing scheme with M-1 equal divisiors of the interval
[0,5]. The program PROB given on the following pages characterizes

only one set of parameters from Table 5.2.
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APPENDIX D

ANALYSTIS OF EXPERIMENTAL DATA

The experimental data on the CLB populations was tested
for goodness of fit with a Poisson distribution using the X? test.
The program CHSQR was written to do this analysis on an IBM 1800
computer equipped with a keyboard, typewriter, card reader and
printer. The logical unit numbers 1, 2, 3 and 6 in the READ and
WRITE statements refer to the typewriter, card reader, line printer

and keyboard respectively. The function IDTSW takes signals from

the data switches on the main console to go from one part of the
program to another.

The program CHSQR calculates the x? statistics for N
replicate populations in Experiments A and B to test the goodness
of fit of the data with the Poisson distribution having the same
mean as the data. The program was thus used to compute

* 2
B LTI

n,
1

Il

where 0, the observed frequency of the number i (or a combina-

tion of numbers il’ 12,..., etc.) and

n. = the frequency of occurrence of the number i (or the
same combination of numbers as in ni) computed using

the distribution against which the sequence of numbers

is to be tested.
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This value of XZ was then compared with that from a standard table
of xz distribution for a 10% level of significance and k-2 degrees
of freedom, where k is the number of terms in the summation in
(D.1). If the computed value of X? was greater than that from the
tables, the hypothesis that the sequence of numbers (representing

the populations in different replicates) has a Poisson distribution
was rejected. For a greater reliability, the numbers in the sequence
to be tested are usually combined so that each n, represents one or
a combination of more than one numbers in the sequence such that
each n; is always greater than or equal to five. This convention
was followed for the computations with few exceptions, in which one
of the ni's was equal to four.

In program CHSQR 1IX(I,J) contains a two-dimensional array
of populations of different life stages on a given day, with I de-
noting the serial number of the replicate experiment and J repré-
senting the life stages of the CLB. The arfay IX(1,J) 1is to be
read in as data from cards. The working array X(I) consists of
populations of a particular life stage or a combination of the
numbers of individuals in different life stages in the replicate
exper iments. The program uses subrouting MOMNT to compute the
first four central moments (i.e., mean, variance, skewness and
kurtosis, cf. Himmelblau, 1970) of the numbers in X(I). Next, the
frequencies of occurrence of various numbers in the sequence X(I)
are computed -- IKQ(J) represents the number of times KQ(J) =
0,1,2,..., etc. occurs in the sequence X(I). This as well as the
calculation of the (Poisson) probabilities of occurrence POIS(I)

of KQ(I) 1is done using subrouting POISN. To evaluate XZ as in
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(D.1), different terms from the sequence KQ(I) are to be comhined
to make each n, greater than or equal to five. This is done by
selecting the appropriate numbers from the sequence KQ(I) and
feeding these as data for evaluation of each n, using the key-
board. The individual terms in the summation in (D.l) are computed
and printed as CHI(I). The variable CHISQ denotes the final value

of xz.

o
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