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ABSTRACT

A STOCHASTIC APPROACH TO POPULATION BALANCE MODELS

By

Anilkumar Narayan Kharkar

Population balance models are extremely important in the

quantitative analysis of chemical process systems characterized

by aggregates of matter, as well as ecological systems. A principal

 

aim of this work is to cast these models into a very general

stochastic framework.

By and large the development of population balance models in

chemical engineering thus far has been based upon purely deterministic

considerations and analogies with molecular processes. In this

dissertation a probabilistic approach has been presented to develop

a common basis for the population balance models used in the

residence time distribution analysis of process vessels, various

particulate processes and a large class of problems in ecological

systems.

The development of the population balance models is based

upon the theory of stochastic population processes. The state of

each entity in a population is represented by a point in a n—

dimensional Euclidean space and the dynamics of the population is

characterized by birth, death and movement of the entities in a

closed domain in this state space.
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In the context of populations of reproducing entities, the

process of crystal growth with secondary nucleation and the dynamics

of biological populations with reproduction are of particular interest.

A common feature of the crystallization process with the state of a

crystal described by its characteristic length and many biological

populations with individuals characterized by a measure of their

maturity is that all the entities in the population are in a particular

fixed state at the instant of their first appearance in the popula-

tion as a result of reproduction, irrespective of the state of the

parent. To account for the fact that identical entities do not

necessarily grow at the same rate, the growth of each entity is char-

acterized by a nonhomogeneous diffusion process on the interval

[0,5], where a can possibly approach infinity. Some types of

boundary behavior of practical interest are discussed. Backward

diffusion equations for the probability generating functional and

the first two factorial moment distributions, as well as forward

diffusion equations for the first two factorial moment densities are

derived for a population of reproducing entities with no external

input.

The diffusion equations for the moment distributions have been

analyzed for some simple cases. The following results have been

Obtained under mild conditions: i) a general solution for the first

moment density in terms of an infinite series of eigenfunctions of

the diffusion operator; ii) after a sufficiently large time the

first and second factorial moment of the number of entities in any

subinterval in [0,5] grow exponentially with parameters and

0‘1

2&1 respectively, where a1 is the dominant eigenvalue of the
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diffusion operator; and iii) the coefficient of variation of the

number of entities in any subinterval in [0,5] reaches the same

constant value after a sufficiently large time. Moreover, this

asymptotic value in (iii) has been shown to be inversely propor-

tional to the square root of the initial number of entities in the

entire population. An interesting facet of the diffusion process

in the context of reproducing populations is that under certain

conditions the location of the boundary a will determine whether

the population will increase or decrease. A graphical solution for

the determination of this critical value of a has been obtained

in terms of dimensionless parameters for the case where a is an

absorbing barrier. The diffusion equation for the probability

generating functional has been solved numerically to obtain the

extinction probability of a population. These results had not been

obtained thus far for the particular cases considered.

In general, a population will also have an input of entities

from a source external to the population. Expressions have been

derived for the probability generating functional and the first two

factorial moment distributions for a population with a nonhomogeneous

Poisson input. It is shown that in the case of a population of non-  
reproducing entities if the birth, death, and movement of entities in

a n—dimensional Spatial domain can be characterized by a Markov pro-

cess, and if the population receives an external input in the form

A of a nonhomogeneous Poisson process, then the number of entities in

any set in the spatial domain at any time is a Poisson-distributed

random variable. The use of this result in validating some assump-

tions behind the models developed in this work has been demonstrated

by means of a simple experiment.
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The theoretical results obtained in this work are of con-

siderable importance in a broad class of problems related to chemical

engineering and ecological systems. Several examples of practical

interest are also discussed along with the results.
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CHAPTER I

INTRODUCTION

The use of mathematical models in the analysis of dynamic

systems has become a common practice since the advent of high-speed

large—capacity computers. The mathematical models used in chemical

engineering practice can be classified into three broad categories:

(a) TranSport phenomena models, (b) Population balance models and

(c) Empirical models. The transport phenomena models use physico~

chemical properties of matter such as diffusivity, thermal con-

ductivity and viscosity to obtain a dynamic description of the

and energy. Systems comprised of ensembles of discrete entities

are described by the population balance models. The dynamic

description of these systems involves conservation equations for

ghg number of entities in the population. The empirical models

are comprised of purely empirical equations or regression analysis

of data to describe the system. In particular, the applications

of the population balance models include the residence time dis-

tribution analysis of imperfectly mixed process vessels (e.g.,

Levenspiel and Bischoff, 1963; Bischoff, 1966), and various

particulate processes such as crystallization (Randolph and Larson,

1971), size reduction (Randolph and Durando, 1971), particle

agglomeration (Hulburt and Katz, 1964), fermentation (Tsuchiya

et al., 1966) and liquid-liquid extraction (Ramakrishna, 1972).
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The polymerization processes can also be described by population

balance models (e.g., Funderburk, 1969).

Typically, the population balance models describe the

entities in a population as being distributed in a n-dimensional

Euclidean space E according to a density x(zl,zz,...,zn,t) at

time t. The Spatial co-ordinates 21,...,zn represent the

relevant properties of the entities such as geographical location,

size, shape, activity in case of catalyst particles, etc. Thus, 
x(zl,...,zn,t)dzl...dz represents the number of entities in the

n

infinitesimal volume element dzl...dzn located at the point

(zl,...,zn) in E at time t. The "movement” of the entities

along the i-th co—ordinate (i = 1,...,n) of E is Characterized

by a rate of change of position vi(z1,...,zn,t) in that direction.

The rate of addition of entities to the infinitesimal Volume

element dzl...dzn from a source internal or external to the

population is expressed as the birth rate B(zl,...,zn,t) of

entities per unit time per unit volume of E. Similarly, the rate

of change in the number of entities in the infinitesimal volume

element representing a permanent loss to the population is char-

acterized as the death rate D(zl,...,zn,t). If a number balance is

written for the entities in the infinitesimal volume element at

(21,...,zn) at time t by equating the net rate of change in the

number of entities due to birth, "movement” along any of the co-  I'm};

ordinates of E5 and death to the net rate of accumulation of

entities, the following conservation equation results (Himmelblau

and Bischoff, 1968):

 



  

ax(z1,...,zn,t) n a[vi(zl,...,zn,t)x(zl,...,zn,t)]

—___——-_—-——-+ Z =

i=1 521
at

B(zl,...,zn,t) - D(z1,...,zn,t) . (1.1)

The movement of the entities is restricted to a closed domain in

E, enclosed by a boundary F. The behavior of the entities at

the boundary determines the boundary conditions and the density

x0(zl,...,zn,0) at time zero describes the initial condition

for (1.1).

In general, the quantities x, Vi’ B and D will be func-

tions of other variables as well, Such as temperature, concentration

of a chemical in the medium surrounding the entities, etc. In

addition, B will be a function of x when the entities themselves

act as sources (reproducing populations). The quantities vi and

D may also depend on x. It should be noted that in the derivation

of (1.1) it is assumed that all the entities at a given point in

E move in any given direction at essentially the same rate.

In the context of residence time distribution of a process

vessel, (1.1) represents a case analogous to a plug flow vessel,

where all the fluid elements at a given cross~section of the vessel

move toward the outlet at essentially the same velocity. The study

of nonideal vessels, i.e., vessels which cannot be characterized

by perfect mixing or plug flow, commonly involves a tracer analysis

 of the flow system. A known input such as a pulse of a tracer is

introduced in the inlet stream of the flow system or its scale

model and the concentration of the tracer in the outlet stream is

measured as a function of time. A mathematical model is then con-

structed to give the same input—output relation as that obtained



 

in the tracer experiment. Two distinct methods are available to

achieve this: The first method characterizes the flow system as

a combination of a number of perfectly mixed vessels connected in

series (and parallel, if necessary). This approach is commonly

known as the mixing cell approach. The second method aSSumes that

the flow is essentially a modification of a plug flow caused by an

effective "diffusion" of the fluid elements in the axial and trans-

verse directions in the flow vessel. The models used in this method

are commonly called the dispersed plug flow models. The equations

for the concentration of the tracer in the outlet stream are

dc 5
i _ . _ z \_'

dt — k(Ci-1 - Ci)’ 1 — 1,2,...,m , t_>».~ ‘ (1.2)

for the mixing cell model with only a series combination of the

perfectly mixed (hypothetical) vessels of equal volume, and

3c(z ,z ,t) 02 320(2 ,2 ,t) 02 36(2 ,Z ,t)

1 2 =_L_ 1 2 +;La_ 1___1_..2__ _

at 2 52? 222 azz 22 azz

ac(zl,z2,t) aC(zl,zz,t)

_ r —————————~—— - r -—~-—-—-—--- - D (1.3)

L 321 R 522

for the case of a diSpersed plug flow model for a cylindrical

vessel. In (1.2) ci represents the concentration of the tracer

in the i-th vessel, t denotes time , k is the mean residence

time of the fluid in a single vessel and cois the inlet concentra-

tion of the tracer for the first vessel. In the mixing cell models

all the vessels in a series combination are often assumed to be of

equal valume to keep the model as simple as possible. In (1.3)

and zthe quantities represent the axial and radial co-
Z1 2

ordinates respectively, C(Zl,22,t) denotes the concentration of  
 



 

the tracer at a given point in the vessel at time t, 2

are the dispersion coefficients in the axial and radial directions

respectively, rL and rR are the velocities in the two directions,

D denotes the rate of loss of the tracer per unit volume per unit

time due to chemical reaction, absorption, etc., and t denoteS'

time. It should be noted that (1.1) thru (1.3) are essentially

deterministic in nature.

Since (1.1) represents the conservation equation for the

members of the population in a very general sense, it can be seen

that the equation can be used to describe any biological population

as well. Indeed, the equation has been used to characterize

populations of daphnia (Sinko and Streifer, 1969), 8 Species of

worms which divide by fission (Sinko and Streifer, 1971), shrimp

(Billups, et al., 1971) as well as an insect pest pOpulation

(Barr, Kharkar and Lee, 1972). Equations similar to (1.2) and

(1.3) have also been proposed (Weiss, 1968; Kendall, 1948) and used

(Takahashi, 1968; Stuart and Merkle, 1965) to describe cell popula—

tions. A detailed discussion of the applicability of the "mixing

cell” and "dispersion” analogies in describing a general population

is given later in the text. Mathematical modeling of biological

populations has become all the more important today in view of the

pressing need for mankind to engineer the effects of urbanization

and industrialization on the ecological systems. Equations (1.1)

thru (1.3)are commonly used in the modeling of chemical engineering

systems and the methods of parameter estimation are quite well

established. A direct analogy of these models with the models for

. biological systems makes it possible to think of analogous methods

0f parameter estimation as well.

 

 

 



  

Literature in the fields of ecology, applied probability and

mathematical biology abounds with works on the dynamics of biological

populations. The models for single—species population dynamics

used in these fields can be classified into three broad categories:

(i) models which treat all the members of a population as

identical entities. These models usually consist of

a single difference or ordinary differential equation;

(ii) models which divide the population into distinct groups

according to age, maturity, etc. (i.e., define a dis-

crete state space to describe an entity) -- these

models commonly use a system of difference or ordinary

differential equations;

(iii) models which allow the individuals in the population

to occupy any arbitrary point in a n-dimensional

Euclidean space E with the relevant descriptors such

as age, location, etc. as co-ordinates (i.e., define

a continuous state Space to describe an entity), as is

done in the development of (1.1). These models involve

the use of integral or partial differential equations.

All the models can be further classified into stochastic and

deterministic types. In the partial differential equation approach  
for a deterministic analysis, use is made of a form of (1.1) or

(1.3). The integral equation approach uses the renewal theory

(see e.g., Feller, 1966) quite extensively and is a very convenient

alternative to models using (1.1) for the case where n = l and

v1 is a constant. In more complex situations the integral equa-

tions for the system lose their simple character. As far as the

 



deterministic models are concerned, models of types (i) and (ii)

can be shown (Kharkar, 1971) to be approximations of the partial

differential equation approach. As regards the stochastic models,

much of the work deals with characterizations of type (i), (ii),

or simple cases of (iii) in which the individuals are characterized

by only one descriptor, namely, the age of an individual. The use

of integral equations is very convenient for obtaining a stochastic

description of the age distribution of a population (in terms of

moments of the age distribution), and is used in almost all cases.

Relatively little work has been done in the stochastic

 

modeling of biological populations characterized as in case (iii)

with descriptors other than age. Adke and Moyal (1963) developed

a stochastic model for a population diffusing on the real line to

characterize the spatial migration of the population. Birth and

death rates were assumed to be constant. Adke (1964a) extended

the model to the case where the birth and death rates can be func-

.tions, and later (Adke, 1964b) to the case where the movement of

the diffusing individuals is restricted by absorbing or reflecting

barriers. Sevast'yanov (1958, 1961) studied the extinction proba—

bility of a population diffusing in a compact region with an

absorbing boundary for the case where the individuals in the popula—

tion reproduce by a branching process. Davis (1965, 1967a, 1967b)

studied the asymptotic properties of a population diffusing in an

abstract space, and multiplying according to a branching process,

i.e., an individual was assumed to produce a random number of off-

spring only at the end of its life. As in the model of Adke and

Moyal (1963), Davis assumed that the offspring are in the same

 



 

 

 

state as their parent. Radcliffe (1972) extended the results of

Davis (1965) by allowing immigration into the population in the

form of a nonhomogeneous Poisson process.

Population models are also of relevance in some areas of

physics. A great deal of work has been done on stochastic descrip-

tions of processes involving transport of elementary particles

(see e.g., Brockwell, 1966 for a class of related problems and

bibliography). In a sense, these processes are analogous to the

branching processes discussed in the previous paragraph: an

elementary particle in motion imparts some or all of its momentum

 

to other particles in its way. The new particles produced are in

the same location as the parent particle. When a particle with

energy 6 sets k new particles in motion after a collision, the

sum of energies of all the new particles must be equal to 6- Thus

even in the case where the parent elementary particle does not come

to rest, it may be necessary to assume that the parent is replaced

by a "new” particle with an appropriate energy level, when the

energy distribution of the particles is being studied.

While some problems of chemical engineering interest can

possibly be described as branching processes and some phenomena in

the biological world besides spatial migration can also be cast in

this framework, this analysis is often too cumbersometo use. This

is true of a large class of problems related to biological and

chemical engineering systems, namely, the processes in which the

parent and the offspring are in different states and the parent does

not die while giving birth to an offspring. In a biological

population of higher organisms this is the case when the individuals

 



 

 

are described by their maturity in terms of their size, weight, etc.

An example of a chemical process of this type is the production of

nuclei in a crystallizer. Under certain conditions the crystals

present in a crystallizer produce new nuclei ("offspring") without

any effect on the size of the parent crystal. Theoretical studies

on populations often concentrate on the asymptotic properties of

the population, i.e., the behavior of the population for large

values of thne, because an analytical treatment of the problem for

short times is not possible in many cases with the currently avail-

able methods. Also, the dynamics of the system are often described

by assigning stationary transition probabilities to the dynamic

changes in the population, thus resulting in a model with time-

independent parameters. In contrast, the short—term behavior of

a system may be of crucial importance in a problem of engineering

interest when the model is used to evaluate control alternatives.

In many cases the time-dependence of the phenomena underlying the

dynamics of a process cannot be ignored. This is particularly true

of ecological systems due to seasonal changes in temperature, solar

radiation, etc. Although a general model of a population of

engineering interest may be too complex to be solved analytically,

a numerical solution of sufficient accuracy can usually be obtained.

The need for population balance models which are cast in a

Very general stochastic framework and can be directly applied to

systems of engineering interest, has motivated this research.

Such models are of great value in studying a broad class of problems

related to the design and management of ecological systems. In

this context the descriptors for the individuals in the population
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may be size or weight in the case of fish and plankton in a lake,

productive value for trees in a forest or orchard, maturity in case

of insect pests and their parasites or predators in a farmland, or

the level of acceptance of a new idea or economic status in human

populations. To have a greater confidence in the management and

control policies derived from the models of these systems one would

like to know the expected behavior of the populations as well as a 
measure of deviations from the expected behavior due to random

phenomena. A general stochastic formulation of population balance

models is also of value in the analysis of systems encountered in

chemical engineering practice. The importance of this approach

to particulate processes has been recognized only recently (Curl,

1967; Katz and Shinnar, 1969). Probabilistic models of flow in

packed beds, where the fluid elements are assumed to move in dis—

crete jumps, have been used quite successfully for describing the

residence time distributions for some time (see e.g., Levenspiel

and Bischoff, 1963; Buffham et al., 1970; Schmalzer and Hoelscher,

1971; Srinivasan and Mehata, 1971).

As indicated above, one use of a stochastic model is in pre-

dicting the fluctuations in the properties of a population. For

small populations the stochastic fluctuations are always important

if the rate processes such as birth, growth and death are random

in nature. A stochastic model enables one to determine how large

a population must be for the random fluctuations to be unimportant.

Data on many biological systems shows a considerable scatter and

hence the observations are often recorded in the form of means and

standard deviations. If the contribution of the errors due to

IJIIIIIIIIIlIIn--....._........______________________i,i
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crudeness of observations, subjective judgement of the observer,

etc., to the scatter in the data is known, the variance in the

repeated observations due to random phenomena alone can possibly

be estimated and used as an additional parameter in testing the

mathematical models. This particular facet of stochastic modeling

is demonstrated in this work by a controlled experiment, which is

discussed later in the text.

Experimental data on particulate processes and residence

time distribution analysis of process vessels often exhibits an

appreciable amount of scatter. Since the population balance models

 

currently used to characterize these processes are largely based

 

upon purely deterministic considerations and analogies with

molecular processes, these models cannot account for the scatter.

In molecular processes the number of molecules involved in an

experimental setup is almost always very large and consequently,

the stochastic fluctuations are insignificant. On the other hand,

a very much smaller number of entities (i.e., particles, fluid

elements, etc.) are encountered in the experiments with particulate

processes and residence time distribution analyses. This fact

coupled with a stochastic nature of certain phenomena such as

formation and growth of the particles or movement of the eddies of

the fluid inside the experimental vessels is responsible for at

least a part of the scatter in the data. Stochastic models for

such systems provide a useful means for the theoretical analysis

of such data.

For the case of reproducing populations with no external

input, the coefficient of variation Q/variance/mean) of the

gmw A
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population, which is often taken as a measure of stochastic

fluctuations, is alwasy significant if the initial population is

small, irrespective of whether the population becomes very large

at a later time. Bartlett (1969) indicates this to be the case

for age distribution in biological cell populations. A similar

result is obtained in this dissertation for a more general des-

cription of a population. This fact is quite important in the con-

trol of many ecological systems. For example, in the biological

control of insect pests, often a small number of parasites or

predators is released in the infested area. Control of the pest

is uSually achieved after a certain time lag required for the

parasite (or predator) population to build up to a significant

level. A stochastic model for such a system would enable one to

estimate a priori the chance of success of such a biological control

strategy.

A similar situation may arise in chemical processes of

industrial importance. The phenomenon of secondary nucleation,

which is a significant factor in industrial crystallizers, serves

as a good example to illustrate this. In secondary nucleation new

nuclei are generated by the breakup of dendritic growth on the sur-

faces of a growing crystal or release of micro-clusters of particles

 during the growth of the parent crystal. Thus, if the initial

number of seed crystals is small, the fluctuations in the crystal

size distribution will always remain significant. Kane (1971)

studied the rates of secondary nucleation of ice crystals in brine.

He used a stirred batch crystallizer with liquid isobutylene added

directly to the supersaturated brine as a coolant. The experiment
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was started with a single ice crystal and the number of crystals

in the crystallizer (counted using a photographic technique) and

the bulk temperature of the contents of the crystallizer were

monitored throughout the experiment. The data on the induction

period (i.e., the time required to form a sufficiently large number

of crystals from the solution to significantly affect the concentra-

tion of the brine so that the freezing point of the solution begins

to change) shows a considerable scatter. Expressing the nucleation

process as a linear birth process (cf. Parzen, 1962, p. 296), he

obtained an estimate of the contribution of the stochastic nature

of the process to the scatter in the data. His model was based on

the total number of crystals. The rate of formation of new nuclei

per parent crystal per unit time was assumed to be a constant. In

reality, this rate may be a function of crystal size. The equations

developed in this dissertation are applicable to more general

situations where the rates of nucleation, growth as well as removal

from the crystallizer are functions of size as well as time. By

solving these equations one can obtain the mean and variance of

crystals in any size range at any point in time. Other situations

of industrial importance where similar considerations may apply

include failure of a chemical or biochemical reaction due to the

catalytic activity 0f trace quantities of an impurity and guowth

of mutants of the micro—organisms in a continuous fermenter.

Even in situations where one is not interested in the

stochastic fluctuations in the population, a probabilistic approach

to the problem offers a certain conceptual convenience in building

postulates related to the mechanisms involved in the rate processes,
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as well as the relevant properties of the population. In this

context, the fraction of the total number of individuals having a

certain property may sometimes be interpreted as the probability

that an individual has the property. Similarly, the rate of

occurrence of a certain event may be looked upon as the rate of

the corresponding random phenomenon. In some cases such phenomeno—

logical descriptions may not be possible in a deterministic frame-

work. For example, the formulation of (1.1) is true only when the

pOpulation is large enough to justify the use of the density func-

tion x(z1,...,zn,t). It will be shown later in the text that this

 

restriction can be removed if the quantity X(zl,...,zn,t) is

looked upon as the density of the first moment measure of the popula-

tion, i.e., when x(zl,...,zn,t)dzl...dzn is taken to be the

expected number of individuals at time t in the infiniteshnal

volume element dzl...dzn located at the point (21,...,zn) in

the space E.

The outline of this thesis is as follows: Chapter II is

devoted to the mathematical background necessary for the development

of population balance models in a general stochastic framework. In

particular, a general probability space is defined for the population.

Concepts of counting measures, moment distributions and generating

functionals are developed, and the relation between the generating

functionals and the moments is discussed.

The analogy between different approaches to the residence time

distribution studies and modeling problems related to other popula~

tions (e.g., crystals, insects, trees, cells, etc.) is discussed in

Chapter III in order to cast all population balance models in a
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common framework. Following this discussion, general considerations

for the selection of a proper type of model are presented.

A diffusion model for a population in which the individuals

are described by one descriptor is derived in Chapter IV. The back-

ward diffusion equation for the probability generating functional,

as well as the backward and forward diffusion equations for the

first two moments for a reproducing population with no external

input are derived and the relevant boundary conditions are discussed.

Solutions to these equations for some simple cases are presented in 
Chapter V.

A general model for a population must also include an input

of entities from a source external to the population, i.e., an input

other than reproduction. This is dealt with in Chapter VI. Some

interesting results for a population with external input and no

reproduction are proved and their application to problems of

practical interest is discussed.

A controlled experiment performed to demonstrate the use of

a result obtained in Chapter VI in testing the validity of some

common assumptions behind the mathematical models developed in this

thesis is described and discussed in Chapter VII. Chapter VIII is

devoted to conclusions and recommendations for future research.
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CHAPTER II

MATHEMATICAL BACKGROUND

To cast the problem of modeling a population into a stochastic

framework it is necessary to consider the dynamic changes in the

population as a stochastic process. A stochastic process

[X(t): t E T} is defined as a family of random variables X(t)

indexed by a parameter t varying in an index set T. In the pre-

sent context, the index t refers to time and T usually refers

to the set of nonnegative real numbers or the set of nonnegative

integers. When all the entities in the population are identical,

as is the case in the population models of type (i) in the previous

chapter, X(t) is a nonnegative integer at any given time, represent-

ing the total number of entities in the population. Similarly, for

models of type (ii) where each entity in the population must belong

to one of finitely many categories (such as age groups), X(t) is

a finite vector of nonnegative integers defining a measure on the

set of age groups. In models of type (iii) each entity can occupy

any point in the n-dimensional Euclidean Space E, and an analogous

description of X(t) will be in terms of measures defined on the

subsets of the Euclidean space E. At each point in time the con-

figuration of individuals in the space E is a random distribution.

The mathematical tool for the analysis of such processes is the

theory of stochastic population processes developed by Moyal (1962).

16
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An excellent review of the work done in this theory is provided by

Daley and Vere Jones (1972).

2.1 Point Processes

For the most general description, the state of an entity in

the population is described by a point 5 in an abstract space E,

called the individual state space. In case of population balance

models of type (iii) discussed in the previous chapter the individual

state space is an n-dimensional Euclidean space. The population state

space 6is the union of disjoint spacesfik, k = 0,1,...,m, where

Ek is the k-fold cartesian product E X E X...X E, for k 2 1. By

convention E0 represents a single point, corresponding to zero

population. A point gk 6 Ek represents a pOpulation with k dis—

tinguishable individuals. It is a k-tuple (51,...,§k) of points

in E. On each Ek is defined the minimal c-field Bk containing

all product sets e1 X e X...X ek, where each set e1 6 B, the

2

c-field of Borel subsets of E. The minimal o-field defined on the

00

population state space 6 containing B consists of all sub—2

* k=1 ~k

sets e of 6 whose intersections with each E are members of

k

B . A measure space (6,8) can thus be defined from the pair

N ~k k

(E,B) and its k-fold cartesian product (E ,B ), k = l,...,m. A

probability measure 9 can then be constructed on the measure space

(6,3) either directly, or by constructing measures P(k) on

'"k m k ”k

(E ,Bk) which satisfy 2 P( )(E ) = 1.

k=0

k ~

Pk = P( )(ES (2.1)

is the probability that the population consists of k entities.
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The triplet (6,5360 constitutes a model of a stochastic population

process, and is called a point process.

Physical interpretations of 6, B and 9 are as follows:

the population state space 6 is the collection of all possible

states of all the entities in the population, the c-algebra 8

refers to the collection of all possible "events" (e.g., all possible

combinations of individuals in a biological population being in all

possible (denumerable) age groups) and 9 denotes the probability

measure defined on the collection of all possible events in the

population state Space 6. Similar interpretations can be given

k (k)
to E, B, P and Ek, B , P in the context of a single entity 
and a population of k entities respectively.

If the population is comprised of indistinguishable entities,

the population state space as consisting of unordered sets of

points in E is a more appropriate basis for the description of

the process. The subspace of 63 of populations with k individuals

is denoted by E(k), and a point in E(k), which is an unordered

00
set g = {g1,§2,...,§k} represents a population with k indis—

k
tinguishable entities. The c-algebras B( )

(k)

and as are comprised

of Borel subsets of E

k)

and 68 respectively. The probability

00
measures P: and 95 on the members of B and BS

respectively can be defined in the same way as for the case of

distinguishable entities. There is an obvious natural mapping of

6 onto 65, and to each probability measure 98 on 63 there

corresponds exactly one symmetric probability measure on 6.
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2.2 Counting Measures

An alternative to the point process description of a popula-

tion is the counting process. For any subset A of the individual

state space E, let N(A) be the number of entities in A. Formally,

a counting measure N is any non-negative, integer valued measure

defined on the class U of all Borel subsets of E. The elements

of the space 6 define certain counting measures, namely,

Nanak) = _
H

"
M
W

I<A\§i> (2.2)
1

where I(A|-) is the indicator function of the set A:

1 if x E A

1(A\s) ={

o if x r A .

Note that all points in d which correspond to the same unordered

set §(k) = {§1,...,§k} in 65 lead to the same counting measure

(2-2)- Moyal (1962) has proved that (2.2) defines a one-to-one

correspondence between 68, and the space N of all counting

mea5ures on the class U. Every probability space (68,5g,9g) has

an equivalent counterpart (%,5k,éh).

It is useful to exhibit this last equivalence explicitly. If

A1:~--,A are disjoint subsets of E whose union is E, the proba-

r

bility that there are k1 entities in A1, k2 entities in A2,...,

and k entities in A , is
r r

(L) k1 kr

PN{N(A1) = k1,...,N(Ar) = kr} = PS ((A1 x...x Ar )5)

k k

= —-———l‘—!——-—P(L)(A 1x...XA r) (2.3)

k !...kr! s 1 r

 

   



 

Re

C0
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de'
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k.

where L = k1 +...+ kr’ Ail is the ki-fold cartesian product of

A1 with itself, and in the first expression on the right hand side,

(C)S is the symmetrization of the set C, i.e., the union of all

possible distinct cartesian products C1 X...X CL’ where k1 of

the Cj's are equal to Al’ k2 are equal to A2, etc. There are

L!/k1!k2!...kr! such possibilities, and thus the second expression

on the right hand side is obtained.

2.3 Moment Measures and Moment Densities

The expected number of entities in a measurable set A is

L Q ~ _

mm=Emmn= jL :uMngNa“h=zm§NAxdlraA>
E i=1 L=1

I
I
M
B

L 1

Moyal (1962) has shown that (2.4) can also be derived using (2.3).

Note that M(A) is a non-negative, monotone nondecreasing and

countably additive set function, and hence a measure on (E,B).

M(A) is therefore called the first moment measure or the first

moment distribution. When there are only a finite number of entities

in every bounded set A with probability one, it is often pOSSible

to define a density m(-) of the first moment measure in the case

where E is a n—dimensional Euclidean space. Thus, the quantity

m<§>d§ = M<d§>. (2'5)

denotes the expected number of entities in the infinitesimal volume

dzn located at g = (zl,zz,...,zn) in E.
element dg = dzldz

k k

(E ,B ) by

2...

Higher order moment measures are defined on

taking expected values of the k-th product counting measure
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Nk(A(k)l§(L)) = z 2: 1(A(k)\(gi ,...,gi )), ks n, (2.6)
1= ik=1 1 k

where A(k) = A n E(k) for any A CZE and §(L) = {§1,...,§L}.

The use of these higher-order moment measures is complicated by

the fact that they contain ”mass” concentrations on subsets of

Ek. For this reason it is more convenient to deal with a factorial

moment measure M defined as the expected value of

(k)

(k) ~L _ (k)
N(k)(A \E ) _ z z #zik I(A \gil,...,gik), L 2 k, (2.7)

= N(A)(N(A)—1)...(N(A)-k).

The two types of moment measures may be contrasted as follows: The

sum on the right hand side of (2.6) is taken over all samples of

size k from the population §(L). The sampling is done "with

replacement", and (2.6) therefore contains Lk terms. In (2.7)

the sum is over all samples ”without replacement", and there are

(L)k = Z:%i;r terms. The convenient relationship

m (k+j) ~.

M (A00) = g (k+j) P (Am x EJ) (2.8)
(k) j=0 k 5

holds.

In the case of a n-dimensional Euclidean space, the k-th

. ~k h
factorial moment measure often has a den81ty on E when t e

PFObability of having more than one entity in an arbitrary interval

(§:§+d§) is 0(5g), i.e., this probability is of a smaller order

0f magnitude than 5g. When such densities exist, the point pro-

cess is said to be orderly.
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2.4 An Illustrative Example

At this point it will be worthwhile to consider an example to

illustrate some of the concepts developed so far. Consider the case

where the entities in the pOpulation are described by a single

descriptor. To be specific, let the descriptor be the size of the

entity, which may increase indefinitely. In this case E is the

nonnegative real line and B is the o-algebra generated by open,

closed or half open intervals on the real line (representing ranges

(k)
of sizes). The product space Ek (or E ) and the corresponding

o-algebra Bk (or B(k)) are necessary to define the joint proba-

bility distribution of k distinguishable (or indistinguishable)

entities being in k overlapping and/or disjoint size categories.

Similarly, the counting measure N(A) denotes the number of entities

in the size range A and the first moment measure M(A) represents

the expected number of entities in IA. Note that for a fixed A,

N(A) is a random number. The product counting measure is necessary

for defining product moments, as mentioned in the previous section.

To illustrate a product counting measure, consider a sample

realization of the process as shown in Figure 2.1a. There are four

entities in the population, of which three are in the set A, so

that k = 4 and N(A) = 3. To get the second moment measure, it

2

is necessary to evaluate the expectation E(N(A) ) = E(N(A) X N(A))-

Note that the product counting measure on the set A X A is equal

to (N(A)2). Applying (2.6) to the realization of the point process

in Figure 2.1a,

4/ 4 4 4

N2(AXA\g4) = 2 2 1(AxAi(§i,§j)) = r r I(A\§91(Ai§j)

i=1 j=l 1:1 J=1
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[E meaSure N2(A X Aigk) thus has a contribution of 1 from every

iirwise combination (gi,§j) of the sizes of the entities in a

imple realization of the process, when 51 and gj both lie in

ie range A. The combination (gi,gj) refers to the joint

:currence of an entity at gi and another at gj. The sample

:alization of the process illustrated in Figure 2.1a thus

irresponds to N(Az) = 9. Different pairwise combinations (gi,§j)

>rresponding to this particular realization of the process are

Llustrated in Figure 2.1b. Note that corresponding to every point

in Figure 2.1a there is always a point (gi,§i) in Figure 2.1b.

l the particular case where the existence of one entity at g1

: in no way dependent upon the existence of another at g2, if

:§)d§ denotes the probability that an entity lies in the size

inge (§,§+d§) for an orderly point process, then the joint

robability that an entity lies in (g1,§1+d§1) and another in

;2,g2+d§2) is f(§1)f(§2)d§1d§2. Thus, while the probability of

lving a point on the diagonal of A x A is f(§)d§, the probability

fhaving a point (g1,§2) in A X A is only f(g1)f(g2)d§1d§2 = o(d§),

quantity of a smaller order of magnitude than the corresponding

'obability for the diagonal. This results in the "mass" concentra—

(2) ~- the.on of the second moment measure on a subset of E

Lagonal of any set A X A. This mass concentration has a density

1:) with respect to E, while the points of increase of the

:cond moment measure corresponding to a pairwise occurrence of

m entities in the size range A have a density with respect to

12)
The second moment measure can thus be expressed in terms of

Sum of two component densities -- a density with respect to E

L



 

Figure 2.1
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k = total number of entities = 4

N(A)= number of entities in A = 3
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'igure 2.1a Counting measure for a sample realization of a point
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representing the mass concentration on the diagonal and a density

~<2>.
with respect to E Similar mass concentrations also exist for

the higher moments of the counting measure along the diagonals of

the corresponding volume elements. For an orderly process the

k-th order factorial moment measures (k = 2,3,...) do not have such

~(k)
concentrations on subsets of E and thus the use of densities

of factorial moment distributions are much more convenient than

that of product moment measures.. A good discussion of the moment

densities is given by Ramakrishnan (1950). When the point process

is not orderly, i.e., when the probabilities of having twins,

triplets, etc. in (§,§+d§) is of the same order of magnitude as

dg, even the factorial moment distributions have concentrations

on the diagonal subspaces of Ek. In this case it is still possible

to express the moment measures in terms of densities if each pair,

triplet, etc. are treated as distinct populations with each pair,

triplet, etc. considered as single entities. Ramakrishnan and

Srinivasan (1958) have illustrated this for the case of age dis-

tributions in a population. However, even for the case of a

population containing only singlets and twins, the mathematics

involved was rather elaborate.

2.5 Generating Functionals

A complete description of a point process in the form of the

probability distributions Pék) or the moment distributions

“(10’

(k = 0,1,...,m) can be obtained in terms of a single generating

functional -- the probability generating functional. The proba-

bility generating functional (PGF) is a natural generalization of
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the probability generating function from an integer-valued random

variable to a random variable taking values in a population state

space defined in Section 2.1. Analogous extension of the Laplace

transform of the probability distribution of an integer—valued

random variable (or the moment generating function), namely, the

moment generating functional (MGF), and the characteristic func-

tional are also used instead of a PCP.

Let 9 be a bounded complex-valued function on 6. Define

k

we; ) = o<el>...e(§k)

on Ek for every k, and therefore on 6. The PGF

k °° k k

6(6) = E(W(§ )) = kE-O‘rfik e(§l)e(§2)-..e(§k)P( )(de ) (2.9)

is defined for all meaSurable functions 6 such that

sungEle(§)\ s 1. In (2.9) the product 6(El)...e(§k) is defined

(k)
to be equal to one when k = O. The measures P in (2.9) can

(k)
5 without changing the result. Moyal (1962)be replaced by P

has proved that there is a one-to-one correspondence between

probability distributions PS on (65,83) and the PGF 0f the

form (2.9). If (A1,...,Ar) is a finite measurable partition of

1..

E, then taking

90%) = .
l

‘31 1(A1it), (2.10)

I
I
M
P
'
i

l
—
‘

the PGF reduces to a multivariate probability generating function

of the random variables N(Al)"°"N(Ar)

r r N(A )

z: g.s(A.i§)lN(d§)] = E[ H g. 1] . (2.11)
j=1 J J i=1 1

r

C(e) = E exp 2 f log{

i=1 A,

l
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The probability distributions Pék) and the factorial moment dis-

tributions M(k) can be expressed as functional derivatives

(variations) of G:

k
A ... A = '

M(k)( 1 X X k) %:T 69 G(h), (2.13)

when

9(E) = 1(Ali§)I(A2\§)...I(Akig)
_ (2:14)

In (2.12) and (2.13) the k-th functional derivative 6:G(n) is

defined as (cf. Hille and Phillips, 1957, p. 111)

k
k d ngifigegi

6 C(fl) = i _ (2.15)

e ark g—o

The MGF (when e(§) has a nonpositive real part) and the char-

acteristic functional (for all 6(§)) are obtained from (2.9) by

replacing e(§) by exp(e(§)) and exp(ie(§)) respectively.

Thus, for example, the MGF of a point process is given by

k m k (k) k

¢(e) = Etexpr 2 e(§i))] = z j~k exp< 2 e(§i))P (do > . (2.16)
i=1 k=0 E 'i=1

k

The summation 2 e(§i) can also be written as an integral of

i=1

9(5) with respect to the counting measure N(-) on E, i.e.,

k

2 e<€i) = i- e(§)N(d§) . (2.17)

i=1 E

The k-th product moment measure Mk is related to the MGF by

A x A r l k k 0 2Mk( 1 x... k) — (- ) 66 ¢( ), ( .18)

where

9(a) = I<A1ie)I(A2i§>-o-I(Aki§)- (2-19>
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6 Stochastic Population Pr

The discussion in this chapter thus far dealt with a proba-

listic description of a population only in a static sense. The

iplet (6,8,9) thus refers to the population state space, the

llection of all possible events and the probability measure only

a given point in time. For a complete stochastic description of

a dynamic changes in a population one needs to know the joint

)bability distribution of all finite combinations

:1 2 l 1

;s at times t., where it E 6. It can be seen that the problem

1 _ 4

,...,EC } of sample realizations fit of the pro—

k .

1

achieving this is formidable. Moreover, in practice, one is often

:erested in the first few (usually two) moments of the population

a given subset of the individual state space E, and thus a

iel describing these moments of a counting measure on E is

rally sufficient for most practical purposes. If transition

>babilities can be assigned to describe the changes in the state

an entity during a small time interval (t,t+6t) (or during the

:erval (t,t+l) when the time parameter is discrete), it is often

:sible to write down equations for the moment distributions (or

rent densities) of the counting measures on E. The generating

Ictionals prove to be extremely convenient tools in the deriva—

In of such equations. The generating functionals are also useful

evaluating another quantity of interest, namely, the probability

having no entities in a given set A E E at any time t- For

mple, this can be obtained from the PGF by setting e(§) =

- I(A[§).
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CHAPTER III

THE IDENTIFICATION PROBLEM

Before constructing a model for a population it is necessary

identify the relevant descriptors of an entity in the population

1 thus define the individual state space E. The analysis of

ange in the descriptors of an entity (e.g., maturity, productivity,

2.) with time, representing the movement of entities in E, is

3 next step in the modeling process. In a deterministic model,

3 movement of the entities in E is described by rates of change

the descriptors, whereas in a stochastic description this move-

It is characterized by transition probabilities when the process

Markovian. Whether the population can be characterized by a

itinuous movement of the entities in E or whether the popula-

)n has to be grouped according to location, size, productivity,

2., depends on the particular system itself. The example of

;idence time distribution analysis of flow vessels may be cited

illustrate this. Equation (1.3) describes the movement of fluid

zments inside the flow vessel by a continuous motion, whereas a

ring-cell model described by (1.2) essentially lumps the fluid

ements in the vessel into a number of hypothetical "mixing C9115”-

Some situations (1.2) is a more appropriate description of the

item than (1.3). Analysis of data collected in tracer experiments

well as the physical structure of the flow vessel are often used

decide the type of model best suited for the purpose. The

29
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alogies between the models for residence time distributions and

3 models for other populations, which were mentioned in Chapter I,

he it possible to cast the methods of analysis of both the classes

models in a common framework.

i Residence Time Distribution of Flow Vessels
 

The residence time distribution (RTD) C(t) of a flow vessel

defined as the age distribution frequency of the fluid elements

iving the vessel under steady flow conditions. Thus, the

antity C(t)dt denotes the fraction of the fluid in the exit

:eam which has spent between t and t+dt units of time inside

a vessel. The RTD can also be interpreted as the probability

it the age of a fluid element leaving the vessel is between t

I t+dt, or the probability that a fluid element entering the

Isel would take between t and t+dt units of time to reach the

:let. The RTD C(t) is thus synonymous with the residence time

)bability density. Sinclair and McNaughton (1965) have used this

:erpretation in a discussion on the calculation of the RTD of a

'ies-parallel network of flow vessels, when the RTD of each

iponent vessel is known. If two vessels with RTD's C1(t) and

It) are connected in series and if the residence times are

iependent of each other, the RTD C12(t) of the combination can

expressed as a convolution

t

= C t- d , (3'1)C12(t) £01“) 2( r) r

ice the length of time spent by an element in the composite system

t equal the Sum of the times spent in each of the vessels. For
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perfectly mixed vessel the exit age of a fluid element has an

ponential probability distribution, i.e., the exit age probability

nsity (RTD) is E§R%§EAEL’ where a is the mean residence time.

case of a plug flow vessel this probability density is a Dirac

function, with a delay a corresponding to the residence time.

Imperfectly mixed vessels have flow patterns intermediate

tween the two ideal cases described above. The mixing inside such

vessel may be such that a small fraction of the fluid can reach

e outlet much faster than the remaining bulk, resulting in by-

ssing; or a small portion of the fluid may be caught in stagnant

nes in the vessel and reach the outlet after a very long time

lative to the bulk of the fluid. The magnitude of bypassing and

ad space can be quantified by analyzing the data collected in

nple tracer experiments performed on the flow system or its Scale

561 (Himmelblau and Bischoff, 1968, p. 71). In flow systems such

packed beds with size of the packing much smaller than the char-

teristic dimensions of the bed itself, the fluid elements must

[low a long tortuous path before reaching the outlet, and the

arall effect may be similar to that of a "diffusion" of the fluid

aments relative to the mean velocity toward the outlet. Use of

a diffusion equation such as (1.3) can be justified when the move-

it along a direction 2 is characterized by a Markov process and

2 incremental distance éz covered along 2 in a small time

:erval (t,t+6t) can be looked upon as a random variable with

mean E(éz) = r(z,t)6t + 0(6t),

variance V(éz) = 02(z,t)6t + 0(6t)a (3‘2)

and E(ézn) = 0(6t) for n 2 3
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many cases the mixing cell models give a more realistic repre-

tation of the RTD. In the mixing cell model, the flow vessel is

umed to be composed of a number of hypothetical perfectly mixed

sels connected in series and/or parallel. In the particular case

k perfectly mixed vessels connected in series the RTD of the

bination is a convolution of k exponentials and when all the

sels have the same mean residence time a, the RTD of the combina-

n is the density of the gamma distribution

k-l

em =W. (3.3)

s, in this case, the exit age of the fluid elements has a gamma

tribution.

Life-Span Distributions in Biological Populations

Probability densities of life-spans of individuals in a wide

iety of biological populations show a similarity with the RTD

imperfectly mixed vessels, and analogous models have been pro-

ed and used for some biological populations. To account for the

t that the age at which cells divide is randomly distributed about

ean, Stuart and Merkle (1965) described the dynamics of cell

ilations by the diffusion equation

2 2

g_ a cgzzt} _ r acgzzt} = acgzztz , (3'4)

2 az2 az at

'e c(z,t)dz is the expected number of cells with physiological

between (z,z+dz), the drift coefficient r denotes the mean

i of maturation and the diffusion coefficient g— accounts for

variability in the rates of maturation among the individual
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ells. The cells were assumed to divide when they reached a certain

ixed maturity. Takahashi (1968) divided the complete life cycle of

cell into a number of hypothetical growth stages, and assumed that

he time spent by the cell in each of the stages was exponentially

istributed with the same mean a- The number of stages and the

ean residence time a for an individual stage could then be ad-

usted to match the output of the model with the corresponding

bservations in a radioactive tracer experiment. Takahashi's

pproach can be seen to be an exact analog of a mixing cell model

or RTD analysis where vessels with equal mean residence thne are

onnected in series, and thus this model results in a gamma dis-

ribution for the life-spans of the cells. Weiss (1968) proposed

general deterministic formulation for cell population dynamics,

here a cell was characterized by its chronological as well as

hysiological age. This model is equivalent to the formulations of

tuart and Merkle as well as Takahashi for the first moment of the

)pulation.

As regards other biological populations, a gamma distribution

)r the maturation periods of insect life—stages was used by Read

1d Ashford (1968). In a study of productivity of perennial crops

rch as cocoa and palm, Abkin (1972) divided the life-spans of the

'ees into a number of stages according to their productive value.

1 the trees in a given stage were assumed to have the same pro-

ctivity and the time taken by a tree to mature from one stage

the next was assumed to have a gamma distribution. In both these

ses each life stage (of insects and trees) was implicitly taken

be equivalent to a number of identical sub-stages with exponentially
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distributed residence times. Fish populations are known to exhibit :

an elastic growth. The size distribution of the fish born during a

single spawning season widens with time, due to differences in the

growth rates among individuals (see e.g., Cooper and Latta, 1954;

Cooper, Latta and Schafer, 1956). The magnitude of the spread

occurring in a given length of time gets smaller with smaller amounts

of food available to the fish (Hall, Cooper and Werner, 1970). No

models have been proposed to account for the elastic growth. In

general, it can be said that in any vertebrate population the age

at which reproduction starts and the age at which an individual dies

of old age are randomly distributed about some average values. As

in the case of fish, size or biomass of an individual may be used

to represent maturity in some cases, or it may be necessary to use

an abstract maturity scale [0,1], with the maturity of a newborn

individual to be 0 and the end of the life cycle corresponding

to the maturity 1 (Stuart and Merkle, 1965). It seems possible to

describe these populations by a diffusion equation such as (3.4)

nith an additional term corresponding to death. In many biological

populations the life—spans are randomly distributed due to the

genetic variations among individuals. Another factor influencing

:he variability in growth rates is the availability of food, as

mentioned above for the case of fish populations. Leftkovich and

Iurrie (1963) studied the effect of food availability on the larvae

)f the cigarette bettle, Lasioderma serricorne(F.) and found that

,he mean as well as the standard deviation of the maturation period

if the larval stage of the insect increase with a decreasing supply

f food. It is likely that food availability has an effect on the

ife-span distributions of many other populations as well.
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3.3 A Dispersion Phenomenon in Crystallization

It has been observed that the product crystals from an

industrial sugar crystallizer exhibit a much larger spread in the

size distribution than that of the seed introduced initially, even

when there is no appreciable nucleation during the growth of the

seed crystals. Wright and White (1969) and White and Wright (1971)

studied the growth rates of sucrose crystals under different con-

ditions to specifically analyze the phenomenon of size dispersion.

Starting with a uniform seed size in a batch crystallizer and care-

fully monitoring the process to see that no nucleation occurred,

they measured the crystal size distribution (using characteristic

length of a crystal as a basis) at different times. The crystal

size distributions obtained under different temperatures, super-

saturations and syrup purities were plotted on a normalized scale -—

the ratio of the deviation from the mean with the standard deviation

of the size distribution. Although the shapes of individual curves

were slightly different from one another, the average of twenty six

such curves was very close to the density of normal distribution

with zero mean and unit variance. The difference in the shapes of

the individual size distribution curves was at least partly due to

:he fact that sieve analysis was used to determine the size dis-

:ribution for many samples. Since the shapes of individual crystals

vere non-uniform, conversion of weight—size relation to a number—

;ize relationship resulted in an inaccurate determination of the

:rystal size distribution. Let the growth of crystals be char-

icterized by (3.4) with c(z,t)dz denoting the expected number of

:rystals between sizes -(z,z+dz), the drift coefficient r
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'epresenting the (ensemble) mean growth rate and the diffusion co-

2

efficient g— being equal to half the value of the variance of

individual growth rates. The expected number of crystals crossing

lpoint 2 per unit time can be shown to be

c“<z,t) = rc<z.t> - e02 egg—’51, (3.5)

:cf. Kimura, 1964, p. 185). Since there is no nucleation, this

'flux” across the point z = 0 must be zero. Thus, the boundary

:ondition at z = 0 is

*

c (z,t) = 0 . (3.6)

 

Lecause of the size dispersion phenomenon, the function c(z,t)

mst be finite for a Sufficiently large z at all times. Thus,

.he second boundary condition is

C(m,t) = finite . (3.7)

'he solution of (3.4), (3.6) and (3.7) with all seed crystals of

.ize 20 at time zero is approximately proportional to the density

i normal distribution for a sufficiently large 20 (of. Cox

,nd Miller, 1965, p. 224). Thus, the diffusion model does seem

0 agree with the experimental observations.

White and Wright postulated that the size dispersion occurs

ue to an uneven distribution of lattice dislocations on the sur—

aces of different crystals. These imperfections have a marked

ffect on growth rates of crystals, thus re5u1ting in a random

istribution of individual growth rates.
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3.4 Generalizations

In the context of a general population balance model where

each entity is represented as a point in the individual state Space

1

u

i, the random variations among individual rates of movement of the

entities along any given direction in E may occur due to three

distinct reasons:

(i)

(ii)

(iii)

The entities may be present in a uniform homogeneous

environment, with the entities themselves having a

random distribution in their potential capability to

move along any given direction. The random life-Span

distribution in biological populations occurring due

to genetic variability falls in this category.

The entities may be present in a uniform homogeneous

environment and the process of movement along any

direction itself may be random in nature. The

phenomenon of size diSpersion in sucrose crystals is

perhaps of this type, with the number of dislocations

on the surfaces of each crystal itself varying randomly

as the crystal grows.

The entities and the process of movement along any

direction (under uniform conditions) may be uniform,

but the environment is heterogeneous and the entities

spend random lengths of time under different environ—

mental conditions due to the heterogeneity of the

environment. This will be the case when there are

regions of different supersaturation in a crystallizer

and crystals spend random lengths of time in these
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regions, giving rise to a size dispersion. A similar

situation exists in the RTD analysis of imperfectly

mixed vessels —— for example, the RTD of a packed bed

differs from that of the ideal cases of perfect mixing

and plug flow because the fluid elements spend random

amounts of time in the crevices between the packing

elements, resulting in little movement for random

periods of time.

'iously, different combinations of these cases will occur in some

uations.

Depending upon the inherent variability among individual

ities, their rates of movement in E, or the coarseness of the

erogeneity of the environment, situations analog0us to dead space

bypassing may occur in any general population. In a study of

ferent animal populations in fresh water ponds, Hall, Cooper and

ner (1970) introduced approximately a cohort of fish in each of

ponds, and the size distributions of the fish were measured at

end of the experiment. The size distributions show a long tail

h a slight peak in the tail, suggesting the possibility that the

h which get a head—start in their growth continue to grow at a

ter rate than the others. This is analogous to the phenomenon

bYPassing in a nonideal flow vessel, where a small portion of

fluid moves much faster relative to the bulk. Similarly, in

study of economic mobility or acceptance of new ideas in SOCial

tems one may encounter a situation where a small portion 0f the

ulation, pOSSibly representing certain ethnic groupS, progress

accept new ideas much faster (or much leWer) than bulk of the
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ilation, representing a situation analogous to bypassing (or

1 space) in imperfectly mixed flow vessels.

The nonideal flow vessels and analogous systems involving

er populatiOns may be denoted by a common term -- the nonideal

ulation-flow systems. In the general case, the word "flow"
 

ers to the movement of entities in the population along any given

ection in E, with the 'directions' specified by the relevant

criptors of an entity, i.e., the co-ordinate axes of E. It

>uld be noted that in the general context, a perfectly mixed

‘sel is analogous to a situation where all the entities contained

a region in E are assumed to be identical in all respects

l the time taken by an entity to leave this region has an

ponential distribution. This description thus involves lumping

"averaging" the individuals in the appropriate region of E.

ure 3.1 illustrates this lumping for a biological population

h the relevant domain in E consisting of a two-dimensional

graphical area and a range of maturities corresponding to the

e-Span of an individual.

Selection of a Proper Model

The movement of the entities along the i-th co-ordinate axis

of E can be characterized as a diffusion in that direction if

movement of an entity along 21 is Markovian in nature and the

.ance ézi covered in a short time interval 5t satisfies (3.2).

implies that the rates of movement of the entitites along 21

a short period of time should have approximately a normal dis-

ition. It is necessary to study the nature of the individual
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iability among the entities, the process of movement along 21,

the heterogeneity of the environment to see whether this con—

ion is satisfied: When the inherent variability among the

itiea alone is the cause of the randomness in the movement, i.e.,

n each entity moves at essentially a constant rate at all times

h a random distribution of such rates among different entities,

overall effect of movement of all the entities over a short

'iod of time may be analogous to a diffusion if the number of

,ities as well as their individual growth rates are such that

: assumption of a normal distribution of movement of entities over

:hort time interval can be justified. In the case where the

)CESS of growth is random in nature, it would be necessary that

a movement of an individual during a short interval of time be

tracterized by a number of independent random increments, or as  
:ontinuous stochastic process. In the situation where the

erogeneity of the environment is the cause of random movement

the entities, it may be necessary to put a constraint on the

rseness of the heterogeneity for the diffusion model to be

tified -- for example, while the diffusion equation (1.3) can

isfactorily describe the RTD in a packed bed where the char-

eristic dimension of the packing is much smaller than that

the bed, it is a poor model for short beds with large packing

:icles or for fluidized beds. It should be noted that when the

2

Fusion coefficients g— for the n-dimensional diffusion process

zero, the equation for the mean reduces to the case commonly

in the population balance models in chemical engineering

tice, namely, (1.1), where all the entities at a given point
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~

E move along any given direction at essentially the same

e.

When the conditions for a diffusion equation are not

isfied, it may be necessary to lump the entities in different

;ions in E and specify transition probabilities (or rates) for

: movement of entities from one region to another, as mentioned

the previous section. The mixing cell models used in the RTD

Llysis and the model preposed by Takahashi (1968) for cell popula-

>n dynamics are examples of this approach.

Experhments similar to tracer analysis in RTD studies, along

:h a careful analysis of the potential causes of random movement

the entities in the individual state Space would usually be

:essary to decide the type of model best suited for the purpose.

7 example, the analysis of sucrose crystallization study of

-te and Wright (1969, 1971) clearly suggests the applicability of

2 diffusion equation, whereas the growth rates of fish may need

lore careful study to decide whether the "bypassing" effect in

growth of fish populations is of significance.

A stochastic description of a population characterized by

iffusion process would rely on the theory of stochastic pOpula-

n processes. The discrete cases such as the perennial crOp

iuctivity model of Abkin (1972) will involve the use of discrete

:ontinuous parameter Markov chains when the transition proba-

;ties for the movement of the entities from one state (char-

rized by the productivity, maturity, etc. of the entities in a

p) to another does not depend on the past history of the

ties. For the purpose of the models considered in the next two
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Japters it will be assumed that the movement of the entities in

can be described by a diffusion process. A stochastic descrip-

ion of the diffusion of the entities includes the stochastic

ounterpart of the process described by (1.1), i.e., the case where

.11 entities at a point in E move in any given direction at the

ame rate, as a special case.

 



CHAPTER IV

DERIVATION OF THE DIFFUSION EQUATIONS

As a Specific example of a general population balance model,

he case where the individual state space E consists of the non-

egative real line will be considered in this chapter. This case

mplies to populations in which the entities are characterized by

Lsingle descriptor z, denoting a property of an entity such as

 

.ocation, age, maturity or size. The model can be readily extended

:0 the case where E is a n—dimensional Euclidean space for which

:he properties of an entity representing the co-ordinate axes are

independent of each other. The total number of entities in a

mpulation can increase due to reproduction by the existing entities

n the population, or by virtue of an external input. In the

lerivation of the equations in this chapter it will be assumed that

lhere is no external input of entities to the population. Moreover,

I

‘11 the "newborn" entities are assumed to appear at the origin of

  

  

  

  

  

  

  

  

at the instant of their birth. The descriptions in this chapter

ill have to be modified slightly in case of populations where the

offspring" is in the same state as the parent, as in the spatial

igration of a biological population via a diffusion process (cf.

dke and Moyal, 1963). The effect of external input will be con-

idered in Chapter VI. In the following discussion the creation of

entity by reproduction will be called birth of the entity and

44
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oval of an entity will be termed as death of the entity.

Description of the Process

At time s the population is started with a single entity

an arbitrary point y E E. The process of movement of an entity

any point z E E is assumed to be a continuous Markov process,

2., as the time interval 6t becomes small, so also does the

;tance 62 covered by the entity during that interval, and the

:ure locations of the entity depend only on its present location,

: not the past history. The distance 62 covered by an entity

a small time interval (t,t+6t) conditional on its survival

:ing this interval is a random variable with a density g(6z;z,t)

1 satisfies the conditions specified by (3.2), i.e.,

(mean) E(6z) = r(z,t)6t + 0(6t),

= foam + out), (4.1)(variance) var(6z)

3(521‘) = 0(5t) for k 2 3.

:ing the interval (t,t+6t) the entity at 2 has a probability

:,t)6t + 0(6t) of dying and a probability xi(z,t)ét + 0(6t),

new entities at z = 0 with

l

f 1,...,m, of producing i

\
CO

2 ii(z,t) s x < co (4.2)

‘ i=1

1

is’
l

\

‘obability that an entity will not reproduce during (t,t+6t)} =

xi(z,t)5t + 0(6t). (4.3)

1

: state 2 of an entity is unaffected by giving birth to an "off—
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: process of change of position of an entity as well as its re-

)duction and death proceed independently of other entities in the

)ulation. In view of the independence of the entities, the case

are the initial population contains k entities (k > 1) can be

1di1y modeled by a Superposition of k populations, each starting

:h a single ancestor in the appropriate location corresponding to

3 initial distribution.

Two obvious cases where this description applies directly

3 the dynamics of biological populations of individuals char-

terized by maturity, and crystallization processes involving

:ondary nucleation. In biological populations the probability of

rth refers to reproduction and the probability of death refers to

e processes of natural death, predation, parasitism and harvesting.

crystallization processes, reproduction refers to secondary

cleation and death corresponds to precipitation,or loss of the

ystals from the crystallizer due to mechanical removal or bulk

pw of the magma. Most particulate processes in chemical engineering

htain entities which do not reproduce. It can be seen that these

cesses correspond to the case where the birth rates xi(z,t) = O,

1,...,m. In processes such as degradation of polymer molecules,

e reduction of solids, etc., every breakage of an entity normally

duces a number of entities of different sizes, thus generating

andom size distribution of the pieces. The models derived in

s chapter can possibly be generalized to include this case, but

analysis of this general case will be much more complicated.

For the quantitative description of the population, a count—

measure N(A,t|y,s), t 2 s, is defined as the number of entities
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:he set A CiE at time t, given that there was one ancestor

:he point y at time 3. Obviously,

N(A,S\y.5) = I(A\y) (4-4)

1 probability one. In (4.4), I(A|o) is the indicator function

the set A. Starting with (4.4) the description of the temporal

ages in the population can proceed in two directions. One way

describing the population dynamics is to express the counting

sure for a fixed arbitrary set A and a fixed time t, as a

ction of s and y. Since —w s s s t, and since the dynamics

 

the population is expressed relative to the condition specified

(4.4), i.e., with s = t as the reference point in time, it

be seen that this is a description of the population obtained

moving ”backward" in time. This description is therefore called

backward description. Another way of describing the changes

he population is to express the counting measure corresponding

n infinitesimal set dz located at z E E for fixed arbitrary

nd 3 as a function of z and t. Since this description

1ves moving "forward" in time with respect to the reference

t t = 5, this is called the forward description. Accordingly,

) iS a forward description of the population because it des-

es the population in an infinitesimal interval (z,z+dz) as

nction of z and t.

Boundary Conditions

The movement of the entities is restricted to a domain in

alled the spatial domain 5. The spatial domain may be a subset
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E, or the entire space E itself. In the present context,

.5 taken as the closed interval [0,5], where a may possibly

roach infinity.

In the derivation of the model, the behavior of entities at

boundaries must be considered. The possible modes of boundary

avior of an entity diffusing on the real line were considered

?eller (1954). Some possibilities of practical interest are:

reaching a boundary, the entity may be instantaneously returned

the interior of D, i.e., the entity is always restricted to stay

the interior of D, resulting in a reflecting barrier. Another

 

sibility is when the entity is removed from the pOpulation as

n as it reaches a boundary, representing an absorbing barrier.

nird possible type of behavior at the boundary occurs when an

ity reaching a boundary stays there for an exponentially dis-

)uted random length of time, and then jumps to a point in the

arior of D, or to the other boundary. It may be added here that

1 E is a multidimensional Euclidean space, there is a fourth

;ibi1ity, namely, the case where an entity reaching a boundary

is along the boundary according to a Markov transition proba-

.ty.

In the context of biological populations and crystallization

esses described above, the boundary at z = O is a reflecting

ier, because no entity can cross this boundary and moreover,

moment an entity appears at z a 0, it starts to ”grow", i.e.,

S to the interior of D. When D is a finite interval

], one may encounter a reflecting or an absorbing barrier at

The third type of boundary behavior, where an entity can take
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?inite jump into the interior of D may be encountered in rare

;es. It is intuitively obvious that as 5 approaches infinity,

: state of the population in any finite interval at any finite

1e Would not be dependent upon the type of boundary behavior at 5.

Fish are known to exhibit stunted growth if the population

[sities are too high (Beckman, 1940). This may be interpreted to

in that there is an upper limit on the size that an individual

:h may attain depending upon the availability of food. This

iiting size can possibly be viewed as a reflecting barrier re-

‘icting further growth of the fish. However, it should be noted

 

It since the stunted growth phenomenon occurs due to a severe i

,eraction among individuals for the available food, the stochastic

"mulation of the population process may perhaps be only a crude

>roximation in this case. In an intensively exploited fishery

a forest resource) few individuals above a certain size (or

ductive value) may survive, enabling one to imagine an absorbing

rier at a finite size (or productive value). Similar considera-

ns will apply to any intensively exploited biological population.

some biological populations all the individuals above a certain

urity can be considered identical in all respects. In such cases

is possible to consider this maturity to be an absorbing barrier

assume that an individual reaching this maturity is removed

n the original population to become a member of another population

;isting of identical individuals. An absorbing barrier can be

ified in case of particulate processes in chemical engineering

.tice when the particles precipitate out of the system, or are

ved mechanically by some separation technique when they reach
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ertain size, weight, etc. The flow of fluids through packed beds

ers an interesting possibility of an application of the third

e of boundary behavior. The movement of fluid elements near the

s of the bed cannot be characterized by a diffusion equation

n in long beds, because the random velocity patterns of the eddies

essary for an effective diffusion are not fully developed in the

zones. The distance covered by an eddy at a boundary (i.e.,

inlet or exit end of the bed) in a short time interval will not

e a normal distribution as indicated by (4.1) -— instead, the

tribution may perhaps look more like an exponential. To account

the end effects it may be worthwhile to consider an idealized

w behavior where a fluid element at a boundary is capable of

tantaneously jumping to a point in the interior according to a

wn probability distribution. When the volume of the headers of

packed vessel is rather large, it may be possible to assume the

ders as perfectly mixed (hypothetical) vessels at the b0undaries,

ing rise to finite exponentially distributed times of stay at the

1daries. A detailed mathematical description and verification of

: boundary behavior is beyond the scope of this dissertation.

The Backward Diffusion Equations

A stochastic model for the process described in Section 4.1

be derived here in the form of a backward diffusion equation

the probability generating functional of the population. Let

,tly,s), t 2 s, denote the number of entities in [0,2] at

t, given that there was one entity at y at time 5. Define
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:(e,tly,8) = E{[H 9(zi)],t|y,8} = E{eXP INEIOg 6(2)]N(dz,t\y,8)} (4-5)

i D

m the conditional probability generating functional for the popula-

;ion at time t, given that there was one entity in the population

It y at time s. The product on the right side of (4.5) has

ane term e(zi) corresponding to each entity at zi at time t.

n View of the independence of the entities in the population a

CF conditional on k entities at y1,...,yk at time s can be

hown to be equal to

k

G(e,t‘y1,...,yk;s) = .H1G(e,t\yj,s) . (4.6)

J:  e proof of (4.6) follows from the definition of the conditional

ounting measure with k ancestors

k

N(A,t\y1,.-.,yk;s) = 2N(A,t\y..s) (4.7)

j=1 J

nd the second expression on the right side of (4.5) (Moyal, 1964).

den there are no entities in the population at time t, G(e,t\y,s)

quals one (cf. Equation (2.9)). As mentioned before, the spatial

)main 5 is taken as the interval [0,5]. The case where 5

: the semi-infinite interval [0,m) is obtained by letting a

vproach infinity.

Consider the change in G(e,t1y,s-5S) brought about by a

all change in the ancestor during the time interval (s-6s,s).

view of the fact that the ancestor can move from y to y+6y

the time interval (s-5s,s) with probability g(6y;y,s)d(5y)

ovided it survived during the interval,



 

,t'y,S-SS) =

m 5

- E xi(y.S)6S) (1-u(y,S) és)£g(6y;y,S)G(e,t|y+6y,S)d(6y)

1=1

m ,5

1'M(Y,S)6S) E ki(Y)S)6S G(e,t‘O,S) l£g(6y;y,S)G(9,t‘y+6y,s)d(5y)

i=1

 

(y,s)€>s - 1, (4.8)

’

T at t ancestor P[ancestor neither died nor reproduced

y at time s—ss = during (s-és,s)]§{P[ancestor moved to

y+5y during (s-5s,s)][PGF at t ancestor

at y+6y at time 8]}

P[ancestor did not die during (s-és,s)]P[ancestor produced

i offspring during (s-bs,s)][PGF at t with the i offSpring

as ancestors at O at time S]I{P[ancestor moved to y+5y

D
—
‘

during (s-és,s)]}{PGF at tlancestor at y+5y at time s}

-P[the ancestor died during (s-és,s) without producing any

_offspring][PGF for no entities in the population] .

probability of the ancestor dying and also producing any off-

ng in an interval 53 is 0(6s)#, and hence the corresponding

is omitted from (4.8). Expansion of G(e,t\y+6y,s) in a

or series about y gives

2 2

Hr%YJO =G(e¢lyfi)_pagfing¥gaéy4.AEQL%UJQ_%p

BY

+ o<ay3>#. (4.9)

 

: function f(t) = 0(t) if lf(t)/t s k < m as t a 0 (e.g.,

[uantity E(6z) in (4.1)). The function f(t) = 0(t) if

It a as t a O, i.e., f(t) is of a smaller order of magnitude

t, as in case of E(5zk), k 2 3 in (4.1).
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)stituting (4.9) in (4.8), using (4.1) and omitting terms of

ier higher than 6s, one obtains

3,C‘Y:S‘5S) = C(e,t\Y>s) + 63EG;G(9,t\y,S) + u(Y:S)

_ z li(Y:S)G(G:t\Y:S)

i=1

+ z xi(y,S)G(e,t\0,S)iG(e,t\y.S)], (4.10)
i=1

are the operator d9 is defined as

2 2

c7 = [9—igafil 5~§ + r(y,s) a_._ n(y,s)] . (4.11)

Y ay
By

>tracting G(e,t‘y,s) ’from (4.10), dividing by as and letting

approach zero, the backward diffusion equation for the PGF

co

Gg9,t y,s)

as = a§G(e,t\y,s) + u(y,S) - z ii(y,s)G(e,t\y,s)

i=1

+ z 11(y,S)G(e,t\0,S)iG(e,tly,S) (4.12)

i=1

obtained.

It may appear that if E(6zk) = 0(6t) (instead of o(6t))

(4.1) for say, k = 3, then one would be able to get a third

er partial differential equation instead of (4.12) by truncating

Taylor series expansion of G(e,t\y+6y,s) in (4.9) after the

rd derivative term. However, Pawula (1967) has shown that if

Z3) = 0(5t), then E(ézk) = 0(6t) for all k > 3, thus demanding

infinite Taylor series expansion in (4.9) and consequently an

inite-ordered partial differential equation.

When y = 5 is an absorbing barrier, in view of the condition

t every entity at the absorbing barrier is immediately removed
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-om the population, i.e., the number of entities at the barrier

; always zero with probability one, the corresponding boundary

.ndition is

C(e,t\3,s) = 1 . (4.13)

As explained in the previous section, the boundary at y = 0

z a reflecting barrier. For a reflecting barrier at y = 0 the

Ltity at the boundary is assumed to jump instantaneously to an

merior point 6y. Thus,

G(e.tl0,s) = G(e.t\oy,s)

nce,

_ a§i_i£tii;L
C(e,t\0,s) - G<e.t\0,s> + by 9 By S ly=o

W‘ = 0 . (4,14)

ay y=0

milarly, if y = 5 is also a reflecting barrier,

= 0 , (4.15)

nce there is only one entity at y at time t = s,

[H9(Z.)],t\y,t)} = e(y). Hence, the initial condition is given by

1

G(e.tly,t) = 9(y) - (4-16)

If (4.12) can be solved analytically with the initial con—

tion (4.16) and boundary conditions (4.14) and (4.13) or (4.15),

E SOlution G(e,t\y,s) would contain a complete stochastic

. I

n l

.S no

SCrlPtion of the population With one ancestor when there 1
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Lput of entities to the population from an external scurce. How-

'er, because of the nonlinear nature of (4.12) and the occurrence

7the arbitrary function e(y) in the initial condition, such

Lalytical treatment is not possible.  
Remark 4.1: If there are k entities initially at

>,y2,...,yk; then the complete PGF for the population is obtained

’ solving the backward diffusion equation for G(e,t\yj,s) for

= l,...,k and substituting these in (4.6).

Remark 4.2: In view of the definition (2.9) for a PGF, the

obability of having zero entities in the p0pulation (i.e., the

 

:tinction probability) is given by the solution of (4.12) with

:y)=0. Similarly, choosing

e(y) = <4”)

C(0,t\y,s) and solving (4.12) one obtains the probability

nerating function

ngf = E{§N<A’t\y’s)} = ozopkgk (4.18)

k=0

the number of entities in the set A C.5 at time t, when there

one ancestor initially at y. In (4.18) the quantity pk refers

the probability of having k entities in A at time t, given

e ancestor at y at time 3.

Remark 4.3: The diffusion equation can also be derived by

nsidering a random walk of the entities in E, where each entity

assumed to jump a random (or fixed) distance forward or backward,

' ' ' with

stay in the same position during a small time interval 65
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awn probabilities, and taking a limit as the jump size reduces to

to, if the jump probabilities satisfy (4.1) (cf. Cox and Miller,

65).

It should be noted that a shnilar set of equations can be

rived for the moment generating functional or the characteristic

nctional as well.

By comparing the population process with a linear birth and

ath process having birth rate = A and death rate equal to the

nimum value taken by u(y,s), it can be seen that the first and

20nd factorial moments of populations in any subset of E exist.

 

a backward equations for the first and second factorial moments

a readily obtained by using (2.13) and (2.14). Thus, the first

nent of the number of entities in the set A1 C D is given by

aEifl [11(zi) + §8(Zi)],t\y,s}

i

1

BC ‘n—d
at 17141

g=0

g=0

= E 2 9(Z.) n [T‘(Z) + §6(Z.)]:t\y,5}l

i 1 {jri J J “:3

E[N(A1,t\y,s)] E M1(A1,t\y,S) (4-19)

choosing 9(2) = I(A1\z). Similarly, the second factorial

mnt corresponding to the product counting measure for the set

X A2 C15 X 3 (cf. Figure 2.1b), is given by
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Bi.H'[n(zj)+g6(zj)],t‘y,s}

= J l .

EH? 941)] ac Mm}
C=0 g=0

 

= Eiz e(z.) 2 e(z.)

1 I j¢1 J 1

= E[N2((A1XA2),tly,S)-N((A1nA2).t\Y.S)]

= 14(2) (A1 x A2,t\y,s), (4.20)

:re 9(2) = I(A1\z)I(A2\z), or equivalently, when 9(21) =

.llzi) and e(zj) = I(A2\zj). The indices i and j in (4.19)

(4.20) refer to all the entities in the population at time t.

can be seen that the quantity N(A1 fl A2),tly,s) is subtracted

m N((A1 X A2),t[y,s) to deduct the contribution of the entities

responding to the terms 6(zi)e(zi)' When A1 = A2, (4.20)

es the second factorial moment of the population in the set

X Al, i.e., E(N(A1)(N(A1) — 1)).

Remark.4.4: It should be noted that in the derivation of

19) and (4.20) it was necessary to commute the partial dif-

ential operator ag- with the expectation operator. This is

tified by virtue of the following proof:

E1 k< < > < > ) } H my Em )+ge( > tly s>P(k)<dzk>}H . e . ,t ,s = 2 z. Z. , ,
i=1 Tl zl +g 21 \y 1 8g k=0 Ek i=1 1 1

00 k
. l (k) k

1m ‘i E i H ( (z )+(Q+A)e(z.),tly.S)P (dz )
*0 A k=OIEk i=1 n 1 1

m k k 1

- 2} k n <n<zi>+ge<zi>,t\y,s)P( )<dz‘>]

k=0 E i=1

w k
. 1 (k) k

1m ‘{ 2 ~ H (n(z.)+ge(z.),t\y,s)P (dz )

*0 A k=OIEk i=1 1 1
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m k

a—
C+

2 (k)

+ 13::0'r‘iilkm 5§[1:11m(zi)+( hA)e(zi) ’tiy’5>1+0(4 )JP (dzk)

co k
(k) k

_ Z N H (fi(z.)+ 9(z.),t y,s)P (d )

k=0J~Ek i=1 1 Q 1 \ z l

are 0 s h s 1, by the mean value theorem. Hence, by the dominated

nvergence theorem (cf. Parzen, 1962, p. 274),

k 00 k

{E[ H (N(Zi)+ge(zi),t\y,8)]} = 2 j~k{1im [a—< n (“(21)

i=1 k=0 E A~O 55 i=1

+ <g+ho>e(zi>,t\y,s>> + 0(A)]P(k)(dzk)}

k

_ a_
— E{5g [igl(n(zi) + ge(zi),tly,s)]} .

In particular, taking A and A1 2 to be the intervals [0,21]

1 [0,22] respectively, defining

*

M1(zl,t\y,S) = M1([0,z1],t\y,s), (4-21)

*
= 4.22

M2(Zl:22,t‘y,s) M(2) ([0:21] X [0,2213tly)s) ( )

i using (4.19) and (4.20), the backward diffusion equations for

a first and second factorial moment measures of the population in

’21] and [0,21] X [0,22] respectively can be obtained. The

:kward diffusion equation for the first moment measure is

71‘

5M (Z :tlYfi) 0° 3‘.“

1 * - 23
- = + l . M (Z at 0,5) (4‘ )

as dy M1(zlytly:s) 121 Al 1 1 i

:h the initial condition

M:(zl,t\y,t) = (4.24)

  



-~~_.__-~ ..

 



 

 

1d the boundary conditions

9:

8M1(Zl,t\y,s)

ay y=0 = 0, (4.25)

7': 7':

M1(zl,t\y,s)\y=21+ = M1(zl,tly,s)\y=zl_
(4.26)

7': 9‘:

5M1(z1,tly,s) 5M1(zl,t\y,s)
_—_ _ = —-———— _ (4.27)

By y-zl+ oy y-zl_

d

* N

M1(zl,t\a,s) = O (4.28)

r an absorbing barrier at y = a, or

M*( i )a z ,t y,s

__l__l_____._ N = 0 (4.29)

By y=a

r a reflecting barrier at y = 5. The continuity conditions

.26) and (4.27) at y = 21 for M:(zl,t\y,s) and its derivative

th respect to y are necessary in view of the fact that the

itial condition (4.24) essentially divides 5 into two regions,

S y 3 z1 and 21 < y s 5. Conditions (4.26) and (4.27) follow

om the continuity of G(e,t\y,s) and its derivative with respect

y throughout 5. Similarly, the diffusion equation for the

cond factorial moment measure is

5M*(Z ,z ,tly,s)

__§__l__§_______ = a7M*(z ,z ,t‘y,s)
as y 2 1 2

m
m *

Zi(i-1)xi(y,s)M:(zl,t\O,s)M:(zz,t\0,8) + Biki(y,S)M2(zl,z2,tiy,S)

i=1 i=1

m. * a * * 3
iEixi(y’s)[Ml(zl,t\y,s)M1(z2,t\0,S) + M1(zl,t\0,s)M1(zz,t\Y,S)] (4. o)

   



 

with the initial condition

9:

M2(z1.22,t\y,t> = o (4.31)

and boundary conditions

*

5M2(zl,zz,t\y,s)

= O 4.32By M , < )

and

* ~ _.

M2(zl,zz,t\a,s) — 0 (4.33)

for an absorbing barrier, or

BM2(21’ZZ,C\}’,S)

______..._——————\ _N = 0 (4.34)

By Y"

for a reflecting barrier at y = 5. Since the initial condition

does not divide the spatial domain into different regions, the con-

tinuity conditions for the points 21 and ZZ’ Which follow from

(4.19) and (4.20) will always be satisfied, and thus need not be

onsidered separately.

Knowing Mi(zl,t\y,s), the expected number of entities in

ny arbitrary interval (51,221 can be calculated from the dif-

ference M:(Ez,t\y,s) — M:(El,t\y,s). Similarly, the second

actorial moment for the number of entities in (51,221 is given by

(2)((zl,zz]x(21,22],t\y,3) = N(z)((0,22]X(0,22].t\y,8)

+N(z)((0:E1]X(O,Zl]ztly)s) _ 214(2)((0,ZI]X(0,ZZ],E\YaS)

* ~ ~ 4 ~ ~

= M2(ZZ,ZZ>t\YaS) _ 2M2(Zl,22,tiy,5)

it

+ M2(z1,zl,t\y,s).
(4.35)
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nowing the first two factorial moments, the variance of the popula-

ion in any interval A can be calculated by using the relation

ar(N(A)) = M(2)(A x A) +-M1(A) — (M1(A))2.

Remark 4.5: When the transition probabilities related to

irth and death, as well as the transition probability density for i

he movement of an entity in D do not depend upon time, i.e., K

hen the stochastic population process is stationary in time, the

ependence of G(e,t\y,s) on t and s will enter only through

he difference (t-s). In view of this,

G(e.t\y.s) = G(e.t-s\y,0)

 

_ C(Bat”S\Y) '

imilar relationships for the moments follow immediately from the

GF. This makes it possible to define a new time scale

othat 5—-—a—

T = t-s,

65 ET. The backward diffusion equation for the PGF

or the stationary process and the initial as well as boundary con-

itions are given by replacing the partial derivative - as by

and G(e,t\y,s) by G(e,T\y) in (4.12) thru (4.16). Similarly,

e corresponding equations for the first two factorial moment

asures are given by replacing ~ 2; by 2:,

7’: 7‘: 7':

(z,t\y,s) and M2(zl,zz,t\y,s) by M1(z,T\y) and M2(zl,zz,m\y)

as well as

Spectively, in (4.23) thru (4.34).

.4 The Forward Diffusion Equations

The derivation of the forward equation for the generating

nctionals is much more complicated than the backward equations

cause in the derivation of a forward equation it is necessary to
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ascribe the changes in the generating functional due to the changes

1 positions of all the entities in the population at time t during

small time interval (t,t+6t). On the other hand, only the changes

1 a single ancestor had to be considered while deriving the backward

quation. As indicated in Section 4.1 a forward description is in

arms of the number of entities in an infinitesimal interval

z,z+dz) C D. The forward equation for the moments is thus in terms

f densities of the moments. The derivation of the forward diffusion

quation therefore depends upon the existence of these densities.

n the following derivations the moment generating functional (MGF)

ill be used for obtaining the forward equations for the moment

ensities (for the cases where these densities exist). The PGF or

he characteristic functional can also be used in place of the MGF.

Kendall (1949) first derived the forward differential equa-

ions for the first moment (mean), variance and covariance densities

r the age distribution of a pOpulation, using a generating func-

‘onal. The equation for the first moment density was the same as

.1) with i = 1, v = 1, and the birth rate appearing only in a

1

undary condition. The densities were defined as

(mean) E(N(dz,t)) = fi1(z,t)dz + o(dz),

(variance) Var(N(dz,t)) = E<N<dz.t>2> - (E(N<dz.t>>>2,

= fi2(z,t)dz + o(dz)

d (Covariance) Cov(N(dzl,t)N(dz2,t)) = E(N(dzl,t)N(dz2,t))

‘ E(N(dzlat))E(N(dzzat)) = [7112(z11229t) + o(dzl,dz2) :

ere N(dz,t) denotes the number of entities in the interval

,Z+dz) at time t. It can be seen that in the terminology of
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the theory of stochastic population processes the individual state

space E for Kendall's problem consists of the non-negative real

line denoting the age of an individual. The variance density is

connected with the density of the second moment measure with respect

to the diagonal of E X E and the covariance density is related to

the density of the second moment measure with respect to E X E

itself (cf. Sections 2.3 and 2.4). The method of derivation of the

equations in this section will be similar to that of Kendall.

Let ¢[9,t21N0,t1] denote the MGF for the population at time

t2 given the measure N denoting the distribution of entities
0

in D at time t1. In view of (4.4), when there is only one

ancestor at y at time s,

¢[9,5\N0,S] = Eiexp je(2)1(dZ\y)] = 9(y) - (4.36)

B

It can be seen from the properties of conditional expectations that

¢[e,t+5t\NO,s] = E[exp I5 e(z)N(dz,c+5t)\N0,s)]

ll E{E[exp L 9(z)N(dz,t+6t)\N(z,t)]\1\l0,s]. (4.37)

D

Noting that the integral with respect to the counting measure repre—

sents a sum over all the entities in the population,

E[exp f~ e(z)N(dz,t+6t)\N(z,t)] = E[ H exp e(z_)\N(z,t)]

D t+5t J

= n Eiexp 8(2.)\N(Z.t)]. (4.38)

t+5t 3

where the product has one term corresponding to each entity at

Zj E D at time t+6t, and the second expression on the right follows

from the independence of the entities. It is easy to see that
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n EEeXP 6(2.)\N(z,t)]= H {(1-u(z..t)6t)E[exp(e(2.+6z))]

t+6t J t J 3

+ u(zj,t)6t}{1- )3 xi(zj,t)5t + z yi(zj,t)5t exp(ie(0))}. (4.39)

i=1 '=1

The quantity E[exp(e(zj+6z))] can be written as

E{exp[e(z.+62)]} = j” g(6z; z..t)exp(e(z.+62))d(oz)
J D J J

= exp(e(zj)){1+6t[e'(zj)r(zj,t)

O' (Z-3t) 2

+ ————%——-(e"(zj)+e'(zj) )]+ o(st)}. (4.40)

The second expression on the right side of (4.40) is obtained by

expanding exp(e(zj+62)) in a Taylor series about 23. and using

(4.1). The quantities e'(zj) and e"(zj) denote the first two

derivatives of 9(2) evaluated at 2 = zj. Substituting (4.39)

and (4.40) in (4.38) and simplifying,

H EieXP(e(z.)\N(z,t)] ~ H exp(e*(2.))

t+dt J t J

7‘:

= expij, e (z)N(dz.t)], (4.41)

D

where

2

e*<z> = e(z)+ot{r(z.t)e'(z) + Q-éfl we) + e'2(z)]

- u(z,t)[1-exp(-e(z))] + E xi(2,t)[exp(ie(0))-l]} . (4.42)

i=1

Using (4.41), (4.37) can be written as

*

oie,t+6tiNO.s 1 = oie ,tiN0,s] - (4.43)

Equation (4.43) along with the initial condition (4.36) represents

a complete forward description of the population in terms of the

MGF. Further simplification of (4.43) is not possible.

 



 

65

The first moment of the population in the set A CID is

obtained from the MGF by using (2.18) and (2.19):

ooige,t|N0,s]

0 = - ——.._____.
ée¢( ) at g=0

= - 3— {Eiexp J“, ge(z)N(dz.t))\N ,sm
a; D o

= .vffi e(z)E[N(dz,t)\N0,s)] = IAM1(dz,t\N0,s), (4.44)

when 9(2) = -I(A\2). In the derivation of (4.44) it was required

to commute the operator :3 with the expectation and integral

operators. This can be justified by using an argument similar to

that in Remark 4.4. In the case where the number of entities in a

small arbitrary interval dz is finite with probability one, the

first moment density with respect to 2 exists and Ml(dz,t\NO,s)

can be written as m1(z,t\N0,s)dz, where m1(z,t[N0,s) denotes

the density of the first moment measure. When 9(2) in (4.37) is

replaced by g9(z), (4.43) changes to

o[g9,t+6thO,s) = 05[e**,t|NO,s)] , (4.45)

where

2 2

e -(Z) = ge(z)+ot{r(z,t)ge'(z) + Egg g[9"(z)+z;e' (z)]

- u(z,t)[l-exp(-g9(z))] + X(Z,t)[eXP(Qe(z)‘l)ll' (4‘46)

USing (4-44) and taking the set A to be an arbitrary interval

(51.52], (4.45) leads to

2 aml (2, thO ,s)dz

at

22

4.47%j m1(z,t\N0,s)dz , ( )

1 21

N
1
%

N
1
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*

where the operator a; is given by

a: = {a aztozeétm _ any) .1 _ Wm)“, (4.48)

52

It should be noted that although the indicator function I((21,22]\z)

has jump discontinuities at 21 and 22, and thus the derivatives

9'(2) and 9"(z) in (4.46) cannot be defined at these points of

discontinuity, it is possible to define an infinitely differentiable

function f(z) which agrees with the indicator function with an

arbitrarily small error e > 0, (defined as the integral of the

absolute value of the difference between the two functions) over a

closed interval [&1,&2] containing (21,22] and is zero outside

(91,82) C [&1,&2] (see e.g., Indritz, 1963; p. 254). The function

f(z), instead of the indicator function itself, has to be used in

the derivation of (4.47). Since the limits of integration 21

and 22 in (4.47) are arbitrary, the integrands must be equal,

and hence

W= 4* m (z t]N s) (4 49)

at z 1 ’ 0, . '

When the interval (21,22] includes one of the boundaries, i.e.,

z = 0 or a, the following boundary conditions result:

a[oz(o,t)m1(o,t1N0,s)]

52

 
r(09t)m1(09t\NOSS) - %

'5 co

= g Eiyi(z,t)m1(z,t‘N0,S)dz, (4.50)

i=1

and

a[02(§:t)m1(§!thoas)] -

az _

 

r('a,t)m1(5,th0,s) ‘ % (4'51)

for a reflecting barrier, or
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m1(5,t\N0,s) = 0 (4.52)

for an absorbing barrier. The initial condition is obtained from

(4.36) as the Diraceé function

m1(z,s|NO,S) = 6(z-y) (4.53)

when there is one ancestor at z = y at time s. When there are

k ancestors located at yj, j = l,2,...,k, the initial condition

will be the sum of k 6-functions

k

m1(z,s‘N0,s) = .2 6(2 - yj) . (4.54)

j=l

It can be seen that the forward diffusion equation (4.49)

for the first moment density is the same as the diffusion equation

(3.4) with an additional term accounting for the death of entities,

and has the same form as (1.3) where a: = rR = 0 and the death

term D replaced by the corresponding term in (4.48). The deriva—

tion of (1.3) has been mainly based upon an analogy between mixing

of eddies of a fluid in a process vessel and molecular diffusion

(cf. Levenspiel and Smith, 1957). Use of the diffusion equation in

population balance models in chemical engineering has been restricted

to only the residence time distribution analysis of some process

vessels. A major reason for not using the diffusion equation to

characterize particulate processes such as sucrose crystallization

thus far is perhaps a lack of a full appreciation of the stochastic

nature of the diffusion process.

The development of (1.1) is based upon purely deterministic

considerations, with x denoting the number density of the entities  
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in the Euclidean space E. To account for the fact that an integer-

valued population is characterized by a continuous density function

x, it is always assumed that the population must be large in order

to justify the "continuum approximation" (Randolph and Larson, 1971;

p. 13). Thus, it is assumed that (1.1) is not valid for small

populations. Moreover, (1.1) cannot be used to describe any popula-

tion where the movement of all the entities at a given point in E

at time t isznot identical in all respects. When the diffusion

coefficient %_ is zero, (4.49) has the same form as (1.1), and

thus (4.49) represents a generalization of (1.1). In view of this,

(1.1) can be seen to be rigorously true even for small populations

if x is interpreted as the first moment density instead of a

number density and other parameters are given the appropriate

probabilistic interpretations, and if the initial population is char-

acterized as a sum of Dirac—5 functions instead of a smooth density.

Evidently, the assumption of independence of entities underlying

the stochastic formulation implies that the resulting partial dif—

ferential equations and the boundary conditions cannot have any non-

linearities with respect to the first moment density. When the

initial population is large, the assumption of a smooth density

function may be justified. It is only in this sense that the initial

population must be large in order to justify the "continuum approxima—

tion" in (1.1).

Derivation of the forward equation for the second moment

density is complicated by the fact that the second moment distribution

has a "mass concentration" along the diagonal of the domain 5 X 5

(See Section 2.4). The second moment of the number of entities in
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he set Al x A2 c E x 5 can be calculated using (2.18) and (2.19):'

2
2

59¢(0) = :65 [E exp ffige(z)N(dz,t\NO,s)]\g=O

= Effie(zl)N(dzl,t\N0,s)ffie(z2)u(dzz,tiuo,s)

= EI~ ~9(zl)e(22)N2(dz1 X d22,t|NO,s) (4.55)

DXD

y Fubini's theorem on summations with respect to product measures

see e.g., Feller, 1966; p. 120). As discussed in Sections 2.3 and

.4, the second product moment can be expressed as a sum of a density

 

2(z,thO,s) with respect to the diagonal of D X D (i.e., the

ine 21 = 22) and a density with respect to D X 5. Use of these

ensities in (4.55) yields

Ejfixfi9(zl)9(22)N2(dz1 X d22,t|N0,s)

2

= 9(2 ) m (z ,t‘N ,s)dz
N N 1 2 1 0 l

{zlzzzlniDXD}

+ l I e(z1)9(22)m12(zl,z2,c1NO,s)dzldz2 . (4.56)

DXD

.

a in the case of the equation for the first moment density, taking  
z) to be the infinitely differentiable function approximating

A1\2)I(A2\z) (or equivalently, taking 9(21) and 9(22) to be

1e infinitely differentiable functions approximating —I(A1|zl)

1d -I(A2l22) respectively), the second moment of the population

1 the set A1 X A2 can be obtained using (4.45), (4.55) and (4.56).

us, for the density mlza

  



 

gm (2 ,z ,t‘N ,s)
12 l 2 O _ 7‘: 71:

i iA at dzldzz _ i £A {a21+a22}m12(z1’22’tiNo’S)dzldz2’
l 2 l 2 (4.57)

* *

where a; and a; denote the operator defined in (4.48). An

1 2

additional condition that

m1(21,t\N0,s) = m2(21,t\N0,s) (4.58)

needs to be satisfied in the course of the derivation to obtain the

equation for the density m2:

am2(zl,t\N0,s)

i21=zzlniA1XA2l at

 

=r‘ {49:11]

{2 =2 }fl{A XA } z1 2(Z1»t\NO,S
) + N(Z1,t)[m1(

zl,t\NO,s)

l 2 1 2

- m2(zl,t\N0,s)]}dz1 . (4.59)

As mentioned in Section 2,4, the second factorial moment of the

product counting measure N2(A X A) does not have a concentration

along the diagonal of D X D only when the point process describing

the population is orderly. Since the second product moment equals

the sum of the first moment and the second factorial moment, it can

be seen that (4.58) is satisfied only for an orderly process. When

this is the case, m12(zl,22,t\NO,s) completely describes the second

factorial moment of the population. In View of this discussion and

the fact that A and A2 are arbitrary, the forward diffusion

1

equation for the second factorial moment density is

om12(zl,z2.t\N0,s)

at

71‘ air

= {afl + agz} m12(zl,zz.t|NO.S) (4.60)
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for the case where the point process describing the pOpulation at

any given time is orderly. When A1 or A2 include the boundaries,

the following boundary conditions result:

2

BEG (0,t)m12(0,22,tiN 35)]

W2 (Oazzat) E r(03t)“112(03223t\N035) "' $2 J;
 

l
621

a m

=£ E lxi(zlat)m12(zlazz)t\No)
S)dzl

(4°61)

i=1

(D

+ __r_. iii(zz.t)m1(z2.t\NO.s),

1-1

'5 oo

v22(21,0,t) = g iElixi(22,t)m12(21,22,t\N0,s)d22

+ E i)i(zl,t)m1(zl,t\NO,s) (4.62)

i=1

and

(,2 (5,22,t) = (,2 (z1,a,t) = O (4.63)

1 2

for a reflecting barrier, or

m12(5,22,t\N0,s) = m12(zl,a,t\NO,s) = O (4.64)

for an absorbing barrier. In view of (4.58) it is no longer nec-

essary to solve for m2(z,t|NO,s) separately. When there is only

)ne ancestor at y at time s, the initial condition will be

m12(zl,22,siN0,s) = 0 . (4.65)

if at time 3 there are k ancestors located at distinct points

.j’ j = l,...,k, the initial condition will be
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N .- 9,- x v'c‘k * )

n12(zl.zz.s\ 0.8) - izj6(zl-yi)5(zz-yj) + 12j6(zl -yi)5(22 ‘yj ’

irj i#j (4.66)

where

* *

Z1,Z2 E [0:21] H [0,22]

and * ~*

21 6 {[0,21] U [0,22] ' [0,21] 0 [0:22]} (cf. Figure 2.1b).

lariance of the number of entities in any interval A can be

readily calculated by using the relation

7ar(N(A)) = £X£m12(21,22,th0,s)dzld22 + £m1(z,t\NO,s)dz

 
2

- [£m1(z,t\NO,s)dz} . (4.67)

1.5 Comparison of the Backward and Forward Equations

It is not possible to obtain an explicit forward partial dif-

ferential equation for a generating functional, whereas the backward

equation can be readily derived. Although an analytical solution of

:his equation cannot be obtained, the extinction probability as

rell as the probability generating function for the number of entities

 
-n any set A CiD can be calculated numerically. This possibility

.as broad implications in the management and control of biological

iopulations. For example, in the biological control of insect pests,

; small number of parasites or predators are usually released in an

.nfested area. The extinction probability for the controlling popula-

ion can serve as a measure of the failure probability of the control

trategy.

In case of a finite Spatial domain D and constant parameters,

he forward diffusion equation can be solved by using separation of  
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ariables to yield an infinite series, as illustrated in the next

chapter. The coefficients in the infinite series have to be

valuated by using the initial condition. The initial condition is

sually in the form of a sum of Dirac-6 functions, and thus cumber-

ome to handle in general -- when the parameters are constant, as

ell as in the general case when a numerical solution has to be

attempted. In case of a numerical solution the integral in the

boundary condition increases the computational effort considerably.

As in the case of the corresponding backward equation, the solution

of the forward equation with more than one ancestor can also be

expressed as a sum of the required number of solutions, each with

one ancestor in an appropriate location corresponding to the initial

distribution, but this does not simplify the solution to any

appreciable extent. When the initial population is large, the

assumption of an initial density may be justified and the solution

would be much simpler. On the other hand, the backward equation is

nuch simpler to handle when the initial pOpulation is small. Although

a general analytical solution of the backward equation would be

quite difficult, a numerical solution is relatively easier than the

forward equation because of the simpler boundary conditions and the

fact that the initial condition is a step function rather than a

Dirac-5 function. It should be noted that the solution of the back-

ward equation for the first moment gives the value of the expected

number of entities in [0,2] for a fixed 2 E D at time t, as a

function of the initial location of the ancestor and the initial

time s. In order to obtain the complete distribution of the expected

~

iumber of entities in D it is necessary to solve the diffusion
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quation for a number of values of 2. In addition, when there are

ore than one ancestor at the initial time s, an appropriate number

f solutions each with a single ancestor in a location corresponding

0 the initial distribution have to be added to obtain the final

nswer. On the other hand, the forward equation gives the entire

istribution of the expected number of entities in the population

t time t directly. Thus, when the initial population is large

nough to justify a smooth initial density, the forward equation

pould be computationally more efficient than the backward equation.

The forward equation (4.60) for the second factorial moment

iensity is a linear second order partial differential equation with

:hree independent variables. In spite of its linearity an analytical

;olution is not possible even in case of constant parameters because

)f the coupling with the first moment in the boundary conditions.

i numerical solution will be cumbersomebecause of the three independent

variables and the integrals in the boundary conditions. Moreover,

:0 get the variance of the population in any interval, the densities

lave to be integrated over a two dimensional domain (cf. Equation

14.67)). 0n the other hand, the backward equations for both the

moments have only two independent variables and the moments of the

:opulation in any interval can be readily computed from two (or three)

‘olutions corresponding to the boundaries of the interval, as dis—

ussed earlier in this chapter. Thus, the total computational effort

ill be much less than that for the forward equations when the

nitial population is small. Furthermore, the backward equation is

alid even if the population is not orderly and does not need the

2

ontinuity of r(z,t) and o (z,t) as well as the continuity of
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the first derivative of 02(z,t). Thus it can be seen that the

backward equation is a more convenient tool for obtaining the moments

of the population when the initial population is small. When the

initial population is large, the forward equation for the first

moment is often much easier to handle and since the second moment

will always be rather insignificant in this case, its evaluation

will no longer be necessary.



 

 
CHAPTER V

SOLUTION OF THE DIFFUSION EQUATIONS

Solutions of the diffusion equations for the first two

moments and the PGF for a population with a one-dimensional

individual state Space E are presented in this chapter.

5.1 General Considerations

As in the last chapter, the spatial domain 5 is taken

as the interval [0,5]. Analytical solution of the equations for

the moments is possible when the parameters are constant. For

the analytical treatment, values of the parameters are taken as

follows: For the entities at z E U at time t,

02(Z,t) = C72 > 0:

r(z,t) = r9

u(z,t) = u, (5-1)

0 for 0 5 z < b

Ki(z)t) =

xi for b s z 5 a, i = 1,2,...,m.

The parameters as given by (5.1) are quite realistic for a

broad class of problems. In the crystallization process with z

denoting the characteristic length of a crystal, the assumption of

a constant growth is very common when the supersaturation of the

magma is relatively constant. A constant diffusion coefficient

may also be justified under a steady flow of magma into and out

76
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of the crystallizer and constant supersaturation. A constant death

rate reflects a perfect mixing in the crystallizer and a constant

efflux of the magma, and the assumption of a zero birth rate for

0 s z < 6 implies that a nucleus must grow to a certain size before

it can breed new nuclei by secondary nucleation.

In biological populations with 2 representing the weight of

an individual, the growth rate as measured in terms of the rate of  
increase of biomass of an individual is high when the individual

is young and reduces progressively as the biomass increases. How-

ever, it can be seen that by choosing z to be a proper maturity

variable the dependence of the mean growth rate r(z,t) on 2 can

be eliminated. In cold-blooded organisms and plants the metabolic

 

activity is a function of the body temperature of the individual.

Due to the diurnal and annual fluctuations in the atmospheric

temperature and solar radiation the growth rates of such individuals

in a general ecological system are functions of time. In all

poikilothermic species (i.e., cold-blooded organisms and plants) the

temperature-growth relation shows a characteristic behavior, which

can be used to define a physiological time scale from the chronological

time-temperature relationship, so as to have a constant mean growth

rate with respect to the physiological time. A constant death rate

for individuals in a biological population may be a reasonable first

approximation in many cases. Similarly, the assumption of zero re-

production rate until a certain value b of 2 (corresponding to

the "age” of puberty) and a constant rate thereafter can also be

seen to be a reasonable assumption for many populations. The re—

lationship of physiological and physical activities Such as repro-

duction and locomotion with temperature also shows a pattern similar
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to the temperature—growth rate relationship. Hence, it may be assumed

that the temperature dependence (and thus, to a large extent, the

dependence on chronological time) of these parameters for poikilo-

thermic species can be removed by the use of physiological time.

A detailed discussion of the physiological time is given in Appendix A.

‘Use Of a constant diffusion coefficient in flow through packed

beds is very common. Little work has been done so far in the applica-  
tion of the diffusion equations in the modeling of biological pOpula-

tions. A constant diffusion coefficient is usually used in the

spatial migration studies. Stuart and Merkle (1965) also used a

constant diffusion coefficient in their study of cell dynamics.

 

However, a careful study of the relationship of the diffusion co-

efficient with temperature and the state 2 of an individual must

be made to check whether the same transformations in z and t

to yield new maturity and physiological time variables lead to con-

stant values for all parameters including the diffusion coefficient.

In the case where the diffusion coefficient is zero and the

other parameters are given by (5.1), it can be seen that a simple

transformation on 2 by defining E = z/r reduces the rean rate

of change r to unity in terms of E. In this case the equations

for the moment distributions are the same as those for the age dis-

tribution of a biological population, and the results on the age-

dependent birth and death processes can be used directly (see e.g.,

Kendall, 1949; Goodman, 1967; Bartlett, 1969). In the solutions

presented in this chapter it is assumed that the diffusion co—

efficient is always positive.
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It should be noted that (5.1) implies stationarity of the

diffusion process (i.e., that the parameters are not time—dependent)

and the abbreviated notation defined in Remark 4.5 can be used. For

abbreviation, the first moment density m1(z,t\N0,s) is denoted

by m1(z,T), where T = t—s. The initial distribution N0 of the

entities in D is expressed as a Dirac-6 function for a single

ancestor. It may be possible to characterize N by a smooth
0

density function for a large initial population. Also, the

m (D

*

quantities 2 iii and Z i(i-l)xj are abbreviated as x and

i=1 i=1 '
**

1 respectively.

5.2 Solution of the Diffusion Equations for the First Moment

The forward equation is used to obtain a solution for the

case where D is finite. For the case of a semi-infinite spatial

domain the backward equation is used to obtain an explicit analytical

solution when E = 0 and the process starts with a single ancestor

at y = 0.

Case 1. Finite Spatial Domain [0,3] wigh a Reflecting Barrier a; a.

The forward diffusion equation and the corresponding boundary

and initial conditions for this case are

 

2

02 a m1(z,'r) am1(z,'r) am1(z,w)

2 2 ‘ 1’ az - um1(z.'r) - —-—-—~aT , (5.2)

AZ

~ 02 am1(a97)

rm1(a,7) - 5‘ ~——g;*—— = 0, (S-Za)

2 am (On) '5
1 7':

rm1(0,¢) - g—T = x [m1(z,'r)dz (5.2M

E

and
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m1(z,0) = m0(z) .

 

 

(5.2c)

Let m1(z,T) be expressed as a product

m1(z,T) = Z(z)T(T), (5.3)

where 2(2) and T(T) are functions only of z and T respectively.

Substitution of (5.3) in (5.2), (5.2a) and (5.2b) yields

2 dZZ dZg_ (z! _ r {Z} _ 01(2) = (12(2),
(5.4)

2 2 dz
dz

2 dz 3
rZ(5) -Q——D—=o, (5.4a)

2 dz

2 d2 0 * E
‘rZ(0) - g— —L)~ = x J‘Z(z)dz, (5.1m) :

dz ~

b

and

31—21% at, (5.5)

r

where a is a constant. When a > -(“—E + u), the general solution

2
0'

of (5.4) is given by

2(2) = A1 cosh 32 + A2 sinh Bz, (5.6)

where

”47' + 202m + 0!)
B ‘ 2 ’

0

(5-7)

2

and A1, A2 are constants. Similarly, when a $_(£_§ + u), the

20

general solution of (5.4) can be written as

2(2) = A3 cos E2 + AA sin 62, (5-8)

where



 

2
— - 2

B = r 2 L + , (5.8a)

0'

and A3, A4 are constants. Using boundary condition (5.4a) it is

possible to eliminate A1 and A3 from (5.6) and (5.8) respectively.

Thus, (5.6) yields

f1'=‘(z)=A2[(gig—41%)COSh<BZ)+Sinh(BZ)1eXp(:—2)(5'9)

g Btanh(Ba)-r

Similarly, (5.8) leads to the expression

Z(Z)= A4[(Q‘E:££§:E:)cos(fiz) + sin(Ez)]exp(:—) . (5.10)

oWfita

When the boundary condition (5.4b) is applied to (5.9) and (5.10) ‘

to evaluate the admissible values of a, an infinite set {QR} of

eigenvalues is obtained. The largest eigenvalue a1 corresponds to

the solution (5.9) and is given by the root of the equation

* N 2 N N
(an)sinh(55) = A exp(rb/o )sinh[B(a—b)] (5.11)

with the largest real part. Note that when a1 is complex, there

can possibly be more than one distinct dominant eigenvalues in

general. The non—dominant eigenvalues are obtained from (5.10) as

the roots of the equation

(adu)sin(éa) = x*exp(rE/02)sin[6(a-S)]
. (5.12)

The solution of (5.5) is

T(T) = ToeXp(aT), (5-13)

where T is a constant. The eigenfunction corresponding to al

is giVen by substituting the value of al in (5.9). The eigenfunctions
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fk(z) corresponding to the nondominant eigenvalues ak, k = 2:3:--"m=

are given by substituting the value of ak in (5.10). The general

solution of (5.2) is thus given by the generalized Fourier series

(cf. Indritz, 1963)

m1(ZaT) = iElakfk(z)exp(olk'r). (5.14)

The coefficients ak have to be evaluated by applying the initial

condition (5.2c). Thus,

(2) = Z a f (z). (5.15)
"‘0 kzlkk

 

When there is only one ancestor initially at z = 20, m0(z) =

6(z - z and (5.15) would represent the generalized Fourier0)

series of the Dirac-6 function. Since the nondominant eigenvalues

ak correspond to the case Gk s—(:-§ + u), ”k < 0, and hence for a

Sufficiently large value of T theocontributions from only a finite

number of terms in (5.14) will be significant,which can be used to

determine the criteria for the number of coefficients ak to be

determined in (5.15). For very large values of T, the contributions

from all the terms in (5.14) except those corresponding to the

dominant eigenvalues will be negligible, irrespective of the initial

distribution. Thus, when the dominant eigenvalue is unique,

asymptotically, the first moment density of the number of entities

in D will be given by

lim [m1(z,T)] = a1f1(z)exp(a1T) (5.16)

T—m

irrespective of the initial condition. In view of (5.16), it is

easy to see that for a sufficiently large T the first moment density
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is always proportional to f1(z), which is given by (5.9) and (5-11)-

Similarly, integration of (5.16) over an arbitrary interval

[21.22) E 5 leads to the result that when a1 is real and distinct,

asymptotically, the expected number of entities in any Subset of

D will vary exponentially with the parameter a1.

Remark 5.1: It should be noted that the eigenfunctions

fk(z), k = l,...,w in (5.14) are linearly independent of each other

but not mutually orthogonal. To evaluate ak, k = l,...,m, (5.15)

is multiplied by fj(z), j = l,...,m, and integrated with respect

to 2 over the interval [0,5] to yield an infinite system of

linear equations, which has to be solved for ak. For computational

 

purposes the series has to be truncated after a finite number m

of terms and the system of m equations with m unknowns ak,

k = l,...,m, has to be solved to give the best approximation to ak

in some sense. If the series (5.15) converges rapidly, only a few

terms in the series will be significantly different from zero and

the evaluation of ak is simple and accurate. On the other hand,

when the initial condition is in the form of a Dirac-5 function,

the series (5.15) will not converge for a finite number of terms,

and hence accuracy of such an approximate solution can be expected

to be very low.

When 5 = 0, the eigenvalues can be calculated analytically

and the solution has a much simpler form. In this case the eigen-

values are

al k ‘ u

r2 2k2 2 2

_ ___. n _

“Hi—{'M‘ z'iTL} k‘l’z’ ’°°’
20' a
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and the general solution is

0280'? tanh(805)

m(z, T) = {aexpi<i —i)¢][<—§e-————————-———>cosh<aoz>+sinh<eoz>1
0' Botanhmoa) "r

2knz (2knz   
w W2

+ kzla”+1exp(ak+1T)[ coss( )+sm a)]}exp(rz/oz), (5-17)

where

80 = .jrz + 2021* . (5.18)

Since the eigenfunctions are not orthogonal to each other, Remark

5.1 applies in this case as well.

Remark 5.2: Note that in the infinite series solution of

the diffusion equation it has been tacitly assumed that the eigen-

functions form a complete set (see e.g., Indritz, 1963) and that

all the eigenvalues are distinct. Also, the statement that

asymptotically the expected number of entities in any set A C D

increases exponentially with time is true only when the dominant

eigenvalue (i.e., the eigenvalue with the largest real part) is

real and distinct. It would be quite difficult to prove the complete~

ness of the set of eigenfunctions and distinctness of the eigen-

values in general. Nevertheless, it is easy to see that for the

case of a reflecting barrier at a with b = 0 discussed above,

the eigenvalues are all real and distinct, and the eigenfunctions

form a complete set over a class of functions continuous over a

finite interval. Although the hypothesis that the dominant eigen—

value is real and distinct may be very difficult to prove analytically,

it is easy to show that there must always be at least one real

dominant eigenvalue. The proof of this is as follows: If all the
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dominant eigenvalues are distinct and have the form alR + ialj’

j = 1,---,k; alj > 0 and i = v-l, then the asymptotic solution will

k

be of the form exp(a1RT) Z Ajexp(ia1jT), which will be an oscillating

i=1

function of time assuming negative values during certain time  
intervals. The same is true even for the case where the dominant

eigenvalues are all complex, but not necessarily distinct. Since

the first moment distribution must be a nonnegative quantity, at

least one of the alj's must be zero, and the corresponding co-

efficient Aj large enough as compared to the other coefficients

so as to compensate for the negative contributions from all the

 

terms involving the complex eigenvalues.

Case 2. Finite Spatial Domain [0,5] with a3 Absorbing Barrier at 5.

The forward diffusion equation, its initial condition and the

boundary condition at z = 0 will be the same as in Case 1. The

boundary condition (5.2a) will be replaced by

m1(5,T) = 0 - (5.2d)

Equations (5.3), (5.4), (5.4b) and (5.5) also apply in this case.

Equation (5.4a) will be replaced by

2(5) = o . (5.4c)

2

When a > -[-—— + u], the following expression is obtained by apply-

ing (5. 4c) to0the general solution (5. 6):

Alcoshsa + Azsinhfia = 0

Hence,

f1(z) E Z(z) = A2[sinh(ez) - tanh(Ba)cosh(Bz)]exp(rz/02). (5.19)
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2

Similarly, when a S -(£—§'+ u):

20

2(2) = A4(sin(fiz) - tan('65)cos(Ez))eXp(rz/Oz)-
(5'20)

When the boundary condition (5.4b) is applied to (5.19), it is

found that the dominant eigenvalue is the root of

(adu)[£78inhBa+BcoshBZ}-A*exp(r5/02){Easinh[a(a—S)]

o o

N 1

+ Bcosh[a(§-b)]} + Bicexp(ra/gz) = 0, (5.21)

with the largest real part. If the dominant eigenvalue is unique

and real, it can be seen that as in the case of a reflecting

barrier, asymptotically the expected number of entities in any set

A C D varies exponentially with parameter a1. When the boundary

condition (5.4b) is applied to (5.20), the following expression for

the nondominant eigenvalues results:

1’ -~+ ~ * S/Z-r—‘[”~5(0+M){-§ SlnBa B cosBa} - l exp(r c )[ 2 Sin 8(a— )]

O' O'

+ g cos[B(5-b)]} + [*3 exp(ra/cz) = O . (5.22)

It should be noted that Remark 5.2 is applicable in this case also.

Similarly, in view of the fact that the eigenfunctions are mutually

independent but not orthogonal, Remark 5.1 is also applicable. An

explicit analytical solution for the eigenvalues is not possible

even when S = 0.

Case 3. Semi-Infinite Spatial Domain [0,m). 

When 5 is finite and a a m with an absorbing or reflecting

barrier at 5, proceeding exactly as in Case 1 and Case 2, it can

be shown that regardless of the initial condition, the asymptotic
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value of the first moment density is

m1(z A) ~ f1(Z) exp (alw) ,

where a1 is the root of the equation

J2+2Q2g+2r - r N _

2 a )b} — o

O

01 + u. - x*exp{( (5.2151)

with the largest real part,

f1(z) = alexp(pz),

and a1 is a constant.

In this case it is also possible to obtain an explicit

analytical solution for the first moment distribution when E = 0

and the ancestor is initially at zero (Brockwell, 1972). The

backward diffusion equation and the corresponding initial and

boundary conditions for the first moment distribution are

‘k

BM1(Z My) 7': 9c 7%

= + , 0 , (5-23)5T ayM1(z,T‘y) x M1(z T\ )

where the backward diffusion operator a; is given by (4.11),

l for y s z

9
M;(z,0|y) = (5.23a)

0 for y > z,

7':

W= (5.2%)
ay

fr _ * 5.23c)

M1(z,rr\z+) — M1(z,T\z_), (

  



 

*

8M (Zn y) *

1““‘L‘\ = aEL-g-L'fldfl-l _ (5.23d)
ay y-Z_ay y=z+

M:(z,¢1m) = 0 . (5.23e)

Taking Laplace transforms of (5.23) thru (5.23e) the partial

differential equation can be transformed into the following ordinary

differential equations and boundary conditions:

2— _

02 d M1(Z’P\Y) dM1(z,ply) _

5‘ 2 + r"“‘g§““‘ ' (M+P)M1(Z,P\Y)

dy

*_ l for y S 2

+‘k M1(Z,P\0) ={ (5-24)

0 for y > z,

dfi <z.p\y>
__l_______ = 5.24

dy y=0 0’

( 3)

fi1(z,p\z+> = fi1<z,p\z_>, (5.241»

_ $3 ,dM1(z,P\y) = 1(2 p\y)\ (5.24C)

dy y=z+ dy y=z_

fi1(z,p\m) = 0 , (5.24d)

where p denotes the Laplace transform variable and M1(z,p\y)

* n

is the Laplace transform of M1(z,T\y). The general solution of

(5.24) is

{3‘4 (z,p\0)+1 _

----— + alexp<ely>+a2exp<ezyw y s 2, mm

Ml(z,P\y) =
7':—

x M1(z,p\0>
u+P + a3exP(Bly) + aAEXP(BZY): y > z;

(5.25b)

 



where

 

are constants to be determined from the boundaryand a1,a2,a3,a4

conditions. In addition to these, fil(z,p\0) is to be evaluated

by setting y = 0 in (5.25a):

*—

)\ M1(Z,P\O) + 1

5.272 u + p ( )M1<z,p\0> = a1 + a

In view of (5.24c), a3 = 0. Applying other boundary conditions, one

obtains

aaexp(32y) = Jig + alexp(31y) + azexp(32y), (5.28)

82a4eXp(Bzy) = BlaleXp(Bly) + eZaZeXP(Bzy) (5.29)

and

(5.30)

B131 + Bzaz = 0

Solution of (5.27) thru (5.30) for a1,a2,a4 and M1(z,p\0) yields

 

._ exp(‘Blz)

Ml(z,p\0) = “¥;“ ' _‘“;_‘--

p-x +u P‘A +H

2 l2 2 2

1 exp(—rz/O )exp([- r +20 (LL+p)lV/Gl_ , (5.31)
= —:— - 7‘:

p-x9+u P ' A + M

Taking inverse transform (cf. Cox and Miller, 1965; p. 221, Equations

73 and 75), the analytical solution

 



 

9O

 

 
* T _ * _ _ 2 2M1(z,T\O) = eXp[(k*-u)T]{1 _ i g eXPE X u (z ru) /2uo ] du} (5.32)

V 21’1'u3   

is obtained.

5.3 Solution of the Diffusion Equations for the Second Moment

As mentioned in the previous chapter, it is not possible to

obtain a complete analytical solution of the forward or backward

equation for the second moment distribution. However, an asymptotic

solution (i.e., a solution for large values of time T) of the back—

ward equation can be obtained by using Laplace transformations. In

this section asymptotic solutions for the second factorial moment

distribution will be obtained for the case where there is only one

ancestor initially. These can be used to evaluate the second

factorial moment distribution for a population with k ancestors

initially at y1,...,yk, from the relation

* k *

M2(zl,z2,m\y1,...,yk) = _21M2(zl,z2,T\yi)

l:

k k
'c 3?

+ z M’(z ,T\y.) 2 M (z ,¢\y.) .- (5.33)

. l 1 1 . l 2 J
l=l J=1

j#i

Equation (5.33) readily follows from (4.6) and (4.20).

§§§g_l. Finite Spatial Domain [0,5] with a Reflecting Barrier g; a.

The backward diffusion equation and the corresponding boundary

conditions are given by

*

5M2(zl’22’lly)

B’T

* ~

= f 0 s < b, (5-348)a§M2(z1.z2,T\y) or y

 

  



 

*

BM2(21’22’T\Y) = M* ** * *

3T a; 2(z1,z2,7\y) + h M1(zlaT\O)M1(Zz,T‘O)

+ *M* + k * k

x 2(21,22,T\0) x [M1(21,T\0)M1(z2,lly)

* *

+ M1(z2,T\O)Ml(z1,T\y)], for 5 s y g a (5.34b)

where a; is the backward diffusion operator defined in (4.11);

*

BM2(21,ZZ,Y)

—'—'—'_——T
= 0, 5.34

by y=0 ( c)

* ~ * ~ 5 3

M2(zl,z2,T\b_) — M2(z1,z2,T‘b+), ( - 4d)

M* *

a 2(Zl:ZZ:T\Y)\ ~ 2 6M2(zl’z29T\y)

5y y=b_ 5y y=b+ (5.346)

and

My? \ )a z .z ,T y
2 1 2

(5.34f)

ay ly=5

* ** . .

Since A and A are step functions defined from xi(z,¢) in

(5-1) with a jump discontinuity at y = b, the backward diffusion

equation has to be split into two parts (5.34a) and (5.34b). The

conditions (5.34d) and (5.34e) follow from the fact that the second

moment distribution and its derivative with respect to y must be

continuous on [0,5]. Taking Laplace transforms of (5-343) thru

(5.34f) with respect to time, the following set of equations is

obtained:

2 dzfi (z z p‘y) dfi (z ,Z ,p\y)

o 2 1’ 2’ + 2 1 2
§~ -——————-——————— r ————————-——-—-

2

dy

_ _ , . = 0(n+p)M2(zl,72 P\y)

for o s y < E, (5.35a)
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2_ _

02 d M2(z1,z2,p\y) + dM2(z1,z2,p\y)

_——————_ r_—

2 2 - (”+p)b—’1 (Z ’2 :p Y)

dy dy 2 1 2 \

*7? 7’:—

+ A 21(zl,zzip\0) + k M2(zlizz,p\0)

* N

+ i [@12(21,Z2,p\0,y) + o21(z1,zz,p\y,0)] for b s y S a, (5.35b)

where

7'c 7k

§1(zl,zzip\0) = 1%[M1(21,T\0)M1(ZZ,T‘O)], (5-368)

7': 7\-

@12(Zl!22:p\03y) = £T[Ml(Z1)T\O)M1 (ZZ,T\Y)15 (5'36b)

7k 7k

@21(Z1)223P\Y’0) = £T[Ml(zl)T\y)M-l (22,T\0)] (5.36C)

and 1%[f(z,T\y)] = Laplace transform of [f(z,¢\y)] with respect to T,

00

= gexp(—pt)f(z,t\y)dt . (5.37)

The boundary conditions corresponding to (5.35a) and (5.35b) are

dM2(Zl’Zz’p\Y)
\ = 0, (5.35c)

dy y=0

* N = ‘ ~ 5.35d)
M2(Zl)zz)p\b_)

M2(zl)22,p\b+)3

(

dM2(Zl’ZZ,p\Y)
N = dM2(Zl>ZZ:P‘Y)\

N
(5.35e)

dy y=b_ dy y=b+

and

db? ,.
__2£il_i§_3l31l N = 0 , (5.35f)

dy y=a

The general solutions of (5.353) and (5.35b) are

_
B 5.38s

M2(zl,z2,p\y) = alexp(Bly) + azexp(BZy) for O S y < ( )
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P71é(z1,zzip\y) = a3eXP(Bly) + aAeXp(BZy)

*— **

x M2(zl,zz,p\0) + x 21(zl.zz,p\0)
+

p + u

 

.1"

2K {@1(Zlyzzap\y,0)eXP(Bly) — ®2(zl,z2,p\y,0)exp(32y)}
+
 

2

0 (Bl _ 62)

for b s y S a (5.38b)

respectively, where

®1(zl,z2,p\y,0) = fexP(-81Y)[élz(zl,zz,p\0,y)

+ Q21(212223p‘y30)]dy

(5.38c)

@2(Z1,Z2:P\y50) = jeXP(-Bzy)[@12(z1,z2,pl0,y)

+ 221(zl.zz,p\y,0)]dy

and 81,52 are given by (5.26). The constants a1,a2,33,a4 are

to be evaluated by using the boundary conditions (5.35c) thru (5.35f).

In addition, fi2(z1,z2,p\0) is evaluated by setting y = 0 in

(5.383.), i.e.,

V H — a "i‘ a , 5.35 )

As discussed in the previous section, the asymptotic solution is

independent of the initial location of the ancestor. It is there—

fore sufficient to obtain an explicit expression for fi2(zl,zz,p\0)

in order to evaluate the asymptotic solution. Applying the con-

ditions (5.35c) thru (5.35g), the following expression is obtained:
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M2(zl’z2’P\0) =

P<B 5
sz exp(Bla) ~ N ex 2 ) ~

;2_(n+p){—————i82 ®1(z1,zzip\a,0)-®1(zl,zz,p\b,0)]-—B—1—[®z(z1,z2,p\a,0)

N *7‘:

-®2(215225P\b,03}+x @1(zl,zz,p\0)[exp[51(a—b)]-exp[32(a-S)]]

 

(n+p)[eXP(815)-eXP(BZE)] - i*{exp[gl(a-E)] — oxp[gz(a-S)]}

(5.39)

It should be noted that the quantities §1(z1,z2,p\0),

®1(zl,z2,p\y,® and ®2(z1,z2,p\y,0) are simply abbreviations of

more complicated expressions and would also contribute some terms

to the denominator of (5.39).

An important property of the Laplace transforms is that the

dominant root of the denominator (i.e., the root with the largest

real part, or the dominant pole) of the transform of a function is

related to the asymptotic behavior of the function (cf. Carslaw and

Jaeger, 1948). For example, if the Laplace transform f(p) of a

function f(T) is given by

h1(p)
= . (5.40)

f(p) h2(p)

where hl(p) is an analytic function of p and the largest root

of h2(p) is distinct, real and equals q, then for large T,

f(T) is given by

t

(p-q>h1<q> qt h1<q)eq (541)

“TV—“We - ah,

dp p=q

It is easy to see that in the context of the solution of the dif-

fiBion equation, the dominant pole of the Laplace transform corresponds

to the dominant eigenvalue al of the diffusion operator. In View
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of Remark 5.2, at least one dominant eigenvalue must be real. It

seems extremely unlikely that the functional expressions (5.11),

(5.21) and (5.21a) would have multiple real dominant roots. Unique-

ness of the dominant eigenvalue remains to be proved. In the follow-

ing development it is assumed that al is always real and unique.

As indicated by (5.16) and the discussion following that

equation, asymptotically, the first moment distribution M:(zl,le)

changes exponentially with respect to time, with parameter a1.

Thus, asymptotically (i.e., as p 4 a1),

_ F1(zl)

M1(z,ply) ~ (3:51; V y (cf. (5.16)) (5.42)

2l
where F1(zl) = g f1(g)dg (5.43)

and f1(z) is defined by (5.9). It follows from the asymptotic

behavior of M:(z1,T‘y) that the asymptotic change in

‘k 7': 7': 7‘: 7’c 7':

M1(zl,T10)M1(22,T|0), M1(21,T10)M1(22,le) and M1(21,T|y)M1(zz,¢|O)

must be exponential with parameter 2q1. The dominant root of

is therefore equal to 2a .denominators of @1, Q12, and $21 1

Hence,

7': 7':

F (2 )F (z )
1 2

~ —1——1—2——— (5.44)
P _ a1

and similarly,

F (z )F (z )

J—L—l—Z— . (5.45)

q’lz(zl’22’Pi0’Y) ” 221(21’22’Piy’0) N p - 2021

Since M:(z,7\y) is a bounded function of y for all y and

z E D, it follows that @12(z1,22,p\0,y) and @21(21,22yplya0)
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are also bounded functions of y, and therefore

®l(zl’22’p\y’0) = Il§12(zl’zz,PlO,Y) + @21(zl,zz,p[y,0)}exP(-BIY)dy

is bOunded for all y E D. Hence, by the dominated convergence

theorem (see e.g., Parzen, 1962; p. 274)

lim{£fi1[® (z z | O)]}
T T l 1’ 2’p y’

. -1 _

= fi1m{i% [912(z1,zz.p10.y)+§21(z1.zz,ply,0)]eXP(-Bly)dy} (5.46)
aw

and therefore,

-2F1(zl)F1(z2)exp(-Bly)

®1(Z1,ZZ:PlY:0) N (P _ 201251 (5'47)
 

Similarly,

-2F1(zl)F1(zz)exp(-82Y)

(P ' 2U1282

 

®2(zl!zz)ply:0) ~

Substitution of (5.45), (5.47) and (5.48) in (5.39) yields p = 201

as the dominant pole of the resulting expression. Hence,

*

M2(zl.zz,l\y)

7' 7 7 ~

~ {(xc*+2ik)(exp[8:(5-b)l'eXPEB:(3‘5)1>F(21)F(zz)ex9(2“lT)}
(5.49)

7': ~k~ 7': 7': ~ 71‘

(n+2a1)[exp(61§)-exp(Bza)]—k [exp(51[a-S])-exp(32[§—b])]

* a

where Bl and 52 denote 81 and 52 respectively (see Equation

(5.26)), evaluated at p = 2a1.

The asymptotic value of the second factorial moment of the

number of entities in any given set A 55(21,22] C.D can be easily

obtained from (5.49) by using (4.35). Thus,
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M(2)(Z X K.T\y)

(k*M+2l)[F1(zz)-F1 (21)] 2E6X:(Bl(3-5))-EXP(BZ(3-5))]eXp(2a1T)

(5.50) 

(2a1+u)[exp(81a)-exp(Bza)]-x*[exp(81(a-b)) -exp(52(a-b))]  
 

Similarly, the asymptotic value of the expected number of entities

in the set A E [21,22) is given by

M1(A,T\y) ~ [F1(52) ‘ F1(§1)]€XP(a1T) - (5.51)

The variance of the number of entities in the set A can be readily

obtained from the two factorial moments (5.50) and (5.51). The co-

efficient of variation CV(A) of the number of entities in A

gives a measure of the stochastic fluctuations in the population

N(A) of the set A, and is defined as

cv<7i> = [Var<N<K>)f/E(N<K>>,

where Var(N(A)) is the variance of the number of entities N(A).

Thus, using (5.50) and (5.51) the asymptotic value of the coefficient

of variation can be seen to be

cv(Z) ,

 

[<2a1+u)iexp(ega)-exp<ela)]+(:+3i>{exp(3:[a—E]>-exp(e:ifi43m}15

.(5. 52)

l$2a1+u)[eXP(Bla)-exp(Bza)]x*{exp<31[a-b])-exp(82[3-b])}

When the initial number of ancestors is k, located at y1,y2,...,yl;

(

from (5.33) one obtains

(A x A,T\y1,...,yk) ~ k M(2)(K x A,wiy) + k(k—1)[M1(A,m‘y)]2 (5,53)
“(2)
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where M(2)(A X A,mly) and M1(A,m‘y) are given by the expressions

on the right side of (5.50) and (5.51) respectively. Since

M1(A,T\y1,Y2:~--,yk) N kM1(A:°°l}7): (5'54)

it follows from (5.53) and (5.54) that the asymptotic value of the

variance of the population in any set A C D with k ancestors is

k times the correSponding value of the variance with a single

ancestor. Hence, when there are k ancestors initially,

 

 

 

CV(A)

7"... 7‘1"” *7? 7% 7* N ~ * N ~ 13

{(zal'ili)[exl>(823)-exp(Bla)]+(l +31 ){6XP(Bl[a-b])~6XP(82[a-b])} __’

N 7'6 in at it N ~ at N '

k(2a1+u)[eXp(815)-exp(82a)]-x {exp(Blfa-b1)-eXP(62[3-b])} (5_55)

 

 

When 5 = 0, (5.55) assumes a particularly simple form:

*9: at + lzt

CV(A) ~ A~——i;l———Ji} . (5.56)

k(x - H)

Case 2. Finite Spatial Domain [0,3] with 22 Absorbing Barrier a_ a. /

The evaluation of the second factorial moment distribution I

as well as the variance and the coefficient of variation of the

number of entities in any given set A C.D proceeds exactly as in

Case 1. The diffusion equation and the boundary conditions are the

same except (5.34f) and (5.35f), which must be replaced by

4

M2(z1,z2,T‘a) = O (5.34g)

fi,(z1.z2.p\a) = 0 (5.35b)

respectively. The asymptotic solution for M(2)(A X A,T|y), where
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A E (21,521 for this case is given by

 

M(2)(Z X K.le) “'

N ~ 2 ** * x x N ~

[F1<22>-F1<21>] exp(zle){(K +2i )[Bzexp[81(a-b)]

* * N ~ * *

- elexp[82(a-b)] ' 82 + 51]}
(5.57) 

* *~ * *~ * a a N N

(Zdlm)[82exp(61a) _Blexp(62a)] -A {B2exp[el(a_b)]

* * ~ *

- Blexp[82(5-b)]} + i*<ez — of)
  
where a1 is the dominant eigenvalue given by the root of (5.21).

The asymptotic value of the coefficient of variation of the population 

in any set A/: D with 5 initial ancestors is

 

 

c * ~ N x 7 * a

(i’*+3i >[ogexp<af[5-bj>-elexp<sgii-EJ>-BZ+BIJ 2

— (241+n>[e:exp<e:5) - Bfexo<3§5>l
 

CV(A) ~ (5.58)
* *~ * *~ * w * ~

ki(201+u)[BzeXP(Bla)'Blexp(823)]'K [Bzexp[61(a-5)]

* k * 4 *

- elexpieze—Em + A (62 - 31>}

 

Case 3. Semi-Infinite Domain [0,w). 

Proceeding exactly as in Case 1 or Case 2, the following

*

expression is obtained for the Laplace transform of M2(z1,z2,T|0):

7': 2*x N

x 21(zl,zzip\0) ;%gr ®1(zl.z2.plb,0)eXp(815)(n+P)

2 . (5.59)

i (z ,2 ,P‘O) = .
2 l 2 ~ x

(u + p)exp(Blb) - x

Noting that a1 is the dominant eigenvalue given by the root of

(5.21a), as before,

F1(zl)Fl(zz)

P - 2&1

§1(Z1,Z2,T‘O) N
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Also, noting that

Q ~ =

U1(21’22’Plb’0) 1f£§12(21’z22P\0aY)+¢21(21,22,Ply50)]exp(‘51Y)dY}y;B

where 51 2 0, so that exp(-Bly) is bounded on [0,w), similar

argument as before can be used to show that

‘2F1(21)F1(zz)eXP(-Blb)

(P - 2&1)Bl

  ®1(zl,zz,p\b.0) ~

Hence, for the set A E (51,52] Cifi with one ancestor initially,

 

N N 2 9h? )

[F1<zz>-F1(z,>] (i + 2i*)exp<2o1i>
(5.60) 

 

M(2)(AXZ,T\y) ~

  
+ 2 *N x

(n a1)eXp(Blb) - x

 

and when there are k ancestors initially, the coefficient of

variation of the population in any set A in D is given by

 

** * *N g

(l + 3x ) - (n+2a1)exp(81b)

CV(A,T\y) ~ *~ * . (5.61)

k[(u+zal)eXP(Blb) - i 1
  
 

At this point it is worthwhile to summarize the important

analytical results obtained thus far regarding the solutions of the

diffusion equations for the first and second factorial moment dis-

tributions with parameters given by (5.1)

(i) A complete analytical solution (5.32) has been obtained

for the first moment distribution for the case where

5 = m b = 0 and at time 0 there is one ancestor at

y = 0.

(ii) General solutions for the first moment density in the

form of generalized Fourier series of eigenfunctions

(assuming that the eigenfunctions form a complete set)
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have been obtained for the case of a finite interval

[0,3] with absorbing and reflecting barrier at 5.

(iii) It has been shown that asymptotically the expected

number of entities in any set A<: D changes

exponentially with a parameter 0 (cf. (5.16)).

1

Here the parameter a1 is given by the dominant root

of (5.11), (5.21) and (5.21a) for the cases of a

reflecting and an absorbing barrier at a finite 5

and a semi—infinite spatial domain [0,m) respectively.

Similarly, the asymptotic change in the second factorial

moment of the number of entities in any subset of D

is exponential with respect to time, with parameter

2&1 (cf. (5.50), (5.57) and (5.60)).

(iv) The asymptotic behavior of the coefficient of variation

with a given number k of ancestors at time 0, as given

by (5.55), (5.58) and (5.61) constitutes a result of

particular importance regarding the limiting behavior

of the population: The coefficient of variation of the

number of entities in any set A C.D attains the same

(constant) value depending upon the boundary conditions

and the initial number of ancestors. Furthermore, the

asymptotic value of the coefficient of variation is

inversely proportional to the square root of the initial

number of ancestors.

Of course, as indicated before, these results are based upon the

hypothesis that al is real and distinct.
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In view of the result regarding asymptotic behavior of the

coefficient of variation it can be said that if the initial popula-

tion is Small, the stochastic fluctuations in the population of any

subset of D will always be significant even if eventually the

population becomes very large. On the other hand, when the initial

population is large, the stochastic fluctuations will be small and

the equations for the first moment alone may be adequate to describe

the dynamics of the population. For example, if in the study of

the secondary nucleation process in a crystallizer the experiment

is started with a small number of crystals, the number of crystals

in any size range will always tend to exhibit relatively large

fluctuations. This will lead to an appreciable amount of scatter

in the data on the induction periods as observed by Kane (1971).

Similarly, the results indicate that a biological population started

with a small number of ancestors will always tend to exhibit

relatively large stochastic fluctuations.

5.4 The Problem of ”Critical Length"

Referring to (5.11) and (5.21) it can be seen that when the

dominant eigenvalue a1 is real, for a given set of values of the

parameters 02, r, k* and b, there exists a critical value acr

of a, such that if a < acr, a1 < 0 and the expected number of

entities in the population of any subset of D will always de—

crease with time. The problem of determining this critical location

of the boundary (the "critical length" of D) has important implica-

tions in case of biological populations. For example, in an

intensively exploited fishery or a forest resource, few individuals
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in the population can be expected to survive beyond a certain maturity

a. In this context, y and 2 correspond to the maturity of a tree

(measured in terms of its height or productive value) or the length

or weight of a fish at times 0 and T respectively, l* denotes

the expected number of births per unit time, and u refers to the

death rate due to natural causes as well as harvesting. Of course,

it is assumed here that the growth of an individual can be char—

acterized by a diffusion process. In these cases it is reasonable

to construct a mathematical model with an absorbing barrier placed

at a. As the harvesting pressure increases, the maturity correspond—

ing to the absorbing barrier decreases. If the absorbing barrier

corresponds to too short a life-span, the recruitment due to repro-

duction would be too low to have a self-sustaining population.

Evaluation of the maturity corresponding to this critical life—

length would be of a great help in determining the necessary manage—

ment and control policies such as the legal size-limits on fish so

as to avoid extinction of the species.

An opposite situation may occur in a continuous crystallizer

where the crystals from the product stream are classified and all

the crystals below a certain size 5 are returned to the feed stream.

In the context of a crystallizer, y and 2 denote the size of a

crystal (usually expressed in terms of a characteristic length of the

crystal), X* characterizes the expected number of nuclei generated

due to secondary nucleation and u refers to the rate of removal

of crystals from the processing system. As in case of the biological

populations mentioned above, the crystals are assumed to grow

according to a diffusion process. For a stable operation of the
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system the number of crystals in the crystallizer must remain con-

stant. To achieve this it may be necessary to regulate the maximum

size 5 of the crystals returned as the feedback. Another way of

achieving the control would be to fix a and regulate the fraction

of the total number of crystals of size less than or equal to s

to be returned. Thus, the problem reduces to that of determining

the critical size for a fixed ”death rate" or that of evaluating

the "death rate" to make a given size a a critical one so as to

have a stable operation of the crystallizer. In view of these

possible applications, the problem of "critical length” was

solved for the case of an absorbing barrier with parameters given

by (5.1).

In the case of a reflecting barrier at a with b = O,

the criticality of the change in the population will be dependent

upon X* and M alone. However, when b > O, for given values of

A* and N there may be a critical location act of the boundary

such that for 5 < ear, the population will (asymptotically) de-

crease monotonically with time. The computation of scr in this

case will be similar to that given below for an absorbing barrier.

Asymptotically, the expected number of entities in the

population changes exponentially with a parameter a (i.e., the

1

largest eigenvalue of the diffusion Operator), which is given by

the dominant root of (5.21) for the case of an absorbing barrier at

s. It can be seen from (5.21) that al is a continuous function of

the location 5 of the barrier. The critical length is thus given

by setting a = O in (5.21) and solving the reSulting expression for

5, subject to the condition that the root should be greater than or
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equal to b. A solution act < b would represent a physically

impossible situation in view of the fact that no entity in [0,b)

is capable of reproduction (cf. (5.1)).

Since (5.21) is nonlinear in 5, the solution has to be

obtained numerically. Equation (5.21) can also be written as

N *

(mflelexpmz‘a’) - BZeXMBlaH - x {slexpis2(fi-S)]

— Bzexpial(a-E)1} - x*(62'81) = o, (5.62)

where

_ —r-FV r2 + 2 2 + _ —r - r2 + 2 2 +

81 ’ 2 and E’2 ‘ 2
O 0

Equation (5.62) has to be solved for a after setting a1 = 0 to

give acr. If the solution to the problem of critical length is to

be obtained in the form of a set of families of curves, the para-

meters in the graphical solution will be 02, r, K*, H and b.

The total amount of computation required to evaluate the solution

over a range of values of all these parameters can be substantially

reduced if the diffusion equation for the first moment density is

written in terms of the following dimensionless variables:

E = z/a ? = rT/fi

fi = ZrE/o' B = 5/5

(5.63)

§ ” Y/a p = ua/r

7
7

H

7

n
3

\
.

H

and an expression analogous to (5.62) is derived in terms of these

dimensionless variables. This simplification reduces the problem of

evaluation of the critical length to that of solving the equation
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(mphlfiexmze) - vzf’exp(v1P)] + V2?exp[v1(l3-13B)]

— leexp[v2(P-Pb)] + le - vzfi = o (5.64)

for E. In (5.64)

=-1+114-;/§
V1 2

V —'_1'—M_W
2 2

The computer program used to solve (5.64) is given in Appendix B.

It should be noted that the quantities fi/X, v1, v2 and fib are

all independent of E. Figure 5.1 gives the solution in the form

of a family of curves for f corresponding to the critical value

of 5, plotted against fi/fi, with fib and X/fi as parameters.

Given the parameters %3 , r, u, l*: and b, the graph can be used

to evaluate acr as follows: First, the dimensionless parameters

l/fi and P5 are computed and the curve corresponding to these

values of the parameters is located on the graph. The value of

@/§ is calculated and the corresponding value of f is obtained2

from this curve. Knowing the critical value of § as well as g-

and r, scr can be readily computed.

As may be expected, the curves indicate that the value of

5 is less sensitive to the changes in the death rate when the
CI‘

ratio of birth rate to the death rate X/fi is high or when the value

of fb is low, which would occur if b is close to zero or if the

mean rate of movement r toward the absorbing barrier is small as

compared to the diffusion coefficient.
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Figure 5.1 Graphical solution of Equation (5.64) for "Critical Length"
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Although the main purpose in presenting Figure 5.1 is to

demonstrate the method, care was taken to have a realistic range cf

values of the parameters. The data of Cooper and Latta (1954) and

Cooper, Latta and Schafer (1956) on populations of bluegills Lepomis

macrochirus was used to obtain crude estimates of the diffusion and

drift coefficients and the death rate. Assuming a constant death rate

estimates of the yearly total mortalities were obtained by Cooper

et. al., which were used to calculate the death parameter u. The

data consisted of the siZe (length) distribution of the various age

classes of the fish for several years. The age classes were char-

acterized according to the age of the fish in years. Since spawning

occurs during a relatively short period of time during each year, it

was assumed that the size distribution of the fish in each age group

had resulted from a large number of identical young ones born at the

same instant of time. If the temporal changes in the expected size

distribution of the fish can be characterized by a diffusion equation

with constant parameters, the size frequency of the fish grown from

a cohort should be approximately normal at all times if the effect

of the reflecting boundary corresponding to zero size can be

neglected. This may be the case when the drift coefficient is much

larger than the diffusion coefficient. Under these conditions the

changes in the mean and variance of the size frequency distribution

during a time interval At will be rAt and ozAt respectively, and thus

the drift coefficient r and the diffusion coefficient %_ can be

readily estimated. The assumption that the size distribution was

normal at all times was indeed rather crude, and since the purpose
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here is mainly to demonstrate the technique, no further refinements

in the estimates of the parameters were attempted.

As discussed by Cooper et. al., horizontal as well as vertical

estimates of the parameters were obtained whenever possible. A

horizontal estimate is obtained by following the same age cohort

year after year, e.g., by considering the two-year old fish in 1954

and the three-year old fish in 1955, assuming that the population

estimates for the successive years were obtained with the same accuracy.

A vertical estimate uses the different age groups counted during the

same season, based on the assumption that the population is in a

steady state as regards the yearly recruitment, mortality and growth

patterns. The horizontal and vertical estimates were comparable to  
each other. Different estimates of the parameters are summarized

in Table 5.1. It was assumed that the fish were capable of repro-

duction after they reached a length of 2.5 inches. The values of

birth rates were chosen to be simple mpltiples of the death rates.

Based on these estimates the dimensionless parameters for the dif-

ferent curves were chosen to include the ranges of parameters re-

presented in Table 5.1.

Since all the parameters in Figure 5.1 are dimensionless, the

same curves can be used to calculate the critical value for any

population with any arbitrary units (such as productivity, biomass,

etc.) for 5. However, it must be remembered that in many cases the

2 *

constant values for o , r, and l are only an approximation to

the real situation and due caution should be exercised in using such

charts for practical purpose. For example, it can be seen from

2

Table 5.1 that %_ and r are functions of the size of the fish.
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TABLE 5.1: Model Parameters for the Dynamics of Populations of

Bluegills (Lepomis macrochirus)

A. Mean Growth Rate r in Inches/Year (Vertical Estimate)

 

 

Age Class (years)

1 2 3 4 5 6 Remarks

2.5 2.2 1.0 0.8 1.0 0.6 Sugarloaf lake, Michigan 1954

2.2 2.0 1.2 1.0 0.9 0.6 Sugarloaf lake, Michigan 1955

2.5 2.3 1.43 1.35 0.78 0.26 Whitmore lake, Michigan 1955 as

2.4 2.16 1.21 1.05 0.89 0.47 Average of the estimates above      
 

2 2 hr

B. Diffusion Coefficient Q /2 in (inches) /yearj

 

 

First two years Third year Fourth year Remarks

i

0.0417 0.0245 0.024 Vertical estimate (1954) i

--- 0.0201 --- Horizontal estimate (1954—55)

   
 

*7’:

for Sugarloaf lake, Michigan

C. Average Death Rate u in (years)-1

 

 

Vertical estimate Horizontal estimate Remarks

1.11 0.655 Sugarloaf lake, Michigan,

1%2,1%4amil%5.

2.2 1.56 Whitmore lake, Michigan,

l953~1956.

0.892 --— Fine lake, Michigan, 1955

0.415 -—- Fife lake, Michigan, 1956  
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Similarly, many fish spawn only once in a year giving rise to a

"pulse" of young ones. In contrast, the model defines xiéw as

the probability of producing i offspring in the time interval

(T, +6T) irrespective of whether the individual had reproduced

at any time in the interval (—m,¢).

5.5 Solution of the Diffusion Eguation for the PGF -- Computation

of Extinction Probabilities 

As mentioned in Remark 4.2, G(e,T\y) gives the probability

that there are no entities in the population, given that there was

one ancestor initially at y, if the arbitrary function 9(z) is

taken to be identically zero. To obtain this the backward diffusion

equation for the PGF was solved numerically using finite differences.

As in the previous section, the main purpose of these simulations

was to study the nature of the solution for some simple cases and

hence constant values were chosen for 9— , r and u from the range
2

of values covered in Table 5.1. Moreover, the probability of having

more than one birth in a short time interval 6T was assumed to be

negligible, i.e., only Al was assumed to be a significant parameter.

Furthermore, k1(y,s) was aSSumed to be independent of time. Equa-

tion (4.2) was written in the finite difference form as

Elair+0ily)-G(e,ily) = g3 [C(e,Tiy+6y)-ZG§8,Tiy)+G(9,Tiy-6y)]

0T 2
6y

 + r[G(e,Tiy+6y)-G$9:T, 1 + nil - G(9,T]y)] (5.65)

6y

- 11(y)G(e,T\y)[1 - C(e,"r\0)]

 

I
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for 6y S y s a—fiy and T 2 O. For y = 0 or a, (5.65) has to

be modified to include the boundary conditions. For the stability

6 2

of the numerical computation scheme a ratio of g%— = 4 was chosen.

Different time and space increments were tried and values of St

and 5y were chosen so as to give results agreeing up to the first

three decimal places with those for a much finer discretization.  The values of the simulation parameters are summarized in Table 5.2.

The results of simulations 1 thru 7 are presented in Tables 5.3

thru 5.9 respectively. A computer program used for the simulations

is presented in Appendix C.

It can be seen that in case of a reflecting barrier at 5

 

and constant birth and death rates per individual throughout its

TABLE 5.2: Simulation Parameters for the Computation of Extinction

Probability for a Population

 

 

 

      

Simulation Death Rate Birth Rate Nature of Remarks

No. H (years)'1 X1 (years)‘1 Boundary

at a

1 0.6 0.6 absorbing For all simula—

2 0.6 0.6 reflecting tions 02/2 =

3 0.6 1.2 absorbing 0.025 inchz/year

A 0.6 ZOsech(y-10) reflecting r = l inch/year

,5 0.6 SOsech(y-10) absorbing 5x = 0.2 inch

6 0.6 SOsech(y—8) absorbing 6T = 0.01 year

7 0.6 SOsech(y—6) absorbing a = 20 inches

u____i,
 

life-span, the changes in the total population will be the same as that

for a linear birth and death process. The extinction probability for

the linear birth and death process with one initial ancestor is equal

to

M - LL expf‘QfMt]

i1 — n eXPE'Ql-nh]
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when 11 # M and xlT/(l + xlT) when k1 = u; where x1, u and

T denote the corresponding quantities defined in this section

(Cox and Miller, 1965; p. 166). This result for a linear birth and

death process checks with that of Simulation 2 for all initial

states of the ancestor. Comparing the results of Simulations 1 and

2 it can be seen that when the initial location of the ancestor is  sufficiently away from the absorbing boundary (note that this distance

from the boundary will be dependent upon g3, r and n) the extinc-

tion probability at any time is the same as that for a reflecting

boundary. Thus, the effect of the boundary is apparent only near

the boundary itself.

Simulations 4 thru 7 were conducted to represent the situa-

 

tion where each individual has a very high reproduction rate for a

small portion of its life-span. In Simu1ations 4 and 5 the peak 1

reproduction was assumed to be at the midpoint of an individual's

life-span. The results of both simulations show that althOugh the

extinction probability immediately following the introduction of

the ancestor in its peak reproductive state is quite low, it in—

creases to a high value as time progresses. The results of Simula—

tions 6 and 7 are more interesting. Simulation 6 shows that if the

ancestor is "too young" or "too old” at the time of its introduction,

the probability of extinction of the population is very high. In

Simulation 7 a steady state was reached after a period of about ten

years. Similar steady state solutions can be obtained for other

simulations if the period of simulation is long enough. In general,

it can be said from Simulations 4 thru 7 that for a population with

constant diffusion and drift coefficients, a constant death rate
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and the reproduction rate per individual having a functional form

similar to that used in Simulations 4 thru 7, the extinction proba-

bility at any given time is the lowest if the ancestor is in its

peak reproductive state at the time of introduction. As mentioned

in Section 4.5, an important application of the extinction probability

is in the biological control of pest species. Simulations 4 thru 7

indicate that the maturity of the parasites or predators introduced

for achieving the control may be a crucial factor in the survival

of the controlling population and hence the chance of success of the

biological control strategy.

When the parameters in the diffusion equation are not constant

the method described in the previous section cannot be used to find

the ”critical length". In such cases computation of the extinction

probability can be used to find the critical length by using the

criterion that when 5 < acr’ the probability of ultimate extinction

is one.

Remark 5.3: Application of the results of this chapter to

biological populations involve description of the growth of an

individual by a diffusion process. The individuals in the population

are often characterized by their maturity or a measure of their

size such as a characteristic length, which are essentially non-

decreasing quantities for each individual in the population. On

the other hand, realizations of a diffusion process are not strictly

monotone in nature. Thus, for example, when the growth of a fish in

terms of its length is represented by a diffusion process, there will

be a nonzero probability that the length of the fish as described

by the model will decrease sometime during its lifetime. In this
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sense the diffusion representation is essentially approximate in

nature, and it is instructive to know the probability of a given

decrease in the length, maturity, etc. of an individual if a dif-

fusion model is used. Brockwell (1972b) has derived an expression

for the probability of suCh deviations from monotonicity for a dif-

fusion process on the real line (~m,m). In particular, let the

growth of an individual in the maturity interval [0,5] be char-

acterized by a diffusion process on the real line with constant dif-

2

fusion and drift coefficients 94- and r respectively, the death
2

parameter p = 0 and let z denote the location of the individual

in [0,5] at time t. If Ta denotes the time taken by the

individual to reach a for the first time (i.e., the first passage

time) and M(t) = max z(T), then max(M(t)-z(t)) represents the

0STSt OStST

. . . . a . . . . .

max1mum decrease in maturity experienced by an indiv1dua1 during its

lifetime. The distribution of this quantity is given by

F (m) = P[ max a‘1(M<c>-z<t>> s w] = expE-c‘2<exp<wc‘2>-1)‘1>],<5.66>
C OatsTa

where c =-——Jg——. Thus, for the example of fish population char-

(Zar)2
2

acterized by the parameters a, r, and 5L. in Table 5.2, (5.66)

predicts that while the probability of a maximum decrease in length

of greater than one inch during the lifetime of a fish is close to

zero, the probability that a fish will decrease in length by more than

one fourth inch during its lifetime is 0.036. This probability

changes drastically with small changes in c. It is interesting to

note that if the diffusion coefficient in the example just considered

was 0.05 instead of 0.025, with the other parameters unchanged, so

that the parameter c is 0.05 instead of 0.03536, the probabilities

of a decrease in length greater than one inch and one fourth inch would

be 8.24 x 10'7 and 0.93 respectively.
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CHAPTER VI

POPULATIONS WITH AN EXTERNAL INPUT

In general, a pOpulation will also have an input other than

reproduction by its members. In biological populations this external

input usually takes place in the form of an input of individuals

across the boundaries of a geographical domain due to locomotion in

case of mobile species; or due to passive motion along with the

 

carrying medium such as water for aquatic organisms or air in case of

flying insects. The examples of external input in case of particulate

processes in chemical engineering systems include an input of particles

along with the carrying fluid for suspensions, nucleation of bubbles

or crystals at the imperfections on the surfaces of a vessel and a

homogeneous nucleation of crystals occurring at very high super—

saturations of the magma. Formation of free radicals by the

initiation reaction in polymerization processes can also be looked

upon as an external input of molecules of zero chain length.

Radcliffe (1972) considered the problem of external input

(immigration) in the form of a nonhomogeneous Poisson process into a

population where the individuals move within an abstract state space

according to a Markov transition probability and multiply according

to a branching process in which the offspring are produced at the end

of life of the parent and are in the same state as the parent.

Radcliffe also assumed that all the individuals entering the state
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Space at any time due to migration are located at the same point in

the state Space at the instant of their arrival. This description

does not apply to many processes which are considered in the present

work. In the processes described in the preceding paragraph the

entities may be located at any point in the spatial domain at the

instant of arrival and in the general process of reproduction des-

cribed in Chapter IV an offSpring is in a state different from its  
parent.

6.1 Description of the Process
 

 

For the analysis of populations with an external input, the

individual state space E for the existing (or ”live") entities is

taken as an n-dimensional Euclidean space. When the entities are

removed from E by the process of "death" they are considered as

 * ~ N 7%

being absorbed into a single point g 6 E. The union ‘E E E U g

constitutes the individual state Space for the existing and dead

entities together. The movement of entities is restricted to the

spatial domain ‘0 E D U §*, where D is a closed nonempty set in E

with a boundary F (cf. Section 4.2). The location of an entity

in ‘D is denoted by g. Only the entities in 0 may possibly move

to another point in ID, or produce new entities by reproduction.

In the context of a chemical process such as crystallization,

E may consist of a four-dimensional Euclidean Space with three co-

ordinates denoting the geographical location of a crystal and the

fourth co-ordinate representing the size of the crystal in terms 
of its characteristic length. The domain D may refer to the pro-

cessing system itself, Such as the interior of a crystallizer (with
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the size co-ordinate possibly varying from 0 to w). All the crystals

that are removed from the system by flow or by mechanical means (i.e.,

by ”death”) are considered as being transferred to the absorbing

state 5* E E. Similarly, in the case of a biological population E

may consist of a four—dimensional Euclidean space of three geo-

graphical co—ordinates and a maturity co-ordinate, 5 may be a given

geographical domain of interest and "death” may be interpreted as

the combined effect of natural death, emigration and harvesting.

The process is started at time s0 With k0 entities in

D. At subsequent times Sj’ j = l,2,...,r; kj entities enter 5

from a source external to the population. Each entity present in

5 at time 50 and the entities entering 5 due to external input

at any time sj > s serve as ancestors of the entities generated

0

due to reproduction. The initial locations of these ancestors are

denoted by the superscripted variable go. The movement of each

entity in E ‘is characterized by a Markov transition probability

x(A,t‘§,t0) denoting the probability that an entity at g at time

to will be in the set A c:% at time t 2 t0. Moreover, the

probabilities of producing any new entities due to reproduction at

any time are also assumed to be Markovian in nature, i.e., the

probability that an entity will produce any offspring at any time in

future depends only on its present state and not the past history.

It is also assumed that the input of entities to 5, their movement

within. %, as well as their reproduction proceed independently of

other entities in the population. It can be seen that the process

described in this section includes the process discussed in Chapter

IV as a special case. In the model considered in Chapter IV, E is
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the nonnegative real line, the movement of an entity in 6 is char-

acterized by a continuous Markov process satisfying (4.1) and the

Markov probabilities of producing any offspring, or dying (i.e., of

moving to §*) are defined in Section 4.1.

For a complete description of the process the rate of input

of entities and the points in 5 where they first appear must also

be known. It is assumed that the arrivals of entities into the popula-

tion due to external input occur according to k simultaneous

independent nonhomogeneous Poisson processes, where k is finite.

The Poisson inputs are characterized by the following axioms (see

e.g., Parzen, 1962; Chapter 4):

(i) The process has independent increments, i.e., the numbers

of entities arriving during disjoint intervals of tflne

are independent of each other.

(ii) For any time interval (no matter how small) there is a

positive probability that some entities will arrive in

5, but it is not certain that an arrival will occur.

(iii) The probability that one entity appears in 5 during

the time interval (s,s+6s) from an external source

through the i-th Poisson stream, i = l,...,k, is

vi(s)6s + o(és), and

(iv) The probability of more than one arrival in 5 during

the time interval (s,s+és) from any of the input

streams is o(és).

It can be seen that in View of axiom (iii), the number of entities

kj appearing in 5 at time sj must be equal to one for a finite

number of Poisson inputs. When axiom (iv) is dropped so that the
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probability of more than one arrival during (s,s+§s) is C(63),

one obtains a generalized Poisson process. The material in this

chapter can possibly be generalized to include an input in the form

of a generalized Poisson process, but the analysis will be much

more complicated.

The location of an entity at the instant of its arrival in

5 at time s (which is obviously conditional on the fact that an

arrival has taken place) from the i-th Poisson input is described

by a probability density wi(§,s). The transition probability

X(A,t\§0,s) can thus be looked upon as the probability that an

entity is in the set A Cr? conditional on its first appearance

in 5 at the point go at time 3.

Remark 6.1: It can be seen that when the number of Poisson

streams k is a constant, the net effect of the k Poisson pro-

cesses with rates vi(s) and conditional probability densities

wi(§,s), i = l,...,k, characterizing the location g where an

entity entering 5 via the i—th stream appears first, is equivalent

to a single Poisson process with rate

k

v(s) = v,(s) (6.1)

i=1 1

and a conditional probability density

k

E Wi(§ )S)Vi(s)

w(§,s) = i=—1————————— (6.2)

k

)3 vi(s)

i=1

for the initial location of an entity at the time of its arrival.

Similarly, when the process has a random number K of independent
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Poisson inputs (fixed for each realization of the process) with all

rates vj(s) and the probability densities wi(§,s) of the initial

location of an entity being equal to V(s) and W(§,s) respectively,

if K = k is given, the input streams can be replaced by a single

stream with rate kV(s) and a probability density W(§,s) for the

initial location of an entity at the time of its arrival.

To summarize, the process described in this section is a

Markov population process with a Poisson input. The main difference

between the description here and the process considered by Radcliffe

(1972) is that here an entity is assumed to appear at any point in

5 at the time of its arrival. Moreover, the locations of the

entities produced by reproduction have been left unspecified in this

description, and therefore can be arbitrary. As mentioned earlier

in this chapter, Radcliffe assumed that all the entities are located  at a single point in 5 at the time of their arrival, and that the

entities reproduce according to a branching process.

6.2 The Probability Generating Functional of the Process

For a quantitative description of the process, let

0 O O . O O . O 0 . s s )

N(A,t\§10a§20,--u§koa Ellyu'5gk11’ glr:"‘>gkrr’ 0’ ’ r

o ’V‘; n .

denote the number of entities in the set A C2D at time t, given

. O

that there was one ancestor arriving at each of the p01nts gij

' ' ' t 0 denoteat time Sj’ 1 = l,...,kj; J = 0,1,...,r. The poin s gio

the initial locations of the entities present in the population at

0

the initial location of the i-th entity arriving into D at time

0 .
the start of the process at time s and gij, J = l,...,r, denotes

S. from an external source. Using the conditional counting meaSure

J
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0 .

k r’

r

S ,sr), the PGF for the

O 0 _ 0

N(A,t\§10,...,§k0,...;§1r,...,§ 0,....

0

process can be defined as

O 0 _ _ 0 O . _

C(9,ti§10,--',§k00,---:§1r,--~agkrr:SO,---:Sr) —

0 0 0 O

1 ... ;...; ,..., ; ,..., .E{exp L13 og e(§)[N(d§,t1§10, ,gk 0 glr gkrr s0 sr)]}

0 (6.3)

In view of independence of the entities,

0 0 0 o _ _
N(A,tiglo,...,§k 0,...,glr,...,gk r, $0,...,sr) _

O r

k.
r J 0

2 >3 N(A,t\gi.; s.), (6-4)

j=0 i=1 3 J

from which it follows that

O O _ . O 0 . =

G(e,tlg10,...,gk 0,...,§1r,...,gk r, SO""’Sr)

O r

r k'

J 0

n 1'1 G(9,ti§i.; s.), (6-5)

j=0 i=1 J J

where G(e,t\§2j,sj) is the PGF of a pOpulation starting with one

ancestor at ggj at time 5j and allowing no external input. Equa-

tions (4.7) and (4.6) are special cases of (6.® and (6.5) respectively

when r = O and k0 = k. The co—ordinates g and g0 in (6.3)

thru (6.5) correspond to z and y respectively in (4.5) thru (4.7).

Note that when the input consists of a Poisson stream, by Axiom (iv)

in the previous section k1 = l for i = l,...,r in (6.3) thru

(6.5). For an input stream in the form of a generalized Poisson

process, the numbers ki’ i = l,...,r can be greater than one. The

conditional PGF (6.5) has to be summed over all possible initial

locations g0 of the externally introduced entities at all instants
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of arrival s, 50 s s S t, and all input streams in order to obtain

a complete description of the process.

For the case discussed in Remark 6.1 the external input can

be characterized by a single Poisson stream of entities. Thus, for

the case where k is a constant, the PGF of the process can be

written as

0 . 0 0

C(e)t‘§20,“°,§koo; 30) = E{exp Jfilog e(§)[N(dg:t‘g10)'"agkoo; 80]}

o 0 ,

= Eiifi---ifiiexp [filog e<§>£N<dg,ti§10,...,gkoo,

0 o 0 _ o o

€113§12)""g1r7
50,---,Sr]}w(§11,51)w(§12,52)....

o o 0 0

w(gir’sr)d§11d§12”'dgir1

k r 0 0
° 0 _ . 0 _ d

" .H1G(e’t\§io’ SO)E{j21 Jfic(e’t\§ij’sj)“(§ij’sj) gij}'
1.:

(6.6)

Equation (6.6) follows from (6.4) and (6.5).

Remark 6.2: Given the number of arrivals r during the

interval [30,t] due to a single Poisson stream Wlth rate v(s), the

instants at which the arrivals occur can be regarded as independently

distributed random variables with the probability density v(s)/v(so,t)

where 50 s s s t and

t

V(s0,t) = g v(s)ds
(6.7)

0

This statement can be proved as follows:

The joint probability that there will be one arrival each

- C
during the infinitesimal intervals (51’sf+6sl)""’(sr’sr+5sr)

[80,t] and none during [50,t] —{(Sl’sl+5sl)""’(Sr’sr+
5sr)}’
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where Si’ 1 = l,...,r, constitute an unordered set of distinct

points in [50,t], is given by

v(sl)v(sz)...v(sr)631532...asrexp(V(sO,t))

 

r! (6.8)

Hence, the conditional probability that there will be one arrival

each during the intervals (sl,sl+ésl),...,(sr,sr+53r) given that r

arrivals occur during the interval [s0,t] is

v(sl)v(sz)...v(sr)6s1632...ésrexp(V(so,t))r!

 

r![V(s0,t)]rexp(V(so,t))

_ v(sl)v(s .v(sr)éslész...6sr2)..

r

[v(soat)]

from which it follows that the joint probability density of one

arrival each at times s .,sr E [30,t] given that r arrivals

1’32’

occurred during [s0,t] is

v(s1)v(sz)...v(sr)

[V(s0.t>]r

which is the joint probability density of r independent random

variables with densities v(si)/V(so,t), i = l,...,r. (Q.E.D.)

In View of Remark 6.2, averaging (6.6) over sj conditional

on r, the following equation is obtained for the case where the

number of Poisson streams k is a constant:

G(e,t‘§20,...,§:00; so)

k0 0v(S,)dS_

= H OG(e t‘510;SO)E{j_H1[IOD§G(e’t\§9’sj)w@2’sj)dggv(so’t)

i=1

ko

_ X(e,:s t)

- I=IG(et|§10,so)E ‘17—)— (6.9)

-¥__¥
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where

t

X(e,s0,t) = j j~c<e,t\g°,s>w<§°,s>v<s>d§0ds. (6.10)
sO D

Noting that r is a Poisson-distributed random variable with a

X(e,so,t)

parameter V(sO,t), averaging

r

ivzggjgy‘} over r yields

 
E{[X(e,so,t)]r} m [W30’t)1rexp[‘v(so’t)][x(e’so’t)]r

——-——-—- = E
v(s0,t) F0 r1 [v(so,t)jr

= exp{X(e,SO,t) " v(sogt)}3

so that

k

0

O

G(e,ti§10,...,§:oo,so) = i21G(e,t\§iO,SO)exp{X(e,sO,t)-V(sO,t)}. (6.11)

When w(§0,s) = 5(g0—g8), i.e., when all the entities arriving

. N 0 . . .
in D first appear at g0 and when there are no entities in the

population at time 50 (i.e., k0 = 0), the expression for the PGF

reduces to

C

G(e,t|so) = exp{j v(s>[c(e,t\gg; s0) - 1]}, (6.11a)

S

0

Which is essentially the result obtained by Bartlett (1966) for a

population of individuals characterized by their age, as well as

that of Radcliffe (1972).

When the number of Poisson streams K is a random variable

(fixed for each realization of the process) as specified in Remark

6.1, given K = k, the analysis is the same as that for a fixed k

with v(s) and w(§,s) replaced by kv(s) and W(§,s) respectively.

Thus,
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k N

0 O 0 X(easoat) r

G(e,t\§10,---a§k 0;so) = HG(e’t‘§io;so)E{[‘\7‘(‘§T] }, (6.12)

0 i=1 0’

where

t 0 o 0
i(9,50,t) = j f~G(e,t\§ ;s)s(§ ,s)kV(s)d§ ds

80 D

t o o o
= kf [~G(9,t\§ ;s)w(§ ,s)§(s)d§ ds

3 D

O

E k§(9:30at)
(6'13)

and

N t

V(sO,t) = I kV(s)ds

S

0

E k $280,t) .
(6.14)

Averaging over r yields

0 O

C(e,ti§10,...,§k 0; so)

0

k

0 ... ...

= II C(e,t|gio;so)E{eXP[X(e,SO,t) - V(So»t)]}

i=1

k0

= nGertie“,;sO>E{exp[k(”§(e,sO,t> -’\7(so,t)>]}
i=1

k

0 ,w 5% k

= n g(e,t‘gio;sO)E{[exp(§(9,sO,t) - V(so,t))j }. (6.15)

i=1

If K is characterized by a probability generating function

f(u) = E[(u)k], O s u s 1, then by averaging over k, (6.15) reduces

to

O 0 .

C(e)t\§103'°'3§k 0330)

o
k

0 ~ m

= n g(9,t\gio;sO)Y{expf§(e,so,t) - V(sO,t)]} . (6.16)

i=1
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6.3 Moment Distributions of the Population

In order to obtain the factorial moment distributions of the

pOpulation it is necessary to apply (2.13) to (6.11). Thus, when

the number of Poisson inputs k is fixed, the expected number of

F3

entities in the set A C1D is given by

= a_- O O .

M1(A, tlF10,...,§kOO;SO)
8g G(T‘+ge\§10,'°‘agkOOSSO)‘n=lag—.O

k

0

i=1

t

0 O 0

+ if V<S>I~M1(A,t\§ ,s)w(§ ,s)d§ ds}, (6.17)

s D

0

when 9 = I(A\§). Thus, the expected number of entities in A<:<D

at time t is simply the sum of the expected number due to the

entities present in the population at the initial time s and the

~

expected numbers arising from all the entities entering D during

the interval (sO,t) due to all the individual Poisson streams. The

second factorial moment of the number of entities in the set

N N

A1 X A2,: D X D is

0 0 a__ 0 .
(AIXAZat\§10’°°"gkOO’SO>= 2G(“+Q9‘§o ’°"’§k00’80)\n=1,6~0

M
2() 6C2

k

0

_ o 0 o o
_ iEIM(2)(A1XA2,t\§iO;sO)+ [Ov(s)jD(M 2(A1XA2,t\§ ;s)w(§ .s)d§ ds

k

+ 20M (A t|§0 's f v(s)“ M (A t\§0‘s)w(§0 s)d§0ds
i=1 1 1, i0, O)S jg 1 2, 3 ,

k 0

O t

+12 M1.(A2,t:\tg005302r v(s)j‘fiM10(A1,t\§ ;s)w(gO ,s)d§0ds

=1
S0
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kO kO

0 0
+ 2 2 M1<A1,tlgio;sO)M1<A2.ttgjomo)

i=1 j=l

jaéi

2 t r 0. o o
+ n {j V(S)J~M1(Aj)t\§ ,S)W(§ ,S)d§ d8} ' (6.18)

'= s D

0
J 1

In the context of the problem considered in Chapter IV,

where E is the non-negative real line and the movement of entities

in E is characterized by a diffusion process; when a fixed number

k of Poisson inputs with rates Vi(t) are added, the forward

diffusion equation (4.49) for the first moment density of the

population has to be modified to

am1(z,t\N0,s)

at

 = a:m1(z,c\No,s) + v(t)w(z,t), (6.19)

where a: is the forward diffusion operator defined in (4.48),

and v(t) and w(z,t) are defined by (6.1) and (6.2) respectively.

The initial and boundary conditions will remain unchanged. The equa-

tion for the second factorial moment density will be more complicated.

The backward diffusion equations for the first and second factorial

moment distributions of the pOpulation as well as the corresponding

initial and boundary conditions will remain unchanged. The correspond-

ing solutions M1(A,t‘§0,s) and M(2)(A1 X A2,t‘§0,s) will have

to be substituted in (6.17) and (6.18) to obtain complete solutions

for the moment distributions.

It can be seen that while the diffusion equation for the

first moment of the population is quite simple, the equation for

the second factorial moment is rather complicated. However, as far

as the asymptotic behavior of the coefficient of variation is con-

cerned, it can be expected that normally, the total number of entities
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entering D due to an external input in a large finite time interval

will be sufficiently large, and since these entities act as ancestors

for the entities generated by reproduction, the asymptotic value of

the coefficient of variation of the number of entities in any set

A.C/§ will always tend to be low.

When there are a random number K of Poisson inputs as de-

fined in Remark 6.1, given that K = k, the conditional first and

second factorial moment distributions are given by (6.17) and (6.18)

reSpectively by changing v(s) and w(§,s) to kv(s) and w(§,s)

respectively. These have to be averaged over k in order to obtain

the desired moment distributions. Thus, if E(K) =‘k and

2 _

E(K ) = k, then it can be seen that

k

0 0 o
M1(A) t\g103"'2§k 0; SO) = 2M1(A,t\§io; SO)

0 i=1

—-t o o
+ k g v(s)ffiM1(A,t\§ ; s)d§ ds (6.17a)

and

k
0

0 0 _ 0 .
M(Z)(Ale2,t\g10,...,gk00,so) — iEIM(2)(A1xA2,t\§iO, so)

_t

+ k I V(s)jM(2)(A1XA2,t\§O ;s)w(gO ,s)dgOds

30 D

k
0 t

... 0 ~

+ Z M1(A1,t\§20;so)k v(s)f~M1(A2,t‘§ ,s)w(§0,s)d§0ds

i=1 50 D

k

0 o N O 0

+ 2M A(2.t\§00;s0>kj: v(s)jDM A,t\§ ;s>w(§ .s)d§ ds

i=1

k k 30

o o

+ z 2 M1(A1.t\§00;s0)M1(A2,t\§.0;sO)

i=1 j=—l J

jfi
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+ E n

t

{f v(s)I~Ml(Aj,t‘§0;3)W(§0,s)d§0ds} . (6.18a)

J 1 s0 D

The quantitative description of the population in terms of the PGF

assumes a particularly simple form in the case where the entities

in the population do not reproduce and when the number of entities

in the population at the initial time 50 is zero.

6.4 External Input in Populations of Nonreproducing Entities

As mentioned earlier, a large number of processes of chemical

engineering interest involve populations of nonreproducing entities.

 

It will be seen later that some problems related to biological

populations can also be looked upon as the dynamics of nonreproduc-

ing entities.

. . . 0 ~ .
Given a nonreproduc1ng entity at g E D at t1me 5, there

will be only one entity in B at all times t 2 s in the absence

of an external input, because if the entity is not in 5, it must be

I * c a n u w

in g , and thus the entity is always restricted to stay w1th1n D.

0 . .
In view of this, the PGF G(e,t\§ ,s) for the populat1on start1ng

. , 0 . .
w1th one nonreproducing entity at g at t1me s and allow1ng no

external input can be written as

c<e,t\§°,s> = Ete<§),t\§°,s]

L¥e(§)x(d€,t\§0,s), (6.20)

D

where 5 denotes the location of the entity (the "ancestor") at

thne t (cf. Equation (2.9)). Substitution of (6.20) in (6.11)

yields
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0
C(e,t‘§10,...,§: O;sO)

k0 O

= E:(L§e(§)x(d§tléo .8O>>(€Xp{f V(S) f gX(dg, t\§% ,sO)

1: s

0 §€D § 6D

w(go,s)<e<g>-1>d§°ds}> . (6.21)

When there are no entities in the population initially, i.e., when

k0 = O, and the number of Poisson inputs k is a constant, in view

of Remark 6.1,

C(e, tlso > = exp{jv<s){ ye f X(d§,t\§O.S)W(§0.s)[e(§)-1]d§Ods}}(6-22)
0~

E ED

When

g if g e A . .

9(5) =
(6.22s)

1 if g é A

a:

for an arbitrary set A.C:D, (6.22) reduces to

t

C(e,t|so) = exp{j v(s)[ of x(A,t\§0,s)w(§0,s)d§O]ds(g-l)}, (6.23)

S0 g 65

which is the probability generating function for a Poisson process

with mean

: v(s)[ of X(A: t‘go ,s)w(E_,O ,s)d§O ]ds

S0 gOED

(see e.g. Parzen, 1962; p. 125). This is an important result and

may be stated as

Theorem 6.1: Suppose that the population in the Spatial

 

N

O
a

n I
0

domain D defined in Section 6.1 contains no ent1t1es at t1me s0

and that
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(a) Entities appear in D according to k simultaneous

independent nonhomogeneous Poisson processes with rates

vi(s), i = l,...,k from an external source, where the

number k is a constant.

. 0 . . .
(b) The location gi at which an entity first appears at

time 3 due to the i-th Poisson stream is distributed

. ~ . . . . 0
in D according to a probability denSity wi(§i,S)

. 0
With reSpect to §,.

1

(c) Each entity moves in '5 independently of others

according to a Markov transition probability distribu-

tion x(A,t\g,s) denoting the probability that the

entity at g at time s will be in the set 'A CPD

at time t 2 s.

(d) The entities do not reproduce.

N 9

Then the number of entities in any set Ac: D at time t 2 s0 is

a Poisson-distributed random variable with mean

t

M1(A,t\s0) = j v(s)[ f X(A.t\§0,s)w(§o,s)d§0]ds.
(6.24)

so @065

where v(s) and w(go,s) are related to vi(s) and wi(§0,s),

i = l,...,k, by (6.1) and (6.2) respectively.

Bartlett (1966) has indicated that when a population of non-

reproducing individuals has an external input in the form of a

Poisson process, the total number of individuals in the population

at any time is a Poisson-distributed random variable if there are no

individuals in the population initially. This observation corres-

ponds to a special case of Theorem 6.1 with A E D in (6-24)-
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Remark 6.3: To obtain the r-th factorial moment of the number

of entities in the set A.CTD, it is necessary to evaluate the r-th

derivative of the probability generating function (6.23) at g = O,

which yields the result

_ - r
M(r)(A,t\sO) — LM1(A,t\sO)] . (6.25)

Remark 6.4: By choosing the set A to be the single point
 

*k

g , it can be seen that when the hypotheses (a) thru (d) in Theorem

6.1 are satisfied, the number of entities which have been removed

from D during the time interval (sO,t) due to death is a Poisson-

distributed random variable.

Many problems of practical interest can be looked upon as one

of the following special cases of Theorem 6.1:

Case 1: When the initial location of each entity at the time of its

first appearance due to any input stream is a fixed point g3 E E,

the number of entities in any set A.Cw§ at any time t 2 50 has

a Poisson distribution with mean

t

O
= .2

M1(A,t\so) £v(s)x(A,t|§O,s)ds, (6 6)

0 0

which readily follows from the fact that in this case w(§ ,s) =

6(§O - g8) and hence

O

j’..x<d§.t\§s,s>w<§s,s>d§s = X(d§.t\§0.8)-
D

Case 2: When the initial location of each entity at the time of its

first appearance in D due to the external input from the i-th

Poisson stream is located on the boundary F of D with a proba-

bility density wi(§,s), i = l,...,k; where E denotes a point on
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P, the number of entities in any set A C5D at any time t 2 30

has a Poisson distribution with mean

t .

M1(A,c\so) = g: v(s);x(A,t\§,s)w(§,s)d§ds, (6.27)

o

where v(s) and w(s) are related to vi(s) and wi(s) by (6.1)

and (6.2) reSpectively.

In the case where the number of Poisson streams is a random

variable with the process parameters V(s) and W(§,s) defined

in Remark 6.1, substitution of (6.20) in (6.16) yields the expression

 

t

c<e,t\s0> = w(expif j j V(s)x(d§.t\§0.8)fi(§O.S)[e(§)-1]ds]} (6.28)
80 g6? 5.065

for the PGF of a population of nonreproducing entities with no

entities in the population initially. When 9(5) is given by

(6.22a) for the set A':(§, the PGF reduces to the probability gen—

erating function ?(g,t|so) of the number of entities in the set

A, given by

t

Y(Q,t\so) = ({exp(( j v<s>x<A,t\5°.s>6<§°.s>d§°ds<g-1>3 . (6.29)

sogefi

6.5 Applications

Most problems related to the population balance models of

chemical engineering interest can be cast in the theoretical frame-

work of the last section. For example, when a homogeneous nuclea-‘

tion of crystals or other suSpended particles (as in a flocculation

process) occurs in a process vessel, a Poisson rate of production

with a certain probability density for the location of the particle

in the vessel at the time of formation may be a reasonable assumption.



149

When uniform conditions prevail throughout the contents of the vessel,

a uniform probability distribution for the initial location of a

particle at the instant of its formation can be assumed. A similar

description can also be used to characterize atmospheric phenomena

such as formation of smog. In many chemical processes such as

crystallization, nucleate boiling of fluids, distillation and liquid-

1iquid extraction the particles (i.e., crystal nuclei, bubbles of

a vapor or droplets of a liquid) are formed at the surfaces enclosing

the fluid. In these cases a Poisson rate of formation with a certain

probability density for the initial location of the particles may

be a reasonable description. In case of processes carried out in

perfectly mixed vessels, the size or weight of a particle is often

the only quantity of interest -- in such cases the individual state

Space for the particles in the population consists of the non-negative

real line, and the formation of particles can be characterized as

a Poisson input occurring at a single point in the state space, such

as nuclei of zero size appearing in the vessel due to a homogeneous

nucleation process. In many cases it may be necessary to consider

the input of entities as consisting of a number of independent Poisson

processes occurring in parallel. For example, in nucleate boiling

of a fluid or in the case of a crystallizer where nucleation is

taking place at the surfaces of the vessel, the local temperature at

any point on the surface as well as the nature of the surface itself

determines the rate of formation of the bubbles or crystal nuclei.

Similarly, in processes such as distillation in a plate column the

rate of bubble formation at the bubble caps or at the holes in a

sieve plate will be dependent on the height of the liquid column
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above the bubble cap or the respective set of holes in the sieve

plate. Since the height of the liquid over a plate changes from the

inlet to the outlet weir on the plate, the rates of bubble formation

will be different at different points across the plate.

As discussed earlier in this chapter, the stochastic descrip-

tion of a population with an external input is quite involved in

case of reproducing pOpulations and therefore application of the

theory of Section 6.3 to a crystallization process will be quite

difficult when homogeneous nucleation, nucelation at the surfaces

of the vessel, as well as secondary nucleation are occurring

simultaneously at significant rates. Most particulate processes of

chemical engineering interest involve particles of nonreproducing

entities, for which the simpler results of the previous section may

apply. Thus, in general, it can be said that if

(1) At the start of a particulate process there are no

particles present in the process vessel.

(ii) The input of the particles into the process vessel can

be characterized by a fixed number k of Poisson streams,

with a probability density assigned to the particles

in each stream for their states (such as the location

inside the vessel as well as other characteristics such

as size, shape, weight, etc.) at the time of their first

appearance in the vessel,

(iii) The future states of a particle and also the probability

of its removal from the population depend only on its

present state and not the past history,
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(iv) The changes in the state of a particle as well as its

removal from the population proceed independently of

other particles,

then the number of particles in any given set of states such as a

size class, a volume element inside the vessel, etc. at any time is

a Poisson-distributed random number.

In case of biological populations the external input commonly

manifests itself in the form of a migration of individuals. As dis-

cussed before, the analysis of the stochastic fluctuations in a

population with reproductive as well as migratory inputs is quite

complicated. However, the study of migration of a single generation

of individuals is also of importance in many problems of practical

interest and in these cases the simpler analysis of the previous

section can be applied. The example of the cereal leaf beetle (CLB),

Oulema melanopus (L.) may be cited in this context. The CLB is an

economic pest of the small grain cr0ps in the North American con-

tinent. It has only one generation every year. In early spring the

hibernating adults emerge from their overwintering sites in wooded

areas surrounding grain fields and move to the succulent grain crOps.

They feed on the plant leaves for some time before starting their

mating and egg-laying activity. Most of the damage to the plants is

done by the larvae emerging from the eggs. Among other things, a

detailed study of the movement patterns of the adults is necessary

to arrive at efficient strategies for the control of the pest.

Ruesink and Haynes (1972) studied the distribution patterns of the

CLB adult pOpulations in grain fields under different population

densities. Their observations indicate that the adults are scattered
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in a field according to a Poisson distribution only at medium

densities. The mean and variance of the number of adults caught in

a number of samples in the same field are significantly different

from each other at very high and very low densities indicating that

the Spatial distribution is not Poisson at these densities.

If the rate of emergence of the CLB adults is assumed to

occur according to a Poisson process with the points of emergence

(i.e., the overwintering sites) distributed along the boundary of

the field with a certain probability density and if the movement of

a beetle within a field as well as its death are assumed to occur

independently of others according to a Markov transition probability,

then the number of beetles in any section of the field at any time

should have a Poisson distribution. This description may be a good

starting point in the quantitative study of the migration of the CLB

adults. It is likely that the assumption of a Poisson emergence rate

is not justifiable at low densities (cf. Section 6.6) and there may

be a significant interaction among the individuals at high densities.

The analysis of external input to populations of nonreproduc—

ing entities can also be applied to problems other than Spatial

migration of biological populations. For example, in the study of

the CLB pOpulation dynamics, the egg-laying activity of the over-

wintering adults can be considered as an "external" input to the new

generation of the insects. In this case the individual state Space

E consists of the positive octant of a three dimensional Euclidean

Space with co—ordinates 21,22 and 23; with 21 representing the

maturity of an individual and 22,23 denoting its geographical loca-

tion in the field. The egg-laying activity of an adult located at
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the point (22,23) in the geographical domain constitutes an

"external" input of individuals of new generation at the boundary

point g = (0,22,23). Since the eggs and pupae are not translocated

and Since the migration of larvae is small relative to the dimensions

of the field, the (Markovian) transition probability X(A,t‘§,s)

characterizing the movement of an individual in E can be looked

upon as the transition probability of movement along the maturity

co-ordinate alone. Thus, x(A,t|§,s) is independent of the geo-

graphical co-ordinates of an individual. In View of this, the

quantitative description of the population in a fixed geographical

 

area can be written in terms of 21 alone.

It should be noted that when the diffusion equation can be

used to characterize the growth of an individual, the transition

probability X(A,t\zl,s) is given by the solution of the backward

diffusion equation

BX(A9t\zl:S)

_ as = a; x(A,t\z1,s) (6.30)

1

 

 

with the initial condition

X(A,t\zl.t) = I<Aizp

and the boundary conditions

ax(A,tlzl.S)

521 21:0

 

and

aX(A.tlzl.S)

521 21:8

 

for a reflecting boundary at 21 = 5, or
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x(A,t‘§,s) " O

for an absorbing boundary at z1 = a. The operator (7 is the back-

2
l

ward diffusion operator defined in (4.11). Alternatively, the transi-

tion probability can also be expressed in terms of the solution of

the corresponding forward diffusion equation for the transition

probability density.

The problem is complicated by the fact that the number of

egg-laying adult females in any fixed area in a grain field is a

random number. If the overall effect of the egg-laying females can

be characterized as a random number k of Poisson inputs, each with

 

the same rate v(s), such that the number of inputs k varies from

one part of the field to the other, but does not change with time

in any fixed area within the field, and if the random number k has

the probability generating function Y, then the number of individuals

of the new generation in any given maturity range is given by (6.29).

In the case where it is necessary to assume that the number of Poisson

 
inputs k for any fixed area also changes with time, an additional

transition probability describing the change in k must also be

included in the description, thus further complicating the problem.

6.6 Justification of a Poisson Input

Throughout this chapter the external input to the population

has been assumed to be in the form of a Poisson process. Besides the

obvious advantages of its nice analytical properties, the assumption

of a Poisson process is often justified on the basis of the fact that

a stochastic process formed by a superposition of a number of

independent sequences of events converges in distribution (see e.g.,
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Feller, 1966; p. 243 for a definition of convergence in distribution)

to a Poisson process if the individual sequences satisfy certain

Simple conditions (Jagers, 1971).

Connin (1971) studied the rate of egg-laying by CLB females

under constant environmental conditions. The females were caught in

the field and kept under controlled conditions at 80°F, 40% relative

humidity and a 16 hour day-8 hour night cycle. The same experiment

was also performed using adults reared and mated under laboratory

conditions. A typical sequence of the daily egg-input by a CLB

female is shown in Figure 6.1. A mated female starts to lay eggs at

a relatively Small number per day, quickly reaching a plateau, after

which it continues to lay eggs at a more or less steady rate for

two or three weeks (or even longer) before reaching a low rate again.

The rate of egg output of a female is mainly a function of temperature

(Yun, 1967) but the average rate during the egg-laying period varies

from individual to individual, with an average of about 12 eggs per

day at 800E. It can be seen that under constant temperature condi-

tions, if the female lays ten or twelve eggs during one day, it is

very likely to lay about the same number of eggs during the next day.

Since the number of eggs laid in disjoint intervals of time are not

necessarily independent of each other and since it is possible to pre-

dict with certainty that an egg will be laid during certain time

intervals, axioms (i) and (ii) of a Poisson process (see Section 6.1)

will not be satisfied if the egg input is provided by a single female.

Wellso (1972) studied the egg-laying and feeding behavior of

CLB adults. He enclosed the females in individual cages set up on

oat plants in a field. The number of eggs laid by each female were
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Figure 6.1 A typical sequence of the daily egg-input by a single

cereal leaf beetle female. (Source: Connin, 1971))
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counted every day. The x2 test (see e.g., Himmelblau, 1970; p. 74)

was performed on this data to see how well the combined net daily

input of eggs by all the females in the experiment can be represented

by a Poisson process. The computed values of x2 were compared with

those for a X2 distribution with a 10% level of significance for

the appropriate number of degrees of freedom. The results of the

statistical analysis of Wellso's data are summarized in Tables 6.1

and 6.2. In the results reported in Table 6.1, all the females taken

for the experiment were considered whereas in the results listed in

Table 6.2, only the females which laid eggs during each day were

analyzed. When all the females in the experiment were considered in

the analysis, the computed values of x2 were greater than those for

the x2 distribution in four out of ten cases. When only the egg-

laying females were considered, the computed values of x2 were

greater than those for a X2 distribution in only two cases. This

indicates that the total egg-input from all the females in the

experiment may be only a poor approximation to a Poisson process, but

when only the females which lay eggs are considered, the overall pro-

cess may be a good approximation to the Poisson process. It should

be noted that all the females used in the experiment were already

mated and ready for oviposition. In the field populations there will

also be a pOpulation of adults who have just emerged from their

hibernation Sites and have just begun their feeding and mating activity.

However, if the adults are described in terms of their ”age" Since

the time of emergence, it should be possible to differentiate the

egg-laying adults from others, and when the number of egg-laying adults

in a given area is sufficiently large, a Poisson rate of egg-input can

be justified.

  

 

 

 

 



 

 
*

T
a
b
l
e

6
.
1
.

S
t
a
t
i
s
t
i
c
a
l

A
n
a
l
y
s
i
s

o
f
C
e
r
e
a
l

L
e
a
f

B
e
e
t
l
e

O
v
i
p
o
s
i
t
i
o
n
D
a
t
a

w
i
t
h

M
a
t
e
d

F
e
m
a
l
e
s

 

X
2

(
f
r
o
m

T
a
b
l
e
s
)

1
0
%

S
i
g
n
i
f
i
c
a
n
c
e

l
e
v
e
l

D
a
y

N
o
.

o
f
F
e
m
a
l
e
s

M
e
a
n

V
a
r
i
a
n
c
e

D
e
g
r
e
e
s

o
f

2

#
e
g
g
s
/
d
a
y

(
N
0
.
)
2
/
d
a
y

F
r
e
e
d
o
m

X
(
c
o
m
p
u
t
e
d
)

 

1
2
4

4
.
1
2
5

8
.
9
8
4

3
2
.
7
1
6

6
.
2
5

2
2
4

2
.
9
2

3
.
5
6

2
1
.
6
3
1

4
.
6
1

3
2
4

5
.
0
4
2

9
.
0
0

3
6
.
4
3
6

6
.
2
5

4
2
4

5
.
5
8
3

9
.
3
8
4

2
4
.
3
6
9

4
.
6
1

 

158

5
2
3

2
.
6
5

3
.
5
1

1
7
.
6
8

2
-
7
1

6
2
3

3
.
5
2

3
.
0
8

2
5
.
2
8
8

4
-
6
1

7
2
3

1
.
7
4

2
.
7
5

1
5
.
2
1

2
.
7
1

8
2
3

3
.
7
4

8
.
0
2

2
3
.
1
7
5

4
.
6
1

9
2
3

8
.
2
1
7

1
3
.
3
6

2
1
.
0
4
6

4
-
6
1

1
0

2
2

L
~
*
—
—
—
_
L
~
_
_
_
_

9
0
4
1

1
6
.
2
5
3

2
2
.
5
6

4
.
6
1

*
- 

 
 

 
 

 
 

 
 
 
 

T
h
e

d
a
t
a

w
a
s

t
a
k
e
n

f
r
o
m
W
e
l
l
s
o

(
1
9
7
2
)
-

 

 
 
 



 

 



   
7
’
:

T
a
b
l
e

6
.
2
.

S
t
a
t
i
s
t
i
c
a
l

A
n
a
l
y
s
i
s

o
f
C
e
r
e
a
l

L
e
a
f

B
e
e
t
l
e

O
v
i
p
o
s
i
t
i
o
n

D
a
t
a

w
i
t
h

E
g
g
-
l
a
y
i
n
g

F
e
m
a
l
e
s

 

D
a
y

N
o
.

o
f

F
e
m
a
l
e
s

(
f
r
o
m

T
a
b
l
e
s
)

1
0
%

s
i
g
n
i
f
i
c
a
n
c
e

l
e
v
e
l

M
e
a
n

V
a
r
i
a
n
c
e

D
e
g
r
e
e
s

o
f

2

t
d

#
e
g
g
s
/
d
a
y

(
N
O
.
)
2
/
d
a
y

F
r
e
e
d
o
m

X
(
c
o
m
p
u

e
)

 

1
2
2

2
2
2

3
p

2
2

4
2
2

5
2
1

6
2
2

7
1
5

8
1
9

9
2
2

1
0

2
2

_
.
_
_
_
_
_
_
_
J
_
_
_
_
_
_
_
_
_
_

 
 

 4
.
5

8
.
7
1

2
4
.
5
8
4

4
.
6
1

3
.
1
8
2

3
.
0
1
3

2
2
.
9
4
2

4
.
6
1

5
.
5

7
.
2
1
4

2
3
.
0
1
5

4
.
6
1

6
.
0
9

7
.
0
3
9

2
3
.
4
2
1

4
.
6
1

159

2
.
9
0
4

3
.
0
9
1

1
1
3
.
3
8
8

2
-
7
1

3
.
6
8
2

2
.
6
0
8

2
2
.
4
0
5

4
.
6
1

2
.
6
6
7

1
.
6
6
7

1
3
.
7
5
9

2
-
7
1

4
.
5
2
6

6
.
0
4
1

2
3
.
1
9
7

4
.
6
1

8
.
5
9
1

1
0
.
6
3
4

2
0
.
6
4
8

4
-
6
1

9
.
0
4
1

1
6
.
2
5
3

2
2
.
5
6

4
-
6
1

 
 

 
 

 
 
  

‘4
5.

-

T
h
1
8

t
a
b
l
e

l
i
s
t
s

t
h
e

s
a
m
e

d
a
t
a

u
s
e
d

f
o
r

T
a
b
l
e
6

1
,

e
x
c
e
p
t

t
h
a
t

o
n
l
y

t
h
e

f
e
m
a
l
e
s

w
h
i
c
h

l
a
i
d

e
g
g
s

d
u
r
'
I
n

a
n

8
y

g
i
v
e
n

d
a
y

w
e
r
e

c
o
n
s
i
d
e
r
e
d

i
n

t
h
e

a
n
a
l
y
s
i
s
.

 

 

 
 



 

160

 

Remark 6.5: It should be noted that the x2 test for good-

ness of fit of a collection of random numbers to a given distribution

is only an approximate test. Thus the results of the test for CLB

oviposition data can only be interpreted to mean that there is no

reason to reject the hypothesis that the number of eggs laid by a

collection of ovipositing females each day does not differ significantly

from the Poisson distribution.

In the context of the particulate processes in chemical

engineering systems, the number of "active sites" responsible for

the generation of the particles (such as the number of surface

 

imperfections on a heating surface in the case of nucleate boiling)

is usually much larger than the number of "sources" (i.e., the CLB

females) considered in the analysis above. Hence, a similar

reasoning of a superposition of a large number of independent

sequences of events converging to a Poisson process can be used to

justify a Poisson input at least in an approximate sense in many

particulate processes as well.

  



CHAPTER VII

AN EXPERIMENT BASED ON THE THEORY

7.1 Motivation
 

It was shown in Chapter IV that a diffusion equation can be

used to characterize the moment distributions of a population if the

movement of each entity in its spatial domain D can be represented

by a Markov transition probability satisfying (4.1), the birth and

death processes are also Markovian -- defined as in Section 4.1 and

the movement of an entity in D as well as its reproduction and death

take place independently of others. It is therefore necessary to test

the validity of these conditions before the use of the diffusion equa-

tion can be justified in the modeling of a population. The inter-

dependence between the members of the population may not necessarily

be in the form of a physical interaction. For example, the insects

feeding on the leaves of a grain plant may be located on different

leaves of the plant with no physical interference between the feeding’

activity of each other. However, the feeding by each insect affects

the condition of the plant in terms of the growth rate and succulence

of the plant tissues, which in turn affects the new leaf surface area

as well as the quality of food available to all the insects feeding

on the same plant. The result obtained in Theorem 6.1 in the last

chapter can be used to test whether the conditions of Markov transition

probabilities and independence of entities in the pOpulation are

161

 

   



 

162

satisfied. To demonstrate this with the help of a simple problem of

practical interest, a controlled experiment was performed on the cereal

leaf beetle (CLB) populations.

The life-cycle of the CLB can be divided into seven distinct

stages -- eggs, four stages of development (commonly called "instars"

by the entomologists)of larvae, pupae and adults. Nest of the damage

to the crop is done by the larvae, mainly because they feed on the

plant leaves in the early stages of development of the plant, thus

severely affecting the plant growth at high larval densities. Thus,

for the within-generation dynamics.of the CLB p0pulation and its

impact on the plants the range of maturities of the CLB from the

beginning of the egg stage to the end of the fourth larval instar is

of interest. The survivals in the pupae and the adults are related to

the supply of eggs for the succeeding season.

When the egg-input occurs according to a Poisson process, the

maturation and death of any individual are characterized by Markov

transition probabilities and the change from one life-stage into another

occurs at fixed levels of maturity, then by Theorem 6.1 the number of

individuals in any life-Stage at any time must be a Poisson-distributed

random number. Thus, if a Poisson input of eggs is generated and if

the p0pulation of any particular life-stage at any time in a large

number of replicate experiments do not have a Poisson distribution,

then it can be said that the conditions mentioned above are not satis-

fied for the population of that life-stage.

7.2 Methods and Materials

The CLB eggs are about one millimeter in length. The larvae

grow from approximately the size of an egg to a length of about six
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millimeters. In an experiment aimed at testing the independence of

individuals and Markov transition probabilities it is necessary to

have a large number of replicate experiments and to count the popula-

tions of different life-stages of the CLB at different points in

time without disturbing the plants or the insects. Since the experi-

ment is based on the measurement of the sample realizations of a

stochastic process, the accuracy in counting the number of individuals

is also very important. For the ease and accuracy of counting and

to ensure a better control over the dynamic processes in the p0pula-

tion, the experiment was conducted in a controlled atmosphere room

in a laboratory. Two sets of experiments were performed: Experiment

A and Experiment B. In Experiment A an abundant supply of food was

provided to the insects so as to have little interaction between

individuals. In Experiment B the food supply was severely restricted

so that growth and death of an individual may be significantly in-

fluenced by other individuals in the population. Thirty replicates

of each experiment were run to have a sufficient number of sample

realizations of the process.

Although a large number of beetles laying eggs simultaneously

lead to approximately a Poisson input of eggs (cf. Section 6.6), the

experiment was performed with an artificially generated Poisson input

by manually transferring the newly laid eggs onto the experimental

plants to ensure a better control of the input. A sequence of 30

random numbers having a Poisson distribution with mean = 10 was

cnmputed using a table of random numbers. Each number in the sequence

represented the total number of eggs to be used in a replicate experi-

ment. Adult beetles were allowed to lay eggs on plants enclosed in
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a cage in the laboratory for a period of eight hours, thus generating

approximately a cohort of eggs. The required number of eggs was then

carefully transferred on the experimental plants. The eggs have a

layer of an adhesive on the outside, which made the transfer of eggs

relatively easy. The same sequence of Poisson-distributed random

numbers was used to generate the egg input in Experiments A and B.

Pots with barley plants having a uniform height of about 3.5

inches were chosen for the experiment. The number of stems per pot

was chosen to be 40 for Experiment A and 25 for Experiment B. Plaster

of Paris suspension was poured in each pot to cover the soil. The

larvae have to go underground toikuuipupae. At the appropriate time

a layer of vermiculite (a mineral normally used as a soil conditioner)

was spread over the plaster of Paris surface. The plaster of Paris

surface acted as a barrier restricting the insects to form pupae in

the vermiculite layer. The required number of eggs were transferred

to the plants and the pots were kept well separated from each other

in large metal trays. Water was added to the trays every day to

irrigate the plants through the holes at the bottoms of the pots. The

atmospheric conditions in the room were set at 16 hours of daylight

provided by fluorescent light and 8 hours of night, with the temperature

being 80°F and 76oF during the day and night respectively. The

relative hunidity in the room was kept at 40%. Under these conditions

the eggs began to hatch on the seventh day. Several hours before the

actual emergence of the larvae from the eggs, the eggs had turned

dark brown and the heads of the larvae could be clearly seen through

the shells. After the eggs were ready to hatch the number of

individuals in each life-stage were counted every day.
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Each larval instar of the CLB is characterized by its head

capsule diameter, which changes only during transition from one instar

to another, when the insect sheds its head capsule and a part of its

skin, and forms a larger head capsule. The head capsule diameter

changes from one instar to the next by only a few microns. It is

therefore difficult to distinguish between an insect which would molt

shortly and one which has just molted without a microsc0pe. More-

over, the molting process lasts several hours. Since the counting

was to be done without disturbing the insects or plants, the larvae

had to be classified according to the instars only by a visual observa-

tion. However, the presence of shedded head capsules and skins on

the leaves often provided a clue regarding the number of individuals

undergoing transition.

The larvae can crawl from one plant to another. When the larvae

grew large enough to crawl from one pot to another, the plants in each

pot were enclosed in lantern globes covered with pieces of cloth.

Plants in Experiment A were sprayed periodically with water by means

of a spray bottle to simulate rain. However, this did not seem to

affect the larval mortality. In spite of the limited food availability

in EXperiment B, the larval mortalities were not noticeably different

from that in Experiment A. In view of this the number of stems per

pot in Experiment B were reduced progressively to four per pot. At

this point in time however, all the available green foliage in almost

all the replicate experiments was readily consumed by the larvae.

After this stage only a limited amount of food (one stem per day or

less) was supplied to the larvae in Experiment B. Figure 7.1

illustrates the difference in the condition of the plants in Experiments
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A and B on the 14th day for pots, each of Which had 14 eggs initially.

The laboratory was also being used for other experiments, for which it

was necessary to change the environmental conditions in the room.

All the pots were therefore moved to growth chambers (i.e., small

controlled—atmosphere cabinets) where the same temperature and day-

light cycles were used. At the time of this transfer most of the

insects had already formed pupae. All the pupae were left undisturbed

until the adult emergence was complete, after which the pupal cases

were removed from the vermiculite in the pots and Opened to make sure

that any insects left inside the cocoons were dead. The important

steps in the experimental procedure are Summarized in Table 7.1.

The daily emergence of the adults did not Show the expected

behavior —- in some replicates the emergence took place much earlier

than the others, while in some replicates there was no emergence at

all. The humidity in the growth chambers was not controlled. More-

over, the presence of a stagnant mass of air enclosed by the lantern

globe and the covering cloth over each pot created conditions Sig-

nificantly different from those outside the lantern globes. The

moisture evaporating from the soil was condensing on the inner sur-

faces of many lantern globes, thus creating almost a complete reten-

tion of moisture inside the globes. The presence of the condensate

indicated that the air inside the globes was saturated with moisture.

The temperature of vermiculite in the pots was also found to be sub-

stantially different from that of the ambient air inside the growth

chambers, and varied from pot to pot. The vermiculite temperature was found to be as high as 98°F in some pots. In general, the pots

with drier soil tended to have higher temperatures.
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Table 7.1. Important Steps in the Experiments with CLB POpulations

 

 

 

 

Day Procedural Step

1 Experiment started with 40 barley plants per pot

7 Eggs began to hatch -- daily counting of populations

started

10 Put lantern globes on all pots

'< 11 Sprayed water on the plants to simulate rain

J.)

G 12 Sprayed water on the plants to simulate rain

2 l3 Sprayed water to simulate rain, covered lantern globes

'H with cloth

H

o 14 Sprayed water to simulate rain

2‘ 15 Added vermiculite to all pots for the insects to pupate

“3 18 Moved all pots to growth chambers

33 Experiment terminated

1 Experiment started with 25 barley plants per pot

7 Eggs began to hatch -- daily counting of populations

started

9 Put lantern globes on all pots

10 Reduced number of plants to 16 per pot

a: ll Covered lantern globes with cloth

U ‘12 Reduced number of plants to 9 per pot

a

0 13 Added vermiculite to all pots for the insects to

E pupate, reduced number of plants to 4 per pot

.4

H 14 Added one stem of barley as food

0

Q- 15 Added one stem of barley as food

x

a: 16 Moved all pots to growth chambers

31 Experiment terminated  
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The effect of moisture on growth of the CLB is not well

understood. The vermiculite in many pots exhibited fungus growth.

The fungus growth was more significant in pots with a higher moisture

content. The fungus was probably responsible for a part of the pupal

mortalities, and thus the nonuniform humidity in different replicate

experiments may have resulted in nonuniform mortalities in the pupal

populations in the different replicates. However, since Experiments

A and B were conducted under almost identical environmental conditions,

it is reasonable to assume that if the difference in the food supply

to the larvae did not have any effect on growth and mortalities of

the insects in the two experiments, the effect of nonuniformities

in humidity in the different replicates of Experiments A and B should

also be identical.

The growth rate of an individual is directly related to the

temperature (cf. Appendix A), which is believed to be a printipal

reason for the deviations from the expected emergence behavior of the

adults. However, the result of Theorem 6.1 is still applicable if the

total number of adults that ever emerged from the pupae are chosen

as the quantity of interest by considering the range of maturities

corresponding to the entire pOpulation coupled with an additional

absorbing state §** to characterize all the individuals that died

during the adult stage (cf. Section 6.4) and by taking the time of

observation to be such that no live individuals are present in any

stage except the adults. In view of this only the total number of

adults which emerged from each pot were analyzed instead of the daily

number of emerging adults.
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7.3 Results and Discussion

The data on the daily population counts of each life-stage

in Experiments A and B is listed in Tables 7.2 and 7.3 reSpectively.

This data was analyzed using an IBM 1800 computer. The x? test was

used to see whether the observed numbers in each life-stage at any

given time had a Poisson distribution. The results of Experiments

A and B are summarized in Tables 7.4 and 7.5 respectively. The com-

puter program is listed in Appendix D. It can be seen from Tables

7.4 and 7.5 that the populations of all life—stages from the eggs to

the pupae show a good fit to the Poisson distribution with few

exceptions. The poor fit in these exceptional cases could be

attributed to errors in distinguishing between successive instars.

Better results were obtained in some instances when the dark-colored

eggs which were ready to hatch were counted as larvae.

Although the degree of starvation of the insects in quite a

few replicates of Experiment B was extremely severe, the mortality

as well as the X2 statistics of all stages up to the fourth instar

did not exhibit any significant difference from that in Experiment A.

All the fourth instar larvae which went underground were counted as

pupae. Since the number of pupal cases recovered at the end of

Experiment B was less than the number fourth instar larvae in many

replicates, it is likely that some of the starved larvae could not

form complete cocoons, or died in the early part of the pupal stage

and were completely decomposed by microbial activity. The total pupal

mortality in Experiment B was much higher than Experiment A. It can

be seen from the results that while the final population of the

emerging adults in Experiment A was not a good approximation to a
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Poisson distribution (possibly due to the nonuniformity of temperature,

humidity, etc. resulting in different death rates in the replicates),

the adult population in Experiment B was even worse. Since the higher

pupal mortality in Experiment B could be directly related to the

amount of feeding done by the insects during the larval stages, i.e.,

the past feeding history, it can be said that the probability of death

in the pupal stage was not Markovian, and therefore the Poisson char-

acter of the adult population was further distorted in.Experiment B.

Remark 7.1: In view of Remark 6.5, the goodness of fit of,

the population data to the Poisson distribution can be inferred only  in an approximate sense. The results of the x2 test can be taken

to mean that the hypothesis regarding the independence of individuals

and Markov nature of the dynamic processes in laboratory p0pu1ations

of the CLB may be true for any life stage up to and including the

fourth instar even under severely stressed conditions. If growth of

an individual can be characterized by a continuous Markov process
 

satisfying (4.1) and the probability of death can be defined as in

Section 4.1, then the diffusion equation can be used to describe the

changes in the population in the range of maturities from the

beginning of the egg stage to the end of the fourth instar. This is

the case when the egg input is known and only the impact of the beetle

on the crOp for a given season has to be studied.

Barr, Kharkar and Lee (1972) have used the diffusion equation

to characterize the first moment density of field populations of the

CLB. Remark 7.1 will hold for their model if the behavior of the

insects in field populations is similar to that observed in the

experiments. In practice, the CLB population densities in the grain
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fields will never be allowed to reach a stage of a complete de-

foliation of the plants. Chemical controls will normally be applied

at a very much smaller level of damage to the plants than that

observed in Experiment B. It is therefore possible that in field

populations the conditions of independence of individuals and Markov

transition probabilities will continue to hold even for the pupae

and the adults at all the densities normally encountered, and the

use of the diffusion equation may be justified for describing the

entire life-cycle of the insect. However, it is also likely that

under field conditions the solar radiation, wind and humidity will  play a significant effect on the mortalities of larvae under stressed

conditions. When there is a significant defoliation of the plants due

to insect feeding, the larvae have to move larger distances on a plant

or in a group of neighboring plants to find suitable food, and in

this process they are more likely to be blown or shaken off the plant

due to the action of wind. This increases the chances of a higher

metabolic stress as well as mechanical damage to the tissues, re-

sulting in a greater chance of dying at the time of molting due to

inability of a larva to shed its head capsuleand skin. Moreover,

the larvae on defoliated plants are directly exposed to the sun for

longer periods of time and the effect of dehydration due to solar

radiation is also likely to be more pronounced, particularly when

the humidity of the ambient air is low. A careful investigation of

the effect of these factors is needed before a definite conclusion

about the justification of the diffusion equation to describe the CLB

field populations can be drawn.

  



 
 



 

CHAPTER VIII

CONCLUSIONS

8.1 Summary of the Contributions of this Dissertation
 

This work has cast the population balance models in a very

general stochastic framework. Applications of the models considered

in this dissertation include the residence time distribution analysis

(RTD) of fluids in process vessels under steady flow conditions,

dynamics of particulate and polymerization processes in chemical

engineering systems as well as dynamics of populations in biological

and social systems. A probabilistic treatment of the population

balance models in chemical engineering has been restricted only to

some simple cases thus far (e.g., Kane, 1971; Shinnar and Katz,r

1969; Schmalzer and Hoelscher, 1971). The "continuous stirred tank"

and "dispersion" approaches in the RTD analysis have been shown to

be applicable for a large class of general populations. Although

analogous models had been prOposed and used for some biological

populations, the generality of these approaches had not been fully

appreciated so far. Since the methods of parameter estimation are

well developed for the RTD analysis, the possibility of use of

analogous models to other populations makes it possible to use analogous

methods for the evaluation of parameters as well.

Diffusion equations have been derived for the probability

generating functional as well as the first two factorial moment
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distributions and densities for a population of reproducing entities.

These equations represent a more general situation than similar equa-

tions previously reported in literature. The backward equations are

used only very rarely in engineering applications -- the value of

these equations in some cases of practical interest has been demon-

strated. It is a common engineering practice to use Monte Carlo

methods to characterize the stochastic fluctuations in the model of

a process. These methods use models where the parameters are assumed

to be random numbers with known distributions (the normal distribution

is often used for this purpose). The values of the parameters are

 

generated with the help of a random number generator and a number of

solutions are obtained by using different values of the parameters

thus generated. The mean and variance of the output of the model are

 
then computed from the replicate solutions. COulman, Riece and

Tummala (1971) have used this method in a model for a Species of

freshwater shrimp to characterize the mean and variance of the

population as functions of time. The equations for the moment dis-

tributions derived in the present work represent an alternative to

the Monte-Carlo techniques. The simple cases of practical interest

for which the analytical and numerical solutions have been obtained

in the present work represent new results and demonstrate the value

of the stochastic approach to the populationbalance models.

A very general analysis for populations of reproducing

entities has been presented to include the effect of external input

on the probability generating functional and the first two factorial

moments of the p0pulation. In this analysis the external input is

assumed to be in the form of a nonhomogeneous Poisson process, the
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entities in the population are considered to be independent of one

another and the movement of each entity in its state space is char-

acterized by a Markov transition probability. An explicit partial

differential equation has been obtained for the first moment density

of a population of reproducing entities with an external input,

with the movement of each entity in its one-dimensional state Space

being characterized by a diffusion process. An important result

(Theorem 6.1) has been obtained for the particular case of populaa

tions of nonreproducing entities, and its application to several

cases of practical interest has been discussed.

The models derived in this dissertation are based upon two

key assumptions: mutual independence of entities in the p0pu1ation

and Markov transition probabilities characterizing the death, re-

production and movement of each entity in its state Space. Possi-

bility of using the theory developed in this thesis in validating

these assumptions for the particular case of nonreproducing popula-

tions has been demonstrated by means of a Simple experiment.

8.2 Areas for Future Research

The analytical results in Chapter V were based upon the

hypothesis that the dominant eigenvalue of the diffusion operator

(with parameters defined by (5.1)) is unique and real. Although

the existence of a real eigenvalue has been proved, it remains to be

shown that this eigenvalue is the ggly_dominant eigenvalue.

The processes for which the present work does not apply

include the size reduction processes in chemical engineering systems

and degradation of polymer molecules, where every breakage of an
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entity may result innapoint process, i.e., a random distribution of

sizes of the "pieces" may be generated at every breakage. Possi-

bilities of extending the present analysis to describe these pro-

cesses need to be explored.

Another situation not covered in this dissertation is the

case of a population with an external input in the form of a gen-

eralized Poisson process. Incorporation of such an input in the

analysis will greatly add to the generality of the present work.

In industrial processes involving particulare matter the

number of particles in the system is usually very large and con-

 

sequently the stochastic fluctuations in the dynamic characteristics

of the process system are almost always of a minor importance.

However, the data needed for the design of these systems are usually

collected in a small experimental setup where the number of particles

is rather small, and the scatter in the data is often rather large.

Use of stochastic models in the analysis of such systems instead

of considering the scatter to be "noise" in the data may lead to a

 better understanding of these systems. Similarly, in systems such

as fluidized beds often it is not possible to use a purely deter-

ministic approach to characterize certain phenomena like the formation

and breakup of large bubbles and the relationship of these phenomena

to the characteristics of the fluidized particles. The stochastic

framework provided in this thesis, or other formulations based upon

the theory of stochastic population processes offer alternative ways

to describe a broad range of such problems of chemical engineering

interest. In order to fully appreciate the value of a stochastic

approach such applications need to be explored in detail.
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AS mentioned before, the stochastic framework for the popula-

tion balance models makes it possible to formulate the models based

entirely upon phenomenological descriptions of the processes involved.

In the analysis of crystallization processes the growth and nuclea-

tion rates are commonly expressed by empirical kinetic expressions.

Hypotheses treating these phenomena as stochastic processes would

 be a natural next step in gaining a better quantitative understanding

of the crystallization processes. It would be beneficial to carry

out similar investigations regarding the dynamics of other particulate

processes also.

 

The possibility of an application of the models developed

in this thesis to social systems needs to be explored. For example,

orthodox or enterprising nature of certain ethnic groups can possibly

be quantified by using the concepts developed in Chapter III: Thus,

if the post-world war II boom in the U.S. economy is considered as

a known change (such as a step or a ramp change) in the available

opportunities, a comparison of the economic (or educational) status

of different ethnic groups can be made to quantify how well each

group has used the opportunities. A group significantly surpassing

(or lagging behind) the rest of the population in reaping the benefits

from the opportunities can be seen to make the system a "nonideal

population-flow system" (see Section 3.4), since all the individuals

in the population do not progress at the same rate. The Opportunistic

groups in the population can be characterized by the "bypassing"

phenomenon whereas the groups lagging behind the rest of the popula-

tion can be described by the phenomenon of ”dead Space" in the

population. The quantitative models for the social systems based

 



 
 

186

upon such considerations can then be used to derive alternatives to

the current means of social control aimed at achieving a more equit-

able progress in the society.

0f the possible boundary conditions for diffusion equations,

the absorbing and reflecting boundaries have been used extensively

in various applications. The residence time distribution analysis

of flow in short packed beds offers a unique possibility of applica-

tion of a third type of boundary condition describing the possibility

that a fluid element at a boundary can jump to an interior point,

as pointed out in Section 4.2. The application of such a boundary  condition needs to be studied in greater detail.

The formulations presented in this work are based upon the

assumption that the entities in the p0pu1ation are independent of

one another. However, many phenomena in the dynamics of biological

populations result from interactions among individuals in the form

of competition for a certain vital resource. Similarly, chemical

engineering systems such as liquid-liquid extraction and gas

absorption involve liquid droplets and gas bubbles which coalesce and

break-up again, thus violating the assumption of independence of

the entities. Application of the theory of stochastic population

processes to p0pu1ations of interacting entities represents an un-

charted area in the Study of stochastic processes. Development of

even approximate techniques for the calculation of the first two

moment distributions will represent an important milestone in the

mathematical modeling of populations.
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APPENDIX A

SIMPLIFICATION OF THE DIFFUSION MODEL FOR

SOME BIOLOGICAL POPULATIONS

The physiological processes such as growth and reproduction

in poikilothermic ("cold-blooded") organisms exhibit a common char-

acteristic dependence on temperature. The rate of these processes

is negligible below a certain threshold temperature TL, Which de-

pends upon the species and the process, and increases more or less

linearly with temperature up to an upper threShold Tu. The rate

decreases with temperature above the upper threshold. However, for

a species adopted to a particular climate, the threshold temperatures

are often such that the total length of time spent by the organism

at temperatures above the upper threshold during a year is rather

small. For example, the upper and lower threshold temperatures for

the rates of growth and egg-laying for the cereal leaf beetle, a  major pest of the small grain crops in midwestern United States, are

about 48°F and 90°F reSpectively (Yun, 1967). The number of days

in a year with temperatures in the nineties is indeed small in this

part of the United States.

The commonality in the temperature dependence of poikilo-

thermic organisms is used to define a physiological time in terms of

”degree days”. The use of degree days often leads to clearer bio-

logical insights into a system (see e.g., Wang, 1960), and is widely

used by biologists to study population data. The profound effect of I
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temperature on the physiological processes in poikilothermic organisms

implies that except for constant temperature studies, the para-

meters in the mathematical models of such populations must be

functions of temperature. Barr, Kharkar and Lee (1972) have shown

that the temperature dependence of the model parameters can often

be eliminated by using degree days instead of chronological time in

the quantitative descriptions. They have discussed this Simplifica-

tion for the forward diffusion equation for the first moment density

of a population where each individual is characterized by only one

descriptor, namely, maturity. The same argument can be used to show

that the diffusion equation for the probability generating functional

(PGF) can also be greatly simplified by the use of degree days, and

hence the simplification applies to all the moment distributions of

the population.

Consider the backward diffusion equation for the PGF with y

denoting the initial location of an ancestor at time s:

 

scenes) ._ fuss; 32G(e.tly,sl + r( ac(e,ny.s)
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i=1

with the initial condition

G(e.t|y.t) = 8(y) (4.16)

and boundary conditions

AGCBLtIYfiQ 0, (4,14)
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and

aG(e.tLy¢O‘ _

3y y=5

for a reflecting barrier at y

 
C(e,t\§,s) = l (4.13)

for an absorbing barrier at y

2o
.

E-, r, M and ki’ i = 1,2,... be piecewise linear functions of

5. Moreover, let the parameters

temperature with the same lower threshold temperature, i.e., for

temperatures T(S) below the upper threshold let

2 2

113$)- = f[T(s>]§-—<y>. - (A.l)

r(y.S) = f[T(s)]f(y). (A-Z)

u(y.S) = f[T(S)]E(y).
(A-3)

and (i(y,s) = f[T(s)]ii(y), i = 1,2,... (A.4)

where

T(S) - T6 for T(S) 2 TL

f[T(s)] = (A.5)

0 for T(S) 3 TL

and define the physiological time variable ? as

s

E = l f[T(w)]dw , (A’6)

for a fixed t.

Since d? = f[T(s)]ds, it follows that (4.12) thru (4.16) can be

written as
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i=1

+ 2 ii<y>c(e,t\o,$)ic<e.t\y,$). (A 7)
i=1

G<e,t\a,0> = e<y>, (A.8>

aGCenJa.?) = A 9

by \y=0 0’ ( ° )

aG£9,tLa.?)‘ _N = 0 (A.10)
8y y—a

and

G(9,t\§,¥) = 1 (A.11)

respectively. Note that the temperature dependence of the parameters

has been eliminated in (A.7) thru (a.11) because f[T(s)] has been

cancelled from each term in the equations.

In view of the fact that 11(Y:S), i = 1,2,... essentially

describe a physiological process, (A.4) is a realistic approxima-

tion for reproduction in poikilothermic organisms. The actual

temperature dependence of growth or maturation would very likely be

such that the random increment by in the maturity of an arbitrary

individual during a time interval 63 ,is a piecewise linear func-

tion of temperature. The incremental growth 6y is related to the

diffusion and drift coefficients by (4.1), from which it follows

that r would be characterized by a piecewise linear function as

2

in (A.2) and %_ would be a quadratic function of temperature.

Analysis of the data of Yun (1967) and Helgesen (1969) for maturation

of the cereal leaf beetle lends some support to this conjecture.
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In spite of the quadratic dependence of the diffusion coefficient

on temperature, it may be possible to obtain a fair piecewise linear

2

approximation for g—' as shown in (A.1).

The term u(y,s)ds is the probability of an individual of

maturity y being removed from the population by death or emigration

during the time interval (s,s+ds). In fact, it can be viewed as a

sum of three different terms representing loss of individuals to the

population from (i) emigration, (ii) death due to old age, disease,

etc. and natural enemies such as parasites and predators, and (iii)

artificial removal by harvesting, pesticide application, etc. The

following discussion considers (i), (ii) and (iii) in sequence as

if each occurred alone:

When emigration of individuals occurs solely due to locomo-

tion, (A.3) can be justified in view of the fact that locomotive

activity of an individual is essentially a physiological process and

hence dependent upon temperature. For natural death and death due to

natural enemies, (3.4) does not at first seem to be an accurate re-

presentation. However, in some species these mortalities are often

considered to occur at those particular discrete maturities which

define the transitions between the various life stages of an organism.

For such a situation (4.12) may be used to describe the behavior

between each of these transitions with u(y,S) being 0. Thus (A.3)

is trivially satisfied with fi(y) = 0. When this form of analysis

is employed, these mortalities are used to determine boundary condi-

tions at each of the transitions. The assumption of mortalities
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occurring enly at maturity transitions seems to be particularly good

for natural death and parasitism, as compared to predators. Never-

theless, since a prey may be less mobile at transitions between life

stages, it could be more vulnerable to predators. Artificial re-

moval by harvesting and pesticides is essentially independent of

temperature and thus for this case (A.3) is invalid, and the func-

tion u(y,s) in (A.7) must be replaced by

fLEQTLE-g—J— . (11.12)

If u(y,s) = 0 whenever f[T(s)] = 0, then the analytical form of

(A.3) and the resulting (A.7) are well posed. This supposition is

true when harvesting, pesticide application, etc. do not occur at

temperatures below the lower threshold TL. When f[T(s)] > 0,

(A.5) describes a one-to-one relationship between s and E, and

thus in (A.12) 3 may be replaced by f. The resulting form of

(A.7) is simpler than (4.12) in the sense that only one parameter is

dependent upon temperature. When (i), (ii) and (iii) occur simul-

taneously, all the remarks above must hold for the Simplification

to be possible.

When (A.1) thru (A.4) are valid even after a suitable choice

of a maturity variable y to remove the dependence of parameters

on y, (A.7) reduces to an equation with constant coefficients, and

the analysis of Sections 5.2 and 5.3 can be used to solve the moment

equations derived from the diffusion equation for the PGF.’ In practice,

2

the parameters gr, r, u, and *1 have to be taken as being in-

dependent of maturity over the respective maturity intervals. For

example, the data of Yun (1967) and Helgesen (1969) on the growth
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characteristics and egg laying behavior were obtained in the form

of the mean and standard deviation of the develOpmental times for

each of the life Stages, and mean number of eggs per adult per day

respectively. In such cases elimination of temperature dependence

of the parameters again leads to a diffusion equation with constant

or piecewise constant parameters.

 

 

 

 





APPENDIX B

NUMERICAL COMPUTATION OF THE "CRITICAL LENGTH"

As discussed in Section 5.4, the critical location a of

an absorbing barrier for a p0pu1ation of reproducing entities char-

acterized by a diffusion process is given by solving

(fi/i)[le exp(va)-v2P exp(le)] + va exp[v1(P-Pb)]

 

 

- le exp[v2(P-Pb)] + VIP - vZP = 0, (5.64)

with

_ -1 +«/1 + 45/13

V1 2

and

-1 -\/1 + 131/P

\) = a

2 2

x 2"
2

for P = -§%- and substituting for the diffusion coefficient %-

O

and the drift coefficient r. The computer program CRITL was used

to obtain the family of curves in Figure 5.1 by solving (5.64) for

P with a number of values of other parameters. In the program the

variables XLM, PB, XMP and X1 correSpond to the quantities

l/fi, Pb, fi/P and the assumed value of P (for an iterative solu-

tion) reSpectively from (5.64).

Since P must be larger than PB for a physically meaningful

solution (cf. Section 5.4), the iterative procedure in CRITIC is

started with X1 = PB. The function on the left hand side of (5.64)
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is generated by the function subprogram FNC. The root P of (5.64)

is computed by using the subroutine CVGl available on magnetic tape

on the CDC 6500 computer at Michigan State University. The subroutine

works as follows: X1 and X2 are two trial values of a root of (5.64).

If both X1 and X2 lie on the same side of the root, the values Y

1

and Y2 of the function FNC evaluated at X1 and X2 will have the

same Sign. When this is the case, the subroutine sets IND to -l and

returns to the main program, to take a new value of X2. This pro-

cedure is repeated until X1 and X2 lie on opposite sides of a root.

If this procedure leads to too large a value of X2 to be physically

meaningful, the iteration is stopped and after printing a message to

that effect, the program proceeds to the next set of values of para-

meters. Once a value of X2 is found such that the root lies between

X1 and X2, the subroutine computes the point where the Straight line

connecting the points (Xl,Y1) and (X2,Y2) crosses the X-axis. The

value of X corresponding to this point is taken as the new value of

X2 and the iteration is continued until Y1 or Y2 is sufficiently close

to zero. This iterative procedure is illustrated in Figure B.l.

Since the subroutine CVGl gives only one root of the function

depending on the initial guesses of X1 and X2 and the iteration scheme

for changing the values of X2, the reliability of this computer pro-

gram hinges on the uniqueness of the solution to the problem of

critical length. The shape of the function was studied for a large

number of values of the parameters using an IBM 1800 computer coupled

with a plotter and it was found that only one root i of (5.64)

occurred for P > Pb. Although the uniqueness of the solution to

the problem of critical length was not proved theoretically, these

results were taken as an indication of the uniqueness.
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Figure B.l Iteration scheme for obtaining a root of Equation (5.64)
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APPENDIX C

COMPUTATION OF EXTINCTION PROBABILITY FOR

A POPULATION OF REPRODUCING ENTITIES

As discussed in Section 5.5, the extinction probability for

a p0pu1ation of reproducing entities characterized by a diffusion

process with parameters as in Table 5.2 (given one ancestor initially

at y) was computed by solving the backward diffusion equation for

the PGF with the initial condition G(e,0\y) = O. In view of the

nonlinear nature of the diffusion equation, the solution was obtained

numerically using finite differences. The difference equations for

the simulations with conditions described in Table 5.2 are

 
 

 

G(0.w+611182)-G(01¢116y) =,QE_{C(QiTl£i+1)GY)“29(05T116YI+GLBLTL(1'1)6V)}

6T 2 by

+ r{G(e’TL(i+l)g§)‘GgfllTLiQY)l + ufl - G(e.T|iby)]

- x1(16y)G(e.¢\18y)[1-c(e,T\0)j for 6y s 16y s a-sy, (0.1)

ijfi6T10)-G(0JLQL = 02{G(QLT!M) ‘G(Q:TTLCD4} + r{G(QLTl61)-G(QLTLQ)}

25T 6y 6y

+ uEl-G(9,T\0)] - i1(0)G(e.¢\0)[1-G(0.T\0)] (0.2)

and

C(611+6715)-G£91T1§D = 02{G(61T15-6yg-G(9,Ti§)}

6T by

+ r{G(elTla‘5Y)'G(911L51} + u[l-G(0,T\5)] - x (5)6(e,¢\5)[1-G(e,¢\0>]

6y 1 (c 3)
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when there is a reflecting barrier at y = a, or

G(6.T\5) = 1 ((2.4)

for all T > 0, when there is an absorbing barrier at a. As

mentioned above, the initial condition for the difference equations is

C(e.0ly) = 0 - (C-S)

Equations (C.1) thru (0.5) were solved using program PROB.

The notation for PROB is as follows: The arrays G(I) and XG(I)

contain values of G(9,T‘i5y) and G(e,T+6T‘i6y) respectively.

Similarly, the quantities BH(I), s, R, DH, DT and DX denote

x1(i5y), g5, r, u, 67, and by respectively in (C.1) thru (C.5).

The number M represents the total number of mesh points in the

discretizing scheme with Mrl equal divisionsof the interval

[0,3]. The program PROB given on the following pages characterizes

only one set of parameters from Table 5.2.
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APPENDIX D

ANALYSIS OF EXPERIMENTAL DATA

The experimental data on the CLB p0pu1ations was tested

for goodness of fit with a Poisson distribution using the x? test.

The program CHSQR was written to do this analysis on an IBM 1800

computer equipped with a keyboard, typewriter, card reader and

printer. The logical unit numbers 1, 2, 3 and 6 in the READ and

WRITE statements refer to the typewriter, card reader, line printer

and keyboard respectively. The function IDTSW takes Signals from

the data switches on the main console to go from one part of the

program to another.

The program CHSQR.calcu1ates the x? statistics for N

replicate populations in Experiments A and B to test the goodness

of fit of the data with the Poisson distribution having the same

mean as the data. The program was thus used to compute

* 2

7- (ni ' n1)
x_=§i * (D.l)

n .

1.

 

where ni the observed frequency of the number i (or a combina-

tion of numbers i1, 12,..., etc.) and

n. = the frequency of occurrence of the number i (or the

same combination of numbers as in ni) computed using

the distribution against which the sequence of numbers

is to be tested.
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This value of X? was then compared with that from a standard table

of x? distribution for a 10% level of significance and k-2 degrees

of freedom, where k is the number of terms in the summation in

(D.l). If the computed value of x? was greater than that from the

tables, the hypothesis that the sequence of numbers (representing

the populations in different replicates) has a Poisson distribution

was rejected. For a greater reliability, the numbers in the sequence

to be tested are usually combined so that each ni represents one or

a combination of more than one numbers in the sequence such that

each ni is always greater than or equal to five. This convention

was followed for the computations with few exceptions, in which one

of the ni's was equal to four.

In program CHSQR IX(I,J) contains a two-dimensional array

 
of p0pu1ations of different life stages on a given day, with I de-

noting the serial number of the replicate experiment and J repre-

senting the life stages of the CLB. The array IX(I,J) is to be

read in as data from cards. The working array X(I) consists of

populations of a particular life stage or a combination of the

numbers of individuals in different life stages in the replicate

experiments. The program uses subrouting MOMNT to compute the

first four central moments (i.e., mean, variance, skewness and

kurtosis, cf. Himmelblau, 1970) of the numbers in X(I). Next, the

frequencies of occurrence of various numbers in the sequence X(I)

are computed -- IKQ(J) represents the number of times KQ(J) =

0,1,2,..., etc. occurs in the sequence X(I). This as well as the

calculation of the (Poisson) probabilities of occurrence POIS(I)

of KQ(I) is done using subrouting POISN. To evaluate x2 as in



  



210

(D.l), different terms from the sequence KQ(I) are to be combined

to make each ni greater than or equal to five. This is done by

selecting the appropriate numbers from the sequence NQ(I) and

feeding these as data for evaluation of each 111 using the key-

board. The individual terms in the summation in (D.1) are computed

and printed as CHI(I). The variable CHISQ denotes the final value

of x2.
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