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ABSTRACT

ESTIMATION OF THE FORCE

ON SCREW DISLOCATIONS
IN FINITE ELASTICITY
USING THE J-INTEGRAL

by

Bijan Khatib-shahidi

This study is concerned with estimating the value of the force between
two screw dislocations in an elastic solid. Since the linear theory of
elasticity predicts unbounded strains at a dislocation, the results
predicted by such a.theory afe suspect. The present study is carried

out within the fully nonlinear theory of elasticity.

Since the force between two dislocations is defined as the rate of
change of energy with respect to the separation between the
dislocations, one way to calculate this force is to first calculate the
total energy stored in the body. This is an almost impossible task to
carry out exactly in a fully nonlinear theory. However, we observe
that the value of the J-integral evaluated along a path surrounding one
dislocation is precisely equal to the magnitude of this force. We
exploit the path-independence of the J-integral in order to obtain
accurate estimates of the force between two dislocations in the presence

of nonlinearity.




Bijan Khatib-shahidi

We first carry this out in the context of the linear theory, for
illustrative purposes, and then carry it out in the context of nonlinear

theory.
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CHAPTER 1

The theory of dislocations has received a large amount of attention
in the materials science literature. In particular, solutions to the
problems of straight dislocations in an infinite continuous medium have
been found within the linear theory of elasticity. The displacement
field and the stress field have both been obtained in the presence of a
single dislocation and multiple dislocations. The results of these
investigations are unsatisfactory within the linearized theory since
the results predict infinite strains at the dislocations, contrary to
the assumption upon which the theory rests. These results can be found
in the theory of dislocations literature, e.g. Hirth and Lothe [1] and
Lardner [2], cite these findings. We recapitulate these results in

Chapter 3.

In recent years investigators have employed some nonliqearities in
the formulation of the problem of dislocations. In particular, Kachanov
[3], solves a screw dislocation problem in an infinite medium under the
assumption that tﬁe stress-strain relations are nonlinear; however, he
assumes that the displacement gradients are small. The problem of
dislocations in nonlinear elasticity is also described in an article by
Gairola [4]. The formulation is described in general tensorial notation
and the problem of a screw dislocation in an infinitely long and

straight cylinder bounded by two circles is treated by the method of




successive approximation (Signorini's method [4]).

There is also an interest among material scientists to obtain the
force on a dislocation. The force on a dislocation, or in general the
"force on a defect", is defined to be the rate of change of the total
energy of the body (which is composed of the elastic strain energy of
the material containing the "defect" and the potential energy of any
external loading mechanism,) with respect to a change of the position of
a defect. 1In the case of the screw dislocations this is the force
tending to make the screw glide in the x-direction (chapter 3). We
also note that the force acting on a dislocation is not a true
mechanical force but it has the dimensions of a force. It may be viewed
as a "driving force" in the thermodynamic sense. This is discussed in

detail in Eshelby's article "The Continuum Theory of Lattice Defects’

[5].

The J-integral is a path independent integral which plays a central
role in nonlinear fracture mechanics [6]. As shown by Rice [7], one
can readily verify that J reduces to the energy release rate, which in
turn leads to the stress intensity factor in linear elastic fracture
mechanics. It is also stated by Eshelby [8] and Rice [9] that, in
general, the J-integral can be used to define the "force on a defect",

the defect being the dislocation in the present case.

In the present study, the theory of dislocations is studied within

the context of finite elasticity, and attention is restricted to screw



dislocations. The exact displacement field and stress field are
obtained analytically for a single screw dislocation in an infinite
region. Further, the results are extended in an approximate manner to
two screw dislocations in a nonlinearly elastic region by using the
theory of "small deformations superposed on a large deformation". The
force between the dislocations is calculated via J-integral. Even
though the analysis is approximaﬁe. the results for the force are

expected to be good, for the reasons explained below.

Consider, for example, the case of two screw dislocations in an
infinite medium. If one were to assume that the presence of a second
dislocation only causes a small perturbation, one can then carry out an
analysis based on the theory of small deformations superposed on a large
deférmation. Clearly this assumption is invalid in the vicinity of the
dislocation but it is expected to be reasonable at points far from the
dislocation. Our interest here lies solely in evaluating the value of
J which represents the force on a dislocation. Since the J-integral is
path-independent, we can evaluate it at points distant to the

dislocation. We expect to get reasonable results for our purpose.

We will note that for a screw dislocation in an infinite medium, the
value of J becomes zero, but for the two screw dislocations in an

infinite medium J is calculated to be nonzero.

The chapters and discussions are presented in the following

sequence:?



Chapter 2 summarizes results from finite elasticity theory, the
notion of the J-integral and finally the notion of a screw dislocation.

In Chapter 3 the formulation and results for a single screw dislocation

-

and two screw dislocations in an infinite linear elastic region are
discussed. The calculation of the force on a dislocation, using two
different techniques, is then carried out and finally the results of the
two techniques are compared to one another. Chapter 4 covers similar
issues in the nonlinearly elastic case. Chapter 5 summarizes and

discusses the results.

Finally, we note that after the first draft of this dissertation
was written, we received a paper by P.J. Rosakis and A.J. Rosakis [24]
in which they independently solved the problem of a single screw
dislogation in incompressible finite elastostatics. Their results for
this problem are more general than ours, since ours are restricted to
generalized neo-Hookean materials and theirs aren't. However, they do

not address the problem of two dislocations nor do they consider the

force between dislocations.



CHAPTER 2

PRELIMINARIES ON FINITE ELASTICITY AND IHE DISLOCATION PROBLEM

In Section 2.1 of this chapter, certain pertinent results from the
equilibrium theory of finitely deformed, homogeneous and isotropic
elastic solids are summarized. The complete theory and general results
from the continuum theory of finite elasticity may be found in [10].
Herein the theory is first presented in 3-dimensions. Then in Section
2.2, it is specialized in two ways: The case of finite anti-plane shear
deformation (which provides the setting for discussing the screw
dislocation) %s considered first and then, this is further specialized

to the case of infinitesimal anti-plane shear deformation.

The J-integral, with some historical notes, is described in Section
2.3 of this chapter. The proof for the path independency of the J-
integral is omitted from the section but may be found in [7]. The
relationship between the path independent integral J and the notion of a
force on a defect is discussed. Finally, in section 2.4 we formulate

and discuss the notion of a screw dislocation.
2.1 Fini E] . .

Let R be an open region occupied by the interior of a body in its
undeformed configuration and denote by x the position vector of a

material point in R. A deformation is described by



y=y (x) =x+u (x) for all x € R, (2.1)1

-~

which is a mapping of R omto a domain R*; u (x) represents the
displacement field associated with this deformation. The transformation

(2.1) is assumed to be invertible and suitably smooth.

Let F be the deformation gradient temsor field,
F (x) =7y (x) for all x € R; (2.2)

the determinant of F 1is called the Jacobian determinant and is denoted

by J,
J (x) = det F (x) >0 for all x € R. (2.3)

The deformation of an incompressible material must be locally volume

preserving, hence

J (x) = det F (x) =1 for all x € R. (2.4)

Define the tensor fields C and G by

lietters underlined by a tilde represent three-dimensional vectors
and tensors.
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FT, (2.5)
and their common principal scalar invariants I;» I and I by

Il :tr (9) 9

1

1, =t [(u(g))z - mg%] , (2.6)
2 0

I3 = det 9-

From (2.4) - (2.6) one concludes that
13 (x) = 32 (x) =1 for all x € R. (2.7)

The Lagrangian strain tensor field is given by

E=- (C-1). (2.8)!

The stresses are denoted by T (y) for the actual (Cauchy) stress

tensor field on R* and o (x) for the corresponding nominal (Piola)

L stands for the idem tensor.




stress tensor field on R.

by

[

In the absence of

They are, in general, related to each other

(2.9)

body forces, the local equilibrium equations are

divt =0 on R*,
- (2.10)
div g =0 on R,

r= o

together with

be the nowinal

on R*. and

g§T = To continue, let s

surface traction and t the corresponding true surface

traction. Then
8 = 0n on S ,
- - - (2.11)
*
t=TIn on S*.

N . . * . N
where n is a unit normal to the surface S in R, and n is a unit normal

to s*, the image of S after deformation.

0 on S

m
"

if and only if

It can be shown that

on S. (2.12)

tw
]
1O







This is useful in the case of a traction-free surface S*, since it
enables the boundary condition on the unknown deformed surface to be

specified on the known undeformed surface S.

Let W be the elastic potential, characteristic of the given elastic
material, the value of W represents the stored strain energy per unit
undeformed volume. For homogeneous, isotropic and incompressible
elastic materials, W can be shown to depend on the deformation solely
through the invariants I;, and I, i.e. W = & (Il‘ 12). The

corresponding constitutive law takes the form

W W
r=2|— G+— (;1-6&G| -P1, (2.13)
31, 51, ~

or, equivalently,

oW W )
o=2 | — F+ — (I; 1-6F| -PFT, (2.14)
- 3;, a1, T T - -

where P is a scalar field required to maintain the constraint of

incompressibility (2.4).
2.2 Anti-Plape Shear

Next, we consider the special case of finite anti-plane shear

deformations, The development that follows is based on the analysis by
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Knowles [11]. Assume the regionm R occupied by the undeformed body to be
cylindrical and a fixed cartesian coordinate frame is chosen so that the
Xq - axis is parallel to the generators of R. Let D be the cross-

section of R in the plane x5 = 0.

The deformation (2.1) on R is said to be an anti-plane shear if it is of

the form
ya = xag y3 = X3 + u (XI. xZ)o (2.15)1

Thus in an anti-plane shear deformation, particles in the body are
displaced purely in the axial direction by an amount u(xl.xz). In the
absence of body forces, the deformationm (2.15) can, in gemeral, be
sustained only in materials for which the strain energy density takes a
more restricted form, (Knowles [12]). A class of such materials are

those characterized by,

-~

W=W () forall I,>3, W(3):=0, (2.16)2

and referred to as '"Generalized Neo-Hookean Materials'. We assume that

W conforms to the Baker-Ericksen inequality (see [13]):

1Greek subscripts take the range 1, 2 while Latin subscripts assume the
values 1, 2, 3. Repeated subscripts are summed.

2Note that I; = 3 in the undeformed state.
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W'(I;) >0 for all I, >3, (2.17)

where W' is the derivative of W with regspect to the argument. This can
be shown to be equivalent to requiring a positive modulus of shear at

all deformations.

The infinitesimal shear modulus is
M= 2 W'(3) >0, (2.18)

For the class of deformations given by (2.15), the components of the

deformation gradient tensor are calculated from (2.2) to be

= ¢ .
FaB af
Fa3 = 0.
(2.19)}
F3G = u, »

F33 =1 on D.

In viewing (2.19), one can conclude that J, the determinant of F,
becomes 1 automatically. Now calculating E—l. its components denoted by

Fgl. we find

3

1Subscripts preceded by a comma indicate partial differentiation
with respect to the corresponding material cartesian coordinate.




Next the tensor

&nd 'Y

aB

Ga3

= 5(18 .
= 0,
s -4, »
a
=1 on D.

5&8 * u’a o ’
Cig T Usy »
1 on D,
GuB »
G3q T Usy s

1+ U,, U, on D.

a

12

(2.20)

(2.21)

(2.22)
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The principal scalar invariants I), I,, and Iy are given by (2.6) and

for anti-plane shear deformations are

-

2
Il 12=3+ fVul »

(2.23)

I3=1 on D .

The components of the Lagrangian strain tensor are obtained from

equations (2.8), (2.21):

1
E = - u, u, (no sum),
aa a o
2
2
Ey;, = — |Vu]
33 ’
2
(2.24)
1
E = = u, U, Py

E3a = Ea3 5 Uy on D.

Recalling from equation (2.16) that W is only a function of I;» and

using equations (2.13) - (2.14), the constitutive equation becomes
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2W(1) 6-Pl,

-
n

(2.25)

[

2W(I)E-PF

lQ
(1]

For anti-plane shear deformations, the components of 1 and g are found

from (2.25), (2.22) and (2.21) to be

el
"

B { 2w (Il) - P }'Gas ’

Ty3 = 2 W (L)) uags (2.26)

. | 2
2% () A+ o] ) - .

~
w
w

]

Similarly,

usz{zwl(ll)-P}Gae.

0a3 =P Usy s
- (2.27)
_ 1
GBQ - 2 w (Il) U’u »
033 =2 W' (Il) - P o

The equilibrium equations in the absence of body forces are given

by (2.10). Substituting (2.27) into (2.10) gives the three equatioms

{2 al (Il) - P } . + P.3 U'a = 0 on D (2.28)
b
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and

{2 W'(Il) u } -P3 =0 on D. (2.29)
a

]

From equations (2.29), (2.15) and (2.23) one concludes that ?.3 must be

a function of x; and x, only; therefore
Py = P (%7, x%,) . (2.30)

Using (2.30) in (2.28) and differentiating with respect to Xqs indicates

that

~

Pyyy = 0, (2.31)

which implies that P must be a constant-valued function, say,

J>

(xl. x2) = Pl = constant. (2-32)
Therefore

o
(xl' x2. X3) = Pl X3 + P (xlg xZ)o (2-33)

d>
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Substituting (2.33) into (2.28) and (2.29), leads to the conclusion

that,

-

P(xlo xz- X3) = Z'W'(Il) + Pl [u + X3] + on (2.34)
and,

[2 &'(Il) UDa ],G = Pl (2.35)

where Pl and Pz are comnstants.

Equation (2.35) is the governing differential equation for an anti-plane
shear deformation. Once it is solved (with the appropriate boundary
conditions) for the displacement field u, the stress field can then be

obtained from (2.26) and (2.27).

If the body contains a traction-free surface s*, then
« :
t =0 on S (2.36)
and from equation (2.11) one concludes that

on S. (2.37)

ta
g
"

o

Note from equation (2.34) and the first of (2.27), that
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s - [ Pl (‘U (xl. X2) + X3) + PZJ. (2.38)

Q
~N
N

]

92 = 0

By applying the boundary condition (2.37) and using (2.38), one finds

that the constants Pl and P2 must vanish
P1 = P2 = 0. (2.39)

Finally, on substituting (2.39) into (2.26) and (2.27), the stresses

become

TGB = GGS = 0:
Te3 = T35 = Ca3 = O34 = 2 W (3 + [Vulz) Usy » (2.40)
Tan = 2 W (3 + ]Vulz) {Vuiz.

33

and the differential equation (2.35) can be written as

2w+ [w?u,l, =0 onD. (2.41)

We now consider the particular solution

on D, (2.542)

u (xlo xz) = KG Ua
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which satisfies the differential equation (2.41); a deformation of this

type is termed simple shear. We let « and 1 be

"

1
2

va] = (x_x ), (2.43)

I
"

1

~
]

- 2
( 3a T3a <,

so that T is the resultant shear stress and ¥ is the resultant amount of

shear. From equation (2.40) we can write
T =T (k)2 2W(3+«k2)«, (2.44)

The function T (k) characterizes the material response in shear.

In summary, the displacement field u(x;, x,) associated with a finite
anti-plane shear deformation is to satisfy the governing differential

equation (2.41). The corresponding stress components are given by

(2.40).

Next consider the special case of an infinitesimal anti-plane shear
deformationp In this cases a linearization of the nonlinear equatioms
is carried out under the assumption that IVu[. the gradient of the

displacement is small, i.e.,
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-_ < < 1. (2.45)

On linearizing equation (2.24), the tomponents of the Lagrangian strain

tensor become

af =

1
E3G = EG3 = '2' U.a . (2.46)

Next, the stored energy function W approximates to
A H
W3+ |vul?) -~ = |eul?, (2.47)
2

so that by (2.40), the stresses are calculated to be

T =0 » T33 = 0,
o8 (2.48)

Tu3 = T3a = uu.a »

on D. The governing differential equation (2.41) reduces to Laplace's

equation,

Veu =0 on D. (2.49)
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Thus in the case of infinitesimal anti-plane shear, the displacement
field u(x), x,) is to satisfy the differential equation (2.49). The

corresponding stress and strain components are given by (2.48) and

-

(2.46) respectively.

2.3 JI-Integral

The concept of the path independent J-integral was first introduced
by Eshelby [8] in the course of determining the "energetic force" on an
"elastic defect" such as a void or anlinclusion. It was subsequently
exploited by Rice [9] in the context of ftacfure mechanics. Additional
path independent integrals were discovered by Knowles and Sternberg
[14], and more recently by Abeyaratne and Knowles [15]. In a general
three-dimensional setting, J is given by the surface-independent

integral
g=f(ﬁg-ggg>dA. (2.50)

where % is the elastic potential, n is the outward normal to the regular
closed surface S, F is the deformation gradient tensor and g 1is the
nominal (Piola) stress tensor. If the body does not contain any holes
or inclusions within S, the value of J is zero. If it does, the value
is non-zero, and this value can be interpreted as a "férce" on the hole

or defect (see below). Similarly, Rice [7], Budiansky and Rice [16]
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have shown that a similar situation occurs if the region inside S
contains a crack-tip. In this thesis we consider the case where the

region inside S contains a dislocation.

Let the total energy of a body under the prescribed loads be denoted
by E. Suppose that the body contains a "defect” (a singularity in the
elastostatic field) at the positiom £. Then, the change in the total
energy with respect to a change of the position of a defect can be shown

to be (Eshelby [7], Budiansky and Rice [15])
AE=JiAEio (2.51).

where J; is the ith component of J taken on a surface S enclosing the
defect. Since AE has the dimensions of work and AS; the dimensions of
length, it follows that J; may be thought of as a "force om the defect".
For example, in fracture mechanics, J; is referred to as the force on a
crack-tip. From (2.51) we can write J; =3E/23f,;. This latter
expression leads to the alternative interpretation of J; as an energy
release rate. According to most theories of fracture mechanics, crack

propagation occurs when the energy release rate J; reaches a critical

value.

In an entirely analogous manner, if we have a dislocation in an
elastic material located at E. J becomes the force on the dislocation
due to the elastic field. It is known to be an important and useful

parameter in predicting dislocation motion.
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For the case of finite anti-plane shear deformations, the x
a

component of the force on a defect is obtained from,

Ja =f(Wna - nB°B3u'a) ds, (2.52)
T

which is the appropriate restricted form of (2.50) in anti-plane shear;
ds is arc length along a closed contour T enclosing the defect. Our
purpose in this thesis is to emphasize the fact that the force on a
dislocation is a concept analogous to, and possibly as important as, the
" force on a crack-tip; that it can be calculated using the path-
independent J-integral, and to calculate explicitly the force between
two screw-dislocations in the linear and the non-linear theory of
elaéticity. We will exploit the path independence of (2.52) for this

- latter pui‘pose.
2.4 Dislocation

Consider an infinite two-dimensional region D and view D as the
cross-section of an infinite body in its undeformed (reference)
configuration. Suppose that a cut is made on the half line x, = 0,
x; > 0, the top face of the cut is denoted by T *, while the bottom face
by T ~. The upper face I'* is now displaced by an amount b (relative
to ") in the x3-direction and the two faces are fused back together.
Ifu (xl. 0*) and u (x7» 07) denote the xq-components of displacement

on T *and T ~ then (see fig. 3.1).
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u (x, 0%) -u (x;, 07) = b  for x; > O (2.53)

The vector b eqs where e3 is a unit vector in the x3-dite:tiou is known

es the Burgers vector associated with this dislocation.

Traction continuity across the line xy = 0, x| > 0 requires
T32 (xl' 0+) = 732 (xlo 0-) =0 for Xl > 0o (2.54)
In summary, let D denote the entire (xl. xz)-plane with the line

X9 =0, x; > 0 deleted. We wish to find a displacement field

u (xl. x2). twice continuously differentiable on D,such that

2U G (D w) . =0 on D, (2.55)
u (xy, 0+) - u (x5, 0-) = b for x; > 0, (2.56)
Ty (xps 04) - 73% (x5 0-) =0 for x; >0 . (2.57)
u,, * 0 as xf + xg + @ . (2.58)

This is a "weak formulation" of the equations of (anti-plane)
elastostatics, since it involves a discontinuity in the displacement
(and possibly in the displacement gradient “u and the shear stress 131)

across the line x; = 0, xy > 0.
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An alternative weak formulation, which is in fact less singular
than the preceding one, pertains to elastostatic fields involving
equilibrium shocks. Here one permitf discontinuities in 7u but not in u
itself (see, for example, Knowles and Sternberg [17] ), It has been
shown ([18 ], [19]) that if the response curve in shear is
nonotonically increasing (T'(x) > 0 for all « ) then equilibrium shocks

cannot exist. (The condition T'(K) > 0 ensures the ellipticity of the

partial differential equation (5.55), see Zee and Stermberg [20] ).

A minor modification of the arguments used in [18], [19]) shows that
(in contrast to the situation with equilibrium shocks), even if
T (x) > 0 one gcan have weak solutions involving dislocations. However,
Ju and T4, are continuous across the dislocation-line (even though u

itself is discontinuous). We will assume throughout that

t(x) >0 for all x . (2.59)



CHAPTER 3

LINEAR PROBLEM
In this chapter, the linearized problem for a single screw
dislocation in an infinite medium is discussed first. This is then
extended to the case of two screw dislocations. In section 3.2, the
force on a dislocation is found by two different techniques, first by
"calculating the total elastic energy and taking the rate of change of
the energy with respect to the dislocation position: second, by

application of the J-integral. Naturally, the results coincide.

3.1 Single Dislocation

Consider a screw dislocation in an infinite region R made of
homogeneous isotropic elastic material. Let us suppose that a cut is
made along the sémi*infinite line x5 = 0, x; > 0, the top face of the
cut (x, = o*) being held fixed and the bottom face displaced in the x3-
direction by the constant amount b; bg3 is the Burger's vector. See
Figure 3.l. The dislocation is said to be a right-handed screw disloc-
ation if b is positive. Let D be the cross section of R in the plane Xq
= 0, for a screw disiocation described above, the deformation is ome of
anti-plane shear and the governing linearized differential equation for
the displacement field is Laplace's equation (2.49). We use (r,8)

as polar ‘coordinates (r>0, 0<6<2rm) and formulate the problem in

terms of these polar coordinates. There exists a jump in the

25
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displacement field across the dislocation line, equation (2.56), but the
tractions are continuous across the dislocation line, equation
(2.57). We also note that as r+ « , the stress field and the
displacement gradients vanish. Thefefore the boundary value problem

(2.55) - (2.58) for a single screw dislocation in a linear elastic field

is expressed as

32 1 3w 1 3%y . A
— + = — 4+ - 3 Ob forr>0, 0<6 <2
ar r 29T T 96

u(r, 0) ~u(r, 2n7) = b, forr >0

> (3.1)

3u/236 (r, 0%) - 3u/38 (ry 21°) = 0, forr > 0

u.a=0(%) as r + o . y.

We seek a solution to the boundary value problem (3.1) which is
a function of 6 alome; u = u(8). Upon integration, the genmeral solution

for u(8) is found to be,
u=A8 +B on D. . (3.2)

Note that the condition at infinity (3.1), is automatically satisfied.

By applying the boundary conditions (3.1),, (3.1)3, we evaluate the
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constants of integration'A and B. The resulting solution is found to

be,

b
us-—29 on D . (3.3)
2n

o _—Ub xz >
31 © 2 2
2n x1 + x2
on D. T #0. (3.4)
ub X1
g = e —
32 2r xf + x2

all others being zero. In polar coordinates,

93¢ = 0
on D, (r #0). (3.5)
ub
a S —
38 2rr

The force on a single screw dislocation can be calculated by

incorporating the stresses found in (3.4) and the displacement gradients
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obtained from (3.3), in tge J-integral of (2.52). It can then be
calcuiated by taking a closed ciréular contour centered at the
dislocation. One readily finds Ja = 0. The force on a single screw
dislocation in an infinite elastic medium due to the elastic field turms
out to be zero. This is due to the fact that there are only the
internal stresses (3.4) or (3.5) which are caused by that dislocation
itself and there are no other means of raising or lowering the total
elastic energy in the elastic field. In order to obtain a force on this
dislocation, one can either introduce another dislocation into the body
or place the existing screw dislocation at a finite distance from a

boundary.

Finally, we discuss the total strain energy in the body. While we.
have no immediate need for this here, it helps to make clear the need to
introduce the notions of core radius and guter radius. These will be
utilized in the subsequent sections. In order to calculate the total
strain energy associated with the deformation, (3.3), we must first

obtain the strain energy density, W. From (2.47), it becomes, .

ub2

8ﬂ2r2

e ' (3.6)

W=

Note that there is a singularity at the origin of the order 2,

Thus the total strain energy stored in a disk of radius r centered at

the origin becomes unbounded. We follow standard practice (e.g. [1])
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and eliminate the singularity at the origin of the dislocation by
considering a "Volterra core" assumption that there existsa small radius
of r_centered at the dislocation in which we do not calculate the total

o

energy. Therefore, we consider a gcore region such that

§ = {(xl. x9) l 0< xf + xg < 2 } . (3.7)

and integrate the strain energy density om the remaining material

DS=D-60

Similarly, the total stored energy has a logarithmic singularity at
infinity. This forces one to cut out the far-field by some large
radius R ( >r ). In summary, when calculating the total energy, ome
must restrict attention to the region between two finite radius
cylinders, the smaller one being the Volterfa core and the larger one, a

circular cylinder of radius R, see [1]. The total energy is., therefore,

vritten as

2e R.

R
E = ub rdrde , (3.8)
Sﬂzrz

0ro
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using (3.6). Integrating (3.8) gives

2

b R
=2 4 2 (3.9)
4o To

It is important to note that the choice of r, and R does not
affect the energy release rate or dislocation force. This is zero

independent of the choice of r_  and R. This feature continues to be

o
true for two dislocations and, therefore, one is able to get useful

results for J without having to specify the values of r, and R.
3.2 Iwo Dislocations

Consider now two screw dislocations in an infinite region R, made of
homogeneous isotropic linear elastic material. The first of the two
dislocations is located at (%, 0) with the Burger's vector b; e3 and
the second one located at (-2, 0) with the Burger vector b, e;. We set
up three polar coordinate systems, first set (r;, 6,), (r;>0, 0<€;<2m)
centered at (£, 0) and the second set of polar coordinates (r;.0,),
(r,>0, -m<€y<m) at (-2, 0) and finally (r,8), (r>0, 0<8527) centered

at the origin. This is illustrated in Figure 3.2.

The displacement field for the two screw dislocations is found
immediately by applying the principle of superposition to the
displacement field for a single screw dislocatiom, equation (3.3). The

displacement field is therefore given by



by b,

27 2q

Observe that u is discontinuous across the lines X520, x)>2 and

XZ=O. x1<-2 .

b
2 E31 = Uol = -
27
b
1
2 E3p S uep T~
27
which reduce to
2 E3) Uy = —
I
2 E32 = u.2 -
2n

31

8y

-~
-

ael (xl' x2) EE 332 (XI. xz)o

aXI 2 axl
igl (xl. XZ) EE 332 (xl' xz).
3x2 27 3x2
bl Sinel b2 Sinez

= - »

2w r) Ty

cosd; b2 cosfy

+ - .
rl 27 r2

(3.10)

The strains may then be calculated from (2.46) and (3.10)

(3.11)

(3.12)

Next we calculate the strain energy density associated with this

deformation from

~

W= % !Vulz »

(3.13)
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. ' 2
where u is the infinitesimal shear modulus and |[Vu| = u, wu, .

By substituting (3.12) into (3.13), we can readily show that,

2 2
b, byt Zbyby

+ cos ( 8; - 6, ) ¢ . (3.14)
4n2rf 4n2r§ Auzrlrz

In order to calculate the total strain energy E in the body, we
must integrate (3.14) over D. However, it is first necessary to
eliminate the singularity at the origin of dislocations and infinity
from D which cause the total strain energy to become unbounded as in the
case of a single screw dislocation. To do so, we consider two hollow-
cores each with a radius of r, at the center of the dislocations

( 240 ) and ( -2,0 ). See Figure 3.2. Let §; and §, denote the so-

called core regioms,

A
la]

2
{("v x| 02 (xy - P+ x < 2}'

A

A
a]
oON
S
]

2
{ (Xlo xz)l 0 (Xl + 1)2 + Xy <

N
[l
1A

Next, let R ( > + r_ ) be a large fixed number and let Dy denote the

region inside the circle of radius R:

2 2
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Let Dg denote the material in;ide Dp but outside 3;. 54,

L13

The total strain energy in Dg is finite. The strain energy density, &

from equation (2.14) is now integrated over Dg
s=[§ dA . (3.15)
Ds

Substituting equation (3.14) into equation (3.15) and writing the

integral as three separate terms, gives a total strain energy.

E’f"l“* f"zd‘“[‘ﬁd“u (3.16)

DS Dg Ds

where

—
B
&
%LIrE;e
~—
I.-‘
&

o
w
(=)

(3.17)

\
=)
~N
S
"
® | T
=.|o'
NN
—
Jl.—
N
&

\.
=
W
&
]
o«
o o
N | —
NI o
~N
“\.
N
(2]
[}
(-]
~~
D
—
]
N
5
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In order to evaluate the thtée integrals in (3.17), ve first relate

(rys 31)s (r)>0, 0<€<2r) to (rye 65)s (£y>0, -"<By<m) by geometry:

r, sinez =1 sinel .
ry cosf, = 2L + 1) cosd , (3.18)
1
1 1'1 1’12 2
Ty = 22 + — cosf + — .
2 2 1 a2

We use (rl.el) as the independent variables chosen to perform the
integration over Dy. The element of area dA is then rjdryds8;. The

integrals (3.17) are evaluated with the aid of (3.18). The first term

of the equation (3.16) is written as

*
2n r
b2 2 2 2
[%dA j‘/‘ubll by R 12 2
1 = -_— = rldrldel Se— [l ———— + 0| —
gn? 2 4r \ r, 4 R? r2
Dg 0 r, ’
(3.19)
where
*
ry = 1) (61) E \/Rz - 22 sin2 81 - Qcosél

is the equation of the large circle xf + xg = Rz
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In evaluating the integral in (3.19) we have used the fact that R is

large in comparison to < and T,» Thus, the final expression in (3.19)

hoid-s.‘uyuptotically. for large R. The second term of the equation

(3.16) is essentially identical to the first and so

2 *
Tr
2

f - f by 1 '.b§ R 1 22 12

Wo dA = — — r,dr,d3 —_— |1 —_—— = e +0 —_—

2 a
gr2 2 2%r2®2 7 4= r & r? 2
5 2 o .
s 0 7, A

(3.20)

vhere

4

rz = fz ( 82) E V‘z' lzliﬂz 62 + icos ‘92 .

Finally the third term of the equation (3.16) is integrated over Dg by

9 Carrying out this

expressing the integrand in terms of r;, ¢,.
integration, thethird termof (3.16).becon-aa
27 r
- Zub b
fil3 ff ——— cos (61- 62) rodrode,
8n Ty T
1*2
Ds
ubyby, 22 R 22 22
= (lgo— - 2ln — + = — ) + 0 { — (3.21)
4= L o RZ R2
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The summation of the three integrals (3.19) - (3.21), will give the total
strain energy of the elastic field in the presence of two screw

dislocations, with the Burger's vectors b, and b, respectively,

-

" R 22 bbby 22 22
2
E=— (b -by)* [4ln —=~-—] =+ la —+ 0 -_
16w r, R? b r, R?
(3.22)

on Ds. If the two screw dislocations have the same Burger's vectors,

b; = by = b, then the total strain energy E reduces to

b2 22 o2
Ezo— 1n = +0 =) (3.23)
4 1 R

Equation (3.23) is in the same form as it is described in (1] and (2,

however in the general case (b; # b,), (3.22) holds.
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Our primary interest lies in finding the force on a dislocation, say,
the right-hand one in Figure 3.2. For this purpose, one calculates the
rate of change of the total strain energy with respect to the
dislocation position, as described Ereviously. One can readily show

that from (3.23) and (2.51) the force on a dislocation becomes

-doE ublbz

F—

= = . (3.24)
a(2) 41

Equation (3.24) is a classical result which is cited in [1] and [2].
It provides the force on a screw dislocation in a homogeneous,
isotropic, linear elastic field in the presence of another screw
dislocation. With b; = by, it is also the same result as a force on a
single screw dislocation which is placed at a distance 2 from a traction

free surface as is illustrated in Figure 3.3.

We now describe an alterpative w#y of finding the force on a
dislocation by utilizing the equivalence between the force on the
dislocation and the path independent integral J. The formulation of
the J-integral was described and discussed in Chapter 2, section 2.3.
For reasons of algebraic convenience we only consider the case by=by

here.

In order to calculate the force on one of the dislocations, a path
of integration for J must be chosen, which encloses that dislocation but

not the other. Since the integral is path-independent, we will choose a
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convenient path to eliminate cumbdorsome calculation. In this case, a
circular path containing the dislocation lchted at ( ¢, 0) is chosen,
(Figure 3.4), centered at the dislocation. with radius r; which is taken
to be infinitesimal. The element of arc length ds is r;d8;. Since the
dislocations are located on the x;-axis, by symmetry the force between
them must also be in the xl-direccion. Thus, it is the Jy- integral

that wve must consider. From (2.52) and the path independence

2n
J = Jl = f (ﬁnl - U';anu.l) rldel’ (3025)
0

Next, ve will approximate the integrznd of J for small r) by using -the

binomial expsnsion in (3.18). The result is, as r; - 0 at fixed 2.

T, -~ 2% + r) cosf)

rllinel
sinf, - 2_. (3.26)
2

28 + rlconel
CO'92 ind = 1.
28 + r1c0361

The displacement gradients of equation (3.12) are likewise approximated

and they are, as r) - 0 at fixed 8,
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) E_ i sin®, . rysind,
it 27 g (20)% '
(3.27)
b cos 9 1 |
o2 ;: Ty ) 22 ‘

By using equation (3.13) and (3.27), we can now calculate the

corresponding value of the strain emergy demsity W , it is, given as

rlsinel
X ubz cosf; + sinel
v - - 1 22 :
87\'2 —3‘ 2 (3.28)
rl rl (22)

Similarly the stresses 03g are approximated to the appropriate order by

using equations (2.48); they become ,

ub sin 91 I'lSinel
%31 — 3 * 2 '
27 rl (22 )
(3.29)
. _ b cos 6, i 1_
32 2T 1'1 29 .

On substituting equations (3.27) - (3.28) into the J-integral (equation

(3.25)) and separating the integrals into three parts, the result

becomes,
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I=J 43+ 3. (3.30)

where

(1)

Ja = [ Wnlrldel ’
0

2
'nluu.lrldsl ’ ’ (3-31)

[ &)

o

n
0\'_?

2
JC = [ -nzuu.lu.zrldel .
0

Here n; = cos @, 0y = sin 6;. Using equation (3.28) and the first of

(3.31), J, becomes,

2m 2
ub2 1 2%cos8) + rysin‘e,
Ja = _— i cosel - COSel rldel » (3.32)
8112 r, 2 2r, 22
1 1

0

2

b

= = [o+%-o] ,
gnl

2
ub

8ne
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To calculate Jp» the seccod of the equations (3.31) we first obtain uz.l

from equation (3.27),

2 b2 Sinzel tlzsin291 281..!1291 )
Uy = — - + el 5 . (3.33)
4x2 r,? (22) (22)
On substituting this into Jp. we find
2n
3 ‘:bz -/. sinzﬁl . rlzsinzﬂl 2Sin291 ] 4 (3 X )
b = - - cosdr; . L34
anl r, 2 u*. (2?2 '
=0

Finally the third equation im (3.31), J_, is calculated by first

obtaining u,ju.y from equation (3.27),

b2 sinelcosel sinel rlsinﬁlcosel
u'l\-loz = - + + . (3-35)

432 tlz Zirl r1(2i 2

We now substitute (3.35) into (3.31) and evaluate it
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2 .
- -ub2 -sing;cosf; sing) sing; cos6) .
e © 2 + + 2 sing ryds; , (3.36)
bn” r,? (22)r, (22)
w2
= L 0+X+0 .
4n? 22
- ub?
8nl

We then obtain J by combining (3.32) - (3.34) and (3.36),

g =2 (3.37)
4 g

which is, of course, identical to the result (3.24) (when b1=b2=b)

obtained by the previous direct method.







CHAPTER 4

NON-LINEAR PROBLEM
The boundary value problem for a single screw dislocation in an
infinite nonlinearly elastic medium is posed in section 4.1 of this
chapter. It is observed that the displacement field has the same form
as in the linear elastic case, found in Chapter 3. However, the stress
field depends on the particular choice of the constitutive law and
thereforé. it is different from the one obtained in the previous

chapter.

In section 4.2, two screw dislocations are introduced in an
infinite nonlinearly elastic medium. The boundary value problem is
posed in terms of the field equation (2.41) and the appropriate boundary
conditions for the two screw dislocations. An exact solution to this
nonlinear boundary value problem is not determined, instead we obtain an
approximate solution as follows: our analysis is based on the
asgumption that the introduction of a second dislocation causes only a
small perturbation in the pre-existing nonlinear field induced by the
first dislocation. This permits us to use the theory of small
deformations superposed on a large deformation to solve the problem.
Clearly, this approximation is very good at points far from the second
dislocation and is poor near that dislocation. However, since our
primary purpose here is to find the force on one of the dislocations and
since this can be written in terms of the path-independent J-integral

43
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taken over a path which is far from the dislocations for most of its
length, we expect that this approximation will provide accurate results
for the force. A similar procedure was used by Abeyaratne [21] to

calculate the energy release rate in fracture mechanics.

Consider a screw dislocation at the origin of an infinite region R
made of homogeneous isotropic and incompressible elastic material.
Suppose that a cut is made on the half-plane Xy =0, xy >0, the top face
of the cut (x2 = 0%) is held fixed and the bottom face displaced by b in
the xj-direction. Let D be the cross-section of R, in the undeformed
state, in the plane x5 = 0 and D) is D with the line x,=0, x;>0 deleted.
The resulting deformation is assumed to be one of finite anti-plane
shear. In order to seek a solution, we set up (r, 8) as polar
coordinates (r>0, 0<6<2r) at the origin. The boundary value problem

for a single screw dislocation is then described by

3 A d A U-e
— W @ +fru) u )+ — W G+ rgfH) —2)=0 onp,
aT 30 T
u (r, 0+) - u (r, 2m-) = b, r>0,
(4.1)

1
u, +0(=) as ¢ »= ,
a T

032 (ro 0O+) - 032 (r, 2r7) =0, r>0.
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The first of the boundary conditions in (4.1) insures that
there exists a jump in the displacement equal to the amount b; the
second boundary condition states that tNe displacement gradient vanishes
as we further move away from the dislocation; the third states that the
tractions must be continuous across the dislocation line. Motivated by
the nature of the displacement field in the corresponding linearized

problem, we again seek a solution of the form,

u = G (9)0 (10.2)

Substituting equation (4.2) into the boundary-value problem (4.1),

reduces it to

d R ., Ueg
—\wa+ wHh—J}=0,

(4.3)

a (0+) -4 (277) = b,

Traction contiruity condition is automatically satisfied. Integrating

(4.3), yields

-

A R u'(9)
2% (3 +}7uf?) = C (r) (4.4)
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the constant of integration C possibly being a function of r. 1In

(4.3) and (4.4) wve have

1 .2

|vu|? = = g (8). . (4.5)

e ]

Recall the definition of the material shear response T (k)

T(K)EZK;I'(3+K2), -® <K <™ (4.6)
so that equation (4.4) then reduces to
a' (g)
T ( )= C (r) . (4.7)
T

Recall (from section 2.4) that the shear respomnse function t(x) is
invertible. Let K(T) be the inverse of T (k). Equation (4.7) thus

leads to

= x (c(2)) (4.8)

Since U' (8) can only be a function of 6, it follows that,

re (c(r) ) =K, , (4.9)
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vhere K, is constsnt. From (4.8), (4.9)

u (8) = Rys + Ky on D, ; (4.10)

-

K, is now a pure constant of integration. Finally, by applying the
boundary conditions in (4.3), K, is evaluated, leading to the final

solution

[

- b
u (g) = > 0 on D . (4.11)

(Note that Ky refers to a rigid translation in the x3-direction and so
has been taken to be zero ). Equation (4.11) satisfies the second of
the boundary conditions LT +0(%). as r + = , It also happens to be
the same solution as in the linear elastic solution derived in Chapter

3.

We now obtain the stresses from equation (2.40), they are given in

polar coordinates as

b - 1
Te3=rw(11);i

2 . b2

b . 1
T W (1,) — I, =3+ .
33 Tr2 1 L2 ’ 1 4m2e2
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all others being zero; in cartesian coordinates,

-b ~ sing
S - .I [}
131 n (1) r .
b A, cosf
T32 = ﬂ’—- W (Il) T » (4.13)
2 2
b ~ b
T 43 = 5= W (1) I, =3+ .
33 n2 1 r ) 1 4n2r2

This concludes the solution of a screw dislocation in a nonlinearly
elastic material. Ome can readily see that the stresses in the finite
elastic formulations equation (4.12) - (4.13) are different than those
in the linear solution, equation (3.4) - (3.5) . They depend on the
form of ﬁ. the strain energy density; hovever, the displacement u is the
same as before. Note that for a Neo-Hookean material, W = u(I;-3), the
stresses T31. T32 in (4-13) coincide with the corresponding stresses in
the linearized problem. Om the other hand T33#0 here, while it is zero

in the linearized problem.

It can again be readily argued that the force on the screw
dislocation is zero for the same physical reasons as in Chspter 3. This
can, of course, be mathematically proven by calculating the J-integral
on a contour taken around the screw dislocation: the value of J beconmes

Z€ero.
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4,2 Iwo Dislocations

Now consider two dislocations in an infinite region R made of a
homogeneous isotropic incompressible elastic material. The two
dillocaﬁiona are located in the reference configuration at (2, 0)
and (-2, 0) on the x; axis, each has the same Burgers vector bej. We
set up polar coordinate systems (r, 8) (r>0 and -m<6<T) centered at the
dislocation at (-2, 0) and (£,4)s (£>0,0<4<27) centered at the
dislocation at (2, 0) Figure 4.1. The notation here is different from
that used in the linearized problem. The equilibrium equatiom (2.41)

for u(r, 6) is given as

3 3w ' 3w 1 2 _ ou
—_— (28 —) ¢+ = —= ¢ == (2W' —) =0 (4.14)
dr dr r or r“ 36 38

on D, where D, is D with the two line segments xo=0, x;2¢ and x,=0,

x; <-% deleted. The boundary c-onditions are

u(ey ) ~u(r, =) =>b forr > (4.15)

’

(on the dislocation line emanating from (-2 ,0),) and

u (r, 0%) - o (¢, 07) =b  forr>224%, (4.16)




50

(on the dislccation line emanating from (2.,0)). We alsc require that
the displacement gradient vanish at infinity. We further impose the

continuity of tractions across the two dislocation lines:

1
u, +0 (=) as r - & ,
a T

032 (r, 7) - 632 (e 1) =0 forr > 2 » (4.17)

S39 (£s 04) - 035 (ry 0-) =0 forr > 22 .

In order to solve the boundary value problem (4.14) - (4.17), we
employ the technique of small deformations superposed on large
deformations. The general theory of this technique in finite elasticity
is discussed in Green and Zerna [22] and Ogden [23]. The displacerment
field in the presence of the two screw dislocations is assumed to be
approximately the same as the sum of the displacement of the single
screw dislocation in the non-linear field found in sectiom (4.1), pilus
some small perturbation u (r.6) caused by the presence of the second
- screw dislocation. Accordingly, the displacement field u (r,3) is now

assumed to be of the form
b - T /
u (r. e) = ?: 2 4+ u (r. 6) » lVUi < < 1' (4.18}

where the first tern is the displacement field if there was only the

single dislocation aft (-¢,C ). Our aim is to substitute {4.18) intc the
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|vﬁ[ <<l1l, In

order

boundary value problem' (4.14) - (4.17) and 1linearize it based
on to do

this we first linearize the various
quantities involved in our problem. _From (4.18) we have

du du

b
ar or
(4.19)
on D.

from equation (2.23)

The first principal scalar invariant I,, is calculated to leading order

I, =3+ [ru|2=1 +1

9

(4.20)
where I° and i are defined as
I. =3+ b
- 9
° szrz
(4.21)
- 2b Ju
I = —_ .
2w r2 96

The strain energy demsity W(Il) and its derivatives with respect to Ij,

are now represented by a series expansion about I,
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W) =W (I, e =W s wa) i,
W' (1) = W (1) + w" (1,) I, (4.22)
WD) = W) e W ()

We can show by substituting (4.20) - (4.22) into equation (4.14) and
retaining the leading order terms, that the governing differential

equation (4.14) takes the form

2~ ‘I -~ Al 2"
~du w 2 3u 2W 1 2 3“u
fl b o Zb )
2“'—2’[2" 329 =« l5+ 3 77 2¥] =0 Gy
or 4 rr T T < 4n‘r 38

where W' and ‘v;" are evaluated at Io‘ This is a linear differential
equation with variable coefficients depending on r. We define the

secant shear modulus M(K) by

M(k) = 2 W' (3+:32) . (4.24)

Differentiating the material shear response function (2.,44) with respect

to < gives the tangent shear modulus t' (x) a8
ti(<) = 2 W+ L, (4.25)

Solving for W' and W' in terms of t'(x) and M(x) from the above




equations and then substituting them into the differential equation

(4.23), leads to the simpler form,

2~

25 1 % 1 3%
M(c) — + [ZM(K) - t'(-c)] - —+ 1'(K) = — =0, (4.26A)
3:2 T Jr rz 362
Here we have
b
K = — (4.26B)
271r

The linear differential equation (4.26A) for 4 (r,8) has coefficients
which depend on r. In the particular case of a pure power-law material
(k)= Ax®, this cancels out and (4.26A) becomes a re-scaled Laplace

 equation.

If we keep in mind the fact that our goal is simply to calculate
the dislocation force J, and that to do this we will evaluate the J-
integral on an infinitesimal contour surrounding the dislocation at
(2,0), it becomes clear that we are only interested in the value of u
near (2,0 ). Therefore we now specialize the differential equation to
the region near the second dislocation located at (¢ 0). Letting r=2¢

in (4.26B) gives



= K, (= known constant) |, (4.27)

and therefore the shear moduli, near (i, 0). are

™ (x)

o ((o) . (4.28)

M (x)

M (ro) .

Thus, we replace (4.26) by

326 12 1 3%
M (x,) ——E-+ [2 M (e)) - < (xo)] - (<) - T3 ¢, (4.29)
or T °or r< 52

in the vicinty of (1, 0).

We now write this equation in terms of polar coordinates (&, ¢ ),
(>0, 0<¢<2m) centered at the second dislocation, i.e. at (2, 0),
Figure 4.2. We change Lhe variables from (r, 3) to (,¢ ) with the aid

of the transformation equations,
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9E E+L cosd

or

\[62 + 22, 22 £cosé

2¢ Lsing

"
]
-

°r
E\liz + 22 4 20.E cosd

13
a8

Lsing ,

3¢ & + Lcosd

—_—_—, (4.30)
38 3

92 22 gink

b

3r2 £(2 + 22 4+ 22E cosd)

32¢ 2% (tsind + g¢sindcoss)

= ?
arz 52(52 + 9.2 + 20Ecostb)
azg E + 2cosd
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The partial derivatives of u are then derived as

3 (E+1coa¢)2 28iné(E+2cose )
-_ (r Go ) = ~| -2 -o
ax " | e rze”
V EZ+22+ZElcos¢ x €J52+22+252cos¢
lzsin2¢ €2+ Elcosd + 12sin2¢
U,, ., + u, +
$¢ £
52\15124».9.24-2115 cosd g\{52+ 9.24-259. coso
£ 28in¢ +2 zzsin¢ cos¢ -
Uy 9
: P
g2 Nﬁ;§+12+2£zcos¢
(4.31)
- 2cin?; :
) ued 2esin“y . 2sin¢ (£ +2cosd) -
— —_— = u, +2 U, +
38 r ) £g £
' \/ EC+c+2¢ 2c08¢ s\/g§+12+25;cos¢
(g+ lcoa¢)2 2cosp (E+Lcosd)
u, + u, +
) 13
g2 \[Ei+£2+2€2cos¢ 5Vk2+£2+2€1cos¢

-28in¢ (E+2coa¢)-lzain¢ cosd

€2V £2+ 124260086

d3u  du 3u  /2sind
r — = — (§+ Lcosd) - — .-

dr 3¢ ¢ 13
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Keeping in mind that ¢ is swmall in the immediate vicinity of (¢, 0). the

partial derivatives hi(éJl) are, to the leading order,

-

3 ) 22 sin% cos?
— (r BV,.) ~ 2cos T - - Tooy ¢
e T i e
2 .2 .
L8in“y - 2sin“e 228indcosd
U, + 6. + ——— ED »
2 ¢ 2
3 g ¢ £ ¢
sin¢
ﬁ.!‘ ~Cc08¢ ﬁoE = £ ITI.¢ ’
d u,8 2% sin¢d cosé
— { — ] ~¢ sin“ u, + . +
39 r 23 3 €¢
L cos?s L cosls . 27 sin¢ cosd
U, + u -

2 ¢9 '€ 2

£ Y £ £
ju L
— = 2 gind uU,, + — cosd U, .
38 3 £

{4.32)

Incorporating equations (4.32) into the differential equeticn (4.29) aad

regrouping the terms, we get



58

ZQ[H(*O)cosz¢ + r'(zo)sinZQ}a, + zg[r‘(zo)-u(<°)]

€€

sin: cos: 6'5* + [f'(“o)coszz + H(Ko)sinzf] G.W + (£.33)

E[t'(ﬂo)cosza + M(<°)sin2¢]6.s + 2[M(g )= ' (k,) ]sing cos: E.Q = 0.

Equation (4.33) is a second order linear partial differential equation
with variable coefficients depending on both § and 4 . Note that if we
linearize the constitutive law by letting M(x)) = T'(X)) we arrive at

the Laplace's equation in polar coordinpates.

We seek a solution to (4.33) in the form
u (5, 8) =V () . (4.34)

Upon substituting equation (4.34) into (4.33), we fiad

.o

(r'(<°)cosz¢ + M(zo)sinze)v + 2(M(xy) - <'(k,))sinzcosoV = 0, (4.35)

OT,

d *
_— [(r'(xo)cos2¢ + M(<o)sin2¢) v ] = 0. (6.36)
d¢

Integrating this once gives
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. . 2C
V H » (6-37)
( t'(<°) - H(zo)) cos2¢ + 1! (xo) . !4(<°)

vhere C is a coostant of integration. On integrating (4.37), (See

Appendix A), wve arrive at the solutionm,

c ’ M(< ) p'w
V(5) =D + tan"! S tane) +cC ’
r'(<°)

Viee ) (xy) Vi(ey) T (<)
(4.38A)

vhere p' is an integer to be chosen according to

(2p'- 1) =<2 ¢ (2p'sl) =, (4.388)
2 2

for Q < ¢ < 2 7,

We turn oext to the boundary condition (4.16). Ia view of (4.18) we see

that it requires

=4 (ry 0") ¢T (s 07) =0 for r>22 , (6.39)

which in view of (4.34) requires
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-v (0%) + vV (Zn;) = b. (4.40)

(Recall that -7<8<m and 0<¢<2m.) _ In order to impose (4.40) we need

V(0) and V(27), when ¢

0 (4.38B) requires that we take p' =

= 0 and so
(4.38A) gives
+
vV (") =0D. (4.404)
When ¢ = 27 , (4.38B) requires that we take p'= 2 and so,
2nC
V (2r-) = D + (4.40B)
VFM(KO) t'(x,)
From equations (4.40A), (4.40B), (4.40), we obtain
b \IM(KO) T (k)
C= . : (4.41)
2r

Therefore, the solution V(¢) takes the form

b M(k,) p'b
v (¢) = — tan! ————— tan ¢} + — + D, (4.42)
27 T'(Ko) .

2

or from equation (4.34)
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27 V‘r'(<°) 2
((p' =0 for 0 < ¢ < "/2 .
(4.43)
T KL
ﬁp-lfor2<¢<2 ,

o
n

3n
2for'2—<¢<2n.

The traction continuity condition (4.17)5 is automatically satisfied.
Equation (4.43) represents the perturbation in the displacement.field
due to the presence of the second dislocation. Note that the value cf
the constant D cannot be found from this purely local calculation near
the dislocation (2, 0). However, D does not enter the results for the

dislocation force J and so it is not of concern to us. We can now

determine the force on the first dislocation using equation (4.43).
4,3 .JI-Integral Evaluation

In order to calculate J, a path of integration must be chosen. In
this case a circular path is chosen to contain the second dislocation
and it is centered at (2, 0) the radius & of the circle is taken to be

infinitesimal. One can show that the linearized version of J is also

path independent,

The J-integral of (2.52) is rewritten as
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where

y
"

2n
a [ W cosp ¢dy
0

27
Iy = [ = cos¢C3)u. £ (4.44)
0

27w

JC = ] -sin¢032u.1€d¢ .
0

Substituting from equation (4.22), one can readily show that the first

term of the integral (4.44) is

2m 2
Ja =/ (w(z,) + H'(Io)f)cow £do =/ ﬁ'(Io)icos¢ £dé. (4.45)
0 0

(The firet term in the left hand side of (4.45) vanishes ),

Substituting for 1 from equation (4.19) gives

~ b 5u
J, = w‘(ro)f — cosé £de (4.46)

Tr” €
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Next, we express c¢u/39 in terms of polar coordinates (¢, ¢ ). By

(4.30),
1 51 su 2isin9 3u E + 2.cos8¢
- —_—z — + — « (4.47)
r 99 13 ¢

\k2+4£2*4x€cos¢ s\é2+412+42§cos¢

As £ tends to zero, equation (4.47) reduces, to leading order, to

du - 22 -
— 22 1 'Y 4+ — ° . (4048)
2o sind u £ E cosd u.¢

Substituting (4.48) back into the integral (4.46) and iacorporating the

solution u given in equation (4.43), the integral becomes

d
b2 o M(<,)
Jg = w'(r )[ cos?s — pan~l tand d¢ . (4.49)
2 o 4
4né2 do T (%)

0

The integral in (4.49) is evaluated in appendix A: the result is

b2 Y M(x,)

J, = —H(Ko) . {4.30)

a
bwg
Juc< e Ve,
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The -second term in the integrand (4.44) can be similarly evaluated. It

turns out to vanish identically. Finally we evaluate the third term in

-
-

the integrand (4.44), J_. becomes

b2M(x,) b2 Vauce,)

Jo = —— - — M) : (4.51)

c
by 4dnye
J;(Ko) + \[r' (kg)

Thus the dislocation force J is obtained by combining (4.50) and

(4.51), to get

2
bM(Ko)
J=s — ,

4T

(4.52)

where x _ = b , and M( Ko) is the secant modulus of shear.
4l






In section 5.1 of this chapter, we linearize the nonlinear
expression for J to recover what was derived in chapter 3, while in
section 5.2 we discuss J for pure power law materials. Equation (4.52)
is the final expression for the force on a screw dislocation of strength
b due to a second screw dislocation, also of strength b, located at a
distanée 2. It is also the force on a screw dislocation of strength b
flaced at a distance £ from a traction-free boundary. The formula
(4.52) for the dislocation-force is given in terms of the magnitude b of
the Burger's vector, the distance £ and the secant shear modulus M.

Finally we conclude our investigation in 5.3 of this chapter.
sl Li {zed El . .

In the case of an infinitesimal deformation, we have

’ (5.1)

where u is the infinitesimal shear modulus for the material.

We also have,

M (KO) =z T'(Ko) =y, (5.2)
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By virtue of equaticns (4.25), (5.1), (5.2) and (4.52), it follows that

ubz
4ng

* (5.3)

wvhich is the result obtained using the two different techniques in the

previous chapter.

3.2 Pure Pover Law Materials

In this section we special%zc the formula (4.52) f;r the
dislocation-force to power lawv materials. Recall that for our purpose
here, ve can view the material as being completely characterized by its
response in shear. The class of "pure power law materials" is

characterized by the shear response

(k) x \®
= | - ’ (5.4)

Te Ke

T
where -i%-> O and m >0 are constitutive parameters, Figure 5.1. An
Cx

alternative class of power law materials is the one proposed by Knovles
(11]. The second model has the advantage that it linearizes well about

x=0. On the other hand, for large values of <, they are both of the

same form.
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For the pure power law materials described by the shear response (5.4),

one can readily show that the secant shear modulus and the tangent shear

modulus take the form

. m-1
o
M(Ko) - ; Ko ’ (505)
*
and
T m-1
T'(ﬁo) = -i'm <o = m M(Ko) ’ (5.6)
K
where Kk, is described in (4.27) as k_ = b/4r2 .

The force on a dislocation in pure power law form of materials can now

be calculated by substituting (5.5) in (4.52), it becomes

n-1
(5.7)

blt, . .

In dimensionless form, (5.7) becomes
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J b=
J* = = L (508)
T b (4me)T™
* *

A graph of J, vs £ is shown in Figurg 5.2. Note that as £ increases the
force on a dislocation decreases which is expected since the effect of
the second dislocation is negligible when the separation is large.
Since the results here would be more accurate for larger values of
2 the range % >1is of pripary interest here. We also note that for
fixed separation £, the force between the dislocatiéns decreases with
increasing hardening exponent m. In particular, this means that for

softening materials (m < 1) the force is greater than that predicted by

the linear theory; for hardening materials (m > 1) it is less.
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3,3 Summary

This study was concerned with estimating the value of the force between
two screw dislocations in an elastic solid. Since the linear theory of
elasticity predicted unbounded strains at a dislocation, the results
predicted by such a theory were suspect. The present study was carried

out within the fully nonlinear theory of elasticity.

Since the force between two dislocations was defined as the rate of
change of energy with respect to the separation between the
dislocations, one way to calculate this force was to first calculate
the total energy stored in the body. This was an almost impossible
task to carry out exactly in a fully nonlinear theory. However, ve
observed that the value of the J-integral evaluated along a path
surrounding one dislocation was precisely equal to the magnitude of this
force. We exploited the path-independence of the J-integral in order
to obtain accurate estimates of the force between two dislocatioms in

the presence of nonlinearity.






APPENDIX A

In Chapter &4 we have integrated V(4) as follows: Recall that

-~
-

. C .
V(e) = ’ (A.1)
(t'+M)+(t'-M)cos22

where C is a constant. By using trigonometry,

. Cc
v( ¢) = - M + . (A-Z)
2

Integrating (A.2) gives.

® - ¢
. c 1- ﬁ 1 C
v(s)-v(0) = V(s)ds = = f —_— det — ¢ (A.3)
5
0 0

The principal value of the integral in (A.3) is

M
[}

T

tan~ 1 ( bi'.- tand) (A.4)
-1 T

and therefore,
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- (I
, C V T -1 / u ¢ '
V(ie)-v(D) = = tan © ( IT tane) - (A.5)
‘ z ! M . M
-1 = -1
T' < T.
—
1 [ ,ﬂ
prr ¢ ¢! c
+ b — P
M- 2M
wvhere the integer p' is to be chosen from
T L
(2p'- 1) =< < (2p"+1) - . (A.6)
2 2
Simplifying (A.5) shows that
c 1 -1 M Cp'r
v(¢) = v(0) + - tan © ( f — tano ) + - . (A.7)
YA ATy T 2 VY M1

We now can integrate,

22 27 r_}
d - t' dd
/ conzd: ;; tan} [\? ’T-‘.—un@] dy = f v EEE—— * (A.8)

0 o I+ = tan¢

Using (A.7), (A.8) becomes,

ZR\I—T .

(A.9)
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