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ABSTRACT

ESTIMATION OF THE FORCE

ON SCREW DISLOCATIONS

IN FINITE ELASTICITY

USING THE J‘INTEGRAL

by

Bijan Khatib-shahidi

This study is concerned with estimating the value of the force between

two screw dislocations in an elastic solid. Since the linear theory of

elasticity predicts unbounded strains at a dislocation. the results

predicted by such a theory are suspect. The present study is carried

out within the fully nonlinear theory of elasticity.

Since the force between two dislocations is defined as the rate of

change of energy with respect to the separation between the

dislocations. one way to calculate this force is to first calculate the

total energy stored in the body. This is an almost impossible task to

carry out exactly in a fully nonlinear theory. However. we observe

that the value of the J-integral evaluated along a path surrounding one

dislocation is precisely equal to the magnitude of this force. We

exploit the path-independence of the J-integral in order to obtain

accurate estimates of the force between two dislocations in the presence

of nonlinearity.

 



Bijan Khatib-shahidi

We first carry this out in the context of the linear theory. for

illustrative purposes. and then carry it out in the context of nonlinear

theory.
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CHAPTER I

The theory of dislocations has received a large amount of attention

in the materials science literature. In particular. solutions to the

problems of straight dislocations in an infinite continuous medium have

been found within the linear theory of elasticityu The displacement

field and the stress field have both been obtained in the presence of a

single dislocation and multiple dislocations. The results of these

investigations are unsatisfactory*within the linearized theory since

the results predict infinite strains at the dislocations. contrary to

the assumption upon which the theory rests. These results can be found

in the theory of dislocations literature. eug. Hirth and Lothe [l] and

Lardner [2]. cite these findings. We recapitulate these results in

Chapter 3.

In recent years investigators have employed some nonlinearities in

the formulation of the problem of dislocations. In particular. Kachanov

[3]. solves a screw dislocation problem in an infinite medium under the

assumption that the stress-strain relations are nonlinear; however. he

assumes that the displacement gradients are small. The problem of

dislocations in nonlinear elasticity is also described in an article by

Gairola [4]. The formulation is described in general tensorial notation

and the problem of a screw dislocation in an infinitely long and

straight cylinder bounded by two circles is treated by the method of

 



successive approximation (Signoriniis method E43).

There is also an interest among material scientists to obtain the

force on a dislocation. The force on a dislocation. or in general the

"force on.a defect". is defined to be the rate of change of the total

energy of the body thich.is composed of the elastic strain energy of

the material containing the "defect" and the potential energy of any

external loading mechanism.) with respect to a change of the position of

a defect. In the case of the screw dislocations this is the force

tending to make the screw glide in the x-direction.(Chapter 3). We

also note that the force acting on a dislocation is not a: true

mechanical force but it has the dimensions of a force. It may be viewed

as a "driving force" in the thermodynamic sense. This is discussed in

detail in Eshelby's article "The Continuum Theory of Lattice Defect s"

[S].

The J-integral is a path independent integral which plays a central

role in nonlinear fracture mechanics [6]. As shown by Rice [7]. one

can readily verify that J reduces to the energy release rate. which in

turn leads to the stress intensity factor in linear elastic fracture

mechanics. It is also stated by Eshelby [8] and Rice [9] that. in

general. the J-integral can be used to define the "force on a defect".

the defect being the dislocation in the present case.

In the present study. the theory of dislocations is studied within

the context of finite elasticity. and attention is restricted to screw



dislocations. The exact displacement field and stress field are

obtained analytically for a single screw dislocation in an infinite

region. Further. the results are extended in an approximate manner to

two screw dislocations in a nonlinearly elastic region by using the

theory of "small deformations superposed on a large deformation". The

force between the dislocations is calculated via J-integral. Even

though the analysis is approximate. the results for the force are

expected to be good. for the reasons explained below.

Consider. for example. the case of two screw dislocations in an

infinite medium. If one were to assume that the presence of a second

dislocation only causes a small perturbation. one can then carry out an

analysis based on the theory of small deformations superposed on a large

deformation. Clearly this assumption is invalid in the vicinity of the

dislocation but it is expected to be reasonable at points far from the

dislocation. Our interest here lies solely in evaluating the value of

J which represents the force on a dislocation. Since the J-integral is

path-independent. we can evaluate it at points distant to the

dislocation. Weexpect to get reasonable results for our purpose.

We will note that for a screw dislocation in an infinite medium. the

value of J becomes zero. but for the two screw dislocations in an

infinite medium J is calculated to be nonzero.

The chapters and discussions are presented in the following

sequence:



Chapter 2 summarizes results from finite elasticity theory. the

notion of the J-integral and finally the notion of a screw dislocation.

In Chapter 3 the formulation and results for a single screw dislocation

-
'

and two screw dislocations in an infinite linear elastic region are

discussed. The calculation of the force on a dislocation. using two

different techniques. is then carried out and finally the results of the

two techniques are compared to one another. Chapter 4 covers similar

issues in the nonlinearly elastic case. Chapter 5 summarizes and

discusses the results.

Finally. we note that after the first draft of this dissertation

was written. we received a paper by P.J. Rosakis and A.J. Rosakis [24]

in which they independently solved the problem of a single screw

dislocation in incompressible finite elastostatics. Their results for

this problem are more general than ours. since ours are restricted to

generalized nee-Rookean materials and theirs arenfiu However. they do

not address the problem of two dislocations nor do they consider the

force between dislocations.



CHAPTERIZ

RRELIMINARIES QN.FINIIE.ELASIICIIX.AND.IHE DISLQCAIIQN.£ROBLEM

In Section 2.1 of this chapter. certain pertinent results from the

equilibrium theory of finitely deformed. homogeneous and isotropic

elastic solids are summarized. The complete theory and general results

from the continuum theory of finite elasticity may be found in [10].

Herein the theory is first presented in 3-dimensions. Then in Section

2.2. it is specialized in two ways: The case of finite anti-plane shear

deformation (which provides the setting for discussing the screw

dislocation) is considered first and then. this is further Specialized

to the case of infinitesimal anti-plane shear deformation.

The J-integral. with some historical notes. is described in Section

2a3 of this chapter. The proof for the path independency of the J-

integral is omitted from the section but may be found in [7]. The

relationship between the path independent integral J and the notion of a

force on a defect is discussed. Finally. in section 2.4 we formulate

and discuss the notion of a screw dislocation.

2.1 E. I E] O 0

Let R be an open region occupied by the interior of a body in its

undeformed configuration and denote by x the position vector of a

material point in R. A deformation is described by

 



y = y (x) =
~ ~

which is a mapping

x + u (x) for all x E R. (2.1)1

~

 
of R onto a domain R*; g (x) represents the

diSplacement field associated with this deformation, The transformation

(2d) is assumed to be invertible and suitably smooth.

Let P be the deformation gradient tensor field.

the determinant of F

by J.

J (x) = det

The deformation of an

preserving. hence

J (E) = det

(x) for all x s R: (2.2)

is called the Jacobian determinant and is denoted

F (x) > O for all x e R. (2.3)

incompressible material must be locally volume
 

F (§) = 1 for all x s R. (2.4)
~

Define the tensor fields 9 and g by

 

1

and tensors.

Letters underlined by a tilde represent three-dimensional vectors



 

9=§§- §=§f. <Lw

and their common principal scalar iniariants 11’ I2. and I3 by

11 =tr (E) .

:2 = 1' [(tr(§))2 - tr(§2)] . (2.6)
2 -

I3 = det C.

From (2.4) - (2.6) one concludes that

13 (g) = J2 (x) = 1 for .11 x e R. (2.7)

The Lagrangian strain tensor field is given by

g = i (g - £>- V (2.8)1

The stresses are denoted by T (y) for the actual (Cauchy) stress

tensor field on R* and g (x) for the corresponding nominal (Piola)

 

11 stands for the idem tensor.

 

 



stress tensor field on R. They are. in general. related to each other

by

1:1-01-‘1‘.

- J-..

(2.9)

B‘JI§-T°

In the absence of body forces. the local equilibrium equations are

div T = 0 on R*.

” " (2.10)

div 9 = g on R.

together with I = ET on R*. and gift = {gr on R. To continue. let 5

be the nominal surface traction andt:the corresponding true surface

traction. Then

3 = o n on S ,

" “ “' (2.11)

E = I 2* on 5*s

. . . * . .

where n 18 a unit normal to the surface S in R. and n 1.5 a unit normal

to 8*. the image of 5 after deformation. It can be shown that

O on S

(
r
? I
I

if and only if f = O on S. (2.12)

 





This is useful in the case of a traction-free surface 8*. since it

enables the boundary condition on the unknown deformed surface to be

specified on the known undeformed surface 8.

Let W be the elastic potential. characteristic of the given elastic

material. the value of W represents the stored strain energy per unit

undeformed volume. For homogeneous. isotropic and incompressible

elastic materials. W can be shown to depend on'the deformation solely

through the invariants 11’ and 12 i.e. W = W (11. 12). The

corresponding constitutive law takes the form

an an

3 = 2 -— g + -— (I1 1 - g) g -‘P 1. (2.13)

311 312

or. equivalently.

ah ah _

o = 2 -— F + —— (I1 1 - c) F - P F T. (2.14)

“ 311 ~ 312 “ " ~ ”

where P is a scalar field required to maintain the constraint of

incompressibility (2.4).

2.2 Manama:

Next. we consider the special case of finiLe anLi;piang shear

dgfgzxuujguuh_ The deve10pment that follows is based on the analysis by

 

 





lO

Knowles [11]. Assume the region R occupied by the undeformed body to be

cylindrical and a fixed cartesian coordinate frame is chosen so that the

x3 - axis is parallel to the generators of R. Let D be the cross-

section of R in the plane x3 = O.

The deformation (2J3 on R is said to be an anti-plane shear if it is of

the form

= = + ( ) 1
ya X 0. s Y3 X3 U Xls X2 o (2.15)

Thus in an anti-plane shear deformation. particles in the body are

displaced purely in the axial direction by an amount u(x1.x2). In the

absence of body forces. the deformation (2.15) can. in general. be

sustained only in materials for which the strain energy density takes a

more restricted form. (Knowles [123% A.c1ass of such materials are

those characterized by.

A

 

w = a (11) for all 11 3 3. w (3) = 0. (2.16)2

and referred to as ”Generalized Neo-Hookean Materials". We assume that

W conforms to the Baker-Ericksen inequality (see [13]):

 

1Greek subscripts take the range 1. 2 while Latin subscripts assume the

values 1. 2. 3. Repeated subscripts are summed.

2Note that I1 = 3 in the undeformed state.





ll

ii‘ul) > o for all 11 > 3. (2.17)

where W' is the derivative of W with respect to the argument. This can

be shown to be equivalent to requiring a positive modulus of shear at

all deformations.

The infinitesimal shear modulus is

u = 2 w'(3) > O. (2.18)

For the class of deformations given by (2.15). the components of the

deformation gradient tensor are calculated from (2.2) to be

: (S ,

FaB a8

F013 : 0.

(2.19)l

F33 : u. 9

F33 = 1 on Do

In viewing (2.19). one can conclude that J. the determinant of f.

1
becomes 1 automatically. Now calculating E‘— . its components denoted by

Fgl 9 we find

1

 

1Subscripts preceded by a comma indicate partial differentiation

with respect to the corresponding material cartesian coordinate.

 



Next the tensor

End 9

dB

Ga3

: 6(18 .

= 0,

= " Us s

a

= 1 on D.

a8 a

C3a = u'o

1 on D,

dB '

630. = “on

1 +u.a u. on D.

   

12

(2.20)

(2.21)

(2.22)
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The principal scalar invariants 11. I2. and 13 are given by (2.6) and

for anti-plane shear deformations are

‘

‘-

2

Il IZ=3+ IVUI s

(2.23)

I3=1 onD.

The components of the Lagrangian strain tensor are obtained from

equations (2.8). (2.21 ):

1

E = - u. u. (no sum).

an a a
2

2

E33 = - Ivul .

2

(2.24)

l

E = - U. u. 9

a82a8

a

Recalling from equation (2.16) that W is only a function of 11’ and

using equations (2.13) " (2.14). the constitutive equation becomes



 

l4

2 w‘(11) g - P 1.H H

(2.25)

2 w‘(11) g - P F
1
0 H

For anti-plane shear deformations. the components of I and g are found

from (2.25). (2.22) and (2.21) to be

a H

as { 2 W (II) ’ P I'das .

 
Ta3 2 &'(Il) u’a‘. (2.26)

A i 2

2 W'(Il) (l + IVuI ) r P.d

U
)

U
)

I

Similarly.

Q

I

08- {ZW'(11) ‘P } 6GB 0

0013 = Pu.“ ’

(2.27)
AI

2 W (11) “ea s

033 = 2 W'(Il) ‘ P e

The equilibrium equations in the absence of body forces are given

by (2.10). Substituting (2.27) into (2.10) gives the three equations

‘{2 &'(Il) ' P } a + P93 Usa : 0 on D (2.28)
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and

x. i .-

{2W(Il)u.c1 }a 'P.3 -0 on D.

9

(2.29)

From equations (2.29). (2.15) and (2.23) one concludes that P.3 must be

a function of x1 and x2 only; therefore

Ps3 = fi (Xls XZ) 0

Using (2.30) in (2.28) and differentiating with respect to x3.

that

Psa3 : Os

which implies that P must be a constant-valued function. say.

*
6
)

(X1. x2) = P1 = constant.

Therefore

0

(X1. X2. X3) = P1 X3 + P (X1, X2).R
M

(2.30)

indicates

(2.31)

(2.32)

(2.33)
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Substituting (2.33) into (2.28) and (2.29). leads to the conclusion

that.

‘2

'-

P(x1s st KB) : Z'W.(Il) + P1 [U + X3] + st (2.34)

and s

[2 {1.111) (1.011,“ = P1 (2.35)

where P1 and P2 are constants.

Equation (2.35) is the goxezning diffexeniial gqna;ign,for an anti-plane

shear deformation. Once it is solved.(with the appropriate boundary

conditions) for the displacement field u. the stress field can then be

obtained from (2.26) and (2.27).

If the body contains a traction-free surface 8*. then

* .

t = O on S (2.36)

and from equation (2.11) one concludes that

on S. (2.37)

I
Q

(
D n

0

Note from equation (2.34) and the first of (2.27). that





l7

' ' E P1 (u (x10 x2) + X3) + Pst (2.38)(
I

N N

I

O = 0.

By applying the boundary condition (2.37) and using (2.38). one finds

that the constants P1 and P2 must vanish

P1 : P2 = O,
(2.39)

Finally. on substituting (2.39) into (2.26) and (2.27). the stresses

become

T08 = 00.8 = Os

Ta3 : T33 : 0a3 = 0301 = 2 wl(3 T [Vu|2) “’a ' (2°40)

_ AI 2 '2133 - 2 w ( 3 + [VuI ) {Val .

and the differential equation (2.35) can be written as

[2 W'(3 + quIZ) “'a ],a = 0 on D . (2.41)

We now consider the particular solution

u (x1. x2) = Ka “a on D. (2.42)
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which satisfies the differential equation (2.41): a deformation of this

type is termed simple shear. We let K and r be

1

)c = IV“I = (KaKa )2, (2.43)

l

T: ( T3u T31:1)2 ’

so that T is the resultant shear stress. and K is the resultant amount. of

snag. From equation (2.40) we can write

I : T (K) 5 2 D'(3 + K2) K, (2.44)

The function r (K) characterizes the material reSponse in shear.

In summary. the displacement field u(x1. x2) associated with a finite

anti-plane shear deformation is to satisfy the governing differential

equation (2.41). The corresponding stress components are given by

(2.40).

NeXt consider the special case of aninfinitesimalanttnlanem

deformation In this case. a linearization of the nonlinear equations

is carried out under the assumption that |Vu[. the gradient of the

displacement is small. i.e..



l9

—- < < 1.‘ (2.45)

On linearizing equation (2.24). the tomponents of the Lagrangian strain

tensor become

8:18 = 0 . E33 '- O.

_ _ 1

E3“ " E03 " '2- Uea s (2.46)

Next. the stored energy function W approximates to

A u

w (3 + [(7142) ~ - [Vu|2. (2.47)

2

so that by (2.40). the stresses are calculated to be

T = 0 s T33 = 0s

as (2.48)

T03 : TBQ : nu.“ .

on D. The governing differential equation (2.41) reduces to Laplace's

equation.

V u =() on D. (2.49)
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Thus in the case of infinitesimal anti-plane shear. the displacement

field u(xl. x2) is to satisfy the differential equation (2.49). The

corresponding stress and strain components are given by (2.48) and

m‘

V

(2.46) respectively.

2.3 Lingual

The concept of the path independent J-integral was first introduced

by Eshelby [8] in the course of determining the "energetic force" on an

"elastic defect" such as a void or an. inclusion. It was subsequently

exploited by Rice [9] in the context of fracture mechanics. Additional

path independent integrals were discovered by Knowles and Sternberg

[14]. and more recently by Abeyaratne and Knowles [15]. In a general

three-dimensional setting. J is given by the surface-independent

integral

J=f(Wn-Fon)dA. (2.50)

where W is the elastic potential. 3 is the outward normal to the regular

closed surface S. I: is the deformation gradient tensor and g is the

nominal (Piola) stress tensor. If the body does not contain any holes

or inclusions within S. the value of J is zero. ,If it does. the value

is non-zero. and this value. can be interpreted as a "force" on the hole

or defect (see below). Similarly. Rice [7]. Budiansky and Rice [16]
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have shown that a similar situation occurs if the region inside 8

contains a crack-tip. In this thesis we consider the case where the

region inside 8 contains a dislocation.

Let the total energy of a body under the prescribed loads be denoted

by E. Suppose that the body contains a "defect" (a singularity in the

elastostatic field) at the position 5- Then. the change in the total

energy with respect to a change of the position of a defect can be shown

to be (Eshelby [7]. Budiansky and Rice [15])

A E = J1 A E is (2.51)

where Ji is the ith component of J taken on a surface S enclosing the

defect. Since AE has the dimensions of work and A51 the dimensions of

length. it follows that Ji may be thought of as a "fame en the defeee".

For example. in fracture mechanics. Ji is referred to as the force on a

crack-tip. From (2.51) we can write Ji =35/ 361. This latter

expression leads to the alternative interpretation of Ji as anm

release rate. According to most theories of fracture mechanics. crack

prOpagation occurs when the energy release rate J1 reaches a critical

value.

In an entirely analogous manner. if we have a dislocation in an

elastic material located at E. J becomes the forge en Lhe dielecetien

due to the elastic field. It is known to be an important and useful

parameter in predicting dislocation motion.
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For the case of finite anti-plane shear deformations.the x

component of the force on a defect is obtained from.

Jo =[(Wna - nBOB3u'o) ds. (2.52)

I'

which is the appropriate restricted form of (2.50) in anti-plane shear:

ds is arc length along a closed contour I‘ enclosing the defect. our

purpose in this thesis is to emphasize the fact that the force on a

dislocation is a concept analogous to. and possibly as important as. the

'force on a crack-tip: that it can be calculated using the path-

independent J-integral. and to calculate explicitly the force between

two screw-dislocations in the linear and the non-linear theory of

elasticity. We will eXploit the path independence of (2.52) for this

- latter purpose.

2.4 Dislocation

Consider an infinite two-dimensional region D and view D as the

cross-section of an infinite body in its undeformed (reference)

configuration. Suppose that a cut is made on the half line x2 = 0.

x1 > 0. the top face of the cut is'denoted by 1' 4’. while the bottom face

by F T. The upper face F+ is now displaced by an amount b (relative

to I") in the x3-direction and the two faces are fused back together.

If u (x1. 0+) and u (x1. 0-) denote the x3-components of displacement

on F + and 1' ' then (see fig. 3.1).
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u (x1. 0+) -u (x1. 0') = b for x1 > 0. (2.53)

The vector b e3. where e3 is a unit vector in the x3-direction is known

as the Burgers, meter associated with this dislocation.

Traction continuity across the line x2 = 0. x1 > 0 requires

T32 (Xls 0+) ' T32 (Xls 0-) = 0 for X1 > Us (2.54)

In W. let Dodenote the entire (x1. x2)-plane with the line

x2 =0. x1 3 0 deleted. We wish to find a displacement field

u (x1. x2). twice continuously differentiable on Dosuch that

4

(2 w' (3 + (NH) ma)“; = 0 on Do. (2.55)

0 (X1. 0*) “.u (x1. 0‘) = b for x1 > 0. (2.56)

T32 (11: 0+) ' T32 (11. 0") = 0 for x1 > o _ (2.57)

u. + 0 as x2 + x2 + co . (2.58)

0 1

This is a "weak formulation" of the equations of (anti-plane)

elastostatics. since it involves a discontinuity in the displacement

(and possibly in the displacement gradient Eu and the shear stress T31)

across the line x2 = 0. x1 > 0.
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An alternative weak formulation. which is in fact lees, singular

than the preceding one. pertains to elastostatic fields involving

equilibrium shocks. Here one permits discontinuities in Bu but net in u

itself (see. for example. Knowles and Sternberg [l7] ). It has been

shown ([18]. [19]) that if the response curve in shear is

monotonically increasing (T'(|<) > 0 for all <) then equilibrium shocks

cannot exist. (The condition T'(K) > 0 ensures the ellipticity of the

partial differential equation (5.55). see Zee and Sternberg [20] )-

A minor modification of the arguments used in [18]. [19] shows that

(in contrast to the situation with equilibrium shocks). even if

T'(K) > 0 one gen have weak solutions involving dislocations. However.

in and T31 are continuous across the dislocation-line (even though 11

itself is discontinuous). We will assume throughout that

I‘(K) > 0 for all r . (2.59)
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LINEAR mm

In this chapter. the linearized problem for a single screw

dislocation in an infinite medium is discussed first. This is then

extended to the case of two screw dislocations. In section 3.2. the

force on a dislocation is found by two different techniques. first by

' calculating the total elastic energy and taking the rate of change of

the energy with respect to the dislocation position: second. by

application of the J-integral. Naturally. the results coincide.

3-1 SinzloDislooation

Consider a screw dislocation in an infinite region R made of

homogeneous isotropic elastic material. Let us suppose that a cut is

made along the semi-infinite line x2 = 0. x1 > 0. the top face of the

cut (x2 = 0+) being held fixed and the bottom face displaced in the x3-

direction by the constant amount b: be3 is the Burger's vector. See

Figure 3.1. The dislocation is said to be a Lightzhandod screw disloc-

ation if b is positive. Let D be the cross section of R in the plane x3

= 0. for a screw dislocation described above. the deformation is one of

anti-plane shear and the governing linearized differential equation for

the displacement field is Laplace's equation (2.49). We use (r.6)

as polar [coordinates (r>O. 043211) and formulate the problem in

terms of these polar coordinates. There exists a jump in the

25
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displacement field across the dislocation line. equation (2.56). but the

tractions are continuous'across the dislocation line. equation

(2.57). We also note that as r4» . the stress field and the

displacement gradients vanish. Therefore the boundary value problem

(2.55) - (2.58) for a single screw dislocation in a linear elastic field

is expressed as

32u 1 3n 1 32u . ‘)
—5+-—+—2--—2= 0. forr>0.0<9<21T

3r r 3r r 36

u (r.. 0+) - u (r. 211') = b". for r > 0

}- (3.1)

au/ae (r. 0+) - au/ae (r. 2n“) = 0. for r > o

 l

u.a=0(;) as r+uo. J

We seek a solution to the boundary value problem (3.1) which is

a function of 6 alone: u = u(6). Upon integration. the general solution

for u(6) is found to be.

u = A6 + B on D. . (3.2)

Note that the condition at infinity (3.1)4 is automatically satisfied.

By applying the boundary conditions (3.1)2. (3.1 )3. we evaluate the
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constants of integration‘A and B. The resulting solution is found to

be.

b

u = -'6 on D . (3.3)

Zn

_-ub x2 ,

31'— 2 24.
2r x1 x2

on D. r #0. (3.4)

x

UBsz—l—b. 1 9

2r xi + xi

all others being zero. In polar coordinates.

o3r = 0

on D . (r #0). (3.5)

ub‘
U :—

36 an

The ions: on a single screw dislocation can be calculated by

incorporating the stresses found in.(3.4) and the displacement gradients
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obtained from (3.3). in the J-integral of (2.52). It can then be

calculated by taking a closed circular contour centered at the

dislocation. One readily finds Jo -= 0. The force on a single screw

dislocation in an infinite elastic medium due to the elastic field turns

out to be zero. This is due to the fact that there are only the

internal stresses (3.4) or (3.5) which are caused by that dislocation

itself and there are no other means of raising or lowering the total

elastic energy in the elastic field. In order to obtain a force on this

dislocation. one can either introduce another dislocation into the body

or place the existing screw dislocation at a finite distance from a

boundary.

Finally. we discuss the total strain energy in the body. While we.

have no immediate need for this here. it helps to make clear the need to

introduce the notions of genem and enter recline. These will be

utilized in the subsequent sections. In order to calculate the total

strain energy associated with the deformation. (3.3). we must first

A

obtain the strain energy density. W. From (2.47). it becomes. ..

.. 2
w = ub . . '

(3.6)

8fl2r2

 

Note that there is a singularity at the origin of the order r-2.

Thus the total strain energy stored in a disk of radius r centered at

the origin becomes unbounded. We follow standard practice (e.g. [1])
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and eliminate the singularity at the origin of the dislocation by

considering a "Volterra core" assumption that there existsa small radius

of ro centered at the dislocation in which we do not calculate the total

energy. Therefore. we consider a enze,zegien such that

6 = {(x1. x2) I O 5 x (3.7)

”
N + N

N
N

I
A

'
1

N

5
5
,
—
;

.

and integrate the strain‘ energy density on the remaining material

Ds =ID - 5.

Similarly. the total stored energy has a logarithmic singularity at

infiininy. This forces one to cut out the far-field by some large

radius R ( >r° ). In summary. when calculating the total energy. one

must restrict attention to the region between two finite radius

cylinders. the smaller one being the Volterra core and the larger one. a

circular cylinder of radius R. see [1]. The total energy is. therefore.

written as

Zvlt
.‘ 2

3 = 4" rdrde . (3.8)

8fi2rz

0 r0
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using (3.6). Integrating (3.8) gives

 

ln . (3.9)

It is important to note that the choice of ro and R does nee

affect the energy release rate or dislocation force. This is zero

independent of the choice of r and it. This feature continues to be
0

true for two dislocations and. therefore. one is able to get useful

results for J trillion: having to specify the values of ro and R.

3.2 Two Dislocations

Consider now two screw dislocations in an infinite region R. made of

‘homogeneoms isotropic linear elastic material. The first of the two

dislocations is located at (2. 0) with the Burger‘s vector b1 33 and

the second one located at (-2. 0) with the Burger vector b2 93. We set

up three polar coordinate systems. first set (r1. 91). (r1>0. 0<91§2fl)

centered at (2. 0) and the second set of polar coordinates (r2.62).

(r2>0. ”(@2510 at ('2. 0) and finally (r. 9). (r>0. 0<952fi) centered

at the origin. This is illustrated in Figure 3.2.

The displacement field ‘for the two screw dislocations is found

immediately by applying the principle of superposition to the

displacement field for a single screw dislocation. equation (3.3). The

displacement field is therefore given by
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b b
1 2

u = ‘- 91 + -" 92 . (3.10)

211' 211

c

‘h

Observe that u is discontinuous across the lines x2=0. x1>£ and

x2=0. x1<-2. . The strains may then be calculated from (2.46) and (3.10)

 

El 361 (X1. X2) + 132 362 (XI. x2).

  

  

2 I“331 = u'1 =
2n 3x1 2n 3x1

(3.11)

b1 361 (Xls X2) b2 392 (Kl. X2)s

2E32=U92=—_ +_—

2n 3x2 2n 3x2

which reduce to

b sine b sine
_ l l 2 2

2 E31 - 1191 = ' - — s

2r r1 2n r2

(3.12)

b1 cosel b2 c0562

2 E = u. = -— + — s

32 2

2N r1 2“ r2

Next we calculate the strain energy density associated with this

deformation from

A

14:; [Vulz .
(3.13)
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. . . . . ' 2
where u is the infinitesimal shear modulus and [W] = u.“ uh.

By substituting (3.12) into (3.13). we can readily show that.

2 2 =‘
b1 b2 + 2 blbz
  

+ cos ( 6 - 6 ) . (3.14)

Anzri 4n2r 1 2i 4n2t1r2

In order to calculate the total strain energy E in the body. we

must integrate (3.14) over D. However. it is first necessary to

eliminate the singularity at the origin of dislocations and infinity

from D which cause the total strain energy to become unbounded as in the

case of a single screw dislocation. To do so. we consider two hollow-

cores each with a radius of ro at the center of the dislocations

( 2.0 ) and ( -£.0 ). See Figure 3.2. Let 61 and 6 2 denote the so-

cal led core regions .

0
1

I
.

2 2

(x1-£)2+x2_ }.

[
A A

*
1

{ (x1. 2(2)] 0

A H

O
N

5
5
,
—
;

o

2

{(31, X2)! 0 (X1 + 2.)2 + X2 -_.

[
A

N

I

Next. let R ( >1 + ro ) be a large fixed number and let DR denote the

region inside the circle of radius R:

2 2 1

DR={(x1.x2)| 05x1+x2§R} .
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Let Ds denote the material inside DR but outside 51. 52.

A

The total strain energy in D8 is finite. The strain energy density. w

from equation (2.14) is now integrated over D5

5 = Ira dA . (3.15)

Ds

Substituting equation (3.14) into equation (3.15) and writing the

integral as three separate terms. gives a total strain energy.

E=jw1dA+ [wsz*fw34A° (3.16)

Ds Ds Ds

where

“
‘
—
a

.
3
2
,

3?

gi
nl

fr
s

“
“
~
a

I
.
.
.

.g

2

D D r1

3 S

2

ub l

&2 dA = __2' If -—-' dA ,
(3.17)

87f 2 r22

Ds Ds

 

 

o
f
: %

ubb 2

“ - 12] cos (91-52)dA'

872 rlrz
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In order to evaluate the three integrals in CLJ7). we first relate

(1'1. 61). (r1>0, 0<€52r) to (r2. 52). (22>0. «$29) by geometry:

r2 sinez = r1 sinel ,

r2 C0862 = 22. "‘ r1 C0861 , (3.18)

1

1' r12 2

r = 21 l + -- cose +‘-- .

2 1 1 49.2

We use (r1.61) as the independent variables chosen to perform the

integration over Ds.'The element of area dA is then rldrldel. The

integrals (3.17) are, evaluated with the aid of (3.18). The first term

of the equation (3.16) is written as

 

 

*

2w r1 2 a ‘

[. dA f] vb, 1 uh; a 19.2 22
W = —- :1 d9 =-—-— ———— +6 —-
1 1'1 r1 1 1“

8.2 r12 4. ‘ r0 4 a2 . 32

DS () to

(3.19)

where

at

r1 = r1 (61) 5 )JR? - 22 sin2 61 - 2cosel

is the equation of the large circle xi + xi = R2 .



35

In evaluating the integral in (3.19) we have used the fact that R is

large in comparison to I. and r0. Thus. the final eXpression in (3.19)

hold-sf'asymptotically. for large R. The second term of the equation

5'

(3.16) is essentially identical to the first and so

277 1'2 b2 2

IW:I{:21 ~.b2 a 1 2.2 12

— _ rzdrzdaz 3 _ 1 n — - '- _ + O - s

:2 43 r a a2 32
D 2 o _

S

(3.20)

where

 
*

r2 = r2 ( 62) E Vlz- 9.2sin2 62 + icos 92 .

Finally the third term of the equation (3.16) is integrated over Ds by

 

expressing the. integrand in terms of :2. 92. Carrying out this

integration. the third term of (3.16)‘becom as

2r r;

. Zublb2

["3“ =6fl -"'—_ CO. (61' 62) rzdrzdez

8172:13:

D5

= (lo—~21n—+- --)+0 — . (3.21)

t.- to ro R2 112
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Thesumlaation of the three integrals (3.19) - (3.21). will give the total

strain energy of the elastic field in the presence of two screw

dislocations. with the Burger‘s vectors b1 and b2 respectively.

'

 

)4 2 R 2.2 L'blbz . 21 2,2

E'—(b1-b2) [41n —-—] 4- 1n—+0 7

‘ 161! to R2 41v to R '

(3.22)

on ”8' If the two screw dislocations have the same Burger's vectors.

bl.= b2 = b. then the total strain energy E reduces to

 

2
ub 2% 2

E = "" ln "' + 0 -' (3.23)

4w to R2

Equation (3.23) is in the same form as it is described in [1] and [2].

however in the general case (b1 # b2). (3.22) holds.



37

Our primary interest lies in finding the force on a dislocation. say.

the right-hand one in Figure 3.2. For this purpose. one calculates the

rate of change of the total strain energy with respect to the

dislocation position. as described :previously. One can readily show

‘ that from (3.23) and (2.51) the force on a dislocation becomes

-BE ublbz

F = - .
(3.24)

8(22) 4st

  

Equation (3.24) is a classical result which is cited in [1] and [2].

It provides the force on a screw dislocation in a homogeneous.

isotropic. linear elastic field in the presence of another screw

dislocation. With bl = b2. it is also the same result as a force on a

single screw dislocation which is placed at a distance 2. from a traction

free surface as is illustrated in Figure 3.3.

We now describe an alternative way of finding the force on a

dislocation by utilizing the equivalence between the force on the

dislocation and the path independent integral J. The formulation of

the J-integral was described andidiscussed in Chapter 2. section 2.3.

For reasons of algebraic convenience we only consider the case bl=b2

here.

In order to calculate the force on one of the dislocations. a path

of integration for J must be chosen. which encloses that dislocation but

not the other. Since the integral is path-independent. we will choose a
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convenient path to eliminate cumbersome calculation. In this case. a

circular path containing the dislocation located at ( i . 0) is chosen.

(Figure 3.4). centered at the dislocation. with radius :1 which is taken

to be infinitesimal. The element of arc length ds is r1661. Since the

dislocations are located on the xl-axis. by symmetry the force between

them must also be in the xl-direction. Thus. it is the J1- integral

that we must consider. From (2.52) and the path independence

2n

0

Next. we will approximate the integrand of J for small r1 by using-the

binomial expansion in (3.18). The result is. as :1 a 0 at fixed :11.

r2 ~ 22 + :1 cosel .

rlsinel

sine; ~ —. (3.26)

21

21 + rlcosel

cosez ~ = l.

22 + rlcosel

 

The displacement gradients of equation CLIZ) are likewise approximated

and they are. as r1 e 0 at fixed 81
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~ b_' - sine1 + rlsinel

“.1 2n r1 (2£)2' .

(3.27)

b cosel 1 -

u.2 ;’ r1 " 22' °

By using equation (3.13) and (3.27). we can now calculate the

corresponding value of the strain energy density W . it is. given as

rlsinel

cosel + sinel

~

2A ub

w — 1 29. '

r1 r1 (22)

 

Similarly the stresses 033 are approximated to the appropriate order by

using equations (2.48); they become .

 

 

ub sin 61 rlsinel

0 ~ -- c- + —— .

31 Zn r1 (22 )2

0 ~ ub C08 61 - :—

32 2“ r1 22 .

0n substituting equations (3.27) - (3.28) into the J-integral (equation

(3.25)) and separating the integrals into three parts. the result

becomes.
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J = Ja + Jb + Jc ’
(3.30)

where
c

21:

J8 = f W‘nlrldel ,

0

27v

J - 2 . _

b ' '”1““’1’1d51 ’ (3.31)

 

2

Jc : f ‘nzuu.1u.2r1d61 .

0

Here 111 = cos 61. n2 = sin 61. Using equation (3.28) and the first of

(3.31). Ja becomes.

21!
2

_ f ubz 1 Zlcosel + rlsin 61

 

C
.
.
.

I

_ e -

C08 1 2

2 2 c0691 rldel . (3.32)

8" r1
21'12.

0

ub2 n

=—' 0+E-0 ,

81r2

2

11b
 

8112.
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To calculate 3b' the second of the equations (3431) we first obtain u2.1

from equation (3.27).

 

2 b2 sxnzel rlzsin 9! 231a .1

0.1 -— "———-+-——-—Z—'——-——2— o (3.33)

4.2 r12 <22) (22)

On substituting this into Jb. we find

Zn

-,,b2 I sinzel rlzsin 31 Zsinze

3" _ "'——*——'——— coserde . (331.)
b .

(“1,2 0 :12 (22%. (2£)2 1 1 1

= 0

Finally the third equation in.(3.31L. Jc. is calculated by first

obtaining u.1u.2 from equation (3.27).

 

 

 

u . b2 sinelcosel + sinel + rlsinalcosel (3 35)

4772 r12 211']. 21(22. 2

We now substitute (3.35) into (3.31) and evaluate it
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2w -

_'-ub2 -sin61cosel sinel sinelcosel .

Jc ' 2 + + 2 Sinelrldel , (3.36)

471' 0 r12 (22-)1'1 (22)

.2

= ub O + 1— + O ,

4"2 21

_ ubz

But

We then obtain J by combining (3.32) - (3.34) and (3.36).

ub

411 2.

 

(3.37)

which is. of course. identical to the result (3.24) (when b1=b2=b)

obtained by the previous direct method.

 





m4

NQN:LDWMHLEBQBLEM

The boundary value problem for a single screw dislocation in an

infinite nnnlineazlx elastic medium is posed in section«kJ.of this

chapter. It is observed that the displacement field has the same form

as in the linear elastic case. found in Chapter 3. However. the stress

field depends on the particular choice of the constitutive law and

therefore. it is different from the one obtained in the previous

chapter.

In section 4.2. two screw dislocations are introduced in an

infinite nonlinearly elastic medium. The boundary value problem is

posed in terms of the field equation (ZJHJ and the appropriate boundary

conditions for the two screw dislocations. An exact solution to this

nonlinear boundary value problem is not determined. instead we obtain an

approximate solution as follows: our analysis is based on the

assumption that the introduction of a second dislocation causes only a

small perturbation in the pre-existing nonlinear field induced by the

first dislocation. This permits us to use the theory of small

deformations superposed on a large deformation to solve the problem.

Clearly. this approximation is very good at points far from the second

dislocation and is poor near that dislocation. However. since.nnz

primarxpnmsshezeiamfindthefmennnnanfthedialmatinnsand

since this can he stiffen in terms of. the nathzindanendent Lingual

43
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Length. we expect that this approximation will provide accurate results

for the force. A similar procedure was used by Abeyaratne [21] to

calculate the energy release rate in fracture mechanics.

Consider a screw dislocation at the origin of an infinite region R

made of homogeneous isotropic and incompressible elastic material.

Suppose that a cut is made on the half-‘plane x2 = 0. x1>0. the tap face

of the cut (x2 = 0+) is held fixed and the bottom face displaced by b in

the x3-direction. Let D be the cross-section of R. in the undeformed

state. in the plane x3 = O and Do is D with the line x2=0. xlip deleted.

The resulting deformation is assumed to be one of £ini;g,anti;plang

shear. In order to seek a solution. we set up (r. 6) as polar

coordinates (r>0. 0<6f2n) at the origin. The boundary value problem

for a single screw dislocation is then described by

3 A 3 A 2 “'6

—(.-w' (3+IVuI2) n.1,) +-—(w‘(3+ 1v“; )—> :0 onDo.

a: 36 r

u (r. 0+) ‘ U (to 2"-) = be r>0.

(4.1)

1

“9a +0(;) 38r‘*°°s

032 (to 0+) ‘ 032 (to Zn.) = 0. f>0.
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The first of the boundary conditions in (4.1) insures that

there exists a jump in the displacement equal to the amount b; the

second boundary condition states that the displacement gradient vanishes

as we further move away from the dislocation; the third states that the

tractions must be continuous across the dislocation line. Hotivated by

the nature of the displacement field in the corresponding linearized

problem. we again seek a solution of the form.

n = G (9)0 (4.2)

Substituting equation (4.2) into the boundary-value problem (4.1).

reduces it to

d - . 6.6
-— w',(3+ |Vu|2)—— =0,

(4.3)

G (0+) - 8 (2n-) = b .

Traction continuity condition is automatically satisfied. Integrating

(4.3). yields

A

u'(9)

 

‘3 C (1') s (4.4)
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the constant of integration C possibly being a function of n. In

(4.3) and (4.4) we have

2
s 1

IVUI2 = ‘3'3‘(6).

r

 

: (4.5)

Recall the definition of the material shear response T (K)

T<K>22n“w'<3+n2). -~<K<~. (4.6)

so that equation (4.4) then reduces to

{1' (e)

T ( )= C (r) . (4.7)

r

Recall (from section 2.4) that the shear response function T(K) is

invertible. Let K(T) be the inverse of ‘T('Q. Equation (4.7) thus

leads to

 

= K (C (r) ) (4.8)

Since 63(6) can only be a function of 6. it follows that.

rK (C(r))=K2, (4.9)
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where X2 is constant. From (4.8). (4.9)

{i (6) = K25 + K3 on Do; (4,10)

K3 is now a pure constant of integration. Finally. by applying the

boundary conditions in (4.3). K2 is evaluated. leading to the final

solution

. b

u (e) = '21" e on D . (4.11)
0

(Note that K3 refers to a rigid translation in the x3-direction and so

has been taken to be zero ). Equation (4.11) satisfies the second of

the boundary conditions u.cl +0é’). as r -+ an . It also happens to be

the same solution as in the linear elastic solution derived in Chapter

3.

We now obtain the stresses from equation (2.40). they are given in

polar coordinates as

b - 1

T93=FW(II);.

1:3 = 0 (4.12)

 

.
4

u U

l
l

:
:
l

N

)

A H

H

V
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all others being zero; in cartesian coordinates.

 

 

 

-b 5 sine

: — w. I s131 1' ( 1) r .

b A' cose

T32 = r W (11) r s (4.13)

2 2
b . b

r = ___.w'(1 ) -' = 3 + .

33 “.2 1 1_2 ‘ I1 “2,2

This concludes the solution of a screw dislocation in a nonlinearly

elastic material. One can readily see that the stresses in the finite

elastic formulations equation (4.12) - (4.13) are different than those -

in the linear solution. equation (3.4)-(3.5). They depend on the

form of §. the strain energy density; however, the displacement u is the

same as before. Note that for a Neo-Hookean material. W = u(Il-3). the

stresses T31. T32 in (4-13) coincide with the corresponding stresses in

the linearized problem. On the other band 133:0 here. while it is zero

in the linearized problem.

It can again be readily argued that the force on the screw

dislocation is zero for the same physical reasons as in Chapter 3. This

can. of course. be mathematically proven by calculating the J-integral

on a contour taken around the screw dislocation: the value of J becomes

zero 0
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mmmmm

Now consider two dislocations in an infinite region R made of a

homogeneous isotropic incompressibtle elastic material. The two

dislocations are located in the reference. configuration at (9.. 0)

and {-1. O) on the :1 axis. each has the same Burgers vector b53. We

set up polar coordinate systems (r. 6) (r>0 and -W<6§fl) centered at the

dislocation at (-i. 0) and (5.41). (E>0.0<¢52W) centered at the

dislocation at (9.. 0) Figure 4.1. The notation here is different from

that used in the linearized problem. The equilibrium equation (2.41)

for u(r. 9) is given as

 

a . 3u 2w'au 1 a . an

--(2w'-)+--—+---(2w'-)=o (4.14)

3r 3r r 3r :2 86 66

on Do where no is D with the twoiline segments x2=0. x12}; and x2=0.

x1 _<_-2. deleted. The boundary conditions are

u(r.1r)-u(r. -W)=b' forr>£ (4.15)
9

(on the dislocation line emanating from ('9. .0).) and

u (r. 0*) - u (r. o‘) = b _ for r > 2 2 . (4.16)
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(on the dislocation line emanating from (9. .0)). we also require that

the displacement gradient vanish at infinity. We further impose the

continuity of tractions across the twp dislocation lines:

1

u. *0(-)as r-u.
a, T’

032 (to 7) ‘ 632 (to ‘11): 0 for 1' > 2. s (4.17)

C32 (to 0+) ' 032 (to 0" ) = O for r > 22. o

In order to solve the boundary value problem (4.14) ' (4.17). we

employ the technique of small deformations superposed on large

deformations. The general theory of this technique in finite elasticity

is discussed in Green and Zerna [22] and Ogden [23]. The displacement

field in the presence of the two screw dislocations is assumed to be

approximately the same as the sum of the displacement of the single

screw dislocation in the non-linear field found in section (4.1). plus

some small perturbation J (r.6) caused by the presence of the second

' screw dislocation. Accordingly. the displacement field u (n99 is now

assumed to be of the form

b ~ ~| I ‘

u (r. 9) = *2" '3 + u (r. 6) . Wu; < < 1. (4.18)

where the first term is the displacement field if there was only the

single dislocation 81’- (‘2,0 ). Our aim is to substitute (4.18) into the

 



51

boundary value problem (4.14)- (4.17) and linearize it based

on lvu| < < 1. In order to do this we first linearize the various

quantities involved in our problem. ‘From (4.18) we have

Bu 3%

— g ,

3r 3r

(4.19)

au b 36

“" = -'+ -' on D.

36 2H 86

The first principal scalar invariant I1’ is calculated to leading order

from equation (2.23)

 

 

11=3+|m|2=10+1, (4.20)

where I0 and I are defined as

I ' 3 + b2- O

o 4w2r2

(4.21)

~ 2b 31':

I = .

2n r2 39

The strain energy density W(Il) and its derivatives with respect to 11’

are now represented by a series expansion about Io.
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G (11) = s (10 +.f) = Q (10) + §'(I°> f ,

fi' (11) = fi'(zo) + d" (10) f , (4.22)

‘3" (II) = ‘31! (Io) + ém (Io);f .

We can show by substituting (4.20) - (4.22) into equation (4.14) and

retaining the leading order terms. that the governing differential

equation (4.14) takes the form

  

2~ A! ~ AI
2"

. 3 u W b2 .. au 2W 1 2b2 .. 3 u

2w'—+[2-- 3211”] —+[—+— 2211“] —-2-=0 (4.23)

a:- r an 3r r2 r2 4n2r 36

where 11' and 1;" are evaluated at 10’ This is a linear differential

equation with mug coefficients depending on r. We define the

mantaheax modulus MK) by

u(K) = 2 4'<3+<2>. ~ (4.24)

Differentiating the material shear response function (2.44) with reapect

to <. gives the tangent shear modulus. T' (K) as

T'(~<)=2W'+4K2W". (4.25)

Solving for W' and W'8 in terms of T‘(~<) and M(»:) from the above

 



equations and then substituting them into the differential equation

(4.23). leads to the simpler form.

 

326' - 136 1 326

M(<) 2 + [2M0 - r'(r<)] - — + r‘(<) --— = 0. (4.26A)

3r r 3r r2 862

Here we have

h

K : —- (4.263)

Zwr

 

The linear differential equation (4.26A) for Ci (r.6) has coefficients

which depend on r. In the particular case of a pure power-law material

T(K)= AK“. this cancels out and (4.26A) becomes a re-scaled Laplace

_' equat ion .

If we keep in mind the fact that our goal is simply to calculate

the dislocation force J. and that to do this we will evaluate the J-

integral on an infinitesimal contour surrounding the dislocation at

(2,0). it becomes clear that we are only interested in the value of a

near (2,0 ). Therefore we now specialize the differential equation to

the region near the second dislocation located at (9 ,0). Letting r=22

in (4.263) gives



S4

 < = = K (= known constant) , (4.27)

‘1

and therefore the shear moduli. near (2. O). are

I" (K) r' ((0), (4.28)

M (K) M (‘0) .

Thus. we replace (4.26) by

 

 

326 1 ea 1 32.”:

140(0) —-2-+ [2 a (no) - 10%)] -T-+ : (<0) 7 ..2 = c. (4.29)
3r r cr r s:

in the vicinty of (i. 0).

we now write this equation in terms of polar coordinates (E. o).

(E>O. O<¢<2W)centered at the second dislocation. i.e. at (Z. 0).

Figure 4.2. We change the variables from (r. a) to (5.6 ) with the aid

of the transformation equations.



55

35 g+£ coso

3r

 

 

\[62 + £2 + Zlgcoso

3¢ laino

 

 

3r

‘5ng + 22 + 2£Ecos¢

BE

36

laino ,

3¢ 5 + £cos¢

36 E

 

_ 325 22 sin2¢

- ’

3:2 4(52 + 12 + 2£€cos¢)

 
 

3 <1) 22 (Esind) + zsindacoso)

 

52(52 + 22 + 2250081))

 

(4.30)
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The partial derivatives of 6 are then derived as

 
 

  

  

 
 

a (£+2cos¢)2 Zsino(€+£coso )

-( ~s) = ~s '2 ~s +

a, rut _ as “54

V €2+£2+252cos¢ : €Vf2+£2+251cos¢

lzsin2¢ 52+ Elcos¢ + izsinzo

1'). + E. +
00 g

£2\[Ei+122+22£ coso 5VE2+ £2+252 coso

5151M +2 zzsino cos¢

 

 

 

 

 

 
 

  

 
 

 

‘ ¢

£2 ’.J€_2+22+2£ (com ‘

(4.31)

a 13-9 2251:1243 A ~ asinugncoscb) -
— — =

u. +2
11. +

36 r 2 2 £5 5:

' \[2 +2 +25 2cos¢ E \lc—2+22+251cos¢

(5+ £cos¢)2 £cos¢(£+1coso)

as ‘1' Us +

¢¢ E

52 V €2+22+2€2cos¢ €sz+£2+2€1cos¢

-£sin¢ (5+2cos¢)-£2sin¢ case

i. .

¢
 

52 V 52+ 22+ZE£cos¢

 

an 33 33 Raine '

r - = -'(E+ icos¢) ' - .-

a: 35 Bo E
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Keeping in mind that g is small in the immediate vicinity of (t. 0). the

partial derivatives in (4.31) are. to the leading order.

‘

 

   

 

 

 

a 2 29. 51213 2099

'—'(r B. ) ~ Zoos p E - '. E. +

at r ’66 5 5°

. 2 . 2 .

lain ¢ ~ £31n o 2131n¢coso

u. + 5. + a. 9

2 ¢¢ E 2

a e 5 ¢

sin¢

fig: ~C08¢ figE " 6 80¢ , (4.32)

3 u.e 2 22 sin¢ cos¢

-- —— ~ 9. sin ¢ 5. + E. +

36 r 55 E E¢

l coaz¢ ~ 2 cosz¢ ~ 22 sin¢ cos¢ ~

2 "W + “’E ' 2 “’15 ’
E E E

32': 9.

_ = 9‘ Sin¢ f1. + - COB¢ Ti. 0

68 E g

Incorporating equations (4w32) into the differential equation (4~29) and

regrouping the terms; we get
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Z2[H(*°)c052¢ + t'(ro)sin2¢]fi. + 2:[t‘(<o)-H(<o)]
(fl

sin: cos: 5.5, + [t'("o)coszt * M(Ko)sinzf] fio¢¢ * £4.33)

€[t‘(Ko)coszs + M(<o)sin2o]§.s + 2[M(§o)- t‘(no)]sin¢ cos: 3.? = 0.

Equation (4.33) is a second order linear partial differential equation

with variable coefficients depending on both 5 and s . Note that if we

linearize the constitutive law by letting u(Kb) = T'(‘b) we arrive at

the Laplacefls equation in polar coordinates.

We seek a solution to (4u33) in the form

:1 (£03) =V(¢) . (4.34)

Upon substituting equation (4.34) into (4.33). we find

(r'(<°)coszo + H(Ko)sin2¢)v + 2(M(K°) - t‘(Ko))sin:cos¢V = 0 . (4.35)

or.

d '.

"‘ [(T' (Ko)coszo + M(r<o)sin2¢) V = O. (4.36)

d¢

Integrating this once gives
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' . 2C
V =

0
(4037)

(t'(<°} ‘ {40:03) cos2¢ *- T' (‘0) + like)

where C is a constant of integiation. On integrating (4.37). (See

Appendix A). we arrive at the solution.

c HG‘ ) P'W

Vb) = D + un‘l / ° tans + c ’
t'(<°)

Vmow (Kc) Vlflro) r ' (<0)

 

 

 

 

 

(4.38A)

where p’ is an integer to be chosen according to

(2p'- 1) 3— < a 5(2p'+1)1. (4.388)

2 2

for 0 < ¢ < 2 V .

We turn neat to the boundary condition (6.16). In view of (4.18) we see

that it requires

- u (r. 0+) + B (r. 0') = b for r>21 . (4.39)

which in viev of (4.34) requires
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- v (0*) + v (25') = 1:. (4-40)

(Recall that -TT<6<1r and O<¢<27r.) :. In order to impose (4.40) we need

V(0) and V(2'rf), when ¢ = 0 (4.383) requires that we take p' = O and so

(4.38A) gives

v (0*) = v. (4.401.)

When :9 = 2n . (4.383) requires that we take p.'= 2 and so.

ZWC

V (2n-) = D + (4.4013) 

 

{u(Ko) 1"(Ko)

From equations (4.40A). (4.403). (4.40). we obtain

 

b mum.) '

= \r" .° . > (4.41)C .

211‘.

Therefore. the solution V(¢) takes the form

b u(Ko) p'b

v (M = — tan-1 —— tan¢ + -—-+ D. (4.42)

2n T'(Ko) 2 .

or from equation (4.34)

 





 

 

2r Vr'(<o) 2

(13' =0for0<¢<"/2.

(4.43)

n 3w
I : _ - < — ’

fl p l for 2 < 45 2

. 3n
LP 2 2 for 2—- < 43 < 21! .

The traction continuity condition (4.17)3 is automatically satisfied.

Equation (4.43) represents the perturbation in the displacementlfield

due to the presence of the second dislocation. Note that the value of

the constant D cannot be found from this purely local calculation near

the dislocation (2. 0). However. D does not enter the results for the

dislocation force J and so it is not of concern to us. We can now

determine the force on the first dislocation using equation (4.43).

5.3. mm Exaluatinn

In order to calculate J. a path of integration must be chosen. In

this case a circular path is chosen to contain the second dislocation

and it is centered at (2. 0) the radius (5 of the circle is taken to be

infinitesimal. One can show that the linearizedyersion of J. is also

path independent.

The J-integral of (2.52) is rewritten as
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where

2n

Ja = f I) cosp gdp ,

0

2w

Jb : f - cos¢c31u.1€d¢ . (4.44)

O

7n

JC = [ '31“¢U32U.1€d¢ .

0

Substituting from equation (4.22). one can readily show that the first

term of the integral (4.44) is

271' er

Ja =f (GHQ) + ‘3'(I°)I)cos¢ Sdo =f §’(I°)Icos¢ ad¢. (4.45)

0 0

(The first term in the left hand side of (4.45) vanishes).

Substituting for I from equation (4.19) gives

 

A, I: BE

Ja = w'(Io)[ - c084 Eds (4.46)

1r!“ ae
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Next. we express E‘s/39 in terms of polar coordinates (6. ¢ ). By

 
 

 

(4.30).

l 35 85 21sin¢ 33 C + 21c0s¢

—. —— = —
+ —

° (4.47)

r 39 35 34 

V€2+412+4x€ cos¢ {\é 2+4£2+4££ coso

As‘E tends to zero. equation (4.47) reduces. to leading order. to

 

36 ~ 29. ~ _

—- = 22. sin¢ u. + — cos¢ u. . (4.48)

36 E 5 ¢

Substituting (4.48) back into the integral (4.46) and incorporating the

solution 3 given in equation (4.43). the integral becomes

2 21!
b A 2 d 21(5)

Ja = 2 W'(I°) f cos c -- can'l tan: d4 . (4.49)

41: 2. do T‘('<°) I

0

 

 

The integral in (4.49) is evaluated in appendix A: the result is

b2 V 140(0)

J = —H(s°) . (4.50)
a

4 z

' \/M(<o)+ Vr'('<°)
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The-second term in the integrand (4.44) can be similarly evaluated. It

turns out to vanish identically. Finally we evaluate the third term in

g

-

the integrand (4.44). Jc becomes

b2M(Ko) 1.2 \lmko)

J -— -—M(K°) - (4.51)
c

4st 4n!

)(MKO) + ‘/1'(Ko)

 

Thus the dislocation fem J is obtained by combining (4.50) and

(4.51). to get

 

2
bM(K)

4wl

b .

where KO = . and M( K0) is the secant modulus of shear.

4179.





In section 5.1 of this chapter. we linearize the nonlinear

expression for J to recover what was derived in chapter 3. while in

section 5.2 we discuss J for pure power law materials. Equation (4.52)

is the final expression for the force on a screw dislocation of strength

b due to a second screw dislocation. also of strength b. located at a

distance 21. It is also the force on a screw dislocation of strength b

placed at a distance 1 from a traction-free boundary. The formula

(4452) for the dislocation-force is given in terms of the magnitude b of

the Burger's‘vector. the distance.2 and the secant shear modulus M.

Finally we conclude our investigation in 543 of this chapter.

5 I 1' . l E] . .

In the case of an infinitesimal deformation. we have

W'(I ) = e (5.1)

where u is the infinitesimal shear modulus for the material.

we also have.

M (K0) = T'(Ko) = u . (5.2)

65
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By virtue of equations (4.25). (5.1). (5.2) and (4.52). it £01101" that

4
'.

ubz

4ni

 . (5.3)

which is the result obtained using the two different techniques in the

previous chapter.

1.2 hummuateriala

In this section we specialise the formula (4.52) for the

dislocation-force to power law materials. Recall that for our purpose

here. we can view the material as being completely characterised by its

response in shear. The class of "pure power law materials” is

characterized by the shear respdnse

T(K) K m

= -' a (5.4)

Te Kw

 

 

where > 0 and m >() are constitutive parameters. Figure SJ” An

m

‘*

alternative class of power law materials is the one proposed by Knowles

[11). The second model has the advantage that it linearizes well about

<=0. On the other hand. for large values of <. they are both of the

same form.
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For the pure power law materials described by the shear response (5.4).

one can readily show that the secant Shear modulus and the tangent shear

 

modulus take the form

, m-l

no.0) = j- ..o , (5.5)

i

and

I m-l

T'(Ko) = 'i'm ‘0 = m M(Ko) . (5.6)

' K
i

where K0 is described in (4.27) as KO = b/4n2 .

 

The force on a dislocation in pure power law form of materials can now

be calculated by substituting (5.5) in (4.52). it becomes

-1
21 ' m

J = b * KO . (5e7)

4N£KE

In dimensionless form. (5.7) becomes
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J b“

—— = —— .. (508)

T b (4n£)me
* *

3* =

A graph of J* vs 2 is shown.in Figurs 5.2. Note that as 2 increases the

force on a dislocation decreases which is expected since the effect of

the second dislocation is negligible when the separation is large.

Since the results here would be more accurate for larger values of

2. the range $2); > 1 is of primary interest here. We also note that for

fixed separation 1. the force between the dislocations decreases with

increasing hardening exponent m. In particular. this means that for

softening materials (m < 1) the force is greater than that predicted by

the linear theory; for hardening materials (m > 1) it is less.
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Harmer:

This study was concerned with estimating the value of the force between

two screw dislocations in an elastic solid. Since the linear theory of

elasticity predicted unbounded strains at a dislocation. the results

predicted by such a theory were suspect. The present study was carried

out within the fully nonlinear theory of elasticity.

Since the force between two dislocations was defined as the rate of

change of energy with respect to the separation between the

dislocations. one way to calculate this force was to first calculate

the total energy stored in the body. This was an almost impossible

task to carry out exactly in a fully nonlinear theory. However. we

observed that the value of the J-integral evaluated along a path

surrounding one dislocation was precisely equal to the magnitude of this

force. We exploited the path-independence of the J-integral in order

to obtain accurate estimates of the force between two dislocations in

the presence of nonlinearity.





APPENDIX A

In. ghapter 4 we have integrated We) as follows: Renal]. that.

. C .

17(0) 3 s (A.1)

(T'+M)+(T'-M)cos2¢

 

where C is a constant. By using trigonometry.

M ... __ . (4.2)
 

. c

v(¢) =-

2

 

Integrating (A. 2) gives .

  

4 - 4

. cl-g 1 c

v(¢)-v(o) = V(s)ds = - f d.+ — 4 . (A.3)

2' 2. 2M

0 o

Thegprincinal value of the integral in (A.3) is

i.

‘E

 

tan-1 ( L1? HIM) ' (A.4)

-1 r

and therefore .
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1--‘—' \lli‘.

C H ' _ /

v(v)-V(0) = -'-- T tan 1 ( g7 tans) -‘-JL' (A.5)
‘ 2 1" M . .‘E

-——-1
---l-l :1 TI

P|fit.l T. C

+ +_@ 9

M - 1' 2n

where the integer p' is tO-be chosen from

1 "I

(2p'-1)-<¢<(2 p‘ +1)- - (A.6)

2 2

Simplifying (A.5) shows that

C 1 -1 M C P."
V(¢) = V(0) + - tan ( -7 tans ) +‘- ' (A.7)

2 V Mt' T 2 V Mr'

We now can integrate.

2: 2" M

cos a - tan C anus] d3 = .1 2 ' (11.8)

0 d¢ T 0 1+ 3- tan ¢
T.

Using (A.7). (A.8) becomes,

23\( r'

________.
(A.9)
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