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ABSTRACT

RELATIVE PROJECTIVITY AND RADICALS IN

MODULAR GROUP ALGEBRAS

By

Dharam Chand Khatri

Let H be a subgroup of a finite group G and F a

 

field of characteristic p. Using J.A. Green's concept of

vertices, our first main result characterizes completely the class

.9 of those subgroups H of G for which every FG-module is

H-projective. The pair (G,H) is said to have a projective-

pairing if H 6.9. We show that the class .9 consists of

precisely those subgroups of G which contain a p-Sylow sub-

group of G (p = characteristic F). As it turns out, two other

classes - the class fi’ of subgroups H of G for which

Rad FG C (Rad FH)°FG, Rad denoting the Jacobson Radical of

the ring concerned, and the class C, of subgroups H of G

for which the induced FG-module MG = m 8>FG is completely

reducible for each irreducible FH-moduleF; - are almost equi-

valent to the class .9. We show that for normal subgroups these

three concepts coincide. Otherwise examples exist showing that

these three classes are distinct in general.

A (finite) group G is called a PRC-group if .9 = E’= Ca

Our main results may be summarized as follows: C is a PRC-group

over F of characteristic p if it satisfies any of the



  



Dharam Chand Khatri

following conditions: (1) p = 0 or p Y ‘G‘, (2) G is a

p-group, (3) G is a Frobenius group with kernel 6' and

complement a p-Sylow subgroup of G, (4) G is an extension

of a PRC-group by a p'-group, and (5) G is an extension of a

p-group by a PRC-group.

Finally, we attempt to spot out "Projective - Sensitive"

subgroups of G, which are the subgroups H of G satisfying

(i) Whenever (G,M) is a projective-pairing then M 2 H or

(H, H fl'M) is a projective-pairing, and (ii) If K s H and

 

(H,K) is a projective-pairing then there exists an M S G such

that (G,M) is a projective-pairing and K = M F1H.
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H SIG

FG

[G:H]

Rad FG

NOTATION AND TERMHNOLOGY

a finite group

H is a subgroup of G

H is a normal subgroup of G

Base field of characteristic p

Group algebra of G over F

index of subgroup H in G

order of G

the derived group of G

Center of the group algebra FG

a p-Sylow subgroup of G (p = characteristic of F)

H,K are subgroups of G and there is an x in G

such that x-le S K

x’le,x ec, HsG

the Jacobson Radical of the group algebra FG

dimension of the vector space V over F

direct sum

tensor product

92 ® FG, 91 being an FH-module, H S G

anFHG-module Mt considered as an FH-module, H S G

ideal in FG generated by {h-l‘h e H s G}

{g E G‘g - 1 E I, I an ideal in FG}

 



  



CHAPTER I

INTRODUCTION TO THE PROBLEM.AND PRELIMINARY RESULTS

§1. Introduction

Let H be a subgroup of a finite group G and F a

field of characteristic p. The H-projective FG-modules were

studied by G. Hochschild and D.G. Higman [7], [6]. Green used

this concept to classify indecomposable Fdeodules through the

 

theory of Vertices and Sources [4]. Using his concept of

Vertices, our first main result (Theorem 3) characterizes the

class ‘9 = {H < G‘every Fdeodule is H-projective}. For a sub-

group H in .9 we call (G,H) a projective-pairing. During

the course of our investigations we are led to study two more

classes: the class &> of subgroups H of G for which

Rad FG ; (Rad FH).FG and the class C, of subgroups H of G

for which mG = m.G>FG is completely reducible for each

irreducible FH-modifie m. We show that these three concepts

coincide for normal subgroups (Theorem 7). Otherwise examples

exist showing the distinctness of these classes (Theorem 8).

A (finite) group G is called a PRC-group over F if

.9 = E’= Ca Our results in Chapter III may be summarized as

follows: G is a PRC-group over F of characteristic p if

it satisfies any of the following conditions: (1) p = O or

p Y ‘G‘ — in this case each class being the class of all subgroups



   



of G, (2) G is a p-group - in this case each class consists

of singleton {G} only, (3) G is a Frobenius group with

kernel G' and complement a p—Sylow subgroup of G, (4) G is

an extension of a PRC-group by a p'-group, and (5) G is an

extension of a p-group by a PRC-group.

As a special case it follows that if G has a normal

p-Sylow subgroup then G is PRC and that if Rad FG is central

in PC then G is PRC. We also prove that if G is p-nilpotent

or supersolvable then E’ is a subclass of .9.

 

In the last chapter we attempt to spot out those sub—

groups H of G which are "Projective-Sensitive" in the sense 4

that they satisfy the following two conditions: (i) Whenever

(G,M) is a projective—pairing then M 2 H or (H, H FIM) is

a projective-pairing, (ii) If K S H and (H,K) is a projective-

pairing then there exists an M s G such that (G,M) is a

projective-pairing and K = M n H. We give a necessary and

sufficient condition for a normal subgroup to be projective-

sensitive. Also a necessary and sufficient condition for G

to have all its subgroups projective-sensitive is given. Finally,

we give an application which determines the defect groups of

blocks of G when G has all its subgroups projective-sensitive.

§2. Preliminary Definitions and Results

Let F be a field of characteristic p > O and G

be a finite group such that p divides the order \G‘ of G.

All modules under consideration will be right modules finitely

generated over F. Let Tl be a G-module over F or an



FG~module, where FG denotes the group algebra of the group G

over the field F. If H is a subgroup of G then. M! can

always be regarded as an FH-module in a natural way by restricting

the domain of operators to FH. The resulting FH-module is

denoted by' Th. Similarly if m is an FHdmodule, the induced

FG-module m 8>FG is denoted by mG, where 8> denotes the tensor-

product. FH

Then the following elementary facts about the induced

modules can easily be verified (See, for example, [4]):

 

(2.1) If m is FH-direct sum of two FH-modules m1 and m2.

then ERG = 91C: 3) mg : as FG-direct sum.

If R is another subgroup of G such that H C R C G,

then we have the transitive laws:

(2.2) an ) E m , and

(2.3) GHQH = {Uh .

Now let G = Hx1 U Hx U...U Hxn, n = [G:H] be a coset-

2

decomposition of G over H. We shall always take x1 = 1. Then

G n

(2.4) 91 = G) 2, in (8 xi as vector Spaces,

i=1

where, for any x E G, m G>x = {m48 x|m E M}. It is clear that

‘R 69 x is F(x-]‘Hx)-module and that dimFQn <8) x) = ding“. We

G
(n ) .

x'lux

can regard m 8>x as a submodule of From (2.4) it

follows that

(2.5) dimFmG = [G:H]-dimeR .



The mapping m -+ m 8 x (m G St) although it is not in

general a module-isomorphism, it does induce an isomorphism between

the submodule lattices of m and m 8>x. Thus

(2.6) SR (3 x is indecomposible if and only if in is so .

Also it can easily be verified that

I
I
!

(2.7) (fit (8 x)G ERG for any x E G .

We make

 

Definition 1. If T! and m are two FG-modules, we say that
 

MI is a component of m if TI is FG-isomorphic to a direct

summand of m.

Definition 2. Let H be a subgroup of G. An FG-module 2m
 

is said to be H-projective if every exact sequence

0 —+ 9t —* a8. -+ 931 -> 0 of FG-modules for which the associated

sequence of restrictions 0 I’mH a ih afmh a O splits over FH,

is itself split over FG.

Remarks. (1) H-projectivity is a Special case of "relative-

projectivity" defined by Hochschild [7]. An H-projective

module m1 is (R,S)-projective in the terminology of [7] by

taking R = FG and S = FH. iIn the general theory there is

also the dual notion of "relative-injective" modules.

(2) We observe that MI is [l]-projective if and only if it is

projective in the usual sense. In this sense, therefore, H-

projectivity is a generalization of (usual) projectivity.

Definition 3. Let H s G. We say that (G,H) is a projective-
 

pairing over F, if every exact sequence 0 -+ 91 .. {,4 {Uta 0 of



FG-modules for which the exact sequence 0 —o 91H -o £11 -+ 53]] -+ O

splits over FH, is itself Split over FG.

It follows immediately from Definition (2) above that (G,H)

is a projective-pairing if and only if every FG-module is

H-projective.

n

Definition 4. Let G = U Hx

i=1

of G over H. Then we can treat PC as a free FH-module with

X
 

i’ 1 = 1, be a coset decomposition

basis x1 = l,x2,...,x and every element of FG can be
n

written in the form .glpixi where pi's are in FH. The pair

(G,H) is said to havé—property p over F if ; pixi E Rad FG

implies each pi E Rad FH, where Rad denotes th; Jacobson-

Radical of the ring concerned.

In [11] it is shown that property p is independent of

the choice of coset representatives and that it is a transitive-

property in the sense that if K s H s G and the pairs (G,H)

and (H,K) have property 9 then the same is true for the pair

(G,K).

It is evident that the property p is equivalent to the

requirement Rad FG ; (Rad FH)-FG.

Comparing the dimensions, we see that if (G,H) has

property 9, then

(2.8) dimF(Rad FG) s [dimF(Rad FH)]°[G:H] .

D.G. Higman's Criteria for Heprojectivity. The following char-

acterization of H-projective FG-modules is due to D.G. Higman

[6]:

 



(2.9) The following statements for an FGemodule fl! are equivalent:

(i) M! is H-projective;

(ii) EU! is a component of mh)G;

(iii) There exists an FH-endomorphism n of Mt such that

where [xi] are the coset representatives of G

over H and Im’ is the identity map on TL

Note: Here we make the convention that if T]: gm... Tl is a map

then x“ and fix, x E G, denote the mappings which take

HIEEMI to mxfl and mnx respectively.  
In [4] Green gave the following definition of H-projectivity

which can easily be seen to be equivalent to those in (2.9).

(2.10) An FG-module TI is H-projective if and only if there

exists an FH-module m such that fit is a component of

926.

We now introduce a partial ordering S on the class of

subgroups of G by saying that H S R if fog some x E G,

x-le S R. It follows that if H SGR and R S H then H and

R are conjugate subgroups of G find we expregs this by writing

H = R.

G

From (2.2) and (2.7) we infer:

(2.11) If an FG-module TI is H-projective, then it is R-pro-

jective for every subgroup R such that H S R.

G

Now let P be a p-Sylow subgroup of G, then the index

n = [G:P] is prime to p and taking n = n-ILm in (2.9)(iii)



we obtain another theorem of D.G. Higman:

(2.12) Let P be a p-Sylow subgroup of G (p being the char-

acteristic of F) then every FG~modu1e is P-projective.

Combining (2.11) and (2.12) we obtain

(2.13) If H is a subgroup of G such that H 2 P then (G,H)

G

is a projective-pairing.

In order to save Space and avoid lengthy repititions we

abbreviate the following three classes of subgroups of G.

Definition 5. Let G be finite and F have characteristic p.

We denote by

9 = 9(G,F) = {H < G‘ (G,H) is a projective-pairing over F]

E’= EKG,F) = {H < G\(G,H) has preperty 9 over F}

CI: C(G,F) = {H < G‘For every irreducible FH~module m, the

induced Fdeodule TC is completely reducible}.

Note that here H < C means "proper" subgroup, {1} being

considered as proper subgroup.

For the class .9 we have

Definition 6. A minimal member B of .9 under the partial

ordering S is called a projective-foot of G and a maximal

element TG is called a projective-tOp of G.

These exist, because .9 is a finite class.

In the course of our investigations the notion of

Frobenius groups will be important which we define next.

Definition 7. A finite group G is called Frobenius group with
 

kernel M and complement K if G = KM, M'Q G, K H‘M = 1 and

K n KX = 1 forall x E G - K.

 



For group-theoretic prOperties of Frobenius groups we

refer to Scott [10].

The importance of representation theoretic properties

of Frobenius groups was realized by Wallace ([14] and [15]) in

connection with the centrality of the radical of the group

algebra. We state below his results which are pertinent to our

investigation.

(2.14) If ‘G‘ = pam, (p,m) = l, and Char F = p then

dimF(Rad FG) 2 pa - 1, the equality holds if and only

if G = PM, M a G, P n M = l, is Frobenius group with

kernel M and complement a p-Sylow subgroup P of G.

(2.15) Rad (FG) ; Z(FG) if and only if G is one of the

following three types:

(i) G has order prime to p

(ii) G is abelian

(iii) If P is a p-Sylow subgroup of G then G'P

is a Frobenius group with kernel G', the

derived group of G.

We will also use the result about the dimension of the

radical of FG due to Brauer and Nesbitt [2]:

*1 2
(2.16) dimF(Rad FG) = ‘G‘ - kglfk, Where f1,f2,...,fL are the

degrees of absolutely irreducible p-modular representations

occurring in the regular representation of G.

For most of the other so called "standard" results of re-

presentation theory we refer to the basic text by Curtis and

Reiner [3].

 



CHAPTER II

GENERALITIES ABOUT THE CLASSES 9, I? and a

In this chapter we characterize the class .9 completely

and show that when subgroup under consideration is normal in G,

the three properties are equivalent. We also prove, by exhibiting

examples, that the classes .9 and &> and .9 and C, are entirely

independent of each other while CI is a subclass of Rh

 

1|

§3. Proiective-Pairing

We devote this section to classify the class ~9 of all

proper subgroups H of G such that (G,H) is a projective-

pairing. By (2.13) if H 2 P, P a p-Sylow of G, then H 6'0.

It is proved in Khatri andGSinha [8] that the converse of (2.13)

is also true. For non-p-group G we state the main results of

[8] below and refer to the same for the proofs.

Lemma 1. Let H S S S G such that (G,S) and (S,H) are pro-

jective pairings over F. Then (G,H) is a projective-pairing.

Lemma 2. If (G,H) is a projective-pairing then for every sub-

group S of G such that S 2 H, (G,S) is a projective-pairing.

Theorem 1. If H E éKG,F) thin p divides ‘H‘.

Theorem 2. A projective-foot B of G is a p-Sylow subgroup of

G.

Theorem 3. ‘9(G,F) consists of precisely those subgroups of G

which contain a p-Sylow subgroup of G.

9
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Theorem 4. A subgroup T of G is a projective-top if and only

if it is a maximal subgrOup containing a p-Sylow subgroup of G.

Clearly T is not unique up to conjugacy while B is.

The results about p-groups we will include in the next

chapter along with the other results.

§4. Relation Between Projective-Pairing, Property 9 and Complete

Reducibility of Induced Modules for Normal Subgroups

Having characterized the class 9 in the above section,

we turn our attention to its connection with the representation

theory. As was realized by Sinha [12] and as we shall see later

that the property of complete reducibility of induced modules is

closely related with these concepts. We state below a theorem of

Sinha [12]:

Theorem 5. Let H be a subgroup of G. If for each irreducible

FH-module m, the induced module m6 is completely reducible

over FG then (G,H) has property p. Conversely if H S G

then (G,H) property 9 implies that MG is completely reducible

for every irreducible FH-module m.

We now prove the equivalence of projective-pairing and

property p for normal subgroups.

Theorem 6. If H is a normal Subgroup of G then (G,H) is a

projective-pairing if and only if (G,H) has property p.

2322;. First suppose H S G and (G,H) is a projective-pairing.

Let G = 3 Hxi, x

. 1
i=1

We observe that for h E H, xih = (pi(h)xi for all i, where each

= 1, be a coset decomposition of G over H.

mi(h) = xihx;1 induces an automorphism of the normal subgroup
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H. We can extend mi by linearity to an automorphism of FH.

Now let m be an irreducible FH-module. Then

ERG = @291 ® xi, where each in ® x1 is an irreducible FH~module.

Thus $61 is completely reducible over FH. Hence given any exact

sequence of FG~modules

the sequence splits over FH. Then by the projective-pairing

(G,H) the sequence splits over FG as well. Thus m9 is

completely reducible over FG.

 

Now let ; pixi E Rad FG, pi E FH. Since NC is

completely reducigle, we have mG(g pixi) = O. In particular,

we have 0 = (n ® 1) (5:3 pixi) = 2 nrlai 8 xi, n E m. This implies

that each npi = O fir all n :_m. That is, Mp1 = 0 for all

k

.E

.\

1. Since m was arbitrary irreducible FH~module, so each

pi 6 Rad FH. This gives prOperty p for (G,H).

Conversely suppose that (G,H) has property p. Let

M} be an irreducible FG-module. By Clifford's theorem we have

93% :91]. @oooGD‘Rka

where each mi is an irreducible FH-module. Consider m1. We

g G . .
have HomFHthflJh) HornFGCRlJR). Since ‘fil IS a component of

Th, the left hand side is non-zero and so is the right hand side.

Thus MI is a composition factor of mi. Since (G,H) has pro-

perty p, by Theorem 5, mg is completely reducible over FG.

Hence MI is a component of mi. Therefore, by Green's criteria

for H-projectivity, ml is H-projective.
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As MI is an arbitrary irreducible FG-module, it follows

that every irreducible FG~module is H-projective. In particular,

the trivial FG-module, F, is H-projective. Hence vertex of F -

namely a p-Sylow subgroup P of G - is contained in H. The

projective pairing for (G,H) now follows from Theorem 3.

This completes the proof of the theorem.

Corollary,l. If H S G such that (G,H) is a projective-pairing

then the representation of G, induced from an irreducible repre-

sentation of H, is completely reducible.

Corollary 2. A necessary and sufficient condition for (G,H)

to have a projective-pairing is that every irreducible FG-module

is H-projective.

Corollary 3. Let 'H S G and. $2 an irreducible FG~module. If

m is a composition factor of Eh then. MI is a composition factor

of NC.

Though some of the implications in the next theorem go

through without requiring the subgroup H to be normal in G,

we state our main theorem for normal subgroups.

Theorem 7. Let H SIG. The following statements are equivalent:

(1) H contains a p-Sylow subgroup of G.

(2) (G,H) is a projective-pairing.

(3) (G,H) has property p.

(4) For every irreducible FH-module m, the induced FG-module

m6 is completely reducible over FG.

Prggf. It follows from (2.13) and Theorems 3, 5, and 6.

We now drop the normality condition on the subgroup H

and ask ourselves the question about the relation between the

three properties under consideration when H is not normal in G.
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By Theorem 5, c. is a subclass of Rh Our next theorem shows that,

in general, the classes .9 and k’ are independent.

Theorem 8. In general, the property of projective-pairing and

property 9 are independent of each other.

nggf, 'We prove this theorem by exhibiting examples of group G

and subgroup H such that the pair (G,H) enjoys one property

but not the other.

Our first example Shows that projective-pairing does not

imply property p.

Take G = A5, H = A4, p = Char F = 3, where An denotes

the alternating group on n symbols. Since H contains a 3-Sylow

subgroup of G, (G,H) is a projective-pairing by (2.13). We Show

that (G,H) cannot have property 9. We may take F to be a

splitting field for G.

It is well-known that over complex field A has five
5

irreducible representations, say, T1,T2,T3,T4,T of degrees

5

1,3,3,4,5 respectively. Taking mod 3, it follows from the results

of Brauer and Nesbitt (Theorem 1 of [2] and a remark on p. 936

1,T2,Ts and T; remain

irreducible while T3 2 T] + T]. Since A5 has four 3-regular

classes, these are all the irreducible representations of A5

together with Theorem 5 of [1]) that :T

over the field F of characteristic 3. Now by Brauer and

Nesbitt's result (2.16)

dimF(Rad FAS) = 60 - (l2 + 32 + 32 + 42) = 25 .

Also since H = A4 is a Frobenius group with complement a 3-Sylow

subgroup of H,
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dimF(Rad FA = 3 - l = 2, by Wallace's result (2.14) .4>

Now if (G,H) has property p, then we must have

Rad FG C (Rad FH)-FG .

Considering dimensions, we must have

dimF(Rad FG) S (dimF(Rad FH))-[G:H] .

That is, we must have 25 S 2.5 = 10, which is impossible. Thus

(G,H) does not have property p.

Though we are not able to find an example to show that

 

property 9 does not imply projective-pairing in finite groups,

we give an example exhibiting the same when G is an infinite

group and 'H a subgroup of finite index.

Let Char F = 2 and G a group generated by elements

a and b subject to the relations b2 = l, babm1 = a-l. That

is, G is an extension of infinite cyclic group <8) by the

group <b> of order 2. It is known that Rad FG = (0) (See,

for example, Passman [9]).

Let H = <a>. Since Rad PC = (0), (G,H) has property

p over F. Now Gustafson [5] communicated to me that if G is

an infinite group and H a subgroup of finite index then (G,H)

is a projective-pairing is equivalent to the index [G:H] being

unit in the base field. In view of this result clearly (G,H)

cannot be a projective-pairing.

This completes the proof of the theorem.

Corollary . In general the classes 6’ and C. are independent

of each other.



15

Proof. By Theorem 8, 9 and R are independent. But a: ,9,

therefore .9 ¢ Ca The second example in the above theorem shows

that H = <a> E C“ by Theorem 5, but H (‘9.

This is what we wanted.

§5. Invariance of Projective-Pairing_and Property 9

In the previous sections we characterized projective-

pairing completely and showed that when H was normal subgroup

of G then projective-pairing was equivalent to property p.

 

Also we showed that these two properties are, in general,

independent of each other. A natural question now arises that

how far these properties can be carried over under different

algebraic transformation; for example, under taking direct pro-

ducts of groups or under homomorphisms. It is this question we

now turn our attention to.

(A) Field4ExtenSions
 

We Show that the extension of ground field F has no effect

on projective-pairing and when F is splitting field for G, on

prOperty p. Indeed,

Theorem 9. Let G be a finite group and F a field of char-

acteristic p > O and L2: F be a field extension. Then if for

a subgroup H of G (G,H) is a projective-pairing over F, it

has projective-pairing over L as well. If F is a splitting

field for G, the same is true for property 9.

nggf. The proof for projective-pairing is immediate, since the

characteristic of the field is preserved under field-extensions.
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We give a proof for property 9. For standard results over

radicals under field extensions we refer to [3].

Suppose now that (G,H) has property p over the splitting

field F and L D F. Writing G = U RX1, let 2 pixi 6 Rad LG

with each pi E LH. Since LH= FH 8%L, we may write,for each i,

p‘=§:Lij qij, LijEL’qijEFI-I'

Thus we have

ZjLijqijx i E Rad LG= (Rad FG) 8%L (See [3], §29) .

This implies that, for each j,

,_ , R d F 'th _ FH .E qlel E a G w1 qu E

The property 9 for (G,H) over F yields each

qij 6 Rad FH so that = 2 L .q_ E Rad FH 8%L = Rad LH, for

ij ij

each i. This is what we set out to prove.

(B) Direct-Products

We prove the following theorem:

Theorem 10. Let H1,H2

respectively. Then if (Gl,H1) and (GZ’H

be subgroups of the groups G1,G2

2) have property 9

(projective-pairing) so does the pair (G1 X G H X H2).

2’ 1

Proof. As before the proof for projective-pairing is easy; for

if Hi 2 Pi, i = 1,2, Pi = p-Sylow subgroup of Gi then

H1 X H2 2 P1 X P2 = p-Sylow subgroup of G1 X G2 g1v1ng what 1S

required. We turn to the proof for property 9.

n

Write G1 = iilHlxi and G2 = jglflzyj . Then we have
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n m

G XG = U U (H XH)(x.,y.).
1 2 i=1 j=1 1 2 1 J

Now it is well-known that F(G1 X G2) = FG1 <8>FG2 as

F-algebras and that Rad F(G1 X Gz) = Rad FG1 G>Rad FGZ' Suppose

now that 2 (p.,q.)(x.,y.) E Rad F(G X G ) where for each i,j,
i j 1 J 1 J l 2

’

(pi,qj) 6 F(H1 X H2). Thus i2j(pixi,qjyj) E Rad FG1 8>Rad FGZ’

3

which gives

2 pixi E Rad FGl’ ; qjyj E Rad FG with p, E FH

1 J 1

and qj 6 FR
2 l 2

Since (G1,H1) and (G2,H2) have property 9, so we have each

pi E Rad FH Hence for each i,j,1 and each qj E Rad FHZ'

® Rad FH = Rad Full X H2) ,
l

(pi’qj) E Rad FR 2

which is what we wanted.

(C) Homomorphic images

We have

Theorem 11. Let ¢z G1 ~»G2 be an epimorphism, H a subgroup

l

of G1 and H2 = ¢(H1). Then (G1,H1) projective-palring

implies that for (G2,H2). If, in addition, ¢ maps Rad FG1

onto Rad FG2 then property p for (Gl,H1) yields that for

(G2,H2).

Egggf. Once again proof for projective-pairing is immediate; for

a p-Sylow subgroup is mapped onto a p-Sylow subgroup under an

epimorphism and inclusion is preserved under ¢.

We now give a proof for property 9. Suppose that

G = U H x and G2 = U szj and that E q,y, E Rad FG , where

i . .l ' 21 J J J J
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qj 6 FHZ’ for all j.

Since ¢(Rad FGl) = Rad FG2 by hypothesis, there exists

an a 6 Rad FG such that ¢(a) = Z q.y.. Write a = 2 p,x,

l j J J i 1 1

with pi E FHl' Then, by virtue of property p for (G1,H1),

each pi is 1n Rad FHl' Let ¢(xi) = hiyi’ hi 6 H2. Then

ilqjyj = ¢(§ Pixi) = E ¢(pi)¢(xi) = E ¢<pi)hiyi '

This implies that for each j, qj = ¢(pj)hj. But

¢(pj) e ¢(Rad FHI) : Rad FH2.

Hence each . = . h. Rad FH .qJ ¢(pJ) J 6 2

This gives property p for (G2,H2) and thus completes

the proof of the theorem.

 

‘, {b



CHAPTER III

EQUIVALENCE OF THE CLASSES a. I? and c,

In the previous chapter we investigated projective-

pairing and its relation to property p and complete reducibility

of induced modules when the subgroup under consideration was

normal. We also saw in general prOperty p and projective-

pairing were independent of each other. However, as we shall

see, it turns out that in many cases these three classes of Sub-

groups do coincide with each other. We now give some sufficient

conditions on G which guarantee the equivalence of 65 E’ and

Cu One condition is trivial: p = 0 or p r ‘G‘: in this case

each class is the class of all subgroups of G.

§6. p-groups

For this class of groups it turns out that these three

classes are vacuously equivalent. Indeed,

Theorem 12. Let G be a p-group and F a field of characteristic
 

p. Then each of the three classes .9, EL C. is empty.

Proof. (1) The Class ,9. Suppose that there is a subgroup H
 

with (G,H) projective-pairing. Let L be a finite group with

*

order prime to p and let G be an extension of G by L.

* *

Then clearly G is a p-Sylow subgroup of G and so (G ,G)

is a projective-pairing. By transitivity (Lemma 1) we obtain

19
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the projective-pairing for (G*,H) which contradicts the fact

that G is the projective-foot of G* and thus completes the

proof.

(2) The Class fin Suppose there is an H with (G,H) property

9. We know that Rad FG = Ideal in FG generated by the set

[g - l‘g E G] is of dimension pn - 1 where \G‘ = p“. Suppose

‘H' = pk, k g n. We have Rad FG C (Rad FH)-FG. This gives

dimF(Rad FG) S (dimFRad FH)-[G:H]; that is, pn - 1 S (pk - 1)(Pn-k) =

n - pn-k. This implies that pn-k S 1, which is impossible since

H is a proper subgroup of G. Thus the only subgroup of G

 

having property 9 with G is the group G itself.

(3) The Class Ca Let H be a subgroup of G, H 6 C(G,F). It

is well-known that a p-group G has only one irreducible module

over the field F of characteristic p - namely the field F

itself, made into a G~module, by trivial action by elements of

G. Therefore by hypothesis, we must have

C _ . . .

(FH) — FC 6) FG 6-)...63 FG . [G.H] copies.

Thus FG is a component of (FH)G and so FG is H-projective,

contrary to the fact that F has vertex G [4].
G

The proof of the theorem is now complete.

§7. Special Type of Frobenius Groups

In this section we Show that if G is p-nilpotent Frobenius

group with kernel the normal p-complement then the three classes

.9, fi’ and c. coincide. For groups of this type, Wallace's results

[14], [15] are important to our investigation.
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The following lemma, essentially due to Wallace [15]

determines the radical of such a group.

Lemma 3. Let G = PM, M 4 G, P HIM = 1, be Frobenius group with

kernel, M and complement a p-Sylow subgroup P of G. Then

over a field F of characteristic p,

Rad FG = ( 2 x).aad FP = Rad FP.( 2 x)

xEM XEM

Egggf. By Wallace's result (2.14) we have dimF(Rad FG) = \P‘ - 1.

Let I be the subspace of FG spanned by {( 2 x)(g-l)‘g G P].

xEM

Clearly dimFI = \P‘ - 1. Since M 4 G, we have

 

Y’( E X) = Z x ( 2 X)-y, h( E X) = ( 2 X)h, y E M, h 6 P.

xEM xEM XEM XEM XEM

Therefore for h,g E P and y E M, we have

hy[( z x)(g-1)] ( z x)h(g-1) = ( z x)[(hs-1) - (h-1>]

xEM X€M XEM

and

[( 2 x)(g-1)]hy [(g-1)( 2 x)]hy = (s-1)h( 2 x)y

XEM xEM XEM

= [(gh-l) - (h-1)]( 2 x) = ( z x)[(gh-1) - (h-l)].

XGM XEM

Thus I is an ideal in FG. But it is well-known that Rad FP =

<g-l‘g 6 P>, hence I = ( 2 x)Rad FF is a nilpotent ideal of

dimension \P‘ - 1. Thisxproves the lemma.

We now prove

Theorem 13. If G = PM, M <1G, P FIM = l is a Frobenius group

with kernel M, then the three classes .9, fi’ and C. coincide.

2392;. First we observe that G' = M (Wallace [15]) so that by

(2.15) Rad FG : Z(FG).
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Now suppose that (G,H) is a projective-pairing. We

wish to show H E Ca In the factorization G = PM, pick a

 

p-Sylow subgroup P which H contains so that H = P(H H M)

is Frobenius group with kernel H n M. Let

G = U Hxi and M = U (H n M)yj

j

be coset decompositionsof G and M respectively. By Lemma 3,

a typical element r of Rad FG can be written as

r = a( Z x) = a( 2 h)(2 y_), where a E Rad FP .

XEM hEHrM j J

 

Let H be an irreducible FH-module. Since Rad FG is

central, we have

mG-r= (@zm®xi)r=®zm®xir=@2m®rxi

i i '1

ezm®[a( z: h)(zy.)]xi

i hEHr‘M j J

-@zm-[a( E h)]®(2y.)xi

i hEHFM j J

= 0,

since a-( 2 h) E Rad FH, H being Frobenius with kernel H 0 M,

hEHflM G

and m irreducible over FH. Thus m is completely reducible

over FG.

Since m was arbitrary, H 6 Ca

We have thus shown the inclusion 9 C Ca Since Ca; E

always by Theorem 5, our proof will be complete if we prove

gag.

Let H be a subgroup of G with (G,H) property 9.

Then p divides ‘H‘; for it not, then FH is semi-simple and
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if E pixi E Rad FG, pi E FH, G =lJ Hx ° coset decomposition of

i
. i'

G over H, then each pi E Rad FH = (O), and this implies semi-

simplicity of FG, contrary to our hypothesis that p ‘ ‘G‘.

In the factorization G = PM, pick a p-Sylow subgroup P

such that H n P is a p-Sylow subgroup of H. Then

= (H H P)~(H FIM) is a Frobenius group with kernel H FIM. Let

= U (H n P)xi and M = U (H FIM)y,

i j J

be coset decompositions of P and M respectively. We first

show that G = U Hy,xi is a coset decomposition of G over H.

isj

To see this, first observe that [G:H] = [P: H 0 P]-[M: H FtM].

Suppose now that 11ij1 =Hy x then

Lk’

1)€H= (H nP)(H mu).
1

(XiXk1k)(XX1ijlxk13";

Therefore, there exist a E H n P and b E H fl‘M such that

-1 -1-1 _
(xixklki)(xx ijixky&)—ab

. . ‘1 'l _ '1 -1 -1 -l J
and thlS gives a (xixk ) — b(xkxi ijixk yL ) E P FIM - {1].

1 6 H FIM. This givesHence Xixk1 E H n P and xkxi yj x

= k and consequently j = L. Thus {Hiji} are distinct and

ixk yL

cardinality argument proves our assertion.

Suppose that (G,H) does not have projective-pairing.

Then there exists g E P such that g 4 H. Write g = hpxo

where hp 6 H H P and xO # 1 is in {xi}. Then by Lemma 3

= (g-l)( 2 x) E Rad FG .

XEM

We now have
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r=(hX-1)(ZX)=hX(2X)-(ZX)

9° x€M P°xeM x€M

=h(2x)x -(2x), since M<IG

p XGM o xEM

h( 2 h)(2y.)x -( Z". h)(}3)'.)

pheflm 33° h€HnM j]

2[h( z h)]y.Xo+2['( 2 my. .

J‘ phEHOM J j h€HFM J

Since {iji} are coset-representatives of G over H

and (G,H) has property p, we conclude that

h ( E h) and 2 h

p hEHrM half“

are in Rad FH. Now let F be the trivial H-module. We then

have F.( 2 h) = 0. In particular,

hEHflM

0:1.( 2 h)= 2 1=|HnM\,

hEHflM hEHflH

which is a contradiction, since (‘H F\M\,p) = 1.

This completes the proof of the theorem.

Remark. It should be observed that for the inclusion E’;.9 we

only require G to be p-nilpotent.

§8. Extensions by Groups of Orders Prime to p

In the last two sections we showed the equivalence of

.9, E’ and C, for two types of groups. We now extend the class

of groups for which .9 = E’= Ck To save space and avoid lengthy

repetitions we make

Definition 8. A finite group G is called PRC-group over F if

‘9(G,F) = EKG,F) = C(G,F)~
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We start with

Lemma 4. If H 9 G, then Rad FH c Rad FG.

Proof. Let Ml be an irreducible Fdeodule. Since H 4 G,

Clifford's theorem gives flh = C); mi, each mi being an

i

irreducible FH-module. We then have

:m-(Rad FH) =th-(Rad FH) = (.9 z m,(Rad FH) = o .
i 1

Since at was arbitrary, we obtain the desired result.

We next prove

Theorem 14. An extension of a PRC-group by a group with order

prime to p (p = Characteristic F) is a PRC-group.

3322:. Let G be an extension of a PRC-group L by a p'-group.

We wish to show 9(G,F) = EKG,F) = C(G,F).

Since Cr; E always by Theorem 5, it is sufficient to

show 9:0 and REP.

G F C G F : Let H be a subgroup of G with (G,H) a

projective-pairing and let m be an irreducible FH-module. Then

H 2 P, a p-Sylow subgroup of G; which is also a p-Sylow sub-

group of L, since [G:L] is prime to p.

Since L 4 G, H D L 4 H and so Clifford's theorem yields

mHnL = ® 2 mi ,

1

each mi being irreducible F(HflL)-modu1e. By hypothesis for L,

since H 0 L 2 P = a p-Sylow subgroup of L, each mg is completely

reducible over FL. Now L < C and (G,L) is a projective-

pairing. Therefore, by Theorem 7, each mi = CRE)G is completely

reducible over FG. This shows CRHflL)G =(3 E m: is completely

1

 

|

l
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reducible over FG.

Now (H, H n L) is a projective-pairing. Therefore, by

Higman's criteria (2.9)(ii), m is a component of (erL)H. This

in turn implies that NC is a component of completely reducible

FG-module (9t.l_mL)G = ((mHflL)H)G; thus proving its complete-

reducibility over FG.

Since m was arbitrary, H E C(G,F).

E(G,F) :9(G,F): Let H < G with (G,H) prOperty p. Let P

be a p-Sylow subgroup of G such that H rlP is a p-Sylow of

H. Since H fl'L is a normal subgroup of H and H F\L 2 H n'P =

a p-Sylow subgroup of H, by Theorem 7, (H, H n L) has property

9. Transitivity of property p yields the same for the pair

(G, H H L).

Suppose now that ; pixi E Rad FL with pi E F(H n L),

where L = q (H flL)xi isla coset-decomposition of L over

H n L. We may also take {xi} to be some of the coset repre-

sentatives of G over H n L. Since L 4 G, Rad FL C Rad FG

by Lemma 4 and so ; pixi E Rad FG with pi E F(H n L). By

above (G, H H L) Has property p, hence each pi E Rad F(H n L).

This gives property 9 for the pair (L, H H L).

By hypothesis for L, (L, H n L) is a projective-pairing.

Hence H n L, and therefore H, contains a p-Sylow subgroup of

L, which is also a p-Sylow subgroup of G. Thus H 6 éKG,F).

The proof of the theorem is now complete.

Corollary 1. If P‘d G then G is PRC.

Proof. Clear from Theorem 12.

Corollary 2. If Rad FG C Z(FG) then G is PRC.
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Pgoof. By Wallace's result (2.15), L = G'P is a Frobenius group

with kernel G' = L' and complement a p-Sylow subgroup P of G.

But L is PRC by Theorem 13 and ([G:L], p) = 1, so the above

theorem is applicable.

Corollary 3. If ‘G| = pq, p,q being primes, then G is PRC.

Pgoof, If G is abelian or if G is non-abelian and p > q,

then P 4 G and Corollary 1 above is applicable. On the Other

hand, if G is non-abelian and p < q, then G is Frobenius

group with P as a complement (Scott [10]) and Theorem 13 takes

care of the proof.

Corollary 4. If \G‘ = pqz, p X q - 1, then G is PRC.

3529:. It is easy to see that G satisfying the above hypothesis

has either P normal in G or is a Frobenius group with

complement P and in both cases we are done.

Corollary_5. If G is supersolvable then property 9 implies

projective-pairing.

Pooof. If p is the highest prime dividing the order of G

then Pid G and we are done by Corollary 1 above. On the other

hand, if p is the smallest prime divisor of ‘GI, then G is

p-nilpotent and property p implies projective-pairing for

p-nilpotent groups follows from the Remark following Theorem 13.

Suppose now that p is an intermediate prime divisor of ‘G‘.

In this case, there exists a normal p-nilpotent subgroup K of

G (Sylow Tower Theorem: See Scott [10]) and G is an extension

of K by a p'-group. The result now follows from the Remark to

Theorem 13 and the above theorem.
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§9. Extensions of o-grouos

The aim of this section is to further extend the class

of PRC-groups. In fact, we prove that any extension of a p-group

by a PRC-group is PRC.

Let H be a subgroup of G. We denote by ”C(H) the

ideal in PC generated by the set {h-l‘h 6 H}. Similarly if

I is a two-sided ideal of FG then the set {g e G‘g-l e I}

is denoted by mél(I). It is easy to check that flé1(1) is a

normal subgroup of G.

It is well-known that if Q: FG a F(G/H) is the map

obtained by extending the canonical map G a G/H (H 4 G) to

FG by linearity, then Ker Q = mG(H) and so FG/mG(H) E F(G/H).

We now prove

Lemma 5. Let P be a p-Sylow subgroup of G. Then

m-1(Rad FG) = c (P)G oreG

2329:. Let A = M61(Rad FG) = {g E G‘g-l E Rad FG}. Then A 4 G,

since Rad FG is a two-sided ideal in FG. Since Core P 4 G,

by Lemma 4, Rad(Core P) ; Rad FG. But it is well-known that

Rad(Core P) is ideal in F(Core P) generated by

{h-l‘h 6 Core P}, as Core P is a p-group. Hence for each

h 6 Core P, h-l E Rad FG and so Core P C A.

For the reverse inclusion, observe that for g E A, g-l

is nilpotent. Thus there exists a least integer k such that

o = (g-1)k = gk - (1;)gk'1 +...+ (-1)k‘1-1 .
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Since FG is free over F, each (E) E O(mod p),

i = 1,2,...,k-l and gk = 1. In particular, (T) = k E 0(mod p)

and so p‘k. Thus g E A implies p ‘ \g‘. Suppose that

‘Al = pb-m with (p,m) = 1. If m > 1 then A has elements

with orders not divisible by p, contrary to what we have just

proved. Hence A is a p-group. Since A is normal p-group

and Core P C A we have A = Core P and this proves the lemma.

We can now prove

Theorem 15. Let H < G such that (G,H) has property 9. Then

H 2 Core P.

Egoof. If the assertion of this theorem is false then there is

a g 6 Core P and g é H. Write G = G Hxi, coset decomposition:

so that g = hxi for some h E H and 1x,L # 1. By Lemma 5 we

have g - 1 = hxi - 1.1 6 Rad FG. Since (G,H) has property

p, we must have h,1 E Rad FH which is impossible.

This completes the proof.

Before we come to the main theorem, we need

Lemma 6. Let I be a nilpotent ideal in a ring R and

m: R a R/I the natural map. If Rad R denotes the nilpotent

radical of R then m(Rad R) = Rad(R/I) = (Rad R)/I.

Egoof, We always have m(Rad R) C Rad(R/I). Now let

a + I E Rad(R/I). Then for every b + I E R/I,

(a+I)(b+I)=ab+I

is nilpotent; thus there is an integer m such that

m m m .
(ab + I) = (ab) + I = I. Therefore (ab) E I. But I is

a nilpotent ideal of R, hence ab is nilpotent. Since b in
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R was arbitrary, a E Rad R and so ¢(a) = a +-I 6 Rad(R/I).

This proves the first equality. The second is clear, since

Ker ¢ = I and I c Rad R.

Remark. Actually our proof shows little more than the assertion

of the lemma. In fact, we have shown that a +*I is in Rad(R/I)

if and only if a is in Rad R. We shall use this feet.

We now come to the main theorem of this section.

Theorem 16. An extension of a p-group by a PRC-group is PRC.

Eroor, Let G be an extension of a p-group A be a PRC-group.

Once again we prove the inclusions 9 C (L and ,Q s: 9.

9KG,F) nggG,F): Let (G,H) be a projective-pairing. Then

H contains a p-Sylow subgroup of G and hence contains A.

Since A.4 G, mA(A) : Rad FG by Lemma 4 and so if m, is an

irreducible FH~module, each a E A acts trivially on m and

m can be regarded as an irreducible F(H/A)~module. Now

clearly (G/A,H/A) is a projective-pairing; hence, since G/A

is PRC by hypothesis, the induced F(G/A)-module

ERG/A = ‘Jt a F(G/A)

F(H/A)

is completely reducible over F(G/A). Since a E A acts

/A
trivially on. m, we can vieW' MG as FG~module in a natural

way by defining (n ® Ag)h = (n ® Ag)Ah, n E m, g,h E G.

m,
Define cp: ERG 91G by cp(n ® Ag) = n ® 3 and extend

by linearity. Since

«maAam nanaamm=mmeia>=n®a=cn®ah

cp(n 69 Ag) -h



 



31

and since (obviously) m is l-l and onto, m is an FG-

isomorphism.

Thus mG is completely reducible over FG implying

H E C(G,F).

E(G,F) CQ(GLF): Let H be a subgroup of G with (G,H)

having prOperty 9. Then H 2 Core P 2 A by Theorem 15. Let

W: G a G/A be the natural map. We extend m to PC by

linearity. Let G = U Hxi be coset decomposition of C over

i

H. Then

G/A = u(H/A)Axi

1

is a coset decomposition of G/A over H/A. We now show that

(G/A,H/A) has property 9.

Suppose that g piAxi E Rad F(G/A), pi E F(H/A). Extend-

ing m to group algebfa FG, there exist pi E FH such that

cp(pi) = 131. Thus no; pixi) e Rad F(G/A) = Rad(FG/QIG(A)). Since

Ker m = mG(A) ; Rad FG, Lemma 6 is applicable and we conclude

that ; pixi E Rad FG, with pi E FH. By hypothesis (G,H) has

1

property 9 and so each pi is in Rad FH. Hence

Pi = ¢(Pi) E m(Rad FH) = Rad F(H/A).

This shows that (G/A,H/A) has property 9.

Since G/A is PRC by hypothesis, (G/A,H/A) is a projective-

pairing. Thus H/A contains a p-Sylow subgroup P/A of G/A,

P being a p-Sylow of G. Hence H 2 P and (G,H) is a pro-

jective-pairing.

This completes the proof of the theorem.
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Corollary 1. If P <IG, then G is PRC. (Corollary 1 to Theorem

14).

Corollary 2. If ‘G‘ = p2q, then G is PRC.

ZEBQE: Let np denote the number of p-Sylow subgroups of G.

If p > q then np E 1(mod p) and np‘q yields np = 1. Thus

P44 G and we are done. Suppose that p < q. Then nq = l or

p2. If nq = p2 then np = l and so P14 G and we are done

again. If nq = 1 then G = PQ, Q 4 G, Q the q-Sylow subgroup

of G. Suppose now that G has an element x of order pq.

Then H = <x>- has index p, the smallest prime dividing ‘6‘;

hence Hi4 G. Since H is cyclic, K = <xq> is a normal p-sub-

group of G and G is an extension of K by a group of order

pq. But by Corollary 3 to Theorem 14, a group of order pq is

PRC, hence G is PRC by above theorem. In case G has no

element of order pq, then every element of G is either a p-

or a p'-e1ement and so G is a Frobenius group with Q as kernel

and P as complement (Scott [10]). That G is PRC follows from

Theorem 13.

 



 



CHAPTER IV

PROJECTIVE-SENSITIVITY

§10. Proiective-Sensitivity

We start with

Definition 9. Let H be a subgroup of G. We call H to be
 

projective-sensitive if the following holds:

(i) Whenever (G,M) is a projective-pairing then M Q'H or

(H, H FlM) is a projective-pairing.

(ii) If K s H and (H,K) is a projective-pairing then there

exists an M s G such that (G,M) is a projective-pairing

and K=MflH.

In this chapter we attempt to characterize projective-

sensitive subgroups of an arbitrary finite group and give examples

to show the limits of the results proved. We also give a

necessary and sufficient condition for a group to have all of its

subgroups projective-sensitive.

Before coming to the main results, we prove two lemmas:

Lemma 8. If H 9 G then condition (1) of Definition of projective-

sensitivity is satisfied.

2322;: Let M S G be such that (G,M) is a projective-pairing.

If M.é'H then, since M contains a p-Sylow subgroup P of G

and H is normal in G, H n M contains a p-Sylow subgroup H H P

of H and so (H, H FlM) is a projective-pairing.

33
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Lemma 9. Let H < G. If K < H and is such that K contains

a p-Sylow subgroup of H and PK is a group where P is a

p-Sylow subgroup of G containing the p-Sylow subgroup of K

(of H), then PK H H = K.

Proor. Clearly PK 0 H 2 K. We prove the inverse containment.

Suppose lP‘ = pa, \Hl = pb-s, (p,s) = 1, b s a and ‘K‘ = pb-L,

(P,&) = l, L‘s. We have

P - K pa-pbi a

WN= PflK= b =PW'
9

Now \PK n H| divides both \PK‘ = paL and \H| = pb-S. Since

{‘3 and b s a, (paL,pbs) = pbt. Since PK 0 H already has K

of order pb-L we obtain PK n H = K.

This proves the lemma.

We first give a necessary and sufficient condition for a

normal subgroup to be projective-sensitive.

Theorem 17. Let H 4 G. Then H is projective-sensitive if

and only if for all subgroups K of H with K 2 Hp’ a p-Sylow

of H (of K), PK is a group, where P is a p-Sylow subgroup of

G containing Hp; p being the characteristic of F.

Proor. Suppose first that PK is a group with P and K

satisfying the condition of the theorem. We show that H is

projective-sensitive. In view of Lemma 8 it is sufficient to

verify condition (ii) of the definition of projective-sensitivity.

Suppose that (H,K) is a projective—pairing. By hypothesis PK

is a group, P being appropriate p-Sylow subgroup of G. Taking

M = PK it is clear that (G,M) is a projective-pairing and

Lemma 9 verifies what is required.
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Conversely suppose that H 4 G is projective-sensitive

and K < H such that (H,K) is a projective-pairing. By

condition (ii) there exists M s G, M 2 P and M n H = K. Since

H 4 G, H fl‘M = K 4 M implying M C NG(K) = normalizer of K in

G. Therefore P C NG(K) and hence PK is a group. This is

what we wanted to prove.

Remark. We may take PK as a choice for M in condition (ii)

of projective—sensitivity.

Corollary 1. Let H 4 G with Hp a p-Sylow subgroup of H.

If [Hsz] is a prime then H is projective-sensitive.

groor. In this case if (H,K) is projective-pairing then either

K is a p-Sylow of H or K = H. In both cases PK is a group,

P being appropriate p-Sylow of G, and the above theorem applies.

Corollary 2. If H 4 G such that every subgroup of H is

normal in G then H is projective-sensitive. In particular,

if H is cyclic normal then H is projective-sensitive.

Proor. Clear from above theorem.

We now drop the condition of normality on H and the

next theorem gives some non-normal projective-sensitive-groups.

Theorem 18. (1) Let (G,H) be a projective-pairing over F

of characteristic p. Then H is projective-sensitive if and

only if H contains all p-Sylow subgroups of G (p fixed).

(2) A p-subgroup H in G is projective-sensitive if and only

if H C CoreG(P), P being a p-Sylow subgroup of G.

Proor. (1) Suppose H contains all p-Sylow subgroups

{pxlx 66, P fixed} of c. If M< c is such that (G,M) is

x

a projective-pairing then M 2 P for some x E G and so

i

i
l

J

\

 



 



36

H FIM 2 PK = a p-Sylow of H giving projective-pairing for

(H, H n.M). Thus condition (i) of projective-sensitivity is

satisfied. Next if (H,K) is a projective-pairing then

K22 PX, some x E G. Taking M = K we have (G,M) projective-

pairing and 'M n H K n H = K verifying condition (ii).

Therefore H is projective-sensitive.

Conversely suppose (G,H) is a projective-pairing and

there exists an x E G such that H 2 PX. We show that H is

not projective-sensitive. Now H 2 Py some y E G. If M = Px

then (G,M) is a projective-pairing but neither M 2 H nor

(H, H DIM) is a projective-pairing; the first statement

M 2 H is clear while for the second H HIM f PX, and so H n M

does not contain a p-Sylow of H yielding H to be non-

projective-sensitive.

(2) Suppose that H C Core P. Wish to show H is projective-

sensitive. If (G,M) is a projective-pairing then M.2 PX 2

Core P 2 H and so condition (i) is true. Also (H,K) pro-

jective-pairing implies K = H, so we may take M = P. Then

(G,M) is a projective-pairing and M,fl H = H = K , thus

verifying (ii). Therefore H is projective-sensitive.

Conversely, suppose a p-shbgroup H is projective-

sensitive and there exists an x E G such that H i PX. Then

(G,Px) is a porjective-pairing but neither Px 2 H nor

(H, Px n H) is a projective-pairing, since for a p-group H,

(H,K) projective-pairing implies K = H. This violates the

condition (i) of projective-sensitivity.

The proof of the theorem is now complete.
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Theorem 19. Let Hp be a p-Sylow subgroup of H. If

Hp C Core P and [Hsz] is a prime then H is projective-

sensitive.

Proor. Let M S G with (G,M) projective-pairing. Then

M 2 PX, some x E G, P a fixed p-Sylow of G. We have

HflM2HflPx2HflCoreP2Hp andso (H,HnM) isapro-

jective-pairing. This verifies condition (i) of projective-

sensitivity. For condition (ii) note that if (H,K) is a

projective-pairing then either K is a p-Sylow of H or

K = H. In the former case take M = apprOpriate p-Sylow of

G and in the latter case take M - G. It is trivial to verify

that M has properties required by condition (ii) of pro-

jective-sensitivity.

Thus H is projective-sensitive.

Corollary . If H is of prime order q, q # p, then H is

projective-sensitive.

We are now in a position to show by means of examples

that normality of H is essential for both the directions in

Theorem 17.

In G = A4 over field F of characteristic p = 3,

H = 22 is projective-sensitive (but not normal) by above

corollary but (H,H) is a projective-pairing and PH is not

a group (P a 3-Sylow of G), as its order is 6 and A4 has

no subgroup of order 6.

For the other direction take H to be a p-group not

contained in Core P and let H C P. Then (H,H) is a pro-

jective-pairing and PH = P is a group, but H is not
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projective-sensitive by Theorem 18(2).

We have seen in the above theorems some projective-

sensitive subgroups of G. However, it may happen that G con-

tains many more projective-sensitive subgroups. Indeed,

Theorem 20. G has every subgroup projective-sensitive if and

only if P 4 G, P a p-Sylow of G, p = characteristic of F.

_P_roo_f_. Suppose, first, that P <1 G and let H s G. By

Theorem 18, if H 2 P or H C P then H is projective-

sensitive. So suppose H is not one of these.

We first verify condition (i). If p X ‘H‘ then FH

is semi-simple and so (H, H FlM) is a projective-pairing for

all M C G and so (i) is trivially true. If p ‘ |H|, then,

since P 4 G, the p-Sylow subgroup Hp of H is contained in

P and so if (G,M) is a projective-pairing then M 2 P

implying H 0 M 2 H H P = Hp. Hence (H, H 01M) is a pro-

jective-pairing.

Thus in all cases condition (1) is satisfied.

Next we check condition (ii). Suppose (H,K) is a pro-

jective-pairing, K S H. Since P 4 G, PK is a group. Taking

M = PK, clearly (G,M) is a projective-pairing and, as was

the case in Lemma 9, M H H = K.

This completes the sufficiency part of the theorem.

Suppose now that G has every subgroup projective-

sensitive and P<4 G. Then there exists an x E G such that

P # PX. By hypothesis P is projective-sensitive. Let

M = PK. Then (G,M) is a projective-pairing but neither M.2 P

nor (P, P H M) is a projective-pairing. This violates the
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condition (i), a contradiction.

The proof of the theorem is now complete.

Our next theorem describes the representations of a group

having all its subgroups projective-sensitive.

Theorem 21. If G has all its subgroups projective-sensitive
 

over a field F of characteristic p then every irreducible

representation of G over F occurs as a component of (transitive)

permutation representation induced by the trivial representation

of a p-Sylow subgroup of G. Consequently, degree of each

irreducible representation of G is prime to p and each block

of G is of lowest kind with p-Sylow subgroup as its defect

group.

Proor. If G satisfies the condition of the theorem then by

Theorem 20, G has unique p-Sylow subgroup P.

Let T be an irreducible representation of G afforded

by (irreducible) FG—module mt By Clifford's theorem we have

fl$ E C>2 Fi’ each Fi = F: the trivial P~module. This gives

1

CHIP)G 5 G) 2, FE. Now since 33! is P-projective, ‘m is a

i

component of Gm$)G and therefore, since MI is irreducible,

there exists an i such that M! is a component of F? = FG.

But FG is a module which defines the representation of G as

permutations of the right cosets Px. Hence T occurs as a

component of the (transitive) permutation representation afforded

by FG. This proves the first part of the theorem.

II

|
-
‘

0Since dim?FG = [G:P], we infer that (dflmgkqfl

Therefore defect of each block of PC is a, where \G| all

'
0 B

(p,m) = l (Brauer and Nesbitt [2]) and each block is of lowest
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kind with P as defect group.

This completes the proof of the theorem.

Corollary_ . If G has all its subgroups projective-sensitive

then vertex of each irreducible FG-module is the p-Sylow sub-

group P.

.E£22£° By the above theorem (dimfiflhp) = 1, M1 being an

irreducible FG-module. But by a theorem of Green [4], if B

is the vertex of' wt then.the index [P:B] divides dim5ML

This proves what is desired.

We now assume that P is not normal and in the next

theorem we give a sufficient condition for G to have all its

normal subgroups projective-sensitive.

Theorem 22. Let G = PM, where P is a p-Sylow subgroup of G

and M14 G is such that each of its subgroups is normal in G.

Then every normal subgroup of G is projective-sensitive.

§£22£3 First we observe that M and each of its subgroup

is projective-sensitive by Corollary 2 to Theorem 17. Also

by Theorem 18 if the normal subgroup H is a p-group or con-

tains P then H is projective-sensitive. We show the same

for H.4 G not satisfying any of the above conditions. Note

that p divides \H‘, for otherwise H :‘M.

Now if L s G then there exists g E G such that

L = (L (1 Pg) (L ['1 M). For choose g E G such that a p-Sylow

subgroup Lp of L is contained in Pg. If y E L we may

write y = ab, a E LP, b a p'-element. Then b E L H M.

If, in addition, L <1 G then L = (L 0 Pg) (L n M) =

-1 -1

(L mpg)g (L mm) = (Lg nP)-(L mm = (L mm mm.
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Let H4G,H= (HnP)(HflM) =Hp(HflM),Hp beinga

p-Sylow of H. In view of Lemma 8 it is sufficient to verify

condition (ii) of projective-sensitivity. Let K C H and

(H,K) be projective-pairing. There exists x E H such that

K=H:(KnM). By hypothesis KnM4G, so S=Px(KnM)

is a group, where Px is that p-Sylow of G which contains

the p-Sylow subgroup H: of K. We have

s = PX(K n M) = Pxfhgm n M)] = PXK .

Clearly (G,S) is a projective-pairing and by Lemma 9,

SflH=K.

This proves the projective-sensitivity of H and so

proves the theorem.

Corollary 1. If ‘G‘ = pqq, q a prime then every normal sub-

group of G is projective-sensitive.

Corollary 2. Dn’ the Dihedral group of order 2n, has every

subgroup projective-sensitive if p is odd and every normal

subgroup projective-sensitive if p = 2.

Proor. If p is odd then P 4 G and Theorem 20 applies. If

p = 2 then G = PM where P is a 2-Sylow subgroup of G and

M 4 G satisfies the condition of the above theorem.
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