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ABSTRACT

ONE-DIMENSIONAL ELASTIC WAVE PROPAGATION IN A BAR WITH
THERMALLY-INDUCED LONGITUDINAL INHOMOGENEITY

by Rajinder K. Khetarpal

A temperature gradient along the length of an elastic bar
gives rise to a variation in the modulus of elasticity E and the
density p along the length of the bar. Hence the longitudinal
elastic wave speed c = '\/—]:_7—6 becomes a function of t‘he axial
coordinate. When the thermal gradient and the dependence of E
and p on temperature are known, the problem becomes one of
wave propagation along an inhomogeneous elastic bar with known
values of the variable wave speed c(x). The change in density due
to a change in temperature has a small effect on the wave speed for
the cases considered, the primary effect being produced by the change
in the modulus, which may be reduced as much as 20 percent in steel
when the temperature is raised to 1200° F.

Numerical integration by the method of characteristics was
programmed and used on the Control Data Corporation 3600 computer.
The numerical solutions for two cases were compared with the
experimental data obtained: (1) for a stainless steel bar with a
temperature gradient at the middle, and (2) for a stainless steel
bar with the loaded end hot and the other cold; both bars were loaded
at one end by a flat-topped stress pulse. Experimental records of
the transmitted pulses in both cases agreed very closely with the

numerical solutions. For the bar heated at the middle a reflected
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pulse of strain with a magnitude of 5% of the incident pulse was
observed experimentally as compared with 7% predicted by the
numerical solution. The transmitted strain pulse, after passing
through the gradient of rising temperature, showed at the point

of highest temperature a continuous slow rise in amplitude after
the initial jump, while at a second room-temperature gage beyond
the hot region the amplitude was nearly the same as in the incident
pulse. The transmitted pulse in the bar with one end hot was
slightly different and had a higher magnitude than the incident
pulse recorded on the striker bar.

An analytical study was also made of the periodic longitudinal
vibrations in a free-free bar with one end hot and the other end cold,
excited at the hot end in the first case by a sinusoidally varying
displacement and in the second case by a sinusoidally varying stress.
An explicit solution is possible when the elastic modulus E is a
linear, exponential, or power function of the position in the bar.

For a numerical solution, programs were written to solve the
periodic vibration problem by finite-difference methods for an
arbitrary temperature distribution.

For a 20-inch-long Type 303 stainless steel bar, the effect
on the periodic longitudinal vibration was studied for several
temperature distributions varying from room temperature to 1200°F
for excitation frequencies of 5000; 7500; 10, 000; 12, 500; 15, 000;
17,500; and 20, 000 cps. The numerical solutions agreed with the
explicit solutions up to six significant figures in the cases where

explicit solutions were available.



ONE-DIMENSIONAL ELASTIC WAVE PROPAGATION IN
A BAR WITH THERMALLY-INDUCED
LONGITUDINAL INHOMOGENEITY

by

Rajinder K. Khetarpal

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
in
Mechanics

Department of
Metallurgy, Mechanics and Materials Science

1966



ACKNOWLEDGMENTS

I wish to express my sincere appreciation to Professor
Lawrence E. Malvern for his suggestion of this problem, and for
his invaluable aid, guidance, and counsel throughout this research.
For his aid in the planning and setting up of the apparatus and his
help to me in so many other ways I shall always be grateful.

Sincere thanks are also due to Dr. Terry Triffet, Dr.
George E. Mase, and Dr. Norman L. Hills for their services on
my guidance committee. I wish to also thank Mr. F. T. Bromley
and Mr. Donald Childs for their help in mounting the strain gages
and thermocouples; and special thanks are given to Mr. Robert B.
Engle for his help in planning the apparatus and in the experimental
work. I am grateful to Mrs. Barbara Judge for her careful typing
of the manuscript.

This project was supported by the National Science Foundation
under Grant No. G-24898 through the Division of Engineering Research
at Michigan State University.

For my parents in India whose personal sacrifice and trust
has made my education possible I will always have the greatest love
and respect. I am also thankful to my perfect wife for her help and

assistance throughout this project.

ii






TABLE OF CONTENTS

LISTOF FIGURES . . . . . v v v v v v v e v v oo
NOMENC LATUR E L] L . L] L] L] . . . L] L L] L . L] . . .

CHAPTER 1.

1.1.
1.2.

CHAPTER II.

CHAPTER III.

3.1.
3.2.

w W
L]
B W

3.5.

INTR ODUCTION L] . . L] . . . . . . .

Purpose and Objectives . . . . . . ..

Background . . . . . . 00 0 0000 e .
DERIVATION OF THE WAVE EQUATION.

PULSE PROPAGATION. + ¢ ¢ ¢« o o« & &
Solution by the Method of Characteristics

Numerical Procedure . . « ¢« ¢« ¢ ¢ ¢ « « &
(a) Leading Wave Front. . . . . . . ..

(b) Impacted End . . . « ¢« ¢« ¢ « . .
(c) General Interior Point., . . . . .

(a) Impact at the Hot End of the Bar

(b) Hot Region in the Middle of the Bar

Description of the Problem . . . . . .

CHAPTER IV, PERIODIC VIBRATIONS ... ...

4.1.
4‘. 2.

4.3.

4. 4,

Introduction . . . . . . c e e e e e e e
Analytical Solutions . . . . . . . . . .
(a) E(x)=Eg+kx ..o
i. D1splacement Wave Equatlon

ii, Stress Wave Equation . . . .

.

Computation of ¢ and the First Character1st1c
Calculation Procedure. . . « « « « « « & &

b) E(x)=E e, . . ... ......

i. D1spfacement Wave Equation
ii. Stress Wave Equatwn o o o s
(c) E(x) = Eo(x/kL)™ . . ... ...
i, Displacement Wave Equation
ii, Special Caseforn=2 ... .

(d) E(x) =E aconstant . + . . « « . .

Numerical Solution. « « « ¢« ¢ « o « « o

(a) Formulation of Algebraic Equations.
(b) Solution of the Algebraic Equations .
i. Direct Solution. . . . « « . . . .
ii. Iteration . « ¢« ¢« ¢ o ¢ ¢ ¢ o o o &

Description of the Problem . . . . . .

iii

e o o o

Page

viii

13

13
15
15
17
18
20
22
23
24
24

29
29
30
30
30
34
37
37
41
44
44
50
53
57
57
63
64
70
71



CHAPTER V. EXPERIMENTAL APPARATUS. .. . ..

. General Description. . . . . . . . . . o .

1

2. Specimen and Striker Bar . . . . . . . . . .
.3. Hyge Shock Tester. . . . .« « ¢« « ¢ v ¢ « « .
4. Furnace and Temperature Measurement . .
5. Strain Measuring and Recording Equipment.

CHAPTER VI. EXPERIMENTAL PROCEDURE .. .. ..

6.1. Determinationof E, p andc . . ... ..

6.2. Electronic Calibration of the Strain Gages .
6.3. TestProcedure . . . « « ¢« v « ¢« ¢« « o o« « &

6.4. Reductionof Data . + v v o ¢ « o« ¢ « o o &

CHAPTER VII. RESULTS. . . . ¢« ¢ v v v v 0 v v o o

7.1. Pulse Propagation. . . . . . ¢ e e e 0 e e
(a) Oscilloscope Records « « « o ¢« « « &

(b) Discussion of the Test Results . . . . .

i. Results from the 6-Foot-Long .

Bar Heated in the Middle . . . . .
ii. Results from the 4-Foot-Long Bar
Impacted at the Hot End. . . . . .

(c) Numerical ResultS. « « « « ¢« o « « &
i. Numerical Solution Results
from the 6-Foot-Long Bar
Heated in the Middle, . . .. ... .
ii. Results from the 4-Foot-Long

Bar Struck at the Hot End . . . . .

iii. Results of Lindholm's Problem

and the Modified Lindholm Problem.
7.2. Periodic Vibrations . .« ¢« ¢« v« ¢ ¢ ¢ ¢ ¢ « ¢ o «

(a) The Results of Periodic Vibration

SolutioNS . v ¢ o ¢« ¢ o o o o o o o o o o o

(b) Discussion of the Results .. . . . . .

CHAPTER VIII. SUMMARY AND CONCLUSIONS . .. .

BIBLIOGRAPHY . .. ..

FIGURES . . . ¢ i v i v e e v e e vt oot ot v oo o e
APPENDIX A, INTERPOLATION. . . v v ¢ ¢ o o « « « &

A.l., Introduction . . . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢« o ¢ o
A.2, Aitken's Method of Interpolation . . . . .
(a) Linear Interpolation. . . . . . . . .
(b) Aitken's Repeated Process . . . . .
(c) Programming . « ¢« « « ¢ ¢ ¢« ¢ o o &

APPENDIX B. COMPUTER PROGRAMS. .. ... ..

B.1. Pulse Propagation. . . . . . . ¢« .« ¢ o o o .

B. 2. Longitudinal Periodic Vibrations . . « . « . .

B.3. Fortran Programs . . . . . .« « .« ¢« .

iv

Page

73

73
73
76
77
79

83

83
84
86
87

88

88
88
88

88

89
90

90
91

93
95

95
96
98
104
106
149

149
150
150
151
154

156

156
162
166

to 148






3.

3.

3.

3.

3

3.

5. 3(a)
5. 3(b)
5.

5.

8

.9

10

.11

.12

.13

.1

.2

5

LIST OF FIGURES

The Characteristics in the XT-Plane.

Temperature Distribution for the 6-Foot-Long

Bar Heated at the Middle . . . . « ¢« ¢« « « « « « . .

Temperature Distribution for the 4-Foot-Long
Bar Heated at the End. . . . . . . . . ..

Elastic Modulus Versus Temperature

Wave Speed Versus Distance for the 6-Foot
Bar Heated at the Middle . . . . . . . ..

Wave Speed Versus Distance for the 4-Foot
Bar Heated atthe End. . . . . . . . . ..

Leading Wave Front Characteristic for the
6-Foot Bar Heated at the Middle . .

Leading Wave Front Characteristic for the
4-Foot Bar Heated at the End.

Types of Temperature Distribution Considered

Characteristic Field for the Bar with a Hot End .

Characteristic Field for a Bar Heated in the
Middle . . . . . . . . . .. ...

Incident Pulse for the 6-Foot- Long Bar Heated
in the Middle.

Incident Pulse for the 4-Foot- Long Bar Heated
at the End .
Schematic Drawing of the Apparatus .

A General View of the Test Set-Up .

Details of the Bars for the First Experiment. .
Details of the Bars for the Second Experiment.

Hyge Shock Tester (after Chiddister, 1961)

Close-Up of the Furnace and the H1gh-
Temperature Gage. . . . . .o ..

5.6(a) Wheatstone Bridge . . « « « v ¢ ¢ ¢ ¢« ¢ ¢ o o

5. 6(b) Potentiometer Circuit. . . . . . .« . . o . . .

Page
106

107

108

109

110

111

112

113
114

115

116

117

118
119
120
121
121

122

123
124
124



.10
.11
.12
.13
.14
.15
.16
.17
.18
.19
. 20

.21

Oscilloscope Records from the 6-Foot-Long Bar
Heated in the Middle .. « « ¢« ¢« ¢ ¢« o ¢« v o« « &

Oscilloscope Records from the 4-Foot-Long Bar

Impacted at the Hot End.

Pulse at Various Points of the 6-Foot Bar Heated

at the Middle

Stress Pulse at Various Points of the 6-Foot

Bar Heated at the Middle .

The Transmitted Pulses in the 4-Foot-Long Bar
Impacted at the Hot End . . . . . . . . . . .. .

The Transmitted Stress Pulses in the 4-Foot-Long

Bar Impacted at the Hot End .

Reflected Pulse in the Modified Lindholm

Problem.
Stress Amplitude for 5000 cps.
Displacement Amplitude for 5000 cps. .

Stress Amplitude for 10, 000 cps.

Displacement Amplitude for 10, 000 cps.

Stress Amplitude for 15, 000 cps.

Displacement Amplitude for 15, 000 cps.

Stress Amplitude for 20, 000 cps.

Displacement Amplitude for 20,000 cps.

Stress Amplitude for 5000 cps.
Displacement Amplitude for 5000 cps. .

Stress Amplitude for 10, 000 cps..

Displacement Amplitude for 10,000 cps.

Stress Amplitude for 15, 000 cps..

Displacement Amplitude for 15,000 cps.

Page

125

126

127

128

129

130

131
132
133
134
135
136
137
138
139
140
141
142
143
144

145



.22

.23

. 24

.1

Stress Amplitude for 20,000 cps. . .
Displacement Amplitude for 20, 000 cps. .

Temperature versus Distance for the
Assumed Distributions of E

Range of Application of Interpolation Formula.

vii

Page
146

147

148

154



NOMENCLATURE

c Elastic wave speed, also a defined constant in Chapter 4.
C Elastic wave speed at room temperature
C Non-dimensional elastic wave speed, = c(x)/cO
D Non-dimensional elastic modulus, = E(x)/E0
D1 to D6 Constants in Chapter 4
E Elastic modulus
E Elastic modulus at room temperature
J Bessel's function of the first kind and order p
A constant, with units of (sec. )-l in Chapter 3

Also other defined constants in Chapter 4

L Length of the bar

n A defined constant

P Amplitude of the stress end condition

Non-dimensional stress, = O'/EO

t Time

T Non-dimensional time, = t/k

u Longitudinal displacement, considered positive when in
the negative x-direction

U Amplitude of the displacement end condition

v Particle velocity, considered positive when in the negative
x-direction

v Non-dimensionalized particle velocity, = v/c0

x Initial coordinate of cross section

X Non-dimensional distance, = kx/cO

Y Non-dimensional strain, = €

viii



Bessel's function of the second kind and order p
Strain, considered positive in compression

Density
Stress, considered positive when compressive

Circular frequency
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CHAPTER I

INTRODUCTION

l.1. Purpose and Objectives

It is well known that the mechanical properties of a material
change with the temperature. Among other changes in mechanical
properties due to a change in temperature, the changes in the
modulus of elasticity and the density affect the propagation of a
wave. The purpose of the present investigation is to study the
effect of a thermally-induced inhomogeneity on the propagation of
a one-dimensional elastic disturbance.

The problems investigated in this study have the following
possible applications: (a) Interpretation of pressure-bar records
from hot or radioactive environments (see for example Chiddister*,
1961), (b) Finding the critical frequencies and solving resonance
problems of bars subjected to varying temperatures, (c) Calibration
of high-temperature strain gages, and (d) Obtaining the value of the
elastic modulus at elevated temperatures.

A temperature gradient along the length of an elastic bar
gives rise to a variation in the elastic modulus E and the density

p along the length of the bar. Hence the longitudinal elastic wave

speed c =N % in the bar becomes a function of the axial coordinate.

ol
L

Surnames followed by dates refer to Bibliography.



When the thermal gradient and the dependence of E and p on
temperature are known, the problem becomes one of the wave
propagation along an inhomogeneous elastic bar with known values
of the variable wave speed c(x). The change in the density due
to a change in temperature is quite small. Based on the value of
the coefficient of expansion for Type 303 steel given in the Metals
Handbook (1948), the difference in the values of the density at
75°F and 1200°F is 3.89% and the resulting difference in the values
of the elastic wave speed at 1200°F is only 1.98% (the values are
given in Sec. 6.1). Therefore the density can be considered
constant, and the primary effect is produced by the change in the
elastic modulus, which may be reduced as much as .20% in steel
when the temperature is raised to 1200°F. The inhomogeneity in
this study is therefore prescribed as a variation in magnitude of
the elastic modulus only,

The present investigation had the following objectives:
(a) To study the effect of the thermally-induced inhomogeneity on
the propagation of a pulse in an elastic slender bar with an arbitrary
temperature distribution along its length. (b) To study the effect of
the thermally induced inhomogeneity on the periodic vibrations of an
elastic slender bar with an arbitrary temperature distribution along
its length and various boundary conditions. (c) To set up an
experiment to study the effect of the thermally-induced inhomogeneity
on the propagation of a pulse produced by an impact in an elastic

slender bar with a temperature distribution along its length, and






compare it with the outcome of the objective (a).

Numerical integration by the method of characteristics was

programmed and used on the Control Data Corporation 3600 computer.

The program was used o five specific problems, calculating results:

1.

to compare with the experimental pulse-propagation
study on the bar heated at its center;

to compare with the experimental pulse-propagation
study on the bar heated at one end;

to verify the results of Chiddister (1961), which he
obtained by approximating an experimentally-obtained
thermal gradient by a series of steps;

to verify the results of Lindholm (1963), which he
obtained by a series method for the special case

E = Eo (fﬂ)n ; and

to solve a modified version of Lindholm's problem
with variation according to a cubic power law in
one-fourth the bar, while the rest of the bar had a

uniform elastic modulus.

Two experimental pulse propagation studies were made on

Type 303 stainless steel test bars:

1.

Bar Heated at the Middle. A 6-foot-long bar was heated

at the middle to a maximum temperature of 1200°F by a 5-inch-long

coaxial furnace and impacted longitudinally at one end by a 4-foot-long

striker bar.

The pulse produced in the test bar was recorded by three

strain gages, two at room temperature and one high-temperature gage



at the middle of the bar. The first room-temperature gage recorded
the incident pulse and the reflection from the thermal gradient, while
the second recorded the transmitted pulse in the region beyond the
heated middle portion of the bar.

2. Bar Heated at the Impact End. A 4-foot-long bar was

heated at one end by the same coaxial furnace and impacted as in
the first experiment. In this second experiment one of the room-
temperature gages was on the striker bar,

Results in both experiments agreed very closely with the
numerical solutions. In the case of the bar heated at the middle,
the maximum reflected pulse was 7% of the incident pulse according
to the calculations and 5% from the experiment. The initial jump
and the amplitude of the transmitted strain pulse recorded at the
second room-temperature gage were nearly the same as the
incident pulse. The amplitude of the pulse at the point of highest
temperature in the bar heated at the middle showed a continuous
slow rise after the initial jump. The transmitted pulse in the bar
struck at the hot end was slightly different and had a higher magni-
tude than the pulse recorded on the striker bar,

An analytical study was also made of the periodic longitudinal
vibrations in a free-free bar with one end hot and the other end cold,
excited at the hot end in the first case by a sinusoidally varying
displacement and in the second case by a sinusoidally varying stress.
An explicit solution is possible when the thermally-induced inhomo-

geneity is one such that the elastic modulus E is a function of the



position in the bar of the form

E = Eo + kx Datta (1956)
or E = Eoe ™ Sur (1961)
x .n
or E = Eo () Lindholm (1963)

These problems have been solved by converting the wave
equation to a form of Bessel's equation. The solution of the
displacement wave equation has been obtained by the same method
as that used by the authors cited. In addition, the explicit solutions
of the stress wave equation with the same type of inhomogeneities
as in the case of the displacement wave equation have been obtained
in the present investigation.

In the‘ present investigation programs were written to solve
the periodic vibration problem numerically by finite differences for
an arbitrary temperature distribution. These programs were used
to determine how certain thermal gradients affect the periodic
longitudinal vibration of a 20-inch-long Type 303 stainless steel bar.
For the excitation frequencies of 5000, 7500, 10, 000, 12,500, 15,000,
17,500, and 20, 000 cps, explicit solutions of the stress and displacement
were obtained for the thermally-induced inhomogeneity in which the
elastic modulus varies with the distance as Eo + kx, Eo ekx and
Eo (le)z ; and numerical solutions of the stress and displacement
were obtained for the same three cases as a check and in addition
for variation as Eo (EXI—_‘)3/2 and for a temperature distribution

measured in the laboratory under conditions similar to those of the






pulse-propagation experiments. The value of k in each case was
such that one end of the bar was at 75°F and the other end at 1200°F,
With these choices of the constants the exponential and power function
variations of E(x) do not depart much from the linear variation in
the 20-inch bar, with the result that those solutions are also very
close to the solution for linear variation. The numerical solutions
agreed with the explicit solutions up to six significant figures in the
cases where explicit solutions were obtained. The solutions were
also obtained for the same bar with a uniform temperature of 75°F

in one case and 1200°F in the other. Plotting all the above solutions,
it was found that the solutions, for the cases of varying temperatures
in the bar, were always between the solutions obtained for the uniform
temperatureé of 75°F and 1200°F. The presence and the location of
the nodes, the critical frequencies, and the amplitude, were all

affected by the inhomogeneity in the bar,

l.2. Background

A considerable amount of work has been done on inhomogeneity
(see Olszak, 1959). Sternberg and Chakaravorty (1959) have considered
the problem of the propagation of a shear shock wave from a circular
hole in a semi-infinite plate, where the hole is subjected to suddenly
rising uniform shearing tractions and the shear modulus of the
material of the plate is proportional to an arbitrary power of the
radial distance from the center of the hole., Cristescu (1959) has
considered the propagation of waves in elastic-plastic non-homogeneous

thin and semi-infinite rods. In the elastic region he took o = E(x)e.



Perzyna (1959) also considered the propagation of elastic-plastic
waves in a non-homogeneous bar for a general type of non-
homogeneity. He analyzed the problem with o = f(€,x). Both
Cristescu and Perzyna formulated the problem by the method of
characteristics in the same manner as will be done in this
investigation, but they did not include any numerical solutions.
Datta (1956) has studied the propagation of sinusoidal and

impulsive disturbances in a bar having linear variation of the
elastic parameters; he obtained the solution for the impulsive
loading by Laplace transform techniques. Ghosh (1961) has studied
the problem of extensional vibration of a bar having linear variation
of the elastic parameters, and excited by the impact of an elastic
load; he used operational methods. Sur (1961) has studied the
pfopagation of sinusoidal and impulsive disturbances in a bar having
exponential variation of the elastic parameters, and he too obtained
the solution for the impulsive loading by Laplace transform techniques.
Chiddister (1961) studied the problem of pulse propagation in a bar
with thermally-induced longitudinal inhomogeneity by approximating
the thermal gradient by five step-discontinuities separating regions
of constant temperature and superposing the waves calculated by
simple reflection theory. Chiddister used his approximate solution
to interpret the pressure-bar records from the hot environments
where his specimen was located. As was mentioned above, this is
one of the important applications of the present investigation,
Lindholm (1963) solved the problem of an elastic disturbance

propagating in a nonhomogeneous bar of finite length by using the






principle of virtual work., He prescribed the nonhomogeneity as a
modulus of elasticity continuously varying with position in the bar,
given by E = Eo(fi)n, and solved the pulse propagation problem
by a superposition of sinusoidal solutions at different frequencies.
In his investigation of the pulse propagation he found an apparent
absence of reflections., An explanation of this apparent difference

from the results of the present investigation is given in Sec.7. 1(c. iii).



CHAPTER II

DERIVATION OF THE WAVE EQUATION

Three different forms of the governing equations of wave
propagation will be derived here: a set of two first-order partial
differential equations for the unknown stress and particle velocity;

a second-order wave equation for the displacement; and a second-
order wave equation for the stress (see Timoshenko, 1955).

These governing equations of motion for the one-dimensional
theory of longitudinal wave propagation in a bar of uniform cross-
section, with the elastic modulus varying along the length of the bar,
are obtained by assuming that plane sections remain plane and that
across these sections the stress is uniform, and that the displace-
ments are small.

At a time t, let u(x,t) be the displacement of the cross-
section initially at a distance x from the left-hand end of the bar.
At the section under consideration the strain € and the particle

velocity v are then

(s5}
e

€ = 3% (2.1)
_ du
v = 3¢ (2. 2)

In this discussion the stress and strain are considered positive when
they are compressive, and the displacement and the particle velocity

are considered positive when they are in the negative x direction,
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By differentiating Eq. (2.1) with respect to time and Eq. (2. 2)

with respect to x, and eliminating u, we get the equation of

continuity

Jde 0

3t = ox (2.3)
The equation of motion can be written as

9 0

5= = p(x) 3y (2. 4)
In addition to equations (2. 3) and (2. 4) we have Hooke's law

E(x)e = ¢
or,

de _ do0

E(x) 57 = 37 (2.5)

Substituting Eq. (2.5) in Eq. (2. 3),
1 do _ Ov

E(x) ot  9x
We therefore have a system of two linear first-order partial
differential equations. The system is written as

1 dc ov _ 0

E(x) ot =~ 0x

> (2. 6)
X ov
5% ~ P 5y =0

Now from Eq. (2.1) and Hooke's law

o = E(x) 9%

or, ) ) 9
52 = 332 { Ex) 53} (2.7)
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From equations (2.4) and (2. 2)

2

Jdo 9 u
= = p (x) — (2. 8)
d x 8t2

so that,
8 (p L) L gl (2.9)
Ix *) Bx = P 8t2 :

Eq. (2.9) is the one-dimensional wave equation. Perzyna (1959)
gave a similar derivation for the wave equation, Eq. (14) in his
paper. Lindholm (1963) begins with the same wave equation.

From equations (2. 3) and (2. 5)

9o _ ov
9t E(x) dx
so that
1 820' _ azv (2.10)
E(x) at2 T 9tox :

Differentiating Eq. (2.4) with respect to x vyields

2
) 1 00, _ 9 v
9 x (p(x) 8x) T 9xot (2.11)
From equations (2.10) and (2.11)
o] 1 do 820'

If the variation in density is negligible, we get the following

stress wave equation



E(x)é—% - p 27 (2.13)
9x ot
2 2

or, fw 22 - 22 (2.14)
0x ot

E(x) (2.15)

where, c(x) =

c(x) is the elastic bar-wave speed.

The system of two first-order equations will be used in the
third chapter to study pulse propagation by the method of charac-
teristics, while the two second-order wave equations will be used in
the fourth chapter to study the sinusoidal stress and displacement

standing waves.



CHAPTER III

PULSE PROPAGATION

3.1. Solution by the Method of Characteristics

We have obtained a system of two linear first-order differ-

ential equations, Eq. (2.6), for the pulse propagation in a bar.

L1 30 dv =0
E(x) 0t ox
) (3.1)
X ov
3x - P Fg =0

Since the system is hyperbolic, it is suitable for numerical

solution by the method of characteristics (Courant and Hilbert, 1962).

9 ul ou',
For Eq. (3.1), we have ? (a; 52 + P -BT) -0
1
i_ ¢ B 0 -1 | E® 0
u = » oAy ., by
° b0 0 -p (x)

And the characteristic curves are defined by

dx = + c(x) dt
(3.2)

dx - c(x) dt

where c(x) =N %i(l:-{))— is the speed of propagation of the elastic wave

front.

The interior differential equations holding along the charac-

teristics corresponding to Eq. (3.2) are

13
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do - p(x) c(x) dv

1
o

(3.3)

do + p(x) c(x) dv =0

Both Cristescu (1959) anci Perzyna (1959) give the equations
defining the characteristics, and also interior differential equations
relating v and € for the elastic-plastic problem, but the papers
cited included no actual numerical solutions.

For most of the metals, e.g. steel, the coefficient of
expansion per unit volume is quite small. And because density
is mass per unit volume, the change in density due to the temperature
change is also small (see Sec. 6.1) and will be neglected in this
investigation.

The system of Eqs. (3.2) and (3. 3) can be treated by a
numerical procedure. The variables are first non-dimensionalized

by the following transformation.

.o - kx
S_E X_C
o o
_ _ E(x)
Y =€ D—E
(@]
v
V—C—' C:CX)
(o] C
(o]
T = kt

where EO and c, are the elastic modulus and the wave propagation

speed at room temperature; (Eo =p coz); k has the units of sec. -1

’

and its value is chosen for convenience.

The transformed characteristic curves and the interior

differential equations along them can be written as
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dS - C dv

1
Q
[o N}
H

0 along the curve dX

dS+ C dV = 0 along the curve dX = - CdT

For numerical calculatio;ns these equations are treated as
finite-difference equations, with dS and dV replaced by AS and
AV, respectively and C replaced by an average value on the
characteristic segment. The XT-plane is subdivided by a mesh of
characteristic curves at finite intervals of AT and A X. The
characteristics are plotted with a constant interval of AT, and AX
is allowed to vary.

As shown in Fig. 3.1, for X > 0 there are two characteristics
passing through each mesh point. Therefore at any mesh point P of
the XT-plane the solution can be obtained by solving two difference
equations along the appropriate characteristics, if we already have
the solution for the two neighboriﬁg points A and B.

For the points along the edges of the bar, one of the unknowns
is prescribed, so that one equation will be sufficient to give the
solution.

Further details of the numerical solution are given in the next

section,

3.2, Numerical Procedure

We write the interior differential equations, Eq. (3.4) as
difference equations, with the average value of C along a segment
approximated by the arithmetic mean of its two end values, and

obtain
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(Cyp +C,)
(SP'SA)'_iZ_A'(VP‘VA) =0 \5
, (3.5
(Cy +C )
(SP~SB)+—¥ (Vp -Vpg) =0

These equations are solved simultaneously to give the values
of the dimensionless stress S and velocity V at the point P of
Figure 3.1 in terms of the values of S and V at A and B.
Proceeding point-by-point in the mesh and using Eq. (3.5), we
obtain the values of S and V for all the points in the field of
characteristics.

The characteristic field can be constructed by solving the
characteristic difference equations, based on Eq. (3.2), which can
be done without solving the propagation problem. The calculations
with Eq. (3.5) then give the solution at the mesh points.

There are three possible types of points to be considered for
a wave propagation in a semi-infinite bar: Leading Wave Front;
Impacted End; and General Interior Point. For a finite bar the points

at the other end also require special treatment.

3.2(a). Leading Wave Front

Along the leading wave front the values of the stress, strain,
and the velocity are zero for a continuously rising pulse. For a
discontinuous jump, the values after the jump are obtained by equating
impulse to the change of momentum and by continuity to give the jump

conditions
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AS = - CAV
AV =-CAY (3. 6)
As=c?ay

3.2(b). Impacted End

Only one equation is available for the impacted end. Assuming
that one boundary condition is known at this end, the solution can be
obtained by considering the propagation along dX = - CdT. Two

possible cases are

(a) The Stress Boundary Condition is Known:

Let the stress at the point X= 0 be SO(T). Then Eq. (3.5)

can be written as

Sp = SO
(C, +CL)
e _
(Sp - Sg) + ——5—— (Vp-Vg) = 0 (3.7)
The solution of Eq. (3.7) can be written as
_ - \
SP N So
S,
Y - 2 > (3. 8)
P DP ‘
Vp = Vg - crcs S, - Sp)
P B )

(b) The Strain Boundary Condition is:- Known:
Let the strain boundary condition be Y(0,T) = YO(T).

The equations for this boundary condition are
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P o
sp = DPYP P(3.9)
(Co +Cy) I
P B _ |
(SP-SB)+——2—-—- (VP-VB) =0

J

The solution of Eq. (3.9) can be written as

\
SP = DP Yo
Yo = Y, >(3.10)
Vp = Vg - ¢ &= (Dp Y, -Sp)
P B °

(c) General Interior Point

For a general intertor point the Eq. (3.5) can be written as

(Co +C,)
P A B
(Sp =Sp) - —=5—— (Vp-V,) =0
' (3.11)
(C, +CL)
P""B _
(SP -SB) + — (VP -VB) =0
THe solution of Eq. (3.11) can be written as
i CP+CB s 4 CP+CA s
P 2CP+CA+CB A ZCP+CA+CB B
(3.12)
e ALY TR
P A B
N
P DP
v 1

P~ ZCFC, *C,, { (CptCy) V) +(CptCp) Vg -25,+25g}
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The equations, Eq. (3.8), Eq. (3.10) and Eq. (3.12), have
been programmed in Fortran for the CDC-3600 computer. The
program is given in Appendix B.

Two of the possible boundary conditions at the other end of
the bar (opposite from the impact end) are free end and fixed end.

At a free end, stress is equal to zero, so that at all the mesh points
falling at that end of the bar the non-dimensional stress S will be
zero, At a fixed end, particle velocity is equal to zero, so that at
all the mesh points falling at the end of the bar the non-dimensional
particle velocity V will be zero. In both cases only one of the
Eq.s (3.5) is used to obtain a solution,

The program has been used to solve five different problems:

1. Pulse propagation in a 6-foot stainless steel bar with

the experimental temperature distribution in the middle. The

maximum temperature was 1200°F. The measured temperature

distribution is given in Fig. 3.2, Temperature was measured
at 24 points 0.8 in. apart on one side of the temperature
distribution. For the other side, the temperature distribution
was taken to be a mirror image of this side,

2. Pulse propagation in a 4-foot stainless steel bar with the

experimental temperature distribution such that the impacted

end was at 1200°F, The measured temperature distribution
is given in Fig, 3.3. Temperature was measured at 20 points
one inch apart.

3. Verification of the results obtained by Chiddister (1961).
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4, Verification of the results obtained by Lindholm (1963).
5. Solution of a modified version of Lindholm's problem
with variation according to a cubic power law in one-fourth
of the bar, while the rest of the bar had a uniform elastic

modulus.,

Each mesh point was designated as (i, j) where i is the
number of the characteristic with positive slope through the mesh
point; for example, i=1 identifies the leading wave front X = CT;
and j is the number of mesh point on the characteristic (see Fig.
3.1). In the first problem the final mesh had 900 horizontal
intervals, spaced so that the time At taken by the wave to travel
across each interval was the same, namely At equal to 0.4104
microseconds. In the second problem the final mesh had 960
horizontal intervals each covered by the wave in time At equal to
0.2564 microseconds. For the third and fourth problems 100

horizontal intervals were used and for the fifth problem 160 intervals.

3.3. Computation of ¢ and the First Characteristic

The elastic wave speed c(x) is equal to /ij! . Garafalo (1960)
p

found that the elastic modulus of 18-8 stainless steel could be represented
as a linear function of temperature., The slope of his curve of modulus
versus temperature was used to construct the linear plot given in

Fig. 3.4 for the Type 303, 18-8 stainless steel specimen bar used in

the present study., The room temperature value was determined
experimentally and used with the slope from Garafalo's paper to

construct the plot, At 75°F the experimentally determined value was
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E = 29.0x106 psi.,
while from Garafalo's paper
Slope = - 6.47 x 10> psi/°F.

From the values of the temperature measured at various
points as mentioned in Section 3.2, the values of the elastic modulus
were obtained from the linear relation illustrated in Fig, 3.4 at
those points. These in turn were used to get the elastic wave speed
versus distance curves shown in Fig. 3.5 and Fig. 3.6.

The procedure of Sections 3.1 and 3.2 leads to the values of
S, Y, and V at mesh points of the characteristic net. To make this
into a solution in terms of X and T, it is necessary to determine
the characteristic net, i.e. to find values of X and T at each
mesh point. For this we find a curve between X and T, which will
be the leading-wave front characteristic curve. Other characteristic
curves of the same family are parallel to it at intervals of 2AT above
it.

To obtain the leading wave front we start from the equation of

the characteristic

dX = CdT
(3.13)
S G §
or T—fo c 94X

Eq. (3.13) is integrated by Simpson's rule, using the numerical
data cited above in Figures 3.5 and 3. 6 (non-dimensionalized). The

interval from 0 to X is divided into 2m equal intervals by points



=

(£

@
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Xo, Xl’ XZ’ coas sz, and the integral is evaluated by the following

numerical Simpson's rule. (See for example Milne (1949), page 121.)

X
I 2

Xo

m h ’
de—-3—{yo+y2m+4(yl+y3+... +y2m_l)+

2 (yZ +y4+... +Y2m-2)}

In Fig. 3.7 and Fig., 3.8 curves between dimensional values
of x and t are shown for the leading wave front. These were
obtained by integrating the dimensionalized form of Eq. (3.13). The
reason for the equal x intervals here is that the experimental data
on temperature was taken at points spaced at equal distances. The
mesh-point values for equal time intervals were subsequently obtained
by interpolation, At first glance these curves may appear straight,
but a closer look will disclose definite deviations from linearity in
the heated region, around 30 inchés from the end in Fig. 3.7, and

near the hot end in Fig. 3. 8.

3,4, Calculation Procedure

Three types of temperature distribution conditions are of
interest for pulse propagation in a bar subjected to a longitudinal
impact.

1. One end hot and the other cold. Impact at the hot end.

2. One end hot and the other cold. Impact at the cold end.

3. Both ends cold. Hot region in the middle of the bar.
The numerical and experimental procedures for the first two cases
are similar, so only the first and the third cases are considered

here.
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3.4(a). Impact at the Hot End of the Bar Fig., 3. 9(a)

Assuming that the shape and the magnitude of the
incident pulse are known, the field of characteristics is calculated
first, choosing a suitable time interval. The time interval was
considered sufficiently small if a solution obtained by choosing the
grid still smaller only changes the sixth digit of the solution. Along
the leading wave front the values of the stress, strain, and the
velocity are zero for a continuously rising pulse. The procedure
is illustrated by the schematic drawing of Fig. 3.10. The slope of
the characteristics varies in the region where the temperature
varies, and is constant where the temperature is uniform,

For a finite bar, for which we have to consider the reflections
from the endé, the total time taken for the wave front to travel from
one end to the other end of the bar is calculated from the leading
wave-front XT-curve, Then a time interval of the grid is calculated
by dividing the total time by the number of divisions estimated to be
large enough for sufficient accuracy. The grid spacing can also be
manipulated so that the grid point falls on the bar at a point where a
strain gage is mounted in the experimental measurements, in order
to obtain directly the calculated values without plotting extra curves.

Following the procedure mentioned in Sec. 3.2 and solving
Eq. (3.8), Eq. (3.10), and Eq. (3.12), the value for non-dimensional

stress and velocity can be calculated at all the points of the grid,
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3.4(b). Hot Region in the Middle of the Bar

This is the case in which a traveling pulse passes
through a temperature gradient like that of Fig. 3.9(b). Again
assuming the incident pulse is known, the field of characteristics
is calculated first with a suitable time interval. The field of
characteristics is shown schematically in Fig, (3.11). Again
characteristics have varying slope in the region of varying
temperature and become straight where temperature is uniform.
Grid spacing is again calculated for convenience, accuracy, and
position of the gage station in experimental measurements.

Again solving Eq. (3.8), Eq. (3.10), and Eq. (3.12), and
introducing the boundary conditions, the non-dimensional value of
the stress and velocity can be calculated at all the points of the grid.

Plotting the value of stress or strain on all the grid points

on a line X equal to a constant X., the stress versus time or

1’

strain versus time curve can be obtained for the point on the bar

at distance X1 from the impacted end.

3.5. Description of the Problem

Two types of pulse propagation problems were solved by the
numerical methods. The solutions, obtained by the method of
characteristics, are given in Sec, 7. The two problems solved to
compare with the experiments are

1. Bar Heated at the Middle. A 6-foot-long bar was

heated at the middle to a maximum temperature of 1200°F and

impacted longitudinally at one end by a 4-foot-long striker bar. The
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temperature distribution in the bar is given in Fig. 3.2. The
solutions of the pulse propagation were obtained and compared at

the location of the strain gages in the experimental set-up described
in Sec. 5.2, i.e, two room-temperature gages located one foot from
each end of the bar and one high-temperature gage located at the
middle of the bar.

2, Bar Heated at Impacted End. A 4-foot-long bar was

heated at one end to a maximum temperature of 1200°F and impacted
as in the first case, The temperature distribution in the bar is given
in Fig. 3.3. Again the solutions were obtained and compared at the
location of the strain gages in the experimental set-up described in
Sec. 5.2.

In the first problem the temperature was measured at 22
points spaced 0. 8 inches apart, starting from the center of the bar,
and in the second problem the temperature was measured at 16 points
spaced one inch apart starting from the hot end. The description of
the experimental measurements is given in Sec. 5.4. With these
measured values of temperature the values of the elastic modulus
were obtained from the linear relation of Fig. 3.4 and the wave speed
c(x) =N E(x)/p calculated as plotted in Fig. 3.5,

For the first problem, the incident pulse was obtained from the
output (Fig. 7.1) of the first room-~temperature strain gage, located
one foot from the impacted end (Fig. 5.3) before the reflections from
the thermal gradient reached it. The pulse being flat-topped when
reflections are absent (Fig. 7.1la), the incident pulse was assumed to

be 486 microseconds long and flat-topped with an amplitude given by
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the first room-temperature gage. The incident pulse obtained from
the oscilloscope record of Fig. 7.1b is shown in Fig. 3.12; it was
used in the solution of the problem as input data for the computer
program described in Appendix B. This strain pulse at the room-
temperature gage station was converted to stress by multiplication
with the room-temperature elastic modulus. Because the recording
station is so far from the impact end, three-dimensional effects
are believed insignificant in this problem.

For the second problem, the incident pulse was obtained
from the output (Fig. 7.2) of the room-temperature gage located on
the striker bar (Fig. 5.3) 25 inches from the impact end. The
incident pulse was assumed to be 486 microseconds long and flat-
topped with an amplitude obtained from the gage on the striker bar.
The incident pulse obtained from the oscilloscope record of Fig. 7.2b
is shown in Fig. 3.13. It was used in the numerical solution of the
problem as input data for the computer program described in Appendix
B. This strain pulse in the room-temperature striker bar is assumed
convertible to stress at the impact end of the specimen by multiplication
with the room-temperature elastic modulus. The assumption neglects
three-dimensional effects in the vicinity of the impact ends of the two
bars. Since three-dimensional effects are known to be present at the
impact end (see Bell, 1960), some error may be introduced by the
simplifying assumption used.

The incident pulses shown in Fig. 3.12 and Fig. 3.13 are
obtained by drawing a smooth curve through the experimentally

measured points, As can be seen in Figs. 7.1 and 7.2 there was
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noise on the signal. Experimental points were measured only at
points clearly on the pulse.

The Fortran programs for numerical solution of both of the
above mentioned problems have been described in Appendix B and
programs are given at the end of the Appendix. The results obtained
from the numerical solution of these problems have been given and
discussed in Sec. 7. 3.

The programs were also used for three other problems:

3. Verification of Chiddister's (1961) Results. This was

the first calculation made with the program written for Problem 1
above in order to check the program. The results of this calculation
showed good agreement with Chiddister's results, obtained by
approximating the thermal gradient with five step discontinuities.
These results are not reproduced in this dissertation,

4, Verification of Lindholm's (1963) Results. Lindholm

calculated the propagation of a half-sine-wave pulse along a'bar with
E - 1~:o(kiL)n . The results are discussed in Sec. 7.1 (c.iii).

5. Modified Lindholm Problem. To demonstrate that

reflections would be obtained from a steeper gradient varying as a
power law, the following problem was solved. With the same values
of maximum and minimum E, the length of the part of the bar where
the inhomogeneity existed was reduced to one-fourth the length of the
bar in Lindholm's third problem, with the variation following the
same cubic law as in his problem, and E was taken uniform along
the other three-fourths of the bar. The length of the pulse was again

taken approximately one-fourth of the length of the bar, This gave a
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c(x) of the form

3/2]

clx) = c 1 +.296 (x-%L)

in the region where E was varying. The results are given in Sec.

7.1 (c.iii),



CHAPTER IV

PERIODIC VIBRATIONS

4,1, Introduction

The solution of the wave equation for the periodic vibrations
of a bar with a thermally-induced longitudinal inhomogeneity can be
obtained numerically for a general kind of inhomogeneity, and
analytically for some specific kinds of inhomogeneity. Analytic
solutions of the wave equation in a bar with a thermal gradient have
apparently been obtained only for cases where the inhomogeneity in
the modulus of elasticity caused by the thermal gradient is of the

following types:

1. E(x) = Eo + kx (Datta, 1956)
kx
2. E(x) = Eoe : (Sur, 1961)
% .n
3. E(x) = E (=) (Lindholm, 1963)

and the variation in density is assumed negligible., The analytic
solution method is discussed in Sec. 4.2. For a general case of
inhomogeneity we have to use numerical methods for the solution of
the wave equation because of the absence of analytic solutions. The
numerical method is described in Sec. 4.3.

Both the analytic solutions and numerical solutions are obtained
for two types of boundary conditions: first a free-free bar with a

source of disturbance producing periodic displacement at the hot end;

29
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and second a free-free bar with a source of disturbance producing
periodic stress at the hot end. The solutions in each case are
obtained both for the displacement amplitude and the stress amplitude
of the periodic vibrations. The analytic and numerical results obtained
for a 20-inch-long Type 303 stainless steel bar with various types of

inhomogeneity are discussed in Section 7. 4.

4. 2. Analytic Solutions

4,2(a). E(x) = Eg + kx

4, 2(a.i). Displacement Wave Equation

From Eq. (2.9), neglecting variations in p, the differential
equation is

2 ou, _ 9 "u
7% (E()

22y = p 22
0x 8t2

Substituting the value of E(x) we.get

9

S {(E, +k0 3R} =p 2P (4.1)

To obtain a periodic solution of Eq. (4.1) let

u(x, t) = u(x) eiwt

The resulting ordinary differential equation for u(x) is

2
du du 2 _
— t kg tew =0 (4. 2)

(E_ + kx)
° dx

We transform this equation to a Bessel's equation, Eq. (4. 4)

below, by the following substitutions. First let
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z=FE + kx
o

to obtain
2 2
zd121+§—u+pw—2- -0 (4. 3)
dz z k
Then substitute
szk2 2w
4pw
ds  wNp -1/2 a%s  wp -3/2
=Fp , and = - z
dz k 2 2k
dz
l‘)2
to transform Eq. (4.3), after division by —22- , to
k
2
d u 1 du _
>t s G tuw=20 (4. 4)
ds
which is a Bessel's equation with general solution
u = AJo(s) + BYo(s) (4. 5)
Hence the complete solution as given by Datta (1956) is
ulx, t) = {AJO(-Zw—kE— 2Z) 4 py (23LZ)) W (4. 6)

where
z=E + kx
o

A and B are determined from the Boundary Conditions.

Case 1 Let there be a source of disturbance producing

periodic disi)lacement ert at x = L, and let the end x = 0 be
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free. The boundary conditions are

N iwt
u]x:L = Ue
du _
) x=0  °
From Eq. (4. 6),
du _  _k [A{Zw'\/—(? T (Zw«/gz')}
O9x  x k 1 k
(4.7)
+ B Zwk'\le Y1 (Zw\/kez)}]elwt
Now, if we denote z at x =0 by Z s and z at x = L by Z] s
the second boundary condition yields
Yl (Zw_I(_LQ. vz)
S - 40
A B Zon e (4. 8)
\ (—k. )
so that
2WN p z
_ 1 2WNp z o
e KN (-3, &) Yy )
o)
(4. 8)
+ Y (Zw\/pz) 7 (Zw'pzo\} eiwt
o k 1 k
With
20N p z 2WN p z 2N p z 2uNp z !
D. = Y (___EJ_)J (——2) - J (.______ii)y(___ﬂ
1 o k 1 k o k 1 k

the first boundary condition yields
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2N p z )
Az Y (——9
D, 1 k
and ) (4. 9)
5 - U s (Zw'\/ [} zo)
D, "1 k )

Eq. (4.9) is the same as given by Datta (1956).
Substituting these values of A and B in Eq. (4.6), we obtain the

value of u(x,t). The stress o (x,t) is given by

_ - du  _ ou
o (x,t) = E(x)e = (Eo+kx) 5% kz 52

so that

o (x,t) = N pz { AT, (BNP2Z gy (BNPpzy Wty )
1 T 1 Cx

where A and B are given by Eq. (4.9).
Case 2 Let there be a source of disturbance producing a
periodic stress Pelwt at x = L, and let the end x = 0 be free. The

boundary conditions are

(E_+ kx) 2] - pel¥t
o 0x
x= L
o]
7% =0
x=0

Again the second boundary condition yields Eq. (4.8). Using the

first boundary condition and writing

2uN p z 20N p z 2wNp z 2uNp z
D, =Y, ( Ly o % . J (—— Y, (——9
271 x V1 kUl K 1 k
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we get

whence

and
2N pz )
I, (——)
1 k

w'\lsz D

B=-P

2

Eqg. (4.11) is the same as that given by Datta (1956).

(4.11)

Substituting

these values of A and B in Eq. (4. 6) we obtain the value of u(x,t),

and in Eq. (4.10) we obtain the value of o (x,t).

4, 2(a.ii) Stress Wave Equation

The differential equation is Eq. (2.13) when variations in p

are neglected,

2

o] a
s 25 < O3

dx ot

Substituting the value of E(x) we get

(E +kx) 22 =52
° 9

To obtain a periodic solution of Eq. (4.12) let

o (x,t) = o (x) et

(4.12)
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The resulting ordinary differential equation for o (x) is

dzcr 2
(Eo+kx) — +pwoc =0 (4.13)
dx

We transform this equation to a Bessel's equation, Eq. (4.16)

below, by the following substitutions. First let

z=E + kx
o
to obtain
2
2k’ £Z +p0lr = 0 (4.14)
dz
Then substitute
2.2
, = 5K or g =2Npz
2 k
4pw

-1§—+0' -0 (4.15)

brings Eq. (4.15) into a convenient form of the Bessel's equation
a%e

+
ds2

0 |-
Q-lﬂu
nlo

+(1-—1-2-)e:o (4.16)
S

whose general solution is
6 = A Jl(s) + B Yl(s)

so that
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c = s{A J,(s) +B Yl(s)} (4.17)
Hence the complete solution of the wave equation Eq. (4.12) is

o(x,t) = Ql_(—& {AJI (M)

k
(4.18)
+ B Yl (Zw'\]kez)}elwt

A and B are determined from the boundary conditions.
Example Let there be a source of disturbance producing a
periodic stress Pemt at x = L, andlet the end x = 0 be free. The

boundary conditions are

The secondary boundary condition yields

Zw»\/Ez'o'
Yl( k )
A=-B ZoNPzy
Iy (=)
so that
Npz
_ 2wNpz B 2WN pz LN P o
2wN pz .
- v (2 T (ERE ) (4.19)
With
2N P2y, 2N P2, 2wN Pz 2N P2y,
D,=Y (=5 Iy - ¥, ) Ty (=)
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the first boundary condition yields

2wN pz D
p - L 2 B
k S (Zw,\[p'z;)
1 k
whence Zw'\/p—z'
o)
K Yy =) )
A=-P
2N pzy, DZ
and 5 (4. 20)
2LNp z
I ( 2)
B=P k 1 k
2N pzy, D2 )

Substituting the values of A and B in Eq. (4.18) we obtain the value

of o(x,t).

4.2(b). E(x) = E &

4.2(b.i). Displacement Wave Equation

From Eq. (2.9), neglecting variations in p, the differential

equation is

2
) du 9 u
o B g) =0 —7

Substituting the value of E(x) we get

2
0 kx u, _ 0du
7 Eoe ) TP (4.21)
t
Let
-kx
z = e
Then Eq. (4.21) becomes
2 2
2 9 9 u
Ekz——%=p—2 (4. 22)
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To obtain a periodic solution of Eq. (4. 22) let

u(z,t) = u(z)eiwt

Then Eq. (4. 22) yields an ordinary differential equation for u(z)

I 2
2 5 + P“’Zu:o (4.23)
dz Eok

To transform this into Bessel's equation, Eq. (4. 25) below,

let
sszE
- - W [pz
z = or s= 1= |E
4pw o
ds _w [P
dz ~ k E z
o
L02
After division by —ZP— , Eq. (4.23) becomes
k'E
o
2
d—‘%-é%‘siml:o (4. 24)
ds '

The change of dependent variable u = s0 then transforms Eq. (4. 24)

into
dZG 1 do 1
a:z*za”l'?)ezo (4. 25)

This Bessel's equation has the general solution

[es]
i

A Jl(s) + B Yl(s)

so that
s{A J(s)+ B Yl(s)} (4. 26)

c
1l
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Hence the complete solution of Eq. (4.21), as given by Sur (1961),

is with z = e-kx

u(x,t)_-—/ {AJl(k / )+BY1(-i-“l £z)) Wt (427
(o]

A and B are determined from the boundary conditions.
Case 1 Let there be a source of disturbance producing
periodic displacement Uelwt at x = L, and let the end x = 0 be free.

The boundary conditions are

_ iwt
u] <=L - Ue
ou _
g]x=0 =0
Now, from Eq. (4. 27)
du sz z 2w z 2w z iwt
3w © - & B (AL (B By [F) e (2w
o o o
Hence from the second boundary condition
2w pzo
Yolxo £
A = - B 1 (40 29)
J (2_‘*’ Pz
ok [—=2
E
o
Writing (note z, = 1)
Pz
o X | E, 2 =0 %71 and ozl =z

and

Zw Pz, 2w | P?L 20 [P%o
- / £ I, /T"%‘T/E—"Yo(—k/g )
(e] (@) o]






we get

ukt) =B o, (Y () T (s)- Ty(8) Y s} et
o o

The first boundary condition then yields

Y(—
X [ B J

2w Pz
(4.30)
[EN
k | Eo ol =
B=U o [ = 2 gl Zo
[ 3

Eq. (4.30) is the same as obtained by Sur (1961).
Substituting these values of A and B in equation (4.27), we

obtain the value of u(x,t). The stress o¢(x,t), is given by

ol 1) = B (2

or, using Eq. (4.28)

2 .
o(x,t) = - """—kﬂ (AT (s)+B Y (s)} e (4.31)

where A and B are given by the Eq. (4. 30).

Case 2 Let there be a source of disturbance producing periodic

stress P eiut at x = L, and let the end x = 0 be free. The boundary

conditions are

kx ou v iwt
ot T H]x Tin RS
du
B_X-]X=0 °

Again the second boundary condition yields Eq. (4.29) and with
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2w [PZL 2w [ PZ%o Pzy, zo
:YO(T,E )JO(T/ E )'Jo(k/ )Y (—- )
o o o o

the other boundary condition yields

pz
2w [T o \
K Yo(k Eo)
A=P > { D }
2w p 4
> (4.32)
2w Zo
. J (k Eo)
B=-P — D /
2w p 4

Eq. (4.32) is the same as obtained by Sur (1961). Substituting the
values of A and B in Eq. (4.27) we obtain the value of u(x,t),

and in Eq. (4. 31) we obtain the value of ¢ (x,t).

4. 2(b.ii). Stress Wave Equation

The differential equation, neglecting variation in p, is again

from Eq. (2.13)

2
) )
e 25 -5 22
9x Jt

Substituting the value of E(x) we get

oo

kx 970 _ 9 ¢
Eoe — =P —5 (4.33)

@
%
@

To obtain a periodic solution of Eq. (4.33) let
iwt

o (x,t) =0 (x)e

Eq. (4.33) yields an ordinary differential equation for o (x).
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2
E e d—‘2’+pw2<r:0
dx

(4. 34)

This can also be brought into a standard form of Bessel's

equation, Eq. (4.36) below, by the following substitutions.
let
. -kx
z = e
to obtain
2 2
z dg + %— + &2 o =0
dz Z Ex
o
Then substitute
E 52 k2
o
z =
4pw
or
s= W [pz ds _w [_p
k E ? dz k E =z
o o
wZ
to transform Eq. (4.35), after dividing by —2—& , to
k E
o
2
2 s ds
ds

whose general solution is

c = A Jo(s) + B Yo(s)

Hence the complete solution of Eq. (4.33) is

sty ={AaT (B2 [BZ)sBy & [£2)) St
(o) (o)

First

(4. 35)

(4.36)

(4.37)

(4. 38)
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Again A and B are determined from the boundary conditions.

Let there be a source of disturbance producing

Examgle

a periodic stress Pe' at x = L, and let the end x = 0 be free.

The boundary conditions are

From the second boundary condition

Pz
2L o
Yo (T E )
o
A=-B ==
2W o)
Jo (T E )
o
so that
iwt
o (x,t) = T (s { -T,(s) Y (s)+ Y (s) Jo(s()} e (4.39)
Again with
pz Pz pz Pz
o 2W L 2W o
J( k[ E E)+Y0(T £ )5 [E)
o o o
the first boundary condition yields
2w Zs A
YO(T Eo )
A=-P
Dy
P (4. 40)
2w %o
‘Io & E )
B=+P 5) )
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Using the values of A and B in Eq. (4.38) we obtain the value of

o (x, t).

x n
4. 2(c). E(x) = Eo (E)

Here EO is the elastic modulus at x = kL, n may assume
any real value, and k is a constant whose value determines the
total amount of variation of the modulus in a bar of given length. In
the examples treated the bar will lie between x = kL and x = (k+1) L

(see Lindholm, 1963),

4, 2(c.i). Displacement Wave Equation

From Eq. (2.9), neglecting variation in p, the differential

equation is

2
9 du, _ 9 u
BX(E(X)BX) - P t2

QO

Substituting the value of E(x) we obtain

2
d x 1 du 9 u
ax (BolkD) ax) =P 2 (4. 41)
2 n-1 2
X 0 u n , x du _ 9 u
EhD) 527 Forn&D) 3w TP 2
x t
For a periodic solution let
u(x, t) = u(x) eth
to obtain an ordinary differential equation for wu(x)
a* n-1 g4y 2

x D u n  x _
Bor) 2 ' Fokm&m)  ateem 0 (242

d
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For n# 2 we transform this to a Bessel's equation, Eq.
(4. 44), by the following subsitutions. The case n = 2 is treated

separately, beginning with Eq. (4.52). First let

z = x/kL
to obtain
2 2.2.2
du yndu, pukD 1., _j (4. 43)
2 z dz E n
dz o Z
=)
Then let u = z 6
whence
du _ l-n (5D D) ae
-— = z 6 + z -—
dz 2 dz
and
l=n
2 -3-n -1-n (=) ;2
du o domysleny (G0, (1) 7 1980, 2 L0
2 2 2 dz 2
dz dz
1-n

(

Substituting these in equation (4. 43) and dividing by z' 2 ) we obtain

a‘e , L de {(1-n)2_1_ 1 puwikiL? } 6 -0
2 z dz 2 2 " n E -
dz z z o}
Now let
=)
y=(3=) wkL [ 2z 2
(0]
dy _ o _-n/2
iz - WkL [§
o]
2 -2-n
dy _ -n o )
5 = w kL E z' 2
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kaZLZ -n
to obtain, after collecting terms and dividing by Ep z ,
o
2 2 E

—dg + L %9- + {1 -——(1';) z(“'z)——2 2-—}0 =0

dy y oy w“k“L%p
which reduces to

2 2

d- e 1 d6 1-n 1

— + = — + {1 - (= —}6 =0 (4. 44)

dyz y dy 2-n yZ
since

Y2 _ 4 . kaZLZ _Ep_ z(Z-n)

(2-n) o
Eq. (4.44) is a Bessel's equation of order p = | -12—:-% with
the general solution
6 =A7J +BY
p(Y) p(y)
whence
52
u=z {Aa Jp(y) +B Yp (y) (4. 45)

Hence the complete solution of the wave equation Eq. (4. 41),

for all values of n except 2, as given by Lindholm (1963), is

l-n .

ux,t) =202 {A I, + B Y () 0t (4. 46)

where
- X
Z 7 kL
1-n

p=|5|

and

2 o xR
5 v £ @) 2
(e]

<
I






47

A and B are determined from the boundary conditions.

Case l Let there be a source of disturbance producing
periodic displacement Ueiwt at x = (k+1)L, and let the end x - kL
be free. The boundary conditions are
iwt

al L © Ve

Now, from Eq. (4. 46)

for n< 1 or n> 2

(l-Zn) ot
= 22 w/E&{AJ L W+BY (y)} ¥ (4. 47)
fo) -

du
ox 1
2-n “2-n

and for 1< n< 2

du (1 —Zn) P iwt
R w/E {AaT | N+BY | (9} e
o = -
2-n 2-n
From the second boundary condition:
for 1< n< 2
Yz-ln (Vy1,)
A=-B T
1 kL
2-n >
while for n< 1 and n> 2 (4. 48)
Y__1 o (yq) )
A=-B T
1 kL
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With

Dg = { Yp(y(k+1)L) I ) - Jp(y(k+l)L) Y (v

the other boundary condition yields

l1-n D
Uelwt:(kltl) Z B{ ~ 5(y )} elwt
r kL
so that
l1-n Y (y, 1)
_ k \— r '’ kL \
A= -Ugyp 2 | D
5
and
l-n
B - ULk, 2 I )
k+1 D5 )
where
r = A for 1 < n< 2
2-n -
r:-l— for n< 1 and n> 2
2-n

(4. 49)

By substituting these values of A and B in Eq. (4.46), we

can obtain the value of u(x,t). The stress o (x,t) is given by

x 0 9y
o (x,t) = E(x)e = E_ (%) %

Therefore from Eq. (4. 47)

o (x 1) Mn-2) E_ RV /EP: {AT_(y)+BY_(y) "

(4. 50)
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where

r:ZI— for 1 < n< 2

-n
r= oo for n< 1 and n> 2
2-n

A and B are given by Eq. (4. 49).
Case 2 Let there be a source of disturbance producing
periodic stress Pelwt at x = (k+1)L, and let the end x = kL be

free. The boundary conditions are

E(x) 22] - pet
X x=(k+1)L
QE] =0
9x x=kL

Again, from the second boundary condition, with

Dg = Y Vi) T - TV a1)) Y, yer)

we obtain

Y ( )
A= r(Z-n)U(EI:—l)]’/Z 1 { = kL )

wN Eop Dé

k V2 1 ( I Vger)

k+1 N [_—‘Eop D,

B =r(n-2) U (

where

r:-l— forlf_n<2

o

]
— o]

r= - for n< 1 and n> 2

(4.51)
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Substituting these values of A and B into Eq. (4. 46) we
obtain the value of u(x,t) and into Eq. (4.50) we obtain the value

of o (x,t).

4.2(c.1ii). Special Case for n = 2

For n = 2, the differential equation, Eq. (4.41), is

E 2 2
;2(x28—%+2x%§-): pbzl- (4.52)
kL J0x ot

iwt

For a periodic solution let u = u(x)e . Then u(x) satisfies

2
x2%+2x%+cu:0 (4. 53)
dx
where
. owlk?1L?
= E
o]

du+d—‘zl+cu:o (4. 54)
with general solution

u = x-z/z{ A cos(gz) + B sin(gz)}

where
g=~Nc - 1/4

The complete solution of Eq. (4.52), as given by Lindholm (1963),

is (with =z = loge x)

u(x, t) = x-]'/2 { A cos(gz) + B sin(gz)} eiwt (4. 55)
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A and B are determined from the boundary conditions.

Let there be a source of disturbance producing

Case 1

periodic displacement Uelwt at x = (k+1)L, and let the end x = kL

The boundary conditions are

be free.
o iwt
ul g = Ve
8_u] =0
9x x=kL

From Eq. (4.55)
9 -3/2 .
ﬁ = {x / gl -A sin (gz)

+ B cos(gz)] - —12— x-3/2 [ A cos(gz)

+ B sin(gz)]} ¥t (4. 56)
From the second boundary condition
|
g cos(gzo) - 5 sin (gzo)
A= B (4.57)
sin(gz )+1—COS( z )
g gz, > g8z
where
z, = loge kL

Using the other boundary condition, and writing
zy, = loge(k+1)L

. 1
YlO =g s1n(gzo) + 5 cos (gzo)

. 1
YlL g sin (gzL) + 5 cos (gzL)

1 .
YZO g cos (gzo) - 5 sin (gzo)
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Y2, = cos(z)-l—sin(z)
L8 g21) =72 g2y,

we obtain

Y2
B 1/2 0
A = U{ (k+1)L} Yz, cos(gz,) + Y1, sin(gzy)
)(4. 58)
Y1
1/2 0
B=U k+1)L 3
{ ( )L} YZO Cos(gzL) + Ylo sin (gzL)

Substituting these values of A and B into the Eq. (4.55) we obtain

the value of wu(x,t). The stress o (x,t) is given by

2
c ot = E@e = B ) g—i

or from Eq. (4. 56)

E 1/2
o o™ [ -A { g sin(gz) + 1 cos(gz)}
(x,t) = - in(gz = z
kZLZ 2
+B { g cos(gz) - 5 sin(gz)} ] " (4. 59)

where A and B are given by Eq. (4. 58).
Case 2 Let there be a source of disturbance producing

periodic stress Peu")t at x = (k+1)L, and let the end x = kLL be

free. The boundary conditions are

E(x) 22] - pelt

Again from the second boundary condition we obtain equation (4. 57).

Using the other boundary condition, and writing
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. 1
Yl0 =g sm(gzo) + 5 cos (gzo)

Yl

1

. 1
L= 8 s1n(gzL) + > cos (gzL)

1 .
YZO =g cos(gzo) -3 51n(gzo)

1 .
YZL =g cos(gzL) - Esm(gzL)

|

we obtain

a kZLZ ( YZO } .
Eo{ (k+1)L} 1/2 YlOYZL-YZOYlL
(4. 60)
5. kZLZ ( Yl0 ) p
Eo{ (k+l)L} 1/2 YlOYZL - YZOYIL ,
Substituting these values of A and B in Eq. (4.55) we obtain the
value of u(x,t) and in Eq. (4.59) we obtain the value of o (x,t).
4,2(d). E(x) = E a Constant
The differential equation is
2 2
E23 .22 (4. 61)
Jdx ot 1ot
alxby=alx)
For a periodic solution let u :;\uzmw so that u(x) satisfies
d‘2 2
>+ & 0= o0 (4. 62)
dx

with general solution

u=Asin(wa-§)+Bcos (wx [-ﬁ%)

The complete solution of Eq. (4. 61) is

u(x,t) ={ A sin (wa§)+Bcos (wx /-Ig)} eiwt (4. 63)
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A and B are determined from the boundary conditions.

Case 1 Let there be a source of disturbance producing

iwt

periodic displacement Ue at x = L, and let the end x = 0 be free.

The boundary conditions are

u] e = Uelwt
Jou _
ax)_ =0

From the second boundary condition A = 0, and

u(x,t) = B cos (Wx /%) eiwt

From the other boundary condition

The complete solution is

cos (w x /-}%) eiwt

u(x,t) = U —
cos (WL J '}E’

The stress ¢ (x,t) is given by

ou
o (x,t) = Es;

whence

sin (U X«/:g) eiwt

o (x,t) = - UWNpE ——————
% cos(wLJ{?)

(4. 64)

(4. 65)

(4. 66)
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Case 2 Let there be a source of disturbance producing

periodic stress Pemt at x = L, and let the end x = 0 be free. The

boundary conditions are

Eg%] - P iwt
x=L
du _
ax!__, °

From the second boundary condition we get A = 0, while the first

boundary condition yields

B=-P ]
WNpE sin (wLJ—E)
B 1 cos (“”‘«/% ) it
u(x,t) = - P e (4. 67)
wNp E sin (WL [ £ )
E
and
sin (W x -E%)
o (x,t) = (4. 68)

P
sin (WL / -E%

In both the cases of constant E

1. u(x,t) =0 when cos (W x /-F% ) = 0, or displacement nodes are

located at

_ 1 1 /E _
x-(n+2)n' : 5 n=0,1,2,3,... (4. 69)

when these positions fall inside the bar.
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2. 0 (x,t) =0 when sin (W x {-]f:l) = 0, or stress nodes are located

at

x:nn,l—/E— n=0,1,2,3,... (4.70)
o NP

when these positions fall inside the bar.
3. For the displacement boundary condition, Case 1, resonance
occurs when cox (wL\/-]%) = 0; and for the stress boundary condition,

Case 2, resonance occurs when sin (WL /-}%) = 0; or when

Case 1 1. E
W (n+z) -E F n:O,l,Z,... (4'71)

Case 2

E
w:nr"\/p— n=1,2,3,...

For a 20-inch bar of Type 303 stainless steel some of the
resonance frequencies are:
For Case 1. (Displacement B.C.)

i. Bar at room temperature (750F)

2,470; 7,410; 12,350; 17, 290; 22,230; .... cps.
ii. Bar at 1200°F
2,138; 6,416; 10, 690; 14,966; 19, 242; .... cps.
For Case 2. (Stress B.C.)
i. Bar at room temperature (75°F)
4, 940; 9, 880; 14, 820; 19, 760; 24,700; .... cps.
ii. Bar at 1200°F

4,275; 8,551; 12, 826; 17,101; 21,376; .... cps.
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4.3. Numerical Solution (Case of General Variation of Temperature)

4.3(a). Formulation of Algebraic Equations

From Eq. (2.9), neglecting variation in p, the displacement

wave equation is

2
(E() 22) = p Z—;} (4.72)
t

QJlQJ

X

For a periodic solution let u(x, t) = u(x) e1wt so that u(x) satisfies

the ordinary differential equation

d du 2 _
d—X-(E(X)a;) + pw u =0

2 2
d u 1 d E(x) du pw _
dxz + ) e = + oI %) u =0 (4.73)

Divide the length of the bar into a mesh of n equal intervals
of length h = L/n. The central-difference quotients approximating

the derivatives are

du . _itl i-1
dx 2h
dzu - Uity - 2 Yy
dx2 h2
. . L . sk
Also Xj=(J"1)h:(J~1) - 1 < j< ntl

Eq. (4.73) is thus approximated at each mesh point by

Ui T2yt . Elg ) -E(xi—l)} (ui+1 "Y1,
]
12 E(x,) 2h 2h
2
LW -
+ E(xi) u, 0

“In order to agree with the computer program language the numbering
of the points varies from 1 to ntl instead of from 0 to n.
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or
) 4 E(x,) Y
. 2,2
p wh
( E(xl) -2)u
{ E(XH—I) - E(Xl—l)}
+[1 + TEG) ] u,, =0 (4. 74)

We write Eq. (4.74) at each interior mesh point and also
at an end point where a stress boundary condition is imposed. The
stress boundary furnishes a condition on g—z , which permits
expressing the value of u at one fictitious mesh point outside the
bar in terms of the value at anadjacent interior mesh point. Solution
of the simultaneous system of linear equations then gives the value of
u at each mesh point. We consider two different cases of boundary
conditions.

Case 1 Let there be a source of disturbance producing a

wt

periodic displacement Ue' at the end x = L, and let the end

x = 0 be free. The boundary conditions are

_ iwt
u] <=L ° Ue
u, - u
g_u] -9 = -2 o
X 420 2h

Now, writing equations for points 1 to n in Eq. (4.74) and using the
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boundary conditions, we obtain for
i=1,

2.2
pw_h

( E(xl) -2)u

i=3,

+[1 +

4 E(xn)

We have n equations and n unknowns.

be written in the matrix form

A U' = K

where A is the tri-diagonal matrix

U=20

These equations can



with

34, i+1

The rest of the

U —

12 © 0 - - - - — - 0 ]
22 223 -~ - T T 0
~ |
32 233 ~
~ ~
NN |
N N ~ ~ ; (4.75)
~ T > |
N ~ ~
~ ~ S
%n-1,n-2 2n-1,n-1 2n-1,n
- - - - 0 a a
n, n-1 nn
.
thZ
PE(X—)-Z for i=l, 2, ..., n
i
4E(xi) ]
for i=2, 3, ..., n
= 2
4 E(x.)
1
for i=2, 3, , n-1
a1J are zero.,
0
0 where
0 {E(x_,,) - E(x_ )}
K = Kk =_[1+ n+1 n-1 LU
: 4 E(x ) ]
. n
k
n
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Now to obtain the value of stress from these values of

displacement we use the relation

o (x) = E(x) g—i
so that
u. -u. )
o (x) = E(x) (H—=b (4. 76)

Equation (4.76) gives us the value of stress at any interior mesh
point. For the stress at the end x = L, we can use a backward

difference formula

1 Yntl " Yn
o (x ) = 3 {ERX)+Ex )} (—5—) (4. 77)
Case 2 Let there be a source of disturbance producing a

t

periodic stress Pe'" at the end x = L, and let the end x = 0 be

free. The boundary conditions are

9 Ynt2 T Yn, it iwt
E(x) o] = Elxgyy) (Fogp—e = Pe
x=L
9&] = Y2 "% = 0
3x' __,  2h =

From the boundary conditions

N P
Yn+2 zh E(

Fooy '
*n+1

n

Again writing the equations for points 1 to nt+l and using the
boundary conditions we obtain the same equations as in the first

case for i=1 to n-1, and in addition we get for
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i=n
{Ex_,,) -E(x_ )} 2.2
[1 - n+l n-1 ] u +(gwh - 2)u
4 E(x) n-1 E(x. ) n
n n
s {E(x_,,) - Ex,_} . o
4 E(x_) n+l
n
i=n+l
nghZ
2o Y gx 7 - %) Y
n+l
2h P {E(xp,y) - Ex))
S e B 2 Ex ) ] =0
n+l n+l
This again can be written in the matrix form
AU = K
where the tri-diagonal n+l by n+l matrix A
[~ - - - o - =
a1 22 0 0 0
a a a U |
21 22 23
~ |
0 a3 333 > |
0 0 a,, ~ > !
A = ' [ 43 N RN l
N
| | ~ ~ ~N |
| ) N ~ ~
| | R ~ ~
| | an, n-1 an, n an, n+1
0 6 =-=-----0 a'r1+1,n an+1,n+l
L ]
has elements
| wzh2
a., = (E5=--2) i=1, 2, ..., n+l
ii E(xi)
a —[1 _ { E(x1+1) = E(xl-l)} =2 3
i,i-1 7 4E(xi) T ’

(4.78)
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aLn+1,n =2
ay, - 2
{ Ex.,,) - E(x, ,)}
a: . [1+ it] -l ) i-2,3, ..., n
i, 1+1 4 E(Xi)

The rest of the aij are zero.

——ul - -—-0 —
u 0
2 where
ug 0
. 1. 2hP { I1:(xn+l) ” E(xn)}
U= K= kil " Ex Mt I ER
: : n+l n+l1
u 0
n
Yn+l Kntl

Again stress at any point of the mesh can be obtained by using Eq.

(4. 76 or Eq. (4.77), depending upon the point.

4, 3(b). Solution of the Algebraic Equations

We have to solve the equation
AU = K

where
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an+1, n 2
ayj, = 2
{ E(x.,,) - E(x. )}
a. . =[1+ itl i-1 ] i=2, 3, ..., n
i, i+1 4E(xi)

The rest of the aij are zero,

u1 0
u 0
2 where
us 0
) 2hP {E(xyyy) - Elxg))
u= K= kntl = " Ee L T T ER )
n+l n+l
u 0
n
Yn+1 kn+l

Again stress at any point of the mesh can be obtained by using Eq.

(4.76 or Eq. (4.77), depending upon the point.

4,.3(b). Solution of the Algebraic Equations

We have to solve the equation
AU = K

where






aj] 2, 0 0 - - --- - - ~ - -0
31 22 33 --- - - - - - - -0
~ I
0 a3, az3 l
\\ ~ |
lo 0 a43 \\\ S N I
A = I AN N ~ |
! | b h ~
AN N |
| | \\ ~ <
| N ~ - |
| ' a a |
\ ' m-1, m-2 m-1, m-1 m-l,m
0 O - - - -0 a a
m, m-1 m, m
u, 0
u, 0
u 0
= 3 1{:
k
Lm m

4,3(b.i). Direct Solution

The matrix equation can conveniently be solved by the direct
method (see Hammings, 1962).

We can write the tridiagonal matrix A as the product of a
lower triangular matrix L and an upper triangular matrix Z. Then

the original matrix equation

LZU = K,






by use of

ZU

becomes

LV
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K

The resolution into two triangular matrix factors is made

as follows.

For the tridiagonal matrix A it is possible to choose

the triangular matrices so that all elements are zero except those

on the diagonal and one adjacent parallel row.

rl
11
£
21 22 O
132 l33
~
~ ~ o
AT >
N ~
\
\_/ m, m-1

By matrix multiplication

4 z

11 711

£ z

11 712

-

1
W]

11

Z11 %12 O
Z22 %23
233 %34
O h ~ zm-l,m
VA
m, m
212 ~
)
322 223 N
azp 233 234
h N ~ ~ = ~
. N \\ ‘a
) ~ ~ . m-l,m
~ ~
a
m, m-1 "m,m
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and the rest of Zi5 7 0 for j > 2.

If we arbitrarily choose all diagonal elements of L to be

unity
=t =t - =t m L
then
211 T %
212 T %12
Now
L 21 7 2y
or
PR W)
21 Z T a
11 11
Similarly
21 212t 122 %22 T 22
yielding
2y 7 a5, -5 7,
L2 23 = 253
or
13222, a3,
a
L, - 32
Z22
;






or
CRPS S PR | z
33 33 32 723
In general
2 =
5 o ik zr, r+l
0 e
- ar+l, 3 _
r+l,r  z Zrr *
b 2
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rr

a
r, r-1

Zral,r-1

a
r-l,r

All other elements of the two triangular matrices are zero.

Now to find V components of the equation

LV = K
11
' M
v M v o
i Reaht
32 733
<
N N
e L
VR N N
U i
Im,m-l

we proceed as follows:

From Eq. (4.80) we obtain

o

(4.79)

(4. 80)
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so that
v1 = k1
vy = k-t vy
vy = kg -ds, v,
or
Ve T kr - lr, r-1 Vr-1
Further we have
ZU =YV
- 1~ A -
le Z].Z . ul Vl
Z22 %23 O u, v,
N N
h N ) AN U3 V3
N AN . =
\ L]
N m-llm .
) z u v
mm m m
S — L - L. —
from which
z u = v
mm m m

u
m-l, m m m-1

for 1 <r < m-1l

for r =m

(4. 81)

(4. 82)

(4. 83)
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From Eq. (4. 83)

m
u =
m z
mm (4. 84)
and
u_ =(v_ -z u ) .-
r r r,r+l "r+l’ =z
rr

The above is the direct method of solution as given by Hammings
(1962).

For application of this method, we had for Eq. (4. 81)

k, =0 for r £ m
and
k_#0
Therefore
v, = 0 for r# m
v =k for r = m
r r

Hence Eq. (4. 83) and Eq. (4. 84) reduce to

=0 for 1 < r < m-l

z u = k for r=m

k
m
u =
m z
mm ‘\
(4. 85)
2y, T+l
u_ = 2 for 1 < r < m-1
r z r+l1 - -
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Eq. (4.79) and Eq. (4. 85) give us the direct solution of the

equations.

4.3(b.ii). Iteration

The solution obtained by the above method might have an
accumulated round-off error which could become large as the number
of equations increases. To get more accurate results we could use
the Gauss-Seidel iterative method (see for example, Varga, 1962,
page 57-58), using the results of the direct method as the starting
set of values.

Let uin) be the set of values obtained after nth iteration and
let uinﬂ) be the set of values obtained after (n+l)th iteration. Then
the Gauss-Seidel method of iteration can be written as

3, i-1 ui(r-]l+1)+ gt “§n+l) 20 “ii‘i e (4. 86)

These equations can be solved one at a time for the new

(n)

value ugnﬂ), since i is known from the previous iteration
and u?:rl) has already been calculated during the current iteration.
The start of each iteration uses the modified equation obtained by
using the boundary condition at the free end x = 0. This yields the

iterative form

u™) g2 w2 (4. 87)

211 2

for u(m'1 ).
1
The iteration is continued until the maximum difference between

successive values is less than or equal to a preassigned value, which
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was chosen to be 0.00001 in the problem solved. It turned out that
the iteration procedure did not in fact change the results of the direct

solution in the problems considered.

4.4. Description of the Problem

For a 20-inch-long Type 303 stainless steel bar with one end
at 75°F and the other at lZOOOF, the analytic solutions of the periodic
vibrations were obtained for three types of inhomogeneity, and the
numerical solutions of the periodic vibrations were obtained for five
types of inhomogeneity. In each case the inhomogeneity was expressed
either in terms of the elastic modulus or the temperature varying with
the distance along the length of the bar. For comparison, analytic
solutions of the periodic vibrations were also obtained for a uniform
temperature distribution along the length of the bar.

The cases of inhomogeneity for which analytic solutions

were obtained are:

(=5
o 20k
The cases of inhomogeneity for which numerical solutions were

obtained are

1. E(x) = E0+kx

2. E(x) = E_ RS

3. E(x) = E_ (Eg‘—k)
3/2

4. E(x) = E_ (ﬁ)/
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5. Experimental temperature distribution given in Fig. 3.3.

In each case the value of k is such that the one end of the bar is at
75°F and the other at IZOOOF, and Eo is the value of the elastic
modulus at 75°F and is equal to 29. ox10° 1bs./sq. in.

Analytic solutions of the above mentioned first three cases
were obtained by the methods described in Sec. 4.2. Calculations
were done on the computer using the values of Bessel functions

JO’ 'Tl’ YO' Y. obtained from the table of Bessel's functions by

1
Chistova (1959).

The numerical solutions of the above mentioned five cases
were obtained by solving the finite difference equations by the method
described in Sec. 4.3. The calculations for these cases were also
done on the computer. The program for the numerical solutions is
described in Appendix B-2. The cases which were solved by the
analytic method were used to check the accuracy of the numerical
method. The number of intervals of the finite difference mesh
and the results of the iterative procedure are also discussed in
Appendix B-2.

The results of the analytic solutions and numerical solutions
for the above mentioned problem are shown and discussed in

Sec. 7.4.



CHAPTER V

EXPERIMENTAL APPARATUS

5.1, General Description

The objective of the experimental work was to confirm the
calculated solutions obtained for pulse propagation in a bar with
thermally-induced inhomogeneity. As discussed in Section 3. 4,
two types of temperature distribution conditions are of interest for
the study of the pulse propagation. For both, the method of
calculations has already been discussed. To carry out these
experiments the following experimental set-up was used.

A flat-topped loading pulse was obtained by a longitudinal
impact. The specimen bar was struck by a four-foot stainless
steel striker bar, projected by an adaptation of a commercial Hyge
shock-testing machine. Two different experiments were conducted.
In the first, the effect of a thermal gradient in the middle of the bar
was studied. In the second experiment the effect of a thermal
gradient at the impact end was studied with the pulse propagating
from a hot to a cold region. A schematic drawing of the apparatus
is given in Fig., 5.1 and a general view of the test set-up is shown

in Fig, 5. 2.

5.2. Specimen and Striker Bar

In Fig. 5.3(a) and Fig. 5.3(b) the dimensions, the arrange-

ments, and the location of the strain gages for the specimen and the
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striker bars for both the experiments are shown. The specimen and
the striker bar were made of 9/16-inch-diameter centerless ground
Type 303, 18-8 stainless steel drill rods. This material was selected
because of its low oxidation at the higher temperatures and its good
impact properties. The specimen used for the first experiment was
6 feet long, and the temperature gradient was produced by a 5-inch-
long coaxial furnace at the middle of the bar. A high-temperature
gage station was located at the middle of the bar and two room-
temperature gage stations were located at a distance of one foot
from each end. At each station two gages were mounted on opposite
sides of the bar and connected to cancel the effect of bending as
described in Sec. 5.5. Both the specimen and the striker bar were
supported on several rubber O-rings, which in turn were supported
on aluminum bearings. The O-rings allowed a sufficiently free
lateral expansion of the bars that no detectable reflections were
produced at these supports. In the second experiment the specimen
was 4 feet long, with one end placed in the furnace so that the end
was the hottest part of the bar. Two high-temperature gages were
mounted at 1. 125 inches,and two room-temperature gages at 25 inches,
from the hot end on the specimen bar. Also two room-temperature
gages were mounted at 25 inches from the impact end of the striker
bar. At each station the two gages were mounted on opposite sides
of the bar and connected to cancel the effects of bending as described
in section 5.5. In order to minimize the three-dimensional effects,
the strain gages were mounted at least one diameter away from the

end of the specimen (see Bell, 1960).
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The striker bar was chosen to be four feet long for two reasons:
first so that the striker-bar gage could be at the same distance from
the impact end as the cold-region gage on the specimen and still be
far enough from the free end of the striker bar that the reflected
unloading waves would not interfere with the recording there; and
second so that the strain gage mounted on the striker bar used for
the measurements of the incident pulse in the second experiment
might not get damaged by the O-rings as the bar moved 18 inches
through them to strike the specimen.

One end of each bar was rounded in order to produce an
axial impact and to reduce the high frequency components of the
rising portion of the pulse by giving a longer rise time (see
Chiddister, 1961, page 28). The round end of the striker bar
was towards the thrust column of the Hyge in order to get an axial
force from it. The flat end of the striker bar was towards the
round end of the specimen bar, so that the flat vertical surface of
the end of the striker bar could only hit the outer-most point of
the specimen, even if the bars were not exactly aligned. To absorb
the energy of the impact a lead block was placed at the far end of
the specimen bar. To avoid the production of a concentrated force
on the lead block, the end of the specimen bar towards the lead
block was kept flat.

The four-foot-long striker bar produced a 486-microsecond-
long flat-topped pulse. This is twice the time required for the

elastic compression pulse to travel the length of the striker bar,
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since the striker bar and the specimen remained in contact until the
compression pulse in the striker bar was reflected back from the
free end of the striker as a tension pulse to break the contact at the

interface.

5.3. Hyge Shock Tester

The pulse was produced by an impact of the striker bar,
which was propelled by an adaptation of a commerical Hyge Shock
Tester, Type HY-3422, manufactured by Consolidated Electro-
dynamics Corporation. A sketch of the Hyge is given in Fig. 5.4,
and the Hyge appears in the photograph of Fig. 5. 2.

The operation of the tester is in short as follows: a set
pressure is introduced in chamber A. The set pressure works on
the full area of the piston pushing it against a seal ring. A load
pressure is then introduced in chamber B. The load pressure in
chamber B applies the same force on the piston from one side as the
set pressure in chamber A does from the other side when the load
pressure in chamber B is about four times that of the set pressure
in chamber A. Any extra load pressure in chamber B then breaks
the seal, applying the full load pressure of chamber B to the whole
piston area. This produces a large acceleration in the piston, which
in turn accelerates the striker bar. The deceleration of the Hyge
piston is accomplished by a hydraulic fluid. The full stroke of the
Hyge piston is 16.75 inches. The operation is controlled from a

control panel containing pressure gages and control valves.
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5.4. Furnace and Temperature Measurement

The temperature gradient in the specimen was produced by a
Type 123-1 Electric Multiple Unit Furnace manufactured by the Hevi-
Duty Electric Company. The furnace had a 5-inch-long heating
element and an internal diameter of 1.25 inches. Temperatures up
to 1950°F for intermittent operations and up to 1850°F for safe
continuous operations could be produced by this furnace. It has a
hinged lid so that the specimen could be reached without any difficulty.
To produce a certain maximum temperature a Variac type variable
transformer was used to control the furnace voltage. The furnace
produced a steady-state temperature distribution in the specimen
in about two and a half hours. It was found that if the furnace was
left on for any length of time after two and a half hours the values
of temperature at each point did not vary more than + 0.8%. This
was taken to be an evidence of the steady-state temperature
distribution. The portion of each bar outside the furnace was
exposed to the room-temperature environment with the result that
the temperature in the bar fell to room temperature at a distance
of about 18 inches from the hottest point.

By experimentation a definite position of the dial on the
Variac was found for both experiments, so that the maximum
temperature in the steady-state temperature distribution was 1200°F
in each case. To check the reproducibility of the furnace at this
fixed position of the dial, several check tests were performed. For
each check test the furnace was turned on two and a half hours before -

the test and temperatures were measured at several points of the
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temperature distribution in the specimen. The reproducibility of
the furnace was found to be within 0.8%. Chromel-Alumel thermo-
couples with Foxbord Portable Indicator Model No. 8106 were used
to measure the temperatures. The scale of the indicator was
calibrated by measuring the boiling point of distilled water. Two-
hole elliptical ceramic tubing was used to insulate the thermocouple
wire. An electric butt-welder was used to weld the thermocouples
on the bar in order that the welding would not make holes in the
specimen.

In the first experiment the temperature distribution was
measured at 22 points spaced 0.8 inches apart, starting from the
middle. Measurements were taken on only one half of the distri-
bution; the other half was assumed to be the mirror image of the
measured distribution. In the second experiment the temperature
was measured at 16 points spaced 1 inch apart starting from the
hot end of the specimen. The measured values were plotted and
the curves smoothed very slightly. The curves of temperature
versus distance are given in Fig. 3.2 and Fig. 3. 3. Since the
joint of the thermocouples on the bar was very sensitive to any
kind of shock, and the temperature distribution had been found
reproducible with a maximum variation of 0.8%, the position of
the specimen in the furnace. and the dial on the Variac were marked
and ail the thermocouples taken off the specimen before the impact

tests were performed.
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5.5. Strain Measuring and Recording Equipment

Etched-foil resistance strain gages manufactured by Micro-
Measurement Inc. were used for the dynamic surface strain measure-
ments at room temperatures. Type MA-09-125AD-120 gages having
a gage length of 0.125 inches and a width of 0. 125 inches were mo'unted
on the bars with Eastman 910 adhesive cement. These gages were
selected for several reasons: first they were suitable for the dynamic
measurements; second, their gage length was small enough to indicate
the sharp rise in the pulse with sufficient accuracy; and third, they
were suitable for measuring strains at the surface of the stainless
steel. Eastman 910 adhesive cement was used for mounting these
strain gages because of the ease in mounting gages on the curved
surfaces with this cement. As given by the manufacturer the
resistance of these gages was 120 = 0. 2 ohms and the gage factor
was 2.09 (£ 0.5%).

High-temperature free-filament strain gages of Type HT-
1235-4A, manufactured by Baldwin Lima Hamilton, were used for
the dynamic surface strain measurements at elevated temperatures.
These were selected for their safe application up to 1200°F for
static measurements and up to 1500°F for dynamic measurements
(according to the manufacturer). As given by the manufacturer
the resistance of these gagés was 350 £ 2 ohms, and the room-
temperature gage factor was quoted as 4.01 (x 1%) for the strain
gages used for the first experiment and 3. 84 (x 2%) for the strain

gages used for the second experiment. A curve relating temperature



80

and gage factor was also supplied by the manufacturer. At 1200°F
the gage factor of these gages was found to be 79% of the value at
room temperature, according to this curve.

As recommended by the manufacturer, Allen PBX ceramic
cement was used for mounting the high-temperature strain gages
on the specimen. Special instructions for using this cement were
also supplied by the manufacturer.

To eliminate the effect of bending strains, at each gage
station two strain gages were mounted diameterically opposite and
aligned longitudinally on the bar. This effectively eliminated the
measurement of the bending strains when the two gages were
connected in series and placed in the same arm of a Wheatstone
bridge as shown in Fig. 5.6(a) or in a potentiometer as shown in
Fig. 5.6(b). The room-temperature gages were connected in a
Wheatstone bridge circuit and the high temperature gages were
connected in a potentiometer circuit. The locations of these gages
are shown in Fig. 5. 3.

A 240-ohm gage was used as a passive arm for the Wheat-
stone bridge circuit. ‘Two 352-ohm gages, mounted on each side
of a cantilever whose deflection could be varied, were used as the
balancing half of the bridge. This produced a very sensitive device
for balancing the bridge.

For the potentiometer circuit, two 352-ohm gages were used
as the ballast resistor. Output was taken from the ballast resistor

instead of from the active gages,for convenience.



81

Two 12-volt wet cell batteries connected in series were used
to supply the voltage to all the bridges. The voltage of these batteries
was measured by means of a voltmeter just before and after each
experiment, with the batteries in the circuit.

The output signals from the Wheatstone bridge and the poten-
tiometer circuit were fed to Tektronix D-Unit plug-in differential
pre-amplifiers in rack-mounted Tektronix Type 127 pre-amplifier
power supplies. The differential feature permits attenuation of any
undesired signal by means of outphasing and is especially useful for
eliminating 60-cycle pickup.

The output signal from the pre-amplifier for the potentiometer
circuit was input to a Tektronix C-unit, and the signals from the pre-
amplifier for the Wheatstone bridges were input to a Tektronix M-
unit. The C-unit and M-unit were mounted in a Tektronix Type 555
dual -beam Cathode-Ray Oscilloscope. The C-unit is an electronic
switching unit which enables two chopped signals to be displayed
simultaneously on one beam of the oscilloscope, and the M-unit is
also a switching unit which enables four signals to be displayed
simultaneously on one beam of the oscilloscépe. Only two of the
four channels of the M-unit were used at a time in the experiments.
The switching rate of the C-unit was 100 kc. When only two channels
were in use the switching ré.te of each channel of the M-unit was
apprc;ximately 500 kc. Sweep speeds of 50 microseconds per cm.
and 100 microseconds per cm. were used for recording. The scope

was triggered externally by means of a signal from two 120-ohm



82

strain gages mounted at 0.5 inches from the end of the striker bar
and connected in opposite arms of a Wheatstone bridge for a doubled
signal.

The strain pulses were permanently recorded with a
Tektronix Type C-12 oscilloscope record camera, using Type 47

Polaroid Land picture roll.



CHAPTER VI

EXPERIMENTAL PROCEDURE

6.1. Determination of E, p and c

The elastic wave velocity at room temperature (7501-") was
determined by measuring the time required for a pulse to travel
four times, six times, and eight times the length of the 6-foot bar
and then taking the average of the values obtained. The values of
the elastic wave velocity obtained in different tests agreed up to
the third digit. For this test an air gap was left between the bar
and the lead block so that the successive reflections could occur
at the free ends without interference. The pulse was displayed on
the screen and recorded on a photograph for measurements. The
average of the elastic wave velocities obtained for two, three, and
four complete cycles on the photographs for four tests showed the
elastic wave velocity at room temperature to be 197, 600 £ 900 inches
per second.

The density p was obtained by determining the weight and
the volume of a 10 inch section of the specimen bar and was found
to be 7.928 gms./c.c. compared to the value 7.93 gms./c.c. or
0.286 1bs./cu. in. given by the Metals Handbook (1948) for Type
303 stainless steel. Therefore 7.93 gms./c. c. or (7.43 £ .01l)x 10-4
slugs. per cubic inch was taken to be the correct value for density.
The weight of the bar was determined by weighing the section of the

specimen bar on a Torsion balance. The volume of this section was
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determined by measuring the length and the diameter of the bar at
various points on the section. The value of the modulus of elasticity
E, was calculated using the relation E= cozp , and was found to be
(29.0 £ 0.3) x 106 pounds per square inch compared to the value
29x106 pounds per square inch given by the Metals Handbook (1948)
for Type 303 stainless steel. The value 29. 0x106 pounds per square
inch was then taken as the correct value of the modulus of elasticity
for the specimen bar.

The density of Type 303 stainless steel at 1200°F was found
to be 7.141x10"* slugs/in..3 compared to the value of 7. 43x107*
slugs/in. 3 at 750F, indicating a difference of 3.89%. This
calculation was based on a coefficient of thermal expansion of
11.1%10"° ins. per in./°F, as given in the Metals Handbook (1948).
The value of the elastic wave speed at 1200°F was found to be
174404 in./sec. based on the calculated value of the density at
IZOOOF, compared to the value 171011 in./sec. based on the value
of the density at 75°F. Therefore, for the problems considered in
this investigation, the maximum error introduced into the value of
the elastic wave speed is 1.98% when the variation in density due

to a variation in temperature is neglected.

6.2. Electronic Calibration of the Strain Gages

The strain gages were calibrated by shunting one arm of the
Wheatstone bridge, or the ballast resistor of the potentiometer
circuit, by a resistor of considerably higher value brought in and

out of the circuit with a switch. The shunt resistor produced a
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definite signal on the screen. To produce a signal equivalent to a
strain €, the size of the calibration resistor RC was calculated
using the formulas (Perry Lissner, 1964, pages 90 to 96):

1. For the Wheatstone Bridge

R (1 - Fe)
e} S NCOR
c Fe
where Rc is the resistance to simulate a strain €, Rg is the
resistance of the gage and F is the gage factor of the gage.

2. For the Potentiometer Circuit

(R, -FeR )
B b T
c b Fe Rg

wherg again RC is the resistance to simulate a strain €, Rg is
the resistance of the gage, Rb is the magnitude of the ballast
resistor and F is the gage factor of the gage.

In each case the resistor produced a signal equal to that
of a strain of the order of magnitude of 700 microinches per inch,
since that was the order of magnitude of strain which was to be
recorded. To achieve this, resistors were prepared by combining
various values. For room temperature gages, a calibration
resistor of 176K was used which produced a signal equal to a strain
of 652 microinches per inch. For high temperature gages a
calibration resistor equal to 300K was used for calibration, and
it produced a signal equal to a strain of 731 microinches per inch.

Calibration signals were displayed on the oscilloscope

screen and recorded on a photograph. All the strain gages were
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calibrated before and after each test,

6.3, Test Procedure

The amplifiers and oscilloscope were turned on at least
one-half hour before, and the strain-gage bridge voltage fifteen
minutes before, a test in order to obtain nearly steady-state
operating conditions. Each test was performed following the
procedure below in sequence:

1. The Wheatstone bridges were balanced.

2. The battery voltage was measured.

3. All the strain gages were calibrated.

4. The oscilloscope sweep speed was set at 50 micro-
seconds or 100 microseconds per centimeter. The triggering
source switch was set at ""External, ' and the trigger placed on
""Single Sweep. "

5. The vertical gain adjustments of the amplifiers were
set so that the signal would remain on the screen during the test.

6. A set pressure of 15 psi. was applied to the Hyge
Shock Tester.

7. The load pressure was increased to 30 psi.

8. The reset button of the single-sweep control was
pressed.

9. The camera shutter was opened and left open.

10. The load pressure was increased until the Hyge fired.
11. The camera shutter was closed.
12. The load pressure was released and the piston of the

Hyge was retracted.
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13. The calibration shots were repeated.

14. The battery voltage was measured.

15. The specimen bar was brought back to its original
marked position.

In each experiment tests were performed both at room
temperature and with the temperature gradient produced on the
specimen. For the high temperature tests the furnace was turned

on two and a half hours before the test.

6.4. Reduction of Data

The data recorded on the photographs taken for each test
was measured with a Pye two-dimensional traveling microscope,
accurate to 0.0l millimeter. The calibration measurements were
taken at various points along the time axis for each test, and
calibration values measured at these points were the ones used to
reduce the data obtained on a test shot at points in the vicinity of
these on the time scale. On the test shots all the traces were
measured at a series of points along the time axis. The spacing
of these points was increased or decreased with the slope of the

trace being measured.



CHAPTER VII

RESULTS

7.1. Pulse Propagation

7.1(a). Oscilloscope Records

The photographic records obtained from a few typical tests
are shown in Fig. 7.1 and Fig. 7.2. The uppermost trace on each
record is the output from the high-temperature gage. The next
lower trace is the output from the transmitter gage at room
temperature. The lowest is the output from the incident gage in
the case of the 6 foot bar heated in the middle, Fig. 7.1, and from
the gage mounted on the striker bar in the case of the 4 foot bar
struck at the hot end, Fig. 7.2. Experimental points taken from
these records are shown together with the calculated curves of

Figs. 7.3 and 7. 5.

7.1(b). Discussion of the Test Results

7.1(b.i). Results from the 6-Foot-Long Bar Heated in the Middle,
Fig, 7.1

A reflection from the temperature gradient is obtained and
can be spotted on the output of the incident gage in Fig., 7.1c. The
reflection has a maximum value of 5. 0% of the magnitude of incident
pulse. This reflected pulse is followed immediately by a reflected
pulse of the opposite sign with a maximum of 1.5%. Chiddister (1961)
also obtained reflections in his experimental output as well as in his

theoretical calculations.
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The transmission through the central inhomogeneity does
not affect the amplitude of the pulse transmitted and recorded at
the second room-temperature gage, which shows the same
amplitude as the incident pulse. It is interesting to see that the out-
put from the transmitter gage, after the main pulse has passed,
also shows a reflection from the temperature gradient (a reflection
of the unloading pulse coming from the free end of the bar) clearly
visible in Fig. 7.1(c).

The output from the high temperature gage, Figs. 7.1(b)
and 7.1(c), shows that the magnitude of strain, after the initial
jump in magnitude, continues to rise slowly to the point where the
tensile unloading pulse reflected from the free end meets it. This
could be considered due to several reflections back and forth within
the region bounded by the thermal gradients. A similar slow rise

is obtained in the nmerical solutions of Sec. 7. 3.

7.1(b.ii). Results from the 4-Foot-Long Bar Impacted at the Hot
End, Fig. 7.2.

The outputs obtained from the high-temperature gage and
the transmitter gage both show that the magnitude of the strain,
after the initial jump in magnitude, continues to rise slowly to a
maximum value, after which it maintains this value before being
intercepted by the tensile unloading pulse reflected from the free
end.

When these strain records are converted to stress by

multiplying by the elastic modulus at the recording point, the stress
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records at the transmitted pulse gage show slightly higher values
than the stress records at the high temperature gage. Except at

the steep initial rise, the maximum difference between the two is
only about 1. 6% at time equal to 210 microseconds. A difference

is also observed in the stress pulses obtained from the numerical
solution; the difference is therefore attributed to propagation through
the thermal gradient rather than to experimental error, although in
general the accuracy of reading the oscilloscope records is estimated

as + 270.

7.1(c). Numerical Results

7.1(c.i). Numerical Solution Results from the 6-Foot-Long Bar
Heated in the Middle, Fig. 7.3

The calculated values obtained by the method of characteristics
for the 6-foot-long bar in which the pulse produc‘ed by the impact
propagates through the experimentally produced thermal gradient,
as discussed in Sec. 3.2, are plotted in Figs. 7.3 and 7. 4 for the
points on the bar where the strain gages were located. Fig. 7.3
shows the values of st_rains and Fig.7. 4 the values of stresses.

The pulses are translated on the time axis to start at the same
point. The difference between the experimental and the theoretical
values obtained for the incident, the high-temperature, and the
transmitter gages is less than 3% at every point except at the point
when the incident gage records the reflected pulse, where the
maximum difference is 5. 5%. The same general shapes of the

pulses are obtained by calculations as were obtained experimentally.
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The estimated accuracy of reading the oscilloscope record was
£ 2%.

The differences between the calculated and measured
reflected pulse amplitudes are greater. The calculated values
of the stress and strain obtained at the location of the incident
gage show a reflected pulse with a maximuﬁ magnitude of about
7% of the incident pulse. This reflected pulse is followed
immediately by a reflected pulse of the opposite sign again with
a maximum of 7%. The maximum value of the reflected pulse
displayed by the strain gage output in the experimental measure-
ment was only 5% of one sign and 1. 5% of the opposite sign. This
is believed to be a result of the fact that the reflected pulse
amplitudes in these experiments were obtained as small differences
between the approximately equal incident pulse and the incident
pulse with the superposed reflection.

The stress at the high-temperature gage was equal to the
stress at the first and second room-temperature gages (within
2.5%), except ‘during the initial rise or up to the first 50 micro-
seconds after the start of the pulse and during the period when

room temperature gages received the reflections.

7.1(c.ii). Results from the 4-Foot-Long Bar Struck at the Hot End,
Fig., 7.5

The calculated values obtained by the method of characteristics
for the 4-foot-long bar with one end hot and the other end cold, in

which the pulse produced by the impact propagates through the



92

experimentally produced thermal gradient shown in Fig. 3.3, are
plotted in Figs. 7.5 and 7. 6 for the points of the bar where the high
temperature gage and the transmitter gage were located. Fig. 7.5
shows the values of strains and Fig. 7.6 shows the value of stresses.

The difference between the experimental and calculated values
obtained for the high-temperature gage and the transmitter gage was
always less than 4% except for the first 60 microseconds in the case
of the high temperature gage. The reason for the large difference
in the experimental and the calculated values of the initial steep
rise for the high temperature gage seems to be the absence of a
clear starting point on the recorded pulse (Fig. 7.2). If the
experimentally recorded pulse at the high temperature gage is
translated about 8 microseconds towards the right, the maximum
difference in the experimental and the calculated values for the
first 50 microseconds is found to be 9% and after 50 microseconds
it is found to be less than 4%.

The calculated values show that the magnitude of the stress
at the high-temperature gage station after the first 80 microseconds
is the same as the incident pulse (within 0. 4%), while during the
first 80 microseconds the difference is as high as 16%. The
magnitude of the stress at the transmitter gage before the arrival
of the unloading pulse from the free end is always higher than the
magn‘itude of the stress at the high temperature gage; the maximum
difference is 6% at 20 microseconds after the beginning of the pulse,

becoming less than 0. 5% after 80 microseconds. The experimental
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values of the stress indicated the same thing but the difference was

smaller than the difference between the calculated values.

7.1(c.iii). Results of Lindholm's Problem and the Modified
Lindholm Problem

Lindholm (1963) did not obtain any apparent reflection in his
numerical study of the problems he considered, where the inhomo-
geneity was expressed in terms of a varying elastic modulus E as
Eo(f?_”f,)n and the problem was solved by using the method of virtual
work. He considered four different problems (see Lindholm, 1963)

in which the bar ran from x = kL. to x = (k+1)L and the values of

E were
n
E=E_(77)
1. k=2 , n=1
2 k=5 , n=1
3. k=2 , n=3
4, k=6.,91, n=3

As a part of the present study, these problems have been
solved again by the method of characteristics described in section
3. In the present calculations, the half-sine-wave pulses were
taken approximately one fourth of the total length of the bar (the
same as used by Lindholm, 1963). The present calculations
showed reflections with maximum values from 0.3% to 0. 9% of the
incident pulse, an essentially neglible reflection. The explanation
for the smallness of the reflections seems to be the smallness of

the gradient of the inhomogeneity present in the bar through which
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the pulse propagates. To show this, Lindholm's third problem was
modified as follows. With the same values of maximum and minimum
E, namely Eo and 3.375 Eo’ the length of the part of the bar where
the inhomogeneity existed was reduced to one-fourth the length of the
bar in Lindholm's third problem, with the variation following the
same cubic law in his problem, and E was taken uniform along the
other three-fourths of the bar. This resulted in a c(x) variation

given by

e = e for0<x<iL
o - - 4

¢ = o {1+.296 (x -%L)3/2}

for L<x <L

ST

The‘length of the pulse was again taken approximately one-fourth of
the total length of the bar. The solution then showed reffections
with a maximum of 12. 5% of the amplitude of the incident pulse as
shown in Fig. 7.7. This value of the reflected pulse is about 40
percent of the value of 29. 5%, which is the amplitude of the reflected
pulse in the case where the pulse propagates through a discontinuous
jump in modulus, with one side having the minimum value and the
other side the maximum value. Clearly the reason for such a high
value of reflection is the steep rise in the elastic modulus, as
compared to the size of the pulse.

The amplitude value, 29.5%, of the reflected pulse in the case
where the pulse propagates through a discontinuous jump in modulus

is obtained from the formula given by Chiddister (1961, pages 100 to
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103). The formula is
R _ NE2 'JEl
€1 & + [k
EZ + E1

where E2 is the elastic modulus on one side of the discontinuity

and E1 on the other. The values of the elastic modulus used in
these calculations were El = EO and E2 = 3,375 EO as in

Lindholm's third problem.

7.2. Periodic Vibrations

7.2(a). The Results of Periodic Vibration Solutions

An analytic and numerical study of the periodic vibrations in
a free-free bar with one end hot and the other cold, excited at the
hot end in the first case by a sinusoidally varying displacement and
in the second case by a sinusoidally varying stress, has been done
by the methods described in Chapter 4 for the cases described in
Sec. 4.4 for the excitation frequencies of 5000; 7500; 10, 000; 12, 500;
15, 000; 17, 500; and 20, 000 cps. For the numerical solutions a mesh
of 2000 intervals was used. Explicit solutions were also obtained for
the same bar with a uniform temperature of 75°F in one case and
1200°F in the other case.

The results of all the above mentioned studies are given in
Fig. 7.8 to Fig. 7.23 for the frequencies 5000; 10, 000;‘15, 000; and
20, 000 cps. For each frequency the results of displacements and

stresses are given in separate figures.
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The numerical solutions agreed with the explicit solutions up

to the sixth significant digit for the cases where E varies as;

2
E +kx, E ekx , and E (=) . Therefore the same curves are
o o o'kL

obtained for the explicit and numerical solutions.

The curves for the cases where E varies as Eo +ilexy
Eo ekx, Eo(ﬁ)z, and Eo(kiL-)yZ are very close. So in most cases
the curves for only two cases, one with the highest values and the
other \x;'ith the lowest values, have been plotted here, i.e. for
E +kx and E_ ¢** . The two not plotted would plot very close

to these two and mostly in between them.

7.2(b). Discussion of the Results

The numerical solutions obtained for the periodic vibration
of the 20-inch-long Type 303 stainless steel bar agreed up to sixth
significant figure with the explicit solution in the cases of inhomo-

s and

geneity where the elastic modulus varied as EO + kx, EO e
Eo(%‘) . The numerical solutions obtained for the experimental
temperature distribution with 2000 mesh intervals agreed with the
solutions obtained with 2500 mesh intervals up to 4 significant
digits. There was apparently little accumulation of round-off error
in the direct numerical solution results, because iteration did not
change them.

The results obtained for the cases with thermally-induced
inhomogeneity were always between the results obtained for the
uniform temperatures of 75°F and 1200°F. The presence and

location of the nodes, the critical frequencies, and the amplitude
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all were affected by the induced inhomogeneity as is clear from
Fig. 7.8 to Fig. 7.23. The most pronounced changes are observed
in curves for frequencies near one of the resonance frequencies given
in Sec. 4.2(d). For example, Figs. 7.16 and 7.17 for 5000 cps
show high amplitudes for the stress and displacement with the uniform
room-temperature E = 29, OxlO6 psi since this frequency is near
the room-temperature resonant frequency of 4940 cps. The presence
of the thermal gradient lowers the critical frequency; hence the high-
temperature response at 5000 cps. is smaller. Similar effects may
be noted in most of the other figures given. Only the two figures
for displacement excitation at 5000 cps. are far enough from
resonance to give only moderate changes. At frequencies below
1000 cps. almost no change is observed due to temperature; none
of the low-frequency results have been plotted.

It was found that the results obtained for the inhomogeneities

kx 1)3/2
kL

each other, the reason being that the temperature distributions

2
X
Eo + kx, Eoe 5 Eo( and EO(E) were very close to
which produce these inhomogeneities do not depart from each other

much as is clear from Fig. 7.24.



CHAPTER VIII

SUMMARY AND CONCLUSIONS

The mechanical properties of a material change with the
temperature. Among other changes, a change in the elastic
modulus and the density affect the propagation of a wave. The
change in density being small, the primary effect is produced by
the change in the elastic modulus, and the density was considered
constant in this work. The longitudinal elastic wave speed c = '\/W
therefore is a function of the axial coordinate. When the thermal
gradient and the dependence of E on temperature are known, the
-problem becomes one of wave propagation along an inhomogeneous
elas&:ic bar with known values of the variable wave speed c(x).

Two forms of wave propagation have been considered here;
pulse propagation and periodic vibration.

Numerical integration by the method of characteristics has
been programmed and used on the CDC 3600 computer. The program
was used for five specific problems calculating results:

1. to compare with the experimental pulse propagation study
on the bar heated at its center;

2. to compared with the experimental pulse-propagation
study on the bar heated at one end;

3. to verify the results of Chiddister (1961), which he obtained
by approximating an experimentally-obtained thermal gradient by a

series of steps;

98
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4. to verify the results of Lindholm (1963), which he
obtained by a series method for the special case E = Eo(ﬁ)n 5
and

5. to solve a modified version of Lindholm's problem
with variation according to a cubic power law in one-fourth of the
bar, while the rest of the bar had a uniform elastic modulus.

Two experiments were performed to verify the results
obtained for the first two problems. Results from both experi-
ments agreed well with the numerical solutions. In the case of
the 6-foot-long bar with the thermal gradient at the middle,
reflections with a maximum of 7% from the calculations and 5%
from the experiments were obtained from the gradient, while the
transmitted strain pulse after passing through the gradient was
nearly the same as the incident pulse. The amplitude of the
pulse at the point of highest temperature in the 6-foot-long bar
heated at the middle showed a continuous slow rise after the
initial jump, and the value of the stress here was equal to the
stress at the first and second room temperature gages (within
2.5%), except during the ixitial rise of the pulse. The difference
between the experimental and the theoretical values obtained for
the incident, the high-temperature, and the transmitter gages,
in the case of the bar heated in the middle, was less than 3%
except at the time when the incident gage recorded the reflected
pulse, where the maximum difference was 5. 5%. In the case of

the bar impacted at the hot end, the calculated and the experimental

values showed that the magnitude of the stress at the high-temper-
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ature gage station, after the initial steep rise, was the same as
the incident pulse, while the magnitude of stress at the transmitter
gage was always higher. The difference between the experimental
and the calculated values obtained for the high-temperature gage
and the transmitter gage for the bar impacted at the hot end was
less than 4% except for the initial steep rise‘.

The numerical solution of Lindholm's problem gave the
same results as his analytical solution, namely negligible
reflection ffom the thermal gradient. However, in the modified
problem, Problem 5, a reflected wave was found with maximum
height equal to 12. 5% of the incident wave maximum. This
indicates that the reason for the lack of reflections before was
that the thermal gradient was not steep enough as compared to
the size of the pulse.

An analytical study has also been made of the periodic
vibrations in a free-free bar with one end hot and the other end
cold, excited at the hot end in the first case by a sinusoidally
varying displaéement and in the second case by a sinusoidally
varying stress. An ekplicit solution is possible when the thermally-
induced inhomogeneity is one where the elastic modulus E is a

function of position in the bar such that

E

E + kx
o

or E:Eekx
o

- x\0
or E = EO(kL)
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For a numerical solution, programs have been written to
solve the periodic vibration problem by the finite-difference method
for any arbitrary temperature distribution.

For a 20-inch-long Type 303 stainless steel bar, the effect
of the temperature distribution, varying from room temperature
to 1200°F in the manners described below, on the periodic vibrations
has been studied in this investigation. For the excitation frequencies
of 5,000; 7,500; 10, 000; 12, 500; 15, 000; 17, 500; and 20, 000 cps.,
the explicit solutions of the stress and displacement have been
evaluated for the thermally-induced inhomogeneity in which the
elastic modulus varies with the distance as Eo + kx, EO ekx, and
E(kLL)Z ; and numerical solutions of the stress and displacement
have been obtained for the same experimental temperature
distribution used in the pulse propagation tests and for the cases
where the elastic modulus varies with the distance as Eo + kx,

/2

3
kx = and EO (ﬁ) . The value of k in each

2
’ EO (kL) ’

case was such that one end of the bar was at 75°F and the other

E e
o

end at 1200°F. The numerical solutions agreed with the explicit
so.lutions up to six sigﬁificant figures in the cases where explicit
solutions were available. Solutions were also obtained for the
same bar with a uniform temperature of 75°F in one case and
1200°F in the other. From the plots of all the above solutions it
was found that the solutions, for the cases of varying temperatures
in the bar, were always between the solutions obtained for the

uniform temperatures of 75°F and 1200°F. The presence and the
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location of the nodes, the critical frequencies, and the amplitude,
were all affected by the inhomogeneity in the bar.

Some possible applications of the present investigation are:

1. Interpretation of pressure-bar records from hot or
radioactive environments.

2. Finding the critical frequencies and solving resonance
problems of a bar subjected to varying temperature.

3. Determination of gage factors for high-temperature
gages. This could be done by taking the experimental output of
a sample gage in a known temperature distribution with the gage
mounted on a material of known elastic modulus at elevated
temperatures. The predicted values of the output of the gage are
calculated numerically from the room-temperature gage record
and then compared with the experimental output record to determine
the gage factor of the gage. The results of the present study show
that the manufacturer's gage factor, modified according to the
temperature curve furnished, was very accurate.

4. Obtaining the value of the elastic modulus at elevated
temperatures. This can be done by mounting high-temperature
gages of known gage factor at a distance of about one diameter
from the end of a bar of a material whose elastic modulus is to
be determined and introducing a known temperature distribution
with a small gradient near the end. Then a known pulse of short
duration is introduced at the hot end and the output of the gage is

recorded. As found in the 4-foot-long bar, the stress at the
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high-temperature gage remains the same as in the incident pulse.
So with the stress values of the incident pulse and the measured
strains at the high-temperature gage station, the value of the
elastic modulus can be obtained.

Further study in this area is recommended to include

1. A set-up of the experiment with more accurate
measuring devices for the study of pulse propagation.

2. The reflected pulse measured as a difference between
the pulse without reflection and the pulse with reflection and
amplified.

3. Actual calibration of the high-temperature gage and
determination of the elastic modulus for elevated temperatures.

4. The experimental verification of the solutions obtained
for the periodic vibrations of a slender bar with thermally-induced
inhomogeneity.

5. Inclusion of the density variation in the pulse-propagation
calculations. This is easy to do. While it will make only a small

change in the results, it should be an observable change.
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Impact at Point A

TEMPERATURE.

A DISTANCE

(a) Bar Impacted at the Hot End

Impact at Point A

TEMPERATURE

A DISTANCE

(b) Bar Heated at the Middle
Mg. 3.9 Types of Temperature Distribution Considered
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(a) Bar Heated at the Middle

(b) Bar Heated at the End

Fig. 5.5 Close-Up of the Furnace and the High-Temperature Gage
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(a) At Room Temperature (Sweep Speed 50 microsec./c.m.)

(b)

(¢) At 1200°F (Sweep Speed 100 microsec./c.m.)

Fig. 7.1 Oscilloscope Records from the 6 Foot-Long Bar
Heated in the Middle
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(a) At Room Temperature (Sweep Speed 50 microsec./c.m.)

(b) At 1200 F (Sweep Speed 50 microsec./c.m.)
Fig. 7.2 Oscilloscope Records from the L-Foot-Long Bar
Impacted at the Hot End
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APPENDIX A

INTERPOLATION

A.1. Introduction

Interpolation is a process for estimating the value y of a
function y = f(x) corresponding to any x, where the value of y
is not to be computed directly from the function itself but is
determined by means of certain values of the function which are
already known, for example as experimental data at discrete
points. An interpolating function may be defined as a function
which contains in addition to the independent variable x, a number
of arbitrary constants or parameters in such a way that by suitable
choice of the parameters the function will assume assigned values
for given values of the variable x (Milne, 1949; Nielsen, 1964).

The temperature distributions considered in this thesis
were measured at 22 points in the first experiment and 16 in the
second experiment. But both in the numerical solution of the
pulse propagation by the method of characteristics and in the
numerical solution of the periodic vibrations, it was desired to
use the values at up to two thousand points. For the intermediate
values of temperature or some other variable, such as the elastic
wave speed or the elastic modulus, interpolation techniques were
used.

There are three commonly used types of interpdlating
functions: polynomial, rational, and trignometric types. The

choice depends upon the type of function being approximated. Only
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polynomials will be discussed here, since polynomial interpolation
gave good results for the temperature distributions.

There are many different polynomial interpolation formulas.
A few of these are: Aitken's method; Neville's method; Newton's
formula; Lagrange's formula; Bessel's formula; Stirling's formula;
and Gauss' formula. Sometimes a combination of two or three
formulas is used (see Milne, 1949). All nth-degree interpolating
polynomial formulas based on the same nt+l points must give the
same answer because there is a unique nth-degree polynomial
taking on the n+l prescribed values at the n+l points. Therefore
the choice of the interpolating polynomial formula to be used is
based only on convenience. Because of the ease in programming,

Aitken's method was used in this research.

A.2. Aitken's Method of Interpolation

Aitken's method of interpolation can be considered as

successive linear interpolation (Milne, 1949; Nielsen, 1964).

A.2(a). Linear Interpolation

The simpl‘est of all interpolation formulas is the linear
interpolation formula. It is a special case of polynomial inter-
polation using two points and a polynomial of degree one. If we
call the interpolating polynomial I(x), the linear interpolation

between i and j is
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A.2(b). Aitken's Repeated Process

Using the notation of Nielsen (1964, pages 91 to 94)
! y X -X

¥y (%) =

This denotes linear interpolation between the values (xo, yo) and
(Xi’ Yi)' If linear interpolation is exact, the values yil(x),

(i=1, 2,...,n) will be alike for any fixed x. If the function y = f(x)
is not linear, they will differ by some amount.

For a higher degree of accuracy, more points and an inter-
polating polynomial of a higher degree than the first, should be used.
To achieve that, the linear interpolation formula can be applied to
the values Yil(x)' (i=1,2,...,n). Thus with
1 l 1) i U

T x -x
i 1
Yil(x) X, =X

we now compute a set of values, yiz(x), (i=2,...,n). The process

can be repeated and the general formula is given by
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I =y = =%

i k-1

in which k denotes the number of times linear interpolation has
been applied and also the degree of the polynomial obtained. For
each k, the sbuscript i assumes the values k, k+l, ..., n, where
n is the degree of polynomial finally obtained.

The computational form for Aitken's repeated process is

given below:

*o Yoo X0 ° %
| Yio  Yn® X - x
Xs Y20 Y21(3f) YZZ(X) X, =X
X300 Y30 Y vt va5() *3 0¥
Xg | Y49 @ Yy X V4,(%) Va3(¥)  yge(x) | x4 -x

The computational form is constructed as follows: for a given x
the columns between the vertical bars of the computational form are
computed successively, each new entry being a linear interpolation
between the first value in the preceding column and the value in the
same row in the preceding column. For example, the value y32(x)

is obtained by linear interpolation between y“(x) and y31(x) as

i (® % -x

) |-

Y32(x)
y3 (¥ %3 - x
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Aitken's process is a useful process, because the calculations
are easily performed on a machine. Furthermore, it provides its
own criterion of when the process has been carried far enough. This
is judged by looking at the computational form on which, when the
difference between V-1, k-1 and Vi, k becomes less than the degree
of accuracy desired, the process can be stopped. Sometimes the
interpolated values appear to converge up to a certain value of k
and after that appear to diverge. In such cases k is taken as the
limiting value of the degree of polynomial which can be used for
interpolating that particular data. To minimize round-off errors,
the calculations are carried to at least one more decimal place |
than the required accuracy.

The same n-degree polynomial is obtained no matter which

two n-1 degree polynomials are used to obtain it. For example

o (x) = ] Vaq(x) x4 -x
55 X5 = X4 y54(x) Xg - X

which in Milne's notation (pages 68 to 71) is written as

I
I

0,1,2,3,4% (x4 -%)
0,1,2,3, 5% (x5 -%
X5 = %4

10,1,2,3,4,5(") =

can also be obtained by
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In,1,2,3, 5% (x, - %)
. (x) - 710, 1,3, 4,5 (xy = x)
0,1,2,3,4,5 = Tx

X4 7%

A.2(c). Programming

In this research a fourth-degree polynomial was selected
by the criterionmentioned above as giving optimum convergence
for the values of temperature obtained experimentally in both of
the experirﬁents.

Except for the polynomial through the first five and the
last five points, each polynomial was used only to obtain the intef-
polated values for the points lying in the middle quarter of the
range covered by the five points as shown in Fig. A.1l, because
of the fact that error in the interpolated value is minimum at the
middle of the range of the polynomial and maximum at the ends

(Milne, 1949, pages 167-168).

° ' ‘o N ﬁ\\\\\\“\\ ° °

i-2 i-1 i i+l it2
Fig. A.1. Range of Application of Interpolation Formula
The polynomial through the first five points was used to interpolate

values from the first point to the middle of the interval between the

third and fourth points. For a similar reason the polynomial using
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the last five points was used to interpolate values from the middle
of the interval between the second and third points to the fifth point.
The computational form for Aitken's repeated process was

completed on the computer using each set of five points as input

and the formula:

1

YL ) = wony - xanl Y- DX -}

- Y(I-1),J+1) { X(I-1) - X})

where

J1 = J+I-1

y(5,1) was the last value computed and the required interpolated
value of the function for the given x.

The same formula can be used to get higher-degree inter -
polation polynomials just by increasing the last value of I from 5
to n+l, wheré n is the degree of the required polynomial.

The computer program of this interpolation process is given
in Appendix B along with other programs,

An accuracy of five to six digits was obtained when this
_-0. 026904 x°

program was used to interpolate between 20 values of

when the 20 values of x were entered at equal intervals of x between

0 and 19.



APPENDIX B
COMPUTER PROGRAMS

Four computer programs named TEMPWAV were written
for the analysis of wave propagation in a bar with a thermally-
induced inhomogeneity. This appendix includes a brief description
of these programs, instructions for preparing input data for these
programs and a description of the output in each case.

The two forms of wave propagation discussed earlier are:

1- Pulse propagation

2- Longitudinal periodic vibrations

The programs for each will be discussed separately.

B.1. Pulse Propagation

B.1l(a). Description of the Blocks

Each program is divided into seven blocks, with block titles
on the comment cards.

Block 1. CALCULATE E AND C FROM THE TEMPERATURE DATA

Read in the input temperature TEMP(J), for J =1 to 24 in
the first program (J = 1 to 20 in the second program). In the first
program calculate TEMP(J) for J = 25 to 47 as mirror images of
J =1 to 24. Calculate the elastic modulus E(J) and the elastic
wave. speed C(J).

Block 2. INTERPOLATE TO GET ELASTIC WAVE SPEED C

Calculate the interpolated values of the elastic wave speed
T5I(K), following the method described in Appendix A-3, of Kth

interpolated temperature (K runs from 1 to 461 in the first program
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and 1 to 381 in the second). X(K) is the distance from the point
where temperature variation starts. Statements 900, 800 and 700

calculate various values of the Aitken's computational form.

Block 3. CALCULATE THE FIRST CHARACTERISTIC

Obtain the first characteristic by integrating the formula
t = fo T}l{) dx by Simpsons rule, statement 23, described in
Sec. 3.3. Calculate the time T(J) taken by the wave front to
travel from the point where temperature variation starts to the
point J (J runs from 1 to 47 points spaced at a distance of 0.8
inches in the first program, and in the second program J runs
from 1 to 20 points spaced one inch apart). Calculate the total
time TT taken by the wave front to travel the entire length of
the Bar by adding the values of time taken by the wave front to
travel regions of uniform temperature, TR+TL, to the value
required to travel the region of varying temperature, T(47) in
the first program (T(20) in the second program). Divide TT by
the number of mesh points on a characteristic (900 in the first
program, 960 in the second) to give the time TS of travel between
successive mesh ‘points on a characteristic in a new mesh based on
equal time intervals., Print the values of TR, TT, and TS (and TL
in the first program).

Block 4. INTERPOLATE TO GET DISTANCE OF MESH POINTS

Calculate the distance X(K) from the point where the
temperature variation starts to the Kth mesh point in the mesh
spaced at equal time intervals. This calculation is done by inter -

polation between the values of the old mesh based on equal distances,



158

using statements 600, 300 and 730. (K =1 to 466 in the first program,
1 to 388 in the second.)

Block 5. INTERPOLATE TO GET C AT THE MESH POINTS

Calculate the elastic wave speed T5I(K), by interpolation
using the values of C and distance in Block 1, for the mesh points
in the region of temperature variation located at distances X(K)
of Block 4.

Block 6. INTERPOLATE TO GET THE NON DIMENSIONAL STRESS
INPUT

Read in the input strain H(J), for J =1 to 26 in the first
program (J = 1 to 15 in the second program). Calculate the non-
dimensional stress input U(K) by interpolation for the times G(K)
spaced 2(TS) apart, where K runs from 1 to 58 in the first program
(1 to 47 in the second).

Block 7. CALCULATE THE NON DIMENSIONAL STRESS AND VELOCITY

Calculate the non-dimensional elastic wave speed C(J) at
each mesh point (J = 1 to 901 in the first program, 1 to 961 in the
second). Calculate the non-dimensional stress S(2,J) and velocity
V(2,J) in the next row (i. e. on the next characteristic) in terms of
the values S(1,J) and V(1,J) in the previous row and the known
end values. (S(1,J) and V(1l,J) are zero the first time through.)
Repeat this process to row 501 in the first program (801 in the second).
For every 21st row, calculate the values of strain at the mesh points
149, 451, and 753 in the first program (26, 27, and 507 in the second
program) by dividing the non-dimensional stress by the non-dimensional

elastic modulus. For these mesh points print out the number of the



159

characteristic, the time after the arrival of the pulse, the non-

dimensional stress, the strain, and the non-dimensional velocity.

B. 1(b).

Description of Symbols

The following list gives the description of various

symbols used in the first two programs in the order they are

encountered,

EO
EL
TO
TL
cO

TEMP(J)

E(J)
ES
C(J)

Z(J)

X(J)

Elastic modulus at room temperature, 29. 0x106 psi.
Elastic modulus at 1200°F, 21.72x10° psi.

Room temperature, 75°F

1200°F

Slope of the elastic modulus versus temperature line
Jth input temperature, J =1 to 47 in first program

(J =1 to 20 in second program)

Elastic modulus calculated at the point of TEMP(J)
Square of elastic wave speed

Elastic wave speed at point of TEMP(J)

In Block 1, distance from the point where temperature
variation starts to the point of TEMP(J). In Block 6,
time from beginning of incident pulse (J = 1 to 26 in
first program, 1 to 15 in second.)

In Block 1, distance from point where temperature
variation starts to point of Jth interpolated temperature
(J =1 to 461 in first program, 1 to 381 in second.)

In Block 4, distance from point where temperature

variation starts to Kth mesh point on characteristic



P(1, M)
Y(M)
P(I, J)

T5I(K)

T(J)

TL or TR
TT

TS

G(J)
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(K =1 to 466 in first program, 1 to 388 in second.)
Mth value in the first column inside the vertical bars of
the Aitken's computational form (see Appendix A. 2)
Mth value of the column outside the vertical bars on
the left in the Aitkens computational form

Jth value in the Ith column inside the vertical bars

of the Aitken's computational form

Kth interpolated value of the elastic wave speed obtained
from a 5-point formula

In Block 2, K =1 to 461 in first program, and 1 to 381
in second

In Block 5, K =1 to 466 in first program and 1 to 388
in second

Time taken by the wave-front to travel distance Z(J)
(of Block 1) from start of temperature gradient

Time taken by the wave front to travel the region of
uniform temperature on the left (or right)

Total time taken by the wave front to travel the entire
length of fhe bar

At, time to travel between successive mesh points on
a characteristic

In Block 3, time starting from the time when the wave-
front reaches the point of varying temperature to the
time it reaches the Jth mesh point on the characteristic

(J =1 to 466 in first program, J = 1 to 388 in second.)



G(J)

H(J)
U(K)
U(J)
S(1, J)
V(I, J)

YS(1),
YS(2),
YS(3)

B.1(c).
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In Block 6, time interval between first and Jth charac-
teristic, equal to 2(J-1)TSe.(J = 1 to 501 in first program,
1 to 801 in second.)

Jth varying incident strain input (J = 1 to 26 in first
program, 1 to 15 in second.)

Kth interpolated value of varying non-dimensional stress
input (K = 1 to 58 in first program, 1 to 47 in second.)
Jth value of non-varying non-dimensional stress input

(J = 59 to 501 in first program, J = 47 to 801 in second.)
Non-dimensional stress at the mesh point J of the Ith
characteristic

Non-dimensional stress at the mesh point J of the Ith
characteristic

Strains printed out at points 1, 2, and 3 (In first program
point 2 is at high-temperature gage. In second program
1 and 2 are at mesh points on either side of high-temper -

ature gage.)

Input Data

Input data is provided on 80-column cards placed right

after the "RUN" card in the main deck. Temperature cards are

provided first with strain cards next.

The 24 temperature values (in degrees F) in the first

program (20 in the second program) are provided on the first three

cards with 8 values on each card; each value with its sign is punched

in 10 columns.
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The 26 strain values, in microinches per inch, in the first
program (15 in the second program) are obtained from the incident
pulse plot at time intervals of 2 microseconds. Eight values are

punched on each card, and each value is punched in 10 columns.

B.1(d). Output data

1. On one line TL(or TR), TT, and TS, labeled as T LEFT (or T
RIGHT), T TOTAL, and T INTVL.

2. A series of groups arranged as follows:
On first line, the number of the row from which values are
printed (labeled POINT), and the time from the pulse arrival .
to the values printed bellow. |
On second line, non-dimensional stress at points 1, 2, and 3.
On third line, strains at points 1, 2, and 3 (inches per inch).

On fourth line, non-dimensional velocities at points 1, 2, and 3.

B. 2. Longitudinal Periodic Vibrations

Program 3 calculates displacement and stress amplitudes
for excitation at the end x = L. by sinusoidal displacement of unit
amplitude, while Program 4 is for excitation by sinusoidal stress

of unit amplitude.

B.2(a) Description of the Blocks

Each program is divided into four blocks, with block titles

on the comment cards.-
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Block 1. CALCULATE ELASTIC MODULUS

Read in the input temperature TEMP(J), for J = 1 to 21.
Calculate the elastic modulus D(J).

Block 2, INTERPOLATE FOR INTERMEDIATE VALUES OF ELASTIC
MODULUS

Calculate the interpolated values of the elastic modulus
E(K) at the points K, where X(K) is the distance from the stress-
free end of the bar to the point of Kth interpolated temperature. (K
runs from 1 to 2001.)

Block 3. CALCULATE DISPLACEMENT AMPLITUDE

Solve the finite difference equations written at each Jth point
by the direct method (see Sec. 4.3) to obtain the displacement
amplitude U(J) for J =1 to 2001 for each frequency F(J). (For
F(J) the index J = 1 to 7, and frequencies are read from the input
data.) Print the frequency, and for every 50th point print the point
number J, X(J), and U(J). With these values of U(J), obtain the
iterated values V(J) of the displacement amplitude by the Gauss-
Seidel method of Sec. 4.3. Iterate until either the change in
successive values is less than 0.00001 or until 50 iteration cycles
have been completed. Print the number of iterations and the
maximum displacement change DAM in the last iteration.

Block 4. CALCULATE STRESS AMPLITUDE

Calculate the values of stress amplitude of the periodic
vibrations S(J) from the iterated values of the displacement V(J1)
following the method described in Sec. 4.3. Here J is every 10th

point of the mesh in Block 2 and runs from 1 to 201 and J1 = (10J)- 9.
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For each 50th point, print number J1, distance X(J1), stress S(J)

and the final iterated value of the displacement V(J1).

B. 2(b). Description of Symbols

The following list gives the description of various symbols’
used in the programs:

Symbols EO, EL, TO, TL, CO, TEMP(J), P(1,M), Y(M),
and P(I,J) are the same as in Appendix B. 2(b), and in addition:
D(J) Elastic modulus calculated at the point J from

temperature data, J = 1 to 21

G(J) Distance from stress-free end to point of Jth input
temperature
X(J) Distance from stress-free end to point of Jth interpo-

lated temperature, J = 1 to 2001

E(K) Interpolated value of the elastic modulus at point K
obtained from a 5-point formula, K =1 to 2001

A(I J) The element of matrix A (Sec. 4.3) situated on Ith

row and Jth column

U(J) Displacement amplitude at Jth point, J = 1 to 2001

V(J) Iterated value of the displacement amplitude

K The number of iterations

DAM The maximum displacement change in the last iteration

S(J) Jth stress amplitude (at point X(J1), where J1 = (10J)-9
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B. 2(g). Input Data

Input data is provided on 80-column cards placed right after
the "RUN" card in the main deck. The 7 frequencies (in cps.) are
provided on one card; each value with its sign is punched in 11
columns. The 20 temperature values (in OF) are provided on the

next three cards; each value with its sign is punched in 10 columns.

B. 2(h). Output Data

The output data comes in one group for each frequency.
The first line in each group is the fre;quency in cps. Each line in
the following subgroup giveg for each 50th point three outputs:
the point number J, X(J), and U(J).

The next subgroup gives on one line the number of iterations
and the maximum displacement change DAM in the last iteration.

Each line in the foilowing subgroup gives for each 50th point
four outputs: the point number J, X(J), the stress amplitude and
the iterated displacement amplitude (for end excitation of unit

amplitude).
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Be3 FORTRAN PROGRAMS

PULSE PROPAGATION SOLUTION BY THE METHUO OF CHARACTI.RISTICS
THERMAL GRADIENT AT THE MIDDLE OF THE BAR

PROGRAM TEMPWAV
TYPE DOUBLE TEMPRPIECoXeZsPeTS I eTeYeoeVIYSIUIHIG
DIMENSION TEMP(47)sE(47)eT(47)eX(466)¢Z2(47)sP(5:5)9TS1(466) +C(901)
DIMENSION Y(5)eS(2¢901)eV(2e¢901)e¢YS(3)2U(S501)1H(26)+G(466)
1 FORMAT (8(F10))
11 FORMAT (33X +6HSTRESS 14X eD22612¢5XeD22elceHXsD22412)
12 FORMAT (3X+6HSTRAINI4XsD226e12¢5XeD22el1ce5XsD22e1c)
13 FORMAT (2X+8BHVELOCITY s3XeD2261295XeD22e1295XsD2Ze1c)
14 FORMAT (3XeSHPOINT 43X I3¢5XSHTIME ¢« 3XeE1568)
26 FORMAT (12X e6H3 LEFTe22Xe7HT TOTAL +22X e« 7HT INTVL)
27 FORMAT (4XeD25¢1504XeD256¢15494XeD2%e15)
401 FORMAT (1HO)
C CALCULATE E AND C FROM THE TEMPERATURE DATA
EO=4290E+4+08
EL= ,2172E+08
TO=7Se
TL=1200,
CO=(EL-EO)/(TL~-TO)
READ 1+ (TEMP(J)sJd=1424)
DO 2 JU=1.23
2 TEMP (48-0)=TEMP (V)
DO 4 JU=1+47
E(J)=(COR(TEMP (J)=TO) )+ED
ES=E(J)/(7e43E-Q4)
4 C(J)=SQARTF (ES)
C INTERPOLATE TO GET ELASTIC WAVE SPEED C
Z(1)=0.0
DO 5 JU=2447
S Z(J)=2(J~1)+0.8
X(1)=0e60
DO 6 J=2+461
6 X(J)=X(JU=-1)+.,08
L=1
DO 907 M=145
P(leM)=C(M+L~-1)
907 Y(M)=Z(M+L-1)
DO 905 K=1 426
DO 900 1=22+5
11=6-1
DO 900 J=1.11
Ji=J+1-1
900 p(loJ):((P(I-I'l)*(Y(Jl)"X(K)))-(p(l'l0J+l)*(Y(1—1)’X(K))))/(Y(J1)
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C=v(1-1))
905 TSI(K)=P(S41)
L=2
DO 804 K1=264¢430410
K2=K1+4+10
DO 802 M=145
Pt1eM)=C(M+L~-1)
802 Y(MY=Z(M+L~-1)
DO 805 K=K1+K2
DO 800 1=2+5
11=26~-1
DO 800 JU=1.11
Jiz=J+l=-1
800 P(leJ)=((PCI=101)¥(Y(J1)=X(K)))=(P(I=19J+1)¥(Y(I=1)=X(K))))I/(Y(JT1)
C-Y(I-1))

805 TSI(K)=P(Ss1)

804 L=L+1
L=43
DO 703 M=1,5
P(leM)=C(M+L=~1)

703 Y(M)Y=Z(M4L-1)

DO 705 K=4364461
DO 700 1=22+5
11=6-1
DO 700 JU=1.11
JisJ+l=-1
TF00 P(l1e)=s((PUI=1e¢1)%¥(Y(J1)-X(K))I)I=(P(I=1eJ+1)¥(Y(I=-1)=X(K))))/7(Y(JS1)
C=Y(1~-1))

705 TSI(K)YI=P(Se1)
CALCULATE THE FIRST CHARACTERISTIC
T(1)=060
DO 23 J=2+47
1=(U%*%10) -9
11=1-1
12=1=-2
A=1,/T51(2)

DO 21 K=4,1142

21 A=A+(1¢/TS1(K))
Q=1,/T51(3)

DO 22 K=54s1242

22 Q=Q+(1e/T51(K))

23 T(I)=((1e/TSI(1))+(1e/TOI(I))+(4e*A)+(2e%QG))*(e08/36)
TL=1766/C(1)
TR=1766/7C(47)
TT=TL+TR+T(47)
TS=TT/900,0
PRINT 26
PRINT 27¢(TLeTTeTS)
INTERPOLATE TO GET DISTANCE OF MESH POINTS
G(1)=(TS#218. )-TR
DO 7 J=24+466
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7 G(J)I=G(JI=1)4TS
L=1
DO 607 M=1,5
P(1sM)=Z(M+L=1)
607 Y(M)=T(M+L-1)
DO 605 K=1+28
DO 600 1=245
11=6-1
DO 600 J=1,411
Ji=J+1-1
600 P(leJ)=((P(I=1+1)%¥(Y(J1)=G(K)))I=(P(1=1sJ+1)¥(Y(I=1)=G(K))I)I/Z(Y(J])
C=Y(1-1))
6085 X(K)=P(S5.1)
L=2 ‘
DO 304 K1=29¢430410
K2=K1+49
DO 302 M=z1,5
P(l1eM)=Z(M+L=1)
302 Y(M)=T(M+L-1)
DO 305 K=K14+K2
DO 300 1=z2+5
11=6-1
DO 300 J=1.11
Ji=Jd+1-1
300 P(Ie)=((P(I=191)%(Y(J1)=G(K))I)=(P(I=1eJ+1)¥(Y(I=1)=-G(K))))I/(Y(J])
C-Y(1=1))
305 X(K)=P(S.1)
304 L=L+1
L=43
DO 733 M=1,.5
P(1leM)=Z(M+L~-1)
733 Y(M)=T(M+L-1)
DO 735 K=439,466
DO 730 1=2+5
11=6-1
DO 730 JU=1.11
JizJ+1-1
730 P(le)=((P(I=191)%(Y(J1)=GIK)))I=(P(I=1eJ4+1)¥(Y(]I=-1)-G(K))))I/(Y(JI])
C-Y(1-1))
735 X(K)=P(S4s1)
" INTERPOLATE TO GET C AT THE MESH POINTS
L=1
DO 107 M=1,+5
P(l eM)=C(M+L=-1)
107 Y(M)=Z(M+L~-1)
DO 105 K=1,28
DO 100 1=2+5
11=6-1
DO 100 J=1.11
JizsJ+l-1
100 P(loeJ)=((PlI=1e1)#(Y(J1)=X(K)I)I=(P(I=1eJd+1)¥(Y(I=1)=X(K))))/(Y(J])
C-Y(1-1))
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105 TSI(K)Y=P(Se1)
L=2
DO 114 K1=2294430410
K2=K1+9
DO 112 M=1,+5
P(l eM)=C(M+L.~-1)
112 Y(M)=Z(M+L-1)
DO 115 K=K1 K2
DO 110 1=2+5
11=26-1
DO 110 J=1,11
JisJ+I1-1
110 P(I1eJ)=((P(I=101)%(Y(J1)="X(K)I)I=(P(I=1eJ+1)¥(Y(]=-1)=-X(K))))/(Y(J]1)
C=Y(Il-1))

115 TSI(K)=P(Ss1)

114 L=L+1
L=43
DO 123 M=1+5
P(leM)=C(M+L=-1)

123 Y(M)=Z(M+L-1)

DO 125 K=439,4,466
DO 120 1=2+5
11=6-1
DO 120 J=1.11
J1=J+1-1
120 P(I1e)=((P(I=1e1)¥(Y(J1)=X(K)))=(P(I=1eJ+1)¥(Y(]I=1)-X(K))))/(Y(J])
C=yY(l-1))

125 TS1(K)=P(541)
INTERPOLATE TO GET NON DIMENSIONAL STRESS INPUT
READ 1e(H(J)eJ=1426)
Z(1)=060
DO 99 J=2+26

99 Z2(J)=2(J=1)+(+,2E-09)
G(1)=0.0
DO 299 J=2.58

299 G(J)=G(J=1)+(2,0%TS)
L=1
DO 137 M=1,5
P(1eM)=H(M+L~1)

137 Y(M)Y=Z(MaL=-1)

DO 135 K=146
DO 130 1=2¢5
11=6-1
DO 130 J=1.11
Ji=sJ+l-1
130 P(T1e)=((P(I=101)¥(Y(J1)-G(K)))I=(P(I=1eJ+1)¥(Y(I=1)-G(K))))/(Y(J])
C=yY(1-1))

135 UK)=P(Se1 )% (+e1E=05)
L=2
DO 144 K1=7¢5845
K2=K1+1
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DO 142 M=1.5
P(1eM)=H(M+L=-1)
142 Y(M)=Z(M+L~-1)
DO 145 K=K1.:K2
DO 140 1=2+5
11=6~1
DO 140 J=1.11
J1=J+1-1
140 P(I4U)=((P(I=101)%(Y(J1)=G(K)I)=(P(I=1eJ+1)¥(Y(I=1)=G(K))))I/Z(Y(J1)
C=y(I-1))
145 U(K)=P(S+1)#( +1E=05)
144 L=L+2
L=3
DO 154 K1=9+¢58+5
K2=K1+2
DO 152 M=1.5
P(1eM)=H(M+L=-1)
152 Y(M)=Z(M+L-1)
DO 155 K=K1+K2
DO 150 [=2+5
11=6-1
DO 150 JU=1411
Ji=J+1-1
150 P(1eU)=((P(I=1+1)%(Y(J1)=G(K)))=(PCI=1¢J+1)*¥(Y([=1)=G(K))))Z(Y(JI1)
C=Y(I-1))
155 U(K)=P(5+1)%#(++1E-05)
154 L=L+2
DO 771 J=59.501
771 U(J)=+462727E-03
CALCULATE NON DIMENSIONAL STRESS AND VELOCITY
DO S00 I=1+2
DO 500 J=14901

DO 502 JU=219+684
502 C(J)=(TS1(J=-218)/C(1))
DO 501 J=1.218
501 C(J)=10
DO 503 JU=684,901
503 C(J)=1e0
Q=140
DO S08 L=1+25
DO S07 K=2,.,21
K1=((L%*20)=-20)+K
S(2+1)=U(K1)
V(2e1)=V(192)=((S(2+1)=5(1+2))/C(1))
DO 506 J=2+90
CA=C(J)+C(J+1)
CB=C(U)+C(J-1)
CT=CA+CB
S(2¢J)=((CA%S(24J=1))+(CB*¥S(1+J+1))+(CAXCB*¥(V(14J+1)=V(2+J=1))/240
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Crys/Cr
506 V(Z'J)'((CB*V(Z'J‘I))+(CA*V(10J+1))-(2.*5(20J-l))+(2.*S(10J+1)))/C
CcT
S(2¢901)=0,0
V(2+¢901)=V(2¢900)=(S(2+4900)/C(900))
DO 507 JUAC=1,901
S(1+JACYI=S(24JAC)
S07 V(14JAC)Y=V(24:JAC)
Li=(L®%20)+1
TIME=Q#20,0%#TS#2,0
PRINT 14+L1+TIME
YS(1)=S(1+4149)
YS(2)=S(1e¢451)/7(E(24)/E(1))
YS(3)=S(1+753)
PRINT 11¢S(1+149)¢S(1+451)¢S5(10¢753)
PRINT 12¢YS(1)eYS(2)eYS(3)
PRINT 13eV(1¢149)eV(14451)¢V(14¢753)
PRINT 401
508 Q=Q+1.
STOP
END
SCOPE
*_OAD
*RUN¢20+4000
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PROPAGATION SOLUTION BY THE METHOD OF CHARACTERISTICS

BAR STRUCK AT THE HOT END

11
12
13
14
26
27
401

>

907

900

PROGRAM TEMPWAV

TYPE DOUBLE TEMPSsE+CoXsZsPsTSIsTsYsSeVeYSIUsHIG
DIMENSION TEMP(20)+E(20)+T(20)+X(388)+2(20)4P(545)¢T51(388)+C(961)
DIMENSION Y(5)+¢S(24961)sV(2+961)+YS(3)eU(BO1)+H(26)4+5(388)
FORMAT (8(F10))

FORMAT (3X+6HSTRESS+14X+D22.12+15X+D2261245XeD22412)
FORMAT (3X+6HSTRAINI4XeD22412+5X+D22412+5XeD22412)
FORMAT (2X+BHVELOCITYs3XsD2241245X+D22e12+5XeD22412)
FORMAT (3X+sSHPOINT ¢3Xs I13+45XeSHTIME +3X+E1548)

FORMAT( 12X+ 7HT RIGHT 422X+ 7HT TOTAL +22Xe 7HT INTVL)
FORMAT (4X+D2541544X4D25e1544X4D25415)

FORMAT (1HO)

CALCULATE E AND C FROM THE TEMPERATURE DATA
EO=4+290E+08

EL= .2172E+408

TO=75.

TL=1200,

CO=(EL-EO)/(TL=TO)

READ 1+(TEMP(J)+J=14+20)

DO 4 J=1+20

E(J)=(CO*(TEMP(J)=TO))+EO

ES=E(J)/(7+43E-04)

C(J)=SQARTF(ES)

INTERPOLATE TO GET ELASTIC WAVE SPEED C

Z(1)=0e0

DO 5 U=2.+20

Z(J)=Z(J=1)+1e0

X(1)=0e0

DO 6 J=2.388

X(J)=X(JU=1)+.05

L=1

DO 907 M=1.45

P(14M)=C(M+L=~1)

Y(M)=Z(M+L~-1)

DO 905 K=1+50

DO 900 1=2.+5

11=6~1

DO 900 J=1411

J1=J+1=1
PlIed)=((P(I=1e1)®(Y(J1)=X(K)))=(P(I=10J+1)*¥(Y([=1)=X(K))))/(Y(J])

C=Y(I=-1))

905

TSI(K)=P(Se1)
L=2
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DO 804 K1=514320420
K2=K1+19
DO 802 M=1.5
P(l1eM)=C(M+L~-1)
802 Y(M)=Z(M+L~-1)
DO 805 K=K1 K2
DO 800 1=2+5
11=6~-1
DO 800 J=1,11
JisJ+1-1
800 P(leJ)=((PCI=101)¥(Y(J]1)=X(K)))I=(P(I=1eJ+1)¥(Y(I=1)=X(K)))I)I/(Y(JI]1)
C=yY(I~-1))

805 TSI(K)Y=P(S1)

804 L=L+1
L=16
DO 703 M=1.5
P(l1eM)=C(M+L=-1)

703 Y(M)=Z(M+L~-1)

DO 705 K=331,381
DO 700 1=2+5
11=26-~1
DO 700 J=1.11
JizJ+l-1
T00 P(loe)=2((P(I1=1e1 )R (Y(J])=X(K)))=(P(I=1eJ+1)¥(Y(I=1)=X(K)))I))/(Y(J])
C=v(1-1))

705 TSI(K)I=P(S5.1)
CALCULATE THE FIRST CHARACTERISTIC
T(1)=0.60
DO 23 J=2.20
1=(U#20)=-19
I1=1-1
12=1=-2
Azl 4/T51(2)

DO 21 K=441142

21 A=A+(1¢/T51(K))
Q=1¢/T751(3)

DO 22 K=5,1242

22 0=Q+(1e¢/7S51(K))

23 T(I)=((1e/TSI(1))14(1e/TSI(I))I+(QeHA)+(2%Q) )*(e05/36)
TR=229,0/C(20)
TT=TR+T(20)
TS=TT/96060
PRINT 26
PRINT 27¢(TReTTWTS)
INTERPOLATE TO GET DISTANCE OF MESH POINTS
G(1)=2060
DO 7 J=2.388

7 G(J)I=G(JI=1)+TS
L=1
DO 607 M=1¢S
P(leM)sZ(M+L~-1)
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607 Y(M)=T(M+L~-1)
DO 605 K=1:56
DO 600 1=2+5
11=26-1
DO 600 J=1.411
JizJ+1=-1
600 P(leJ)=((P(I1=141)¥(Y(J1)=G(K))II=(P(I=1eJ+1)¥(Y(I=1)-G(K))))/Z(Y(J])
C-yY(1-1))
605 X(K)=P(Se1)
L=2
DO 304 K1357,320420
K2=K1+420
DO 302 M=1,+5
P(leM)=Z(M+L~-1)
302 Y(M)=T(M+L~-1)
DO 3085 K=K1.K2
DO 300 1=2+5
11=6-1
DO 300 JU=1.11
J1zsJ+l~1
300 P(loe)=((P(I=1¢1)%(Y(JY1)=G(K)))=(P(I=1eJ+1)¥(Y(]I=-1)-G(K)))I)I/(Y(J])
C=yY(l=-1))
305 X(K)=P(Se1)
304 L=L+1
L=16
DO 733 M=1.S
P(1eM)=Z(M+L~-1)
733 Y(M)=T(M+L-1)
DO 735 K=338,388
DO 730 =225
11=6~1
DO 730 JU=1.11
JieJ+1-1
730 P(leJd)=((P(I=1e1)R(Y(J1)=G(K)))=(P(I=1e¢J+1)R(Y(]I=-1)=G(K))))I/(Y(J])
C-Y(1-1))
735 X(K)=P(541)
INTERPOLATE TO GET C AT THE MESH POINTS
L=1
DO 107 M=1,5
P(leM)=C(M+L~-1)
107 Y(M)=Z(M+L~-1)
DO 105 K=21+56
DO 100 1=2,5
11=6~-1
DO 100 JU=iell
JiaJel=1
100 PUT o) ((P(I=141)#(Y(JL)=X(K)))I=(P(I=1eJ+1)¥(Y(]I=1)=X(K))))/(Y(JI])
C=Y(1~1))
105 TS1(K)Y=P(S5.1)
L=2
DO 114 K1=57¢320+20
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K2=K1+4+20
DO 112 M=1,5
P(14M)=C(M+L=1)
112 Y(M)=Z(M+L -1)
DO 115 K=K1 K2
DO 110 1=2+5
11=6-1
DO 110 JU=111
Ji=J+1~-1
110 PUIoeN)=((P(I=1e1)¥(Y(JL)=X(K)I))=(P(I=1eJ+1)I)H(Y(I=1)=X(K))I)I)IZ(Y(J])
C=-Y(I-1))
115 TSI(K)I=P(Ss1)
114 L=L+1}
L=16
DO 123 M=1.+5
P(1eM)=C(M+L=1)
123 Y(M)=Z(M+L-1)
DO 125 K=338,388
DO 120 13245
11=6~1
DO 120 J=1.11
JisJ+l=-1
120 P(le)=((P(I=11)#(Y(J1)=X(K)I)I=(P(I=1eJ+1)¥(Y(I=1)=X(K)))I/(Y(J]1)
C-Y(I1-1))

125 TSI(K)=P(5.1)
INTERPOLATE TO GET NON DIMENSIONAL STRESS INPUT
READ 1¢(H(J)eJ=1415)
2(1)=0.0
DO 99 JU=24.15

99 Z(J)=Z(J=1)+(+2E-05)
G(1)=0e0
DO 299 J=2+50

299 G(J)I=G(J=1)4+(2.,0%#TS)
L=1
DO 137 M=1,5
P(l1oeM)=H(M+L~-1)

137 Y(M)=Z(M+L~-1)

DO 135 K=1410
DO 130 1=2+5
11=6-1
DO 130 Usiel1l
JizJ+l-1
130 P(leJ)z((P(I=101)#(Y(J1)=G(K))I)I=(P(I=10J+1)¥(Y(I=1)=G(K))))I/Z(Y(J1)
C=Y(l«1))

135 U(K)=P(Sel ) #(+61E=0S)
L=2
DO 144 Kl1=11+48+4
K2=K1+43 :

DO 142 M=1,5
P(leM)=H(M+L=-1)

142 Y(M)Y=Z(M+L~-1)

DO 145 K=Kl K2
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500
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506

507
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DO 140 1=2,5

11=26-1

DO 140 JU=1.411

Ji=J+1-1
P(led)s((P(1=1e1)%(Y(J1)=G(K)))=(P(I=1eJ+1)¥(Y([=1)-G(K))))Z(Y(J]1)
C=yY(Il-1))

UIK)=P(Sel )R (+e1E=05)

L=L+1

DO 771 J=48,801

U(J)=+¢693E-03

CALCULATE NON DIMENSIONAL STRESS AND VELOCITY
DO 500 I=1.2

DO S00 J=1.961

S(14J)=060

V(14J0)=0,0

CAT=C(20)

DO S02 J=1.388

C(I)=(TS1(J)/CAT)

DO S01 J=3894+961

C(J)=lo°

Q=160

DO S08 L=1+40

DO S07 K=2.21

K1=((L*#20)~-20)+K

S(2¢1)=U(K1)
V(2e1)=V(1e2)=((S(241)=S(1¢2))7C(C(1)+C(2))/2¢0))
DO 506 J=2+960

CA=C(J)+C(J+1)

CB=C(J)+C(J~-1)

CT=CA+CB
S(2¢J)=((CAXS(2¢J=1))+(CBES(1eJ+1))+(CARCB¥(V(]1eJ+1)=VI(2¢J-1))/2¢0
C)yy y/CcT
V(2¢J)=((CBREV(2¢J=1))+(CARV (] eJ+1))~(2e%#S(2¢J-1))14+(2e%S(1eJ+1)))/C
cT

S(2:261)=060
V(2¢961)=V(2:¢960)=(S(2¢960)/C(960))
DO S07 JAC=1,961

S(1+JAC)YI=S(2¢JAC)

V(1+sJAC)Y=V (24¢JAC)

Li=(L*#20)+1

TIME=Q#20,0#TS%*2,0

PRINT 14.L1+TIME
¥YS(1)1=S(1¢26)/7(C(26)%#C(26))
YS(2)3S(1¢27)/7(C(27)%#C(27))
YS(3)=2S(1+507)

PRINT 11¢S(1¢26)¢S5(1¢27)¢S(1¢507)
PRINT 12¢YS(1)eYS(2)¢YS(3)

PRINT 13eV(1¢26)eV(1e¢2T7)eV(1+¢507)
PRINT 401

Q=Q+1.,

STOP

END
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PERIODIC VIBRATIONS SOLUTION FOR A GENERAL TEMPERATURE DISTRIBUTION

BOUNDARY CONDITION

AT X=Lo DISPLACEMENT=U et

PROGRAM TEMPWAV
DIMENSION A(2000+3)+sU(2001)+X(¢2001)+E(2001)+Z(200042)+¢5(201)
DIMENSION V(2001)¢F(7)+TEMP(21)¢D(21)4G(21)+P(S5+5)eY(5)
101 FORMAT (7(E10e3+1X))
120 FORMAT (10Xs11HFREQUENCY =42X+E10e3)
255 FORMAT (2X+14+3X+E10e347X+E1548)
256 FORMAT (2X+1443X4E1043¢7XeE15¢895X+E1568)
410 FORMAT (1HO)
420 FORMAT (10X+¢16HNO OF ITERATIONS+3Xs 346X +4HDAM=¢2X+E1548)
801 FORMAT (3Xes1HJ¢SXeSHPOINT 10X 12HDISPLACEMENT )
901 FORMAT (3Xe1HJeSXeSHPOINT¢13Xe6HSTRESSs 13X 15HIT DISPLACEMENT)
READ 101+ (F(J)eJ=147)
R=7443E-04
TL=20.
H=TL/2000.0
U(2001)=140
[ CALCULATE ELASTIC MODULUS
EO=4+290E+408
EL= +2172E+08
TO=75e
TL=1200,
CO=(EL=-EO)/(TL-TO)
FORMAT (8(F10))
TEMP(1)=75.0
READ 1+(TEMP(J)¢J=2421)
DO 4 JU=1.21
D(J)=(CO*(TEMP(J)=TO))+EO
[+ INTERPOLATE FOR INTERMEDIATE VALUES OF ELASTIC MODULUS
G(1)=0s0
DO 5 Ju=2.21
G(J)=G(J=1)+140
X(1)=0s0
DO 6 U=242001
X(J)y=X(J=1)+e01
L=1
DO 907 M=1,4S
P(1eM)=D(M+L~1)
907 Y(M)=G(M+L~-1)
DO 905 K=1024250
DO 931 1=2.5
11=6-1
DO 931 J=1.11
JisJ+1=-1
931 P(IeU)=((P(I=101)%(Y(J1)=X(K))I=(P(I=1sJ+1)¥(Y(I=1)=X(K))))/(Y(JI])
C=Y(I~1))

>

un

o
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905 E(K)=P(541)
L=2
DO 804 K1=25141730,4100
K2=K14+99
DO 818 M=145
P(14M)=D(M+L=~-1)
818 Y(M)=G(M+L~-1)
DO 805 K=K1.K2
DO 819 1=2+5
11=6-1
DO 819 J=1.11
Ji=Jd+1-1
819 P(1eU)=((P(I=1+1)%(Y(J1)=X(K)))I=(PCI=1sJ+1)%(Y(I=1)=X(K))))I/(Y(J1)
C=yY(1-1))
805 E(K)=P(541)
804 L=L+1
L=17
DO 703 M=1,+5
P(1+M)=D(M+L=1)
703 Y(M)=G(M+L-1)
DO 705 K=17514+2001
DO 700 1=2,5
11=6~1
DO 700 J=1.11
JizJd+l=1
700 PUled)=((P(I=101)%(Y(J1)I=X(K))I=(P(I=1eJ+1)¥(Y(I=1)=X(K))))/(Y(J1)
C=Y(1=-1))
705 E(K)=P(Ss1)
DO 706 J=1+101
706 E(J)=EO
CALCULATE DISPLACEMENT AMPLITUDE
A(11)=040
DO 200 J=2,2000
200 A(Je1)=(1e=((E(J+1)1=E(JI=1))1/(Q¥E(J))))
B==(1e+((E(2001)=E(1999))/(4.*E(2000))))
DO 202 J=2,1999
202 A(Je3)=(1e+((E(J+1)I=E(I=1))/(4e*E(J))))
A(143)=2.0
A(2000+43)=0.0
DO 210 J=1,2000
210 Z(Je2)=A(Je3)
DO 300 I=1+7
W=6428319%F (1)
DO 201 J=1,2000
201 A(Je2)=((R*¥((WRH)X%24))/E(J)) =20
Z(141)=A(142)
DO 211 J=2.,2000
211 Z(Je1)1=A(Je2)=((A(Je1)/Z(I=141))%#A(I=143))
U(2000)=8/Z2(2 004+1)
DO 212 J=1+1999
J1=2000-J
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212 U(J1)==((Z(J1e2)/7Z(J1+1))RUJILI4+1))
PRINT 120+F (1)
PRINT 410
PRINT 801
PRINT 255e(JeX(J)eU(J)eJ=1+2001+50)
PRINT 410
K=1
660 V(1)==C((A(1e¢3)/A(1¢2))%#U(2))
DO 600 JU=241999

600 VJ)==C(((A(J o1 IRV (U=1))+(A(Je3)XU(JI+1)))I/A(Je2))
V(2000)=(B=-(A(2000+¢1)%#V(1999)))/A(2000+2)
vV(2001)=U(2001)

DAM =(U(1)=V(1))
J=1

670 IF(J~2000)680:680¢690

680 DIF=U(J)=V(J)
IF(DAM=DIF)671¢6T72¢672

671 DAM=DIF
J=J+1
GO TO 670

672 J=J+1
GO TO 670

690 1F(DAM=,00001)803+800,800

800 DO 802 JU=142001

802 U(tJ)I=V(J)

K=K+1
IF(K=50)660:660+803
C CALCULATE STRESS AMPL 1 TUDE

803 S(1)=0.

DO 900 JU=2.200
Jiz((J*10)-9)

900 S(JUI=E(JL1)R((V(JI+]1)=V(IL1=1))/(2e%H))
S(201)=E(2001)#((V(2001)=V(2000))/H)
PRINT 420K DAM
PRINT 410
PRINT 901
DO 902 J=1.20145
Ji=z((J*10)-9)

902 PRINT 256¢ (J1eX(J1)eS(J)eV(JL1))

300 PRINT 410
STOP
END

SCOPE
' LOAD
'RUN2+¢3000
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PERIODIC VIBRATIONS SOLUTION FOR A GENERAL TEMPERATURE DISTRIBUTION

BOUND
AT X=

101
120
255
256
410
420
801
901

907

931

905

ARY CONDITION
Lo STRESS=Pe"“

PROGRAM TEMPWAV

DIMENSION A(2 O01¢3)+sU(2001)¢X(2001)+E(2001)¢Z(2001¢2)¢S(201)
DIMENSION V(2 O01)eF(T7)eTEMP(21)eD(21)0G(21)eP(5¢5)4Y(5)
FORMAT (7(E10e301X))

FORMAT (10X+11HFREQUENCY =4¢2X+E10¢3)

FORMAT (2Xe1Q8¢3XesE10e3¢7XeE1568)

FORMAT (2Xe14¢3XsE1063¢7X1E1Se8¢5XeE15e8)

FORMAT (1HO)

FORMAT (10X+16HNO OF JITERATIONS:3Xe13¢6Xe4HDAM=42XeE1568)
FORMAT (3Xe1HJeSXsSHPOINT«10X e 12HDISPLACEMENT)

FORMAT (3Xel1HJeSXeSHPOINT s 13X s6HSTRESS13Xe15HIT DISPLACEMENT)
READ 101¢ (F(JU)oeJ=107)

TL=20,

H=601

R=7¢43E~-04

CALCULATE ELASTIC MODULUS

EO=.290E+08

EL= +2172E+08

TO=7Se

TL=1200,

CO=(EL-EQ)/(TL-TO)

FORMAT (8(F10))

TEMP(1)=75S.0

READ 1+(TEMP(J) eJx2421)

DO 4 U=1,21

D(J)=(COR(TEMP(J)=TO) )+EO

INTERPOLATE FOR INTERMEDIATE VALUES OF ELASTIC MODULUS
G(1)=060

DO &5 uU=2.+21

G(J)=G(J=1)+1.0

X(1)=0e0

DO 6 J=2,2001

X(J)=X(J=1)+01

L=1

DO 907 M=1,5

P(leM)=D(M+L~1)

Y(M)=G(M+L~-1)

DO 905 K=102¢250

DO 931 =245

11=6=-1]

DO 931 J=1.11

JizJ+l~-1
P(le)=((P(I=1¢1)#(Y(J1)=X(K)))=(P(I=1eJ+1)R(Y(I=1)=X(K))))/Z(Y(J]1)
C=y(l-1))

E(K)=P(S.1)
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L=2
DO 804 K1=251417304100
K2=2K1499
DO 818 M=1+5S
P(l1oM)=D(M+L~-1)
818 Y(M)=G(M+L~-1)
DO 805 K=K1 K2
DO 819 1=2+5
1126=1
DO 819 J=21.11
JizJ+l-1
819 P(1e)=((P(I=1e1)RH(Y(J1)=X(K)))=(P(I=1eJ+1)H(Y(I=1)=X(K))I)I/Z(Y(J])
C=YtI=-1))
8085 E(K)=P(541)
804 L=L+1
L=17
DO 703 M=1,S
P(l1eM)=D(M+L~1)
703 Y(M)=G(M+L~-1)
DO 705 K=1751+2001
DO 700 1=2+5
11=6~1
DO 700 JU=1.11
JizJ+l=-1
700 P leJ)=C(P(I=1e1)¥(Y(J1)=X(K))I)I=(P(I=1eJ+1)H(Y(I=1)=X(K))))/(Y(J]1)
C=Y(Il-1))
705 E(K)=2P(Se¢1)
DO 706 J=1.4101
706 E(J)=EO
CALCULATE DISPLACEMENT AMPLITUDE
A(141)=0,0
DO 200 J=2+20 O .
200 A(Je1)=(1e=((E(J+1)=E(I=1))/(Q,*E(J))))
A(2001+¢1)=2,
Bz==((2e#H# (14 ((E(2001)=E(2000))/7(2.#E(2001)))))/E(2001))
DO 202 J=2.,2000
202 A(JeIZT(1e+((E(JI+1)I-E(I=1))/(AQ*E(J))))
A(1¢3)=2
A(2001¢3)=20,60
DO 210 JU=1,+2001
210 Z(Je2)=A(Je3)
DO 300 1=14.7
W=6,28319%F (1)
DO 201 J=1,2001
201 A(Je2)=((RE((WRH)RE24))I/E(J) ) =20
Z(1e1)=A(142)
DO 211 JU=2,2001
211 Z(Je1)=A(Je2) ((A(Je1)/7Z2(U=141))RA(J=1+3))
U((2001)aB/72(2001.1)
DO 212 J=14,2000
J1=22001-J
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660

600

670
680

671

672

690

800
802

803

900

902
300

'LOAD
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UCJ1)==((Z(J1¢2)/7Z2(J1e1))RU(J14+1))
PRINT 120+F (1)
PRINT 410
PRINT 801
PRINT 25S5¢ (JeX(J)eU(J) eJ=1¢2001+50)
PRINT 410
K=1
V(1)==((A(1e3)/7A(1+2))%0U(2))
DO 600 JU=2.,2000
V(J)==((CA(Je1)RV(U=1))4+(A(Je3IRU(JI+1)))/7A(Je2))
V(2001)=(B=-(A(2001+1)#V(2000)))/7A(2001+2)
DAM =(U(1)~-V(1))
J=1
IF(J=2001)680¢680¢690
DIF=U(J)Y=V(J)
IF(DAM=DIF)671+672¢672
DAM=DIF
J=J+1
GO TO 670
J=J+1
GO TO 670
IF(DAM=-,00001)803+.800+800
DO 802 J=1,+2001
U(Jd)=Vvi(J)
K=K+1
1IF(K=50)660+660:803
CALCULATE STRESS AMPL I TUDE
S(1)=0e
DO 900 J=2+200
Jim((J*10)-9)
S(J)=E(J1)IH((V(J141)=V(J1=1))/(2s%H))
S(201)=E(2001)#((V(2001)=V(2000))/H)
PRINT 420+K+DAM
PRINT 410
PRINT 901
DO 902 J=14+201+5
Ji=((U*10)-9)
PRINT 256¢ (J1eX(J1)eS(J)eV(J1))
PRINT 410
sSTOP
END
SCOPE

'RUN¢24¢3000
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