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ABSTRACT

ONE-DIMENSIONAL ELASTIC WAVE PROPAGATION IN A BAR WITH

THERMALLY-INDUCED LONGITUDINAL INHOMOGENEITY

by Rajinder K. Khetarpal

A temperature gradient along the length of an elastic bar

gives rise to a variation in the modulus of elasticity E and the

density p along the length of the bar. Hence the longitudinal

elastic wave speed c = (ET/T; becomes a function of the axial

coordinate. When the thermal gradient and the dependence of E

and p on temperature are known, the problem becomes one of

wave propagation along an inhomogeneous elastic bar with known

values of the variable wave Speed C(x). The change in density due

to a change in temperature has a small effect on the wave Speed for

the cases considered, the primary effect being produced by the change

in the modulus, which may be reduced as much as 20 percent in steel

when the temperature is raised to 12000 F.

Numerical integration by the method of characteristics was

programmed and used on the Control Data Corporation 3600 computer.

The numerical solutions for two cases were compared with the

experimental data obtained: (1) for a stainless steel bar with a

temperature gradient at the middle, and (Z) for a stainless steel

bar with the loaded end hot and the other cold; both bars were loaded

at one end by a flat-tOpped stress pulse. Experimental records of

the transmitted pulses in both cases agreed very closely with the

numerical solutions. For the bar heated at the middle a reflected
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pulse of strain with a magnitude of 5% of the incident pulse was

observed experimentally as compared with 7% predicted by the

numerical solution. The transmitted strain pulse, after passing

through the gradient of rising temperature, showed at the point

of highest temperature a continuous slow rise in amplitude after

the initial jump, while at a second room-temperature gage beyond

the hot region the amplitude was nearly the same as in the incident

pulse. The transmitted pulse in the bar with one end hot was

slightly different and had a higher magnitude than the incident

pulse recorded on the striker bar.

An analytical study was also made of the periodic longitudinal

vibrations in a free-free bar with one end hot and the other end cold,

excited at the hot end in the first case by a sinusoidally varying

displacement and in the second case by a sinusoidally varying stress.

An explicit solution is possible when the elastic modulus E is a

linear, exponential, or power function of the position in the bar.

For a numerical solution, programs were written to solve the

periodic vibration problem by finite-difference methods for an

arbitrary temperature distribution.

For a 20-inch-long Type 303 stainless steel bar, the effect

on the periodic longitudinal vibration was studied for several

temperature distributions varying from room temperature to 1200017‘

for excitation frequencies of 5000; 7500; 10, 000; 12, 500; 15, 000;

17, 500; and 20, 000 cps. The numerical solutions agreed with the

explicit solutions up to six significant figures in the cases where

explicit solutions were available.
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NOMENCLATURE

Elastic wave speed, also a defined constant in Chapter 4.

Elastic wave speed at room temperature

Non-dimensional elastic wave speed, 2 c(x)/cO

Non-dimensional elastic modulus, = E(x)/EO

Constants in Chapter 4

Elastic modulus

Elastic modulus at room temperature

Bessel's function of the first kind and order p

A constant, with units of (sec. )-1 in Chapter 3

Also other defined constants in Chapter 4

Length of the bar

A defined constant

Amplitude of the stress end condition

Non-dimensional stress, = cr/EO

Time

Non-dimensional time, = t/k

Longitudinal displacement, considered positive when in

the negative x-direction

Amplitude of the displacement end condition

Particle velocity, considered positive when in the negative

x-direction

Non—dimensionalized particle velocity, = v/cO

Initial coordinate of cross section

Non-dimensional distance, = kx/cO

Non-dimensional strain, = 6

viii



Bessel's function of the second kind and order p

Strain, considered positive in compression

Density

Stress, considered positive when compressive
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CHAPTER I

INTR ODUCTION

l. 1. Purpose and Objectives

It is well known that the mechanical properties of a material

change with the temperature. Among other changes in mechanical

pr0perties due to a change in temperature, the changes in the

modulus of elasticity and the density affect the prOpagation of a

wave. The purpose of the present investigation is to study the

effect of a thermally-induced inhomogeneity on the pr0pagation of

a one-dimensional elastic disturbance.

The problems investigated in this study have the following

possible applications: (a) Interpretation of pressure-bar records

from hot or radioactive environments (see for example Chiddister*,

1961), (b) Finding the critical frequencies and solving resonance

problems of bars subjected to varying temperatures, (c) Calibration

of high-temperature strain gages, and (d) Obtaining the value of the

elastic modulus at elevated temperatures.

A temperature gradient along the length of an elastic bar

gives rise to a variation in the elastic modulus E and the density

p along the length of the bar. Hence the longitudinal elastic wave

speed c =N} 3% in the bar becomes a function of the axial coordinate.
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When the thermal gradient and the dependence of E and p on

temperature are known, the problem becomes one of the wave

pr0pagation along an inhomogeneous elastic bar with known values

of the variable wave speed C(x). The change in the density due

to a change in temperature is quite small. Based on the value of

the coefficient of expansion for Type 303 steel given in the Metals

Handbook (1948), the difference in the values of the density at

75°F and 1200°F is 3. 89% and the resulting difference in the values

of the elastic wave speed at 120001" is only 1. 98% (the values are

given in Sec. 6.1). Therefore the density can be considered

constant, and the primary effect is produced by the change in the

elastic modulus, which may be reduced as much as 20% in steel

when the temperature is raised to lZOOOF. The inhomogeneity in

this study is therefore prescribed as a variation in magnitude of

the elastic modulus only.

The present investigation had the following objectives:

(a) To study the effect of the thermally-induced inhomogeneity on

the propagation of a pulse in an elastic slender bar with an arbitrary

temperature distribution along its length. (b) To study the effect of

the thermally induced inhomogeneity on the periodic vibrations "of an

elastic slender bar with an arbitrary temperature distribution along

its length and various boundary conditions. (c) To set up an

experiment to study the effect of the thermally-induced inhomogeneity

on the pr0pagation of a' pulse produced by an impact in an elastic

slender bar with a temperature distribution along its length, and



 



compare it with the outcome of the objective (a).

Numerical integration by the method of characteristics was

programmed and used on the Control Data Corporation 3600 computer.

The program was used (11 five Specific problems, calculating results:

1. to compare with the experimental pulse-propagation

study on the bar heated at its center;

to compare with the experimental pulse-prOpagation

study on the bar heated at one end;

to verify the results of Chiddister (1961), which he

obtained by approximating an experimentally-obtained

thermal gradient by a series of steps;

to verify the results of Lindholm (1963), which he

obtained by a series method for the Special case

x n

E 2 E0 (1:13) ; and

to solve a modified version of Lindholm's problem

with variation according to a cubic power law in

one-fourth the bar, while the rest of the bar had a

uniform elastic modulus.

Two experimental pulse propagation studies were made on

Type 303 stainless steel test bars:

1. Bar Heated at the Middle. A 6-foot-long bar was heated

at the middle to a maximum temperature of 12000F by a 5-inch-long

coaxial furnace and impacted longitudinally at one end by a 4-foot-long

striker bar. The pulse produced in the test bar was recorded by three

strain gages, two at room temperature and one high-temperature gage



at the middle of the bar. The first room-temperature gage recorded

the incident pulse and the reflection from the thermal gradient, while

the second recorded the transmitted pulse in the region beyond the

heated middle portion of the bar.

2. Bar Heated at the Impact End. A 4—foot-long bar was
 

heated at one end by the same coaxial furnace and impacted as in

the first experiment. In this second experiment one of the room-

temperature gages was on the striker bar.

Results in both experiments agreed very closely with the

numerical solutions. In the case of the bar heated at the middle,

the maximum reflected pulse was 7% of the incident pulse according

to the calculations and 5% from the experiment. The initial jump

and the amplitude of the transmitted strain pulse recorded at the

second room-temperature gage were nearly the same as the

incident pulse. The amplitude of the pulse at the point of highest

temperature in the bar heated at the middle showed a continuous

slow rise after the initial jump. The transmitted pulse in the bar

struck at the hot end was slightly different and had a higher magni-

tude than the pulse recorded on the striker bar.

An analytical study was also made of the periodic longitudinal

vibrations in a free-free bar with one end hot and the other end cold,

excited at the hot end in the first case by a sinusoidally varying

displacement and in the second case by a sinusoidally varying stress.

An explicit solution is possible when the thermally-induced inhomo-

geneity is one such that the elastic modulus E is a function of the



position in the bar of the form

E : E0 + kx Datta (1956)

or E : E0 ekx Sur (1961)

x n

or E : Eo (kl-3) Lindholm (1963)

These problems have been solved by converting the wave

equation to a form of Bessel's equation. The solution of the

displacement wave equation has been obtained by the same method

as that used by the authors cited. In addition, the explicit solutions

of the stress wave equation with the same type of inhomogeneities

as in the case of the displacement wave equation have been obtained

in the present investigation.

In the. present investigation programs were written to solve

the periodic vibration problem numerically by finite differences for

an arbitrary temperature distribution. These pr0grams were used

to determine how certain thermal gradients affect the periodic

longitudinal vibration of a 20-inch-1ong Type 303 stainless steel bar.

For the excitation frequencies of 5000, 7500, 10, 000, 12, 500, 15, 000,

17, 500, and 20, 000 cps, explicit solutions of the stress and displacement

were obtained for the thermally-induced inhomogeneity in which the

elastic modulus varies with the distance as Eo + kx, Eo ekX and

E0 (Exi)2 ; and numerical solutions of the stress and displacement

were obtained for the same three cases as a check and in addition

for variation as Eo (fig/2 and for atemperature distribution

measured in the laboratory under conditions similar to those of the



 



pulse-propagation experiments. The value of k in each case was

such that one end of the bar was at 750F and the other end at 12000F.

With these choices of the constants the exponential and power function

variations of E(x) do not depart much from the linear variation in

the 20-inch bar, with the result that those solutions are also very

close to the solution for linear variation. The numerical solutions

agreed with the explicit solutions up to six significant figures in the

cases where explicit solutions were obtained. The solutions were

also obtained for the same bar with a uniform temperature of 750F

in one case and 12000F in the other. Plotting all the above solutions,

it was found that the solutions, for the cases of varying temperatures

in the bar, were always between the solutions obtained for the uniform

temperatures of 750F and 1200OF. The presence and the location of

the nodes, the critical frequencies, and the amplitude, were all

affected by the inhomogeneity in the bar.

1. 2. Background
 

A considerable amount of work has been done on inhomogeneity

(see Olszak, 1959). Sternberg and Chakaravorty (1959) have considered

the problem of the pr0pagation of a shear shock wave from a circular

hole in a semi-infinite plate, where the hole is subjected to suddenly

rising uniform shearing tractions and the shear modulus of the

material of the plate is pr0portional to an arbitrary power of the

radial distance from the center of the hole. Cristescu (1959) has

considered the prepagation of waves in elastic-plastic non-homogeneous

thin and semi-infinite rods. In the elastic region he took 0' : E(x)€ .



Perzyna (1959) also considered the propagation of elastic-plastic

waves in a non-homogeneous bar for a general type of non-

homogeneity. He analyzed the problem with o~ : f(€, x). Both

Cristescu and Perzyna formulated the problem by the method of

characteristics in the same manner as will be done in this

investigation, but they did not include any numerical solutions.

Datta (1956) has studied the propagation of sinusoidal and

impulsive disturbances in a bar having linear variation of the

elastic parameters; he obtained the solution for the impulsive

loading by Laplace transform techniques. Ghosh (1961) has studied

the problem of extensional vibration of a bar having linear variation

of the elastic parameters, and excited by the impact of an elastic

load; he used Operational methods. Sur (1961) has studied the

pr0pagation of sinusoidal and impulsive disturbances in a bar having

exponential variation of the elastic parameters, and he too obtained

the solution for the impulsive loading by Laplace transform techniques.

Chiddister (1961) studied the problem of pulse propagation in a bar

with thermally-induced longitudinal inhomogeneity by approximating

the thermal gradient by five step-discontinuities separating regions

of constant temperature and superposing the waves calculated by

simple reflection theory. Chiddister used his approximate solution

to interpret the pres sure-bar records from the hot environments

where his specimen was located. As was mentioned above, this is

one of the important applications of the present investigation.

Lindholm (1963) solved the problem of an elastic disturbance

propagating in a nonhomogeneous bar of finite length by using the
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principle of virtual work. He prescribed the nonhomogeneity as a

modulus of elasticity continuously varying with position in the bar,

given by E : Eo(fi)n, and solved the pulse pr0pagation problem

by a superposition of sinusoidal solutions at different frequencies.

In his investigation of the pulse propagation he found an apparent

absence of reflections. An explanation of this apparent difference

from the results of the present investigation is given in Sec.7. l (c. iii).



CHAPTER II

DERIVATION OF THE WAVE EQUATION

Three different forms of the governing equations of wave

propagation will be derived here: a set of two first-order partial

differential equations for the unknown stress and particle velocity;

a second—order wave equation for the di8placement; and a second-

order wave equation for the stress (see Timoshenko, 1955).

These governing equations of motion for the one-dimensional

theory of longitudinal wave propagation in a bar of uniform cross-

section, with the elastic modulus varying along the length of the bar,

are obtained by assuming that plane sections remain plane and that

across these‘sections the stress is uniform, and that the displace-

ments are small.

At a time t, let u(x, t) be the displacement of the cross-

section initially at a distance x from the left-hand end of the bar.

At the section under consideration the strain E and the particle

velocity v are then

_ 22
e — 8x (2.1)

V = 51% (2.2)

In this discussion the stress and strain are considered positive when

they are compressive, and the di5placement and the particle velocity

are considered positive when they are in the negative x direction.
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By differentiating Eq. (2.1) with respect to time and Eq. (2. 2)

with respect to x, and eliminating u, we get the equation of

continuity

0
.
9

m

z .531 (2.3)

Q
)

q Q
)

<

— = P(X)— (2-4)

E(x) E = 0'

or,

86 80"

E(x) 5'? = '5'? (Z. 5)

Substituting Eq. (2. 5) in Eq. (2. 3),

8 8

x) at

q <

1
H

Q
)

E X

A

We therefore have a system of two linear first-order partial

differential equations. The system is written as

 
1 E 2.1 — 0 )

E(x) 8t - 8x —

l (2.6)

80 8v _

5;; 'MX)??? -0  

or,
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From equations (2.4) and (2. 2)

2
8 8
5% : p (x) ——g (2. 8)

at

so that,

8 811 azu

5;{E(X)_8-£} = P(X)g—tz— (2-9)

Eq. (2. 9) is the one-dimensional wave equation. Perzyna (1959)

gave a similar derivation for the wave equation, Eq. (14) in his

paper. Lindholm (1963) begins with the same wave equation.

From equations (2. 3) and (2. 5)

 

  

  

80' _ 8v

5‘? - W) 5:;

so that

1 82s : 82v (2 10)

E(x) atZ atax

Differentiating Eq. (2. 4) with respect to x yields

a 1 as 82v

532 (p(x) 5;) : axat (2.11)

From equations (2.10) and (2.11)

a 1 as 82s

E(x) 53: (pa) a—x') = M2 (2°12)

If the variation in density is negligible, we get the following

stres 5 wave equation
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2 2
8 8

E(x)——92- = p g (2.13)

8x 8t

2 2

or, c2(x) 0 g = 8 : (2°14)

3x at

where, c(x) = 1251‘) (2.15)

c(x) is the elastic bar -wave speed.

The system of two first-order equations will be used in the

third chapter to study pulse propagation by the method of charac-

teristics, while the two second-order wave equations will be used in

the fourth chapter to study the sinusoidal stress and displacement

standing waves.



CHAPTER III

PULSE PR OPAGATION

3. 1. Solution by the Method of Characteristics

We have obtained a system of two linear first-order differ-

ential equations, Eq. (2. 6), for the pulse prOpagation in a bar.

1

 

__1 9.1 21—0

Ex) 8t - 8x —

) (3.1)

30' 3V _

'53: - W) _—t - 0
J

Since the system is hyperbolic, it is suitable for numerical

solution by the method of characteristics (Courant and Hilbert, 1962).

i 1

For Eq. (3.1), we have 2( §_u__ +b .3.) z 0

1 aki ax ki a

1
i_ 0' _ 0 -1 — ——E(x) 0

u ‘ ' aki ‘ ’ bki ‘
u 1 0 0 -p(x)

And the characteristic curves are defined by

dx = + c(x) dt

(3. 2)

dx - c(x) dt

where c(x) = 12(5):) is the speed of propagation of the elastic wave

front.

The interior differential equations holding along the charac-

teristics correSponding to Eq. (3. 2) are

13
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I
l

O(10' - p(x) c(x) dv

(3.3)

(10 + p(x) c(x) dv = 0

Both Cristescu (1959) and Perzyna (1959) give the equations

defining the characteristics, and also interior differential equations

relating v and 6 for the elastic-plastic problem, but the papers

cited included no actual numerical solutions.

For most of the metals, e. g. steel, the coefficient of

expansion per unit volume is quite small. And because density

is mass per unit volume, the change in density due to the temperature

change is also small (see Sec. 6.1) and will be neglected in this

investigation.

The system of Eqs. (3. 2) and (3.3) can be treated by a

numerical procedure. The variables are first non-dimensionalized

by the following transformation.

 

__<:_ _l<_x
S_E X—C

o o

_ _E(X)
Y—e D.E

o

V_V_ )
"C (3:21):—

o c

o

Tzkt

where E0 and c0 are the elastic modulus and the wave propagation

2

speed at room temperature; (E0 = p cO ); k has the units of sec. - ,

and its value is chosen for convenience.

The transformed characteristic curves and the interior

differential equations along them can be written as
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dS-CdV

‘l

0 along the curve dX = CdT !

l .4t((3 )

dS + C dV 0 along the curve dX = - CdT

For numerical calculations these equations are treated as

finite -difference equations, with dS and dV replaced by A S and

A V, respectively and C replaced by an average value on the

characteristic segment. The XT —plane is subdivided by a mesh of

characteristic curves at finite intervals of A T and A X. The

characteristics are plotted with a constant interval of A T, and A X

is allowed to vary.

As shown in Fig. 3.1, for X > 0 there are two characteristics

passing through each mesh point. Therefore at any mesh point P of

the XT-plane'the solution can be obtained by solving two difference

equations along the appr0priate characteristics, if we already have

the solution for the two neighboring points A and B.

For the points along the edges of the bar, one of the unknowns

is prescribed, so that one equation will be sufficient to give the

solution.

Further details of the numerical solution are given in the next

section.

3. 2. Numerical Procedure
 

We write the interior differential equations, Eq. (3. 4) as

difference equations, with the average value of C along a segment

approximated by the arithmetic mean of its two end values, and

obtain



 



l6

 

 

(0 +0)

(SP'SA)' 132 A (VP'VA):O \:

1, (3.5)

(c +C)

(SP-SB)+ P2 B (VP-VB):O f

These equations are solved simultaneously to give the values

of the dimensionless stress S and velocity V at the point P of

Figure 3.1 in terms of the values of S and V at A and B.

Proceeding point-by-point in the mesh and using Eq. (3. 5), we

obtain the values of S and V for all the points in the field of

characteristics.

The characteristic field can be constructed by solving the

characteristic difference equations, based on Eq. (3. 2), which can

be done Without solving the pr0pagation problem. The calculations

with Eq. (3. 5) then give the solution at the mesh points.

There are three possible types of points to be considered for

a wave pr0pagation in a semi -infinite bar: Leading Wave Front;

Impacted End; and General Interior Point. For a finite bar the points

at the other end also require special treatment.

3. 2(a). Leading Wave Front

Along the leading wave front the values of the stress, strain,

and the velocity are zero for a continuously rising pulse. For a

discontinuous jump, the values after the jump are obtained by equating

impulse to the change of momentum and by continuity to give the jump

c onditions
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AS:-CAV

AV=-CAY (am

AS=C2AY

3. 2(b). Impacted End

Only one equation is available for the impacted end. Assuming

that one boundary condition is known at this end, the solution can be

obtained by considering the propagation along dX : - CdT. Two

possible cases are

(a) The Stress Boundary Condition is Known:

Let the stress at the point X: 0 be SO(T). Then Eq. (3. 5)

can be written as

(c +C)

(sP -SB)+ P 2 B (VP-VB) = o (3xn 

The solution of Eq. (3. 7) can be written as

SP : so

YP : :59
(3.8)

P .

2 !

VPZVB'EETC—Bwo'sB) j

(b) The Strain Boundary Condition is Known:

Let the strain boundary condition be Y(0,'I) : YO(T).

The equations for this boundary condition are
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YP = YO

SP = DPYP ”3.9)

(c + c ) 9
P B l

(SP-SB)+ 2 (VP-VB) _ 0/:

The solution of Eq. (3. 9) can be written as

\

SP 2 DP Yo

YP = YO >(3.10)

VP:VB'C 2c (DPY 'SB)
P + B 0 1

(c) General Interior Point

For a general interior point the Eq. (3. 5) can be written as

 

(0 +0) 1

(SP-SA)-—P—Z-—A (VP-VA) = 0

‘ f >(3.11)

(cp+cB)

(SP-SEN 2 (VP-VB) = o) 

The solution of Eq. (3.11) can be written as

  

 

_—. cp+cB s + cP+cA -s

2CP+CA+CB A 2cP+cA+cB B

(3.12)

+ ((280 Cfb (Cf; ()SB) (VB ' VA)
P A B

YP =‘SD'E
P

v 1
 

P : 2CP+CA+CB { (C P+CA) VA + (CP+CB) VB ‘ZSA+ZSB}
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The equations, Eq. (3.8), Eq. (3.10) and Eq. (3.12), have

been programmed in Fortran for the CDC-3600 computer. The

program is given in Appendix B._

Two of the possible boundary conditions at the other end of

the bar (opposite from the impact end) are free end and fixed end.

At a free. end, stress is equal to zero, so that at all the mesh points

falling at that end of the bar the non-dimensional stress S will be

zero. At a fixed end, particle velocity is equal to zero, so that at

all the mesh points falling at the end of the bar the non-dimensional

particle velocity V will be zero._ In both cases only one of the

Eq. 3 (3. 5) is used to obtain a solution.

The program has been used to solve five different problems:

1. Pulse pr0pagation in a 6-foot stainless steel bar with

the experimental temperature distribution in the middle. The

maximum temperature was 1200015“. The measured temperature

distribution is given in Fig. 3. 2. Temperature was measured

at 24 points 0. 8 in. apart on one side of the temperature

distribution. For the other side, the temperature distribution

was taken to be a Inirror image of this side.

2. Pulse pr0pagation in a 4-foot stainless steel bar with the

experimental temperature distribution such that the impacted

end was at 12000F. The measured temperature distribution

is given in Fig. 3. 3. Temperature was measured at 20 points

one inch apart.

3. Verification of the results obtained by Chiddister (1961).
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4. Verification of the results obtained by Lindholm (1963).

5. Solution of a modified version of Lindholm's problem

with variation according to a cubic power law in one -fourth

of the bar, while the rest of the bar had a uniform elastic

modulus .

Each mesh point was designated as (i, j) where i is the

number of the characteristic with positive slope through the mesh

point; for example, i=1 identifies the leading wave front X = CT;

and j is the number of mesh point on the characteristic (see Fig.

3.1). In the first problem the final mesh had 900 horizontal

intervals, spaced so that the time At taken by the wave to travel

across each interval was the same, namely At equal to 0. 4104

microseconds. In the second problem the final mesh had 960

horizontal intervals each covered-by the wave in time At equal to

0. 2564 microseconds. For the third and fourth problems 100

horizontal intervals were used and for the fifth problem 160 intervals.

3. 3. Computation of c and the First Characteristic

The elastic wave speed c(x) is equal toJE. Garafalo (1960)

found that the elastic modulus of 18-8 stainless steil could be represented

as a linear function of temperature. The slope of his curve of modulus

versus temperature was used to construct the linear plot given in

Fig. 3. 4 for the Type 303', 18-8 stainless steel Specimen bar used in

the present study. The room temperature value was determined

experimentally and used with the slope from Garafalo's paper to

construct the plot. At 750F the experimentally determined value was
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E0 = 29.0x106 psi.,

while from Garafalo's paper

SlOpe = - 6'. 47 x 103 psi/OF.

From the values of the temperature measured at various

points asmentioned in Section 3. 2, the values of the elastic modulus

were obtained from the linear relation illustrated in Fig. 3. 4 at

those points. These in turn were used to get the elastic wave speed

versus distance curves shown in Fig. 3. 5 and Fig. 3. 6.

The procedure of Sections 3.1 and 3. 2 leads to the values of

S, Y, and V at mesh points of the characteristic net. To make this

into a solution in terms of X and T, it is necessary to determine

the characteristic net, i. e. to find values of X and T at each

mesh point. For this we find a curve between X and T, which will

be the leading-wave front characteristic curve. Other characteristic

curves of the same family are parallel to it at intervals of ZAT above

it.

To obtain the leading wave front we start from the equation of

the characteristic

dXZCdT

(3.13)

_ X 1_
or T—fo C dX

Eq. (3. 13) is integrated by Simpson's rule, using the numerical

data cited above in Figures 3. 5 and 3. 6 (non-dimensionalized). The

interval from 0 to X is divided into 2m equal intervals by points
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X0, X1, X2, . . . , sz, and the integral is evaluated by the following

numerical Simpson's rule. (See for example Milne (1949), page 121.)

X
f 2

X0

m h '

de—§{yo+y2m+4(yl+y3+... JrYZm-l)+

2 (y2 +y4+ ... +y2m_2)}

In Fig. 3. 7 and Fig. 3. 8 curves between dimensional values

of x and t are shown for the leading wave front. These were

obtained by integrating the dimensionalized form of Eq. (3. 13). The

reason for the equal x intervals here is that the experimental data

on temperature was taken at points spaced at equal distances. The

mesh-point values for equal time intervals were subsequently obtained

by interpolation. At first glance these curves may appear straight,

but a closer look will disclose definite deviations from linearity in

the heated region, around 30 inches from the end in Fig. 3. 7, and

near the hot end in Fig. 3. 8.

3. 4. Calculation Procedure
 

Three types of temperature distribution conditions are of

interest for pulse pr0pagation in a bar subjected to a longitudinal

impact.

1. One end hot and the other cold. Impact at the hot end.

2. One end hot and the other cold. Impact at the cold end.

3. Both ends cold. Hot region in the middle of the bar.

The numerical and experimental procedures for the first mo cases

are similar, so only the first and the third cases are considered

here.
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3. 4(a). Impact at the Hot End of the Bar Fig. 3. 9(a)

Assuming that the shape and the magnitude of the

incident pulse are known, the field of characteristics is calculated

first, choosing a suitable time interval. The time interval was

considered sufficiently small if a solution obtained by choosing the

grid still smaller only changes the sixth digit of the solution. Along

the leading wave front the values of the stress, strain, and the

velocity are zero for a continuously rising pulse. The procedure

is illustrated by the schematic drawing of Fig. 3.10. The SlOpe of

the characteristics varies in the region where the temperature

varies, and is constant where the temperature is uniform.

For a finite bar, for which we have to consider the reflections

from the ends, the total time taken for the wave front to travel from

one end to the other end of the bar is calculated from the leading

wave -front XT-curve. Then a time interval of the grid is calculated

by dividing the total time by the number of divisions estimated to be

large enough for sufficient accuracy. The grid spacing can also be

manipulated so that the grid point falls on the bar at a point where a

strain gage is mounted in the experimental measurements, in order

to obtain directly the calculated values without plotting extra curves.

Following the procedure mentioned in Sec. 3. 2 and solving

Eq. (3. 8), Eq. (3. 10), and Eq. (3. 12), the value for non-dimensional

stress and velocity can be calculated at all the points of the grid.
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3. 4(b). Hot Region in the Middle of the Bar

This is the case in which a traveling pulse passes

through a temperature gradient like that of Fig. 3. 9(b). Again

assuming the incident pulse is known, the field of characteristics

is calculated first with a suitable time interval. The field of

characteristics is shown schematically in Fig. (3.11). Again

characteristics have varying slope in the region of varying

temperature and become straight where temperature is uniform.

Grid spacing is again calculated for convenience, accuracy, and

position of the gage station in experimental measurements.

Again solving Eq. (3.8), Eq. (3. 10), and Eq. (3.12), and

introducing the boundary conditions, the non-dimensional value of

the stress and velocity can be calculated at all the points of the grid.

. Plotting the value of stress or strain on all the grid points

on a line X equal to a constant X the stress versus time or
1’

strain versus time curve can be obtained for the point on the bar

at distance X1 from the impacted end.

3. 5. Description of the Problem
 

Two types of pulse propagation problems were solved by the

numerical methods. The solutions, obtained by the method of

characteristics, are given in Sec. 7. The two problems solved to

compare with the experiments are

1. Bar Heated at the Middle. A 6-foot-1ong bar was
 

heated at the middle to a maximum temperature of lZOOOF and

impacted longitudinally at one end by a 4-foot-long striker bar. The
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temperature distribution in the bar is given in Fig. 3. 2. The

solutions of the pulse propagation were obtained and compared at

the location of the strain gages in the experimental set-up described

in Sec. 5. 2, i. e. two room-temperature gages located one foot from

each end of the bar and one high-temperature gage located at the

middle of» the bar.

2. Bar Heated at Impacted End. A 4-foot-long bar was
 

heated at one end to a maximum temperature of 12000F and impacted

as in the first case. The temperature distribution in the bar is given

in Fig. 3. 3. Again the solutions were obtained' and compared at the

location of the strain gages in the experimental set-up described in

Sec. 5. 2.

In the first problem the temperature was measured at 22

points spaced 0. 8 inches apart, starting from the center of the bar,

and in the second problem the temperature was measured at 16 points

spaced one inch apart starting from the hot end. The description of

the experimental measurements is given in Sec. 5. 4. With these

measured values of temperature the values of the elastic modulus

were obtained from the linear relation of Fig. 3. 4 and the wave speed

c(x) = (Mp calculated as plotted in Fig. 3. 5.

For the first problem, the incident pulse was obtained from the

output (Fig. 7. l) of the first room-temperature strain gage, located

one foot from the impacted end (Fig. 5. 3) before the reflections from

the thermal gradient reached it. The pulse being flat-t0pped when

reflections are absent (Fig. 7. 1a), the incident pulse was assumed to

be 486 microseconds long and flat-tOpped with an amplitude given by
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the first room-temperature gage. The incident pulse obtained from

the oscilloscope record of Fig. 7.1b is shown in Fig. 3.12; it was

used in the solution of the problem as input data for the computer

program described in Appendix B. This strain pulse at the room—

temperature gage station was converted to stress by multiplication

with the room-temperature elastic modulus. Because the recording

station is so far from the impact end, three-dimensional effects

are believed insignificant in this problem.

For the second problem, the incident pulse was obtained

from the output (Fig. 7. 2) of the room-temperature gage located on

the striker bar (Fig. 5. 3) 25 inches from the impact end. The

incident pulse was assumed to be 486 microseconds long and flat-

t0pped with an amplitude obtained from the gage on the striker bar.

The incident pulse obtained from the oscillosc0pe record of Fig. 7. 2b

is shown in Fig. 3.13. It was used in the numerical solution of the

problem as input data for the computer program described in Appendix

B. This strain pulse in the room-temperature striker bar is assumed

convertible to stress at the impact end of the Specimen by multiplication

with the room-temperature elastic modulus. The assumption neglects

three-dimensional effects in the vicinity of the impact ends of the two

bars. Since three—dimensional effects are known to be present at the

impact end (see Bell, 1960), some error may be introduced by the

simplifying assumption used.

The incident pulses shown in Fig. 3.12 and Fig. 3.13 are

obtained by drawing a smooth curve through the experimentally

measured points. As can be seen in Figs. 7.1 and 7. 2 there was
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noise on the signal. Experimental points were measured only at

points clearly on the pulse.

The Fortran programs for numerical solution of both of the

above mentioned problems have been described in Appendix B and

programs are given at the end of the Appendix. The results obtained

from the numerical solution of these problems have been given and

discussed in Sec. 7. 3.

The programs were also used for three other problems:

3. Verification of Chiddister's (1961LResults. This was
 

the first calculation made with the program written for Problem 1

above in order to check the program. The results of this calculation

showed good agreement with Chiddister's results, obtained by

approximating the thermal gradient with five step discontinuities.

These results are not reproduced in this dissertation.

4. Verification of Lindholm's (1963) Results. Lindholm
 

calculated the propagation of a half-sine -wave pulse along a'bar with

E = Eo(kXL)n . The results are discussed in Sec. 7.1 (c.iii).

5. Modified Lindholm Problem. To demonstrate that
 

reflections would be obtained from a steeper gradient varying as a

power law, the following problem was solved. With the same values

of maximum and minimum E, the length of the part of the bar where

the inhomogeneity existed was reduced to one-fourth the length of the

bar in Lindholm's third problem, with the variation following the

same cubic law as in his problem, and E was taken uniform along

the other three-fourths of the bar. The length of the pulse was again

taken approximately one-fourth of the length of the bar. This gave a
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c(x) of the form

3 143/2]c(x) = c0[1+.296(x-Z-

in the region where E was varying. The results are given in Sec.

7.1 (c. iii).



CHAPTER IV

PER IODIC VIBRATIONS

4. 1 . Introduction
 

The solution of the wave equation for the periodic vibrations

of a bar with a thermally-induced longitudinal inhomogeneity can be

obtained numerically for a general kind of inhomogeneity, and

analytically for some Specific kinds of inhomogeneity. Analytic

solutions of the wave equation in a bar with a thermal gradient have

apparently been obtained only for cases where the inhomogeneity in

the modulus of elasticity caused by the thermal gradient is of the

following types:

1. E(x) 2 EO +kx (Datta, 1956)

kx

2. E(x) = Eoe - (Sur, 1961)

x n

3. E(x) : Eo(kL) (Lindholm, 1963)

and the variation in density is assumed negligible. The analytic

solution method is discussed in Sec. 4. 2. For a general case of

inhomogeneity we have to use numerical methods for the solution of

the wave equation because of the absence of analytic solutions. The

numerical method is described in Sec. 4. 3.

Both the analytic solutions and numerical solutions are obtained

for two types of boundary conditions: first a free-free bar with a

source of disturbance producing periodic displacement at the hot end;

29
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and second a free-free bar with a source of disturbance producing

periodic stress at the hot end. The solutions in each case are

obtained both for the displacement amplitude and the stress amplitude

of the periodic vibrations. The analytic and numerical results obtained

for a 20-inch-long Type 303 stainless steel bar with various types of

inhomogeneity are discussed in Section 7. 4.

4. 2. Analytic Solutions

4. 2(a). E(x) 2 EO + kx

 

4. 2(a. i). Displacement Wave Equation

From Eq. (2. 9), neglecting variations in p, the differential

equation is

2
8 au 5 u

-— (E(X) —) = P ——
8x 8x at2

Substituting the value of E(x) weiget

a an azu
ax {(E0+kx)ax} =9 atz (4-1)

To obtain a periodic solution of Eq. (4.1) let

u(x, t) = u(x)eiwt

The resulting ordinary differential equation for u(x) is

2

(Eo+kx)9—%+k%—:+p02=o (4.2)

dx

We transform this equation to a Bessel's equation, Eq. (4. 4)

below, by the following substitutions. First let
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z = E + kx
o

to obtain

2 2

zd121+gg+p£i§ =0 (4.3)

dz k

Then substitute

Ssz 2 N}

- or S = in?
4pw

_d_§_ :w'x/Tg Z-l/Z nd dzs _ mfg? -3/2

dz k a 2 ‘ ' 2k Z
_ dz

(02

to transform Eq. (4. 3), after division by ——23 , to

k

2

d u 1 du __

2+;gg+u—O (4.4)

ds

which is a Bessel's equation with general solution

11 = AJO(S) + BYO(S) (4. 5)

Hence the complete solution as given by Datta (1956) is

u(x, t) -— (“022%.“2) + BYO(§-“’—k—P—”>1 e1“t (4. 6)

where

z=E +kx

o

A and B are determined from the Boundary Conditions.

Case 1 Let there be a source of disturbance producing

periodic displacement Uelwt at x = L, and let the end x = 0 be
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free. The, boundary conditions are

 

 

__ iwt

11]sz Ue

au _

-8—X]X:O _ O

From Eq. (4. 6),

22-_ _ k [A{Zb)'\/—-'E J- (ZU‘VEZ)}

8x _ 2N/—x k l k

(4. 7)

+ B{ Zwk'xlp Y1(Zw'\/kpz)}]eiwt

Now, if we denote z at x = 0 by 20’ and z at x = L by ZL’

the second boundary condition yields

Y1 (.2‘0_k£_0.M)

Z - 4oA B 2%,ng ( 8)

J1 (__k.)

so that

20.)sz
_ 1 20)sz o

u—B .20sz7) {-JO( k )Y1(——k )

J1‘ k )

(4. 8)

2&N pz .
21W 2 z 0 not

+ YO( k ) Jl( k ) e

With

210V p zL 20W p 20 20V p zL 20%] p zoI

D1:Y0( k )J1( k )-Jo( k )Yl(

the first boundary condition yields
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ZwN/p z \

A = - y— Y (———3)
D1 1 k

and > (4. 9)

B : ‘2 J (20%) p 20)

D 1 k J 

Eq. (4. 9) is the same as given by Datta (1956).

Substituting these values of A and B in Eq. (4. 6), we obtain the

value of u(x, t). The stress 0 (x, t) is given by

_ _ QB _ 92
0'(x,t)—E(x)€— (E0+kx) 8x — kz Bz

so that

0' (x, t) = -m/ pz’ { A31 (29—?—“kz) + BY Z—w—E—1(2)} ei‘”t (4.10)1 (

where A and B are given by Eq. (4. 9).

Case 2 Let there be a source of disturbance producing a

periodic stress Pelwt at x = L, and let the end x = 0 be free. The

boundary conditions are

(1: + kx) 33] = Pelwt
0 8x

x: L

8

0%] = 0
x=0

Again the second boundary condition yields Eq. (4. 8). Using the

first boundary condition and writing

Zw'x/ sz 20W pzo 20%}sz 21.»! p 20

Dz Z Y1(“T‘)J1(_‘1’<—”" J1(_—k— Y1(‘—E—)
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we get

 

whence

 

and

 

Eq. (4.11) is the same as that given by Datta (1956).

(4.11)

Substituting

these values of A and B in Eq. (4. 6) we obtain the value of u(x, t),

and in Eq. (4.10) we obtain the value of 0’ (x, t).

4. 2(a. ii) Stress Wave Equation

The differential equation is Eq. (2.13) when variations in p

are neglected.

2 2

0 0' a 0'

E(x) 2 : P

3x at

  

Substituting the value of E(x) we get

2 2

(E0+kx) “Ba—:- 2 p g—Zg

8x at

To obtain a periodic solution of Eq. (4. 12) let

0‘ (x, t) = 0' (x) ei‘”t

(4.12)
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The resulting ordinary differential equation for 0 (x) is

d20' 2

(Eo+kx) --—Z +pw 0‘ :0 (4.13)

dx

We transform this equation to a Bessel's equation, Eq. (4.16)

below, by the following substitutions. First let

 

 

z = E + kx

o

to obtain

2 d20' 2

zk +pw0' = 0 (4.14)

dz

Then substitute

2 2

z : S k or s _ 203V pz

k

4pw

2

d 0 1 d0 _

ds

brings Eq. (4.15) into a convenient form of the Bessel's equation

2

+

c
0
|
-
-
'

0
1
¢

0
1

C
D

 

1
2 +(1-—-2-)e=o (4.16)

ds 3

whose general solution is

9 = A J1(s) + B Y1(s)

s 0 that



3s

0’ = s{A J1(s) + B Y1(S)} (4.17)

Hence the complete solution of the wave equation Eq. (4. 12) is

0'(x,t) — £152“ {AJ1(ZL_LM)

 

 

k

(4.18)

+ B Y1 (Zw‘VkEZ)}elwt

A and B are determined from the boundary conditions.

Example Let there be a source of disturbance producing a

periodic stress Pemic at x = L, and let the end x = 0 be free. The

boundary conditions are

_ iwt

0—]sz — P

U]x=0 - 0

The secondary boundary condition yields

Zw'x/pzo

Y (——)
l k

A = B 2 ,
wquo

so that

5(x t) : depz B {Y (EL“2) J (11:12)

’ k 21.14ng 1 k l k

J, < k )

2(1)sz .
2 «I

_ Y (__2) J" (Jo—fl.” e1wt (4.19)

1 k 1 k

With

20.)sz 21.)sz 2(0sz 21.)sz

D=Y(———L-)J( O)-Y( °)J( L)
2 l k l k l k l k
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the first boundary condition yields

  

 

 

 

21.1sz D

P - L 2 B
R J (201-4772;)

1 k

whence ZwN/‘p-El'

o

k Y1(_ k "'1 1
A = - P

2“)“sz D2

and 5 (4. 20)

2w'\/p z

J (...—2.)

B _ P k 1 k

_ —_,(/' D
2L0 sz 2 /

Substituting the values of A and B in Eq. (4. 18) we obtain the value

of 0'(x, t).

4. 2(b). E(x) = E0 ekx

 

4. 2(b. i). Displacement Wave Equation
 

From Eq. (2. 9), neglecting variations in p , the differential

equation is

2

u0
9

0 Bu

“8; (E(x) 5;) = P

9’
11

Substituting the value of E(x) we get

2

8 kx 8n _ 0 u

0.:(Eee a; “P Ta (4'2“
1'.

Let

-kx

z = e

Then Eq. (4.21) becomes

2 2
2 3 u _ 8 u

EOkZ—T—p—Z (4.22.)
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To obtain a periodic solution of Eq. (4. 22) let

u(z,t) = u(z)eiwt

Then Eq. (4. 22) yields an ordinary differential equation for u(z)

2 2

d u w

z ——7 + _L_2 u = 0 (4.23)

dz Eok

To transform this into Bessel's equation, Eq. (4. 25) below,

let

SZkZE

- —&”E
Z — 01' S - -k-— E

4pm 0

§_2_L
dz - k E z

o

(.02

After division by 79—— , Eq. (4. 23) becomes

k E
o

dzu 1 du

EZ-S.d§+u:o (4.24)

The change of dependent variable 11 = 30 then transforms Eq. (4. 24)

into

d20 1 d0 1

gg+sfi+ujflezo (AM

This Bessel's equation has the general solution

0 = AJl(s) + B Yl(s)

so that

s {A J1(s) + B Y1(s)} (4.26){
3 l
l
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Hence the complete solution of Eq. (4. 21), as given by Sur (1961),

is with z = e-kx

u(x,t)= H/O{AJl(—k—w (4%?O)+BY1(—k—“’ E:e)} t (4.27)

A and B are determined from the boundary conditions.

Case 1 Let there be a source of disturbance producing

periodic displacement ert at x = L, and let the end x = 0 be free.

The boundary conditions are

_ iwt

u]x=L — Ue

Bu _

"2332]x20' 0

Now, from Eq. (4. 27)

Z

Bu _ 20) z 21.) 2 210 z iwt

a; — ' T P—EO {AJo(—k LEO) + B YJ—k‘ LEO” 6 (4°28)

Hence from the second boundary condition

. 2w pZO

Yo (1.— (if; )

A=-B (4.29)
21.) pz

J0(k O)

 

0

Writing (note 20:1)

pz

_ 210 j o _ _

50- r ? z]x=0_z land Z]x:L ZL

and

(20) pzo 2w sz 2w pzo

‘1£/’J(/?)'J1(T/T"Ye<T/T"
O O O
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we get

_ s _ iwt
u(x, t) _ B ——J0(86){Y1(s)10(s() 31(s) Yo(so)} e

The first boundary condition then yields

’pz

E Yoéli- E0)

k 0 o

AZ-U .26 T ——

pL
D

3

(4.30)

20) pzo
E J —— —

13ng3 _i 0(k./ E0)

‘0 ”1. D3

Eq. (4. 30) is the same as obtained by Sur (1961).

Substituting these values of A and B in equation (4. 27), we

obtain the value of u(x, t). The stress o-(x, t), is given by

0'(x, t) = E0 ekx (g—:)

or, using Eq. (4. 28)

2012 iwt
0(x,t) = - —k" {A Jo(s) + B Yo(s)} e (4.31)

where A and B are given by the Eq. (4. 30).

Case 2 Let there be a source of disturbance producing periodic

1:
stress P em at x = L, and let the end x = 0 be free. The boundary

conditions are

kx Bu _ 1011;

E0 6 a—x]x=L - P e

Bu _

8;]x=0 — 0

Again the second boundary condition yields Eq. (4. 29) and with
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_ 20 p21. 20 F’Zo 20 ML 20 p“"0

D4-Yo(—k'/EO’Jo(—1:/EO)-JO(T EOWOH. E0)
 

  

 

   

pz
21.) o

k Y0(T E0) 1

21.) p 4

> (4.32)

pz
J (2w 0)

k 0 k E0

B: 'P 2 D /
20) p 4

Eq. (4. 32) is the same as obtained by Sur (1961). Substituting the

values of A and B in Eq. (4. 27) we obtain the value of u(x, t),

and in Eq. (4. 3,1) we obtain the value of 0 (x, t).

4. 2(b. ii). Stress Wave Equation
 

The differential equation, neglecting variation in p, is again

from Eq. (2.13)

820 820'

E(X) = P —

8x2 atz

 

Substituting the value of E(x) we get

E e —— =p9——- (4.33)

To obtain a periodic solution of Eq. (4. 33) let

0' (x, t) = 0" (x) em)t

Eq. (4. 33) yields an ordinary differential equation for 0' (x).
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2

E 6 (LE +9.}. 2 0 (4.34)
o 2

dx

This can also be brought into a standard form of Bessel's

equation, Eq. (4. 36) below, by the following substitutions. First

 

 

let

-kx

z = e

to obtain

dzcr d0 9 Z
Z 2 + d— + (1.) Z 0" : O

(4.35)

dz 2 E k

0

Then substitute

E s‘2 k'2

0
Z I

4 p w

or

S : 2_0 P_Z d_s : B _P_
k E ’ dz k E z

o 0

L02

to transform Eq. (4.35), after dividing by —Z—P— , to

k E

o

d20 1 d0
2+———+0'=0 (4.36)

3 ds

ds

whose general solution is

0 : A Jo(s) + B Yo(s) (4. 37)

Hence the complete solution of Eq. (4. 33) is

o~<x.t)={AJo(£§’— /%)+BYO(§1f—/13Ei)} e”t (4.38)
O O
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Again A and B are determined from the boundary conditions.

Let there be a source of disturbance producingExample

a periodic stress Pelwt at x = L, and let the end x = 0 be free.

The boundary conditions are

iwt

 

 

   

 

 

  

2w pzo

Yo (‘1: E l

A = - B pz

21.) o

J. T E l
0

so that

B iwt

a (x, t) — Jog) { -Jo(s) Yo(so)+ Yo(s) Jot-:3} e (4. 39)

Again with

._ 20 IDZL 2t.) 920 2w pz1. 2t.) F’Zo

D4--Jo<‘1:/E)Yo(1: E)+Yo(—1: _E”0‘1.— E)
O O O O

the first boundary condition yields

20) pZo \

Yd? To)

A = - P

D4

) (4. 40)

210 20

510‘? r >

B = + P D /
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Using the values of A and B in Eq. (4. 38) we obtain the value of

0' (x, t).

4. 2(6). E(X)— ka(Ln)

 

Here E0 is the elastic modulus at x = kL, 11 may assume

any real value, and k is a constant whose value determines the

total amount of variation of the modulus in a bar of given length. In

the examples treated the bar will lie between x = kL and x = (k+l ) L

(see Lindholm, 1963).

4. 2(3. 1). DiSplacement Wave Equation

From Eq. (2. 9), neglecting variation in p, the differential

equation is

2

8 Bu 5 u

— (E(x) —) 2 p ——
8x 3x at2

Substituting the value of E(x) we obtain

8..{E (_X_)n 82} — 8.22 (4 41)

8x 0 kL 3x _ P at2 °

2 n-l 2

x 0u n x Bu _ 8 u

Eo(kL) ex2 + Eo kL(kL) ax ‘ p at2

For a periodic solution let

u(x, t) = u(x) eimt

to obtain an ordinary differential equation for u(x)

2
d u n x n-l du 2 _

EO-k-(an) —2 + E0 —kL(—kL) —dx+ pt.) 11 _ o (4.42)
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For n gt 2 we transform this to a Bessel's equation, Eq.

(4. 44), by the following subsitutions. The case n : 2 is treated

separately, beginning with Eq. (4. 52). First let

 

  

z = x/kL

to obtain

2 2 2 2

du+39‘—1-+4‘3—————ka inzo (4.43)
z dz E n

dz 0 z

(71")
Then let u = z 0

whence

-1- 1-

213‘- — -n z(_z£)0 + z(—Z—n_) 51-6—

dz dz

and

.1-11

2 -3-n -1-n (——) 2
d u : (l-nH-l-n) z(_—Z—)9+ (1_n) z(—-z—)_(_i‘§.+z Z d 9

2 2 2 dz 2

dz dz

1-n

Substituting these in equation (4. 43) and dividing by z( 2 ) we obtain

 

 

d20+l_d_9__{(l-n)2_l___l_91..)2kzL2 )0—0

2 dz 2 2 n E —

dz 2 z o

Nowlet

2-n
2 __

y=(—Z_n)ka EL z( z)

o

41_ _P_ -n/12
dz _ ka -E

o

2 -2—n

d - :31 _P_ ( >
2 — 2 LokL E z 2
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kaZLZ -n

to obtain, after collecting terms and dividing by E9 Z .

O

2 2 E

é—%+_l_%g.+{1_.(l_'2n.)_ z(n'2)__ZTOZ._}G:O

dy Y V w k L p

which reduces to

2 2
e _

17.1%e.+{1_)12__s —1_Z_}e:o (4.44)

dY Y y m Y

since

y2 : 42 kaZLZ fig z(2-n)

(2-n) 0

Eq. (4. 44) is a Bessel's equation of order p = ) 233' with

the general SOIUtIOl’l

9 : A .1 y + B Y y

whence

1-n

u = 2(T) { A Jp(y) + B Yp (y) (4.45)

Hence the complete solution of the wave equation Eq. (4. 41),

for all values of n except 2, as given by Lindholm (1963), is

(L?)
u(x, t) = z { A Jp(y) + B Yp(y)} eiwt (4. 46)

where

__}L

Z ‘ kL

l—n

p = [—2nl

and

~
<

l

N
A

I
N

=1
.
E . L
“

1
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e
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r
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A and B are determined from the boundary conditions.

Case 1 Let there be a source of disturbance producing

periodic displacement ert at x = (k+l)L, and let the end x : kL

be free. The boundary conditions are

 

_ iwt

u]x:(k+l)L ' Ue

33.] z 0

8x x=kL

Now, from Eq. (4.46)

for n< 1 or n> 2

93— (122n)w—L{AJ ()+BY ()} 1“” (447)
ax ‘ Z E 1 V 1 V e '

0 -2-n -2-n

andfor l:n< 2

 

 

 

93- (122150 -P—{AJ ()+BY ()} 1“”
ax ‘ "z E0 1 V 1 Y e

2-n 2-n

From the second boundary condition:

for 1 <_ n < 2

Y21n(ykL)

A = - B J - ( )

1 VkL

2-n

while for n< 1 and n> 2 (4.48)

Y__1_ (YkL)

A z _ B 2-n

J (YkL)
A

2-n
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With

D5 2 { Yp(y(k+1)L) JerL) ' Jp(y(k+l)L) Yr(ykL)}

the other boundary condition yields

 

 

 

l-n D

Ueltdt : (11:1) 2 B{ J 5(y ) } elwt

r kL

so that

1-n Y (y )
_ k r kL

A ‘ mm) 2 { D
- 5

and
(4.49)

l-n

—— J (Y )
_ k 2 r kL

B-Ufifi’ { D5 }

where

r : —1-— for 1 < n< 2
2-n —

rz—l— for n<land n>2

2-n

By substituting these values of A and B in Eq. (4.46), we

can obtain the value of u(x, t). The stress 0 (x, t) is given by

0'(x,t) = E(x)€ = E (—

Therefore from Eq. (4. 47)

0‘ (x, t) =7L(n-2) E0 zl/Z w / EP— { A Jr(y) + B Yr(Y)} eiwt (4. 50)

o
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where

r:-Zl— forlin<2

-n

rz-l— for n<landn>2

2-n

A and B are given by Eq. (4.49).

Case 2 Let there be a source of disturbance producing

wt

periodic stress Pe1 at x = (k+l)L, and let the end x : kL be

free. The boundary conditions are

E(x) g—u] = Peiwt

X x:(k+1)L

8.11] : 0

8x x=kL

Again, from the second boundary condition, with

Do 2 Yr(y(k+1)L) Jr(ykL) ' Jr(y(k+1)L) Yr(YkL)

we obtain

1 { r ykL) } W

(.N Eop D6

A = r(2-n)U(k—1:-1)]7/2

(4. 51)

J (Y )
k 1/2 1 r kL

B = r(n-2) U (—) ———___, {—

where

rz—l— for1<_n<2

N

I

l
r
—
I

:
3

r=- forn<landn>2
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Substituting these values of A and B into Eq. (4. 46) we

obtain the value of u(x, t)

of 0' (x, t).

4. 2(c.ii). Special Case for n = 2
 

For n : 2, the differential equation, Eq.

Eo 28u

kzlp (X 2 '5;
 

For a periodic solution let u = u(x)e1wt.

where

Q
.

{
3

 

with general 3 olution

: X'Z/2{ A cos(gz) + B sin(gZ)}

where

N/c-l74g:

and into Eq. (4. 50) we obtain the value

(4. 41), is

(4. 52)

Then u(x) satisfies

(4. 53)

(4. 54)

The complete solution of Eq. (4. 52), as given by Lindholm (1963),

is (with z = loge x)

u(x, t) = x-1/2{ A cos(gz) + B sin(gz)} e lwt (4.55)
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A and B are determined from the boundary conditions.

Let there be a source of disturbance producing

 

Case 1

periodic displacement Uelwt at x = (k+l)L, and let the end x = kL

be free. The boundary conditions are

_ iwt

u] x=(k+1)L — Ue

8

53] ' 0
x=kL

From Eq. (4. 55)

8 -3 2 .
5% :{x / g[-A31n(gz)

+ B cos(gz)] - 1? x-3/Z [A cos(gz)

+ B sin(gz)]}e1wt (4. 56)

From the second boundary condition

1 .

g cos(gzo) - -2- s1n(gzo)

A = B (4. 57)

gsin(gz )+ 1— cos(gz )

o 2 o

where

Z0 2 loge kL

Using the other boundary condition, and writing

2L 2 loge(k+1)L

. 1
Y1O = g Sin(gzo) + 2- cos (gzo)

_ . 1_
Y1L — g Sln (gzL) + 2 cos (gzL)

1 .

YZO g cos (gzo) - 2 sm (gzo)
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Y2 = cos(z)-1—sin(z)
L g gL 2 gL

we obtain

 

 

 

Y2
\_ 1/2 0A _ U{ (k+l)L} YZO cos(gzL) + YIO sin(gZL)

>(4. 58)

Y1_ 1/2 0B _ U{ (k+l)Ll YZO C(...,(gzL) + YIO sin (gleJ

Substituting these values of A and B into the Eq. (4. 55) we obtain

the value of u(x, t). The stress 0' (x, t) is given by

 

2

— _ X 2.20' (x, t) — E(x) E — EO (bl-(L) 8x

or from Eq. (4. 56)

E X1/2 1

0 (x, t) = O [-A { g sin(gz) + — cos(gz)}

2 2 2

k L

+ B { g cos(gz) -1§ sin(gz)}] elwt (4. 59)

where A and B are given by Eq. (4.58).

Case 2 Let there be a source of disturbance producing

periodic stress Pelwt at x : (k+l)L, and let the end x = kL be

free. The boundary conditions are

E(x) g—u] = Pelwt

X x=(k+l)L

a

s51 = .
x=kL

Again from the second boundary condition we obtain equation (4. 57).

Using the other boundary condition, and writing
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Y1O = g sin(gzo) +é- cos (gzo)

Y1L = g sin(gzL) +13 cos(gzL)

YZO = g cos(gzo) - 1Esin(gzo)

Y2L : g cos(gzL) - 1gsin(gzL)

we obtain

 
 

  

 

A : kZLZ { Y2O } p

EO((k+l)L}1]‘Z YIOYZL-YZOYIL

(4. 60)

B : kZLZ { Y10 } p

EO{(k+1)L}1/Z YloYZL - Y20Y1L I,

Substituting these-values of A and B in Eq. (4. 55) we obtain the

value of u(x, t) and in Eq. (4. 59) we obtain the value of 0' (x, t).

4. 2(d). E(x) : E a Constant

The differential equation is

2 2
E 8 u : 8 u (4. 61)

2 2

8x at too):

41611.): u(x)?—

For a periodic solution let u Knew/t so that u(x) satisfies

(12 2
—‘—1-+P—ou=o (4.62)

2 E

dx

with general 5 olution

u=Asin(wa-]%)+Bcos(wx (E2)

The complete solution of Eq. (4. 61) is

u(x,t):{Asin(wa§)+Bcos(wx (3%)} eiwt (4.63)
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A and B are determined from the boundary conditions.

Case 1 Let there be a source of disturbance producing

iwt

periodic displacement Ue at x : L, and let the end x = 0 be free.

The boundary conditions are

u]X:L _ Uelwt

22;] — 0

8x x20 —

From the second boundary condition A = 0, and

u(x, t) = B cos (LOX /%) eiwt

From the other boundary condition

 

The complete solution is

cos (to 39/?)

cos (LoL J?

iwt
 

u(x, t) = U

The stress 0 (x, t) is given by

0'(x,t) : E—

whence

sin (wx /£) .

x, t) = - Uw'VpE ' E 631(1)t
 

U(

cos (01L 1%)

(4.64)

(4.65)

(4. 66)



 



55

Case 2 Let there be a source of disturbance producing

periodic stress Pelwt at x : L, and let the end x = 0 be free. The

boundary c onditions are

From the second boundary condition we get A = 0, while the first

boundary condition yields

 

 

B : — P 1

uNpE sin (wLE)

cos (wa-EI) .

u(x, t) = - P l E emt (4. 67) 

“PE sin(wL (15)

and

sin (to x £)

0' (x, t) — P E

sin (1.1L / .123

In both the cases of constant E

(4. 68) 

1. u(x, t) = 0 when cos (1.) x (3% ) = 0, or displacement nodes are

JEP n=0.1.2.3,... (4.69)

when these positions fall inside the bar.

located at

E
l
l
i
-

x=(n+lz) Tr
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2. 0' (x, t) = 0 when Sin (to x (£5) = 0, or stress nodes are located

at

x=n7T,1-(EF n=O,1,2,3,... (4-70)

when these positions fall inside the bar.

3. For the displacement boundary condition, Case 1, resonance

occurs when cox (“LN/"1333) = 0; and for the stress boundary condition,

Case 2, resonance occurs when sin (1.1L (3%) = 0; or when

Casel 1 77 E

w 1‘ (n+3) '1: (I? n=0,1,2,... (4.71)

Case2

_ n_w E _
L0 — L p n—1,2,3,...

For a 20-inch bar of Type 303 stainless steel some of the

resonance frequencies are:

For Case 1. (Displacement B. C.)
 

1. Bar at room temperature (75oF)

2,470; 7,410; 12,350; 17, 290; 22, 230; cps.

ii. Bar at 1200°F

2, 138; 6,416; 10, 690; 14, 966; 19, 242; cps.

For Case 2. (Stress B.C.)
 

i. Bar at room temperature (750F)

4, 940; 9, 880; 14, 820; 19, 760; 24, 700;. . . . cps.

ii. Bar at 12000F

4, 275; 8, 551; 12, 826; 17,101; 21,376; cps.
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4. 3. Numerical Solution (Case of General Variation of Temperature)
 

4. 3E). Formulation of Algebraic Equations

From Eq. (2. 9), neglecting variation in p , the displacement

wave equation is

2
a au _ 8 u

a (E(X) 5;) - P _2 (4.72)

at

For a periodic solution let u(x, t) = u(x) elwt so that u(x) satisfies

the ordinary differential equation

 

d du 2 _
a; (E(x) a?) ‘1' p (.0 u — O

dzu 1 dE(x) du 902

(J + E(x) dx 5; + E(x) u :0 (4°73)

Divide the length of the bar into a mesh of n equal intervals

of length h : L/n. The central-difference quotients approximating

the derivatives are

 

 

d3 z 1+1 1-1

dx 2h

dZu z u1+1 + 111-1 - 2 u1

de h2

—- 1 < j < n+1
n _ _

Also xj = (j-1)h = (j-l)

Eq. (4. 73) is thus approximated at each mesh point by

 
   

u1+1 ’ Z ui + “1-1 + 1 E(XiH) “E(X1—1)} (um ”Ii—1‘
I

h2 E(Xi) Zh 2h

2

L :
+ E(xi) ui O

 

>‘In order to agree with the computer program language the numbering

of the points varies from 1 to n+1 instead of from O to n.
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or

- 4 E(xi) ui-l

. 2 2
p w h

+ (-————-—E(Xi) — 2) ui

{E( . ) - 1*3( - )}

+[1+ x1“ x1'1 ] u. = 0 (4.74) 

4 E(xi)

We write Eq. (4. 74) at each interior mesh point and also

at an end point where a stress boundary condition is imposed. The

stress boundary furnishes a condition on 3% , which permits

expressing the value of u at one fictitious mesh point outside the

bar in terms of the value at an adjacent interior mesh point. Solution

of the simultaneous system of linear equations then gives the value of

u at each mesh point. We consider two different cases of boundary

conditions.

Case 1 Let there be a source of disturbance producing a

Lot

periodic displacement Ue1 at the end x = L, and let the end

x = 0 be free. The boundary conditions are

_ iwt

u] x=L — Ue

u - u

32] : 0 = Z O

x x=0 2h

Now, writing equations for points 1 to n in Eq. (4.74) and using the



 



59

boundary conditions, we obtain for

 

 

 

 

 

 

i=1,

wzh2

(BE—(gr-Z)ul+2u2=0

i=2,

(E(x3) — E(xl)} 1.12112

[1 ' 4 E(xz) ] u1 H E(xz) ’ 2’ u2

+[1+ 4E(x2) u3 --0

1:3,

{ E(x4) — E(x2)} wzhz

[1 ’ 4 E(x3) u2 + ( E(x3) ' Z) “3

”1+ 4126(3) ‘14:0

n’ 1 }E(x +1) - E(x 1) thZ

[1‘ 4E(xn) n Jun-1+(E(x ) -Z)un

{E(X ) - E(x )}

”1+ 13126,!) ..-; ] U=0

We have n equations and n unknowns. These equations can

be written in the matrix form

AU'rK

where A is the tri-diagonal matrix



 
with

ai,i+1

The rest of the

F. ._

1r ;

  

6O

 

 

 

 

12 O ’ ’ ’ ’ " " 0 4

22 a23 ” ” ' ‘ ” 0

l

32 a33
\ \

\

a43 \ \

\ \ \ (4.75)

\ \

\ I

\ \ \

\ ‘ \ ‘

an-1,n.2 an.1,n-1 n-1,n

_ — - O 3'n n-l ann J

th2

= 1%}? for i=1, 2, ., n

i

:[1 {E(x.+1)- E(xi_l)}

4 E(xi) ]

for i=2, 3, , n

— 2

4 E(Xi)

for i=2, 3, , n-l

aij are zero.

To

0 where

0 Wm ) - E(x )}

° n _ 4 E(x )

n

k

11.1  



61

Now to obtain the value of stress from these values of

displacement we use the relation

 

u(x) = E(x) %%

so that

u. -u. )

0- (X1) = E(xi> ( 1“ 2h 1'1 ) (4.76)

Equation (4. 76) gives us the value of stress at any interior mesh

point. For the stress at the end x : L, we can use a backward

differ ence formula

1 un+1 — un

a <an) = §{E(xn> + E(anH <—h——> (4.7?)

Case 2 Let there be a source of disturbance producing a

periodic stress Pewt at the end x = L, and let the end x : 0 be

free. The boundary conditions are

8 un+2 ' un iwt 1m

E(x) 0%] = E(Xnm (T) e = P8
x=L

23] — uz - uo — 0

8x x=0 _ 2h _

Again writing the equations for points 1 to n+1 and using the

boundary conditions we obtain the same equations as in the first

case for i=1 to n-1, and in addition we get for
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1:n

{ E(X ) - E(X )} Z Z

[1 ' n41E(x ) l un-l (%'L) ' 2) un
n Xn

+ 1+{12(an) — E(xn_1)} u _ 0

4E(x ) n+1 —

n

i=n+l

{3th2
2un+(E(X ) -2) un+1

n+1

2h P { E(an) ' E(Xn)} _

+E(x )[1+ 2E(x ) *0
n+1 n+1

This again can be written in the matrix form

A U : K

where the tri-diagonal n+1 by n+1 matrix A

F— - — — — — _ — — —

all a12 0 O O

a‘21‘““22 a23"-—“—‘-0

\ I

0 6132 6‘33 \ \ l

O O a \ \ \ 1
_ 43 \ \

A — . . \ . \ 1 (4.78)

1 | \ \ \ I

I I \ \ \

l ' \ \ \ '

l ' an,n-1 an’n an:n+1

L0 O h _ _ _ _ _O an+1,n an+l,n+l  
has elements

 

_ 9.2.1; _
aii — (E(Xi) Z) 1—1, 2, ., n+1

8L1,1.1 2“ ‘ 4126;.) 1 1:2; 3’ ’ n
1
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an+l,n — 2

a12 ’ 2

E . -E .

a : [1+{ (Xlfl) (x1'1)}] i=2 3 n
1,1+1 4E(X1) ’

The restofthe aij are zero.

p—ul - ‘0 '-1

u 0

2 'where

u3 O

ZhP { E(an) ' E(Xn)}

U= K= k+1=-E(——5 1+ 21:6: >
n xn+1 n+1

u 0

n

un+1 kn+1    
Again stress at any point of the mesh can be obtained by using Eq.

(4. 76) or Eq. (4. 77), depending upon the point.

4. 3(b). Solution of the Algebraic Equations

We have to solve the equation

AU=K

where
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an+l,n _ 2

a12 * 2

ai,i+l : [1+ 4E(xi) 122’ 3' ‘ ’ n

The rest of the aij are zero.

 

    

u 0

2 where

u3 O

_ ZhP { E(Xn+1) ' E(Xn)}
U- K: kn+1 E(x )[1+ 2E(X )

n+1 n+1

u 0

n

un+1 kn+1

Again stress at any point of the mesh can be obtained by using Eq.

(4. 76) or Eq. (4. 77), depending upon the point.

4. 3(b). Solution of the Algebraic Equations
 

We have to solve the equation

A U = K

where



 



 

    

all 5‘12 0 0 ’ ' ’’’’ ” ’

a‘21‘3‘225123—--—--*—

0 3L32 a33 \ \
\\ \

A :: 1 \ \ \

I \ \

' I \ \ \

I \\ \ \

I \ \

I ' ‘ ‘

| . m-l, m-Z m-l, m-l

O 0 - - - - O a

m, m-l

ul O

112 O

u 0

u: 3 K:

Cm Lkm

4. 3(b. i). Direct Solution
 

 

The matrix equation can conveniently be solved by the direct

method (see Hammings, 1962).

We can write the tridiagonal matrix A as the product of a

lower triangular matrix L and an upper triangular matrix Z.

the original matrix equation

LZUzli,

Then
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by use of

ZU H <

becomes

LV K

The resolution into two triangular matrix factors is made

as follows . For the tridiagonal matrix A it is possible to choose

the triangular matrices so that all elements are zero except those

on the diagonal and one adjacent parallel row.

  

 

1'2 “

11

1
21 22 <:>

£32 £33
\

\ \ \

fl ‘ ‘\ \

\

\j m, m-l m, m

ha.

11

a21

1-

By matrix multiplication

111 Z11 2 a11

[11 Z12 2 a12

F

 

Z

11 z12

Z22 z23

z33

23

33 a34

\\\\

\

\

 

 



 



and the rest of zij

66

:Oforj>2.

If we arbitrarily choose all diagonal elements of L to be

unity

then

Now

01‘

Similarly

yielding

01‘

N II p
:
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01‘

Z33 2 a33 ' 132 Z23

In general

I - :

rr 1 Zr, r+1 ar, r+l

Z11 a11

_ ar+1, r z _ a z

r+l,r_ z rr rr r,r-l r-1,r
rr

8'1', r-l
a - — a

: rr
Zr-l, r—l

All other elements of the two triangular matrices are zero.

Now to find V components of the equation

   

L‘V == K

11 /, v1 k1

21 £22 a \l V2 k2

1 ‘\’/ k
32 33 V3 3

\ Z

\ \

\ \

A \ \ o

J \ \ v km m

m, m-l mm    
we proceed as follows:

From Eq. (4. 80) we obtain

(4.79)

r—1,r

(4. 80)



 



 

so that

v1 2 k1

: .. 2

V2 k2 21 V1

V3 2 k3 ‘ £32 V2

or

: - I

Vr kr r, r-l Vr-—1

Further we have

Z U = V

'7 '1 r- — r n

Z11 Z12 ' _ u1 V1

Z22 Z23 O uz V2
. \ \

\ \ \ \ u3 v3

\ \ . z

\ .

\ zm-l,m .

z u v
mm m m

L. ..J .... _ .... .-

from which

2 ‘ = v

mm m m

zm-l, m-l um-l + zm-1,m um — Vm-l

So in general

— < < ..er ur zr,r+l ur+l v for l_r_ m1

z u = v for r =m

rr r r
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(4. 81)

(4. 82)

) (4.83)
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From Eq. (4. 83)

 

m
u :

m z

mm (4.84)

and

u = (v - z u ) -1-—

r r r,r+l r+l z

rr

The above is the direct method of solution as given by Hammings

(1962).

For application of this method, we had for Eq. (4. 81)

kr = O for r )4 m

and

km )6 0

Therefore

vr = O for r )6 m

V = k for r = m

r r

Hence Eq. (4. 83) and Eq. (4. 84) reduce to

=0 for1:r<m-1

z u 2k for rzm

 

k

m
u ::

m z
mm 1

(4.85)

Z +1
u— r,r for1<r<m-l

r z r+1 — —
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Eq. (4.79) and Eq. (4. 85) give us the direct solution of the

equations.

4. 3(b. ii). Iteration 

The solution obtained by the above method might have an

accumulated round-off error which could become large as the number

of equations increases. To get more accurate results we could use

the Gauss-Seidel iterative method (see for example, Varga, 1962,

page 57-58), using the results of the direct method as the starting

set of values.

Let uén) be the set of values obtained after nth iteration and

u(n+1)

r
let be the set of values obtained after (n+l)th iteration. Then

the Gauss—Seidel method of iteration can be written as

(n+1) (n+1) (n) _

agn1%4 +afiui +agn1fiu ‘ki (ism

These equations can be solved one at a time for the new

value u§n+1), since ufili is known from the previous iteration

and uin-l) has already been calculated during the current iteration.

The start of each iteration uses the modified equation obtained by

using the boundary condition at the free end x = 0. This yields the

iterative form

alurfl)+2u?)=0 (48m

+

for u(n 1).

1

The iteration is continued until the maximum difference between

successive values is less than or equal to a preassigned value, which
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was chosen to be 0. 00001 in the problem solved. It turned out that

the iteration procedure did not in fact change the results of the direct

solution in the problems considered.

4. 4. Description of the Problem

For a 20-inch-long Type 303 stainless steel bar with one end

at 75°F and the other at 1200°F, the analytic solutions of the periodic

vibrations were obtained for three types of inhomogeneity, and the

numeriCal solutions of the periodic vibrations were obtained for five

types of inhomogeneity. In each case the inhomogeneity was expressed

either in terms of the elastic modulus or the temperature varying with

the distance along the length of the bar. For comparison, analytic

solutions of the periodic vibrations were also obtained for a uniform

temperature distribution along the length of the bar.

The cases of inhomogeneity for which analytic solutions

were obtained are:

l. E(x) : Eo+kx

2 E(x) : E0 e102

2
X

3. E(x) — EO(Z—O—k-

The cases of inhomogeneity for which numerical solutions were

obtained are

l. E(x) = E0+kx

2. E(x) = E ekX
O

X

3. E(x) : E
0(20k)3/

2
X

4- E(x) - E0 251:
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5. Experimental temperature distribution given in Fig. 3. 3.

In each case the value of k is such that the one end of the bar is at

75°F and the other at 1200°F, and E0 is the value of the elastic

modulus at 75oF and is equal to 29. 0x1061bs./sq. in.

Analytic solutions of the above mentioned first three cases

were obtained by the methods described in Sec. 4. 2. Calculations

were done on the computer using the values of Bessel functions

J0, J1, Y0, Y1 obtained from the table of Bessel's functions by

Chistova (1959).

The numerical solutions of the above mentioned five cases

were obtained by solving the finite difference equations by the method

described in Sec. 4. 3. The calculations for these caSes were also

done on the computer. The program for the numerical solutions is

described in Appendix B-2. The cases which were solved by the

analytic method were used to check the accuracy of the numerical

method. The number of intervals of the finite difference mesh

and the results of the iterative procedure are also discussed in

Appendix B-2.

The results of the analytic solutions and numerical solutions

for the above mentioned problem are shown and discussed in

Sec. 7. 4.



CHAPTER V

EXPERIMENTAL APPARATUS

5.1. General Description

The objective of the experimental work was to confirm the

calculated solutions obtained for pulse prOpagation in a bar with

thermally—induced inhomogeneity. As discussed in Section 3. 4,

two types of temperature distribution conditions are of interest for

the study of the pulse prOpagation. For both, the method of

calculations has already been discussed. To carry out these

experiments the following experimental set—up was used.

A flat-tOpped loading pulse was obtained by a longitudinal

impact. The Specimen bar was struck by a four—foot stainless

steel striker bar, projected by an adaptation of a commercial Hyge

shock-testing machine. Two different experiments were conducted.

In the first, the effect of a thermal gradient in the middle of the bar

was studied. In the second experiment the effect of a thermal

gradient at the impact end was studied with the pulse propagating

from a hot to a cold region. A schematic drawing of the apparatus

is given in Fig. 5.1 and a general view of the test set-up is shown

in Fig. 5. 2.

5_.2. .Sflacimen and Striker Bar
 

In Fig. 5. 3(a) and Fig. 5. 3(b) the dimensions, the arrange-

ments, and the location of the strain gages for the specimen and the

73
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striker bars for both the experiments are shown. The specimen and

the striker bar were made of 9/16-inch-diameter centerless ground

Type 303, 18-8 stainless steel drill rods. This material was selected

because of its low oxidation at the higher temperatures and its good

impact properties. The specimen used for the first experiment was

6 feet long, and the temperature gradient was produced by a 5-inch-

long coaxial furnace at the middle of the bar. A high—temperature

gage station was located at the middle of the bar and two room-

temperature gage stations were located at a distance of one foot

from each end. At each station two gages were mounted on opposite

sides of the bar and connected to cancel the effect of bending as

described in Sec. 5. 5. Both the specimen and the striker bar were

supported on several rubber O-rings, which in turn were supported

on aluminum bearings. The O-rings allowed a sufficiently free

lateral expansion of the bars that no detectable reflections were

produced at these supports. In the second experiment the specimen

was 4 feet long, with one end placed in the furnace so that the end

was the hottest part of the bar. Two high-temperature gages were

mounted at 1. 125 inches, and two room-temperature gages at 25 inches,

from the hot end on the specimen bar. Also two room-temperature

gages were mounted at 25 inches from the impact end of the striker

bar. At each station the two gages were mounted on opposite sides

of the bar and connected to cancel the effects of bending as described

in section 5. 5. In order to minimize the three-dimensional effects,

the strain gages were mounted at least one diameter away from the

end of the specimen (see Bell, 1960).
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The striker bar was chosen to be four feet long for two reasons:

first so that the striker—bar gage could be at the same distance from

the impact end as the cold-region gage on the specimen and still be

far enough from the free end of the striker bar that the reflected

unloading waves would not interfere with the recording there; and

second so that the strain gage mounted on the striker bar used for

the measurements of the incident pulse in the second experiment

might not get damaged by the O-rings as the bar moved 18 inches

through them to strike the specimen.

One end of each bar was rounded in order to produce an

axial impact and to reduce the high frequency components of the

rising portion of the pulse by giving a longer rise time (see

Chiddister, 1961, page 28). The round end of the striker bar

was towards the thrust column of the Hyge in order to get an axial

force from it. The flat end of the striker bar was towards the

round end of the specimen bar, so that the flat vertical surface of

the end of the striker bar could only hit the outer-most point of

the specimen, even if the bars were not exactly aligned. To absorb

the energy of the impact a lead block was placed at the far end of

the specimen bar. To avoid the production of a concentrated force

on the lead block, the end of the specimen bar towards the lead

block was kept flat.

The four-foot-long striker bar produced a 486-microsecond—

1ong flat—topped pulse. This is twice the time required for the

elastic compression pulse to travel the length of the striker bar,
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since the striker bar and the specimen remained in contact until the

compression pulse in the striker bar was reflected back from the

free end of the striker as a tension pulse to break the contact at the

interface.

5. 3. Hyge Shock Tester
 

The pulse was produced by an impact of the striker bar,

which was propelled by an adaptation of a commerical Hyge Shock

Tester, Type HY-3422, manufactured by Consolidated Electro—

dynamics Corporation. A sketch of the Hyge is given in Fig. 5. 4,

and the Hyge appears in the photograph of Fig. 5. 2.

The operation of the tester is in short as follows: a set

pressure is introduced in chamber A. The set pressure works' on

the full area of the piston pushing it against a seal ring. A load

pressure is then introduced in chamber B. The load pressure in

chamber B applies the same force on the piston from one side as the

set pressure in chamber A does from the other side when the load

pressure in chamber B is about four times that of the set pressure

in chamber A. Any extra load pressure in chamber B then breaks

the seal, applying the full load pressure of chamber B to the whole

piston area. This produces a large acceleration in the piston, which

in turn accelerates the striker bar. The deceleration of the Hyge

piston is accomplished by a hydraulic fluid. The full stroke of the

Hyge piston is 16. 75 inches. The operation is controlled from a

control panel containing pressure gages and control valves.
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5. 4. Furnace and Temperature Measurement
 

The temperature gradient in the specimen was produced by a

Type 123—1 Electric Multiple Unit Furnace manufactured by the Hevi—

Duty Electric Company. The furnace had a 5-inch—long heating

element and an internal diameter of 1. 25 inches. Temperatures up

to 195OOF for intermittent operations and up to 18500}? for safe

continuous operations could be produced by this furnace. It has a

hinged lid so that the specimen could be reached without any difficulty.

To produce a certain maximum temperature a Variac type variable

transformer was used to control the furnace voltage. The furnace

produced a steady-state temperature distribution in the specimen

in about two and a half hours. It was found that if the furnace was

left 'on for any length of time after two and a half hours the values

of temperature at each point did not vary more than i 0. 8%. This

was taken to be an evidence of the steady—state temperature

distribution. The portion of each bar outside the furnace was

exposed to the room—temperature environment with the result that

the temperature in the bar fell to room temperature at a distance

of about 18 inches from the hottest point.

By experimentation a definite position of the dial on the

Variac was found for both experiments, so that the maximum

temperature in the steady-state temperature distribution was IZOOOF

in each case. To check the reproducibility of the furnace at this

fixed position of the dial, several check tests were performed. For

each check test the furnace was turned on two and a half hours before .

the test and temperatures were measured at several points of the
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temperature distribution in the specimen. The reproducibility of

the furnace was found to be within 0. 8%. Chromel-Alumel thermo-

couples with Foxbord Portable Indicator Model No. 8106 were used

to measure the temperatures. The scale of the indicator was

calibrated by measuring the boiling point of distilled water. Two-

hole elliptical ceramic tubing was used to insulate the thermocouple

wire. An electric butt-welder was used to weld the thermocouples

on the bar in order that the welding would not make holes in the

specimen.

In the first experiment the temperature distribution was

measured at 22 points spaced 0. 8 inches apart, starting from the

middle. Measurements were taken on only one half of the distri-

butiOn; the other half was assumed to be the mirror image of the

measured distribution. In the second experiment the temperature

was measured at 16 points spaced 1 inch apart starting from the

hot end of the specimen. The measured values were plotted and

the curves smoothed very slightly. The curves of temperature

versus distance are given in Fig. 3. 2 and Fig. 3. 3. Since the

joint of the thermocouples on the bar was very sensitive to any

kind of shock, and the temperature distribution had been found

reproducible with a maximum variation of 0. 8%, the position of

the specimen in the furnace. and the dial on the Variac were marked

and all the thermocouples taken off the specimen before the impact

te sts were performed.
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5. 5. Strain Measuring and Recording Equipment
 

Etched-foil resistance strain gages manufactured by Micro-

Measurement Inc. were used for the dynamic surface strain measure-

ments at room temperatures. Type MA-O9-125AD-120 gages having

a gage length of 0. 125 inches and a width of 0. 125 inches were mounted

on the bars with Eastman 910 adhesive cement. These gages were

selected for several reasons: first they were suitable for the dynamic

measurements; second, their gage length was small enough to indicate

the sharp rise in the pulse with sufficient accuracy; and third, they

were suitable for measuring strains at the surface of the stainless

steel. Eastman 910 adhesive cement was used for mounting these

strain gages because of the ease in mounting gages on the curved

surfaces with this cement. As given by the manufacturer the

resistance of these gages was 120 :l: 0. 2 ohms and the gage factor

was 2. 09 (:1: 0. 5%).

High-temperature free-filament strain gages of Type HT—

1235-4A, manufactured by Baldwin Lima Hamilton, were used for

the dynamic surface strain measurements at elevated temperatures.

These were selected for their safe application up to lZOOOF for

static measurements and up to 15000F for dynamic measurements

(according to the manufacturer). As given by the manufacturer

the resistance of these gages was 350 :1: 2 ohms, and the room-

temperature gage factor was quoted as 4. 01 (i 1%) for the strain

gages used for the first experiment and 3. 84 (:1: 2%) for the strain

gages used for the second experiment. A curve relating temperature
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and gage factor was also supplied by the manufacturer. At 120001?

the gage factor of these gages was found to be 79% of the value at

room temperature, according to this curve.

As recommended by the manufacturer, Allen PBX ceramic

cement was used for mounting the high-temperature strain gages

on the specimen. Special instructions for using this cement were

also supplied by the manufacturer.

To eliminate the effect of bending strains, at each gage

station two strain gages were mounted diameterically opposite and

aligned longitudinally on the bar. This effectively eliminated the

measurement of the bending strains when the two gages were

connected in series and placed in the same arm of a Wheatstone

bridge as shown in Fig. 5. 6(a) or in a potentiometer as shown in

Fig. 5. 6(b). The room-temperature gages were connected in a

Wheatstone bridge circuit and the high temperature gages were

connected in a potentiometer circuit. The locations of these gages

are shown in Fig. 5. 3.

A 240-Iohm gage was used as a passive arm for the Wheat—

stone bridge circuit. lTwo 35‘2-ohm gages, mounted on each side

of a cantilever whose deflection could be varied, were used as the

balancing half of the bridge. This produced a very sensitive device

for balancing the bridge. 1

For the potentiometer circuit, two 352-ohm gages were used

as the ballast resistor. Output was taken from the ballast resistor

instead of from the active gages,for convenience.
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Two 12-volt wet cell batteries connected in series were used

to supply the voltage to all the bridges. The voltage of these batteries

was measured by means of a voltmeter just before and after each

experiment, with the batteries in the circuit.

The output signals from the Wheatstone bridge and the poten-

tiometer circuit were fed to Tektronix D-Unit plug—in differential

pre-amplifiers in rack-mounted Tektronix Type 127 pre-amplifier

power supplies. The differential feature permits attenuation of any

undesired signal by means of outphasing and is especially useful for

eliminating 60-cycle pickup.

The output signal from the pre-amplifier for the potentiometer

circuit was input to a Tektronix C-unit, and the signals from the pre-

amplifier for the Wheatstone bridges were input to a Tektronix M-

unit. The C-unit and M-unit were mounted in a Tektronix Type 555

dual-beam Cathode-Ray Oscilloscope. The C-unit is an electronic

switching unit which enables two chopped signals to be displayed

simultaneously on one beam of the oscilloscope, and the M-unit is

also a switching unit which enables four signals to be displayed

simultaneously on one beam of the oscilloscope. Only two of the

four channels of the M-unit were used at a time in the experiments.

The switching rate of the C-unit was 100 kc. When only two channels

were in use the switching rate of each channel of the M-unit was

approximately 500 kc. Sweep speeds of 50 microseconds per cm.

and 100 microseconds per cm. were used for recording. The scope

was triggered externally by means of a signal from two lZO-ohm
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strain gages mounted at 0. 5 inches from the end of the striker bar

and connected in opposite arms of a Wheatstone bridge for a doubled

signal.

The strain pulses were permanently recorded with a

Tektronix Type C-12 oscilloscope record camera, using Type 47

Polaroid Land picture roll.



CHAPTER VI

EXPERIMENTAL PR OC EDURE

6.1. Determination of E, p and c

The elastic wave velocity at room temperature (75°F) was

determined by measuring the time required for a pulse to travel

four times, six times, and eight times the length of the 6-foot bar

and then taking the average of the values obtained. The values of

the elastic wave velocity obtained in different tests agreed up to

the third digit. For this test an air gap was left between the bar

and the lead block so that the successive reflections could occur

at the free ends without interference. The pulse was displayed on

the Screen and recorded on a photograph for measurements. The

average of the elastic wave velocities obtained for two, three, and

four complete cycles on the photographs for four tests showed the

elastic wave velocity at room temperature to be 197, 600 :1: 900 inches

per second.

The density p was obtained by determining the weight and

the volume of a 10 inch section of the Specimen bar and was found

to be 7. 928 gms./c. c. compared to the value 7. 93 gms./c. c. or

0. 286 1bs./cu. in. given by the Metals Handbook (1948) for Type

303 stainless steel. Therefore 7. 93 gms./c. c. or (7. 43 i . 01)x10-4

slugs. per cubic inch was taken to be the correct value for density.

The weight of the bar was determined by weighing the section of the

specimen bar on a Torsion balance. The volume of this section was

83
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determined by measuring the length and the diameter of the bar at

various points on the section. The value of the modulus of elasticity

E0 was calculated using the relation E0: cozp ,' and was found to be

(29. O :1: O. 3) x 106 pounds per Square inch compared to the value

29x106 pounds per square inch given by the Metals Handbook (1948)

for Type 303 stainless steel. The value 29. 0x106 pounds per square

inch was then taken as the correct value of the modulus of elasticity

for the specimen bar.

The density of Type 303 stainless steel at lZOOOF was found

to be 7.141x10”4 slugs/in..3 compared to the value of 7. 43x10-4

slugs/in. 3 at 75oF, indicating a difference of 3. 89%. This

calculation was based on a coefficient of thermal expansion of

11.1‘x10-6 ins. per in./OF, as given in the Metals Handbook (1948).

The value of the elastic wave speed at IZOOOF was found to be

174404 in./sec. based on the calculated value of the density at

lZOOOF, compared to the value 171011 in./sec. based on the value

of the density at 750F. Therefore, for the problems considered in

this investigation, the maximum error introduced into the value of

the elastic wave speed is l. 98% when the variation in density due

to a variation in temperature is neglected.

6. 2. Electronic Calibration of the Strain Gages
 

The strain gages were calibrated by shunting one arm of the

Wheatstone bridge, or the ballast resistor of the potentiometer

circuit, by a resistor of considerably higher value brought in and

out of the circuit with a switch. The shunt resistor produced a
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definite signal on the screen. To produce a signal equivalent to a

strain e, the size of the calibration resistor RC was calculated

using the formulas (Perry Lissner, 1964, pages 90 to 96):

1. For the Wheatstone Bridgg 

R (l — Fe)

_8—

c F6

where Rc is the resistance to simulate a strain E, Rg is the

resistance of the gage and F is the gage factor of the gage.

2. For the Potentiometer Circuit 

(Rb-FeR)

R :R __.——_g_

c b FeRg

where again RC is the resistance to simulate a strain 6, Rg is

the resistance of the gage, R is the magnitude of the ballast
b

resistor and F is the gage factor of the gage.

In each case the resistor produced a signal equal to that

of a strain of the order of magnitude of 700 microinches per inch,

since that was the order of magnitude of strain which was to be

recorded. To achieve this, resistors were prepared by combining

various values. For room temperature gages, a calibration

resistor of 176K was used which produced a signal equal to a strain

of 652 microinches per inch. For high temperature gages a

calibration resistor equal to 300K was used for calibration, and

it produced a signal equal to a strain of 731 microinches per inch.

Calibration signals were displayed on the oscilloscope

screen and recorded on a photograph. All the strain gages were
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calibrated before and after each test.

6. 3. Test Procedure
 

The amplifiers and oscillosc0pe were turned on at least

one-half hour before, and the strain-gage bridge voltage fifteen

minutes before, a test in order to obtain nearly steady-state

operating conditions. Each test was performed following the

procedure below in sequence:

1. The Wheatstone bridges were balanced.

2. The battery voltage was measured.

3. All the strain gages were calibrated.

4. The oscillosc0pe sweep Speed was set at 50 micro-

seconds or 100 microseconds per centimeter. The triggering

source switch was set at "External, " and the trigger placed on

”Single Sweep. "

5. The vertical gain adjustments of the amplifiers were

set so that the signal would remain on the screen during the test.

6. A set pressure of 15 psi. was applied to the Hyge

Shock Tester.

7. The load pressure was increased to 30 psi.

8. The reset button of the single-sweep control was

pressed.

9. The camera shutter was Opened and left open.

10. The load pressure was increased until the Hyge fired.

11. The camera shutter was closed.

12. The load pressure was released and the piston of the

Hyge was retracted.
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13. The calibration shots were repeated.

14. The battery voltage was measured.

15. The specimen bar was brought back to its original

marked position.

In each experiment tests were performed both at room

temperature and with the temperature gradient produced on the

specimen. For the high temperature tests the furnace was turned

on two and a half hours before the test.

6. 4. Reduction of Data 

The data recorded on the photographs taken for each test

was measured with a Pye two-dimensional traveling microscope,

accurate to 0. 01 millimeter. The calibration measurements were

taken at various points along the time axis for each test, and

calibration values measured at these points were the ones used to

reduce the data obtained on a test shot at points in the vicinity of

these on the time scale. On the test shots all the traces were

measured at a series of points along the time axis. The spacing

of these points was increased or decreased with the slope of the

trace being measured.



CHAPTER VII

RESULTS

7.1. Pulse PrOpagation
 

7.1(a). Oscillosc0pe Records
 

The photographic records obtained from a few typical tests

are shown in Fig. 7.1 and Fig. 7. 2. The uppermost trace on each

record is the output from the high-temperature gage. The next

lower trace is the output from the transmitter gage at room

temperature. The lowest is the output from the incident gage in

the case of the 6 foot bar heated in the middle, Fig. 7. l, and from

the gage mounted on the striker bar in the case of the 4 foot bar

struck at the hot end, Fig. 7. 2. Experimental points taken from

these records are shown together with the calculated curves of

Figs. 7. 3 and 7. 5.

7.1(b). Discussion of the Test Results
 

7. 1(b. i). Results from the 6-Foot—LongBar Heated in the Middle,

Fig. 7. l

A reflection from the temperature gradient is obtained and

can be spotted on the output of the incident gage in Fig. 7.1c. The

reflection has a maximum value of 5. 0% of the magnitude of incident

pulse. This reflected pulse is followed immediately by a reflected

pulse of the Opposite sign with a maximum of 1. 5%. Chiddister (1961)

also obtained reflections in his experimental output as well as in his

the or etical calculations .

88
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The transmission through the central inhomogeneity does

not affect the amplitude of the pulse transmitted and recorded at

the second room-temperature gage, which shows the same

amplitude as the incident pulse. It is interesting to see that the out-

put from the transmitter gage, after the main pulse has passed,

also shows a reflection from the temperature gradient (a reflection

of the unloading pulse coming from the free end of the bar) clearly

visible in Fig. 7.1(c).

The output from the high temperature gage, Figs. 7.1(b)

and 7.1(c), shows that the magnitude of strain, after the initial

jump in magnitude, continues to rise slowly to the point where the

tensile unloading pulse reflected from the free end meets it. This

could be considered due to several reflections back and forth within

the region bounded by the thermal gradients. A similar slow rise

is obtained in thenmerical solutions of Sec. 7. 3.

7. 1(b. ii). Results from the 4-Foot-Long Bar Impacted at the Hot

End, Fig. 7. 2.

 

 

The outputs obtained from the high-temperature gage and

the transmitter gage both show that the magnitude of the strain,

after the initial jump in magnitude, continues to rise slowly to a

maximum value, after which it maintains this value before being

intercepted by the tensile unloading pulse reflected from the free

end.

When these strain records are converted to stress by

multiplying by the elastic modulus at the recording point, the stress
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records at the transmitted pulse gage show slightly higher values

than the stress records at the high temperature gage. Except at

the steep initial rise, the maximum difference between the two is

only about 1. 6% at time equal to 210 microseconds. A difference

is also observed in the stress pulses obtained from the numerical

solution; the difference is therefore attributed to propagation through

the thermal gradient rather than to experimental error, although in

general the accuracy of reading the oscilloscope records is estimated

as :1: 2%.

7.1(c). Numerical Results
 

7. lg. i). Numerical Solution Results from the 6-Foot-Long Bar

Heated in the Middle, Fig. 7. 3

 

 

The calculated values obtained by the method of characteristics

for the 6-foot-long bar in (which the pulse produced by the impact

propagates through the experimentally produced thermal gradient,

as discussed in Sec. 3. 2, are plotted in Figs. 7. 3 and 7. 4 for the

points on the bar where the strain gages were located. Fig. 7. 3

shows the values of strains and Fig.7. 4 the values of stresses.

The pulses are translated on the time axis to start at the same

point. The difference between the experimental and the theoretical

values obtained for the incident, the high-temperature, and the

transmitter gages is less than 3% at every point except at the point

when the incident gage records the reflected pulse, where the

maximum difference is 5. 5%. The same general shapes of the

pulses are obtained by calculations as were obtained experimentally.
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The estimated accuracy of reading the oscilloscope record was

:1: 2%.

The differences between the calculated and measured

reflected pulse amplitudes are greater. The calculated values

of the stress and strain obtained at the location of the incident

gage show a reflected pulse with a maximum magnitude of about

7% of the incident pulse. This reflected pulse is followed

immediately by a reflected pulse of the Opposite sign again with

a maximum of 7%. The maximum value of the reflected pulse

diSplayed by the strain gage output in the experimental measure-

ment was only 5% Of one sign and 1. 5% of the Opposite sign. This

is believed to be a result of the fact that the reflected pulse

amplitudes in these experiments were Obtained as small differences

between the approximately equal incident pulse and the incident

pulse with the superposed reflection.

The stress at the high-temperature gage was equal to the

stress at the first and second room-temperature gages (within

2. 5%), except during the initial rise or up to the first 50 micro-

seconds after the start of the pulse and during the period when

room temperature gages received the reflections.

7. 1(c. ii). Results from the 4-Foot-Long Bar Struck at the Hot End,

Fig. 7. 5

 

The calculated values obtained by the method Of characteristics

for the 4-foot-long bar with {one end hot and the other end cold, in

which the pulse produced by the impact propagates through the
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experimentally produced thermal gradient shown in Fig. 3. 3, are

plotted in Figs. 7. 5 and 7. 6 for the points of the bar where the high

temperature gage and the transmitter gage were located. Fig. 7. 5

shows the values of strains and Fig. 7. 6 shows the value Of stresses.

The difference between the experimental and calculated values

obtained for the high-temperature gage and the transmitter gage was

always less than 4% except for the first 60 microseconds in the case

of the high temperature gage. The reason for the large difference

in the experimental and the calculated values of the initial steep

rise for the high temperature gage seems to be the absence of a

clear starting point on the recorded pulse (Fig. 7. 2). If the

experimentally recorded pulse at the high temperature gage is

translated about 8 microseconds towards the right, the maximum

difference in the experimental and the calculated values for the

first 50 microseconds is found to be 9% and after 50 microseconds

it is found to be less than 4%.

The calculated values show that the magnitude of the stress

at the high-temperature gage station after the first 80 microseconds

is the same as the incident pulse (within 0. 4%), while during the

first 80 microseconds the difference is as high as 16%. The

magnitude of the stress at the transmitter gage before the arrival

of the unloading pulse from the free end is always higher than the

magnitude of the stress at the high temperature gage; the maximum

difference is 6% at 20 microseconds after the beginning of the pulse,

becoming less than 0. 5% after 80 microseconds. The experimental
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values of the stress indicated the same thing but the difference was

smaller than the difference between the calculated values.

7. 1(c. iii). Results of Lindholm's Problem and the Modified

Lindholm Problem

 

 

Lindholm (1963) did not Obtain any apparent reflection in his

numerical study of the problems he considered, where the inhomo-

geneity was expressed in terms of a varying elastic modulus E as

Eo(k}£L-.)n and the problem was solved by using the method of virtual

work. He considered four different problems (see Lindholm, 1963)

in which the bar ran from x = kL to x = (k+1)L and the values of

Ewere

n

E=EO(,—j-§3)

1 k=2 , n=l

2 k=5 , n=1

3. k=2 , n=3

4. k=6.9l,n:3

As a part of the present study, these problems have been

solved again by the method Of characteristics described in section

3. In the present calculations, the half-sine -wave pulses were

taken approximately one fourth of the total length of the bar (the

same as used by Lindholm, 1963). The present calculations

showed reflections with maximum values from 0. 3% to 0. 9% of the

incident pulse, an essentially neglible reflection. The explanation

for the smallness of the reflections seems to be the smallness of

the gradient of the inhomogeneity present in the bar through which
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the pulse propagates. To show this, Lindholm's third problem was

modified as follows. With the same values of maximum and minimum

E, namely EO and 3. 375 E0, the length of the part of the bar where

the inhomogeneity existed was reduced to one-fourth the length of the

bar in Lindholm's third problem, with the variation following the

same cubic law in his problem, and E was taken uniform along the

other three-fourths Of the bar. This resulted in a c(x) variation

givenby

3

c=c forO<x<—L
o — —4

c = c {1+ 296(x-iL)3/Z}
O ' 4

for %L<_x :L

The'length of the pulse was again taken approximately one -fourth Of

the total length of the bar. The solution then showed refflections

with a maximum of 12. 5% Of the amplitude of the incident pulse as

shown in Fig. 7. 7. This value of the reflected pulse is about 40

percent of the value of 29. 5%, which is the amplitude Of the reflected

pulse in the case where the pulse propagates through a discontinuous

jump in modulus, with one side having the minimum value and the

other side the maximum value. Clearly the reason for such a high

value of reflection is the steep rise in the elastic modulus, as

compared to the size of the pulse.

The amplitude value, 29. 5%, of the reflected pulse in the case

where the pulse propagates through a discontinuous jump in modulus

is obtained from the formula given by Chiddister (1961, pages 100 to
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103). The formula is

i _ «(E2 'JEl

61 —

E2+/El

where E2 is the elastic modulus on one side of the discontinuity

 

and E1 on the other. The values of the elastic modulus used in

these calculations were E = EO and E = 3.375 E as in

1 o2

Lindholm' 3 third problem.

7. 2. Periodic Vibrations
 

7. 2(ai The Results of Periodic Vibration Solutions
 

An analytic and numerical study of the periodic vibrations in

a free-free bar with one end hot and the other cold, excited at the

hot end in the first case by a sinusoidally varying displacement and

in the second case by a sinusoidally varying stress, has been done

by the methods described in Chapter 4 for the cases described in

Sec. 4. 4 for the excitation frequencies of 5000; 7500; 10, 000; 12, 500;

15, 000; 17, 500; and 20, 000 cps. For the numerical solutions a mesh

of 2000 intervals was used. Explicit solutions were also obtained for

the same bar with a uniform temperature of 750F in one case and

1200°F in the other case.

The results of all the above mentioned studies are given in

Fig. '7. 8 to Fig. 7. 23 for the frequencies 5000; 10, 000;.15, 000; and

20, 000 cps. For each frequency the results of diSplacements and

stresses are given in separate figures.
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The numerical solutions agreed with the explicit solutions up

to the sixth significant digit for the cases where E varies as;

kx x 2
E + kx, E e , and E (— . Therefore the same curves are
0 o o kL

obtained for the explicit and numerical solutions.

The curves for the cases where E varies as EO + kx ,

kx x 3 x 3/2 .
Eoe , Eo(kL) , and EO(k—L) are very close. So in most caSes

the curves for only two cases, one with the highest values and the

other with the lowest values, have been plotted here, i. e. for

E0 + kx and E0 ekx . The two not plotted would plot very close

to these two and mostly in between them.

7. 2@. Discussion of the Results 

The numerical solutions obtained for the periodic vibration

of the 20—inch-long Type 303 stainless steel bar agreed up to sixth

significant figure with the explicit solution in the cases of inhomo-

kx
geneity where the elastic modulus varied as E0 + kx, Eoe and

Eo(kXL . The numerical solutions obtained for the experimental

temperature distribution with 2000 mesh intervals agreed with the

solutions Obtained with 2500 mesh intervals up to 4 significant

digits. There was apparently little accumulation of round-Off error

in the direct numerical solution results, because iteration did not

change them.

The results Obtained for the cases with thermally-induced

inhomogeneity were always between the results Obtained for the

uniform temperatures of 750F and 12000F. The presence and

location of the nodes, the critical frequencies, and the amplitude
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all were affected by the induced inhomogeneity as is clear from

Fig. 7. 8 to Fig. 7. 23. The most pronounced changes are observed

in curves for frequencies near one of the resonance frequencies given

in Sec. 4. 2(d). For example, Figs. 7.16 and 7.17 for 5000 cps

show high amplitudes for the stress and displacement with the uniform

room-temperature E : 29. 0x106 psi since this frequency is near

the room-temperature resonant frequency of 4940 cps. The presence

of the thermal gradient lowers the critical frequency; hence the high-

temperature response at 5000 cps. is smaller. Similar effects may

be noted in most of the other figures given. Only the two figures

for displacement excitation at 5000 cps. are far enough from

resonance to give only moderate changes. At frequencies below

1000. cps. almost no change is observed due to temperature; none

of the low-frequency results have been plotted.

It was found that the results obtained for the inhomogeneities

kx x )3/2 )2
E+kx,Ee,E—
O O

O kL were very ClOSe to
x

and EO(ET_1

each other, the reason being that the temperature distributions

which produce these inhomogeneities do not depart from each other

much as is clear from Fig. 7. 24.



C HAPTER VIII

SUMMARY AND CONCLUSIONS

The mechanical properties of a material change with the

temperature. Among other changes, a change in the elastic

modulus and the density affect the propagation of a wave. The

change in density being small, the primary effect is produced by

the change in the elastic modulus, and the density was considered

constant in this work. The longitudinal elastic wave speed c =W

therefore is a function of the axial coordinate. When the thermal

gradient and the dependence of E on temperature are known, the

‘problem becomes one of wave propagation along an inhomogeneous

elastic bar with known values of the variable wave speed c(x).

Two forms of wave propagation have been considered here;

pulse propagation and periodic vibration.

Numerical integration by the method of characteristics has

been programmed and used on the CDC 3600 computer. The program

was used for five specific problems calculating results:

1. to compare with the experimental pulse propagation study

on the bar heated at its center;

2. to compared with the experimental pulse-propagation

study on the bar heated at one end;

i 3. to verify the results of Chiddister (1961), which he Obtained

by approximating an experimentally-obtained thermal gradient by a

series of steps;

98
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4. to verify the results of Lindholm (1963), which he

obtained by a series method for the special case E : Eo(-k£L)n ,

and

5. to solve a modified version of Lindholm’s problem

with variation according to a cubic power law in one-fourth of the

bar, while the rest of the bar had a uniform elastic modulus.

Two experiments were performed to verify the results

obtained for the first two problems. Results from both experi-

ments agreed well with the numerical solutions. In the case of

the 6-foot-long bar with the thermal gradient at the middle,

reflections with a maximum of 7% from the calculations and 5%

from the experiments were obtained from the gradient, while the

transmitted strain pulse after passing through the gradient was

nearly the same as the incident pulse. The amplitude of the

pulse at the point of highest temperature in the 6-foot—long bar

heated at the middle showed a continuous slow rise after the

initial jump, and the value of the stress here was equal to the

stress at the first and second room temperature gages (within

2. 5%), except during the iritial rise of the pulse. The difference

between the experimental and the theoretical values obtained for

the incident, the high-temperature, and the transmitter gages,

in the case of the bar heated in the middle, was less than 3%

except at the time when the incident gage recorded the reflected

pulse, where the maximum difference was 5. 5%. In the case of

the bar impacted at the hot end, the calculated and the experimental

values showed that the magnitude of the stress at the high-temper-
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ature gage station, after the initial steep rise, was the same as

the incident pulse, while the magnitude of stress at the transmitter

gage was always higher. The difference between the experimental

and the calculated values obtained for the high-temperature gage ,

and the transmitter gage for the bar impacted at the hot end was

less than 4% except for the initial steep rise.

The numerical solution of Lindholm's problem gave the

same results as his analytical solution, namely negligible

reflection from the thermal gradient. However, in the modified

problem, Problem 5, a reflected wave was found with maximum

height equal to 12. 5% of the incident wave maximum. This

indicates that the reason for the lack of reflections before was

that'the thermal gradient was not steep enough as compared to

the size of the pulse.

An analytical study has also been made of the periodic

vibrations in a free—free bar with one end hot and the other end

cold, excited at the hot end in the first case by a sinusoidally

varying displacement and in the second case by a sinusoidally

varying stress. An explicit solution is possible when the thermally-

induced inhomogeneity is one where the elastic modulus E is a

function of position in the bar such that

E : E +kx

O

or = E ekx

o

or — EO(kL)
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For a numerical solution, programs have been written to

solve the periodic vibration problem by the finite—difference method

for any arbitrary temperature distribution.

For a 20-inch-long Type 303 stainless steel bar, the effect

of the temperature distribution, varying from room temperature

to 12000F in the manners described below, on the periodic vibrations

has been studied in this investigation. For the excitation frequencies

of 5, 000; 7, 500; 10, 000; 12, 500; 15, 000; 17, 500; and 20, 000 cps. ,

the explicit solutions of the stress and diSplacement have been

evaluated for the thermally-induced inhomogeneity in which the

elastic modulus varies with the distance as EO + kx, EO ekx, and

E(Tgcfl)Z ; and numerical solutions of the stress and diSplacement

have. been obtained for the same experimental temperature

distribution used in the pulse propagation tests and for the cases

where the elastic modulus varies with the distance as EO + kx,

kx x 2 x 3/2

Eoe , Eo(kL) , and Eo(kL The value of k in each

case was such that one end of the bar was at 750F and the other

end at 12OOOF. The numerical solutions agreed with the explicit

solutions up to six significant figures in the cases where explicit

solutions were available. Solutions were also obtained for the

same bar with a uniform temperature of 75°F in one case and

12000F in the other. From the plots of all the above solutions it

was found that the solutions, for the cases of varying temperatures

in the bar, were always betWeen the solutions obtained for the

uniform temperatures of 75°F and IZOOOF. The presence and the
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location of the nodes, the critical frequencies, and the amplitude,

were all affected by the inhomogeneity in the bar.

Some possible applications Of the present investigation are:

1. Interpretation of pressure-bar records from hot or

radioactive environments.

2. Finding the critical frequencies and solving resonance

problems of a bar subjected to varying temperature.

3. Determination of gage factors for high-temperature

gages. This could be done by taking the experimental output of

a sample gage in a known temperature distribution with the gage

mounted on a material of known elastic modulus at elevated

temperatures. The predicted values of the output of the gage are

calculated numerically from the room-temperature gage record

and then compared with the experimental output record to determine

the gage factor of the gage. The results of the present study show

that the manufacturer's gage factor, modified according to the

temperature curve furnished, was very accurate.

4. Obtaining the value of the elastic modulus at elevated

temperatures. This can be done by mounting high-temperature

gages of known gage factor at a distance of about one diameter

from the end of a bar of a material whose elastic modulus is to

be determined and introducing a known temperature distribution

with a small gradient near the end. Then a known pulse Of short

duration is introduced at the'hot end and the output of the gage is

recorded. As found in the 4-foot-long bar, the stress at the
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high-temperature gage remains the same as in the incident pulse.

So with the stress values of the incident pulse and the measured

strains at the high-temperature gage station, the value of the

elastic modulus can be obtained.

Further study in this area is recommended to include

1. A set-up of the experiment with more accurate

measuring devices for the study of pulse prOpagation.

2. The reflected pulse measured as a difference between

the pulse without reflection and the pulse with reflection and

amplified.

3. Actual calibration of the high-temperature gage and

determination of the elastic modulus for elevated temperatures.

4. The experimental verification of the solutions obtained

for the periodic vibrations of a slender bar with thermally-induced

inhomogeneity. I

5. Inclusion of the density variation in the pulse-propagation

calculations. This is easy to do. While it will make only a small

change in the results, it should be an observable change.
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(a) Bar Heated at the Middle

 
(b) Bar Heated at the End

Fig. 5.5 Close-Up of the Furnace and the High-Temperature Gage
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Fig. 5.6 (a) Wheatstone Bridge
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Fig. 5.6 (b) Potentiometer Circuit



 

(a) At Room Temperature (Sweep Speed 50 microsec./c.m.)

 
(c) At 1200°F (Sweep Speed 100 microsec./c.m.)

Fig. 7.1 Oscilloscope Records from the 6 Foot-Long Bar

Heated in the Middle
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(a) At Room Temperature (Sweep Speed 50 microsec./c.m.)

 

(b) At 120d’F (Sweep Speed 50 microsec./c.m.)

Fig. 7.2 Oscilloscope Records from the h-Foot-Long Bar

Impacted at the Hot End
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APPENDIX A

INTER POLATION

A. 1. Introduction
 

Interpolation is a process for estimating the value y of a

function y = f(x) corresponding to any x, where the value of y

is not to be computed directly from the function itself but is

determined by means of certain values of the function which are

already known, for example as experimental data at discrete

points. An interpolating function may be defined as a function

which contains in addition to the independent variable x, a number

of arbitrary constants or parameters in such a way that by suitable

choice of the parameters the function will assume assigned values

for given values of the variable x (Milne, 1949; Nielsen, 1964).

The temperature distributions considered in this thesis

were measured at 22 points in the first experiment and 16 in the

second experiment. But both in the numerical solution of the

pulse prOpagation by the method of characteristics and in the

numerical solution of the periodic vibrations, it was desired to

use the values at up to two thousand points. For the intermediate

values of temperature or some other variable, such as the elastic

wave speed or the elastic modulus, interpolation techniques were

used.

There are three commonly used types of interpolating

functions: polynomial, rational, and trignometric types. The

choice depends upon the type of function being approximated. Only
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polynomials will be discussed here, since polynomial interpolation

gave good results for the temperature distributions.

There are many different polynomial interpolation formulas.

A few of these are: Aitken's method; Neville's method; Newton's

formula; Lagrange's formula; Bessel's formula; Stirling's formula;

and Gauss' formula. Sometimes a combination of twoor three

formulas is used (see Milne, 1949). All nth-degree interpolating

polynomial formulas based on the same n+1 points must give the

same answer because there is a unique nth-degree polynomial

taking on the n+1 prescribed values at the n+1 points. Therefore

the choice of the interpolating polynomial formula to be used is

based only on convenience. Because of the ease in programming,

Aitken's method was used in this research.

A. 2. Aitken's Method of Interpolation
 

Aitken's method of interpolation can be considered as

successive linear interpolation (Milne, 1949; Nielsen, 1964).

A. 2(a). Linear Interpolation
 

The simplest of all interpolation formulas is the linear

interpolation formula. It is a Special case of polynomial inter-

polation using two points and a polynomial of degree one. If we

call the interpolating polynomial I(x), the linear interpolation

between i and j is
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A. 2(b). Aitken's Regated Process
 

Using the notation of Nielsen (1964, pages 91 to 94)

yil (X) = :73.—

  

This denotes linear interpolation between the values (x0, yo) and

(Xi’ yi). If linear interpolation is exact, the values yil(x),

(i=1, 2, . . . , n) will be alike for any fixed x. If the function y = f(x)

is not linear, they will differ by some amount.

For a higher degree of aCcuracy, more points and an inter-

polating polynomial of a higher degree than the first, should be used.

To achieve that, the linear interpolation formula can be applied to

the values yi1(x)’ (i=1, 2, . . . , n). Thus with

i 3’11"" X1 ’ x

yi1(x) x. - x

we now compute a set of values, in(x)’ (i=2, . . . , n). The process

can be repeated and the general formula is given by
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I(X) = Vik(X) = xi _ ka

in which k denotes the number of times linear interpolation has

been applied and also the degree of the polynomial obtained.

each k, the sbuscript i assumes the values k, k+l,

n is the degree of polynomial finally obtained.

For

, n, where

The computational form for Aitken's repeated process is

given below:

 

Xo y00

x1 V10 3’11“”

X2 V20 3’21“?) 1’22“"

X3 V3 0 y31 (x) V3 2“”

X4 Y40 Y41 (X) 3’42""

The computational form is constructed as follows:

Y33(X)

Y43 (X) Y44(X)  

0

xl—x

xz-x

x3-x

x4-x

for a given x

the columns between the vertical bars of the computational form are

computed successively, each new entry being a linear interpolation

between the first value in the preceding column and the value in the

same row in the preceding column. For example, the value y32(x)

is obtained by linear interpolation between y11(x) and y31(x) as

g
—
I

3’32“” z x -x

y11(x)

3’31“” X3

Xl-X

X
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Aitken's process is a useful process, because the calculations

are easily performed on a machine. Furthermore, it provides its

own criterion of when the process has been carried far enough. This

is judged by looking at the computational form on which, when the.

difference between yk-l, k-l and yk’ k becomes less than the degree

of accuracy desired, the process can be stepped. Sometimes the

interpolated values appear to converge up to a certain value of k

and after that appear to diverge. In such cases k is taken as the

limiting value of the degree of polynomial which can be used for

interpolating that particular data. To minimize round-off errors,

the calculations are carried to at least one more decimal place I

than the required accuracy.

The same n-degree polynomial is obtained no matter which

two n-l degree polynomials are used to obtain it. For example

1 3’44““ X4 " X

-X3’55"" =
x5 4 y54(x) x5 - x

which in Milne's notation (pages 68 to 71) is written as

I

I

0, 1, 2,3, 4“” (x4 ' X)

0,1,2,3, 5“") (X5 ‘ x)

x5 " x4

Io,1,2,3,4,5(x) : 

can also be obtained by
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I0, 1, 2, 3, 5"” (X2 ‘ X)

I (X) _ I0, 1, 3, 4, 5“” (X4 ' X)

0,1,2,3,4,5 ‘ -x
X4 2

A. 2(c). Progamming

In this research a fourth-degree polynomial was selected

by the criterion mentioned above as giving Optimum convergence

for the values of temperature obtained experimentally in both of

the experiments.

Except for the polynomial through the first five and the

last five points, each polynomial was used only to obtain the inter-

polated values for the points lying in the middle quarter of the

range covered by the five points as shown in Fig. A. 1, because

of the fact that error in the interpolated value is minimum at the

middle of the range of the polynomial and maximum at the ends

(Milne, 1949, pages 167-168).

 

e ' 'e \\\\\\\\\\X\\\\ e e

   

i-Z i-l i i+l i+2

Fig. A. 1. Range of Application of Interpolation Formula

The polynomial through the first five points was used to' interpolate

values from the first point to the middle of the interval between the

third and fourth points. For a similar reason the polynomial using
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the last five points was used to interpolate values from the middle

of the interval between the second and third points to the fifth point.

The computational form for Aitken's repeated process was

completed on the computer using each set of five points as input

and the formula:

1
Y(I, J) = X(J1) _ X(l_1)[ Y(I-1,l){ X(Jl)-X}

- Y(.I.-1).J+1) {X(I-1) - x}]

where

.11: J+I-l

y(5, l) was the last value. computed and the required interpolated

value of the function for the given x.

The same formula can be used to get higher-degree inter-

polation polynomials just by increasing the last value of I from 5

to n+1, where n is the degree of the required polynomial.

The computer program of this interpolation process is given

in Appendix B along with other programs.

An accuracy of five to six digits was obtained when this

e—O. 026904 x2

program was used to interpolate between 20 values of

when. the 20 values. of x were entered at equal intervals of x between

0 and 19.



APPENDIX B

C OMPUTER PR OGRAMS

Four computer programs named TEMPWAV were written

for the analysis of wave prOpagation in a bar with a thermally—

induced inhomogeneity. This appendix includes a brief description

of these programs, instructions for preparing input data for these

programs and a description of the output in each case.

The two forms of wave propagation discussed earlier are:

1- Pulse propagation

2- Longitudinal periodic vibrations

The programs for each will be discussed separately.

B. 1. Pulse Propagation
 

B. 1 (a). DescriJJtion of the Blocks
 

Each program is divided into seven blocks, with block titles

on the comment cards.

Blockl. CALCULATE E AND C FROM THE TEMPERATURE DATA
 

Read in the input temperature TEMP(J), for J = 1 to 24 in

the first program (J ; 1 to 20 in the second program). In the first

program calculate TEMP(J) for J = 25 to 47 as mirror images of

J = l to 24. Calculate the elastic modulus E(J) and the elastic

wave. Speed C(J).

 

Block 2. INTER POLATE TO GET ELASTIC WAVE SPEED C

Calculate the interpolated values of the elastic wave speed

T5'I(K), following the method described in Appendix A—3, of 'Kth

interpolated temperature (K runs from 1 to 461 in the first prOgram
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and l to 381 in the second). X(K) is the distance from the point

where temperature variation starts. Statements 900, 800 and 700

calculate various values of the Aitken's computational form.

Block 3. CALCULATE THE FIRST CHARACTERISTIC
 

Obtain the first characteristic by integrating the formula

t = f: Eel?) dx by Simpsons rule, statement 23, described in

Sec. 3. 3. Calculate the time T(J) taken by the wave front to

travel from the point where temperature variation starts to the

point J (J runs from 1 to 47 points spaced at a distance of O. 8

inches in the first program, and in the second program J runs

from 1 to 20 points Spaced one inch apart). 1 Calculate the total

time TT taken by the wave front to travel the entire length of

the bar by adding the values of time taken by the wave front to

travel regions of uniform temperature, TR+TL, to the value

required to travel the region of varying temperature, T(47) in

the first program (T(20) in the second program). Divide TT by

the number of ,mesh points on a characteristic (900 in the first

program, 960. in the second) to give the time TS of travel between

successive mesh points on a characteristic in a new mesh based on

equal time intervals. Print the values of TR, TT, and TS (and TL

in the first program).

Block 4. INTERPOLATE TO GET DISTANCE OF MESH POINTS
 

Calculate the distance X(K) from the point where the

temperature variation starts to the Kth mesh point in the mesh

spaced at equal time intervals. This calculation is done by inter-

polation between the values of the old mesh based on equal distances,
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using statements 600, 300 and 730. (K = l to 466 in the first program,

1 to 388 in the second.)

Block 5. INTERPOLATE TO GET C AT THE MESH POINTS
 

Calculate the elastic wave Speed T51(K), by interpolation

using the values of C and distance in Block 1, for the mesh points

in the region of temperature variation located at distances X(K)

of Block 4.

Block 6. INTER POLATE TO GET THE NON DIMENSIONAL STRESS

INPUT

 

Read in the input strain H(J), for J = 1 to 26 in the first

program (J = l to 15 in the “second program). Calculate the non;

dimensional stress input U(K) by interpolation for the times G(K)

spaced 2(TS) apart, where K runs from 1 to 58 in the first program

(1 to 47 in the second).

Block 7. CALCULATE THE NON DIMENSIONAL STRESS AND VELOCITY

Calculate the non-dimensional elastic wave speed C(J) at

each mesh point (J = l to 901 in the first program, 1 to 961 in the

second). Calculate the non-dimensional stress S (2, J) and velocity

V(2, J) in the next row (i. e. on the next characteristic) in terms of

the values S(l, J) and V(l, J) in the previous row and the known

end values. (S(l, J) and V(l, J) are zero the first time through.)

Repeat this process to row 501 in the first program (801 in the second).

For every 21st row, calculate the values of strain at the mesh points

149, 451, and 753 in the first program (26, 27, and 507 in the second

program) by dividing the non-dimensional stress by the non-dimensional

elastic modulus. For these mesh points print out the number of the
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characteristic, the time after the arrival of the pulse, the non-

dimensional stress, the strain, and the non-dimensional velocity.

B. 1(b). Description of Symbols
 

The following list gives the description of various

symbols used in the first two programs in the order they are

encountered.

EO

EL

TO

TL

CO

TEMPU)

E(J)

ES

cw)

Z(J)

xao

Elastic modulus at room temperature, 29. 0x106 psi.

Elastic modulus at 12000F, 21. 72x106 psi.

Room temperature, 75°F

1200°F

Slope of the elastic modulus versus temperature line

Jth input temperature, J = l to 47 in first program

(J = 1 to 20 in'second program)

Elastic modulus calculated at the point of TEMP(J)

Square of elastic wave speed

Elastic wave Speed at point of TEMP(J)

In (Block 1, distance from the point where temperature

variation Starts to the point of TEMP(J). In Block 6,

time from beginning of incident pulse (J = l to 26 in

first program, 1 to 15 in second.)

In Block 1, distance from point where temperature

variation starts to point of Jth interpolated temperature

(J = l to 461 in first program, 1 to 381 in second.)

In Block 4, distance from point where temperature

variation starts to Kth mesh point on characteristic



P(1,M)

Y(M)

P(I, J)

T51(K)

T(J)

TL or TR

TT

TS
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(K = l to 466 in first program, 1 to 388 in second.)

Mth value in the first column inside the vertical bars of

the Aitken's computational form (see Appendix A. 2)

Mth value of the column outside the vertical bars on

the left in the Aitkens computational form

Jth value in the Ith column inside the vertical bars

of the Aitken's computational form

Kth interpolated value of the elastic wave Speed obtained

from a 5-point formula

In Block 2, K = 1 to 461 in first program, and 1 to 381

in second

In Block 5, K = 1 to 466 in first program and 1 to 388

in second

Time taken by the wave -front to travel distance Z(J)

(of Block 1) from start of temperature gradient

Time taken by the wave front to travel the region of

uniform temperature on the left (or right)

Total time taken by the wave front to travel the entire

length of the bar

A t, time to travel between successive mesh points on

a characteristic

In Block 3, time starting from the time when the wave-

front reaches the point of varying temperature to the

time it reaches the Jth mesh point on the characteristic

(J = l to 466 in first program, J = 1 to 388 in second.)



G(J)

H(J)

U(K)

U(J)

5(1. J)

V(I. J)

YS(l),

YS(Z).

YS(3)
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In Block 6, time interval between first and Jth charac-

teristic, equal to 2(J—1)TS.(J = 1 to 501 in first program,

1 to 801 in second.)

Jth varying incident strain input (J = 1 to 26 in first

program, 1 to 15 in second.)

Kth interpolated value of varying non-dimensional stress

input (K = 1 to 58 in first program, 1 to 47 in second.)

Jth value of non-varying non-dimensional stress input

(J = 59 to 501 in first program, J = 47 to 801 in second.)

Non-dimensional stress at the mesh point J of the Ith

characteristic

Non-dimensional stress at the mesh point J of the Ith

characteristic

Strains printed out at points 1, 2, and 3 (In first program

point 2 is at high-temperature gage. In second program

1 and 2 are at mesh points on either side of high-temper-

ature gage. )

B. 1(cL Irmut Data

Input data is provided on 80-column cards placed right

after the "RUN" card in the main deck. Temperature cards are

provided first with strain cards next.

The 24 temperature values (in degrees F) in the first

program (20 in the second program) are provided on the first three

cards with 8 values on each card; each value with its sign is punched

in 10 columns.
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The 26 strain values, in microinches per inch, in the first

program (15 in the second program) are obtained from the incident

pulse plot at time intervals of 2 microseconds. Eight values are

punched on each card, and each value is punched in 10 columns.

B. 1Q). Output data

1. On one line TL(or TR), TT, and TS, labeled as T LEFT (or T

RIGHT), T TOTAL, and T INTVL.

2. A series of groups arranged as follows:

On first line, the number of the row from which values are

printed (labeled POINT), and the time from the pulse arrival .

to the values printed below. I

On second line, non-dimensional stress at points 1, 2, and 3.

On third line, strains at points 1, 2, and 3 (inches per inch).

On fourth line, non-dimensional velocities at points 1, 2, and 3.

B. 2. Longitudinal Periodic Vibrations

Program 3 calculates displacement and stress amplitudes

for excitation'at the end x = L by sinusoidal displacement of unit

amplitude, while Program 4 is for excitation by sinusoidal stress

of unit amplitude .

B. ZLaLDescription of the Blocks

Each program is divided into four blocks, with block titles

on the comment cards.‘
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Block 1. CALCULATE ELASTIC MODULUS 

Read in the input temperature TEMP(J), for J = 1 to 21.

Calculate the elastic modulus D(J).

Block 2. INTER POLATE FOR INTERMEDIATE VALUES OF ELASTIC

MODULUS

 

Calculate the interpolated values of the elastic modulus

E(K) at the points K, where X(K) is the distance from the stress—

free end of the bar to the point of Kth interpolated temperature. (K

runs from 1 to 2001.)

Block 3. CALCULATE DISPLACEMENT AMPLITUDE 

Solve the finite difference equations written at each Jth point

by the direct method (see Sec. 4. 3) to obtain the displacement

amplitude U(J) for J = l to 2001 for each frequency F(J). (For

F(J) the index J 2 l to 7, and frequencies are read from the input

data. ) Print the frequency, and for every 50th point print the point

number J, X(J), and U(J). With these values of U(J), obtain the

iterated values V(J) of the displacement amplitude by the Gauss-

Seidel method of Sec. 4. 3. Iterate until either the change in

successive values is less than 0. 00001 or until 50 iteration cycles

have been completed. Print the number of iterations and the

maximum displacement change DAM in the last iteration.

Block 4. CALCULATE STRESS AMPLITUDE 

Calculate the values of stress amplitude of the periodic

vibrations S(J) from the iterated values of the displacement V(Jl)

following the method described in Sec. 4. 3. Here J is every 10th

point of the mesh in Block 2 and runs from 1 to 201 and J1 = (lOJ) - 9.
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For each 50th point, print number J1, distance X(Jl), stress S(J)

and the final iterated value of the displacement V(Jl).

B. 2(b). Description of Symbols
 

The following list gives the description of various symbols

used in the programs:

Symbols E0, EL, TO, TL, co, TEMP(J), P(1,M), Y(M),

and P(I, J) are the same as in Appendix B. 2(b), and in addition:

D(J)

G(J)

X(J)

IE(K)

A(I, J)

U(J)

V(J)

K

DAM

S(J) .

Elastic modulus calculated at the point J from

temperature data, J = l to 21

Distance from stress-free end to point of Jth input

temperature '

Distance from stress-free end to point of Jth interpo-

lated temperature, J = 1 to 2001

Interpolated value of the elastic modulus at point K

obtained from a 5-point formula, K = l to 2001

The element of matrix A (Sec. 4. 3) situated on Ith

row and Jth column

Displacement amplitude at Jth point, J = l to 2001

Iterated value of the diSplacement amplitude

The number of iterations

The maximum displacement change in the last iteration

Jth stress amplitude (at point X(Jl), where J1 = (lOJ)-9
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B. 2(g). Input Data

Input data is provided on 80-column cards placed right after

the "RUN" card in the main deck. The 7 frequencies (in cps.) are

provided on one card; each value with its Sign is punched in 11

columns. The 20 temperature values (in 0F) are provided on the

next three cards; each value with its sign is punched in 10 columns.

B. Z(h). Oigput Data
 

The'output data comes in one group for each frequency.

The first line in each group is the frequency in cps. Each line in

the following subgroup gives for each 50th point three outputs:

the point number J, X(J), and U(J).

The next subgroup gives on one line the number of iterations

and the maximum displacement change DAM in the last iteration.

Each line in the following subgroup gives for each 50th point

four outputs: the point number J, X(J), the stress amplitude and

the iterated displacement amplitude (for end excitation of unit

amplitude).
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FORTRAN PROGRAMS

PULSE PROPAGATION SOLUTION BY THE METHOD OF CHARACTLRISTICS

THERMAL GRADIENT AT THE MIDDLE OF THE BAR

II

12

13

14

26

27

401

907

900

PROGRAM TEMPWAV

TYPE DOUBLE TEMPQEQCOXQZOPQTSIoToYoJQVOYSQUoHCG

DIMENSION TEMP(47)oEI47)oT(47)oX(466)12(47)9P(505)1T51(466)OCIVOI)

DIMENSION YI5)QS(20901)9V(20901)oYS(3)oU(501)1H126)OG(466)

FORMAT

FORMAT

FORMAT

FORMAT

FORMAT

(8(F10))

(3X96HSTRESSQ4X9022.1205X9022.léoonDZZo12)

(3X06HSTRAIN94X9022.lZoonoaaoIcoSXoDZZ.IE)

(2X08HVELOCITY03X9022.lvaXoDaaoIZQSXQDZZoIE)

(3X05HPOINT93X9I395X05HTIME93XQEI508)

FORMATI12X06H3 LEFT922X07HT TOTAL922X97HT INTVL)

FORMAT

FORMAT

(4X002531504X002501504X9025.15)

(1H0)

CALCULATE E AND C FROM THE TEMPERATURE DATA

EO=029OE+08

EL= .2172E+08

TO=750

TL=12000

CO=(EL*EO)/(TL-TO)

READ Io(TEMP(J)oJ=1924)

DO 2 J: 1023

TEMP(AB-J)=TEMP(J)

DO 4 J= 1047

E(J)=(C0*(TEMP(J)-TO))+EO

ES=EIJ1/(7.43E“Q4)

C(J)=SQRTF(ES)

INTERPOLATE TO GET ELASTIC WAVE SPEED C

Z(I)=0.0

DO 5 J=2047

Z(J)=Z(J“I)+008

X(I)=000

DO 6 J=29461

X(J)=X(J-I)+008

L=1

00 907 M=1.5

9(1.M)=C(M+L-1>

Y(M)=Z(M+L-l)

DO 905 K=1.26

DO 900

11:6“!

1:205

00 900 J=1oll

J1=J+I~1

P(IQJ)=((P(I~191)*(Y(J1)-X(K)))-(P(I-19J+I)*(Y(I-1)-X(K))))/(Y(J1)
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DO 804 K1=269430.10

K2=K1+10

DO 802 M=lo5

P(loM)=C(M+L-l)

802 Y(M)=Z(M+L-1)

DO 805 K=K1oK2

DO 800 1:2o5

1126-!

DO 800 J=IoIl

JI=J+I-1

800 P(IoJ)=(<P(1~1.1)*(Y(J1)—X(K)))-<P(I-1.J+1)*(Y(I-1)-X(K))))/(Y(dl)

C-Y(I-l))

805 TSI(K)=P(5o1)

804 L=L+1

L=43

DO 703 M=105

P(1.M)=C(M+L-1)

703 Y(M)=Z(M+L-1)

DO 705 K=436o461

DO 700 I=2o5

Il=6-I

DO 700 leoll

J1=J+I~l

700 P(IoJ)=((P(l-191)*(Y(J1)-X(K)))-(P(I-1¢J+l)*(Y(I-1)-X(K))))/(Y(JI)

C-Y(l-1))

705 TSI(K)=P(Sc1)

CALCULATE THE FIRST CHARACTERISTIC

T(I)=000

DO 23 J=2o47

I=(J*10)-9

11:1-1

12:1-2

A=1./TSI(2)

DO 21 K=401102

21 A=A+(1o/TSI(K))

Q=1o/TSI(3)

DO 22 K2501202

22 o=o+(1./TSI(K))

23 T(J)=(<l./T51(1))+(1./Tbl(I))+(4.*A)+(2.*Q1)*(.08/3.)

TL=17.6/C(l)

TR=17.6/C(47)

TT=TL+TR+T(47)

TS=TT/900.0

PRINT 26

PRINT 270(TLOTTOTS)

INTERPOLATE TO GET DISTANCE OF MESH POINTS

G(I)=(TS*218. )-TR

00 7 J=Zo466
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PROPAGATION SOLUTION BY THE METHOD OF CHARACTERISTICS

TRUCK AT THE HOT END

PROGRAM TEMPWAV

TYPE DOUBLE TEMPOEOCOXOZQPOTSIITOYOSOVOYSOUOHQG

DIMENSION TEMP(20)9E(20)9T(20)9X(388)0Z(20)9P(505)0T51(388)0C(961)

DIMENSION Y(5)0$(21961)0V(29961)0YS(3)0U(801)0H(26)0$(385)

FORMAT (8(FIO))

FORMAT (3X96HSTRESSOQX0DZZ.lZo5XvDZZ-lZoSX0022012)

FORMAT (3X06HSTRAIN04XODZZ.1205X0022.12.5X0022012)

FORMAT (ZXOBHVELOCITYO3X002201295X002201295X0022012)

FORMAT (3X05HPOINT03X01305X05HTIME93X0E1508)

FORMAT(12X97HT RIGHT922X97HT TOTAL122X07HT INTVL)

FORMAT (AXvDZS.1504X002501504X0025015)

FORMAT (1H0)

CALCULATE E AND C FROM THE TEMPERATURE DATA

EO=029OE+OB

EL= .2172E+08

TO=750

TL=12000

CO=(EL—EO)/(TL-TO)

READ 10(TEMPIJ)QJ=IOEO)

DO 4 J=1020

E(J)=(CO*(TEMP(J)‘TO))+EO

ES=E(J)/(7o43E-04)

C(J)=SORTF(ES)

INTERPOLATE TO GET ELASTIC WAVE SPEED C

2(1)=OoO

DO 5 J=2020

Z(J)=Z(J-I)+1.0

X(1)=OeO

DO 6 J=20388

X(J)=X(J'I)+005

L=1

DO 907 M3105

E(IQM)=C(M+L-I)

Y(M)=Z(M+L-I)

DO 905 K=1950

DO 900 1:295

1186-1

DO 900 J=IOII

JI=J+I-1

P(IQJ)=((P(I'IOI)*(Y(JI)‘X(K))1-(PII-IOJ+I)*(Y(I‘1)-X(K))))/(YIJ1)

C’Y(I-1))

T51(K)=P(5.I)

L=2
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DO 804 K1=510320020

K2=KI+19

DO 802 M=1.5

P(10M)=C(M+L-1)

802 Y(M)=Z(M+L-1)

DO 805 K=K19K2

DO 800 18295

Il=6~I

DO 800 J=IoII

JI=J+I-1

800 P(IoJ)=((P(1-191)*(Y(J1)-X(K))1-(P(I-19J+1)*(Y(I'1)‘X(K1)))/(Y(J1)

C“Y(I-1))

805 T51¢K1=P(501)

804 L=L+1

L=16

DO 703 M=105

P(IOM)=C(M+L-1)

703 YIM1=Z(M+L-11

DO 705 K83310381

DO 700 13295

1186-!

D0 700 J31911

J18J+I-1

700 E(IOJ)=( (9(1’1011*1YIJ1)'X(K) 1 )-(P( I'IOJ+I 1*(YI 1"1)‘X(K))))/(Y(~J1)

C~Y(I*I))

705 T511K1=P¢5011

CALCULATE THE FIRST CHARACTERISTIC

T(IISOOO

DO 23 J82020

I=(J*20)’19

1131-!

1231‘2

A=Ie/TSI(2)

DO 21 K8401102

21 A:A+(10/T51(K))

Oslo/T5113)

DO 22 K3591202

22 080+(10/T511K11

23 T(J)=((lo/T51(1)1+(1./T51(I))+(4.*A)+(2.*Q)1*(005/30)

TR=29oO/C(20)

TTSTR+T(20)

TS=TT/96000

PRINT 26

PRINT 279(TR0TT0TS)

INTERPOLATE TO GET DISTANCE OF MESH POINTS

61118000

00 7 J=20388

7 G(J18GIJ-I)+TS

L81

DO 607 M8105

P(IQM18Z(M+L-1)
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PERIODIC VIBRATIONS SOLUTION FOR A GENERAL TEMPERATURE DISTRIBUTION

BOUNDARY CONDITION ._t

AT x=L. DISPLACEMENT=UEEQ

101

120

255

256

410

420

801

901

0
.
0

907

931

PROGRAM TEMPWAV

DIMENSION A(200093)0U(2001)OX‘ZOOI)9E‘2001)OZ(200002)OS(201)

DIMENSION V(ZOOI)0F(7)0TEMP(21)OD(21)06121)09(50510Y15)

FORMAT (7(E100301X))

FORMAT (IOXOIIHFREQUENCY =02X0E1003)

FORMAT (2X91403X9E100307X0E1508)

FORMAT (2X0I403X0E100307X0E150805X0E1508)

FORMAT (1H0)

FORMAT (10X016HNO OF ITERATIONSQSXOI306X04HDAM=02XOE1508)

FORMAT (3X01HJ05X05HPOINT0IOXOIZHDISPLACEMENT)

FORMAT (3X01HJ05X05HPOINT013X06HSTRESS.13X015HIT DISPLACEMENT)

READ 1010 (F(J)0J=Io7)

R=7043E-04

TL=200

H=TL/200000

U(20011=100

CALCULATE ELASTIC MODULUS

E080290E+08

EL= 02172E+08

TO=750

TL=12000 ,

CO=(EL*EO)/(TL-TO1

FORMAT (8(F10))

TEMP(1)=750O

READ 10(TEMPIJ)0J=2021)

DO 4 J31021 .

D(J1=(CO*(TEMP(J)-TO))+EO

INTERPOLATE FOR INTERMEDIATE VALUES OF ELASTIC MODULUS

G(1)=000

DO 5 J=2021

G(J)=G(J-I)+I0O

X(1)=000

DO 6 J=202001

X(J)=X(J-1)+001

L=I

DO 907 M8105

P(10M)=D(M+L-1)

V(M)=G(M+L-1)

DO 905 K=1020250

DO 931 13205

11=6¢I

DO 931 J=1011

chJ+l-1

P(IOJ)=((p(1'101)*(Y(J1)‘X(K)))‘(p(I‘IOJ+1)*(Y(I‘I)’X(K))))/(Y(J1)

C‘Y(I“1))
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