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ABSTRACT

HIGH-DIMENSIONAL INFERENCE FOR SPATIAL ERROR MODELS

By

Liqian Cai

In the literature of econometric theory and application, issues relating to urban, real

estate, agricultural, and environmental economics, etc., where the data are collected spatially

from cross-sectional units, are common and in these circumstances, the spatial relation among

the sampling sites can not be ignored. Spatial autocorrelation is thus introduced to model

the correlation among values of a single variable strictly attributable to their relatively close

locational positions on a two-dimensional surface, which extends autocorrelation in time

series to spatial dimensions.

With the growth of computer capabilities, databases are becoming progressively larger

and more complex, making traditional statistical methods less effective or sometimes even

unsuitable. Data from high-frequency economic transactions, detailed macroeconomic data

collected by a multitude of sources with varying data quality and varying sampling frequen-

cies, and data on large economic and social networks are just a few examples of the content

of enormous databases that are now subject to thorough examination.

This dissertation discusses applicable (high-dimensional) variable selection and estima-

tion methods and corresponding theories focusing on a spatial error model where the spatial

autocorrelation comes from the disturbances across cross-sectional units, in a regression

context.

In the first part, we propose a generalized Lasso-type of estimator for the spatial error

model, where the disturbance terms are autocorrelated across cross-sectional units. We



further prove the estimation consistency and selection sign consistency of the parameter

estimator under both the low dimensional setting when the dimension of the parameter p

is fixed and smaller than the sample size n, as well as the high dimensional setting when

p is greater than and can be growing with n. The number of non-zero components of the

parameter in both settings are considered relatively smaller than the number of observations

(sparsity).

In the second part, we continue to investigate post-model selection estimators that apply

estimation to the model selected by first-step variable selection. We show that by separating

the model selection and estimation process, the post-model selection estimator can perform at

least as well as the simultaneous variable selection and estimation method in terms of the rate

of convergence. The convergence rate of the estimation error in both the `2 and sup norms

are studied. Moreover, under perfect model selection, that is, when the selection process is

able to correctly identify the significant covariates of the true model with probability goes

to 1, the oracle convergence rate can be reached.

In the last part, a sketch of the future work on high-dimensional analysis on mixed

regressive, spatial autoregressive model, where the response unit depends not only on the

explanatory variables but also on the response from its neighboring units, is described.
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Chapter 1

Introduction

1.1 Spatial Econometric Models

Spatial econometrics is a subfield of econometrics which deals with the spatial correlation

among geographical units. The units, depending on the nature of the problem, can refer

to zip codes, regions, cities, states and so on. Applied work relating to transportation,

house pricing, agriculture growth, etc relies heavily on sampled data that is collected from

different locations. The geographical units do not need to be confined as the concrete physical

locations in space, they can also be used to explain the abstract interaction between economic

agents, and a good illustration will be the connection through social networks.

What separates spatial econometrics from traditional econometrics is that sampled data

with a location component involves two issues that traditional econometrics has mostly ig-

nored, spatial dependence between the observations and spatial heterogeneity in the modeling

relationships. Spatial dependence comes from the fact that observation from location i is

dependent on the values of observation j, where i, j can be any sample location. And spatial

heterogeneity refers to the the situation when we expect a different regression relationship

for every location in sample space. From the Gauss-Markov assumption used in regression,

the explanatory variables are fixed in repeated sampling and a constant variance exists for

data from different locations. Thus these two issues violate the Gauss-Markov assumptions

and alternative modeling procedures are needed here to address the issues.
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One way to deal with the spatial effect is to impose the spatial structure onto the non-

spatial regression model. Starting with the standard linear regression model, which takes

the form

Y = Xβ + ε,

where Y is a n×1 vector consisting of observations of the dependent variable in each sample,

X represents an n×p matrix of explanatory variables, β is the corresponding parameter vec-

tor of interest and ε is the disturbance vector with independently and identically distributed

error terms. The general linear regression model is commonly estimated by ordinary least

squares estimator. However, when spatial interaction effects exist, a spatial econometrics

model can be constructed by adding different combinations of interaction effects to the lin-

ear model. Typically, we think the association of an observation at a specific location with

observations at other locations come from three sources: the endogenous interaction effects

among the dependent variable (Y ), the exogenous interaction effects among the independent

variables (X), and the interaction effects among the error terms (ε). A full model containing

all types of spatial effects can be presented as

Y = δW1Y +Xβ +W2Xθ + u,

u = ρW3u+ ε

where W1Y , W2X, and W3u denote the spatial interaction effects among the dependent

variable, independent variable and error terms, respectively. Here W1, W2, W3 are n × n

spatial weight matrices used to describe the spatial arrangement of the geographical units in

the sample and they may or may not be identical. δ and ρ denote the spatial autoregressive
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parameters and very often the parameters are assumed to be within the range of -1 and

1, just like in a time-series model. The parameter describes the clustering (positive ρ) or

dissimilarity (negative ρ) in space of certain random variable. Of the two types of spatial

autocorrelation, positive autocorrelation is by far the more intuitive. Negative spatial auto-

correlation implies a checker- board pattern of values and does not always have a meaningful

substantive interpretation. Even though the structure of the spatial econometrics models

mentioned above look very alike the ones used in time series, it is important to be aware

that spatial econometrics is not a straightforward extension of time series to two dimensions.

In time series, the focus is on the dependence among observations over time and each obser-

vation is only correlated with the observations from the past, while in spatial econometrics,

more attention is paid on the spatial dependence among observations across space, which

is multi-dimensional and there is no nature ordering for the data arrangement, so spatial

econometrics methodologies can not be a direct transposition from time-series.

The spatial interaction effects among different locations, wherever the source, are all

quantified by the spatial weight matrix. The spatial weight matrix, usually denote W , is

a nonnegative matrix of known constants. The elements in the matrix are decided mainly

from two sources of information. The first one is the latitude and longitude of the location in

Cartesian space. The coordinates of the location provide the distance of any two locations.

And based on the fundamental theorem of regional science, observations that are nearer will

reflect a greater degree of spatial dependence than those more distant from each other. This

suggests use of functions of distance between location i and j as element wij in the matrix.

The other source of information is the contiguity, which represents the relative position in

space of one observation to other observations. From the nature of the size and shape of

the observation units, we can determine the definition of neighbors, and neighboring units
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should exhibit a higher degree of spatial dependence than units located further apart. The

neighbors in the spatial matrix can be differed by elements 1 and 0. And the diagonal

elements are always set to zero, assuming no spatial unit can be viewed as its own neighbor.

The full model mentioned above incorporates all interaction effects, yet in real applica-

tions, models that contain fewer sources of interaction effects can be obtained by imposing

restrictions on one or more of the parameters. And theoreticians are mainly focusing on

some of the mostly used models. To start with, models with only interaction effects among

the error terms are called linear regression model with spatial autoregressive disturbance,

also known as, spatial error models. The model is specified as

Y = Xβ + u, u = ρMu+ ε,

where ε has zero mean and variance σ2I. In this regression model, the disturbances u′is in u

are following a spatial autoregressive process, and are correlated to each other across units.

Another popular type of model with only endogenous interaction effects on the dependent

variable is called mixed regressive, spatial autoregressive model

Y = δWY +Xβ + ε,

where ε′is are independently identically distributed with zero mean and variance σ2. This

model differs from a usual Spatial Autoregressive Process in the presence of exogenous re-

gressors X as explanatory variables in the model. There has also been a growing interest in

models containing more than just one spatial interaction effect. A lot of econometric prob-

lems use the model which combines endogenous interaction effects and interaction effects
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among the error terms

Y = δWY +Xβ + u, u = ρMu+ ε,

where ε′is are independently identically distributed with zero mean and variance σ2. The

estimation methods for the spatial econometric models, which have been considered in the

existing literature, are mainly the (Quasi-) Maximum Likelihood method, Instrumental Vari-

able method, Generalized Method of Moments or Bayesian Markov Chain Monte Carlo meth-

ods. The (Quasi-) Maximum Likelihood method assumes the error term ε to be normal and

permits the actual distribution to be different from normal distribution. It has good finite

sample properties with one order spatial lag. However, it is not computationally attractive

for large sample size problems because of the estimation complexities of spatial autoregressive

parameters. The Monte Carlo methods come to use for the computational challenge. The

Instrumental Variable method and Generalized Method of Moments are feasible for higher

spatial lag models and they do not assume the normality of error term ε. Plus, the Gener-

alized Methods of Moments is also computationally feasible and asymptotically consistent

under an explicit set of conditions.

1.2 Variable Selection in High-dimensional Setting

In statistical research, we are continuously dealing with the problem of building a model

using a collection of potentially relevant predictors for the purpose of forecasting a response

of interest. And variable selection serves a fundamental role in identifying the relevant pre-

dictors that truly makes a contribution to the response. The main goals of variable selection
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are to simplify the prediction models in order to make them easier to interpret, to shorten

the training times, to enhance generalization by reducing overfitting, as well as hopefully

to construct an improved estimation method. Nowadays, with the development of scientific

research and advanced technology, the collection of vast quantities of data becomes possi-

ble and increasingly easy. Sometimes the dimension of the attributes collected becomes so

large, maybe even larger than the sample size, then it becomes a high dimensional statisti-

cal problem. Examples of high-dimensional data can be frequently seen in high-frequency

economic transactions, genomics, high-resolution images, among others. The good thing is,

when dealing with high-dimensional data problem, we make the assumption that the final

regression function lies in a low dimensional manifold, and the regression parameter vector

is sparse with many of the components being zero, which is not only reasonable but also

makes high dimensional statistics inference possible.

When the attention focuses on identifying the significant predictors, criteria are needed

to select a manageable subset model. In the linear model context, the earliest developments

of variable selection were based on attempts to minimize the mean squared error of the

prediction with different adjustments depending on the goal of modeling. One of the most

familiar criteria is Mallow’s Cp criterion, where Cp =
SSEp

MSEfull
− (n− 2p), here Cp considers

the ratio of SSE for p variable model to MSE for full model, then penalizes for the number

of variables. Two other popular criteria, motivated from very different points of view, are

AIC (a.k.a Akaike Information Criterion) and BIC (a.k.a Bayesian Information Criterion).

Letting logL denote the maximum log likelihood of the candidate model with k-dimension

parameters, AIC selects the model which minimizes 2k − 2 logL, whereas BIC selects the

model which minimizes k log n − 2 logL. Traditional variable selection criteria is a specific

form of penalized likelihood, providing a unified framework for comparison. However, in the
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high dimensional setup when the dimensionality becomes comparable to or even larger than

the sample size, computational and inferential challenges are significant.

There has been evolving amount of literature working on techniques that are capable of

reducing the high dimensionality of the variable as well as producing optimal estimators.

Approaches to cope with high dimensionality is usually the penalized regression methods.

Consider the linear regression model

Y = Xβ + ε.

Suppose we have n observations indexed by i, and for each observation, one response variable

yi, along with p features {xi1, · · · , xip} are observed. Typically, this type of linear relation

between Y and X can be easily solved by least squares estimators. However, it becomes

unfeasible when the dimension of the features p becomes larger than the sample size n.

Penalized regression methods can now be used, which penalize the model fitting with various

regularization terms to encourage model sparsity, by minimizing an objective function Q with

a generalized form

Q(β) =
1

n
L(β|X, Y ) + Pλ(β),

which consists of a loss function L and a penalty term P . The penalty term Pλ is indexed

by a regularization parameter λ that controls the level of penalty of the objective function

Q. Typically, the penalty function P has the following properties: it is symmetric about the

origin, P (0) = 0, and P is nondecreasing in ||β||.One of the most popular has been the Least

Absolute Shrinkage and Selection Operator, as known as, the Lasso method, first proposed
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by Tibshirani (1996). The Lasso estimator is estimated by minimizing the objective function

QLasso(β) =
1

n
||Y −Xβ||22 + λ||β||1,

hoping to simultaneously select variables and estimate the associated regression coefficients.

Since the L1 norm of the estimator is controlled by the penalty term, a portion of values in β̂

will be reduced to exact zero while minimizing the squared loss. Ever since the development

of Lasso estimator, much progress has been made in understanding its statistical properties.

The development of Lasso remedies the disadvantages of an earlier regularization method,

by Hoerl and Kennard (1970), known as the ridge regression. They proposed the objective

function as follows

QRidge(β) =
1

n
||Y −Xβ||22 + λ||β||22.

Ridge regression heavily penalizes large coefficients, leading to biased estimates when some

of the coefficients are large. And also, ridge regression does not produce sparse solutions and

thus fails to improve the interpretability of the model.

1.3 Overview

There have already been rich literature working on high-dimensional variable selection in

the linear regression set up, but still not much has been talked about for spatial econo-

metric models. High-dimensional problems also arise from time to time in economics, for

example, survey data which contains hundreds or thousands of variables may only have

a few that actually relate to the response of interest; house price data which contains all

cross-sectional effects of geographic neighbors may only have significant relation with a few
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neighbors nearby. Recently, Belloni and his group have worked on a series of papers focusing

on high dimensional variable selection methods for sparse econometrics models, with appli-

cation focused on instrumental variable. However, they do not consider the possible spatial

interaction effects that might be involved in the model, and there are not much references

to high-dimensional variable selection for spatial econometric models.

So we fill in the gap here. In Chapter 2, we will introduce a generalized variable selection

and estimation method for a regression model with spatial autoregressive error, the basic

spatial econometric model. Additionally, we will develop the parameter consistency and

model selection consistency for the estimator in both the low dimensional setting when the

dimension of the parameter p is fixed and smaller than the sample size n as well as the high

dimensional setting when p is greater than and can be growing with n.

In Chapter 3, we continue with the same model we talked about in Chapter 2 and

investigate post-model selection estimators that apply least squares estimation to the model

selected by first-step penalized estimation. We manage to show that by separating the

model selection and estimation process, the post-model selection estimator can perform

just as well as the simultaneous variable selection and estimation method in terms of the

rate of convergence. And it can strictly outperform the simultaneous variable selection and

estimation estimator when the selection process is able to correctly identify the significant

covariates of the true model with large probability.

In Chapter 4, we will extend the work to mixed regressive, spatial autoregressive model,

where the endogenous interaction effects among the dependent variable are considered, and

related future work is discussed.

9



Chapter 2

Variable Selection With Spatial

Autoregressive Errors

2.1 Introduction

In the literature of econometric theory and application, issues relating to urban, real estate,

agricultural, and environmental economics, etc., where the data are collected spatially from

cross-sectional units are common and in these circumstances, the spatial relation among the

sampling sites can not be ignored. Thus in 1973, Cliff and Ord first put forth a spatial autore-

gressive model (also known as SAR) to model the spatial autocorrelation of the disturbances

across cross-sectional units in a regression context. This model extends autocorrelation in

time series to spatial dimensions and is a variant of the model suggested in Whittle (1954).

In this Spatial model, the disturbance term corresponding to a cross-sectional unit is mod-

eled as a weighted average of disturbances corresponding to other cross-sectional units, plus

an innovation. To be more precise, the disturbance un is written as

un = ρMnun + εn.
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And the regression model with SAR disturbance un is specified as

Yn = Xnβ + un.

The subscript n indicates the sample size. The term Mnun is often referred as “spatial lag”.

Typically the innovations εn are assumed to be i.i.d with mean 0 and variance σ2 and the

parameter of interest is ρ, σ2 and β. For now, we assume the n × n spatial weight matrix

Mn is known. Contrary to time-series models which are associated with uni-directional time

flow, the spatial data can be viewed as multi-directional, with each location correlating with

all the other locations nearby in every direction. Because of this particular characteristic of

spatial processes, a simple transposition of time-series methodologies can not be applied.

Since the introduction of the spatial autoregressive model, several methods have been

developed for estimating the regression coefficients for spatial models with spatial autore-

gressive error. To summarize, the most widely known methods with theoretical basis are

the (Quasi-) Maximum Likelihood method (Ord, 1975, Smirnov and Anselin, 2001), and the

methods of moments (Kelejian and Prucha, 1999). The Quasi-Maximum Likelihood method

allows for the case when the actual likelihood function differs to some extent from the normal

distribution assumed. One obstacle of the ML method in practice is its huge computational

burden, since the maximization of the log-likelihood involves a nonlinear optimization that

requires the evaluation of the determinant of dimension n × n , where n is the size of the

data set for each value of the autoregressive parameter ρ used. Common computational

approaches to this problem is the use of eigenvalues of the spatial weights matrix, as done in

Ord (1975), but the computation of the eigenvalues quickly becomes numerically unstable

for more than 1000 observations, or the solution can be the use of Monte Carlo estimation
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to approximate as well as bound the determinant proposed by Barry and Pace (1999). In

Smirnov and Anselin (2001), a new method for evaluating the Jacobian term which is based

on the characteristic polynomial of the spatial weights matrix Mn is introduced and this

algorithm can approach linear computational complexity. However, the simulation method

remains an approximation and cannot yield the theoretical properties. Compared with the

computational difficulty of ML method, Kelejian and Prucha (1999) proposed an alternative

estimator for the spatial autoregressive parameter ρ and variance parameter σ2 in the spatial

autoregressive error model based on a generalized moments approach which is computation-

ally simple irrespective of sample size. Further, the conditions needed do not involve the

assumption of normality. This estimator of ρ is also proved to be consistent, thus can be

treated as a nuisance parameter and the asymptotic properties of the regression parameter β

solved based on the estimated ρ can retain all the good properties of the OLS for the model

where ρ is assumed to be known.

In the regression context, often we find ourselves in the face of need to identify the

important factors in order to explain certain phenomena. Current days, high dimensional

statistical problems arise from diverse fields of scientific research and technological develop-

ment. Here, high dimensional data refers to the general case of growing dimensionality and

ultra-high dimensional which specifies the case where the dimensionality grows at a non-

polynomial rate as the sample size increases. Example of high-dimensional data includes

but not limited to: high-resolution images, microarray or proteomics data, high-frequency

financial data and gene data (Fan and Lv, 2010). And as a result of the wide availability

of inexpensive global positioning systems and other advances in technology, the collection

of vast quantities of data with geo-referenced sample locations becomes possible and the

models for spatially correlated data become increasingly important. Sometimes the number
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of attributes collected becomes so large, maybe even larger than the sample size, and this

makes it impossible to conduct the standard estimation method that we discussed earlier.

The good thing is, we believe that among all the information we collect, many of them do not

have significant impact on the subject variable we are interested in, thus the p-dimensional

regression parameters are assumed to be sparse with majority of the components being zero.

Recently, this kind of high-dimensional variable selection problem has drawn great attention

and many mechanisms for linear regression models have been discovered. Among all, one of

the most popular has been the least absolute shrinkage and selection operator, a.k.a., the

Lasso method first introduced by Tibshirani (1996) and much progress has been made in

understanding the statistical properties ever since. For example, in Knight and Fu (2000),

the problem of the asymptotic distribution of Lasso-type estimators is studied in the low-

dimensional setting where the dimension of regression p is smaller than the sample size n

and is fixed. Later in Zhao and Yu (2006), an almost necessary and sufficient Irrepresentable

Condition for Lasso is constructed to select the true model consistently both in the fixed p

setting and in the large p setting when p can grow as the sample size n gets larger. Other

results concerning the asymptotic properties of the Lasso can be found in the Meinshausen

and Bühlmann (2006), Bickel et al (2009) and Bühlmann and van de Geer (2011), among

others.

Econometrics are also in the need of tools to deal with huge amounts of data as computers

are getting more involved in the middle of economic transactions. Lasso and its penalized

regression estimators can be computed quite efficiently and are providing good predictions

in practice (Varian, 2014). Recently, Belloni and his group introduce high dimensional

variable selection methods for sparse econometrics models, with application focused on in-

strumental variable. The series of papers include Belloni and Chernozhukov (2011), Belloni,
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Chernozhukov and Wang (2011), Belloni, Chen, Chernozhukov and Hansen (2012), and Bel-

loni and Chernozhukov (2013). However, all these variable selection methods assume that

the error in a regression model is independent, which is not the case in the spatial autore-

gressive model context. We argue a variable selection method under the independent error

assumption, e.g. standard Lasso, may not perform well for spatially dependent data.

The literature regarding the theoretical results on asymptotic properties of the Lasso

estimator with spatial autoregressive errors is very limited. So we fill the gap here. We

combine the spirit of the Lasso method and the generalized method of moments for spatial

autoregressive error models, and develop a generalized Lasso estimator which performs the

variable selection and estimation simultaneously for the regression parameter β in a two-

stage process. Also, we use the consistency property of the estimator for model parameter

ρ and the fact that it is a nuisance parameter (Kelejian and Prucha, 1999), to prove that

the asymptotic properties of the Lasso estimator of β remain valid even when the model

parameter ρ is replaced by its moment estimator. Both the parameter consistency and

model sign consistency of the estimator are addressed. Here, parameter consistency refers

to the asymptotic property that as the sample size n goes to infinity, the resulting sequence

of estimates converges in probability to the true parameter value, that is,

β̂n → β, as n→∞

And an estimate is model sign consistent if and only if the probability that the sign of each

component of the estimator equals to that of the true parameter converges to one, that is,
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there exists λn = f(n), a function of n and independent of Yn or Xn such that

lim
n→∞

P (β̂n(λn) =s β
n) = 1.

The rest of the chapter is organized as follows. Section 2 below describes the procedure to

construct a generalized Lasso estimator in order to select and estimate the nonzero compo-

nents of the regression parameter in a spatial autoregressive error setup. Section 3 discusses

the asymptotic properties of the estimator which includes the parameter consistency and

model sign consistency in the set up where the dimension of parameter p is fixed and smaller

than the sample size n. Section 4 tackles the asymptotic properties of the estimator as in

section 3 in the high dimension setting when p can be growing with n. Section 5 provides

the simulation studies of the performance of the estimator for different choices of parameter

ρ in the spatial autoregressive error model with proper selection of the penalty parameter

λn, which will be defined later. Section 6 illustrates data example of Aveiro-́Ilhavo urban

housing market in Portugal where the proposed method can be applied. Additionally, all

the proofs of lemmas and theorems in detail are relegated to the section 7.

2.2 A generalized moments LASSO (GLASSO) estima-

tor

In this section, we propose a two-stage estimation procedure which combines GMM and

LASSO estimation at the same time. We will focus on the simple spatial model where the
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error term is assumed to be spatially autoregressive:

Yn = Xnβ + un,

un = ρMnun + εn, (2.1)

where Yn is the n × 1 vector of observations on the dependent variable, Xn is the n × p

matrix of observations on the explanatory variables, β is the p× 1 vector of unknown model

parameters, and un is the vector of spatial autoregressive errors with spatial autoregressive

parameter ρ, a scalar parameter, Mn is a spatial weighting matrix, a n× n matrix of known

constants, and εn is an n× 1 vector of idiosyncratic errors.

For generality, we permit the elements of Mn and εn to depend on n. We make several

standard assumptions as follows:

Assumption 1. For all n, the idiosyncratic errors ε1, ε2, · · · , εn are independently and

identically distributed with zero mean and positive bounded variance σ2. Additionally, we

assume E(ε4
1) <∞.

Assumption 2. Mn is an exogenous n × n matrix. All diagonal elements of Mn are zero,

|ρ| < 1 and the matrix I − ρMn is nonsingular for all |ρ| < 1.

Mn is a spatial weights matrix whose elements defines the relationship between different

units. In a cross-sectional setting, if the ith and j th units are not related, we can set

mij = mji = 0 where mij is the (i, j)th element of Mn. Often, Mn is set as a contiguity

(adjacency) matrix, in which case the non-zero off-diagonal elements are symmetric and have

unit value. In other cases, the elements may reflect economic or geographic distances between

the units, in which case they are non-negative and symmetric; Mn can still be asymmetric if

it is considered in row-standardized form. In other modeling contexts, for example Bailey et
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al. (2016), the matrix can be symmetric but the elements can assume values {−1, 0, 1}. In

yet other contexts, the weights can be asymmetric and without any sign or other restrictions,

beyond the conditions in Assumption 2; see, for example, Bhattacharjee et al. (2016). In

Assumption 2, |ρ| < 1 is a stability (spatial granularity) condition, and the invertibility of

the matrix I − ρMn is to ensure identification in reduced form, that is, the error vector un

is uniquely defined in terms of the idiosyncratic error vector εn, as (I − ρMn)−1εn. These

assumptions are standard; see for example, Kelejian and Prucha (1999) and Lee (2004).

The first step of our estimation procedure is to obtain a generalized moments estimator

of ρ. The estimation process follows the same method as Kelejian and Prucha (1999), and

we outline this below for convenience of exposition. Let ũn be a predictor for un. Further,

let ūn = Mnun and ¯̄un = MnMnun, and correspondingly, ˜̄un = Mnũn, and ˜̄̄un = MnMnũn.

Similarly, let ε̄n = Mnεn. Then, under Assumptions 1 and 2:

E[
1

n
ε′nεn] = σ2 E[

1

n
ε̄′nε̄n] = σ2n−1Tr(M ′nMn) E[

1

n
ε̄′nεn] = 0 (2.2)

The spatial autoregressive parameter ρ is included in the above moments equations through

the expression εn = un − ρūn. Thus the equations can be used to obtain a generalized

moments estimator for ρ. From Equation (2.1), and Equation (2.2), we obtain

Γn[ρ, ρ2, σ2]′ − γn = 0. (2.3)

Here
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Γn =


2
nE(u′nūn) −1

n E(ū′nūn) 1

2
nE(¯̄u′nūn) −1

n E(¯̄u′n ¯̄un) 1
nTr(M

′
nMn)

1
nE(u′n ¯̄un + ū′nūn) −1

n E(ū′n ¯̄un) 0

 ,

γn =


1
nE(u′nun)

1
nE(ū′nūn)

1
nE(u′nūn)


Now if we consider the sample moments based on ũn, and use these to replace the

moments of un shown above, similar to Equation (2.3), we get the equation :

Gn[ρ, ρ2, σ2]′ − gn = νn(ρ, σ2), (2.4)

where

Gn =


2
n ũ
′
n ˜̄un

−1
n

˜̄u′n ˜̄un 1

2
n

˜̄̄u′n ˜̄un
−1
n

˜̄̄u′n ˜̄̄un
1
nTr(M

′
nMn)

1
n(ũ′n ˜̄̄un + ˜̄u′n ˜̄un) −1

n
˜̄u′n ˜̄̄un 0



gn =


1
n ũ
′
nũn

1
n

˜̄u′n ˜̄un)

1
n ũ
′
n ˜̄un


The 3×1 vector νn(ρ, σ2) can be viewed as a vector of residuals, and the GMM estimator for

ρ and σ2 can be defined as the nonlinear least squares estimator, ρ̂n and σ̂2
n, which minimizes
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the norm of the residual vector. Specifically,

(ρ̂n, σ̂
2
n) = arg min

ρ,σ2

[
Gn[ρ, ρ2, σ2]′ − gn

]′ [
Gn[ρ, ρ2, σ2]′ − gn

]
. (2.5)

Several additional assumptions are required to obtain the asymptotic properties of the GMM

estimator.

Assumption 3. The row and column sums of Mn and (I − ρMn)−1 are bounded uniformly

in absolute value. Note that the bound for (I − ρMn)−1 may depend on ρ.

Assumption 4. Let ũi,n denote the i th element of ũn, we assume that there exist (fi-

nite dimensional) random vectors din and ∆n such that |ũi,n − ui,n| 6 ‖din‖‖∆n‖ with

n−1∑n
i=1 ‖din‖2+δ = Op(1) for some δ > 0 and n

1
2‖∆n‖ = Op(1).

Assumption 5. The smallest eigenvalue of Γ′nΓn is bounded away from zero, that is,

λmin(Γ′nΓn) > λ∗ > 0,

where λ∗ may depend on ρ and σ2.

For a discussion of these assumptions, we refer to Kelejian and Prucha (1999). Given

Assumption 1 to 5, the nonlinear least squares estimators ρ̂n and σ̂2
n defined in Equation

(2.5) are consistent estimator of ρ and σ2, that is, ρ̂n →p ρ and σ̂2
n →p σ

2 as n → ∞

(Kelejian and Prucha, 1999). Let us now focus on the context of a spatial regression model

whose errors are autoregressive. It is easy to see that, if ρ were known, we could rewrite

model (2.1) as

(I − ρMn)Yn = (I − ρMn)Xnβ + εn.

Then, LASSO variable selection and estimation of β can be conducted using the L1 penalized
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least squares criterion

(Yn −Xnβ)′Σn(ρ)(Yn −Xnβ) + λn

p∑
j=1

|βj |,

where Σn(ρ) = (I − ρMn)′(I − ρMn); for a given penalty λn, we denote this estimator

as β̂L(ρ). Of course, in practical applications ρ is typically unknown, and thus the direct

LASSO estimator defined above is infeasible. In this case, we may replace ρ by the general-

ized moments estimator ρ̂n, and propose a feasible generalized moments LASSO (GLASSO)

estimator β̂L(ρ̂n) for model (2.1) in the second step of the estimation process. To be specific,

β̂L(ρ̂n) = arg min
β

(Yn −Xnβ)′Σn(ρ̂n)(Y −Xnβ) + λn

p∑
j=1

|βj |. (2.6)

The above function can be numerically optimized using the package “glmnet” in R de-

veloped by Friedman et al. (2010). The glmnet algorithms use cyclical coordinate descent,

which optimizes the objective function over each parameter successively while keeping others

fixed, with the cycles repeating until convergence. The tuning parameter λn is chosen by

cross-validation with a certain lower bound inferred from the theoretical results discussed

below.

2.3 Asymptotic Properties for fixed p and q

In this section, we consider the asymptotic behavior of the generalized moments LASSO

estimator (2.6) under the setting when p (the dimension of all candidate covariates) and q

(the dimension of covariates with non-zero coefficients) are both finite and fixed and smaller

than the sample size n; that is, q << p < n. We show that under the classical setting
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mentioned above, our proposed GLASSO estimator achieves consistency in terms of both

parameter estimation and model selection.

2.3.1 Parameter Consistency

In the following theorem, we show that when the tuning parameter λn grows at a rate slower

than n, the proposed estimator β̂L(ρ̂n) achieves the parameter consistency and if we add

more control on the growth rate of λn, the asymptotic normality of the estimator can also

be derived. We need one more regularity condition:

Assumption 6. The elements of Xn are nonstochastic and uniformly bounded in absolute

value. The matrix C(ρ) = limn→∞ 1
nX
′
nΣ(ρ)Xn is finite and nonsingular for all |ρ| < 1 and

1
n max16i6n ziz

′
i → 0, where zi is the ith row of the matrix (I − ρMn)Xn.

The assumption is justified since the parametrization of the linear model (I−ρMn)Yn = (I−

ρMn)Xnβ+ εn, which is a transformation of (2.1) is unique if the matrix Cn = 1
nX
′
nΣ(ρ)Xn

is nonsingular for all n, and we further assume that C(ρ) is nonsingular. The nonstochastic

design matrix assumption can be relaxed and is assumed here for explanation simplicity. In

fact, the results in this section can also hold quite generally for random designs. If Xn is

a random design matrix, the asymptotic results still apply as long as the probability of the

set for Assumption 6 to hold is 1. Similar extension can be seen in Zhao and Yu (2006), see

also Bühlmann and van de Geer (2011).

For all the Xn matrices we are considering here, along with those we will consider in later

chapters, in general, the elements of the design matrix are uncorrelated with those of the

disturbance vector un. However, even if the design matrix is correlated with the disturbance,

an instrumental matrix that is independent of the disturbance, denoteHn for example, can be

used to instrument Xn. By regressing each column of Xn on Hn, and replace the endogenous
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covariates with the predicted value from the regression, the problem is transformed back to

a high-dimensional spatial error model with uncorrelated design matrix and disturbance.

Theorem 2.1. Under Assumptions 1 to 6, if λn/n→ 0, the generalized moments LASSO

estimator β̂L(ρ̂n) is a consistent estimator for β. That is, β̂L(ρ̂n) →p β, as n → ∞. If

we assume further that λn/
√
n→ λ0> 0 , then

√
n(β̂L(ρ̂n)− β) −→D arg min(V (w)),

where V (w) = −2w′U + w′C(ρ)w + λ0
∑p
j=1[wjsgn(βj)I(βj 6= 0) + |wj |I(βj = 0)], and

U ∼ N(0, σ2C(ρ)).

The above theorem establishes parameter consistency of the GLASSO estimator in the

setting where both the dimension of all covariates p and the dimension of non-zero covariates

q are fixed and smaller than the sample size n. Further, if we control the rate of convergence

of the penalty parameter λn in a specific way, the estimator achieves asymptotic normality

towards the minimizer of a function V (w). In the function V (w), w is a p× 1 vector, U is a

p× 1 random vector with normal distribution, and C(ρ), defined in Assumption 6, involves

the spatial parameter ρ and spatial weight matrix Mn. Specifically, if the tuning parameter

λn grows to infinity at a slower rate than the square root of n, we have a nice result.

Compared with the asymptotic properties of the naive LASSO estimator in the linear model

setting, here we have spatial correlation. We find that the spatial autoregressive parameter

ρ is involved in the asymptotic distribution of the GLASSO estimator and controls the

convergence rate; if ρ = 0, the asymptotic distribution reduces to the same as that for the

naive LASSO.
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2.3.2 Sign Consistency

Above, we have shown parameter consistency of our generalized moments LASSO (GLASSO)

estimator β̂L(ρ̂n). However, a consistent estimator does not necessarily consistently select

the correct model. Here, we may have a large number of irrelevant predictors, even in the low

dimensional settings, and our primary goal is to correctly identify those which are relevant

so that the final model will not only fit well but also be easily interpretable. So another

property we desire is the model selection consistency of the estimation, which requires that

P ({i : β̂i 6= 0} = {i : βi 6= 0})→ 1, as n→∞.

Thus, we follow the idea of Zhao and Yu (2006) and achieve the result through sign consis-

tency of the estimator, in which case,

sign(β̂L(ρ̂n)) = sign(β),

where sign(·) maps positive entry to 1, negative entry to −1 and zero to zero. We denote

the above sign consistency condition as

β̂L(ρ̂n) =s β.

Note that sign consistency is stronger than model selection consistency, in the sense that, if

our estimator is sign consistent, then the model selection consistency condition is automat-

ically satisfied. Further, sign consistency avoids the undesirable situation that the model is

estimated only with zeros matched but reversed signs for some of the relevant covariates.
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Notation : Assume β = (β1, · · · , βq, βq+1, · · · , βp)′ where βj 6= 0 for j = 1, · · · , q and

βj = 0 for j = q + 1, · · · , p. Let β(1) = (β1, · · · , βq)′ and β(2) = (βq+1, · · · , βp)′, and for

any p-column matrix Z, write Z(1) and Z(2) as the first q and final p − q columns of Z

respectively. Define Cn(ρ) = 1
n [(I − ρMn)Xn]′[(I − ρMn)Xn]. By setting Cn11(ρ) = 1

n [(I −

ρMn)Xn](1)′[(I − ρMn)Xn](1), Cn22(ρ) = 1
n [(I − ρMn)Xn](2)′[(I − ρMn)Xn](2), Cn12(ρ) =

1
n [(I − ρMn)Xn](1)′[(I − ρMn)Xn](2), and Cn21(ρ) = 1

n [(I − ρMn)Xn](2)′[(I − ρMn)Xn](1),

we can express Cn(ρ) as follows:

Cn(ρ) =

Cn11(ρ) Cn12(ρ)

Cn21(ρ) Cn22(ρ)

 .

For the same reason as Assumption 6, here we assume that Cn11 is invertible based on the

uniqueness of the parametrization of the first relevant q covariates. Since ρ̂n is a consistent

estimator of ρ, the invertibility of Cn11(ρ̂n) is inherited from that of Cn11(ρ) when the sample

size is large enough. This can hold even for the high dimension case when p > n and

Assumption 6 does not hold. In the rest of the paper, we will use the notation Cn to denote

Cn(ρ̂n) unless specified otherwise.

The following proposition places a lower bound on the probability of LASSO picking the

true model which quantitatively relates to the probability of LASSO selecting the correct

model. This is a modification of the Proposition 1 in Zhao and Yu (2006).

Proposition 2.1. Assume that |Cn21(Cn11)−1sign(β(1))| 6 1−η holds with a constant η > 0,

where the inequality holds element-wise. Then,

P (β̂L(ρ̂n;λ) =s β) > P (An ∩Bn)
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for

An = {|(Cn11)−1Wn(1)| <
√
n(|β(1)| − λn

2n
|(Cn11)−1sign(β(1))|)}

Bn = {|Cn21(Cn11)−1Wn(1)−Wn(2)| 6 λn
2
√
n
η}

where

Wn(1) =
1√
n

[(I − ρM ′n)−1Σ(ρ̂n)](1)′εn

and

Wn(2) =
1√
n

[(I − ρM ′n)−1Σ(ρ̂n)Xn](2)′εn

In order to prove Proposition 2.1 and the following Theorem 2.2, we need the following

lemma which is a direct consequence of the Karush-Kuhn-Tucker conditions:

Lemma 2.1. β̂n(λ) = (β̂n1 , · · · , β̂
n
j , · · · ) are the LASSO estimates defined by

β̂n(λ) = arg min
β
||Yn −Xnβ||22 + λ||β||1

if and only if

d||Yn −Xnβ||22
dβj

|
βj=β̂nj

= −λsign(β̂nj ) for j such that β̂nj 6= 0

∣∣∣∣∣d||Yn −Xnβ||22dβj

∣∣∣∣∣
βj=β̂nj

6 λ for j such that β̂nj = 0.

In our context, the generalized moments LASSO estimator β̂L(ρ̂n) is defined to minimize

(Yn−Xnβ)′Σ(ρ̂n)(Yn−Xnβ)+λn||φ||1 for some λn for all φ, where ρ̂n is the GMM estimator
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of the parameter ρ in (2.1). Hence, applying Lemma 2.1 in our case, we have

∣∣∣∣∣d||(I − ρ̂nMn)Yn − (I − ρ̂nMn)Xnβ||22
dβj

∣∣∣∣∣
βj=β̂Lj(ρ̂n)

= −λnsign(β̂Lj(ρ̂n)) ,

for j such that β̂Lj(ρ̂n) 6= 0,

∣∣∣∣∣d||(I − ρ̂nMn)Yn − (I − ρ̂nMn)Xnβ||22
dβj

∣∣∣∣∣
βj=β̂Lj(ρ̂n)

6 λn ,

for j such that β̂Lj(ρ̂n) = 0,

where β̂Lj(ρ̂n) is the jth element of the estimator β̂L(ρ̂n). With this result, we are now

able to prove the Proposition 2.1. The proof follows Zhao and Yu (2006) with appropriate

adjustments to our case.

Recall that in this section, we are only focusing on the classical setting where q, p,and β

are all fixed as n→∞. Under the above conditions and assumptions, we have the following

result about sign consistency of our proposed GLASSO estimator β̂L(ρ̂n).

Theorem 2.2. For fixed q, p, and β, under Assumptions 1-6, the generalized moments

LASSO estimator is sign consistent if the condition |Cn21(Cn11)−1sign(β(1))| 6 1 − η holds.

That is, for every λn that satisfies λn/n→ 0 and λn/n
1+c

2 > r for any r > 0 with 0 6 c < 1,

we have

P (β̂L(ρ̂n) =s β
n) = 1− o

s(ρ)e

−nc
s2(ρ)

 .

From the above result, it is clear that the convergence rate for the estimation method

to choose the correct model is a bounded function of the spatial parameter ρ times the
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exponential of a function of n and s . Here, s(ρ) is the bound for the diagonal elements of

C−1
11 σ

2 and C22−C21C
−1
11 C12σ

2. Because of the spatial structure added to the linear model,

the convergence rate is affected. While the convergence rate in the i.i.d case is related only

to n, now this depends also on ρ. One remark here is that, for Theorem 2.2, the effect of

the spatial correlation to the estimator in the form of a function of ρ can instead be applied

to the penalty parameter λn as a lower bound. In this way, additional information can be

used for the choice of λn besides cross-validation.

2.4 Asymptotics for large p and q

In the previous section, we proved parameter consistency and sign consistency, as well as the

asymptotic distribution, of our generalized moments LASSO estimator β̂L(ρ̂n) as n → ∞

under the classical setting where p, q, and β are all fixed, and p and q are smaller than n.

The setting is simplified in the sense that it is natural to assume the regularity conditions

as stated in Assumption 6:

C = lim
n→∞

1

n
X ′nΣ(ρ)Xn

where C is finite and nonsingular.

However, in practice, there are many situations where large p and thus q are needed; it

can either be larger than the sample size n or increase at some rate as n. In the large p and

q case, we allow the dimension of the designs Cn grow and model parameter β change as

n grows, that is, p = pn and q = qn < n and β = βn. Consequently, the assumptions and

regularity conditions in the previous sections are not appropriate since Cn may no longer

converge and β = βn may change as n grows. Towards this situation, we first prove an oracle

inequality for the generalized moments LASSO when the design is non-random; this in turn
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will imply consistency as well. Then, in the second part of this section, we also prove that

with high probability we can correctly select the model in the case that p > n.

2.4.1 Parameter Consistency

In this section, we prove that, with an appropriate choice of λn , the generalized moments

LASSO estimator β̂L(ρ̂n) obeys the following oracle inequality with a probability that can

be made arbitrarily close to unity. That is, for large enough n, the condition

||(I − ρ̂nMn)Xn(β̂ − β)||22
n

+ λn||β̂ − β||1 6
4λ2
ns0

φ2
0

is satisfied with an arbitrarily large probability. The inequality provides a bound for ||β̂−β||1,

and thus the estimator is consistent if the bound converges to zero. Here, β is the true value

of the unknown parameter, λn = O
(

logp
n

)
, we denote the GLASSO estimator by β̂ for

notational simplicity, s0 is the cardinality of the set of nonzero components of β, and S0 and

φ0 are constants depending on the design matrix Xn.

By the definition of the generalized moments estimator:

β̂ := arg min
φ

{
(Yn −Xnφ)′Σ(ρ̂n)(Yn −Xnφ) + λn||φ||1

}
.

Since β̂ provides the minima of this penalized objective function, we have the inequality

below with change of scale of λn :

||(I − ρ̂nMn)(Yn −Xnβ̂)||22
n

+ λn||β̂||1 6
||(I − ρ̂nMn)(Yn −Xnβ)2

2

n
+ λn||β||1
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Rearranging terms and using the triangle inequality, we obtain our Basic Inequality:

||(I − ρ̂nMn)Xn(β̂ − β)||22
n

+ λn||β̂||1 6
2ε′n(I − ρM ′n)−1Σ(ρ̂n)Xn(β̂ − β)

n
+ λn||β||1. (2.7)

Note that the first term on the RHS of the Basic Inequality (2.7) can be easily bounded

in terms of the L1-norm of parameters involved:

2
∣∣∣ε′n(I − ρM ′n)−1Σ(ρ̂n)Xn(β̂ − β)

∣∣∣ 6 ( max
16j6p

2|ε′nT (j)|
)
||β̂ − β||1

where T (j) is the jth column of the matrix T = (I − ρM ′n)−1Σ(ρ̂n)Xn.

Next, we introduce the set

= :=

{
max

16j6p
2|ε′nT (j)|/n 6 λ0

}

where we arbitrarily assume that 2λ0 6 λn to make sure that on = we can get rid of the

random part of the problem. Now, we have the following result.

Proposition 2.2. Suppose Assumptions 1-5 hold, and further assume all the elements

of Xn are nonstochastic and uniformly bounded in absolute value, then for all t > 0, if we

define

λ0 = 2σ(exp [t2/2] + 1)

√
log2p

n
,

we have

P (=) > 1−K exp [−t2/2].

for some positive constant K.

Proof is given in the last section. Since we are in a situation where p is growing with
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n, and possibly p > n, we generally consider the fact that only a few, say s0, of the βj are

non-zero. To quantify the sparsity of the true β0, we denote

S0 := {j : β0
j 6= 0},

so that s0 = |S0|. In the literature, S0 is called the active set, and s0 the sparsity index of

β0.

Before we state the final oracle inequality, using λn > 2λ0 and the Basic Inequality (2.7),

we have on =,

2||(I − ρ̂nMn)Xn(β̂ − β)||22/n+ 2λn||β̂||1 6 λn||β̂ − β0||1 + 2λn||β||1.

Since

||β̂||1 = ||β̂S0
||1 + ||β̂Sc0

||1 > ||βS0
||1 − ||β̂S0

− βS0
||1 + ||β̂Sc0

||1,

and also,

||β̂ − β0||1 = ||β̂S0
− βS0

||1 + ||β̂Sc0
||1.

Therefore,

2||(I − ρ̂nMn)Xn(β̂ − β)||22/n+ λn||β̂Sc0
||1 6 3λn||β̂S0

− βS0
||1. (2.8)

Here, λn is some regularization parameter satisfying the relationship with λ0 defined in

Proposition 2.2. From Assumption 1, we have 0 < σ2 < b, hence λn = 2
√
b(exp [t2/2] +

1)

√
log2p
n is a possible choice.

In order to prove the oracle inequality mentioned at the beginning of this section, we
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need one more condition on the design matrix corresponding with the consistent estimator

of ρ to make our proof go through and it is similar to the “compatibility condition” given in

Bü hlmann and van de Geer (2001) with only minor changes. Since we know from inequality

(2.8), on =,

||β̂Sc0
||1 6 3||β̂S0

− βS0
||1,

we will only require the condition restricted on βS0
. Thus, the compatibility condition in

our case is stated as follows.

Condition 1. Condition 1 is said to be satisfied for the set S0, if for some constant φ0 > 0,

and for all β satisfying ||βSc0
||1 6 3||βS0

||1, it holds that

||βS0
||21 6 (β′X ′nΣ(ρ̂n)Xnβ)s0/(nφ

2
0).

Note that, when we solve for the LASSO estimator in the second step of our estimation

process, ρ̂n is considered a known parameter. Finally, we obtain parameter consistency as

follows.

Theorem 2.3. Suppose Condition 1 holds for S0, for some t > 0, and let the regularization

parameter λn > 2λ0, then on =, we have

||(I − ρ̂nMn)Xn(β̂ − β)||22
n

+ λn||β̂ − β||1 6
4λ2
ns0

φ2
0

.

The result also means that with probability at least 1−K exp[−t2/2], we have

||(I − ρ̂nMn)Xn(β̂ − β)||22
n

+ λn||β̂ − β||1 6
4λ2
ns0

φ2
0

.
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As discussed above, the above result tells states that with high probability, the L1 norm

of the difference between the estimator and the true value of the parameter of interest is

bounded by a function of λn and s0 (same as the dimension of non-zero parameters qn).

Further, the consistency of the estimator is achieved when the bound converges to 0 as n

goes to infinity, and pn and qn in this case need to satisfy:

q2
nlog2pn
n

→ 0.

2.4.2 Sign Consistency

We have already proved sign consistency which infers the model selection consistency of our

generalized moments LASSO estimator with a condition similar to the Strong Irrepresentable

Condition in Zhao and Yu (2006). Now, we extend the result to sign consistency of the

estimator in the high dimensional case when p and q are large and growing with n, following

the previous arguments but with an additional assumption:

Assumption 7. There exists 0 6 c1 < c2 6 1 and K1, K2, K3, K4 > 0 so that the following

holds:

1

n
(X ′nΣ(ρ))ii 6 K1, ∀i,

α′Cn11(ρ)α > K2, ∀||α||22 = 1, (2.9)

qn = O(n2c1),

n
1−c2

2 min
i=1,··· ,q

|βni | > K3.

Under the above assumptions, we can have the following result.
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Theorem 2.4. Under Assumptions 1-5 and 7, if the condition |(Cn21)(Cn11)−1sign(β(1))| 6

1 − η holds for some η > 0, then for pn = o(n2(c2−c1)), and ∀λn that satisfies λn√
n

=

O(n
c2−c1

2 ), we have

P (β̂L(ρ̂n;λn) =s β) > 1−O
(
r(ρ)n2c2−2

)
− o(1)→ 1, as n→∞.

Here, we denote r(ρ) as a function of the spatial parameter ρ which controls the maximum

of the absolute value of the element in the matrix (Cn11(ρ))−1. The term r(ρ) controlling the

convergence rate of the estimator to correctly select the true model in our spatial autore-

gressive errors setting differs from that in the traditional independent data linear regression

setting.

2.5 Simulation Studies

In this section we study the finite sample performance of the generalized moments LASSO

estimator (GLASSO) β̂L(ρ̂n) in both the low-dimensional setting and the high-dimensional

setting and compare these with the traditional LASSO estimator β̂L as well as the ordinary

least squares estimator β̂OLS (when applicable in the low dimensional case); both the β̂L and

the β̂OLS ignore spatial dependence in the data. For this purpose, we conduct a two-part

Monte Carlo study. Throughout, we set the distribution of ε to be normal, and without loss

of generality, N(0, 1). This is because the estimators for ρ defined earlier do not depend on

σ2. We consider 6 choices of ρ, covering the range from −1 to 1, together with 5 choices of

the sample size n, and thus we have a total of 30 cases for our simulation study. For each
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case, the results are summarized over 200 Monte Carlo replications.

The detail design of the study is as follows. The weight matrix Mn is defined as an

idealized weighting matrix Mn following Kelejian and Prucha (1999), which means, Mn was

selected such that each element of uni is directly related to the one immediately before and

after it. We assume the above relationship to be circular, so that un is related to un,1 and

un,n−1, for instance. For simplicity, we specify Mn such that all the non-zero elements of

Mn are equal and that the respective rows sum to 1.

Our main object of interest lies in the ability of the generalized moments LASSO es-

timator to consistently choose the correct parameter, and the simulation result shows the

mean (over 200 replicates) for the value of Correctly, Falsely, and Sign-correctly identified

component of the parameter for our GLASSO, traditional LASSO and OLS (only in the

low dimensional case), respectively. Note that Huang et al. (2010) demonstrate the selec-

tion consistency of using group LASSO for variable selection with a certain lower bound for

the penalty parameter λn. For the analysis, we also set a proper chosen lower bound for

the cross-validation selection of λn, which satisfies the conditions implied by our theoretical

results.

In the low-dimensional set up, the dimension of the parameter β is chosen as p = 50 with

the first q = 5 non-zero components independently generated from a uniform distribution

over the interval (−2, 5) and the rest are zero coefficients. The covariates Xi’s are IID from

a 50-dimensional Gaussian distribution with each component having mean zero and variance

1. The pairwise correlation is set to be cor(xij , xik) = 0.5|j−k|. The results for the low-

dimensional setup are shown in Table 2.1 and 2.2. In each of the tables, the reported figures

are the means of the statistics from 200 repetitions; NZ represents the correctly selected

components, IZ represents the incorrectly selected components and SC represents the the
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number of correctly selected components with correct sign.

For the high-dimensional set up, we set the dimension of the parameter p = 1000 but

the true number of components that are significant is only q = 20. Mn is specified the same

as it is in the low-dimensional setting. The first 20 non-zero components are also generated

independently from a uniform distribution over the interval (−2, 5). The design matrix Xn

likewise is the same as that of the low-dimensional design with only change of dimensions.

Traditional OLS becomes impossible so we only compare the performance of the generalized

LASSO and the traditional LASSO. Note here, in the traditional LASSO approach, we ignore

the autocorrelation of the error un and treat the errors as IID. The estimator of LASSO is

achieved by using the package ”glmnet” in R and the penalty parameter λn is chosen by

10-fold cross-validation. Another issue that distinguishes our method from the traditional

LASSO is the use of a lower bound for λn, which justifies the consistency of our approach.

The results are recorded in Tables 2.3 and 2.4.

Table 2.1: Means of NZ, IZ, SC for SEM when p < n with positive ρ

n ρ=0.25 ρ=0.5 ρ=0.75
NZ (5) IZ(45) SC(5) NZ (5) IZ(45) SC(5) NZ (5) IZ(45) SC(5)

100 GLASSO 5 19.85 5 5 19.87 5 5 19.71 5
LASSO 5 14.90 5 5 19.24 5 5 24.64 5
OLS 5 2.93 5 5 3.43 5 4.91 4.72 4.91

200 GLASSO 5 13.10 5 5 11.96 5 5 9.90 5
LASSO 5 14.88 5 5 21.03 5 5 25.33 5
OLS 5 3.46 5 5 4.51 5 5 6.55 5

400 GLASSO 5 6.61 5 5 6.33 5 5 6.7 5
LASSO 5 15.73 5 5 20.85 5 5 26.29 5
OLS 5 3.39 5 5 5.08 5 5 7.3 5

600 GLASS 5 1.66 5 5 1.59 5 5 1.76 5
LASSO 5 15.78 5 5 20.37 5 5 26.10 5
OLS 5 3.74 5 5 5.23 5 5 7.23 5

800 GLASS 5 0.23 5 5 0.25 5 5 0.35 5
LASSO 5 15.11 5 5 21.62 5 5 26.18 5
OLS 5 3.76 5 5 5.44 5 5 7.46 5

From the simulation results, we can see clearly that in all of the cases, all the methods

considered above can (almost) consistently select the non-zero components of the regression
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Table 2.2: Means of NZ, IZ, SC for SEM when p < n with negative ρ

n ρ=-0.25 ρ=-0.5 ρ=-0.75
NZ (5) IZ(45) SC(5) NZ (5) IZ(45) SC(5) NZ (5) IZ(45) SC(5)

100 GLASS 5 16.2 5 5 14.20 5 5 11.08 5
LASSO 5 8.38 5 5 5.32 5 5 4.07 5
OLS 4.99 1.9 4.99 4.93 1.63 4.93 4.64 1.1 5

200 GLASSO 5 11.87 5 5 11.97 5 5 10.46 5
LASSO 5 7.3 5 5 4.56 5 5 2.75 5
OLS 5 1.6 5 5 0.93 5 5 0.6 5

400 GLASSO 5 2.83 5 5 2.90 5 5 2.53 5
LASSO 5 6.79 5 5 3.82 5 5 2.54 5
OLS 5 1.44 5 5 0.66 5 5 0.29 5

600 GLASSO 5 0.33 5 5 0.37 5 5 0.23 5
LASSO 5 6.58 5 5 4.06 5 5 2.21 5
OLS 5 1.27 5 5 0.55 5 5 0.25 5

800 GLASSO 5 0.01 5 5 0.02 5 5 0.03 5
LASSO 5 6.21 5 5 3.64 5 5 2.22 5
OLS 5 1.22 5 5 0.47 5 5 0.22 5

Table 2.3: Means of NZ, IZ, SC for SEM when p > n with positive ρ

n ρ=0.25 ρ=0.5 ρ=0.75
NZ(20) IZ(980) SC(20) NZ(20) IZ(980) SC(20) NZ(20) IZ(980) SC(20)

100 GL 15.5 77.4 15.4 15.6 79.7 15.6 15.2 80.7 15.2
L 16.4 105.6 16.4 16.4 113.3 16.4 15.9 117.5 15.9

200 GL 19.6 96.5 19.6 19.5 104.5 19.5 19.3 122.2 19.3
L 19.7 116.7 19.7 19.7 168.1 19.7 19.6 254.2 19.6

400 GL 20 93.1 20 19.9 116.3 19.9 19.7 158 19.7
L 20 129.7 20 20 194.9 20 19.9 277.3 19.9

600 GL 20 48.5 20 20 69.1 20 19.9 127.0 19.9
L 20 140.3 20 20 226.3 20 20 325.7 20

800 GL 20 14.9 20 20 23.7 20 20 61.8 20
L 20 150.9 20 20 258.2 20 20 374.6 20

parameter when the sample size n gets larger. What distinguishes the methods truly is their

ability to identify the irrelevant components and set these to zero. From Tables 2.1 and

2.2, in the low-dimensional case, it is clear that the traditional LASSO is not suitable for

dependent data and OLS works reasonably well for all choices of n. However, even though our

generalized moments LASSO estimator (GLASSO) falsely selects more zero components in

small sample sizes, the results get much better with increasing data and performs better than

the OLS when n exceeds 400. These results are consistent for all choices of the autoregressive

parameter ρ.
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Table 2.4: Means of NZ, IZ, SC for SEM when p > n with negative ρ

n ρ=-0.25 ρ=-0.5 ρ=-0.75
NZ(20) IZ(980) SC(20) NZ(20) IZ(980) SC(20) NZ(20) IZ(980) SC(20)

100 GL 15.09 69.58 15.07 14.35 70.90 14.34 13.93 67.04 13.89
L 15.98 88.43 15.95 14.92 82.18 14.88 13.64 60.09 13.61

200 GL 19.62 72.61 19.62 19.56 71.12 19.56 19.50 68.42 19.50
L 19.65 71.69 19.65 19.46 58.9 19.46 19.05 48.67 19.05

400 GL 19.97 43.43 19.97 19.99 41.87 19.99 20 40.36 20
L 19.99 54.26 19.99 19.95 35.72 19.95 19.76 23.83 19.76

600 GL 20 14.10 20 20 15.27 20 20 15.07 20
L 20 46.13 20 20 28.38 20 19.95 16.71 19.95

800 GL 20 3.07 20 20 4.12 20 20 4.2 20
L 20 42.16 20 20 24.28 20 19.99 14.14 19.99

In the high-dimensional setting, since OLS becomes unavailable, we only compare the

performance of the traditional LASSO and our two-stage GLASSO estimator. Still, for dif-

ferent choices of ρ, even though both methods can mostly select the non-zero regression

coefficients correctly, the traditional LASSO performs poorly relative to the generalized mo-

ments LASSO estimator in correctly identifying the zero elements. The most interesting

observation is the way the LASSO over-selects in the presence of even a little bit of spatial

dependence. This inability is not a finite sample bias: if anything, the problem worsens with

sample size. There is also an important asymmetry between positive and negative depen-

dence, which has to do with challenging inferences in negative autocorrelation situations. In

summary, the LASSO loses its selection ability when the errors are not independent.

2.6 Application to a hedonic housing price model

In this section, we illustrate the proposed two-step GLASSO by application to housing

market data for the municipalities of Aveiro and Ílhavo and the adjoining peri-urban and

rural area in central Portugal (Figure 2.1); see Bhattacharjee et al. (2016) for the data and

for further information.
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Figure 2.1: The Aveiro-́Ilhavo Housing Market

The dataset was provided by the firm Janela Digital S.A, which owns the largest portal

in Portugal for real estate advertisement, and contains n = 12, 467 observations (houses on

sale) sampled from 76 different locations within the above housing market over the period

October 2000 and March 2010. Our interest here lies mainly in estimating the spatially

varying implicit price of living space that is modeled by the living space elasticity of house

price. We estimate this elasticity by regressing the logarithm of house price per square meter

of living area on the logarithm of square meters of living space. This is an example of a

hedonic house price model; see Bhattacharjee at al. (2016) for further discussion.

Potentially, several other regressors relating to the attributes of the house, as well as the

characteristics of the neighborhood, also affect house prices and hence should be included

as controls. However, the effect of these hedonic characteristics on the spatially varying

estimates of living space elasticity is not substantial, after spatial dependence is adequately

modeled. Hence, for this illustrative example, we abstract from the full estimation of a

hedonic house price model, and focus on spatial dependence.
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We model the spatial aspects quite fully. This is done in three ways. First, we allow full

spatial heterogeneity by allowing the shadow price of living space (βii) to vary across the

L = 76 locations. In addition, we allow for L location specific fixed effects (αi) to account for

neighborhood level unobserved heterogeneity. Second, we model spatial spillovers in house

price shocks by spatial autoregressive errors, where the spatial weights matrix (Mn) is a row-

standardized version of inverse geographical distance weights. That is, we first construct a

weights matrix where, corresponding to two houses in different locations, the off diagonal

elements are reciprocal of the Euclidean distance between the locations; if the houses are in

the same location, the corresponding spatial weight is the reciprocal of half the distance of

that location to its nearest neighbor location. This weights matrix is then row-standardized

by dividing each element by the sum of all entries in its row, and this transformed matrix

then constitutes our spatial weights matrix Mn. Third, and most importantly in the context

of this work, we allow spillovers of the quality of housing stock from neighboring locations

to affect housing price in an index location. The most popular way to accommodate such

spillovers in exogenous covariates is the spatial Durbin model (LeSage and Pace, 2009):

Yn = Xnβ +WnXnγ + un,

un = ρMnun + εn.

Here, in addition to the (direct) effect of the covariates and the spatial autoregressive errors,

there is also the effect coming arising from covariate values in the neighborhood, and captured

through a spatial lag term (WnXn) with corresponding effect γ. The above spatial Durbin

model can have the structural interpretation of capturing the true spillovers in the effect of

characteristics in the neighborhood, but may also sometimes be seen reflection in the reduced
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form of omitted or inappropriately modeled spatial dependence (LeSage and Pace, 2009).

Whatever the mechanism, the spatial Durbin model is an important workhorse model in

contemporary spatial econometrics.

Typically, the spatial weights matrix Wn is assumed known a priori, and usually taken

to be the same as Mn. However, mis-measured spatial weights can have serious implications

on the inferences drawn, and a current branch of the literature focuses on inferences on the

spatial weights themselves; see, for example, Bhattacharjee et al. (2016). Here, we use the

GLASSO for identifying the neighbors that matter and for estimating the implied weights

matrix γWn, which has L(L− 1) elements. This allows spillovers and their strength to vary

over the spatial domain, which is natural in the current context of hedonic pricing.

In a typical application, this would imply adding covariates for all locations on the right

hand side of the regression model and then use LASSO based model selection to estimate

both the spatially varying slope (β ) and spillovers from other locations (γWn). In the

context of our application, the estimation of a three dimensional functional surface of the

spatial varying effect of living space can be tailored to the regression of a linear combination

of the effect of living space over nearby locations, besides the effect of living space on each

specific location. Thus, the generalized moments LASSO variable selection and estimation

method proposed is useful when we select neighboring locations whose living space have an

effect on the index location and to estimate how large the effect is; in the process, we can

build a parsimonious model by eliminating those locations that are irrelevant for housing

prices at each index location.

Further, there is some simplification because of replications in our data. For every house

in an index location, houses in any specific other location is expected to be exchangeable,

and hence what matters is not the living spaces of these houses, but their average at each
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location. To be specific, the chosen linear model can be described as:

Yij = αi + xijβii +
∑
k 6=i

x̄k.βik + uij , i = 1, 2, · · · , L, j = 1, 2, · · · , ni, n =
∑
i

ni.

Here Yij is the logarithm of house price per square meter of living space for the jth replication

in the ith location, while Xij represents the logarithm of living space of the corresponding

house, and the average of the logarithm of living space at each of other locations k is denoted

as x̄k.. Further, uij is a spatial autoregressive error with spatial weight matrix defined based

on the distance between the locations (Mn).

Under the model, for each replication j in the location i, the logarithm of house price

can be modeled as the linear combination of its corresponding logarithm of living space,

along with the average of sampled logarithms of living space at other locations, plus an error

term. The response variable yij is arranged by locations into a column vector of dimension

n = 12467 . We are interested in selection and inferences on the effect of the average of

logarithm of living space at location k on each of the sample of logarithm of house price

at location i, which is denoted βik, together with location specific fixed effects (αi) and

spatially varying living space elasticities of house price (βii). This makes our parameter of

interest to be a p = 76 × 77 dimension vector. Even though in this dataset, it is not the

high-dimensional setting we defined earlier which requires p > n, it is high dimension in the

sense that p is considerably large. In addition to estimating the spatially varying implicit

price of living space, we wish to identify those locations with “living space” effect on each

other, so hence we implement the two step method for variable selection and estimation for

the proposed model. We compare these results with the traditional LASSO method.

By conducting variable selection and estimation for the proposed model at each location,
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Figure 2.2: Identified neighbors with spillover effect of living space

the effect of living space from locations in the neighborhood is thus identified. Part of the

results are shown in Table 2.5 as illustration and we summarize the number of identified

neighbors through box plot (Figure 2.2).

Table 2.5: Numerical summary of the significant effect of living size from neighbors

Location No. of neighbors (GLASSO) No. of neighbors (LASSO)
1 5 56
2 5 59
3 4 63
4 6 56
5 5 26
6 7 25
7 4 8
8 3 43
9 4 25
10 1 11

Table 2.5 illustrates the differences in number of selected neighbors with spillover effects

of living space effect identified by the generalized moments LASSO estimator and the tra-

ditional LASSO method. Coinciding with the simulation results, the traditional LASSO

estimator tends to over-select irrelevant variables compared to the generalized moments

LASSO estimator and thus weaken selection power. The summary of box plots in Figure

2.2 further supports the above conclusion using the overall distribution of the number of
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(a) Spatial effect for location 1 (b) Spatial effect for location 6

Figure 2.3: Computation results

neighbors identified. While the GLASSO selects parsimonious models with a median of 5

neighbors, the traditional LASSO selects enormously large models with a median of about

40 neighbors.

The network graphs in Figure 2.3 use two example locations to illustrate the relationship

between these specific locations (Locations 1 and 6 in our case) and the identified locations

with significant spillover effects. The magnitudes of the locations with large spatial effects

are also shown. Each point is located at its own location defined by coordinates and the

distance between locations represent the relative distance between points. Take Location 1

for example. The house price in this location is effected by the living space at five other

surrounding locations and Location 2 has the largest effect of these 5 locations.We can see

that identified locations are not completely random but somewhat conditioned by distances

on the spatial domain. At the same time, one can clearly see the advantages of allowing

the patterns of spillovers to be different in different locations. Comparing the results with

Figure 2.1, we see that our method can successfully identify the spillover locations in the

nearby area.
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2.7 Proofs

PROOF of Theorem 2.1. Define a random function of ρ and φ,

Zn(φ, ρ) =
1

n
(Yn −Xnφ)′Σ(ρ)(Yn −Xnφ) +

λn
n

p∑
j=1

|φj |.

By the definition of LASSO estimator, for any fixed ρ, Zn(φ, ρ) is minimized at φ = β̂L(ρ).

However, we not have the true value of ρ, but instead, we use the GMM estimator ρ̂n as a

substitute. Then the function Zn(φ, ρ̂n) is minimized at the generalized moments LASSO

estimator φ = β̂L(ρ̂n). Furthermore, denote by β the true value of the unknown parameter,

and let

Z(φ, ρ) = (β − φ)′C(ρ)(β − φ) + σ2.

Then, it is easy to see that for any given ρ, Z(β, ρ) is minimized at φ = β.

For each φ ∈ Rp,

Zn(φ, ρ̂n) =
1

n
(Yn −Xnφ)′Σ(ρ̂n)(Yn −Xnφ) +

λn
n

p∑
j=1

|φj |

= Φ1 − Φ2 + Φ2 + Φ3

where

Φ1 =
1

n
(Yn −Xnφ)′Σ(ρ̂n)(Yn −Xnφ)

Φ2 =
1

n
(Yn −Xnφ)′Σ(ρ)(Yn −Xnφ)

Φ3 =
λn
n

p∑
j=1

|φj |
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Since λn
n → 0, we have Φ3 → 0. Also,

Φ2 =
1

n
[(I − ρMn)Xn(β − φ) + εn]′[(I − ρMn)Xn(β − φ) + εn]

=
1

n
(β − φ)′X ′nΣ(ρ)Xn(β − φ) +

1

n
ε′n(I − ρMn)Xn(β − φ) +

1

n
(β − φ)′X ′n(I − ρMn)′εn +

1

n
ε′nεn

→p (β − φ)′C(ρ)(β − φ) + σ2

= Z(φ, ρ),

by Assumption 6 and the weak law of large numbers.
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Moreover, since ρ̂n is a consistent estimator of ρ,

Φ1 − Φ2 =
1

n
(Yn −Xnφ)′[Σ(ρ̂n)− Σ(ρ)](Yn −Xnφ)

=
1

n
(Yn −Xnφ)′[(ρ− ρ̂n)(Mn +M ′n) + (ρ̂2

n − ρ2)M ′nMn](Yn −Xnφ)

=
1

n
[(β − φ)′X ′n + ε′n(I − ρM ′n)−1][(ρ− ρ̂n)(Mn +M ′n) + (ρ̂2

n − ρ2)M ′nMn]

[Xn(β − φ) + (I − ρMn)−1εn]

=
1

n
(ρ− ρ̂n)(β − φ)′X ′n(Mn +M ′n)Xn(β − φ)

+
1

n
(ρ̂2
n − ρ2)(β − φ)′X ′n(M ′nMn)Xn(β − φ)

+
1

n
(ρ− ρ̂n)ε′n(I − ρM ′n)−1(Mn +M ′n)Xn(β − φ)

+
1

n
(ρ̂2
n − ρ2)ε′n(I − ρM ′n)−1(M ′nMn)Xn(β − φ)

+
1

n
(ρ− ρ̂n)(β − φ)′X ′n(Mn +M ′n)(I − ρMn)−1εn

+
1

n
(ρ̂2
n − ρ2)(β − φ)′X ′n(M ′nMn)(I − ρMn)−1εn

+
1

n
(ρ− ρ̂n)ε′n(I − ρM ′n)−1(Mn +M ′n)(I − ρMn)−1εn

+
1

n
(ρ̂2
n − ρ2)ε′n(I − ρM ′n)−1(M ′nMn)(I − ρMn)−1εn

→p 0

Therefore, Zn(φ, ρ̂n)−Z(φ, ρ)→p 0 for any φ ∈ Rp. Combined with the fact that Zn(φ, ρ̂n)

is a convex function of φ, we have

sup
φ∈K
|Zn(φ, ρ̂n)− Z(φ, ρ)| →p 0

for any compact set K and β̂L(ρ̂n) ∈ Op(1) by applying the convexity lemma in Pollard
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(1991). From the above result we have

arg min(Zn(φ, ρ̂n))→p arg min(Z(φ, ρ))

which implies that

β̂L(ρ̂n)→p β.

For asymptotic normality of the estimator, we need λn to grow slowly, and further assume

that λn = O(
√
n). From the above proof, we already know that

nZn(φ, ρ̂n) = (Yn −Xnφ)′Σ(ρ̂n)(Yn −Xnφ) + λn

p∑
j=1

|φj |

is minimized at φ = β̂L(ρ̂n). Now define w =
√
n(φ − β). Then nZn(φ, ρ̂n) can be treated

as a function of w and

nZn(φ, ρ̂n) =

[
Yn −Xn

(
w√
n

+ β

)]′
Σ(ρ̂n)

[
Yn −Xn

(
w√
n

+ β

)]
+ λn

p∑
j=1

∣∣∣∣ wj√n + βj

∣∣∣∣
= Ṽn(w)

is minimized at
√
n
(
β̂L(ρ̂n)− β

)
. The same is true for

Vn(w) = Ṽn(w)− (Yn −Xnβ)′Σ(ρ̂n)(Yn −Xnβ)− λn
p∑
j=1

|βj |.
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It follows that

λn

p∑
j=1

[∣∣∣∣ wj√n + βj

∣∣∣∣− |βj |]→ λ0

p∑
j=1

[wjsgn(βj)I(βj 6= 0) + |wj |I(βj = 0)].

Also, define

Ωn(w) = (Yn −Xn
w√
n
−Xnβ)′Σ(ρ̂n)(Yn −Xn

w√
n
−Xnβ)−

(Yn −Xnβ)′Σ(ρ̂n)(Yn −Xnβ)

= Ωn(w)− Ω1(w) + Ω1(w),

where

Ω1(w) = (Yn −Xn
w√
n
−Xnβ)′Σ(ρ)(Yn −Xn

w√
n
−Xnβ)− ε′nεn.

Easy to see that

Ω1(w) =

[
εn − (I − ρMn)Xn

w√
n

]′ [
εn − (I − ρMn)Xn

w√
n

]
− ε′nεn

= −2
1√
n
w′X ′n(I − ρMn)′εn +

1

n
w′X ′n(I − ρMn)′(I − ρMn)Xnw

→D −2w′U + w′C(ρ)w,
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where U ∼ N(0, σ2C(ρ)). Also

Ωn(w)− Ω1(w) =
−2√
n
ε′n(I − ρM ′n)−1Σ(ρ̂n)Xnw +

1

n
w′X ′nΣ(ρ̂n)Xnw

+
2√
n
ε′n(I − ρMn)Xnw −

1

n
w′X ′nΣ(ρ)Xnw

=
2√
n
ε′n(I − ρM ′n)−1[(ρ̂n − ρ)(M ′n +Mn)− (ρ̂2

n − ρ2)M ′nMn]Xnw

− 1

n
w′X ′n[(ρ̂n − ρ)(M ′n +Mn)− (ρ̂2

n − ρ2)M ′nMn]Xnw

→p 0

where we use the consistency of ρ̂n in the proof above. Thus Vn(w) →D V (w), and

combined with the fact that Vn is convex and V has a unique minimum, it follows from

Geyer (1996) that

arg min(Vn) =
√
n
[
β̂L(ρ̂n)− β

]
→D arg min(V (w)).

PROOF of Proposition 2.1. By the definition of estimator in the second estimation

step,

β̂L(ρ̂n) = arg min
φ

[(Yn −Xnφ)Σ(ρ̂n)(Yn −Xnφ)] + λn||φ||1,

where the estimator is the minimizer of the penalized least square when the true spatial

parameter ρ is replaced by its consistent estimator ρ̂n. Let ϕ = φ − β, which is equivalent

to w√
n

in the proof of Theorem 2.1. The following proof is similar to that of the proof of

Theorem 2.1. Define

Dn(ϕ) = [(Yn −Xn(ϕ+ β))′Σ(ρ̂n)(Yn −Xn(ϕ+ β))] + λn||ϕ+ β||1

−(Yn −Xnβ)′Σ(ρ̂n)(Yn −Xnβ)
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Then

ϕ̂ = β̂L(ρ̂n)− β

= arg min
ϕ
Dn(ϕ).

Separate Dn(ϕ) into two parts, Dn1(ϕ) and Dn2(ϕ). Let

Dn1(ϕ) = [(Yn −Xn(ϕ+ β))′Σ(ρ̂n)(Yn −Xn(ϕ+ β))]− (Yn −Xnβ)′Σ(ρ̂n)(Yn −Xnβ)

= [(I − ρ̂nMn)((I − ρMn)−1εn −Xnϕ)]′[(I − ρ̂nMn)((I − ρMn)−1εn −Xnϕ)]

−ε′n(I − ρM ′n)−1(I − ρ̂nM ′n)(I − ρ̂nMn)(I − ρMn)−1εn

= −2ϕ′X ′n(I − ρ̂nMn)′(I − ρ̂nMn)(I − ρMn)−1εn

+ϕ′X ′n(I − ρ̂nM ′n)(I − ρ̂Mn)Xnϕ

= −2(
√
nϕ)′Wn + (

√
nϕ)′Cn(ρ̂n)(

√
nϕ)

where

Wn = Wn(ρ̂n) = X ′nΣ(ρ̂n)(I − ρMn)−1εn/
√
n,

Differentiate Dn(ϕ) w.r.t. ϕ, we have

dDn1(ϕ)

dϕ
= −2

√
nWn + 2nCn(ρ̂n)ϕ.

Note here that both ϕ̂(1) and Wn(1) are vectors of dimension p × 1. Let ϕ̂(1), Wn(1) and

ϕ̂(2), Wn(2) denote the first q and last p − q entries of ϕ̂ and Wn respectively. Then by
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definition:

{sign(β̂Lj(ρ̂n)) = sign(βj), for j = 1, 2, · · · , q.} ⊇ {sign(β(1))ϕ̂(1) > −|β(1)|}.

Hence if there exists ϕ̂ such that

Cn11(ρ̂n)(
√
nϕ̂(1))−Wn(1) = − λn

2
√
n
sign(β(1)),

|ϕ̂(1)| < |β(1)|,

− λn
2
√
n

1 6 Cn21(ρ̂n)(
√
nϕ̂(1))−Wn(2) 6

λn
2
√
n

1,

then by Lemma 2.1 and the uniqueness of LASSO solution, sign(β̂L(ρ̂n)(1)) = sign(β(1))

and β̂L(ρ̂n)(2) = β(2) = 0.

And the existence of such ϕ̂ is implied by

|(Cn11(ρ̂n))−1Wn(1)| <
√
n(|β(1)| − λn

2n
|(Cn11(ρ̂n))−1sign(β(1)|), (2.10)

|Cn21(ρ̂n)(Cn11(ρ̂n))−1Wn(1)−Wn(2)| 6 λn
2
√
n

(
1− |Cn21(ρ̂n) (Cn11(ρ̂n))−1 sign(β(1))|

)
(2.11)

here (2.10) coincides with An and (2.11) contains Bn. The result for Proposition 2.1 follows.

PROOF of Theorem 2.2. From Proposition 2.1, we have

P (β̂L(ρ̂n;λ) =s β) > P (An ∩Bn).
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Thus,

P (An ∩Bn) > 1− P (Acn)− P (Bcn)

> 1−
q∑
i=1

P (|zni | >
√
n(|βni | −

λn
2n
bni )−

p−q∑
i=1

P (|ζni | >
λn

2
√
n
ηi).

where zn = (zn1 , · · · , z
n
q )′ = (Cn11)−1Wn(1), ζn = (ζn1 , · · · , ζ

n
p−q)

′ = Cn21(Cn11)−1Wn(1) −

Wn(2) and bn = (bn1 , · · · , b
n
q )′ = (Cn11)−1sign(β(1)).

Since ρ̂n is a consistent estimator of ρ, similar to the proof of Theorem 2.1, and under the

regularity conditions in Assumption 6, we have

(Cn11)−1Wn(1)→D N(0, C−1
11 (ρ)σ2)

This is because

Cn =
1

n
X ′nΣ(ρ̂n)Xn

=
1

n
X ′nΣ(ρ̂n)Xn −

1

n
X ′nΣ(ρ)Xn +

1

n
X ′nΣ(ρ)Xn

=
1

n
X ′n[(ρ̂2

n − ρ2)M ′nMn − (ρ̂n − ρ)(M ′n +Mn)]Xn +
1

n
X ′nΣ(ρ)Xn

→p C

The final step follows from Assumption 3 and 6, together with the consistency of ρ̂n. Thus,
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(Cn11(ρ̂n))−1 →p (C11(ρ))−1. Similarily,

X ′nΣ(ρ̂n)(I − ρMn)−1εn/
√
n

= X ′n[(ρ̂2
n − ρ2)M ′nMn − (ρ̂n − ρ)(M ′n +Mn)](I − ρMn)−1εn/

√
n

+X ′n(I − ρM ′n)εn/
√
n

= op(1)Op(1) +X ′n(I − ρM ′n)εn/
√
n

Since X ′n(I − ρM ′n)εn/
√
n→d N(0, σ2C(ρ)), we have

Wn = X ′nΣ(ρ̂n)(I − ρMn)−1εn/
√
n→d N(0, σ2C(ρ))

Thus Wn(1)→D N(0, σ2C11(ρ)). Applying Slutsky’s theorem, we have

zn = (Cn11)−1Wn(1)→D N(0, (C11(ρ))−1σ2).

Making use of the above result, combined with the fact that

Cn21(Cn11)−1Wn(1)−Wn(2) = (Cn21(Cn11)−1,−Ip−q)Wn

we have

ζn = Cn21(Cn11)−1Wn(1)−Wn(2)→d N(0, C22(ρ)− C21(ρ)C11(ρ)−1C12(ρ)σ2).

Hence all zni ’s and ζni ’s converge in distribution to Gaussian random variables with mean
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0 and finite variance bounded by s2(ρ) for some constant function s(ρ). For t > 0, the

Gaussian distribution has its tail probability bounded by

1− Φ(t) < t−1e−
1
2 t

2

Since λn/n→ 0 and λn/n
1+c

2 > r with 0 6 c < 1, we have

q∑
i=1

P (|zni | >
√
n(|βi| −

λn
2n
bni )

6 (1 + o(1))

q∑
i=1

2

(
1− Φ

(
1

s(ρ)
n

1
2 |βni | (1 + o(1))

))

= o

s(ρ)e

−nc
s2(ρ)


and

p−q∑
i=1

P

(
|ζni | >

λn
2
√
n
ηi

)
= (1 + o(1))

p−q∑
i=1

2

(
1− Φ

(
1

s

λn
2
√
n
ηi

))
= o

s(ρ)e

−nc
s2(ρ)

 .

Theorem 2.2 follows.
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PROOF of Proposition 2.2.

P ( max
16j6p

2|ε′nT (j)|/n > λ0)

= P ( max
16j6p

∣∣∣∣∣ε′n(I − ρMn)X
(j)
n

n
+
ε′n(I − ρM ′n)−1Σ(ρ̂n)X

(j)
n

n
− ε′n(I − ρMn)X

(j)
n

n

∣∣∣∣∣
>
λ0

2
)

6 P ( max
16j6p

∣∣∣∣∣ε′n(I − ρMn)X
(j)
n

n

∣∣∣∣∣
+ max

16j6p

∣∣∣∣∣ε′n(I − ρM ′n)−1Σ(ρ̂n)X
(j)
n − ε′n(I − ρM ′n)−1Σ(ρ)X

(j)
n

n

∣∣∣∣∣ > λ0

2
)

Let r = σ

√
log2p
n , and denote

A = max
16j6p

∣∣∣∣∣ε′n(I − ρM ′n)−1Σ(ρ̂n)X
(j)
n − ε′n(I − ρM ′n)−1Σ(ρ)X

(j)
n

n

∣∣∣∣∣
Then define

A1 = max
16j6p

∣∣∣∣∣ε′n(I − ρM ′n)−1(ρ̂2
n − ρ2)M ′nMnX

(j)
n

n

∣∣∣∣∣ and

A2 = max
16j6p

∣∣∣∣∣ε′n(I − ρM ′n)−1(ρ̂n − ρ)(M ′n +Mn)X
(j)
n

n

∣∣∣∣∣ ;
therefore,

P (A > r) 6 P (A1 + A2 > r)

6 P
(
A1 >

r

2

)
+ P

(
A2 >

r

2

)
.

Since ρ̂n is a consistent estimator of ρ, that is, ρ̂n →p ρ, we have
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∀t > 0, defining c = 1
2 exp (− t

2

2 ), when n is large enough,

P (|ρ̂n − ρ| > c) < c

and

P (|ρ̂2
n − ρ2| > c) < c.

Then, it is easy to see that

P (A1 >
r

2
) = P (

{
max16j6p |ε′n(I − ρM ′n)−1M ′nMnX

(j)
n |
}
|ρ̂2
n − ρ2|

n
>
r

2
)

= P (

{
max16j6p |ε′n(I − ρM ′n)−1M ′nMnX

(j)
n |
}
|ρ̂2
n − ρ2|

n
>
r

2⋂
|ρ̂2
n − ρ2| > c)

+P (

{
max16j6p |ε′n(I − ρM ′n)−1M ′nMnX

(j)
n |
}
|ρ̂2
n − ρ2|

n
>
r

2⋂
|ρ̂2
n − ρ2| 6 c)

6 c+ P ( max
16j6p

|ε′n(I − ρM ′n)−1M ′nMnX
(j)
n | >

rn

2c
)
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and

P (A2 >
r

2
) = P (

{
max16j6p |ε′n(I − ρM ′n)−1(M ′n +Mn)X

(j)
n |
}
|ρ̂n − ρ|

n
>
r

2
)

= P (

{
max16j6p |ε′n(I − ρM ′n)−1(M ′n +Mn)X

(j)
n |
}
|ρ̂n − ρ|

n
>
r

2⋂
|ρ̂n − ρ| > c)

+P (

{
max16j6p |ε′n(I − ρM ′n)−1(M ′n +Mn)X

(j)
n |
}
|ρ̂n − ρ|

n
>
r

2⋂
|ρ̂n − ρ| 6 c)

6 c+ P ( max
16j6p

|ε′n(I − ρM ′n)−1(M ′n +Mn)X
(j)
n | >

rn

2c
)

Next, we need the tail probability of

max
16j6p

|ε′n(I − ρM ′n)−1M ′nMnX
(j)
n |

and

max
16j6p

|ε′n(I − ρM ′n)−1(M ′n +Mn)X
(j)
n |.

However, note that in our case, we do not assume Gaussian distribution for the error εn,

instead, we only have zero mean and finite second moment assumption (Assumption 1).

Thus, we use the moment inequality derived from the Nemirovski’s inequality:

E

(
max

16j6p
|ε′nU (j)|

)2

6 8log(2p)
n∑
i=1

(
max

16j6p
|U (j)
i |
)2

Eε2
i

for any design matrix U , with U (j) as its jth column. Based on the assumption, the row
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and column sums of Mn and (I−ρMn)−1 are bounded uniformly in absolute value and each

element of Xn are non-stochastic and uniformly bounded in absolute value. Also, we know

that, if An and Bn are matrices that are conformable for multiplication with row and column

sums uniformly bounded in absolute value, then the row and column sums of AnBn are also

uniformly bounded in absolute value. Further, this result follows to 3 or more matrices.

Thus, the row and column sums of I−ρMn, (I−ρM ′n)−1M ′nMn and (I−ρM ′n)−1(M ′n+Mn)

are all bounded uniformly in absolute value. So every element in matrices (I − ρMn)X
(j)
n ,

(I − ρM ′n)−1M ′nMnX
(j)
n and (I − ρM ′n)−1(M ′n + Mn)X

(j)
n are bounded, and denote the

common bound for all of them as κB .

Then, we have

P
(
A1 >

r

2

)
6 c+

E[max16j6p |ε′n(I − ρM ′n)−1M ′nMnX
(j)
n |]2

(rn/2c)2

6 c+
8(2c)2log(2p)σ2κB

nr2
,

and similarly,

P
(
A2 >

r

2

)
6 c+

E[max16j6p |ε′n(I − ρM ′n)−1(M ′n +Mn)X
(j)
n |]2

(rn/2c)2

6 c+
8(2c)2log(2p)σ2κB

nr2
.

As a result,

P (A > r) 6 P
(
A1 >

r

2

)
+ P

(
A2 >

r

2

)
6 2c+

(2c)2log(2p)σ2κB0

nr2
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Substituting the above probability bounds, we have

P

(
max

16j6p
2|ε′nT (j)|/n > λ0

)
6 P

(
max

16j6p

∣∣∣∣∣ε′n(I − ρMn)X
(j)
n

n

∣∣∣∣∣+ A >
λ0

2

)

6 P

(
max

16j6p

∣∣∣∣∣ε′n(I − ρMn)X
(j)
n

n

∣∣∣∣∣+ A >
λ0

2

⋂
A > r

)

+P

(
max

16j6p

∣∣∣∣∣ε′n(I − ρMn)X
(j)
n

n

∣∣∣∣∣+ A >
λ0

2

⋂
A 6 r

)

6 2c+
(2c)2log(2p)σ2κB0

nr2
+ P

(
max

16j6p

∣∣∣ε′n(I − ρMn)X
(j)
n

∣∣∣ > n

(
λ0

2
− r
))

6 2c+
(2c)2log(2p)σ2κB0

nr2
+
E
(

max16j6p |ε′n(I − ρMn)X
(j)
n |
)2

n2(
λ0
2 − r)2

6 2c+
(2c)2log(2p)σ2κB0

nr2
+

log(2p)σ2κB0

n(
λ0
2 − r)2

6 exp[−t2/2] + κB0 exp[−t2] + κB0 exp[−t2/2]

6 K exp[−t2/2].

This then implies the proof of the result:

P (=) = 1− P
(

max
16j6p

2|ε′nT (j)|/n > λ0

)
> 1−K exp[−t2/2].
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PROOF of Theorem 2.3. On the set =, with λn > 2λ0,

2
||(I − ρ̂nMn)Xn(β̂ − β)||22

n
+ λn||β̂ − β||1

= 2
||(I − ρ̂nMn)Xn(β̂ − β)||22

n
+ λn||β̂S0

− βS0
||1 + λn||β̂Sc0

||1

6 4λn||β̂S0
− βS0

||1

6 4λn
√
s0||(I − ρ̂nMn)Xn(β̂ − β)||2/(

√
nφ0)

6 ||(I − ρ̂nMn)Xn(β̂ − β)||22/n+ 4λ2
ns0/φ

2
0,

where the final inequality follows from the fact that

4uv 6 u2 + 4v2.

Further, combining the oracle inequality with the Proposition regarding the set =, the result

follows.

PROOF of Theorem 2.4. Using the result of Proposition 1 and the line of proof of The-

orem 2, we have

P (An ∩Bn) > 1− P (Acn)− P (Bcn)

> 1−
q∑
i=1

P

(
|zni | >

√
n(|βi| −

λn
2n
bni

)
−
p−q∑
i=1

P

(
|ζni | >

λn
2
√
n
ηi

)
.

where zn = (zn1 , · · · , z
n
q )′ = (Cn11)−1Wn(1), ζn = (ζn1 , · · · , ζ

n
p−q)

′ = Cn21(Cn11)−1Wn(1) −

Wn(2) and bn = (bn1 , · · · , b
n
q )′ = (Cn11)−1sign(β(1)).

Replace all the ρ̂n in the notations above with the true parameter value ρ, and denote these

as Cn0 , Wn
0 , zn0 , ζn0 , and bn0 for simple notation. Then each element in the first term on the
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right hand side of the above inequality is:

P (|zni | >
√
n

(
|βi| −

λn
2n
bni

)
= P

(
|zni | >

√
n(|βi| −

λn
2n
bni ), |zn0i − z

n
i | > δ, |bn0i − b

n
i | > δ

)
+P

(
|zni | >

√
n(|βi| −

λn
2n
bni ), |zn0i − z

n
i | 6 δ, |bn0i − b

n
i | 6 δ

)
+P

(
|zni | >

√
n(|βi| −

λn
2n
bni ), |zn0i − z

n
i | > δ, |bn0i − b

n
i | 6 δ

)
+P

(
|zni | >

√
n(|βi| −

λn
2n
bni ), |zn0i − z

n
i | 6 δ, |bn0i − b

n
i | > δ

)
= A1 + A2 + A3 + A4

for any δ > 0.

Since Cn−Cn0 →p 0,Wn−Wn
0 →p 0, then zn− zn0 = op(1), ζn− ζn0 = op(1) and bn− bn0 =

op(1).

Note that here we cannot use C = limn→∞ 1
nX
′
nΣ(ρ)Xn as defined in Assumption 6, since

this may not be nonsingular or maybe not even convergent in the high-dimensional context.

Thus, A1 + A3 + A4 < 3δ, and

A2 = P

(
|zni | >

√
n(|βni | −

λn
2n
bni ), |zn0i − z

n
i | 6 δ, |bn0i − b

n
i | 6 δ

)
6 P

(
|z0i| >

√
n(|βni | −

λn
2n

(bni0 + δ))− δ
)
.

Now if we write zn0 = H ′Aεn, where H ′A = (ha1, · · · , h
a
q)′ = (C0

11)−1 1√
n

[(I − ρMn)Xn] (1)′,

then

H ′AHA = (C0
11)−1n−1[(I − ρMn)Xn](1)′[(I − ρMn)Xn](1)(C0

11)−1 = (C0
11)−1.
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Therefore, zn0i = (hai )′εn with

||hai ||
2
2 6

1

K2
∀i = 1, · · · , q. (2.12)

Similarly,

P

(
|ζni | >

λn
2
√
n
ηi

)
= P

(
|ζni | >

λn
2
√
n
ηi, |ζni − ζ0i| > δ) + P (|ζni | >

λn
2
√
n
ηi, |ζni − ζ0i| 6 δ

)
6 δ + P

(
|ζ0i| >

λn
2
√
n
ηi − δ

)
.

If we write ζn0 = H ′Bεn where

H ′B = (hb1, · · · , h
b
p−q)

′ = C0
21(C0

11)−1n−
1
2 [(I − ρMn)Xn](1)′ − n−

1
2 [(I − ρMn)Xn](2)′ , then

H ′BHB

=
1

n
[(I − ρMn)Xn](2)′{I − [(I − ρMn)Xn](1)

{[(I − ρMn)Xn](1)′[(I − ρMn)Xn](1)}−1[(I − ρMn)Xn](1)′}[(I − ρMn)Xn](2).

Since I − [(I − ρMn)Xn](1){[(I − ρMn)Xn](1)′[(I − ρMn)Xn](1)}−1[(I − ρMn)Xn](1)′ has

eigenvalues between 0 and 1, therefore ζn0i = (hbi)
′εn with

||hbi ||
2
2 6 K1 ∀i = 1, · · · , q. (2.13)
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Also note that,

∣∣∣∣λnn bn0
∣∣∣∣ =

λn
n

∣∣∣(C0
11)−1sign(β(1))

∣∣∣ 6 λn
nK2

‖sign(β(1))‖2 =
λn
nK2

√
q (2.14)

Now given (2.12) and (2.13), it can be shown that E(εni )4 < ∞ in Assumption 1 implies

E(zni )4 <∞ and E(ζni )4 <∞. In fact, given any constant n-dimensional vector α,

E(α′εn)2k 6 (2k − 1)! ‖α‖2
2E(εni )2k.

For i.i.d. errors with bounded 4th moments, we have their tail probability bounded by

P (zni0 > t) = O(t−4)

Therefore, for λn/
√
n = O(n

c2−c1
2 ), using (2.14), if we make δ arbitrary small, we have

q∑
i=1

P

(
|zni | >

√
n

(
|βi| −

λn
2n
bni

))
6 q(3δ +O(

√
n(|βi| −

λn
2n

(bni0 + δ))− δ)−4)

= qO
(
r(ρ)n−2c2+2c1−2

)
= O

(
r(ρ)n−2+2c2

)
,

where r(ρ) is the bound for the absolute value of the elements in the matrix (Cn11(ρ))−1.
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Likewise,

p−q∑
i=1

P

(
|ζni | >

λn
2
√
n
ηi

)

6 δ + (p− q)O
(
n2

λ4
n

)
= O

(
pn2

λ4
n

)
= o(1)

Adding these two terms, Theorem 2.4 follows.
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Chapter 3

Post-model Selection Estimation for

Regression Models with Spatial

Autoregressive Error

3.1 Introduction

From the previous chapter, we have mentioned that there exists an extensive literature work-

ing on spatial econometric models where the data are collected spatially from cross-sectional

units in one time period, and the spatial relation among the sampling sites can not be ig-

nored. Among all, the spatial autoregressive model, which was first introduced by Cliff and

Ord (Cliff and Ord, 1973, 1981) as a variant of the model suggested in Whittle (Whittle,

1954), is one of the most widely referenced models of spatial autocorrelation. In a regres-

sion context, if the spatial influence comes only through the error terms, we can model the

disturbance term for one cross-sectional unit as a weighted average of disturbances corre-

sponding to other cross-sectional units, plus an innovation. The weighted average involves a

scalar parameter, denote ρ, and a spatial weight matrix whose elements describe the spatial

interactions. And the innovations are typically assumed to be independent, identically dis-

tributed with mean zero and standard deviation σ2. The parameter of interest in this case
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will be ρ, σ2 and the vector of regression coefficients β.

In a high-dimensional set up, which is easily encountered these days, traditional methods

for regression models with spatial autoregressive errors can not be directly applied. One of

the most common approaches to variable selection and estimation in high dimension models

has been the least absolute shrinkage and selection operator, the `1 penalized Lasso estimator

first introduced by Tibshirani (Tibshirani, 1996). It has been proved as a fundamental result

that the Lasso type `1 penalized estimator obtains both the parameter consistency (Knight

and Fu, 2000, Bühlmann and van de Geer, 2011) and model selection consistency (Zhao and

Yu, 2006). And the `1 penalized least squares estimators achieve the `2 error convergence at

the rate of
√
s log p/n, which adds a penalty

√
log p to the oracle rate

√
s/n of convergence

when the true model is known. Here, n is the sample size, p is the total number of parameters

and s is the number of parameters with non-zero coefficients (Bickle, Ritov, Tsybakov, 2009,

Zhang, Huang, 2008).

Based on previous literature, Belloni and Chernozhukov (Belloni, Chernozhukov, 2013)

proposed a two-step procedure, which applies ordinary least squares to the model selected

by first-step Lasso estimator. They show that the post-model selection estimation performs

at least as well as the Lasso in terms of the rate of convergence, even when Lasso did a

unsatisfactory job in eliminating insignificant parameters in the variable selection step and

it can be strictly better when Lasso can perfectly select the true regression model. We want

to derive similar results for the spatial model in the high dimensional setting. In Chapter

2, we combine the idea of generalized moments estimator and `1 penalized estimator, and

develop a generalized two-stage Lasso estimator as a first step model selection. It turns out

that the variables selected in the first step is able to contain the true parameter set and the

difference between the selection and true set m̂ is at the same order with s. Then the least
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squares estimator in the second step can achieve a `2 error rate as well as the estimator

from the first step. Further if the first step can perfectly select the true model, that is, the

difference m̂ goes to zero in probability, then the two step estimator is able to attain the

oracle rate of
√
s/n. Similar result for the sup norm estimation error rate is also derived.

This is non-trivial work since the literature on high-dimensional models has focused mostly

on `1 and `2 estimation errors, `∞ bounds on the estimation error was established for linear

regression model (Lounici, 2008, van de Geer, 2014), but has not been mentioned in the

high-dimensional spatial models.

The rest of the chapter is organized as follows. Section 2 discusses the properties of the

model selection and estimation by first step model selection applying the generalized Lasso

method described in Chapter 2. Section 3 proves the `2 error as well as the sup norm error

convergence rate for the least squares post-model selection estimation. Section 4 provides

the simulation studies of the performance of the post-model selection estimator compared

with simultaneous variable selection and estimation estimator empirically. Section 5 applies

the proposed method to a small Columbus crime dataset as an illustration. All the proofs

are relegated to the Section 6.

3.2 Model Estimation and Selection properties

Following the estimation procedures described in the previous chapter, we can see that the

objective of the model selection steps is to recover the true support T with card(T ) = s,

of the parameter vector β and the properties of the post-model selection estimators depend

crucially on both the estimation and model selection properties of the generalized Lasso. In

this section, we will develop the estimation properties of the generalized Lasso in the form of
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`2 norm, followed by selection properties given by the selection support T̂ of the generalized

Lasso estimator β̂L(ρ̂n)(we will denote β̂ for easy notation).

Assumption 8. Assume the elements of Xn are uniformly bounded in absolute value, further

assume that maxi,j |xij | = O( 1√
s
).

Assumption 8 does nothing but controls the magnitude of the components of the design

matrix, and it can be achieved by normalizing the design matrix. For the analysis of the

estimator, we need to use the following restricted eigenvalue condition on the Gram matrix,

similar statements can be found in Bickel, Ritov, and Tsybakow (2009):

Condition (RE). For a given c̄ > 0, there exists a constant κ(c̄) such that

κ(c̄) = inf
||δTc ||16c̄||δT ||1,δ 6=0

δ′X ′nXnδ

n||δ||22
> 0

For the analysis of post-model selection estimators, we also need the following restricted

sparse eigenvalue condition on the empirical Gram matrix, we can find the same condition

in Belloni and Chernozhukov (2013):

Condition (RSE). For any given m < n − s, there exists finite positive constants τx and

ωx, such that

τx = inf
||δTc ||06m,δ 6=0

δ′X ′nXnδ

n||δ||22
> 0,

ωx = sup
||δTc ||06m,δ 6=0

δ′X ′nXnδ

n||δ||22
<∞

An extended condition can be derived for Condition (RE) in order to cater to the spatial

autoregressive error.

Lemma 3.1. Suppose Condition (RE) holds for c̄ = c+1
c−1 , for some c > 1, and that Σ(ρ) =

(I−ρMn)′(I−ρMn), then for the generalized moments estimator ρ̂n, when n is large enough,
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we have

κ(c̄)µmin(Σ(ρ)) = inf
||δTc ||16c̄||δT ||1,δ 6=0

δ′X ′nΣ(ρ̂n)Xnδ

n||δ||22
,

where µmin(Σ(ρ)) is the minimum eigenvalue of the matrix Σ(ρ).

From the Lemma 3.1 we can see that the effect of spatial autoregressive error in the model

will add a coefficient depending on the eigenvalues of Σ(ρ). And similar extension can be

derived for Condition (RSE) as well. The following theorem constructs the main estimation

properties of the generalized Lasso estimator β̂.

Theorem 3.1. Suppose that Assumption 1-5 and 8 holds, and Condition (RE) hold for c̄ =

c+1
c−1 , for some c > 1. Choose the regularization parameter λn > 2cb(exp (t2/2) + 1)

√
log 2p
n ,

then with probability at least 1−K exp {−t2/2}, t > 0, we have

||β̂ − β||2 6
(1 + 1

c )
√
sλn

κ(c̄)µmin(Σ(ρ))

The bound for `2 norm of the parameter estimation error is derived when the disturbance

εn is distribution free, and the convergence rate of the `2 error is

√
s log p
n . A lower bound

for the regularization λn is required in order to control the randomness brought by εn. In

practice, we would like to select the regularization parameter to be close to the lower bound

since too much penalization will have a negative effect on the selection capability. In fact,

the estimation error converges to zero in `2 norm when
√
sλn → 0.

In the preceding paragraphs, we will discuss the model selection properties of the generalized

lasso estimator and provide the bounds on the false positive selected variables.

Theorem 3.2. (1) If the coefficients are well separated from 0, that is,

min
j∈T
|β0j | > ζ + t, forsome t > 0, ζ = max

j=1,··· ,p
|β̂j − β0j |,
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then under the conditions used in Theorem 3.1, the true model is a subset of the selected

model, T := support(β0) ⊆ T̂ := support(β̂n), with high probability.

(2) Suppose Assumption 1-5, Assumption 8 and Condition (RE), (RSE) holds, and choose

the regularization parameter λn same as in Theorem 3.1, then with probability at least 1 −

K exp {−t2/2}, t > 0, we can have upper bounds on the number of noise variables m̂ =

card(T̂ − T ), that is,

m̂ . s.

From Theorem 3.2, we obtain that the selected support set of the estimator from `1 pe-

nalization T̂ contains the true model T with a high probability converges to 1 and also,

the number of noise variables selected m̂ is bounded by a value in the same order as the

cardinality s. These are the two variable selection properties we need in order to proceed to

the properties of estimators derived from post-model selection estimation. In fact, many of

the known variable selection properties meet these requirements, but we are focusing on the

`1 penalization for better illustration.

3.3 Post-model estimation properties

In this section, we will present a general result on the performance of a post-model selection

estimator β̂p with the model selected from previous steps, in terms of both the `2 norm and

sup norm error convergence rate. We will show that the estimator β̂p can perform at least as

well as the estimates provided by `1 penalization estimation and even strictly outperforms

β̂ if certain properties are achieved by the first step model selection.
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We define the least-square post-model selection selection estimator as

β̂p = arg min
β

1

n
||(I − ρ̂Mn)(Yn −Xnβ)||22, where βj = 0, j ∈ T̂ c. (3.1)

The following lemma provides an upper bound for a stochastic term involving the distur-

bances εn, and it is a crucial part for the derivation of `2 convergence rate theorem.

Lemma 3.2. Suppose Assumption 1-5, 8 and Condition (RSE), ρ̂n is a generalized moments

estimator for ρ, for m = 1, 2, · · · , n− s, define

en(m, η) =
2σ
√
ωxµmin(Σ(ρ))√

n
(

√
log

(
p

m

)
+
√

(m+ s) log (3D) +

√
(m+ s) + log

1

η
)

for any η ∈ (0, 1) and some constant D. Then for all m,

sup
||δTc ||06m,||δ||2>0

|ε
′
n(I − ρM ′n)−1Σ(ρ̂n)Xnδ

n||δ||2
| 6 en(m, η),

with probability at least 1− η exp−s(1− 1/e).

Now with the lemma established above, with a high probability, the `2 error bounds of

the post-model selection estimator β̂p is obtained thereby.

Theorem 3.3. Let β̂ be any estimator from a model selector and let T̂ = supp(β̂). Suppose

β̂ satisfies T ⊆ T̂ , the true support and m̂ = card(T̂ − T ) . s. Now if we let β̂p be the

post-model selection estimator defined in (3.1), with assumption 1-6 and Condition (RSE),

we have for any η ∈ (0, 1) with probability at least 1− η exp−s(1− 1/e) that

||β̂p − β0||2 6
2

τxµmin(Σ(ρ))
en(m̂, η).
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This theorem establishes a bound for the `2 error bounds of the post-model selection. The

convergence rate of this bound implies that the least square post-model selection estimator

performs just as well as the `1 penalization. And in fact, based on the summarization

corollary below, the performance of the post-model selection estimator becomes strictly

better than generalized Lasso when the number of noise variables selected m̂ goes to 0 with

probability to 1. And if the model selection step manages to perfectly select the true model,

that is, T̂ = T , with high probability, the `2 estimation error can achieve the
√ s

n oracle rate

of convergence.

Corollary 3.1. Let β̂p be the post-model selection estimator defined in (3.1), then under the

conditions from Theorem 3.3, we can get directly

||β̂p − β0||2 .



√
s log p
n , in general√

o(1)s log p
n , if T ⊆ T̂ , m̂ = o(s),w.p.→ 1

√ s
n , if T = T̂ ,w.p.→ 1

Now that we have achieve the estimation `2 error bound, we now proceed to construct the

convergence rate of the estimation error in the form of sup norm. At this point, we need one

more assumption of the design matrix.

Assumption 9. Define Ψ =
X′nΣ(ρ̂n)Xn

n , with out loss of generalization, assume Ψi,i = 1,

and maxi6=j |Ψi,j | 6 c
s for some constant c.

Similar assumption has been made in Donoho, Elad and Temlyakov (2006), where the

authors require that the value of maxi 6=j |Ψi,j | to be sufficiently small. In fact, this can also
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be derived from Assumption 8. With these, now we are able to proceed to the result of

convergence rate of the estimation error in sup norm.

Lemma 3.3. Let Assumption 1-5, 8-9 be satisfied. And for any η ∈ (0, 1), take

hn(m, η) :=

√
2

n
σ(
√
m log p+

√
log(m+ s) +

√
log(

1

η
),

then with a probability at least 1-2ηp/(p− 1),

max
i∈T̃ ,card(T̃−T )6m

1

n
|
n∑
j=1

Ti,jεj | 6 hn(m, η), for any m 6 n− s,

where Ti,j is the element in the matrix T = X ′nΣ(ρ̂n)(I − ρMn)−1.

Theorem 3.4. Let T̂ be the support of any first step model selector, and let hn(m, η) be

the same function defined in Lemma 3.3, then assume Assumption 1-5, 8-9 and Condition

(RSE) holds, then we have with high probability,

||β̂p − β0||∞ 6 (1 +
c(m̂+ s)

sµmin(Σ(ρ))τx
)hn(m̂, η).

Theorem 3.4 can be used to derive the rates of convergence of the estimation error in sup

norm of the post model selection estimator and the result is summarized as follows:

Corollary 3.2. Let β̂p be the post-model selection estimator defined in (3.1), then under the
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conditions from Theorem 3.4, we will get

||β̂p − β0||∞ .



√
s log p
n , in general√

o(s) log p
n , if T ⊆ T̂ , m̂ = o(s),w.p.→ 1√

log s
n , if T = T̂ ,w.p.→ 1

3.4 Simulation Studies

In this section, we will use computational simulations to show how the post-model selection

estimator β̂p defined earlier outperform the simultaneous variable selection and estimation

β̂ in terms of the `2 error rate. The distribution of εn in the Monte Carlo study is always set

to be normal, and without loss of generality, N(0, 1). This is because the estimators for ρ

defined earlier do not depend on σ2. The weight matrix Mn is defined as an idealized n× n

weighting matrix in a “circular world” following Kelejian and Prucha (1999), and specifies

Mn such that each element of uni is directly related to the 5 elements immediately before

and after it. For simplicity, we specify Mn such that all the non-zero elements of Mn are

equal and that the respective rows sum to 1. In the n× p design matrix Xn, the covariates

Xi’s are i.i.d. from a p dimensional Gaussian distribution with each component having

mean zero and variance 1. And the pairwise correlation is set to be cor(xij , xik) = 0.5|j−k|,

for 1 6 j, k 6 p. The first q = 20 non-zero components of the p dimensional parameter of

interest β0 are generated independently from a uniform distribution over the interval (−2, 5).

We consider 4 different choices of ρ, along with 4 × 4 = 16 combinations of (n, p), and this

will give us 64 model settings in total. For each case, the results are summarized over 100

74



Monte Carlo replications. At the end of calculations in each setting, we record and compare

the Relative Estimation Error, which is defined by ||β − β0||2/||β0||2, of the estimate β,

for the post-model selection estimator β̂p, the generalized lasso estimator β̂, and the oracle

estimates for the spatial error model with only the true non zero parameters. We denote

them as REEp, REEg, and REEo, respectively. Besides, the number in the parenthesis

record the sum of estimation variance for the 20 significant parameters.

The `1 penalization computation used in finding the generalized lasso estimator and

involved in getting the post-model selection is achieved by using the “glmnet” in the R

package developed by Friedman et. al. (2010), and the penalty level λ is chosen by cross

validation controlled by a data-driven choice of lower bound. The idea is that, based on the

proof, λ is chosen to dominate the randomness brought by εn, that is,

λn > 2c max
16j6p

|ε′nT (j)|/n, with probability at least 1− α,

where T (j) is the jth column of the matrix T = (I−ρM ′n)−1Σ(ρ̂n)Xn, probability 1-α needs

to be close to 1 and c is a constant greater than 1. Therefore, the lower bound for the

penalization is proposed to be

λ = c′σ̂Q(1− α|X, ρ̂n), for some fixed c′ > c > 1,

here Q(1 − α|X, ρ̂n) is the maximum (1 − α) quantile of |z′nT (j)|/n, where zn is a n × 1

standard normal vector and σ̂ is the estimate of σ. Table 3.1 to 3.4 display the superiority of

the post-model selection over the simultaneous variable selection and estimation method via

`1 penalization and they also show the post-model selection estimator reach the same order
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of estimation error rate as the oracle estimator as the sample size is large enough. Figure 3.1

to 3.4 compare the coverage rate of the 20 significant variables in each pair of n, p scenario

at each value of ρ. Here, the coverage is defined so that the true value of each variable is

located within the 95% confidence interval constructed from the estimates.

Table 3.1: Means of REE for β̂p, β̂ and β̂oracle of 100 data sets repetition for ρ = 0.3

p=500 p=800 p=1000 p=1200

REEp 0.084(0.159) 0.101(0.189) 0.119(0.213) 0.123(0.224)
n=225 REEg 0.212 0.216 0.230 0.226

REEo 0.031(0.101) 0.029(0.099) 0.031(0.102) 0.029(0.100)

REEp 0.032(0.058) 0.037(0.064) 0.041(0.066) 0.043(0.072)
n=400 REEg 0.137 0.137 0.137 0.137

REEo 0.021(0.055) 0.022(0.056) 0.021(0.056) 0.021(0.057)

REEp 0.022(0.034) 0.022(0.035) 0.023(0.035) 0.024(0.035)
n=625 REEg 0.116 0.114 0.112 0.110

REEo 0.017(0.035) 0.017(0.035) 0.017(0.035) 0.017(0.035)

REEp 0.016(0.023) 0.016(0.023) 0.017(0.023) 0.016(0.023)
n=900 REEg 0.100 0.096 0.096 0.093

REEo 0.014(0.024) 0.014(0.024) 0.015(0.024) 0.014(0.024)

Table 3.2: Means of REE for β̂p, β̂ and β̂oracle of 100 data sets repetition for ρ = 0.75

p=500 p=800 p=1000 p=1200

REEp 0.101(0.221) 0.119(0.261) 0.135(0.299) 0.144(0.290)
n=225 REEg 0.232 0.221 0.236 0.268

REEo 0.035(0.134) 0.034(0.129) 0.032(0.134) 0.031(0.126)

REEp 0.059(0.142) 0.085(0.176) 0.083(0.167) 0.075(0.173)
n=400 REEg 0.179 0.166 0.152 0.137

REEo 0.028(0.120) 0.028(0.114) 0.028(0.106) 0.027(0.108)

REEp 0.047(0.173) 0.073(0.209) 0.077(0.219) 0.081(0.230)
n=625 REEg 0.218 0.173 0.246 0.222

REEo 0.033(0.197) 0.033(0.187) 0.032(0.194) 0.031(0.191)

REEp 0.044(0.173) 0.041(0.177) 0.053(0.215) 0.047(0.169)
n=900 REEg 0.192 0.145 0.138 0.200

REEo 0.031(0.190) 0.031(0.189) 0.031(0.207) 0.030(0.182)
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Figure 3.1: Coverage rate of post-model selection and oracle estimators for ρ = 0.3
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Figure 3.2: Coverage rate of post-model selection and oracle estimators for ρ = 0.75
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Figure 3.3: Coverage rate of post-model selection and oracle estimators for ρ =
−0.3
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Figure 3.4: Coverage rate of post-model selection and oracle estimators for ρ =
−0.75

80



Table 3.3: Means of REE for β̂p, β̂ and β̂oracle of 100 data sets repetition for ρ = −0.3

p=500 p=800 p=1000 p=1200

REEp 0.082(0.168) 0.091(0.189) 0.106(0.217) 0.120(0.241)
n=225 REEg 0.221 0.228 0.258 0.258

REEo 0.028(0.086) 0.028(0.087) 0.029(0.085) 0.028(0.083)

REEp 0.034(0.054) 0.039(0.061) 0.042(0.065) 0.042(0.063)
n=400 REEg 0.137 0.148 0.144 0.148

REEo 0.020(0.045) 0.019(0.045) 0.019(0.045) 0.020(0.045)

REEp 0.020(0.029) 0.020(0.029) 0.022(0.030) 0.023(0.030)
n=625 REEg 0.105 0.108 0.110 0.108

REEo 0.015(0.028) 0.015(0.028) 0.015(0.028) 0.015(0.028)

REEp 0.015(0.019) 0.016(0.019) 0.015(0.019) 0.016(0.019)
n=900 REEg 0.088 0.087 0.088 0.090

REEo 0.012(0.019) 0.013(0.019) 0.012(0.019) 0.012(0.019)

Table 3.4: Means of REE for β̂p, β̂ and β̂oracle of 100 data sets repetition for ρ = −0.75

p=500 p=800 p=1000 p=1200

REEp 0.092(0.197) 0.102(0.220) 0.114(0.253) 0.115(0.252)
n=225 REEg 0.215 0.217 0.235 0.235

REEo 0.026(0.093) 0.027(0.092) 0.026(0.094) 0.026(0.092)

REEp 0.037(0.062) 0.039(0.070) 0.045(0.077) 0.051(0.082)
n=400 REEg 0.126 0.130 0.134 0.142

REEo 0.018(0.048) 0.018(0.048) 0.017(0.048) 0.019(0.048)

REEp 0.021(0.033) 0.024(0.034) 0.024(0.034) 0.025(0.034)
n=625 REEg 0.099 0.100 0.101 0.099

REEo 0.014(0.030) 0.015(0.030) 0.014(0.029) 0.015(0.029)

REEp 0.015(0.020) 0.015(0.021) 0.015(0.021) 0.016(0.021)
n=900 REEg 0.080 0.078 0.079 0.079

REEo 0.012(0.020) 0.011(0.020) 0.011(0.020) 0.011(0.020)

3.5 Real Data Example

In this section, we are going to apply the proposed method to work on a small real life

data example as illustration. The data we chose is a built in sample data set in the R

package “spdep”, which can also be found in Anselin (1988) book. It includes 49 samples

describing the Columbus crime including the necessary spatial information. This data set

we use originally is not high-dimensional, but we intentionally pick this one since the low-

dimensional nature of the data set can be used as a criterion to check capability of variable
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selection.

The “classic” Columbus crime regression is to predict the variable Crime, the residen-

tial burglaries and auto thefts per 1000 households with variables HOVAL, the house value

and INC, income amount. The Lagrange Multiplier Test Statistics for spatial dependence is

significant for spatial error models and an initial analysis with the sample data returns an

estimate of β̂HOV AL = −1.17, β̂INC = −0.30, with standard error 0.348 and 0.095, respec-

tively. Both the house value and house income have a negative impact on the burglaries and

auto thefts rate. To test the power of variable selection for spatial error models, we manually

input 500 spurious covariates that are uncorrelated with the response, so that the sample

dataset becomes high-dimensional with 49 × 502 dimension. Now a generalized `1 penalty

variable selection method is applied to the sample dataset and the penalization parameter λ

is chosen by cross-validation with a data-driven lower bound. The variable selection method

shows great competence by correctly selecting the only two authentic variables, with a es-

timate of HOVAL and INC -0.4592141and -0.1476459, respectively. A post-model selection

estimation is conducted with the selected two variables and it turns out returning a much

accurate prediction, with parameter estimates β̂HOV AL = −0.99, β̂INC = −0.31, and their

standard error 0.348 and 0.095, the same with the oracle case.
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3.6 Proofs

PROOF of Lemma 3.1. Note that the generalized moments estimator ρ̂n is a consistent

estimator for the spatial autoregressive parameter ρ, then

δ′X ′nΣ(ρ̂n)Xnδ = δ′X ′nΣ(ρ)Xnδ + δ′X ′nΣ(ρ̂n)Xnδ − δ′X ′nΣ(ρ)Xnδ

= δ′X ′nΣ(ρ)Xnδ + δ′X ′n[(ρ− ρ̂n)(M ′n +Mn) + (ρ̂2
n − ρ2)M ′nMn]Xnδ

= ∆1 + ∆2

where

∆1 = δ′X ′nΣ(ρ)Xnδ,

∆2 = δ′X ′n[(ρ− ρ̂n)(M ′n +Mn) + (ρ̂2
n − ρ2)M ′nMn]Xnδ.

Now if we look at the term ∆2, since ρ̂n − ρ →p 0 , ρ̂2
n − ρ2 →p 0 and the boundedness

condition of Xn and Mn, when n becomes large enough,

∆2

n||δ||22
→ 0

And thus,

inf
||δTc ||16c̄||δT ||1,δ 6=0

δ′X ′nΣ(ρ̂n)Xnδ

n||δ||22
= inf
||δTc ||16c̄||δT ||1,δ 6=0

∆1

n||δ||22
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Already known that Σ(ρ) = (I−ρMn)′(I−ρMn) is a symmetric and positive definite matrix,

so there exists a unique decomposition of Σ(ρ),

Σ(ρ) = Q′UQ,

where

U = diag(µ1, · · · , µn)

is the diagonal matrix composed of the eigenvalues of Σ(ρ), and Q is an orthogonal matrix.

Based on these,

∆1

n||δ||22
=

δ′X ′nQ
′UQXnδ

n||δ||22

=
Σni=1µi(QXnδ)

2
i

n||δ||22

> µmin
δ′X ′nXnδ

n||δ||22

Combine with Condition (RE), we yield result of Lemma 3.1.

PROOF of Theorem 3.1. By definition, the generalized Lasso estimator β̂ can be ex-

pressed as

β̂ = arg min
β

1

n
(Yn −Xnβ)′Σ(ρ̂n)(Yb −Xnβ) + λn||β||1,
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where Σ(ρ̂n) = (I − ρ̂nMn)′(I − ρ̂nMn).

Thus, if we denote β0 as the true value for parameter β, intuitively,

1

n
(Yn −Xnβ̂)′Σ(ρ̂n)(Yn −Xnβ̂) + λn||β̂||1 6

1

n
(Yn −Xnβ0)′Σ(ρ̂n)(Yn −Xnβ0) + λn||β0||1.

(3.2)

Since,

1

n
(Yn −Xnβ̂)′Σ(ρ̂n)(Yn −Xnβ̂)− 1

n
(Yn −Xnβ0)′Σ(ρ̂n)(Yn −Xnβ0)

=
1

n
[Xn(β0 − β̂) + (I − ρMn)−1εn]′Σ(ρ̂n)[Xn(β0 − β̂) + (I − ρMn)−1εn]

− 1

n
[(I − ρMn)−1εn]′Σ(ρ̂n)[(I − ρMn)−1εn]

=
1

n
[Xn(β0 − β̂)]′Σ(ρ̂n)[Xn(β0 − β̂)] + 2

1

n
ε′n(I − ρM ′n)−1Σ(ρ̂n)Xn(β0 − β̂)

>
1

n
||(I − ρ̂nMn)Xn(β0 − β̂)||22 − 2

1

n
( max
16j6p

|ε′nT (j)|)||β̂ − β0||1

where T (j) is the jth column of the matrix T = (I − ρM ′n)−1Σ(ρ̂)Xn. Then according to

the result in previous chapter, the set

= :=

{
max

16j6p
2|ε′nT (j)|/n 6 λ0

}

in which the random part can be get rid of, has a probability at least 1 − K exp[−t2/2],

where λ0 = 2σ(exp[t2/2] + 1)

√
log 2p
n . Now assume an arbitrarily constant c > 1, so that

λn > cλ0, then on the set =,

−2
1

n
( max
16j6p

|ε′nT (j)|)||β̂ − β0||1 > −λn
c
||β̂ − β0||1
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Now bring the result back to (3.2), on the set =,

1

n
(Yn −Xnβ̂)′Σ(ρ̂n)(Yn −Xnβ̂) + λn||β̂||1 6

λn
c
||β̂ − β0||1 + λn||β0||1. (3.3)

With simple transformation,

||β̂||1 = ||β̂T ||1 + ||β̂Tc||1 > ||β0T ||1 − ||β̂T − β0T ||1 + ||β̂Tc||1,

and

||β̂ − β0||1 = ||β̂T − β0T ||1 + ||β̂Tc||1,

we can have the relationship of the difference between the generalized Lasso estimator and

the true value of the parameter on the support and non-support set,

c

n
(Yn −Xnβ̂)′Σ(ρ̂n)(Yn −Xnβ̂) + (c− 1)λn||β̂Tc||1 6 (c+ 1)λn||β̂T − β0T ||1

Denote φ = β̂−β0 for notation simplicity, since the first term on the left hand side is positive,

thus on =,

||φTc||1 6
c+ 1

c− 1
||φT ||1

Thus φ belongs to the restricted set in condition RE(c̄), where c̄ = c−1
c+1 , and we can have

1

n
(Yn −Xnβ̂)′Σ(ρ̂n)(Yn −Xnβ̂) =

1

n
||(I − ρ̂Mn)Xnφ||22

> κ(c̄)µmin(Σ(ρ))||φ||22.
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Based on (3.3),

κ(c̄)µmin(Σ(ρ))||φ||22 −
λn
c

(||φT ||1 + ||φTc||1) 6 λn(||φT ||1 − ||φTc||1),

κ(c̄)µmin(Σ(ρ))||φ||22 6 (1 +
1

c
)λn||φT ||1 − (1− 1

c
)λn||φTc||1

6 (1 +
1

c
)λn||φT ||1

6
√
s(1 +

1

c
)λn||φT ||2.

The last inequality makes use of Cauchy-Schwarz inequality, and
√
s is the price to pay when

you replace the `1 with `2 norm. And thus we finish the proof with bound of the `2 norm of

the estimator,

||β̂ − β0||2 6
(1 + 1

c )
√
sλn

κ(c̄)µmin(Σ(ρ))
.

PROOF of Theorem 3.2. (1) Based on the assumption of the magnitude of β0, if T * T̂ ,

then ∃k ∈ {1, 2, · · · , p}, such that β0k 6= 0, but β̂k = 0. Thus for any l ∈ {1, 2, · · · , p},

||β̂l − β0l||2 > |β0k| > min
j∈T
|βj0| > max

j=1,2,··· ,p
|β̂j − β0j |.

A contradiction occurs, and thus T ⊆ T̂ .

(2) Recall the definition of the generalized Lasso estimator defined in (2.6), and make use of
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the Karush-Kuhn-Tucker condition, for ∀j ∈ T̂ ,

d|| 1n(I − ρ̂nMn)Yn − (I − ρ̂nMn)Xnβ||22
dβi

|
βj=β̂j

= [−2
1

n
(Yn −Xnβ)′Σ(ρ̂n)Xn]j |βj=β̂j

= −λnsign(β̂j)

Thus, ∀j ∈ T̂ ,

| 2
n

(Yn −Xnβ̂)′Σ(β̂n)Xn|j = λn.

Since we are only looking at the support set T̂ of the estimated parameter β̂,

√
|T̂ |λn = ||( 2

n
(Yn −Xnβ̂)′Σ(β̂n)Xn)

T̂
||2

= 2||( 1

n
(Yn −Xnβ0 +Xnβ0 −Xnβ̂)′Σ(ρ̂n)Xn)

T̂
||2

6 2||( 1

n
ε′n(I − ρM ′n)−1Σ(ρ̂)Xn)

T̂
||2 + 2||( 1

n
(β0 − β̂)′X ′nΣ(ρ̂)Xn)

T̂
||2

6
λn
c

√
|T̂ |+ 2∆,

here ∆ = ||( 1
n(β0 − β̂)′X ′nΣ(ρ̂)Xn)

T̂
||2. The last inequality is satisfied by ε′ns from the set

=, which we know from Theorem 3.1, has a probability at least 1−K exp {−t2/2}. On the
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other hand, using Holder inequality, and the extension of Condition (RSE),

∆ = ||( 1

n
(β0 − β̂)′X ′nΣ(ρ̂)Xn)

T̂
||2

6 sup
||δTc ||06m̂,||δ||61

|δ′ 1
n
X ′nΣ(ρ̂n)Xn(β̂ − β0)|

6 sup
||δTc ||06m̂,||δ||61

||δ′ 1√
n
X ′n(I − ρ̂nMn)′||2||

1√
n

(I − ρ̂n)Xn(β̂ − β0)||2

6 ωx(m̂)µmax(Σ(ρ))||β̂ − β0||2

To summarize,

(1− 1

c
)λn

√
|T̂ | 6 2ωx(m̂)µmax(Σ(ρ))||β̂ − β0||2,

combined with the order of `2 norm of the difference between the generalized Lasso estimator

β̂ and β0, easily to get

m̂ . s.

PROOF of Lemma 3.2. For each nonnegative integer m 6 n− s, and consider each set

T̃ ⊂ {1, 2, · · · , p}, with card(T̃ − T ) 6 m, define a class of functions

G
T̃

= {fδ, δ ∈ Rp, support(δ) ⊆ T̃ , ||δ||1 = 1},

where fδ = εiD
′
iδ, with D′i = [(I − ρM ′n)−1Σ(ρ̂n)Xn]ith row. Further define the set

Fm = {G
T̃

: T̃ ⊆ {1, 2, · · · , p}, withcard(T̃ − T ) 6 m}.
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combining all possible choices of T̃ . With the definition of en(m, η), it follows directly,

P ( sup
f∈Fm

| 1
n

n∑
i=1

fδ(εi)| > en(m, η)) 6

(
p

m

)
max

card(T̃−T )6m
P ( sup

f∈G
T̃

| 1
n

n∑
i=1

fδ(εi)| > en(m, η)).

(3.4)

Now consider any two functions f, g ∈ G
T̃

, recall that E 1√
n

∑n
i=1 fδ(εi) = 1√

n

∑n
i=1 gδ(εi) =

0, let

γ(f, g) :=

√√√√E[
1√
n

n∑
i=1

fδ(εi)−
1√
n

n∑
i=1

gδ(εi)]
2,

which can be seen as a “natural semimetric”. Also, the covering number of G
T̃

with respect

to γ obeys

N(t,G
T̃
, γ) 6 (

3R

t
)m+s, for each 0 < t < σ

√
ωxµmax(Σ(ρ)). (3.5)

and σ2(G
T̃

) := supf∈G
T̃
E[ 1√

n

∑n
i=1 fδ(εi)]

2 = σ2ωxµmax(Σ(ρ)). Now in the following part

we will detail the procedure to get (3.5).

For two p-dimensional vector δ, and δ̃ ∈ Rp, consider two functions fδ(εi) and f
δ̃
(εi) in

G
T̃

, for a given T̃ which satisfies T̃ ⊂ {1, 2, · · · , p} with card(T̃ − T ) 6 m. Then

√√√√E
1

n

n∑
i=1

(fδ − fδ̃)
2

=

√
1

n
σ2||(I − ρM ′n)−1Σ(ρ̂n)Xn(δ − δ̃)||22

6 σ
√
ωxµmax(Σ(ρ))||δ − δ̃||2,
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when n is large enough. So

N(t,G
T̃
, γ) 6 N(t/R,B(0, 1), || · ||2) 6 (

3R

t
)m+s,

where R = σ
√
ωxµmax(Σ(ρ)) for any 0 < t < R.

By Proposition A.2.7 of van der Vaart and Wellner, let Φ̄(z) =
∫∞
z φ(x)dx 6 z−1φ(z) be

the tail probability of a standard normal variable, then there exists a universal constant D

such that,

P ( sup
f∈G

T̃

| 1
n

n∑
i=1

fδ(εi)| > en(m, η)) 6 (
3DR

√
nen(m, η)√

m+ sσ2ωxµmax(Σ(ρ))
)m+sΦ̄(

√
nen(m, η)

σ
√
ωxµmax(Σ(ρ))

).

By the definition of en(m, η), and denote E =
√
nen(m, η) for notation simplicity,

(
3DR

√
nen(m, η)√

m+ sσ2ωxµmax(Σ(ρ))
)m+sΦ̄(

√
nen(m, η)

σ
√
ωxµmax(Σ(ρ))

)

6 exp{− E2

2σ2ωxµmax(Σ(ρ))
+ (m+ s) log

E
√
m+ sσ

√
ωxµmax(Σ(ρ))

+ (m+ s) log 3D}

= exp{−m+ s

2
(

E
√
m+ sσ

√
ωxµmax(Σ(ρ))

)2 + (m+ s) log
E

√
m+ sσ

√
ωxµmax(Σ(ρ))

+(m+ s) log 3D}.

Take D > e/3, so E√
m+sσ

√
ωxµmax(Σ(ρ))

>
√

2, and combine with the fact that log x 6 x2

4 ,
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if x >
√

2, then the inequalities continues as follows:

(
3DR

√
nen(m, η)√

m+ sσ2ωxµmax(Σ(ρ))
)m+sΦ̄(

√
nen(m, η)

σ
√
ωxµmax(Σ(ρ))

)

6 exp{−m+ s

4
(

E
√
m+ sσ

√
ωxµmax(Σ(ρ))

)2 + (m+ s) log 3D}

= exp{− E2

4σ2ωxµmax(Σ(ρ))
+ (m+ s) log 3D}

6 exp{− log

(
p

m

)
− (m+ s)− log(

1

η
)}

thus the above probability is bounded by ηe−m−s/
( p
m

)
. From (3.4),

P ( sup
f∈Fm

| 1
n

n∑
i=1

fδ(εi)| > en(m, η)) 6 ηe−m−s

And thus

P ( sup
f∈Fm

| 1
n

n∑
i=1

fδ(εi)| > en(m, η), ∃m 6 n− s) 6
n∑

m=0

ηe−m−s

6 ηe−s/(1− 1/e).

And Lemma 3.2 therefore is proved.

PROOF of Theorem 3.3. By the definition of β̂p,

||(I − ρ̂nMn)(Yn −Xnβ̂p)||22
n

6
||(I − ρ̂nMn)(Yn −Xnβ0)||22

n
,

92



thus,

||(I − ρ̂nMn)(Yn −Xnβ̂p)||22
n

−
||(I − ρ̂nMn)(Yn −Xnβ0)||22

n

=
(β̂p − β0)′X ′nΣ(ρ̂n)Xn(β̂p − β0)

n
−

2ε′n(I − ρM ′n)−1Σ(ρ̂n)Xn(β̂p − β0)

n

6 0

Suppose Assumption 1-5, and 8 holds, and combined with the fact that m̂ = card(T̂ − T ),

then using the result of Lemma 3.2, we will get

(β̂p − β0)′X ′nΣ(ρ̂n)Xn(β̂p − β0)

n
6 |

2ε′n(I − ρM ′n)−1Σ(ρ̂n)Xn(β̂p − β0)

n
|

6 2en(m̂, η)||(β̂p − β0)||2,

with probability 1− η exp−s(1− 1/e).

Since m̂ 6 n− s, from the extension of Condition (RSE), we obtain

(β̂p − β0)′X ′nΣ(ρ̂n)Xn(β̂p − β0)

n
> τxµmin(Σ(ρ))||β̂p − β0||22,

remind here Σ(ρ) = (I − ρMn)′(I − ρMn). And combine the above results, with probability

1− η exp−s(1− 1/e), the `2 norm of the post-model selection estimation error has an upper

bound,

||β̂p − β0||2 6 2en(m̂, η)/τxµmin(Σ(ρ)),

which proves the Theorem.

PROOF of Lemma 3.3. For any fixed m ∈ {0, 1, · · · , n − s}, easy to see ||Tεn||∞ =
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max
i∈T̃ ,card(T̃−T )6m

1
n |
∑n
j=1 Ti,jεj |. Then

P (||Tεn||∞ > hn(m, η))

= P ( max
i∈T̃ ,card(T̃−T )6m

1

n
|
n∑
j=1

Ti,jεj | > hn(m, η))

6 (m+ s) max
i
P (

1√
n
|
n∑
j=1

Ti,jεj | >
√
hn(m, η))

Since the εj is i.i.d with N(0, σ2), the linear combination for each i, 1√
n

∑n
j=1 Ti,jεj is also

normally distributed with mean 0 and variance 1
n

∑n
j=1 T

2
i,j . And the variance is indeed a

multiplication of the ith element of the diagonal of the matrix TT ′. Consider the fact that

1
nTT

′−Ψ→p 0, and that all the diagonal element in Ψ is equal to 1. Thus for any η ∈ (0, 1)

max
i
P (

1√
n
|
n∑
j=1

Ti,jεj | >
√
hn(m, η))

6 2 exp{−nh
2
n(m, η)

2σ2
}

And if we bring in the definition of hn(m, η)

P ( max
i∈T̃ ,card(T̃−T )6m

1

n
|
n∑
j=1

Ti,jεj | > hn(m, η), for any m 6 n− s)

6 2Σn−sm=0ηp
−m

6 2ηp/(p− 1).

PROOF of Theorem 3.4. Still use the definition of the post-model selection estimator

β̂p,

||(I − ρ̂nMn)(Yn −Xnβ̂p)||22
n

6
||(I − ρ̂nMn)(Yn −Xnβ0)||22

n
,
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and therefore, easy to get

(β̂p − β0)′X ′nΣ(ρ̂n)Xn(β̂p − β0)

n
−

2ε′n(I − ρM ′n)−1Σ(ρ̂n)Xn(β̂p − β0)

n
6 0.

Since ||(β̂p − β0)Tc||0 = m̂ ⊂ {0, · · · , n − s}, then combine with Condition (RSE), and

Lemma 3.3,

µmin(Σ(ρ))τx||β̂p − β0||22 6 hn(m̂, η)||β̂p − β0||1.

The cardinality of the support of β̂p − β0 is bounded by m+ s, so

||β̂p − β0||21 6 (m+ s)||β̂p − β0||22,

with high probability. Combine the two results, we can have

||β̂p − β0||1 6
hn(m, η)(m+ s)

µmin(Σ(ρ))τx
.

On the other hand, since the subset T̂ elementsof β̂p is the least squares estimator for the

linear model with response vector Yn and covariate matrix X
T̂

, then

1

n
X ′
T̂

Σ(ρ̂n)(Yn −XT̂ β̂ps) = 0,

and easy to see the equation above is the same as

1

n
X ′nΣ(ρ̂n)(Yn −Xnβ̂p) = 0.
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Keep in mind the definition of Ψ, we have,

||Ψ(β̂p − β0)||∞ = || 1
n
X ′nΣ(ρ̂n)(Xnβ̂p − Yn)− 1

n
X ′nΣ(ρ̂n)(Xnβ0 − Yn)||∞

6 || 1
n
X ′nΣ(ρ̂n)(X ′nβ̂p − Yn)||∞ + || 1

n
X ′nΣ(ρ̂n)(Xnβ0 − Yn)||∞

6 || 1
n
X ′nΣ(ρ̂n)(Xnβ0 − Yn)||∞

6 hn(m̂, η),

from the result of Lemma 3.3.

Thus, with high probability ,for 1 6 j 6 p,

(Ψ(β̂p − β0))j = (β̂pj − β0j) +
∑
i6=j

Ψi,j(β̂pi − β0i),

then

|(Ψ(β̂p − β0))j − (β̂pj − β0j)| 6
c

s

∑
i6=j
|β̂pi − β0i|

|β̂pj − β0j | 6 |(Ψ(β̂p − β0))j − (β̂pj − β0j)|+
c

s

∑
i6=j
|β̂pi − β0i|,

and we will have

||β̂p − β0||∞ 6 ||Ψ(β̂p − β0)||∞ +
c

s
||β̂p − β0||1

6 (1 +
c(m̂+ s)

sµmin(Σ(ρ))τx
)hn(m̂, η).

And this proves the result of Theorem 3.4.
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Chapter 4

Future work

4.1 An extension to Mixed Regressive, Spatial Autore-

gressive Models

Tobler’s first law of geography encapsulates this situation: “everything is related to every-

thing else, but near things are more related than distant things.” One way of approach is

through spatial interaction. According to Anselin and Bera (1998), high or low values for

a random variable tend to cluster in space or locations tend to be surrounded by neighbors

with very dissimilar values. The spatial interactions generally come from three resources:

the endogenous interaction effects among the dependent variables, the exogenous interaction

effects among the independent variables and the interaction effects among the error terms.

To capture the spatial dependence, the general approach in a spatial econometrics is to

impose structures on a model. In an empirical economic problem, if the spatial influence

only comes from the error terms, econometricians will prefer to use a regression model with

spatial autoregressive errors, that is, a spatial error model as we have discussed in the previ-

ous chapters. Compared with others, the spatial error model is conceptually simpler in the

sense that the only problems involved are heteroskedasticity and non-linearity in the spatial

parameter ρ.

Another popular type of model, which has also been heavily discussed in the literature,
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considers the endogenous interaction effects on the dependent variable in a regression context,

and this type of model is called Mixed Regressive, Spatial Autoregressive Model:

Yn = δWnYn +Xnβ + εn, (4.1)

where n is the total number of spatial cross-sectional units, Yn is an n-dimensional vector

of response, Xn is an n× p matrix of constant regressors, Wn is the spatial weights matrix,

similarly defined to matrix Mn in the Spatial Error Model, and εn is an n-dimensional

i.i.d. disturbances with zero mean and finite variance σ2. The WnYn in (4.1) is called a

“spatial lag” and the spatial autoregressive parameter ρ represents the spatial effect due to

the influence of neighboring units. The main interest in estimation of the model is, in general,

the parameters δ, β and σ2. The interpretation of the model is that the response of a unit

depends not only on the explanatory variables but also on the response of its neighboring

units. Therefore, the spatial lag model is widely used in spatial econometrics, social sciences,

agricultures, and health (Bertrand, Luttmer, and Mullainathan, 2000, Topa, 2001).

Clearly we would not want to run ordinary least squares (OLS) on this model, since the

presence of Yn on both sides of the equation means that there exists a correlation between

regressors and disturbances, and the estimates will thus be biased and inconsistent. The

estimating methods, which have been widely discussed in the literature for mixed regres-

sive, spatial autoregressive models, are mainly the (quasi-) maximum likelihood estimator

(Lee, 2004), the two-stage-least-square (2SLS) or Instrumental Variable method (Kelejian

and Prucha, 1998, Lee, 2002) and the generalized method of moments (Lee, 2007). The

instrumental variables (IV) are usually generated from exogenous regressors Xn and the

spatial weights matrix Wn of the model, and most of them are computationally simple.

98



However, they are inefficient relative to the ML estimator, when the disturbances are nor-

mally distributed so that the likelihood function is correctly specified. Also, as the IVs are

functions of the spatial weights matrices and exogenous variables, the 2SLS method would

not be applicable to the (pure) Spatial Autoregressive Process when there are no exogenous

variables relevant in the model. The generalized method of moments (GMM) approach com-

bines the IV estimation with a generalization of the method of moments (MOM) in Kelejian

and Prucha (1999) that has been discussed for the estimation of Spatial Error Model. Of

all, the most popular and traditional estimation method is the (quasi-) maximum likelihood

estimator under the assumption that the error term εn is normally distributed, and the

quasi-maximum likelihood estimator allows for the case when the true distribution of error

is different from normal.

We want to continue the idea of exploring variable selection and estimation methods

in the high-dimensional setup, where the data contains larger number of parameters than

the sample size but most of them are excessive, for spatial econometric models and extend

the theoretical discussions to a mixed regressive, spatial autoregressive model, where the

response variable is spatially correlated with units in neighbors in a regression context.

Consider the mixed regressive, spatial autoregressive model defined in (4.1) in a high-

dimensional setting, and let Sn(δ) = In − δWn. We advocate an `1 penalized likelihood

estimator which is defined as,

β̂ = arg maxβ∈Rp{l̂n(β)− λn||β||1}, (4.2)
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where

l̂n(β) = −n
2

ln(2π)− n

2
lnσ2 + ln |Sn(δ)| − 1

2σ2
(YnSn(δ)−Xnβ)′(YnSn(δ)−Xnβ).

is the log-likelihood of the model parameters given the sample. In reality these days, there

are increasing number of datasets containing spatial interaction that comes from the response

variable, and for many of them, large amounts of irrelevant parameters exist because of easy

data collection. Because of this, it will be extremely helpful to achieve asymptotic consistency

as well as theoretical inference results to justify for the penalized estimator defined in (4.2).

4.2 Future Work

So far, spatial literature has not paid much importance on model selection in a high di-

mensional context, and neither has the model selection literature accounted for spatial de-

pendence in any substantial way. The combination of these two concepts can be widely

extended to more complex spatial models. For example, besides the spatial error model and

mixed regressive, spatial autoregressive model we discussed in the dissertation, when only

one source of spatial interaction is considered, we can also develop similar approach for the

spatial autoregressive model with autoregressive disturbances, where both interactions from

the neighbors are considered. Also, the spatial models we mentioned only contain one spatial

lag term (the ρMn or δWn part). Spatial models with higher-order, which incorporate two

or more spatial lags, have also been discussed in the literature (Lee and Liu, 2010) and how

to develop efficient statistical approaches for them in the high-dimensional set up is worth

studying.
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In the existing literature of spatial econometrics, the spatial weight matrix plays an

irreplaceable role in describing the interactions between cross-sectional units. However, it

has been pointed out by Manski (1993) that the literature of spatial autoregressive model

family fail to specify how the spatial weight matrix should change when the sample size

changes. Even though the increase of sample size will inevitably affect the magnitude of the

spatial autocorrelation, and there exist large literature working on the asymptotic properties

of estimators in the low-dimensional set up, study of how the spatial weight matrix will

change is largely neglected. More work is needed for the specification of spatial weight

matrix to allow for a changing sample size context.

Besides, the spatial autoregressive model family in the literature always treat the spatial

weight matrix as priori knowledge and the spatial weights are typically defined as functions of

some pre-defined measure of distance. The choice may or may not be consistent with reality

and incorrect specification may result in consequences. Some literature has already noticed

the issue (Bhattacharjee, Jensen-Butler, 2013, Bailey et al, 2014), but most of the methods

are developed for panel data and do not take into consideration of the high-dimensionality of

the predictor variables. We anticipate the analysis of spatial weight matrix for data collected

from one time period in a high-dimensional set up could lead us to a new understanding of

spatial interaction and the method can also be extended to a wider research field.
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