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ABSTRACT

ACCURACY OF POPULATION PROJECTION METHODS

FOR LOCAL GOVERNMENTS IN MICHIGAN

BY

IKKI KIM

Trend extrapolation is a popular method for population

projection in local planning offices because it is simple and

inexpensive. However, its accuracy is often open to question

because users have no way to determine the quality of their

projections. There is a need to identify the conditions and

models that make trend extrapolation methods acceptable for

planning practice.

Six extrapolation models are tested with data for 172

cities and towns in Michigan. The models were calibrated on

population data from 1940 to 1970, and projections were made

for 1980. To test accuracy, the projected populations were

then compared with actual 1980 census data. Based on this

accuracy testing, recommendations are proposed for selecting

the most accurate models for various types of cities,

according to their growth rate change.

The findings of the research have been used to develop a

composite method that comprises the models yielding the

minimum mean error for each of the various types of cities.

In addition, a computer program has been developed using the

composite method.
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CHAPER 1

INTRODUCTION

Introduction
 

Information about future population is essential to the

functioning of a local planning office, because population

projections provide quantitative yardstick of future

demandes for public facilities and services. Reliable

projections thus provide a foundation for sound planning

decisions.

Population trend extrapolation techniques are popular

methods of that extend past and present trends of population

growth or decline against time into the future for

projecting the total population. Although population trend

extrapolation has weak theoretical foundations and lacks of

component detail, projections are ppularly used as simple

and inexpensive techniques of forecasting local population

in the short-term (Greenberg, Michael and Krueckeberg,

1978).

The accuracy of such projections, however, is often

open to question because users have few ways to determine

the quality of their projections. Therefore, there is a

need to identify the accuracy of widely used trend

extrapolation techniques with certain city characteristics,

to make them acceptable as planning models.





To meet this need, Isserman (1977) carried out accuracy

tests of a wide range of extrapolation methods and

communities. He used census data from 1930 to 1950 to

project 1960 population and data from 1930 to 1960 to

project 1970 population for townships in Illinois and

Indiana. To reduce projection errors, he used different

methods for different townships. Two characteristics were

used to define the township types ; namely their population

levels and growth rates (Isserman, 1977 : 253). The

population growth pattern of cities in the United States,

however, was changed over the 19705 in many places. The

trend of migration into cities started to decelerate. Many

Michigan cities, especially, showed of decrease in

population growth rates during the 19703. It is, therefore,

necessary to retest and determine the accuracy of popular

extrapolation techniques for use with the changed trends.

This study tested the accuracy of six popular trend

extrapolation models with data from 172 cities and towns in

Michigan. Three of the six models were selected from

Isserman's study (1977) : the linear model, the exponential

model and the double logarithmic regression model. The

Gompertz model, the modified exponential model, and the

second degree polynomial model were added to test whether or

not they are appropriate for the changed population trends.

Growth rate change was used to identify and designate types

of cities.



The six models were calibrated on population data from

1940 to 1970, and projections made for 1980. The projections

were subsequently compared with actual 1980 census data.

The accuracy of each model was then examined using the

cities' growth rate change classifications. Based on

accuracy tests, a proposal is made to create a projection

method by selecting specific models for different types of

cities and towns, as no one model yielded the minimum mean

error across city types. This method is called the

composite method in this study.

Purposes gf the Study
 

Usually, the local planning offices have a

responsibility to provide population projection data for

various purposes (Goodman and Freund, 1968 : 51). In many

cases, however, a local planning office lacks data and

funds, and has a limited amount of the time and expertise

needed to project future population through sophisticated

techniques (Isserman, 1977). In some cases, all that is

riquired only a quick and rough future population

projection, in which a certain range of projection error is

acceptable (Pittenger, 1976 : 29).

To satisfy the limits, trend extrapolation models have

been popular in local planning office because the models are

simple and inexpensive. Local planners do not have any

information about the accuracy of trend extrapolation models



because there is no way to measure the quality of their

projections by mathematical functions.

In two previous studies, using linear and exponential

regression models,Schmitt and Crosetti (1953), and Greenberg

(1972) provided information about projection accuracy for

communities in general, but not for specific types of

communities, (Isserman, 1977 : 253). Only Isserman (1975)

did accuracy test with a wide range of extrapolation methods

and communities. The hybrid methods which he developed are

a mixture of extrapolation techniques to fit communities

with particular characteristics called composite methods in

this study.

Isserman tested accuracy using 1930 to 1970 census

data. Until 1970, the trend of migration into the cities

was seen throughout the United States. This trend of

population migration, however slowed and changed, during the

19708 in Michigan (Rathge, Wang and Beegle, 1981 : 2). Only

19 out of 172 cities in this study show a net population

decrease from 1940 to 1950. Population losses in 25 cities

from 1950 to 1960, in 52 cities from 1960 to 1970, and in

101 out of 172 cities from 1970 to 1980 show net population

decrease. These changes probably affected the accuracy of

the extrapolation models, because trend extrapolation

techniques are dependent on past population changes. One

objective of this study is to deternube whether or not the

accuracy of each model assessed by Isserman's test is still





reliable in Michigan under changed trends, and, if not, to

find a model which is appropriate changed trends.

In addition to providing information about the accuracy

of various extrapolation models for each type of city,

another purpose of this study is to develop a micro-computer

program for local planners. The program will make

population projection easier, faster, less expensive, and

probably more accurate than arbitrarily selecting an

extrapolation model.

In summary, the three major purposes of this study are

as follows

(1) To provided information about the accuracy of the six

major extrapolation models;

(2) To test the accuracy of each of the six models and

developing the composite methods for minimizing error.

(3) To develop a micro-computer program of population

projection for local planners to project population

easily, fast, and inexpensively.

Data and Methodology
 

Cities and towns with a population over 2,500 were

selected from 1970 census data. Data for 172 cities and

towns were available, back to 1940. All of those cities were

used for testing the accuracy of the six trend extrapolation

models instead of using a sample of cities and towns in

Michigan. The number of 172 excluded Detroit, because of its



size inequity and probability that Detroit has different

migration trends than other cites.

Population projections for the accuracy tests were

carried out through unadjusted projection, rather than

adjusted projection as in stepdown projections. For

regression models, the point projection, which involves a

parallel shift of line passing the last observed population

point, were used as Isserman (1977) used it. He argued that

the point projection may correct for accumulated errors in

the regression lines.

The census data from 1940 to 1970 were used to project

1980 population for 172 cities and towns, using six trend

extrapolation models. These projected populations were then

compared to actual 1980 census data in order to estimate the

percentage error as a measure of the accuracy of each

model. The percentage error was calculated by the following

equation.

Percent Error = [(projected - actual) / actual] x 100

Average percentage errors were calculated for all

cities and for a certain city type with the percentage

errors between the actual population and the projected

population Projected calculated by the six models. The mean

percentage error for all of cities or for a city type were

then compared among the six models to determine which model

yielded the minimum mean percentage error for a certain type

of city.



Because minimizing the mean percentage error is not

adequate as a decision-making rule for choosing among

alternative methods, standard deviation was used as the

secondary criterion.

In order to develop the composite method, which is the

method where different models are applied to different types

of citis to minimize error, two characteristics were used to

define the city or town types : growth rate change and

population size. The growth rate change was calculated by

the growth rate from 1960 to 1970, minus the growth rate

from 1950 to 1960 in this study. The growth rate change was

used as a major characteristic to classify cities, instead

of the growth rate that Isserman (1977) used to classify the

township types, because the growth rate change implies

change of the past three point observations with one figure,

while the growth rate represents just change of the past two

point observations. For example, the growth rate and the

growth rate change for each city can be calculated with

census data up to 1970 by the following equation.

R1 (P2 - Pl) / P1

R2 (P3 - P2) / P2

RC = R2 — R1

where P1 1950 population

P2 = 1960 population

P3 = 1970 population

R1 = growth rate from 1950 to 1960

R2 = growth rate from 1960 to 1970

RC = growth rate change between '505 and '608





If the growth rate is used to classify city types, the

value of R2 will be used as represent the populaton trend in

1960 and 1970. If the growth rate change is used, the value

of RC will represent the value of R1 and R2. Consequently,

the growth rate change implies the population trend in 1950,

1960 and 1970. Because population extrapolation models

merely extend past population trends into the future, the

depth of the historical periodic population data may

influence projections. The deeper historical data may be

the better indicator of city types. Therefore, in this

study, seven types of cities were identified according to

growth rate change.

Population size was considered a less important

characteristic than growth rate change, because population

size gives a less clear distinction of accuracy among the

models. Isserman (1977 : 256) also came to the same

conclusion about populatin size. Other characteristics were

not considered, because Isserman tested with several

characteristics of cities (Greenberg, Krueckeberg and

Mautner : 16) and found that growth rate was the better

criterion for discriminating between city types (Isserman,

1977).

The mean percentage error and standard deviation of

percentage error drived from the six extrapolation models

were compared for each type of city. Certain models were

chosen as the best models for particular types of cities,



according to minimum mean percentage error. If the mean

error of two or more models was very close, the model that

had the smallest standard deviation was considered best. A

composite method was, then, developed comprising the best

model for each type of city meaning that different methods

are applied to different types of cities.





CHAPTER 2

POPULATION TREND EXTRAPOLATION MODELS

The basic notion of population extrapolation models and

models used for extrapolation provide the theoretical

foundation for this research. Therefore, basic notions of

extrapolation and fundamental equations for each model are

described briefly in this chapter.

As mentioned before, population trend extrapolation

models are simply the placement of lines or curves on a

graph from past observed population points to the future.

Therefore, extrapolation models involve nothing more than

the extension of past trends over time. The lines or curves

used to depict the past population trends can be interpreted

by certain mathematical equations. The equation is a kind

of extrapolation model.

All of these models deal with total population against

time. They never deal with any other factors. Social,

economic and political factors are not considered; nor are

the details for sex—age breakdown or the three components of

population (fertility, mortality and migration). The six

most common extrapolation models will be described in this

chapter.

10
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Linear Extrapolation

The linear equation can be derived in two ways that are

graphically presented here in figure 1. One (a in Figure 1)

is by calculating the average population change in past time

intervals and another (b and c in Figure 1) is by regressing

past population data against time. The regression technique

has two variations, namely, line projection and point

projection which can also be applied to the exponential and

the double logarithmic regression models.

A line projection (c in Figure 1) is simply a method

that extends the regression line into the future. A point

projection (b in the figure 1) ia a parallel shift of the

population

 

time (year)

(Note) a = linear average model

b = linear regression model with

point projection

c = linear regression model with

line projection

FIGURE 1 : LINEAR EXTRAPOLATION MODELS
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regression line of line projection, so that it passes

through the last observed population point (Isserman, 1977

250). In this study, point projection was used for linear,

exponential and double logarithmic regression. Isserman

also used this technique for his accuracy test of

extrapolation models and argued that it might correct for

cumulated errors in the regression line (Isserman 1977

250). This seems reasonable ; the last observed population

is the latest actual value, because it probably corrects the

mathematical error up to the last observation point.

The linear regression model, with point projection, can

be represented by the following mathematical equations

(Isserman, 1977 : 259).

P = P + bn ............ (Equation 1)

t+n t

where P = population

t = terminal year in historical data base

n = number of years from t to projection year

b = regression coefficient

The value of coefficient "b", that is drived from the

least square method, is the slop. The slope represents the

population growth increment per of unit of time. Therefore,

the larger value of coefficient "b" indicates the larger net

population growth per unit time as shown. The negative

value of coefficient "b" means that the population decreases

as the value of parameter "b" decreases per unit of time.

The linear regression model with point projection

assumes that a population will grow or decrease by the same
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number of persons in each future time interval and the

projection line will include the last observed population

point.

Erpgnential Extraegletign

The exponential equation can be derived by caculating

the average population growth rate in past time intervals or

by regressing the logarithm of past population data against

time. The exponential regression with point technique was

used in this study for the same reason previously stated in

the linear regression model with point projection. The

exponential regression with point projection take following

form (Krueckeberg and Silvers, 1974 : 262).

n

P = P (1+r)

t+n t

where P = population

t = terminal year in historical data

r = the rate of population change

n = the number of year from t to projection year

calculated.

The (1+r) in the above equation can be replaced by "b",

Thus, the equation can be transformed to logarithmic form as

follows (Isserman, 1977 : 259)

In P = ln P + n ln b ......... (Equation 2)

t+n t

where population

terminal year in historical data

the rate of population change

the number of year from t to projection year

n b = regression coefficientH
a
n
n
a
-
J

II
II

II
II
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The exponential model equation is actually the same as

the linear regression model with addition of the logarithm

transformation of population. If the coefficient "ln b",

calculated by the least square method, is positive, the

population will grow at a constant rate per unit of time.

If the coefficient "ln b" is negative, the population will

decrease at a constantly decreasing rate over time. The

larger the absolute value of coefficient "ln b" shown, the

faster the growth or reduction rate.

The exponential regression model with point projection

assumes that a population will increase or decrease at a

constant rate over time, and the projected exponential curve

will pass the last observed population point.

Double logarithmic equations are derived by regressing

logarithms of past population data against logarithms of

time. The point projection technique was also used for this

model. The formula is as follows (Isserman, 1977 : 259)

ln P = 1n P + b ( ln (t+n) — ln t ) ... (Equation 3)

t+n t

where P = population

t = terminal year in historical data base

n = number of years from t to projection year

b = regression coefficient

The double logarithmic equation is very similar to the

exponential model with the addition of the logarithm

transformation of time.
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The modified exponential curve is a curve of the

exponential family of mathematical functions, which shows a

continuously declining proportional population growth at

constant rate, but a continuously increasing net population

growth until the curve approaches an upper capacity limit.

The modified exponential function can be presented as the

following equation (Pittenger, 1976 : 67)

m

P = k + a b

i+m

where P = population

1 = initial year in historical data base

m = number of years from i to the projection year

k = the upper limit or maximum population

a and b = parameter

In this equation, the parameter "a" is the difference

between the value of "k" and the value of the population at

origin, so the parameter "a” should be negative. The

parameter "b" is the ratio of change, and the value of it

should be positive and less than one (Pittenger, 1976 : 67).

The parameters "k", “a" and "b" can be derived by the least

square method, but a selected points technique from Croxton

and Cowden (1945) was used to get two parameter in this

study as Pittenger (1976) did.

The following equations are a summary of the selected

points technique to get the values of parameters "k", "a"

and "b". If Y1, Y2 and Y3 are the partial population totals
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—— three equal groups of population data from initial year

to terminal year -— and n is the number of elements

comprising the partial total, then ;

n

b = (Y3 — Y2) / (Y2 - Y3)

n

ln b = (ln b ) / n

n 2

a = (Y2 ~ Y1) (b-1) / (b - 1)

n

k = [Y1 — a (b - 1) / (b — 1)] / n

If parameter "b" is negative, then parameter "a" will

be negative through the selected points method. In that

case, the value of "bm" in the equation will be changed in

the negative and positive range according to the value of

"m". If the value of "m" is even, the value of "bm" will be

positive and if the value of "m" is odd, then it will be

negative. The projection curve with the negative value of

the parameter "b" will produce the curve of a zig—zag form.

It is not the modified exponential curve.

If parameter "b" is larger than one, then parameter "a"

will be positive through the selected points technique.

This means that the projected population is the upper limit

plus the value of "abm", which is positive in the case of

parameter "b" larger than one. Therefore, the projection

curve does not show any upper limit population while the

upper limit is the assumption of the modified exponential

model.

If parameter "b" is zero or one, then the value of
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"abm" becomes zero. In that condition, the projected

population will be the same as the upper limit population

"k" through time.

Therefore, it is necessary to satisfy the indispensable

condition of the modified exponential model. The

indispensible condition is that the parameter "b" is

positive and less then one, and that the parameter "a" is

negative. Graphically the curve looks like that shown in

Figure 2.

The modified exponential curve assumes that there is

some upper limit to the population, which may be set by

zoning, subdivision control or any other public policy, and

the population growth rate will decline at a constant ratio

until it approaches the upper limit.

POP.

 

 

TIME

FIGURE 2 : MODIFIED EXPONENTIAL CURVE
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§:§haee Curyg

There are tow common "S" shaped exponential formulas,

namely the Gompertz curve and the Logistic curve. The

S—shape curves have a lower limit and an upper limit. The

Gompertz curve was used for testing accuracy in this study.

By the S-shape curves, population growth starts from no

net change in the early stage, and then begin to increase in

rapid growth rate and net population and, at certain point,

starts to decrease growth rate while still increasing net

population, until there is finally no net change in

population again at the upper limit. The mathematical

formulas of the Gompertz curves are shown as following

equations (Pittenger, 1976 : 57)

If the equation is transformed to logarithm form

(Pitternger, 1976 : 58),

m

ln P = ln k + ( ln a ) b ..... (Equation 5)

i+m

where P = population

1 = initial year in historical data base

m = number of years from i to the projection year

k = the upper limit or maximum population

a and b = parameter

The parameter “k", "a" and ”b" was also derived in this

study by the selected points method shown by Pittenger
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(1976). The equation of the Gompertz curve is basically the

same as the modified exponential model except for the

logarithmic transformation of population. Therefore, the

value of parameter "b" should also be positive and less than

one and the value of "ln a" should be negative for the same

reasons as described for the modified exponential model.

The Gompertz curve's graphic equivalent is pictured in

Figure 3.

The S—shape curve assumes that population growth begins

slowly and gains momentum until it reaches an inflection

point, after which it begins to decrease proportionately to

population growth.

POP.

 

 

inflection point

I

H

 

TIME

FIGURE 3 : GOMPERTZ CURVE
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gglypgmial Curve

The polynomial curve gives possibilities for the

application of the various shape of curves. The curve

shapes are dependent on the degree of the polynomial and the

value of parameters. The general formula is represented as

following (Pittenger, 1976 : 53) ;

2 3 n

P = a + bm + cm + dm + .... + qm ... (Equation 6)

i+m

where P = population

m = number of years from initial year

to projection year

a, b, c, .. q = polynomial coefficients

In this study, the second and third degree of

polynomial were tested. The second degree polynomial model

was then selected to test the accuracy of the model, because

POP.

’ 2

    \

\

2

(a - b /4c)———

*.

l

l

l

l

l

l

l

+

l

 

 l

I (-b/2c) TIME

FIGURE 4 : THE SECOND DEGREE POLYNOMIAL CURVE
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the second degree polynomial model showed less projection

error in the Michigan case.

The coefficient "a", "b" and "c" were derived from the

least square method. The second degree polynomial equation

can be expressed to as following

2 2

P = c (m + b/2c ) + (a — b /4c)

i+m

This formula is shown graphically in Figure 4.

The coefficient "c" decides the form of the curve. The

value of "b/2c" shows the distance of the horizontal

parallel shift of the equation cm and the value of (a +

b2/4c) shows the distance of the vertical parallel shift of

the equation cm

The polynomial model makes no assumption about growth

pattern. It merely fits the curve to past population data

and extends the curve into the future. But this model has

more various curve forms than other models to fit past

population data which are seldom linear through time.



CHAPTER 2

ACCURACY TEST

Assuragy £9: gysrall Elsies and Teens

Each of the six extrapolation models was used to

project the 1980 population with census data from 1940 to

1970 for 172 cities and towns in Michigan. The projected

population was then compared with the actual population in

1980 census data, and the percentage error for each of the

cities and towns was calculated. To compare the accuracy of

the six models, the mean and the standard deviation of the

absolute value of percentage error were calculated.

The results of the accuracy tests are presented in

Table 1. In the table, the positive value of the percentage

errors represents the over-projection and the negative value

represents the under-projection.

As shown in the Table 1, all six models tend to

over—estimate the population of 1980 in Michigan. For

instance, the 4.1 percent of the cities was under—projected

more than 10 percentage with the linear model, otherwise,

the 50.0 percent of the cities was over—projected more than

10 percent, although the linear model tend less to

over-estimatation than the exponential and double

logarithmic models. The three other models also show the

tendency to over—estimation.

22
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The linear model had the smallest mean percentage error

and standard deviation. Conversely, the exponential

regression model had the largest mean percentage error and

standard deviation for the 172 tested cities.

The populations of 79 out of 172 cities in Michigan

were projected within 10 percent of their actual values with

the linear model, which was the highest percentage among

four models. The linear model had the smallest range

between the highest positive and the hightest negative

percentage error. The range with the linear model is from

—38.3 percent to 60.4 percentage error. Other models showed

a more extreme range from the highest positive to the

highest negative percentage errors. Through the analysis of

table 1

Frequency of Percentage Errors

for 172 Cities and Towns in Michigan

 

 

 

 

% ERROR LIN EXP DLOG POLY GOM MOD

25 + 36 57 57 4O 4 2

10 TO 25 50 51 51 35 24 24

-10 TO 10 79 59 59 71 45 44

-25 TO -10 6 4 4 21 8 6

< —25 1 1 1 5 0 0

MEAN ERROR 16.6 34.9 34.5 18.4 10.6 10.3

SD. 14.7 77.9 76.2 17.4 7.9 7.8

 

TOTAL CITY 172 172 172 172 81 76
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mean percentage error and standard deviation, we find that

the linear model seems to be relatively the best model among

these four models for 172 cities.

The Gompertz and the modified exponential model were

not applicable to all cities because the two models require

a certain indispensible condition. The indispensible

condition is that the parameter "b" in the equations 4 and 5

should be positive and less than one, while the parameter

"a" in the equations should be negative. The accuracy of

the two models was tested separately for those types of

cities. The past population growth pattern of the 81 of the

172 cities satisfied the indispensable condition for the

Gompertz model, 76 of the 172 cities satisfied the modified

exponential model. The projected 1980 population for those

cities, using these two models, war relatively accurate.

The Gompertz model yielded 10.6 mean percentage error,

with 7.9 standard deviation of percentage errors. The

populations of 45 out of 85 cities were projected within a

10 percent error. The modified model had 10.3 mean

percentage error, with 7.8 standard deviation of percentage

error. The populations of 44 out of 81 cities were

projected within 10 percentage error. These models also

showed a relatively small range from the highest positive to

the highest negative percentage error. The error range with

the Gompertz model was from -21.5 to 33.5 percent and the

range with the modified exponential model was from —21.4 to
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41.6 percent.

These two models showed more accurate population

projection than the linear model for specific cities, but

require a certain condition not met by all cities.

Overall, this accuracy test for all cities showed that

no model was best for all cities and towns, although the

linear model and the second degree polynomial model yield

comparatively better results than others. Some models are

better suited for particular types of cities, such as the

Gompertz and the modified exponential models, which produced

more accurate projections for a particular type of past

population growth pattern.

All of the extrapolation models project future

population dependant only on past population growth trend.

Therefore, the past population growth pattern inherently

affects the accuracy of an extrapolation projection model.

In this section, it is assumed that different

population trend extrapolation models can be applied to

different types of cities classified by past growth rate

changes. The hypothesis will be tested with six models.

To classify past population growth patterns for cities

and towns in Michigan, changes in the population growth rate

during two past time spans were used ; 1950 to 1960 and 1960
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to 1970. Thus growth rate change implies the population

trends in these two time spans, although it does not give

any information about net population change or proportional

change during the last span period. The value of the growth

rate change is calculated by the growth percentage from 1960

to 1970, minus the growth percentage from 1950 to 1960. As

mentioned before, the value implies the population changes

over the past three observation points, while the growth

rate or net population change shows just the population

changes over the last two observation points. That means

the growth rate change characteristic can be used for

simplification of past growth patterns while it implies

deeper past population trends. The value of the growth rate

change indicates the degree of growth rate change. A

positive value indicates a degree of growth rate increase

and a negative value indicates a degree of decrease of the

proportional population growth.

In this study, seven types were clasified according to

past growth rate changes between the 19503 and 1960s as

follows : (1) Great increase type in which percentage growth

rate changes ranged more than 25 percent between the years

from 1960 to 1970 and the years from 1950 to 1960; (2)

Medium increase type in which the percentage growth rate

changes ranged from 10 to 25 percent; (3) Moderate increase

type in which the percentage growth rate changes ranged from

0 to 10 percent difference; (4) Moderate decrease type in
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which the percentage growth rate changes ranged from —10 to

0 percent; (5) Medium decrease type in which the percentage

growth rate changes ranged from —25 to —10 percent; (6)

Great decrease type in which the percentage growth rate

changes ranged from —50 to -25 percent; (7) Extreme decrease

type which the percentage growth rate changes were less then

-50 percent.

If a local planner can roughly estimate the future

growth rate for a city, he may obtain better accuracy by

selecting a model according to type of future population

growth, because the future population changes actually

affect the accuracy of the population projections. To

improve the accuracy of projection, each of the seven types

was classified again by the growth rate change between 1960

to 1970 and 1970 to 1980. Growth rate changes for 1960 to

1970 and 1970 to 1980 were calculated in the same way as

previously used. The actual census population data of 1980

were used to get the growth rates from 1970 to 1980 for each

city, because accuracy information should be provided

through known rather than uncertain data. It is assumed

that the future growth rates can be perfectly anticipated.

Accordingly, three types of the future growth rate changes

were classified and the accuracy of the six models was

tested for each of the three types.

The three types of future growth rate changes are : (1)

a heavy increase in which the changes in percent growth rate
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are larger than 10 percent. (2) a light change in which the

percentage growth rate changes ranged from -10 to 10

percent. (3) a heavy decrease that has the percentage

growth rate change of less than —10 percent.

From here on, changes of percentage growth rate from

1950 to 1960 and 1960 to 1970 will be termed as "the past

rate change", and "the future rate change" will designate

the growth rate changes from 1960 to 1970 and 1970 to 1980.

In following sections, accuracies are first tested with the

seven types of the past rate change. Then the accuracies

for the three types of future rate change in each of the

seven types of past rate change are tested to provide more

detailed information on each models' accuracy and to develop

composite methods.

figgag Increase ip Growth Rate 

Cities were classified for this type by past rate

changes which were larger than 25 percent. For instance,

the population of Saline in Pashtenaw county grew at a 52

percent growth rate from 1950 to 1960 and grew at a 106

percent growth rate from 1960 to 1970. Thus growth rate

change, the past rate change, is 54 percent. Therefore,

Saline falls into this category.

Only seven towns were of the great increase type in

Michigan. While it is statistically difficult to test which

model is reliable for this type on the basis of only seven
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cases, the fitness of a model to this pattern may be

logically described by combining the results of this

analysis and the assumption of each model.

All seven cities did not meet the indispensable

condition for the Gompertz or the modified exponential

models. The linear model showed a better mean percentage

error and standard deviation than other models (see Table

2). Just 2 cities had a percentage error within 10 percent.

That means the majority of cities‘ projected had large

errors. Therefore, the linear model should be used for this

type, with some care. For a more detailed classification,

this type can be classified again with the future rate

Table 2

Frequency of Percentage Errors for

Cities of Great Increase Type in Michigan

 

 

 

 

% ERROR LIN EXP DLOG POLY

25 + 2 3 3 4

10 TO 25 1 2 2 3

-10 TO 10 2 2 2 0

-25 TO -10 2 0 O O

< —25 O 0 0 O

MEAN ERROR 19.7 26.0 25.8 33.2

SD. 14.2 21.2 21.0 14.8

 

TOTAL CITY 7 7 7 7
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change, but the population growth rate of all seven cities

was decreased more than 10 percent from 1960 to 1970 and

1970 to 1980. Therefore, the results would be the same as

the results for the great increase type of past rate

change.

The projection line and curves can be analyzed as an

example of this type. The accuracy of each model can then

be reviewed. City of Saline, a case in Pashtenaw county,can

serve as an illustration of this type. Saline showed 52

percent population growth from 1950 to 1960, 106 percent

growth from 1960 to 1970 and 54 percent growth from 1970 to

1980. With the pre-1970 data, all of the exponential family

models draw projection curves with fast growth rates in the

future, while the linear model draws a projection line with

the same net population per decade in the future.

Actually, the population of Saline grew more than the

average population, but the growth rate declined during the

19705. Therefore, the linear model yields a slight

under—estimation and other exponential family models yield

over—estimations for the Saline population of 1980, as

represented in Figure 5. If the rapid growth rate had

continued during 1970s in Saline, the exponential or the

double logarithmic models would probably have produced

better projections than the linear model.

As an other example, three cities of this type in

Michigan showed net population decrease during 1970s,
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although rapid population growth had been shown earlier.

All extrapolation models yielded high over-estimation for

those cities. In this case, it is probably better to use

another method rather than any of the trend extrapolation

models.

The exponential and double logarithmic models seemed to

be more suitable for cities with continuous growth rate

increase in the future, and the linear model seemed to be

more suitable for cities in which net population will grow

at a declining rate in the future. All of the seven cities

in this type had declining growth rates during the 1970s. In

conclusion, the linear model seems to be the best model for

this type in Michigan cases.

To summarize, the linear model can generally be used

for cities with great increases in growth rates although it

did not yield satisfactory results in this accuracy test.

If a planner can roughly estimate future growth rate, he can

apply the exponential model to cities with future rate

changes of more than 10 percent, the double logarithmic

model to cities with future rate changes between —10 to 10

percent, and apply the linear model to cities with the

future rate change of less than —10 percent. However, a

planner could better project population on the basis of

local knowledge in cases where the population grew quickly

in the past, but net population is expected to decline in

the future.
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Medium Increase In Grease Bats

This type of city has the past rate change that range

from 10 to 25 percent. For example, the population of Grand

Rapids increased about 0.5 percent from 1950 to 1960, and

increased again about 11.5 percent from 1960 to 1970. The

growth rate change between the 19503 and the 19603 was thus

11 percent (11.5 percent — 0.5 percent = 11 percent).

Therefore, Grand Rapids is a city of medium increase in

growth rate.

Cities of this type comprised nine cases in Michigan.

It is difficult to test which model is best for this type of

city with only nine cases, but an accuracy test with nine

cases can indicate some tendencies of each model.

With the nine cases of this type, the linear regression

model showed the minimum percentage error and the highest

percentage of cities within a 10 percent error. (See Table

3) The mean percentage error with the linear model is 11.2

percent and the populations of six out of the nine cities

were projected within a 10 percentage error. As a result,

it seems reasonable to use the linear model as a projection

model for this type. The exponential model and the double

logarithmic model are the next best models for this type.

The two models yielded more over—estimation of population

for 1980 than the linear model. None of cities met the

indispensible condition for the Gompertz and the modified

exponential model.
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If the future rate changes were considered for this

type, the six cases in the nine cities showed negative

growth rate changes more than 10 percent. The mean

percentage error was 7.7 percent with the linear model.

Otherwise, the mean percentage error was 14.7 percentage

error with the exponential model, 14.5 percentage error with

the double logarithmic model and 22.3 percentage error with

the polynomial model. Just one city had a future rate

change from —10 to 10 percent. For that city, the

polynomial model yielded minimum error (29.4 percent

under-estimation), but the result is not significant with

one case. Two cities had future rate change more than 10

percent and the linear model yielded the minimum mean error

Table 3

Frequency of Percentage Errors for

Cities of Medium Increase Type in Michigan

% ERROR LIN EXP DLOG POLY

25 + 0 1 l 2

10 TO 25 l 3 3 4

-10 TO 10 6 3 3 1

-25 TO -10 1 1 1 1

< -25 1 1 1 1

MEAN ERROR 11 2 14 9 14 7 20 0

SD 10 8 10.1 10 1 9 8
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for these cities. In conclusion, the linear model can be

considered as the best among the six models for this type of

future rate change, with less than 10 percent in the medium

increase type.

The city of Flushing in Genesee county is an

illustration of the medimum increase type. In the Flushing

case, the population grew 69 percent from 1950 to 1960, and

grew 91 percent from 1960 to 1970. The growth rate change

was thus 21 percent, which is the medimum increase type.

In the Flushing case, the exponential model and the

double logarithmic model extended projection curves with the

assumption that the growth rate would be kept continuous in

the future as past data showed. But the actual growth rate

from 1970 to 1980 did not increased, although the net

population increased. As a result, the exponential model

and the double logarithmic model produced over-estimations

for the Flushing population of 1980 as presented in Figure

6. Otherwise, the linear regression line assumes that the

same amount of the population will increase as much as the

number of people estimated by regression per unit of time.

The actual population increment from 1970 to 1980 was very

close to the predicted number by linear regression in the

Flushing case. If the population of Flushing increased

rapidly with the growth rate, as in the past, the

exponential model might be better for that case than the

linear model.
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In summary of the accuracy test for the medium

increase type, the linear model can be used with relatively

better accuracy for this type of city. If a planner can

predict rough growth rate into the future, he can apply the

exponential model for the type of the future rate change of

more than 10 percent, and the linear model can be still used

for the rest of the cities in this type.

But a planner has to execise caution in using this

extrapolation model for cities which showed a continuous

increase or decrease of population in the past, and the

population trends are expected to be reversed in the future,

when the net population decreases or the increases suddenly.

Moderate Increase ip Growth Rate
 

 

This type of city has the past rate change that ranged

from zero to 10 percent. For example, the population of Ann

Arbor showed a 40 percent increase from 1950 to 1960 and a

48 percent increase from 1960 to 1970. The growth rate

change between the 19503 and the 19603 is 8 percent.

Therefore, Ann Arbor is a city of this type.

27 cities in Michigan were categorized in this class.

Except the Gompertz and the modified exponential model, the

mean percentage errors with four models are ranged from 10.1

to 15.2 percent error. The mean errors seem to be

satisfiable as the degree of accuracy with the extrapolation

models.
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The linear model yielded the minimum percentage error

and the minimum standard deviation of percent error for this

type (See Table 4). The mean percentage error is 10.1

percent and 17 out of 27 cities were projected within 10

percent of their actual census populations. The polynomial

model comes out as the next best model from the accuracy

test.

No city satisfied the indispensible condition of the

Gompertz model or the modified exponential model for this

type. The exponential model and the double logarithmic

model yielded extreme percentage errors in some cities,

Table 4

Frequency of Percentage Errors for

Cities of Moderate Increase Type in Michigan

% ERROR LIN EXP DLOG POLY

25 + 3 5 5 5

10 TO 25 7 7 7 6

-10 TO 10 17 14 14 13

~25 TO -10 0 1 1 2

< -25 O 0 O 1

MEAN ERROR 10 1 15 2 15 l 14 2

SD 9 4 18.2 18 0 13 7
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compared with the linear model. The highest error with the

exponential model was 80.5 percent error,.while 39.1 percent

error was the highest with linear model. The two models

also have a higher mean percentage error than the linear

model.

It is useful to consider the accuracies for this type

with the future rate changes. There are two cases for the

type over 10 percent of the future rate changes (heavy

increase type of the future rate change), 14 cases for the

type with the future rate change ranged from —10 to 10

percent (light change type), and 11 cases for the type with

the future rate change less than -10 percent (heavy decrease

type).

For the heavy increase and the light change types of

the future rate change, the double logarithmic model and the

exponential model yielded the minimum percentage error. The

exponential model showed slightly better results in this

analysis.

The mean percentage errors are 4.3 percent with the two

models for the light change type of the future rate change,

while it is 4.9 percent with the linear model and 5.2

percent with the polynomial model. The populations of 13

out of 14 cities in the light change type were projected

within 10 percent error with the linear model, the

exponential model and the double logarithmic model. The

polynomial model projected population of 11 out of 14 cities
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within a 10 percent error. All of the four models project

the population for this type relatively very well.

For the 11 cities of the heavy decrease type in the

future rate change, the linear model turned out as the best

model among four models. But the mean percentage error is a

little high at 16.5 percent, and the standard deviation of

percent error is not good, either. Only two out of 11

cities are projected within 10 percent error. Other models

produced a quite high mean percentage error, for example,

30.1 percent with the exponential model and 24.5 percent

with the polynomial model.

Each model can be discussed with a graphic

illustration. The Ann Arbor case was used as an example of

the moderate increase type in the past rate change. The

population of Ann Arbor grew with 40 percent growth rate

from 1950 to 1960, increased with 48 percent growth rate

from 1960 to 1970, and increased with 8 percent growth rate

from 1970 to 1980.

Because the similar curves were depicted by the

exponential model and the double logarithmic model, the

double logarithmic model only was represented in Figure 7.

As depicted in Figure 7, the double logarithmic model, the

exponential model and polynomial model keep the fast growth

rate into the future as like the past population trend until

1970. Those curves are very well fitted to the past

population points. However, the actual population growth
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rate decreased during 19703. The future rate change for Ann

Arbor is -38 percent. Therefore, the three models yielded

high over—estimation for the population of 1980.

The linear model projected population with the same

population increment calculated by regression. With the

population increment about 22,903 persons per decade, the

linear model extends the line into future. But the 8,169

persons actually increased during the 19703 in Ann Arbor.

The linear model also produced over-estimation. The linear

model projected population more accurately for Ann Arbor

than other models did, however.

The city of Durand in Shiawassee county has a different

future rate change (9 percent) than the future rate change

(—38 percent) of Ann Arbor, though the past population

patterns of the two cities are similar. The population of

Durand grew 3.7 percent during the 19503, 11.0 percent

during the 19603 and 15.3 percent during the 19703. In this

case, the four models produced under-estimations because the

actual population- grew with a faster growth rate than

expected by the extrapolation models.

The polynomial model was best for Durand. It drew a

steeper curve than the exponential model because it

reflected the rapid growth rate increase from the 19503 to

the 19603. The exponential model and the double logarithmic

model were the next best models for the city of Durand.

Those models were better than the linear model in the Durand
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case. The exponential model is better for the cities that

are expected to grow or decrease continuously while keeping

the past growth rate, because the exponential model projects

population with the same growth rate while the linear model

projects population with the same amount of population

growth. The linear model is better for cities that will

grow or decrease with approximately the same increments of

net population as estimated by the linear regression.

Because of these reasons, the linear model is better in Ann

Arbor and the exponential model is better in Durand.

In summary of the accuracy test for the moderate

increasing type, it can be concluded that the linear model

is generally best for this type. If a local planner can

roughly estimate growth rate in future, he can use the

exponential model for the heavy increase type and the light

change type. If the future rate changes are expected to be

less than —10 percent, then he can still use the linear

model. He should be careful to use those models for the

cities that are expected to decrease or increase suddenly as

the opposite direction with the past trends during the next

time span, as illustrated with Ann Arbor.

Moderate Decrease ip Growth Rate
  

The cities of this type were categorized by the past

rate changes which are ranged from -10 to zero percent. The

past rate changes were calculated by the percent growth rate
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from 1960 to 1970 minus the percent growth rate from 1950 to

1960.

There are 54 cities of this type in Michigan. That is

the largest number among seven types of past rate changes.

The 54 cases may be statistically enough to generalize the

results of this accuracy test.

The linear model and the polynomial model have minimum

mean percentage error. The mean percentage error with the

polynomial model is slightly lower than with the linear

model. The mean percentage error is 9.097 percent with the

polynomial model, and 9.128 percent with the linear model.

Therefore, it can be regarded that the two models actually

yield the same result in the aspect of mean error. As

another aspect of the accuracy measure, the standard

deviation of the percentage error can be considered to

compare the accuracy of two models. The standard deviation

of the percent errors with the linear model is 6.5, and 7.5

with the polynomial model (See Table 5). The linear model

shows a better result in the aspect of error distribution.

The highest error with the two models is considered the

accuracy measure. The highest error with the linear model

was -18.0 precent error in the aspect of under-estimation

and 30.2 percent error in the aspect of over—estimation,

while there was a -27.7 percent error of under-estimation

and 29.6 percent error of over—estimation with the

polynomial model. The linear model is slightly better in
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the viewpoint of error range, too. Therefore, the linear

model was considered the best model for this type in this

study.

Other models also show good accuracy for this type.

The exponential model produces 10.1 mean percentage error

and the double logarithmic model shows 10.0 mean percentage

error. 31 cities for the Gompertz model and 30 cities for

the modified exponential model out of 54, are satisfied with

the indispensible condition of the two models. The Gompertz

model shows 7.5 mean percentage error and the modified

exponential model shows 7.0 mean percentage error. The

populations of 24 in 31 cities were projected within 10

Table 5

Frequency of Percentage Errors for

Cities of Moderate Decrease Type in Michigan

X ERROR LIN EXP DLOG POLY GOM MOD

25 + 2 3 3 4 0 O

10 TO 25 14 20 20 7 5 4

~10 TO 10 36 29 29 35 24 24

~25 TO ~10 2 2 2 6 2 2

< ~25 0 O 0 2 0 0

MEAN ERROR 9.1 10 1 10 0 9 1 7 5 7 0

SD. 6 5 7 5 7.4 7 5 6 7 5 9
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percent error with the Gompertz model and 24 in 30 cities

with the modified exponential model. It seems best to use

the modified exponential model or the Gompertz model for

these types of cities if those cities are proper to the two

models. If the past population trend of a city can not

satisfy the indispensible condition, the linear model is the

optimum model for the moderate decrease type.

This type can be further classified according to the

future rate change. The first type is the heavy increase

type of the future rate change that is larger than 10

percent. Three cities out of 54 cities are categorized for

this type. The range of the mean percentage without the

Gompertz and modified exponential models is from 11.2 to

15.9 percentage error. The models tend to under-estimate

the populations. Though the exponential model yields

minimum mean percentage error and standard deviation of

percent error, populations of two out of three cities were

under—estimated with more than 10 percent error. Only one

in the three cities satisfy the indispensible condition for

the Gompertz and modified exponential models, but the

percentage errors are very high.

The second type is the light change type of the future

rate changes which are ranged from -10 to 10 percent. 41

out of 52 cities fall into this type. The linear model has

a minimum mean percentage error which is 6.9 percent error.

Other models also show fairly good results. The mean
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percentage error is 7.2 percent with the polynomial model,

7.3 percent with the double logarithmic model, and 7.4

percent with the exponential model. The populations of 33

out of 42 cities were projected within 10 percent error with

the linear model and 31 cities with the polynomial model.

The Gompertz model and the modified exponential model

show very accurate projection for the cities which satisfy

the indispensible condition for two models. There are 22

cities for each of two models in 41 cities. The mean

percentage error for those cities is 4.6 percent with the

Gompertz model and with the modified exponential model. The

populations of 21 out of 22 cities were projected within 10

percent error with the two models. These two model can be

used as the best model for this type of the cities if those

cities meet the indispensible condition of two models. If

not, then, the linear model can be used for this type.

Third type is the heavy decrease type of the future

rate changes which are less than ~10 percent. There are 10

cities for this type. All models show a little high mean

percentage error. The polynomial model represents the best

results for the 10 cities. The mean percentage error is

14.8 percent with the polynomial model and 17.3 percent with

the linear model. All of six models tends to over-estimate

the populations. The polynomial model also over-projected

the populations for 7 out of 10 cities with more than 10

percent error, but it is still best for this type among four
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models except the Gompertz model and the modified

exponential model.

The 8 cities for the Gompertz model and the 7 cities

for the modified exponential model are satisfied with the

indispensible condition of two models. The mean percentage

error for those cities is 13.8 percent with the Gompertz

model and 12.4 percent with the modified exponential model.

This results with two models are slightly better than the

polynomial model.

The graphical example will explain the tendency of each

models for the moderate decrease type of the past rate

change. Pontiac are illustrated for the type. The

population of Pontiac showed 11.6 percent increase from 1950

to 1960 and 3.7 percent increase from 1960 to 1970.

The past growth pattern of Pontiac meet the

indispensible condition for the gompertz model and the

modified exponential model. The projection curve with the

Gompertz model showes the rapidly increasing growth rate in

early stages and the rapidly decreasing growth rate after

inflection point, and then the projection curve approaches

the upper limit. The modified exponential model drew the

projection curve with the same decreasing growth rate

continuously until approaching the upper limit. The figure

8 depicts how models are fitting the past observed

population points. And it also represent why the projection

errors with six models are small or high.
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The Pontiac showed the net population decreased from

1970 to 1980 though the population had increased from 1940

to 1970. All of models drew the projection line or curves

reflecting the past population trend, but the population

change during 19703 in Pontiac does not follow the past

trend. Therefore, all of model over—estimate the population

for 1980. However, the Gompertz model showes relatively

better accurate projection for Pontiac, because it drew

projection curve with the assumption of rapid decreasing

growth rate until approaching upper limit. If the

population of Pontiac were stable during 19703 which may be

classified as the light change type, the Gompertz or

modified exponential model may yield a better accurate

projection.

In summary of this section, the linear model yields the

minimum mean error for cities in this type overall. But, if

cities in this type satisfy the indispensible condition of

two models, the Gompertz model and the modified exponential

model can be used as the best model for the moderate

decrease type in growth rate. If not, the linear model is

the optimum model for the type.

If a local planner can roughly estimate future growth

rate, he can use different models according to the future

rate change. If the future rate change is larger than 10

percent, he can use the double logarithmic model. If the

changes are ranged from -10 to 10 percent, the linear model
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can be used for this type. It is recommended to, however,

use the Gompertz model when the cities satisfy the

indispensible condition of that model. If the future rate

change is less than —10 percent, the modified exponential

model can be used when the cities meet the indispensible

condition of it, otherwise, the polynomial will be the best

model for this type.

Medimum Decrease ip Growth Rate  

These cities have past rate changes that range from -25

to ~10 percent. For example, Adrian, in Lenawee county,

grew at 10.6 percent growth rate from 1950 to 1960 and at

0.2 percent growth rate from 1960 to 1970. The change in the

growth rate between the 19503 and the 19603 is -10.4

percent. Therefore, Adrian falls into this type.

There are 32 cities of this type in Michigan. With

these 32 cities, the polynomial model generates a minimum

percentage error of 14.0 percent (See Table 6). The linear

model yields results very close to the polynomial model.

The polynomial model and the linear model projected the

populations of 14 out of 32 cities with less than 10 percent

error. But the linear model projected the populations of 4

out of 32 cities with an error greater than 25 percent of

actual population, while it was only 3 out of 32 cities with

the polynomial model. In the aspect of standard deviation

of percent error, the linear model is slightly better than
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the polynomial model. Since the two models yielded very

similar results, either can probably be used for this type.

In this study, the model that yielded the minimum mean error

was selected as the best model. If the mean error was same,

then the standard deviation of percent error was used as the

measure of accuracy. Therefore, the polynomial model is

selected as the best model for the medium decrease type in

this study.

The exponential and the double logarithmic models

tended to over—estimate the population more than the linear

model. When the accuracy of the Gompertz model and the

modified exponential model were tested with the cities that

Table 6

Frequency of Percentage Errors for

Cities of Medimum Decrease Type in Michigan

% ERROR LIN EXP DLOG POLY GOM MOD

25 + 4 7 7 1 1 0

10 TO 25 14 14 14 6 2 2

~10 TO 10 14 11 11 14 10 10

~25 TO ~10 0 0 O 9 3 2

< ~25 0 0 O 2 0 0

MEAN ERROR 14.3 16 8 16 7 14 0 9 0 7 8

SD 9 5 11 1 11.0 10 5 8 O 6 1
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satisfied their indispensible condition, the accuracy of

these model was better than any other models. The condition

was satisfied with 16 cities for the Gompertz model and with

14 cities for the modified exponential model.

With those cities satisfing the condition, the Gompertz

model had 9.0 mean percentage error and the modified

exponential model has 7.8 mean percentage error. In the

aspect of standard deviation of percent error, the 10 out of

the 16 cities had the projection errors within 10 percent

with the Gompertz model and 10 out of the 14 cities with the

modified exponential model.

Therefore, if the cities in the medium decrease type

satisfy the indispensible condition of these two models,

their populations can be projected better by these two

models than by the polynomial model. If a city does not

meet the condition, the polynomial model can be used.

The accuracy of the models also depends on the type of

future population changes. Therefore, the medium decrease

type was classified into three types by the future rate

change. The first type was the heavy increase type in which

the future rate changes are greater than 10 percent. Only

three out of 32 cities fell into this category in Michigan.

The exponential model, the double logarithmic model and

linear model projected population very accurately for these

three cities with less than 10 percent error. The

exponential model and the double logarithmic model had 5.3
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mean percentage error for the three cities and the linear

model had 5.9 mean percentage error.

The second type is the light change type in which

future rate changes range from —10 to 10 percent. This type

comprised 20 out of 32 cities. The polynomial model showed

the best result for these cities. The mean percentage error

was 9.5 percent with the polynomial model, while it was 11.5

percent with the linear model. The Gompertz model and the

modified exponential model yield a lower mean percentage

error if the models are applied to cities which satisfy the

indispensible condition of the two models. With these

cities, the Gompertz model had 4.6 mean percentage error

with 9 cities, and the modified exponential model had 4.3

mean percentage error with 8 cities. Therefore, the

modified exponential model can best be used for this type if

a city satisfies its indispensible condition. If it does

not satisfy this condition but satisfies the condition of

the Gompertz model, the Gompertz model can best be used for

the city. If the city is not appropriate for either of

those, then the polynomial model can be applied.

The third type of the future rate change is the heavy

decrease type in which future rate changes are less than -10

percent. There were 9 cases of this type in Michigan. Four

models, except the Gompertz model and the modified

exponential model, had high mean error for this type. The

modified exponential model and the Gompertz model yielded
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better results for specific cities. Among 9 cities, 6

cities satisfied the indispesible condition of the Gompertz

model and 5 cities for the modified exponential model. The

modified exponential model had 12.0 mean percentage error

and projected the population of 3 out of 5 cities within 10

percent error. The Gompertz model had 14.7 mean percentage

error. The other four models tend to over—estimate the

populations. The mean percentage error was 18.4 percent

with the polynomial model, 23.3 percent error with the

linear model, 28.4 percent error with the double logarithmic

model and 28.5 percent error with the exponential model.

Therefore, if a city satisfied the indispensible condition

of the modified model, its population can be projected by

the modified exponential model. If it did not satisfy the

condition for the modified model but satisfied the condition

for the Gompertz model, the Gompertz model could be used for

the city. If it did not satisfy the conditions of either of

these, the polynomial model could be used, with care.

Adrian was graphically illustrated as one of the medium

decrease cities of the past rate change in Figure 9. Adrian

grew quickly from 1940 to 1960, but the population changed

little from 1960 to 1980. The exponential model and double

logarithmic model drew projection curves into the future at

a certain population growth rate. The polynomial model drew

a projection curve which showed the rapid population

increase at a decreasing growth rate until the mid—19603 and
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showed a rapid population decrease after the mid—19603.

Adrian's past population trends satisfied the

indispensible condition for the Gompertz and the modified

exponential models. The two models drew projection curves

that indicated extreme population growth in the 19403 and

then a rapidly decreasing growth rate in the 19503 and

little change in population after 1960. Actually, the

population of Adrian increased by only 804 persons during

the 19703. Therefore, the Gompertz model and the modified

exponential model projected populations very close to the

actual populations of 1980. The exponential model, the

double logarithmic model and the linear model yielded

over-estimations, and the polynomial model under-estimated

the population of Adrian for 1980.

As a summary of this section, the accuracy test of the

polynomial model showed the best overall results for cities

in the medimum decrease type, although the accuracy of the

linear model was very close to that of the polynomial

model. But, if the cities satisfy the indispensible

condition of the Gompertz model or the modified exponential

model, one of those models can best be used for this type.

If a planner can roughly estimate future growth rate,

he is advised to use the exponential model when the future

rate changes are greater than 10 percent. When the future

rate changes are less than 10 percent, the modified

exponential model yields the minimum mean error if the
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cities satisfy the indispensible condition of the model. If

the modified model or the Gompertz model cannot be applied,

the polynomial model seems the best alternative for these

cities.

Great Decrease 12 Growth Rate
  

This type of city has past rate changes that ranged

from -50 to -25 percent. For example, the population of

Holland grew at a 56 percent growth rate from 1950 to 1960,

and at a 7 percent growth rate from 1960 to 1970. The growth

rate change was ~49 percent.

Fifteen cities of this type were found in Michigan.

Four models, expecting the Gompertz model and the modified

exponential model, had comparatively high mean percentage

errors for this type. The Gompertz model and the modified

exponential model yielded better accuracy the 9 cities that

satisfied the indispensible condition of the Gompertz model

and 8 cities that met the condition of the modified

exponential model (See Table 7). The mean percentage error

was 11.5 with the modified exponential model and 13.3 with

the Gompertz model.

The polynomial model was the next best method for the

15 cities of this type. It had 18.5 mean percentage error.

The polynomial model have greater frequency in the category

of "lower than 10 percentage error" than the Gompertz model

and the modified exponential model, but the polynomial model
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produced more extreme error than the two models. The

modified exponential model or the Gompertz model can be used

if the cities meet their indispensible condition.

Otherwise, the polynomial model can best be used for the

cities which can not meet the condition. The other models

showed highly over-estimations for this type of city. The

linear, exponential and double logarithmic models yielded

more than 10 percent over-estimations for all 15 cities.

If future rate changes are considered, there are three

types within the great decrease cities in growth rate. The

first type is characterized by heavy increase in future rate

changes, but there were no cases of that type in Michigan.

Table 7

Frequency of Percentage Errors for

Cities of Great Decrease Type in Michigan

% ERROR LIN EXP DLOG POLY GOM MOD

25 + 8 11 11 4 1 0

10 TO 25 7 4 4 3 5 5

~10 TO 10 0 0 0 6 3 3

~25 TO ~10 O 0 0 1 0 0

< ~25 0 0 O 1 0 0

MEAN ERROR 26.4 40 6 4O 2 18 5 13 3 11 5

SD 8 8 18 9 18.7 14 6 8 8 5 2
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The second type is the light change type in which future

rate changes are between -10 and 10 percent. There are

seven cities of this type in Michigan. Although that is a

statistically small number of cases, the polynomial model

seemed to be the best method for the type. The mean

percentage error with the model was 11.0 percent error. The

populations of four out of seven cities were projected

within 10 percent of actual population and all cities had

errors less than 25 percent. Only the city of Holland met

the indispensible condition of the Gompertz and modified

exponential models. These two models project the population

of Holland very accurately with about 2 percent error. But

one case is not sufficient to generalize the accuracy of the

two models for the type. Three other models: the linear

model, the exponential model and the double logarithmic

model, projected all cities with over—estimations of more

than 10 percent.

The third type is the heavy decrease type, in which the

future rate changes are less than —10 percent. There are

eight cities of this type in Michigan and all eight cities

satisfied the indispensible condition of the Gompertz model,

and seven cities satisfied the modified exponential model.

The modified exponential model yielded the minimum mean

error for the seven cities. The mean percentage with the

model was 12.8. The Gompertz model model was the next best

model for the type and had 14.7 mean percentage error.
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However, only two cities were projected with less than 10

percent error. The other four models had high mean

percentage errors. The polynomial model was slightly better

than other three models. The exponential model and the

double logarithmic model projected populations for all eight

cities with higher than 25 percent error.

A graphical example can explain how each of models

projects population for a city of the great decrease type.

In the case of the Holland, rapid growth in population

between 1950 and 1960 was reflected in equations.

Therefore, the four models, excepting the Gompertz model and

the modified exponential model, drew projection line or

curves extending the rapid growth into the future (See

Figure 10). The Gompertz model and the modified exponential

model are applicable to the city and drew projection curves

to show rapid growth in population until 1960, with little

growth in population after 1960. The actual net population

of Holland was decreased by very few, about 200, persons.

Therefore, the Gompertz model and the modified exponential

model projected the 1980 population relatively well. The

other four models highly over—estimated the population. If

the population of 1980 had been increased at a rapid growth

rate, one of the four models might have projected the

population more accurately than the Gompertz model and the

modified exponential model.

To summarize this section, the modified exponential
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model is the best method for the great decrease type, if the

cities meet the indispensible condition of this model. If a

city cannot do so, but is appropriate for the Gompertz

model, the Gompertz model can be applied. If the city is

not appropriate for either of these models, the polynomial

model can be used.

When a planner can roughtly predict a future growth

rate for a city, he can use different models for different

types according to future rate change. The polynomial model

turned out to be the best model for the cities which had

future rate changes from -10 to 10 percent. There were not

enough cases of cities which satisfied the indispensible

conditions of the Gompertz and modified exponential models.

those models may have better accuracy for cities that meet

their indispensible conditions. When the future rate

changes are less than ~10 percent, the Gompertz model is the

best method among the six models. For cities which cannot

meet the indispensible condition of the Gompertz model, the

polynomial model can be used. A planner should also keep in

mind that any of these models has the potential to produce

high projection errors for this type of city.

Extreme Decrease ip Growth Rate
  

Cities classified as this type are those which have

past rate changes less than —50 percent. For instance, the

population of Midland, in Midland county, increased at a 94





64

percentage growth rate from 1950 to 1960, and at a 27

percent growth rate from 1960 to 1970. The growth rate

change from the 19503 to the 19603 was thus -67 percent.

Therefore, Midland is a city of the extreme decrease type.

There are 28 cities for this type in Michigan. Of these

28 cities, 25 satisfied the indispensible condition of the

Gompertz model and 24 satisfied the modified exponential

model. The Gompertz model yielded the best accuracy for

cities that satisfied its indispensible condition. The mean

percentage error was 14.4 for 25 cities with the Gompertz

model. The next best model is the modified exponential

model if cities satisfy its indispensible condition. The

mean percentage error with the modified exponential model

Table 8

Frequency of Percentage Errors for

Cities of Extreme Decrease Type in Michigan

% ERROR LIN EXP DLOG POLY GOM MOD

25 + 17 27 27 21 1 1

10 TO 25 6 1 1 5 13 15

~10 TO 10 5 0 0 2 8 6

~25 TO ~10 0 O 0 0 3 2

> ~25 0 0 0 0 0 O

MEAN ERROR 35 3 127 6 125 5 39 8 14 4 15 5

SD 19 5 162 7 158 7 22 9 7 5 8 9
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was 15.5 for 24 cities. The other four models had extremely

high mean percentage errors. The mean percentage error was

35.3 percent error with the linear model and 39.8 percent

with the polynomial model. The exponential and double

logarithmic models had higher than 100 mean percentage

error. All six models tended to over—estimate the

populations for this type. Although the Gompertz model was

the best method for this type, only 8 out of 28 cities were

projected within 10 percent error (See Table 8).

The linear model was slightly better than the other

four models, but its mean percentage error was 35.3

percent. Only 5 of 28 cities were projected within 10

percent of their actual population. The exponential model

and the double logarithmic model had extremely high error

rate (i.e., 904 percent error with the exponential model).

Therefore, the Gompertz model can best be applied to

those cities that satisfy the indispensible condition of the

model. For the others, the linear model may be used with

the realization that, in this type of city, there is the

potintial for severe over-estimation with the linear model.

If the growth rate can be roughly estimated, accuracy

might be improved through using different models to project

different types of future rate changes. The first type of

future rate change is a heavy increase with future rate

change more than 10 percent. There is no case of this type

in Michigan. The second type is a light change which affects





66

the group of cities with future rate changes from —10 to 10

percent. There are five such cases in Michigan. The

Gompertz model and the modified exponential model yielded

relatively good projections for the four of the five cities

that satisfied their conditions. The modified exponential

model yielded 9.6 mean percentage error and the Gompertz

model had 10.8 mean percentage error.

The polynomial model is the next best model for this

type. The mean percentage error was 14.2 percent and two

out of five cities were projected with less than 10 percent

error. Other three models tended to highly over-estimate

the population and while the linear model was slightly

better than the others, it still had a high (18.0) mean

percentage error.

The third type is a heavy decrease type in which future

rate changes are less than -10 percent. There are 23 cases

of this type in Michigan. All six models showed high mean

percentage errors, and tended to over—estimate populations

of this type. The linear model and the polynomial model had

39.1 and 45.4 mean percentage errors, respectively, and the

exponential model and the double logarithmic model had

extremely high errors (145.3 and 143.0 mean percentage

error).

In the 23 cities, 21 satisfied the indispensible

condition of the Gompertz model and 20 met the condition of

the modified exponential model. With those specific cities,
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the Gompertz model had 15.0 mean percentage error and the

modified exponential model had 16.7 mean percentage error.

Midland, in Midland county, is illustrated as an

example of the extreme increase type of past rate change in

Figure 11. The population of Midland increased at a rapidly

increasing growth rate in the 19503, but the growth rate

rapidly declined through the 19603 and 19703 although the

net population continuously increased. The growth pattern

of Midland is consistent with the assumptions of the

Gompertz model. As shown in Figure 11, the Gompertz model

projects Midland's population very accurately. The modified

exponential model yielded more over-estimation than the

Gompertz model.

The exponential model and the double logarithmic model

drew the projection curves with the tendency of the high

growth rates in 19503 and 19603 and thus greatly

overestimated the population. The linear model drew a

projection line with an excessively larg increment per unit

of time, because it also reflected the fast growth in an

earilier time. The polynomial model also showed a rapid

growth projection curve. If the population of the Midland

had increased from 1970 to 1980 at the same growth rate as

it had the previous decade, the linear model might have

produced minimum error for the 1980 population of the city.

To summarize this section, none of the six models

yielded good accuracy for this type. The Gompertz model was
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the best method for this type and the modified exponential

model was next. If cities cannot meet the indispensible

condition of these two models, the linear model may be used,

with caution, because of the potential for high error with

the model for this type.

With specified types of future rate changes, the

accuracy was slightly improved for cases of light change in

which the growth rate change was between ~10 and 10 percent

from the 19503 to the 19603. The modified exponential model

was the best method for this type and the Gompertz was

next. If a city cannot meet the indispensible condition of

those two models, the polynomial model can be used. For

cities in which future rate changes are less than -10

percent, all six models showed high mean percentage errors.

The Gompertz model yielded the best accuracy for this type

among the six models and the modified exponential model was

next. When a city cannot meet the indispensible conditions

of those models, the linear model may used with great care.

Cities Classified according :9 1970 Population
  

Number of population at a given census data is another

characteristic that can be used to classify cities. Four

population categories, according to 1970 population figures,

were used to test the accuracy of the six models (See Table

9). The linear model yielded relatively good results for

cities in all four population categories. For cities
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between 10,000 and 50,000 population, however, the

polynomial model showed slightly better results. Among the

four models tested (excepting the Gompertz and modified

exponential models), the linear model was dominant in

accuracy.

The modified exponential model is more accurate for

smaller cities than the Gompertz model, if the cities

satisfy its indispensible condition. The Gompertz model

produced the lowest error for larger cities, if the cities

are appropriate for this model.

All six models showed similar projection accuracy

tendencies for each population size category. Each yielded

Table 9

Mean Percentage Error of Each Model

for City Types Based on 1970 Population

———~————-—————_———————_—----fl——-—-—-—~----———~————-——--———--

Model | ————————————————————————————————————————————————————

| 50 + 10 to 50 5 to 10 2 5 to 5

LIN | 32 6 (14) 23.3 (54) 9.3 (41) 11.8 (63)

EXP | 122.3 (14) 50.1 (54) 15.0 (41) 15.2 (63)

DLOG | 120 1 (14) 49.6 (54) 14.8 (41) 15.1 (63)

POLY | 35.4 (14) 21.3 (54) 12.9 (41) 15.1 (63)

GOM | 17.9 (7) 11.5 (24) 7.4 (19) 9.9 (31)

MOD | 20.1 (6) 12.0 (24) 6.6 (17) 8.7 (29)

(Note) number in parentheses indeicates number of cities

of that type in Michigan.





71

its best result for the cities between 5,000 and 10,000

population, and next for the cities between 2,500 and 5,000

population. Each of the six models yielded its highest mean

percentage error for cities over 50,000 population.

The results of this study are not consistent with those

obtained by Isserman (1977) who found relatively high

projection errors for small townships and relatively small

errors for the large townships (Isserman, 1977 : 256). In

contrast, the results of this study showed that the

populations of smaller cities were projected with greater

accuracy than those of larger cities. This difference,

however, was likely due, in part, to changes in population

trends in large and small cities.

However, past population size was not used as a

criterion to classify the cities in this study for several

reasons. First, population size does little reflect the

peculiar nature of each model. The extrapolation models

originally extrapolated cities' historical population growth

trends into the future, whatever the size of their

populations. If there is a correlation between a city's

population size and its population growth pattern, it may be

possible to judge the accuracy of an extrapolation model by

the population size in some cases. but I believe its past

population growth pattern is a better criterion than

population size, because the origin of extrapolation models

is based in the past population trends.



72

The second reason, for not using population size as a

classifier, was to avoid complexity in classification. If a

combination of seven types of growth rate change and four

categories of population size were used, the combination

would result in 28 types of cities. Considering future

growth rate change, 84 city types would be produced from all

possible combinations of each characteristic. When criteria

become so complex, the point of clear and simple

classification is lost.

The third reason is apparent the results of the

accuracy test for cities of varied population sizes. The

linear model dominates for cities of almost all population

sizes. The Gompertz model or the modified exponential model

will be used for all cities that satisfy the models'

indispensible condition. There is no point to

classification of city types if a model that is applied to

all fails to discriminate between the categories.

Therefore, I think the growth rate change is a better basis

for classifying cities than population size to apply

extrapolation model according to certain city types.

§EEE§EY

Overall, the linear model was, generally, the most

accurate method for projecting the 1980 populations of

cities in Michigan, but it is preferable that specific

extrapolation models be applied to those types of cities for
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which they aremost accurate, rather than relying on one

method. This is especially true when the Gompertz and

modified exponential models are appropriate for those cities

that satisfy their indispensible conditions, because these

two models yield excellent quality population projections

for those cities.

To classify cities, growth rate change was used. The

differential pattern of errors for types of growth rate

change made it a more useful classification criterion than

population size. Since growth rate change during 19603 was

found to be related to population size in 1970, it might

also reflect this characteristic some extent.

Past and future growth rate changes were considered in

classifying cities by type for this study. The results of

the accuracy tests for growth rate change are presented in

Table 10. Given past growth rate changes, the linear model

is generally well suited to the increasing or moderate type

of change in growth rate.

The polynomial model is relatively accurate for the

rapidly decreasing type of growth rate, but the Gompertz or

the modified exponential model are more accurate for cities

of this type if the cities meet the indispensible conditions

of one of the two models.

For cities with a dissimilar combination of past and

future growth rate changes, the exponential model and the

double logarithmic model seem to be appropriate to cities
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with rapidly increasing future growth rates, but where the

growth rate decreased more than 25 percent in past. The

exponential model tends to work well with rapidly increasing

growth rates. These two models generally produce very

similar population projection in most cases.

Table 10

Population Projection Model

for Cities Based on Growth Rate Change

Past Growth | | Future Growth Rate Change

Rate Change | All | ------------------------------

| | 10 + —10 to 10 < -10

25 + ( Lin l — - Lin

l l

10 to 25 | Lin | Exp Lin Lin

l I

0 to 10 | Lin | Exp Exp Lin

l l

—10 to O | Lin | Dlog Lin Poly

|* Mod | * Gom * Mod

l l

-25 to —10 | Poly | Dlog Poly Poly

|* Mod | * Mod * Mod

l l

-50 to -25 | Poly | — Poly Poly

|* Com | * Gom * Mod

I I

< —50 | Lin | - Poly L1n

|* Gom | * Mod * Gom

(Note) * indicates that the Gompertz model or the modified

exponential model is the best method for that type

if the cities satisfy the indispensible conditions

of one of them.
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The linear model yields the accurate projections for

city populations that have shown rapid growth rate increases

in the past and rapid growth rate decrease for the future or

those that have shown moderate growth rate change in the

past and for the future. The polynomial model seems to be

the best model for cities with growth rate decreases in the

past and moderate or decreasing growth rate change in the

future. However, if cities satisfy the indispensible

condition of the Gompertz or the modified exponential model,

those models are the best methods for those types of cities.



CHAPTER 4

DEVELOPMENT OF COMPUTER PROGRAM

Criteria Basis :9 Select Best Model
  

A composite method which applies

extrapolation models to different types of

different

cities has

resulted from the accuracy test used with Michigan cases.

TABLE 11

Composite Method

| Composite II|

Past Growth | Composite | Future Growth Rate Change

Rate Changes| | ————————————————————————————

I I I 10 + -10 to 10 < -10

25 + | Lin | Exp Dlog Lin

I l

10 to 25 | Lin | Exp L1n Lin

1 l

0 to 10 | Lin | Exp Exp Lin

l l

-10 to 0 | Mod | Dlog Gom Mod

| * Lin | * Lin Poly

I I

—25 to -10 | Mod | Exp Mod Mod

| * Poly l * Poly Poly

l |

-50 to ~25 | Gom | L1n Gom Mod

| * Poly | * Poly Poly

| l

< -50 | Gom I L1n Mod Gom

I * Lin l * Poly Lin

(Note) * indicates that, if a city does not satisfy

the indispensible condition of the Gompertz

model or the modified exponential model, the

designated model will be used for that type.

76
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In order to develop a composite method, cities were

classified according to their growth rate changes in the

same manner used for accuracy testing in the previous

chapter.

Following this, a two—part composite method was

developed. Composite I uses the most accurate method

employing past growth rate changes only. This can be

applied to cases in which a planner cannot anticipate a

future growth rate. Composite II uses the most accurate

method employing the appropriate combination of past and

future growth rate changes.

Seven types of past growth rate change and three types

of future growth rate change were used, resulting in a total

of twenty—one types for the composite II. The composite

method selects a model exactly as shown in Table 11. The

composite method was derived from the results of this study

as presented in Table 10. For some of the types, there were

few or no cases. To develop the composite method for those

types, the tendencies and basic assumptions of the six

models were comsidered.

Micro-computer Program with BASIC Language
  

The computer program provides alternatives. Users can

chose the model they prefer to use or can allow the

selection to be made by the program. If a user decide to

use a composite method and cannot anticipate future growth
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rate, a model will be selected through the Composite I. If a

user can make a rough estimate of a future growth rate,

Composite II will select an appropriate model for the city.

If a user runs the population projection program, it

will ask the user to enter data (i.e., number of cities,

number of data points, time of the data points, city names

and population data). Once the user enters the data, the

program will ask for a projection year, and then display the

alternatives (seven methods and the composite method).

If a user chooses one of the seven models, the program

will immediately project the population to the desired time

for those cities. If a user chooses the composite method,

the program asks whether or not a rough future growth rate

can be given.

When a user chooses the composite method, the program

will decide to use whether Composite I or Composite II,

according to the user's answer. Then, the program will

calculate the growth rate over the past two time spans and

the growth rate change for each city. If a user answers

that he cannot anticipate the future growth rate, the

program will select a model with a past growth rate change

according to the Composite I, as shown in table 11. Then,

the program will immediately project the population of the

cities for the desired projection time with the model

selected. If a user answers that he can give rough future

growth rate, the program will call up future growth rates,
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such as ~10, 0, 10, 15, etc. Once a user enters a rough

growth rate, the program will calculate growth rate change

between the growth rate in last time span and the rough

growth rate entered.

Then the program will select a model with the proper

combination of past growth rate changes and future growth

rate changes for each city according to Composite II. And

the program will immediately project the populations of the

cities for the projection time with the selected model.

After finishing the projections, the program will ask

whether or not a user wants to project the population of the

cities again, with another model.

There are other facilities in the program. A user can

save his data base in his disk through the program and he

can use the data base again and again later for projecting

the populations of the cities in the data set. He can also

save the results of projections into his disk.

The program will reject requests to project population

if a user does not enter the same time intervals as the

times of past population observation points. The program

may also recommend population projections for the

short—term, so that it automatically suggests the year of

the next span from the last population observation time as

the projection year. If a user still wants to project

populations over a longer term than one more year span, the

program will project the population for the long—term using
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the projection year that a user types in.

In choosing the Gompertz model or the modified

exponential model, the program will test the appropriateness

of the city to that model. If a city cannot meet the

indispensible condition of the modified exponential model,

it will test for appropriateness with the Gompertz model.

In some cases, it will meet the indispensible condition of

the Gompertz model even though it could not satisfy the

indispensible condition of the modified exponential model.

If the city is not appropriate for either of these models,

the program will select the next best model according to the

composite method.





CHAPTER 5

CONCLUSION

This study was done in an effort to meet the needs for

the information about the accuracy of extrapolation models

which are the popular techniques used to project population

in local planning offices. Any given population

extrapolation model may be inappropriate or inapplicable to

the cities for which a planner seeks information, because

each of models projects populations with different

assumptions and there are various population growth patterns

in cities. Therefore, specific models should be used for

different type of cities.

To develop the composite method, the accuracies of six

extrapolation models were tested for various types of cities

with varied growth rate changes. The composite method was

based on the results of this accuracy testing and employs

the most accurate among the six models for particular types

of cities, according to the growth rate changes.

The exponential model and the double logarithmic model

are generally the best method for cities of which the growth

rate increased or changed moderately in the past and the

growth rate in future is expected to rapidly increase.

The linear model is generally the best technique for

the cities of which growth rate have changed moderately or

increased in the past, or will moderately change or decrease

with an earlier pattern of increasing growth rate.

81
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The Gompertz model, the modified exponential model and

the second degree polynomial model are generally the best

methods for the type of cities which have had decreasing

growth rates in past, or which will moderately change or

decrease in growth rates, following a past growth pattern of

decreasing growth rate. But the Gompertz model and the

modified exponential model require certain conditions. The

parameter "b" in the equations should be positive and less

than one and the parameter "a" in the equations should be

negative. Once cities satisfy the condition, the two models

provide good quality projection for those cities.

It is remarkable that the Gompertz model and the

modified exponential model played an important role in

projecting 1980 populations of cities in Michigan. Isserman

(1977) found that one of three methods (the linear model,

the exponential model and the double logarithmic model) was

the most accurate method for certain types of townships

classified by growth rate. His findings can still be useful

except in the case of the double logarithmic model for

cities losing more than 25 percent of their population. For

instance, he recommends using the exponential model for

townships increasing more than 25 percent, or decreasing

less than 25 percent in populaton during the last decade.

This is also recommended by this study, but this study added

another condition. The added condition is that cities are

expected to increase more than 10 percent in growth rate,
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along with the previous conditions, in order to use the

exponential model.

Because of the changes in population trends during the

19703 in Michigan, the recommendations of Isserman (1977)

are not sufficient for cities which more recently show

decreasing growth rate. This study found models for those

types of cities. It is recommended that the Gompertz model

or the modified exponential model be used if cities satisfy

the indispensible condition of those two models. It was

also found that the polynomial model yields good projections

for that type of cities, if cities are not appropriate for

the Gompertz model or the modified exponential model.

However, a planner has to use extrapolation models with

some care. All six models yielded relatively high errors

for the cities which had rapid growth rate changes. For

example, the great increase type or the extreme decrease

type. All of extrapolation models have especially extreme

errors with cities which have had sudden reversals of

population trends for the future. For instance, when the

population of a city shows highly increasing population

through an earlier time but suddenly decreases for the

future, all of models will have high errors. Therefore, in

such a case, the local planner should use a population

extrapolation model with caution. Although the

extrapolation models yield high errors in some case, they

are still useful when data, time and funds are limited.
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RESULTS OF ACCURACY TEST FOR EACH TYPE

BASED ON PAST GROWTH.RATE CHANGE

 

 

 

 

 

 

 

 

Past Growth.Rate Change Lin. Exp Dlog Poly' Gom Mbd

mean % error 19.7 26.0 25.8 33.2 — —

25 + 3d. 14.2 21.2 21.0 14.8 - -

# of cases 7 7 7 7 O 0

mean % error 11.2 14.9 14.7 20.0 — —

10 to 25 3d. 10.8 10.1 10.1 9.8 — —

# of cases 9 9 9 9 O 0

mean % error 10.1 15.2 15.1 14.2 - —

O to 10 3d. 9.4 18.2 18.0 13.7 — -

# of cases 27 27 27 27 0 0

mean.% error 9.1 10.1 10.0 9.1 7.5 7.0

—10 to 0 3d. 6.5 7.5 7.4 7.5 6.7 5.9

# of cases 54 54 54 54 31 30

mean % error 14.3 16.8 16.7 14.0 9.0 7.8

-25 to —10 3d. 9.5 11.1 11.0 10.5 8.0 6.1

# of cases 32 32 32 32 16 14

mean % error 26.4 40.6 40.2 18.5 13.3 11.5

~50 to —25 3d. 8.8 18.9 18.7 14.6 8.8 5.2

# of cases 15 15 15 15 9 8

mean % error 35.3 127.6 125.5 39.8 14.4 15.5

< —50 3d. 19.5 162.7 158.7 22.9 7.5 8.9

# of case 28 28 28 28 25 24
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APPENDIX 2 : RESULTS OF ACCURACY TEST FOR EACH TYPE BASED ON

THE COMBINATION OF PAST GROWTH RATE CHANGE AND

FUTURE GROWTH RATE CHANGE

GREAT INCREASE TYPE

 

 

 

 

 

 

 

 

 

Future Growth Rate Change Lin Exp Dlog Poly

mean 96 error — - - ~

10 + 3d. - — — -

# of cases 0 O O 0

mean 96 error - — — —

—10 to 10 3d. - - — -

# of cases 0 O 0 0

mean 96 error 19.7 26.0 25.8 33.2

< -10 3d. 14.2 21.2 21.0 14.8

# of cases 7 7 7 7

MEDIUM INCREASE TYPE

Future Growth Rate Change Lin Exp Dlog Poly

mean 96 error 38.3 29.4 29.6 26.6

10 + sd. - - — —

# of cases 1 1 1 1

mean 96 error 7.9 7.9 7.9 9.8

-10 to 10 3d. 5.1 5.1 5.1 2.1

# of cases 2 2 2 2

mean % error 7.7 14.7 14.5 22.3

< —10 3d. 4.1 9.8 9.7 9 8

# of cases 6 6 6 6
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APPENDIX 2 Continued

MODERATE INCREASE TYPE

 

 

 

 

 

 

 

 

 

 

Future Growth.Rate Change Lin. Exp Dlog Poly

mean X error 11.3 10.0 10.1 20.8

10 + sd. 2.2 1.3 1.3 7.5

# of cases 2 2 2 2

mean.X error 4.9 4.3 4.3 5.2

—10 to 10 sd. 3.1 3.2 3.1 5.4

# of cases 14 14 14 14

mean X error 16.5 30.1 29.8 24.5

< -10 sd. 11.5 20.9 20.6 14.2

# of cases 11 11 11 11

MODERATE DECREASE TYPE

Future Growth Rate Change Lin. Exp Dlog Poly Gom Med

mean X error 12.4 11.2 11.2 15.9 21.5 21.4

10 + sd. 5.0 4.8 4.9 7.1 - —

# of cases 3 3 3 3 1 1

mean X error 6.9 7.4 7.3 7.2 4.6 4.6

~10 to 10 sd. 4.4 4.9 4.9 6.1 2.4 2.4

# of cases 41 41 41 41 2 2

mean X error 17.3 20.9 20.8 14.8 13.8 12.4

< —10 sd. 7.7 7.3 7.3 9.0 8.6 7.8

# of cases 10 10 1O 10 8 7
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Future Growth Rate Change Lin Ebcp Dlog Poly Gom Mod

mean X error 5.9 5.3 5.3 30.4 14.5 14.5

10 + sd. 1.9 1.3 1.4 14.4 — -

# of cases 3 3 3 3 1 1

mean X error 11.5 13.2 13.1 9.5 4.6 4.3

—10 to 10 sd. 7.8 8.5 8.4 6.3 3.9 3.9

# of cases 20 20 20 20 9 8

mean X error 23.3 28.5 28.4 18.4 14.7 12.0

< —10 sd. 8.5 8.4 8.3 10.4 9.3 5.9

# of cases 9 9 9 9 6 5

GREAT DECREASE TYPE

Future Growth.Rate Change Lin Exp Dlog Poly Gom Mod

mean X error — — — - — -

10 + sd. — - - — - -

# of cases 0 0 O 0 0 0

mean X error 23.7 31.0 30.8 11.0 1.8 2.0

-10 to 10 sd. 10.2 19.8 19.6 9.1 — -

# of cases 7 7 7 7 1 1

mean X error 28.8 49.0 48.5 25.1 14.7 12.8

< ~10 sd. 7.3 14.4 14.2 15.9 8.2 3.7

# of cases 8 8 8 8 8 7
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EXTREME DECREASE TYPE

 

 

 

 

Future Growth Rate Change Lin. Exp Dlog Poly Gom Mbd

mean X error ~ - - -

10 + sd. — — — — - -

# of cases 0 0 0 0 O 0

mean X error 18.0 45.8 45.1 14.2 0.8 9.6

-10 to 10 sd. 15.1 30.3 30.1 6.6 8.0 6.6

# of cases 5 5 5 5 4 4

mean X error 39.1 145.3 143.0 45.4 5.0 16.7

< -10 sd. 18.5 174.6 170.2 21.3 7.5 9.0

# of cases 23 23 23 23 1 0
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COMPUTER PROGRAM FLOWCHART

 

Zinput data (city name, year 8: population) 7
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APPENDIX 4 : COMPUTER PROGRAM WITH BASIC

10 REM POPMODEL

2O REM PROJECTING POPULATION WITH 'I'HE POPULATION TREND

3O REM EXTRAPOLATION ADDELS

4O REM PROGRAIVMED BY IKKI KIM. AUGUST 5, 1985

50 REM VARIABLE (ALPHABETICALLY)

 

 

 

60 REM A() ~ MATRIX OF PARAMETERS FOR POLYNQdIAL EQUATION

7O REM A$.A2$.A3$ - USER RESPONSES

80 RE“! A,B,NB - COEFFICIENT IN EQUATION

9O REM AVl ,AV2 - AVERAGE

100 REM C() ~ CLASSIFYING USER'S CHOICE

110 REM C$() - CITY NAME

120 REM CL() ~ CLASSIFICATION OF CITY TYPE

130 REM COV ~ COVARIANCE

140 REM D ~ DEGREE OF POLYNOMIAL EQUATION

150 REM DIF(),DIF2() - DIFFERENCE OF GRWI‘H RATE

160 RBI! E - EXPONEINT IN 'I'HE GOMPERTZ & 'I'HE MDDIFIED MODEL

170 REM F1$,F2$,F3$ - FILE NAME

180 REM G ~ NIMBER OF POINTS IN GROUP- PERIOD FOR USING

190 REM THE SELECTED POINTS TECHINIQUE

200 REM H,I,J,L - FOR/NEXT VARIABLES

210 REM K ~ UPPER LIMIT POPULATION

220 REM M - NUMBER OF CITIES

230 REM N - NUMBER OF DATA POINTS

240 REM P ~ PROJECTION YEAR

250 REM P$,P2$ ~ USER RESPONSES RELATED TO PROJENCTION YEAR

260 REM Q,R,T - INITIALIZING NUMBER

270 REM Ql$.Q2$:Q3$ ~ USER RESPONSES

280 REM R1(),YR1(),LP ~ TRANSFORMED POPULATION OR YEAR

290 REM S ~ PERIOD SPAN

300 REM VAR - VARIANCE

310 REM X( ) ,Y() ~ MATRIX FOR SOLVING POLYNCMIAL EQUATION

320 REM *******************************************************1”:

330 REM [] [1

340 REM [] ENTERING DATA []

350 REM [] []

360 PRINT "NUMBER OF CITIES AND TONNS FOR PROJECTION":

370 INPUT M

380 PRINT

390 PRINT "NUMBER OF DATA POINTS";

400 IINPU'I' N

410 PRINT

420 PRINT "DO YOU HAVE A DATA-FILE (Y/N)";

430 INPUT A3

440 PRINT

450 IF A$="N" OR A$="n" THEN 510

460 PRINT "NAME OF INPUT DATA-FILE";

470 INPU'I' F13
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480

490

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680

690

700

710

720

730

740

750

760

770

780

790

800

810

820

830

840

850

860

870

880

890

900

910

920

930

940

PRINT

OPEN "I", #1, F13

INPUT #1, M,N

DIM YR(N) :P0P(M.N) .C$(M) .CL(M) .P1(N) :YR1(N) .C(M)

DIM X(6,6) ,Y(6) ,A(6) ,DIF(M) ,DIF2(M)

IF A$="Y" OR A$="Y" THEN 1130

REM *******#*******akakakakak****#**************************1H:

REM ENTERING DATA DRING RUNNING PROGRAM

PRINT "DO YOU WANT TO CREAT A DATA-FILE (Y/N)";

INPUT A23

PRINT

IF A2$="N" OR A2$="n" THEN 640

PRINT "NAME FOR THE DATA-FILE";

INPUT F2$ : PRINT

OPEN "O",#2,F2$

PRINT #2, M,N

FOR I=1 TO M

PRINT "NAME OF CITY OR TONN : NO.";I;

INPUT C$(I)

IF A2$="N" OR A2$="n" THEN 690

PRINT #2: CHR$(34) 30$“) :CHR$(34):

NEXT I

PRINT : PRINT

FOR J=1 TO N

PRINT "TIME (YEAR) FOR DATA POINT #";3:

INPUT YR(J)

IF A2$="N" OR A2$="n" THEN 760

PRINT #2, YR(J);

NEXT J

PRINT : PRINT

FOR I=1 TO M

PRINT II II

PRINT "ENTER POPULATION DATA OF ";C$(L)

PRINT II II

FOR J=1 TO N

PRINT "POPULATION OF ";YR(J);

INPUT POP(I,J)

NEXT J

PRINT II II

PRINTzPRINT

NEXT I

IF M<3 TIEN 1040

PRINT "DO YOU WISH TO REVIEW TIE POPULATION DATA (Y/N)";

INPUT AS

PRINT

IF A$="N" OR A$="n" TIEN 1040

FOR I=1 TO M

 

 

 

 



APPENDIX 4

950

960

970 PRINT "FOR ":YR(J);" ---

980

990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410
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: Continued

PRINT " CITY NAME :

FOR J=1 TO N

";C$(I)

";" POPULATION =";POP(I,J);" OK (Y/N)";

INPUT AS : PRINT

IF A$="Y" 0R.A$="Y" THEN 1020

PRINT "CORRECTED POPULATION : ";

INPUT POP(I,J)

NEXT J

NEXT I

IF A2$="N" 0R.A2$="n" THEN 1260

FOR I=1 TO M

FOR J=1 TO N

PRINT #2, POP(I,J);

NEXT J

NEXT I

GOTO 1260

REM *************************************************************

REM LOADING DATA FROM DATA-FILE

FOR I=1 TO M

INPUT #1, C$(I)

NEXT I

FOR J=1 TO N

INPUT #1, YR(J)

NEXT J

FOR I=1 TO M

FOR J=1 TO N

INPUT #1, POP(I,J)

NEXT J

NEXT I

REM *****x*******************************************************

REM JUSTIFICATION 0F PROJECTING YEAR

3=YR(2)4YR(1)

PfiYR(N)+S

PRINT "PROJECTION YEAR IS ":P;"

INPUT P$ : PRINT

IF P$="Y" 0R.P$="y" THEN 1390

PRINT "PROJECTING POPULATION FOR.THE SHORT-TERM.IS"

PRINT "RECOMMANDED SUCH AS FOR NEXT SPAN POINT(YEAR)."

PRINT:PRINT:

PRINT "D0 YOU‘WANT TO PROJECT POP. FOR ":P;" (Y/N)";

INPUT P2$ : PRINT

IF P2$="Y" OR.P2$="y“ THEN 1390

PRINT "TIME (YEAR) FOR PROJECTING POPULATION";

INPUT P : PRINT

FOR J=2 TO N-l

IF 8=YR(J+1)4YR(J) THEN 1420

PRINT "YOU NEED THE CONTINUOUS EQUAL PERIOD SPAN":STOP

(Y/N)";
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1420 NEXT J

1430 REM *******************#*******************#***************

1440 REM [1 [1

1450 REM [J SELECTING A MOEDL [1

1460 REM [J [1

1470 PRINT "DO YOU WANT TO SAVE THE RESULTS (Y/N)";

1480 INPUT Q$ : PRINT

1490 IF Q$="N" OR Q ="n" THEN 1530

1500

1510

1520

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

PRINT "FILE NAME FOR SAVING THE RESULTS":

INPUT F3$ : PRINT

OPEN "O",#3,F3$

FOR I=1 TO M

IF I=1 THEN 1570

IF A3$="N“ OR.A3$="n” THEN 1570

 

 

CL(I)=CL(I*1) : GOTO 1740

PRINT II II

PRINT " WHICH MODEL DO YOU'WENT TO USE FOR PROJECTION ?"

PRINT : PRINT " 1. LINEAR.REGRESSION MODEL"

PRINT " 2. EXPONENTIAL REGRESSION MOD "

PRINT " 3. DOUBLE LOGARITHMEC REGRESSION MOD "

PRINT " 4. GOMPERTZ CURVE"

PRINT " 5. MODIFIED EXPONENTIAL CURVE"

PRINT " 6. SECOND DEGREE POLYNOMIAL CURVE"

PRINT " 7. THIRD, FORTH OR.FIFTH DEGREE POLYNOMIAL"

PRINT " 8. COMPOSITE METHOD (TESTED IN '85, MICH.)"

PRINT II N

PRINT

PRINT "ENTER THE NUMBER.OF SPECIFIC METHOD FOR ";C$(I);

INPUT CL(I) : PRINT : PRINT

IF M=1 THEN 1740

PRINT "USE SAME METHOD FOR REST OF OTHER CITIES (Y/N)";

INPUT A33 : PRINT

IF CL(I)=8 THEN C(I)=1

IF CL(I)<8 THEN C(I)=2

NEXT I

REM ************************************************************

REM SELECTING A MODEL BY PROGRAM

FOR I=1 TO M

IF CL(I)<8 THEN 2230

R1=(POP(I,N)-POP(I,N-1))/POP(I,N-1)*100

R2=(POP(I,N—1)-POP(I,N-2))/POP(I,N-2)*1OO

DIF(I)=R1-R2

IF I>1 THEN 1880

PRINT "CAN YOU GIVE THE ROUGH 9s GROWTH RATE FOR SOME OR ALL"

PRINT "OF CITIES FROM ";YR(N);" TO ";YR(N)+S;" (Y/N)";

INPUT 02$ : PRINT

IF 02$="N" OR Q2$="n" THEN 2200
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1890 PRINT "ROUGH % GROWTH RATE FOR ";C$(I);" (..-10..0..10..)";

1900 INPUT R3 : PRINT

1910 DIF2(I)=R3—R1

1920 IF DIF(I)>10 AND DIF2(I)>10 THEN CL(I)=2

1930 IF DIF(I)>25 AND DIF2(I)>=—10 AND DIF2(I)<=10 THEN CL(I)=3

1940 IF DIF(I)<=25 AND DIF(I)>10 AND DIF2(I)<=10 THEN CL(I)=1

1950 IF DIF(I)>25 AND DIF2(I)<-10 THEN CL(I)=1

1960 IF DIF(I)>0 AND DIF(I)<=10 THEN 1980

1970 GOTO 2000

1980 IF DIF2(I)>=-10 THEN CL(I)=2

1990 IF DIF2(I)<—10 THEN CL(I)=1 : GOTO 2230

2000 IF DIF(I)>=-10 AND DIF(I)<=0 THEN 2020

2010 GOTO 2050

2020 IF DIF2(I)>10 THEN CL(I)=3

2030 IF DIF2(I)>=—10 AND DIF2(I)<=10 THEN CL(I)=4

2040 IF DIF2(I)<-10 THEN CL(I)=5 : GOTO 2230

2050 IF DIF(I)>=-25 AND DIF(I)<-10 THEN 2070

2060 GOTO 2090

2070 IF DIF2(I)>10 THEN CL(I)=2

2080 IF DIF2(I)<=10 THEN CL(I)=5 : GOTO 2230

2090 IF DIF(I)>=—50 AND DIF(I)<=—25 THEN 2110

2100 GOTO 2140

2110 IF DIF2(I)>10 THEN CL(I)=1

2120 IF DIF2(I)<=10 AND DIF2(I)>=-10 THEN CL(I)=4

2130 IF DIF2(I)<-10 THEN CL(I)=5 : GOTO 2230

2140 IF DIF(I)<—50 THEN 2160

2150 GOTO 2230

2160 IF DIF2(I)>10 THEN CL(I)=1

2170 IF DIF2(I)<=10 AND DIF2(I)>=—10 THEN CL(I)=5

2180 IF DIF2(I)<—10 THEN CL(I)=4

2190 GOTO 2230

2200 IF DIF(I)>=0 THEN CL(I)=1

2210 IF DIF(I)<0 AND DIF(I)>=-50 THEN CL(I)=5

2220 IF DIF(I)<—50 THEN CL(I)=4

2230 NEXT I

2240 Rm *************##3##*Shluk3|!*Jk*ilflk*1:*IIUIUR**************************

2250 REM SEND A TYPE OF CITY TO A SPECIFIC NDDEL CALCULATION

2260 FOR I=1 TO M

 

2270 IF CL(I)<=3 THEN 2430

2280 IF CL(I)=4 0R CL(I)=5 THEN 3090

2290 IF CL(I)=6 0R CL(I)=7 THEN 3880

2300 NEXT I

2310 PRINT " "

2320 PRINT : PRINT

2330 PRINT "PROJECT AGAIN WITH OTHER ALTERNATIVE NDDEL (Y/N)":

2340 INPUT 03$

2350 PRINT
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2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820
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: Continued

IF Q3$="N“ OR Q3$="nP THEN END

GOTO 1530

REM ********************************$******************#********

RPM [1 [1

RM [1 [1

RPM [1 [1

REM CALCULATING REGRESSION AND PROJECTING POPULATION

FOR J=1 TO N

IF CL(I)=1 THEN 2490

P1(J)=LOG(POP(I,J))

IF CL(I)=2 THEN 2500

YR1(J)=LOG(YR(J))

GOTO 2510

P1(J)=P0P(I,J)

YR1(J):YR(J)

NEXT J

IF CL(I)=3 THEN 2550

LP=P

GOTO 2560

LP=LOG(P)

T20

FOR J=1 TO N

TfiT4P1(J)

NEXT J

AV1=T/N

R=0

FOR J=1 TO N

R=R+YR1(J)

NEXT J

AV2=R/N

VARFO :COV20

FOR J=1 TO N

VAR#VAR+((YR1(J)RAV2)“2)

COVECOV+(P1(J)-AV1)*(YR1(J)-AV2)

NEXT J

B=COV/VAR

Y:P1(N)+B*(LP4YR1(N))

REM *****************************************************

REM PRINTING RESULTS

PRINT

PRINT II II

IF CL(I)=1 THEN 2960

Y=EXP(Y)

IF CL(I)=3 THEN 2880

PRINT "PROJECTED POP. OF ";C$(I);" FOR ":P;" ..... ":Y

PRINT " BASED ON THE EXPONENTIAL MODEL."

PRINT

 

LINEAR,EXPONENTIAL AND DOUBLE LOG. MODELS
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2830 IF Q$="N" 0R Q$="n" TIEN 2300

2840 PRINT #3, "PROJECTED POP. OF ";C$(I);" FOR ";P;" ..... ";Y

2850 PRINT #3," BASED ON TIE EXPONENTIAL mDEL."

2860 PRINT #3,

2870 GOTO 2300

2880 PRINT "PROJECTED POP. 0F ";C$(I);" FOR ";P;" ..... ";Y

2890 PRINT " BASED ON TIE DOUBLE LOG. MODEL."

2900 PRINT

2910 IF Q$="N" 0R Q$="n" TIEN 2300

2920 PRINT #3,"PROJECTED POP. 0F ";C$(I);" FOR ";P;" ..... ";Y

2930 PRINT #3," BASED ON TIE DOUBLE LOG. NDDEL."

2940 PRINT #3,

2950 GOTO 2300

2960 PRINT "PROJECTED POP. 0F ";C$(I);" FOR ";P;" ..... ";Y

2970 PRINT " BASED ON TIE LINEAR MODEL."

2980 PRINT

2990 IF Q$="N" 0R Q ="n" TIEN 2300

3000 PRINT #3,"PRO.JECTED POP. 0F ";C$(I);" FOR ";P;" ..... ";Y

3010 PRINT #3," BASED ON 'TIE LINEAR MODEL."

3020 PRINT #3,

3030 GOTO 2300

3040 REM *********************************************************

3050 REM [] [J

3060 REM [] GOMPERTZ AND MODIFIED EXPONENTIAL NDDEL []

3070 REM [] [J

3080 REM GROUPING POINTS FOR USING TIE SELECTED POINT TECHNIQUE

3090 G=N/3

3100 G=INT(G)

3110 N2=(N—G+1) :N3=(N—G) :N4=(N-G—G+1) :N5=(N—G—G) :N6=(N-G—G-G+1)

3120 FOR J=1 TO N

3130 IF CL(I)=5 TIEN 3160

3140 P1(J)=LOG(POP(I,J))

3150 GOTO 3170

3160 P1(J)=POP(I,J)

3170 NEXT J

3180 T=O:R=0:Q=0

3190 FOR J=N2 TO N

3200 T=‘I‘+P1(J)

3210 NEXT J

3220 FOR J=N4 T0 N3

3230 R=R+P1(J)

3240 NEXT J

3250 FOR J=N6 T0 N5

3260 Q=Q+P1(J)

3270 NEXT J

3280 REM *****************************************************

3290 REM TEST FEASIBILITY FOR USING TN) MODEL
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3300

3310

3320

3330

3340

3350

3360

3370

3380

3390

3400

3410

3420

3430

3440

3450

3460

3470

3480

3490

3500

3510

3520

3530

3540

3550

3560

3570

3580

3590

3600

3610

3620

3630

3640

3650

3660

3670

3680

3690

3700

3710

3720

3730

3740

3750

3760
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: Continued

NB=(T-R)/(R-Q)

IF NB<O TIEN 3350

B=EXP(LOG(NB)/G)

A=(R-Q)*(B-1)/((NB-1)‘2)

IF NB>O AND NB<1 AND A<O THEN 3590

IF C(I)=2 AND CL(I)=5 THEN 3390

IF C(I)=2 AND CL(I)=4 THEN 3440

IF CL(I)=4 THEN 3500

CL(I)=4 : GOTO 3120

PRINT " ***********#*******************************************"

PRINT " THE PAST POPULATION TREND 0F ";C$(I)

PRINT " CAN NOT BE FITTED TO THE MODIFIED MODEL"

PRINT " *******************************************************N

GOTO 2300

PRINT n ******************************#************************H

PRINT " THE PAST POPULATION TREND 0F ";C$(I)

PRINT " CAN NOT BE FITTED TO THE GOMPERTZ MOD "

PRINT n *******************************************************H

GOTO 2300

REM RESELECTING OPTIMUM MODEL

IF 02$="N" 0R 02$="nP THEN 3550

IF DIF(I)>=—1O AND DIF(I)<=O AND DIF2(I)>=—1O THEN 3540

IF DIF(I)<—50 AND DIF2(I)<-10 THEN 3540

GOTO 3880

CL(I)=1 : GOTO 2430

IF DIF(I)>=-50 AND DIF(I)<-10 THEN 3880

GOTO 3540

REM *****************************************************

REM PROJECTING POPULATION

K=(Q-( (NB~1)*A/(B*1) ) )/G

E=G+G+G+(P-YR(N)-S)/S

Y=K+(A*(B“E))

REM *******************************************#*********

REM PRINTING RESULTS

 

PRINT

PRINr II II

IF CL(I)=4 THEN 3740

PRINT "PROJECTED POP. OF ";C$(I);" FOR ";P;" ..... ";Y

PRINT " BASED ON THE MODIFIED MOD ." : PRINT

IF Q$="N" OR Q$="n" THEN 2300

PRINT #3,"PROJECTED POP. OF ";C$(I);" FOR ";P;" ..... ";Y

PRINT #3," BASED ON THE MODIFIED MODEL."

PRINT #3,

GOTO 2300

Y=EXP(Y)

PRINT "PROJECTED POP. OF ";C$(I);" FOR ";P;" ..... ";Y

PRINT " BASED ON THE GOMPERTZ MOD ."
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3770

3780

3790

3800

3810

3820

3830

3840

3850

3860

3870

3880

3890

3900

3910

3920

3930

3940

3950

3960

3970

3980

3990

4000

4010

4020

4030

4040

4050

4060

4070

4080

4090

4100

4110

4120

4130

4140

4150

4160

4170

4180

4190

4200

4210

4220

4230
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: Continued

PRINT

IF Q$="N“ OR Q$="n" THEN 2300

PRINT #3,“PROJECTED POP. OF ";C$(I);" FOR ";P;" ..... ";Y

PRINT #3," BASED ON THE GOMPERTZIMODEL."

PRINT #3,

GOTO 2300

RB]! *3“:akalcakakslnlc*akakakakakaltall*3”:alt*******#**********************##altal:

REM [1 [1

REM [1 [1

REM [I [1

REM GERNERATING MATRIX FOR.USING THE LEAST SQUARE,METHOD

IF CL(I)=6 0R C(I)=1 THEN 3910

PRINT "DEGREE OF POLYNOMIAL FOR ";C$(I);"

INPUT D : GOTO 3920

D=2

FOR H=1 T0 D+1

FOR L:1 TO D+1

T=0

IF (HHL)=2 THEN 4010

FOR J=1 TO N

T=T+((J—1)“(H+L-2))

NEXT J

X(H,L)='I'

GOTO 4020

X(H,L)=N

NEXT L

NEXT H

FOR H=1 T0 D+1

Q=0

FOR J=1 TO N

IF H:1 THEN 4100

Q=Q+POP(I.J)*((J-1)‘(H-1))

GOTO 4110

Q==Q+POP(I.J)

NEXT J

Y(H)=Q

NEXT H

Rm *************************akakaluknkak*Ilnkakakakakakak****************

REM PROJECTING POPULATION

GOSUB 4350

R=0

FOR H:1 T0 D+1

R=R+A(H)*(((P-YR(1))/S)‘(H-1))

NEXT H

Rm *********¥******#*******************#******************

REM PRINTING RESULTS

PRINT

 

EKIATKWEAL.MODEL

 

(TYPE 3, 4 OR 5)";
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4240

4250

4260

4270

4280

4290

4300

4310

4320

4330

4340

4350

4360

4370

4380

4390

4400

4410

4420

4430

4440

4450

4460

4470

4480

4490

4500

4510

4520

4530

4540

4550

4560

4570

 

PRINT H II

PRINT "PROJECTED POP. OF ";C$(I);" FOR ";P;" ..... ";R

PRINT "BASED ON THE ";D;"-DEGREElflflfiflflrflllaMODEL."

PRINT

IF Q$="N" OR Q$="n" THEN 2300

PRINT #3,"PROJECTED POP. OF ";C$(I);" FOR ";P;" ..... ";R

PRINT #3,"BASED ON THE ";D;"-DEGREE POLYNOMEAL MODEL."

EFENT #3,

GOTO 2300

RE]! *SI‘******************************************************

REM MATRIX INVERSION AND MULTIPLACATION

FOR L=1 TO D+1

B=X(L.L)

IF B=O THEN STOP

X(L,L)=1

FOR J=1 TO D+1

X(L.J)=X(L.J)/B

NEXT J

FOR H=1 TO D+1

IF H:L THEN 4490

B=X(H.L)

X(H,L)=O

FOR J=1 TO D+1

X(H.J)=X(H,J)—X(L.J) *3

NEXT J

NEXT H

NEXT L

FOR,H:1 TO D+1

A(H)=O : REM INITIALIZE EACH ELEMENT OF B

FOR J=1 TO D+1

.A(H)=A(H)+X(H,J)*Y(J)

NEXT J

NEXT H

RETURN
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EXAMPLE OF PROJECTING POPULATION

WITH COMPUTER PROGRAM
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APPENDIX 5 : EXAMPLE OF PROJECTING POPULATION

WITH COMPUTER PROGRAM

RUN

NUMBER OF CITIES AND TOWNS FOR PROJECTION? 1

NUMBER OF DATA POINTS? 4

DO YOU HAVE A DATA-FILE (Y/N)? N

DO YOU WANT TO GREAT A DATA-FILE (Y/N)? N

NAME OF CITY OR TOWN : NO. 1 ? SAGINAW

TIME (YEAR) FOR DATA POINT # 1 9 1940

TIME (YEAR) FOR DATA POINT # 2 ? 1950

TIME (YEAR) FOR DATA POINT # 3 ? 1960

TIME (YEAR) FOR DATA POINT # 4 9 1970

POPULATION OF 1940 9

POPULATION OF 1950 ?

POPULATION OF 1960 ? 98265

POPULATION OF 1970 9

—~---———----*_-_——--~—-~--*--*—_-——‘-——~

YOUR PROJECTION YEAR IS 1980 (Y/N)? Y

DO YOU WANT TO SAVE THE RESULTS (Y/N)? N

WHICH MODEL DO YOU WANT TO USE FOR PROJECTION?

LINEAR REGRESSION MODEL

EXPONENTIAL REGRESSION MODEL

DOULE LOGARITHMIC REGRESSION MODEL

GOMPERTZ MODEL

MODIFIED EXPONENTIAL MODEL

SECOND DEGREE POLYNOMIAL MODEL

THIRD, FORTH OR FIFTH DEGREE POLYNOMIAL

COMPOSITE METHOD (TESTED IN '85, MICH.)c
o
m
m
e
n
t
-
c
o
m
p
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ENTER THE NUMBER OF SPECIFIC METHOD FOR SAGINAW? 8

CAN YOU GIVE THE ROUGH % GROWTH RATE FOR SOME OR ALL

OF CITIES FROM 1970 TO 1980 (Y/N)? Y

ROUGH % GROWTH RATE FOR SAGINAW? -15

——--—-—--—I—————“————-—fi—w———————-—~—————————————-flfl_—-”_“

PROJECTED POP. OF SAGINAW FOR 1980 ........ 78909.72

BASED ON THE POLYNOMIAL MODEL

PROJECT AGAIN WITH OTHER ALTERNATIVE MODEL (Y/N)? N

 

OK
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POPULATION DATA
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APPENDIX 6 POPULATION DATA

CITY 1940 1950 1960 1970 1980

Adrian 14230 18393 20347 20382 21186

Albion 8345 10406 12749 12112 11059

Algona 1931 2639 3190 3684 4412

Allega 4526 4801 4822 4516 4576

AllenP 3487 12329 37494 40747 34196

Alma 7202 8341 8978 9611 9652

Alpena 12808 13135 14682 13805 12214

AnnArb 29815 48251 67340 99797 107966

BadAxe 2624 2973 2998 2999 3184

Battle 43453 48666 44168 38931 35724

BayCit 47956 52523 53604 49449 41593

Beldin 4089 4436 4887 5121 5634

Benton 16668 18769 19136 16481 14707

Berkle 6406 17931 23275 21879 18637

Bessem 4080 3509 3304 2805 2553

BigRap 4987 6736 8686 11995 14361

Birmin 11196 15467 25525 26170 21689

Blissf 2144 2365 2653 2753 3107

Boyne 2904 3028 2797 2967 3348

Buchan 4056 5224 5341 4643 5142

Cadill 9855 10425 10112 9990 10199

Caro 3070 3464 3534 3701 4317

Center 3198 7659 10164 10379 9293

Charle 2299 2695 2751 3519 3296

Charlo 5544 6606 7657 8244 8251

Cheboy 5673 5687 5859 5553 5106

Chelse 2246 2580 3355 3858 3816

Chesan 1807 2264 2770 2876 2656

Clare 1844 2440 2442 2639 3300

Clawso 4006 5196 14795 17617 15103

Coldwa 7343 8594 8880 9155 9461

Corunn 2017 2358 2704 2829 3206

Daviso 1397 1745 3761 5259 6087

Dearbo 63587 94994 112007 104199 90660

Dowagi 5007 6542 7208 6583 6307
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CITY 1940 1950 1960 1970 1980

Durand 3127 3194 3312 3678 4241

EDetro 8584 21461 45756 45756 38280

EGrand 4899 6403 10924 12565 10914

ELansi 5839 20325 30198 47540 51392

EatonR 3060 3509 4052 4494 4510

Ecorse 13209 17948 17328 17515 14447

Escana 14830 15170 15391 15368 14355

Essexv 2390 3167 4590 4990 4378

Farmin 1510 2325 6881 10329 11022

Fenton 3377 4226 6142 8284 8098

Fernda 22523 29675 31347 30850 26227

FlatRo 1467 1931 4696 5643 6853

Flint 151543 163143 196940 193317 159611

Flushi 1806 2226 3761 7190 8624

Franke 1100 1208 1728 2834 3753

Fraser 747 1379 7027 11868 14560

Fremon 2520 3056 3384 3465 3672

Garden 4096 9012 38017 41864 35640

Gaylor 2055 2271 2568 3012 3011

Gd.Blan 1012 998 1565 5132 6848

Gladst 4972 4831 5267 5237 4533

GrandH 8799 9536 11066 11844 11763

GrandL 3899 4506 5165 6032 6920

Gr.Po.Sh 801 1032 2301 3042 3122

GrandR 164292 176515 177313 197649 181843

Grandv 1566 2022 7975 10764 12412

Greenv 5321 6668 7440 7493 8019

Grosse 6197 6283 6631 6637 5901

GPFar 7217 9410 12172 11701 10551

GPPark 12646 13075 15457 15641 13639

GPWood 2805 10381 18580 21878 18886

Hamtra 49839 43355 34147 27245 21300

Hancoc 5554 5223 5022 4820 5122

Hartford 1694 1838 2305 2508 2493

Hastin 5175 6096 6375 6501 6418
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Highla

Hillsd

Hollan

Holly

Hought

Howell

Hudson

Hudsvi

Huntin

Inkste

Ionia

IronMo

Ironwo

Ishpem

Ithaca

Jackso

Kalama

Kingsf

LakeOr

L'Anse

Lansin

Lapeer

Lauriu

Lineol

Livoni

Lowell

Luding

Manist

Maniqu

Marine

Marque

Marsha

Marysv

Mason

Melvin

107807

6160

3058

53933

66702

2545

9421

8324

4875

4404

19824

6736

4065

4522

13089

131403

6314

2868

52984

110109

3068

9021

7723

4324

4567

21967

7253

5610

5468

13862

130414

6198

2678

45105

104814

3707

8937

7566

3962

4414

23288

7201

7345

6019

12322
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Menomi

Midlan

Milan

Milfor

Monroe

MoClem

MoMorr

MoPlea

Munisi

Muskeg

MuskHe

Negaun

NewBal

New Buff

Niles

NorthM

Northv

Norway

OakPar

Otsego

Owosso

Oxford

PawPaw

Petosk

Plainw

Pleasa

Plymou

Pontia

PoartH

Portla

Richmo

RivRou

Riverv

Roches

Rockwood 1147
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Rogers

Romeo

Rosevi

RoyalO

Sagina

StClai

StClSh

StIgna

StJohn

StJose

StLoui

Saline

SaultS

SouthH

8. Lyon

Sparta

Spring

Sturgi

Tecums

ThreeR

Traver

Trento

Utica

Vassar

Wakefi

Warren

Wayne

Whiteh

LO

Willians

Wyando

Ypsila

Zeelan

14455

5284

1022

2154

3591

582

4223

1407

1704

30618

12121

3007

89246

16034

2590

2214

43519

20957

3702

179260

21054

3017

2600

41061

29538

4734

161134

21159

2856

2981

34006

24031

4764
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