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ABSTRACT

SURFACE WAVE END-FIRE ANTENNA

BY

0k Kyun Kim

This thesis presents the theoretical and experimental studies

on a slow surface wave end-fire antenna. This antenna is composed of

a flat corrugated conducting surface mounted on a finite conducting

ground plane and a corrugated rectangular horn. The surface wave is

launched by the corrugated rectangular horn and guided over the corru-

gated flat surface mounted on a finite ground plane. The radiation

of this surface wave yields an end-fire beam of electromagnetic wave.

The advances in supersonic aircraft and space technology in

recent years have created the needs for flush mounted scannable end-

fire antennas. One of the effective schemes for designing this type

of antenna is to employ a slow surface wave along a reactive impedance

surface such as a corrugated surface. Existing studies on such a struc—

ture have been restricted to the ideal model of infinite extent. A few

experimental studies on this antenna exist and they are mainly concerned

with the wave propagating properties.

Rigorous theoretical analysis on the finite corrugated structure

is not known to exist. In this study, approximate theoretical analyses

on the launching device, the wave propagation and the radiation of the



0k Kyun Kim

surface wave have been made and an extensive experimental investigation

was conducted to verify the approximate theory. Finally, a scheme

of scanning the end—fire beam was studies experimentally.



SURFACE WAVE END-FIRE ANTENNA

By

0k Kyun Kim

A THESIS

submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY,

Department of Electrical Engineering

1973



 



xi
»ik .

. \3

. ACKNOWLEDGEMENTS

The author wishes to express his appreciation to his major

professor, Dr. K. M. Chen, for his guidance and encouragement

throughout the course of this work. He also wishes to thank the

other members of his guidance committee, Dr. D. P. Nyquist, Dr. J.

Asmussen, Dr. B. Ho and Dr. J. S. Frame for their time and help in

this work.

Finally, the author wishes to thank his wife, Young M00, and

children for their support and encouragement during this work.

ii



 



 

TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . .

Chapter

I.

II.

III.

IV.

INTRODUCTION . . . . . . . . . . . . . . . .

1.1 Review of Previous Work . . . . . .

1.2 Method of Investigation . . . . . .

SURFACE WAVE EXCITATION. . . . . . . . . . .

2.1 General Properties ofPeriodically Loaded

waveguides. . . . . . . . . . . .

2.2 Expansion of Fields in the Corrugated

Rectangular Waveguide . . . . . . . .

FLAT CORRUGATED CONDUCTING SURFACE . . . . .

RADIATION FIELDS . . . . . . . . . . . . . .

4.1 Review of Radiation Field Calculation .

4.2 Radiation Fields of a Single Corrugated

Structure . . . . . . . . . . . . . . .

4.2.1 E-Plane Radiation Patterns .

4.2.2 H—Plane Radiation Patterns . . .

EXPERIMENT O O O O O O O O O O O 0 O O O O O

1 Antenna System. . . . . . . . .

2 Surface Field Distribution. .

3 Radiation Patterns of a Single Radiator

.4 Input Impedance of a Single Radiator.

5 Composit Radiator . . . . . . . . . .

6 Conclusion. . . . . . . . . . . . .

iii

3.1 Fields on the Uniform Corrugated Surface.

3.2 Fields on the Tapered Corrugated Surface. .

3.3 Induced Fields on the Finite Ground Plane

Page

D
~
P
I

13

39

39

54

57

71

71

75

78

85

89

89

94

148

164

166

178



Page

REFERENCES............................180

APPENDICES

Appendix

A. An Example on the Aperture Integration Method. . . . . . 186

B. A Tapered Anechoic Chamber . . . . . . . . . . . . . . . 190

iv



Figure

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

5.1

5.2

5.3

5.4

LIST OF FIGURES

General Dispersion Curves for Periodic Structures .

Corrugated Rectangular Waveguide. . . . . . . . . .

Normalized Attenuation Constant in a Corrugated

Rectangular Waveguide . . . . . . . . . . . .

Normalized k- Diagram for a Corrugated Rectangular

waveSUide O O O O O O O O O O O O I O O O O I O

'3? Ratio Versus Corrugated Guide Dimensions. . . . .

Surface Wave Guiding Structure. . . . . . . . . . .

Coordinates of Flat Corrugated Surface and Ground

Plane 0 O O I O O O O O O O O 0 O O O O O O O O

Induced H—Field Distribution on the Ground Plane by

Large Argument Approximation. . . . . . . . . . . . . .

Induced H—Field Distribution on the Ground Plane by

Numerical Integration . . . . . . . . . . . . . . . . . .

Induced H-Field Distribution on the Ground Plane Due

to Constant Reactive Surface. . . . . . . . . . . . . .

Coordinates of Corrugated Antenna for Radiation Fields. .

Calculated E—Plane Radiation Power Patterns

(7-10 GhZo) . O O O O O O O O O C O C O O O I O O O O 0

Calculated H—Plane Radiation Power Patterns

(7-10 GhZo) O O O O O O O O O O C O O O O I 0 O O O .

Corrugated Antenna. . . . . . . . . . . . . . . . . . . .

Probe Assemblies. . . . . . . . . . . . . . . . . . . . .

Surface Field Measurement System. . . . . . . . . . . . .

Standing Waves by a Reflecting Plate Placed at the

End Of Antenna I I O O O O Q 0 O O O O O O O O O O O O

Page

16

36

37

38

40

58

68

69

7O

75

84

88

91

95

98

99



Figure

5.5a I

5.5b

5.6

5.7

5.8a"

5.8b

5.8c

5.8d

5.8e

5.9a

5.9b

5.9c

5.9d

5.9e

5.10

5.11a

5.11b

5.11c

5.11d

Normal Electric Field Distribution (Ey: 7-8 Ghz.).

Normal Electric Field Distribution (Ey: 9-10 Ghz.

Attenuation Constant and Phase Constant. . .

Typical Standing Wave Patterns

Surface

Section

Surface

Section

Surface

Section

Surface

Section

Surface

Section

Surface

Tapered

Surface

Tapered

Surface

Tapered

Surface

Tapered

Surface

Tapered

Average

Surface

Surface

Section

Surface

Section

Surface

Section

Surface

Section

Field Distribution

(7 Ghz.) o o o o 0.

Field Distribution

(8 Ghz.) O O O O 0

Field Distribution

(9 Ghz.) o ., o o 0

Field Distribution

(10 Ghz.) O O O O 0

Field Distribution

(10.5 Ghz.). 0 O 0

Field Distribution

Section (7 Ghz.) .

Field Distribution-

Section (8 Ghz.) .

Field Distribution

Section (9 Ghz.) .

Field Distribution

Section (10 Ghz.).

Field Distribution

for

for

Section (10.5 Ghz.). .

Reflection Coefficient

for Ey Component .

Field Distribution

(7 Ghz.) o o o o 0

Field Distribution

(8 Ghz.) o o o o 0

Field Distribution

(9 Ghz.) . . . .

Field Distribution

(10 Ghz.). . . . .

for

for

for

for

vi

of Surface Wave .

Ey with Tapered

Ey with Tapered '

Ey with Tapered

Ey with Tapered

E without

Y

E without

Y

over Corrugated

Ez with Tapered

Ez with Tapered

Ez with Tapered

O C O O O 0

E2 with Tapered

o o o o d o o o

)

Page

101

102

103

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124



5.12a

5.12b

5.12c

5.12a

5.13a

5.13b

5.13c

5.13d

5.14s

5.14b

5.14c

5.14d

5.15a

5.15b

5.15c

5.15d

5.16a

5.16b

Surface

Tapered

Surface

Tapered

Surface

Tapered

Surface

Tapered

Surface

Section

Surface

Section

Surface

Section

Surface

Section

Surface

Section

Surface

Section

Surface

Section

Surface

Section

Surface

Field Distribution for E2 without

Section (7 Ghz. )

Field Distribution for E2 without

Section (8 Ghz.).

Field Distribution for E2 without

Section (9 Ghz.).

Field Distribution for E2 without

Section (10 Ghz.)

Field Distribution for H with

-measured,(7 Ghz.:

Field Distribution for H with

measured,(8 Ghz.:

Field Distribution for Hx with

measured,(9 Ghz.:

Field Distribution for H

(10 Ghz.:

Field Distribution for Hx

(7 Ghz. ).

Field Distribution for Hx

(8 Ghz. ).

Field Distribution for Hx

(9 Ghz. ).

Field Distribution for Hx

(10 Ghz. )

Field Distribution for Ey

Direction (7 Ghz.).

Surface Field Distribution for Ey

Direction (8 Ghz.).

Surface Field Distribution for1E

Direction (9 Ghz.).

Surface Field Distribution for Ey

Direction (10 Ghz.)

Surface Field Distribution for Hx

Direction (7 Ghz. ).

Surface Field Distribution for Hx

Direction (8 Ghz. L

 

 

 

 

vii

x
measured,

0....

Tapered

Tapered

Tapered

with Tapered

ooooo calculated)

without Tapered

without Tapered

without Tapered

without Tapered

in Transverse

in Transverse

in Transverse

in Transverse

calculated).

calculated).

calculated).

Page

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142



Figure

5.16c

5.16d

5.17a

5.17b

5.17c

5.18a

Surface Field Distribution for Hx in Transverse

Direction (9 Ghz. ) O O O O O O O O O O O O O O 0

Surface Field Distribution for Hx in Transverse

Direction (10 Ghz. ). . . . . . . . . . . . . .

Three Dimensional Surface Field Distribution for

Ey (8 Ghz.). o o o o o o o o o o o o o o a o 0

Three Dimensional Surface Field Distribution for

By (9 Ghz.). o o o o o o o o o o o o o o o o 0

Three Dimensional Surface Field Distribution for

Ey (1.0 Ghz o) o o o o o o o o o o o o o o o o

E—Plane Radiation Patterns of a Single Radiator

Page

143

144

145

146

147

(7 - 8.5 Ghz.: measured, ..... calculated) 153

 

E-Plane Radiation Patterns of a Single Radiator

(9 - 10.5 Ghz.: measured, '°°°' calculated).

5.18b

154
 

H—Plane Radiation Patterns of a Single Radiator

(7 - 8.5 Ghz.: measured, --°°- calculated) . . .

5.19a

155
 

H-Plane Radiation Patterns of a Single Radiator

(9 - 10.5 Ghz.: measured, ..... calculated).

5.19b

156
 

E-Plane Radiation Patterns of a Single Radiator

with Different Ground Plane Length at 9 Ghz.

(- 'measured, °°°°- calculated).. . . . . . . . .

5.20

157 

E-Plane Radiation Patterns of a Single Radiator

without Ground Plane

(7 - 10 Ghz.: measured,

5.21a

~°~-- calculated). . . 158 

H—Plane Radiation Patterns of a Single Radiator

without Ground Plane

(7 - 10 Ghz.: measured, ---

5.21b

-- calculated). ... . 159
 

E—Plane Radiation Patterns of a Single Radiator

with Different Corrugated Surface Length at 9 Ghz.

( measured, -'°°° calculated) . . . . . . . . . .

H-Plane Radiation Patterns of a Single Radiator

with Different Corrugated Surface Length at 9 Ghz.

( measured, ..... calculated) . . . . . . . . .

E-Plane Radiation Patterns of a Single Radiator

with Modified Horn Feed

(7 - 9.75 Ghz.: measured, -'-

5.22a

160
 

5.22b

161
 

5.23a

-- calculated). . 162
 

viii



Figure

5.23b

5.24

5.25

5.26

5.27a

5.27b

5.27c

5.27d

5.28a

5.28b

5.28c

5.29

5.30

5.31

5.32

A.1

3.1

3.2

B.3

H—Plane Radiation Patterns of

with Modified Horn Feed

 

a Single Radiator

Input Standing Wave Ratio of Corrugated Antenna

Input Impedance of Corrugated Antenna.

Geometry of Composite Radiator .

E—Plane Radiation Patterns of

with Wedge Angle 20° for Beam

E—Plane Radiation Patterns of

with Wedge Angle 20° for Beam

E-Plane Radiation Patterns of

with Wedge Angle 20° for Beam

E—Plane Radiation Patterns of

with Wedge Angle 20° for Beam

E-Plane Radiation Patterns of

with Wedge Angle 30° for Beam

E—Plane Radiation Patterns of

with wedge Angle 30° for Beam

E-Plane Radiation Patterns of

with Wedge Angle 30° for Beam

H—Plane Radiation Patterns of

Composite Radiator

Scanning at 7 Ghz.

Composite Radiator

Scanning at 8 Ghz.

Composite Radiator

Scanning at 9 Ghz.

Composite Radiator

measured, ..... calculated).

Scanning at 10 Ghz .

Composite Radiator

Scanning at 7 Ghz.

Composite Radiator

Scanning at 8 Ghz.

Composite Radiator

Scanning at 9 Ghz.

Composite Radiator

with Wedge Angle 20° and Equal Power Level

on Both Radiators. . . . . .

Photographs of Corrugated Antenna Array in Anechoic

Chamber. . . . . . . . . . .

Photograph of Surface-Field Measurement System .

A Flush Mounted Surface Wave Antenna . . . .

Coordinates for Surface Wave Structure . . . . .

Tapered Anechoic Chamber .

Complex Reflection Coefficient for Horizontal

POlarization With 8 = 101 - jX o o o o o 9

Complex Reflection Coefficient

Polarization with 8 = 1.1 - jx

ix

for Vertical

Page

163

164

165

166

168

169

170

171

172

173

174

175

176

177

178

189

195

196

197



Figure

3.4

Page

Relative Electric Field Variation in Test Zone

for 1 Ghz. (Horizontal Cut) . . . . . . . . . . . . . . 198

Relative Electric Field Variation Along Chamber

Axis in Test Zone for 1 Ghz . . . . . . . . . . . . . . 198



CHAPTER I

INTRODUCTION

Advances in super-sonic aircraft and space technology in recent

years have created needs for flush mounted scannable end—fire antennas

for communication between aircrafts or between aircraft and ground sta—

tions. One of the effective schemes for designing this antenna is to

employ a slow surface wave along a periodic structure such as a corru-

gated surface. Existing studies on such a structure have been restricted

to the ideal model of infinite extent. In this study, the electromag-

netic radiation properties of a plane corrugated surface structure of

finite dimension mounted on a finite ground plane are investigated

theoretically and experimentally.

1.1 Review of Previous Work

The subject of surface waves on plane and hollow surface wave

structures has received considerable attention of researchers, since the

appearance of the classical papers on the wave propagation above the

plane interface of a nonconducting and a conducting medium by Sommerfeld

(1) and Zenneck (2). In early years, the investigations on surface waves

were mostly confined to the mathematical treatments of their propagation

characteristics (3-10).

The first theoretical study on wave propagation on corrugated

structure was reported by Brillouin (11). In his work, the fields above





the corrugation were expanded in Fourier series based on the theorem

of F10Quet and the fields in the slots were assumed to be those of

the TEM standing waves and TM waves. The approximate field amplitudes

of the space harmonics were then derived by introducing a special ana—

lytic function.

Walkinshaw (12) and Shersby-Harvie (13) applied similar tech-

niques to a circular corrugated waveguide to find the phase velocity

of the surface wave by matching the average magnetic field in the pre—

sence of space harmonics. Rotman (14) also obtained slightly improved

expressions for the phase velocities of the waves on the plane and cir-

cular corrugated structures and showed the agreement of his approximate

expressions with experiment.

Hurd (15) was perhaps the first to derive the exact solution to

a flat corrugated surface of infinite extent using a method based on the

calculus of residues which was first applied to a similar problem by

Whitehead (16) and Feodora Berz (17). The method yielded highly accurate

results for the amplitudes and phase velocities of the fields propagating

along aocorrugated surface with vanishingly thin slot walls._ The results

showed that the amplitude of the fundamental harmonic becomes very large

compared to those of higher order harmonics, when the slot depth is less

than 0.15 wavelength and the number of corrugations per wavelength is

greater than 20. The phase velocity was also found to be very close to

the case of infinite number of corrugations.

Since then, the method of residue calculus has been applied to

numerous problems dealing with corrugated structures and impedance

strips in waveguides (18-24).



Although the subject of surface waves had received much atten-

tion, the practical applications of the surface wave had been limited

to the linear accelerator and the traveling wave tube, until Goubau (25)

suggested_the possibility of using surface waves in a microwave trans—

mission line. The subsequent experimental verification of the Goubau

theory by Barlow and Karbowiak (8) heightened its applications to the

microwave transmission line and the radiating structures. Furthermore,

recent demands for high gain flush mounted antennas have caused a con-

siderable amount of investigation on the raidation properties and exci—

tation methods of the surface waves.

Most of the work on the excitation problems (26-33) were con-

cerned with the ideal exciting source on the surface of infinite extent.

Cullen (34) investigated theoretically the excitation efficiency of a

line source over a plane corrugated structure. Subsequently, Fernando

and Barlow (35) experimentally investigated the launching efficiency

and confirmed Cullen's results. Nevertheless, the problem of surface

wave excitation by a practical radiator over a finite corrugated struc-

ture has not been rigorously studied. The radiation mechanism of a

surface wave has also caused some controversies because of its non—ra-

diating property. It has been accepted, however, that the radiation of

a surface wave is set up when the propagation of the wave is disturbed

by a sudden discontinuity or it encounters the departure from the

straight plane in the direction of propagation (34,36).

In calculating the radiation field from a surface wave structure,

there are two distinctive methods. One is the aperture integration

method through the Kirchhoff's vector integral or the Kirchhoff-Huygens!

integral formula, and the other is the feed and terminal pattern method
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based on the view point of the discontinuity. The aperture integration

method is the simpler one, if the aperture fields can be accurately pre—

scribed. This method has been extensively applied to the dielectric

rod antennas (37-44). The feed and terminal pattern method (44-55) in-

cludes several analytical approaches such as the spectral representations

of Source field, the direct solution to the wave equation with the intro-

duction of an auxiliary function and the integral equation approach with

Wiener-Hopf technique. This feed and terminal pattern method is very

rigorous in the analytical sense, but its application is limited to the

ideal cases because of the mathematical complexity.

Concerning the application of slow surface wave structures to rea-

lize end-fire antennas, most analyses have been carried out on ideal

models which are far from practical cases. Furthermore, there are very

few experimental investigations to supplement the usefulness of the sur-

face waves for the end—fire radiation. For this reason, one of the sim—

ple and practical surface wave antennas will be studied theoretically

and experimentally to understand the nature of the surface wave propaga-

tion on a finite guiding surface. With this understanding, the develop—

ment of a flush mounted scannable end-fire antenna can be faciliated.

1.2 Method of Investigation

The problem to be studied is the electromagnetic radiation charac-

teristics of a flat corrugated surface on a finite ground plane func-

tioning as an end~fire antenna. It is assumed that a corrugated surface

of finite dimension supports the TM surface waves and these surface waves,

in turn, result in an end-fire radiation.

In chapter 2, the fields in a corrugated rectangular waveguide are



derived as a preliminary study of the surface wave excitation over the

open corrugated guiding surface, and a Critical examination on the dis—

persion relation is made to find the optimum dimensions for the guide

as a surface wave excitor.

In chapter 3, the possible fields on the corrugated plane surface

are derived approximately from the fields in the corrugated rectangular

waveguide obtained in chapter 2. Throughout the study, it is assumed

that the hybrid waves in the guide transform completely into TM surface

waves on the open guiding surface, i.e. a 100 percent launching effi-

ciency. This assumption is tested in the theoretical calculation of the

radiation patterns and in the experiment. In the field analysis, the

possible modification of the field distribution over the finite Open

guiding surface is examined. With the surface wave fields determined

on the corrugated surface, the induced current on the finite ground

plane is calculated by means of a classical successive approximation

method.

In chapter 4, the radiation patterns from the antenna structure

are calculated by the aperture integration method using the previously

determined aperture fields and the induced current on the ground plane.

Chapter 5 describes the design and the extensive experiment for

the corrugated structure functioning as an end-fireantenna. In order

to check the existence of the surface waves, the normal electric compo-

nent is measured along the direction perpendicular to the guiding surface

and the attenuation constant is then determined from the field distribu-

tion. The surface field distributions for the tangential electric and

magnetic fields on the guiding surface and on the ground plane are



measured. From the measured field distributions, three dimensional

field distribution patterns are constructed. In addition to the field

probing, the phase velocity is carefully measured and compared with the

theoretical values.

For the radiation characteristics, the E and H plane radiation

patterns of a single radiator are measured over a wide range of fre—

quencies and compared with the theoretical patterns. In order to produce

a true end-fire beam-which has the maximum beam intensity in the direc-

tion along the ground plane, a composite radiating system is designed

byplacing two corrugated surfaces on a wedge shape ground plane which

simulates a portion of the sircraft wing. The radiation patterns of the

composite radiator are measured for the cases with different wedge angles,

and the scannability of the beam is investigated by adjusting the input

power level of each radiator.

Finally, with the measurement of the input impedance of the

antenna, the usefulness of the corrugated structures as a scannable flush

mounted end-fire antenna is assessed, and the improved design parameters

are also suggested.



CHAPTER II

SURFACE WAVE EXCITATION

For the application of the surface waves to realize a scannable

end-fire radiation, it is necessary to excite a pure surface wave on

the wave-guiding structure by effectively transforming the exciting

feed modes to the dominant TM surface wave mode. Therefore, a highly

efficient launching device is required.

Ehrlick and Newkirk (56) conducted a series of experiments and

demonstrated that the feed radiation could be reduced to a reasonable

degree, if the flat corrugated conducting surface was excited by a

flared rectangular waveguide horn; He was able to observe that the

far-field was the vector sum of feed and the guiding surface radiations

by controlling the flared horn aperture dimension. However, any use-

ful relation for the optimum dimension was not possible to establish,

because of the unknown field and phase distributions on the horn aperture.

Based on the results obtained by a Stanford research group,

Elliot (57) proposed a modified version of the above mentioned horn

feed device. He reasoned qualitatively that if the-excitation of slow

surface waves is enhanced in the rectangular waveguide with one of its

broad walls corrugated and extended to a desired length beyond the feed

aperture to form a slow surface wave guiding plane, then the disturbance

due to the transition from the hybrid mode in the corrugated rectangular

waveguide to the TM slow surface wave mode on the extended single corru—



gated surface may not be so great that the feed radiation may be sup-

pressed sufficiently.

‘In order to find the optimum design parameters for such corru-

gated rectangular waveguide excitor, a theoretical analysis of the

fields and the dispersion relation in the rectangular waveguide with

a corrugated wall as shown in Figure 2.1 will be carried out in this

chapter.

2.1 LGeneral Properties of PeriodicaliyéLoaded Waveguides

The periodically loaded waveguide may be classified into two

basic types according to their periodic boundary conditions along the

axial direction: (1) The structures which are continuously periodical

such as the waveguides filled with a dielectric material whose dielectric

constant varies continuously in a periodic manner along the guide axis.

(2) The structures which are discretely periodical such as the wave—

guide with identical obstacles placed at the regular intervals along

the axis.

The iris-loaded rectangular waveguide or the corrugated wave-

guide shown in Figure 2.2 belongs to the second class. The surface y=0

forms the boundary surface of region I and II, and its surface impedance

obeys a periodic function along the z direction with the period of D.

The basic theorem describing the nature of wave propagation in the

periodic structures is the theorem of Floquet. The theorem states

that for a given mode of prepagation at a given frequency, the fields

at one cross—section differ from those one period away only by a complex

constant.

In the mathematical notation, it may be written as
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F(X9Y:zst) = £09352) 9. (2.1)

where f(x,y,z) is an arbitrary function with a period D in z direction,

and y is*a propagation constant. Since f(x,y,z) is periodic in 2, it

may be expressed in terms of a Fourier series in a form,

>.' c» -j-ggilz

f(x,y,z) = 2 g (x,y) e (2.2)

p=—OO p

Substituting equation (2.2) into equation (2.1) yields

t

F(x,Y9zst) = Z gp(x’y) e P ejw (2'3)

P=—m

h
where the pth term in the series is called the pt space harmonic and

related by the usual orthogonality relation,

2 +D

1 3sz

gp(x,y) = % f(x,y,z) e D dz (2.4)

The propagation constant yp is given by

y =Y+j-2-P- p = o, :1, :2, (2.5a)

and is in general complex with a form of

= 2_HP_ ‘.YP a0 + J80 +j D
, (2.513)

where the harmonic with p=0 is called the fundamental. If there is no

loss in the structure, namely a0 = O, the constant becomes a purely

propagating mode,



'Y =18 =j [BO +2.32] p = 0, i1, i2, .0. (206)

h harmonic. However, if Floquet'swhere BP is the phase constant of the pt

mode is a purely attenuating one, i.e. 80 = 0 then yp becomes complex.

For this case, each harmonic propagates with the phase constant 2%2-

and the same attenuating rate. When both do and 80 are non-zero, each

space harmonic has a complex propagation constant. This type of mode

exists in the waveguide with losses and in some of the lossless guides

such as helical wavequides (58) and a corrugated guide with reflection

symmetry (23).

One of the most important properties in wave phenomena is the

dispersion relation. It is the relation showing the dependence of 80

on the k, which is the locus of points for KP = 0, KP being defined by

J y: + k2 .

The plot is commonly referred to as the k - B diagram or the Brillouin

the propagation constant in the transverse plane, Kp

diagram. The diagram shows the boundary separating the fast and the

slow waves. For the lossless system with YP = ij, this boundary con-

sists of two straight lines of slope i1 intersecting at the origin as

shown in Figure 2.1a. The shaded area where 80 < k is called the slow

wave region and the unshaded area where 80 > k is called the fast wave

h harmdnicregion. In the fast wave region, KP is purely real and the pt

propagates transversely, while in the slow wave region K1) is purely

imaginary and the pth harmonic is bound to the guiding surface. Thus,

in the slow wave region, the amplitude of the field attenuates in the

direction away from the surface.

When many space harmonics are considered and they are not inter-

fering with each other, the dispersion curves may be drawn with the lines
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of slope i1 intersecting the 8D axis at SD = 2pH as shown in Figure

2.1b, where the dotted line is a dispersion curve of the dominant mode

in a uniform wave guide. Here the shaded area represents the region

where all space harmonics are slow waves, and the outside of these areas

are the regions of the fast wave for some space harmonics. In the real

situation, the harmonics are coupled together and the dispersion curves

exhibit the pass band and the stop band as shown in Figure 2.2c. This

coupling phenomenon was first introduced by Pierce (59) in the study of

a tape helix.

There are several important properties about the periodic struc-

tures: (1) With reference to Figure 2.1c, the dispersion curve is an

even and periodic function of 80. (2) The normalized phase velocity

VP/c is defined by Vp/c = k/Bp = tan am. In the pass band, the fun-

damental harmonic has the highest phase velocity. The group velocity

Vg/c is expressed by Vg/c = dk/dBP = tan w. For the propagation in

+ z direction, all of the space harmonics must have a positive group

velocity and they are called the forward waves. On some parts cf the

curve, Vp and V8 are of Opposite signs, and the corresponding waves are

called the backward waves. In Figure 2.1c, the group veloCities at the

points A and B are zero, indicating that no energy propagates in the

guide. The point at which Vp = 0 is said to belong to O-mode and the

point B at which Vp = H/D to H-mode. (3) The complete field solution

consists ofgulinfinite number of space harmonics. But only a finite

number of them are significant in the practical problem, since the magni-

tude of the harmonics drops off sharply with the increasing order and

also with the decreasing period in the pass band. (4) All the harmonics

are the Fourier components of one mode. Each harmonic does not satisfy
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the boundary condition by itself but as a whole they do. Therefore,

they cannot be called the modal fields which propagates or stores energy

independently as in the uniform waveguide, while the space harmonics

propagate as a whole. Thus, in the approximate field representation,

care should be taken.

2.2 Expansion of Fields in the Corrugated Rectangular Waveguide

A conceptually simple and efficient device for the surface wave

excitation may be a corrugated rectangular waveguide in which the waves

are slow and similar to the waves on the open guiding surface. If one

of the walls of such a waveguide is extended to form an open slow sur-

face wave guiding plane, the field disturbance at the aperture may be

reduced provided the waves in the closed waveguide can be transformed

to another type of slow surface wave mode on the open guiding surface

with less radiation at the aperture by controlling the aperture geometry.

The waveguide to be studied here is a rectangular waveguide with

one of its H—plane walls being transversely corrugated. The waveguide

is assumed to be perfectly matched in both axial directions and the

number of corrugations per wavelength is large enough that the teeth of

the corrugations may be considered to be sufficiently thin. The wave—

guide is assumed to be excited by a TElo mode in a uniform rectangular

waveguide connected in tandem. Figure 2.2 shows the geometry of the

corrugated rectangular waveguide.

In the corrugated waveguide, each corrugation acts as a discon-

tinuity on the incident wave and excites the higher order modes. Since

these higher order modes may not be greatly attenuated at the positions

of the next adjacent corrugation, the characteristics of the propagation

constant over the entire corrugated surface in the guide may greatly
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differ from those of the uniform waveguide. The wave in such corru—

gated waveguide is characterized as a hybrid wave, i.e. the combination

of the TE and TM modes. In such waveguide, two types of propagation

can occur; one is the fast hybrid wave which is characterized by a low

intensity at the corrugated wall and the other is the slow hybrid wave

with a strong axial electric field at the corrugated wall.

In the waveguides with the anisotropic boundary walls such as

the corrugated waveguide or the dielectric filled waveguide, a solution

of Maxwell's equations cannot be obtained by the usual decomposition of

the fields into the transverse electric (TE) and transverse magnetic (TM)~

modes as in the conventional waveguides with the metallic walls. The

TE and TM modes are coupled to form a hybrid mode designated by the EH

modes. The hybrid modes do not possess the familiar orthogonality as in

the uniform waveguide but a special orthogonality relation (60). Gene-

rally, the transverse electric and magnetic fields are not orthogonal

in such guide. The angle between them and the ratio of their magnitudes

are a function of frequency as well as the position in the transverse

plane. However, in the corrugated rectangular waveguide, the transverse

electric and magnetic field components are perpendicular regardless of

the frequency and the position of the cross sectional plane.

The exact solution for the fields in the corrugated rectangular

waveguide has not been known to exist because of the complex boundary

conditions and an infinite number of space harmonics. Thus, the field

analysis will be attempted on the idealized model of infinitely thin

corrugation as shown in Figure 2.2b, and the results will be modified to

be applicable to the practical finite geometry.

In a homogeneous, isotropic and lossless medium with permitivity
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e and permeability u, the generalized Maxwell's equations for harmonic

time variation with an assumed time dependence of the form ert may be

expressed as

+ + +

VxE = -jwuH - K

.+

J

+

VxH a jweE +

v.§ = g
(2.7)

, D

Vofi = i

u

+ +

where E, H = electric and magnetic field vectors

‘+ ‘+

J, K = electric current and fictitious magnetic current

p, p = electric charge and fictitious magnetic charge

w = angular frequency

The classical method for solving (2.7) is the Hertz potential approach

by introducing electric vector function E; and magnetic vector function

fig satisfying the inhomogeneous partial differential equations

2 2 +
V H; + k H; = -uJ

V2 fih + k2 Hg = —€R

where k2 = wzue. The general solution of equation (2.8) can be con—

(2.8)

structed as the sum of a complementary solution and a particular solution.

+

In general, the sources J and R are independent. Then, the E and H

fields may be expressed as

:
1
1
4
'

ll -jwu Vzcfifi + [V x V x fie - p3]

(2.9)

2
1
3
+

ll jwe Vncfie + [V x V x Hg — 8R]
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Fields Above Corrugation for y > 0:

In representing the fields above the corrugation, it is natural

to follow Floquet's theorem for its periodic nature. This permits

one to express the fields as the summation of an infinite number of

space harmonics with the period of D. The fields for y > 0 may be

derived from a magnetic type Hertz potential in the form of hybrid mode

by means of the following relations given in equation (2.9) with j, K,

E = -jwu V x Uh

(2.10)

m
+

n V x V x fig

Here, Hfi is the solution of a homogeneous partial differential equation,

2 2
V fih + k fig - o (2.11)

Since the incident wave is assumed to be a TElo mode, one may assume

that Ex = O on the corrugated surface y = 0. For this type of field,

the correct magnetic Hertz vector function Uh may be written in the

form of

fig = s ¢(x,y) eijspz (2.12)

The transverse potential function ¢(x,y) in equation (2.12) satisfies

the two-dimensional scalar Helmholtz equation,

v: ¢(x.y> + k: mm = o (2.13)

where k: = k2 + y2 with Y = ij for lossless case, and V: is the trans-

verse part of V operator. By applying the proper boundary conditions

(3%; g 0 at y = b, ¢ = 0 at x = a/2), the solution for the ¢(x,y) in
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equation (2.13) is given as follows:

For symmetric mode about x axis,

it

For asymmetric

fill:

The eigenvalue

m ' me -jB 2
fi 2 X A cos(—-) cosh u(y-b) e ' p

p a
p=—OO m

m = 1,3,5, coo (2.14)

00
"jB Z.

x Z 2 B sin(§fl£) cosh u(y-b) e p

p=_oo m p a

m = O,2,4,6, ...

mode about x axis,

00 —j8 z

E 2 C cos(2g§) sinh u(y-b) e p

p=—OO m p

>
4
)

m = 1,3,5, ... (2.15)

00 —j 8 2

Q 2 X D sindgflé) sinh “(y-b) e p

p=—CD m p a

m = O,2,4,6, ...

u in equations (2.14) and (2.15) may be real or imaginary.

If u is imaginary, the wave is associated with a slow wave and for real

u, the wave is

is desired for

identified as a fast wave. Since the slow wave solution

the problem, the value of u will be taken as imaginary

and it is related to the transverse wave number Yyp in the direction

away from the corrugated surface as

u=50t

a =

P

P

2

/82+<1‘in—) -k2
p 8

(2.16) 
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where up is termed as the attenuation constant of the hybrid wave in

'the transverse plane. Thus, for the slow wave hybrid mode solution,

the correct Hertz vector function may be expressed as follows:

For symmetric mode about x axis,

.00 'jB z

_ A ELK _ P
fih - x E-” g Ap cos( a ) cosh up(y b) e

m = 1,3,5, ... (2.17)

00 —jB z

+ _ A Jinx _ P
Hh — x pE-w g BP sin( a ) cosh up(y b) e

m = O,2,4,6, ...

For asymmetric mode about x axis,

00 ~jB

A 'me P

= 1 — 1 —bHg x Z—m g Cp 3 n( a ) s nh ap(y ) e

m = 1,3,5, (2.18)

00 _j8 z

iih = f: 2 2 D sin(BH—x) sinh on (y-b) e 1’

p=—oo m p a p

m = O,2,4,6, ...

Then, the fields in the region above the corrugated wall, 0 < y < b

-a/2 < x < +a/2, in the guide can be completely expressed by the Hertz

potential in equation (2.17) or (2.18) with relation given in equation

(2.10). In the expressions for the magnetic Hertz potential, the symme-

tric mode assumes the TE mode excitation and the asymmetric mode assumes

the TM mode excitation in the guide. Since the guide is assumed to be
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excited by TE mode, the fields in the region above the corrugation

10

are given only by the symmetric Hertz potential as follows: The fields

will be expressed separately in odd m mode and even m mode for the

+ z direction only.

For odd m modes: m = 1,3,5, ...

 

CD _j8 z

E = j X Z A B cos(Egé) cosh a (y-b) e p

y =_m P P P
p m

00 —jB z

E = Z X A a cos(mgx) sinh a (y-b) e p

z p=-co m p p p (2.19)

00 —jB 2

H = _l;. 2 Z A K2 cos(EEE) cosh a (y-b) e p

x qu _ p m a p
p--°° m

00 —jB 2

H = --Tl— 2 Z A a -EE-sin(EE§) sinh a (y-b) e p

Y JwH ._ P P a a P
p--°° m

. m _jg 2

H = -l- E E A B BE~sin-Efli cosh a (y-b) e p

z le _ p p a a P

p--°° m

For even m modes: m = O,2,4,6,

00 —jB z

E = j Z 2 B B sin(Egi) cosh a (y-b) e p

Y __m P P P
p- m

00 —jB z

_ FEE _ p
Ez £_m g Bpap sin( a ) sinh ap(y b) e

_ a) 2 me -ijz

Hx — X E Bme sin( a ) cosh ap(y b) e

p=—OO m
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I 1 00 mil me 11sz
H = —— B —-— — 1 h —y jwu pZ_w E pap a. cos( a ) s n ap(y b) e

(2.20)

_ -1 °° mII mIIx -ij2
Hz — 35E pZ_m g BPBP a cos( a ) cosh ap(y—b) e

where

2 2 2

Km = k - (‘a—

a2 = 62 _ K2 (2.21)

P P m

2H

Bp=80+—DE p=0,il,i2,...

In equations (2.19) and (2.20), the coefficients Ap and B1) are still

unknown. These must be determined by correctly matching the fields

above the corrugated wall and the fields in the slot along the interface

y = 0 to complete the field representation in the corrugated waveguide.

It may be easily shown that the form of the field representation

in equations (2.19) and (2.20) is correct one by setting up = 0, p = 0

and m = 1,

. —j8 z

Ey = - mu A080 cos(%?) e O

-33 2

xx = A083 cos(lgi) e 0 (2.22)

-13 2

H fix 0
Hz = j A080 3 sin(::) e

H = E = O

y 2

These expressions are the fields of the TE10 mode in the uniform rec-

tangular waveguide. The fields are actually the excitation field (inci—

dent fields) for the corrugated waveguide. It should be noted that the
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slow hybrid waves are not excited at the point of launch for the

frequency below the dominant cutoff of the uniform guide. This pro—

perty will be examined in the k—B diagram for the corrugated guide in

the later section.

Fields in the Slots for y < 0:

The corrugated walls of the rectangular waveguide may be considered

as being made of series of the short circuited rectangular waveguide

for an approximate analysis. Hence, each cell is considered as a

short circuited rectangular waveguide of width a, height d and length

h. In such a short circuited waveguide, the dominant fields are the

standing waves of all modes that are not below the cutoff. Therefore,

it is appropriate to write all the possible modes in the infinitely

long waveguide and to generate the standing waves by the possible pro-

pagating modes in such a way that the continuity of the fields along the

slot mouth is satisfied. In view of the fields above the corrugation,

the fields in the slot will be expressed by the combination of TE and

TM modes. Such fields can be directly written by the combination of

the TE and TM modes and setting Ex = 0, since those modes are separable.

Also, they may be directly derived from the magnetic type Hertz potential

in the form of fig = i ¢(x,z) eYny. The proper expression for the Hertz

potential may be obtained by solving equation (2.13) with the boundary

conditions at the walls ( %% = 0 at z = 0, d, ¢ = O at x = i a/2). The

proper Hertz potential is expressed by

8

Y y

fi=§ “
me nHz

n cos (T) cos(-(r) e

I
I
M

X B

n 0 m mn

m = 1,3,5,7, ... (2.23)
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8

+ A

H = x

n n 0"
M

m = O,2,4,6, ...

me nHz
g AInn sin(T) cos(T) e

The fields in the infinitely deep slot may then be expressed by the

Hertz potential given in equation (2.23) and the relation given in

equation (2.10) as follows:

For odd m mode: m = 1,3,5, ...

_ °° nII 21125 215 Ymy337-; X an (1;) cos(a)sin(d)e

n—O m

m mH nH Y Y

E2 = 2 2 an Yn cos(-25) cos (~33) e n

n=O m

_ 1 w 2 me nHz Yny
Hx — EFF. X 2 mn Kn cos(-;-) cos(-E-) e

n=0

_ -l. m mH me .EEE
Hy --35fi n20 2 mn YnQET) sin( a ) cos( d ) e

- --...1. °° m 211 at: ilk...
Hz -— :1le E Z an(a)(d) sin( a ) sin( d ) e

For even m mode: m = 0,2,4, ...

°° nil me nHz Yny
Ey = Z Z AInn (?r) sin(-;—) sin(-E—) e

n=0 m

w me nHz Yny

E2 = .21 Z AInn Yn sin(?) cos(—d—-) e

n—O m

= 1 I m 2 mflx nflz Yn
H.x '36; E 2 Arm Km sin( a ) cos(-E-) e

n—O m

Y

Y Y

YnY

(2.24)

(2.25)
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_ l w mH me nHz Yny
Hy - 35V nZo g AInn Yn (1;) cos(—§—) cos(:E—) e

H = -1 3:0 X A (mil) (n11) cos(mIIx) sin(nnz) eYny

2 jun _ mu 3. d a d

n—O n

where

2
2 L 2 mH

Km ‘ k ' ('2‘)

(2.26)

Yn a d

The propagation constant Yn becomes real for the higher order modes

since the slot gap (d) is much smaller than the waveguide width (a)

and the wavelength (10). Consequently, the higher order modes of the

TE waves (n >'0) and the all modes of TM waves in the slot guide are

the attenuating waves in the direction of propagation (y direction).

Therefore, these higher order modes may be substantially attenuated as

they travel down in a short distance toward the bottom.of the: shorted

wall and give little reflected waves from the bottom of the slot. Hence,

only the dominant mode TE will give the major reflected wave resulting

10

in a standing wave in the slot. Depending on the guide dimension and

the excitation method, the TEm modes will give some contributions to

0

the standing waves in the slot.

When the excitation of the slow wave is of the main interest, the

depth of the slot is generally made very shallow, h << 1/4, to keep

the wall surface slightly inductive. For such structure, the attenuating

higher order modes may give some contribution to the standing waves in

the slot. Therefore, the slot fields may be expressed by the superposi-

tion of the standing waves of all modes, and for the approximate analysis
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the higher order mOdes may be neglected. Finally the fields in the

slot are given as follows:

' Fields in a single-slot:

For odd m mode: m = 1,3,5,

_ ‘ nII 21.11.22 are
Ey — n20 2 anCTFO cosh Yn(y+h) cos( a ) sin( d )

°° mm 1111
E2 = E Z an Yn sinh Yn(y+h) cos(-EE) cos(-329

n—O m

(2.27)

1 m 2 me nHz
Hx = W Z Z an Km cosh yn(y+h) cos{-;-) cost-T)

n=O m

-1, m mfl me nHz
H = .35; Z X an Yncji) sin Yn(Y+h) sin(-E-9 cos(-5‘)

y n=O m

_ __1_ °° m 2.11 mi nflzHz — 'w :2: Z an(a)( d) cosh Yn(y+h) sin( a ) sin(-7r)

J n—O m

For even m mode: m = 0,2,4,

°° nJI mn nHz
E, = z 2 Amn(—d-) cosh Yn(y+h) sin(—5’3) sin(—(T)

n=O m

m me nHz
Ez — n20 g Amn Yn sinh Yn(y+h) sin(—E—) cos( d )

(2.28)

1 m 2 me nHz

Hx "" 313;? Z Z Amn Km C°Sh Yn(>'+h> sin(—5‘) °°S<T>
n-O m
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_ 1 w mH me nHz
Hy — Eafiin=o 2 mn Yn(;r) sinh Yn(y+h) cos(-Z—D sin( d )

_ -1 m mH nH me nHz
Hz — FEE-“£0 g Amn(:;)(:f) cosh Yn(y+h) cos(:E-) sin(??-

Equations (2.27) and (2.28) are the field expressions for the single cell

at the origin of the coordinate system. In order to express the fields

in any slot in the guide, the phase change from slot to slot should be

taken into account. To do this, the coefficients Amn and an should be

modified to give the correct phase change with a new zv coordinate, which

is related to the original 2 through,

\)

z = z - vd

where 2V is measured from the left hand wall of the Vth slot. The

new coefficients are given by

—ij d

Bv = B e 0

mn mn (2.30)

-ij d

AV = A e 0
mn mn

Up to this point, the field representations for the region above

the corrugated surface and in the slot have been derived with the unknown

coefficients, A , B , A , B , to be determined. These coefficients may

p p mn mn

be obtained by the application of the continuity of the tangential mag-

netic and electric fields across the slot interface. It is noted that

since only TE10 mode was assumed as the incident wave to the corrugated

guide, the fields with the odd m mode are sufficient to specify the fields

in the guide.
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Before applying the continuity of the tangential electric and

magnetic components at the interface of the slot for the unknown coeffi-

cients and the phase velocity in the guide, the tangential fields of

odd m mode are rewritten here for convenience.

 

 

 

For y > 0:

E — of Z A 1 < -b> (EH—’3) fiBPZz - =-m p up 5 n up y cos a e

p m

00
"' B Z

_ _1__ 2 air 3 p
Hx — ij _-m 2 Ap Km cosh ap(y-b) cos( a ) e

' m (2.31)

00 - B Z

1 mH mflx J p
= —— _ 1 ...—....

HZ my i-e.. Z Apo a cosh aPCyrb) s n( a ) e

p- m

For y < 0:

_ °° v mIIx nIIzV
Ez - E Z an Yn sinh Yn(y+h) cos( a ) cos( <1 )

n—O m

(2.32)

00
V

_ 1 V 2 me nHz
Hx - _jwu £0 E, an Km cosh Yn(y+h) cos(—a) cos( d‘ )

_ 1 w v .mfl .EE mflx nIIzV
Hz - —jwu n20 g1 an(a )( d) cosh Yn(y+h) sin(-----a) sin( d )

The application of the continuity of the Ez and HK components at

the interface of the vth slot gives,

m -jB 2V m nsz

— X A a sin a b e p = 2 B Y sinh Y h cos( d. )
p p p n:0 mn n n

p=—w
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V V

w -jB z mHz

X A cosh a b e P a n20 an COBh Ynh cos( <1 )

with 0.5,zv.$ d, and prd = Bovd + 2Hpv. Solving for an in equation

uni“
 (2.33) by means of the orthogonality of the cos( d ) function and the

v ,

n2: ) function over the interval of zv(0,d) yields the new set of

equations for all n.

sin(
 

 
 

  

_§ GnYn sinh(Ynh) _ m jADGPEP sinh(apb)

B — — Z (2.34)
2 -jBod mn a_m a2 _ 2

(--l)n e '1 p p Yn

, Q_ 6n cosh(Ynh)__ . w jAPBEcosh(uph)

B I (2.35)
2 n “150d mn do 0.2 _ Y2

(-1) e‘ -1 p- p n

where

2 for n = 0

(S =

n 1 for n >.0

Multiplying equation (2.35) by Yn and adding to equation (2.34), and

also subtracting from equation (2.35), one obtains a simplified set of

simultaneous equations,

Y h a b

 

 

_ n w -a b

6n dYn e B Z jA 8 LE...— + ..e....._..p_._ (2 36)

< )“ “18911 “m p=-°° pp “flu “p‘Y'n °
..1 e .—

-Yh

6 dy e n a b —a b
n n w e p e p

-Jed Bum = 5 3“po ET?“ ‘ FT (2°37)
(--1)n e 0 -1 P“” P n P n

The set of equations (2.36) and (2.37) may be further simplified for

the approximate solution, if the TE10 mode is assumed to be dominant

for making the standing waves in the slot and for the higher order modes
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..‘Yh

the slot depth is considered to be infinite. Then, the factor e n

may be neglect for n > 0. Then, the set of equations may be rewritten

 

as

-jK h

m a b —a b

d K e Bmo 02° 8 e e p f o

- A or n=

e jBOd _ 1 =_m p p up jK a + ij

(2.38)

a b -a b

m e p e p

O - Z APBP m- -m for n > 0 (2.39)

P-‘m P m P m

The sets of equations (2.36), (2.37) and (2.38), (2.39) are the

infinite sets of simultaneous equations. The set of equatibns may be

solved exactly for the mode coefficients AP, an, and the phase con-

stant 8p by applying the modified residue calculus (22).

In this study, since the exact mode amplitudes in the guide are

not too critical for the determination of the radiation field, the

exact evaluation of them will be deferred and only an approximate ana-

lysis will be presented.

For the first order approximation on the fields and the phase

velocities in the guide, one may assume that the fields in the slot

consist of only the standing wave of the dominant TE10 mode and the

higher order modes have little contribution because of the geometry of

narrow slots. Also since the TElo mode excitation is assumed, one may

take m = l for the approximate field representation in the region above

the corrugation. The fields for y > 0 may be expressed as

-jB z
m Hx p

E = A 8 cos -- c sh a -b ey :l 1 pp (8) 0 p(3')

p=—(X)
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m Hx _jB 2

E = Z A a cos(-9 sinh a (y—b) e P

2 p:..., P P a p

00 2 H —' 2

H = 1 Z A K1 c0362?) cosh a (y—b) e p (2.40)

-l H Hx . p

H = ——— A —' i —— h —b .y jwu §Z_w pap a s n(a ) Sin ap(y ) e

(X) .—

l H Hx ijz
H = -—— A —' i -—' h a -b2 w“ p;_m po a s ni a) cos p(y ) e

where

2 _ 2 H 2
K1 - k (E)

_ 2 _ 2
a - 8P K1

8 =8 + 42“ p = 0 :1 :2 .p 0 D ’ , , ...

For the corrugation of a finite thickness, the fields in the slot may

be approximately represented in the quasi-static sense. Then, the

fields in the slot for y < 0 may be written as,

For y < 0:

-ij D
_ _ fix 0

E2 — 310K1 sin Kl(y+h) cos(a ) e

for VD < z < vD + d

= O for VD + d < z < (v+1)D (2.41)

— v8 D

_1 2 ijO
Hx - jwu 310K1 cos K1(y+h) cos(;-) e

for vD < z < VD + d

= 0 for VD + d < z < (V+1)D
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- D

_ l H fix ij0
Hy jwu BlOKl a sin Kl(y+h) sin( a) e

for VD < z < VD + d

= 0 i for VD + d < z < (V+l)D

In equation (2.40), the amplitude of the individual harmonics may be

determined from the orthogonality relation given in equation (2.4).

The coefficient Ap is given by

 

 

d 'B

1 r l J p2

Ap = D. a sinh(a b) J B10K1 sin(th)e dz

P 'P 0

. 8d 8d

= Q, BIOK1 sin(th) sin-%- ej-g- (2 42)

D .a sinh(a b) B d '
P P _%%_

This completes the analysis for the first order field in the corrugated

rectangular waveguide.

The phase constant 8p in the guide may be determined by solving

the characteristic equation. The characteristic equation can be obtained

by equating the tangential magnetic field across the slot mouth. Note

that the fields cannot be matched over all values of 2 because of the

approximation made for the field expansions but only at the center of the

slot, 2 = VD +~gu Matching the fields at the center of the slot yields

.2

the following characteristic equation.

d

coth(a b) sin(EE-D

w). _ £1. 3'0 __._.__P.__ ...—...... (2 43)

K1 - D _ a B d '

p... P ‘15-

In equation (2.43), if 8p approaches k and d << 10, the zeroth term

Ed

in the series may be predominant. Since. the factor sin(~§-)/-%-z l,
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it leads to the zeroth order dispersion relation as,

cot( h) cosh(a b)

KK1 ='%' a 0
(2-44)

' l 0

This zeroth order dispersion relation may also be derived by relating

the surface impedances looking in the (+ y) direction and in the (- y)

direction at y = 0 based on the transverse resonance condition,

= 0
(2.45)

In equation (2.45), E is the surface impedance looking in the (+ y)

1

direction, which is given by

 

E O.

+ _ z _ 0
z - -—- — jwu -—- tanh a b (2.46)
1 H 2 O

x y=0 K1

:2 is the surface impedance looking in the (— y) direction, which is

given by

tan K h (2-47)

 

In writing the expression for :2, the average impedance concept is used

since the fields for y < 0 were defined only over the slot width (d)

while the fields for y > 0 were defined across the slot and the corruga-

tion tooth over one whole period (D). Equating :1 and 4:2 yields the

same dispersion relation as given in equation (2.44)

cot(th) .9

K1 D 0'0

coth(a0b)

—————————— (2.48)

In the corrugated waveguide, there exists two types of waves i.e.
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the slow hybrid waves for the real so and the fast hybrid waves for the

imaginary values of do. In general, both waves propagate together in

the guide. For the fast hybrid waves, the dispersion relations are

given by the following equations.

For the first order approximation:

8 d

d °° K1 Sing?)
cot(th) = - D. Z 6?’ cot(a b) B d (2.49)

p=—w p p E

2

For the zeroth order term in the series

d K1
cot(th) = - ‘5 -a- cot(aob) (2.50)

O

In order to study the behaviors of the hybrid fast wave and the

hybrid slow waves in the guide, the characteristic equations for the

zeroth order are rewritten here in the modified forms for the computa-

tional convenience.

COtE-E H #4623) - I]

 

h _ d coth(a0b)

-— — —- ——-———-—- for slow wave

b D dob

3 H Area—)2 - 1 (2.51)
a 10

d cot(aob)

= — —- ————-—-—— for fast wave

D dob

(2.52)

The phase constants 80 of the fundamental harmonic for the hybrid slow

(803) and fast waves (Bof) in the rectangular corrugated waveguide may

be found by solving the attenuation constants do in each set of equation

(2.51) and substituting them into the expression for the phase constant
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' _ 2 2 112 _ _2 2 11'
Bos—/u0+k-(:) BOf—/a0 +1. -; (2.53)

The phase constant B for the dominant TE 0 mode in the uniform rectan—

1

gular waveguide is given by

2 2

s = k - (g) (2.54)

The roots of the characteristic equations (2.51) and (2.52)

were computed as a function of a/A0 with the predetermined guide dimen—

sion a/b = 2.25, h/a = 0.121, b/h = 3.664. Figure 2.3 is the plot of

the roots for the slow and fast waves. For the fast wave, there are

many roots satisfying equation (2.52) but only the correct roots satis-

fying the basic dispersion relation discussed in section 2.1 were plotted

in the figure. Figure 2.4 is a normalized k - B diagram for the corru—

gated guide computed with the roots in Figure 2.3. It is seen in the

diagram in the range of 0 < a/l0 < 2.121, the dominant mode in the guide

is a slow wave with the low frequency cutoff determined by the waveguide

dimension for TElO mode and the high frequency cutoff at th = H/2.

The phase velocity of the slow wave is not necessarily slower than the

speed of light, but it is slowar than the phase velocity of TE10 mode.

In fact, the slow wave line intercepts the k = 8 line at a/Ao = 1.05.

This suggests that if the waveguide width (a) is chosen in the range

between th = H/2 (a/A0 = 4.152) and the point where the slow wave line

intercepts the k = 8 line, the phase velocity of the dominant wave in

the guide will be slower than the speed of light. Hence, the choice of

the guide dimension (a) in this range may maximize the efficiency of the

surface wave excitation at the aperture. The fast wave starts just above
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the slow wave cutoff condition at th = H/2. It crosses the TElO

dispersion curve at th = H and then becomes a hybrid slow wave again.

Between th = H/2 and K h = 3H/2, the slow wave may not be predominant
1

but mixed with the fast hybrid waves which are not shown in the figure.

It should note that since the dispersion curve can be drawn with the

predetermined guide dimensions only, for a different choice of the

dimensions, it may differ from the one shown in Figure 2.4.

In order to see the dependence of the phase velocity of the

surface wave in the corrugated guide upon the guide dimension, the

ratio Bo/k was calculated as a function of the guide dimension from

equation (2.51) and (2.53). Figure 2.5 is the curve for the BO/k

for the different values of (b) with the fixed value of a. The figure

shows that the guide is the similar frequency sensitivity on the BO/k

as the ratio for the open corrugated surface. The spread of the ratio

BO/k variation over the frequencies decreases as the guide width (a)

increases. One interesting fact is that the height of the guide can be

minimized for the usable slow phase velocity: for instance, for Bolk =

1.05 at 9 Ghz, the guide dimension is a = 3.93" (3 10) and b = 0.7”

(0.535 10) which produces the Bo/k = 1.03 at 7 Ghz and 1.08 at 11 Ghz.

This variation of the ratio is almost identical to that for the open

infinitely wide corrugated structure over the same frequencies. The

case for the open corrugated surface will be discussed in the next sec-

tion in detail.

As the summary of the results from the approximate field analysis

of the corrugated waveguide, the corrugated rectangular waveguide may

support predominantly slow hybrid surface waves by adjusting the guide

dimension so that the surface wave excitation efficiency may be maximized.
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The guide dimension of a = 2~3A0, b = 0.5~0.6AO may be the smallest

possible guide for the slow surface wave of BO/k = 1.05 at 9 Ghz to

excite an open corrugated surface with the same ratio of BO/k.
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Figure 2.3 Normalized Attenuation Constant in a

Corrugated Rectangular Waveguide
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CHAPTER III

FLAT CORRUGATED CONDUCTING SURFACE

The theoretical treatments of the electromagnetic wave

propagation above the infinitely wide and transversely corrugated

structure are found in several papers by Cutler (61), Brillouin (ll),

Whitehead (16), Feodora Berz (l7) and Hurd (15). These papers assume

the existence of a pure TM surface wave on the reactive surface of

infinite size without the prior knowledge of the excitation mechanism

of such a wave. ~

For the application of such a reactive surface to a practical

radiating system,its transverse dimension has to be reduced to a

finite width. Because of this finiteness in the transverse dimension,

it poses a great difficulty in the theoretical treatment on the fields

and hampers a clear understanding of the wave guiding and radiating

properties of the slow surface waves. Thus, in this chapter, an

approximate field analysis will be presented and its validity will be

verified experimentally in the subsequent chapters. The structure to

be investigated consists of three regions: (1) a constant reactive

surface, (2) a tapered reactive surface, and (3) a finite ground plane

as shown in Figure 3.1.

3.1 Fields on the Uniform Corrugated Surface

It is known that a reactive surface can support an inhomogeneous
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plane wave which decays exponentially in the direction transverse to

the direction of propagation. This inhomogeneous plane wave is termed

a slow surface wave, or often called a Zenneck wave (36). If such a

slow surface wave can be guided on a reactive surface, it will result.

in an end-fire radiation. However, theoretically only a reactive sur—

face of transversely infinite extent can support a pure TM surface wave

(34), while a desired practical structure of finite size may support

a modified slow wave rather than a pure surface wave mode. The exact

nature of waves on such a finite reactive surface is not known because

of the mathematical difficulty imposed by the unusual boundary condi-

tions. Therefore, an approximate approach will be employed to treat

the finite slow surface wave guiding structure, and also it will be

assumed that such a finite structure may support a pure surface wave

provided that the transverse dimension is of several wavelengths and

that a completely efficient slow wave excitation can be realized.

One of the simplest and conceptually efficient surface wave

’excitors may be realized by extending the corrugated bottom wall of the

corrugated rectangular waveguide discussed in Chapter II to a desired

length beyond the trancated waveguide aperture. If the dimensions of

the rectangular waveguide are chosen so that the dominant wave in the

corrugated waveguide is a slow hybrid wave whose phase velocity is close

to the required phase velocity for the wave on the open corrugated

plane, the waveguide may efficiently produce slow waves on the guiding

structure. In order to make a smooth transition from a hybrid surface

wave in the rectangular waveguide to a TM surface wave on the open

corrugated surface, the top and side walls of the rectangular guide are
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‘gradually flared out to form a type of horn feed. If this transition

is sufficiently smooth and long, one may expect the dominant wave in

the horn to remain to be the slow hybrid mode mentioned in section 2.2

with a negligible reflection at the horn aperture. Thus, the fields

over the flat corrugated surface may be deduced from the waves inside

the corrugated rectangular guide with some appropriate modifications.

With this approximate approach and the assumption of the TE10 mode

excitation at the start of the corrugated rectangular waveguide, the

field expressions on the open surface can be deduced from equation

(2.40). If the top wall of the guide, b, is allowed to increase inde-

finitely, the field expressions over the open corrugated surface may

be written as follows:

For y > O

°° -0t y "18 z

E = j 2 A'B cos(——) e p e

y p=—w P P

°° -0l y -JB 2

E = - Z A'a cos(-—) e p e p

z p=-oo P P

°° ‘0‘ y -18 2

H = .12. 2 A'K2 003(k) e P e P (3-1)

2(1ij p=—-OO 1

co -0t y -38 2

H = -£- 2 A'a H sin(-E) e p e p

m
l
:
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where

ab

0

'_ lim e

AP_ b'*°° AP 2

2_ 2 112

K1- k -(-a—)

2 2 2

on = B -K

p p 1

B = B + 2E2 p = 0 i1 :2
P 0 D 9 9 9000

With the assumption that the fields for y < 0 remain the same

as those expressed in equation (2.41), the first order value of the

coefficient, Ag, in equation (3.1) can be determined by the usual Fourier

analysis as,

 

B d B d

A' _ .9 310Kl sin(th) J-%—' sin(-%—) (3 2)

p - D a e B d °

P .1L.

2

By equating the tangential magnetic fields for y > 0 and y < 0

at the center of the slot, 2 = V D+d/2, over the slot mouth, a charac-

teristic equation is obtained as

 

B d

w sin(-E-)

K cot(K h) = 9 2 1 2 (3.3)
1 1 D a B d

P=‘” P 2

2

B d B d

For d << 10, the factor sin(—%~)/ -%—- approaches unity for

small p and zero for large p. Thus, the characteristic equation may be

rewritten as
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K1 cot(th) = i Z —1— (3.4)

Next, if the width of the waveguide, a, is increased to

infinity, the field expressions (3.1) become the well known fields

of an infinitely wide and long flat corrugated surface, i.e.,

°° -0ly -sz

E = j Z A'B e P e p
y pimp?

°° -0ly -sz

E = - X A'a e p e p

Z p=—Oopp

(3.5)

°° -0ly -sz

H=—1-ZA'k2epe P
x M p=_..P

H=H=O

The characteristic equation for this case becomes

8

k cot(kh) = % (3.6)

"
M

1—

a

P
_G)

'
U

The field expressions and the characteristic equation expressed

in equations (3.1) to (3.6) are still too complicated in the numerical

calculation because the series involves infinite space harmonics. For

a finite structure of practical use, it may be reasonable to consider

only the fundamental harmonic, since the magnitude of the spectrum drops

off rapidly as the order of the harmonics increases. The approximate

field expressions on the flat corrugated surface with a finite transverse

dimension can then be written from equation (3.1) as
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_ ““80 Ex -a0y _jBOZ
E - - H cos(-) e e
y Ki 0 a

one -a y -j8 z
_ _ . 33_ 0 0

E2 - j K2 HO cos(a) e e

1

'0 y -jB z
_ B o 0

Hx H0 cos(a) e e

(3.7)

11'

0t - -0t y ~18 2

H = 0 a H sinéflé) e 0 e O
y K2 0 a ~

l

18 l o-a -jB
_ owa 11x 0y 02

H - H sin(-—) e e

2 K2 0 a

1

where 2

K1 '

Ho = jwu A0

The characteristic equation is also simplified to

K

_ 2...;
cot(th) - D so (3-8)

For the infinitely wide corrugated surface, the zero order

expressions for the field are

H = H = O

2 Y

H H —a0y -jBoz

— e e

x 0

(3.9)

jao aoy .1802

E = - -——-H e e

2 we 0

B -a y -jB z

E = - __9 H e 0 e 0
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with the characteristic equation given as

it. = .9 1 (3.10)

do D 80 2

NT) - 1

 

cot (kh) = %

Up to this point, the fields on the open corrugated surface

have been approximated from the fields inside the corrugated rectangular

waveguide assuming the perfect field transition from the hybrid surface

wave to the TM surface wave at the exciting aperture. The fields on

the infinitely wide corrugated surface with infinitely thin corruga-

tions (D 2 d) can be derived exactly from the solution of a wave equation

with the proper boundary conditions.‘ On the surface which is excited

by a magnetic field Hx parallel to the edge of corrugation and an elec-

tric field Ey normal to the surface, the fields may be described by a

TM wave. For such a TM wave, Maxwell's equations reduced to

  

_ .:1 aHXE- _.__

y we 32

E=_J_ fl

2 we 3V (3.11)

32H 32H 2

2x+ 2x+kH=0

By 32 x

Because of the periodic nature of the structure, the fields over

the corrugation can be expressed as the sum of an infinite number of

space harmonics based on the theorem of Floquet. The solution to the

wave equation (3.11) may be expressed as
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°° -0L y -18 2

H = Z A e p p

X - P
p_—oo

w -a y - 8 z

E = :l- E A B e P j p

Y we p=-m P P (3.12)

_ °° ‘0 y -18 z

E = —-1 Z A a e P
2 we =_°° p p

2 2
a = + - k 3.13p 8p ( )

where the sign of up is taken to be positive for the slow surface

waves.

If the width of the corrugation gap, d = D, is much smaller

than the free space wavelength, the only propagating mode in the Vth

slot may be the TEM mode and the higher order modes may be attenuated

as they reach the bottom of the slot. The fields in the Vth slot may

'be represented by the superposition of all modes which satisfy the

boundary conditions at the bottom and the sides of the slot. That is,

 

00 V nUZv
H g 2 BD cosh Yn(y+h) COS( D )

 

 

x n 0

m V

_ d1_ V nfl nflz
E - 2 B -—- cosh Y (y+h) sin( )

y we n=0, n d n D (3.14)

E = 41. § BV y sinh Y (y+h) cos(nflzv)
2 we n n n D

n=0
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where

,..____

v ((992 - k2

and 2V is measured from the left side wall of the Vth slot and it is

related to 2 through

2 = z - VD

V

The coefficient B: is realted to Bn by

-jVBOD

to give the correct phase change from slot to slot.

The unknowns, AP, Bn’ and 8p in equation (3.12) and (3.14) are

determined by the application of the continuity of the tangential mag-

netic and electric fields at the interface of the Vth slot (y=0) as

 

 

follows:

00 —jB z .00 \)

p ___ V n'sz

g Ap e Z Bn cosh(ynh) cos( D )

p_—m n=0

(3.15)

w -jB z m V

— z A a e p = E B: Y sinh(Ynh) cos(ngf )

p:—@ p p =0 n

for 0 g zv 5_ D

V

2
 

By applying the orthogonality of the function cos(ng ) over 0 $.2V.$.D

and with some algebraic manipulations, the set of equations (3.15) is

reduced to an infinite set of simultaneous equations as
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Ynh

d EanYn e _ _ w jA B

2 -jB d __m d + Y

(-1) e 0 -l p- p p

(3.16)

"Ynh

d 6anYn e ,__. _ E jApo

2 -:lB d =4, a - Y

(-1)'1 e 0 —1 P P n

where

e = 1 for n > 0
n

2 for n = O

This infinite set of simultaneous equations can be solved for Ap and

8P exactly with the use of the residue calculus. Hurd (15) was the

first one who solved this set of equations. According to his results,

the mode amplitudes and the phase constants of the higher order modes

are very small for the case of D << 1 and h << 1 . For h < 0.2,
O 0

the so may be approximated from the exact solution (24) to

do = k tan[k(h — f;- In 2)] (3.17)

Thus, the simple first order approximation based on the transverse

resonant condition applied to the dominant mode may be justified if

d'<< 1., Then, for the first order approximation, one may represent

the fields above the corrugation with the fundamental harmonic:

For y > O

-a y -jB 2

H = H e O O

x 0

”Jao 'aoy ‘3802
H e

we 0

 

m

l
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-B —a y -JB 2
. o H e o o (3.18)

In the slot, only the TEM mode is reflected from the base of

the slot, producing a standing wave at the mouth of the slot, while

all the higher order modes are attenuating waves. Thus, the fields

in the slot are expressed as,

H = B0 cos k(y+h)

(3.19)

E = 5% B ksink(y+h)
0

The transverse resonance condition at the interface y=0 is,

2 +2 =0 (3.20)

+- +

where 2S and 23 are the surface impedances looking up and down at

the interface respectively. In this case, the surface impedances

-> +

Z8 and 2S at y=0 are given as

2 ja
+_ 1__ _0_

zs _ H we (3'21)

x1

Ez
—> 2_ L

28 — - II__ — + j we tan kh

x2

The substitution of equation (3.21) into equation (3.20) yields the

characteristic equation for the phase constant as

cot kh = 3_ (3.22)
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For the corrugation with the finite thickness (D # d), one may use

the average surface impedance 2; = j %- gs to modify equation

(3.22) to

d k
cot kh = - --

D do

or

cot kh = fi_ 1 (3.23)
D 02

(k)-1

Equations (3.18) and (3.23) are identical to the equations (3.9) and

(3.10) which were derived approximately from the field expressions in

the corrugated rectangular waveguide. Thus, the validity of the

waveguide approach for the first order approximation is proved to be

reasonable.

This concludes the approximate field analysis on the open corru-

gated surface with the perfect match at its end of the guiding surface.

This approximate analysis tends to suggest the fact that a surface

wave can be efficiently launched on the sufficiently wide corrugated

surface, if the side and top walls of the corrugated guide are gradually

flared out to make smooth transition. This analysis was carried out

(under four restricted assumptions; there are (1) a perfect transition

from TElo mode in the uniform waveguide to the hybrid mode in the

corrugated waveguide, (2) a perfect transition from the hybrid slow

surface wave to the pure TM slow surface wave at the horn aperture,

(3) a sufficiently wide corrugated plate as the surface wave guiding

surface beyond the horn aperture and (4) a perfect match at the end of

the corrugated surface.



The requirements on the perfect match in the guide and at the

end of the guiding surface may be realized to some extent by tapering

the corrugations as shown in Figure 3.1. An exact analysis of the

scattering of a surface wave by Kay (45) shows that the power reflec-

tion coefficient at the discontinuity between a reactive surface and

a conducting plane can be given by

 I I x4 ( )R = 3.24

(1+x2)(l+»/1+x2)

X a

where x = --I! = —9 normalized reactance.

no k

Kane (46) also showed that the reflection coefficient at the

discontinuity can be given by

x2 -j¢________________ e

l+x2+»/].+x2

—l
_ -l sinh x

¢ — 2 tan [}-7F—-€]

In an approximate analysis by Luck (61) the magnitude of the

 

(3.25)

reflection coefficient was given as

Bo-k

IRI = -—-??———— (3.26)

All these expressions for the reflection coefficient are based

on the assumption that the corrugated plane has an infinite transverse

dimension. Nevertheless, these expressions give some indication for

a cerrugated surface with finite transverse dimension. In the experi-

ment, the theoretical prediction was found to be close to the measured
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value.

As for the asSumption of the perfect mode conversions from the

incident TE10 to the hybrid wave in the corrugated guide and then to

the non—radiating TM surface wave at the horn aperture, it may be

accomplished by a gradual flare of the guide aperture to some degrees.

However, this gradual flare may assure a good match at the aperture but

not a perfect mode conversion, becasue an aperture of finite size can

not excite a pure surface wave (34). Therefore, in the practical

situation, the feed radiation cannot be ignored in a strict sense.

It has been known that any analytical treatment on such an aperture

problem is not possible mathematically, unless one of the aperture

dimensions is of infinite extent. For example, if the side walls of

the corrugated guide are extended infinitely to form a parallel plate

guide excitor, the problem may be solved exactly by means of the

Wiener-Hopf technique (36). Still this infinite geometry is far from

the reality. Therefore, the effect of the feed radiation can only be

taken approximately by a simple method such as an integration of the

reasonably assumed aperture fields.

The adoption of a sufficiently wide corrugated surface is simply

an intuitive effort to closely simulate the infinitely wide surface

so that a pure surface wave with a uniform amplitude can be guided.

In the experiment, it was found that the transverse field distribution

remained close to the cosine function distribution of cos(flx/a) and

that only a very small current was induced on the ground plane outside

the corrugated surface. This signifies that the surface wave is

almost totally trapped on the corrugated surface and the discontinui-

ties along the two longitudinal boundaries may give little effect on
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the radiation pattern, if the width of the corrugated surface is of

several wavelengths.

3.2 Fields on the Tapered Corrugated Surface

It has been the accepted fact that a surface wave radiates at

the discontinuities along the guiding surface. When the reactive

surface is tapered as shown in Figure 3.1, the surface wave incident

from the left along the constant reactive surface gives off a part

Vof energy along the tapered surface and the rest of energy at the

discontinuity between the tapered section and the ground plane.

Felsen (52) showed that when the constant reactive surface is

terminated by an infinitely long tapered reactive surface, the radiation

pattern consists of two components, one from the surface wave and the

other from the continuous spectrum. The contribution due to the

continuous spectrum was shown to be much smaller than that due to the

surface wave. His study also verifies the existence of a surface wave

on the continuously varying reactive surface. However, it is not

theoretically possible to determine the fields over the varying reac-

tive surface of finite size.

Hence, the fields on a short tapered reactive surface (less than

one wavelength) may be found based on the approximate method. Recog—

nizing that the phase constant and the attenuation constant of the

surface wave are functions of the surface impedance, the fields over

the tapered section may be assumed to be the following type.

11' = H e-oc(2)y -jB(2)z

x1 0

(3.27)

3H

E' = .1. J = -M H

z we 3y we x

awi
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' 3H

'=:L__=£..:i M21. Main

Eyl we 32 we y 32 + 38(2) + jz ‘32 __ x

Based on the transverse resonant condition, it can be shown that the

surface impedances at y=0 are given by

E

E' = Z1 -ja(z)

s H' we

x1 y=0
(3.28)

Ez __

+1 __ 2 = 51 L L+T ‘- Z

23- H 3D we ta“ Eh T _l

x2

y=0

+ +

By equating 28 to -zS, one obtains a characteristic equation for the

tapered section,

0(2) z gk tan Eh Lil-:43 (3.29)

2

and for the constant reactive section,

00 z g-k tan kh (3.30)

The 0(2) may be expressed in terms of 00 by dividing equation (3.29)

by equation (3.30).

tanthh] (3°31)

 

0(2) = 00

If kh<<l, 0(2) may be approximated by

L + T - z

z ——-——————— .320(2) 00 T (3 )
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The phase constant 8(2) on the tapered section is then approximately

 

2 .

8(2) z /kz + [a0W] (3.33)

With these approximate expressions for 0(2) and 8(2), the continuity

of the fields at 2 L is examined below.

(1(2) 8(Z)

  
z=L

hence

E' E (3.34)

 

 
z=L z=L .z=L z=L

Namely, the Hx and E2 components satisfy the continuity at the boundary

z=L. For the Ey component,

30 2) Q

 

32 ~ - .3? if kT << 1

z=L (3.35)

are). a2
a, .1. __9._

" 80 T

z=L

Hence,

E' 0 02 -0 y jB L

o L o ’. o
y ="'£E EQY'jBO+j—f—B_ Hoe

z=L 0 (3.36a)

E B -a y -jB L

y =- .9. H e 0 0 (3.36b)
we 0
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Equation (3.36) shows that the Ey component is not continuous at z=L.

This is expected since a part of wave radiated at the discontinuity

was neglected in deriving the field expressions. However, for the

dominant term of equation (3.36a) is the second term in the vicinity of

the guiding surface. Therefore, one may express the fields over the

tapered section as

 

H' = H e-d(2)y -jB(2)z

x 0

...ja _

E, = 0 (L + T 2) H'

2 we T x A (3.37)

E' = :39 H'
y we x

where

0‘2“) * ao<—""‘r‘£>

 

2

2
2

8(2) /kz +(00 ELF—E)

Since the tapered section is assumed to be short compared to

the wavelength, one may further approximate 8(2) to be equal to BO

for the radiation field calculation.

3.3 Induced Fields on the Finite Ground Plane

The induced fields on a finite ground plane due to an aperture

field lying on the ground plane have not been solved rigorously because

of the finite edge problems. In this section, a classical method of
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successive approximation will be applied to the problem. For the

first approximation, this method assumes that the aperture fields on

a finite ground plane establish the same fields at any point in space

as that maintained by the same aperture fields on an infinitely large

ground plane. Hence, the electric current distribution on the finite V

ground plane is assumed to be approximately the same as the current

distribution which would exist on the portion of an infinite ground

plane. Thus, the problem is reduced to that of finding the fields

due to a source distribution in the presence of an infinite ground

plane. The fields in space for this problem can be determined by

means of Huygens' principle. The geometry of the aperture and the

ground plane is shown in Figure 3.2.

 

 

 

Figure 3.2 Coordinates of Flat Corrugated Surface

and Ground Plane.



In determining the electromagnetic fields arising from a

prescribed set of sources in an isotropic homogeneous medium, the

fields at a point lying outside a surface which encloses all the sour-

ces may be expressed in terms of the field vectors over the surface

based on the Kirchhoff's theory. According to the theory, the fields

at a point in the space due to the prescribed E and H 'vectors over

an aperture S on a closed surface may be expressed as

Ep= 71“ J {[(fixE)xvc]+[(fioE) VG]

S

,-jwu [(axfim] }ds- 317-8135 J VG(§o 32) (3.38)

C

fip= 4i“ J {[(axfi)xvc]+[(a-fi)vc]

S

+ jwe[(fi x E)G] } ds + ZEfiEE J VG(E ' d2) (3.39)

C

where E, H = prescribed field vectors on the aperture

outward normal unit vector:
3 II

e-jklR-R'l

free space Green's function = ——TE:ETT———

S = aperture area on a closed surface

C
) H

C = closed contour around the aperture

The line integrals in equation (3.38) and equation (3.39), often

called Kottler's integral, are included to take into account the discon-

tinuities of the tangential components of E and H along the aperture

boundary.

For the case of the antenna aperture located on an infinitely large
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ground plane, the field calculation in the space may be greatly simpli-

fied by the application of Huygens' principle. Based on the Huygens'

principle, the aperture fields in the infinitely large ground plane

may be replaced by the modified magnetic current of Zfi in the place of

the aperture surface S, which produces the exactly same field in space

as the original aperture fields. Therefore, the integral formulation

of the fields in the space maintained by a prescribed field distribution

on an infinitely large ground plane can be reduced to

Eta-27}; mebxvc ds (3.40)

s

Eta-221:5- I(fix§)Gds (3.41)

S .

where the outward normal unit vector fi - 9 and the free space

z-dimensional Green's function G(R,R') is given by

 

e-jk v/(x-x')2 + (y--y')2 + (2-2')2

(3.42)

/Qx-X')2 + (y+y') + (2-2')2

G-

where the source coordinates are designated by the prime. The compo-

nents of the.electric field E on the antenna aperture are given from

equation (3.7) and (3.37) as follows:

For the constant reactive surface,

mud v -18 z'

20 Ho cos-EE— e 0 (3-43)

1

 

E - -j

2a K
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wuB ' -jB z

E = - 0 H cos EE- e O (3.43)
y 2 O
a K1

For the tapered reactive surface

 

 

jwua _ v ' _j3 z'

E z _ 0 H (LLiLlL_.ZLg cos(E£—) e O

z 2 O T a
t Kl '

(3.44)

-. '

NUBO fl 3802

E z — H cos(--) e
y 2 0
t Kl

The induced magnetic field Hg on the ground plane y=0 is deter—

mined from equation (3.41) as

 

 

 

 

"F we I v I I

Hg = x 2,” {J Ez C(RIR )dsa + JEZ G(RIR )dst}

s a s t
a t

k____2°‘oHo 7 L . e~jk/<x—x' > 2+-<z z 'e)218oz
A Tm l I

= x2 { J I cos(j;-)e 2 dz dx

K1 1! 0 V(x-x‘) + (z-z')2

2

w

—' ejk/Qx—x' ) 2+(z-2' )2ejBOz

da'dX'}

/Qx-x')2 + (z—z')2

(3.45)

2
T(L+T-

+JJL+(——z—>cso(——)e

-.E

2

The integral expression in equation (3.45) cannot be integrated in a

closed form and the integration has to be carried out numerically

From the numerically calculated results, the calculation of the radiation

fields result in an extremely complex computing problem. To side step

such a computing difficulty and to obtain more physical insights on the
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radiation fields, we will proceed the analysis with a less accurate

but sufficiently correct induced field distribution on the ground plane.

In the determination of the induced fields on the ground plane as a

function of 2, we will use the fields on the constant and tapered

corrugated surfaces of infinite width to faciliate the closed form inte-

gration. Then, the actual fields on the ground plane are created from

the fields calculated above multiplied by an appropriate function of x

such as cos(E?) or a unit step function of width W.

The aperture fields to be used for the determination of the

induced fields on the ground plane are as follows:

On the constant corrugated surface,

jao —j802'

e
E = — — H .

2a we 0

(3.46)

_ 0

E _ _ 80 H e jBOz

ya we 0

On the tapered corrugated surface,

_ v

E z._ jo‘0 (L+T -z') H e jB0z

2t we T 0

(3.47)

_ _ V

80 jBOZ

E z --— H e

yt we 0

The induced magnetic field Hg on the ground plane can then be

calculated as
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e'-jk)’(x-x ) 2'+(z-z )2 e-jBOz'

 

 

 

H 0

H=x—(2)-Q{JwJLe dz'dx'

g n _oo 0‘ v/(x-x'2) + (z-z' )2

0° /———— _ v

+ J JL+T(I.+T-z') e-jk/(x--x')2+(z—z')2 e jBOZ d }

2 2 2 dx

0° y/(x-x') + (z—z')

' T

-jH x -jB Z'

_ §( 2° 0) {J H3 [k(z-z')] e 0 dz'

0

L+T
-18 z'

+ I (L+Tz—) Hg [k(z-z')] e 0 dz'} (3.48)

. L

In arriving at equation (3.48), the integral relationship for the

second kind of Hanekl function of zeroth order, Hg[k(z-z')],

e-jkv (x—x')2 + (z--z')2

dx

i VQ2-X')2 + (z-Z')2

 ' = -jnH§ [x(z—z')] (3.49)

was used. Equation (3.48) can be further simplified after introducing

a new variable u = k(z-‘-2’) as,

 

B
k(z-L) 0

-jH 0 —j8 z j— u

fig=£ 2008 (){J Hg(u)ek du+

k2

k(z-L—T) in (3.50)

+ 14%:- H (u) e du



64

k(z-L—T) B0

' k

1 2 j——-u A

+.ET. uH0 (u) e du }
(3.50)

k(2-L)

In equation (3.50), the first term is due to the uniform corrugated

surface field and the second and the third terms are due to the surface

field on the tapered section. These integrals cannot be integrated in

the closed forms, but if the argument of the Hankel function is greater

than 3, the function may be expanded in an asymptotic form, which makes

the integration possible in the closed forms. Fortunately, except for

the limit points of the second and third integrals, the argument of the

Hankel function is larger than 3. Thus, one may express the Hankel

function with its asymptotic approximation as

-ju + j-E

2 ’T
H0(u) z /'EE' (3.51)

With equation (3.51), the induced field fig in equation (3.50) can be

rewritten as

 

H 0 ~jB z
+ A 0 0 0 L+T-z l

Hg x(—j 2k ) e [I1 +~—fif—— 12 + 'kd 13] . (3.52)

where
B

jfl k(z-L) M7,; -1)u

I1 = /C% e 4 SL-—--——- du (3-53)

k A?
2

E_ k(2-L-T) .g _

2 ‘ n e 9—-;——-— du (3.54)

/h
k(z-L)
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n k(z-L-T) B

j(— -1)u

I = @e 4 E e k d

k(z—L)

u (3.55)

These three integrals, 11, I2, I3, can be integrated in closed forms

in terms of Fresnel integrals with the introduction of a new variable,

' 8

E v = .419 -1)u
2

The results of the integration are given by

TT

29.14 V1

I1 = [C(V) +j S(le

7-—9 -1 v0
k

71'

3? V0

12 = 53—— EW) +3 300]

/_:O _1 V1 (3.56)

8
7T 0 k(z-L—T)

f*‘ 3" j(-— -l)u

I = ——1 { £2 e 4 f1: e k

3 .80 TI

j(k) _1 k(Z—L)

TT

14 v2

_ ——————e [C(v) +1 S(v)] }

/30

r '1 V1

where

I
N

/ 8

v = (--g -l)kz
k

B .

v = (——Q -1)k(z-L)
k

0 :
1

.
.
.
:

=
i
|
N

—J L
i
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v2 = ./ % (—° -l)k(z—L-T)
k

n 1r 2n

(‘1) (2)
v

_ fl 2 _ 4n+l
C(v) - I cos(2 t )dt — n20 ——-—-——(2n)!(4n+l) v

v n T! 2n+l

(‘1) ‘2’ 4n+31T 2

S(v) = I sin(-2- t )dt = n20 m(2n+l)l(4n+3) v

The induced magnetic field on the ground plane is then expressed

by

.TT

_, A 80 J]; 'jBOZ

H = xj H 7+ 1 e e {Re(I) +j 1m(1)} (3.51)

where

Re(I) = [C(vo> - C(v1>1 + L+$'z [C(vz) - C(V1)] 

1
"T [S(V ) - S(V )]

2kT(.1_(Q —1) 2 1

’B

+ —l———- [/ ko(z-L-T) sinEfo -1)k(z-L—T)]

kT/2—1r Y0 —1

- Yk(2-L) sin [(819 -1)k(z-L)] ]

Im<I> = 1s<v0> - S(vl)] + L+$‘z 1s<v2> - s<vl)1 

1
+ ———-——-—— [C(v ) — C(v )1

21.11% —1) 2 1
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- l [¢k(z-L-T) cos[(%? -l)k(z—L—T)]

21a /2n 7 To —1 .

- /k(z-L) cos[(%§ -l)k(z-L)]]

In the computation of the induced field Hg on the ground plane,

the direct numerical integration on equation (3.48) and the closed form

computation in the asymptotic expansion of equation (3.57) were carried

out for several different values of 2%- ratio for comparison. It turns

out that the results from the approximate closed form deviate only

slightly from those of the numerical integration. Figure 3.3 shows the

distribution of the induced magnetic field computed based on the approxi—

mate closed form of equation (3.57). Figure 3.4 shows the results

computed based on the numerical integration of equation (3.48). Com-

paring these two sets of results, the expression'forHg in the approxi-

mate closed form of equation (3.57) seems adequate for the radiation

field calculation.

In order to see the contribution to fig from the tapered section,

the components of H8 which are maintained by the uniform corrugated

surface and the tapered section were computed and compared in Figure 3.5.

It is observed that the contribution from the tapered section is, indeed,

quite small.
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CHAPTER IV

RADIATION FIELDS

The surface wave is a bounded wave propagating parallel to

the guiding surface. Because of this boundness to the surface, it

radiates only when it encounters the discontinuity on the guiding

surface or when the surface is curved in the direction of propagation

but not necessarily in the transverse direction. Because of this non—

radiating nature, the ambiguity in the radiation field calculation has

caused some controversy (43,62,63), but there are two well established

distinctive methods, the feed and terminal approach and the aperture

integration approach. These two approaches lead to an identical

result within the approximations made in the course of calculation.

In this study, the aperture integration method thrOugh Kirchhoff's

vector integral formula will be employed.

4.1 Review of Radiation Field Calculation

In the calculation of the radiation patterns of slow surface

wave structures, there has been some controversy because of its unusual

non—radiating property. But two distinctive methods have been well

established for the different structures of geometry and excitation.

>One is the feed and terminal pattern approach by solving the wave equa-

tion directly based on the view point of the discontinuity, and another

is the aperture field integration method through the Kirchhoff's vector

71
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integral or Kirchhoff—Huygens' integral formula.

The feed and terminal pattern method involves the direct

approaches to the solution of the wave equation and is generally limited

to the idealized structures such as a feed on the infinite or semi—

infinite guiding structure. In this method, there are several approa-

ches in solving the wave equation which give excellent analytical

results on the radiation pattern as well as the surface wave excitation

efficiency and the input impedance.

One of these approaches is the plane wave spectrum expansion

method originated by Sommerfeld. In this approach, the exciting

aperture fields are expanded in the longitudial spectral representation

in terms of modes along the interface, with propagation normal to this

interface or in the transverse spectral representation of modes, in

the perpendicular cross section, with propagation along the interface.

An excellent discussion on the subject is found in a paper by Booker

and Clemmow (50). This method has been applied to the surface wave

structures in several illuminating papers by Cullen (34), Tai (26),

Whitmer (27) and Friedman and Williams (29).

The second interesting technique is also a direct approach to

the solution of Maxwell's equations with the introduction of an

auxiliary function. Since the surface wave structure must satisfy

the mixed boundary conditions, the wave equation is not separable.

To overcome this difficulty, an auxiliary function which is a linear

combination of the magnetic or electric field and its derivative is

chosen in such a way that it satisfies the wave equation and homogeneous

boundary conditions. This technique was first demonstrated by Karp
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and Karal (49). The well known Karp-Karal lemma on the surface wave

radiation is based on this analysis.

In contrast to the above two techniques assuming the aperture

field distribution, the third technique uses the wave mode incident to

the exciting aperture through the connecting transmission line. Similar,

to the mode matching technique, the formulation results in the integral

equations, which can then be solved by Wiener-Hopf technique (71),

leading to a reliable formulation on the input impedance as well as the

excitation efficiency. This approach is mathematically rigorous but

the applicable geometries are restricted to a few idealized structures,

such as a parallel plate waveguide with a dielectric slab studied by

Angulo and Chang (30), an infinitely wide corrugated structure excited

by a parallel plate waveguide treated by Barlow and Brown (36) and a

reactive impedance half plane problem investigated by Kane (46) by

modifying Kay's discontinuity problem on the reactive impedance surface

(45).

The aperture integration method has its own merits for being able

to calculate the radiation from an aperture of arbitrary shape, while

the feed and terminal pattern method is generally applicable only to

the infinite or semi—infinite structures. Because of the non-radiating

nature of the Surface wave, the application of the aperture integration

method has once raised some questions. But it can be proved that this

method gives correct solutions as long as the aperture field distribution

is correctly specified over the aperture. The validity of the aperture

integral method applied to a surface wave radiation is examined in

Appendix A. The early application of this method can be found in the

papers by Mueller and Tyrrell (37) and Halliday and Kiely (38). Later,



 

this method was refined by Watson and Horton (39) and Horton et.al. (40) 

in the study of the dielectric rod antenna. Brown and Spector (41)

also applied the terminal radiation concept to the aperture integration

method.

In this study the radiation pattern of the antenna system will

be calculated based on the aperture integration method. For the calcu—

lation of the radiation field, only the transverse aperture fields are

important and the Kirchhoff's vector integral formula (3.38) and (3.39)

reduce to

ED = 21? J {(fi x E) x V'G — jwu(fi x H) G} ds'

8'

(4.1)

fip = Z%- J {(fi x H) x V'G + jwe(fi X E) G} ds'

3'

where G is the free space three dimensional Green's function defined

-ij/R
by G = e and the primes in equation (4.1) indicate the operation

on the source coordinates.

The formula in equation (4.1) may be further simplified by the

usual far-field approximation with the coordinate system shown in

Figure 4.1.
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With these approximations, the electric field (Ep) in the far-zone

can be expressed as

 

‘+ e—jkr A + A A + jk?°¥'

Ep = 4hr jk(n x E) xr - jwu (n x H) e ds'

(4.3)

where the surface of integration 8' includes the guiding surface, the

ground plane and the feed aperture if the feed radiation cannot be

neglected.

4.2 Radiation Fields of a Single Corrugated Structure

The radiation fields maintained by a single corrugated surface

wave structure on a finite ground plane will be calculated by the

Kirchhoff's vector integral formula (4.3) with the aSsumption of

negligible feed radiation. The geometry of the single corrugated

surface antenna system is shown in Figure 4.1.

1?

    Sb 5

 

s /1

W1—. —{"
0 L. L’T

Sn .
 

 

Figure 4.1 Coordinates of Corrugated

Antenna for Radiation Fields
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In application of equation (4.3), the surfaces to be integrated

are S S and S . The tangential fields on these surfaces are given
1’ 2 3

from equation (3.7), (3.37) and (3.57) as follows:

 

 

0n 81'

—jwuao fix —j802

E = H cos(-) e

z 2 0 w

1 K

1

-jB 2
H _ 1T_x 0
x1 — Ho cos(w ) e (4.4a)

n

j - 2

H _ oaHsin(-T-T§)e o
Zl - K2 0 w

1

On 52;

“1031101 -j8 2
~ 0 L+T—z B 0

E2 ~ 2 0( T ) cos(w) e
2 K

1

“:18 2

H c H cos(lé) e 0 (4.4b)
x2 0 w

H z 0

22

On S3;

/30 3% "“302
H = jH —+ 1 f(x) e e {Re(I) +j Im(1)}
x3 0 k

(4.4c)
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where Re(I) and Im(I) are defined in equation (3.57). The function

f(x) is an approximate transverse distribution function such as

cos(Q?) or a step function with a width of W.

With these aperture fields and using the coordinate system shown

in Figure 4.1, the far-zone electric field in spherical coordinates

can be expressed as follows:

For 6 component;

ejk(x'sin6 cos¢ + z'cose)d

 

x'dz'

_ v .
,

+ qu I (Hxsine + Hzcose cos¢)e Jk(x Slne cos¢ + z cose)}

 

dx'dz'

Sl+SZ+S3

(4.5)

For ¢ component;

e_jkr jk(x'sin9 cos¢ + z' cose)dx'dz'

E = - jk c038 cos¢ E e

¢ 4flr 2

814-82

_ jwu sin¢ I Hzejk(x'sin6 cos¢ + z' cose)dx.dz.} (4.6)

S1

where E2, Hx and H2 are the tangential aperture fields given in

equation (4.4).
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In plotting the radiation fields, only the principal plane

radiation patterns are considered here. The E-plane pattern (¢5;,

in y-z plane) and the H-plane pattern (¢=O, in x-z plane) will be

calculated separately in the following sections.

4.2.1 E-Plane Radiation Pattern

With ¢ ='% in equation (4.5), the E—plane radiation field,

Ee(¢=12T-) is expressed by

 

‘jkr v
_‘I_ _ _ e jkz cose ,

81+32

V

+ qu sine J erjkz cosedz'} (4.7)

Sl+SZ+S3

Substituting Ez and Ex given by equation (4.4) in equation (4.7) and

integrating over x dimension for — g-to %- yields

-jkr

_1 =_———-—e

Ee(¢‘ 2) 4Hr
{El(6) + E2(6) + E3(6)} ‘ (4.8)

where E1(6), E2(6) and E3(6) are the radiation pattern functions

produced by the uniformly corrugated surface, the tapered surface and

the ground plane respectively. Each pattern function is expressed

as follows:

2 L B
2wkH k a _ _Q._ '

E (9) = 0 [ 0 + jk sine] I e Jk(1< cose)z dz'

.1 nwe

K1 0
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B

2WkH kza sin[‘EL (*9 — cose)]

__ O O . 2. k
- n + jk Sin 6 L (4.8a)

we 2 B ,

K1 'ELG-Q - c036)

2 k

2WkH L+T 2 -j(EQ - c 6) '

E (6) = ______9 k 0" L+T-z' + jk sine e k OS 2 dz'

2 Hwe 2 T

L K1

-jk(Eg - cose) kT B0
_ ZWRHO {k2 L . e k [31+ SinI-i-(T -cose)

- wwe 2 B B
K 0 kT O
.1 kL(k -cosG) 2 (k -cose)

B B

-j%§(E?--cose) sinf§§€zg —cosG)

+ jkT sinB (4.8b)

B

%%(E? -cosG)

Lf
'

E3(6) = j W my sine I Hg ejk C036 2 dz'

L+T

fl

WkH ./B J-
_ _ O . _Q_ 4
- we Sln 6 k -+ 1 e k{I} (4.80)

where

{I} = (Il— 312) + (13- 114) + (15+ 316) — I7 + 18 (4.9)

Each Im(n=l,2, ...6) cannot be integrated in a closed form. Thus, they

are given in the integral forms as follows:
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L 80 '
f -jk(? -cose)z'

I1 — jI2 = J {C(v1)—C(vo) + j[S(v1)—S(v0)]}e dz'

L+T (4.9a)

 
B0

—jk(? -cose) 2'

d l

Lf
I _ 'I = L+T-2'

3 J 4 zT {C(v )-C(v )+j[S(v )—S(v )]}e

L+T 2 l 2 l

(4.9b)

L B

1 f -jk(?o —cose)z'

15+j16 = ——B—_ I {C(v2)-C(vl)+j [S(v2)—S(vl)]}e dz'

0
2kT(T -1) L+T (4.9(2)

B
0

-jk(L+T)-(—k— V'COSG) —j (1—cose)k(Lf-L-T)

 

 

I = e
- /k(L -L—T) e8

f

sz/2EV-Eg -l (l-cose)

+_/E_._ [C(Vs) - jS(v3)]}

2/l-cose

BO
_ -jkL(T ‘COSe)

—j (l—cose)k(Lf'L)
18 e

/k(Lf—L) e
B

kZT/2E '7? -1 (l-cose)

-j (l-cose)kT _ /2_T?

2/l-cose

-/127fe  [C(V5)-C(V4)-j(S(V5)-S(v4))]}

(4.9d)

where C(v) and S(v) are the cosine and the sine integrals respectively.

Their arguments, v's are defined as
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B

v = ‘/%(?0' -l)kz'

B
2 0 ,

'1?(—k ‘1)k(z -L) ‘

 

 

 

 

 

v1 -

v2 — 444%" -1)k(z'—L—T)

v3 — /-1ZT(1-cose)k(Lf-L-T)

v4 — »/-1gT-(l—cose)kT

v5 - /:rr2-(l-cose)k(Lf-L)

For the computational convenience, the E-‘plane pattern function E6 (¢=12r_)

is rearranged as follows:

kH

_ I _ .255. ....O
E0(<b — 2) — ,n (we) {E1(6) + E2(6) + E3(6)} (4.10)

/80 2 Sin A

E1(9) = [cos A ° (-k-) -l + sin A sin 6] RLT

80 2 sin A ' '
+ jI-Sin A ‘ (T) -l + cos A sin 6] RL ----A (4.10a) ‘

2 — 2A “(k - [$1n( ) B s n

+ kd sin 6 sin(2A+B) £13313

/8

+ J {1% (‘3)2 -1 Icos(2A+B) iii-L]: - cos 2A]

+ kd sin e cos(2A+B) 54—2—15} (4.10b)



82

V /80

(9)=- T+1sin6

’° {c03'%{k(Il+I3+IS) + k(Re I

Ea

8 — Re I7)]

N _

+ Sin 4[k(Iz+I4-I6) - k(Im I — Im I7)]
8

1T

+ j sin 4[k(Il+I +15) + k(Re I3 — Re I7)]

8

- j cos E{k(Iz+I4—I6) - k(Im 18- Im I7)]}

where

 

ReI = 7 1

k T V2? V 7:--l (l -cosG)

' /2E C(v3)

' { cos C[- VE(Lf—L-T) cos D + ———-———-:]

 

 

2m

/§E S(v3)

+ sin c /k(Lf-L-T) sin D — -——-———-

2V1-cosB

ImI = -—$
.. 7 2 O

k T/ZH i: -1 (l - cosG)

/2E C(v3)

° {-sin C[E/k(Lf-L—T) cos D +~-—-—-———:]

2/1-cosG

/2E S(v3)

+ cos C{;k(Lf-L—T) sin D - --——-——“ }

—- 2V1-cose

ReI = .11

8 2 o
k T/ZW -—- -1 (l - c036)

k

(4.10c)

(4.10d)

(4.10a)
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°{- cos G[;R(Lf-L) cos E - VET cos F -

_ i (c(v5) _ 0(v4fl

Z/l-cose

+ sin G[3k(Lf-L) sin E - ViT sin F

i<s<v5> — sopfl}

 

 

2/l-cose

1
ImI =

8

sz/Zfl /(§? -1 (l-cose)

°{ sin G[Ek(Lf-L cos E - /ET cos F

/f-

(C(v5) - C(v4 ))

2V1-c039]

+ cos G[?R(Lf-L) sin E —./ET sin F

- “in <s<v5) - 3(v4))]}
2/l-cose

where

A _ 1:2 (E9 _ e
—- 2 k cos )

B

B = %§-(<1? - cose)

8O
C = k(L+T)( 7:-- cose)

D = k(Lf-L-T)(l - c036)

(4.10f)

(4.10g)
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Figure 4.2 Calculated E-Plane Radiation Power

Patterns (7-10 Ghz.)
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E = k(Lf-L)(1 — c036)

F = kT(1 - cose)

G = 2A

In the E-plane, there is a low intensity of E (¢=-%) component

¢

which is due to the H2 component on the corrugated surface. The

magnitude of Hz component is negligible compared to E2 component when

the width of the corrugated surface is several wavelengths. Thus,

the actual E-plane pattern corresponds to the Ee(¢=-%) field. The

E-plane radiation patterns for various measured values of ig-ratio

have been computed for the frequencies ranging from 7 Ghz. to 10

Ghz. and they are plotted in Figure 4.2.

In all these results for the E-plane patterns, the directivity

remains quite high and the side lobe levels stay very low for a wide

range of frequencies. The inevitable beam tilt due to the finite

ground plane is observable for all frequencies.

4.2.2 H—Plane Radiation Pattern

With ¢ = 0 in equation (4.6), the H—plane radiation field,

E(¢=0) can be obtained as

 

e-jkr

4flr jk cose J Ez

81-1-82

ejk(x'sin6 + z'cose) (4.11)

Substituting the tangential electric component Ez given in equation

(4.4) in equation (4.11), the E¢(¢=0) becomes
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-jkr

E (¢=0) = -'EZ——-¢ "r {H1(6) + H2(9)} (4.12)

where H1(8) and H2(8) are the H-plane radiation pattern functions

produced by the uniform corrugated surface and the tapered surface

respectively. Note that the induced current on the ground plane

does.not contribute to E¢- in the H—plane pattern. The pattern

functions are expressed as

 

 

 

 

3% L
-jwua H , ,

H1(9) = jk c036 J J ...—9.9. cos 33$. ejkx sin8

. K2 w

-.g 0 1

80 .

'kaj:'- cosG)z'

° e dz'dx'

3 kW RL 80

2Wk H cos(- sine) 5}-—C-— -cose)

' 0 2 2 k.1... = ...,— {..... .w 2..
WwEKl l - (rr'sine)

3

“0L sin P%%C]? - cosG)]

B
}

(4.123)

'EEC—Q - c036)
2 k

W

'2' L+T —jwuoc H ' ' '

H (9) = jk c036 J 0 O (L+T-z ) cos(“X )ejkx Sin9

2
K2 T w

_ E L 1

2

B0

-jk(i:--cose)z'

' e dz'dx'

B0

2Wk3H cos(%¥ sine) 17L 'Jkagf -cose)

= ————._......_ COSG .
o e

nweKZ { 1 _ (EH sine)2 . BO '

1 W kL( -cose)
'1?



 —>—sm
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B . 8

sin k—2T(TO -cose) -j%(—FO -cosB)-—-

' [:-1 + --—-——-———-——- e _J} (4.12b)

B
kT 0
2 (k -cose)

For the computational convenience, the H—plane pattern function

/ 2

E¢(¢=O) is rearranged by replacing K1 = k2 -(E) with k, which

is reasonable approximation for a wide corrugated surface, as

 

follows:

kH

E¢<¢=o> = (27?) (73%) {111(6) + 112(9)} (4.13)

111(9) = cose 93—3—3 Si“ A OLOL(cos A - j sin A) (4.13a)

OLL
cos u 0 sin B . .

H2(8) — cose 2 {2A [: ,B Sin(2A+B) — Sln ZAj]

+ . 0('OL sin B 3b

J "2?. B COS(2A+B) -' COS 2A (4.1 )
 

where

1T

The H-plane radiation patterns for various measured values of 1%

ratio have been computed for the frequencies ranging from 7 Ghz. to

10 Ghz. and they are plotted in Figure 4.3. It is noted that the

half power beam width varies with the frequency and the very low

side lobe levels for all frequencies have been obtained.
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CHAPTER V

EXPERIMENT

The exact theoretical analysis of the flat corrugated surface

with finite dimensions as an end-fire antenna is not known to exist

because of its complex geometry and boundary conditions. The charac-

teristics of the antenna were determined by an approximate analysis

retaining only the fundamental harmonic of the infinite space harmonics

of the surface wave and assuming 100 percent launching efficiency.

For this reaSon, an experimental study of the antenna becomes essential

to determine the surface wave transmission and radiating properties of

a practical antenna and to verify the accuracy of the approximate analy-

sis developed in the preceding chapters.

In this chapter, an extensive experimental investigation on the

waveguide excitation of the surface wave, the surface field distribu-

tions on the corrugated surface and the finite ground plane, the boundness

and the phase velocity of the surface wave, the radiation properties of

a single corrugated radiator and the beam scanning of a composite radia-

tor will be described.

5.l Antenna System

The experimental model of a surface wave antenna consists of four

major parts: a rectangular waveguide for the TElo mode excitation, a

rectangular waveguide with corrugated bottom wall for the hybrid slow
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wave, a transition horn for the hybrid slow wave to the slow surface

wave, and a flat corrugated surface on a finite ground plane as shown

in Figure 5.1. I

In order to improve the surface wave excitation on the open

corrugated conducting surface, the top and side walls of the corrugated

rectangular waveguide was gradually flared out to match the aperture

impedance. The corrugated bottom wall was extended to form an open

corrugated guiding surface. The physical dimensions of the open

corrugated guiding structure were chosen to support a slow surface

8

wave with phase constant ratio of —£= 1.05 at 9 Ghz. and to produce

an optimum end-fire beam over an infinitely large ground plane.

The dimensions of corrugation were determined from the approximate

dispersion relation for the infinitely wide corrugated surface,

d

cot(kh) = '3 (——) -l (5.1)

where k is the free space propagation constant, 80 is the phase constant

of the fundamental harmonic, h is the corrugation height, d is the

corrugation gap width and D is the physical length of one corrugation

cell. The accuracy of this formula in equation (5.1) increases as the

number of corrugations per wave length (N) increases, since equation (5.1)

is derived based on the average impedance concept. It is known that the

accuracy is adequate if N > 20 (56).

The maximum gain condition for an end-fire radiation from travel-

ling wave antenna is known as the Hansen-Woodyard relation. This

states that for antennas producing the radiation pattern of type

 

 

 



 

 

 

""""""""""""

(a) Single Radiator

 

(b) Composite Radiator

Figure 5.1 Corrugated Antenna



92

sin[%(Bo-k sin.6]/ %(Bo—k sin 8), the end—fire directivity is maximum

if

% 5 (BO- k) L:77 6-2)

where L is the length of the guiding surface. In general, if the

excitation efficiency of the slow wave at the aperture is low, the

guiding surface should be made long to avoid the interaction between

the quasi-near field of feed and the surface wave at the end of the

guiding surface. Thus, the right hand side limit of equation (5.2),

n, may be more appropriate for the practical antennas. This optimum

condition was also proved by Kane (46) in a theoretical study of an

idealized surface wave antenna.

Using the relations of equation (5.1) and equation (5.2), the

actual dimensions of the corrugated structure supporting the slow sur-

face wave of 1? = 1.05 were found to be

d = 0.025 in. , h = 0.1091 in.

c - 0.02 in. L = 13.12 in. (10 X0 at 9 Ghz.)

D = 0.045 in. W = 2.62 in. (2 A0 at 9 Ghz.)

For a good impedance match between the corrugated surface and

the ground plane, the and part of the corrugated surface was linearly

tapered up to zero height at the junction with the ground plane. Since

it is not possible to determine the Optimum dimensions for the tapered

section, the length of the tapered section (T) was initially chosen to

be T = 0.656 in. long (0.5 10 at 9 Ghz.).
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For the efficient slow surface wave excitation on the open

corrugated surface, a part of the bottom wall of a standard rectangular

waveguide, WR 90, was corrugated with the same dimensions as those of

the open corrugated surface. The actual dimensions of theguide are

Lw = 6.545 in. long, A = 0.9 in. wide and B = 0.4 in. high. The corru—

gations near the junction with the uniform rectangular waveguide were

also tapered up to zero height at the junction for the smooth transition

from the TElO to the hybrid slow wave in the corrugated guide.

In order to achieve a good impedance match and a smooth transition

from the hybrid slow wave in the corrugated guide to the TM slow surface

wave on the open corrugated surface, the corrugated guide was gradually

flared out to produce the same phase velocity at the aperture as that of

the open corrugated surface and to have small phase variation across the

aperture plane. The horn dimensions were Chosen to be

t
“ ll 6.545 in. long

2.62 in. wide2 II

B = 2.0 in. high

With these dimensions, the maximum phase variation in E and H plane

across the horn aperture is 0.0383 A at the center frequency of 9 Ghz.

0

The corrugated surface was mounted on a ground plane of 10 10

x 10 10 at 9 Ghz to form a complete single corrugated antenna.

For the beam scanning experiment, two identical corrugated antennas

were constructed. The two antennas were placed on the opposite sides of

the wedge shape ground plane as shown in Figure 5.1b. The wedge half

angle can be varied within the range of the beam tilt angel of the single
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corrugated antenna. The wedge angle determines the maximum scanning

angle about the axis of the composit antenna system.

5.2 §urface Field Distributign

For the investigation of the surface field distribution on the

antenna surface, the conventional square-law detector system was used

with simple probes (66,67) because of the equipment availability, even

though the back scattering technique with a heterodyne detection system

(64,69) may give better results for the amplitude and phase measurements

in the microwave frequency range.

The electric and magnetic field strengths were measured with the

simple electric and magnetic probes (65,68). The probes were made of

50 ohm teflon filled mini—coaxial cable of 0.08 in. outer diameter. The

outer conductor was coated with a lossy dielectric material (Eccosorb

CR-ll7) and covered partly with a sheet of microwave absorber to reduce

the scattering from the probe lead. Figure 5.2 shows the rough sketch

of the probes.

For the electric field probe, the inner conductor of the coaxial

line was extended out 0.18 inch long (0.158 10 at 9 Ghz.) as the detecting

element. The probe length should be made as short as possible to reduce.

the disturbance of the original field distribution on the antenna surface.

However, because of very high loss in the mini coaxial line and the low

sensitive detecting equipment, the probe element was made somewhat longer

than it should be. To check the seriousness of the field disturbance by

the rather long probe, the field amplitude distribution was measured along

different heights and the reflected waves were monitored at the input of
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the antenna using a 20 db directional coupler for different lengths of

the probe element. It was found that the probe element of a length of

0.18 inch yields entirely satisfactory measurement accuracy.

For the measurement of the magnetic field distribution, a probe

was shaped as a circular loop with the outer diameter of 0.11 inch,

the inner diameter 0.03 inch and the gap spacing of 0.005 inch as shown

in Figure 5.2. The gap spacing was deliberately made small to reduce

the sensitivity for the Ez component which appears on the corrugated

surface in addition to the Hx component. Since a single loop probe

detects both the Hx and E2 components simultaneously, the measured

field pattern is not the pure distribution of the magnetic field HX but

rather a mixed distribution containing a small Ez component on the

corrugated surface. On the ground plane, however, the field pattern

measured by.the single loop probe is the true distribution of the induced

magnetic field Hg' The Hx and E2 components can be detected separately

by means of a double loop probe, but since the relative amplitude of the

E2 field on the corrugated surface is much smaller than that of the Ex

field on the surface, the single loop probe with very small gap spacing

was chosen for the measurement.

As shown in Figure 5.2, each probe has a long lead which is

properly shaped to reduce the induced current on its outer conductor.

The probe was connected to a probe holder by a miniature coaxial

connector. The probe holder was designed in such a way that the probe

can be moved freely vertically and that the probe can be set at any

specific height above the antenna surface. For the continuous recording,

the probe holder was mounted to a d.c. motor-driven carrier, which was
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then coupled to a X—Y recorder through a precision linear potentiometer.

The travelling distance of the probe was accurately calibrated by the

potentiometer and a filter network. The schematic diagram of the

measurement system is shown in Figure 5.3. All the field probings were

cOnducted in an anechoic chamber.

As the first test for the existence of a slow surface wave over

the corrugated surface, a large reflecting plate (10 20 x 10 A0 at 9 Ghz)

was placed at the end of the ground plane to find the change in the

phase velocity of the wave on thecorrugated surface and the ground

plane by observing the standing wave pattern. Figure 5.4 shows a

typical field distribution over the Surface with the reflecting plate

installed at the end of the ground plane. It clearly shows that the

periods of the standing waves on the two regions differ slightly. The

period of the standing wave on the corrugated surface is shorter than

that on the ground plane. This indicates the difference in the phase

velocities of the waves on the two surfaces.
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As the second test, the attenuation of the electric field

(do for Ey) along the normal direction away from the antenna surface

was measured at several points at an interval of 10 cm along the center

line of the-surface. The intensity of Fy was then measured as a func-

tion Of the vertical distance. The measured field intensities are

plotted for several frequencies in Figure 5.5a and 5.5b. The field

patterns show that the electric field attenuates very rapidly as the

probe moves upward. At 3 cm height, the field has attenuated below

-10 dbs; the indication of a slow surface wave with a high attenuation

'30 -aoy -jBOz

constant in y direction (Ey = 7—6; H0 e e ). The attenuation

constant ad was determined by plotting the field amplitude on a semi-

1og paper. The slope of the line on the semi-log paper corresponds to

the attenuation constant do. Since the crystal detector detects power,

the actual attenuation canstant is one half of the slope of the line.

Figure 5.6a shows the measured attenuation constants in comparison

with the theoretical values. It shows very good agreement with theory.

With this confirmation of the existence of slow surface wave on

the corrugated surface, the phase velocity of the wave was measured by

a simple standing wave method. 'For this measurement, a large reflecting

plate (10 A0 X 10 20 at 9 Ghz.) was placed at the end of the corrugation,

and the standing wave distribution of Ey component along the center line

of the corrugated surface was recorded with the calibrated distance

scale. This measurement was repeated five to ten times for a frequency

to minimize the possible measurement errors on the calibration of the

distance scale. The average guided wavelength over the surface was then

calculated from the standing wave pattern.
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Figure 5.7 shows the typical standing wave patterns at 7 Ghz. and

9 Ghz. along with the accurately calibrated probe travelling distance.

Figure 5.6b shows the measured phase constant ratio (BO/k) for various

frequencies in comparison with the theoretically predicted values. The

experimental values agree with the theory for the infinitely wide corru-

‘ gation within a few percent deviation. The phase velocity was also

indirectly calculated from the measured attenuation constants and

plotted in Figure 5.6b for comparison. Those directly and indirectly

calculated values for the phase constant ratio (Bo/k) agree very well.

These experimental results confirm the existence of slow Surface waves

_over the finite corrugated surface and also indicate that the phase

velocity of the slow surface wave is close to that of the fundamental

harmonic overan infinitely wide corrugated surface.

The amplitude distributions of the Ey’ Ez and Hx components

were measured over the total antenna surface by moving the appropriate

probe along in several axial directions and several transverse directions

in order to get three dimensional field distribution patterns over the

frequency range of 7 Ghz. to 11 Ghz. In all these experiments, the

probe height was kept constant at 0.7 cm away from the surface.

The typical amplitude distributions for the Ey component along

the center line of the antenna surface are shown in Figure 5.8 and 5.9.

The vertical axis is the relative magnitude of the measured field

intensity indecibels and the horizontal axis is the probe travelling

distance from the feed. The starting and the end points of the tapered

section are indicated by two vertical lines. As was expected, the field

distribution near feed shows an abrupt variation. It is probably due

to the feed mismatch and the direct feed radiation. Moving away from
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the feed about 2 wavelengths, the field settles down and exhibits a

nearly uniform standing wave pattern. This standing wave may be caused

by the impedance mismatch of the surface wave at the junction between

the corrugation and the ground plane and at the end of the ground plane.

The average reflection coefficients over the corrugated surface by the

mismatches were calculated from the surface field distribution of the

Ey component, and the results are plotted in Figure 5.10 for several

frequencies in comparison with the approximate theoretical values.

The measured reflection coefficient without the tapered section generally

agrees with the approximate thoery, but the effects of the tapered sec-

tion to the field mismatches are not conclusive from the results. In

the course of the experiment, it was found that the electrical contact

between the uniform corrugated surface section and the tapered corrugated

section was very sensitive to the reflection coefficient as the wave on

the surface slows down. Thus, for the meaningful results on the reflec-

tion coefficient, the electrical contact between the sections is required

to be perfect.

Comparing the field distribution patterns for the cases with

and without the tapered section in Figure 5.8 and 5.9, it was found

that the tapered section offered a very good match for the low frequency

case where the phase velocity of the surface wave was close to the

speed of light. At the high frequency where the phase velocity is much

slower, the tapered section failed to act as a matching section. It

may imply that the length of the tapered section is the critical factor

for the perfect matching as the case of the tapered uniform transmission

lines (70).
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Among the field components on the guiding surface, the Ez

component may have the largest discontinuity at the end of the corruga-

tion. In order to see whether the tapered section offers a smooth

transition for the Ez component, the Ez field distribution was measured

by using an E2 probe for the cases of with and without tapered section.

The results are plotted in Figure 5.11 and Figure 5.12. As was found

in the field distributions for the Ey component, the tapered section

did not seem to act as a matching section for the E2 component at all.

Thus, it may be necessary to investigate the fields over the tapered

corrugated surface more carefully to determine the optimum length for

minimum reflection due to the discontinuity. In the Ez field distribu-

tions, it was found that the Ez field is uniformly distributed over the

guiding surface for all frequencies, even.near the feed. This indicates

that the fields in the corrugated guide have efficiently transformed

to the surface wave on the open corrugated surface.

The distribution of the magnetic field component fix of the sur:

face wave was measured over the total antenna surface by a single loop

probe. Since the single loop probe is also sensitive to the axial

electric field component E2 on the corrugated surface, the measured

field patterns are not pure magnetic field distribution on the corrugated

surface, but they are true magnetic field distribution on the ground

plane. However, since the intensity of the Ez component is very small

compared to that of the fix component (Ez - - g2 Hx), the measured values

may be mainly contributed by the Ex field component. Figure 5.13 and

Figure 5.14 show the field distributions for the fix component with and

without the tapered section. The dotted line on the ground plane is

the theoretically predicted curve. It shows that the theoretical
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predictiOn does not agree with the experiment. In theory, the'H field

intensity on the tapered section was assumed the same as that on the

‘ uniform corrugated surface, but in the experiment the H field starts

decreasing at the start of the taperedsection as shown in Figure 5.13.

In plotting the theoretical values, the normalized amplitude was chosen

roughly the average level of the Hx on the corrugated surface. This

level may not be totally Hx but a combination. with Ez. On the corrugated

surface, the disagreement between the theory and the experiment is

expected, since the surface wave near the feed is supposed to be contami-

nated by the direct feed radiation which was not included in the theory.

However, the field distribution away from the feed is almost uniform

as the surface wave should behave, except a small standing wave component

due to the mismatch at the ends of the corrugation and the ground plane.

In order to understand the complete surface field distribution

on the antenna surface, the field distributions along several transverse

directions were measured at several locations on the antenna surface.

In each transverse plane, the field amplitude was normalized to the field

strength at the center of the cross section, and plotted as a function of

the probe travelling distance x. Figure 5.15 a—d and Figure 5.16 a—d

show the transverse electric field distribution (By) and the transverse

magnetic field distribution (Hx) respectively. The horizontal and ver—

tical axes are the probe travelling distance at the several cross sec-

tions. The amplitude of the distribution can be read with the scale

shown in the bottom left corner. Each field is normalized to zero db

at the peak of the distribution that occurs along the center line of the

antenna Surface. Since the Ey component is directly related to the Hx
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B .

- -9-H ) based on theory, the

038 X

component by the surface impedance (Ey

 

normalized field patterns are almost identical. It is noted in Figure

5.15 a-d that the field variations resemble the COSng) function over

the surface. The cosé%?) function is shown as the dotted lines for

comparison in the figures. Note also that the guided waves are mostly

 
confined to the corrugated surface and that the relative magnitude of

the induced field on the ground plane in the vicinity of the corrugated

surface is very small, well below -10 dbs along the side boundaries.

Even on the ground plane in the strip of the same width as the corrugated

 

surface, the induced field variations are close to the cosine function.

As the phase velocity of the guided wave on the corrugated surface

becomes slower, the induced field on the ground plane is mostly confined

to the strip of the same width of the corrugated surface with slightly

increasing intensity. Thus, for the phase velocity ratio BO/k greater

than 1.05, the transverse dimension of the ground plane may not be as

important as compared to the length of the ground plane in determining

the radiation patterns. The amplitude of the induced field is very low

compared with the guided wave on the corrugation as evidenced in Figure

5.8, and the amplitude seems to spread out as it travels toward the end

of the ground plane with rapidly reducing intensity.

With the above information on the surface field variations on the

antenna surface, three dimensional field distributions were constructed.

Figures 5.16 a,b,c are the normalized three dimensional field patterns

for the surface field on the antenna surface. The figures illustrate

the confinement of the wave on the corrugated surface and on a strip

of the ground plane.
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5.3 Radiation Patterns of a Single Radiator

For the evaluation of the antenna performance, a tapered micro—

wave anechoic chamber was constructed based on a simple ground reflection

analysis (Appendix B). The anechoic chamber has the shape of a pyramidal

horn that tapers from a small transmitting end to a large rectangular

test region as shown in Figure 3.1.

In the anechoic chamber, it is not possible to eliminate all the

reflected waves from the walls covered with microwave absorbers. Thus,

for the design of the chamber, the direct path signals from the trans-

mitter and the reflected signals from the walls are adjusted to add in

phase in the quiet zone by adjusting the taper angle and the range dis-

tance. This creates a slowly varying spatial interference pattern in

the test target area. This periodic perturbation can be minimized by

choosing a proper cone angle and chamber dimensions.

The chamber was designed to operate for the frequency as low as

1000 Mhz. The minimum apex cone angle was chosen to be 36° for the

optimum operation considering the space limitation. The theoretically

predicted field variation in the horizontal cut at 1000 Mhz was below

—O.25 db along the excursion of :4 feet from the center of the sqaure

area located at 12.5 feet from the transmitting end. The field varia-

tion along the axis of the chamber was calculated to be + 0.1 db in the

square test region. This field variation in the chamber is comparable

with the field distribution for a free space test range.

As the frequency of the operation is increased, the field varia-

tion is expected to be improved further, since the reflectivity of the

microwave absorbers used in the chamber decreases to the level below
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. the value that is used in the calculation and in addition, the electrical

dimensions of the chamber become larger. In order to reduce the possible

back scattering from the rear wall, the rear wall was shaped in a

slightly angled wedge to divert the reflected waves away from the test

area.

For the measurement of the radiation patterns, the test antenna

was used as a receiving antenna and a conical horn antenna as a trans-

mitting antenna. For the correct beam direction, a critical antenna

alignment between the test antenna and the transmitting antenna was

necessary. At first, the antennas were very carefully aligned by using

a surveying level. Later it was found that the use of a simple laser

beam proved to be more than satisfactory.

Figures 5.18 a-b are the E-plane radiation patterns of a single

corrugated antenna over the frequency range of 7 Ghz. to 10.5 Ghz.

In Figure 5.18, the solid line is the measured pattern and the dotted

line is the theoretically calculated pattern. The measured beam tilts

from the true end-fire direction, which are 8° to 10.5°. The deviation

of 1° is within the accuracy of antenna alignment. The measured half

power beam width in the frequency range varies from ll.5° to 12.5°,

which is in excellent agreement with the theory.

The H-plane patterns of a single corrugated antenna are shown

in Figures 5.19a and 19b in comparison with the theoretically calculated

patterns. The measured half power beam width varies from 21° at 7 Ghz.

to 12.5° at 10 Ghz. The result does not agree too well with the theory.

The theory predicts the half power beam width of 23° at 7 Ghz. and 16°

at 10 Ghs. This disagreement may be due to the approximation made for the

transverse field distribution function f(x). The H—plane patterns were
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calculated with f(x) = l and f(x) = cosé%§). The approximate distribution

function f(x) cos(E?) gives about the same half-power beam width as

that for f(x) 1.

In order to see the effect of the ground plane on the beam tilt,

the radiation patterns at 9 Ghz. were taken with the ground planes of

various lengths attached to the corrugated surface. The measured E—plane

radiation patterns are shown in Figure 5.20 with the calculated patterns.

The half power beam width agrees well with the theory but there is a dis-

agreement in the maximum beam direction. Only the trend of the beam shift

agrees with the theory. An interesting fact is that on the contrary to the

common belief on the trend of the beam shift that it should move toward

the ground plane as the length of the ground plane increases. It was

observed that as the length of the ground plane was shorted, the maximum

beam direction was, in fact, shifted toward the true end-fire direction

Vaccompanied with the reduction in directivity. This deviation from the

theory may be perhaps due to the currents flowing along the edges of the

finite ground plane, since as the ground plane is shortened, the magnitude

of the induced current on the edge of the ground plane may increase, resul-

ting in a strong edge effect. To see the edge effect, the ground plane

was completely removed from the antenna structure, and the E—plane and

H—plane radiation patterns were taken. These patterns are shown in Figure

21.a and Figure 21.b. The disagreement between the experiment and the

theory which did not include the edge effect is accentuated in the figures.

Therefore, it is concluded that when the length of the ground plane is less

than 10 wavelengths or so, the theory should include the edge currents to

predict accurately the radiation pattern of a slow surface end-fire antenna.

In practice, the ground plane is most likely greater than 10 wavelengths,
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and the effect of the edge current may be neglected.

Figures 22a and 22b show the radiation patterns for the single

radiator with various lengths of the corrugated surface. For this

measurement, the total antenna length, the corrugated surface and the

ground plane, was fixed to the 20.5 wavelengths at 9 Ghz, and the length

of the corrugated surface was then varied by covering the surface with

a conducting aluminum tape. As shown in Figure 22a, the theory and

the experiment are in excellent agreement except for the side lobe

levels. This excellent agreement may imply that the well defined sur—

face wave propagates on the corrugated surface with a high launching

efficiency at the aperture and that the longer the length of the ground

plane is, the smaller the current is induced at the end resulting the

negligible effect to the radiation pattern.

In chapter 2, it was found that when the dimension of the corrugated

waveguide was adjusted to the width, 3, of 2 A0 and the height, b, of

0.5 A the phase velocity of the fundamental wave in the guide was about
0

equal to that on the open corrugated surface, implying the possibility

of the smooth field transition at the horn aperture with the supression

of feed radiation. In order to check the possibility, the height of the

transition horn was reduced to 0.5 10 at 9 Ghz, and the E-plane and

H—plane radiation patterns were taken over the frequency range of 7 Ghz

to 9.75 Ghz. Figures 5.23s and 5:23b show the measured radiation pat-

terns with the theoretically predicted patterns in dotted lines. It is

noted in the figures that the experimental radiation patterns are in

excellent agreement with the theory in the maximum beam direction and

the beam width. The degree of the agreement in the radiation pattern

for the corrugated antenna with the modified horn is much better than
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those patterns shown in Figure 5.18. This may indicate that if the

dimensions of the corrugated waveguide are adjusted to the proper values

using the dispersion relation in equation (2.51) so that the phase

velocity in the guide is close to that on the open corrugated surface,

the surface wave launching efficiency at the horn aperture may improve,

resulting less feed radiation which is highly desirable for the practical

end-fire antenna.
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Different Corrugated Surface Length at 9 Ghz.
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Figure 5.23b H—Plane Radiation Patterns of a Single Radiator

with Modified Horn Feed

(7-9.75 Ghz.: measured, . . . . . calculated)





164

5.4 Input Impedance of a Single Radiator

The input impedance of the single corrugated antenna was

measured using the conventional null shift method. The measured input

impedance is referred to the input of the 2 inches long-uniform standard

rectangular waveguide connected to the corrugated rectangular waveguide

in tandem. Figure 2.24 shows the input standing wave ratio for two

identical corrugated antennas at the input of the antennas over the

frequency range of 7 Ghz to 11 Ghz. Both antennas have almost the same

input impedance. Figure 2.25 shows the plot of the input impedance on

a Smith chart for antenna No. 1. The input impedance of the corrugated

antenna is very well matched to the waveguide over the wide frequency

  

range.

106‘ ‘ .

l
K Ant. NO. 2

1.5-4 I/

+

.g 1.1“

3.
a) 1.3 -4

./.\":l‘\ II’

> 'I / ,l ‘\ . ," Ant. NO. 1

1.2 _p 'N“~ 1’ \‘ I /

'4 “" II ”I o

1.1 -‘ . I”,

J

1'0“” I I I I I ‘ T r ‘ 1
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Freq. in Ghz

Figure 5.24 Input Standing Wave Ratio of Corrugated

Antenna.
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Figure 5.25 Input Impedance of Corrugated Antenna
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5.5 Composit Radiator
 

It was found in section 5.3 that the maximum beam direction of

a surface wave antenna is always tilted upward whenever the guiding

surface is placed on a finite ground plane. In many applications of

the end-fire antennas, the beam tilt is not desirable especially for

the line of sight communication.

In order to correct the beam tilt, two identical corrugated

antennas were arrayed on a wedge shape ground plane as shown in Figure

5.1. This geometry of the wedge shape ground plane simulates a part

of wing or fuselage of an aircraft, and it also offers an array confi—

guration suitable for the beam scanning. Figure 5.26 explains the roll

of the pattern multiplication of the two identical beam radiating from

the two antennas placed on the opposite side of the groundplane.

Figure 5.26 Geometry of Composite Radiator
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In the Figure 5.26, it is noted that if the receiving or the

transmitting power level of one of the two antennas is controlled rela-

tive to that of the other antenna, the resultant beam from the antenna

array will scan in the plane perpendicular to the antenna surface. The

range of the scan angle depends on the wedge angle and the beam tilt

angle. It is limited by the half power beam width of the individual

radiator. The maximum wedge angle for keeping the maximum beam inten—

sity along the axial direction with low side lobe level can be shown

to be the angle twice of the half power beam width. The maximum scan

angle is simply related by

Scan angle =-% (Wedge angle — Half power beam width)

For the scanning of the beam, each antenna on the wedge shape

ground plane was connected to a waveguide tee through the calibrated

adjustable waveguide attenuators for both channels. The E-plane

radiation patterns for the antenna array were measured with Antenna

No. 1 set to 0 db and Antenna No. 2 set at the different attenuation

levels. Figure 5.27 shows the radiation patterns for the antenna array

of 20° wedge angle, and Figure 5.28 shows those for the antenna array

of 30° wedge angle. Figure 5.29 is the H—plane radiation patterns of

the antenna array of wedge angle of 20° with equal power level on ’

both of the channels. Figure 5.30 shows the photograph of the antenna

array in the anechoic chamber for the radiation pattern measurement.

Figure 5.31 is the surface field measurement system for a single corru—

gated antenna.
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Figure 5.27a E-Plane Radiation Patterns of Composite Radiator

with Wedge Angle 20° for Beam Scanning at 9 Ghz.
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Figure 5.27d E-Plane Radiation Patterns of Composite Radiator

with Wedge Angle 20° for Beam Scanning at 10 Ghz.
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Figure 5.28a E-Plane Radiation Patterns of Composite Radiator

with Wedge Angle 30° for Beam Scanning at 7 Ghz.
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Figure 5.28c E-Plane Radiation Patterns of Composite Radiator

with Wedge Angle 30° for Beam Scanning at 9 Ghz.
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Figure 5.29 H-Plane Radiation Patterns of Composite Radiator with

Wedge Angle 20° and Equal Power Level on Both Radiators
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Figure 5.31 Photograph of Surface—Field

Measurement System.
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5.6 Conclusion

An approximate theoretical analysis on the propagation and

radiation of surface waves guided on a flat corrugated surface mounted

on a finite ground plane has developed, and an extensive experimental

investigation has been performed to conform the validity of the approxi—

mate analysis and to develop scannable flush mounted end-fire antenna.

In the analysis, it was found that a surface wave can be effi-

ciently launched on a finite corrugated surface by controlling the

width of the corrugated rectangular waveguide with keeping the waveguide.

to a minimum height, and that a slow surface wave can be guided on a

finite corrugated surface extended from the bottom wall of a corrugated

rectangular waveguide. ‘

The experimental investigation confirmed that a corrugated sur-

face with finite dimensions does support slow surface waves, and the

waves were found to propagate axially confining most of the energy along

the center line of the guiding surface. For the effective surface wave

launcher, a bottom wall corrugated rectangular waveguide was found to

be very efficient and a simple device.

It was found that the inevitable beam tilt due to the finite ground

plane can be utilized in the beam scanning by arraying two identical sur-

face wave antennas on a wedge shaped ground plane and by controlling the

power level of each antenna. The maximum scan angle are determined by

the beam tilt angle and the wedge angle.

From the theoretical analysis and the experimental results a

conceptual flush mounted end-fire antenna may have the geometry shown

in Figure 5.32.
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Figure 5.32 A Flush Mounted Surface Wave Antenna
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APPENDIX A

AN EXAMPLE ON THE APERTURE INTEGRATION METHOD

The validity of the aperture integration method applied to

a surface wave radiation will be briefly proved by considering a

simple example. Consider an infinitely long reactive surface with

unit width Supporting a TM surface wave,

H = H e-OLy -sz
x O

E = in (A.1)
y _ we x

E = 32H

2 we x

With the coordinates shown in Figure A.1,

a=g>

A + A A A

(n x E)x r = -Ez(6 sin ¢ + ¢ cos ¢)

A + A A

n x H = HX(—r cos 6 + 6 sin 6)

A +

r ° r' = x' sin 8 cos ¢ + 2' cos 8

The E component of the radiation field can be obtained as

 

e-jkr kH

E6 = - 4nr we (a sin ¢ + jk sin 8)

1 °° _ §_ .

. I I eij' sin()cos ¢ e jk< k cose)z dx'dz' (A.2)

0 —00
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The E plane pattern function is then determined as

°° . _§__ 0

E (¢= £9 = 'EEQ (a + jk si 8) e-Jk( k COS 9)2 dz'
6 2 me n

REG 8

éE—(on+jk sin6)6(E-cos 6)

= o
(A-3)

since 'E' is always greater than unity for the slow surface wave.

This proves that a uniform surface wave on an infinite plane cannot

radiate.

Consider next a semi—infinite reactive surface supporting a TM

 

surface wave defined as (A.1) and terminated at z=0 without reflection

at this end. First, if the aperture integration method is applied to

the semi-infinite guiding surface, the E plane radiation pattern

function Ee (¢=-%) can be expressed as

 

l

0 8
fl kH0 -jk(-E - cos 8) z'

__ =___ . v
Eel(¢- 2) we (a + 3k sin 9) I e dz

_ kH0 j(a + jk sin e)

- we 8 - k cos (A.4)

where k is assumed slightly complex in carrying out the lower limit

integration. If there is no reflection of the surface wave at the end,

the fields on the terminal plane, 2 = 0 plane, may be expressed as

= '0‘7
Hx Hoe

E = :—B H e-OLy (A.5)
y we 0

E - :19 H ”O”
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With the coordinate shown in Figure A.1c,

A

n=z

(h x E)x f = (8 sin ¢ - $ cost cos ¢) Ey (A.6)

a x H = (? sin 6 sin ¢ + 8 cos 6 sin ¢ + $ cos ¢) Hx

the far-field expression for E8 component may be obtained by integrating

the above fields over the terminal plane as

 

 

e-jkr

E6 = - 4flr EE_ j(B sin ¢ + k cos 9 sin ¢)

(A.7)

_ _ V I
. J e (a jk sin 8 sin ¢)y ejkx sin 6 cos ¢ dx'dy'

s!

The E plane pattern function Ee (¢= %) for the unit width of the

2

aperture is given by

M

RR __ _. 1

E6 (¢=-%) = 5359) j(8 + k cos 6) J e (a 3k sin 6)y dy'

2 o

= kg j(8+k cos 6)jgfjk sin 6) (A 8)

we a2+ k2 sin2 9

In (A.8) the wave number must satisfy the relation of a2 — B - k .

With this relation, (A.8) can be rewritten as

RR
_‘1 _ 0 j(a+jk sin 62

E6 (¢— 2) - ( we) B-k cos 8 (A.9)

2

Note that (A.4) and (A.9) are identical pattern functions. This

verifies that as long as the aperture integration is carried out properly,

a correct result is obtained irrespective of how the aperture is chosen.
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This also proves the validity of the aperture integration method by

 
Kirchhoff's theory to the surface wave structures.
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Figure A.1 Coordinates for Surface Wave Structure
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APPENDIX B

A TAPERED ANECHOIC CHAMBER

For the design of a tapered anechoic chamber, a simple analysis

was carried out based on the ground reflection approach (72). The

surface of the chamber walls covered with the microwave absorbers was

assumed to be electrically smooth in keeping with the Rayleigh creterion,

so that it represents a finitely conducting mirror for the electro-

magnetic wave. A measure of roughness of a surface is given by the

Rayleigh creterion (73) as

R = 4N0 sin 9 g (B 1)

A0

where R = a measure of roughness

O = a standard deviation of the surface irregularities relative.

to the mean surface height.

¢ = angle of incidence measured from the grazing angle

When R < 0.1, there is a well defined specular reflection, and the

surface is considered to be electrically smooth. For R > 10, the surface

is rough and there is no well defined specular reflection.

In the tapered chamber, it is not possible to eliminate all the

reflected wave from the walls, even though the reflectivity of the walls

covered with the microwave absorbers is very low. The direct path wave

and the reflected wave from the walls are adjusted to add in phase at
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the test area by adjusting the taper angle and the range distance,

so that they create a slowly varying spatial interference pattern in

the test area. However, there are two important effects (74) to limit,

the ultimate performance as an ideal antenna test range; One is the

deviation from the l/R dependence on the field amplitude. This deviation

depends on the positions of the transmitting antenna at the throat of

the chamber. The other is an apparent decrease or increase of signal

strength as compared to the free space transmission.

With the consideration of these field limitations and the space

limitation, the dimensions of the chamber were chosen to be the apex

 

cone angle of 36°, the test region of 12x12x12 feet and the tapered

section of 15 feet long as shown in Figure B.l.a. The walls of the

chamber were covered with the microwave absorbers (ECCOSORB HPY-9).

The rear wall was shaped to slightly angled wedge to reduce the possible

back scattering from the wall (75).

To calculate the amplitude distribution in the test zone, only

the first bounce reflection is considered on the basis of ray tracing

technique. The aSsumption of only one first bounce reflection may be

justified by the face that the higher order bounce have more nearer

normal incidence reflection and may be attenuated significantly. From

the geometry of the chamber shown in Figure B.l.b for the effect from

the side walls, the direct path length from the transmitting antenna S

to a observation point P, Rd’ the reflected total path length from the

side wall, er, and the distance from the source S to the center of the

horizontal cut through the observation point P, er, are given by
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2 1/2

Rd r (R0 + x )

- 2 2 _ 1/2
er - {Rd + 4ht + 4ht (R0 sin a x cos 6)} (B 2)

2 2 1/2

er {Rd + 4ht + 4ht (RO sin a x cos a)}

For the reflections from the ceiling wall and the floor surface, the

reflected path lengths R and R are given by

1 2

_ 2 2 1/2
R1 — [R0 + 4ht + 4Roht sin a]

~ (B.3)

_‘ 2 2 1/2
R2 - [Rd + 4ht + 411011t sin a]

 

Assuming that the field in the chamber is close to plane wave, the

field strength at the point P in the horizontal plane may be expressed‘

in terms of the direct path field amplitude Ed as

—ij R -jk.Rr R —JkR

= d _9_. —1 .2. r2
Ep Ed[e + P1(R e + Rr e )

r1 2

(3.4)

R -ij
d 2

+ 2F2 R2 e ]

where F1 is the reflection coefficient from the side walls of the chamber,

and F2 the reflection coefficient from the upper and bottom walls. The

reflection coefficients from each side wall are assumed to be equal since

the angles of incidence on the both walls are almost similar for both.

reflections. The reflection coefficients T1 and F2 are complex quantities,

and either of the reflection coefficients corresponds to the horizontal

or vertical polarization depending on the polarization of the transmitted
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wave. The reflection coefficients for oblique incidence of both polari-

zations are given as follows:

For horizontal polarization

sin ¢ - /(e' — je") - cos2 ¢
r r

Th = n 2 (3.5)

sin ¢ + /(e; — jar) — cos ¢

 

For vertical polarization

 

I n I n 2

(e - je ) sin ¢ — ¢(e — je ) — cos c

r = f f f i 2 (3.6)

v (8r - jar) sin ¢ + (61 — jar) — cos ¢

where E' = ——- E" = £1-.
1' 50 r (.08

The value of the true dielectric constant of the microwave

absorber used in the chamber is not available in the literature. From

the information on the absorber material properties and the measured

values (76—78), the approximate reflection coefficients F1 and F2 were

calculated with a; = 1.1 and a; = 0.01 to 2.0, and they are plotted in

Figure B.2 and Figure B.3. Figure B.2 shows that the pseudo Brewster

angle is about 45° with the half cone angle of 18°. With this tapered

angle, the angle of incidence measured from the plane of absorber wall

is about 22°. With this angle and the representative dielectric constant

for the absorber Er = 1.1 - j 0.12, the relative field distribution with

respect to the direct path wave strength was calculated in the test area

of chamber. I Figure 8.4 shows the predicted relative field distributions

in horizontal cut as a function of the distance from the chamber axis.

Figure 8.5 shows the field variation along the chamber axis which is an

interference pattern as predicted. Reviewing these field variations,
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i0.25 db along the excursion of 14 feet from the center of the test area

and i0.05 db variation along the chamber axis, the designed chamber with

the taper angle of 36° and the test range of 24 feet may be adequate for

the evaluation of antennas in the operating frequency above 1000 Mhz.
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(a) 3-d1mensional view

 

 

 
 

 

 

 
(c) Side View

Figure 8.1 Tapered Anechoic Chamber
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(b) Top view

 \

Top “ax

  

 

(c) Side view

 

Figure B.l Tapered Anechoic Chamber
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