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ABSTRACT

SURFACES OF EUCLIDEAN SPACES WITH PLANAR OR HELICAL
GEODESICS TROUGH A POINT

By

Young Ho Kim

Compact connected surfaces in 3-dimensional Euclidean space E3 with helical
geodesics through a point are characterized as standard spheres. If the ambient manifold is
a 4-dimensional Euclidean space E4, then compact connected surfaces with helical
geodesics through a point are characterized as standard spheres which lie in E3 or pointed
Blaschke surfaces which fully lie in E# . Such surfaces in 5-dimensional Euclidean space
ES3, are characterized as standard spheres lying in E3 or pointed Blaschke surfaces which lie
fully in E4 or ES. We also prove that compact connected surfaces in a Euclidean space Em
(m > 5) with helical planar geodesics through a point must lie in ES and these surfaces are
one of model spaces above.

A surface in E3 is locally a surface of revolution if and only if it has a point
through which every geodesic is a normal section. So a complete connected surface in E3
is a surface of revolution if and only if there is a point of the surface through which every
geodesc is a normal section.

If surfaces in Euclidean space have planar geodesics through a point, then we
show that those geodesics are normal sections and the Frenet curvatures of them are
independent of the choice of the direction. Furthermore, a neighborhood of the point is
completely determined by the Frenet curvature of a fixed geodesic.

Finally, we define a normal section of a pseudo-Riemannian submanifold in
pseudo-Euclidean space in a way similar to that of the Riemannian case. Surafces in
pseudo-Euclidean space with planar normal sections are classified as Veronese surfaces or

flat surfaces if the surfaces do not lie in a 3-dimensional affine space.
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INTRODUCTION

The study of surfaces in a Euclidean space is fundamental to the understanding of
geometric models and provides good ideas from which to develop certain theories. So,
many geometers tried to study surfaces in Euclidean space from many different points of
view. The theory of pseudo-Riemannian manifolds enables us to study some surfaces in a
pseudo-Euclidean space.

In this sense, surfaces in a Euclidean space or a pseudo-Euclidean space with some
properties concerning geodesics and normal sections need to be examined and classified.

Helical submanifolds were first introduced in [ Be.A ]. Helical submanifolds in a
Euclidean space or a unit sphere have been studied by K. Sakamoto, [ S-1],[ S-51, [ S-6
], since 1982. He proved that such submanifolds are either Blaschke manifolds or
Euclidean planes.

On the other hand, in 1981, B.-Y. Chen and P. Verheyen, [ Ch.B-V-1 ], [ Ch.B-
V-2 1], introduced the notion of submanifolds with geodesic normal sections and classified
surfaces with geodesic normal sections in a Euclidean space. They also proved that helical
submanifolds have geodesic normal sections. Later, P. Verheyen, [ V ], proved that a
submanifold M in a Euclidean space E™ of dimension m with geodesic normal sections are
helical. So the concept of submanifolds with geodesic normal sections coincides with the
concept of helical submanifold if the ambient space is a Euclidean space.

In [ Ho.S ], S. L. Hong introduced the notion of planar geodesic immersions.
Such immersions were later classified by J. A. Little, [ L], and K. Sakamoto, [ S-1 ],
independently, who proved that M™ is a compact symmetric space of rank one and the

second fundamental form is parallel. The Veronese surface can be considered as one of the
1






best examples determined by the planar geodesic immersion if the ambient space is a 5-
dimensional Euclidean space ES.

Using the theory of pseudo-Riemannian structures, C. Blomstrom, [ B-2 ], defined
planar geodesic immersions of pseudo-Riemannian submanifolds into a pseudo-
Riemannian manifold and she classified complete parallel surfaces with planar geodesics
in a pseudo-Euclidean space Er: as pseudo-Riemannian spheres, flat quadric surfaces or
Veronese surfaces.

However, there has been no research on a submanifold M in a Euclidean space E™
with the property that for a fixed point p in M every geodesic passing through p is a helix
of the same curvatures or every geodesic through p is planar or a normal section at the point
p- From this point of view, we are going to study surfaces in a Euclidean space which
have such properties and to chracterize such surfaces. Furthermore, we are going to
classify surfaces of a pseudo-Euclidean space with planar normal sections.

In Chapter 0, we introduce some fundamental definitions and concepts which are
the necessary background for the theory throughout this thesis.

In Chapter 1, we study compact connected surfaces in a Euclidean space with
helical geodesics through a point . If the ambient space is a 3-dimensional Euclidean space
E3, then such surfaces are characterized as standard spheres. If the ambient manifold is a
4-dimensional Euclidean space E4, then we obtain that geodesics through the point must be
of rank 2, i.e., they are planar curves, and surfaces are characterized as standard spheres
which lie in E3 or pointed Blaschke surfaces which fully lie in E4. If the ambient manifold
is a 5-dimensional Euclidean space E5, then geodesics of the given surface through the
point may be of rank 4. In this case, using some fundamental equations obtained from the
helices through the point, we set up a system of ordinary differential equations. By solving
this system of differential equations, we have examples of pointed Blaschke surfaces

which are diffeomorphic to a real projective space and lies fully in ES. So we can



characterize such surfaces as standard spheres which lie in E3 or pointed Blaschke surfaces
which lie fully in E4 or ES. By means of this characterization, we have a new
characterization of the Veronese surface, namely, a Veronese surface is characterized as a
compact connected surface with constant Gaussian curvature and a nonumbilical point
through which every geodesic is a helix .

In Chapter 2, we study a surface M in a three-dimensional Euclidean space E3 with
geodesic normal sections at a point p. By adopting geodesic polar coordinates about the
base point p, geodesics are proved to depend only on the arc length and thus M is
characterized as locally a surface of revolution around the point p. So, if M is complete
connected, then M is a surface of revolution if and only if there is a point p through which
every geodesic is a normal section.

In Chapter 3, we study a surface M in a Euclidean space E™ with planar geodesics
through a point p. We prove that planar geodesics through a point p are normal sections of
M at p. We also prove that geodesics through p only depends on the arc length and thus
Frenet curvatures are independent of the choice of the direction. So, we can precisely
determine how the surface looks like in a neighborhood by means of the Frenet curvature
of a fixed geodesic through p. We also observe that a surface in a Euclidean space EM with
planar geodesic through p is possible to lie fully in a considerably higher dimensional
Euclidean space E? < EM if p is an isolated flat point .

In Chapter 4, we define a normal section of a pseudo-Riemannian submanifold in
a pseudo-Euclidean space in a way similar to that of the Riemannian case. We also define
pseudo-isotropy which is a similar notion to isotropy in a Riemannian manifold and obtain
that if a surface M in a pseudo-Euclidean space E': with planar normal sections is not
contained in a 3-dimensional affine space, then all normal sections are geodesics and hence

M has planar geodesics. Using the classification theorem of C. Blomstrom, [ B-2 ], we can
classify surfaces of index r in a pseudo-Euclidean space E': with planar normal sections as
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flat surfaces which fully lie in E?_',lk (k = 2, 3) or Veronese surfaces in E5r(3_r) or

5

ES e+1)21) if the surfaces are not contained in a 3-dimensional affine space.



CHAPTER 0
PRELIMINARIES

Let M be a smooth manifold and let C™ (M) be the set of all smooth functions
defined on M. Then C~(M) becomes a R-module, where R is the real number field.

Definition. A _tangent vector to M at a point p is a function Xp : C”M) - R,
whose value atf € C°°(M) is denoted by Xj(f), such that for allf, ge C°°(M) and

re R,
) Xp(f + ) = Xp() + Xp(e),
(if) Xp(t) =1 Xp(H)
and
(i) Xp(fg) = Xp(®) () + £(p) Xp(e)-

We usually regard Xp(f) as the directional derivative of f in the direction X at p.

The set of all tangent vectors to M at p is called the_tangent space to M at p, which is
denoted by Tp(M). The tangent space Tp(M) defines a vector space of dimension n over R.
A (smooth) vector field on M is a c” mapping which assigns to each point p of M a
tangent vector to M at p. The set of all tangent vectors on a manifold M of dimension n is
called the tangent bundle, denoted by TM, which forms a fibre bundle over M with Tp(M)

as the fibre over a point p in M.
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A manifold M on which there is a symmetric tensor field g of type (0,2) which is
positive definite and bilinear is called a Riemannian manifold and g the Riemannian metric
or the first fundamental form, If there is a nondegenerate bilinear tensor g of type (0,2)
with the property that the dimension of the negative definite subbundle of TM with respect
to g is constant on M, then M is called a pseudo-Riemannian or a semi-Riemannian
manifold and g the pseudo-Riemannian metric. In this case, the dimension of the negative
definite subbundle is called the index of the manifold M. If M is a pseudo-Riemannian
manifold, we will use the notation M? as M that is of dimension n and has indexr. A
pseudo-Riemannian manifold of index one is called Lorentzian. The Minkowski space-
time E‘11 is the best known example of a Lorentzian manifold and is largely dealt with in the

special relativity. If the index is zero, then Mg =M"is nothing but a Riemannian

manifold.

The metric tensor on a manifold defines the lengths of vector fields and angles
between them. If the metric is indefinite, then a nonzero vector field may have zero or
negative length. We shall say that a nonzero vector field is spacelike if it has positive
length, timelike if it has negative length and lightlike or null if it has length zero. We regard
a zero vector as a space like vector.

We now define a connection on a manifold.

Definition. A connection V on a manifold M is a mapping of the product of the
set of vector fields into the set of vector fields denoted by V(X, Y) = VXY which has the

linearity and derivation properties : For all f,g € C”°(M) and all vector fields X, Y and Z,

@) Vix +gy 2= VxZ+EVyZ,

(ii) VX(fY +gY) =(XNY + fVX Y+XgZ+g VXZ,



VXY is called the covariant derivative of Y with respect to X for the connection V.

Then we can define the so-called torsion T :

TX,Y) = VX Y - VYX - X, Y],

where [X, Y] is the vector field defined by [X, Y]f = X(Yf) - Y(Xf) for all fe C”(M).

It is known that there is a unique connection V on a pseudo-Riemannian manifold

satisfying
(iii) T=0,
@iv) X<Y,Z>=<VXY,Z>+<Y,VXZ>

for all vector fields X, Y and Z , where <, > is the pseudo-Riemannian metric tensor.
From now on, <, > always means a Riemannian or a pseudo-Riemannian metric tensor
according to the context unless it is stated otherwise. The connection satisfying above (i) ~
(iv) is called the Levi-Civita connection.

The covariant derivative of a general tensor field S of type (r,s) is naturally defined
by linearity and derivation as follows : Since S can be regarded as a multilinear mapping of

TM x TM x - x TM, s copies of TM, into the space of contravariant tensors of

degree ,

.....

S
(VxS X 1 X9 = VoS Ko X - ZSX1,.., VX

for any Xj,..., Xs € TM. By setting



(VS X1,..., Xs) = (VS)(X, Xj,..., Xs)

we obtain a tensor field VS of type (r, s+1). We shall say that a tensor field S is parallel if
VS = 0. So the metric tensor field on a pseudo-Riemannian manifold is parallel with

respect to the Levi-Civita connection.

We now define a (regular) curve Y on a manifold M.

Definition. A curve is a smooth mapping 7y:1 — M, where I is an open

interval. In particular, if % # 0 for allte I, then vy is said to be regular. In the sequel, a
t

.. . d d
curve means a regular curve unless it is stated otherwise. Lets = J‘IITZH dt, where lld—z(il2

to

= <da¥, %%>‘ Then s is the arc length defined on the curve . If a curve is parametrized by

arc length, then it has the unit speed.

The existence of a Riemannian metric or pseudo-Riemannian metric on a manifold
provides an important tool in the study of manifolds from a geometric point of view,
allowing us to introduce on such spaces many concepts of Euclidean geometry such as
distances, angles between curves, areas, volumes and straight lines. Developing the idea
of a straight line in a Euclidean space, we define a geodesic ¥ in M as a curve Y
parametrized by arc length s such that 1y satisfies
h dx

ds

2.h i
d“x dx
—_— I‘ s e =0,
ds? % % it ds ds

where {xh} is a local coordinate system and V /oxi 9/ox) = ;; r ?i a/ax“, Y(s) =(xh(s)) .
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Thus, 7y is a geodesic if and only if VTT =0, where T = % In other words, a curve yis a

geodesic if and only if its velocity vector field is parallel along Y.

We now give the definition of the exponential mapping.

Definition. Let p € M and X be a unit vector in Tp(M). Let y(t) be the geodesic
emanating from p with initial velocity X with domain (a,b). Set expth = y(t) for

te (a, b). cxpp is called the exponential mapping at p.

exp b carries lines through the origin in Tp(M) to geodesics through p € M. Thus,
the distances in M near p are approximated by distances in T p(M). As a matter of fact,

cxpp gives a diffeomorphism from a neighborhood of the origin in Tp(M) onto a

neighborhood of p in M. For a curve 7y in E? parametrized by arc length s, the length
llY" (s)l measures how rapidly the curve pulls away from the tangent line at s in a
neighborhood of s. This measurement K(s) = IlY' (s)ll is called the curvature of yats. Ata
point where K(s)# 0, a unit vector N(s) in the direction ¥"' (s) is well-defined by the
equation Y' (s) = K(s) N(s). Moreover, ¥" (s) is normal to Y(s). Thus, N(s) is normal to

Y(s) and is called the principal normal vector. If ¥' (s) # 0, the number 7t (s) defined by

B'(s) = -t (s)N(s) is called the torsion of Y and B(s) = T(s) x N(s) the binormal vector at

Y(s). Then we have the following so-called Frenet formulas:

T(s) = K(s)N(s),

N'(s) = -K(s)T(s) +  1(s) B(s),

B'(s) = - T (S)N(s),
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where T(s) = ¥'(s). Generalizing this idea, we obtain the Frenet frame and Frenet

curvatures for a curve y: 1 — M. Let Y(s) = T,(s) be the unit tangent vector and put K, =
Il VTITIII. If K, is identically zero on I, then yis said to be of rank 1. If X, is not

identically zero, then one can define T2 by VTlTl = l(lT2 on Il ={sell X,(s)#0}.
Set K, = Il VTsz + XTIl If K, is identically zero on I, theny is said to be of rank
2. If K2 is not identically zero on 11’ then we define T3 by VTsz =-K,T, + K2T3.
Inductively, we can define Tgand X, =l VTIT s K4.1T4.4/ and if X = 0 identically on

Id_1 ={se I1K,,(s)#0}, then yis said to be of rank d. If yis of rank d, then we have a

matrix equation

THA,

VTI(TI , T Td) = (T1 ,T2 sees Ty

2 geeey

onl e where A isa d x d -matrix defined by

0%, 0 ...
x, 0x,0 0
(0.1) A X, 0
“Ka1
0 Ky, O

The matrix A, {T1 , T Td} and X,, ..., K, are called the Frenet formula, Frenet

P

frame and Frenet curvatures of y respectively.

We now define the curvature tensor R on a pseudo-Riemannian manifold. Itisa
fundamental theorem of advanced calculus that the second order partial derivatives are

independent of the order of differentiation:
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d of, _d of

3% 59 9 oxd

for all C? function f. For functions on manifolds the similar property X(Yf) = Y(Xf) does

not hold in general. As matter of fact [X,Y] measures the extent by which it fails:
X(YDH-YXH=[XY)f, feCWM),X,Ye TM.

Of course, in general Vx(Vy Z) = Vy (VxZ) is not true. To measure this failure of

interchangeability, we define R by

(02) R(X,Y)Z = VXVY Z - VYVX Z - V[X,Y]Z’ X, Y, Z € TM.

R is a tensor field of type (1, 3) which is called the_curvature tensor. For a surface, the
Gaussian curvature is intrisically defined. Generalizing the Gaussian curvature, we define

the sectional curvature.

Definition. Let Mrrl be a pseudo-Riemannian manifold (0 <r <n ). Suppose p €

M'r1 and let IT be a nondegenerate plane spanned by X and Y in Tp M’r‘. The sectional

curvature of the plane IT is given by

-2RX,Y)X,Y)
g(X,X)g(Y,Y) - g(X’Y)2 )

Kp(n)=

Kp(IT) is well-defined and independent of the choice of basis of IT. It is not hard to show

that the Gaussian curvature of a surface in E3 agrees with the sectional curvature. If
Kp(IT) is independent of the choice of the nondegenerate plane I, then we say that M'r1 has

constant curvature at p. Let K be a real number. We say that M': has constant curvature K
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if M‘rl has constant curvature K at every point of M’:. The famous F. Schur's Theorem

tells us that if a connected pseudo-Riemannian manifold M’: of dimension n 2 3 has

constant curvature at every point, then M'rl has constant curvature, that is, the sectional

curvature is independent of the choice of the point and nondegenerate plane . Complete

simply connected spaces of constant sectional curvature are called real space forms.

Manifolds M and N are said to be isometric if there is a diffeomorphism ¢ from M to N that
preserves metric tensors. If two surfaces have the same Gaussian curvature, then they are

locally isometric. In [Wo], any pseudo-Riemannian space form is shown to be isometric to
a pseudo-Euclidean space E':, a pseudo-Riemannian sphere S:(r) or a hyperbolic space

H:(r). These latter two are described as follows : Given 0< s < n with 2 <n and a number

r >0, we define

s n+l
(0.3) ' = {xe EMN-3x2 + Yx2 =12}
i=1 i=s+1

which is analogous to an ordinary sphere

n+l
'@ ={xe E™ Yx2=12}= S§).
i=1

S™(r) is called the pseudo-Riemannian sphere. We also define the so-called hyperbolic
s pseudo-kiemannian Sphere. hyperbolic

space
1 s+1 n+l
(0.4) H'@) = {xe B 1-Yx2 + Y xi2=-12}.
i=1 i=s+2

In the Riemannian case, we have two copies Hg of the hyperbolic spaces H".
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We denote a real space form by M(c). Then M(c) has its curvature tensor of the

form
RX,Y)Z=c(<Y,Z>X-<Z,X>Y)

for X, Y, Z e TM(c). So, the usual Euclidean space and the pseudo-Euclidean space have

curvature tensor R = (, and the ordinary sphere S?(1) has curvature tensor
RX,Y)Z=<Y,Z>X-<Z,X>Y
and H(1) has

RX, Y)Z=<Z,X>Y - <Y, Z> X.

All of the preceding geometric concepts depend only on the pseudo-Riemannian or
Riemannian metric and not on any external consideration. However, if we consider a
manifold which is immersed into another, then we can observe the image of the immersion
as viewed from the ambient manifold. Naturally we need some theoretical background for
the submanifold theory.

Let M and M be manifolds of dimension n and m respectively (n <m) and let ¢ : M
— M be a differential mapping such that its differential (d@)(p) = (¢ x)p, is injective at every
point p in M. Then we say that M is an immersed submanifold of M and ¢ is an
immersion from M to M . If the pullback (p*(g) of the metric tensor g of M is a metric on
M, then M is called a pseudo-Riemannian submanifold of M. The index of the pseudo-
Riemannian submanifold is at most that of the ambient manifold. By observing the

submanifold and the ambient manifold, we may obtain certain intrinsic properties of the



14

submanifold which come from that of the ambient manifold. Let M be a pseudo-

Riemnannian manifold of M endowed with Levi-Civita connection V. We may identify

the image of M with M itself and hence we no longer distinguish vector fields on M from

the images under the immersion. Let X, Y be in TM. Then we can write the covariant

derivative VXY as
(0.5) ﬁxY = Vo Y +0(X,Y),

where VX Y is a vector field tangent to M and o(X, Y) is a vector field normal to M.

Then V turns out to be the Levi-Civita connection on M and © is a symmetric bilinear form
on TM x TM which is called the second fundamental form of the submanifold. (0.5) is

referred to as the Gauss formula for Min M. Let € be a normal vector field on M and X a
vector field on M. We may then decompose ﬁxi as

(0.6) 6Xg =-AgX + DxG&,

where -AgX and Dx& are the tangential component and the normal component of ﬁxg
respectively. Ag is called the Weigarten map associated to § and forms a self-adjoint
tangent bundle endomorphism on TM satisfying < A§X, Y> =<0, Y), § > for X,

Y € TM. D is a metric connection in the normal bundle T*M of M in M with respect to the
induced metric on T*M. D is called the normal connection on M. The equation (0.6) is
called the Weingarten formula.

A submanifold M is said to be totally geodesic if every geodesic in M is a geodesic
inM. It is well-known that M is totally geodesic if and only if the second fundamental

form o vanishes identically.

For a normal section & on M, if Ag is everywhere proportional to the identity

transformation I, that is, A& = pl for some function p, then & is called an umbilical section
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on M, or M is said to be umbilical with respect to &. If the submanifold M is umbilical with
respect to every local normal section in M, then M is said to be totally umbilical.

Let X1,..., Xn be an orthonormal basis of the tangent space Tp(M) at the point

p € Mand let

1
H=- 2, & o(Xj, Xy,

where €, = sgn <Xj, X;> = x1. Then H is a normal vector which is called the mean

curvature vector at p. Let &y,..., Em-n be an orthonormal basis of the normal space T:M at

p € Mand let A* = Agx, then H can be written as

It is easily shown that H is independent of the choice of the orthonormal basis &, .

A submanifold M is called a minimal submanifold if the mean curvature vector
vanishes identically. We call the submanifold a pseudo-umbilical submanifold if the

Weingarten map Ay associated with the mean curvature vector H is proportional to the

identity transformation.
If we use the Gauss formula and compute the curvature tensor R of the ambient
manifold, then we obtain the Gauss equation

(0.7) <R(X, Y)Z, W> = <R(X, Y)Z, W> + <6(X, W), o(Y, Z)>

-<o(Y, W), o(X, Z)>
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and the Codazzi equation

(0.8) RX, V)2)* = (Vo) Y, 2) - (Vy0)(X, 2)

forall X, Y,Z, We TM, where 1 denotes the normal component relative to M and VXG

is the covariant derivative of ¢ on TM ® TM defined by

(0.9) (Vx0)(Y,Z) = Dxo(Y, Z) - (V5 Y, Z) - (Y, V5 Z)

for X, Y, Z € TM. If the ambient manifold has constant curvature c, then the Gauss and

Codazzi equations are given respectively by
(0.10) <R(X, Y)Z, W> = c(<X, W><Y, Z> - <Y, W><Z, X>)

+ <o(X, W), o(Y, Z)> -<o(Y, W), o(X, Z2)>
and

(0.11) (Vo) Y. 2)- (Vyo)(X,Z) =0.

Making use of the Weingarten formula, we obtain the Ricci equation : For X, Y
€ TMand &, n e ™

(0.12) <R(X, ), 1 > =<RNX, V)&, 1> - <[Ag, Al X, Y>,

where RN(X, Y)§ = Dx Dyt - DyDx& - Dix yj& and [Ag, Anl = AgAp - AgAg.
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From these equations we see that the curvature tensors of the submanifold and the

ambient maniofld are related in terms of the second fundamental form.

From time to time, a lot of geometric properties are explained with a standard
sphere SP, a real projective space RP™, a complex projective space CPR?, a quaternion
projective space HP™ and Cayley projective plane O P2 as examples. So we need some

basic concepts and definitions concerning these spaces.

Let U be a neighborhood of the origin in Tp(M) such that expplu is a
diffeomorphism. We define s : U — U by s(X) = -X and set sp =(expp|U)oSo(expp|U)’1.
This sp is called the geodesic symmetry with respect to p on expp(U).

The manifold M is called locally symmetric if for each p € M there exists U, a

neighborhood of the origin in TpM, such that the geodesic symmetry sp is an isometry.

Locally symmetric spaces are charaterized by VR =0, i.e., the curvature tensor is covariant

constant.

Definition. A connected Riemannian manifold M is a symmetric space if for each

pe M there exists an involutive isometry sp: M — M such that

Spo€XPp = €XPpos.

Clearly, if M is symmetric, then M is locally symmetric.

Definition. The rank of a symmetric space is defined as the maximal dimenison

of the flat submanifolds, i.e., the curvature tensor R = 0, which are totally geodesic in M.

S, RP", CPP, HP™ and O P2 are the only examples of compact rank one symmetric

spaces. These are abbreviated by CROSSes.
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Let M be complete and connected. The Hopf-Rinow Theorem tells us any geodesic
segment can be extended indefinitely. In general, a geodesic joining two points is not
unique, for example, on a standard sphere S2 in E3, geodesics are great circles and so the
number of geodesics joining the north pole and the south pole is infinite. However, for
two points which are sufficiently close, the geodesic segment joining these two points is
unique. So we need to define the following cut-map : Let X be an element of the unit
tangent space UpM = {X € TM I Il X Il = 1} and let y be a geodesic emanating from p with
initial velocity X, i.e., ¥(s) = expp(sX), where s is the arc length. Let Seg(p,q) be the set

of all geodesics from p to q which are parametrized by arc length. Then for s small

enough, Seg(p=Y(0),Y(s)) contains only one element 71[0,5]' The set
A= { S€ I{+I ’Yi[O,s] € Seg (p=Y(0),’Y(S)) }

is necessarily R, or an interval (0, 1] for some r € R4, where R; is the set of all positive
real numbers. If A = R, we say that there is no cut-point on y; if A = (0, r], we say that
Y(r) is the cut-point of p and r the cut-value of y. Let UM be the unit tangent bundle over
M. The cut-map ¢ : UM — R, U {eo} defined by ¢(X) =rif A = (0, r] and ¢(X) = oo if

A = R,. The cut-map is continuous. (cf. [ K- N], Vol. II, p. 98).

Definition. The cut-locus Cut(p) of a point p in M is the set of all cut-points of p,

i.e,
Cut(p) = { expp@X)X) | X € Up(M) .

Definition. A Riemannian manifold M is said to have spherical cut-locus at p if
for every X € Up(M) the cut-value ¢(X) is finite and does not depend on the choice of X.
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For two distinct points p and q in M we define the link from p to q to be

A, q) = { @ € Uy I 7€ Segp, @)

q

Y
/_/S—I(q)
P P q

E ,é A(p, Q)

A subset © of the unit sphere S of a Euclidean space V is said to be a great sphere

if there exists a subspace W of V such that ® =S N W. By definition, the dimension of

® isdim W - 1.

Definition. A compact Riemnannian manifold M is said to be a Blaschke
manifold at the point p in M if for every q in Cut(p) the link A(p, q) is a great sphere of
Uqg(M). The manifold M is said to be a Blaschke manifold if it is a Blaschke manifold at

every point in M.

The CROSSes are examples of Blaschke manifolds and the exotic spheres and exotic
quaternion projective planes are examples of pointed Blaschke manifolds (cf. Besse,
[ Be.A ], p. 143).

Blaschke conjectured that any Blaschke manifold is isometric to a CROSS. For
the case that the dimension of the manifold is two, L.W. Green, [ G ], proved that the
conjecture is true : If M is a two-dimensional Blaschke manifold, then M is isometric to a

standard sphere S2 or a real projective plane RP2. It is still remains open when the
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dimension of the manifold > 3.

According to Besse, [Be. A], p. 137, a pointed Balschke manifold is characterized

by the spherical cut-locus:

Theorem 0.1. For a Riemannian manifold M and a point p in M, M is a Blaschke

manifold at p if and only if Cut(p) is spherical.

Throughout this dissertaton, all the manifolds and geometric quantities are C*°

unless it is stated otherwise.






CHAPTER 1

SURFACES OF A EUCLIDEAN SPACE WITH HELICAL GEODESICS
THROUGH A POINT

§1. Some fundamental concepts.

K. Sakamoto, [ S-2 ], [ S-6 ], K. Tsukada, [ Ts ], and others studied helical
immersions into a Euclidean space or a unit sphere. Here, we recall the definition of the
helical immersion. Let M be a connected Riemannian manifold and x : M — M an
isometric immersion of M into a Riemannian manifold M. If the image xo?y of each
geodesic yin M has constant Frenet curvatures which are independent of the choice of the
geodesic v, then x is called a helical immersion. K. Sakamoto classified submanifolds of a
Euclidean space or a unit sphere according to the case of even order or odd order helical
immersion.

On the other hand, B.-Y. Chen and P. Verheyen, [ Ch.B-V-1 ], [ Ch.B-V-2],
introduced the notion of submanifolds with geodesic normal sections in a Euclidean space
and they completely classified surfaces with geodesic normal sections in a Euclidean space
EM (3 <m £ 6). P. Verheyen, [V], showed that submanifolds with geodesic normal
sections in a Euclidean space are equivalent to the helical immersion of the submanifold into
a Euclidean space. We now recall the definition of a normal section. Let M be an n-
dimensional submanifold of a Euclidean space E™ of dimension m. Let p be a point of M
and t be a nonzero vector tangent to M at p. Let E(p ; t) be the affine space generated by t

and normal space T;'M at p. Then the dimension of E(p ; t) is m-n+1. The intersection of

M and E(p ; t) gives rise to a curve on a neighborhood of p. Such a curve is called the

21
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normal section of M at p in the direction of t. We say that the submanifold M has geodesic
normal sections if every normal section is a geodesic.

If all the geodesics in a submanifold, regarded as curves in the ambient Euclidean
space, are helices of the same Frenet curvatures, then the submanifold is characterized as an
n-dimensional plane or a Blaschke manifold ([ S-6 ]). For surfaces in a Euclidean space
Em (3 < m < 6) with such property, they are planes, standard spheres or Veronese surfaces
which lie in ES ([ Ch.B-V-2]). For later use we introduce the Veronese surface in EJ : Let
(x, y, z) be the standard coordinate system of E3, 3-dimensional Euclidean space, and (uls
u2, u3, u4, ud) be the standard coordinate system of ES. We consider a mapping defined
by

u2 = LZX, u3 = ny’

A
R Vg Vg

ul =

4__1 (2_ 2 512,292
ut = (x2 -y%), w ==(x¢+y~-2z%).
3 y 3 y

This defines an isometric immersion of S2(¥3) into S4(1). Two points (x,y,z) and (-x, -y,
-z) of S2(V3) are mapped into the same point of S4(1), and this mapping defines an
imbedding of the real projective plane RP2 into S4(1). This real projective plane imbedded
in S4(1) is called the Veronese surface. It is a minimal surface of S4(1).

On the other hand, it is well-known that a helical immersion is A-isotropic. We now
recall the definition of isotropy. An isometric immersion x : M — EM is said to be A-
isotropic at a point p if A = Il 6(X, X) Il does not depend upon the choice of the unit vector
X tangent to M at p. If A is also independent of the choice of point, then x is said to be

constant isotropic. It is easily seen that M is A-isotropic at p if and only if

S AO’(X, Y) Z= XZS <X, Y>Z
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forevery X, Y,Z e Tp(M), where S denotes the cyclic sum with respect to X, Y, Z.
B. O'Neill, [ On ], proved that M is isotropic at p if and only if

(1.1) <o(X, X), o(X,Y)>=0

for any two orthonormal vectors X and Y in Tp(M).

Using O'Neill's idea, we can prove the following.

Lemma 1.1. Let T be a symmetric tensor of type (0, r) defined on EMm. Then

I 'T(ur) Il does not depend on the choice of the unit vector u if and only if
(1.2) <T(@N), T@r1, uH)>=0
for any vector ut which is perpendicular to u, where T(uf) = T(u, u, u,..., u) and T(u™],
uJ') = T(u, u,..., u, ut ).

Proof. Since all the unit vectors in EM form a unit sphere, a vector ut which is
perpendicular to a unit vector u is tangent to the unit sphere. So,

<T(uf), T(u")> = C(constant) on the unit sphere

if and only if

ut<T(r), T(u)> = 0.

Since u is a position vector on the unit sphere,
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<T@"), Tr1, uH)>=0 (Q.E.D))

Throughout this dissertation, t- always means a unit vector perpendicular to t for

some vector t unless it is stated otherwise.

Lemma 1.2. Let M be a submanifold in a Riemannian manifold 1\71 such that M

is isotropic at a point p in M. Then we have

(1.3) Il 6(eq, e1) 12 =< o(ey, €1), o(er, €2) > + 21l o(ey, o) 112

for every pair of orthonormal vectors ejand e tangent to M at p.
e1+er

5

Proof. Let e and e be orthonormal vectors tangent to M at p. Set X =
Y= E\/@ . Then X and Y are orthonormal. Since M is isotropic at p,
2

<oa(ey, e1), ole1, e1) > =< o(X, X), o(X, X) >.

Using (1.1), we obtain (1.3). (Q.E.D)

§2. Surfaces in EM with property (*1)

From now on, we assume that M is a complete connected surface in EM(m 2 3)

with Riemannain connection V. We also denote the normal connection by D and the

Weingarten map associated to a normal vector § by A;; and the second fundamental form by

o as usual.

We now define the property (*1).
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(*1) : There is a point p in M such that every geodesic through p, which is regarded

as a curve in EM, is a helix of the same constant Frenet curvatures.

Clearly, every helical immersion satisfies the property (*1).
Suppose M has the property (*1). Since every geodesic has the constant

curvatures, < o(t, t), o(t, t ) > does not depend on the choice of the unit vector t € TpM.

So, M is isotropic at p.

Lemma 1.3. Let M be a surface in a Euclidean space EM (m 2= 3). Suppose that M

satisfies the property (*1). Then M is isotropic at p.
We now prove

Theorem 1.4. Let M be a complete connected surface in E3. Then M satisfies the
property (*1) if and only if M is a standard sphere or a plane E2.

Proof. Suppose that M satisfies (*1). By Lemma 1.3 we see that M is isotropic at
p. In this case, p is an umbilical point. Choose a geodesic 7y through p. Suppose v is of
rank 1. Itis clear that M is a plane E2 in E3. Suppose that 7y is of rank 2. Since every
geodesic is a circle of the same radius and the same center, M is a standard sphere.
Suppose that ¥ is of rank 3. We assume that y is parametrized by the arc length s. Let Y(s)
=T. Then ¥"(s) = o(T, T) and Y"(s) = 'AO'(T,T)T + (§T0‘)(T, T) since 7y is a geodesic.
Since v is of rank 3, Y'(s) A Y'(s) AY"(s) #0,andso T A o(T, T) A AG(T,T)T #0
along 7. It follows that T A Ao(T,T)T # 0. Since M is isotropic at p, <o(t, t), o(t, t4)>
= 0, where t = T(0) and y (0) =p. Accordingly, Ao(t,t)t 1t e, Ac(t,t)t At=0. So,

this case cannot occur. The converse is clear. (Q.E.D.)
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We now assume that a surface M which lies in Em (m > 4) is compact and
connected.
Suppose that M satisfies the property (*;). By Lemma 1.3 M is isortropic at p.

The equation (1.3) implies that only two cases may occur :

Case 1) o(eq, e2) =0 for any orthonormal vectors e and ).
In this case, dim(Im G)p = 1 since M is compact, where (Im 6)p ={0(X, Y) I X, Y € TM}
is called the first normal space at the point p.

Case 2) o(ey, €2) # 0 for an orthonormal basis {e1, €2} of TpM. In this case, dim

(Im 0)p 2 2.

Lemma 1.5. Let M be a compact connected surface in E4 satisfying the property
(*1). If the dimension of the first normal space at p is one, then M is a standard sphere
lying in E3.

Proof. Suppose dim (Im 0)p = 1, i.e., 6(e1, €2) = O for any orthonormal basis
{e1, e2} of TpM. So, p is an umbilical point of M. Choose a geodesic Y through p such
that Y (0) =p and Y'(s) = T. Then we have

(1.4) Y"(s)=o(T, T),
(1.5) V") = -Ager )T + (VO(T, ),
(1.6) Y06 = (VA1) T - oT Ager.yD

2AG o)1, )T +D((V-pO)(T, T)).
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where (VpA), Y = Vy(Ap Y) - ApynY - AnVxY forX,Y e TMand 1 € T'M.

We are going to show that Y is of rank 2. It is enough to show that (Vtc)(t, t)=0,

where T(0) =t.
Suppose that (ﬁto)(t, t) # 0. We may put

o(T, T) =xi&,
where K is the first Frenet curvature of Y and € a unit normal vector field along Y. Asa
matter of fact § is in the direction of the mean curvature vector H at p. Since X is
constant,
< (Vo)T,T),o(T,T)>=0  along¥
and since o(t, rL) =0, we get

A(vt()')(t, t)[ = O.

On the other hand, k1 =< o(T, T), o(T,T) > =< AO‘(T T)T’ T >. Covariant

differentiation of this equation along the geodesic Y leads to

< (ﬁTA)G(T,T)T’ T>=0

because Y is a geodesic. Evaluate this at p and then we have
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< (?tA)ét, t>=0

since x1 # 0. Since this holds for any direction, linearization and the Codazzi equation

(0.11) give
(VA) =0.
So, we can obtain the following :
Y'0) =t,
7"(0) = o(t, v,
T"(0) = -Agq, ot + VO D,

YD) =-6(Ag, yh 1)+ D(VTO)(T, T)).

Since the curvatures of Y are constant, <7Y"(0),Y"(0)>=0 and <Y "(0),
Y4)(0) > =0. Since Y4)(0) is a normal vector to M, ¥"(0) A Y4(0) =0. Thus, vy is of

rank 3. Since M is compact, this is impossible. Therefore, we have

(V,0)(t, 1) = 0.

Since the curvatures are constant, (ﬁro)(T, T) = 0 along y. So, v is of rank 2.

Thus every geodesic through p is of rank 2. Moreover, every geodesic through p is a circle
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of radius - and centered at P- _l-g and so M is a standard sphere S%( L)_ (Q.E.D.)
K1 K1 LS|

Suppose dim (Im ©)p = 2. Then there is an orthonormal basis {e1, €2} of TpM

such that o(e, e2) #0.

Lemma 1.6. Let M be a surface in EM (m > 4) such that M is isotropic at p,

where dim (Im G)p = 2. Then Il 6(ey, €2) Il does not depend on the choice of the

orthonormal basis {ey, €2} of TpM.
Proof. Let (X, Y} be an orthonormal basis of TpM. Then there exists 0 (0 <8 <

27) such that

X=cosOe;-sinfey

Y =sinBe;+cosBey
for the orthormal basis {e1, €2} of TpM.
Since M is isotropic at p, 6(eq, €1) L (e, €2) and o(ep, €2) L o(ey, €2).
So, o(e1, €1) A (€2, €2) = 0 because dim (Im G)p = 2. Since Il o(eq, e1) Il =1l o(ep, ep) I,
o(e1, e1) =+ (e, €2). If we observe (1.3), then we obtain
(1.7) o(ey, €1) + o(e2, €2) =0,
that is, the mean curvature vector H vanishes at p. Therefore, we get

o(X, Y) =cos 20 6(eq, €2) + sin 20 G6(ey, €1).

If we compute the length of 6(X, Y) and make use of (1.3), then we see that
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loX, Y)ll=llo(e;,e)ll (Q.E.D.)

In this case, we are also going to prove that every geodesic through p is of rank 2.
Suppose (Vtc)(t, t)#0forte UpM.

Let {e1, €2} be an orthonormal basis for TpM. Consider a geodesic Y1 such that

Y1(0) =p, 11'(0) = 1+er . Since Y has its constant first Frenet curvature , we have

V2

<(Vrr,0)(T1, T1), o(T1, T1)> =0,
dY; .. .
where T1 = I Since the mean curvature vector is zero at p, we see that
(1.8) < (Ve 0)(e1, e1), 0(et, €1) > +3 < (Ve O)(e1, €2), 0le1, €2) >

+3< (Velc)(ez, e2), o(e1, €2) > + < (6620)(62, e2), o(ey, e2) >=0.

€1-€2

V2

Consider another geodesic Y, such that Y»(0) = p, Y5'(0) = . Then we get

< (Vrr,0)(T2, T2), 6(T2, T2) > = 0,
where Y,'(s) = T2. This implies
(1.9) - < (Ve 0)(e1, e1), O(et, e1) > +3 < (Vg 0)(e1, €2), 0(et, €2) >

-3 < (Vg,0)(e2, €2), O(e1, €2) > + < (V¢,0)(e2, €2), Olei, 2) > =0.
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Putting (1.8) and (1.9) together, we obtain

(1.10) 3 < (Ve,0)(e1, €2), 6e1, €2) > + < (V¢,0)(e2, €2), O(ey, e2) > =0.

On the other hand, since geodesics through p have the same constant curvatures,
<(Vo)(X, X, X), (Y_70)(X, X, X) > is independent of the choice of the unit vector X. By
Lemma 1.2, we have

< Vo)X, X, X), (Vo)(X, X, X5 >=0

for every unit vector X tangent to M at p. So, (Vo)(el, el, el)J_(ﬁo)(el' e1, €2).

Since (Vo)(eh e1, 1) L o(ey, e1), we get
(Vo)1 e1, €2) L o(e1, €2).
Therefore, (1.10) implies that
<(V,0)(e2, €2), O(e1, e2)> = 0.
Since (6620')(62, e2) A o(ey, ep) = 0, we obtain
(Ve,0)(e2, €2) = 0.

But, this contradicts (Vto)(t, t) # 0 for t e UpM. Thus, it follows that (§t0')(t, t) =0 for

every t € UpM, i.e., every geodesic through p is of rank 2. By using the fundamental
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theorem of curves, we can write the immersion x :M — E4 with respect to the geodesic

polar coordinate system (s, 0) as

(1.11) x(s, 8) = C(8) +i-(cos xs)f1(8) + ,—lc-(sin xs)f2(0),

where C(0) is a vector function depending upon 6, f1(0) and f2(0) are orthonormal
vectors in E4 at p depending on 6 and x is the Frenet curvature of each geodesic through p.
Without loss of generality we may assume the point p is the origin o of E4. Then

we have

(1.12) 0 = x(0, 8) = C(6) + ifl (0) for all 6.

Let e; and e be orthonormal vectors tangent to M at o which generate the geodesic
polar coordinates (s, 0).

Since x,.(3/9s)(0, 0) = f2(0) € ToM,
(1.13) f2(0) = cosO e + sin O e).
Since ( v X, (0/09s))(0, 6) = Qz)-(-(O 0) = o(f2(0), f2(08))
Xx(0/0s)™* ’ 9s2 \’ ’ ’

(1.14) o(f2(0), £2(0)) = - iﬁ(e),

where V is the Riemannian connection in E4,

Combining (1.12), (1.13) and (1.14), we obtain






33

x(s, 0) = é(sin ks)f2(0) + é (1 - cos xs) o(f2(0), £2(6))

sin s cos9e1+-'12-sinxssin6e2

A=

+ -%-(l - cos Ks)cos 20 o(e1, e1) + %(1 - cos Ks)sin 20 o(ey, €2)
K K

since o(ey, €1) + o(e, e2) =0.
o(ere1) _olenen)
llo(er,e)ll K

Since (e, e1) L o(ey, €2), choose e3 as and e4 as

o(e1e2) _ ole1.er)
llo(eq,e)ll X

If we use the coordinate system with respect to ej, €2, €3 and e4, then x(s, 0)

becomes

(1.15) x(s, 0) = (isin Ks cos 0, -llzsin Xs sin 0, 1 (1 - cos xs)cos 260,
K

1 (1 - cos ks)sin 260).
K

We now prove

Lemma 1.7. Let M be a compact connected surface in E4 . Suppose that M

satisfies (*1) and that dim (Im ©)p is maximal. Then M is a Blaschke surface at p and M is
diffeomorphic to a real projective space RP2 but not isometric to RP2 with the standard
metric.

Proof. In order to apply Theorem 0.1, it is enough to show that the cut-locus

Cut(p) of the point p is spherical.
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We may assume that p is the origin o of E4. Since each geodesic through o is a
circle of radius %, we have to show that two distinct geodesics through o do not intersect

on the open interval (0, %). Suppose x(s, 0) = x(sg, 0) for 0< s, 5o < l—t— and 0 <10 -6,

< 721 By using (1.15), we can easily derive a contradiction. Thus Cut(o) is spherical.

Cut(o) is indeed the set of all antipodal points of o with respect to each geodesic through o.
According to Bott-Samelson, [ Bo ], [ Sa ],(or 7.33 Theorem of Besse, [ Be.A ]),
we see that M is diffeomorphic to RP2, We now prove that M is not isometric to RP2. It is
sufficient to show that the Gaussian curvature K cannot be constant.
Suppose that the Gaussian curvature K is a constant > 0. Then we can easily get G

= % sin2(VK s), where G = < x_(9/98), x_(3/08) >. On the other hand, G can be directly

computed from (1.15) as

G=L2{ sin2xs + 4(1 - cos xs )2 } )
K

If we compare these two equations, we have a contradiction. So, even though the surface is

diffeomorphic to RP2, it is not a standard real projective space RP2.  (Q.E.D.)

Conversely, if a compact connected surface M is a standard sphere S2 or has the
form of (1.15), then it is easily proved that M satisfies the property (*1).
Thus by combining Lemma 1.5, Lemma 1.7 and the statement above we can

conclude the following

Theorem 1.8 (Classification). Let M be a compact connected surafce in E4. Then
M satisfies the property (*1) if and only if M is a standard sphere which lies in E3 or a

Blaschke surface at a point which lies in E4 of the form (1.15). In the second case M is
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diffeomorphic to RP2,

Remark. In the case of the Blaschke surface at the point o in the above theorem,

we see that the locus of the centers of geodesics through the point o is a circle with radius
whose points go around the circumference twice while points on a geodesic circle centered

at o on M go around the geodesic circle once. On the other hand, if we compute the torsion

of the cut-locus Cut(o) = x(%, 0) of the point o, then we see that the torsion is zero and

Cut(o) is indeed a circle.

Let us consider a compact connected surface M in ES. We shall characterize
surfaces in EJ satisfying the property (*1).
We now suppose that M satisfies the property (*1). As usual, we may assume the

base point p of (*1) as the origin o of ES. Then the immersion x : M — ES can be
expressed in terms of the geodesic polar coordinates (s, 0) as
(1.16) x(s, 8) =rj(cos Bs-1)f1(0) + rysin Bs fo(0) + ra(cos ds-1)f3(0)
+ 17 sin Js f4(0),
where r] and rp are nonnegative numbers, 3 and 8 are some positive constants and f;(6),
£2(0), £3(0) and f4(8) are orthonormal vectors in ToES depending on 6.
Without loss of generality, we may assume

(1.17) f1(0)=(1,0,0,0,0), f2(0)=(0, 1,0, 0, 0), f3(0) = (0,0, 1, 0, 0),

f4(0) = (0,0, 0, 1, 0).
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Let f5(0) be a unit vector in ToES such that {f1(8), f2(8), f3(6), f4(8), f5(0)}

forms an orthonormal basis for ToES. Automatically we may set

(1.18) fs(0)=(0,0,0,0, 1).

Differentiating (1.16) with respect to s for a fixed 6, we obtain

(1.19) x,(0/0s) = -r1P sin Ps £1(8) + 11 cos Bs f2(6) - 23 sin Js f3(6)
+ 120 cos s f4(0).
Set
(1.20) e(8) = x,(0/0s)(0, 8) =r1B f2(8) + 125 f4(6),
which implies
(1.21) (T1B)2 + (128)2 = 1.
Let

e1=e(0) = 1B f2(0) + rpdf4(0) = (0, r1B, 0, r23, 0)

and
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e2=c(z) =B f2() +128 fa(3).

Then ¢(0) can be expressed as

(1.22)

(1.23)

e(0) =cos B e; + sin 0 es.

2
For a fixed 0, x(s, 0) is a geodesic and thus < ST;, E;—’;> = (, which gives

B < f1'(8), £2(8) > + 15 & < £3'(8), f4(6) >
+ (1B < £1(8), £2(0) > + Tir2B < £2'(6), £3(6) > ) cos s
- (138 < £3'(8), f4(8) > + 11128 <f1'(8), £4(8) >) cos s
- 1112B < £1'(8), £3(8) > sin Bs + ryr28 < £1'(0), £3(0) > sin s
-E2(B - 8)(< 1(8), £4(8) > + < £2(6), £3(8) >) cos (B + 8)s
+T52B + 8)(< 1'6), f4(9) > - <£2/(8), £3(8) > ) cos (B -B)s
+52B - 8)(<11'), £3(0) > - < 12(8), 14(6) >) sin(B +B)s

+ 52 B +8)(< 1), £3(0) > + < £2/(8), £48) >) sin(B - &)s
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Lemma 1.9. B # 8 provided the geodesics through o are of rank 4.
Proof. Suppose B = 3. Let k], k2 and x3 be the first, second and third Frenet

curvatures of the geodesic x(s, 0) for a fixed 0 respectively. Then

2 2
2 =< 3200, 50.0>=cDpt.

Since <g—s)5(0, 0), %’SE(O, 0) > = 1, we obtain
(rf +r§)[_’)2 =1,

1

that is, B2 = 5— - Therefore, k| = B.
rl + 1'2

On the other hand, the curvatures xj's and the frequencies B and & have the

following relations :

|<f+1<§+1<§=[32+82=2[32,

KfK§= B2 82 = B4,

Since k1 = B, K% = B2. The first equation gives k2 = 0. This contradicts the fact

that x(s, 0) is of rank 4. Thus, we have B #0. (Q.E.D))

Lemma 1.10. For every 0, the geodesic x(s, 0) is periodic.

Proof. If x(s, 0) is of rank 2, then this is obvious. We now assume that x(s, 0)
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is of rank 4. Suppose x(s, 0) is not periodic. Then P and & are independent over the
rational numbers, that is, x(s, ) = S1(r;) x S1(rp), a torus denoted by T, where x(s, 0)
is the closure of x(s, 6) in ES. Certainly, T is contained in x(M). But T does not satisfies

the property (*1). Thus x(s, 8) must be periodic for every 6. (Q.E.D)

We now suppose thatr; # 0 and rp # 0, that is, every geodesic through o is of rank

4. Combining (1.23), Lemma 1.9 and Lemma 1.10, we obtain
(1.24) <f1'(8), f2(8) > = < £1'(0), f3(8) > = < £1'(0), £4(8) >
=< 17'(0), f3(0) > = <12'(9), £4(6) > = < 13'(0), £4(8) > =0

for all 0. So we have the following system of differential equations :

4
(1.25) fi'(8) = 1i(6)f5(0) , fs'(8) = - Y Ai(8) £i(6)
i=1

for i=1, 2, 3 and 4, in other words,

£1'(0) 0 0 0 0 2(8)\/f1(8)
£2'(0) 0 0 0 0 AH f2(0)
f3'0) [=| 0 0 0 0 A3 || f38) [,
£4'(0) 0 0 0 0 2A4(0) || f4(0)
f5'(9) -A1(8) -A2(8) -A3(8) -A4(0) O f5(0)

where the A{'s are periodic functions with period 2.
Differentiating (1.20) with respect to 6 and making use of (1.22) and (1.25), we

get
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(1.26) (r1B A2(B) + 128 A4(0))f5(0) = -sin 6 €1 + cos 6 ey,

from which, we obtain that ri3 A3(0) + r28 A4(6) = 1 and we may assume that r13 A2(6)
+ 120 A4(0) = 1. If we differentiate (1.26) twice and use (1.25), then we obtain

fs"(0) +f5(8) =0

Since f5(0) = (0, 0, 0, 0, 1) and f5(3) = -e1= (0, 1B, 0, 128, 0), we have

1.27) f5(8) = (0, -r1P sin 6, 0, -r2d sin 6, cos 0).

Since f;'(0) = 1j(0)f5(0) (1 <i<4),f1(0)=(1,0,0,0,0), f,0)=(, 1,0,0, 0), f3(0)
=(0,0, 1, 0, 0) and f4(0) = (0, 0, O, 1, 0), we get

0 0 0

(1.28) £1(0) = (1, -rlﬂojxl(t) sin t dt, 0, -rzad[xl(t) sin t dt, Oj'xl(t) cos t di),
0 0 0

(1.29) £2(0) = (0, 11 Bojkz(t) sintdt+1, 0, -r28d[7L2(t) sin t dt, ijz(t) cos t dt),
0 0 0

(1.30) £3(0) = (0, -rlﬁojx3(t) sintdt, 1, -r28(JX3(t) sin t dt, ij3(t) cos t di),

0 0 0
(1.31) £4(0) = (0, -11 BOJX4(t) sin t dt, 0, -r28JM(t) sintdt+1, 6[7\4(0 cos t dt).
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Now let us compute A1(0). Since < £1(0), f5(6) > = 0 for all 6, (1.27) and (1.28)

imply

0 0 0
(r1B)? sin 6 Jkl(t) sin tdt + (128)2sin 0 JM(O sin t dt + cos© 0_"7»1(0 costdt =0.

It follows that

0 0
sin 0 OIM(t) sin tdt + cos@ OJM(t) costdt =0

because (r1B)2 + (r2 8)2 = 1. By differentiating this, we obtain

9 9
A1(0) =-cos © 0‘[?»1(0 sint dt + sin OJll(t) cos t dt,

which gives A1'(0) = O for all 0, that is A1 is a constant_ In fact, A1(8) = O for all 6.

Thus, f1(0) is completely determined :
f1(0) = (1,0, 0, 0, 0).
Similarly, we can compute A2, A3 and A4 :
A2(0) =11, A3(0) =0, A4(0) =120 for all 6.

Consequently (1.28) ~(1.31) are precisely determined as follows :
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f1(0)=(1,0,0,0,0),

£2(8) = (0, 1 - (11B)%(1 - cos 6), 0, -rirz B3(1 - cos B), r1P sinbd),
£3(6) = 0, 0, 1, 0, 0),

£4(8) = (1, -r1r2 BS(1 - cos 6), 0, 1 - (r28)2(1 - cos B), 125 sin6).

These, together with (1.27), show that the immersion x the representation

(1.32) x(s, 8) = (r1 (cos Bs - 1), ry sin Bs - r1P (1 - cos 6)(r%B sin Bs + r% d sin Js),
. 2, . 2o .
r2 (cos 8s - 1), rp sin 8s - 128 (1 - cos 9)(r2[3 sin Bs + r28 sin Js),
2, . 2« . .
(r1B sin Bs + 13 sin 3s) sin 6).

2 2
In this case, each geodesic through o is periodic with period L = Ll L | for

some integers p and q. Using a similar argument to that in Lemma 1.7, we see that the
cut-locus, Cut(o), of the point o is spherical and thus the surface M is a Blaschke manifold

at o which is differemorphic to RP2. Thus, we have

Proposition 1.11. Let M be a compact connected surface in E3 with the
property (*1) relative to the origin o. If every geodesic through the point o is of rank 4,
then M is a Blaschke manifold at o which is diffeomorphic to RP2 and has the form (1.32).

We now suppose that x(s, 0) is of rank 2 for every 6. Then the immersion x can
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be written with respect to the geodesic polar coordinate (s, 6) as

(1.33) x(s, ) = i (cos ks - 1) f1(6) + -'lz-sin ks £2(6),

where X is the Frenet curvature of the planar geodesic x(s, 0) for every 6 and f1(6) and

f2(6) are orthonormal vectors in ES at the point 0. From (1.33) we obtain

(1.34) x4(9/0s)(0, 6) = f2(8) € ToM

and

~ 2
135) (T, 05 @300, 0) =23 00) = (£20), £2(8) = -x 19,

where V is the Riemannian connection in ES.

Let {e1, e} be an orthonormal basis of ToM such that
(1.36) fr(B) =cosOej+sinBey.

Suppose that dim (Im o), = 1, that is, the point o is an umbilical point of M . In

this case, every geodesic through o is a circle of radius Land centered at - 1 H. Thus, M is
K K

a standard sphere Sz(-l-) which lies in E3.
K

Suppose that dim (Im 0), = 2. In this case, exactly the same proof used to derive

(1.15) is applied and thus the immersion x is of the form

(1.37) x(s, 0) = L (sin xs cos 0, sin ks sin 0, (1 - cos xs) cos 20, (1 - cos ks) sin 26, 0)
K



for a suitable choice of Euclidean coordinates in ES. Clearly, M lies in E4.

We now assume that dim (Im G), = 3, that is, the dimension of the first normal

space at the point o is maximal. Then

o(el, €1) A o(eq, €2) A o(ez, €2) #0.

(138) o=StLe) o, obe) 8
K llesll

g(o(el, e1), o(ez, €2))
K2

where a =l o(ey, e2) Il and €5 = o(ey, €2) - o(ey, e1). Setb =

Il €5 Il. Then we have from Lemma 1.2 that

(1.39) b2 +

Using (1.34), (1.35), (1.38) and (1.39), we can write the immersion x in the form

1 . 1 . . 1 232 )
(1.40) x(s, ©) = (— sin xs cos 0, — sin ks sin 0, — (1 - cos xs) (k - — sin< 0),
K K K2 'S

2 (1 - cos ks) sin 20, -2-(1 - cos Ks) sin2 )
K2 K2

for a suitable choice of the coordinates with respect to ej, €2, €3, e4 and es described

above.
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Considering the cut-locus Cut(o) of the point o in both the cases that dim(Im 6), =

2and dim(Im o), = 3, we see that M is a Blaschke surface at o.

Conversely, if the immersion x has the form (1.32), (1.37) and (1.40) or x is a
standard imbedding of S2( L) into E3, then it is easily checked that the surface M satisfies
K

the property (*1).

Thus we can classify surfaces in E5 satisfying the property (*1).

Theorem 1.12.(Classification). Let M be a compact connected surface in ES.
Then M satisfies the property (*1) if and only if M is a standard sphere in E3 or a Blaschke
surface at a point of the form (1.37) which lies in E4 or a Blaschke surface at a point of the
form (1.40) which lies in E or a Blaschke surface at a point of the form (1.32) which lies
in E3. All such pointed Blaschke surfaces are diffeomorphic to RP2.

Remark. Let M be a compact connected surface in EM (m = 5). Since the
dimension of the first normal space at a point is at most 3, we can conclude that M satisfies
the property (*1) and the geodesics are planar if and only if M lies in ES and M is one of
four model spaces stated in Theorem 1.12 except the case of a Blaschke surface of the form

(1.32).
§3. A new characterization of the Veronese surface

The Veronese surface introduced at the beginning of this chapter certainly satisfies
the property (*1). So the following question naturally arises : What is the characterization
of the Veronese surface in terms of the property (*1) ? Since the Veronese surface is fully
immersed in E3, that is , the Veronese surface cannot lie in a hyperplane of E5, and since

every geodesic in the Veronese surface is planar, we must think of the immersion which
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has the form (1.40).

We are going to use the theory of submanifolds of finite type introduced and mainly
developed by B.-Y. Chen, [ Ch.B-3 ]. We recall some fundamental definitions and
properties.

Let M be a compact orientable Riemannian manifold with Riemannian connection V

and A the Laplacian operator of M acting on C™°(M), where

A= —Z(VEiVEi VY E)
i

for an orthonormal basis { E; } of TM. We define an inner product (,) on C™(M) by

(f,g)= [fg dV,
M

where dV is the volume element of M. Then A is a self-adjoint elliptic operator with

respect to (, ) and it has an infinite, discrete sequence of eigenvalues :
0=Ao <A <A2< .. <A< ... T 400,

Let Vi = {fe C(M) | Af =Aif } be the eigenspace of A with eigenvalue Ax. Then ¥ Vi
k=0

is dense in C>°(M) in the L2 - sense. Denote by ék Vi the completion of ¥ Vk. We have
k=0

C=>M) = & Vy.

For each function f € C*°(M), let f; be the projection of f onto the subspace V¢ (t =
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0, 1, 2,... ). Then we have the spectral decomposition

f=31f (in the L2 -sense).
t=0

Because Vo is 1-dimensional, for any non-constant function f € C™(M), there is a
positive integer p 2 1 such that fp # 0 and

f'f0= zfl,
2p

where fo € Vg is a constant. If there are infinitely many fi's which are nonzero, we put q =

+o0, Otherwise, there is an integer q, q 2 p, such that fg # 0 and

If we allow q to be +oo, we have the decomposition as above for any f € C™(M).
For an isometric immersion x : M — E™ of a compact Riemannian manifold M into

EM we put
X = (XI, X25eeey Xm),

where x4, is the A-th Euclidean coordinate function of M in EM, For each xa, we have the

spectral decomposition

qA
XA-xaA)= Y xa), A=1,2,..,m
t=pA

For each isometric immersion x : M — EM, we put



48

p=pKx)=inf, { py }, q=q(x) =sup, {q, }.

where A ranges among all A such that xa - (xA)o# 0. Itis easy to see that p is an integer
2 1 and q is either an integer 2 p or .. Moreover, p and q are independent of the choice of
the Euclidean coordinate system in EM. Thus p and q are well-defined. Consequently, for

each isometric immersion x : M — EM of a compact Riemannian manifold, we have a pair

[p, q] associated with M. We call the pair [p, q] the order of the submanifold M. If we

use the spectral decomposition of the coordinate functions of the immersion x : M — EM,

we have
q
(1.41) X=Xx0+ Y X
t=p
Definition. A compact submanifold M in E™ is said to be of finite type if q is

finite. Otherwise M is of infinite type.

Definition. A compact submanifold M is said to be of k-type (k =1, 2, 3,...) if

there are exactly k nonzero x;'s (t 2 1) in the decomposition (1.41).

We can restate Takahashi's Theorem in terms of 1-type :

Lemma 1.13 (Takahashi [ Tk ] and Chen [ Ch.B-3 ]). Let x : M — EM be an
isometric immersion of a compact Riemannian manifold M into E™. Then x is of 1-type if

and only if M is a minimal submanifold of a hypersphere of EM.

B.-Y. Chen gave the following characterization of submanifolds of finite type.
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Lemma 1.14 (Chen [ Ch.B-2 ]). Let x : M — EM be an isometric immersion of a
compact Riemannian manifold M into E™. Then

(1) M is of finite-type if and only if there is a non-trivial polynomial Q such that
QAYH =0.

(i) If M is of finite type, then there is a unique monic polynomial P of least degree such

that
P(A)H = 0.
(iii) If M is of finite type, then M is of k-type if and only if deg P = k.

Now, coming back to the problem. We shall compute the Gaussian curvature K
and find a condition which gives constant Gaussian curvature. Furthermore, we shall
characterize the Veronese surface by examining the surface with constant Gaussian
curvature and is of 1 -type.

From (1.40) we get

) 1 . 2a2 . ,
X«(9/0s)(s, ©) = (cos ks cos 0, cos Ks sin 0, — sin ks (k - =—sin2 0),
K K

a . . b . .
—sin Ks sin 20, —sin ks sin2 0).
" X

and
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a2
X4(0/00)(s, 6) = ( - 1 sin Xs sin 0, 1 sin s cos 0, 2—:-(1 - cos Ks) sin 20,
K K K

g-a—(l - COS KS) cos 20, L(1 - cos Xs)sin 20).
K2 K2

Then the induced first fundamental form gijis derived as
g11 = < X,4(0/0s), X,(3/0s) > =1, g12 = g21 = < X4(9/9s), x,(9/26) > =0,

2
222 = < X,(9/00), x,(9/00) > = Lzsin 2 s+ %—(1 - cos xs)2.
K

Thus the line element dp2 of M in ES has the form

2
dp2=ds2 + { Lsin2xs+ 41(1 - cos ks)2} d62.
K2 x4

So the Gaussian curvature K is given by

oG

1
1.41 K=-——,
(1.41) VG 0952

2
where G = gy = Lgin2 ks + 1a—(l - cOs Ks)2.
K2 x4

Suppose that the Gaussian curvature K is a constant. Then (1.41) is equivalent to

2
ING _(8_0)2 +4 KG2=0.
0s2 0s

2G

By a straightforward and long computation, we have
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+{ 12—:2(21?+§:72)(1-1—12()+%(% ; 1)(7-1—‘2() } cos Ks
+{ 4(4—':‘23 -1 (;1(? %:)(f—z- 1)- %%4-+ 13;:‘4 K } cos 2Ks
+ %(‘%2 -1D@3 - i—lz()cos 3ks + 21?(%2 - 1)2(11((—2- 1) cos 4xs = 0.

Since 1, cos Ks, cos 2Ks, cos 3xs and cos 4xs are linearly independent, we get

=0,
ORI e SR SPE S SRR S
© 4(%2 -1 (5%+%)(f—2- 1)-%+ 12:8"‘4K -0,
@ %(%2— - 1)@3- i—‘j)=0,
1 4a2

© L& 12&-p=o
K K
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From the last two equations, we get

4a2 2 _3'(2
-K—2-1—0 or K=x4 or K= T
2
if 222 120, then (b) implies
K2
K2
(1.42) K="
4a2

If K =2, then (d) implies — = 1. It follows that K = k2 and hence = 0 by (1.42).
X

.. - - 3x2
This is a contradiction. By a similar argument, K by

Thus we have

Proposition 1.15. Let M be a compact connected surface in ES satisfying (*])
whose immersion is given by (1.40). Then the Gaussian curvature K is constant if and

2
. . . K
only if x = 4a2. In this case, the Gaussian curvature K = T = a2,

In such a case, the induced metric (gj;) looks like

K

1 0
(1.43) (gij) =(O Lzsin 2 ks + iz(l - cos KS)2)
K

Using this induced metric, we can compute the Christoffel symbols l"Jh1 :

1 2 1 10 1 .
F11=O, F11=0, I‘22=-§-é—s-(logG)=-;smKs,
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2 1 2 19 1 .
l"22 =0, F12 = O, F12 =§ g(log G) =- ;sm Ks,

where G = L sin 2 ks + l(1 - cos Ks)2.
2 2

Lemma 1.16. Let M be a compact connected surface in E3 satisfying the
property (*1) whose immersion has the form (1.40). If the Gaussian curvature is constant,

then the Laplacian operator A is given by

(1.44) A=-(—+
s

where G = —1—-sin 2 ks + i(1 - cos ks)2.
K2 K2

It is well-known that

Ax = -2H,

where H is the mean curvature vector field of M. Using this equation and computing H

and AH by means of (1.44), we obtain the following

AH-%K2H=O.

According to Lemma 1.14, M is of 1-type and hence M is a minimal submanifold of a
hypersphere of ES.
Let us recall the Calabi's Theorem.
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Theorem 1.17 (E. Calabi [ C ]). Let X be a 2-sphere with a Riemannian metric
of constant Gaussian curvature K, and let x : £ — SP-1(r) c E? (n = 2m +1 2 3) be an
isometric minimal immersion of Z such that the image is not contained in any hyperplane

of EN, Then

i) The value of K is uniquely determined as,

2
" m@m+1)r2’

ii) The immersion x is uniquely determined up to a rigid motion of S™-1(r) and the n
components of the vector x are a suitably normalized basis for the spherical harmonics of

order m on X.

On the other hand, we can easily check that the Gaussian curvature K cannot be
1 G
VG 0952

constant if the immersion has the forms (1.32) or (1.37) by computing K =-

So if we apply Calabi's Theorem, we conclude

Theorem 1.18 (Characterization of a Veronese surface). Let M be a compact
connected surface in ES. Then M is a Veronese surface if and only if M has a constant
Gaussian curvatutre and there is a point p which is not umbilical such that every geodesic

through p is a helix of the same curvatures.

In this case, x is the first standard imbedding RP2 into E5 and the second standard

immersion of 2-sphere into S4.



CHAPTER 2

CHARACTERIZATION OF SURFACES OF REVOLUTION IN
A 3-DIMENSIONAL EUCLIDEAN SPACE

Let M be a surface in E3. We now define (*7).

(*2) : There is a point p in M such that every geodesic through p is a normal section

of M at p.

Suppose M has the property (*2). Let y be a geodesic parametrized by the arc
length s and let Y(0) = p. Then we have

Y() =T,
Y'(s) = o(T, T),
") = -Ager, TyT + (VpOXT, D).
Since 7y is a normal section at p in the direction t = T(0), Ac(t, t)t At=0, that is,
<ot t), o, th) > =0.

Since this is true for any orthonormal vectors t and t! tangent to M at p, M is isotropic at p

55
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and p is indeed an umbilical point since the ambient manifold is E3. Since yis a plane

curve, Y(s) A Y'(s) A Y"(s) =0 for all s € Dom Y. So we can obtain

TA AO'(T, T)T A G(T, T) = O,

which implies
2.1 <o(T,T),o(T, TH>=0

along .

Without loss of generality, we may assume p as the origin o of E3. Since every
geodesic through o is planar, we can express the immersion x : M — E3 locally on a

neighborhood U of o in terms of geodesic polar coordintes (s, 0) as

2.2) x(s, 0) = (h(s, 6) cos 0, h(s, 0) sin 6, k(s, 0))

for a suitable choice of Euclidean coordinates of E3, where h and k are differentiable
functions satisfying h(0, 0) = k(0, 6) = 0.
Differentiating (2.2) with respect to s and 6, we obtain two orthogonal vector fields

tangenttoM on U

0 oh oh | dk
2.3) x*(ys-) =( g cos 0, -a—s- sin 6, -a-s- ),
2.4) x*(é—)=(-a£cose-hsin6,g—llsin6+hcose,§£),
00 00 00 00
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where x,(%)(o, 0) =(cos 0,sin6,0).

For a fixed 0, x(s, 0) is a geodesic and we thus have

0 0 oh 2 dJk 2
< X33 x*(3;)>=(£) +(58-) =1
We may put
2.5) g—h = cos f(s, 0), i;_k = sin f(s, 0),
s s

for a smooth function f(s, 0) defined on U satisfying cos f(0, 6) = 1 and sin f(0, 8) =0
for all 0.

Lemma 2.1. ;_O(K(S’ 8))2 = 0 on the neighborhood U, where K(s, 0) is the

Frenet curvature of the geodesic x(s, 0) for a fixed 6.

Proof. Let y be a geodesic such that y(s) = x(s, 0) for some 6. Then we have
(x(s, 8))2 = < o(T, T), o(T, T) >,

where T(s) = x,,,(%)(s, 8). We now compute Ba's' (x(s, 9))2:
5 -a%< o(T, T), o(T, T) >

=<Dj /90 6(9/9s, 9/0s), 6(9/ds, 9/ds) >
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= < (V3,590)(@/s, 3/ds), 6(0/ds, 9/ds) >

+2 <0'(Va /aea/as,a/as), o(9/0s, 9/0s) >

=< O'(Va ,asa/ae, 0/0s), 6(d/ds, 9/ds) >  ( because of the Codazzi equation

and (2.1))

= < Dy/a 6(3/08, 9/s), o(3/ds, 9/ds) >
- <o(Vy /358/86, 0/0s), 0(d/0s, 0/0s) >
= 2 <o(2/06, 3/35), o(3fds, 3/ds) >
- < 6(3/08, 3/9s), (V5,3,0)(2/s, 3/ds) >
- <o(Vy /aea/as, 0/9ds), 6(d/0s, d/0s) >
= - < 6(2/08, 0/ds), (V3/350)(3/0s, 9/0s) > ( because of (2.1) ).
Let 6(0/0, 0/0s) = f1(s) N and let 6(3/0s, 9/ds) = g1(s)N, where N is the unit

vector field normal to M along ¥y and f; and g1 are some smooth functions defined along .

Then we have

V oN
(Va/aso)(a/aS, 0/0s) = g1's) N + gi1(s) g
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(2.1) leads to f1(s) g1(s) = O for all s.

If g1(0) # 0, then there exists an interval I contained in Dom 7 such that g;(s) # 0

forse I. Sofi(s) =0on]1. Thus, we have

< 6(3/38, 3/ds), (V3/3,0)(3/s, 3/ds) > = fi(s) g1'(s) =0 onl

Suppose that g1(0) = 0. Let so = inf {s 1 g1(s) #0 }. If sop =0, then gj(s) # 0 for
s > 0 and thus fj(s) =0 for s> 0. So, fi(s) g1'(s) = 0 for s > 0. By continuity,
f1(s) g1'(s) =0 fors 2 0. If sp> 0, then gi(s) = 0 for s < sg. Thus fi(s) g1'(s) = 0 for
$ < 80.

If there is some s € Dom ¥ such that g1(s) = 0, then we keep doing this argument

and thus we get aa—e(x(s, 8))2 =0 for s € Dom Y. Since this is true for every 0, we have
0
-a—e-< 6(9/0s, 9/9s), 6(3/ds, 9/0s) > =0

on U. In other words, the curvature x(s, ) is independent of the choice of © .

(Q.E. D))

Lemma 2.2. The functions h and k are independent of the choice of 6.
Proof. Differentiating (2.3) with respect to s, we get
92 92h 92h 02k

(2.6) g{ =(5-S? cos 0, Q sin 0, 557 ).

Thus the curvature K(s, 0) satisfies
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£
(2.7) (x(s, )2 = (9— ).
Js

On the other hand, (2.1) gives

02x 9 ox
2.8 —_——(—)>=0,
28) ds2 96 (as )
which implies
(2.9) -aiﬁ =0.
00 9s

By Lemma 2.1, the curvatures do not depend on 0 and so we choose a geodesic
x(s, 0) for some 0 and examine its curvature.
Suppose that x(0, 8) = 0. Lets; =inf { sl x(s, 0) # 0 }. If s; =0, then x(s, 0)

#0 for s > 0. (2.7) and (2.9) imply %: 0 for s > 0. By continuity, g—; =0for s2

0. If s3> O (possibly +eo), then K(s, 8) = 0 for 0 <'s <s1. Then the inside of the geodesic
circle S; centered at o with radius sj lies in E2. In this case, h and k are clearly
independent of the choice of 6.

Suppose that k(0, ) # 0. Then we can choose a sufficiently small neighborhood

of o where x(s, 6) # 0. Evidently g—f # 0 and thus s—; = 0 on this neighborhood.
$

Developing this argument continuously if (s, 0) = 0 for some s # 0, we see that h and k
are independent of the choice of 6 in the neighborhood U because h(0, 6) =k (0, 8) =0
for all ©. (Q.E.D)

Since the functions h and k only depend on the arc length s, (2.2) defines a surface

of revolution around the point o.
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Conversely, a meridian of a surface of revolution is always a geodesic and all the
normal sections at the point o are geodesics through o if M is locally a surface of revolution

with axis of symmetry passing through o. Thus we have

Theorem 2.3 (Local characterization). Let M be a surface in E3. Then M is
locally a surface of revolution with vertex p (around a neighborhood of p) if and only if

every geodesic through p is a normal section of M at p.

Theorem 2.4 (Global characterization). Let M be a complete connected surface in
E3. Then M is a surface of revolution if and only if there is a point p in M such that every

geodesic through p is a normal section of M at p.

Let M be a Riemannian manifold immersed in a Riemannian manifold M. A curve
o in M which is regarded as a curve in M is called a W-curve if the Frenet curvatures of o
are constant along o. In this case, the Frenet curvatures may depend on the choice of
geodesics. Together this notion and the property (*2) give another characterization of

submanifolds with geodesic normal sections in E3.

Corollary 2.5. Let M be a complete connected surface in E3. Then the
following are equivalent :

(1) M satisfies the property (*2) and the geodesics through the base point in the
property (*2) are W-curves .

(2) M satisfies the property (*1).

(3) M has geodesic normal sections.

(4) M is a plane E2 or a standard sphere S2.



CHAPTER 3

SURFACES OF A EUCLIDEAN SPACE WITH PLANAR GEODESICS
THROUGH A POINT

§ 1. Surfaces of a Euclidean space with planar geodesics through a
point which is not an isolated flat point

Let M be a surface in Em (m = 3). We define the property (*3).

(*3) : There is a point p in M such that every geodesic through p is planar.

Lemma 3.1. Let M be a surface in EM and let y be a geodesic in M through p.
If vyis a planar curve, then y is a normal section of M at p.

Proof. Let us assume that yis parametrized by the arc length s and let y(0) = p.

Then we have
Y(s) =T,
Y'(s) = o(T, T),

1" = -Ager, TyT + (VTOXT, ).

Since v is a plane curve, Y(s) A Y'(s) A7y™(s) =0 along Y. Thus we get
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TAS(T, D A (-Ager, TyT + (VTOXT, T)) =0,

which implies

(3.1) TAAgT, )T =0
and

(3.2) o(T, T) A (Vo)(T, T) =0.

Suppose first that o(t, t) # 0, where t = T(0) . We can choose a neighborhood U
of p such that o(u, u) # 0 for any nonzero vector u € T¢gM, q € U. So ¥ lies in
p + Spanf{t, o(t, t), (Vtc)(t, t)} and hence vy is a normal section at p.

Suppose o(t, t) = 0. It is enough to consider o(t, t) = 0 and o(T, T) # O for
s > 0. Let N be a normal vector field to M which is parallel to o(T, T) along vy for s > 0.
Then we can choose a vector field T which is tangent to M along y and perpendicular to
the plane IT spanned by {T(s), N(s) } (s >0). Extend T(s) up to the point p, which will
be denoted by the same notation TL. Then { t, TX(0) } is an orthonormal basis for oM
and T+(0) is perpendicular to the plane IT. N(0) is thus a normal vector to M at P
Consequently, v lies in p + Span {t, N(0) } and hence 7y is a normal section at p in the

direction t. (Q.E.D.)

Making use of this lemma, we see that the property (*3) is equivalent to the
propertry (*3) if the ambient manifold is a 3-dimensional Euclidean space E3.

Thus we have
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Theorem 3.2. Let M be a surface in E3. Then, M satisfies the property (*3) if

and only if M is locally a surface of revolution.

Corollary 3.3. Let M be a complete connected surface in E3. Then M

satisfies the property (*3) if and only if M is a surface of revolution.

We now suppose that a surface M in E™M satisfies the property (*3). By virtue of
(3.1), we get

(3.3) <o(T, T), o(T, TH > =0,

where Y(s) = T, y being a geodesic through p. In particular, < o(t, t), o(t, ') > =0, t =
T(0). It is true for any unit vetor t in TpM and thus M is isotropic at p. So we may use
Lemma 1.2 later.

Let (s, 0) be the geodesic polar coordinate sytem about p. We may assume that
p is the origin o of EM. Let expo(s €(0)) = x(s, 0), where e(8) = cos 0 e} + sin 6 e for
some orthonormal basis {ej, e2} for ToM which is associated with the geodesic polar

coordinates (s, 0).
Lemma 3.4. Let M be a surface in EM with the property (*3). Then

(3.4) a—z-(lc(s, 0))2 =0,

where «(s, 0) is the Frenet curvature of x(s, 8). In other words, the curvature of each
geodesic through o does not depend on 6.

This lemma can be proved similarly to Lemma 2.1.
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Since every geodesic through o is a plane curve and it is a normal section at o,

we may represent the immersion x : M — EM locally as

(3.5) x(s, ©) = h(s, 0) cos 0 e + h(s, 0) sin 0 e + k(s, 6) N(0),

where N(0) is a unit vector normal to M at o which may depend on 6 and h and k are some

smooth functions satisfying h(0, 8) = k(0, 6) = 0 for all 6.

Lemma 3.5. The functions h and k described as above do not depend on 6.
Proof. Since (s, 0) is the geodesic polar coordinate system, we have the

following orthogonal vector fields tangent to M about o :

3.6) x*(aa;) = g—:— cos 0 e1 +g—: sinB ey + g——ls( N(0),
3.7 x*(%)=(g—gcose-hsin9)e1+(g—:sin9+hcose)e2
ok

— N(©) + k N'(6).
Y (®) +k N'(9)

Since < x,,(%), x,,(aa;) >=1, we get

oh ok
_)2+ (_

P =1,
ds ds

(

from which , we may put
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(3.8) a—h = cos f(s, 0), a—k = sin f(s, 0),
os os

where f is a smooth function defined on a neighborhood of 0. Since x,(%)(O, 0) =

cos Be; + sin Be, cos f(0, ©) =1 and sin f(0, 6) = 0. Using (3.7) and (3.8), the curvature

K is represented as

(3.9) kG, )2 = (L2,
Js

On the other hand, (3.3) implies

92x 9 oJx
<—,—(=—)>=0,
32°30 35
which yields
(3.10) Q-t; a—f =0
ds 00

The rest of the proof is exactly same as that of Lemma 2.2. (Q.E.D)

We assume that a surface M lies in E4 satisfying the property (*3) where the base
point p in the property (*3) is not an isolated flat point. An isolated flat point p means a
point such that the curvature of every geodesic through p vanishes only at p in some
neighborhood of p. The curvature tensor R obviously vanishes at flat points. We also

assume that the point p as the origin o of E4. Let {ej, €2 } be an orthonormal basis of ToM.



67

Suppose first that dim (Im 6) < 1. In this case, by considering Lemma 1.2, we
see that o is an umbilical point of M. If dim (Im 6)q = 1, then by choosing an appropriate
Euclidean coordinate system of E4 the immersion x : M — E# can be locally expressed in

terms of the geodesic polar coordinate system as

x(s, 8) = (h(s) cos 6, h(s) sin 6, k(s), 0)

for some smooth functions h and k of the arc length s due toLemma 3.4, where (s, 0) is the
system of geodesic polar coordinates related to {ej, e2}. Thus M is locally a surface of
revolution about o with axis of symmetry in the direction of the mean curvature vector at o.
Suppose that dim (Im 6), =0. Since o is not an isolated flat point, there exists a
neighborhood of o which is contained in a plane E2 and this is a special case of above
surface of revolution.
We now suppose dim (Im 0)o =2. As we showed in Lemma 1.6, the mean

curvature vector H vanishes at o and Il o(t, tY) Il does not depend on the choice of

orthonormal vectors t and t* tangent to M at 0. Choose two unit vectors N1 and N2 normal

to M at o such that
x(0) x(0)

where x(0) is the Frenet curvature at o. Since the functions h and k in (3.5) are

independent of the choice of 0, (3.5) can be reduced to
(3.12) x(s, 0) = h(s) cos 0 €1 + h(s) sin 0 e + k(s) N(0).

As we did before, computing the length of x,,(aa;) by using (3.12), we may put
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(3.13) h'(s) = cos f(s), k'(s) = sin f(s)

for some smooth function f satisfying f(0) = 0.

On the other hand, we obtain from (3.12)
k"(0) = o(d/0s, 9/0s) (0, 6)
=0(cosOej+sinOep, cosOej+sinBerp)
= K(0) cos 20 N1 + x(0) sin 20 N, .
Since k"(0) = (cos f(0)) £(0) = f(0) = * x(0),
(3.14) N(6) =% (cos 26 N + sin 20 N»).

Thus, for a suitable choice of Euclidean coordinates of E4 associated with ey, ep, N1 and

N>, the immersion x is locally determined by

S s S
(3.15) x(s, ) = (cos 6 Jcos f(t) dt, sin @ o[cos f(t) dt, + cos 20 [ sin f(t) dt,
0

S
*sin 20 [ sin f(t) dt ),
0

s

where f(s) =+ OI k(t) dt and x is the Frenet curvature of geodesics through o.

If a surface M has the form (3.15), it is easily checked that M satisfies (*3).
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Thus we conclude

Theorem 3.6 (cf. Theorem 3.8). Let M be a surface in E4 without isolated flat
points. Then M satisfies the property (*3) if and only if M is locally a surface of

revolution which lies in E3 or a surface that locally has the form (3.15).

Corollary 3.7. Let M be a complete connected surface without isolated flat
points in E4. Then M satisfies the property (*3) if and only if M is a surface of revolution

which lies in E3 or a surface is globally of the form (3.15) .

We now consider a surface M which lies in E satisfying the property (*3).
Again, we assume the base point in the property (*3) is the origin of E5, where o is not an
isolated flat point.

If dim (Im o), < 2, then M is locally a surface of revolution in E3 or M is a
surface with local representation about o of the form (3.15) which lies in E4 by the exact
same argument .

Suppose dim (Im G), = 3. Then
o(ey, €1) A o(e1, €2) A o(e2, €2) # 0.

Choose three orthonormal normal vectors to M at o :

(3.16) N; __.M, Nz:f%gz_)’ N3=—Iji,
x(0) NI

where a = Il 6(e, €2) Il and N3 = 6(e2, €2) - < o(e1, €1), N1 > N1. If we compute the

second fundamental form at o as we did to derive (3.14), then we obtain
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x(0)2 -2b2

) N1 + a sin 20 N3 + b sin2 6 N3,
x(0)

6(9/9s, 9/9s) (0, 8) = ( x(0) cos2 6 -

where b = I ﬁ3 Il. Using this equation and (3.5), we can find N(6) :

2.2p2 ) b .
N(©) =+ (cos2 @ - KOT20% )0 18 20 Ny £ -2 §in2 0 Na.
©) ( cos K(0)2 ) N1 0 sin 2 <0 sin 3

Thus locally the immersion x : M — E3 may be written in terms of a suitable choice of

Euclidean coordinates of ES as
S S
(3.17) x(s, ) = (cos 0 Jcos f(t) dt, sin © Jcos f(t) dt,

k(0)2-2b2 _ §

+ (cos2 0 - <2 )6[ sin f(t) dt,

+;z0—sm 20 J sin f(t) dt, * % sin2 @ J sin f(t) dt ),

s

where f(s) =+ J K(t) dt and x is the Frenet curvature of geodesics through o.

Conversely, if a surface M has the form (3.17), then we can easily see that M

satisfies the property (*3).

Theorem 3.8 (cf. Theorem 3.6). Let M be a surafce in ES without isolated flat
points. Then M satisfies the property (*3) if and only if M is locally a surface of

revolution in E3 or a surface in E4 which has a local representation of the form (3.15) ora
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surface of the form (3.17) which fully lies in ES.

Let M be a surface in EM. Since the dimension of the first normal space at o is at

most three, we obtain the following theorem.

Theorem 3.9. Let M be a surface in EM (m = 3) without isolated flat points.
Then M satisfies the property (*3) if and only if M lies locally in ES and M is one of the
three model spaces described in Theorem 3.8.

§ 2. Surfaces of a Euclidean space with planar geodesics through
a point which is an isolated flat point

In this section we study a surface M in EM satisfying the property (*3). Base
point o, say the origin of E™, is an isolated flat point.
We now assume that M is an analytic surface in E™.

We first define the degree of an isolated flat point.

Let p be an isolated flat point of a Riemannian manifold. Then for every

geodesic y parametrized by the arc length s through p = Y(0), its curvature K.Y(S) satisfies
K‘Y(O) =0 and Ky(s) # 0 for sufficiently small s. Letd(p) =inf { ne Z, | KY(“)(O) #0}.

Then d(p) is well-defined integer > 1.
Definition. d(p) is called the degree of the isolated flat point p.

Suppose that the analytic surface M in E™ satisfies the property (*3) and that the
base point in the property (*3) is an isolated flat point. We also assume that the base point

is the origin o of EM.

According to (3.5) and Lemma 3.5, the immersion x : M — EM is locally
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represented in terms of geodesic polar coordinates (s, 6) about o :
(3.18) x(s, 0) = h(s) e(8) + k(s) N(0),

where h and k are analytic functions of s such that h(0) = k(0) = 0, h'(s) = cos f(s), k'(s)
s

= sin f(s), f(s) = i(i[ K(t) dt, e(0) = cos 6 e1 + sin B e and N(0) is a unit vector normal

to M at o depending on 6.

For r 2 2, the r-th derivatives of h and k are :
h®(s) = - (sin £(s)) £ D(s) + O1(f ", £",..., {2 )
and
k(s) = (cos (s)) £ D(s) + Ox(f ", £",..., £2)),
where O;(f', f",..., £(r-2) ) (1 =1, 2) are certain polynomials with respect to f ', f ",..,,

#2) Since o is an isolated flat point and since the curvature of each geodesic through o is

independent of the choice of 0, there is an integer p ( > 1) such that x(0) = ¥'(0) = ... =
k(P-2)(0) = 0 and x(P-1)(0) # 0, that is, the degree of 0 is p -1. Since x(s) = *+ f'(s), we
see that

h®©) =0 foranyr =2,

and

kD©)=0 (0<r<p-1),  k®X0)=0.
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In other words,

o'x

(3.19) —(@0,0)=0 (2<r<p-1)
osf
and
P
(3.20) gs—: 0, 8) = k®(0) N®) = kP D(0) N(©) # 0.

We now define the r-th (r 2 1) covariant derivative of ¢ by

(V'6)(X1, X2, s Xr42) = Dx; (VF10)( X2, ..., X£42))

+2

- Z (Vr-lo)( X2, LEEE) VXIXI’ LEEY) Xr+2)-
i=2

Then V'G is a normal bundle valued tensor of type (0, r+2). Moreover, it can be proved

that
(3.21) (V'6)(X1, X2, X3, .., Xr42) - (V'0)(X2, X1, X3, ..., Xr42)

= RN(X1, X2)( (V"26)(X3, ..., Xr+2))

+2

+ 23 (6r-2c)( X3a ey R(Xl) XZ)XI, ceey Xr+2)
1=

forr > 2, where X1, X2, X3, ..., Xr+2 are vector fields tangent to M, RN the normal






74

curvature tensor, R the curvature tensor of M and Vi =o0.

On the other hand, forr e Z,,

o'x

—= 0= (Vio)(t+2),

where t = e(8) = cos 0 ] + sin 8 e and (V'o)(t+2) = (Vio)(t, t, t,...,t).

Lemma 3.10. If (Vio)(t*2)=0(0<r<p-1)and (VPo)(t?*2) =0 forall t
in ToM , then VPo is symmetric and Vi =0 at the pointo forO0<r<p-1.

Proof. Forp=1,itisclear. Let p=2. Since o(t,t) =0 for every t € ToM, o
is a flat point of M. So the curvature tensor R vanishes at o. Also, (f’o)(ti”) = ( for all
t € ToM implies Vo =0 at the point o. Suppose it is true forp=r- 1 (r > 3). By the

induction assumption and (3.21), we obtain the result. (Q.E.D.)
Thus if the point o is an isolated flat point of degree p -1, then we have
Vie=0 (0<r<p-1)
and

VPs is symmetric

at the point o.

Denote by
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—_— i . —_—
(V'0) (e7, €3) = (VG )(€11, €12,--.» €1i» €21, €22,-.., €2)),

wherei+j=r+2 andejp=e€j,ex=ezforallh=1,2,...,iandk =1, 2, 3,...,j. Since

the curvature x is independent of the choice of the geodesic through o, we get

I (VP0) (P12 Il =11 (V¥0) (e®)PF) I for all .

So we obtain the following equation.

+1
2 (P+?) cos 20*29 g 5in 2 9 I (VPo) (P12) 12
r=1

+1
i (P42) cos 2020 g sin 20 | (VPo) (P27, € 12
r=1

+ 22(1’-:2) (P';2) cos 20+2)T-5ggin T+ § < (VP ( ep+2-r’ o 5)’ (VPo) (ep+2—s e; ) >

1 ’
I<s

which yields

(3.22) (sz) Il (Vo) (P72 12
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+2 S 2
- . ) 11 (7Po) (P29, &) 12

+2 Z (p+2) (p+2) < (VPo) Ch 2 e,); (VPo) (ep+2 s e;) >

1<s<2q
forr=2q(q=1)and
(323) D (PP < @) (27, &), (TP0) (2%, ) > =0
r<s<2g-1

forr=2q-1(q=21).
On the other hand, the maximal dimension of { ({790)( €ips €ips +» Cipy) )| ej; =
ejorep }isp+3.

From (3.20), we see that

(3.24) N(®) = . (VPo) (0P}

Il (VPc) (eP*?) 112

+2
= 1 (p:—2) cosP*2TQsin 7@ -
Il (VPo) (ePF2) 12 =0

(VPo) (P*27, e).

Thus, if o is an isolated flat point of degree p-1, then M is locally contained in at
most (p + 5)-dimensional Euclidean space EP+5 and in this case the second furndamental

form o satisfies (3.22) and (3.23) and the immersion x : M — E™ becomes
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x(s, ©) = h(s) cos 0 €1 + h(s) sin 0 e3 + k(s) N(0),

where h and k are analytic functions such that h((0) =0 forallr > 2, k@M0)=0 (0<r<
p-1), kP)(0) # 0 and N(6) is given by (3.24).

Thus we have

Theorem 3.11. If a surface M in E™ satisfies the property (*3) whose base
point , say the origin o of EM, is an isolated flat point of degree p - 1, then M locally lies in

at most (p + 5)-dimensional Euclidean space EP+5 about o and is of the form :
S S

(3.25) x(s, 0) = ( [cos f(t) dt) (cos 0 €] + sin 8 e2) + ( [ sin f(t) dt ) N(0),
0 0

s
where N(0) is of the form (3.24), f(s) =% OI k(t) dt and x(s) is the Frenet curvature of

geodesics through o.

Combining Theorem 3.9 and Theorem 3.11, we can classify analytic surfaces in

Em satisfying the property (*3).

Theorem 3.12 (Classification). Let M be an analytic surafce in Em. If M
satisfies the property (*3), then M is one of the following :

(1) M is locally a surface of revolution about o which lies in E3,

(2) M s a surface of the form (3.15) about o which fully lies in E4,

(3) M is a surface of the form (3.17) about o which fully lies in E4,

(4) M is a surface of the form (3.25) about o which lies in EP*5, where the
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degree of the isolated flat pointois p -1.

Remark. According to K. Sakamoto, [ S-1 ], and J. A. Little, [ L ], a surface
in a Euclidean space EM with planar geodesics must be an open portion of a plane E2, a
standard sphere S2 or a real projective space RP2. So M must lie in a 5-dimensional
Euclidean space ES. However, a surface M in EM (m > 3) satisfying the property (*3) may
lie fully in a higher dimensional Euclidean space depending on the degree of the isolated

flat point if the base point in the property (*3) is an isolated flat point.



CHAPTER 4

SURFACES IN A PSEUDO-EUCLIDEAN SPACE E':
WITH PLANAR NORMAL SECTIONS

§1. Some fundamental concepts and definitions

We introduce some basic terminologies and definitions for later use.

If I, denotes the unit matrix of degree n, we put

Ip,q:(- I(y I(()1

sl(n, R) = { all n X n - real matrices of trace 0 }.

Definition. ([ B-2 ]). The Veronese immersions of signature (r, n-r) are defined

n+ 1 [ 2
xe S{TED) B o 3y K - 2Tai) € sofr el

where *x = Ip,ns1r, and
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2
)CE:LI n+1 (x*x + =Ins1) € so(r+l, n-n),

where *x =% Iy41,nr, and

SO(p’ q)= { Ae Sl(p+qv R)IIp,th Ip,q=A }

In the first case, we take <A, B> = tr(AB) for the metric, so that sy(r, n+1-r) = E r(n+1-1)
with N = %n(n + 3). The image of S'rl is contained in S r(:i':_ r)(1) with zero mean curvature.
In the second case we use < A, B > = - tr(AB) as the metric, so that so(r+1, n-r) =

EN (r+1)(n-r) » and the image of Hr has zero mean curvature in Hy_ ( rﬂ')l(n ) 1(1). Both

immersions are isometric and they are planar geodesic immersions.

Notation. E"s1 ¢ denotes EM with symmetric bilinear form <, > whose signature

has s negative, m - s -t positive and t zero signs, that is, t independent directions which
are orthogonal to everything. When t =0, we have the pseudo-Euclidean space E':

Definition. An isometric immersion i : M - E t1s parallel if its second

fundamental form © is covariantly constant , that is, Vo = 0. An immersion of a pseudo-

Riemannian submanifold M into E ,¢ is full if its image is contained in no affine

m
hyperplane of E
. . n .
For any function g : E_ — R, the mapping

n+2
r+l1

xe E" 1 (g, x, gx)) € E
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is a planar geodesic immersion with < o(X, X), o(X, X) > = 0 for all unit vectors
Xe TE':, which is full in Er;l (if g is not linear). This immersion is called an ¢xpansion
of EMinto Ey 1.

If the immersion i is parallel, then the geodesics are mapped to parabolas or line
segments, so the function g associated with expansion must be a quadratic polynomial. Up
to isometry of En:ll, g= iai x;2, so that i(E':) is an elliptic or hyperbolic paraboloid or an

i=1

orthogonal cylinder over one of these .
Let g1, ..., gk be independent quadratic polynomials from E': toR, k< 17 n(n+1).

n+k
Then we can define an expansion E'rl into E rx by

i n+k
x e E} - (2100, g2(%), ..., gk(X), X, £1(x), £2(), ..., gk(x)) € E rk.

Let M'r1 be a pseudo-Riemannian manifold which lies in a pseudo-Euclidean space

ET. We define a normal section of M} ata point p € M in a direction t (% 0) € TM] in

a similar way that we did in Chapter 1 : Let E(p ; t) be an affine space spanned by t and

T;'M': . Then the intersection of M'rl and E(p ; t) gives rise to a curve in a neighborhood of
p which is called the normal section of M'r1 at p in the direction t. M'r1 is said to have planar

normal sections if every normal section 7 is a plane curve, that is, YA Y' A ¥" =0. M': is
said to have pointwise planar normal sections if Y(p)A ¥Y'(p) A Y"(p) = 0 for every point

n
pe M.

§ 2. Surfaces in a pseudo-Euclidean space E': with

planar normal sections
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We now suppose that a (pseudo-Riemannian) surface M% in a pseudo-Euclidean

space E': has planar normal sections. LetM = Mf (r=0, 1, 2) in order to make the matter

simple.
Let p be a point of M and let t be a nonzero vector tangent to M at a point p and let ¥
be the normal section of M at p in the direction t. We assume y(0) = p. Let T =y '(s),

where s is a parameter (which is not necessarily the arc length ). Then we have

4.1) Y"(s) = VT + o(T, T),

(4.2) Y"(8) = VoVpT +o(VT, T) - Ager, 1yT + D o(T, D).

¥ ''(0) is a linear combination of ¥'(0) and y'(0) at y(0) = p because ¥ is planar.

So we have
4.3) VtT =at for some a € R,
(4.4) Vo)t ) A 6(t, 1) =0,

where t = T(0). But (4.4) is true for any point p and any nonzero vector t. Thus we have

(4.5) (Vx0)(X, X) A 6(X, X) =0

for every X € TM. In particular, if t is nonnull, that is, < t, t > # 0, then we can reduce

(4.3) to
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(4.6) V.T=0.

Proposition 4.1. Let M be a surface in a pseudo-Euclidean space E': Let ybe

a planar normal section of M at p in the direction of a unit vector t. If y'(0) is null, then
o(t, t) is a null vector.
Proof. Since 7y is a plane curve which lies in the plane spanned by t and o(t, t),

we have
Y(s) =y(0) + f(s)t + g(s)o(t, t)
for some function f and g along y. This implies
Y'(s) = ()t + g'(s)a(t, v).
On the other hand, we see that
Y'(0) = £'(0)t + g"(0) o(t, ) = o(t, 1)

because of (4.6). Thus, f'(0) = 0 and g"(0) = 1. Since ¥"(0) is null, o(t, t) is a null
vector. (Q.E.D)).

Let t be any nonzero tangent vector of M at p and let 'y be the normal section of M at
p in the direction t. Since YA ¥' A ¥" =0, ¥'" is a linear combination of y' and Y".

(4.1) and (4.2) imply

4.7 VTVTT - AG(T, T)T =b(s) T + c(s) VTT ,
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(4.8) (YT, T) + Dy o(T, T) = c(s) o(T, T)

for some functions b(s) and c(s).

Suppose that yis a geodesic. Then for an affine parameter s,

VTT = 0.

Hence we have
Y'(s) =o(T, T), Y'(s) = - AO’(T, T)T + DT o(T, T).
Since YA Y' AY" = 0, we obtain

that is,
<o(T, T),o(T, TH>=0

for all T* € TM such that < T, Tt>=0.

Suppose that vyis not a geodesic. Then VT =0 fors# 0. Since (Vrc)(T, T) A

o(T, T) =0, we get from (4.8)

(4.10) o(VyT, T) A o(T, T) = 0.

In particular, if t ( # 0) is not null, then by the arc length parametrization, we may
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assume
<Y(6), Y(s)>=¢, e=%1.

Choose an orthonormal frame { e1, e2} on a neighborhood U of p such that e; is an
extension of T =+Y(s). Then VTT = p(s) e2 for some function p since < VTT, T>=0.

By using continuity, we have

Lemma 4.2. Let M be a surface of a pseudo-Euclidean space E': with planar

normal sections. If the normal section Y of M at p in the direction of nonnull vector t is not

a geodesic on a sufficiently small neighborhood, then we have
o(t, ) A o(t, t5) =0,

where t = ¥(0) and t' is a unit vector in TpM perpendicular to t.

Lemma 4.3. Let M be a surface in a pseudo-Euclidean space E': with planar

normal sections. If the normal section Y is a geodesic arc on a neighborhood of p, then we

have
<o(t,t), o, tHh)>=0

where t = ¥(0) and t' is a unit vector in TpM perpendicular to t. (In this case, t' may be t

if t is a null vector.)

If M has planar normal sections, then M clearly has pointwise planar normal

sections. We now prove
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Lemma 4.4 ([ Ch.B-5 ]). Let M'; be an n-dimensional pseudo-Riemannian

submanifold of a pseudo-Euclidean space E"; If M':_ has pointwise planar normal

sections, then Im © is parallel in the normal bundle.
Proof. As we derived (4.4), we can see that M'; has pointwise planar normal

sections if and only if

(4.11) (Vx0)(X, X) A 6(X, X) =0

forany X € TM'; For any two vectors Y, Z € TM':, ifweset X=Y + Z, then (4.11)

gives

(4.12) (Vyo)(Y.Z) +(V,0)(Z,Y) € Imo.
Similarly, if we set X =Y - Z, we have

(4.13) (Vyo)(Y,Z) - (V,0)(Z, Y) € Imo.
Combining (4.12) and (4.13), we obtain

(VyoXY,Z) € Imo.

Together with the Codazzi equation, this implies

(Vxo)(Y,2) € Imo.






87

forany X,Y,Ze 'I'M'r1 Thus we conclude that the first normal space Im ¢ is parallel in

the normal bundle. (Q.E.D.)

Using this lemma and a reduction theorem , [ CH.B-5 ], [ E ], we have

Proposition 4.5. Let M'; be a pseudo-Riemannian submanifold of E': with
dim (Im ©) = k for some integer k. If M': has pointwise planar normal sections, then M':

lies fully in an affine space of dimension (n+k) < E':

We now talk about the dimension of the first normal space of a surface in E':.

Proposition 4.6. Let M be a surface in a pseudo-Euclidean space Er: with index

r (r=0, 1, 2). Suppose that
<o(X, X), oX, XH) >#0

for any orthonormal basis { X, X+ } of TpM, p € M. Then dim (Im ¢)p < 1.

Proof. Let {ej, €2} be an orthonormal basis of TpM such that
< o(el, e1), o(er,e2) > #0.

Suppose that r = 0 or 2, that is, M is spacelike or timelike. By continuity, there is

an open interval (a, b) of 6 such that

< o(e(0), e(0)), o(e(0), e(®)) > =0
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for any 0 € (a, b), where
( e(0) ) _ (cos 0 sin 0 )(el
e(0)* -sin © cos 0 ) \€2
By Lemma 4.2 and Lemma 4.3 we obtain
o(e(8), e(0)) A o(e(6), e(0)H) =0
for all © € (a, b). A straightforward computation shows that
o(e1, €1) A o(el, €2) = a(e1, €1) A o(e2, €2) = o(ey, €2) A o(e2, €2) =0.

Suppose that r = 1, that is, M is Lorentzian.

Let
e® \ _( cosh® sinh© (Cl
e(0)t sinh @ cosh 6 /\€2
By a similar argument to that above, we get

o(el, €1) A o(el, €2) = G(€e1, €1) A O(e2, €2) = o(eq, €2) A o(e2, e2) =0.

Therefore we conclude that dim (Im ¢)p < 1. (Q.E.D))

Lemma 4.7. Let M be a surface of a pseudo-Euclidean space E"; Then
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<o(X,X), o(X, X)> does notdepend on the choice of the unit vector X € TpM if and
only if <6(X, X), (X, X" > =0 for any orthonormal basis { X, X'} of TpM.

Proof. The proof is by the same argument as in Lemma 1.1. (Q.E.D))

Definition. Let M': be a pseudo-Riemannian submanifold of a pseudo-

Riemannian manifold f’[‘: M'rl is said to be pseudo-isotropic atp € M'rl if the length of the
second fundamental form does not depend on the choice of unit vector in TpM'r'. M'r' is said

to be pseudo-isotropic if M': is pseudo-isotropic at every point of M'r'. If M'; is pseudo-

isotropic and the length of the second fundamental form does not depend on the choice of
the point, then we say Mrrl is constant pseudo-isotropic.

Lemma 4.8. Let M be a surface in a pseudo-Euclidean space E': with index r (r =

0, 1, 2). If M is pseudo-isotropic at p, then we have
(4.14) (-1)' < o(ey, e1) , o(ey, e1) > = <o(ey, €1), O(e2, €2) > + 2 < G(ey, €2), o(ey, €2) >,
where { ey, €2} is an orthonormal basis for TpM.

Proof. Let { e1, €2} be an orthonormal basis for TpM and let { X, X1} be

another orthonormal basis for TpM.

Suppose that r = 0 or 2. Then there exists 0 € [ 0, 2n ) such that
X =cos 0 e] + sin 0 e2, X+ =-sin 0 e] + cos 0 es.

Substitution of X and X*into < (X, X), 6(X, X1) > =0 gives (4.14).

Suppose that r = 1. We put
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X =cosh 6 €] + sinh 0 ey, X1 =sinh 6 ] + cosh 6 e,

for some 0. Substitution of X and X~ into < 6(X, X), o(X, X1 >=0 gives (4.14).

(Q.E.D)

C. Blomstrom, [ B-2 ], generalized the notion of planar geodesic immersions in the
Riemannian case to that of the pseodo-Riemannian case and she proved that if i : M': - Er:

is a planar geodesic immersion, then M'rl is constant pseudo-isotropic. From now on, if

M'rl is constant pseudo-isotropic, then we denote < o(X, X), 6(X, X) > by L, where X is

a unit vector tangent to M'r‘.

Lemma 4.9 ([ B-2]). Let i: M': - E': be a planar geodesic immersion with
L =0. Then M'r1 is flat if and only if the first normal space Im G is composed entirely of
null vectors. In particular, if M'r‘ is complete, then i must be (up to rigid motion) an

n+k
expansion of E': into E ;k , where k = dim(Im o).

Proposition 4.10. Let M be a surface which is constant pseudo-isotropic in

4

E ., withL =0. If M has planar normal sections, then Im ¢ is a 1-dimensional null

space, that is, M lies in Ez 1

L
Proof. Letpe M. Then TpM is isomorphic to E% Let { e1, e2 } be an

orthonormal basis for TpM. Then we have
< o(ey, €1), o(e1, €2) >=0.

Suppose o(ey, €1) A o(ea, e2) # 0. If o(eg, e2) =0, by (4.14) and the assumption
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L =0 we obtain
< o(ey, €1), o(ez, €2) > =0.

Thus , Span { c(ey, €1), o(e2, €2) } is isomorphic to Eg 2 But this is impossible in T;M

= E%. Thus we get 6(eq, €2) # 0. Since < o(ey, €1), o(ey, €2) > =0 and since T;M is a
Lorentzian vector space,
o(e1, e1) A o(e1,e2) =0 and o(ez, e2) A o(er, €2) =0.

In this case, we also have Span { o(eq, 1), 6(e2, €2) } is isomorphic to Eg X Hence we

have
o(e1, €1) A o(ez, €2) = o(e, €2) A o(e1, €1) = 6(e1, €2) A o(e2, €2) = 0.

Consequently, Im ¢ is a 1-dimensional null space at every point of M. By Lemma 4.4,
Im ¢ is parallel in the normal bundle. Thus M locally lies in E? 1 (Q.E.D.)

Remark. Under the same assumptions as in Proposition 4.10, M is flat by the
similar proof of Lemma 4.9. Thus, if M is complete, theni: M — E"; must be an

expansion of E% into E? 1

Blomstrom, [ B-2 ], proved

Proposition 4.11. If i: M — Ez is parallel and full, then
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<o(ey, 1), o(e2, €2) > - 2 < o(ey, ey), o(ey, €2) > =0,
where { ), €2 } is an orthonormal basis of TpM.

Proposition 4.12. Let M be a constant pseudo-isotropic Lorentzian surface with

L =0. Then
<o(t,t), o, t)>=0

for all null vector t € TpM.

Proof. Since M is pseudo-isotropic,
<oX,X), X, XH)>=0
for any orthonormal basis { X, Xt} of TpM. Let t be a null vector of TpM. Then
t=aX+aX"
for some a (# 0) e R. By using (4.14), we have
<o(t, t), o(t, t) > =2a2 { <o(X, X), o(X*, XD >+2<0X, XD, 6(X, X)) >} =0.
(Q.E. D))

Proposition 4.13. Let M be a constant pseudo-isotropic surface of a pseudo-
Euclidean space Er: with index r (r =0, 1, 2) which has planar normal sections. If L =0,
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then M has planar geodesics.

Proof. Suppose r=1. Lett# 0 be a nonnull vector at p € M and let y be the
normal section of M at p = ¥(0) in the direction t. Since <t, t > # 0, we may assume that 7y
is parametrized by the arc length s. So < T(s), T(s) > = € for sufficiently small s, where
Y¥(s) = T(s) and Y(0) = t.

Suppose o(t, t) # 0. Then there exists a neighborhood U of p such that o(u, u) # 0
for any unit vector u € T(U). Since v is a plane curve which lies in a plane spanned by t

and o(t, t), we may express

(4.15) Y(s) =p + f(s)t + g(s)o(t, t)

for some functions f and g defined on an interval I. Then we get

Y(s) = f(s) t + g'(s)o(t, v),

Y'(s) = £'(s) t + g"(s) o(t, t).

Since < Y(s), Y(s) > = € and since L = 0, we get

(f(s)? = 1.

Thus the last equation becomes

Y'(s) = g'(s) o(t, t).

Therefore, < ¥'(s), Y'(s) >=0on L
On the other hand, Y'(s) = VT + o(T, T) and thus < VT, V1T > = 0 because of
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L =0. Choose an orthonormal frame { T, T* } along y. Then VT A T+ = 0 and hence
VTT =0 onl. Thus yis a geodesic arc.
Suppose 6(T, T) = 0 for some interval containing O , where Y(0) = p. Then vy is
clearly a geodesic arc.
Suppose o(t, t) =0 and o(T, T) # 0 for s > 0. Since L =0, o(T, T) is null for
s > 0. Extend o(T, T) up top =Y(0) and denote it by n. Then

Ys) =p + fi(s)t + gi(s) n
for some functions f] and gj. Using an argument similar to the one developed above, we
see that yis a geodesic arc.
Let t be a null vector tangent to M at p. Lety be the normal section of M at p in the
direction t and let y(0) = p and Y(0) = t. By Proposition 4.12, we have
<o(tt), o, t)>=0.
We may put
¥(s) =p + f(s)t + g(s) o(t, 1)
for some parameter s and some functions f and g. Let ¥(s) =T. Then, we get
T= f(s)t+g'(s) o, t)
and

ViT+o(T, T) = f'(s)t +g"(s) o(t, v).
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Since <t,t > =<0, t), o, t) >=0, we have < T, T > = 0 and hence

< o(T, T), o(T, T) > = 0 by means of Proposition 4.12. Thus we obtain

Suppose there is so such that T(sg) A VT(s 0)T # 0. Then T(sg) and VT(s 0)T form a
degenerate plane E(2)'2. But this is impossible because Ty(so)M = E% Thus we have

So VTT = h(s) T for some function h. 7y is indeed a pregeodesic, that is, it has a

parametrization as a geodesic. Thus, Y becomes a geodesic ¥ by changing its parameter
such that ¥ (s) = (Yoa)(s) satisfying a" + h(a')2 = 0.

We now suppose that the surface M is spacelike or timelike, that is, r = 0 or 2.

Let p be a point of M and y be a normal section of M at p in the direction t ( # 0).
Using the exact same argument as that of the first half of the case r =1, we see that yisa
geodesic arc.

For a given nonzero vector t, the geodesic with initial velocity vector t is unique and

hence it is the normal section. Therefore, M has planar geodesics. (Q.E.D.))

Lemma 4.14. Let M be a constant pseudo-isotropic surface in a pseudo-
Euclidean space E': with L = 0. If M has planar normal sections and if the mean curvature

vector H is parallel in the normal bundle, then Im G is spanned by null vectors.

Proof. Let { €1, €3 } be an orthonormal basis of TpM, p € M. Then the mean

curvature vector H is given by
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H=%{ <el,el>0'(e1,el)+<C2,C2>0.(e2’62) }’

which implies

<H, H>=%—(-1)‘< o(ey,e1), 0(e2,€2)>.

Suppose that < H, H > # 0. Extend e; along the geodesic Y1 (s) = expp(s €1) which
is denoted by E1 and extend e3 by parallel displacement along y; which is denoted by Ej.
By Lemma 4.8 and L =0, we get

<06(Ej, E1), 6(Ep, E2) > = (-1)™*1 <H, H >.
Since the mean curvature vector is parallel in the normal bundle, we get
Ei(p) <o(E1, E2), o(E1, E2)>=0.
Since VElEl =0, we also get VE1E2 =0. Thus we obtain

(4.16) <(Vg,0)(e1, €2), O(e1, €2) > = 0.

On the other hand,
4.17) 0=Ej(p)<H,H>

=Ej(p) <o(E1,E1),0(Ep Ez) >
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=< (5616)( e1,€1), o( ez, €2) >
+<o(ere1), (Vg 0)e2,€2) >.

Extend e along the geodesic Y2(s) = expp(s €2) and denote by Ez and extend e to

El by parallel displacement along . Then we get
(4.18) 0=E; (p) <o(E1,E1), o(Ey, E2) >
= <(Ve,0)(e1, €1), o(er, €2) >
+<o(eye1), (6620‘)( €1, €2) >.
Combining (4.16), (4.17) and (4.18) and making use of (4.5), we obtain

(Ve,0)e1, €1) =0.

Since e can be chosen arbitrarily, we have

that is, the immersioni: M — E': is parallel.
Since dim Im0)<3,i: M - E': is full in at most a 5-dimesional subspace of Ey

by Lemma 4.4. However, Proposition 4.10 implies that i cannot be full in E‘: +1 - Ifiis full
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in Ef, < o(e1,e1), o(ezez)>=0by Lemma 4.8 and Proposition 4.11. This contradicts

<H,H>#20.If dim(Imo)=1, o(ej,e1)Aroc(e,e2)=0, o(ej,e1) Ac(ez,e)=0

and o(ej,e2) Ac(ep, e2)=0. Thus Im ¢ is a 1-dimensional null space. So, i cannot
be full in Eg Thus i is necessarily full in a degenerate 3, 4 or 5-dimensional affine space of

E':. Therefore, the scalar product of one of 6( ey, €1), 6( €1, €2) and o( €2, €2 ) with any

vector vanishes. By considering Lemma 4.8, we get
<o(ej,e1), o(ez, e2)>=0.

Consequently, < H, H> =0 at p. Since p is arbitrary, < H, H > vanishes identically on

M. From this and Lemma 4.8, we conclude that Im G is spanned by null vectors.

(Q.E. D)

Theorem 4.15. Let M be a constant pseudo-isotropic surface in Er: with planar

normal sections and L = 0. If the mean curvature vector field H is parallel in the normal
bundle, then M is flat. Moreover, if M is complete, then i : M — E': is an expansion of

k
E2 which is full in EZy; (k = 1, 2, 3).

Proof. By Lemma 4.14, < H, H > =0 and Im © is generated by null vectors. We

see that M is flat by considering the Gauss equation (0.7). So, if M is complete, then
itM-> E': is an expansion of E? into E%:(k (k=1,2,3) by Lemma 4.9. (Q.E.D)

We now prove

Lemma 4.16. Let M'; be an n-dimensional pseudo-Riemannian submanifold in a

pseudo-Euclidean space E': with pointwise planar normal sections. If M'; is pseudo-
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isotropic, then M'rl is constant pseudo-isotropic.

Proof. Let < o(X, X), o(X, X) > = f(p) for unit vectors X € TpM': . Thenfisa

function on M'rI . We shall prove that f is constant.

Choose a point p € Mr: and a geodesic Y emanating from p with nonnull initial

velocity vector t. We assume that 7y is parametrized by the arc length s. Let t* be a unit
vector in TpM'r' such that < t, t* > =0. Extend t to a vector field T tangent to M':

which is parallel along vy and extend t = ¥(0) on a neighborhood of p =y(0) such that T =
Y (s) stays a unit vector field orthogonal to TL. Since M'rI is pseudo-isotropic and M has

pointwise planar normal sections, we get

0=t<o(T,T), o, TH >
=<D,o(T, T), o(t, ) >+ < o, 1), D,o(T, TH) >
= <o(t, 1), Do(T, TY) > (because D,S(T, T) A o(t, ) = 0)
= <o, 1), Vo)t tY) > (because V,T+=0)
=<o(t, 1), (Vi0)(t, 1) >
= % tht< o(T, T), o(T, T) >
= 5 tO.

Since dim M'r' > 2, f is a constant. So, M'r1 is constant pseudo-isotropic. (Q.E.D))
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Theorem 4.17. (Classification). Let M be a surface in a pseudo-Euclidean space
E': with planar normal sections. If M does not lie in a 3-dimensional affine space of Er:

and if the mean curvature vector field H is parallel in the normal bundle, then M is an open

+
portion of either a flat surface which locally lies in E%'kk (k = 2, 3) or a Veronese surface

orE5

. 5
inE 5-(r+1)(2-1)

1(3n)

Proof. Let Mj={pe MIdim(Imo)<1latp }. Suppose M =M. Since
Im o is parallel in the normal bundle, we see that M lies in a 3-dimensional affine space of
E': . IfM-M; # G, then M - M) is an open subset of M. Let U be a component of
M - M;. Proposition 4.6 implies that M is pseudo-isotropic. By Lemma 4.16, we see that
U is constant pseudo-isotropic. Suppose L =0 on U. Then Proposition 4.13 tells us that

U has planar geodesics. Lemma 4.14 and the Gauss equation (0.7) imply that U is flat and
+k
fully lies in E%'k (k= 2,3). Suppose L=#0. Since U has planar normal

sections, (ﬁxo‘)(x, X) A oX, X) =0 for X € TU. Since L is constant on U,
(ﬁxo)(x, X) =0 for all X e TU. Thus the second fundamental form G is parallel in the

normal bundle, that is, Vo =0. Let { e1, €2 } be an orthonormal basis of TpU for some
pe U. If o(e, e2) =0, then Im ¢ is 1-dimensional at p by Lemma 4.8. Therefore,
c(eq, e2) # 0 for any orthonormal frame { ej;, e2 } on U. We also have
o(eq, e1) A o(e, e2) # 0. In fact, if o(ey, 1) A o(eq, €2) =0, then G6(eq, e1) is a null
vector. This contradicts L # 0. Making use of Lemma 4.2 and Lemma 4.3, we can

conclude that U has planar geodesic normal sections. By the classification Theorem of
Blomstrom, [ B-2], U is an open portion of a Veronese surface in Ef(3-r) or Eg_(r +1)21)

By continuity of L, we conclude that U = M. This completes the proof. (Q.E.D.)






SUMMARY

Let M be a surface of a Euclidean space E™. We define the property (*1), (*2) and
(*3) as follows :

(*1) : There is a point p in M such that every geodesic through p is a helix of the
same curvatures.

(*2) : There is a point p in M such that every geodesic through p is a normal section
of M at p.

(*3) : There is a point p in M such that every geodesic through p is planar.

Then we obtain the following results.
(1) Let M be a complete connected surface in E3. Then M satisfies the property (*1) if and
only if M is a standard sphere or a plane.
(2) Let M be a compact connected surface in E4. Then M satisfies the property (*1) if and
only if M is a standard sphere which lies in E3 or a Blaschke surface at a point which lies in
E4 of the form (1.15) and is diffeomorphic to RP2,
(3) Let M be a compact connected surface in ES. Then M satisfies the property (*}) if and
only if M is a standard sphere in E3 or a Blaschke surface at a point of the form (1.37)
which lies in E4 or a Blaschke surface at a point of the form (1.40) which lies in ES or a
Blaschke surface at a point of the form (1.32) which lies in ES. All such pointed Blaschke
surfaces are diffeomorphic to RP2.
(4) Let M be a compact connected surface in EM (m = 5). Then M satisfies the property
(*1) and (*3) if and only if M lies in E3 and M is one of four model spaces stated in (3).
(5) Let M be a compact connected surface in ES. Then M is a Veronese surface if and only

if M has a constant Gaussian curvature and satisfies the property (*1) and the base point is
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not umbilical.
(6) Let M be a surface in E3. Then M satisfies the property (*7) if and only if M is locally a
surface of revolution.
(7) Let M be a complete connected surface in E3. Then M satisfies the property (*7) if and
only if M is a surface of revolution.
(8) Let M be a surface in E3. Then the property (*1) is equivalent to (*3).
(9) Let M be a surface in E4 without isolated flat points in E4. Then M satisfies the
property (*3) if and only if M is locally a surface of revolution which lies in E3 or a surface
that locally has the form (3.15).
(10) Let M be a surface in E5 without isolated flat points. Then M satisfies the property
(*3) if and only if M is locally a surface of revolution in E3 or a surface in E# which has the
form (3.15) or a surface of the form (3.17) which fully lies in ES.
(11) Let M be a surface in Em (m = 3) without isolated flat points. Then M satisfies the
property (*3) if and only if M lies locally in ES and M is one of three model spaces stated
in (10).
(12) If an analytic surface M in EM satisfies the property (*3) whose base point is an
isolated flat point of degree p-1(p > 1), then M is locally of the form (3.25) and M lies in a
linear subspace of dimension < p+5.
(13) Let M be an analytic surface in EM. If M satisfies the property (*3), then M is one of
the following :

(a) M is locally a surface of revolution in E3,

(b) M is a surface of the form (3.15) in E4,

(c) M is a surface of the form (3.17) in E4,

(d) M is a surface of the form (3.25) in EP*S. In this case, the base point of the

property (*3) is an isolated flat point of degree p -1.
(14) Let M be a surface which is constant pseudo-isotropic in E‘: +1 With L =0. If M has
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planar normal sections, then Im ¢ is a 1-dimensional null space, that is, M lies in Ei 1°

(15) Let M be a constant pseudo-isotropic surface of a pseudo-Euclidean space ET with
S

index r (r =0, 1, 2) which has planar normal sections. If L =0, then M has planar

geodesics.
(16) Let M be a surface in a pseudo-Euclidean space E': with planar normal sections. If

M does not lie in a 3-dimensional affine space of E': and if the mean curvature vector field

H is parallel in the normal bundle, then M is an open portion of either a flat surface which
+k
locally lies in Ef'k (k = 2, 3) or a Veronese surface in Ef(3-r) or Eg_(r +1)21)
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