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ABSTRACT
BIFURCATION OF PERIODIC ORBITS OF
NONPOSITIVE DEFINITE HAMILTONIAN SYSTEMS
By

Yong-In Kim

In this thesis, we consider the bifurcations of periodic
solutions of a family of non-positive definite Hamiltonian systems of n
degrees of freedom near the origin as the family passes through a
semisimple resonance.

We begin with a smooth Hamiltonian H with a general semisimple
quadratic part H, and then construct a normal form of H with respect to
H> up to fourth order terms and make a versal deformation.

We apply the Liapunov-schmidt reduction in the presence of
symmetry and further reduce the resulting bifurcation equation to a
gradient system. Thus, the study of periodic solutions of the orginal
system is reudced to finding critical points of a real-valued function.

As an application, we consider a system with two degrees of
freedom in 1: -1 semisimple resonance by using suitable choices of the
parameters to study the bifurcation as the eigenvalues split along the
imaginary axis or across it and we obtain complete bifurcation patterns

of periodic orbits on each energy level.
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INTRODUCTION

This thesis is mainly concerned with the study of the
bifurcations of periodic solutions of a family of non-positive definite
Hamiltonian systems of two degrees of freedom near an equilibrium as
the family passes through the 1:-1 semisimple resonance.

We start with a smooth (Cw) Hamiltonian function H = H,+ Hj+ H,+

with a given normalized quadratic part

1 1
(0.1) Hz(z) = 5(xi+ y¥) - 5(x3+ y3)

and construct a normal form of H with respect to H, up to fourth order
terms and make a versal deformation of H, to study the corresponding
Hamiltonian system as parameters pass through the resonance at A = O,
where the linearized system has two equal pairs of purely imaginary
eigenvalues. In our case of 1: -1 semisimple resonance, the normal
form contains nine fourth order terms and the versal deformation
requires four parameters which is extremely difficult to perform
complete analysis about the dynamical behavior of the system as A
varies and so we restrict ourselves to the truncated Hamiltonian
containing only one fourth order term and to the codimension one
bifurcations by suitably choosing one parameter so that the eigenvalues
of the linearized system split along the imaginary axis or across it as

A varies across zero.



The study of non-positive definite Hamiltonian systems has been
little done so far and the informations about such systems are little
known.

In the case of a Hamiltonian with the normalized semi-simple

quadratic part of the form

n
1
0.2 Ho(x,y) = 3 5 A (x2% +y?),
(0.2) 2(x.y) 22 35+ ¥3)
N
Liapunov (1947) proved that if X, # Integer for all k # &
1

(non-resonance condition), there exist n one-parameter familes of
periodic solutions (see also Siegal and Moser [39], Hale [28]), and
later Weinstein [44] removed the nonresonance condition and showed that
if Aj > O for all j, there exist at least n distinct periodic orbits on
each energy level H(z) = ¢ for O < c <K 1.

The essential point in Weinstein’s proof is that the condition
of positive definiteness of the Hessian matrix D?H(O) implies the
compactness of the energy surface H(z) = ¢ for small ¢ > O and so one
can apply either a theorem of Krasnoselski or the theory of
Lyusternik-Schnirelman to obtain the desired result.

If the Hamiltonian is not positive definite, however, then the
energy surface H(z) = clis no longer compact and so the situation is
more complicated. Moser [39] presented an example in which D?H(0) =
diag (1, -1, 1, -1) and the Hamiltonian system possesses no nontrial
periodic solutions.

More significantly, Chow and Mallet-Paret [14] proved that if H



has the form

(0.3) H(z) =

[\

n

1

e b 3 e o,
j: +

N ™M

J

and is analytic, then the corresponding Hamiltonian system

z=Jv H(z), where J = [(—)I In]. In= n x n identity matrix
n 0

actually possesses at least |n—21| one-parameter families of periodic
solutions near the origin provided that there are no 2w-periodic
solutions on the zero energy level H(z) = 0. If & = n, then H(z) is
positive definite and clearly there are no 2r-periodic solutions on the
surface H(z) = O and hence this result recovers a part of Weinstein's
theorem. However, if £ = 12-1- eg., n = 2 and & =1 (i.e., 1: -1
resonance) then this result doesn’'t give any information about the
existence of periodic orbits and actually Moser’s example shows the
nonexistence of nontrivial periodic solutions.

Recently, van der Meer [35] studied the periodic solutions of a
family of Hamiltonian systems passing through the 1: -1 nonsemisimple
resonance by examining the fibres of the normalized energy-momentum
mapping by using the singularity theory of equivariant mappings.

In this thesis, we study the same 1: -1 resonance but the
semisimple case which has four parameters in a versal deformation of H,
and nine fourth order terms in the normal form in contrast to the
non-semisimple case which contains two versal deformation parameters

and three fourth order terms in the H,-normal form.



Moreover, our approach to examining the periodic solutions,
after normalization, is a local analysis by using the theory of
Liapunov-Schmidt reduction in the presence of symmetry and reducing the
resulting bifurcation equation to gradient system and studing the
critical points of the reduced gradient system. We use the Lagrange
multiplier method and take advantage of the equivariance symmetry of
the gradiant system to solve it in a closed form.

This thesis is organized as follows. In chapter 1, we give a
brief outline about the Hamiltonian systems and the theory of
Hamiltonian normal forms. In Chapter 2, we introduce the theory of a
versal deformation of linear systems and construct a versal deformation
of H, given in (0.3). In Chapter 3, we use the Liapunov-schmidt
reduction to examine the periodic orbits of a family of Hamiltonian
systems in a normal form and obtain a real-valued function whose
critical points correspond to periodic solutions of the original
Hamiltonian systems. The summary of our method will be stated in
Theorem 3.3.3 as a main theorem of this thesis. Finally, in Chapter 4,
we apply our method in Chapter 3 to the 1: - 1 semisimple resonance
problem with H, given by (0.1) under some restriction on the parameters
and nonlinear terms and obtain explicit bifurcation results which will
be summarized in Theorem 4.4.1 and Theorem 4.5.2. We conclude with a
remark about the extension to a nearby nonintegrable systems and other

possible methodologies to examine the periodic solutions.



CHAPTER 1: HAMILTONIAN SYSTEMS AND NORMAL FORMS

In this chapter, we will give a brief review of some basic facts
about the Hamiltonian mechanics, and normal forms of Hamiltonian
functions which form a background in the following chapters. Even
though we are mainly working on the Euclidean space m2n' the basic
structure of Hamiltonian systems will be given in the context of
symplectic manifolds since the phase space of a Hamiltonian system is
generally a manifold rather than Euchidean space especially when
constraints are present.

Most definitions and theorem will be stated without proof. For
the proofs and more detailed treatments of the above basic theories, we
refer to the textbooks of Abraham and Marsden [1] and Arnold [3] and

the lecture note of Cushman [22] and the thesis of van der Meer [35].

§1. Hamiltonian mechanics.

Let M be a smooth connected manifold.
Definition 1.1.1. A symplectic form w on M is a closed, nondegenerate
2-form on M, that is, dw = O and for each m € M, the skew-symmetric
bilinear mapping w(m): TmM X TmM -» R is nondegenerate (i.e.,
w(m)(vm,wm) = 0 for all w € TmM implies v, = 0.)

The pair (M,w) is called a symplectic manifold.



Theorem 1.1.2. Let @ € Q?(M), i.e., a 2-form on M. Then o is

nondegenerate iff M is even-dimensional, say 2n.

Definition 1.1.3. Let (M,0) be a symplectic manifold and H: M > R a
given <’ function, r > 1. The vector field XH determined by the
condition

(11:1) o(X.Y) = dH - Y

is called the Hamiltonian vector field with Hamiltonian function H. We

call (M.w.XH) a Hamiltonian system.

We will suppose H to be c” in the following. Note that the
nondegeneracy of  guarantees the existence of XH which is a Cr—l
vector field. Indeed, since w(m) is nondegenerate, the linear map

w#(m)i TmM - Tm*M defined by w”(m)(vm)~ W= w(m)(vm.wm) for all wo €

TmM. is invertible. Since dH(m) € Tm*M, we have
Kg(m) = oFm) ™ - aH(m) € T m.
Let %(M) be the space of smooth vector fields on M and 51*(}{) be

its dual space, i.e., the space Q'(M) of one-form fields on M.

For X € %(M) and w € Q*(M), define ixw € &*(M) by ixw(Y) = 0(X,Y). We

call ixw the inner product of X and w. Then, alternatively, we may

define the Hamiltonian vector field by the relation






(1.1.2) ix}{w = dH.

That is, for each m € M and each e € TmM.
dH(m) - Vo= (iwa)(vm) = w(m)(XH(m)‘vm).

The following theorem shows that the definition 1.1.3 is locally

equivalent to the classical one.

Theorem 1.1.4. (Darboux). (M,w) is a symplictic manifold iff there is

a chart (U,$) at each m € M such that ¢(m) = O, and with ¢(u) = (x'(u),

4 xn(u)‘ yi(), . . . y?(u)), we have

L i
olu=3ax" ~dy'.
i=1
The charts (U,¢) guaranteed by Darboux's theorem are called symplectic

3 3 i .
charts and the coordinate functions x are called canonical or

symplectic coordinates.

Theorem 1.1.5. Let: (X5 « 3% B M = s yn) be canonical

coordinates for w, so w = 2 dx, * dyi. Then in these coordinates

(1.1.3) Xy = [éy__' - 5



o I
}. Thus, (x(t). y(t)) is an integral curve of XH iff
0,

where J = [

I

Hamilton's equation hold:

proof iXHw =3 iXH(dxi ~dy) =3 (iXdei) Ady s Bhdi (iXdei)

GH SH
dH = 32 (a—xi dxi + a—yi dyi)

we have
SH
i i, dy, = - 5—
XH i 8)(i
that is,
dH
Xy = (G - =J - dH. 2z
) 3
Note that if M = [R2n. then we have global canonical coordinates

(xi.yi) and 0 = 3 d.xi 5 dyi. hence the Hamilton's equation in (IR2n. © =
>3 dxi B dyi) is globally given by (1.3), which is our classical
definition of Hamiltonian system. (1R2n,w) is called the standard
symplectic space.

The conservation of energy for the Hamiltonian system is given by the

following theorem.

Theorem. 1.1.6. Let (M.w,XH) be a Hamiltonian system and v(t) be an
integral curve for XH that is, %ﬁl = XH(‘Y(t)). Then H(v(t)) =

constant in t.



The next basic fact about the Hamiltonian systems is that their flows

consist of canonical transformaitons.

Definition 1.1.7. A C- map F:(M,0) - (M,0) is called a symplectic or

canonical transformation if Flo = ©, where F*: Q%(M) - Q*(M) is defined

by
»
(Fo)(m) (v W) = 0(F(m)) + (dF(m)+ v,. dF(m) + w)
for v_,w_€ T M.
m m m
Theorem 1.1.8. Let (M,w,XH) be a Hamiltonian system and L be the

local flow of XH. then, for each t, ¢:(.) = w, that is, @t is a local
one-parameter group of symplectic diffeomorphisms (on its domain).

Thus LN also preserves the phase volume nw (Liouville's theorem).

Theorem 1.1.9. If ¢ is a symplectic diffeomorphism of (M,w), then w*XH

for every H € Cm(M). That is, a symplectic change of

= *
X¢ H
coordinates maps a Hamiltonian vector field into a Hamiltonian vector

field with Hamiltonian ¢ H.

Definition 1.1.10. For X € %(M) and £ € C (M), define
Lf € (M) by (L £)(m) = dE(m)+X(m).

We call fo the Lie derivative of f with respect to X.

Note that if H € C*(R°™,0) with o ~ dy,. then

i




n
(1.1.4) Ix, =2 Gy, 3 " o, 3y

Now, we introduce the definition of Poisson bracket on Cm(M.]R) to

impose a Lie algebra structure on Cm(M,IR).

Definition 1.1.11: Let (M,w) be a symplectic manifold and let f, g €
C°(M,R). The Poisson bracket { , }: C (M) x C"(M) - C (M) is defined

by
(1. 1:5); {f.g}(m) = u(m)(Xg(m). Xf(m)) for each m € M.
Notice that from (1.1.1) and (1.1.4) and (1.1.5), we may write

(1.1.6) (f.g):dg-xf=fog=-Lx f.
g

Since w is skew-symmetric, so is { , }. Thus, in canonical coordinates

(xi.yi). {f.g} may be written as

(1.1.7) (.2} =; (%g—%-%gﬁf).

i=1 i i i i
From (1.1.6), it is clear that f is constant along the orbits of Xg (or
g is constant along the orbits of Xf) iff {f.g} = 0. Note that {f.f} =
O corresponds to conservation of energy for the Hamiltonian system
(M,0,f). We say that F € Cm(M,IR) is an integral for the system (M,w,H)

if {H,F} = 0.
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Definition 1.1.12: A Lie algebra is a vector space V with a bilinear
operation [, ] satisfying

(i) [X.X] =0 for all X € V and

(ii) [X,[Y.Z]] + [Y.[Z2.X]] + [Z.[X,Y]] = O (Jacobi identity)

for all X,Y,Z, € V.

Since { , }: Cm(M) X Cm(M) - Cm(M) is a skew-symmetric bilinear form
and satifies Jacobi identity, the real vector space (Cm(M.IR). 508

together with the Poisson bracket is a Lie algebra.

Theorem 1.1.13: ¢ is a symplectic diffcomorphism of (M,w) iff ¢

preserves Poisson brackets, that is,
td td kL
¢ {f.g} = {¢ f. ¢ g}

for all f.,g € Cm(M,IR)A Thus, vt* is a Lie algebra isomorphism on

C*(M.R).

The next fact is that Hamilton's equation may be written in Poisson

bracket form.

Theorem 1.1.14: Let XH be a Hamiltonian vector field on a symplectic

manifold (M,w) with Hamiltonian H and local flow 8 Then, for every f
®

€ C'(M.R),

d
THE 00 = (£ 0 =Ly (£ 4.
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In particular, if f = X; or y,. we have

. 3H
x, = {H.x,} = 34—,

(1.1.8) 1 L
. -3H
yi= By} = 3¢

So far, we considered the Lie derivative fo for f € Cm(M.R). We can

also define the Lie derivative LxY for Y € A(M).

Theorem 1.1.15: If X,Y € (M), then [LX‘LY] = LXLY - LYLX is an (R

linear) derivation on Cm(M,w). that is, for f,g € Cm(M,w), [LX.LY](f°g)

= ([Ly.LyIf)g + £([Ly.LyTe).

Definition 1.1.16: For X,Y € X(M), let [X.Y] = LXY be the unique
vector field such that L[X.Y] = [LX'LY]' We call LxY the Lie

derivative of Y with respect to X, or the Lie bracket of X and Y.

Notice that [ , ] is a skew-symmetric bilinear form on %(M) and
satisfies the Jacobi identity and hence the space of smooth vector
fields together with the Lie bracket (X(M), [ ., ]) forms a Lie algebra.

In the local coordinates, [ , ] is written as

(1.1.9) [X,Y] =DY « X - DX - Y.

The following theorem shows the relationship between the Lie

bracket of Hamiltonian vector fields and the Poisson bracket of smooth
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functions.

Th 1.1.17: For f,g € C'(M), [X..X.] = X
eorem P : or g » £ 'z = (f.g).

Thus, the space of Hamiltonian vector fields with Lie bracket (%,(M). [
]) forms a Lie subalgebra of the Lie algebra of all smooth vector
fields on M. The mapping p: Cm(M.m) - iIH(H) defined by p(f) = Xf is a

homomorphism of Lie algebras (Cm(M), {.}) and (ﬂH(M),[ S D 15
Definition 1.1.18: For each F € Cm(M,IR). define the map

ad: C'(M.R) » C"(M.R) by adiG = {F.G}.
We call the map ad: C"(M.R) - L(C"(M.R). C"(M.R)): F - ad the adjoint

respresentation of Cw(M‘IR) g

Notice that for each F € Cm(M,IR) adF is an inner derivation of Cm(M.[R)

since, by the Jacobi identity, we have
adF(G.H) = (adFG.H) + {G, adFH)

for all GH € Cm(M.IR). Also, because of (1.1.7), ad, has local

F

expression

Definition 1.1.19: For H € Cm(M.IR). the Lie series is defined formally
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as
© n
exp ad, = 2 —ad
anon. H

n n-1
where ad;_;: id, adH = adH . adH forn 2 1.

The Lie series is the essential tool for computing normal forms of
Hamiltonian functions. In the following some basic facts about Lie

series are stated.

Theorem 1.1.20: Let H € C"(R°",R) with coordinates (x.y) = (x,.

n
X ,¥,» - - - ,y_) and standard symplectic form w = 3 dx, ~ dy.. Then,
n’”1 n j=1 O i
(i) adH(x,y) = XH(x,y). where
adH(x.y) = (adel. .. ,aden. adHyl. . e, adHyn).

(ii) exp(t adH)°(x,y) is the flow of XH.
(1i1) For any F € C°(R°™.R), (F + exp ady)(x.y) = (exp (ady) = F)(x.y).

(iv) exp adH and exp adF commute iff {H,F} is constant iff [XH,XF] = 0.

Notice that the space {adF| F € Cw(IR2n,IR)} is a Lie algebra with

bracket [adF. adG] = ad or [XF,XG] =X if we identify the

{F.G} {F.G}
vector field X with its Lie derivative Lx' Hence, the set G = {exp
adFI F € Cm(len,lR)} forms a Lie group. Then, each one-parameter group

{exp t adFt t € R} forms a one-parameter subgroup of G. On the
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symplectic space (lR2n.w) each one-parameter group of symplectic
diffeomorphisms is the flow of a Hamiltonian vector field. Thus, we
have found all one-parameter subgroups of G because each generator of G
is a symplectic diffeomorphism which is the time one flow of a

Hamiltonian vector field.

Definition 1.1.21: Let (lR2n.w) be a symplectic space. A linear map
¢:IR2n - IR2n is symplectic iff w(¢v, ¢w) = w(v,w) for each v,w € IR‘?'n.

The set of all linear symplectic mappings of ([Rzn,w) is a Lie group

Sp(n,R) called the real symplectic group. A linear map A: 1R2n - [R2n is

infinitesimally svmplectic iff w(Av,w) + w(v,Aw) = O for every v,w €

lR2n. The set of all infinitesmally symplectic maps is a Lie algebra

sp(n,R) under the Lie bracket [A,B] = BA - AB. Note that A € sp(n,R)

A

iff e € Sp(n,R), which relates the Lie algebra to the corresponding

Lie group.

Theorem 1.1.22: Let ¢ € Sp(n,R) and A € C be an eigenvalue of ¢ of

multiplicity k. Then % N, _1-:are eigenvalues of ¢ (X = complex
A

conjugate of A) of the same multiplicity.

Theorem 1.1.23: Let A € sp (n,R) and A € C be an eigenvalue of A of
multiplicity k. Then, -A, A, -A are eigenvalues of A with the same
multiplicity.

2n

Definition 1.1.24: On (IR2n.w), the map ¢: G x R - lR2n is called a

symplectic action of the Lie group G on lR2n if for each ¢ € G, the map
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D x - $(¢,x) is symplectic.

. 2n . -
In a natural way, the action ¢ on R induces an action of G on

(R, R)

v: G x C(RPR) » CC(RZPR): (¢.H) > H - 0, -

we often write ¢ « H for ¥(¢,H).

Definition 1.1.25: A Lie group G acting symplectically on m2n is a

symmetry group for the system (Rzn,w,H) if
¢ - H=H for all ¢ € G.

Theorem 1.1.26: If F is an integral for the system (Rzn,w,H) i.e.,
{F,H} = O, then the one-parameter group {exp (t adF): t € R} given by

the flow of XF' is a symmetry group for (Rzn,w,H).

The converse of the above theorem also holds in the sense that each
symmetry group of a Hamiltonian system gives rise to an integral. To

make this precise, we first introduce the notion of momentum mapping.

Definition 1.1.27: Let ¢ be a symplectic action of the Lie group G on

(Rzn.w) with the Lie algebra L. The mapping J: R2n - L* is a momentum

mapping for the action ¢ if for every £ € L
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d
X. (x) = —(b(exp t £.x)
J(E) dt t=0

where the right-hand side is called the infinitesimal generator of the

2n

action corresponding to § and J(£) € Cw(IR ,R) is defined by

J(E)(x) = J(x) - E.

Theorem 1.1.28: Let d) be a symplectic action of the Lie group G on
2

(R n,w) with the momentum mapping J. If G is a symmetry group for

(R®™,0.H). then {J(E).H} = O, i.e. J(E) is an integral for (R°™,w.H).
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82. Normal forms for Hamiltonian functions

In this section, we will assume that H € c”(m2n.m) with H(O) = O
and dH(0) = O, that is, the origin O of m2n is an equilibrium point for
XH. The goal of normal form theory is to find an origin-preserving
symplectic diffeomorphism ¢ of R2n which preserves the Hamiltonian
character such that H in the new coordinates defined by ¢, i.e., ¢*H =

H +¢ is in the simplest possible form.

2n 2n

Let 9: (R™",R) be the space of all formal power series on R

beginning with terms of degree ~+ > 2, and 9j(m2“,m) be the space of
homogeneous polynomials on R2n of degree j. Let G be the Lie group of
all origin-preserving symplectic diffeomorphisms on R2n of the form id
+ ¢(2) where ¢(2) is an R2n—valued formal power series all of whose
components lie in 92+(R2nJR). The action ¢ of G on R2n induces an
action ° on yz(mzn,m) given by ¢ + F = ¢¢,F) = ¢*F for ¢ € G, F €
%, (B°".R). Let Qy(H) = {¢ - H| ¢ € G) be the orbit of H under the
action of G. Let C(H,) be a complementary space to QG(HZ) at H,.

Definition 1.2.1. Let H, H € $, (R°".R) and H = H, + Hy + ... with H,

€ QJ(Rzn.R). Then we say H is a Hp-normal form for H if H € QG(H) n

C(H,).

Note that the tangent space to QG(Hz) at H, is H, + adH 93+ because
2

for all F € 93+. t 2 exp t ad, is a one-parameter subgroup of G which

F

represents the tangent vector XF to G at id. Therefore, t = (exp t
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a.d.F) « H is a curve in Q(Hz) passing through H,. Thus, the set of

tangent vectors

d d
T |reo (exp tadp) + Ho = Gr | o & (t adp) H,

adF H,

- ad,, F

for all F € #,"(R°.R) is Ty Q(Hz) -
2

If Cm is a complementary subspace to the image of the linear map

adﬂzl 9'“: 9}‘m a?m: f - {(H.f} for all m > 3, then the subspace
[+

C=2C_of 9‘3+(IR2n.IR) is complementary to Im adH of 93+. See Figure
m=3 " 2

1.2.1.

X
/"""__\ Q(H)

' +
/ﬁz Am “AH,_PB t+H,

< Figure 1.2.1 >

The following theorem gives an algorithm for finding a formal power

series symplectic diffeomorphism ¢F which brings the formal power
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series Hamiltonian H = H, + H3 + ... into normal form. The normalizing
transformation ¢F is constructed by induction.

Theorem 1.2.2. Let H € 92+(m2n.m) and let H, # O be the quadratic part
of H. Then, for each m € N, m > 3, there exists a ¢ € G such that H =
H » ¢ is in the H,- normal form for H up to order m.

(proof) Suppose that H is in H, - normal form up to terms of degree

m-1 > 2, that is, suppose there is a F(m_l) € @3+ such that

(m) i o+i 7
H ¢F(m_1) H =H, + Hy + + 1 + Hm +
where ﬁ; = H, if m = 3 and ﬁ; € Ci for i =3,4,5, ... , m-1. For m 2

3, let Fm € 9m(m2“,m). Then we get

mm
m
= ﬁ(m) + ad ﬁ(m) + O(m+1)

H, + O(m+1).
m

n
5
+
il
+

.+ H +H + ad
m—-1 m

F
Therefore, the terms of degree m in the above are

Hm + adFmHz = Hm - adeFm.

Since # (Rzn.R) =C®Imad, | # , we may write H =H + H
m m 2 m m m

H m
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where i_ € C_ and H_ € im ady | . Since H € im ad, | # , we can
m m m 2 m m H, m

choose a F € $ such that adH F =H . With this choice of F_,
m m > M m m

m+1 x - - -
g(m+1) _ ¢Fm g(m) _ Hp + o + +H _ +H +0(m1),

that is, ¢F brings ﬁ(m) into H, - normal form up to order m. Thus we
m

have

wm+l) o 3% _ . % %
H - ¢Fm(¢F(m_1)H) - (¢F(m_1) ¢Fm) H = ¢F(m) H.

This completes the inductive step of the normalization process.
Repeating this step degree by degree gives a formal symplectic

diffeomorphism

= op -

3

¢

4

’¢F‘...=¢F
m

which brings H into normal form, that is,

¢; e H=Hy, + Hy + ... + ﬁ% ,
where H € C_for all m > 3. ///
m m
+
Since the normal form of H=H, + Hy + ... + H_ + ... € #, depends on

m

the choice of complement Cm to the image of the linear map adH | 9m= 9m
2

- @m for all m > 3, we need to know how to compute Cm in general case.
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We need some basic facts about linear maps from linear algebra. (See

Humphreys [29] , see also Cushman [22].)

Definition 1.2.3. Let V be a finite dimensional real vector space. A

linear mapping S: V - V is semisimple if every S-invariant subspace U

of V has an S-invariant complementary subspace W of V.

S being semisimple is equivalent to saying that S is diagonalizable on
the complexification of V. A linear mapping N : V - V is nilpotent if

there is an m € N such that N® = 0 but N" ! % 0.

Theorem 1.2.4. lLet A : V -V be a linear mapping. Then there are

unique simisimple and nilpotent linear maps S and N on V such that SN =

NS and A =S + N.

The maps S,N given above are called the S-N decomposition of A.

The following theorem is very useful in finding Cm in the normal form.

Theorem 1.2.5. Suppose A = S + N is a S-N decomposition of a linear

mapping A:V -» V. Then
(a) V=ker S® im S
(b) ker A = ker SN ker N

(c) im A = im S ® (im N N ker S).

The following shows that Theorem 1.2.4 also holds in sp(V,R).



Theorem 1.2.6. Suppose that A: (V,w) = (V,w) is infinitesimally
symplectic and has an S - N decomposition A =S + N. Then S and N are

also infinitesimally symplectic.

Now, the S - N decomposition A = S + N in sp(V,R) propagates
into the space (%, { . }) and (gl(?m.R), [ . ])- That is, using the
Theorem 1.2.6 and the isomorphism p : (%,.{ , } ) = (sp(V.R)., [ . I): f
- Xf of Lie algebrgs, every H, € %, has a corresponding S - N
decomposition H, = S, + N, with {S,,N,} = O and S,,N, € %$,. Further,

the map ad(m): ?, - gl(@m.m): f - adfl 9m = fol 9m is a representation

of Lie algebra (#,, { , }) into the Lie algebra (gl(@m.m). [ .]) and

hence if H, = S, + N, is the S - N decomposition of H, € #,, then adH |
2

$ =ad, | $ +ad, | # is the S - N decomposition of ad % . From
m S, "m No! “m m

H, |
this fact and Theorem 1.2.5, we have the following important criterion

for computing a H,- normal form for H.

Theorem 1.2.7: Let H =Hp + Hy + ... + H + ... € Ca (R°™,R) and let
m

Hy =S, + N, be the S - N decomposition of H,. Then, H is in norm form

(m) A

with respect to H, iff Hm € Cm where Cm is a complement to (im adN
2

(m) ; (m) (m) _
ker adSz ) in ker adS for every m 2 3, where adN2 = adN2| 9m

> [4

etc.
proof By the definition of Cm. and Theorem 1.2.5(C), we have

$ = im ad™e C
m H, m
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= im adéz)Q (im adéz)n ker adéz)) ®C .

Since ad (m) is semisimple, # = im ad (m) ® ker ad (m). Hence,
S2 m Sz Sz

ker ad (m) = (im ad (m) N ker ad (m)) ® C . Thus, C is a complement
S, N, S, m m

of (im ad (m) N ker ad (m)) in ker ad (m). Va4
Nz Sz SZ

Notice that if H, is semisimple, i.e., H = S; and N, = O, then

we may take Cm = ker adsim). Hence, if H, consists of only semisimple

part S,, then we can say that the formal power series H =S, + Hy + ...

+H + ... is in S, - normal form iff H € ker ad, | # for all m > 3.
m m 2 m

S
- ® - 2n -
Recall that we can bring an H = H, + ... + Hm + ... € Co(R™,R) into

S,- normal form by a symplectic diffeomorphism ¢F = exp adF * exp adF
3 4

s ... exp adF ..., where Fn € 9n(n 2 3). At each step, exp adF is
n n
determined up to terms of F_ in ker ad(n)(i.e.. F =F_ +F_, F_ € ker
n S, n n n’ n

adéz). ;n € im adé:) and ?; may be arbitrary.). Starting with n = 3,
this freedom of choice of f; may lead to different S, - normal forms up
to order > 3. However, these S,- normal forms can be transformed into
one another by a symplectic diffeomorphism. Thus, the S,- normal form
is essentially unique.

Let 4(S;) = ker adszl 92+. Then, since #(S,) is closed under -
and { , } and since ad82 is a derivation of (92+.°). (4(S2).*. { . })
is a Poisson structure, that is, (4(S;)., °* ) is an associative algebra
with unit over R, while (#(Sz), { . }) is a Lie algebra. We call
(4(S2), * ) the Birkoff algebra of S,. The main goal of the semisimple

case of normal form theory is to describe the Birkoff algebra, because

then we know what power series appear in the normal form. The only






known general fact about the Birkoff algebra #(S,) is the following.

Theorem 1.2.8. If the semisimple Hamiltonian vector field XS
2
corresponding to S, has pure imaginary eigenvalues, then #(S;) is

finitely generated. (For the proof, see Cuchman [22]).

Now, in order to determine the Birkoff algebra #(S,) = ker ads
2
for a specific semisimple quadratic Hamiltonian S, where XS has purely
2
imaginary eigenvalues, we will need to know a normal form for Xs on a
2

symplectic vector space (V,w).

Theorem 1.2.9 (Cushman [22]). Suppose H, = S, and XS has pure
2
imaginary eigenvalues tiaj. Then there is a basis {el. EEERRL fl‘
i fn) of (V,w) such that the matrix of w“: V 5 V* defined by

wn(e) ce' =uw(e,e') is

w(e, e w(e,,f) [0 -1
Rl S L, A T o Y B
w(fi,ej) m(fi,fj) - In (0]

and

n
1

Sa(x.y) =5 3 e.a.(x2+y?),
20 33T

where ej =+1, (:L.j > 0 and iejaj are the eigenvalues of Xs . Thus the
. 2

matrix of XS with respect to the above basis is
2
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€404
o €202
st = €%
—€4104
—€205
0
“én%n 777

Now, assuming that st has pure imaginary eigenvalues + iaJ. and
is in the normal form given in Theorem 1.2.9., we can compute the
Birkoff algebra ker ads2 as follows.

Let (x,y) be coordinates on IR2n corresponding to the basis given
in Theorem 1.2.9. Introduce complex conjugate coordinates

z‘j = xj + iejyj. zZ= xj o iejyj

for § =1, ... ;niwhen eJ. are those given in the normal form of XS ¥
2

Then the linear operator

sadg= 3 e (Va0 - x5
E S %553 ™ gy

Sz J

I M3
L

becomes in (z,z) coordinates

n

a —a
v =ady =-12a(z2=—-2—)
LXs2 Sz jo1 9030k T

n ~
2 eAaJ. zj;. and Xg is the complex vector field
= 2

& 1
he S, =3
where S, 211 j 3
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'J——Zi?—iz-=-is.a.zj
9z, JJ
J
;=2i§z-=1ea; for j =1, n
3 9z, 3737

2n o . ik _ N
The space i’?m(!R ,R) is the real space of the monomials x“y = Xy
‘jn kl kn
A e In complex conjugate coordinates :’7“‘ corresponds

to the space of Hermitian polynomials @m(czn. C) which is the

j=k j n —kl =n
Hermitian span of the monomials zJ = zl‘]l S22
~ o e b
that is, P (z.,Z) = 3 C,z'zZ°€ ® if and only if C,, =C ..
“ 131+ lic|=m 3% : s ™
Applying the operator ads'” to the nomomial basis z‘jzk.
2
adg = T () B IR
2
5 5 : n
whereJ—(Jl, Sis Jn),k-(kl. k kn)€Z+. a-(aI‘ 4 an)e
R™ and < , > is the inner product on 1R2n with norm | | Therefore,
3 s
ker ady = { 3 ¥ €2’z [ <j-kad>=0and T, =
2 m=2 |j|+|k|=m I d

Gy

The relation
<J-kia>=0

is called the resonance relation corresponding to Xg 1
R e 2






The corresponding space of real formal power series in C:([Rzn,[R) is

ker ads2 .

The normal form theory in the case of H, = N, where N, is a
nilpotent quadratic polynomial on (IRzn, px d.xJ. e dyj) is a little more
complicated. By the theorem of Jacobson-Morosov, we may embed N, into
a subalgebra of (ﬂ‘z(len,IR). { . }) which is isomorphic to s&(2,R), that
is. there are M,, T, € %, (RZ™.R) such that {T,.N,} = N,. {T,.Mp} =
-2M,, {N»,M;} = T,. Then the finite dimensional representation

ad™: (9.0, ) > @@, ®. [ . D £ >ad™
of Lie algebras restricts to a finite dimensional representation of

sé(2,R), that is, we have the corresponding commutation reelations,

T A R asz("‘). [ade(‘“), aduz(m)] = -2 adM2(m).

- ad.[.z(m).

From the representation theory of sf(2,R), we have

2
[asz(’“). adM2(m)]

m) g 4 (m) _
ker adM2 ® im adN2 = i’?m

for every m 2 3. Therefore, we can say that the formal power series
Hamiltonian H = N, + Hy + . . . +Hm+ . . . is in N, - normal form iff

H € ker ad, ™ n ker ad{for all m 3 3.
m Mo S,

In analogy with the Birkoff algebra in the semisimple case, we
call the algebra W(N,) = (ker adM , * ) the top weight algebra of N,.
2

Also, as a first step in constructing an explicit embedding of N, into
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s (2,R) we need a normal form for nilpotent infinitesimally symplectic

linear mapping XN . Since in this thesis we need only the S, - normal
2

form, we omit the further details about the N, - normal form theory.

(See Notes on Normal form theory, Richard Cushman 1985, Normal Forms

and Symmetry, Sanders 1985).
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CHAPTER 2: VERSAL DEFORMATIONS OF QUADRATIC HAMILTONIANS

To construct a versal deformation of H,, we need to know a

versal deformation of XH in sp (n,R). In Section 1, we will treat
2

briefly the theory of versal deformation of linear systems and in

Section 2, we construct a versal deformation of H, given in (0.3).

81 Versal deformations of Linear Systems

The reduction of a matrix in gé(n,R) to its Jordan normal form
or a matrix in sp(n,R) to its normal form is an unstable process since
both the normal forms themselves and conjugating transformations depend
discontinuously on the elements of the original matrices. In this
section we introduce the theory of versal deformtions for finding the
simplest possible normal form (so called miniversal deformation) to
which not only one specific matrix, but an arbitrary family of matrices
close to it can be reduced by means of a mapping smoothly depending on

the parameters. For further details see Arnold [2][5] and Kocak [30].

Let L be a real Lie algebra with its corresponding Lie group G,

e.g.,L may be g&(n,R) or sp (n,R) with G = GL(n,R) or Sp(n.R). Let A
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€ L and Ak be a small neighborhood of the origin of Rk for some integer

k.

Definition 2.1.1 A deformation A(A) of Ao is a smooth mapping A: Ak -
L such that A(0) = Ao. A deformation is also called a family, the
variables Ai parameters and the parameter space A = {A} a base of the

family. Similarly, we can define a deformtion of an element of G.

Definition 2.1.2 Two deformations A(A) and B(A) of Ao are called
equivalent if there exists a deformtion C(A) of the identity e of G

with the same base such that

A(A) = C(A) B(\) ¢ (A), c(0) = e.

Let ¢: Ae - Ak be a smooth mapping with ¢(0) = O. The mapping ¢

of the parameter space A% = {1} into the base of the deformation A(A)

defines a new deformation (¢*A)(u) of Ao by composition.
%
(¢ A)(u) = A(e(n)).
The deformation ¢*A is said to be induced by A(A) under the mapping ¢.

Definition 2.1.3. A deformation A(A) of Ao is called versal if every

other deformation B(u) of Ao is equivalent to a deformation induced by
A(A) under a suitable change of parameters, i.e., if there exist C(u)

and ¢ such that
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B(n) = C(u)A($())C *(u) with C(0) = e, #(0) = O.

A versal deformation A(A) is called universal if the inducing
mapping ¢ is determined uniquely by B(p). A versal deformation is said
to be a miniversal if the dimension of the parameter space A = {A} is
the smallest possible for a versal deformation.

These miniversal deformations are normal forms with the smallest
possible number of parameters in the reduction to which the smooth
dependence on the parameters can be preserved.

Now, in the following we introduce the important fact that a
versal deformation A(A) of Ao is the mapping A transversal to the orbit

of A at A = 0.
o
Let Q be a smooth submanifold of a manifold L. Consider a
smooth mapping A: A - L of another manifold A into L, and let A be a

point in A such that A(A) € Q.

Definition 2.1.4. The mapping A: A - L is called transversal to Q at A

if the tangent space to L at A(A) is the vector space sum of the image
of tangent space to A at A under A and the tangent space to Q at A(A),

i.e.,

L=A*TA+T

Aoy A+ T

where A_: T7\A =T L is the push-forward of the map A.

A(N)
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Now, consider a Lie algebra L with the corresponding Lie group
G. The Lie group G acts on L by conjugation, called the adjoint action

as follows.
-1
Ade=glg (2€G, 2eL).

The orbit Q(Ac) of a fixed element Ac € L under the action of G

is a smooth submanifold of L defined by
-1
QA = (AdJ.AO =gAg | g €G).

Theorem 2.1.5 A deformation A(A) of Ao is yversal if and only if the
mapping A is transversal to the orbit of Ao at A = 0.

For the proof of this theorem, see Arnold [2].

Our next problem is to determine the mimimum number of
parameters for any versal deformation of Ao € L. From Theorem 2.1.5 we
know that in a versal deformation of Ao the number of parameters is
minimal when the vector space sum in the Definition 2.1.4 is a direct
sum. Consequently, this minimum number is equal to the codimension of
the orbit of Ao in L. The next argument shows that the direct sum
complement of the tangent space of the orbit of Ao is the centralizer

of Ao in L if ad is a semisimple linear mapping of L. Let us

A
o

elaborate on this.
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Let Ao € L where L is a Lie algebra with its Lie bracket [ ].

Definition 2.1.6. The mapping adA : L » L is the endomorphism of L
o

defined by

adon = [X.A_] for all X € L.

The kernel of this endomorphism, ker adA = {X €L | [X,Ao] = 0}, is
o

called the centralizer of Ao in L.

Theorem 2.1.7. The tangent space TA Q(Ao) of the orbit of Ao at Ao €L
o

is equal to ImadAo in L.

proof. Consier the mapping for a fixed Ao €L,

. . -1
AdAo- G-L:'g e'ngg .

The image of Ad is the orbit of Ao in L under the action of G.

A
o

Note that the derivative of Ad, at the identity element e € G is the

A

o

linear mapping (AdA )*Z TeG > TA L. defined by
o o

tX)

(etXA e
o

d
d t=0

(AdAo)x' X tl

[X.A,]
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=ad, * X for all X € L.

Since TeG and TA L are isomorphic to the Lie algebra L, the above
o

calculation shows that

A -

(AdA )* = ad
(o] (o]

Therefore, TAOQ(AO) = Im (AdAo)* = Im adAo. /77

Notice that since adA is an endomorphism of L,
o

dim L = dim (Im adA ) + dim (Ker adA ).
o o

Hence, the dimension of the centralizer of Ao is equal to the
codimension of the orbit of A0 in L. Thus, the problem of constructing
a miniversal deformaiton of Ao is reduced to finding a direct sum

complement to Im adAo in L.

Now, let us consider the problem of finding a versal deformation
of H, in the space 92(m2“,m) of homogeneous quadratic polynomials on
m2n. We already know that the Lie algebra (sp(n,R), [ . ]) is
isomorphic to the Lie algebra (#,, { ., }) by the isomorphism p: H, -
XHz' Hence, if Ao = XHz € sp (n,R) and has a S - N decomposition, then

H, has a corresponding S - N decomposition H, = S, + N, with {S,;,N;} =

O and S,, N, € $,. Furthermore, since the map ad(2)= P, - g8(%,,R): H,






- ade Igz = LXH2l #, is a representation of Lie algebra (%#,, { . })

into the Lie algebra (gé€(%2.R), [ . ]). ad $, also has a

H, |
corresponding S - N decomposition ad,, | #, = ad, | #$, + ad, | %..
Ha Sz N2

Let Sp(2,R) act on #, by composition. Then, the tangent space

to the orbit of H, at H, is given by Im ad Thus, to construct a

Hy~
miniversal deformation of H, we have to determine a direct sum

complement to Im ade. If H, = S, + N,, then from the Theorem 1.2.5(c)

and Theorem 1.2.7 such a complement C, is given by the complement of
(Im ady @) N ker ad. @)y in ker ad. (®). 1In particular , if H, = S,
N> Sz Sz
(N2 = 0) then C, = ker ads (2) in #,. The ker ads (2) is just a Lie
2 2

subalgebra of %, isomorphic to the centralizer of X i.e., ker adx

S2 S,

in sp(2,R).

If H = S; + N, (N, # 0), then to find the complement of Im asz
in ker adSz we embed N, into a subalgebra of (%,, { ., } ) which is
isomorphic to s£(2,R) and is spanned by N,, M,, T, € %, with the
commutation relations: {T;,N;} = 2N,, {T;.Mp} = - 2 My, and {N, ,M;} =

T,. Then the finite dimensional representation

ad®: (@, (. }) (@@ [ D H o ad, O

H

of Lie algebras restricts to a finite dimensional representation of
s¢(2,R) and has the corresponding commutation relations. From the

representation theory of s&(2,R), we have
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- (2) g ; (2)
%, = ker adM ® im adM .

2 2

Hence, the complement C, of im adN2(2) in ker adsz(z) is given
by

C, = ker asz(z) N ker ad82(2)'
Since in this thesis we only consider the case H, = S, (N, = 0) we omit
the further details for the nonsemisimple case. See Cushman

[18,19,20,21,22] and Van der Meer [34,35].

§2. Computation of Versal deformation of H,

Consider a Hamiltonian H € C" (Rzn. R) with H(O) = dH(0) = O,

H(x.y) = Ha(x.y) + Hg(x.y) + He(x.y) + .

2n
where z = (x,y) = (xl, coe e Xo Ve e e yn) €R

Hj(z) = a homogeneous polynomial in x,y of degree j, and

Ho(x,y) is the nonpositive definite quadratic form given by

n
1
2+y%2) -5 3 x2 + y?) =
(3 +¥3) -3 j=8+1( A

Nf—

1 2
(2.2.1) Ha(x,y) = 5 3

j=1

where A is 2n x 2n real diagonal matrix of the form






(2.2.2) A=diag (1, ... 1, -1, ..., -1, 1, ..., 1, -1, ..., -1).

Now, we try to find a versal deformation of H, given above. For each H

€ ¢ (B™.R). consider the adjoint map ad;: C (R°™.R) » C°(F°™.R)

defined by

N GH 8 O8H 4
(2.2.3) ad, = 3 ( - ) = {H.*}
H= 20y, &, Bx; By,

where { , } is the Poisson bracket on the Lie algebra (Cw([R2n. R), { .

}). Then from (2.2.1), we have

4 n
d dJ dJ d
(2.2.4) ad; = Z(y. 53— -"x.57) - 2 (Yg— - X.37).
Ho j=1 3 axj J ayj j=o+1 Jaxj Jayj
Letz.:x.+i..;.= - iy., i =1, . . ., .
§T Xy Ey =Xy o vy n)
In complex conjugate coordinates (z,z) = (zl, Coe e Zps ;1. e,
Zz_), we have
n
~ _ 1 2 _ 1 0
Hy(x.y) = Hx(z.2) =5 2 z.z, -5 2 z.Z,.
2421 392 jop T
4 n
— a — a - 4
(2.2.5) ady(z.z) =-1i |2 (zgg—-2,—) - 2 (z,30—-z,—)]|-
Hz j=1 9975 Jazj j=es1 9% Jazj

Let QPm(z,;): the space of real homogeneous polynomials in z,z of degree
m.
Let Pm(z.z) € ?)"m(z,z).

Then we may write
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R I S
where za§6 = zTizzz R zZnEf’ e Eﬁn and

lal + 18] = (aj+ . . .+ )+ (By+ . - .+ B).

aj, Bj = nonnegative integers (j=1, . . ., n).

Applying the operator adH to the basis monomial zaEﬁ. we have
2

n
& (%P = -1 | S (@-B) - 3 (a.-B)| D).
aHZ(ZZ) i L’=1(a3 J) j=8+1(a‘] J) ( )
Hence,

za;ﬁ € ker ad};
Ho

P if and only if
m

8 n
(a) 2 (a,B.) - 2 (a,-~B.) =0and
(2.2.6) j=1 J j=e+1 J J

(b) la| + |B] = m.

Now, we compute the Hilbert generators za;_ﬁ for the Birkoff algebra

ker adﬁ % in order to construct the versal deformation of H;(x.,y).
2 2

Now, the conditions (2.2.6)(a), (b) can be rewritten as

@ n @ n
Sa,+ 3 B.= 3IB.+ 3 a,
j=1 9 j=e+1 Jd j=1 9 j=esa1 d

n 2 n
a,+ 2 a+ IB.+ I B.=m.
19 j=es1 d j=1 0 jzer

2
2
L J=
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Let a' = (al, e ae). a'' = (ae+1.
B' = (By. - - -. Bp)s B = (Bpyy
|a'| =t .4 apy. etc.

. an)

. B)

Then, the conditions (2.2.6)(a), (b) can be written as

{ (@) la'|+ || =18"]+ |a"]
(2.2.7)

() la' |+ fa [+ 8|+ ] =m

Now, For m = 2<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>