
W
2
1
1
)

.
.
A
.
A
.
.

.
b
»
.
A

‘
v
L
m
t
u
h
fi
Z

,
5

A
. E
d
d
a
.
.
.
)

_

.
.

n
m
m
x
e
.

1
.

A
.

.
u
¢
.
o
~
.
1
.
3
.
r

1
1
¢

A

..
.

$
1
4
3
1
.
5
4
A
3

,
6
3
,
4
9

A
A

.

.
.
.
s
a
l
a
i
r
r
fi
e
f
f
e
3
u
a
f
fl
u
fi
.

,
i
n
?
?
?

A
5
m

J
“

A
$
3
.
3
3
4
}
?
?
?

7
«
a
.
.
1

A
,

1
.

.A
A
3
1
.
9
.
1
4
“
!

.
fi
n
a
l
‘
u
o
r
fl

A
A

..
p

,

.
A
:

t
2
1
.
9
3
4
.

.
.
A
.
!
1
I
!

1
4
.
0

i
£
1
4
6
.

a
.
.

.
.

I
~
T

N
A

a
r

m
m

‘
:
0
.
"

A

i
f
h
t
r
.1
c
h‘A
fi
j
fi
v
h
p
c
h
k
fl
h
t
x
v

A
A

X
‘
r
u
l
i
i
i
l
d
fi
n
n
fi
d
u
fl
a
'
g
s
;

.
w

..

v
1
1
1
fl
.
.
.
fl
!
.

3
q
u
3
;

1
3
1
.
.

1
.
.

..
z
A

1
1
1
3
.
.
.
L
1
4
1
.

.

$
1
1
3
1
.
4
3
?

r
1
1
1
1
4
§
I
1
A

.
.
.

5
.
1
3
.
1
1
!
I

1
4
1
1
1
1
.
1
3
,

A
.

A
3
.
.
.
?

,

A

.
4
1
3
}

#
9
4
1
1
}

A
.

€
5
4
.
3
1
:

1
.
3
3
.

_
V
J
.

.
.

.
A

H
.

.
u
v
i
fl
.
f
1
u
h
.
3
_
1
1
7
.
l
.
.
.
1
x
.
h
«
.
i
i
\
l
fl
v
o
w
u
w
W
K
.

,
.

,

1
.
1
.
.

.
1
1
1
.

fi
r
.

A
a
t

A

1
.
0
.
1
3

A
v
a
-
l
a
w
n
“

lA
1
6
1
F
3
1
3
.
9
4
3
1
1
3
.

.
E
I
A
.

.

A
i
fi
§
4
.

1
.
4
2
2
“
”
«
v

.
:
i
w
u
a
fl
x
v
a
w
F
fl
v
x
i
c
.
.
€
§
$
}
.

A
A

h
a

3
3
;
»
.
‘
1
4
.
.
.
4
1
4
3
3
3
3
.
:

.
J
a
d
a
-
(
‘
4
.
.
.

,
.

,
A

7

,
L
I
L

i
v
o
u
v
l
u

.
3

a
n
s
“
;

”
m
a
m
m
a
r
y
!

n

,
.

.
.

A

.

A

A

A

.
b
.
g
.

A.
2

.A

.
..

A
.

A
?

f
i
s
fi
fi
u

.
v
1
?

?

,

.
..

A
.

«
U
L
.

..
c
.

9

A
.

.
:
1
3
?
.
.
+

.
.

.
.

..
.

A

.
7
k
:
1
%
?

A
A

,
A

A
.
5
1
.
.
.

1
r
.
-
v
.
v
u
.
§
.
fi
f
.
fl
j
i
‘

7
7
1
.
9
9
.
:

I
n
”
.

A
AA

A
3
1
3
4
.
4
4

.
A

r

gamut“

Y
’3

' 4

x‘l

.
1
!
)

l
}

$
9
3
1
.
!

A
.

3
.
1
2
7
4
3
5
.
1
;

.
.

.
..

A
J

A
I
C
I
A

A

.
m
4
.
?
a
3
i
l
t
l
f
4
6
}

A
..

1
.
c
h
#
1
:
:

5
1
1
.

£
1
1
.
:
1
4
1
.

7
.
3
.
q
u
I
l
i
n
fl
l
x
.
.
.
v
!
;
/
3
.

r

v
)
3
%
.
,

.
1
1
1
.
1
.
.
I

..
.
I
t

A
«
A
l
l
:

.
1
:
7
.
.
.
t
fl
:
.
7
1
l
.

A
.
I
I

.
7
4
.
.
.
.
1
5
.
1
.
3
1
;
9
4
3
.
1
3
1
.
.
.
5
1
1
.
3

‘
1
3
.
?
r
u
n
-
(
1
1
3
4
4
4

.
7
.
)
V
a
.
.
.
1

J

J
.
J

.

.
3

.
i

f
g
fl
fl
u
fl
p
fl
u
v
fi
fl
.

.
.

7
1
1
1
.
0
1
.
4
1
.
1
4
!
!
!

{Hi

:5

1
9
3
.
6
5
4
.
?
!

1
:
.

i
f
;

1%.“ .

’: (Alf
;-,.V g

A. I‘}

. .

7
7

.
A

v
1
3

.
«
J
;

.
.
1

.11 .»

Eff“

111+:

-

R
s
:

.
.

2
.
.
3
.

4
.
.

I
.

.
v
.

P
A
:

I
f

.
1
.
fl

.
A
.
~
.
.
§
>
r
.
.
.
i
t
}
:

fi
n
d
:
J
fi
t
x
fi
c

s
.
.
.
“

2
.
x
.
)

:
3
3
.
»

E

.

c

A
A

,

L
i
’
i
t
p
m
v
b
‘
f
c
r
‘
£
5
.

1
3
;
.
.
.

.
5
y
I

i
.
I
.

A
.

\
K

l
a
‘
t
fl
f
‘
{
f

a
i
t
.

.
I

’

g
i
t
»
?
!

i
r

.
A

4,3:;

ii;-

1
:

{
f
i
r
a
u
N
H
u
h
l
l
f
p
fl
w
fl

g
l
o
a
t
fl
i
l
l
d
l
l
l
r
i
c
t
’
l

1
.
9
a
}
!
h
n
N
U
L
o

.
4
.
J
“
.
I
P
;
.
0
¢
.
4
.
7
1
.
3
.

E
1
5
1
4
.

w
i
n
c
h
”
.
n
u
n
/
.
1
3
.
.
.
.

A
4

o
9
.

1
a
h
”
.
.
.
.
?
.
.
.
.
.
u
l
.
.

x
i
i
Q
’
I
J
A
J
o
/

5
“
’
:
I
J
’

1
.
4
.
.

‘
1
1
.
.
)

1
"
’

.
‘
‘
‘
‘
‘
‘
‘
1
'
;

.
1

u
.

.
2
.
9
.
,
l
v
u
f
0
0
1
3
9
1
‘
1
L
A

4
“
1
w
,

£
1
4
1
.
.
.
.
s
a
l
i

w
a
i
’
t
?

f
.

.
t
a
)

J
‘
r
fl
r
v
f
i
f
o
.
.
.
I
z
h
z
c
fi
a
N
P
N
-
f
u
u
i
v
.

.
.

7
.
.
9
4
.
0
4

S
i
n
k
}
.
.
.

.
.
5
q
u

.
.
c
v
u
.
-
I
n
»
.

.

I
$
3
.
0
4
!
“
l
g
r
t
r
o
fl
1
.
4
0
.
3
}
J
u
d
i
.

A

.
.
A

.
r
.

.

$
4
”
)
.

.
fi
l
l
.
”
1
1
,
.
"
“
N
C
O
”
.

.
A
.
§
.
I
c

9
.

N
V
”
.

.
X
u
a
t
.
t
i
b
m
1
"
%
.
.
w
i
w
fi
fl

6
N
H
.

.
1

A
\

.
1

0
1

I
A

A
A
I
D
-
2
1
9
1
,
5
4

1
4
5
1
1
!
!
!

.
I
f
.

.
5
:

.
‘
o
n
u
fl
c
c

AA
.

\
‘.
.A
..

1
.
v
€
>
§

’
-

a
;
{
c
a
n
}
!

I
:

.
A

A
5

.
t
5
.

A
n
x
v
u
w
}
\

A

.
A

3

A
N

v
u

..
.
1
1
0
1
}
.
.
.

,
r
m
m
g

.
.

A
v

£
1
.
1
3
.
.
.
-

A
I

t
.A
.

,
x

i
n
?
!

A
r
t
i
s
t
.

.
.
A

AA
a
l
i
a
s
,

A
a

.A.
..

«
A

.
A
3
3
;

:

a
n
“

.
n
u
:
H
t
.
“

.
t
h
t
v
‘
.

1
.
:

4
‘
;

V
.
3
.
a
n

.
A,

W
I
N
”
.
.
.
—

A

t

.
M
.
»

.
S
E
T
.

i
x

c
h
.

é

r
.
‘
A
f
f
\
t
¢
€
§
.
c

.
3
‘

8
‘

t
.

I
x

A
)
7
:

,
A
t
.

t
:

t
2
;

‘
r
fi
a
r
k
l

.A
(
A

5
!
»
:

,
k
i
l
n
.

m
“

u
§
a
§
fi
f
m
~
u
f
u

L
.
2
.

$
5
0
.
.

A
a.

.

..

fi
s
é
fi
f
’

.
r
.

n
,A

A
s
u
e»

.
A

.

..

.

.
A
.

R
.

1
1
—
1
.
:

1
.
4
0

:
i
I
J
Q
V
r
6
1
2
1

I
i
”

1

2
;
;
A
1
A

3
.
4
.
.

b
e
m
n
a
x
x
w

.
.

.
3
1
4
:
1
?
3
1

A
f
.

M
:

A
:

3
9
1
1
.
4
1
.
1
3
.
.
.
I
l
i
v
q
a
i
v
u
u
.
,
r
fl
fl
i
.
¢
1
.
a
fl
l
i
u
o
v
d
fl

.
V
-

c
:

1
1
.
4
9

4
;
.
J
’
A
fl
t
a
.
.
i
s
&
t

d
i
f
é
b
fi
fi
t
l
fi
u
b
u
é
3
7
.
4
.
3
.
9
;
2
4
.
1
.
1
1
:
3
s

a

’
4
‘
.
1
4
I
T
C
I
V
I
“
‘
.
“
D

t
‘
.
’

'
-

.
2
"
.
I
A
I
I
A
-
J

.
1
.

J
3

I
:

.
3
1
:

1
.
.

.
A

.
.
.
.

X
f
i
r
fi
v
t
r
u
q
fi

.
.

3
4
:
4
4
:
1
9
.
.
.
I
.

.
a
t
J
a

.
I
g
r
t
i
z
fl
fl
v
h
r

A
:
4
“
‘
l
n
l

V
'
I
‘
.
‘

Q
A
T
‘

1
:

.
.

a
.

.1
.

4

M8?
't-J} ..

3;“:

{4? A1}: 4 .
‘e’nfi’ Q39

35%;"; :é-Aagz- .

 



‘23.»? x _-«.
an

t .

' ‘. A , x

‘l

finanemjay .4;
I

--"'".."W

i
a. A__ ~ ._ -v..o-D—.-.

gm

This is to certify that the

dissertation entitled

BIFURCATION OF PERIODIC ORBITS OF

NONPOSITIVE DEFINITE HAMILTONIAN SYSTEMS

presented by

Yong—In Kim

has been accepted towards fulfillment

of the requirements for

 

Ph.D. degreein Mathematics

{b/kl, (/st
 

Major professor

Date November 13, 1986

 

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771



MSU

  

 

  
LIBRARIES

”—

 

RETURNI
NG MATERIA

LS:

lace in book rop to

remove
this checkou

t from

your record.
FINES will

be charged
if book is

returne
d after the date

stamped
below.

 



. 9‘"

f-

a

l-



BIFURCATION OF PERIODIC ORBITS OF

NONPOSITIVE DEFINITE HAMILTONIAN SYSTEMS

By

Yong-In Kim

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Mathematics

1986



  



A
”
;

I
»
m
e
s
s
»

ABSTRACT

BIFURCATION OF PERIODIC ORBITS OF

NONPOSITIVE DEFINITE HAMILTONIAN SYSTEMS

By

Yong-In Kim

In this thesis, we consider the bifurcations of periodic

solutions of a family of non-positive definite Hamiltonian systems of n

degrees of freedom near the origin as the family passes through a

semisimple resonance.

We begin with a smooth Hamiltonian H with a general semisimple

quadratic part H2 and then construct a normal form of H with respect to

H2 up to fourth order terms and make a versal deformation.

We apply the Liapunov-schmidt reduction in the presence of

symmetry and further reduce the resulting bifurcation equation to a

gradient system. Thus, the study of periodic solutions of the orginal

system is reudced to finding critical points of a real—valued function.

As an application. we consider a system with two degrees of

freedom in 1: -1 semisimple resonance by using suitable choices of the

parameters to study the bifurcation as the eigenvalues split along the

imaginary axis or across it and we obtain complete bifurcation patterns

of periodic orbits on each energy level.
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INTRODUCTION

This thesis is mainly concerned with the study of the

bifurcations of periodic solutions of a family of non-positive definite

Hamiltonian systems of two degrees of freedom near an equilibrium as

the family passes through the 1t—1 semisimple resonance.

We start with a smooth (Cm) Hamiltonian function H = H2+ H3+ H4+

with a given normalized quadratic part

0 1 2 2 1 2 2

( ‘1) H2(z) = §<X1+ Y1 - §(X2+ Y2)

and construct a normal form of H with respect to H2 up to fourth order

terms and make a versal deformation of Hz to study the corresponding

Hamiltonian system as parameters pass through the resonance at A = 0,

where the linearized system has two equal pairs of purely imaginary

eigenvalues. In our case of 1: —l semisimple resonance, the normal

form contains nine fourth order terms and the versal deformation

requires four parameters which is extremely difficult to perform

complete analysis about the dynamical behavior of the system as A

varies and so we restrict ourselves to the truncated Hamiltonian

containing only one fourth order tern: and to the codimension one

bifurcations by suitably choosing one parameter so that the eigenvalues

of the linearized system split giggg the imaginary axis or across it as

A varies across zero.



The study of non—positive definite Hamiltonian systems has been

little done so far and the informations about such systems are little

known.

In the case of a Hamiltonian with the normalized semi-simple

quadratic part of the form

n

(0.2) H2(x,y) = 2 éxxxz. + 3/2.).
3:1 J J J

Ak
Liapunov (1947) proved that if X_ ¢ integer for all k ¢ 2

l

(non—resonance condition), there exist n one-parameter familes of

periodic solutions (see also Siegal and Moser [39], Hale [28]), and

later Weinstein [44] removed the nonresonance condition and showed that

if NJ > O for all j. there exist at least n distinct periodic orbits on

each energy level H(z) = c for 0 < 0 << 1.

The essential point in Weinstein’s proof is that the condition

of positive definiteness of the Hessian matrix D2H(O) implies the

compactness of the energy surface H(z) = c for small c > 0 and so one

can apply either a theorem of Krasnoselski or the theory of

Lyusternik-Schnirelman to obtain the desired result.

If the Hamiltonian is not positive definite, however, then the

energy surface H(z) = c.is no longer compact and so the situation is

more complicated. Moser [39] presented an example in which D2H(0) =

diag (1, -1, 1, -1) and the Hamiltonian system possesses no nontrial

periodic solutions.

More significantly, Chow and Mallet-Paret [14] proved that if H



has the form

n

+y?) —1- 2 (x§+y§) +0(Izl°).0.3 H = g( ) (z) (xJ J 2j=1+1

h
fl
h
i

I
I
'
M
H

J 1

and is analytic, then the corresponding Hamiltonian system

-I
z = JV H(z), where J = [O In]. In: n x n identity matrix

n 0

actually possesses at least In-le one—parameter families of periodic

solutions near the origin provided that there are no 21r-periodic

solutions on the zero energy level H(z) = 0. If 8 = n. then H(z) is

positive definite and clearly there are no 2w-periodic solutions on the

surface H(z) = O and hence this result recovers a part of Weinstein’s

theorem. However, if 8 = 3-, e.g., n = 2 and e = 1 (i.e., 1: -1

resonance) then this result doesn’t give any information about the

existence of periodic orbits and actually Moser’s example shows the

nonexistence of nontrivial periodic solutions.

Recently, van der Meer [35] studied the periodic solutions of a

family of Hamiltonian systems passing through the 1: -1 nonsemisimple

resonance by examining the fibres of the normalized energy-momentum

mapping by using the singularity theory of equivariant mappings.

In this thesis, we study the same 1: -1 resonance but the

semisimple case which has four parameters in a versal deformation of H2

and nine fourth order terms in the normal form in contrast to the

non-semisimple case which contains two versal deformation parameters

and three fourth order terms in the Hz—normal form.



Moreover, our approach to examining the periodic solutions,

after normalization. is a local analysis by using the theory of

Liapunov—Schmidt reduction in the presence of symmetry and reducing the

resulting bifurcation equation to gradient system and studing the

critical points of the reduced gradient system. We use the Lagrange

multiplier method and take advantage of the equivariance symmetry of

the gradiant system to solve it in a closed form.

This thesis is organized as follows. In chapter 1. we give a

brief outline about the Hamiltonian systems and the theory of

Hamiltonian normal forms. In Chapter 2, we introduce the theory of a

versal deformation of linear systems and construct a versal deformation

of H2 given in (0.3). In Chapter 3, we use the Liapunov-schmidt

reduction to examine the periodic orbits of a family of Hamiltonian

systems in a normal form and obtain a real—valued function whose

critical points correspond to periodic solutions of the original

Hamiltonian systems. The summary of our method will be stated in

Theorem 3.3.3 as a main theorem of this thesis. Finally, in Chapter 4.

we apply our method in Chapter 3 to the 12 — l semisimple resonance

problem with H2 given by (0.1) under some restriction on the parameters

and nonlinear terms and obtain explicit bifurcation results which will

be summarized in Theorem 4.4.1 and Theorem 4.5.2. We conclude with a

remark about the extension to a nearby nonintegrable systems and other

possible methodologies to examine the periodic solutions.



CHAPTER 1: HAMILTONIAN SYSTEMS AND NORMAL FORMS

In this chapter, we will give a brief review of some basic facts

about the Hamiltonian mechanics, and normal forms of Hamiltonian

functions which form a background in the following chapters. Even

though we are mainly working on the Euclidean space IRzn, the basic

structure of Hamiltonian systems will be given in the context of

symplectic manifolds since the phase space of a Hamiltonian system is

generally a manifold rather than Euchidean space especially when

constraints are present.

Most definitions and theorem will be stated without proof. For

the proofs and more detailed treatments of the above basic theories, we

refer to the textbooks of Abraham and Marsden [1] and Arnold [3] and

the lecture note of Cushman [22] and the thesis of van der Meer [35].

§1. Hamiltonian mechanics.

Let M be a smooth connected manifold.

Definition 1.1.1. A symplectic form w on M is a closed, nondegenerate

2—form on M} that is, do = O and for each m e M; the skew—symmetric

bilinear mapping w(m)= TmM x TmM 4> R is nondegenerate (i.e.,

w(m)(vm,wm) = 0 for all wm € TmM implies vm = O.)

The pair (M,w) is called a symplecticgmanifold.

 



Theorem 1.1.2. Let (0 € 02(M). i.e., a 2-form on M. Then w is

nondegenerate iff M is even-dimensional, say 2n.

Definition 1.1.3. Let (M.w) be a symplectic manifold and H: M a R a

given. cr function. r 2 1. The vector field XH determined by the

condition

(1.1.1) m(XH,Y) = dH - Y

is called the Hamiltonian vector field with Hamiltonian function H. We

call (M,w,XH) a Hamiltonian system.

We will suppose H to be C00 in the following. Note that the

nondegeneracy of w guarantees the existence of XH’ which is a cr—1

vector field. Indeed. since (0(m) is nondegenerate, the linear map

# , * . # _
w (m)- TmM 4 Tm M defined by w (m)(vm) wm _ w(m)(vm.wm) for all wm €

TmM. is invertible. Since dH(m) 6 Tm*M, we have

x (m) = w#(m)_1 - dH(m) e T M
H m '

Let fl(M) be the space of smooth vector fields on M and %*(M) be

its dual space, i.e., the space 01(M) of one-form fields on M.

For x e a(M) and m e 02(M), define ixw e a*(M) by in(Y) = w(X.Y). We

call ixw the inner product of X and w. Then, alternatively, we may

define the Hamiltonian vector field by the relation





 

(1.1.2) iXHw = (1H.

That is, for each m 6 M and each vm € TmM.

dH(m) - vm = (ixflwxvm) = w(m)(xH(m).vm).

The following theorem shows that the definition 1.1.3 is locally

equivalent to the classical one.

Theorem 1.1.4. (Darboux). (M.w) is a symplictic manifold iff there is

a chart (U,¢) at each m 6 M such that ¢(m) = 0, and with ¢(u) = (x1(u),

. xn(u), y1(u), . . . yn(u)), we have

The charts (U,¢) guaranteed by Darboux's theorem are called symplectic

. . i i .
charts and the coordinate functions x ,y are called canonical or

symplectic coordinates.

Theorem 1.1.5. Let (x1, . . . Xn‘ yi, . . . yn) be canonical

coordinates for w, so w = 2 dxi A dyi. Then in these coordinates

6H 6H
(1.1.3) XH = ['ay—i, — 'aX—i] - J dH



 

O I

]. Thus, (x(t). y(t)) is an integral curve of XH iff

0

where J = [

-I

Hamilton's equation hold:

proof iXHm = 2 ixH(dxi dyi) = 2 (iXdei) dyi — 2 dxi (iXdei)

6H 6H

dH 7 2 (6x. dxi + By. dyi)
i i

we have

6H 6H
1 dx. = -—-a i dy. - -
XH i ayi XH 1 6x1

flutis

6H 6H
XH _ (5§;, — 5;?) = J dH. ///

Note that if M = R2n, then we have global canonical coordinates

(Xi’yi) and w = E dxi A dyi, hence the Hamilton’s equation in (Rzn. w =

2 dxi A dyi) is globally given by (1.3), which is our classical

definition of Hamiltonian system. (R2n.w) is called the standard

symplectic space.

The conservation of energy for the Hamiltonian system is given by the

following theorem.

Theorem. 1.1.6. Let (M,w,XH) be a Hamiltonian system and 1(t) be an

. . d1 t
integral curve for XH' that is. -a%—L = XH(7(t)). Then H(7(t)) =

constant in t.



—

. - 5‘ '7' 1":er .. ‘. '

' .‘JJ, .,.._.,1. _. . .‘ '

The next basic fact about the Hamiltonian systems is that their flows

consist of canonical transformaitons.

Definition 1.1.7. A Cm— map F2(M,w) % (M,w) is called a symplectic or

canonical transformation if F*w = m, where F*: 02(M) a 02(M) is defined

by

x

(F w)(m>(vm.wm) = w(F(m)) - (dp(m). vm. dF(m) - wm)

for v ,w E T M.

m m m

Theorem 1.1.8. Let (M,w,XH) be a Hamiltonian system and ¢t be the

local flow of XH. then. for each t, otm = m. that is, ¢t is a local

one—parameter group of symplectic diffeomorphisms (on its domain).

Thus ¢t also preserves the phase volume Ow (Liouville's theorem).

Theorem 1.1.9. If ¢ is a symplectic diffeomorphism of (M,w), then ¢*XH

= X¢*H for every H e Cm(M). That is, a symplectic change of

coordinates maps a Hamiltonian vector field into a Hamiltonian vector

field with Hamiltonian ¢*H.

Definition 1.1.10. For X e H(M) and f 6 Cm(M), define

fo e c”(M) by (fo)(m) = df(m)~X(m).

We call fo the Lie derivative of f with respect to X.

11

Note that if H e c“(m2n,m) with w = 2 dxi A dyi. then

i=1
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“ 6H 6 6H 6
(1.1.4) LXH = 2 (~—— -—— - —-— ———).

i=1 ayi 6x1 6X1 ayi

Now, we introduce the definition of Poisson bracket on Cm(M,R) to

impose a Lie algebra structure on Cm(M.R).

Definition 1.1.11: Let (M.w) be a symplectic manifold and let f, g 6

Cw(M,R). The Poisson bracket ( , )2 Cm(M) x Cm(M) 4 Cm(M) is defined

by

(1.1.5) (f,g)(m) = w(m)(Xg(m), Xf(m)) for each m 6 M.

Notice that from (1.1.1) and (1.1.4) and (1.1.5), we may write

(1.1.6) (f,g} = dg ~ xf = fog = —LX f.

g

Since w is skew-symmetric, so is ( , ). Thus, in canonical coordinates

(Xi’yi)‘ (f,g) may be written as

n

_ a; 6g _ 6f 65
(1.1.7) {f.g} -i§1(5§;'axi axi 6yi ‘

From (1.1.6), it is clear that f is constant along the orbits of Xg (or

g is constant along the orbits of Xf) iff (f,g) = 0. Note that (f,f) =

0 corresponds to conservation. of energy for the Hamiltonian system

(M,w,f). We say that F 6 Cm(M,R) is an integral for the system (M.w,H)

if (H,F} = o.



 

Definition 1.1.122 A Lie algebra is a vector space V with a bilinear

operation [, ] satisfying

(i) [X.X] = O for all X 6 V and

(ii) [X,[Y,Z]] + [Y.[Z.X]] + [Z,[X,Y]] = O (Jacobi identity)

for all X,Y,Z. 6 V.

Since ( , )2 Cm(M) x Cm(M) a Cm(M) is a skew—symmetric bilinear form

and satifies Jacobi identity, the real vector space (Cm(M,R). ( , ))

together with the Poisson bracket is a Lie algebra.

Theorem 1.1.13! o is a symplectic diffeomorphism of (M,w) iff ¢

preserves Poisson brackets, that is.

x x x

¢ {f.g} = {¢ f. ¢ g}

for all f,g 6 Cm(M.R). Thus. ¢* is a Lie algebra isomorphism on

c”(M.R).

The next fact is that Hamilton's equation may be written in Poisson

bracket form.

Theorem 1.1.14: Let XH be a Hamiltonian vector field on a symplectic

manifold (M,w) with Hamiltonian H and local flow ¢t' Then, for every f

(X)

6 C (M.R),

j—cu ~ t,) = (H. f . w = LXHU . ¢t).
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In particular, if f = x1 or yi, we have

’21 = {H’xi} = 3%"
(1.1.8) 1

. -aH

Y1: {H'yi} E

So far, we considered the Lie derivative fo for f 6 Cm(M,R). We can

also define the Lie derivative LXY for Y 6 H(M).

Theorem 1.1.153 If X,Y 6 H(M), then [LX’LY] = LXLY - LYLX is an (R

linear) derivation on Cm(M,w). that is. for f,g 6 Cm(M,m), [LX,LY](f°g)

= ([LX.LY]f)g + f([LX.LY]g)-

Definition 1.1.162 For X,Y 6 MM), let [X,Y] = LXY be the unique

vector field such that L[X,Y] = [LX,LY]. We call LXY the L12

derivative of Y with respect to X, or the Lie bracket of X and Y.

Notice that [ , ] is a skew-symmetric bilinear form on 91(M) and

satisfies the Jacobi identity and hence the space of smooth vector

fields together with the Lie bracket (H(M), [ , ]) forms a Lie algebra.

In the local coordinates, [ , ] is written as

(1.1.9) [X,Y] = DY ° X — DX ° Y.

The following theorem shows the relationship between the Lie

bracket of Hamiltonian vector fields and the Poisson bracket of smooth

 



functions.

(X)

Theorem 1.1.17- For f,g 6 C (M), [Xf,Xg] = X{f'g}.

Thus, the space of Hamiltonian vector fields with Lie bracket (&H(M), [

]) forms a Lie subalgebra of the Lie algebra of all smooth vector

fields on M. The mapping p: Cm(M,R) » dH(M) defined by p(f) = Xf is a

homomorphism of Lie algebras (Cm(M), ( , )) and (%H(M),[ , ] ).

Definition 1.1.18: For each F 6 Cm(M.R), define the map

(X) 00

adF: C (M,R) » C (M.R) by adFG = (F,G}.

We call the map ad: Cm(M,R) a L(Cm(M,R), Cm(M,R)): F a adF the adjoint

respresentation of Cm(M.R).

Notice that for each F 6 Cm(M,R) adF is an inner derivation of Cm(M,R)

since, by the Jacobi identity, we have

adF{G,H} = (adFG.H} + (G, adFH}

for all G.H 6 Cm(M,R). Also. because of (1.1.7), adF has local

expression

Definition 1.1.19: For H 6 Cw(M.R). the Lie series is defined formally
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as

w n

exp ad = E —T-ad

H n=0 n. H

o .

where adH= id. adH — adH adH for n 2 1.

The Lie series is the essential tool for computing normal forms of

Hamiltonian functions. In the followimg some basic facts about Lie

series are stated.

Theorem 1.1.20: Let H 6 Cm(R2n,R) with coordinates (x,y) = (x
 

1 Q

n

x ,y , . . . ,y ) and standard symplectic form w = 2 dx. A dy.. Then,

n 1 n i=1 i i

(i) adH(x,y) = XH(x.y), where

adH(x,y) 2 (adel, . . . ,aden, adHyl, . . . , adHyn).

(ii) exp(t adH)°(x,y) is the flow of XH'

(111) For any F e c”(m2n,m), (F . exp adH)(x,y) = (exp (adH) . F)(x.y).

(iv) exp adH and exp ad commute iff {H.F} is constant iff [XH,XF] = O.
F

Notice that the space {adFl F 6 COO(R2n,R)} is a Lie algebra with

bracket [adF. adG] = ad or [XF,XG] = X(F,G) if we identify the

{F.G}

vector field X with its Lie derivative LX. Hence, the set G = {exp

adFI F 6 Cm(R2n,R)} forms a Lie group. Then, each one-parameter group

{exp t adF: t 6 R} forms a one-parameter subgroup of G. On the
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symplectic space (Rzn,w) each one-parameter group of symplectic

diffeomorphisms is the flow of a Hamiltonian vector field. Thus, we

have found all one-parameter subgroups of G because each generator of G

is a symplectic diffeomorphism which is the time one flow of a

Hamiltonian vector field.

Definition 1.1.21: Let (R2n,w) be a symplectic space. A linear map

tp:R2n a1R2n is symplectic iff w(¢v, ¢w) = w(v,w) for each v,w 6 R2n.

The set of all linear symplectic mappings of (Rznnw) is a Lie group

Sp(n,R) called the real symplectic group. A linear map A: R2n e>R2n is

infinitesimallv symplectic iff w(Av,w) + w(v,Aw) = 0 for every v,w 6

R2n. The set of all infinitesmally symplectic maps is a Lie algebra

Sp(n,R) under the Lie bracket [A,B] = BA - AB. Note that A 6 Sp(n,R)

iff eA 6 Sp(n,R), which relates the Lie algebra to the corresponding

Lie group.

Theorem 1.1.22: Let ¢ 6 Sp(n,R) and A 6 C be an eigenvalue of ¢ of

multiplicity k. Then -1-, X, :1-_are eigenvalues of ¢ (X = complex

A i

conjugate of A) of the same multiplicity.

Theorem 1.1.23: Let A 6 sp (n,R) and A 6 C be an eigenvalue of A of

multiplicity k. Then, —A, X: -X are eigenvalues of A with the same

multiplicity.

. , 2n , 2n 2n .
Definition 1.1.24- On (R .w), the map (I) G x R -9 R is called a

symplecticgaction of the Lie group G on R2n if for each ¢ 6 G, the map
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(RP : IR2n ->R2n: x 4¢(¢.X) is symplectic.

. 2n . .
In a natural way, the action <1) on R induces an action of G on

c°°(lR2n,IR)

\II: c x c°°(1R2n,1R) —> c°°(m2n,1R): (¢.H) —» H - (1)45.

we often write ¢ ° H for @(¢.H).

Definition 1.1.25: 1A Lie group G acting symplectically on R2n is a

symmetry group for the system (Rzn,w,H) if

¢ ° H = H for all ¢ 6 G.

Theorem,1.1.26: If I: is an integral for the system (R2H,w,H) i.e.,

(F,H} = 0, then the one-parameter group {exp (t adF): t 6 R} given by

the flow of X is a symmetry group for (R2n,w,H).
F!

The converse of the above theorem also holds in the sense that each

symmetry group of a Hamiltonian system gives rise to an integral. To

make this precise, we first introduce the notion of momentum mapping.

Definition 1.1.27: Let ¢>be a symplectic action of the Lie group G on

(Rzn,w) with the Lie algebra L. The mapping J: R2n 4»L* is a momentum

mapping for the action ¢>if for every § 6 L
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d

Xe (X) = — ¢(exp t 5.x} _

where the right-hand side is called the infinitesiml generator of the

Zn
action corresponding to f and J(§) 6 Coo(R ,R) is defined by

3(§)(x> = J(x) . 5.

Theorem 1.1.28: Let (1) be a symplectic action of the Lie group G on

(Rznm) with the momentum mapping J. If G is a symmetry group for

(R2n,w,H), then {J(§),H} = O, i.e. 3%) is an integral for (R2n,w,H).
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§2. Normal fortfifor H_a_miltonign functions

In this section, we will assume that H 6 Cm(R2n,R) with H(O) = 0

and dH(O) = O, that is, the origin 0 of R211 is an equilibrium point for

XH' The goal of normal form theory is to find an origin-preserving

symplectic diffeomorphism ¢ of R2n which preserves the Hamiltonian

character such that H in the new coordinates defined by ¢, i.e. , ¢*H =

H °¢ is in the simplest possible form.

2n

Let 9: (R 2n,R) be the space of all formal power series on R

beginning with terms of degree 7 2 2, and 9PJ.(R2n,R) be the space of

homogeneous polynomials on R211 of degree j. Let G be the Lie group of

all origin-preserving symplectic diffeomorphisms on R2n of the form id

+ 45(2) where ¢(2) is an Rzn-valued formal power series all of whose

components lie in 932+(R2n,R). The action (I) of G on R2n induces an

action ' on 9P:(R2n,R) given by (11 ° F = ¢(¢,F) = ¢*F for d: 6 G. F 6

952+(R2n,R). Let QG(H) = (¢ ° HI ¢ 6 G} be the orbit of H under the

action of G. Let C(Hz) be a complementary space to QG(H2) at Hz.

Definition 1.2.1. Let H. H 6 9132+(R2n.R) and H = H2 + H3 + with H].

6 9P3(R2n,R). Then we say H is a H,—norm_al form for H if H 6 QG(H) fl

C(Hz).

Note that the tangent space to QG(H2) at Hz is H2 + adH 9153+ because

2

for all F 6 953+, t -> exp t ad is a one-parameter subgroup of G which

F

represents the tangent vector X to G at id. Therefore, t -> (exp t

F
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ad?) . H3 13 a curve in Q(H,) passing through 11;. Thus. the set of

tangent vectors

d d

2 - 2E- t==0(exptadF) °H -d—t-|t=oexp(tadF)H

ad

FHZ

- adeF

for all P 6 93+(R2n,R) is TH Q(H2).

2

If Cm is a complementary subspace to the image of the linear map

adel 9"“: 9m 7?“): f -’ {H2,f) for all m 2 3. then the subspace

0° + 2 +

C = 2 C of 93 (R n,R) is complementary to Im adH of 973 . See Figure

m 2
m=3

1.2.1.

__. C+H1

ti

t m “AH P3++Hz

fl:\
7-

Cl(Hz)

< Figure 1.2.1 >

 

 

The following theorem gives an algorithm for finding a formal power

series symplectic diffeomorphism IF which brings the formal power
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series Hamiltonian H = H2 + H3 + ... into normal form. The normalizing

transformation ¢F is constructed by induction.

Theorem 1.2.2. Let H e 912+(m2nm) and let H2 as o be the quadratic part

of H. Then. for each m 6 N, m 2 3, there exists a o 6 G such that H'z

H ° ¢ is in the H2- normal form for H up to order m.

(proof) Suppose that H'is in H2 - normal form up to terms of degree

m-l 2 2, that is, suppose there is a F(m_1) 6 93+ such that

Hm): ~H=H2+H3+...+H +H+...

where H; = H2 if m = 3 and H] 6 Ci for i = 3,4,5, ... , m-l. For m 2

3, let Fm 6 9m(R2n,R). Then we get

ll .5
“

+

S
K
I

+ + I
”

+

S
m + 8.

Therefore, the terms of degree m in the above are

Hm + adF H2 = Hm - ad F .
m H2 m

Since 9 (Rzn,R) = C 6 Im ad I R , we may write H = H'+ H
m m H2 m m m m
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where H. 6 C and H 6 im adH I 9 . Since H 6 im ad I 9 , we can
m m m 2 m m H2 m

choose a F 6 9 such that adH F = H . With this choice of F ,

m m 21“ m m

m+1 * m -— ._ ._

H( )=¢FmH_()=H2+H3+ +Hm_1+Hm+O(m+1),

that is, ¢F brings H(m) into H2 - normal form up to order m. Thus we

m

have

fiflm+1) : ¢ x ¢x H = ¢ . ¢ * H = ¢x H.

Fm( F(m—1) ) ( F(m-1) Fm) F(m)

This completes the inductive step of the normalization process.

Repeating this step degree by degree gives a formal symplectic

diffeomorphism

¢ = ¢F .
3

¢F °
4

’¢F°...:¢F

m

which brings H into normal form, that is,

¢;.H=Hz+fia+...+fim 9

where H] 6 Cm for all m 2 3. ///

+

Since the normal form of H = H2 + H3 + ... + H + ... 6 92 depends on
m

the choice of complement Cm to the image of the linear map adH I 9m: Rm

2

-29;!for all m 2 3, we need to know how to compute Cm in general case.
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We need some basic facts about linear maps from linear algebra. (See

Humphreys [29] , see also CUshman [22].)

Definition 1.2.3. Let V be a finite dimensional real vector space. A

linear mapping S: V1» V is semisimple if every S-invariant subspace U

of V has an S-invariant complementary subspace W of V.

S being semisimple is equivalent to saying that S is diagonalizable on

the complexification of V. A linear mapping N I V A»V is nilpotent if

there is an m 6 R such that Nm = 0 but Nm-1 ¢ 0.

Theorem 1.2.4. Let A I V -> V be a linear mapping. Then there are

unique simisimple and nilpotent linear maps S and N on V such that SN =

NS and A = S + N.

The maps S,N given above are called the S-N decomposition of A.

The following theorem is very useful in finding Cm in the normal form.

Theorem 1.2.5. Suppose A = S + N is a S-N decomposition of a linear

mapping A:V etV. Then

(a) V = ker S 6 im S

(b) ker A = ker S n ker N

(c) im A = im S 0 (im N n ker S).

The following shows that Theorem 1.2.4 also holds in sp(V,R).

 



Theorem 1.2.6. Suppose that A: (v,w) -> (v,w) is infinitesimally

symplectic and has an S - N decomposition A = S + N. Then S and N are

also infinitesimally symplectic.

Now, the S - N decomposition A = S + N in sp(V,R) propagates

into the space (22, { , }) and (gl(@m,R), [ , ]). That is, using the

Theorem 1.2.6 and the isomorphism p 1 (92,( , ) )-+ (sp(V,R), [ . ])3 f

-> Xf of Lie algebras, every H2 6 92 has a corresponding S - N

decomposition H2 = S2 + N2 with (Sz,N2} = O and S2.N2 6 @2. Further,

the map ad(m): @2 a’g1(9m,R): f 4'ade 9m = LXfl ?m is a representation

of Lie algebra (22. ( , }) into the Lie algebra (gl(@m,R), [ , ] ) and

hence if H2 = $2 + N2 is the S - N decomposition of H2 6 @2, then adH I

2

R = ad I R + ad I R is the S - N decomposition of ad 9 . From
m 82 m N2 m m112'

this fact and Theorem 1.2.5, we have the following important criterion

for computing a Hz- normal form for H.

Theorem 1.2.7: Let H = H2 + H3 + ... + H + ... 6 c: (Rzn,R) and let
m

H2 = S2 + N2 be the S — N decomposition of H2. Then, H is in norm form

(m) n
with respect to H, iff Hm 6 Cm where Cm is a complement to (im adN

2

ker ad (m) ) in ker ad (m) for every m > 3, where ado“) = ad I 9?

82 S N2 N22 "' m

etc.

proof By the definition of Cm’ and Theorem 1.2.5(C), we have

2 = im ad(m)e c
m H2 m
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_ ~ (m) - (m) (m)
— 1m adsz 6 (im asz n ker adS2 ) 6 Cm'

Since ad (m) is semisimple. 9 = im ad (m) 6 ker ad (m). Hence.

ker ad (m) = (im ad (m) n ker ad (m)) 6 C . Thus, C is a complement

of (im ad (m) D ker ad (m)) in ker ad (m). ///

N2 Sz 82

Notice that if H2 is semisimple. i.e., H2 = S2 and N2 = 0, then

we may take Cm = ker ads(m). Hence, if H2 consists of only semisimple

2

part S2, then we can say that the formal power series H = S2 + H8 + ...

+ Hm + ... is in S2 - normal form iff Hm 6 ker ad I @m for all m 2 3.

2
S

. w 2n .
Recall that we can bring an H = H2 + ... + Hm + ... 6 C2(R ,R) into

82- normal form by a symplectic diffeomorphism 6F = exp adF ° exp adF

a 4

° ... exp adF ..., where Fn 6 @n(n 2 3). At each step, exp adF is

n n

determined up to terms of F in ker ad(n)(i.e., F = F' + F , Fl 6 ker
n S2 n n n n

ad(n), F 6 im ad(n) and F. may be arbitrary.). Starting with n = 3.
82 n S2 n

this freedom of choice of F; may lead to different S2 - normal forms up

to order > 3. However, these Sz- normal forms can be transformed into

one another by a symplectic diffeomorphism. Thus, the S2— normal form

is essentially unique.

Let H(Sz) = ker ad I 92+. Then, since d(S2) is closed under °

32

and { , } and since ad is a derivation of (62+,°), (d(S2),°, { , })

32

is a Poisson structure, that is, (d(S2), ° ) is an associative algebra

with unit over R, while (94(82). { , )) is a Lie algebra. We call

(d(S2), ° ) the Birkoff algebra of S2. The main goal of the semisimple

case of normal form theory is to describe the Birkoff algebra. because

then we know what power series appear in the normal form. The only





 

 

known general fact about the Birkoff algebra d(S2) is the following.

Theorem 1.2.8. If the semisimple Hamiltonian vector field XS

2

corresponding to 82 has pure imaginary eigenvalues. then H(Sz) is

finitely generated. (For the proof, see Cuchman [22]).

Now, in order to determine the Birkoff algebra H(Sz) = ker adS

2

for a specific semisimple quadratic Hamiltonian 82 where X has purely

2
S

imaginary eigenvalues, we will need to know a normal form for X8 on a

2

symplectic vector space (V,w).

Theorem 1.2.9 (Cushman [22]). Suppose H2 = S2 and X8 has pure

2

imaginary eigenvalues :iaj. Then there is a basis (e1, ... .e , f

. 1n} of (v,w) such that the matrix of J‘: V —» V" defined by

w#(e) ‘ e' = w(e,e') is

 
lw(fi'ej) lw(fi.f.)J = o

Id(ei,ej) |d(ei,£jI [0 JD]

J n

and

n
1

S2(x,y) = 2 E ejaj(x§ + y?),

i=1

where ej = t 1, aj > 0 and iejaj are the eigenvalues of XS . Thus the

2

matrix of XS with respect to the above basis is

2



"—2 
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e1a1

O 6.qu

x82 6 n

‘eiai

-eza2

'. O

_enan ///

Now, assuming that X has pure imaginary eigenvalues : ia‘j and

$2

is in the normal form given in Theorem 1.2.9., we can compute the

Birkoff algebra ker adsz as follows.

Let (x,y) be coordinates on R2n corresponding to the basis given

in Theorem 1.2.9. Introduce complex conjugate coordinates

zj = x3. + iejyj, z = Xj — itajy.j

for j = 1, ... ,n when ej are those given in the normal form of XS .

2

Then the linear operator

“ a a
= ad = 2 e.a.(y.-—— - X.—-—

LXS2 Sz i=1 J J 36XJ Jayj

I1

- = ad~ = -i E a.(z ——— - ;;——)

LxS2 32 1:1 3 62

N n _ N

where S = l 2 e.a. 2.2. and X~ is the complex vector field

2 2 :1 J J J J 32
j
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. = -2i .21 = — i e.a.z.

J 62. JJJ

. 21 —2-=ie.a.-z-. forj=1.
J azj J J J

N
|

u

2n . . jk J1
The space 9m(R ,R) is the real space of the monomials x y : x1

jn k1 kn
xn y1 . . . yn . In complex conjugate coordinates 9m corresponds

to the space of Hermitian polynomials 9m(62n, C) which is the

. . j _k _k

Hermitian span of the monomials 232k = 2131 . . . 2n n 211 . . . znn

. N — '—k . —
that is, P (2,2) = E C. sz 6 9 if and only if C. = Ck"

m . k k

|J|+|k|=m J m J J

. ~ . . j-k
Applying the operator adS to the nomomial baSis z .

2

ad~ ' szk = - i < j - k, a > szk

32

. . . n
where J _ (31, ... , 3n), k _ (k1, ... kn) 6 2+, a _ (a1. . . . an) 6

Rn+ and < , > is the inner product on R2n with norm I I. Therefore,

(X) .-1<

kerad§=(2 2 C.kz‘]z I<j-k,a>=OandC.k=

2 m=2 |1I+Ikl=m J J

C...»-

The relation

< j - k, a > = 0

is called the resonance relation corresponding to XE .

2
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The corresponding space of real formal power series in C:(R2n,R) is

ker adsz.

The normal form theory in the case of H2 = N2 where N2 is a

nilpotent quadratic polynomial on (Rzn, E dx.j A dyj) is a little more

complicated. By the theorem of Jacobson-Morosov, we may embed N2 into

a subalgebra of (92(R2H,R), ( , )) which is isomorphic to s8(2,R). that

is, there are M2, T2 6 92 (R2n,R) such that {T2.N2) = 2N2, (T2,M2) =

-2M2, (N2,M2) = T2. Then the finite dimensional representation

ad”): (1521 . 1) » (gewmm. [ . ])= f aadfo“)

of Lie algebras restricts to a finite dimensional representation of

se(2,R), that is, we have the corresponding commutation reelations,

[adT 0“, adN ("0] = 2 adN (m), [adT (m), adM (”)3 = —2 adM (m).

(m), adM (m)] = adT (m)

From the representation theory of 58(2,R), we have

[adN2

ker ad (m) 6 im ad (m) = 6
M2 N2 m

for every m 2 3. Therefore, we can say that the formal power series

Hamiltonian H = N2 + H3 + . . . + Hm + . . . is in N2 — normal form iff

H 6 ker ad (m) 0 ker ad(m)for all m 2 3.
m M2 82

In analogy with the Birkoff algebra in the semisimple case, we

call the algebra W(N2) = (ker adM , ~ ) the top weight algebra of N2.

2

Also, as a first step in constructing an explicit embedding of N2 into
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se (2,R) we need a normal form for nilpotent infinitesimally symplectic

linear mapping XN . Since in this thesis we need only the S2 - normal

2

form, we omit the further details about the N2 - normal form theory.

(See Notes on Normal form theory, Richard Cushman 1985, Normal Forms

and Symmetry, Sanders 1985).
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CHAPTER 2: VERSAL DEFORMATIONS 0F QUADRATIC HAMILTONIANS

To construct a versal deformation of H2, we need to know a

versal deformation of XH in sp (n,R). In Section 1, we will treat

2

briefly the theory of versal deformation of linear systems and in

Section 2, we construct a versal deformation of H2 given in (0.3).

§1 Vergal deformations of Linear Systems

The reduction of a matrix in ge(n,R) to its Jordan normal form

or a matrix in sp(n,R) to its normal form is an unstable process since

both the normal forms themselves and conjugating transformations depend

discontinuously on the elements of the original matrices. In this

section we introduce the theory of versal deformtions for finding the

simplest possible normal form (so called miniversal deformation) to

which not only one specific matrix, but an arbitrary family of matrices

close to it can be reduced by means of a mapping smoothly depending on

the parameters. For further details see Arnold [2][5] and Kocak [30].

Let L be a real Lie algebra with its corresponding Lie group G,

e.g.,L may be ge(n,R) or sp (n,R) with G = GL(n,R) or Sp(n,R). Let Ao
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6 L and Ak be a small neighborhood of the origin of Rk for some integer

k.

Definition 2.1.1 A deformation A(A) of A0 is a smooth mapping A: Ak'e

L such that A(O) = A0. A deformation is also called a family. the

variables hi Qarameters and the parameter space A = (A) a base of the

family. Similarly, we can define a deformtion of an element of G.

Definition 2.1.2 Two deformations A(>\) and B()\) of A0 are called

equivalent if there exists a deformtion C(A) of the identity e of G

with the same base such that

A(h) = C(A) 3(1) c‘1(x). C(O) = e.

, 8 k . . .
Let ¢: A 61A be a smooth mapping w1th ¢(0) = O. The mapping ¢

of the parameter space A2 = {u} into the base of the deformation A(A)

defines a new deformation (¢*A)(u) of A0 by composition.

(¢*A)(u> = A(¢(u))-

The deformation ¢*A is said to be induced by A(A) under the mapping ¢.

Definition 2.1.3. A deformation A(A) of A0 is called versal if every

other deformation 8(a) of A0 is equivalent to a deformation induced by

A(A) under a suitable change of parameters, i.e., if there exist C(u)

and ¢ such that
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304) = C(u)A(¢(u))c'1(u) with 0(0) = e. ¢(0) = o.

A versal deformation A(A) is called universal if the inducing

mapping ¢ is determined uniquely by B(u). A versal deformation is said

to be a miniversal if the dimension of the parameter space A = {A} is

the smallest possible for a versal deformation.

These miniversal deformations are normal forms with the smallest

possible number of parameters in the reduction to which the smooth

dependence on the parameters can be preserved.

Now, in the following we introduce the important fact that a

versal deformation A(A) of A0 is the mapping A transversal to the orbit

OfA atA=O.

0

Let Q be a smooth submanifold of a manifold L. Consider a

smooth mapping A: A e’L of another manifold A into L. and let A be a

point in A such that A(A) 6 Q.

Definition 2.1.4. The mapping A: A 61L is called trangversal to Q_at A

if the tangent space to L at A(A) is the vector space sum of the image

of tangent space to A at A under Ax and the tangent space to Q at A(A),

i.e.,

L = A*T A + T
TA(A) A A(A)Q’

where Ax: T A -> TA AOOL is the push-forward of the map A.





 

33

Now, consider a Lie algebra L with the corresponding Lie group

G. The Lie group G acts on L by conjugation, called the adjoint action

as follows.

Adge = g2 g‘1(g e c. e e L).

The orbit Q(Ao) of a fixed element A0 6 L under the action of G

is a smooth submanifold of L defined by

-1
Q(Ao) _ {Adeo - ngg I g 6 G}.

Theorem 2.1.5 A deformation A(A) of A0 is versal if and only if the

mapping A is transversal to the orbit of A0 at A = O.

For the proof of this theorem, see Arnold [2].

Our next problem is to determine the mimimum number of

parameters for any versal deformation of A0 6 L. From Theorem 2.1.5 we

know that in a versal deformation of AD the number of parameters is

minimal when the vector space sum in the Definition 2.1.4 is a direct

sum. Consequently. this minimum number is equal to the codimension of

the orbit of A0 in L. The next argument shows that the direct sum

complement of the tangent space of the orbit of A0 is the centralizer

of A0 in L if ad is a semisimple linear mapping of L. Let us
A
o

elaborate on this.
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Let A0 6 L where L is a Lie algebra with its Lie bracket [ ].

Definition 2.1.6. The mapping adA : L -> L is the endomorphism of L

0

defined by

adA X = [X,Ao] for all X 6 L.

o

The kernel of this endomorphism, ker adA = {X 6Z1. I [X,AO] = 0}, is

0

called the centralizer of A0 in L.

Theorem42.1.7. The tangent space TA Q(Ao) of the orbit of A0 at A0 6 L

o

is equal to ImadA0 in L.

proof. Consier the mapping for a fixed A0 6 L,

. . -1
M%J%Hugégfi .

The image of AdA is the orbit of A0 in L under the action of G.

0

Note that the derivative of AdA at the identity element e 6 G is the

o

A L. defined bylinear mapping (AdA )*: TeG 4'T

o o

(AdA )*o x

0

II

l
—
'
I

X >

O

|
_
_
1
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= ad ° X for all X 6 L.

Since TeG and TA L are isomorphic to the Lie algebra L, the above

0

calculation shows that

(AdA )* = adA .

O 0

= Im adA . ///Therefore, TA Q(Ao) = Im (AdA o
L.

0 0

Notice that since adA is an endomorphism of L,

o

dim L = dim (Im adA ) + dim (Ker adA ).

o 0

Hence, the dimension of the centralizer of A0 is equal to the

codimension of the orbit of A0 in L. Thus, the problem of constructing

a miniversal deformaiton of A0 is reduced to finding a direct sum

complement to Im adA in L.

0

Now, let us consider the problem of finding a versal deformation

of H2 in the space 92(R2n,R) of homogeneous quadratic polynomials on

R2n. We already know that the Lie algebra (sp(n,R), [ , ]) is

isomorphic to the Lie algebra (92, { , }) by the isomorphism p: H2 6

XHZ. Hence, if A0 = XH2 6 sp (n,R) and has a S - N decomposition, then

H2 has a corresponding S - N decomposition H2 = $2 + N2 with {32.N2} =

0 and 82, N2 6 92. Furthermore, since the map ad(2): 92 e>g£(92,R): H2
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.3 ad I = I 62 is a representation of Lie algebra (92. { . })
H2 92 2

into. the Lie algebra (g£(9z.R), [ , ]). ad 92 also has a
H2 l

corresponding S - N decomposition ad I 92 = ad I 62 + ad I 92.

H2 SZ N2

Let Sp(2,R) act on 92 by composition. Then, the tangent space

to the orbit of H2 at H2 is given by Im ad Thus, to construct a

Hz'

miniversal deformation of H2 we have to determine a direct sum

complement to Im ad If H2 = S2 + N2, then from the Theorem 1.2.5(c)
Hz'

and Theorem 1.2.7 such a complement C2 is given by the complement of

(Im ad (2) n ker ad (2)) in ker ad (2). In particular , if H2 = S2

N2 Sz 82

(N2 = 0) then C2 = ker ad (2) in 92. The ker ad (2) is just a Lie

232 S

subalgebra of 92 isomorphic to the centralizer of X i.e., ker ad

X82 32

in sp(2,R).

If H2 = $2 + N2 (N2 ¢ 0), then to find the complement of Im adN

2

in ker adS we embed N2 into a subalgebra of (92, { , I} ) which is

2

isomorphic to le(2,R) and is spanned by N2, M2, T2 6 9132 with the

commutation relations: {T2.N2} = 2N2, {T2,M2) = - 2 M2, and (N2,M2} =

T2. Then the finite dimensional representation

ad” (912. { . 1) . (amen). [ . 1): H, —>ad 2(2)
H

of Lie algebras restricts to a finite dimensional representation of

sB(2,R) and has the corresponding commutation relations. From the

representation theory of sé(2,R), we have
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62 = ker adM (2) 6 im adM (2).

2 2

Hence, the complement C2 of im adN (2) in ker adS (2) is given

2 2

by

C2 = ker adM (2) fl ker adS (2).

2 2

Since in this thesis we only consider the case H2 = 82 (N2 = O) we omit

the further details for the nonsemisimple case. See CUShman

[18,19,20,21,22] and van der Meer [34,35].

§2. Computation of Versal deformation of H9

Consider a Hamiltonian H 6 C00 (Rzn, R) with H(O) = dH(O) = O,

H(X,y) = H2(X1Y) + H3(X1Y) + H4(X1Y) + .

2n
where z _ (x,y) _ (x1, . . ., Xn’ yl, . . . yn) 6 R

Hj(z) = a homogeneous polynomial in x,y of degree j, and

H2(x,y) is the nonpositive definite quadratic form given by

(
b

n
1 1

g + 6 - - E x? + 3 = -z Az
(XJ 3’3) 2 j=e+1( J yJ) 2

1
(2.2.1) H2(x,y) = §-.E

j_1

where A is 2n x 2n real diagonal matrix of the form
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(2.2.2) A = diag (1, ... 1. -1, .... -1, 1, .... 1. -1, ..., -1).

Now. we try to find a versal deformation of H2 given above. For each H

6 Coo (RszR). consider the adjoint map adH: Cw(R2n,R) -) Cm(R2n.R)

defined by

n 6H 6 6H a
(2.2.3) ad = 2 (——-- ——) = {H.°}

H . . 6 . 6 . 6 .

J=1 ayJ xJ xJ yJ

where ( , } is the Poisson bracket on the Lie algebra (Cm(R2n, R). { .

)). Then from (2.2.1), we have

2 n
6 6 6 6

(2.2.4) ad = 2 (y. ———-— x. ——— ‘- 2 (y.———-— x.-—-.

Lt.=.+°..—.=.-'.. '=l,..., .e zJ xJ iyJ zJ xJ iyJ (j n)

In complex conjugate coordinates (2,2) = (21, . . ., 2n, 2},

2'), we have
n

N __ 1 2 __ 1 n

H2(x,y) = H2(z,z) = - 2 z z — - 2 z

e n

(2.2.5) ad’fi (2.2) a -1 2 (2.5g— - 2%) — >3 (2:52— - ~97)

2 1:1 3 j Jaz j=8+1 J J Jaz

Let @m(z,2)= the space of real homogeneous polynomials in 2,2 of degree

m.

Let Pm(z,z) 6 @m(z,z).

Then we may write
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_ arfi ._

P (z.z) = 2 C 2 Z . C = C ,

m |a|+IB|=m°43 “‘3 5“

G15 a1 a2 an_p1 _pn

where z z = z z . . . z z . . . z and

1 2 n 1 n

Ial + '6' = (a1+ . . . + an) + (51+ . . . + fin),

aj. Bj = nonnegative integers (jzl, . . ., n).

N

Applying the operator adH to the basis monomial zagfi. we have

2

n

(“3‘53" 2 (aj-BJ.) (za'z'fi).

 

1 jze+1

Hence.

zaifi € ker ad~ if and only if

H2 @

' 2 n

a 2 a.- . - 2 a.- . = O and() (3:33) (JBJ)

(2.2.6) 4 3‘1 j=e+1

((b) lal + IBI = m. 

Now. we compute the Hilbert generators zaE—B for the Birkoff algebra

ker adfi 9 in order to construct the versal deformation of H2(x.y).

2 2

Now. the conditions (2.2.6)(a). (b) can be rewritten as

P e n 8 n

2 a. + E B. = 2 B. + E a.

i=1 J j=e+1 J j=1 J j=e+1 J

2 n 8 n

2 a. + E a.+ E B. + 2 5.: m .

:1 J j=£+1 J j=1 J j:e+1 J .J'
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Let a' = (a1. . . ., a3), a" = (ae+1. . . . .. an)

B' = (Bl. . . .. Be). B" = (53.1. . . . .. 5n)

Ia'l = a1+ . . . + ae. etc.

Then, the conditions (2.2.6)(a). (b) can be written as

{ (a) Ia'l + IB"I = IB'I + la"|

(2.2.7)

(b) la'l + Ia"l + IB'I + IB"| = m.

Now, For m = 2. (2.2.7) implies

 

la'l + IB"| = IB‘I + la"| = 1.

Hence there are 4 possible solutions for Ia'l, Ia"l, IB'I, IB"II

rIa'l Ia"| IB'I |B"|

1 1 O 0

(2.2.8) fl 1 O 1 O

O 1 O 1

O O 1 1.

Let 2' = (21, . . .. 29). z" = (ze+1 . . ... zn).

Then the Hilbert generators 2025 = (z')a (2..)a (2")3 (53.)5 for

ker ad take the form:

H2 22

(2-2-9) (z')“'(z")“". (z )a (E )B'. (2") "(E ')B"

(2")5'<2"')B"

where Ia'l = Ia"! = IB'I = IB"| = 1 and
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(z')a (z")a contains e'(n-2) terms 2
1 ze+1' zlze+2' ' ' " zezn'

(z')d.(E")B. contains 82 terms 21 El. 212;. . . .. 2822'

(2")a'.(;"')B.. contains (n—e)2 terms 28+1§é+1. 28+IE£+2. . . .zn_£.

(2")B.(E"')B.' contains 8(n-2) terms E1 22+1. E1E2+2' . EQEQ'

Note that each term in (2“)5 (En')B is the conjugate of each term in

(z')a (2")a' . Hence. the real Hilbert generators for ker adH are

2

of the form

Re (zizj). Im (zizj) (i = 1. . . .. 2, j=8+1. . . ..n)

(2.2.10) Re (213?), Im (213k) (i. k = 1, . . .. 8)

Re (zizk). Im (zizk) (1. k = 8+1. , n)

._ 1 e ._

Note that each. term: of our quadratic form) H2(z,z) = 2 .2 zJ.z.j -

i=1

1 n -—
2 2 z.z. is in the above list.

j=e+1 J J

Now.let

A 8 n

(2.2.11) H2(x,y) = i? 2 [aij Re (zizj) + bijIm (zizj)]

1 j=£+1

8

E [C.. Re(zizj) + dijIm (Zizj)]





n n

+ 2 2 [e.. Re (z.21) + f.. Im (z.§k)]

i=e+1 j=e+1 ‘3 1 J ‘3 1 J

1 T

-511 B()\)u ,

2n

where u = (x1. . . .. Xn’ yl. . . ..yn) 6 R .

and B(A) = (Bij(k)) 6 R2n x 2n, Bij(x) = coefficient of xiyj.

Then. the versal deformation of H2(x.y) is given by

A

(2.2.12) H2(x,y) + H2(X,y).

For m = 2k + 1 (k = 1, 2. . . .) . (2.2.7) implies

. .. _ . .. _ m _ 2k + 1

|a|+|l3 |—|B|+|a |—2——2.

Since Ia'l + Ia"l = '3'] + [5"] are nonnegative integers, there are

no solutions a'. a". B', B" satisfying the above relation. Hence.

for m = 2k + 1 (k = 1. 2, . . .),

ker ade P = o

m

i.e., there are no third or higher odd-powered terms in the normal for

H with respect to H2.
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CHAPTER 3. LIAPUNOV - SCHMIDT REDUCTION WITH SYMMETRY

§1. Introduction

Suppose our Hamiltonian function H(x,y) is in normal form up to

a finite order m (=even integer) with respect to H2(X.y) and consider

the truncated Hamiltonian function H(x.y) up to order m,

 

(3.1.1) mm) = H.(x.y) + N(x.y). z = (m) 6 m2“.

where

. 1 e 1 n 1 t
H2(x.y)=— 2(x +y)—— 2 (x +y)=—2 A2.

2 . 2 . 2
3:1 J=e+1

A = diag (1, . .. 1. -1. . .. —1, 1. . . 1, -1. . ., -1)eIR2HX2n

(3.1.2)<

N(X.y) = H4(X.y) + H6(X-Y) + - - + Hm(x.Y)-

, 6 k d f k = 4,6 . . .. .(Hk(x y ) er a H2 or m

. . . 4A - ,
Con51der a linear versal deformation H (x,y) of H(x.y)-

Aék A
(3.1.3) H (x,y) : H2(X,y) + H2(X,y) + N(x.y).

Remark: Since HA 6 ker adH , (H2, HR} = O. i.e. H2 and H?‘ are two

2

n

integrals for the Hamiltonian system (R2n, w, HA). where m = 2 dxi A

i=1
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dyi is the standard symplectic forms in Rzn. Hence. in the case of 2

degrees of freedom i.e..'n = 2. the system (R4. w. HA) is completely

integrable with integrals H2 and HR for each value of A. However. the

full nontruncated system (R4. w. Hx) where Hx(x.y) = Hk(x.y) + Hm+1 +

Hm+2 + . . . with Hj 6 ker adefor j 2 m+1 is not integrable. But.

according to the Moser-Weinstein reduction (See [24]). for [AI

sufficiently small. there is a Cm function Ex(x,y) depending smoothly

on A for O < IzI << 1 such that EA is in Hz- normal and coincides with

H up to order m. Hence, the search for periodic solutions of a family

of nonrintegrable systems (R‘,w.HK) can be reduced to the search for

periodic solutions of a nearby family of integrable systems (R‘.w,Ex).

. . 2n
Hence. we may restrict our attention to the truncated system (R , m.

H—A). From now on. we write H(x.y) for H(x.y) for the notational

simplicity.

Returning to (3.1.3), consider the .Hamilton’s equation. with

Hamiltonian Hx(z) = H2(z) + H§(z) + N(z). z = (x,y) 6 Rzn.

(3.1.4) 2 Jka(z)

JvH2(z) + JvH§(z) + JVN(z)

JAz + JB(h)z+ JVN(z).

where H2(z) : zTAz. H:(z) = 2TB(h)z. B(h) is given in (2.2.11) with

3(0) = o. and
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(3.1.5) J H H H n x n identity matrix.

I l

#
4

Note that (JA)2 = JAJA = JzA2 _

(JA)2 + I = 0.

Hence, JA has eigenvalues i with multiplicity 22. (-i) with multiplicty

2(n—8). Hence. the linearized system of (3.1.4) at z = O. that is.

(3.1.6) 2 = JAz + JB(A)z

passes through the 1i1i...212 -1=-1t...=-1 resonance when A = 0.

At A = 0. (3.1.6) becomes

N
o

(3.1.7) = JAZ

and (3.1.7) has the solution

_ JAt

z(t) _ e zo

2n

with the initial vector 206 R where

JAt
e I + JAt + %T(JAt)2 + %T(JAt)3 + .

I + JAt — l—-112 - 1 JAt3 + .
2! 3T

1 1 3

I(1 — §Tt2 + ) + JA(t — 37¢ + . . .)

H H (cos t) + JA (sin t).
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That is.

(3.1.8) eJAt = I(cos t) + JA(sin t).

Therefore. the linearized equation (3.1.6) has. at )\:= 0. 2n linearly

independent 2w-periodic solutions. so called linear normal modes.

For 0 < IKI << 1 and Izl << 1. we expect that the nonlinear system

(3.1.4) is close to the linear system (3.1.7) and hence may have small

amplitude periodic solutions with period near 21r near the periodic

solutions of the linearized system (3.1.7).

Furthermore. the equation (3.1.4)

2 = JAz + JB(A)z + JVN(z)

has the linear part

(3.1.9) 2 = [JA + JB(A)]z

where the matrix C(A) = J(A + B(A)) is a smooth function of A. Since

C(O) = JA has eigenvalues +i with multiplicity 28 and (—i) with

multiplicty 2(n-2). C(A) will have an eigenvalue of the form

0(A) i iw(A)

for small IAI. where 0(0) = O, w(0) = 1 and 0. w are smooth functions

of A. It may be possible to choose a particular parameter. say A1 with

setting all the other X’s to zero so that by varying A1. a pair of

eigenvalues of C(A) may vary either along the imaginary axis or across

the imaginary axis. In two degrees of freedom case it turns out that

the above choice is possible to examine the behavior of the periodic
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orbits of the nonlinear system (3.1.4) as A1 varies across zero.

§2. Liapunov-Schmidt Reduction

Now. we want to study the behavior of periodic solutions of

(3.1.4) as A varies by the method of Liapunov-Schmidt Reduction in the

presence of symmetry. Consider the system (3.1.4) again!

(3.2.1) 2 = JVHA(z) = JAz + JB(i)z + JVN(z).

We introduce the time scale. Set

(3.2.2) t = pr. for Iu-II << 1.

Then. in the new time scale T, (3.2.1) becomes

(3.2.3) gé- u [JAz + JB(A)z + JVN(z)]

JAz + (u-1)JAz + uJB(K)Z + quN(Z)-

Hence, a 217-periodic solution of (3.2.3) corresponds in one to one

manner to a 2wu - periodic solution of the original equation (3.2.1).

So. henceforth. we look for 2w-periodic solutions of (3.2.3).

Set

(3.2.4) 2 = eJATu
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in (3.2.3). where u 6 Rzn.

Then, in the new coordinate u. (3.2.3) becomes

(3.2.5) g; = (“_1)JAu + Me_JaTJB(7\)eJaTu + u e—JATJVN(eJATLI).

Now. we claim that JVH§(eJaTu) = eJaTJVHé(u) and JVN(eJATu) =

eJATJVN(u). More generally. we show the following Lemma:

Lemma 3.2.1: Suppose H(z) = H2(z) + N(z) . z = (x,y) 6 R2n is in

n

1

x? + 6 - - E x? + %( J yJ) 2 j=e+1( J yJ)normal form with respect to H2(z) = l-

N
)

J

“
M
o
:

1

l-zTAz. i.e., H 6 ker ad . Then, the Hamiltonian vector field XH(z)
2 H2

JVH(z) is equivariant under the action of the one-parameter group of

symplectic diffeomorphisms generated by the flow of XH (2). that is.

2

(3.2.6) x (eJAtz) = eJAtx (2).
H H

. . . . 1 T
Proof Since H(z) is in normal form With respect to H2(z) = §-z Az.

H 6 ker ade i.e., adeH = 0.

Since XH2(z) = adH2(z). the flow generated by XH2(Z) is exp tadez =

(exp tJA)z . Also. note that (exp tadH ) H(z) = H((exp tadH )z) (see

. 2 2

Theorem 1.1.20). But. (exp tadH ) H(z) = H(z) since adH H = 0. Hence.

2 2
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H((exp JAt)z) = H(z).

That is, H(z) is invariant under the S1 action of the one-parameter

group {exp JAtI t 6 S1}of symplectic diffeomorphisms. Now.

XH((exp JAt)u) = J vzH(z)|

z = (exp JAt)° u

J [6H(exp JAtu) QEJT

6u 62

T

= J ° {Qgfigl-° exp (-JAt)] (since H(exp JAt u) = H(u))

z) . [exp JAt - qu(u)] (since(exp (—JAc))T = eXp JAt )

exp JAt [J ° VuH(u)] ( exp (- JAt)J exp JAt = J

since exp JAt is symplectic)

exp JAt XH(u).

Therefore. XH(exp JAt ° 2) = exp JAt XH(z). ///

Returning to equation (3.2.5). by the Lemma 3.2.1. equation (3.2.5) can

be written as

(3.2.7) gg-z (p-l)JAu + pJB(A)u + quN(u)

(u-l) JvH2(u) + u JvH§(u) + u JvN<u>

J V[(u-1)H2(u) + uH31u) + uN(U)]-
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Note that the right hand side of the above equation is still

equivariant under exp JAT. Now. we look for 2w-periodic solutions u(T)

of (3.2.7) via the Liapunov-Schmidt Reduction with symmetry.

Lemma73.2.2.2 The bifurcation function for (3.2.7) is just the right

hand side of (3.2.7), i.e..

(3.2.8) V(a.u.A) = (p—l)JAa + pJB(A)a + quN(a). a 6 m2“

and hence V(a,u.A) inherits the symmetry from (3.2.7), i.e..

(3.2.9) V(eJATa.u.A) = eJAT V(a.u.A).

proof Consider the linearized equation of (3.2.7) at u = 0. u = 1.

A = 0.

G = o.

This equation has the 2n-periodic solutions u = constant. Let ¢(t).

and W(t) be the 2n x 2n matrix whose columns are linearly independent

2n-periodic solutions of u = 0 and its adjoint equation respectively

(the same as u = 0 in this case). Then.

¢(t) = W(t) = I2n= 2n x 2n identity matrix.

For any f 6 G;W(R. R2n). define the projections P. Q onto the space of

2w-periodic solutions of u = 0 and its adjoint equation by

12w * - 2w *

Pf = Q1 = ¢(t) b = I2n( [ ¢ ¢) (f ¢ f)

o o
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1 2n

= §;-f f(t) dt. (see Hale [28])

0

Then (3.2.7) is equivalent to

(1'?) [(u-1)JAu + uJB(A)u + quN(U)]{ (I-P)u

Pfi P[(u—1)JAu + uJB(A)u + quN(u)]

or. equivalently,

(a) u

(b) 0

a + K(I-P) [(u-llJAu + HJB(A)U + uJVN(U)]

(3.2.10) {

P[(H"1)JAu + uJB(A)U + quN(u)].

where K: (I-P) Cgv 7'(I-P)ng such that Kg is the unique 2w-periodic

solution of (1 = g(t) for g 6 (I-P)C;Tr with PKg = 0 and a 6 R2n such

that a = Pu.

Let F(u,a.u.A) = u - a - K(I-P)[(u-1)JAu + uJB(A)u + uJVN(u)].

Then. F(0.0.1.0) = 0

Fu(0.0.1.0) = I2n'

Hence. by the Implicit function theorem. there exists a unique function

u* = u*(a.u.A) for Ial << 1, Iu—ll << 1. IA] << 1

such that F(u*(a.u,A). a.u.A) = 0 and u*(0.1.0) : 0.

But. notice that u* = a satisfies (3.2.10)(a). By the uniqueness of

the Implicit function theorem. it follows that (3.2.10)(a) has unique

solution u* = a. Substituting u = a into (3.2.10)(b), we obtain the

bifurcation equation.

0 = P[(u-1)JAa + uJB(A)a + HJVN(a)]

= (u-l)JAa + uJB(A)a + pJVN(a).
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Therefore, the bifurcation function of (3.2.7) is

V(a.u.A) = (Lt-1) JA a + uJB(7\)a + quN(a)

JV[(u-1)H2(a) + urge) + u N(a)]. a 6 IR

Right hand side of equation (3.2.7).

2n

That is. the solution set (a.u.A) of V(a.p.A) = 0 is just the critical

points of equation (3.2.7). Moreover, since the Right hand side of

JAT

(3.2.7) is equivariant under e , clearly V(a.u,A) is also equivariant

under exp JAT. ///

Remark: Since V(a.u.A) can be expressed as

(3.2.11) V(a.p,A) = JVS(a.p.A)

where S(a,u,A) = (u—1)H2(a) + qu(a) + u N(a). it follows that finding

zeros (a.u.A) of V(a.u.A) = 0 is equivalent to finding critical points

of the real-valued function S(a.u.A) and each zero (a.u.A) of V(a.u.A)

= 0 corresponds locally in 1 — 1 fashion to each 2w—periodic solution

z(T) = (exp JAT) ° :1 of (3.2.3) and so locally 1 - 1 corresponds to

each 2wu - periodic solution of the original equation (3 2.1). From

now on. we try to find the zero set of V(a,p,A), i.e.. the critical

points of the real-valued function S(a.u.A).

Note that V(O,p,A) = 0 for all p z 1. A z 0

2

DaV(0.1,0) = (u—1)JA + pJB(A) + “JD N(a)

a=0. u:1,A=0

= 0 where N(a) = 0(Ial4)
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implies (a.u.A) = (0.1.0) is a singularity of V(a.u.A) and so is a

possible bifurcation point. Furthermore.

D V(O.1.0) = pJD3N(a)| = 0,

aa a=0

DaaaV(O.1,0) = pJD4N(a) l 2 o.

a=0

So. V(a.u.A) = 0(Ial3) as a 6'0, at u = 1 and A = 0.

Now, returning to bifurcation equation (3.2.8).

V(a.u.A) = (u-1)JAa + uJB(A)a + quN(a).

x

we first try to determine u = u (a.A) uniquely and continously so that

 

 

* def ~

V(a.u (a.A).A) = V(a.A) is orthogonal to JAat

We put

F(a,u.A) = 1 < JAa, V(a.u,A) > for a ¢ 0

(3 2 12) IJAaIZ
' ' _ ”‘1 + u < JAa, JB(A)a + JVN(a) >.

lJAal2

Then we have

F(O.1.0) = 0 and Fu(0.1.0) = 1.

Hence. by the Implicit function theorem.

there exists a unique C1 function 11 = u*(a.A) near a = 0. A = 0 such

that

F(a. u*(a,A) .A) = o, “(0.0) = 1. i.e..
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(3.2.13) < JAa, V(a,u*(a.A). A) > = o for o < |a| << 1, [AI << 1.

In fact. from (3.2.12).

< JAa, JB(A)a + JVN(a) >

lJAal2

 

u(1 + ) = 1-

*

Hence. u (a.A) is explicitly given by

IJAalz

IJAaI2 + < JAa. JB(A)a + JVN(a) >

lal2

|a|2 + < Aa. B(A)a + VN(a) >

1

1 + 0(IAI + lalz)

So, for IaI << 1 and IAI << 1. u*(a.A) z 1 - 0(IAI + laIZ).

 

u*(a.A)

(3.2.14)  

 

Notice that even though the formula (3.2.14) may be valid for all a,A,

we must restrict ourselves to a sufficiently small neighborhood of

(a.A) = (0,0) to ensure that Iu*(a.A) - 1| << 1.

Lemma 3.2.3: Let v(a,A) = V(a.u*(a.i), A) for all 0 < lal << 1 and IA]

<< 1. where u¥(a.A) is give by (3.2.14). Then, u*(a,A) is invariant

and V(a.A) is equivariant under the action of the l—parameter group

{exp JAt: t e R}. that is.

u*(exp JAt a.A) = u*(a.A)

V(exp JAt a.A) = exp JAt W(a,A).

proof Let h(a,A) = JB(A)a + JVN(a) in (3.2.14). Then from (3.2.14).
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 u*((exp JAt) a.A) = I(exP JA‘) alz .

Iexp JAt a|2 + < JA (exp JAt) a. h(exp JAt a.A) >

I(exp JAt) aI2 = < (exp JAt) a. exp (JAt) a > = < a. (exp -JAt) ° (exp

JAt) a > = Ialz. Since h(a.A) is equivariant under eJAt,

< JA exp JAt a. h((exp JAt) a.A)) < (exp JAt) JAa. (exp JAt) h(a.A) >

< JAa. h(a.A) >.

x *

Hence. u (exp JAt a.A) = u (a.A).

Also.

3(exp JAt a.A) V((exp JAt) a. u*((exp JAt) a.A), A)

V((exp JAt) a. u*(a.A), A) (since u* is invariant)

(exp JAt) V(a. u*(a.A), A) (since V is equivariant)

(exp JAt) W(a.A). ///

Note that for o < |a| << 1, lu-ll << 1,

if V(a.u.A) = 0 then F(a.u.A) = 0 and by the uniqueness of u* we must

have

u = “*(a.A) with u*(0.0) = 1.

So. V(a.u.A) = 0 iff V(a.A) = V(a.p*(a.i). A) = 0.

Hence.

(a.A) is a zero of V(a.A) = 0

iff (a.u*(a.A). A) is a zero of V(a.u.A) = 0

iff (a. u*(a,A), A) is a critical point of equation (3.2.7)

iff z(T) = exp JAT a is a 2w—periodic solution of (3.2.3)

iff z(t) (exp JAt/u*(a.A)) a is a 2w p*(a.A) — periodic solution of

the orginal equation (3.2.1).
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§3. Reduction to a_gradient system

Now. our problem to study the periodic solution of (3.2.1) near

those of the linearized equation is reduced to finding the zeros of the

bifurcation equation V(a.A) 0 which is the Zn x 2n finite system.

Furthermore, since V(a.u.A) JVS(a.u,A) by (3.2.11)

Where S(a.u.A) = (u—1)H2(a) + uHé(a) + uN(a) = qu(a) ‘ H2(a)-

we can easily express V(a.A) as a gradient-like system as above.

Lemnla 3.3.12 Let S(a.A) = H2(a) - 11*(a.A) [Hk(a) - c]. for any

constant G. Then JV(a.A) = VS(a.A) on the energy surface HA(a) = c.

proof V(a.u.A) = Jv[uH3(a) - H2(a)].

JV(a.u.A) v1H21a) - when

VH2(a) - u V(HA(a) - c] for any fixed constant c.

If u = u*(a.A). then

v1H.(a) — flex) . (We) - c)1

vH21a) - flex) «11%) — c) — vu*(a.A) - (We) — c)

VS(a.A)

JV(a.u*(a.A). A) on HA(a) = c

JV(a.A). ///

Remark: This Lemma 3.3.1 (and Lemma 3.3.2 in the following) are due to

Chow and Mallet-Paret [14]. but in our case these Lemmas are trivial

consequences of the fact that our Hamiltonian function is in normal

m with respect to H2 and so the bifurcation function V(a.u,A) is

just the right hand side of equation (3.2.7). which is again. a
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Hamiltonian vector field.

Now. by Lemma 3.3.1, the problem of finding zeros of V(a.A) = 0

is again reduced to find the critical points of the potential function

S(a.A) = H2(a) - u*(a,A) ° [HA(a) - c] on the energy surface Hk(a) = c.

Thus. we must solve the two equations

VS(a.A) = VH2(a) - u*(a.A)VHA(a) = 0

(3.3.1) >\

H (a) = C

simultaneously for each given A and c.

Let 3(A,c) be a critical point of S(a.A) on the energy surface Hk(a)=c.

Define 6: m2“ x m x m e m2“ x m by

[612121) — u*(a.A)VH>‘(a)]
G(a,A,c) = A .

H (a) - 0

Then. we know that G(0.0.0) = [g] = O. DaG(O’O'O) = 0. Hence (A,c) =

(0.0) is a possible bifurcation value for the zeros of the system

(3.3.1).

Note that on each energy surface Hk(a) = c. VS(a.A) = VH2(a)-

u*(a.A)vHA(a) and this resembles the Lagrange multiplier method when we

compute the critical points of H2(a) with the constraint Hk(a) = c in

which case we solve the equation VH2(a) - n° VHA(a) = 0. e.g., for a in

term of (n.A) and then using the constraint Hk(a) = c we determine n =

n(A.c) and so determine a = a(A,c). In the following Lemma. it turns

x

out that the Lagrange multiplier n so obtained coincides with u (a.A).





Lemma. 3.3.22 For each IAI << 1 and [CI (< 1. let a = 5(A.c) be a

nonzero critical point of the real-valued function

g(a.A.n) = H2(a) - n°HA(a) with Hx(a) = c.

Then. n = u*(5.A) in a sufficiently small neighborhood of (0.0).

proof Since a = 5(A,c) is a critical point of g with Hk(a) = c for

each A. c. we have

_ A _

VH2(a) - nVH (a) = 0 where n = n(A,c).

Hence, vS(£.A) = vH2(a) - u*(5,A)vHA(5) = [n - u*(§.A)]° VHA(5).

Then. from (3.2.13) and Lemma 3.3.1, we have

< JAE. V(a.A) >0 II

= < 1A5. J’lvs(5.i) > on 3*(3) = c

* — - A - . —1
= - [n - u (a.A)] < JAa. JVH (a) > (Since J = - J).

Multiplying both sides by u*(§1A). we can write

at- —x»)\— _ _

0 = -[n - u (a.A)] ° < JAa, u JVH (a) — JAa + JAa >

Since V(a.A) = ”*JVHA(a) - JAa and < JAa. V(a.A) > = o for all 0 < |a|

<< 1 and IA] << 1, we have
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0 = - [n - u*(E.A)] . < JAE. V(a.A) + JAE >

* ... _

= - [n - u (a.A)]° Ial2

Hence. n = “*(EZA) since 5'; 0. ///

Therefore, finally our problem to study the periodic solutions

of (3.2.1) has been reduced to finding the critical points of the real

-valued function g(a.A.n) = H2(a) - n ° HA(a) with Hx(a) = 0. So. if

we solve the equation V(H2(a) - nHA(a)) = 0 with Hx(a) = c then n will

be automatically determined as ”*(a.A).

Note that g is invariant and Vg is equivariant under the action

of the group {eJAtz t 6 R) and hence if 5': 5(A,c) is a solution of Vg

= 0 with HA(a) = c. then eJAtE are also critical points of g on the

same energy surface for all time t. Now. we summarize all the

above results in the following theorem. which will be a main theorem of

this thesis.

Theorem 3.3.3: Consider a family of Hamiltonian functions

H*(z) = H212) + H§(z) + N(z). z = (x.y) e m2“

passing through 12 ... 112 -1: ... I -1. semisimple resonance at A = 0.

where H2(z) is given by

H2(z) = %- g (x2 + yz) — §- 2 (x2 + yz) - é-ztAz

jzl J J j=3+l J J
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and H§(z) = é-ztB(A)z is a versal deformation of H2(z) and N(z) is a

higher order term. Suppose that HA(2) is in Hz-normal form. Then,

the periodic solution of the Hamiltonian system

i = JVHA(z)

- c are locally in a one-to-oneon the energy surface HA(z)

correspondence to the critical points of the real—valued function

g(a.A.n) = H2(a) - n . H*(a)

c. More precisely, if a": g(A.c) is a critical point of g

c for Ial. IAI. Icl << 1. then the Hamiltonian system has a

on Hk(a)

on Hk(a)

periodic solution

z(t) = eJat/u*(2_1-.A). 2-1-

with period 2nu*. where u*(a.A) is given by

2

u*(a.?\) = lal

|e|2 + < Aa, B(A)a + VN(a) >

for Ial, IAI << 1.

Obvious from all the Lemmas in this chapter. ///proof:

Hence. from now on. we concentrate only on the problem to find

critical points of the real-valued function



 



61

‘ A

g(a.A.n) = H2(a) - n H (a)

A
on the energy surface H (a) = c.

By using the invariance of g and the equivarience of Vg under

the action of (exp JAt It 6 R}. the problem to solve the equation Vg -

0 can be further reduced and we are going to work out this problem in

the two degrees of freedom case explicity to show the bifurcation of

the periodic orbits.
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CHAPTER 4: TWO DEGREES OF FREEDOM 1: - 1 SEMISIMPLE RESONANCE PROBLEM

In this chapter. we apply the general theory of Chapter 2 and

Chapter 3 to the Hamiltonian function of 2 degrees of freedom with the

nonpositive definite quadratic form at 1: -1 semi-simple resonance. and

study' the 'bifurcations of jperiodic orbits as the 'parameter passes

through the resonance.

§1. Normal form and Versal deformation

Consider the Hamiltonian H: R4 -> R. Coo, with the nonpositive

definite quadratic form at 1: -1 semisimple resonance:

1

(X? + y?) - g(xg + Y2)-

A
fl
r
é

(4.1.1) H2(X,Y) :

First, we find the normal form of H with respect to H2 up to the 4th

order.

‘In this case. the map ad : Cm(R4. R) e>Cm(R‘. R) is given by

 

H2

2 6H 6 6H 6
ad = 2 ( 2 - 2 )
H . 6.6. 6.6.
2 J=1 yJ XJ x1 ya

6 6 6 6
 

= (Y15;:'- X155?) — (Y25;;'- X2 )-
aY2
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In complex conjugate coordinates (z.§) = (Z1, 22, 21. 2;) 6 $4 with zj=

Xj + iyj (j = 1.2). Hz and adH can be rewritten as

2

~

H2(x.y) = H2(z.2) = z1 23 - "Zz z2

k
n
e
e

811%’ (2,2) = -i (216—:- — 5-1—2“) -’ (22% "' .2— i

2 1 21 2 622

 

)

The action of adfi on the basis monomial zkée for the space @n(z.2) of

2

homogeous polynomial of degree n in 2.2 is

ad§2(zkée) = —i[(k. — e.) — (k2 — 22)] (zkie).

Hence.

zkEe 6 ker adfi iff k1 - 81 = k2 — 82 (resonance relation).

2

It follows immediately that there are no third or hdgher odd-ordered

terms in the normal form of H. The (Hilbert) generators for Ker

adH are given by

2 2
2

(4-1-2) p1 = Iztl2 X? + yf. 02 = lzel2 = X3 + YE.

X1X2 ‘ Y1Y2 . 94 = Im(2122) = X1Y2 + X2Y1.P3 = Re(zizZ)

Also. the generators for Ker ad are given by
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62 = Re (2% Z2 21) = (XI + YI)(X1X2 ‘ Y1Y2)

es = Im (2% z2 21) = (X? + YT)(X1Y2 + X2Y1)

64 = zizzgigz = (X? + YI)(X§ + yg)

95 = Re(zfzg) = (XI “ YI)(X§ ' Y3) ‘ 4X1X2Y1Y2

(4-1-3) 66 = Im(ZfZ§) = 2X1yt(X% - y%) + 2X2y2(Xf - y?)

e7 = Re(ziz§22) = (X2 + Y§)(X1X2 ‘ Y1YZ)

Im(zizIEZ) = (X2 + yg)(X1YZ + X2Y1)(
D

a
; I
I

e9 = 23—3 = (X5 + yg)2,

Therefore, the normal form for H(x.y) with respect to H2 up to the

fourth order is given by

(4.1.4) H(x.y) = H2(x,y) + H4(x,y) + (higher order terms)

9

where H4(x.y) = 2 ajej and ej’s are given in (4.1.3). Moreover, from

1:1

the general theory of Chapter 2, the versal deformation of H(x.y) up to

the second order i.e.. in the space 92(x,y) can be written as

A A 5

(4-1-5) H (X-Y) = H2(X:Y) + H2(X.Y) + H4(X.Y) + 0(IX-YI )

where

A 1 2 2 1 2 2

H2(X-Y) = E >\1(X1 + Y1) ‘ 5 >\2(X2 + Y2) + 7\:3(X1X2 ‘ Y1Y2) +

64(X1Y2 + X2Y1)-

Now, we consider the truncated Hamiltonain. denoted again by Hk(x,y),

containing only a single fourth order term e3.
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(416 RRJJ=muJ)+@(mw+fixmw

with

fi4(X-Y) = e3 = (X? + Y?) (X1Y2 + X2Y1)-

Remark: Here. we picked up a fourth order term e3 randomly just for

simplicity of calculation to show our method to get the bifurcation

explicity in the presence of nonlinear terms. Even if we consider the

full nine fourth order terms in H.(x.y). our methodology will be just

the same except a slightly more involved computation.

4
Rewriting (4.1.6) in vector—matrix notation with z = (x,y) 6 R . we

have

(4.1.7) H*(z) = H2(z) + H§(z) + fi.(z) = é-ZTAZ + %- TB(A)z + fi.(z).

where A = diag (1. -1, 1, -1), and

P

A1 A3 | o A.)

A3 -A2 | A4 0

O 64 l >\1 "ks .

A. o |-A3 -A2

B(A) =
 

  

The corresponding Hamilton's equation is

(4.1.8) 2 = JVHA(z) = JAz + JB(A)z + Jvfi.(z).

where
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| 1 01 o A. | A1 -A3‘

0 o -1 A. o I—A3 -A2

JA = -1 OT 0 ’ JB(A) = '61 ‘63 I O ‘64

0 1| 'Aa >\2 I-Aq O

L

P 2Y1(X1Y2 + X2Y1) + X2(XT + Yf)l

_ X1(XT + Y?)

JVH4(Z) =

-2x1(x1y2 + X2Y1) _YZ(XT + Y?)

‘Y1(XI + YT)  

Remark: Since each term in the truncated Hamiltonian (4.1.7) is in the

normal form with respect to H2. HA(z) is invariant under the action

(rotation) of the one-parameter group of symplectic diffeomorphisms

{exp JAt: t 6 R) generated by the flow of XHZ.

in Chapter 3, XHA(z) = JvHx(z) is equivariant under the same action.

Hence. by Lemma 3.2.1

Furthermore. since {H2.HA) = O, the system (4.1.8) is completely

integrable with integrals Hx(z) and H2(z). Also note that the system

(4.1.8) is a versal deformation of H in 92(R‘.R) with codimension 4 of

the unperturbed system 2 = JVHO(z) preserving the Hamiltonian

character. Since the number of parameters are too many to examine the

qualitative behavior of (4.1.8). we are going to restrict ourselves to

the codimension one bifurcations by choosing a suitable parameter and

setting the other parameters to be zero.

32. Invariant manifolds of the linearized system

The linearized Hamilton’s equation of (4.1.8) at z = O and A = O
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(4.2.1) 2 = JAz

with the solution z(t.zo) = (exp JAt) - zo starting from the initial

point 206 R4 at t = 0. Since the 4 x 4 matrix JA has the eigenvalues t

i each with multiplicty 2 and exp JAt = I(cos t) + JA(sin t), we have

Iz(t)l = Iexp JAt - zol = [20]. Hence each solution curve z(t,zo) =

(exp JAt) ° 20 is a 2w—periodic circle lying on the 3-sphere S31 x? +

2 . 4
y? + x3 + y3 = Izol in R . Notice that the linear system (4.2.1) has

the Hamiltonian

1 1
(4.2.2) H(x.y) = §(xf + y?) — §(x§ + yg)

which is the sum of the energy functions of two harmonic oscillators

running opposite in time both. with frequency 1. Furthermore. the

system (4.2.1) has another integral

1 1

(4.2.3) L(x y) = g(xf + y?) + 5 (x3 + yé)

as we can easily see from the fact that (H,L) = O. The function L(x.y)

may be considered. up to canonical change of coordinates, as the

angular momentum of these oscillators. Now. we may consider the

so-called "energy — momentum mapping"

H x L de (H,L) : m4 e m2  
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defined by

(H X L)(Xi.x2.yi.y2) = (H(XJ): L(X-YD-

Then, each orbit. i.e.. 2w-periodic circle. of the linear system

(4.2.1) lies on the level set of the mapping H x L.

(4.2.4) (H x L)'1(h.e) = {(x,y) e m4 H(x.y) = h. L(x.y) = e)

where h 6 R. 8 2 0.

If (h.8) 6 R2 is a regular value of the mapping H x L. then the level

set (H x L)-1(h,€) defines a smooth 2 - dimensional invariant manifold

of the system (4.2.1) in R4.

However. if (h.8) 6 R2 is a critical value of the mapping H x L.

that is. for some 20 6 (H x L)—1(h.£). the derivative D(H x L)(zo):

Tz R1» T(h e)R2 is not surjective. then the level set (H x IJ_1(h.e)

o 9

will be at most a 1 — dimensional critical manifold. To be more

precise, let’s find out the critical sets of the mapping H x L. Recall

that a point z = (x1,x2.y1.y2) 6 R4 is a critical point of H x L iff

D(H x L)(z) is not surjective. Since D(H x L)(z) = (DH(z). DL(z)). z 6

m4 is a critical point of H x L if

(i) DH(z) = O or DL(z) = O

or

(ii) DL(z) + ADH(z) = 0 for some A ¢ 0. i.e., z is a critical

and A is a Lagrange multiplier.

(11)

point of L

H—l
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In the case (i), we have only the trivial critical point z = O with the

energy H = 0 and the momentum L = 0. In the case (ii). for each h 6 R.

the solutions of the system of equations for A ¢ 0,

(1 + A)X1 = 0

(I - K)X2 = O

(1 + A)Y1 = O

(1 ‘ A)Yz = 0

yield the critical circle

31 = {(x1.0,y1.0) 6 m4] g(xf + y?) = h} for h > o

and

4 1 2 2
s2 = {(O,x2.0,y2) e m I §(x2 + y2) = —h} for h < o

with the corresponding critical values (H,L) = (h,h) for h > O and

(h.-h) for h < 0 respectively. For h = 0, (ii) yields only the trivial

critical point z = 0. Therefore. for those critical values (h.8) with

8 = h for h > 0 and 2 = -h for h < O of the mapping H x L. the level

set (H x L)_1(h,8) is the 1 — dimensional circle lying in the (x1,y1)

plane for h > 0 and in the (x2.y2) — plane for h < 0 respectively.

The foliation of the constant energy surface H_1(h) for each

given h 6 R with respect to the parameter values of 8 can be easily

examined by using polar coordinates.

Putting x1 = 71 cos 61. y1 = 71 sin 91

x2 = 72 cos 62 y2 = 72 sin 92,

then the level set

-1
1

H (h) = {(X1.xa.y1.y2) 6 R g(Xf + y?) - §{X§ + YE) = h}
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can be expressed as

> o. h e m).H-1(h)‘= {(71:72) 6 mzl é’”? ‘ é’Tg = h- 71.72

which is a hyperbola for each h ¢ 0 and a straight line for h = 0 in

the (11.72)-p1ane as shown in < Figure 4.2.1 >.

T2 .

 
  

< Figure 4.2.1 >

For h ¢ 0. a constant energy surface H_1(h) is diffeomorphic to S1 x R2

and hence is not compact. while for h = 0. it is a cone (0) x R2 over

S1 with vertex at the orgin. Also. the level set

" 1 ~ 4 1 2 2 1 2 2

L (3) = {(Xi.x2.yi.y2) € R §(x1 + yi) + §(X2 + Y2) = 3}

can be rewritten as





71

-1 2 1 2 1 2

L (E) = {(71.72) E [R E71 + 572 = e, 71.72 2 0. e 2 O},

which is a quater-circle in the (w1.72)-plane with radians v5? as shown

as dotted lines in < Figures 4.2.2 >.

Hence, the level set (H x L)“1 (h,£) may be expressed as the set of

intersection points of the two curves

4

I

4

M

II2 2 2h (h e m)

7% + 13 22 (e 2 0)

in the (71.72) —plane as is shown in < Figure 4.2.2 >

 
  

< Figure 4.2.2 >

Hence, for h > o, if e > h then (H x L)‘1(h.e) = 31 x s1 = T2 and if e

= h (critical values of H x L) then (H x L)-1(h.£) = S1 x {O}, which is

a circle lying in the (x1,y1)-p1ane. While for h < O. (H x L)—1(h.e) =

s1 x s1 = T2 for e > -h and (H x L)‘1(h,e) = {0} x 31 for e = —h

(critical values of H x L). If 0 g e ( Ihl then (H x L)_1(h,€) = ¢ for
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|h| g o.

2

T for e > O

For h = o, (H x L)"1(h,e) = {

{O} for e = 0

Therefore, we can conclude that every solution curve z(t) = (exp JAt)

20 of the linear system (4.2.1) is a (Zn—periodic) circle lying on S1 x

{O}, {O} x S‘, or T2 depending on the values of h and 9.

Remark: As van der Meer did in [35], we may also use the Si—invariant

variables defined by

W1 = (X? + y?) - (XS + y?) = 2h (fixed)

W2 = (X? + y?) + (X? + yi) = 29 2 0.

”a = 2(X1X2 + Y1YZ)

"4 = 2(X1Y2 ‘ X2Y1)

with relationship

W? + fig + WE = w:

in order to describe the foliation. of the constant energy surface

H-1(h) for given h 6 R. Rewriting the identity as

NS — wg — WE = 7? = (2h)2 = constant, wz = 28 2 0,

then the mapping
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F: (X1:x2:Y1:YZ) " (772,778’7”) With 772 Z O

1

maps the constant energy surface H_1(h) = S x R2 to a connected piece

of two-sheeted hyperboloid in R3

#3 - «g — vi = (2h)2, 72 2 0

if h ¢ 0 and to a half—cone if h = O. The intersection of the

hyperbold and the plane #2 = 22 2 O is a circle whose preimage under

the mapping F is

F_1(28,w3,w4) = ( ll x: L)-1(h,8) = toroidal energy' momentum

surface.

§3. Eigenvalues of the perturbed linear system

From the above global analysis in Section 2 about the linear

flow (4.2.1), we may expect that for [2' << 1 and [AI << 1. the family

of nonlinear Hamiltonian systems

(4.3.1) é = JVHA(z) = JAz + JB(A)z + Jvfi4(z)

is close to the linear system (4.2.1) and hence may have small

amplitude periodic solutions with period near 21r near the periodic

solutions of the linear system (4.2.1). Now, the linearized equation
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of (4.3.1) at z = O is

(4.3.2) 2 = J(A + B(A))z dgf JA(A)z.

 

  

where

’ 0 A4 | 1+>\1 —A3 ‘

A. o l -k3 —1—A2

JA(A) = -1-x1 -x3| o —x.

L_A3 1+A2| “A4 0 l

After a tedious calculation of the characteristic polynomial of JA(A),

we find that

(4.3.3) det (aI - JA(A)) = a4 + a2[(1 + x1)2 + (1 + h2)2 — 2x3 — 2kg]

+ [R3 + Ki + (1 + K1)(1 + k2)]2,

and the eigenvalues are given by

(4.3.4) (12 = - £0 + 2(1)? + (1 + A2)? - 2A3 — ZAE] i 52 + x1 +

 

Ann/(A.- m2 - 40% + N37.

From (4.3.4), we notice that

(i) when A1 = A2 = A3 = A4 = O, the eigenvalues of JA(A) are

a = i(double), a = -i(double) as they should be.

(ii) when k3 = K4 = 0, (4.3.3) becomes

a‘ + a2[(1 + (1)2 + (1 + )2)2] + (1 + A.)2(1 + x2)2 =

[a2 + (1 + >\1)2] [0t2 + (1 + 7\.2)2]-
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So, the eigenvalues of JA(A) are a = i i(l + A1), a = i i(l + AZ).

(iii) when A1 = R2 = 0, (4.3.4) becomes

 
(:2 = - 52 — 27x3 — 24%] i 21:53 + A?

= (—1 + x3 + ii) i 21:53 +‘ii‘ = (1X3 + Xfi—i i)2.

So, the eigenvalues of JA(A) are a = i (e + i), a = i(e - i) where e -

Jig—Jar.

Since we are mainly interested in the cases when the eigenvalues

vary along the imaginary axis, or across it, from now on, we restrict

ourselves to the following two cases:

Ca.se(a) >\2=)\3=7\4=0 (01‘7\1=)\3=7\4=0).

In this case. the eigenvalues of JA(A) are i i. ii(1 + A1). i.e.

the double eigenvalues i i of JA(O) = JA split along the imaginary

axis.

Case (b) A1 = A2 = A3 = O (or A1 = A2 = A4: 0).

In this case, the eigenvalues of JA(A) are i(7\4 + i), i (h4-i),

i.e. the double eigenvalues i i of JA(O) = JA split aggggg the

imaginary axis.
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< Figure 4.3.1 >

Note that in each case (a), (b), our Hamiltonian Hk(z) takes the form

7x 1 1 1
H (Z) = g(X‘? + Y?) - g(X‘Z + y?) + @100? + y?) + (X? + yf).

(X1Y2 + X2Y1)

K 1 1

H (z) = §(X¥ + Y?) ‘ §(x§ + YE) + A4(X1Y2 + X2Y1) +

(X? + Y7)(X1Y2 + X2Y1)

respectively.

Egggggi By using the same method as in Section 2. it may be possible

to study the bifurcations of invariant manifold (HA x H2)_1(c,m) as A1

(or A4) varies for various values of c and m. But, this does not give

any detailed informations about the bifurcation of periodic orbits

lying in those invariant manifolds. Hence. we will have to examine the  
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local bifurcations of the periodic orbits themselves by other means.

In the following, we will do this by using the method described already

in Chapter 3.

In van der Meer's thesis [35], he examined the bifurcations of

invariant manifold of the Hamiltonian system with the quadratic part H2

= (x1y2 + xzyi) + é—(xf + X?) which is 1: —1 nonsemisimple case. He

considered the energy—momentum mapping H x S where S is the semisimple

part of Hz and obtained the standard form C x S and its unfolding GD x

S by using singularity theory and finally examined the fibration (GD x

S)_1(g,s) as v varies for given g,s.

§4u Local bifurcations of periodic orbits as the eigenvalues split

along the imaginary axis

Now, we follow the methods described in Chapter 3 with

Hamiltonian

(4.4.1) Hx(z) = zTAz + 2TB(A)Z + H;(z),

[
\
D
I
H

[
\
D
I
H

where A = diag (1, «1, 1, -1), B(A) = diag (A1, 0, A1, 0), and

H4(z) = (X? + YT)(X1YZ + X2Y1)-

The corresponding Hamiltonian system is

(4.4.2) 5 = JVHA(z) = JAz + JB(i)z + Jvfi;(z),
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where the linear part A(A) = A + B(K) has eigenvalues, i i, and

(1 +)\1)i. After introducing the time scale t = 111', I11 - 1| << 1,

(4.4.2) becomes

(4.4.3) gé-z u[JAz + JB(K)z + JVH;(Z)]

. . . . . AT 4

and after putting this into rotation coordinates z = e‘J u, u 6 [R ,

equation (4.4.3) becomes

(4.4.4) %%'= (p — 1)JAu + uJB(h)u + uJVH;(z)

by Lemma 3.2.1. And the bifurcation function of (4.4.4) is given by

(4.4.5) V(a,u.i) = (u - 1) JAa + uJB(A)a + qufi;(a). a e m4

with the equivariant property

eJAT

V( a, p,i) = eJATV(a,u,h)

by Lemma 3.2.3. Also, we can choose p = u*(a,h) uniquely and

continuously so that

< JAa, V(a,u*(a,i),x)> = o for all 0 < |a| << 1, lil << 1.

In fact, from (3.2.14), u*(a,h) is given by
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(4.4.6) u*(a.h) = lalz ._

|a|2 + < Aa, B(A)a + vH,(i) >

 

With B(k) = diag(k1, 0, A1, 0), (4.4.6) becomes

 

 
 

2

(4.4.7) u*(a,k) = lal

Ialz + h1(af + 3%) + 2(af + a§)(aia4 + a233)

1 1

= = = 1 - 0(I7~1I+IaI2)

1 + A1 P(a) + 2P(a)Q(a) 1 + 0(IA1|+|3|2)

asbJeOaMIMIAQ

a2 + a
where p(a) = 1| I 3 0 g p(a) g 1 for any a ¢ 0,

a 2

q(a) = (a1a4 + azaa) = O(|a|2)°

Further, letting V (a.A) = V(a,u*(a,i),i), then by Lemma 3.2.3, V(a.A)

JAt and each zero (a.A) of V(a.A) is locallyis also equivariant under e

. * . . .

in a one to one correspondence to the 21711 (a,?\) - periodic solution

z(t) = eJAt/u*(a,>\)

each zero (a.A) of V(a.A) is a critical point of the scalar-valued

a of our system (4.4.2). Also, by Lemma 3.3.1,

function

(4.4.8) S(a,h) = H2(a) - u (a,h)°[H (a) - c]

on the energy surface HA(a) = 0. Moreover, by Lemma 3.3.2 in Chapter
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3, we know that the solution of VS(a,N) = O with the constraint HA(a) =

c can be obtained by solving Vg(a,h,n) = O with Hk(a) = c, where

(4.4.9) g(a.x.n) = H2(a) - n . H‘(a)

_ *—

for a = a(h,c) with n = u (a.A). Therefore, we concentrate on solving

the equation Vg(a,?\,n) = O for a = 50.1)) with n = u*(a,}\) given in

(4.4.7). Then, by Theorem 3.3.3 this solution a(>\,n(7\,c)) will be

*—

locally in 1 - l correspondence to the 2wu (a.A)-periodic solution

*.

z(t) = eJAt/ll (a.A);-

of the orginal equation (4.4.2). Now,

g(a.x.n) = H2(a) - nH*(a)

H2(a) - n . [H.(a) + H§(a) + fi;(a)1

1T 1 T —
=(1-n)‘§aAa-n°§aB(>\)a-U°H4(a)

1 1

u—n)o§fi+a§—s—an—no§mm£+an-

H(aI + ag)'(aia4 + 82a3)-

Hence. the system of equations Vg(a,h,n) = 0 becomes
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’11) (1-")31 ‘ 774131 “ "[231 (3134+ 3233) + 21413-11a + a§)] = O

(2) -(1-n)a2 -n[ae(af + 33)] = O

(4.4.10)<(3) (l-n)ae ‘ ”4133‘ "[233(aiaq+ a233) + a2(af + 33)] = O

(4) '(1-n)a4 - n[a1(a'f + 213)] = 0

together with the energy condition HA(a) = c.

(5) gm? +)a§) - 3,1421: + a3) + $7444 + as) + (a? + as) (a.a.+
azaa = c. 5

Note that for each A1 and c,(4.4.10) is a system of 5 equations in 5

unknowns a1,a2,a3,a4, n and so we can solve (4.4.10) (1), (2), (3),

(4), for a = 5(A,n) in terms of N1,n and make use of (4.4.10) (5) HA(a)

= c to determine 7) = n(7\,c) and hence determine a = g(k,n(>\,c)).

Furthermore n(k,c) will turn out to be n(h,c) = u*(alh). Therefore, by

using a = EIK,n) and n = u*(alh) we can examine the number of solutions

as the parameter A1 varies.

Also. note that system (4.4.10) is equivariant under the

rotation exp JAt for all t and in particular invariant under the

reflection a1<—> a3, a2<—> a4.

Clearly, a = O is a trivial solution of (4.4.10) for all N1 with c =

O.For c ¢ 0, a = O is no longer a solution of (4.4.10).

Recall that n = “*(a,A) z 1 - 0(IA1I +IaI2) as Ial 4’0 and [Ail » 0.

Hence, for sufficiently small [Nil and la], we always have n > O and O

('n < 1 for A, > O and q(a) > O and n > 1 for A1 < O and q(a) < 0.

Since u*(0,0) = 1, n cannot be zero. If n = 1, then we have K1(af +

a3) + 2(af + a§)°(a1a4 4 azas) = O and hence our system 2 = JVHA(z)

reduces to the linear system i = JVH2(z). Therefore we may assume n ¢

1.

Now, for n ¢ 0 and n ¢ 1, we can write (4.4.10) (2), (4) as
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a... = - fiadaf + a4)
(4.4.11) n 2 2

a4: ‘ T:E'ai(ai + 83).

Substituting (4.4.11) into (4.4.10) (1), (3), we have, by the

reflection symmetry a1 ee>a3, a2 ee>a4,

(i) a1[(1-n) (l-n - nkl) + 3n2(a? + a§)2] = 0

(4.4.12)

(ii) ae[(1-n)(1-n-nkl) + 3n2(a§ + a§)2] = 0-

Note that if we can solve the system (4.4.12) for a1, as in terms of

A1, n, then by (4.4.11), a2, a4 are automatically determined and so we

can determine the solution of the system (4.4.10). Hence, the 4 x 4

system (4.4.10) (1) - (4) has been reduced to solving the 2 x 2 system

(4.4.12), which is entirely due to the equivariance of the orginal

system (4.4.10).

Also notice that if N1 = 0 then (4.4.12) and hence (4.4.10) has only

the trivial solution a = O with c = 0.

Now, we consider several cases:

case (i): a1 = O and a3 = O.

This clearly satisfies (4.4.12) and from (4.4.11) we have a2: a4: 0

O.and from (4.4.10) (5), we have c

Hence, we get trivial solution a = O for all h, with energy c = 0.

case (ii) a1 = O and a3 ¢ 0
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From (4.4.12)(ii), we have

(l-n)(1-n - nk1) + 3712 a3 = 0-

 

 

or,

a. _ _ (1—n)(1—n - n1.)
3 — .

3n2

From (4.4.11), we have

a2 = lfin a3, a4 = 0.

Hence, in this case, we have solutions of (4.4.10) of the form

=84=O

_ (1-n)(1-n -nk1). a2 = ‘ n a3.

a1

(4.4.13) (

l-n

3n2

a3:

 

case (iii): a3 = O and a1 ¢ 0

By the reflection symmetry a1+—> a0, a2€_) a4, we have the

solutions of (4.4.10) of the form

 

 

a3 = a2 = O

(4'4'14) l a? = _ (l-n)(1-n - nkl). a4 = - T95-a2.

3n2

case (iv): a1 ¢ 0 and a3 # O.

From (4.4.12)(i)(ii), we have

(1-n)(1-n - nk1) + 3n2(a? + a3)2 = 0

or,

mf+£V=_(PMUm-nhl

3n2

Therefore, it follows from the above cases that the most general

solution of (4.4.10) including cases (i)(ii)(iii)(iv) can be written as
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r(a¥ + 83):? = _ (I‘TIHI‘TI - URI) (a)

3n2

(4H415) < a2 = _ 1:7.” 83(83 + a3) (b)

a4 = ' I?” a1(af + 33) (C)

where a1, a:3 are allowed to be both zero and T) # O, 1 is given by

(4.4.7):

*
1

n = u (atk) = 1+Alp(a) + 2P(a)Q(a)

 

2 2

with p(a) = al—i—Egnand

lal2

q(a) = a1a4+ a233 = 0(Ialz)

and the energy corresponding to the solution (4.4.15) is given by

1(37 + 3%)

h
g
r
d

Hx(a) = glaf + 3%) — g(ag + ai) +

+ (a? + 3%) ° (3134 + a233) = C-

In order to put (4.4.15) into a simpler form. we set

a1 = woos 9, a3 = wsin 9

 

a2 = pcos w. a4 = psin w (7,p 2 0)

Then, (4.4.15)(a) becomes

74 = _ (1-n)(1-n-UK1), or

3n2

 (4.4.16) 4 = [— (1‘")(1‘9‘"*1)]1/4 provided [ ] 2 0

3n2
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and from (4.4.15)(b),(c), we have

 

s2.) . E-(l-n)(1-n—nA,)]3/4(4.4.17) p = l;fl_

3n2

provided [ ] 2 0.

Hence, for those values of A, and c satisfying [ ] 2 0, (4.4.16)

and '(4.4.17) show that the solution set of (4.4.10)

2-dimensional torus T2 = S1

for 7 to have real positive solutions, we need the condition

(4.4.18) — (1‘”)(1‘"'”A1) > 0

3n2

Now, since we can write

_ (l-n)(1-n-nk1) _ 1_. 1 ‘ ($93041

3172
_ 3

n 2 .

(1:3)

 

the condition (4.4.18) is equivalent to

_IL_(1_n)A, > 1.

n

x S1 depending on A, and c. Now,

forms a

in order

Hence, if A, > 0, we need-f2; >-—1— i.e., o < 1'" < A, and if A, < o,
A,’

1
then we need 4n— < —l—, i.e. O > 1_n > A1. But, -—» =

1-n K1 n n

 

J
I
H

“1 = Al p(a) +
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2p(a)q(a). Since 0 < p(a) < 1 and p(a) a 0 as af + a3 a O and q(a) =

a1a4+ azaa = 0(laI2), we know that when A, > O. the condition 0 <

K,p(a) + 2p(a) q(a) < A, is indeed satisfied for sufficiently small

IaI. Similarly, when A, < 0 and Ial sufficiently small, the condition

0 > A1p(a) + 2p(a)°q(a) > A, is satisfied. Therefore, the solution

(4.4.16) and (4.4.17) are valid for sufficiently small Ial. To obtain

a direct relationship between 7 and p, we eliminate n from (4.4.16) and

(4.4.17). Rewrite (4.4.16) and (4.4.17) as

14 = — 1:35L , where k = k(h1.c) = I9;

3k2

p = Ikl'r8 .

Also, the energy condition (4.4.10)(5) can be rewritten in terms of

polar coordinates as

$4 — épz + §A172 + 72(7p cos 9 sin W + 1p sin 9 cos w) = c,

or

(4.4.18) 72 - p2 + A172 + 273p sin (9 + W) = 20.

Now, recall that

1512

(512+k1(5?+53)+2(5?+53)'(5454+5433)

 
n = 11*(5170 =

and also recall that the solution 5(h,,c) lies on the energy surface  
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Hk(a) = c and on the momentum surface H2(a) = m. But, since

c—m = HNa‘) - 112(5) = 9.546% + (34+ 3345.53 3253).

we can write

1512(4.4.19) n e “*(EIA,) =

lal2+ 2(c-m)

 

Thus, we know that if c > m then 0 < n < l and if c < m then n > 1 in a

sufficiently small neighborhood of the origin. If c = m then n = 1 and

so our system 2 = JVH)‘(z) reduces to the linear system 2 = JVH2(Z).

which we have already considered in Section 2. Therefore, we can

consider two cases:

Case (i): c > m

Then 0 < n < 1, so k = 1%,- > 0. Hence, from (4.4.16) and

(4.4.17), eliminating k, we have

(4.4.20) 37p2 - h1p + 1° = O (7,p 2 0).

Thus, when c > m, the critical points of g must lie on the curve

(4.4.20) in the (7,p) - plane. Notice that (4.4.20) is quadratic in p

and so can be solved for p1

 

 

i 2- 4 415?.

(4.4.21) p = ‘1 Jki 127 (o < 7 g 12. p > 0).

67

 

Since p > O, we must have A, > 0. If A, < 0, then (4.4.20) has no

  



  



positive solution for p and hence the system (4.4.10) has no nontrivial

solution. i.e.. has only the trivial solution a = O with c = 0. Notice

that if A, = 0, then (4.4.20) has only the trivial solution a = O with

c = 0. The graph of (4.4.21) with various values of A, > O is shown in

Figure 4.4.1 where 35" =0.

 
  

< Figure 4.4.1 >

Now, the energy surface (4.4.18) can be rewritten as

(1 + N,)72 - p2 + 2a7°p = 2c,

or

(4.4.22) p2 - 2a7°p + 2c - (1+A,)72 = o (A,> o, Ial g 1),

where a = sin (9 + w).

Also, (4.4.22) is quadratic in p and so can be solved for p:

 

(4.4.23) p = awa : 176276 + (1 + A,)72 - 2c (A,> O).
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Now, we first consider the case c = 0. Then (4.4.23) becomes

 

(173 i 7 11 + A, + 01274

‘
0 ||

Since p > O, we must have

 

(4.4.24) p0 = a73 + 411 + A, + a274 (A,> o, Ial g 1).

Notice that

dpo

d7_ 7:0 : Jl+h,-e 1 as A, 4’0+ and

po 2 7J1+>x1 for 7 sufficiently small.

dp

Also, when a > 0, 3:9-> 1 for all A, > o and

po z 26173 for 7 >> 1. When a < O, we have

po 2 a73 - a73 = O for 7 >2 1.

If a = 0, then (4.4.24) becomes p0 = 741+A, .

The graphs of (4.4.24) for a > O, a < O, and a = O with O < A, << 1 are

shown in Figure 4.4.2.
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< Figure 4.4.2 2

Hence, from the graphs of (4.4.21) and (4.4.24) it is clear that for

sufficiently small values Ial and A, > 0 they have a unique

intersection point for any values of la] 3 1, which indicates a torus

T2 = S1 x S1 of critical points lying on the 3-dimensional energy

surface HA(a) = c = O in the space R‘ = (a,,a2,a3,a4)}.

Next, we considere the case IcI ¢ 0 sufficiently small: If c <

0, then from (4.4.23), we have

 

(4.4.25) pc_= a73 + Ja276 + (1+A,)w2 - 2c (0 < o. A,> O,Ia| g 1).
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dp _

Note that pc_(0) = 42: > o and 3:9 = 0. Also,

7:0

.pc_ 2 p0 and

' pc_ z po for [CI << 1.

The graphs of (4.4.25) for a > 0, a = 0, a < 0 with c < 0, A, > 0 are

shown in Figure 4.4.3

5’ ' “pool-‘0

0K0A
A

-

-
-
-
.
-
-
-
-
-
—
-
-
-
-
-
-
-
p
c
-
-
-
-
-

-
-

  

< Figure 4.4.3 2

Hence, in the case of c < 0, as in the case of c = 0. clearly the graph

of (4.4.25) intersects the graph of (4.4.21) exactly at one point for

any values of a and hence we have a torus 'I‘2 = S1 x S1 of solution

points in R‘ for the system (4.4.10).

Now. we consider the case c > O 1

From (4.4.23), we have
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(4.4.26) pc+ = a73 i Ja276 + (1+A,)~r2 - 2c (A,> o. c > o, Ial g 1).

Notice that the radicand f(7) = (1276 + (1+>\1)72 — 2c is an increasing

function of 7 for 7 2 0 with f(0) = -2c < 0 and so f(7) has a unique

positive zero 7': 7(N1, c, A) for any A, > 0, c > 0, la] g 1 with the

property that

7(7\,, c, a) ->O+ as c ->O+

7(A1, c, a) decreases as A, or Ial increases.

Also notice that even though 7()\,, c, a) can be computed exactly by

using the Cardan’s formula, this expression is too complicated to be of

any practical use for our purpose. Since pc+ must be pc+ 2 0, we also

note that if a g 0, we must have

 

a78 + Ja276 + (1+>\,)72 - 2c (a g 0, A,> 0.0 > 0),(4.4.27) pC+

 

J(1+7\1)72 - 2c for 7 << 1 (7 2 1%EX-).

1

2
2

Furthermore, in (4.4.27) with a g 0, since pC+ > 0, the domain of pC+

 

20

must be 7 2 J1+A1 and in this domain, pC+ is an increasing funtion of

7. The graph of (4.4.27) with a g 0 for sufficiently small 0, A1, 7 is

shown in Figure 4.4.4 together with the graph of (4.4.21) with the

various values of A1.



93

'
-

 
 

Pr)”

< Figure 4.4.4 )

Hence, in this case a g 0, it is clear from the graph that for each

given c > 0 sufficiently small, there is a k0 = Ao(c) > 0 such that if

A, ( No, there is no intersection point and if A, = ho. there is one

intersection point and if A, > No, there are two intersection points.

If a > 0, we have two cases in (4.4.26).

 
(4.4.28) pc+ = a7a : Ja276 + (1+}\,)72 - 2c (0 < a S 1. A,> 0, c > 0)

In the + case, i.e

 
(4.4.28)(a) pc+ = a78 + ((1276 + (1+?\,)72 - 2c (a > O, A, > 0. c > 0)
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x J(1+A1)72 — 20 for 7 << 1,

we know that pc+ is defined for 7 2 7(A,,c,a) and pC+ is an increasing

function with range pc+(7) 2 a73. In the - case in (4.4.28), i.e.,

 

(4.4.28)(b) pc+ = a73 - Ja276 + (1+?x1)72 -20 (a > O, A,> 0, c > 0),

we notice that pC+ is.a decreasing function in the domain

 

2c

7(k,,c,a) g 7 g J1+A1 with a73 2 pC+ 2 0.

But, since 7(A,,c,a) x ITEX' for c > O sufficiently small, the graph of

1

(4.4.28)(b) exists in a very small interval and hence the overall graph

of (4.4.28) shown in Figure 4.4.5 looks almost like that of

(4.4.28)(a). Moreover, we can see that for 7 sufficiently small

 

(178 < 6 for all 0 < A, << 1
7

and so for sufficiently small 0 (i e., sufficiently small 7) the

starting point (71a7b) of the graph of (4.4.28)(a) lies below the lower

branch of the curve (4.4.21) as shown in Figure 4.4.5.
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< Figure 4.4.5 )

Thus, even in the case a > O. we can still say that for each c > 0

sufficiently small there is a No Ko(c) > 0 such that the graph of

(4.4.21) intersects that of (4.4.28) at two points for K > A0, at one

point for_h = A0 and at no point for A < A0

Now, we consider the second case:

 

 

(case ii): c (gm

Then, from (4.4.19) n > 1, so k = lgfil< 0. Hence, from (4.4.16) and

(4.4.17), eliminating k, we have

(4.4.29) 37p2 + A1p + 7° = O (7.p 2 0).

or

-i 2- 4(4.4 30) p = N17 JR, 127

 

(A,< 0).

67 '



96

Note that since p > 0, we must have A, < 0. If A, 2 0, then (4.4.29)

and hence our system (4.4.10) has only the trivial solution a = O with

c = 0. The graph of (4.4.30) with A, < 0 is the same as that of

(4.4.21) with A, > 0. Now, the energy surface (4.4.23) becomes

 

(4.4.31) p = a73 : Ja276 — 2c + (1+k,)72 (A,< o. Ial g 1).

If c = 0, then (4.4.31) becomes

 

p = a73 i Ja27 + (1+A)72

Since p > 0, we must have

 

(4.4.32) p = a73 + Ja276+ (1+A)w2 (A,< o,|A,|<< 1, Ial << 1).

Also, we notice that 35- = 41 + A, < 1 and p 2 7°41+>x1 for 7 << 1.

I‘=O

The graph of (4.4.32) is almost the same as that of Figure 4.4.2 as

long as IA,I << 1 and '7' << 1. Also, in the case of c ¢ 0, the graphs

of

 

(4.4.33) pc_= a73 + Ja27 + (1+A,)i2 - 2c (-1 << 0 < o, -1 << A, < o,

lal s 1)

 

(4.4.34) pc+= a73 :_Ja27 + (1+A,)72 - 2c (0 < c << 1, —1 << A, < 0,

la] << 1)
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are almost the same as those of Figure 4.4.3 and Figure 4.4.5 for IA1I

<< 1. Therefore, from the above analysis, we can state the following

conclusion:

Theorem 4.4.1 Consider the Hamiltonian system

(4.4.35) 2 = JvH*(z)

with HNzl = g (xi+ y?) — 5 (x4 + ya) + A.(x=;= + yi’) + (xi + yixxor. +

xzyi) in the normal form with respect to H2(z) = g(xf + yf) — g(xg +

yg). Let HA(z) = c and H2(z) = m. Then, in a sufficiently small

neighborhood of the origin and for sufficiently small Ih1I and IcI, we

have the following:

(i) when c > m and c g 0, the system 2 = JVHA(Z) undergoes 9
3

I
/
\

supercritical bifurcation from the equilibrium solution 2 = 0 for A,

0 when c = 0 and from ¢ for A, < 0 and S1: x3 + y3 2 -2c for A, = 0

when 0 < O to a continuous family of periodic solutions of the form

*—

eJAt/ u (a’xi)a(k,,c)
(4.4.36) z(t) =

for each small A, > 0, lying on a torus with period 2wu* < 2w.

(ii) when 0 > m, and c > O sufficiently small, there is a A0 = ho(c) >

0 sufficiently small such that if A < A0, then the system (4.4.35) has

no periodic solution and if A = NO. then (4.4.35) has one continuous

family of periodic solutions of the form (4.4.36) lying on the torus

with period 2rn* < 2r and if Ao< A << 1, then (4.4.35) has two disjoint

continuous families of periodic solutions of the form (4.4.36), each
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lying on the corresponding torus with corresponding period 2wu* < 2w.

(iii) when c < m, we have the same kind of bifurcaiton as in (i) and

(ii) except that in the case of (i), (4.4.35) undergoes a subcritical

bifurcation from 2 = 0 for A, 2 0 to a torus for A, < 0 and in the case

of (ii), from no periodic solution for A0 < A, < 0 to a torus for A, =

A0 and to two disjoint tori for —1 << A, < Ao < 0 with corresponding

period 2wu* 2 2w.

§5. Local bifurcations of periodic orbits as the eigenvalues split

across the imaginary 8X18.

Now, in this case our Hamiltonian Hx(z) takes the form

(4.5.1) H>‘(z) = % zTAz + %2T13(A)z + fi,(z),

where A = diag (1, -1, 1, -1),

l 0 A.‘

I A. o

A, o | O   

H;(z) = (X? + YT) ° (X1Y2 + X2Y1)-

The corresponding Hamiltonian system becomes
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(4.5.2) 2 = JVHA(z) = JAz + JB(A)z + Jvfig(z).

2

Recall that u*(a,A) = lal 

Ial2 + < Aa, B(A)a + VH;(a) >

Computing the right—hand side,

T

A3 = (31- "azo a3, ‘34) .

T

B(A)a = >\lrli'flmasvaziai) -

< Aa, B(A)a > = 0 for all A,.

*

Hence, in this case p (a.A) becomes

 (4.5.3) “*(a,A) = Ia)2

Ialz + 2(37 + a5)(aia4+ a233)

1

= 1 + 2p(a)°Q(a)

 

2 2

where p(a) = 21—i—293 O < p(a) < 1

lal2

q(a) = (3134 + azaa)

Also, the funtion g(a,A,n) becomes

g(a.A.n) = H2(a> - nH‘(a)

=mm)-nmo)+®e)+mmn
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(140423 Aa - 17% 4T B(A)a - Trida)

1

= (l-n)§(a¥ ’ 35 + 35 ‘ 33) ‘ W°Aq(aia4+ a233)

-n(af + a3) ° (a1a4+ a233)-

Hence, our gradiant system Vg(a,A,n) = 0 becomes

p-

 

(1-n)ai ‘ ”A434 — n [34(37 + 35)+ 231(aia4+ 3233)] = O (1)

(4.5.4) , ‘(l-nlaz ‘ ”A433 ‘ W'as(37 + 35) = O (2)

(l-n)ao ‘ "A432 ‘ n[a2(af + 35) + 233 (3134+ a2a3)] = O (3)

t “(l-n)a4 - "A431 ‘ "31(a7 + 35) = O (4)

together with the energy

HA 1 2 2 1 2 2 2 2
(a) = filai + as) — §'(az + a4) + A4(a,a4+ a23:3) + (a1 + a0)(a1a4+

azaa) = c. (5)

1

1+2p(a)Q(a)

explicitly. Hence, if q(a) = a,a4 + azaa > 0, then 0 < n < 1 and if

 Note that in this case n = u¥(a,A) = does not depend on A

q(a) < 0, then n > 1, and if q(a) = 0 then n = 1. Also system (4.6.4)

has the trivial solution a = 0 for all A4 with energy 0 = 0 and still

has the reflection symmetry a,ee'a3, azee’a4.

In the following, we consider several cases:

case (i): n = 1 (i.e., (af+a§)(a,a4+ azaa) = 0). Since a? + a3 = 0

i.e., a, = a3 = 0, is a.special case of a,a4+ azaa = 0, we may only

consider the general case a,a,+ aeaa = (L In this case, the system
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(4.5.4) reduces to

  

( -A4’a4 = adaf + a?) ' (1)

(4.5.5) , ‘9‘an = aslaf + a:23) (2)

‘4432 = 32(37 + 35) (3)

. —A4ai = 31(37 + 35) (4)

together with Hk(a) = é(af+ a3) — $(a§+ afi) = c (5)

If A4 =v0, then (4.5.5) has the solution.a, = a3 = 0, a2 and a, are

arbitrary values with the energy HR = - gag + a3) = 0. Hence, when

q(a) : 0 and A4 = 0, the solution set of (4.5 5) is

81 4 1 2 2

= (a 6 R I a, = a3 = 0, - i(a2 + a4) = c} for each c < O

a = 0 for c = 0

o for c > O .

Therefore, when q(a) = 0 and A, = 0, our Hamiltonian system (4.5.2) has

the following 27 periodic solutions!

2

(exp JAt) a with a = (O,a2,0,a4),- g(az + afi): c foreach

(4.5.6) z(t): o for c = o C < 0

o for c > 0

Bgmggk: In the case of A4 = O and q(a) = O, the system (4.5 2) reduces

to the linear system 2 = JAz. 'The above result (4.5.6) agrees

completely with that of global analysis given in Section 2. (See

Figure 4.2.2). If A, = O and q(a) = 0, we have 9 = —h (in the notation

of Section 2)(critical values of H x L) and so
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_1 {0) x S1 for h < 0

(H X L) (hr-h) = (0) for h = o. o for h > o .

If A, ¢ 0 (and q(a) = 0), then from (4.5.5) (2),(4) we have

H O

as(>\4 + a? + a3) = O

(4'5'7) a,(A, + a? + a3) .

subcase 12 a, = a3 = 0

Then from (4.6.5) (1),(3), we have only the trivial solution a =

0 for all A, with energy 0 = 0.

subcase 21 a, ¢ 0 or a3 ¢ 0. (and A, ¢ 0)

Then from (4.5.7), we have

A, + a? + a3 = 0.

If A, > 0, we have no solutions a,,a3.

If A, < 0, we have solution set for a,,a3 of the form

af + a3 = -A,

which forms a circle in the (a,,a3)-plane with radins VCAIZ

Corresponding: to these 'values of a,,a3. we can obtain. a2,a,

(4.5.5) (1) ,(3) which become

"A434 = a, ° ("K4)

-A,a2 = a2 ° (—A4)

and hence a2,a, may be arbitrary satisfying the energy condition

HNa) = 5—H.) — go; + at) = c

from
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or a3 + af = -2c - A,

which form a circle on the (a2,a,)-plane if c < - %1(A, < 0). and a2 =

a, = 0 if c = - gin For A, > 0 or for A, < 0 and c > - g4.

solutions for (4.5.5). Thus, we have the following conclusion.

we have no

Theorem 4.5.12 In the case of q(a) = 0 (i.e. linear system) the

system (4.5.2) has the following 2w-periodic solutions as A, varies for

each energy level 0.

(i) when A, = 0

eJAt a with initial points a = (0,a2,0,a,) lying

z(t) = on the circle — é-(ag + a3) = c for each c < 0

O for: 0

o for c) 0 .

(ii) when A, < 0

r JAt . . . . . .
e a With initial pOints a = (a,,a2,a3,a,) lying

on torus a? + a3 = —A, and a3 + afi = —2 c —A,

z(t) = < if -A, > 20

eJAt a with a2 = a, = 0 and a? + a3 = -A, if —A, 2 2c

~¢ 1f-A,<20. 

(iii) when A, > 0, we have no periodic solutions except 2 = 0 with

energy 0 = 0

In other words, in the case of linear system,

(a) For energy level 0 < 0, the system (4.5.2) undergoes a subcritical
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bifurcation from (0} x S1 to T2 as A, varies from 0 to A, < O.

(b) For c = 0, (4.5.2) undergoes a subcritical bifurcation from {0) to

T2 as A, varies from 0 to A, < 0.

(c) For c > 0, (4.5.2) undergoes a saddle-node type subcritical

bifurcation at A, = —2c from ¢ to T2 via S1 as A, varies from 0 to A, <

—2c via A, = -2c . ///

Next, we consider the genuine nonlinear case:

case (ii): n g 1 (i.e.. q(a) = a,a, + azaa ¢ 0)

In this case, we note that 0 < n < 1 if q(a) > 0 and n > 1 for

q(a) < 0. Also note that (4.5.4) still has trivial solution a = O for

any A, with energy c = 0. From the system (4.5.4) (2), (4), we have

 

— 1-" a3(k4 + a? + 8.3)

(4.5.8)
n

1-n

 

a,(A, + af + a3) .

Substituting (4.5.8) into (4.5.4) (1), (3) we have, by the refletion

symmetry,

ai[(1-‘n)2 + 7720M + a? + 33) ( M+ 3(8‘133“ 83”] = 0

(4.5.9)

33°[(1‘n)2 + ”2(k4 + a? + 35)(A4 + 3(af + 35))] = 0

Thus, the 4 x 4 system (4.5.4) has been reduced to 2 x 2 system

(4.5.9).

Now, notice that because of the assumption (af + a§)(a,a, + a2a3) ¢ 0

a, and a3 cannot be both zero in (4.5.9). Hence, (4.5.9) reduces to
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the equivalent equation

(4-5-10) (l-n)2 + ”2(A4 + a? + 35)(A4 + 3(37 + 35)) = 0-

Also notice that if n = 1 then (4.5.10) includes the case A,+ a? + a3 =

0, in which case our system (4.5.4) reduces to the linear case we have

already considered. Let X = af+ a3 2 0 and Y = a§+ a3 2 0, then

(4.5 10) becomes

_ 2

(4.5.11) 3X2 + 4A,- X + AE + [$53] = 0.

Also, from (4.5.8), we have

(4.5.12) Y = [fir—{r x - (x + A,)?-.

Eliminating lgfl-from (4.5.11) and (4.5.12), we have

_ —X(X+A.)2 _ —X(X+A,)
_ (3X+A,)(X+A,) _ 3X + >\4

 (4.5.13) Y (X,Y > 0)

Here we assumed that X + A, g 0 for if X + A, = 0 then from (4.5.11) we

have n = 1 and so our system reduces to the linear case. Notice that

if A4 := 0, (4.5.11) and (4.5.12) has no solution except the trivial

solution a = 0 with c = 0. Furthermore, since X,Y 2 0, from (4.5 11)

and (4.5.13), we must have

(4.5.14) A, <0and-g‘—*<x g —A,
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including the linear case X = -A,. If A, 2 0. then our system (4.5.4)

has only the trivial solution a = 0 with c = 0. In terms of polar

 

 

 

coordinates

a, = 7 cos 9, a3 = 7 sin 9,

aa=pcosw. a4 =psinw.

(4.5.13) becomes

J-(TZ‘FA‘ "A

__1. _

(4.5.15) p = 7 ° 372+A, (A,< 0, J 3 < 7 S J 7M)

This is the equation of a curve in (7.p) — plane which the solution

points of (4.5.4) must satisfy. The graph of (4.5.15) is shown in

Figure 4.5.1.

  
\l—A, {3 ‘15:?

< Figure 4.5.1 >
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Now, the energy surface (4.5.4)(5) can be rewritten as

1 2 1 2 2 .
i7 — 5p + (7 + A,) 7p Sin(9 + W) = c,

or

(4.5.16) p2 — 2a . 4(42 + A,)p + 2c - 72 = o (A,< 0, [alg 1),

where a = sin(6 + w).

Since (4.5.16) is quadratic in p, we can solve it for p1

 

(4.5.17) p = a7(72 + A,) : Ja272(72+A,)2 + 72 -2c (A, < O, Ial g 1.)

First, we consider the case 0 = 0:

Then (4.5.17) becomes

 

(4.5.18) p0 = a7(72 + A,) + 7 - Ja2(72 + A,) + 1 (A, < O, Ial g 1)

since p0 > O.

2
2

Notice that for A, < o and IA,I << 1 and [7| << 1, p0

dp —————————

3-2- : aA, + JazA,+ 1 (A,< O),
7

7:0

dpo

and so a——- > 1 for a < 0, = 1 for a = 0, 1 for a < 0.

7 7:0 

Note that if a = 0 then a,a,+ azaa = 0 and hence our system reduces to

the linear case.
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The graph of (4.5.18) for a > o. a = o, a < 1 with -1 << A, < o is

Shown in Figure 4.5.2.
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< Figure 4.5.2 2

Thus, it is clear from the graph of (4.5.15) and (4.5.18) that for A, <

0 and IA,I << 1 and c = 0, they have a unique intersection point near a

= 0, which corresponds to a torus T2 = S1 x S1 of critical points of g

lying on the 3 — dimensional energy surface HA(a) = c = 0 in the space

R‘.

Next, we consider the case Icl ¢ 0 sufficiently small: If c <

0, then from (4.5.17), we have

 

(4.5.19) pC_ = a7(72 + A,) + Ja272(72 +A,)2 + 72 -2c (c < O, A, < O.

Ial $1).
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dp _ dp _

Notice that pc_(0) = J—2c ) O and -a§- = aA, and so dqc > 0

7:0 "(=0

for a < O, = 0 for a = 0, < O for a > 0. Also.

pc_ > p0 and

pc_ 2 p0 for 7 2) Icl.

The graph of (4.5.19) for a > 0. a = O, a < 0 with c < 0. A, < 0 is

shown in Figure 4.5.3

9
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-
-
-
-
-
“
-
-
-
-
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-
o
o
o
-
-
-

  
< Figure 4.5.3 2

Hence, in the case of c < 0, as in the case of c = 0, clearly the

graphs of (4.5.19) and (4.5.15) intersect exactly at one point, which

corresponds to a torus T2 = S1 x S1 of critical points of g lying on

the energy surface HA(a) = c < 0 in R‘.

Now, we consider the case 0 > 0:

From (4.5.17), we have

 

(4.5.20) pc+ = a7(72 + A,) : Ja272(72 + A,) + 72 -2c (0 > O. A, < 0.

lal $1).
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Let f(7) = (1272(72 + A,)2 + 72 - 20.

Then f(0) = -2c < 0 and

f'(7) = 27[a2(72 + A,)(372 + A,) + 1].

 

Hence f'(7) > 0 for ngi-g 7 g J-A, << 1, i.e.,

f'(7) > o for all 4 > o if A, < o, IA,| << 1.

Thus, f(7) has a unique positive zero 7(A,,c,a) with 7(A,,c.a) 470+ as

 

c-é 0+. Moreover, since f(J-A,) = -A,- 2c, if — A, = 20 << 1 then 7':

  

J-A, and so (4.5.15) and (4.5.21) have one intersection point (J-A,.

 

0). If —A, 2 20, then 7'< J-A, so they have one intersection point T2

 

= S1 x Si. If -A, < 20, then 7 > J—A, so they have no intersection

 

 

point. Since J_34 g 7 g J—A, in (4.5.15), we may only consider pc+ for
 

 

7 _<_ J—A,. So, if we assume 7 g J—A, in (4.5.20), then for a 2 0,

(4.5.20) must be

 

(4.5.21) pc+= a7(72 + A,) + Ja272(72+ A,)2 + 72 - 20 (a 2 0, c > O.

A, < 0).

Since pc+(7) g 0 and pC+(J25) = 0, pC+ must have the domain 7 2 420.

Also,

pc+ x 442 — 2c for r << 1 and |A,| << 1.
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The graph of (4.5.21) is shown in Figure 4.5.4.

P .

   - - ._ J. -221 1’

an;

< Figure 4.5.4 2

Thus, it is also clear from the graphs of (4.5.15) and (4.5.21) that

for given c > 0 sufficiently small, they have one intersection point T2

= S1 x S1 if — A, 2 2c and one intersection point S1 on the 7-plane if

-A, = 2c and no intersection point if -A, < 2c. For a < 0, we have

from (4.5.20)

 

4.5.22 p = a7 72 + A, + Ja272 72 + A, 2 + 72 - 20
c+ —

(a < o, A,< o, c > 0).

In the + case, we have

 

(4.5.22)(a) p:+ = a7(72 + A,) + Jaz72(72 + A,)2 + 72 - 2c

A,< o. c > 0)

z 412 - 2c for 7 << 1, IA,I << 1.

(a < 0,
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But, p:+(?) = a7(72 + A,) 2 o if 7 g J-A,, i.e., -A, 2 20.

That is,

if —A, > 20, then I? < J—A, so p+

 

if -A, = 20, then 7': J-A, = 420 so p:+(7) = 0.

 

if -A, < 20, then 3‘ > J—A, so p:+(:) < o and hence p:+ is defined

for 7 2 J25:

Also, in the - case, we have

 

(4.5.22)(b) p;+ = (17(72 + A,) — Ja272(72 + A,) + 72 -2c (a < O.

A,<0,c>0).

Similarly, we have

(i) if -A, > 20, then 7'< J-A, so p;+(7) = p:+(7) > O

and p;+ (320) = (A Hence in the case —A, < 2c, pC+ is a decreasing

function defined on the extremely small interval [71 320] with 12c <

J-A, and the combined graph of (4.5.22)(a) and (b) in this case looks

like the one in Figure 4.5.5.(a).

 

(ii) if —A, = 2c, then 7': J—A, = J20 so p;+(7) : 0 and moreover for

 

7 > 7': J-A, = 42c, pc+ is not defined, in other words, the graph of

pC+ is just one point (42c, O) in this case. Hence, in the case —A, =

2c, the combined graph of (4.5.22)(a) and (b) looks like the one in

Figure 4.5.5(b).

 

(iii) if -A, < 2c, then 7') J-A, so p;+(7) < 0 and hence p;+ must be
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defined for 7 2 425 but for 7 > 425, p;+ < O, that is. p;+ is defined

just at one point (425; 0). The combined graph of (4.5.22)(a) and (b)

is shown in Figure 4.5.5(c).

    
 

 
 

9 (0L) «A,>2c P . (b) -A,=2t

’ (m. 2 r; * 2,.

P t (C) -A4,<2-C

+ E

- 94a 2 - -Y

J-‘A, 72?

< Figure 4.5.5 2

Therefore, when c > 0, even in the case of a < 0, we can still say the
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same thing as in the case of a 2 0, that is, that if -A, 2 2c then we

have a torus T2 = S1 x S1 of critical points, if -A, = 2c then we have

a circle 81 of critical points on 7-plane, if —A, < 2c then we have no

solutions for our system (4.5.4) on the energy surface Hk(a) = c > 0.

Thus, we can state the following general conclusions including the

linear case.

Theorem 4.5.2: Consider the Hamiltonian system

° A
(4.5.23) 2 = JVH (Z)

. A 1 1

Wlth H (Z) = §(X‘f + y?) - §(X§ + 3'3) + >‘4(X1YZ + Xzyi) + (X? + y?)°

(x,y2 + xzy,) in the normal form with respect to H2(z) = éfxf+ y?) -

é(x§+ yg). Let HA(z) = c. Then, in a sufficiently small neighborhood'

of the origin and for sufficiently small IA,I and IcI, we have the

following:

(i) when c = O; the system (4.5.23) undergoes a subcritical

bifurcation from 2 = O for A, 2 O to a continuous family of periodic

solution of the form

x. _

(4.5.24) z(t) = eJAt/u (21'7“) a

for A, < 0 lying on a torus T2 = S1 x Si.

(ii) when c < 0; the system (4.5.23) undergoes a subcritical

bifurcation from ¢ for A, §>0 and from S1 on (x2,y2) — plane for A, = O

to a continuous family of periodic solutions of the form (4.5.24) for

A, < 0, lying on a torus T2.
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(iii) when 0 > 0, then for A, 2 -2c the system (4.5.23) has no

periodic solutions and for A, = -2c the system (4.5.23) has a periodic

solution S13 x? + yf = 2c lying on the (x,,y,)-plane and for A, < -20

it has a continuous family of periodic solutions of the form (4.5.24)

.lying on a torus T2 = S1 x S1 in R“.

Furthermore, in each case (i), (ii). (iii), p* < 1, = 1, > 1 depending

on x,y2 + xzy, > 0, = 0, < 0 respectively.

Remark: So far we have considered a truncated Hamiltonian containing

only one fourth order term. However our methodology can still be

extended to the case containing the whole nine fourth order term and

can even be extended to a nearby nonintegrable system by combining

Moser-Weinstein reduction. Furthermore, our method is so explicit that

we can perform all the computations and graphics on the computer while

the singularity theory method doesn’t seem to work well in the

semisimple 1: -1 resonance case.

Also, we may use the theory of equivariant vector field to

express the Hamiltonian equation in terms of Hilbert generators and can

study the bifurcation of equilibrium points of the new system expressed

in terms of Hilbert generators.
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