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ABSTRACT

HIGH-DIMENSIONAL VARIABLE SELECTION FOR SPATIAL REGRESSION AND
COVARIANCE ESTIMATION

By

Siddhartha Nandy

Spatial regression is an important predictive tool in many scientific applications and an

additive model provides a flexible regression relationship between predictors and a response

variable. Such a model is proved to be effective in regression based prediction. In this

article, we develop a regularized variable selection technique for building a spatial additive

model. We find that the approaches developed for independent data do not work well for

spatially dependent data. This motivates us to propose a spatially weighted `2- error norm

with a group LASSO type penalty to select additive components for spatial additive models.

We establish the selection consistency of the proposed approach where a penalty parameter

depends on several factors, such as the order of approximation of additive components,

characteristics of the spatial weight and spatial dependence, etc. An extensive simulation

study provides a vivid picture of the impacts of dependent data structures and choices of a

spatial weight on selection results as well as the asymptotic behavior of the estimates. We

also investigate the impact of correlated predictor variables. As an illustrative example, the

proposed approach is applied to lung cancer mortality data over the period of 2000-2005,

obtained from Surveillance, Epidemiology, and End Results Program by the National Cancer

Institute, U.S.

Providing a best linear unbiased predictor (BLUP) is always a challenge for a non-

repetitive, irregularly spaced, spatial data. The estimation process as well as prediction

involves inverting an n×n covariance matrix, which computationally requires O(n3). Stud-

ies showed the potential observed process covariance matrix can be decomposed into two

additive matrix components, measurement error and an underlying process which can be

non-stationary. The non-stationary component is often assumed to be fixed but low rank.



This assumption allows us to write the underlying process as a linear combination of fixed

numbers of spatial random effects, known as f ixed rank kriging (FRK). The benefit of

smaller rank has been used to improve the computation time as O(nr2), where r is the

rank of the low rank covariance matrix. In this work we generalize FRK, by rewriting the

underlying process as a linear combination of n random effects, although only a few among

these are actually responsible to quantify the covariance structure. Further, FRK considers

the covariance matrix of the random effect can be represented as product of r× r cholesky

decomposition. The generalization leads us to a n×n cholesky decomposition and use a

group-wise penalized likelihood where each row of the lower triangular matrix is penalized.

More precisely, we present a two-step approach using group LASSO type shrinkage estima-

tion technique for estimating the rank of the covariance matrix and finally the matrix itself.

We investigate our findings over a set of simulation study and finally apply to a rainfall data

obtained on Colorado, US.
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PREFACE

The work in this thesis can be summed up into a general problem of selecting fixed and

random effects component in a mixed-effect prediction model, with a Gaussian error, where

the predicting variable is observed only on a spatial location grids. These grids could be

irregular as well. The spatial locations site are in a two dimensional (2D) or three dimensional

(3D) space in our applications. Although, the final goal is to successfully detect both fixed

and random effects component simultaneously, the first step toward solving this problem by

achieving each separately is quite challenging. It still requires specific attention compared

to some existing methods, which can be looked as special situation of our method.

This spatial data structures appears in abundance, if one is interested in modeling cli-

mate parameters or interested in understanding brain connectivity using functional magnetic

resonance imaging signal. Climate parameters are supposed to vary over both latitude and

longitude, although often altitudes are also considered. Hence for climate problems deal

with either 2D or 3D in space. On the other hand, brain acitivity varies over points on 3D

surface. All our efforts are towards certain challenges in reproducing a feasible parsimonious

model. An obvious step is to decompose the response variable into two components, one

mean function, and the other spatially dependent Gaussian error.

The mean function has a general additive model structure, and the number of covariates

grows as fast as exponential of the number of sites in the study. The dependence structure

of the Gaussian error can either be stationary, or non-stationary and anisotropy. The case

of stationary covariance allows the number of parameter required to model can be controlled

and we use covariance functions viz. Exponential (Exp), Matérn (Mat), Inverse Multi -

quadratic (Inv MQ), and Gaussian (Gauss). The case of non-stationary and anisotropy

covariance requires a different approach as now each and every location requires multiple

parameters and this case can often be translated to a random effects model.

So one of our chapters consider stationary covariance function and hence it talks about
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selecting the most appropriate set of fixed effects components and that only. While the other

chapter with a non-stationary covariance talks about selection from mixed effects model but,

we keep our focus of selection only to the random effects components. Once we are able to

combine the two methods of selection we will be simultaneously estimating gerenal additive

mean function and non-stationary covariance function of Gaussian spatial process defined

on a spatial surface.

Since, the numbers of covariates in the general additive mean function, grows exponen-

tially with sample size, high - dimensional variable selection has its own challenges (Huang,

et.al. (2010)). Additionally, we have a spatially dependent Gaussian error model which re-

quires special attention. This thesis holds proof of our effort to extend Huang’s work to

our setup of spatial dependent error model. We start by considering a stationary covariance

structure for spatial dependent error model and try to achieve a parsimonious mean model.

A more elaborated picture is depicted through chapter 1.

A relevant conclusion of our work at this point is, one can bypass the problem of esti-

mating the stationary covariance function if the sole interest is in selecting the true positive

components, as long as we use a weighted least squares by inverse of certain stationary co-

variance matrix with both short and long range dependence. It also holds documentation

about the fact that even identity matrix as a choice of the weight matrix for least squares is

an improvement over Huang’s work as per under - selection of false positive components in

the additive model. This is possible since the penalty parameter is still higher compared to

Huang’s choice.

Suppose the problem of interest is now not in reducing the numbers of covariates any-

more rather, it is in estimating the covariance function. Also, a more general solution to the

problem of estimating the covariance matrix is obviously for non-stationary and anisotropic

covariance. This generalization can be overcome by representing the Gaussian error as sum

of two independent Gaussian processes, one is a linear combination of spatial random effects

vector, and the other is measurement error with finite variance. The spatial random effects
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vector is assumed to have a non-stationary covariance dependence but of not full rank. The

factors involved in computing the linear combination are bi-variate spline functions.

This above decomposition of the overall Gaussian error in to two independent Gaussian

process, allows the overall model error to have a Gaussian process with a very special covari-

ance structure. The covariance matrix of the overall model error is a full rank matrix, ideally

the computation time of inverting it should be of the order of cubic power of dimension of the

square matrix. But the above decomposition allows us to use Sherman-Morisson-Woddbury

(SMW) identity on inverse of matrices. Along with SMW identity we exploit the fact that

the random effects vector has a low rank covariance structure. In 2008 Cressie et.al. exploited

this property and considered if the true value of the low rank non-stationary component is

known, then one can invert the covariance matrix with a controlled computation time.

As it turns out that the spatial random effects component, which is responsible of the

non-stationary component in covariance matrix, can be represented as a linear combination

of several spatial basis vectors. The weights corresponding to a particular spatial location

depends on the distance between the spatial location and some basis knot locations. The

knots play the role of uniformity in many senses. The knowledge of necessary and sufficient

of knot locations translates to the simpler version of Cressie’s work in 2008. This technique

has also been succesfully implimented by Nychka et.al 2015 in their work on multi-resolution

kriging.

Our contribution to this direction is a data driven approach to estimate the number

and positions of these knot locations. This problem can be rewritten as selection problem of

spatial random effects components. A more detailed scrutiny convinced us to penalize the

Gaussian likelihood by a group wise LASSO penalty to overcome the curse of dimensionality.

Although, there has been quite extensive research in using group LASSO or `1/`2− penalty

in reducing factors that are used to model mean, this problem is quite unique and requires

special attention for several reasons.

The rest of the thesis is organized as follows. Chapter 1 discusses a mathematical
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introduction of the high dimensional models used in this work. It also throws light on why

this problem of dimension reduction should be addressed separately. It breaks down the

overall problem of reducing dimension of both mean and covariance function in few steps

and finally discuss how to combine the picture. Chapter 2 discusses the result on dimension

reduction of mean function while the covariance funcion is hold fixed at a low dimension but

unkown. It introduces the algorithm for estimating the rank of the non-stationary covariance

matrix. It also provides some theoritical findings justifying the consistency of the parameters.
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CHAPTER 1

INTRODUCTION

For many statistical problems arising in spatially observed data, it is straight forward

to consider the underlying process Y = {Y (s);s∈ S}, is a spatially varying process. It is also

often assumed to have a mean function which is based on the available set of covariates. Let

us denote the mean function by m(s). If we center the underlying process Y (s) with m(s)

the residual, ε(s) is often broadly assumed to have Gaussian error structure or in some more

general notion of having a Gaussian tail structure. We will discuss the dependence structure

of this spatial process elaborately in this work. Therefore the following model could be the

basic of this research.

Y (s) =m(s) + ε(s). (1.0.1)

1.1 Additive model building

Consider that the mean functionm(s) is modeled using J covariates denoted as, {X(s) =

(X1(s), · · · ,XJ (s))}, and each of these variables are spatially varying processes too. In a

simpler version a linear relation is assumed between each of these Xj(s)’s and Y (s). This

work will be generalizing the linear relation to a broaer scenario of any possible unknown

functions, which is refered as general additive mean function. This is a non-parametric

version of the linearity assumption. The non-parametric nature of functional regression

makes the mean prediction complicated to start with which requires special attention and

we will following some pre-proved standards from the literature for this complicacy. So, the

mean function m(s) can be represented as the following additive model,

Y (s) = µ+
J∑
j=1

fj(Xj(s)) + ε(s), (1.1.1)

with, µ being the overall mean. Now if we want to put some light on the spatially depen-

dence structure of ε(s), we differentiate the problem in to two cases, either with stationary
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covariance structure or, with non-stationary and anisotropic covariance structure. Although

the final goal is to get a joint estimation of mean and covariance function, it is not a straight-

forward extension of combining mean and covariance functions estimation. So we will take

one step at a time. The technique used for selecting additive components is shown to be

generalizing over its independent Gaussian error counterpart.

We also consider a situation, where the number of covariates, J is increasing in n and

can even grow exponentially with the number of subjects used to estimate the model. In a

spatial study the number of subject, is the number of location sites where we have observed

the process Y (s). The dimension of the covariance matrix, is increasing with the number of

location considered under study. This is a serious issue, but first goal is to identify those

variables which are relevant in making a prediction of the response variable. We should keep

in mind that here J > n, hence the standard variable selection techniques fall apart and, so

we too shall explore some recent advancement in penalized optimizations. We will also point

out the challenges in deciding the optimal penalty parameter specific to our problem.

The concept of penalized optimization have two major components, one is the statistical

likelihood which indicates the distribution of the error process or the nature of error norm.

We are interested in minimizing the likelihood subject to a constraint. The second component

is the constraint and also called the penalty component. The penalty component is driven and

motivated from the fact that number of parameters in the model is larger than the number

of spatial locations observed for the study. We want to penalize our original likelihood and

shrink some of the component in our additive model to zero. Over the last decade research on

penalized optimization flourished due to abundance of high dimensional problem in various

fields of applied science.

The Gaussian error ε = (ε(s);s ∈ S) in the model, in equation (1.1.1) has a spatial

dependence. For future notational purposes let us say ε ∼ N(0,Σ). From the perspective

of estimating mean or selecting variables in a prediction model, we can use the following
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penalized optimization function,

Q(f1, . . . ,fJ ,λn) =
Y − J∑

j=1
fj
(
Xj
)′Σ−1

Y − J∑
j=1

fj
(
Xj
)+λn

J∑
j=1

p(fj) (1.1.2)

We know the technique to control these general additive models are to approximate

each of these functions fj using spline representation. The correspoding structure gives rise

to a parametric formulation that allows us to use a very celebrated technique called group

Least Absolute Shrinkage and Selection Operator(LASSO). We will skip and leave detailed

discusssion on penalized optimization for rest of the thesis. Joint estimation of mean and the

dependence structure or even considering a spatially dependent error, but avoid estimating

the covariance function while using techniques like group LASSO complicates the problem

in various spectrum.

Equation (1.1.2) gives a flavor of penalized optimization of weighted `2− norm, where

the weights are proportional to the inverse of the dependence structure of the Gaussian error

process. The challenges of estimating Σ while detecting important additive components are

both theoritical and algorithmic. So we will keep the joint estimation out of the picture

for a while and deal each problem separetly. There are two alternative ways to model

this dependence structure, one where we assume that dependence between two location site

solely depends on the distance between the two sites. The covariance function in this case

is a parametric function of the distance this technique of modeling the covariance function

in the literature has be refered as stationary covariances.

Another alternative and a more general model is when we can relax the assumption of de-

pendence through distance between location sites by introducing the class of non-stationary

and anistropic covariance functions. The next chapter, chapter 2 is on selecting the neces-

sary non-zero components out of all the J covariates under study with out going into the

complications of estimating Σ. To start with we shall restrict ourseleves to the class of sta-

tionary covariance functions, i.e. Σ =
((
σt(
∣∣∣s− s′∣∣∣ ;s,s′ ∈ S)

))
and

∣∣∣s− s′∣∣∣ is the measure of

distance between s and s′. On the other hand chapter 3 considers the a general non-stationary
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covariance function.

Although Σ is unknown, in our next chapter the covariance function refered above as

σt(·), belongs to either of a class of parametric covariance functions viz. Exponential, Gaus-

sian, Inverse Multi-quadratics or Matérn. We succesfully defended the idea that selection

of components among all the covariates in our additive model is robust in the choice of the

precise form of the true covariance function. We made significant amount of research about

how the penalty parameter of our spatially dependent model should differ as compared to

its independent counterpart.

Instead of using Σ, the true covariance matrix in (1.1.2) we use a different spatial weight

matrix W =
((
σw(

∣∣∣s− s′∣∣∣ ;s,s′ ∈ S)
))

, which an user can choose based on an exploratory

analysis of data. Henceforth we optimized,

Q(f1, . . . ,fJ ,λn) =
Y − J∑

j=1
fj
(
Xj
)′W−1

Y − J∑
j=1

fj
(
Xj
)+λn

J∑
j=1

p(fj) (1.1.3)

1.2 Estimating non-stationary covariance

As mentioned our next goal is to explore how to estimate the non-stationary covariance

function. The complication is two fold. First, joint estimation of both mean and covariance

for a Gaussian process works better if the overall likelihood is optimized rather minimizing

just the prediction error like (1.1.2). Second, the computation time of the likelihoood or the

gradient of the optimization function for a non-stationary matrix is of cubic order of the

dimension of the square matrix. To east out let us reduce the burden of selection of additive

components. Chapter 3 introduces the technique of using spatial random effects models

and multi-resolution knots to model the non-stationary covariance matrix overcoming both

complications.

Spatial random effects modeling allows us to incorporate another indepdent additive

Gaussian component π(s) along with the stationary component ε(s). For more simplicity
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we consider ε∼N(0,σ2I) i.e., the stationary covariance function takes non-zero value only

when distance is zero. The objective of using spatial random effects model is to capture the

covariance between the response variable Y at two different location s and s′ through,

cov
(
Y (s),Y (s′)

)
=


R(s)′1×rΩr×rR(s′)r×1 if s 6= s′

R(s)′1×rΩr×rR(s′)r×1 +σ2 if s= s′.

(1.2.1)

In spatial literature the parameter σ is called nugget effect. Note the above representation

requires a valid quadratic form multiplication, where the length of the vector R(s)′ and

the dimension of the positive definite matrix Ω should coincide and is denoted by r. The

magnitude of r plays an important role in reducing computation time of inverse of the overall

covariance matrix σ2I+RΩR′. The choice of r has been always a challenge. To understand

the nature of the parameter r, an alternative representation of (1.0.1) as follows,

Y (s) = m(s) +π(s) + ε(s)

= m(s) +R(s)α+ ε(s), (1.2.2)

where α ∼ Nr(0,Ω) is assumed, and used in the last chapter. A magnified look of the

representation, π(s) =R(s)′α, gives

π(s) =
r∑

k=1
Rk(s)αk (1.2.3)

where R(s) = (R1(s),R2(s), . . . ,Rr(s))′ weights for r− components of the spatial random

effects. The varibility of the random effect α, Ω is a positive definite matrix. So we can use

a cholesky representation Ω = ΦΦ′. Before we go into the details of how we are proposing

to estimate both parameters r and Φ let me remind the nature of m(s) is relaxed from a

general additive models and use just a linear model. We even disregard the need to selecting

the variables assuming J < n. To start with a simpler model one can even choose m(s)≡ 0.

We introduce an alternative spatial random effects model and rewrite equation (1.2.3)

as,

π(s) =R(s)α� R̃(s)α̃ =
M∑
m=1

`m∑
j=1

R̃j(m)(s)′α̃j(m) (1.2.4)
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where R̃(s) = (R̃1(1)(s), . . . , R̃`1(1)(s); . . . ;R̃1(M)(s), . . . , R̃`M (M)(s))′. There are M resolu-

tions, and mth−resolution has `(m) number of knots such that `1 + . . .+ `M = L (say). The

technique of using multiple resolution is defended by several in the field (Cressie et.al. (2008))

and is named as multi-resolution kriging by Nychka et.al. (2015). We keep aside the details

on how to choose the number of resolution, and number of knots per resolution optimal for

the study under consideration for chapter 3.

It is assumed that, α̃ =
(
α̃1(1), α̃2(1), . . . , α̃`M (M)

)
∼ NL

(
0, Ω̃

)
, with Ω̃ being a L×L

positive semi-definite matrix with r non-zero eigen values. This also gives us the freedom

to write Ω̃ = Φ̃Φ̃′ where Φ̃ is a L×L lower triangular matrix with rank r. To summarize

chapter 3, we propose a technique to estimate which r among these L knots are effective to

estimate the structure of the non-stationary covariance structure. If we note the cholesky

structure

Φ̃ =



ϕ̃11 0 · · · 0

ϕ̃21 ϕ̃22 · · · 0
... ... . . . ...

ϕ̃L1 ϕ̃L2 · · · ϕ̃LL


=



ϕ̃(1)

ϕ̃(2)
...

ϕ̃(L)


,

we can infer that variance of jth component in the random effect corresponding to the jth

row of the cholesky matrix. We propose the idea of selecting a component out of the random

vector α̃ with non-zero variances by estimating the Φ̃ based on which of the rows of the

estimated matrix, ̂̃Φ. Since each row corresponds to one component we propose a group

wise penalized likelihood maximization technique by maximizing the following negative log-

likelihood,

Qn(Φ̃,σ2, τn,ψ) = nTr
(

Ξ0
(
σ2I+ R̃Φ̃Φ̃′R̃′

)−1)
+ logdet

(
σ2I+ R̃Φ̃Φ̃′R̃′

)
+ τn

∥∥∥Φ̃vecFullset

∥∥∥2,1,ψ , (1.2.5)

where Ξ0 =XX ′/n is the empirical covariance matrix.
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Rest of the thesis is organized as follows. The next chapter under the heading. ‘Addi-

tive Model Building for Spatial Regression’ discusses the issues and challenges of selecting

variables in a general additive model in a high dimensional scenario. It contains details

theoritical and extensive simulations studies on different situations. Following chapter under

the heading, ‘Estimating Non-stationary Spatial Covariance Matrix using Multi-resolution

Knots’ throws light on the problem of estimating a non-stationary covariance matrix. It

discusses a very well posed problem of numerical efficiency while using likelihood based esti-

mation of a large covariance matrix. This deals with finding inverse or determinant of large

covariance matrices.
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CHAPTER 2

ADDITIVE MODEL BUILDING FOR SPATIAL REGRESSION

It is important yet fairly challenging to identify important factors that explain certain

phenomena such as climate change, economic volatility, ecological dynamics and disease pro-

gresses, etc. In such applications, spatially dependent data are often observed and spatial

regression is a natural tool for data analysis. An additive model provides a flexible regres-

sion relationship and is proven to be effective for regression based prediction. The models

developed for independent data are often statistically inefficient in this context. Thus, the

statistical models dealing with spatially dependent data have received considerable attention

over the last few decades.

A common feature for spatial data is spatial dependence among sampling sites. Gener-

ally, we assume that the dependence between two data points at two sampling sites decreases

as the distance between two sites increases. At each sampling location, we observe a quan-

tity of interest (response variable) and additional information (covariates or predictors) that

could affect the response. A natural approach to identify contributing factors that influence

response variable is selection of covariates in a regression set up, commonly known as the

variable selection. Among many variable selection techniques, the regularization technique

(e.g., Tibshirani, 1996) received huge attention in recent years.

The current literature on variable selection concentrates heavily on regression models

for independent observations. The methods without any adaptation are not expected to

work well for spatially dependent data. Further, theoretical justification for spatial data

requires special attention and so true for the variable selection. There are studies on variable

selection for time series data. Typical time series data can be viewed as a special case of

spatial lattice data by reducing the dimension of an observation domain to one and assuming

the data are observed evenly over time. Wang et al. (2007) studied selection of regression

coefficients and autoregressive order via LASSO for regression models with autoregressive
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errors. Nardi and Rinaldo (2011) considered LASSO for autoregressive process modeling.

Hsu et al. (2008) applied LASSO to select the subset for vector autoregressive processes.

Xu et al. (2012) studied variable selection for autoregressive models with infinite variance.

While these approaches deal with a specific dependence structure (autoregressive structure),

Gupta (2012) investigated variable selection for weakly dependent time series data under a

linear regression model.

Variable selection or model selection for spatial data is relatively new. Hoeting et al.

(2006) derived Akaike’s Information Criterion (AIC) for a geostatistical model and used it for

selecting explanatory variables under spatial correlation. Huang and Chen (2007) introduced

model selection criterion with generalized degrees of freedom for selecting a spatial prediction

model. Huang et al. (2010a) considered a spatial LASSO for selecting covariates and spatial

neighborhoods with a known spatial dependence structure but no theoretical investigation

was made. Wang and Zhu (2009) considered penalized least squares for geostatistical data

with various penalty functions and investigated their theoretical properties.

In likelihood based approaches, Zhu et al. (2010) considered selection of spatial linear

models together with a spatial neighborhood structure for spatial lattice data using a pe-

nalized maximum likelihood method with an adaptive LASSO penalty. Chu et al. (2011)

investigated variable selection for spatial linear models for geostatistical data using a penal-

ized maximum likelihood method. They considered an approximated penalized maximum

likelihood approach with a tapered spatial covariance function. Reyes et al. (2012) extended

the approach by Zhu et al. (2010) for spatial-temporal lattice models. For spatial binary

data, Fu et al. (2013) considered selection in autologistic regression models using a penalized

pseudolikelihood.

For flexible relationship between the response and the regressor variables, we consider

an additive model with spatially dependent error. Consider {Y (s);s ∈ Rd} be a spatial

process on Rd and {X(s) = (X1(s), · · · ,XJ (s));s ∈ Rd} be a J-dimensional vector which

can be stochastic, if necessary. We consider a spatial additive model given in (2.1.1) with

9



the overall mean µ and fj being unknown functions describing the relation between Y and

Xj . We assume the error process is a mean zero stationary Gaussian random field with

covariance function, δ(h). J could be larger than the sample size. Our objective is to select

the ‘effective’ fj ’s.

For selection and estimation of nonlinear components, fj , Huang et al. (2010b) pro-

posed adaptive group LASSO for the additive model (2.1.1) but with independent errors.

Their work is based on spline approximation of non-linear components which led to rewrite

the mean of (2.1.1) as a linear regression model with spline coefficients. Hence the problem of

selecting a component in an additive model is transformed into selecting groups of variables

in a linear regression with predefined group members. Meier et al. (2009) also considered

variable selection for high dimensional additive models using spline approximation but with

a sparsity-smoothness penalty, which controls both sparsity as well as smoothness in spline

approximation. Several other works on the selection of additive models or additive nonpara-

metric regression comprise of Antoniadis and Fan (2001), Lin and Zhang (2006), Ravikumar

et al. (2009) and Lai et al.(2012), etc. These works assumed independent error distribu-

tions. For geo-additive regression models, Kneib et al. (2009) considered a variable selection

method using a penalized spline approach for breeding bird communities data. However, no

theoretical justification was discussed. To the best of our knowledge, there is no work on

spatial additive model selection with theoretical justification.

First, we empirically examined a group LASSO approach developed for independent

data to select nonzero components in an additive model when the errors are spatially depen-

dent. For the additive model (2.1.1), we considered J = 10 with two true nonzero components,

f1(x) = sin(x) and f2(x) = x. We considered m×m unit square lattices with m = 6,12,24.

For the spatial errors, we used Gaussian distribution with an exponential covariance function,

δ(h) = exp(−ρ|h|) and ρ = 0.5. We generated 400 datasets. Since the spatial dependence

can also be captured by a function of the location in the mean, we also investigated two

different intercepts in addition to the additive component model (2.1.1): one is a constant
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m Constant A function of the location
Average Standard Deviation Average Standard Deviation

6 5.64 1.74 3.61 1.23
12 6.61 1.60 4.31 1.62
24 7.22 1.38 5.91 2.01

Table 2.1 Average and Standard deviation for the number of selected covariates using 400 datasets
from the exponential covariance function, δ(h) = exp(−ρ|h|) with ρ = 0.5. The true number of
nonzero components is 2. m×m unit square lattices are considered.

and the other is a nonparametric function of the location using spline approximation. For a

nonparametric function of location s= (s1, s2), we considered an additive structure in terms

of s1 and s2. Table 2.1 shows the average and standard deviation of the number of selected

components when the independence approach is used. The regularization parameter (or

penalty parameter) is chosen as recommended by Huang et al. (2010b). The number of se-

lected covariates is much larger than the true number of nonzero components for both cases

at various sample sizes. Although a function of location as a mean component helps improve

the selection results in this simulation study, it is not satisfactory. The performance did

not improve even with a larger sample size. This leads us to investigate a variable selection

method suitable for spatial additive models. The comprehensive simulation study is given

in Section 2.3.

For a spatial additive model, we maintain the mean structure of the independent data

group LASSO approach, that is, we use the idea of approximating fj by a linear combination

of spline functions and a group LASSO penalty for sparsity. Then, we introduce a spatial

weight matrix in the objective function. The choice of weight matrix is motivated from the

concept of weighted least squares. The dependence in the random error is compensated by

the spatial weight matrix. Our assymptotic result supports well-conditioned weight matrix.

At this point we would like to point out our readers that, identity matrix is a perfect choice

of well-conditioned matrix. Although, it should be noted that choice of identity matrix as

weight in the penalized weighted least squares, for our findings is not same as, case of using

11



penalizing ordinary least squares as in case of Huang et al. (2010b).

We develop asymptotic theory for selection consistency of nonzero components in the

additive model under spatially dependent Gaussian errors. The spatial dependence struc-

tures that we assumed here are common in modeling spatial data and valid for a wide range

of applications. Variable selection is often sensitive to the choice of a penalty parameter.

We found out that the theoretical lower bound for the penalty parameter depends on spatial

dependence as well as a spatial weight matrix. The case of identity matrix as weight in

penalized weighted least squares gives rise to a different form of the lower bound for penalty

parameter. We demonstrate a method for selecting a penalty parameter and a spatial weight

matrix guided by our theory and the existing practice in variable selection.

The rest of this chapter is organized as follows. Section 2.1 describes the proposed ap-

proach for selecting and estimating nonzero components in an additive model with spatially

dependent errors. Section 2.2 discusses the main theoretical results for asymptotic properties

of our proposed estimators. Section 2.3 contains simulation results along with a real data

example for illustration. Finally, we make some concluding remarks in section 2.4. Proofs of

all theorems are provided in the appendix. Proofs of related lemmas, extension of theoretical

results and additional simulation results are given in the supplementary material. All numer-

ical study was performed by the code written in the statistical software R. The example code

is available at stt.msu.edu/users/maiti/PublicationFiles/simulation_code.pdf.

2.1 Method for selecting components in spatial additive models

We consider the following spatial additive model:

Y (s) = µ+
J∑
j=1

fj(Xj(s)) + ε(s), ∀s ∈ Rd (2.1.1)

where µ is the overall mean, fj is an unknown function describing the relation between Y and

Xj , and {ε(s);s ∈ Rd} is a zero mean stationary Gaussian random field with a covariance
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function, δ(h). J could be larger than the sample size. Suppose that (Y (s),X(s)) are

observed at n different locations lying in sampling region Dn ⊂ Rd. Let S be the set of

sampling locations. We use a spline approximation of fj in the additive models.

fj(Xj(s))≈ fnj(Xj(s)) :=
mn∑
l=1

βjlBl(Xj(s)), for j = 1, . . . ,J, (2.1.2)

where Bl(·)s are normalized B-spline bases, and βjls are called control points [Schumaker

(2007)] . The approximation (2.1.2) is based on the theory which states that every smooth

function can be uniquely represented by a linear combination of B-splines. Then, the model

(2.1.1) is approximated as

Y (s) = µ+
J∑
j=1

mn∑
l=1

βjlBl(Xj(s)) +π(s), for s ∈ S, (2.1.3)

where π(s) = ε(s) + θ(s) with θ(s) = ∑J
j=1(fj(Xj(s))− fnj(Xj(s))) and also define θ =

(θ(s);s ∈ S)′. The model (2.1.3) can be written in a matrix form. Y = µ+Bβ+π, where

Y = (Y (s), s ∈ S)′, β = (β′1,β′2, . . . ,β′J )′, B is the design matrix constructed by spline func-

tions and π = (π(s), s ∈ S)′.

For v = (v′1,v′2, . . . ,v′J )′, where vj ’s are vectors, and ψ = (ψ1,ψ2, . . . ,ψJ )′, we define a

weighted `1/`2-norm, ‖v‖2,1,ψ =∑J
j=1ψj‖vj‖2, where ‖ ·‖2 is the `2-norm of a vector. This

is a weighted `1-norm of (‖v1‖2, · · · ,‖vJ‖2) with a weight vector, ψ. Then, we propose

the following weighted `1/`2-penalized least-squares objective function, weighted by spatial

weight matrix ΣW :

Qn(β,λn) = (Y −µ−Bβ)′Σ−1
W (Y −µ−Bβ) +λn‖β‖2,1,ψn , (2.1.4)

where λn is a regularization parameter, ψn = (ψn1,ψn2, . . . ,ψnJ )′ is a suitable choice of a

weight vector for the penalty term and β is the (Jmn×1) dimensional vector of control points

introduced in (2.1.2). ΣW is a known positive definite spatial weight matrix where more

weights are given if two locations are closer and vice-versa. For example, we can construct

ΣW using some commonly used spatial covariance functions. Choosing Identity for the
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spatial weight matrix, (2.1.4) is a unweighted objective function for dependent data additive

model with a group LASSO penalty. Our theoritical findings covers both the weighted

and unweighted objective function, although the choice of penalty function and the rate of

convergence changes accordingly. The vartiation in choice of penalty is discussed elaborately

in subsection 2.2.1.

We allow the possibility that the regularization parameter, λn, and the weight vector,

ψn, can depend on the sample size, n. To avoid an identifiability issue, we assume that

Efj(Xj) = 0, ∀1≤ j ≤ J , which leads us to assume
mn∑
l=1

βjlBl(Xj(s)) = 0, ∀1≤ j ≤ J, s ∈ S. (2.1.5)

Combining (2.1.4) and (2.1.5), we have the unconstrained objective function given by

Qn(β,λn) = (Y c−Bcβ)′Σ−1
W (Y c−Bcβ) +λn‖β‖2,1,ψn , (2.1.6)

where Y c = (Y c(s), s∈S)′= (Y (s)−Ȳ , s∈S)′ with Ȳ = 1
n
∑
s∈S Y (s) and Bc = (Bc1,Bc2, . . . ,BcJ )

is the design matrix with a n by mn matrix Bcj . Each row of Bcj is (Bc1(Xj(s)),

. . . ,Bcmn(Xj(s))) with Bcl (Xj(s)) = Bl(Xj(s))− 1
n
∑
s′∈S Bl(Xj(s′)).

As the first step, we obtain an estimate of β by minimizing the objective function,

Qn1(β,λn1) := Qn(β,λn1) with ψnj = 1, for all j = 1, . . . ,J . We call this estimate as a

group LASSO (gL) estimate, β̂gL(λn1), and the corresponding objective function as the gL

objective function. Note that ‖β‖2,1,1 = ∑J
j=1 ‖βj‖2. To improve the selection, we use the

following updated weights from β̂gL,

ψnj =


1/‖β̂gL,j‖2 if ‖β̂gL,j‖2 > 0,

∞ if ‖β̂gL,j‖2 = 0.
(2.1.7)

in an objective function which is called an adaptive group LASSO (AgL) objective function.

That is, we define an AgL objective function, Qn2(β,λn2) := Qn(β,λn2) with ψn given in

(2.1.7). The estimate from this updated objective function, β̂AgL(λn2) = arg minβ Qn2(β,λn2),

as a function of λn2 is referred as an adaptive group LASSO estimate.

14



We define∞×0 = 0, so components not selected by the gL method are not included for

the AgL method. Also, due to the nature of weights in the penalty term, the AgL objective

function puts higher penalty on components with smaller `2-norm and lower penalty on

components with larger `2-norm of the gL estimates. Hence, the components with larger gL

estimates have higher chance to be selected in the final model. Finally, the AgL estimates

for µ and fj are given by

µ̂ = Ȳ = 1
n

∑
s∈S

Y (s) and f̂AgL,j(Xj(s)) =
mn∑
l=1

β̂AgL,jlBl(Xj(s))

for all j = 1, . . . ,J , respectively.

Computationally efficient objective function: The objective function, (2.1.6), involves Σ−1
W

which may cause computational complicacy particularly for large n. To avoid such situation,

we reformulate (2.1.6) using Cholesky decomposition of Σ−1
W . Let Σ−1

W = LL′, where L is a

lower triangular matrix. Then, (2.1.6) can be rewritten as,

Qn(β,λn) = (Zc−Dcβ)′ (Zc−Dcβ) +λn‖β‖2,1,ψn , (2.1.8)

where Zc = L′Y c and Dc = L′Bc with Dcj = L′Bcj . Then, the objective function becomes the

one with no spatial weight matrix with a new response variable Z so that we can adopt an

available algorithm for a group LASSO method with independent errors. Note that we used

a known spatial weight matrix so that Cholesky decomposition to get L is done only once.

2.2 Main Theoretical Results

In this section, we present results on asymptotic properties of the gL and AgL estimators

introduced in Section 2.1. We start with introducing some notations. Let A0 and A∗ be the

sets of zero and nonzero components, respectively. Without loss of generality, we consider

A∗ = {1,2, . . . , q} and A0 = {q+1, . . . ,J}. Also, we assume that there exists Ã0 that satisfies∑
j∈Ã0

‖βj‖2 ≤ η1 for some η1 ≥ 0 and let Ã∗ = {1,2, . . . ,J}\ Ã0. Existence of Ã0 is referred

to as generalized sparsity condition (GSC) [Zhang and Huang (2008)].
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First, we consider the selection and estimation properties of a gL estimator. Let Ãβ be

the index set of nonzero gL estimates for βj and Âf be the index set of nonzero gL estimators

for fj . Necessary assumptions to study asymptotic properties are given in Assumption 2.2.

(H 1) Among J covariates, the number of nonzero components, q, is fixed and there exists

a constant kf > 0 such that min1≤j≤q ‖fj‖2 ≥ kf .

(H 2) There exists v > 0 such that mins 6=s′∈S ‖s− s
′‖2 > v, where ‖ · ‖2 for a vector is the

`2-norm so that ‖s− s′‖2 is the Euclidean distance between s and s′.

(H 3) The random vector ε= {ε(s), s ∈ S} ∼Gaussian(0,ΣT ), where ΣT is constructed by a

stationary covariance function δT (h) which satisfies
∫
Dn

δT (h)dh <∞. Dn ⊂Rd is the

sampling region that contains the sampling locations S. Without loss of generality, we

assume that the origin of Rd is in the interior of Dn and Dn is increasing with n.

(H 4) fj ∈ F and Efj(Xj) = 0 for j = 1, . . . ,J , where

F =
{
f |
∣∣∣f (k)(s)−f (k)(t)

∣∣∣≤ C |s− t|ν , ∀s, t ∈ [a,b]
}

for some nonnegative integer k and ν ∈ (0,1]. Also suppose that τ = k+ν > 1.

(H 5) The covariate vector X has a bounded continuous density function gj(x) of Xj on a

bonded domain [a,b] for j = 1, · · · ,J .

(H 6) mn =O(nγ) with 1/6≤ γ = 1/(2τ + 1)< (1−α)1/3.

(H 7) ΣW is constructed by a stationary covariance function δ(h) that satisfies the same

condition as δT (h) in (H 3) and κ(ΣW ) = κ(Σ−1
W ) ≤M for some M <∞, where κ is

the condition number of a matrix.

The assumption (H 1) indicates that we need strong signals for nonzero components to

distinguish them from the noise. The assumption (H 2) implies that we consider increasing-

domain asymptotics [Stein (1999)] for our large sample properties, which is a common sam-

pling assumption for the asymptotic theory of spatial statistics.
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The assumption (H 3) specifies distributional assumption of spatial error and its spa-

tial dependence. Commonly available stationary spatial covariance models satisfy integrable

assumption. For example, popular spatial covariance functions such as Exponential, Maérn,

Gaussian covariance functions are all integrable. For the explicit expression of such covari-

ance functions, please see the supplementary material. We assume that Dn contains the

origin to have spatial lag h and observation location s on the same spatial domain. The

stationary spatial covariance function δ(h) gives a marginal variance at h = 0 (i.e. s = s′)

and decreases toward zero as ‖h‖ → ∞. The condition on δ(h) in the assumption (H 3)

becomes meaningful by assuming Dn contains the origin. For example, the condition does

not guarantee whether δ(h) is integrable if we do not assume that Dn contains the origin.

The assumption (H 4) considers fj is in the class of functions defined on [a,b] such that

the kth derivative satisfies the Lipschitz condition of order ν and zero expectation condition

is needed to avoid an identifiability issue.

The assumption (H 5) is needed to have spline approximation for additive components.

The assumption (H 6) is related to the number of B-spline bases to approximate additive

components. The parameter γ in assumption (H 6) controls the smoothness of additive

components, where imposing an upper and lower bound to γ implies that those functions

can be neither too smooth nor too wiggly. If functions are too smooth, then it would be

hard to detect those distinctively from the overall mean, whereas, if the functions are too

wiggly, then it would be hard to detect those distinctively from the random noise.

The assumption (H 7) implies that a spatial weight matrix, ΣW , is a well-conditioned

matrix. Note that we consider a stationary spatial covariance function to construct a spatial

weight matrix. Under the assumption (H 2), one can see that the smallest eigenvalue of the

spatial weight matrix constructed by several spatial covariance functions is bounded away

from zero [see, e.g. Wendland (2005)]. On the other hand, the largest eigenvalue of a spa-

tial weight matrix is related to the norm of the matrix. By the Geršgorin’s theorem [Horn

and Johnson (1985)], we can show that ρmax(ΣW )≤maxj
∑
k |ΣW,jk|= maxj

∑
k δ(sj−sk),

17



where ΣW,jk is the (j,k)-th entry of ΣW . This is bounded by a finite constant which is inde-

pendent of n for the spatial weight matrix from stationary integrable covariance functions.

Now, we introduce the consistency result for the gL estimator.

Theorem 1. Suppose that conditions in Assumption 2.2 hold, and if

λn1 > Cρmax (L)
√
n1+αmn log(Jmn)

for a sufficiently large constant C. Then, we have

(a) ∑J
j=1 ‖β̂gL,j−βj‖22 =Op

(
ρ2max(L)m3

n log(Jmn)
n1−α + mn

n1−α + 1
m2τ−1
n

+ 4m2
nλ

2
n1

n2

)
,

(b) If m
2
nλ

2
n1

n2 −→ 0 as n −→∞, all the nonzero components βj ,1 ≤ j ≤ q are selected

with probability (w.p.) converging to 1.

The spatial dependence of the data contributes to the theoretical lower bound of the

penalty parameter and the convergence rate by an additional mn term compared to the inde-

pendent data case. Recall that mn is the number of spline basis functions for approximating

the fj ’s. This additional mn comes from the bound of the expected value for a function

of spatially dependent error (see, Lemma ??). The spatial weight matrix also contributes

to the theoretical lower bound of the penalty parameter and the convergence rate via the

maximum eigenvalue of L. Recall that L is the Cholesky decomposition component of Σ−1
W .

This implies that spatial dependence of the data and a spatial weight matrix affect the con-

vergence rate and the selection of components via the choice of the penalty parameter. All

these additional quantities make the lower bound of the penalty parameter for spatial ad-

ditive models larger compared to the independent data case. A larger lower bound reduces

overestimation even in case of ΣW = I due to the additional mn from spatial dependence.

This is also observed in the simulation study.

To prove Theorem 1, we need to control spline approximation of fj as well as the spatial

dependence in the error terms. The boundedness of the number of selected components is

critical to prove the theorem. These are investigated as lemmas in Appendix 2.5 and used in
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the proof of the theorem. Although the approach to prove the asymptotic properties stated

above for spatial additive models is similar to the one for additive models with independent

errors, details are different due to spatial dependence as well as a spatial weight matrix in

the proposed method. Proofs of Theorem 1 as well as subsequent theorems are given in the

Appendix 2.5.

Next theorem provides consistency in terms of the estimated nonlinear components f̂j .

Theorem 2. Suppose that conditions in Assumption 2.2 hold and if

λn1 > Cρmax (L)
√
n1+αmn log(Jmn)

for a sufficiently large constant C. Then,

(a) ‖f̂gL,j−fj‖22 =Op

(
ρ2max(L)m2

n log(Jmn)
n1−α + 1

n1−α + 1
m2τ
n

+ 4mnλ2
n1

n2

)
for j ∈ Ãβ∪A∗,

where Ãβ is the index set of nonzero gL estimates for βj,

(b) If mnλ
2
n1

n2 −→ 0 as n −→∞, all the nonzero components fj ,1 ≤ j ≤ q are selected

w.p. converging to 1.

Note that by (a) and (b) of Theorem 2 with λn1 =O(ρmax (L)
√
n1+αmn log(Jmn)) and

mn =O(nγ) with 1/6≤ γ = 1/(2τ + 1)< (1−α)1/3 (assumption (H6)), we have,

(i) ‖f̂gL,j−fj‖22 =Op

(
ρ2max(L)n2γ log(Jmn)

n1−α

)
, for j ∈ Ãβ ∪A∗ and,

(ii) If ρ
2max(L) log(J)
n1−α−2γ −→ 0 as n −→∞ then, with probability converging to 1, all the

nonzero components fj ,1≤ j ≤ q are selected.

Hence, we can infer that, the number of additive components, J , can be as large upto,

exp
(
o
(
ρ2

min (L)n(1−α−2γ)−2γ)) .
In particular, if we need second order differentiability for the functions fj , then τ = 2 implies

γ = 1/5 and in this case J can be as large as exp
(
o
(
ρ2

min (L)n(3/5−α)3/5
))

. Keeping L fixed,

we can see that J increases exponentially in n.
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Next, we state the additional assumptions for the asymptotic properties of the AgL

estimator.

(K 1) The initial estimators, β̂gL,j , are rn-consistent :

rn max
1≤j≤J

∥∥∥β̂gL,j−βj∥∥∥2 =Op(1), as rn −→∞,

and there exists a constant kb > 0 such that

P( min
j∈A∗

‖β̂gL,j‖2 ≥ kbbn1)−→ 1

where bn1 = minj∈A∗ ‖βj‖2�m
1/2
n , where for two positive sequences an and bn, an� bn

if there exists a1 and a2 such that 0< a1 < an/bn < a2 <∞.

(K 2) √
ρ2max (L)n1+αmn log(snmn)

λn2rn
+ n2

λ2
n2r

2
nmn

+ λn2mn

n
= o(1)

where sn = J −|A∗∗|. A∗∗ is the set of indices that correspond to the components in

the additive model which are correctly selected by the AgL approach. Mathematical

definition is given in the proof of Theorem 3.

Note that (K 1) ensures the availability of a rn-consistent estimator provided certain regu-

larity conditions are satisfied. Also one can observe that under assumptions (H 1) to (H 7),

a suitable choice of rn is
(
ρ2max(L)m3

n log(Jmn)
n1−α

)−1/2
. Then, (K 2) can be replaced by (K

2)′ given as,

(K 2)′
λn1
√
mn

λn2
+ λn2mn

n
= o(1).

Detail derivation is given in the supplementary material.

For the selection consistency of the AgL estimator, we introduce “β̂AgL =0 β” which

means that sgn0(‖β̂AgL,j‖2) = sgn0(‖βj‖2) for all j, where sgn0(‖x‖2) = 1 if ‖x‖2 > 0 and
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= 0 if ‖x‖2 = 0. Define J0 = |A∗∪{j : ‖β̂AgL,j‖2 > 0}|. Note that J0 is bounded by a finite

number w.p. converging to 1 by Theorem 1.

Theorem 3. Suppose that conditions in Assumptions 2.2 and 2.2 are satisfied. Then,

(a) P(β̂AgL =0 β)−→ 1,

(b) ∑q
j=1 ‖β̂AgL,j−βj‖

2
2 =Op

(
ρ2max(L)m3

n log(J0mn)
n1−α + mn

n1−α + 1
m2τ−1
n

+ 4m2
nλ

2
n2

n2

)
.

By Theorem 3, we can show that the proposed AgL estimator of β can separate out true

zero components for the spatial additive model. Similar to Theorem 1, we have additional

quantities on the right hand side of the expression in Theorem 3 (b), which are due to the

spatial dependence in errors as well as use of a spatial weight matrix. Since J0 is bounded

by a finite number w.p. converging to 1, the convergence rate of the AgL estimator of β is

faster than the gL estimator of β. Next theorem shows that estimated components for fjs

in the spatial additive model using the AgL estimator of β can identify zero components

consistently. Also, the theorem provides the convergence rate for the estimated components.

Theorem 4. Suppose that conditions in Assumptions 2.2 and 2.2 are satisfied. Then,

(a) P(‖f̂AgL,j‖2 > 0, j ∈ A∗ and ‖f̂AgL,j‖2 = 0, j /∈ A∗)−→ 1,

(b) ∑q
j=1 ‖f̂AgL,j−fj‖

2
2 =Op

(
ρ2max(L)m2

n log(J0mn)
n1−α + 1

n1−α + 1
m2τ
n

+ 4mnλ2
n2

n2

)
.

The upper bounds of the convergence rates in Theorems 1 – 4 show that the convergence

rates are slower than those for the independent data case, which is not surprising given that

we are dealing with dependent data. Also, our theoretical results show we need an improved

lower bound of the penalty parameter for spatial additive models, which is critical since the

penalty parameter is sensitive to the selection results in practice. This is supported by the

simulation study in the next section where we can clearly see worse performance when we

blindly apply the approach developed for independent data to select non-zero components

in a spatial additive model.

We assumed that each additive component shares the same smoothness by (H 4) in

Assumption 2.2. We can extend our results to allow different levels of smoothness for additive
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components without much difficulty. Necessary changes in Assumption 2.2 are

(H 4)′ fj ∈ Fj and Efj(Xj) = 0 for j = 1, . . . ,J , where

Fj =
{
f |
∣∣∣∣f (kj)(s)−f (kj)(t)

∣∣∣∣≤ C |s− t|νj , ∀s, t ∈ [a,b]
}

for some nonnegative integer kj and νj ∈ (0,1]. Also suppose that τj = kj +νj > 1, and,

(H 6)′ mnj = O(nγj ) with 1/6 ≤ γj = 1/(2τj + 1) < (1−α)1/3, ∀j = 1,2, . . . ,J , where mnj

is the number of B-spline bases (or knots) to approximate the jth additive component.

The revised theorems and lemmas are provided in the supplementary material, where

mn = maxj=1,...,Jmnj . Results are similar except a few changes due to the introduction of

mnj . In practice, we standardize the range and variability of all additive components and

use the same number of knot points for each component which we choose as mn. Note that

the largest number of knot points mn can cover all smooth additive components. Since the

order of mn also has to be between
[
n1/6,n(1−α)1/3

)
according to the assumption (H 6)′,

we use this bound as a guide line to choose mn. The suggestion of using the same number

of knot points for each component, in practice, is also suggested by Hastie and Tibshirani

(1990).

2.2.1 Selection of a penalty parameter and a spatial weight matrix

The selection result is sensitive to the choice of a penalty parameter (or regularization

parameter). In addition to the penalty parameter, the proposed approach for a spatial

additive model requires to choose a spatial weight matrix as well. Theoretical results only

provide the lower bound of the penalty parameter which involves the information of a spatial

weight matrix through ρmax(L). The approach to find an optimal penalty parameter in the

penalized methods for independent data can not be applied directly to our setting due to

the spatial weight matrix. Complete theoretical investigation for finding an optimal value is

interesting, however, beyond the scope of this article. Also, theoretically obtained optimal
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choice of the penalty parameter is not feasible in practice since it is only valid asymptotically

and it often depends on unknown nuisance parameters in the true model [Fan and Tang

(2013)]. Thus, we demonstrate below a practical way of selecting the penalty parameter

guided by theoretical results derived in this article.

We assume a spatial weight matrix is constructed by a class of stationary spatial co-

variance functions controlled by a parameter, ρ, for simplicity. We call ρ a spatial weight

parameter. Example classes of spatial covariance functions that satisfy the assumption (H

7) to construct a spatial weight matrix are Gaussian covariance function and inverse multi-

quadratic function. The explicit expression of these functions are given in the supplementary

material. The selection problem is then reduced to select a spatial weight parameter. To

choose a penalty parameter together, we consider a theoretical lower bound of the penalty

parameter as our penalty parameter value at a given value of ρ so that one parameter (a

spatial weight parameter) controls both regularization level and spatial weight. Finally,

we adopt generalized information criterion (GIC) [Nishii (1984) and Fan and Tang (2013)]

as a measure to choose a spatial weight parameter. That is, we find ρ that minimizes

GIC(λn(ρ)) = log(RSS) +dfλn
log log(n) log(J)

n . In practice, we consider a sequence of ρ and

choose the one that minimizes GIC. While experimenting with different information crite-

ria and comparing with the existing cross validation criterion suggested by Yuan and Lin

(2006), we noticed that we cannot have an initial least square estimator when J > n. Thus,

we define degrees of freedom (dfλn) as the total number of estimated non-zero components,

i.e. dfλn = q̂λnmn where q̂λn is the active set of selected variables.

For the independent data case, Huang et al. (2010b) suggested extended Bayesian

information criterion (EBIC) to choose a penalty parameter, which requires to choose an

additional parameter (ν in their paper). We found that a smaller value compared to the

suggested value for the additional parameter works better in our setting from the simulation

study. Given the sensitivity of EBIC with this additional parameter, we instead recommend

to use GIC, which does not have any additional parameter.
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There are two places where a spatial covariance model is considered. One is for modeling

a spatial dependence of the data and the other one is for constructing a spatial weight matrix

in the objective function. Our theory shows that the method is valid for a class of underlying

spatial distributions that satisfy the condition (H 3) and for a class of spatial weight matrices

that satisfy the condition (H 7). However, some spatial covariance models that satisfy (H 3)

may not satisfy (H 7). In this regard, our approach is more general as it covers the case that

the true spatial covariance matrix as a spatial weight matrix as long as both conditions (H

3) and (H 7) are valid. Further, our objective is not to estimate the true covariance matrix

and our method does not require to estimate the true covariance matrix to select additive

components.

2.3 Numerical investigation

2.3.1 Simulation study

In this section, we present a simulation study to illustrate our theoretical findings.

We consider S = {(s1, s2), si, sj = 1, · · · ,m,} with m = 6,12,24 which makes sample sizes,

n = 36,144,576, respectively and we consider J = 15,25,35. We have q = 4 nonzero com-

ponents which are f1(x) = 5x, f2(x) = 3(2x−1)2, f3(x) = 4sin(2πx)/(2− sin(2πx)),f4(x) =

0.6sin(2πx) + 1.2cos(2πx) + 1.8sin2(2πx) + 2.4cos3(2πx) + 3.0sin3(2πx) and the remaining

components are set to zero. That is, fj(x) ≡ 0 for j = 5, · · · ,J . The covariates are Xj =

(Wj + tU)/(1 + t), for j = 1, · · · ,J , where Wj and U are i.i.d. from Uniform[0, 1]. Note

that correlation between Xj and Xk is given as t2/(1 + t2), therefore, with an increase in t,

the dependence among covariates increases. In the simulation study, we consider t = 1 and

t = 3. Note that the nonzero components, f1, · · · ,f4 given above are taken from Huang et

al. (2010b) which are originally introduced by Lin and Zhang (2006).

We assume that the error process follows a stationary mean zero Gaussian process with

a spatial covariance function, δ(h). To investigate selection performance of the proposed
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method by the type of spatial dependence of the process, we consider three different co-

variance models: Exponential, Matérn and Gaussian covariance functions. Exponential and

Gaussian covariance functions have two parameters, σ2 and ρ and Matérn covariance func-

tion involves one more parameter, ν. The expression of such spatial covariance functions

are given in the supplementary material. For simplicity, we set the variance, σ2 = 1. For

an exponential covariance function, we consider ρ = 0.5 and 1. For a Matérn covariance

function, we consider ν = 3/2 and 5/2 and for each of these cases we have chosen ρ to be 1.5

and 2.5. For a Gaussian covariance function, we consider ρ = 1.5 and 2.5. The parameter

ρ controls how fast the covariance function decays as the distance ‖h‖ increases, thus, the

level of spatial dependence within the covariance model. Given specified fjs and spatial

dependence structure of the error process described above, we generate 100 data sets for

each case.

Three covariance functions are characterized by mean square differentiability of the

process. A Gaussian process with an exponential covariance function is continuous in a

mean squared sense while a Gaussian process with a Gaussian covariance function is infinitely

differentiable. As an intermediate, a Gaussian process with a Matérn covariance function

is dν − 1e times differentiable in a mean squared sense, where dxe is the smallest integer

larger than or equal to x [Stein (1999)]. The mean square differentiability is related to the

smoothness of the processes, that is, the local behavior of the processes, thus, we can also

investigate selection performance in view of local property of the processes by considering

different types of covariance functions.

Once the data are generated, the selection performance of the proposed method is

examined under several choices of spatial weight matrix. In particular, we considered two

classes: Gaussian and Inverse Multiquadratic functions. In addition, we also considered

identity matrix and the true covariance function of the underlying process as a spatial weight

matrix for comparison. When a spatial weight matrix is controlled by a spatial weight

parameter, we applied the approach introduced in the section 2.2.1 to select both a spatial
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weight parameter and a penalty parameter. When we consider no spatial weight matrix, we

do not have a spatial weight parameter to control. In this case, we considered a sequence of

the penalty parameter values around the theoretical lower bound of λn1 and choose the one

that minimizes GIC.

We also implemented the method by Huang et al. (2010b) which was developed for

independent data for comparison. We refer this approach as ‘independent approach’. Fol-

lowing the standard practice, we computed the average and standard deviation of True

Positive (TP) and False Positive (FP). TP is the number of additive components that are

correctly selected, FP is the number of additive components that are falsely selected. In our

simulation setting, the desired values of TP and FP are 4(= q) and 0, respectively.

Table 2.2 shows the selected results for the case with t= 1 when generatingXj , m= 6,24

and a selected set of true correlation parameter values. Complete simulation results are given

in the supplementary material. To see the applicability of our method for the case where

the dependence between covariates increases, we include results corresponding to t = 3 in

the supplementary material as well.

The first row (where Spatial Weight is ‘None(Indep)’) in each of the covariance model

block in Table 2.2 corresponds to independent data approach. This clearly indicates over-

estimation of FP components. By looking at TP, one may think the result is good for the

independent approach, but with the expense of larger FP, the method is actually selecting

many more components than the truth. The trend remains even when sample size increases.

This is expected as discussed before. The following rows are results from various choices

of spatial weight matrices. Our method successfully reduced overestimation. Even when

the spatial weight matrix is an identity matrix under dependent error models, our method

still reduces overestimation of selected components compared to the independent approach.

The result persists for various sample sizes (m), covariance models we considered, choices of

spatial weight matrices and of course a large number of covariates (J).

When the true covariance model is exponential or Matérn and we used the true co-
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J Cov Model Spatial Weights
m=6 m=24

GLASSO GLASSO
True Positive False Positive True Positive False Positive

15

Exp(0.5)

None(Indep) 3.74(0.48) 3.63(1.83) 4(0) 0.55(0.77)
I 3.17(0.82) 2.02(1.34) 4(0) 0(0)

Gauss 3.01(0.85) 1.76(1.24) 4(0) 0(0)
InvMQ 2.94(0.93) 1.58(1.44) 4(0) 0(0)
True 1.66(1.02) 0.29(0.56) 4(0) 0(0)

Mat3/2(2.5)

None(Indep) 3.8(0.45) 3.63(1.86) 4(0) 0.34(0.57)
I 3.26(0.77) 1.87(1.5) 4(0) 0.05(0.22)

Gauss 2.98(0.85) 1.64(1.34) 4(0) 0.01(0.1)
InvMQ 2.74(0.86) 1.5(1.18) 4(0) 0(0)
True 0.8(0.68) 0.09(0.32) 4(0) 0(0)

Mat5/2(2.5)

None(Indep) 3.82(0.41) 3.59(2.08) 4(0) 0.58(0.88)
I 3.22(0.76) 2.06(1.55) 4(0) 0.04(0.2)

Gauss 2.91(0.89) 1.72(1.35) 4(0) 0(0)
InvMQ 2.97(0.89) 1.67(1.33) 4(0) 0(0)
True 0.37(0.56) 0.04(0.24) 4(0) 0(0)

Gauss(1.5)

None(Indep) 3.76(0.49) 3.97(2.06) 4(0) 0.59(0.81)
I 3.23(0.75) 2.07(1.24) 4(0) 0.03(0.17)

Gauss 3.02(0.82) 1.86(1.25) 4(0) 0.01(0.1)
InvMQ 2.76(0.79) 1.58(1.17) 4(0) 0(0)
True 3.3(0.73) 2.32(1.55) 4(0) 0.12(0.33)

35

Exp(0.5)

None(Indep) 3.38(0.74) 6.22(2.39) 4(0) 1.49(1.55)
I 2.62(0.94) 3.15(2.14) 4(0) 0.04(0.2)

Gauss 2.39(0.98) 2.59(1.84) 4(0) 0.02(0.14)
InvMQ 2.22(1.04) 2.38(1.79) 4(0) 0(0)
True 1.21(0.95) 0.48(0.78) 4(0) 0(0)

Mat3/2(2.5)

None(Indep) 3.48(0.67) 5.79(2.32) 4(0) 1.25(1.37)
I 2.71(0.9) 2.94(1.75) 4(0) 0.1(0.39)

Gauss 2.57(0.92) 2.59(1.6) 4(0) 0.01(0.1)
InvMQ 2.25(0.9) 2.24(1.68) 4(0) 0(0)
True 0.52(0.58) 0.12(0.41) 4(0) 0(0)

Mat5/2(2.5)

None(Indep) 3.33(0.74) 5.59(2.19) 4(0) 1.34(1.51)
I 2.72(1) 3.06(1.97) 4(0) 0.1(0.33)

Gauss 2.53(1.04) 2.57(1.81) 4(0) 0.01(0.1)
InvMQ 2.25(0.97) 2.17(1.68) 4(0) 0(0)
True 0.34(0.57) 0.05(0.26) 4(0) 0(0)

Gauss(1.5)

None(Indep) 3.15(0.88) 6.37(1.95) 4(0) 1.78(1.54)
I 2.44(1.02) 3.35(1.98) 4(0) 0.08(0.27)

Gauss 2.24(0.95) 2.83(1.61) 4(0) 0.02(0.14)
InvMQ 2.18(0.9) 2.2(1.41) 4(0) 0(0)
True 2.78(0.87) 3.66(1.74) 4(0) 0.17(0.45)

Table 2.2 Monte Carlo Mean (Standard dev.) for the selected number of nonzero covariates using
100 datasets under both Independent and Dependent setup using a spatially weighted group LASSO
algorithm
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variance model as a spatial weight matrix, the proposed method did not perform well in

terms of TP for small sample size. One possible reason is that the exponential and Matérn

covariance functions in the spatial weight matrices produced larger maximum eigenvalues

of L for small sample. For example, when Mat5/2(2.5) is used for a spatial weight, the

corresponding maximum eigenvalue of L is 20.32 for m = 6 while the maximum eigenvalue

of L is 1.23 for Gauss(1.5) as a spatial weight. A larger maximum eigenvalue of L makes

a larger penalty parameter, so less components are selected. However, the performance im-

proves as m increases. For small size (m = 6), inverse multiquadratic spatial weights tend

to underestimate so that the TP is lower compared to other spatial weight matrix choices,

but improving as m increases. Gaussian spatial weight matrix maintains similar level of TP

while FP is reduced compared to the independent approach. Thus, we recommend to use a

Gaussian spatial weight matrix, in particular for small sample size.

Results for increased dependence among covariates (t = 1 to t = 3) show that there

is an increase (overestimation) of FP. Please see tables in section 6 of the supplementary

material. This is somewhat expected since strong dependence between covariates may hinder

the selection power of the variable selection approaches, in turn, results in selection of more

components. However, our approach performs comparatively better than the independent

approach.

2.3.2 Real data example

We considered lung cancer mortality data over the period of 2000-2005, obtained from

Surveillance, Epidemiology, and End Results Program (SEER, www.seer.cancer.gov) by the

National Cancer Institute, U.S. as an illustrative example. The SEER data can be ac-

cessed by submitting a signed SEER Research Data Agreement. The data is avaiable at,

seer.cancer.gov/data/access.html. The SEER data includes incidence or mortality of

cancers and associated variables for U.S. counties. We considered the southern part of Michi-

gan which constitute of 68 counties.
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We applied Tukey’s transformation (e.g., Cressie and Chan (1989)) to age-adjusted lung

cancer mortality rates used as the response variable. We included 20 covariates obtained

from the SEER database which are originally from the U. S. Census Bureau. We also added

PM2.5 (Particulate matter smaller than 2.5 micrometers) obtained from the U.S. EPA’s

National Emission Inventory (NEI) database

(www.epa.gov/air/data/emisdist.html?st~MI~Michigan). Since emission data in this

website is available for the years 2001 and 2002, we considered the average of 2001− 2002

emission data. The unit is tons per county.

For our analysis, we scaled each of our predictor variables to [0,1]. We considered a

Gaussian covariance function for the spatial weight matrix and a sequence of ρ value around

the estimated ρ, obtained by fitting an empirical variogram. Then, we applied the selection

approach introduced in Section 2.2.1. Selected variables for both group LASSO and adaptive

group LASSO algorithms under independent and dependent error are presented in Table 2.3.

Our method of variable selection has a strict sense of selecting variables in the sense

of dropping more variables. For this data example, our approach (adaptive group LASSO

case) dropped two more variables among the variables selected by the independent approach.

The selected components, ‘Poverty’ and ‘Move different state’, do not seem to be related to

lung cancer mortality rates directly but one may think ‘Poverty’ can be a proxy of more

relevant covariate to lung cancer mortality rates. For example, a study shows smoking is

more prevalent in lower socio-economic groups of society [Haustein (2006)]. Thus, one can

think of ‘Poverty’ as a proxy of tobacco use. Although a variable ‘Move different state’

was kept, our approach at least dropped a few more irrelevant variables compared to the

independent approach.

To explore more on those covariates dropped by the proposed approach but selected by

the independent approach, we fit a multiple linear regression model. Although we considered

non-linear relationship in spatial additive models in this paper, simple linear regression can

provide initial assessment about the result. We present outputs of linear regression model
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ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Independent GLASSO × X × × × × × X × × × × × × × × × × × X X
AGLASSO × X × × × × × X × × × × × × × × × × × X X

Dependent GLASSO × X × × × × × × × × × × × × × × × × × X X
AGLASSO × X × × × × × × × × × × × × × × × × × X ×

Table 2.3 Comparing the two methods (Independent approach and Dependent approach) for the real
data example using Group LASSO and Adaptive Group LASSO Algorithm. Variable description
for ID is 1: Population Mortality, 2: Poverty, 3: PM25, 4: Urban, 5: Nonwhite, 6: Never Married,
7: Agriculture, 8: Unemployment, 9: White Collar, 10: Higher Highschool, 11: Age more than
65, 12: Age less than 18, 13: Crowding, 14: Foreign born, 15: Language isolation, 16: Median
household income, 17: Same house no migration, 18: Move same County, 19: Move same State, 20:
Move different State, 21: Normalized cost of living

Variable Estimate Std. Error t value p-value

Intercept 0.43958 0.07400 5.940 1.41e-07
Poverty 0.42467 0.12887 3.295 0.00163

Unemployment 0.01086 0.14638 0.074 0.94107
Move same State -0.01837 0.10624 -0.173 0.86331
Move diff State -0.15474 0.10379 -1.491 0.14106

Normalized cost of living 0.02715 0.07346 0.370 0.71298

Table 2.4 Coefficient estimates(standard error) and corresponding p-values obtained from Linear
regression using R of the variables selected under independent error assumption

with five covariates in Table 2.4. This shows that our approach selected two most significant

variables based on p-values (bold) while independent approach selected some insignificant

variables.

2.4 Discussion

We established a method of selecting non-zero components in spatial additive models

using a two-step adaptive group LASSO type approach and a spatial weight in the `2-

error term. The consistency results allow the number of additive components to increase

exponentially with the sample size. The theory showed that the lower bound of the penalty

parameter involves the spatial weight matrix. Thus, we considered an approach of choosing

a spatial weight matrix together with a penalty parameter that works well in practice.

Furthermore, our theoretical result implies that the proposed variable selection method still
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works with different convergence rate and different lower bound of the penalty parameter,

compared to the independent data approach, when an identity matrix is used as a spatial

weight matrix while the observed data has a stationary dependence. Indeed, the simulation

results showed superiority of our approach in this case compared to the straight use of

independent data approach.

In the gL objective function, we introduced a spatial weight matrix in the `2 error

term, which looks like the generalized least square. If we use the covariance matrix of the

true process, it is the form of a generalized least squares. Note, then the problem becomes

simultaneous estimation of mean and variance, which is beyond the scope of this paper as

our goal is mean selection, not covariance estimation.

The condition for the spatial covariance function in the assumption (H 3) can be ex-

tended to
∫
Dn

δ(h)dh = O(nα) for some α ∈ [0,1). Here α = 0 corresponds to the current

assumption (H 3). By allowing 0 < α < 1, we can include spatial covariance models of

long-memory processes, so that the theorems under this assumption cover a broader class of

spatial covariance functions. The theoretical lower bound of the penalty parameter and the

convergence rate will be modified as α is introduced. We provide revised lemmas, theorems

and related discussion in the supplementary material for this extended setting.

Spatial covariance models that correspond to α = 0 still have parameters that control

spatial dependence. Our current theoretical results only bring an additional mn into the

convergence rate and the theoretical lower bound of the penalty parameter when we consider

spatial dependence. This is due to the bound that we used in proving Lemma 3. If we can

find a tighter bound which depends on those covariance parameters, it would have helped

understanding the role of those covariance parameters better in variable selection of spatial

additive models.
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2.5 Proofs of theorems

Before proving the theorems stated in Section 2.2, we introduce some notations and

lemmas. Note that for f ∈ F , there exists fn ∈ Sn such that ‖f − fn‖2 = O(m−τn ), where

‖·‖2 for a function is defined as ‖f‖2 =
√∫ b

a f
2(x)dx and Sn is the space spanned by B-spline

bases [e.g. see Huang et al. (2010b)]. Then, define the centered S0
nj by,

S0
nj =

fnj : fnj =
mn∑
l=1

bjlBcl (x),(bj1, · · · , bjmn) ∈ Rmn
 ,1≤ j ≤ J. (2.5.1)

Recall that Bcl (x) = Bl(x)− 1
n
∑
s′∈S Bl(Xj(s′)), which depend on Xj . Also, for the purpose

of emphasizing the fact that, π, ε and θ depends on sample size n we will use suffix n for

each of these three quantities in our proofs.

Recall that A0 = {j : fj(x) ≡ 0,1 ≤ j ≤ J} and A∗ = {1,2, . . . ,J} \A0 so that A0 and

A∗ are the sets of zero and nonzero components, respectively. We introduced Ã0 as the

index set that satisfies ∑j∈Ã0
‖βj‖2 ≤ η1 for some η1 ≥ 0 and let Ã∗ = {1,2, . . . ,J} \ Ã0.

Without loss of generality, we can assume A0 ⊆ Ã0 so that Ã∗ ⊆A∗ and q∗ := |Ã∗| ≤ q. For

any subset A⊂ {1,2, . . . ,J}, define βA = (βj , j ∈A)′ and ΩA = Dc ′AD
c
A/n, where D

c
A = L′BcA

and BcA = (Bcj , j ∈ A) is the sub-design matrix formed by the columns indexed in the set A.

Note that βA0 ≡ 0. Also, denote the minimum and maximum eigenvalues and the condition

number of a matrix M by ρmin(M), ρmax(M) and κ(M), respectively.

Lemma 1 (Lemma 1 in Huang et al. (2010b)). Suppose that f ∈ F and Ef(Xj) = 0. Then

under (H 4) and (H 5) in Assumption 2.2, there exists an fn ∈ S0
nj such that

‖fn−f‖2 =Op

(
m−τn +

√
mn

n

)
. (2.5.2)

Particularly, under the choice of mn =O

(
n

1
2τ+1

)
, we have

‖fn−f‖2 =Op
(
m−τn

)
=Op

(
n
− τ

2τ+1
)
. (2.5.3)
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Lemma 2. Suppose that |A| is bounded by a fixed constant independent of n and J . Let

hn �m−1
n . Then under (H 4) and (H 5) in Assumption 2.2, with probability converging to

one,

ρmin(Σ−1
W )d1hn ≤ ρmin(ΩA)≤ ρmax(ΩA)≤ ρmax(Σ−1

W )d2hn (2.5.4)

Additionally under (H 7), (2.5.4) becomes,

c1hn ≤ ρmin(ΩA)≤ ρmax(ΩA)≤ c2hn (2.5.5)

where d1, d2, c1 and c2 are some positive constants.

Proof. One can follow the proof of the Lemma 3 in Huang et al. (2010b) but after observing

that,

ρmin(Σ−1
W )

(
Bc ′AB

c
A

n

)
≤ ΩA =

Dc ′AD
c
A

n
≤ ρmax(Σ−1

W )
(
Bc ′AB

c
A

n

)

which gives (2.5.4). By (H 7), the well-conditioned property of Σ−1
W , we have (2.5.5).

Lemma 3. Define Mn be a non-negative definite matrix of order n and,

Tjl =
(
mn

n

)1
2
a′jlMnε ∀1≤ j ≤ J,1≤ l ≤mn (2.5.6)

where ajl = (Bcl (Xj(s)), s ∈ S)′ and Tn = max 1≤j≤J
1≤l≤mn

|Tjl|. Then, under assumptions (H 2)

to (H 5) in Assumption 2.2,

E(Tn)≤ C1ρmax(Mn)
√

(mn log(Jmn))O(nα), (2.5.7)

for some C1 > 0.

Proof. Since ε ∼ Gaussian(0,ΣT ), Tjl ∼ Gaussian(0,mnn a′jlMnΣTM ′najl). Therefore we

can use maximal inequalities of sub-Gaussian random variables [van der Vaart and Well-

ner (1996), Lemmas 2.2.1 and 2.2.2]. Let ‖ · ‖φ be the Orlicz norm, defined by ‖X‖φ =

inf {k ∈ (0,∞) |E(φ(|X|/k)) ≤ 1}. Then, conditional on {Xj(s), s ∈ S,1 ≤ j ≤ J}, we have
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the following

∥∥∥ max
1≤j≤J,1≤l≤mn

|Tjl|
∣∣∣Xj(s), s ∈ S,1≤ j ≤ J∥∥∥φ2

≤K
√
mn

n
log(1 +Jmn) max

1≤j≤J,1≤l≤mn
‖|a′jlMnε|

∣∣∣Xj(s), s ∈ S,1≤ j ≤ J‖φ2

≤K
√
mn

n
log(Jmn) max

1≤j≤J,1≤l≤mn

√
a′jlMnΣTM ′najl,

where K > 0 is a generic constant and φp(x) = ex
p−1. Now taking expectation with respect

to {Xj(s), s ∈ S,1≤ j ≤ J} on both sides of the above inequality,

‖ max
1≤j≤J,1≤l≤mn

|Tjl|‖φ2

≤K
√
mn

n
log(Jmn)E

(
max

1≤j≤J,1≤l≤mn

√
a′jlMnΣTM ′najl

)

=K

√
mn

n
log(Jmn)E

(√
max

1≤j≤J,1≤l≤mn
a′jlMnΣTM ′najl

)

≤Kρmax(Mn)
√
mn

n
log(Jmn)

√√√√E
(

max
1≤j≤J,1≤l≤mn

a′jlΣT ajl
)
. (2.5.8)

Since Bcl (x) are normalized B-splines, we have

E

 max
1≤j≤J,1≤l≤mn

∑
s∈S

∑
s′∈S

Bcl (Xj(s))δ(s− s
′)Bcl (Xj(s

′))


≤ 4
∑
s∈S

∑
s′∈S

δ(s− s′)

≤K
∑
s∈S

∫
h∈CDn

δ(h)dh

≤Kn
∫
h∈CDn

δ(h)dh. (2.5.9)

for some K,C > 0.

From (2.5.8) and (2.5.9),

‖ max
1≤j≤J,1≤l≤mn

|Tjl|‖φ ≤Kρmax(Mn)
√
mn log(Jmn)

√∫
h∈CDn

δ(h)dh

≤Kρmax(Mn)
√
mn log(Jmn)O(nα).

Finally, (2.5.7) follows from ‖X‖
L1 ≤ C‖X‖L2 ≤ ‖X‖φ2 , where ‖X‖Lp = (E(|X|p))1/p.
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Before we delve into the proof of the theorems, let us define and summarize some of

index sets we will be using. Recall that A0 = {j : fj ≡ 0,1 ≤ j ≤ J}. For an index set Ã1

that satisfies Ãβ = {j : ‖β̂gL,j‖2 > 0} ⊆ Ã1 ⊆ Ãβ ∪ Ã∗, we consider the following sets:

“Large” ‖βj‖2 (i.e. Ã∗) “Small” ‖βj‖2 (i.e. Ã0)

Ã1 Ã3 Ã4

Ã2 = Ãc1 Ã5 Ã6

We can deduce some relations from the above table Ã3 = Ã1∩ Ã∗, Ã4 = Ã1∩ Ã0, Ã5 = Ãc1∩

Ã∗, Ã6 = Ã2∩Ã0, and hence we have Ã3∪Ã4 = Ã1, Ã5∪Ã6 = Ã2, and Ã3∩Ã4 = Ã5∩Ã6 =φ.

Also, let |Ã1|= q1. For an index set Â1 that satisfies Âf = {j : ‖f̂gL,j‖2 > 0}⊆ Â1⊆ Âf ∪A∗,

“Large” fj (i.e. A∗) “Small” fj ( i.e. A0 )

Â1 Â3 Â4

Â2 = Âc1 Â5 Â6

We have a similar set of relations from the above which is Â3 = Â1 ∩A∗, Â4 = Â1 ∩A0,

Â5 = Âc1∩A∗, Â6 = Â2∩A0, and hence we have Â3∪ Â4 = Â∗, Â5∪ Â6 = Â2, and Â3∩ Â4 =

Â5∩ Â6 = φ.

To prove Theorem 1, we need boundedness of |Ãβ |, which is given in the following

lemma.

Lemma 4. Under the Assumption 2.2 with λn1 > Cρmax (L)
√
n1+αmn log(Jmn) for a

sufficiently large constant C, we have |Ãβ | ≤M1|A∗| for a finite constant M1 > 1 with w.p.

converging to 1.

Proof. Along with considering the approximation error for spline regression, we also have

to take care of the dependence structure of a Gaussian random vector ε according to (H 3).

To emphasize the dependence on n, we denote write εn instead of ε and similar notation for

others as well. Recall πn = εn+θn, where θn = (θn(s);s∈ S)′ with θn(s) =∑J
j=1(fj(Xj(s))−

fnj(Xj(s))). Note that ‖θn‖2 = O(n1/2q1/2m−τn ) = O(q1/2n1/(4τ+2)) by Lemma 1 since
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mn =O(n1/(2τ+1)). Define λn,J = 2
√
Kρ2max(L)mnn1+α log(Jmn) for someK> 0 and λn1≥

max{λ0,λn,J}, where λ0 = inf{λ : M1(λ)q∗+ 1≤ q0} for some finite q0 > 0 and M1(λ) > 1,

which will be specified later in the proof. Without loss of generality, we will assume the

infimum of an empty set to be ∞. That is, if {λ : M1(λ)q∗+ 1 ≤ q0} is an empty set, it

implies that λn1 = λ0 =∞ and which in turn implies that we drop all the components in

our additive model, i.e. |Ãβ |= 0. So part (i) is trivial in this case and hence for the rest of

the proof we will assume {λ :M1(λ)q∗+ 1≤ q0} is a non-empty set.

First, define a new vector Uk such that Uk = Dkc′(Zc−Dcβ̂gL)
/
λn1 for k = 1, · · · ,J .

By Karsuh-Kuhn-Tucker (KKT) conditions of the optimization problem for Qn(β,λn) with

the solution β̂gL, we have

Uk


=

β̂gL,k
‖β̂gL,k‖2

if ‖β̂gL,k‖2 > 0,

≤ 1 if ‖β̂gL,k‖2 = 0.
(2.5.10)

Then, the norm of Uk is

‖Uk‖2


= 1 if ‖β̂gL,k‖2 > 0,

≤ 1 if ‖β̂gL,k‖2 = 0.
(2.5.11)

Now we introduce the following quantities.

xr = max
|A|=r

max
‖Uk‖2=1,k∈A,B⊂A

∣∣∣π′nwA|B ∣∣∣ , and

x∗r = max
|A|=r

max
‖Uk‖2=1,k∈A,B⊂A

∣∣∣ε′nwA|B ∣∣∣ ,
where wA|B =WA|B/

∥∥∥WA|B
∥∥∥2 withWA|B =

(
DcA(DcA

′DcA)−1λn1Q′BAQBAUA− (I−PA)Dcβ
)
.

For B ⊂ A, QBA is the matrix corresponding to the selection of variables in B from A, i.e.

QBAβA = βB . PA = DcAΩ−1
A DcA

′/n, UA = (Uk;k ∈ A)′. By the triangle inequality and
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Cauchy-Schwarz inequality, for some set A with |A|= r > 0, we have

∣∣∣π′nwA|B ∣∣∣ ≤ ∣∣∣ε′nwA|B ∣∣∣+‖θn‖2
≤

∣∣∣ε′nwA|B ∣∣∣+K2qn
1/(4τ+2)

≤
∣∣∣ε′nwA|B ∣∣∣+K1

√√√√(rmn∨mn)ρ2max(L)nαmn log(Jmn)
ρmax(ΩÃ1

) (2.5.12)

where the last inequality holds for a sufficiently large n for some K1 > 0. By introducing the

following sets,

Ωr0 =

(Dc,πn);xr ≤ 2K1

√√√√(rmn∨mn)ρ2max(L)nαmn log(Jmn)
ρmax(ΩÃ1

) ,∀r ≥ r0

 , and

Ω∗r0 =

(Dc, εn);x∗r ≤K1

√√√√(rmn∨mn)ρ2max(L)nαmn log(Jmn)
ρmax(ΩÃ1

) ,∀r ≥ r0

 ,
we can show P

{
(Dc,πn) ∈ Ωr0

}
≥ P

{
(Dc, εn) ∈ Ω∗r0

}
for any r0 > 0 since we have

xr ≤ x∗r +‖θn‖2 ≤ x∗r +K1

√√√√(rmn∨mn)ρ2max(L)nαmn log(Jmn)
ρmax(ΩÃ1

) (2.5.13)

by recalling the definitions of xr and x∗r and (2.5.12).

Now, we want to show that P
{

(Dc,πn) ∈ Ωq1
}
→ 1 implies |Ãβ | ≤M1|Ã∗| = M1q∗ for

some finite M1 > 1, which completes the proof since q∗ ≤ q. Before proving this claim, we

first show P
{

(Dc, εn) ∈ Ω∗q1
}
→ 1, which implies P

{
(Dc,πn) ∈ Ωq1

}
→ 1. We start with the

following:

1−P
{

(Dc, εn) ∈ Ω∗q1
}

(2.5.14)

≤
∞∑
r=0

P

x∗r >K1

√√√√(rmn∨mn)ρ2max(L)nαmn log(Jmn)
ρmax(ΩÃ1

)


≤
∞∑
r=0

(
J

r

)
P

|w′A|Bεn|>K1

√√√√(rmn∨mn)ρ2max(L)nαmn log(Jmn)
ρmax(ΩÃ1

)

 ,
(2.5.15)
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where |A|= r. Since w′A|Bεn ∼Gaussian(0,w′A|BΣTwA|B), (2.5.15) becomes

≤ 2
∞∑
r=0

(
J

r

)
exp

−0.5K2
1

(rmn∨mn)ρ2
max(L)nαmn log(Jmn)

(w′A|BΣTwA|B)ρmax(ΩÃ1
)


≤ 2

∞∑
r=0

(
J

r

)
exp

−0.5K2
1

(rmn∨mn)ρ2
max(L)nαmn log(Jmn)

ρmax(ΣT )ρmax(ΩÃ1
)



= 2
∞∑
r=0

(
J

r

)
(Jmn)

−0.5K2
1(rmn∨mn)ρ2max(L)nαmn

/
ρmax(ΣT )ρmax

(
Ω
Ã1

)
.

(2.5.16)

Let Kn = 0.5K2
1m

2
nρ

2
max (L)nα

/(
ρmax (ΣT )ρmax

(
ΩÃ1

))
. Then (2.5.16) becomes,

= 2(Jmn)−Kn + 2
∞∑
r=1

(
J

r

)
(Jmn)−rKn

≤ 2(Jmn)−Kn + 2
∞∑
r=1

1
r!

(
J

(Jmn)Kn

)r

= 2(Jmn)−Kn + 2exp
(

J

(Jmn)Kn

)
−2. (2.5.17)

Define ‖ΣT ‖1 = maxs∈S
∑
s′∈S σs,s′ and note that ‖ΣT ‖1�

∫
h∈Dn

δ(h)dh=O(nα1). There-

fore by using the fact, 1√
n
‖ΣT ‖1≤ ρmax(ΣT )≤

√
n‖ΣT ‖1 and ρmax(Σ−1

W )≤ ρmax(L)ρmax(L′) =

ρ2
max(L), we have

Kn ≥ c1
0.5K2

1m
3
nn

α
√
n‖ΣT ‖1

� 0.5c1K2
1
√
n6γ−1,

and Kn −→∞ by (H 6). This shows (2.5.17) goes to zero as n→∞.

To show P
{

(Dc,πn) ∈ Ωq1
}
→ 1 implies |Ãβ | ≤M1|Ã∗|=M1q∗, let

V 1j =
Ω
−1

2
Ã1

Q′j1U Ãj
λn1

√
n

, for j = 1,3,4,

and

u=
Dc
Ã1

Ω−1/2
Ã1

V 14/
√
n−ω2

‖Dc
Ã1

Ω−1/2
Ã1

V 14/
√
n−ω2‖2

,

where, for simplicity in notations, Qkj =QÃkÃj
is the matrix corresponding to the selection

of variables in Ãk from Ãj and ω2 = (I− PÃ1
)Dc

Ã2
βÃ2

= (I− PÃ1
)Dcβ. We can show
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that, V 11 = V 14 + V 13 and Q′31Q31 +Q′41Q41 = Imn|Ã1|
due to the fact that Ã3 ∪ Ã4 =

Ã1, Ã3 ∩ Ã4 = φ and hence β′
Ã3
Q31 + β′

Ã4
Q41 = βÃ1

. Since q1 = |Ã1| = |Ã3|+ |Ã4| and

|Ã3| ≤ q∗, |Ã4| ≥ (q1− q∗). Then, we have the following lower bound for L2-norm of V 14,

‖V 14‖22 ≥
λ2
n1‖Q′41UÃ4

‖22
nρmax(ΩÃ1

) =
λ2
n1‖Q′41Q41UÃ1

‖22
nρmax(ΩÃ1

) = λ2
n1mn|Ã4|

nρmax(ΩÃ1
) ≥B1

(q1− q∗)+

q∗
, (2.5.18)

with B1 = λ2
n1mnq

∗

nρmax
(

Ω
Ã1

) . From (2.5.18), we have

|Ãβ | ≤ |Ã1|= q1 ≤ (q1− q∗)+ + q∗ ≤ q∗‖V 14‖22
B1

+ q∗ =
(
‖V 14‖22
B1

+ 1
)
q∗. (2.5.19)

Thus, to show |Ãβ | ≤M1q∗ for some finite M1 > 1, we need to show ‖V 14‖22
B1

+ 1 ≤M1 for

some finite M1 > 1.

We start with an upper bound of ‖V 14‖22 +‖ω2‖22. Since

‖V 14‖22 +‖ω2‖22 = V ′14V 14 +‖ω2‖22 = V ′14(V 11−V 13) +‖ω2‖22

≤ V ′14V 11 +‖V 14‖2‖V 13‖2 +‖ω2‖22, (2.5.20)

we find upper bounds for V ′14V 11, ‖V 14‖2‖V 13‖2 and ‖ω2‖22, respectively. First,

V ′14V 11 = λ2
n1
n
U ′
Ã4
Q41Ω−1

Ã1
U Ã1

= λ2
n1
n
U ′
Ã4
Q41Ω−1

Ã1

(
Dc′
Ã1

(
Zc−Dcβ̂gL

)/
λn1

)
= λn1

n
U ′
Ã4
Q41Ω−1

Ã1
Dc′
Ã1

(
Dc
Ã1
βÃ1

+Dc
Ã2
βÃ2

+πn−Dc
Ã1
β̂gL,Ã1

)

= λn1U
′
Ã4
Q41

(βÃ1
− β̂gL,Ã1

) +
Ω−1
Ã1
n

(Dc′
Ã1

Dc
Ã2

)βÃ2
+

Ω−1
Ã1
n

Dc′
Ã1
πn


= λn1U

′
Ã4

(βÃ4
− β̂gL,Ã4

) +λn1U
′
Ã4
Q41

Ω−1
Ã1
n

(Dc′
Ã1

Dc
Ã2

)βÃ2
+

Ω−1
Ã1
n

Dc′
Ã1
πn


≤ λn1

∑
k∈Ã4

‖βk‖2 +
λn1U ′Ã4

Q41Ω−1
Ã1

(Dc′
Ã1

Dc
Ã2

)βÃ2
n

+
λn1U ′Ã4

Q41Ω−1
Ã1

Dc′
Ã1
πn

n
,

(2.5.21)
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where the last inequality is based on
∣∣∣∣U ′Ã4

βÃ4

∣∣∣∣≤∑k∈Ã4

∣∣∣U ′kβk∣∣∣≤∑k∈Ã4
‖βk‖2 and

U ′
Ã4
β̂gL,Ã4

=
∑

k∈Ã4∩Ãβ

U ′kβ̂gL,k ≥ 0.

For ‖V 14‖2‖V 13‖2, we have

‖V 14‖2‖V 13‖2 ≤ ‖V 14‖2λn1

√√√√√ mn|Ã3|
nρmin(ΩÃ1

) (2.5.22)

from the definition of V 13. For ‖ω2‖22,

‖ω2‖22 = ‖(I−PÃ1
)Dc

Ã2
βÃ2
‖22

= β′
Ã2

Dc′
Ã2

(I−PÃ1
)Dc

Ã2
βÃ2

= β′
Ã2

(
nΩÃ2

βÃ2
− 1
n
Dc′
Ã2

Dc
Ã1

Ω−1
Ã1

Dc′
Ã1

Dc
Ã2
βÃ2

)
≤ β′

Ã2

(
λn1DÃ2

−Dc′
Ã2
πn−Dc′

Ã2
Dc
Ã1

(
βÃ1
− β̂gl,Ã1

)
− 1
n
Dc′
Ã2

Dc
Ã1

Ω−1
Ã1

Dc′
Ã1

Dc
Ã2
βÃ2

)
= β′

Ã2

(
λn1DÃ2

−Dc′
Ã2
πn−

λn1
n

Dc′
Ã2

Dc
Ã1

Ω−1
Ã1
U Ã1

+ 1
n
Dc′
Ã2

Dc
Ã1

Ω−1
Ã1

Dc′
Ã1
πn

)

= λn1β
′
Ã2
DÃ2

−ω′2πn−
λn1
n
U ′
Ã1

Ω−1
Ã1

Dc′
Ã1

Dc
Ã2
βÃ2

,

where the inequality is from

Dc′
Ã2

Dc
Ã1

(βÃ1
− β̂gL,Ã1

) +nΩÃ2
βÃ2

+Dc′
Ã2
πn ≤ λn1DÃ2

. (2.5.23)

In (2.5.23), DA is a 0− 1 vector whose kth entry is I(‖β̂k,gL‖2 = 0), where I(A) is the

indicator function for a set A. The inequality between vectors is defined entry-wise. Note

that (2.5.23) holds due to (2.5.11).

Since V 14 ⊥⊥ ω2, we have

‖Dc
Ã1

Ω−1
Ã1
Q′41U Ã4

λn1/n−ω2‖22 = ‖Dc
Ã1

Ω−1/2
Ã1

V 14/
√
n−ω2‖22 = ‖V 14‖22 +‖ω2‖22

so that (
λn1
n
U ′
Ã4
Q41Ω−1

Ã1
Dc′
Ã1
−ω′2

)
πn = (‖V 14‖22 +‖ω2‖22)1/2(u′πn)
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using the definition of u. Then, this implies

‖ω2‖22 ≤ λn1β
′
Ã2
DÃ2

− λn1
n
U ′
Ã1

Ω−1
Ã1

Dc′
Ã1

Dc
Ã2
βÃ2

+(‖V 14‖22 +‖ω2‖22)1/2(u′πn)− λn1
n
U ′
Ã4
Q41Ω−1

Ã1
Dc′
Ã1
πn. (2.5.24)

Combining (2.5.21) and (2.5.24), we have

V ′14V 11 +‖ω2‖22

≤ λn1
∑
k∈Ã4

‖βk‖2−
λn1U ′Ã3

Q31Ω−1
Ã1

(Dc′
Ã1

Dc
Ã2

)βÃ2
n

+λn1β
′
Ã2
DÃ2

+(‖V 14‖22 +‖ω2‖22)1/2|u′πn|

= λn1
∑
k∈Ã4

‖βk‖2−V ′13Ω−1/2
Ã1

(Dc′
Ã1

Dc
Ã2

)βÃ2
/
√
n+λn1β

′
Ã2
DÃ2

+2
(
(‖V 14‖22 +‖ω2‖22)1/2/2

)
|u′πn|

≤ λn1
∑
k∈Ã4

‖βk‖2 +‖V 13‖2‖Ω
−1/2
Ã1

(Dc′
Ã1

Dc
Ã2

)βÃ2
‖2/
√
n+λn1

∑
k∈Ã2

‖βk‖2

+(‖V 14‖22 +‖ω2‖22)
4 + |u′πn|2, (2.5.25)

where the inequality is by the Cauchy-Schwarz inequality, triangle inequality and 2ab ≤

a2 + b2. Then, by (2.5.22) and (2.5.25),

‖V 14‖22 +‖ω2‖22 ≤ V ′14V 11 +‖V 14‖2‖V 13‖2 +‖ω2‖22

≤ λn1
∑
k∈Ã4

‖βk‖2 +‖V 13‖2‖Ω
−1/2
Ã1

(Dc′
Ã1

Dc
Ã2

)βÃ2
‖2/
√
n

+ λn1
∑
k∈Ã2

‖βk‖2 + (‖V 14‖22 +‖ω2‖22)
4 + |u′πn|2

+ ‖V 14‖2λn1

√√√√√ mn|Ã3|
nρmin(ΩÃ1

) . (2.5.26)

Since {(Dc,πn)∈Ωq1} implies |u′πn|2≤ (xq1)2≤ (q1mn∨mn)λ2
n1

4nρmax(Ω
Ã1

) = q1mnλ2
n1

4nρmax(Ω
Ã1

) = 1
4
q1
q∗B1,

we can show |u′πn|2 ≤ 1
4
q1
q∗B1 ≤ 1

4(‖V14‖22 +B1) by using (2.5.18). Along with ‖V 13‖2 ≤
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λn1

√√√√ mn|Ã3|
nρmin(Ω

Ã1
) , (2.5.26) becomes

≤ λn1
∑
k∈Ã4

‖βk‖2 +λn1

√√√√√ mn|Ã3|
nρmin(ΩÃ1

)‖Ω
−1/2
Ã1

Dc′
Ã1

Dc
Ã2
βÃ2
‖2/
√
n+λn1

∑
k∈Ã2

‖βk‖2

+(‖V 14‖22 +‖ω2‖22)
4 + (‖V 14‖22 +B1)

4 +‖V 14‖2λn1

√√√√√ mn|Ã3|
nρmin(ΩÃ1

)

= λn1
∑
k∈Ã5

‖βk‖2 +λn1

√√√√√ mn|Ã3|
nρmin(ΩÃ1

)‖P
1/2
Ã1

Dc
Ã2
βÃ2
‖2 +λn1

∑
k∈Ã4∪Ã6

‖βk‖2

+‖V 14‖22
2 + ‖ω2‖22

4 + B1
4 +‖V 14‖2λn1

√√√√√ mn|Ã3|
nρmin(ΩÃ1

)

≤ λn1
∑
k∈Ã5

‖βk‖2 +λn1

√√√√√ mn|Ã3|
nρmin(ΩÃ1

)‖P
1/2
Ã1

Dc
Ã2
βÃ2
‖2 +λn1η1

+‖V 14‖22
2 + ‖ω2‖22

4 + B1
4 +‖V 14‖2λn1

√√√√√ mn|Ã3|
nρmin(ΩÃ1

) ,

where the equality comes from Ã2 = Ã5 ∪ Ã6 with P
1/2
Ã1

= Ω−1/2
Ã1

Dc′
Ã1
/
√
n and the last in-

equality is due to GSC. This result gives

1
2‖V 14‖22 + 3

4‖ω2‖22 ≤ λn1
∑
k∈Ã5

‖βk‖2 +λn1

√√√√√ mn|Ã3|
nρmin(ΩÃ1

)‖P
1/2
Ã1

Dc
Ã2
βÃ2
‖2 +λn1η1

+B1
4 +‖V 14‖2λn1

√√√√√ mn|Ã3|
nρmin(ΩÃ1

) (2.5.27)

from which we have

‖V 14‖22 ≤ 2
(1

2‖V 14‖22 + 3
4‖ω2‖22

)

≤ 2λn1
∑
k∈Ã5

‖βk‖2 + 2λn1

√√√√√ mn|Ã3|
nρmin(ΩÃ1

)‖P
1/2
Ã1

Dc
Ã2
βÃ2
‖2 + 2λn1η1

+B1
2 + 2‖V 14‖2λn1

√√√√√ mn|Ã3|
nρmin(ΩÃ1

) .

42



Note that the largest possible Ã1 contains all the “large" ‖βj‖2 then Ã5 = φ so that Ã2 =

Ã6,
∑
k∈Ã5

‖βk‖2 = 0 and P
1/2
Ã1

Dc
Ã2
βÃ2

= P
1/2
Ã1

Dc
Ã6
βÃ6

. Finally using ‖P 1/2
Ã1

Dc
Ã6
βÃ6
‖2 ≤

maxA⊂Ã0
‖∑k∈ADckβk‖2 since Ã6 ⊂ Ã0, we have the following inequality.

‖V 14‖22 ≤ 2η2
√
B2 + 2λn1η1 + B1

2 + 2
√
B2‖V 14‖2, (2.5.28)

where η2 = maxA⊂Ã0
‖∑k∈ADckβk‖2 and B2 = λ2

n1mnq
∗

nρmin
(

Ω
Ã1

) . Hence after using the fact

2
√
B2‖V 14‖2 = 2

(√
2B2

)(
‖V 14‖2/

√
2
)
≤ 2B2 + ‖V 14‖22/2, we obtain an upper bound for

‖V 14‖22 from (2.5.28),

‖V 14‖22 ≤B1 + 4λn1η1 + 4η2
√
B2 + 4B2

which, when combined with (2.5.19), implies

∣∣∣Ãβ ∣∣∣≤M1q
∗,

where M1 =M1(λn1) = 2 + 4r1 + 4r2
√
C12 + 4C12 with

r1 = r1(λn1) =
(

c2η1n
q∗mnλn1

)
, r2 = r2(λn1) =

(
c2η2

2n
q∗mnλ2

n1

)1/2
and C12 = c2

c1
.

Note that M1(λn1) is a decreasing function in λn1.

If η1 = 0 which is referred to as a narrow-sense sparsity condition, then r1 = r2 = 0

and hence M1(λn1) = 2 + 4C12 <∞. Note that since we are assuming λ0 <∞, we implic-

itly assume that (2 + 4C12)q∗+ 1 ≤ q0 holds. In general, as long as η1 and η2 satisfy that

η1 ≤
(
C1q∗
c2

)(
mnλn1

n

)
and η2

2 ≤
(
C2q∗
c2

)(
mnλ

2
n1

n

)
for some finite C1 and C2, we will have

r1 ≤ C1 and r2 ≤ C2, which gives M1(λn1) ≤ (2 + 4C1 + 4C2
√
C12 + 4C12) <∞. Thus, we

complete the proof.
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PROOF OF THEOREM 1

Part (a): Since β̂gL is the group LASSO estimate by minimizing Qn1(β,λn1), for any β,

‖Zc−Dcβ̂gL‖22 +λn1‖β̂gL‖2,1,1 ≤ ‖Zc−Dcβ‖22 +λn1‖β‖2,1,1. (2.5.29)

Let A2 = {j : ‖βj‖2 > 0 or ‖β̂gL,j‖2 > 0}, where βA2 = (βj , j ∈A2) and β̂gL,A2 = (β̂gL,j , j ∈

A2). Recall that ‖βA2‖2,1,1 =∑
j∈A2 ‖βj‖2 and ‖β̂gL,A2‖2,1,1 =∑

j∈A2 ‖β̂gL,j‖2. By (2.5.29),

we have

‖Zc−DcA2 β̂gL,A2‖
2
2 +λn1‖β̂gL,A2‖2,1,1 ≤ ‖Z

c−DcA2βA2‖
2
2 +λn1‖βA2‖2,1,1. (2.5.30)

Let ϑA2 = Zc−DcA2
βA2 and ζA2 = DcA2

(β̂gL,A2−βA2). Using the fact that ‖a− b‖22 =

‖a‖22−2a′b+‖b‖22 and Zc−DcA2
β̂gL,A2 =Zc−DcA2

βA2−DcA2
(β̂gL,A2−βA2), we can rewrite

(2.5.30) such that

‖ζA2‖
2
2−2ϑ′A2ζA2 ≤ λn1‖βA2‖2,1,1−λn1‖β̂gL,A2‖2,1,1 ≤ λn1

√
|A2|‖β̂gL,A2−βA2‖2.

(2.5.31)

Subsequent steps will be to bound ‖β̂gL,A2−βA2‖
2
2. First, we have

2|ϑ′A2ζA2| ≤ 2‖ϑ∗A2‖2‖ζA2‖2 = 2
(√

2‖ϑ∗A2‖2
)(‖ζA2‖2√

2

)
≤ 2‖ϑ∗A2‖

2
2 +
‖ζA2‖

2
2

2 , (2.5.32)

where the last inequality is based on the fact that, 2ab ≤ a2 + b2 and ϑ∗A2 is the projection

of ϑA2 to the span of DcA2
. Now by combining (2.5.31) and (2.5.32), we have

‖ζA2‖
2
2 ≤ 4‖ϑ∗A2‖

2
2 + 2λn1

√
|A2|‖β̂gL,A2−βA2‖2. (2.5.33)

On the other hand, we have

‖ζA2‖
2
2 = (β̂gL,A2−βA2)′Dc ′A2D

c
A2(β̂gL,A2−βA2)≥ nρmin

Dc ′A2
DcA2
n

‖β̂gL,A2−βA2‖
2
2

= nρmin(ΩA2)‖β̂gL,A2−βA2‖
2
2 ≥ nc1hn‖β̂gL,A2−βA2‖

2
2, (2.5.34)

44



where the last inequality is from Lemma 2. Combining (2.5.33) and (2.5.34), we have

nc1hn‖β̂gL,A2−βA2‖
2
2

≤ 4‖ϑ∗A2‖
2
2 + 2λn1

√
|A2|‖βA2− β̂gL,A2‖2

= 4‖ϑ∗A2‖
2
2 + 2

λn1
√

2|A2|√
nc1hn

‖βA2− β̂gL,A2‖2

√
nc1hn

2


≤ 4‖ϑ∗A2‖

2
2 + λ2

n12|A2|
nc1hn

+‖βA2− β̂gL,A2‖
2
2
nc1hn

2 so that

‖β̂gL,A2−βA2‖
2
2 ≤

8‖ϑ∗A2‖
2
2

nc1hn
+ 4λ2

n1|A2|
n2c21h

2
n
. (2.5.35)

Let ϑ(s) be the entry of ϑA2 . Then, we can rewrite ϑ(s) = ε(s) + (µ− Ȳ ) + f0(X(s))−

fnA2(X(s)), where f0(X(s)) =∑J
j=1 fj(Xj(s)) and fnA2(X(s)) =∑

j∈A2 fnj(Xj(s)). Note

that |µ− Ȳ |2 = Op(n−1). Let ε∗A2
be the projection of εn to the span of DcA2

, that is,

ε∗A2
= (Dc ′A2

DcA2
)−1/2Dc ′A2

εn. Then, we have

‖ϑ∗A2‖
2
2 ≤ ‖ε∗A2‖

2
2 +Op(nα1 + |A2|nm−2τ

n ) (2.5.36)

= ‖(Dc ′A2D
c
A2)−1/2Dc ′A2εn‖

2
2 +Op(nα1 + |A2|nm−2τ

n )

≤
‖Dc ′A2

εn‖22
nc1hn

+Op(nα1 + |A2|nm−2τ
n ) (By Lemma 2)

≤ 1
nc1hn

max
A:|A|≤|A2|

‖Dc ′A εn‖
2
2 +Op(nα1 + |A2|nm−2τ

n )

≤ 1
nc1hn

|A2|mn max
1≤j≤J,1≤l≤mn

∣∣∣Dc ′jlεn∣∣∣2 +Op(nα1 + |A2|nm−2τ
n )

= 1
c1hn

|A2| max
1≤j≤J,1≤l≤mn

∣∣∣∣∣
(
mn

n

)1/2
a′jlLεn

∣∣∣∣∣
2

+Op(nα1 + |A2|nm−2τ
n )

=Op

(
|A2|ρ2

max (L)mn log(Jmn)
c1hn

)
+Op(nα1 + |A2|nm−2τ

n ), (2.5.37)

where the last equality is by By Lemma 3 using Mn = L. The part (a) follows by combining

(2.5.35) and (2.5.37) since |A2| is bounded by Lemma 4.

Part (b): If m
2
nλ

2
n1

n2 −→ 0 then, by the condition λn1 > Cρmax (L)
√
n1+αmn log(Jmn), we

have ρ2max(L)m3
n log(Jmn)

n1−α −→ 0, also note that, 1 = ρmax(I) = ρmax(Σ−1
W ΣW )≤ ρmax(Σ−1

W )
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ρmax(ΣW )≤ ρ2
max(L)ρmax(ΣW ) therefore ρ2

max(L)≥ ρmin
(
Σ−1
W

)
and hence,{

ρ2
max (L)m3

n log(Jmn)
n1−α

}
=

{
ρ2

max (L)m2
n log(Jmn)

} mn

n1−α

≥
{
ρmin

(
Σ−1
W

)
m2
n log(Jmn)

} mn

n1−α

≥
{
Cm2

n log(Jmn)
} mn

n1−α , (2.5.38)

where C is a generic constant. Since L.H.S of (2.5.38) goes to 0 and m2
n log(Jmn) −→∞,

mn
n1−α −→ 0. Similarly,{

ρ2
max (L)m3

n log(Jmn)
n1−α

}
(2.5.39)

=
{
ρ2

max (L)m2τ+2
n log(Jmn)
n1−α

}
1

m2τ−1
n

=


ρmin

(
Σ−1
W

)
n

2τ+2
2τ−1 log(Jmn)

n1−α


1

m2τ−1
n

≥
{
ρmin

(
Σ−1
W

)
nα log(Jmn)

} 1
m2τ−1
n

≥ {Cnα log(Jmn)} 1
m2τ−1
n

(2.5.40)

Since L.H.S of (2.5.40) goes to 0 and nα log(Jmn)−→∞, 1
m2τ−1
n

−→ 0. Thus, we have part

(b) of Theorem 1.

PROOF OF THEOREM 2

The part (a) is from the fact that

c∗m−1
n ‖β̂gL,j−βj‖2 ≤ ‖f̂gL,j−fj‖2 ≤ c∗m−1

n ‖β̂gL,j−βj‖2

for some c∗, c∗ > 0. The part (b) is from the part (a).

PROOF OF THEOREM 3

Part (a): Recall that, by the KKT conditions, a necessary and sufficient condition for β̂AgL
is 

Dcj
′(Zc−Dcβ̂AgL) = λn2ηnj

β̂AgL,j
2‖β̂AgL,j‖2

, when ‖β̂AgL,j‖2 > 0,

‖Dcj
′(Zc−Dcβ̂AgL)‖2 ≤ λn2ηnj/2, when ‖β̂AgL,j‖2 = 0.

(2.5.41)

Let A∗∗ = A∗∩{j : ‖β̂AgL,j‖2 > 0}. Define

β̂A∗∗ = (DcA∗∗
′DcA∗∗)

−1(DcA∗∗
′Zc−λn2vn), (2.5.42)
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where vn = (vnj , j ∈A∗∗) with vnj = ηnj β̂j/(2‖β̂j‖2). Then, we have Dcj
′(Zc−DcA∗∗ β̂A∗∗) =

λn2ηnj
β̂j

2‖β̂j‖2
, for j ∈A∗∗. If we assume ‖Dcj

′(Zc−DcA∗∗ β̂A∗∗)‖2≤ λn2ηnj/2 for all j /∈A∗∗,

then (2.5.41) holds for (β̂′A∗∗ ,0
′), so that β̂AgL = (β̂′A∗∗ ,0

′) since Dcβ̂ = DcA∗∗ β̂A∗∗ . If

‖βj‖2−‖β̂j‖2 < ‖βj‖2 for all j ∈ A∗∗, then β̂A∗∗ =0 βA∗∗ so that we have β̂AgL =0 β.

Therefore, we can have the following inequalities,

P(β̂AgL 6=0 β) ≤ P(‖βj‖2−‖β̂j‖2 ≥ ‖βj‖2,∃j ∈ A∗∗)

+P(‖Dcj
′(Z−DcA∗∗ β̂A∗∗)‖2 > λn2ηnj/2,∃j /∈ A∗∗)

≤ P(‖β̂j−βj‖2 ≥ ‖βj‖2,∃j ∈ A∗∗)

+P(‖Dcj
′(Z−DcA∗ β̂A∗∗)‖2 > λn2ηnj/2,∃j /∈ A∗∗), (2.5.43)

where the last inequality is from ‖βj‖2 > 0 for j ∈ A∗∗. First, we show

P(‖β̂j−βj‖2 ≥ ‖βj‖2,∃j ∈ A∗∗)→ 0. (2.5.44)

To show (2.5.44), it is sufficient to show that maxj∈A∗∗ ‖β̂j −βj‖2→ 0 in probability

since ‖βj‖2 > 0 for j ∈ A∗∗. Define Tnj = (Omn , . . . ,Omn ,Imn ,Omn , . . . ,Omn) be a mn×

qmn matrix with Imn is in the jth block, where Omn be mn×mn matrix of zeros and Imn

be an mn×mn identity matrix. From (2.5.42), β̂A∗∗−βA∗∗ = n−1Ω−1
A∗∗(D

c′
A∗∗εn+Dc′A∗∗θn−

λn2vn). Thus, if j ∈ A∗∗, we have β̂j −βj = n−1TnjΩ−1
A∗∗(D

c′
A∗∗εn+Dc′A∗∗θn−λn2vn). By

triangle inequality,

‖β̂j−βj‖2

≤
‖TnjΩ−1

A∗∗D
c′
A∗∗εn‖2

n
+
‖TnjΩ−1

A∗∗D
c′
A∗∗θn‖2

n
+
λn2‖TnjΩ−1

A∗∗vn‖2
n

. (2.5.45)

We show each term on the right hand side in (2.5.45) goes to zero in probability. For the
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first term,

max
j∈A∗∗

n−1‖TnjΩ−1
A∗∗D

c′
A∗∗εn‖2

≤ 1
nρmax(ΩA∗∗)

‖Dc′A∗∗εn‖2 ≤

√
|A∗∗|

n1/2ρmax(ΩA∗∗)

√√√√√ max
j∈A∗∗

1≤l≤mn

mn

n
|Dcjl

′εn|2

=Op

√ρ2max(L)m3
n log(|A∗∗|mn)
n1−α

−→ 0 (2.5.46)

where the last equality holds by Lemma 3 and (2.5.46) holds by assumptions (H 6) and (H

7). For the second term,

max
j∈A∗∗

n−1‖TnjΩ−1
A∗∗D

c′
A∗∗θn‖2 ≤ n−1/2‖Ω−1

A∗∗‖2‖n
−1Dc′A∗∗D

c
A∗∗‖

1/2
2 ‖θn‖2

≤ n−1/2ρ−1
min(ΩA∗∗)ρ

1/2
max(ΩA∗∗)Op(n

1/(4τ+2))

=Op
(
n1/(2τ+1)−1/2)−→ 0, (2.5.47)

where (2.5.47) holds by assumption (H 6). For the third term, we first find an upper bound

for ‖vn‖22,

‖vn‖22 = 1
2

∑
j∈A∗∗

η2
nj = 1

2
∑

j∈A∗∗
‖β̂gL,j‖−2

2 = 1
2

∑
j∈A∗∗

‖βj‖22−‖β̂gL,j‖22 +‖β̂gL,j‖22
‖β̂gL,j‖22‖βj‖22

= 1
2

∑
j∈A∗∗

‖βj‖22−‖β̂gL,j‖22
‖β̂gL,j‖22‖βj‖22

+ 1
2

∑
j∈A∗∗

‖βj‖−2
2 ≤ Ck−2

b b−4
n1 ‖β̂gL,A∗∗−βA∗∗‖

2
2 + qb−2

n1

= Op(k−2
b b−4

n1 r
−1
n + qb−2

n1 ) =Op(k2
n), (2.5.48)

where C is a generic constant. Then, we have

max
j∈A∗∗

n−1λn2‖TnjΩ−1
A∗∗vn‖2 ≤ n

−1λn2ρ
−1
min(ΩA∗∗)‖vn‖2 =Op(n−1λn2ρ

−1
min(ΩA∗∗)kn)

=Op(n−1λn2(r−1/2
n +m

1/2
n ) =Op

λn2m
1/2
n

n

−→ 0, (2.5.49)

where (2.5.49) is implied by assumption (K 2). Therefore by combining (2.5.46), (2.5.47)

and (2.5.49), we have (2.5.44). Now, we show

P(‖Dcj
′(Zc−DcA∗ β̂A∗∗)‖2 > λn2ηnj/2,∃j /∈ A∗∗)→ 0. (2.5.50)
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As ηnj = ‖β̂gL,j‖−1
2 =Op(rn) for j /∈ A∗∗, instead of (2.5.50) it is sufficient to show,

P(‖Dcj
′(Zc−DcA∗∗ β̂A∗∗)‖2 > λn2rn/2,∃j /∈ A∗∗)→ 0. (2.5.51)

For j /∈ A∗∗,

Dcj
′(Zc−DcA∗∗ β̂A∗∗)

= Dcj
′(Zc−DcA∗∗(D

c
A∗∗
′DcA∗∗)

−1DcA∗∗
′Zc+λn2n

−1DcA∗∗Ω
−1
A∗∗vn)

= Dcj
′HnZ

c+λn2n
−1Dcj

′DcA∗∗Ω
−1
A∗∗vn

= Dcj
′HnDcβ+Dcj

′Hnεn+Dcj
′Hnθn+λn2n

−1Dcj
′DcA∗∗Ω

−1
A∗∗vn

= Dcj
′DcAc∗∗βAc∗∗+Dcj

′Hnεn+Dcj
′Hnθn+λn2n

−1Dcj
′DcA∗∗Ω

−1
A∗∗vn

= Dcj
′DcA∗∩Ac∗∗βA∗∩Ac∗∗+Dcj

′Hnεn+Dcj
′Hnθn

+λn2n
−1Dcj

′DcA∗∗Ω
−1
A∗vn, (2.5.52)

where Hn = I−PA∗∗ , the first equality is by replacing β̂A∗∗ with the expression as in (2.5.42)

and the fourth equality is because Hn is the projection matrix on to Ac∗∗.

By (2.5.52), the left hand side of (2.5.51) can be bounded above by

P
(
‖Dcj
′(Zc−DcA∗∗ β̂AgL,A∗∗)‖2 > λn2rn/2,∃j /∈ A∗∗

)
≤ P

(
‖Dcj
′DcA∗∩Ac∗∗βA∗∩Ac∗∗‖2 > λn2rn/8,∃j /∈ A∗∗

)
+P

(
‖Dcj
′Hnεn‖2 > λn2rn/8,∃j /∈ A∗∗

)
+P

(
‖Dcj
′Hnθn‖2 > λn2rn/8,∃j /∈ A∗∗

)
+P

(
‖λn2n

−1Dcj
′DcA∗∗Ω

−1
A∗vn‖2 > λn2rn/8,∃j /∈ A∗∗

)
(2.5.53)

so that we find upper bounds of the four terms in (2.5.53). For the first term, we have

max
j /∈A∗∗

‖Dcj
′DcA∗∩Ac∗∗βA∗∩Ac∗∗‖2 ≤ n max

j /∈A∗∗
‖n−1/2Dc′j ‖2‖n−1/2DcA∗∩Ac∗∗‖2‖βA∗∩Ac∗∗‖2

=Op(nρ
1/2
max(ΩAc∗∗)ρ

1/2
max(ΩA∗∗)m

1/2
n ) =Op(nm

−1/2
n ).
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Then, we have, for some generic constant C,

P(‖Dcj
′DcA∗∩Ac∗∗βA∗∩Ac∗∗‖2 > λn2rn/8,∃j /∈ A∗∗)

≤ P( max
j /∈A∗∗

‖Dcj
′DcA∗∩Ac∗∗βA∗∩Ac∗∗‖2 > Cλn2rn/8)

≤ P(nm−1/2
n > Cλn2rn/8)

= P

nm−1/2
n

λn2rn
> C/8

−→ 0, (2.5.54)

where (2.5.54) holds by assumption (K 2). For the second term, let sn = J −|A∗∗|. Since

ρmax(Hn) = ρmax(I−PA∗∗) = 1− ρmin(PA∗∗) and PA∗∗ is a non-negative definite matrix,

ρmax(Hn) ≤ 1. By Lemma 3 with Mn = LHn, and using the face that ρmax(LHn) ≤

ρmax(L)ρmax(Hn), we have,

E
(

max
j /∈A∗∗

n−1/2‖Dcj
′Hnεn‖2

)
= E

 max
j /∈A∗∗

n−1/2
√√√√mn∑
l=1
|Dcjl

′Hnεn|2


≤ E

 max
j /∈A∗∗

1≤l≤mn

(
mn

n

)1/2
|a′jlLHnεn|


=O(

√
ρ2max(L)nαmnlog(snmn)). (2.5.55)

Thus, by Markov’s inequality,

P(‖Dcj
′Hnεn‖2 > λn2rn/8,∃j /∈ A∗∗)≤ P( max

j /∈A∗∗
n−1/2‖Dcj

′Hnεn‖2 > Cn−1/2λn2rn/8)

≤O


√
ρ2max(L)n1+αmnlog(snmn)

Cλn2rn


−→ 0, (2.5.56)

where C is a generic constant and (2.5.56) holds by assumption (K 2). For the third term,

max
j /∈A∗∗

‖Dc′j Hnθn‖2 ≤ n1/2 max
j /∈A∗∗

‖n−1Dc′j D
c
j‖

1/2
2 ‖Hn‖2‖θn‖2

= O(nρ1/2
max(ΩAc∗∗)m

−τ
n ) =O(nm−τ−1/2

n ).

50



Therefore, for some generic constant C,

P(‖Dcj
′Hnθn‖2 > λn2rn/6,∃j /∈ A∗∗)≤ P( max

j /∈A∗∗
‖Dcj
′Hnθn‖2 > Cλn2rn/8)

≤ P(nm−τ−1/2
n > Cλn2rn/8) = P

 n

λn2rnm
(2τ+1)/2
n

> C/8


−→ 0, (2.5.57)

where (2.5.57) is implied by assumption (K 2). Finally, using (2.5.48) we have

max
j /∈A∗∗

‖λn2n
−1Dc′j D

c
A∗∗Ω

−1
A∗∗vn‖2

≤ λn2 max
j /∈A∗∗

‖n−1/2Dc′j ‖2‖n−1/2DcA∗∗Ω
−1/2
A∗∗ ‖2‖Ω

−1/2
A∗∗ ‖2‖vn‖2

=Op(λn2ρ
1/2
max(ΩAc∗∗)ρ

−1/2
min (ΩA∗∗)kn)

=Op

(
λn2(m−1

n r
−1/2
n +m

−1/2
n )

)
.

Then, we have, for some generic constant C,

P(‖λn2n
−1Dc′j D

c
A∗∗Ω

−1
A∗∗vn‖2 > λn2rn/8,∃j /∈ A∗∗)

≤ P( max
j /∈A∗∗

‖λn2n
−1Dc′j D

c
A∗∗Ω

−1
A∗∗vn‖2 > Cλn2rn/8)

≤ P
(
λn2(m−1

n r
−1/2
n +m

−1/2
n )> Cλn2rn/8

)

= P

m−1
n r
−1/2
n +m

−1/2
n

rn
> C/8

−→ 0, (2.5.58)

where (2.5.58) holds since rn,mn→∞. Hence by combining (2.5.56), (2.5.57) and (2.5.58),

(2.5.50) follows.

Part (b): Denote η∗ = maxj∈A∗ 1/‖βj‖2. Let A∗∗∗ = A∗∪{j : ‖β̂AgL,j‖2 > 0}. Note that

J0 = |A∗∗∗|. Define ϑA∗∗∗ =Zc−DcA∗∗∗βA∗∗∗ and denote ϑ∗A∗∗∗ and ε
∗
A∗∗∗ be the projections

of ϑA∗∗∗ and εn to the span of DcA∗∗∗ . Then, in a similar way as in the part (b) of Theorem
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1, we can show

‖ϑ∗A∗∗∗‖
2
2 ≤ ‖ε∗A∗∗∗‖

2
2 +Op(nα1 + |A∗∗∗|nm−2τ

n )

= ‖(Dc ′A∗∗∗D
c
A∗∗∗)

−1/2Dc ′A∗∗∗εn‖
2
2 +Op(nα1 + |A∗∗∗|nm−2τ

n )

=Op

(
|A∗∗∗|nαρ2

max(L)mn log(J0mn)
c1hn

+nα1 + |A∗∗∗|nm−2τ
n

)
.(2.5.59)

In a similar way to get (2.5.35), we can also show

‖β̂AgL,A∗∗∗−βA∗∗∗‖
2
2 ≤

8‖ϑ∗A∗∗∗‖
2
2

nc1hn
+ 4λ2

n2|A∗∗∗|η∗
n2c21h

2
n

, (2.5.60)

thus, by (2.5.59) and (2.5.60), we obtain the part (b) of Theorem 3.

PROOF OF THEOREM 4

The proof would go similar as Theorem 2.

2.6 Few theoretical extensions

2.6.1 Results for extension to different variability of each additive components

In this section, we provide revised lemmas and theorems when we allow different levels

of smoothness for additive components. We first extend the definition of S0
nj as follows:

S0
nj =

fnj : fnj =
mnj∑
l=1

bjlBcl (x),(bj1, · · · , bjmnj ) ∈ Rmnj
 ,1≤ j ≤ J. (2.6.1)

With new assumptions, Lemmas 1 and 3 and Theorems 2 and 4 are changed as follows.

Lemma 1′. Suppose that f ∈ Fj and Ef(Xj) = 0. Then, under (H 4)′ and (H 5), there

exists an fn ∈ S0
nj such that

‖fn−f‖2 =Op

(
m−τnj +

√
mnj

n

)
. (2.6.2)

Particularly, under the choice of mnj =O(n
1

2τj+1 ), we have

‖fn−f‖2 =Op

(
m
−τj
nj

)
=Op

n−
τj

2τj+1
 . (2.6.3)

52



Lemma 3′. Define Mn be a non-negative definite matrix of order n and,

Tjl =
(mnj

n

)1
2
a′jlMnε ∀1≤ j ≤ J,1≤ l ≤mnj , (2.6.4)

where ajl = (Bcl (Xj(s)), s ∈ S)′ and Tn = max 1≤j≤J
1≤l≤mnj

|Tjl|. With new Assumption 1,

E(Tn)≤ C1ρmax(Mn)
√

(mn log(Jmn))O(nα), (2.6.5)

for some C1 > 0 and mn = maxj=1,2,...,Jmnj .

Theorem 2 ′. With new Assumption 1 and λn1 > Cρmax (L)
√
n1+αmn log(Jmn) for a

sufficiently large constant C,

(a) ‖f̂gL,j − fj‖22 = Op

{(
ρ2max(L)m3

n log(Jmn)
n1−α + mn

n1−α + 1
m2τ−1
n

+ 4m2
nλ

2
n1

n2

)
/mnj

}
for

j ∈ Ãβ ∪A∗, where Ãβ is the index set of nonzero gL estimates for βj ,

(b) If m
2
nλ

2
n1

mnjn
2 −→ 0 as n−→∞ for 1≤ j ≤ q, all the nonzero components fj ,1≤ j ≤ q

are selected w.p. converging to 1.

Theorem 4 ′. With new Assumptions 1 and 2,

(a) P(‖f̂AgL,j‖2 > 0, j ∈ A∗ and ‖f̂AgL,j‖2 = 0, j /∈ A∗)−→ 1,

(b) ‖f̂AgL,j−fj‖22 =Op

{(
ρ2max(L)m3

n log(J0mn)
n1−α + mn

n1−α + 1
m2τ−1
n

+ 4m2
nλ

2
n2

n2

)
/mnj

}
∀j ∈ A∗.

2.6.2 Results for extension to a long range dependence

We extend the assumption (H 3) to cover a broader class of spatial covariance functions.

The assumptions (H 6) and (K 2) are adjusted accordingly as well.

(H 3)∗ The random vector ε = {ε(s), s ∈ S} ∼ Gaussian(0,ΣT ), where ΣT = ((σs,s′))s,s′∈S

53



with σs,s′ = δ(s− s′) and δ(h) is a covariance function such that
∫
Dn

δ(h)dh = O(nα) for

some α ∈ [0,1). Dn ⊂ Rd is the sampling region that contains the sampling locations S.

Without loss of generality, we assume that the origin of Rd is in the interior of Dn and Dn

is increasing with n.

(H 6)∗ mn =O(nγ) with 1/6≤ γ = 1/(2τ + 1)< (1−α)1/3.

(K 2)∗ √
ρ2max (L)n1+αmn log(snmn)

λn2rn
+ n2

λ2
n2r

2
nmn

+ λn2mn

n
= o(1)

where sn = J−|A∗∗|.

Lemmas and theorems are then updated in the following way.

Lemma 3∗. Define Mn be a non-negative definite matrix of order n and,

Tjl =
(
mn

n

)1
2
a′jlMnε ∀1≤ j ≤ J,1≤ l ≤mn (2.6.6)

where ajl = (Bcl (Xj(s)), s ∈ S)′ and Tn = max 1≤j≤J
1≤l≤mn

|Tjl|. Then, under assumptions (H 2),

(H 3)∗, (H 4) and (H 5),

E(Tn)≤ C1ρmax(Mn)
√

(mn log(Jmn))O(nα), (2.6.7)

for some C1 > 0.

Lemma 4∗. Under the Assumption 1 with updated (H 3)∗ and (H 6)∗

and with λn1 > Cρmax (L)
√
n1+αmn log(Jmn) for a sufficiently large constant C, we have

|Ãβ | ≤M1|A∗| for a finite constant M1 > 1 with w.p. converging to 1.

Theorem 1.∗ Suppose that conditions in Assumption 1 with updated (H 3)∗ and (H 6)∗

hold and if λn1 > Cρmax (L)
√
n1+αmn log(Jmn) for a sufficiently large constant C. Then,

we have
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(a) ∑J
j=1 ‖β̂gL,j−βj‖22 =Op

(
ρ2max(L)m3

n log(Jmn)
n1−α + mn

n1−α + 1
m2τ−1
n

+ 4m2
nλ

2
n1

n2

)
,

(b) If m
2
nλ

2
n1

n2 −→ 0 as n −→∞, all the nonzero components βj ,1 ≤ j ≤ q are selected

with probability (w.p.) converging to 1.

Theorem 2.∗ Suppose that conditions in Assumption 1 with updated (H 3)∗ and (H 6)∗

hold and if λn1 > Cρmax (L)
√
n1+αmn log(Jmn) for a sufficiently large constant C. Then,

(a) ‖f̂gL,j−fj‖22 =Op

(
ρ2max(L)m2

n log(Jmn)
n1−α + 1

n1−α + 1
m2τ
n

+ 4mnλ2
n1

n2

)
for j ∈ Ãβ∪A∗,

where Ãβ is the index set of nonzero gL estimates for βj ,

(b) If mnλ
2
n1

n2 −→ 0 as n −→∞, all the nonzero components fj ,1 ≤ j ≤ q are selected

w.p. converging to 1.

Theorem 3.∗ Suppose that conditions in Assumptions 1 and 2 with updated (H 3)∗, (H

6)∗ and (K 2)∗ are satisfied. Then,

(a) P(β̂AgL =0 β)−→ 1,

(b) ∑q
j=1 ‖β̂AgL,j−βj‖

2
2 =Op

(
ρ2max(L)m3

n log(J0mn)
n1−α + mn

n1−α + 1
m2τ−1
n

+ 4m2
nλ

2
n2

n2

)
.

Theorem 4.∗ Suppose that conditions in Assumptions 1 and 2 with updated (H 3)∗, (H

6)∗ and (K 2)∗ are satisfied. Then,

(a) P(‖f̂AgL,j‖2 > 0, j ∈ A∗ and ‖f̂AgL,j‖2 = 0, j /∈ A∗)−→ 1,

(b) ∑q
j=1 ‖f̂AgL,j−fj‖

2
2 =Op

(
ρ2max(L)m2

n log(J0mn)
n1−α + 1

n1−α + 1
m2τ
n

+ 4mnλ2
n2

n2

)
.

The updated theorems show that the lower bound of the penalty parameter as well

as the convergence rate are affected by α. More specifically, introduction of α increases

the order in the lower bound of the penalty parameter and the order of the convergence
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rate is decreased (slower convergence rate) with α. Note that α does not fully characterize a

spatial dependence structure but it gives some information on the level of spatial dependence

such that 0 < α < 1 implies a long-range dependence. For any integrable stationary spatial

covariance model, α = 0 and this is the case for most practical situations. If 0< α < 1, one

might consider estimating α for calculation of the lower bound of the penalty parameter.

There are some literature which provide how to estimate long-range parameters for random

fields [e.g. Anh and Lunney (1995), Boissy et al. (2005)], but they are limited since a specific

class of random fields or a parametric model is assumed. Estimation of α has its own interest

but we do not pursue it since our focus is on variable selection.
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CHAPTER 3

ESTIMATING NON-STATIONARY SPATIAL COVARIANCE MATRIX
USING MULTI-RESOLUTION KNOTS

For most of statistical prediction problems, obtaining a BLUP is very crucial and gener-

ally modeling and estimating the mean does the trick. Although estimation of the underlying

process covariance is instrumental for spatial BLUP also known as kriging. The concept of

kriging was first introduced by D.G.Krige, a South African mining engineer (Cressie, 1990)

and Matheron in 1962 coined the term to honor Krige. Kriging is a very popular tool

used in earth climate modeling and environmental sciences. It uses quantification of spatial

variability through covariance function and solving the standard kriging equation is often

numerically cumbersome, and involves inversion of a n×n covariance matrix. With large

n, which is quite reasonable for real data observed on global scale since computation cost

increases with cubic power of the dimension n, spatial BLUP becomes challenging.

Hence, there have been several efforts to achieve a computationally feasible estimate.

The foremost challenge of estimating covariance for a spatial set up arises due to absence of

repetition. This may seem absurd if we realize this situation as a multivariate extension of

computing variance from one observation. As odd as may it sound, the trick is to consider

a specific sparsity structure for the covariance matrix under study. The covariance matrix is

sparse when the covariance function is of finite range and due to sparsity the computation

cost to invert a n×n matrix reduces considerably.

Before we delve in to the discussion of our contribution we would like to put forward

a few other attempts to estimate large covariance matrices through literature review. In

1997 Barry and Pace used symmetric minimum degree algorithm when n= 916 for kriging.

Rue and Tjelmeland (2002) approximated Σ−1 to be sparse precision matrix of a Gaus-

sian Markov random field wrapped on a torus. For larger n, the first challenge in applying

kriging is, increase in condition number of the covariance matrix, which plays a major role
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in building up the computation time and makes the kriging equation numerically unstable.

On the other hand, to handle computational complexity, Kaufman et.al. (2008), introduced

the idea of covariance tapering which sparsify the covariance matrix element wise to ap-

proximate the likelihood. Some other worth mentioning efforts in tapering are Furrer et.al.

(2012), Stein (2013) e.t.c. Covariance tapering gains immense computational stability, keep

interpolating property and also have asymptotic convergence of the taper estimator. But

tapering is restricted only to isotropic covariance structure and the tapering radius needs to

be determined.

Another alternative method, FRK was introduced by Cressie & Johannesson (2008).

Unlike tapering, FRK is applicable to a more flexible class of non-stationary covariance

matrix, and also reduces computational cost of kriging to O(n). For many non-stationary

covariance model like ours, the observed process covariance matrix can be decomposed into

two additive matrix components. The first is a measurement error modeled as white noise.

While the second is an underlying process which can be non-stationary covariance structure

and is often assumed to be fixed but low rank. The underlying process can be represented

as a linear combination of rn random effects. For FRK rn plays the role of rank of the

non-stationary component, is considered to be known r and fixed over n. In this work we

would like to relax this assumption by allowing rn changing over n.

Our goal in this paper is to achieve a data driven approach for finding the rank rn.

To do so let us assume even though there are unknown rn random effects used to represent

the underlying process, what if we start with some numbers of random effects and as we

proceed, our algorithm will direct us toward a data driven value for rn? Once we figure

out that the dispersion matrix of this n dimensional random effect can be decomposed into

cholesky factor, a closer look will teach us that dropping or selecting a particular random

effect boils down to zero or non-zero row in the corresponding cholesky matrix. We consider

a penalized likelihood approach where we penalize `2− norm within each row of the cholesky

matrix and `1− norm between two different rows of the cholesky matrix.
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The low rank non-stationary covariance matrix is decomposed, using a basis components

(not necessarily orthogonal) and another component is dispersion matrix of random effects

vector. The basis component depends primarily on the choice of the class of basis function

and number of knot points. FRK recommends that the choice of basis function should be

multi-resolutional, more precisely they used a local bi-square functions. This use of locally

multi-resolutional knots has also been proved quite useful in the literature of kriging for large

spatial data sets (Nychka (2015)) other than FRK. The choice of number of knot points and

their positions is always crucial. The number of knot points is directly related to rn, the

number of random effects component. The foremost challenge in applying our method is

choice of effective numbers of knot points necessary to construct the basis function under

study.

Although our initial objective in this work is to provide a way to estimate the non-zero

random effects and finally the covariance matrix, but like any other statistical prediction

problem we shall be extending our findings in presence of covariates. Peng and Wu (2010),

proved that condition number of the covariance matrix also increases with increase in in-

put variables. To handle numerical instability, Peng and Wu (2010), suggested the idea

of regularized kriging, which is a simple modification in the method of estimation. Unlike

kriging, regularized kriging optimizes regularized or penalized likelihood. At this stage we

have not considered dimension reduction challenges while extending our findings in presence

of covariates but, for future studies, this can be a non-trivial and worthwhile extension.

A recent study on limitations of low rank kriging (Stein (2015)) shows an approximation

in which observations are split into contiguous blocks and assumes independence across

these blocks. It provides a much better approximation to the data likelihood than a low

rank approximation requiring similar memory and calculations. It also shows that Kullback-

Leibler divergence for low rank approximation is not reduced as much as it should have been

in few settings. On the contrary the divergence is considerably reduced if there is a block

structure. Keeping this in mind, and considering the fact that selections of knots work better
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under multi-resolution setup, we consider the knots by superimposing resolutions.

Under some sensible assumptions this work will motivate our readers to the idea of

existence of a consistent covariance estimator of the spatial process using a low rank mod-

eling, whose estimation has not been discussed before in any literature to the best of our

knowledge. We will discuss the practical implications of our assumption later but, we still

like to point out that without loss of generality we considered, the location knots for the

bi-variate spline matrix are ordered in a specific way such that the true structure has the

first rn non-zero rows and rest n− rn zero rows. We also discuss how our findings fit in the

situations of limitations of low rank kriging (Stein (2015)). To avoid further mathematical

details here, this part of the comparison is in discussion section 3.4.

All kinds of approximation of the covariance function introduced so far, has a motive

to reduce the computational cost. Most of these existing methods fail to capture both large

scale (long-range) and small scale (short-range) dependence. However tapering captures

small scale dependence and, low rank techniques captures large scale dependence. A new

method is discussed using adding these two components (Sang and Huang 2012). We would

like to point out our readers that however worthwhile this method of combining both low

rank and tapering may look, this paper provides a more sound theoretical approach to

support our algorithm and findings. Although estimation of low rank covariance matrix has

it’s limitations, the method has not always been criticized, rather well established in several

situations by various authors. Most of the interesting work in this field, can be classified

in two broad classes: statistics and machine learning. Among many others in the field of

statistics we think, Fan and Li (2012), Banerjee et.al. (2012), Tzeng and Huang (2015) e.t.c.

are worth mentioning. On other the hand, the field of machine learning focuses on developing

algorithms where, Frieze et.al. (2004), Achlioptas and McSherry (2007), Journée et.al. (2010)

are quite reasonable to browse through. Based on these literatures it is obviously worthwhile

to contribute our time and to come up with a theoretical justification behind the possibility

of low rank covariance matrix estimation.
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Even when we keep the rank fixed, for a very large data set (order of tens of thousands

to hundreds of thousands), kriging can be quite impossible and ad hoc local kriging neigh-

borhoods are used (Cressie (1993)). Some recent developments include Nychka et.al. (1996;

2002), Furrer et.al. (2006) and many more. Among other alternative methods, some worth

discussing are Radial basis interpolation functions (Bühlmann, (2004)), inverse distance

weighting (Shepard, (1968)) or regression-based inverse distance weighting used by Joshep

and Kang (2009) which is a fast interpolator and overcomplete basis surrogate method (Chen,

Wang, and Wu (2010)). Surrogate basis representation is similar to lattice kriging (Nychka

(2015)) where the basis functions are boundedly supported and over complete. But lattice

kriging considers sparsity in the precision matrix through bounded basis function matrix and

a parametric neighborhood matrix whereas we are considering sparsity in the covariance ma-

trix through low rank factorization and Cholesky decomposition of the low rank covariance

matrix.

The rest of this paper is organized as follows. In Section 3.1, we explain the proposed

approach for selecting and estimating nonzero rows (rank) and the corresponding low rank

covariance matrix. Following which in section 3.2 we present the block coordinate descent

algorithm for block wise convex regularizing functions. Section 3.3 contains simulation results

along with a real data example. We make some concluding remarks in section 3.4.

3.1 Methodology for estimating a non-stationary low rank covari-
ance matrix

To vividly understand the methodology we need to explain two ideas, arranging bi-

variates knots in multi-resolution setup, and group LASSO penalty to estimate parameters

having an inherent group structure. Both the ideas are seperately useful in solving two

different problems. The arrangement of bivariates knots in multi-resolution setup plays an

important role in indexing of spatial domain. As we all know unlike time series analysis,
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where the time domain is easily arranged in chronological fashion, in a spatial domain from

kD and k ≥ 2, it is quite impossible to arrange the location sites in any chronological pat-

tern. Whereas, the group LASSO penalization plays the role in solving the problem of high

dimensionality of the parameter space, which depends on the number of location sites we

consider in our study.

Group LASSO penalization (Yuan et.al. (2006)), or the concept of using `1/`2 - penalty

(Bühlmann et.al. (2011)) has been well established in the context of selecting varibles if it

is believed that there exists an inherent group structure in the parameter space. But it has

not been quite clear how such approach is applied to estimating rank of a low-rank matrix

and estimating the matrix itself. In this section, we propose an `1/`2 - penalized approach

in estimating the low rank non-stationary covariance matrix as an extension of FRK. The

goal of FRK is to reduce computation cost of inversion of a matrix from cubic to linear in

sample size while allowing non-stationarity. To explain the difference between FRK and our

method, we introduce the following mathematical notations. Since the ideas are interlinked,

I would like to present both using the same notations and hence the following notational

book keeping.

Consider a spatial process, Y = {Y (s);s ∈S }, perturbed with measurement error ε =

{ε(s);s ∈ S } and let X = {X(s);s ∈ S } be the process for the observables where ε is a

Gaussian process with mean 0 and var (ε(s)) = σ2v(s) ∈ (0,∞), s ∈S , for σ2 > 0 and v(·)

known. S is a spatial domain of interest. In general, the underlying process Y has a mean

structure, Y (s) = Z(s)′β+π(s), for all s ∈S where, π = {π(s);s ∈S } follows a Gaussian

distribution with mean 0, 0 < var (π(s)) <∞, for all s ∈S , and a non-stationary spatial

covariance function cov
(
π(s),π(s′)

)
= σ(s,s′), for all s,s′ ∈ S . Also Z = {Z(s);s ∈ S }

represents known covariates and β is the vector of unknown coefficients. Combining the

underlying process and the measurement error, we have

X(s) = Y (s) + ε(s) = Z(s)′β+π(s) + ε(s) ∀s ∈S . (3.1.1)
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The processX(·) is observed only at a finite number of spatial locations Sn = {s1, s2, . . . , sn}⊂

S . We allow Sn to be any irregular lattice in d-dimension with cardinality n. Note that the

covariance function σ(s,s′) has to be a positive definite function on Rn×Rn. In practice,

we often consider σ(s,s′) as a stationary covariance function, but in this paper we want to

keep it general and allow the possibility of it being non-stationary.

Recall, the spatial random effects π(s) in model can be represented in R(s)′α, where

R(s) = (R1(s),R2(s), . . . ,Rr(s))′ . Hence the parameter r is a number of knots necessary to

approximate the function π(s). In a recent study on similar kriging estimation by Stein

(2015) it came out to light, that the number of knots, r should be depending on the number

of location points, n. It also discusses few challenges one might have with this technique.

And, we will be comparing our findings with that of his. Henceforth, we will also be using

rn to denote the number of knots necessary to approximate π(s). We capture the spatial

information through basis functions (Cressie, N. et al. (2008)),

R(s) = (R1(s),R2(s), . . . ,Rrn(s))′, ∀s ∈ Sn

and for a positive definite rn× rn matrix Ω, we have a model for our covariance function

σ(s,s′) as,

σ(s,s′) =R(s)′ΩR(s′), ∀s,s′ ∈ Sn. (3.1.2)

The above modeling can be viewed as a consequence of writing π(s) = R(s)′α, where α is

an rn−dimensional vector with var(α) = Ω. The model for π(·) is often refered to as spatial

random-effects(SRE) model. Define matrix R with R(si)′ as the ith row and correspondingly,

Σ =RΩR′, where R(Σ)≤R(Ω) = rn, where R(·) is the rank of a matrix.

Note that, SRE representation i.e., linear combination of the random effects vector α of

rn components can be looked upon as approximating a function defined over the sampling

region. While, rn is the number of knot locations used to approximate the underlying

function, σ(s,s′), the challenge is also to provide these locations. Henceforth, our effort is

to come up with a methodology for estimating the parameter rn along with positions of
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these knots. The arrangement of knots in this work, can be called ‘multi-resoultion’ knots

and recently been proved to be effective in an alternative model for covariance function by

Nychka et.al., (2015).

To understand the idea it is better to present it using the following set of figures. For

simplicity we will be considering our points to be lying in a 2−dimensional space. Figure

3.1 is the scatterplot of all the location sites. The horizontal axis corresponds to longitudes

whereas the vertical axis corresponds to latitudes. Each and every locations are indexed by

a pair of (latittude, longitude). Unlike in a time series study here we can not order these

paired locations. We can define a two dimensional domain that contains all the point. If we

scale each axes with same length on each direction, with out loss of generality the domain

containing all the points can be a square or a cube or a hyper-cube based on the dimension

under study.

Let us divide the two sides of the square in equal halves. Hence we will have four equal

squares with one forth area of the whole domain. The positions of the centroids of these

four quadrants are the locations for the first four knots. Let’s call collection of these four

locations as 1st resolution knots. If we repeat the same dyadic break of each of the 1st

resolution squares, we get sixteen squares. Centroids of these sixteen squares comprises the

second resolution. Figure 3.3 points out all twenty knots of first and second resolutions. So,

for a d−dimensional space kth resolution has (2d)k knots. In any given study let’s say we

have sampling sites from a d−dimensional space, for some M , we will have,

M−1∑
k=0

(2d)k + 1≤ sample points ≤
M∑
k=0

(2d)k,

and choose M to be the number of resolutions. So, for 2−dimensional space, there will be 4

knots in 1st resolution, 16 knots in 2nd resolution, 64 knots in 3rd resolution, and so forth.

Let L be the cumulative sum of all these knots. We start with all together L basis for each

site,

R̃(s) = (R̃1(1)(s), . . . , R̃`1(1)(s); . . . ;R̃1(M)(s), . . . , R̃`M (M)(s))′,
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Figure 3.1 Locations sites in the study
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Figure 3.2 First resolution overlayed on location sites in the study
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Figure 3.3 Second resoltions overlayed on location sites in the study
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Figure 3.4 resolutions overlayed on locations sites in the study
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Figure 3.5 Third resolutions overlayed on locations sites in the study
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Figure 3.6 Three resolutions overlayed on locations sites in the study
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Figure 3.7 Three resolutions overlayed on locations sites in the study
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Figure 3.8 Three resolutions overlayed on locations sites in the study
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where, `1 + . . .+ `M = L (say). The basis vector R̃(s) for any location s has L components,

each denoted as R̃i(k)(s). Here R̃i(k)(s) is the basis component corresponding to the ith knot

of kth resolution. The matrix R̃ is constructed using either ‘Local bi-square’ or ‘Wendland’

basis functions. If s denotes the spatial location points, and ui(k) be the ith knot location

for kth resolution we define distance between location site s and knot location ui(k) as,

di(k)(s) = d
(
s,ui(k)

)
=

∥∥∥s−ui(k)
∥∥∥

θ`
,

where, θk = 1.5×(shortest distance between knot points of kth resolution). Finally, local

Bi-square basis function is defined as,

R̃i(k)(s) =R
(
d
(
s,ui(k)

))
=


(
1−di(k)(s)2

)2 if, di(k)(s)≤ 1

0 otherwise.

and, Wendland basis function is defined as,

R̃i(k)(s) =R
(
d
(
s,ui(k)

))
=


(
1−di(k)(s)

)6 (35di(k)(s)2 + 18di(k)(s) + 3) if, di(k)(s)≤ 1

0 otherwise.
.

Note that, both these basis functions are bounded. Although by introducing multi-

resolution knot arrangements we are bringing in more parameters and we are cursed with

dimensionality we will be exploiting boundedness to acheive sparsity. The objective here, is

to obtain which rn among these L knots are necessary to model the non-stationary covariance

function. In a situation, where the sample points are distributed uniformly over the sample

domain, we select the first rn basis rows, and we drop the rest to obtain R. But even, in

practice for irregularly spaced data, we might hope that we would able to select rn out of

all the L knots.

As mentioned earlier, multi-resolution knots plays an important role in defining the

underlying indexing system even though the original location points are hard to order, it

comes with the curse of dimensionality. To present the curse of dimensionality we are using

69



Resolution Index Range of Sample point
i 2−dimensional space 3−dimensional space
1 (1-4) (1-8)
2 (5-20) (9-72)
3 (21-84) (73-584)
4 (85-340) (585-4680)
5 (341-1364) (4681-37448)
6 (1365-5460) (37449-299592)

Table 3.1 Number of knots necessary for every resolution

table 3.1, where the first column represents the resolution, and the other two columns are for

two and three dimensional spaces respectively. The numbers in the brackets (a− b) means,

if the study has n sample points, with (a≤ n≤ b) then we need b knots. One the other hand

the number of resolution will be corresponding to the number appearing in the first column.

So, for our covariance function σ(s,s′) we start with the model,

σ(s,s′) = R̃(s)′Ω̃R̃(s′), ∀s,s′ ∈ Sn (3.1.3)

Similar to the equation (3.1.2), one can easily see that the equation (3.1.3) is a con-

sequence of writing π(s) = R̃(s)′α̃, where α̃ is an L−dimensional vector with var (α̃) = Ω̃.

Hence this expression of random effect π(s) in (3.1), gives us

X(s) = Z(s)′β+ R̃(s)′α̃+ ε(s) ∀s ∈S . (3.1.4)

For simplicity, let us first present our method for the case Zβ = 0. Let us now explain

the relation between two versions of random effects or covariance model and, the method

used to reduce this dimensionality cost. Ideally, Ω is a sub-matrix of Ω̃ with R
(
Ω̃
)

= R(Ω)

such that,( Ω Orn×(L−rn)
O(L−rn)×rn O(L−rn)×(L−rn)

)
= Ω̃ = Φ̃Φ̃′ =

(
ΦΦ′ Orn×(L−rn)

O(L−rn)×rn O(L−rn)×(L−rn)

)
, (3.1.5)

where, Φrn×rn is the rn× rn matrix from the Cholesky decomposition of Ω, which is the

unique lower triangular matrix. In practice, it may be necessary that we reorder the columns

70



in our basis matrix R̃ to achieve the above structure. This reordering can be taken care of

by introducing a permutation matrix, explained in the appendix. So, for the rest of the

discussion we will consider Σ = R̃Ω̃R̃′. Since the rank is unknown, we propose to start with

all L rows non-zero. Our proposed method allows us to select non-zero rows of Φ̃, which

eventually captures all information required to retrieve Σ.

We drop a row from Φ̃ if and only if all the elements in that row are smaller than some

preset value. The innovation of this work, is to exploit the group structure in the rows of

lower triangular matrix Φ. This has two significances of this work. First, is observe, as

To do this, we consider a group wise penalization. Such shrinkage equation will have

a similar nature of block-wise optimization. Denote ϕ̃′(j) = (ϕ̃j1, ϕ̃j2, . . . , ϕ̃jj ,0,0, . . . ,0) =

(ϕ̃′j ,0,0, . . . ,0) to be the jth row of Φ̃, where the number of zeros in the jth row is L− j.

Define Φ̃vecFullset = (ϕ̃′1, ϕ̃′2, . . . , ϕ̃′L) to be a row-wise vector representation of the lower

triangular part of the matrix Φ̃. For a weight vector ψ = (ψ1,ψ2, . . . ,ψL)′, we define a

weighted `1/`2-norm,
∥∥∥Φ̃vecFullset

∥∥∥2,1,ψ = ∑L
j=1ψj

∥∥∥ϕ̃(j)
∥∥∥2, where ‖ · ‖2 is the `2-norm of a

vector. So, we propose the following weighted `1/`2-penalized log likelihood function,

Qn(Φ̃,σ2, τn,ψ) =X ′Ξ−1X+ logdetΞ + τn
∥∥∥Φ̃vecFullset

∥∥∥2,1,ψ , (3.1.6)

where τn is the regularization parameter, ψn = (ψn1,ψn2, . . . ,ψnL)′ is a suitable choice of a

weight vector in the penalty term and Ξ = σ2I+ Σ. We allow the penalty parameter, τn,

and the weight vector, ψn, to depend on the sample size n. Now using the above covarince

modeling for Σ i.e. Σ = R̃Φ̃Φ̃′R̃′, (3.1.6) can be rewritten as,

Qn(Φ̃,σ2, τn,ψ) = nTr
(

Ξ0
(
σ2I+ R̃Φ̃Φ̃′R̃′

)−1)
+ logdet

(
σ2I+ R̃Φ̃Φ̃′R̃′

)
+ τn

∥∥∥Φ̃vecFullset

∥∥∥2,1,ψ , (3.1.7)

where Ξ0 = XX ′/n is the scaled empirical covariance matrix. One can observe that the

length of nonzero components in each row of Φ̃ is varying since it is a lower triangular

matrix and hence ideally we should put varying penalty quantity for each row of the matrix.
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One way to handle this problem is to rescale the jthcolumn of R̃ by 1/ψnj . So we define R̃?

with the jth column equal to 1/ψnj times the jth column of R̃, and accordingly we define

Φ̃? with the jth row equal to ψnj times the jth row of Φ̃ which leads to R̃Φ̃ = R̃
?Φ̃?. This

transformation helps us to achieve invariance in Σ̃ = R̃Φ̃Φ̃′R̃′ for adaptive group LASSO.

Therefore the optimization problem in (3.1.7) boils down to an unweighted `1/`2-penalized

log likelihood function,

Qn(Φ̃,σ2, τn,1) = Tr
(

Ξ0
(
σ2I+ R̃Φ̃Φ̃′R̃′

)−1)
+ logdet

(
σ2I+ R̃Φ̃Φ̃′R̃′

)
+ τn

∥∥∥Φ̃vecFullset

∥∥∥2,1,1 . (3.1.8)

We want to restrict our search over the space of lower triangular matrices with absolutely

bounded elements and bounded σ. Let us denote our search space by PN
0 introduced in

(??), where N = n(n+1)
2 + 1, the total number of parameters, is an increasing function of n.

Observe that with this rescaling, magnitude of our spatial basis matrix R̃ will change over n

which could imply that the largest or smallest eigenvalues of R̃ are not fixed for the varying

sample size. As a choice for ψnj , we consider ψnj = 1/j, i.e. the jth row, ϕ̃(j), is scaled down

by its number of nonzero components. Define,
(̂̃ΦgL(τn), σ̂2

)
= arg min

PN
0
Qn(Φ̃,σ2, τn,1).

Based on ̂̃ΦgL, σ̂2 and R̃, we can obtain Ξ̂gL = σ̂2I+ R̃
̂̃ΦgL ̂̃Φ′gLR̃′ and r̂n = R

(̂̃ΦgL).

3.2 Block Coordinate Descent algorithm with Proximal update

In this section we will present an cost-effective algorithm for the optimization problem

posed in (3.1.8). We have a block-wise function, blocks being the rows of a lower triangular

matrix Φ̃, along with a group LASSO type penalty, groups corresponding to each block.

There has been few significant efforts behind building efficient algorithm to minimize a

penalized likelihood. Although group wise penalization is not a completely different ball
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game, it still requires some special attention, which exploits the group structure and considers

penalizing `2−norm of each group.

We will be using a Block Coordiante Descent (BCD) method for a block multi-convex

function under regularizing constraints,

min
x∈X

F (x1,x2, . . . ,xn) = f(x1,x2, . . . ,xn) +
n∑
j=1

rj(xj)

 , (3.2.1)

where x is decomposed into n blocks and rj(xj) is the regularizing constraint for the jth

block. On comparing (3.2.1) with (3.1.8) we can see that, in our case we have n blocks, X

is the collection of lower triangular matrices of the form, Φ̃, F (Φ̃) =Qn(Φ̃, τn) with,

f(ϕ̃(1), ϕ̃(2), . . . , ϕ̃(n)) = Tr
(

Ξ0
(
σ2I+ R̃Φ̃Φ̃′R̃′

)−1)
+ logdet

(
σ2I+ R̃Φ̃Φ̃′R̃′

)
(3.2.2a)

rj
(
ϕ̃(j)

)
= τn

∥∥∥ϕ̃(j)
∥∥∥2

j
(3.2.2b)

To ease the computation we use Matrix determinant lemma and Sherman-Morisson-

Woddbury matrix indentiy. We follow “prox-linear" algorithm (Xu & Yin (2013)) where the

update for ϕ̃(j) in the kth step is denoted by ϕ̃k(j) and is given by,

ϕ̃k(j) = arg min
ϕ̃(j)


〈
ĝkj , ϕ̃(j)− ̂̃ϕk−1

(j)

〉
+
Lk−1
j

2

∥∥∥∥ϕ̃(j)− ̂̃ϕk−1
(j)

∥∥∥∥2

2
+ rj

(
ϕ̃(j)

) , ∀j & k (3.2.3)

where the extrapolated point ̂̃ϕk−1
(j) is given as ̂̃ϕk−1

(j) = ϕ̃k−1
(j) +ωk−1

i

(
ϕ̃k−1

(j) − ϕ̃
k−2
(j)

)
, with

ωk−1
i ≥ 0 is the extrapolation weight, ĝkj =5fkj

(̂̃ϕk−1
(j)

)
and,

fkj
(
ϕ̃(j)

) def= f
(̂̃ϕk(1), ̂̃ϕk(2), . . . , ̂̃ϕk(j−1), ϕ̃(j),

̂̃ϕk−1
(j+1), . . . , ̂̃ϕk−1

(s)

)
,∀ j& k.

The second term on the right hand side, is added on the contrary to standard block coordinate

descent algorithm, to make sure that the kth update is not too far from the (k−1)th update

in L2 sense. Before we can do that we need to prove block multi-convexity (lemma 1) and

Lipschitz continuity (lemma ??) of f(ϕ1,ϕ2, . . . ,ϕn) and 5fkj
(
ϕ̃(j)

)
respectively.

Generally, Lk−1
j is some constant greater that zero, and plays the role similar to the

penalty parameter τn in rj(ϕ̃(j)), so if the kth update is too far from (k− 1)th update in
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L2-sense, our objective would be to penalize it more and control it, so unlike standard group

LASSO problem, here we have to take care of two penalty parameters rather than just

one. So, we have a more challenging problem to solve, but if scaled properly one can chose

constant Lk−1
j as a scalar multiplie of τn. Let us introduce a new quantity η = Lk−1

j /τn,

which is used to explain the rest our algorithm and this is refered to as a dual parameter for

our optimization method.

To update (3.2.3) we use the fact that if, rj can be represented as an indicator function

of convex set Dj , i.e. rj = δDj (ϕ̃(j)) = I
(
ϕ̃(j) ∈ Dj

)
, then ϕ̃k(j) = PDj

(̂̃ϕk−1
(j) − ĝkj /L

k−1
j

)
,

where PDj is the projection to the set Dj . Since for a group wise LASSO penalty, rj
(
ϕ̃(j)

)
=

τn
∥∥∥ϕ̃(j)

∥∥∥2 /j, which is equivalent to say that we need our pre-penalized update ̂̃ϕk−1
(j) −

ĝkj /L
k−1
j , first scaled down by its length j, and then project it on a surface of the sphere

with radius η. And for our group wise LASSO penalty, we define our component wise scaled

projection function is, PDj (t) = sgn(t)max(
√
|t|/j−η,0). So the update rule (3.2.3) can be

simplified and the following can be used component wise to obtain the jth row,

ϕ̃k(j) = sgn
(̂̃ϕk−1

(j) − ĝkj /Lk−1
j

)(√
abs

(̂̃ϕk−1
(j) − ĝkj /L

k−1
j

)
/j−η

)
+
, ∀j & k (3.2.4)

where all the above functions defined on the vector ̂̃ϕk−1
(j) − ĝkj /L

k−1
j are used component wise.

Define the corresponding lower triangular matrix as Φ̃k = row-bind(ϕ̃k′(1), ϕ̃
k′
(2), · · · , ϕ̃

k′
(n)) and

now let us present the working algorithm for our optimization and following which we also

provide a small modification in situations where a subsequent extrapolated update does not

reduces the optimizing functional value.

[1] Initialization: Φ̃
−1

and Φ̃
0
lower triangular matrices as first two initial roots with no zero rows Prefix: η > 0

and ε > 0 prespecified k = 1,2,3, . . . j = 1,2,3, . . . ,n

̂̃ϕk

(j)←− using (3.2.4) Lower triangular matrix ̂̃Φk

Φ̃
−1
←− Φ̃

0
and Φ̃

0
←− ̂̃Φk

j = 1,2, . . . ,n

tempj ←−
∥∥∥∥̂̃ϕk

(j)− ̂̃ϕk−1
(j)

∥∥∥∥
2

max temp < λ break and go to line 18 Go back to line 4 with k = k+ 1 Lower

triangular matrix ̂̃Φk
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(M 1) In case of Q
(

Φ̃k
)
≥ Q

(
Φ̃k−1

)
we modify the above algorithm by redoing the kth

iteration with ̂̃ϕk−1
i = ϕ̃k−1

i , i.e., with out extrapolation.

3.3 Numerical investigation

3.3.1 Simulation study

We follow spatial sampling design with an increasing domain asymptotic framework

where sample sizes increases in proportion to the area of the sampling region. So we consider

m×m square lattices where m = 20,25,30,35 which makes sample sizes n = 400,625,900,

respectively. For each choice we need to consider some true value of R(Σ), rank of Σ,

for different n we choose R(Σ) = 30,35,40. We generate our error term from a mean zero

and nonstationary Gaussian process from a covariance function given by (3.1.3) and we

consider different choices of R̃(s) for example Radial Basis Function (RBF), Wendland

Basis Fucntion (WBF), Fourier Basis Function (FBF) etc. The data has been generated

from model (3.1) for all possible combination of m, R(Σ) and R̃(s), we generate n data

points. From summarizing all the simulation results we believe that the method starts to

work better for larger n.

If one considers a dyadic break of the two dimensional spatial domain, and pick centers

of each of the regions as their knot points, then the first resolution will have 22 knots, second

resolution will have 24 knots, i.e. the kth resolution will have 22k knot points. We have

applied the concept of reversible jumps into our algorithm by considering a starting value

of the number of effective knot points. For example lets say we start by considering all the

knot points from the first two resolutions effective. After every iteration, we let our model

to change by either dropping one of the knots which might have considered to be important

earlier or selecting one of the knots which has not been considered to be important earlier.
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Lattice size Local bi-square Basis Function Wendland Basis Function
(s) rn = 30 rn = 35 rn = 40 rn = 30 rn = 35 rn = 40

20 28 (1.81) 28 (1.66) 34 (1.60) 29 (1.56) 31 (1.05) 38 (1.05)
25 30 (1.49) 30 (1.26) 36 (1.02) 31 (1.01) 32 (0.91) 39 (1.09)
30 31 (1.05) 32 (0.89) 40 (1.09) 30 (0.91) 34 (0.14) 40 (0.59)
35 30 (0.91) 34 (0.88) 42 (1.05) 30 (0.34) 35 (0.25) 41 (0.29)

Table 3.2 Mean (Standard Devation) of 200 Monte Carlo simulations for rank estimation of
the nonstationary covariance matrix Σ

3.3.2 Real data examples

The data set we used is part of a group of R data sets for monthly min-max temperatures

and precipitation over the period 1895−1997. It is a subset extracted from the more extensive

US data record described in at (www.image.ucar.edu/Data/US.monthly.met). Observed

monthly precipitation, min and max temperatures for the conterminous US 1895−1997. We

have taken a subset of the stations in Colorado. Temperature is in degrees C and precipitation

is total monthly accumulation in millimeters. Note that minimum (maximum) monthly

tempertuare is the mean of the daily minimum (maximum) temperatures. A rectagular

lon-lat region [−109.5,−101]× [36.5,41.5] larger than the boundary of Colorado comprises

approximately 400 stations. Although there are additional stations reported in this domain,

stations that only report preicipitation or only report temperatures have been excluded.

In addition stations that have mismatches between locations and elevations from the two

meta data files have also been excluded. The net result is 367 stations that have colocated

temperatures and precipitation. We have used minimum temperature data as the observed

process to apply our method and obtain the image plots below.

3.4 Discussion

Our work is quite significant from several perspective, although we would like to point

out that it gives a dimension reduction perspective of estimation of low rank covariance

matrix. As mentioned earlier Cressie & Johannesson, (2008) pointed out the benefit of
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Figure 3.9 Quantile Image plot of Ξ̂gL, the estimated covariance matrix of the observed
process
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Figure 3.10 Quantile Image plot of Φ̂gL estimated covariance matrix of the random effects
vector
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assuming a fixed but lower rank than the actual dimension of the covariance matrix. They

pointed out that inversion time of n×n covariance matrix, which isO(n3) can now be reduced

to O(nr2), where r is assumed to be the known fixed rank. A previous knowledge about the

value of r is quite hard to believe and our contribution is to figure out a relevant way to get

around this. Although at this point we do not claim that we are able to provide an unbiased

estimate of rank, but our result does provide consistent estimate of the covariance matrix

along with linear model parameters. We also extended the work by Cressie & Johannesson,

in the sense that our method allows one to assume that r can vary over n, the sample size,

more precisely r = rn it can increase in a polynomial of n.

Now let us compare our finding with another recent study (Stein, 2015), which provides

some examples and discusses scenarios where appoximating a true full rank covariance matrix

Ψ0 with a matrix Ψ1 = ρ2I+Υ, where Υ is a low rank matrix, does not reduces the Kulback-

Liebler divergence considerably. As necessary, interesting and relevant this may sound, we

would like to point out dissimilarties. Firstly, unlike any full rank covariance matrix Ψ0, we

assume true covariance matrix has the structure Ψ0 = ρ2I+Υ and our approach estimates Ψ0

through estimates of ρ and Υ. Using the concept of capturing spatial dependence through

a set of basis functions (Cressie & Johannesson, 2008) our model is further specified by

considering the low rank compnent as, Υ = S̃K̃S̃
′
, where K̃ is a n×n matrix of rank rn. As

mentioned earlier rn is a polynomial in n, we would like to refer our readers to assumption

(A 1) which says rn =Dnγ +O(1), with D > 0 and γ < 2/(15 + 11α) with α > 0. Although

one might feel the necessity of estimating the nuisance parameter α. But let us point out

the fact that our results works for any value of α > 0. Even if we choose α = αn −→ 0,

γ < 1/7.5. This implies our finding covers Case 3 and a subset of Case 2 in Stein (2015). In

the paper by Stein (2015) it is been pointed out KL divergence do not reduces sufficiently

enough under a very special situation of stationary periodic process on line, which can be

extended to be a process on surface, although can be quite challenging even for stationary

periodic process. On the contrary our finding provides theoritical justification of consistent
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estimation of Ψ0 = ρ2I+ S̃K̃S̃
′ in a more general set up.
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