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ABSTRACT

ELECTRON SPIN—LATTICE RELAXATION

OF Cr(CN)5No3‘ IN KBr AND KCl

by George T. Johnston III

Electron spin—lattice relaxation times T1 of

Cr(CN)5NO3— substitutional in KBr and KCl have been

measured for l < T < 1500K. Spin echo techniques employ—

ing either picket or single-pulse saturation methods

were used. From the temperature dependence of the ob—

served T values, we conclude that at least three relaxa—
1

tion mechanisms are operative: an anisotropic direct

process at T < 50K, an isotropic Raman process at inter—

mediate temperatures, and an anisotropic local mode pro—

cess at T > 650K. The functional form of the relaxa—

tion rate is %1 = AT + BT9J8(e/T) + C exp(—eo/T), where

e is the Debye temperature and was taken as l70°K for

KBr and 230°K for KCl. Empirical values of A, B, C,

and 60 were determined by least squares computer analysis.

Published energy level assignments preclude the possi—

bility of an Orbach process. Therefore, since the para-

meter 90 is 575:300K for KBr and 610:3OOK for KCl, in

agreement with published Cr—CN stretch frequencies, we



George T. Johnston III

conclude that the exponential process occurs through the

interaction of lattice phonons with vibrational modes

localized in the Cr(CN)5NO3_. An anomaly in the T de-

pendence of T1 for KBr has been tentatively explained

as a driven-mode process, in which relaxation is effected

by low frequency (<20 cm-l) bending modes of the complex.
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I. INTRODUCTION

History

Electron spin-lattice relaxation phenomena of para-

magnetic impurities in crystalline salts has been a subject

of both experimental and theoretical interest for more than

27 in the 1930's studied relaxation

36

three decades. Gorter

phenomena using susceptibility techniques and Waller,

Van Vleck,32 and Kronigl6 established a theoretical explana-

tion of the results. With the advent of electron paramag-

netic resonance the interest in relaxation phenomena was

renewed, since resonance provided the possibility of meas-

uring relaxation times in a more direct manner. Experi—

mental resolution limited the results to A.2°K and below

until the late 1950's. Advances in experimental tech-

nology, resulting in enhanced sensitivity which allows meas-

urements at higher temperatures, have reopened interest in

Van Vleck's theory. Orbach“ has modified the theory in

order to explain a wide range of experimental results, par-

ticularly in the rare earth ions. Castle and Feldman2

have reported results up to 250°K using a saturation—

inversion technique, and the experimental technology has

reached the point at which measurements above 78°K may be

considered routine.





In order to reduce interaction between paramagnetic

centers, they are introduced into diamagnetic host crystals

in small percentages. Therefore, the paramagnetic centers

are at defect sites. Lattice vibrations, which provide the

mechanism for relaxation, are modified by a defect, so that

one might expect theories formulated for perfect crystals

3’13 was the firstneed not apply to real systems. Klemens

to explicitly consider the consequences of this fact upon

the theory of electron spin—lattice relaxation. The work

reported in this thesis was undertaken in the hope of being

able to more conclusively check the validity of the Klemens

theory. We have measured the temperature dependence of T1

for the molecular complex Cr(CN)5NO3_ substitutional in

KBr and KCl, in the temperature range l°K to 1500K.

Summary of Theory
 

In order to understand relaxation time measurements,

38,10
one must understand the theory of lattice vibrations

7’26’29 The overalland the theory of paramagnetic resonance.

aim is to calculate the characteristic time (relaxation

time) for electron spins that have absorbed energy to re-

linquish the energy to the thermal bath.

The absorption of energy by a paramagnetic electron

is governed by the resonance equation,

hv = E — E2 = gBH, (1.1)



where v is the frequency of the applied r.f. signal, h

is Planck's constant, E is the final energy of the

l

electron, E is the initial energy, g is a parameter for
2

the paramagnetic system called the spectroscopic split-

ting factor, B is the Bohr magneton, and H is the applied

magnetic field. Assume a certain group of spins with g = gl

have their resonance condition met (1.1). If the r.f.

field is turned off, then the spins will be in a non-

equilibrium state. There are several interaction paths

by which the spin system may return to thermal equili-

brium with the lattice. We shall consider two possible paths.

If the coupling of the paramagnetic centers to the lat—

tice is much stronger than the coupling among centers, then

the spin system equilibrates with the lattice in a time

characterized by T termed the spin—lattice relaxation1’

time. A spin disposes of its excess energy (via L-S) to

the orbital magnetic moment which, in turn, couples the

energy to the lattice heat sink by means of the time varying

electric field laid down due to modulation of interionic

distances by the lattice vibrations. This is the process

which we shall study.

If there exists another set of spins with g2 # g1,

the spins with gl may undergo mutual spin flips with them in a

characteristic time denoted I called the cross relaxation

12’

time. The energy of the spin flip transitions is not pre-

cisely balanced, since gl # g2, but the dipole—dipole inter—



 



action may take up or supply the energy necessary for energy

conservation.

In the theory of spin-lattice relaxation, one considers

the effect of a strain in the immediate vicinity of a para-

magnetic ion on the spin Hamiltonian, and uses this perturba-

tion Hamiltonian to calculate the spin relaxation by the

21’2“ It is also usualusual perturbation techniques.

to express the thermal strain as a superposition of lattice

waves in order to describe spin—phonon interaction processes.

To lowest order, the component linear in strain gives rise

to the direct, or one—phonon process, while the component

quadratic in strain gives rise to two-phonon or Raman

processes. A Raman process is also obtained by carrying

the linear strain term to second order in perturbation

theory. An excellent account of the calculations involved

is given by R. F. Vieth.33

We do not have enough information available to calcu—

late an exact expression for I in the system under study,
I

but it is still possible to extract the theoretical temper—

ature dependence of I and compare it with our measured
1

values. By expressing the lattice waves of a crystal in

simple classical form, one can obtain several quantum

mechanical operators. These operators have the effect of

creating or destroying a phonon, a process which occurs

when an electron spin absorbs energy from or relinquishes

energy to the lattice. Two systems of ions must be con-



 



sidered:

1) those which have an even number of electrons

(non-Kramers systems), and

2) those with an odd number of electrons (Kramers

systems).

Waller,36 Kronig,l6 and Van Vleck32 originally predicted

that two types of relaxation can occur for each system:

one which involves one phonon (the direct process) and one

which involves two phonons (the Raman process). The direct

process occurs at lower temperatures while the Raman process

is dominant at higher temperatures. For non—Kramers systems

we find II a T for the direct process and $1 a T7J6, where

Jn is a transport integral of order n, for the Raman process.

For Kramers systems the situation is a bit more complicated.

If zero order wave functions are used in the computation of

the necessary matrix elements, the direct process will

vanish and the Raman process will have a T9J8 dependence.

An applied magnetic field may, however, admix excited states

with the zero order wave functions to produce a direct pro—

cess that again is proportional to T and two Raman processes

proportional to T7J6 and T9J8. In addition, if there are

energy levels that lie near enough to the ground state,

the Raman process may go as TSJH. For either type of

system, Orbach2u has shown that if there is an accessible

electron energy level with energy A above the ground state,

and if A < E where E is the Debye energy of the lattice,
D’ D



then there may be a resonant two phonon process for which

l « exp(-A/kT).

T1

The foregoing theories were formulated for a perfect

lattice, whereas the paramagnetic ion is at a defect site.

Since the lattice vibrations are modified by the defect,

one is not justified in using the usual relation between

strain and amplitude of a lattice wave, which holds in a

perfect crystal. In view of the phenomenological nature of

the theory, one would be very hard put to isolate the error

introduced from the consequences of an incorrect choice

of the strain dependence of the spin Hamiltonian, except

when the temperature dependence of the spin—lattice relaxa—

tion is modified in some characteristic and unusual manner.

3
Klemens has shown that relaxation rates (i.e., % )

1

ll
proportional to T3J and T J for non—Kramers systems,

2 10

and TSJu and T13J for Kramers systems, arise from impur-
l2

ities which have associated with them vibrational frequencies

lying within the Debye spectrum of the host lattice.

Montroll and Potts22 have pointed out that in the case

of a substitutional impurity which is lighter than the parent

atom, the character of the lattice vibrations is particu—

larly strongly modified, giving rise to a new lattice mode

localized near the impurity, and having a frequency v0

which lies above the acoustic band. Klemensl3 has predicted

%l m exp(—th/kT) for this case. Relaxation data2 on the

oxygen—divacency (Ei) center in synthetic crystalline quartz

have been interpreted in terms of this theory, but the re-



 



sults are not conclusive.

We surmised that a better test of the theory could be

realized from measurement of relaxation in a molecular com-

plex whose localized frequencies v0 were well defined and

amenable to measurement by infrared spectroscopy. An ideal

candidate seemed to be Cr(CN)5NO3- substitutional in alkali

halides. The acoustic phonon spectrum of the alkali halides

has been studied,1 so that lattice parameters involved in

the "normal" direct and Raman relaxation of paramagnetic

impurities are known. Hence we anticipated that any

anomalous results should be due to interactions localized

in the Cr(CN)5NO3_ complex.





II. THEORY

Theoretical Background
 

The phenomenological theory of electron spin—lattice

relaxation in crystalline solids has been considered by

13,21,2u
many authors. According to current hypotheses,

the spin—phonon interaction plays the central role in para—

magnetic relaxation phenomena.32’16’21 The process occurs

through modulation of the crystalline electric field by

the lattice vibrations. This time—varying electric field

interacts with the electron's orbital angular momentum,

which is coupled to the spin via L'S.

The model we shall initially use is illustrated in

Figure l, which shows a paramagnetic ion surrounded by an

octahedron of nearest neighbors that produce an electrostat—

ic field at the ion site. In the unperturbed system these

neighbors are assumed stationary. If we allow the neighbors

to vibrate (since they are part of the lattice), the crys-

talline field will be modulated, will perturb the orbital

motion of the paramagnetic electrons, and will induce spin

transitions by means of spin-orbit interaction. We shall

neglect all effects of spin—spin interaction except for

energy level broadening. That is, we assume that the spins

relax to equilibrium only by giving up energy to the lat—

tice, and not by cross relaxation effects.



,O
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Figure l. Octahedrally coordinated paramagnetic

ion in the crystalline electric

field of its nearest neighbors.
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Under this assumption we can write the total Hamil-

tonian in the form21

f? ={FL +§€O + V + 288% + ALE + 33%. (2.1)

In this equation, 8 is the Bohr magneton, A is the spin—

orbit coupling parameter, S and L are the spin and orbital

angular momenta of the paramagnetic ion, H is the external

dc magnetic field, V is the energy of the ion due to the

crystalline electric field, fig is the energy of the free

ion, and‘fll represents the energy stored in the crystal

lattice due to lattice vibrations. The lattice Hamiltonian

can be writtenlu

{IL = the (a *a + A), (2.2)

where apl, ap are the phonon creation and annihilation

Operators. They have the properties that

:
3

V II

1/

(np+l)2|...np+l...>

S
D
)

:
3 II (np)%|...np—l...>. (2.3)

The p index represents the phonon mode and branch number,

with mode-branch frequency mp. If we designate the equili—

brium position of an atom in the lattice by T and the dis—

placement of this atom from equilibrium by urq (a = x,y, or z),

then ura can be expanded in normal lattice modes as1

1

-24'1’2 4/. + ++
ura — [M—] g(wp) cpfl<ap+ap )cos(kor+Ap), (2.A)
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where M is the crystal mass, ¢pd is the qth component of

the unit polarization vector for the mode-branch p, kp

is the propagation vector for mode—branch p, and Ap is

an arbitrary phase factor.

In what follows, it shall be assumed for simplicity

that the lattice is dispersionless and isotropic, with the

result that all phonons have the same velocity, v, and

thus we can describe the density of states by the Debye

formulall

l21TVv2 3N 1/3

v3 if vs HNV v ( )

00)) = 2.5
3N 1/3

0 if v> ENV v

Use will also be made of the fact that the average number

of phonons in mode p when the crystal is in thermal equili-

brium at temperature T is given by

'hw /kT

N = (e p —l)‘1 (2.6)

where m = 2nv .

p p

In order to show the interaction between spin and lat-

tice explicitly, we expand the crystal field potential, V,

in a power series in the normal displacements (Qf) of the

31
nearest neighbor ions:

““2le +%Efi—QQ'+... (2.7)
f BQf ff,3Q BQf. f f' ’

where the Qf's can be related to the ordinary displacements

of the neighbors (6R ) by
20
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Qf = Eantdéth (2.8)

and the index A runs over all nearest neighbors. Now ura

is the displacement of any atom, and therefore it includes

nga as a special case. Hence 6R£a can be expanded by

means of (2.4). In doing this, we make the approximation

that the phonon wavelength is considerably greater than

the dimensions of the cluster of nearest neighbors, so that

kp°g<<l (assuming, for simplicity that the nucleus of the

paramagnetic ion is at the origin). Because the only near-

est neighbor displacements effective in modulating the

crystalline field are those relative to the spin nucleus,

equation (2.“) reduces to

1/

_ 2h 2 % I + .
éth - [M 2] 2(wp) cpg<ap+ap )Kp RQSlnAk, (2.9)

V p

where Kp is the unit vector in the kp direction, and we have

used |Ep| = wp/v. Substituting (2.8) and (2.9) into (2.7),

we find

' tV = V0 + l VfApr + l fo Aprf qr r + .... (2.10)

fp p ff'pq p q

where

2

f av ff' 1 a v I
V=——;V =.———————;I‘=a+a,

an Zanan. p p p

;

fp 3232 2 l K A
MV2 p20. ZERO, p [Q]
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In the foregoing we should distinguish between two diff

ferent sets of normal modes over which summations have

been made. On the one hand, in (2.7) we summed over the

relatively small number of modes (Qf) of the nearest neigh-

bor cluster, and on the other hand in (2.4) we summed over

the relatively large number (3N) of traveling wave modes

of the lattice. Utilizing (2.1), (2.2), and (2.10), we

find for the total Hamiltonian

_ A In L .
j??- Zhwp(ap ap+2) +‘§% + VO + 288 H

p

+ iz.s + sfcfi + zvafpr

fp p

t t

+ E vff Aprf qr r . (2.12)
ff'pq p q

We now leIde if) Into filattice’ fispin and Winter—

. . . I ;
action' Examining the terms, we fInd that Efihwp(ap ap+2)

has only lattice coordinates; §Q+VO+2BS:H+AL-S+BL0H

involves only paramagnetic electron coordinates;

I I

2 vafpr + E , vff Aprf qr f involves mixed coord-
fp p ff pq p q

inates. The term in electron coordinates is precisely

the one that gives rise to the spin Hamiltonian which des-

cribes the energy levels that are observed in paramagnetic

resonance. In relaxation experiments, we are interested in

phonon-induced transitions between these pairs of spin

levels. Hence it seems reasonable to set



1A

_ + /filattice — gnopmp ape.) (2.13)

—> ->

#spin ’fio + V0 + 2B§‘H + Af‘g + AE‘H (2.1”)

and to consider

_ f fp ff' fp f'q
d7. . — l V A P + 2 v A A r r (2.15)
Interaction fp p ff'pq p q

as inducing energy conserving exchanges of quanta between

and fl: Detailed calculation would involve

flspin attice'

diagonalizing {Epi to some appropriate order (the second

n

order would suffice —- this would produce the spin Hamil—

tonian), finding its energy levels En and corresponding

state vectors IVn>, and computing the appropriate matrix

elements cd‘ §fi_ between simultaneous eigenstates
nteraction

of {Epin and {Lattice' The rates for the various relaxa—

tion processes are then calculated from time—dependent

perturbation theory.

Let us rewrite (2.15) as

‘fldnteraction V1€ + V2€€ (2'16)

where 2 and E‘ are operators for the average strain due to

the lattice vibrations, and are proportional to a and 2+,

depending on whether a phonon is annihilated or created.

Our ignorance of the matrix elements of the Vf for the

system under study motivates this simplification. In spite

of this ignorance, a number of interesting conclusions about
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the various relaxation processes can be drawn.

In evaluating matrix elements of the electron opera-

tors V1 and V2 of (2.16), we must consider two types of

systems:

1) those which have an even number of electrons

(non—Kramers systems), and

2). those with an odd number of electrons (Kramers

systems).

15 states that each energy level willKramers' theorem

always be at least twofold degenerate in the presence of

purely electric fields, provided the number of electrons

37 has shown that this degeneracy is relatedis odd. Wigner

to the invariance of the system under time reversal, and

that a pair of Kramers degenerate states are time conju—

gates of one another. Kramers' theorem is important to

us because it predicts that certain matrix elements of

(2.16) vanish if no magnetic field is applied. The pre-

sence of a magnetic field will lift the Kramers degeneracy,

and give nonzero matrix elements.

The following sections of this chapter summarize the

theoretical results for various spin—lattice relaxation

mechanisms. Most of these results have been derived else—

214,33
where.
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Direct Process
 

Figure 2 depicts a spin initially in state |b> relax-

ing to state |a> with the consequent emission of one phonon.

This method of relaxation is called the direct process.

ES is the energy difference between the spin levels and

therefore is also equal to hwq, the energy of the emitted

phonon. The direct process is usually dominant at low

temperatures. If first order time dependent perturbation

theory is applied to the linear strain term of the orbit-

lattice Hamiltonian (2.16), then for ES<<kT we have for

the direct process rate

3(ES)2kT 2

D = ;§———§—— |<a|Vl|b>| , (2.17)

npv

H
I
P

where p = M/V, the density of the host crystal.

If |a> and |b> are time conjugate states, then the

matrix element in (2.17) will be zero by Kramers' theorem.

Themagnetic dipole—magnetic field interactions can admix

excited state Kramers doublets into the wave functions

|a> and |b> to produce a nonzero result. To first order,

the ground state wave functions in the presence of a mag—

netic field are

 

 

.+

|b>' = |b> + 2' <nlu-HLb> |n> (2.18)

n Eb-En

_.).

|a>' = la) + it (nlu'fila) In) (2.19)

Ea‘En

where a is the magnetic dipole moment operator and H is the
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Figure 2. Schematic diagram for the direct process.

A single transition is made from |b>

to |a> and a phonon of energy ES is

emitted.
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Figure 3. A hypothetical energy level diagram for

1°)

a Kramers ion in a uniaxial crystal field

in the presence of spin—orbit coupling;

r, t, u, and v are odd integers.
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magnetic field. The only terms that contribute are those

which lie near to the ground state (Figure 3). If |c>

and |d> are the nearest lying time conjugate states, then

by applying time reversal arguments, as well as selection

rules on lAml, we are led to the result

2 2

 

1 12ES H kT 2

?_ = —H 5 2 |<d|p|b><a|Vl|d>| , (2.20)

D h va Acd

where

Acd = EC—Eb = Ea—Ed (2.21)

and u is the magnetic moment in the direction of H.

Raman Process
 

In the Raman process lattice phonons are scattered

inelastically from the spin system. This results in the

creation and destruction of two phonons whose difference

in energy equals the splitting of the participating spin

states. As outlined in Figure A the process we envisage

will have an initial state vector specified by a spin being

in the state |b> and the phonons (p) and (q) having occu-

pation numbers Np and Nq, respectively. The final state

of the system will find the spin in state [a>, a phonon

created of type (q), and a phonon of type (p) destroyed.

There are several mathematical approaches to such a process.

We shall consider two different methods which follow two
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I ld>

\
, \|c>

I \'

’ \

——9/<——lb> \ |b>

wp W+ \ '1"qu

 la) __>‘<__Io>

(b) 42,- <>< |<o|V.|c><c|V.|b>l2

Figure A. Schematic diagrams for the Raman process.

In both cases, wq-mp = Eb-Ea.



 



21

basically dissimilar physical approaches.

Consider a process in which the quadratic strain

term of the interaction Hamiltonian (2.16) is used in first

order perturbation theory (Figure A(a)). The resulting

relaxation rate for non—Kramers systems is

 

7

l _ 9k 7 [a] 2
——- T J — |<a|V |b>| (2.22)
TR “U302Vloh7 6 T 2

where

. x zneZ
Jn(X) 3 f0 —Z-—-——2-dZ (2.23)

(e —l)

and 9 is the Debye temperature of the lattice.

Here, as in the direct process, the matrix element of

V2 will vanish if |a> and |b> are time-conjugate states,

i.e., for a Kramers system. In that case, higher lying

electron levels can be admixed by the 3-H interaction to

 

give

1 9H2k7 7 e 2
—— = T J — |<d|u|b><a|V |d>| (2.24)
T 3 2 IO 7 2 6 T 2

R n p V ‘h A
cd

The Jn in (2.22) and (2.2M) are called transport integrals

23
and have been tabulated. They are essentially constant

for x>xn, where X6 = 20 and X8 = 25, and have the additional

property that

n+1 6 2

T Jn[T] + aT for T>8/2 (2.25)

This follows from the phonon population factor (2.6).
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SinCe

e = 1 + x + ... if x<<1, (2.26)

we have

__L__:E_T_

ehw/kT_l hm

if kT>>hw . (2.27)

Hence at temperatures high compared to the phonon energies,

the phonon occupation numbers are proportional to T. But

the transition rates are proportional to phonon occupation

numbers. Therefore ggy two—phonon relaxation process has

the asymptotic form %— a T2 for temperatures comparable to

the maximum energy oflthe phonons involved.

Consider a relaxation process which uses linear strain

terms in second order perturbation theory. Here the elec-

tron spin in state |b> is considered to undergo virtual

(and therefore not energy—conserving) transitions to inter-

mediate states rather than making transition directly to

state |a> (Figure A(b)). For a non—Kramers system this pro-

cess is describable by

  

2

7 .<a|V |i><i|V '|b>

%— = 39g 10 7T7J6[%] I) * l A 1 (2.28)

R An p v n i

where A1 = Ei-Eb 2 Ei-Ea. (2.29)

For a system with an odd number of electrons, the time

conjugate nature of the Kramers doublets leads to the

31

"Van Vleck cancellation". The effect of the cancellation

is to raise the power of T in the relaxation rate:
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l

c><C|VlIb> -2

2 a (2.30)

cd

<a|Vl|

 

r
-
I
l
l
—
L
‘

 

9
_ 9k 9 [a]
_ T J _

:R n3p2vlo‘h7 8 T
 

A

where we have considered as intermediate states only the

Kramers doublet lying nearest to the ground doublet and have

explicitly used the time—conjugate nature of |c> and |d>.

We note that in this process it was not necessary

to invoke Zeeman admixture of excited states into the ground

state in order to achieve a nonvanishing result. The

reason is that here we have matrix elements between com—

ponents of different Kramers doublets rather than between
 

components of the same doublet.

25
Orbach and Blume have considered the Van Vleck can—

cellation term further. In the derivation of the T9J8

process it is assumed that the states |c> and |d> are split

apart from the ground state by a large energy, but for some

Kramers systems excited states lie close to the ground

doublet. This leads to

<a|V1|c><c|Vi|b> 2

. 2 (2.31)

A

cd

  

5
l _ 9k 5 [a]
__._ T J _

TR n3p2vlqh7 A T
 

A rough order of magnitude criterion for this process to

dominate in the Raman region is given by Orbach and Blume

as

A[—2—] > kT, (2.32)

in addition to A<<k6, where A is the appropriate crystal

field splitting and A is the spin—orbit coupling constant.
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Orbach Process
 

Finn, Orbach and WolfLl first proposed a two—phonon

process which is similar to the Raman process depicted in

Figure A(b), except that the intermediate electron state

|c> lies within the lattice phonon spectrum. That is,

Ec<k8. Now the energy denominator of (2.28) displays a

resonance. In reality, the denominator does not vanish

because of lifetime broadening of the electron energy levels,

but the relaxation rate is enhanced considerably over the

normal Raman rate. When the resonance denominator is taken

into account the predicted relaxation rate for both Kramers

and non—Kramers systems contains an exponential term

' 2

<a|V |c><c|V |b>|

l A l e-A/T (2.33)

cd

.1. ..l

Orb A

 

H

where A(<k8) is the splitting of the excited state from the

ground state. This process is referred to as the Orbach

process.

Driven-Mode Process
 

In the previous discussion we have neglected the effect

of the paramagnetic impurity on the lattice vibrations of

the host crystal. That is, we have assumed that the strain

e at point P due to a lattice wave of wave vector 5 is given

by (2.“), even though that expression holds only in a

perfect crystal. In order to calculate I1 we need to know
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the strain in the immediate vicinity of the spin site.

When the spin is associated with an impurity or defect, this

is precisely where expression (2.A) fails. We must, therefore

look more closely at the strain at a defect site.

Every defect has associated with it one or more charac-

teristic vibrational frequencies mi, which have to be com-

pared to the frequency describing the normal interatomic

bond of order wD(=k0/h), the Debye frequency. Roughly speak-

ing, we can expect two classes of behavior: (a) cases when

mi exceeds “D sufficiently, so that the vibrations at that

frequency are not propagated through the crystal, but are

localized at the defectg22’l3 (b) cases when mi falls be-

low wD so that localized modes in the usual sense are not

formed, but the defect system undergoes forced oscillations3

under the influence of lattice waves. We consider this lat-

ter case first, referring to it as the driven-mode process.

3
Klemens has shown that for an impurity-associated

frequency which is less than w the Raman relaxation rate
D,

(2.30) for a Kramers system is modified to the form

8 .

l 9 e 5 e 8' E. _g

s. °‘ T Jet-1+ CT EAR-AH} + [.1 Mil], (2.3M

C
D

I

where k0,L = hwi is the energy associated with the defect

mode. For a non—Kramers system the analogous term is

o 8 o

l 7 6 , 3 0 0 T 01
:t—DM on T J45] + c T [{J2[T-]—J2[T—l]} + [8i] J10[T—]] . (2.35)
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LoCal Mode Process
 

We now consider in some detail the case in which fre-

quencies associated with a defect lie above the acoustic

band of the host lattice. In such a case the energy of the

modes is concentrated in the immediate vicinity of the de-

fect, so that one might eXpect it to modify very substan—

tially the spin-lattice relaxation of a paramagnetic impurity

associated with this defect site.

Since the energy of a local mode greatly exceeds the spin

energy, it is not possible to have a direct energy conserv—

ing spin-phonon interaction involving a local mode. The only

conceivable process is one in which a spin-flip is accom—

panied by the absorption and subsequent re—emission of a

localized phonon. If the local mode frequency were sharp,

this process would also violate energy conservation. The

local mode frequency is, however, broadened by anharmonic

interactions with the phonons of the lattice continuum.

The anharmonic effects are expected to be strong, even at

T<<0, because most of the energy of a localized mode is

concentrated near the defect, making the amplitude of the

oscillation large. Even at low temperatures a localized

phonon can split into two lattice phonons. Klemensl2 has

shown that this process broadens the local mode frequency

by about 1%. The broadening may therefore be larger than

the spin energy (20.3 cm—1 in our experiments), so that

energy conservation is relaxed sufficiently to allow this
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process to occur.

To take account quantitatively of how the anharmonic

broadening and the relaxation of the local mode permit the

spin—lattice interaction with absorption and emission of a

local phonon, we consider their combined effect to the next

order of perturbation theory. A local phonon and the spin

,combine; in the intermediate state we have the same local

phonon, but the spin is inverted, and in the final state the

spin stays inverted, and the local phonon has split by an-

harmonic interaction into two phonons of the Debye continuum.

Since there is only one intermediate state, there is a

one—to-one correspondence between the overall second order

matrix element and the matrix element for the anharmonic

interaction between a local phonon and two lattice—wave

phonons. Thus the contribution of local phonons to the

spin—lattice relaxation is related in magnitude to the

anharmonic relaxation time of the local mode.

Let us examine this process in more detail. Consider a

two stage process going from state |i> to state |f> via an

intermediate state |j>. Such a process is equivalent to

going from |i> to |f> with an effective perturbation

Hamiltonian

' _ <lelj><iiUli>

i¥eff — 2 31-3. 3 (2.36)

where U and W are the perturbation Hamiltonians linking

|i> and |j>, and |j> and |f>, respectively.
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As initial state we take the local mode excited with one

phonon, the ion in the higher-lying spin state, and the lat-

tice phonons in equilibrium. (See Figure 5 for more explicit

description of the state vectors, including phonon occupation

numbers of the relevant modes.) As intermediate state |j>

we need to consider only one state, i.e., with one phonon

in the local mode and the spin inverted. Hence the sum

in (2.36) is reduced to a single term and its denominator is

merely the spin energy ES: gBH. The interaction represented

by <j|U|i> is a Raman process involving only localized

phonons, so that we may set <j|U|i> = <a|V2|b>eoeg where

V2 is the same as in (2.16) and 60,8; each represent matrix

elements of the strain due to one localized phonon. The

final state has the same spin configuration as the inter-

mediate state, but the local phonon is removed and two trav-

eling lattice modes are each excited by an additional phonon.

(Figure 5).

The interaction Hamiltonian W connecting states |j>

and |f> arises from the cubic anharmonicities (involving

three phonons at a time), and is the same as was used by

Klemensl2 to describe the relaxation to equilibrium of excess

energy in the local mode. We can write <f|W|j> as

1

/2

9€[N0(N1+l)(N2+l)1% or ££<No+l>N1N21 (2.37)

depending on whether a local phonon is annihilated or cre—

ated, where N0, N1, and N2 are the occupation numbers of the
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Figure 5. Schematic diagram of the local mode

process, along with the appropriate

matrix element. N0, N1 and N2 are the

number of phonons in the local mode

and traveling modes.
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local mode and traveling modes. The perturbation Hamiltonian

(2.37) can be used in time dependent perturbation theory to

Show12 that the relaxation rate of the local mode is inverse—

ly proportional to Zf|<fIW|j>|2, i.e.,

r
i
l
l
—
J

o a 2(N1 + N2 + l), (2.38)

f

where the sum is over all final states which satisfy the

energy condition wo = ml + m2. For example, consider the

case (h/k)wo=600bK, with the Debye temperature of the host

lattice (2 200°K). The only lattice phonons which can part—

icipate in relaxing the local mode are those out in the

"tail" of the phonon distribution, i.e., those for which

(h/k)m>0D. When this restriction is taken into account,

(2.38) may be approximated by

r
-
t
l
l
—
’

590/2T e‘90/2T + 1 . (2.39)0:

0

+

As a further simplification, we shall neglect the exponen—

tials in (2.39) as they are small compared to unity, since in

our measurements T<150°K. Then for the temperature range

13
of interest, Klemens obtains

2

%- = 32%— (2.u0)

° Mv

which is independent of temperature. At this point it is

clear that the Debye approximation (2.5) for the density of

phonon states is not valid for the lattice phonons involved

in the local mode process, and that for a serious quanti-
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tative calculation we should need a more realistic model.

We can, however, draw some significant qualitative conclu-

sions using a "smeared" Debye spectrum, i.e., one for which

there are a small number of available states above th.

We View the overall spin-lattice relaxation via local-

ized modes as a two-step process in which the spin relaxes

to the local mode, and then the local mode gives up its energy

to the lattice. There is a one—to—one correspondence between

every final state in the sum (2.38) and the final state in

the overall process, since the spin energy is negligible when

compared with the phonon energies. The effective matrix

element (2.36) is the matrix element (2.38) multiplied by

[<j|U|i>/ES]. In order to calculate the rate of change of

o, the fraction of spins in state |b>, we must consider both

the process depicted in Figure 5 and its inverse. Then

do

at °‘ 0N0<N1+ l><N2 + 1) — N1N2(No + no — 0). (2.A1)

This expression vanishes at equilibrium. If 0 deviates from

equilibrium by 60, the term 60 is proportional to

N0(N1+ N2 + l) + N1N2. (2.)42)

The term in parentheses is approximately equal to unity by

the same argument as given for (2.39). Also,

N1N2 : e—hun/kT e-hwz/kT = e-‘h(w1+w1)/kT

= e—hwo/kT 2 N0 . (2.u3)
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Hence (2.“2) becomes approximately 2N0. Thus the relaxation

rate for spins via the overall process involving local phonons

is of the form

 

  

  

  

2 ' 2

% _ 2 PM; [605%] <a|V2|b> 2 No, (2.8“)

LM Mv ES

or

% : §_§ <alV2|b> 2 e-GO/T , (2.“5)

LM ES

where the coefficient B is temperature independent, and we

have used the fact that eo/T is sufficiently great in our

measurements to permit setting No 2 e_e°/T. As noted pre—

viously, for a Kramers system the electron matrix element

in (2.A5) vanishes for zero—order states |a>, |b>. If we

allow admixture of higher lying states by the magnetic

dipole—magnetic field interaction, the result for a Kramers

system is

 

H
I
P

<d|u|b><a|V2|d> 2 e'GO/T (2.46)

 

 

Anisotropy of Relaxation Time
 

We now discuss possible dependence of Il on the orienta—

tion of the applied magnetic field H, for a Kramers ion in

a crystal field of uniaxial symmetry. The relevant parts

of the theoretical relaxation rates for the direct process,
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the various Raman processes, the Orbach process, the driven

mode process, and the local mode process are summarized

below:

% a |<d|fi.fi|b><a|vl|d>|2 (Acd)‘2 T <2.u7)

D

1 a +0 2 -2 7
?R |<d|u fi|b><a|v2|d>| (Acd) T J6 (2.u8)

1 ' 2 -“?h a |<a|Vl|c><c|V1|b>| (Acd) T9J8 (2.”9)

1 ... ' 2 _u 5.
?fi |<a|Vl|c><c|Vl|b>| (Acd) T J“ (2.50)

1 _ _

% a |<a|Vl|c><c|Vl|b>|2 (Acd) A e A/T (2.51)

Orb

' _ .

% a |<a|V1|c><c|Vl|b>l2 (Acd) u {T dep } (2#52)
DM

% . |<d|fi°fi|b><a|V2|b>|2 (Acd>“2 e'9°/T (2.53)
M

The only anisotropy considered here is that due to electron

matrix elements. That is, all matrix elements of phonon

operators are assumed to be isotropic, which is equivalent

to assuming the velocity of sound is independent of direc-

tion in the lattice.

Anisotropy of T in Kramers systems may be attributed

l

to the admixture interaction fi'fi invoked in (2.18) and (2.19)

to give nonvanishing matrix elements of the orbit—lattice

Hamiltonian (2.16). To facilitate the quantitative deriva-

tion of this result we shall employ the alternative notation
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in Figure 3. That is, the states formerly referred to as

|a>, |b>, |c>, and |d> shall now be called I-%r>, |+gr>,

|—%t> and |+gt>, respectively. This notation will empha-

size the fact that states such as |ikr> are time conjugates

of one another and are composed of states of half—integral

quantum numbers. As stated earlier, this leads to

<—5r|Vl|%r> = O = <—5r|V2|%r>. The 3-H interaction is used

to admix higher-lying Kramers doublets such as |i%t> into the

ground doublet. The resulting states, expressed in the new

notation, are

 

 

|—%r>' = |—%r> + H° _l Ii%t> (2.5“)

t

+

|+%r>' = |+%r> + H <:gtiu +gr> |i%t> (2-55)
t

The magnetic dipole moment operator 3 is proportional

to an angular momentum operator, so that if <gt|fi|gr> # 0,

then <%t|fi|—%r> = O. This follows because r is an odd in—

teger and K can at most connect states differing in m value

by :1. Hence if

 

 

_; + _;

|-%r>' = |—%r> — fi~ < 22L3i2r> |—%t>, (2.56)

t

then +

1/ '/

|+%r>' = |+%r> — H- <+2ZIulflr> |+%t> . (2.57)

We take the crystallographic axis as the z—direction, and

decompose K into uz and HL' Consider the matrix element
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A

<—%t|p|—%r> = <-gt|uZ|—%r> eZ + <—5t|uL|—%r> éL , (2.58)

where éZ and 6L are unit vectors parallel and perpendicular

to the z axis, respectively. By use of the following iden—

tities,

l%r> (2.59)<-5t|uZI-%r> = -<%t|u

and

«mm—1m = <1/.t|u,|1/.r>, (2.60)

which follow from the properties of angular momentum opera-

tors,l8 the admixed wavefunctions (2.56) and (2.57) become

|—%r>' |-%r> + % [<%t|uZ|%r>cos¢-<%tlul|%r>Sin¢]I-%t> (2-61)

t

|+%r>' |+gr> — %£[<%t|uz %r>cos¢+<%t|uL|%r>sin¢]l%t> (2.62)

where o is the angle the external field makes with the

z axis.

From the properties of angular momentum operators,

<%t|uZ|%r> and <%t|uL|%r> cannot both be different from

zero. Consider first the case when <%t|uzl%r> # 0. Then

(2.62) and (2.63) reduce to

|—%r>' = |-gr> + §%9§9<gt|uz|gr> |—%t> (2.63)

t

|+%r>' = |+%r> — E29§9<%tluyl%r> Igt) - (2'6“)

At
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The matrix element of the appropriate part of the linear

strain term of the orbit-lattice interaction (2.16) between

the new states equals, to first order in H,

<—%r|Vl|%r>' = —————<%t|u %r>{<—%t|V %r>—<-EPIV1|%t>}. (2.65)1|

Since the terms in the curly brackets must each be invariant

under time reversal, we have

; y x y ;
<—2r|V1|%t> = (-l)2r+2t<%r|Vl|-%t> = (—1)2t+2r<—gt|vl|%r>. (2.66)

But for Kramers systems r is odd and kt = %r under the assump—

tion <%t|uzl%r> # 0. Hence

< 1 1 v _ 2HCOS¢ 1 1 1 1
_2rlvllér> _ ——K———<ét|uZ|6r><—firlvl|ét>. (2.67)

t

The other possibility, <gt|hL|gr> g o, by exactly the same

sort of reasoning, leads to

-2Hsin¢
At <gt|HL|gr><—%r|V ét>. (2.68)<—%r|Vl|%r>' = l|1

We note that in practice there exist excited Kramers doub-

lets which have only matrix elements of “z with the ground

doublet |i%r>, and other excited Kramers doublets which have

only matrix elements of uL with the ground doublet. These

matrix elements may be considerably different in magnitude,

and, in addition, the splitting A of the two doublets may

be different. Therefore, from (2.47), (2.67) and (2.68),

we see that the direct process relaxation time may be strong-

ly dependent on the orientation of the external magnetic
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field H.

Such anisotropy is not confined to the direct process,

for the angle dependence arose from the admixture of excited

Kramers doublets into the ground state by the magnetic field.

Hence this anisotropy is to be expected for any of the

processes in which the admixture has been invoked. In par—

7
ticular, we mention the T Raman process for Kramers systems,

and the local—mode process, in addition to the direct process.

A second important feature of the anisotropy discussed

above is that the form of the angle dependence is determined

by matrix elements of the admixture interaction 3-H, and is

independent of the actual type of relaxation process under

consideration. For example, if a Kramers system displays

both a direct process and a local—mode process, then the

ratio TlH/Tli is expected to be the same for both processes,

where T1“ and TlL are the relaxation times when HIIZ and

H1.Z, respectively.

The processes described by (2.“9), (2.50), (2.51),

and (2.52) contain matrix elements of the form

—A
'

|<a|Vl|c><c|Vl|b>|2(Acd) (2.69)

Such terms will be anisotropic only if the splitting A

between the ground doublet and excited doublet is itself

a function of magnetic field orientation.





III. EXPERIMENTAL APPARATUS AND TECHNIQUES

General Description
 

Most of the data to be reported herein were obtained

with the spin echo apparatus and right circular cylinder

microwave cavity configuration described by Vieth.3“

Figure 6 depicts schematically the cylindrical microwave

cavity and associated apparatus for maintaining and meas-

uring temperature. The bifilar manganin heater coil was

used to regulate temperatures between A.2°K and 80°K (with

liquid helium below the cavity), or above 78°K (with liquid

nitrogen below the cavity). The samples were mounted at

the center of the cavity in a styrofoam block. A thermo-

couple made from gold 0.02% iron and chromel passed through

the center of the bottom of the cavity and was secured with

Apiezon N grease inside a small hole drilled through the

sample. The other end of each thermocouple wire was spot—

welded to #36 copper wire, both junctions being far enough

below the cavity to be in contact with the cryogenic liquid

throughout a set of measurements. The thermocouple emf

was monitored with a Leeds—Northrop K-3 potentiometer.

5 againstThe temperature was obtained from a calibration,

a platinum resistance thermometer, of sample thermocouples

from each end of the spool of gold .02% iron wire. As a

38
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further check, we calibrated our particular thermocouple

in situ by replacing the sample with a Honeywell germanium

resistance thermometer. For T > 10°K the two calibrations

are in good agreement, and for T < 10°K the platinum re-

sistance thermometer has very poor temperature resolution

compared to the germanium resistor, so we used the calibra—

tion based on the latter. Some of the early measurements

above 78°K were made with a copper—constantan thermocouple,

and results obtained were in good agreement with the sub—

sequent data. Temperatures below A.2°K were obtained by

raising the liquid helium level above the cavity (for better

thermal contact between helium and sample), and pumping on

the helium with a Kinney vacuum pump at rates up to

230 cu.ft./min. Temperatures down to l.l°K (as determined

by the helium vapor pressure) were obtained in this manner.

Spin Echo Techniques
 

For temperatures above 200K we used the conventional

3A
(w/2,w/2,n) pulse sequence described by Vieth for produc—

936

tion of electron spin echoes. At lower temperatures,

where r > 100 msec, we found that cross relaxation effects
1

dominated r1 effects to such an extent that this pulse

sequence was not usable. Instead, we employed a variation

of the "picket" technique23 in which the initial n/2 pulse

is replaced by a string of pulses. The basic idea of the
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picket technique is that the total time during which power

is applied to the system is long, so that even if some energy

from one pulse is lost by cross relaxation the resonance

transition will be pumped many times. The result is that

the cross—relaxation transitions are well saturated, so that

no more energy is lost by such mechanisms, and the system

returns to equilibrium in a time characteristic of the spin-

lattice interaction rather than cross relaxation inter—

actions.

Vacuum Can Cryostat
 

As will be discussed more thoroughly later, some of our

low temperature data seemed to imply that the thermocouple

junction at the sample in Figure 6 was being cooled by con—

duction to the helium bath, so that the temperature of the

sample was greater than that of the thermocouple junction.

A vacuum can cryostat (Figure 7) was constructed to test

these ideas. In this apparatus the temperature sensor,

a germanium resistance thermometer, was embedded into the

wall of a brass TE rectangular microwave cavity around
101

which a six turn bifilar manganin heater coil was wound.

The sample was attached to the inner wall of the cavity

with Apiezon N grease and the remainder of the cavity was

filled with styrofoam to hold the sample in place.



 
 



  

Figure 7.
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Vacuum can cryostat (left), showing the heater

leads wrapped around a brass rod in thermal con-

tact with lid of can. The brass can, normally

soft soldered to the lid has been removed.

At right is a cutaway View of the rectangular

cavity, showing placement of sample with re-

spect to the germanium resistance thermometer.
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Operation of the apparatus is as follows:

1) Evacuate the can to a pressure of about 10‘5 mm Hg.

2) Precool to liquid nitrogen temperature.

3) Introduce helium exchange gas into the can at a

pressure of about 2.5 mm Hg.

4) Transfer liquid helium into the dewar.

5) When the germanium resistance thermometer indicates

the cavity has cooled to A.2°K, remove the ex—

change gas. We were able to pump the exchange gas

pressure down below 10p without observing any

temperature change, and therefore we conclude that

any heat leak into the cryostat is minimal.

By applying current to the heater we were able to control

the temperature very well between “.2 and l5°K.

Crystal Growing
 

Alkali halide crystals are normally grown from the

melt, but the substitutional Cr(CN)5No3‘ complex used in

our experiments was not stable at temperatures above 120°C,

so all samples were grown by evaporation of aqueous solu-

tions. Most alkali halides are difficult to grow from water

solution. We were able to grow only KBr and KCl crystals

large enough for our experiments, since we needed samples

approximately 6 mm on a side.

Most crystals used in the measurements were grown at
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atmospheric pressure and a temperature of 10:200. A few

were grown at 211200. Various concentrations of the para-

magnetic impurity were used, in order to obtain sufficient

signal strength at high temperatures and to reduce cross

relaxation at low temperatures. Solutions containing

0.001, 0.01, 0.1, and 1.0 mole percent of K3[Cr(CN)5NO]

in KBr and KCl were used.

Chemical analysis showed that crystals grown from the

0.001 mole percent KBr solution were about 20 times as

concentrated as the solution itself. Because the substi—

tutional complex was yellow, it was possible to get a quali-

tative idea of the concentration from the shade of yellow

of a particular crystal, and nearly every KBr crystal appeared

more concentrated than the solution from which it was grown.

The coloring of any particular KBr crystal appeared homo-

geneous, indicating there were no appreciable concentra—

tion gradients of the Cr(CN)5N03- complex in KBr.

Almost every KCl crystal, on the other hand, had a

yellowish spot at the center, and many crystals had visible

concentration gradients. We were unable to obtain a sat—

isfactory KCl crystal of intermediate concentration, so our

KCl measurements were confined to the highest (>25°K) and

lowest (<A.2°K) temperatures.

Optically, the samples were fairly transparent and

neither the KBr nor KCl showed visible signs of trapped

water.





IV. SUMMARY AND IMPLICATION

OF PREVIOUS RESULTS

ESR Spectrum
 

Single crystals of KBr and K01 with substitutional

K3[Cr(CN)5NO]were grown from aqueous solution. The com-

plex Cr(CN)5NO3— goes into the alkali halide lattices as

a unit, with the Cr+ replacing a K+ and each of the CN-

and NO+ groups replacing the appropriate halide ion, so that

the Cr+ is octahedrally coordianted (Figure 1), but resides

in a crystal field of tetragonal symmetry. That the com—

plex retains its identity in KBr and KCl has been estab—

lished by ESR and IR measurements.17

The ESR spectrum of CR(CN)5N03_ in KBr and KCl has axial

symmetry, with the g“ and gL lines split into triplets by

transferred hyperfine interaction with the NlLl of the NO+.

The symmetry axis is the ON-Cr-CN axis of the complex.

The g factor is nearly isotropic with g“ = 1.9722 and

gL = 2.00MB in KBr, and g“ = 1.9722 and gl = 2.00AA in KCl.

N1“ hyperfine splitting constants (in gauss) are An = 2.89

and Al = 7.10 in KBr, and A“ = 2.Al and AL = 7.10 in KCl.

During measurement of the ESR spectra, Kuska and Rogers

observed that more microwave power was needed to saturate

the gl.transitions than to saturate the g“ transitions,

45
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suggesting that the relaxation times of the two might be

different.

Infrared and Optical Spectra
 

The Debye temperatures of KBr and KCl shall be taken

l These values indicateas 170°K and 2300K, respectively.

that we should not expect any relaxation process which re-

quires lattice phonons having energies which correspond to

temperatures much higher than 3000K.

On the basis of optical and infrared spectra, Manoharan19

has shown that the splitting A between the ground state
t

Kramers doublet and the first excited doublet of

1. Now 1 cm-1Cr(CN)5No3‘ is approximately 12,600 cm'

: 1.UA°K, so this corresponds to a temperature of 18,200°K.

Therefore, we discard the Orbach process (2.33) and the T5

Raman process (2.31) of Orbach and Blume, since these pro—

cesses require that an excited doublet lie close to the

ground state.

Far-infrared spectra of Cr(CN)5No3’ in KBr and KCl

yield the results summarized in Table I, where each band

is labeled according to its absorption mechanism (e.g., Cr-

CN stretch represents the vibration along the Cr—CN band).

The presence of strong Cr-CN stretch bands near A00 cm-l

makes this complex an ideal candidate for a local mode

relaxation process, for the frequency is low enough to
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satisfy mo = ml + w2, and distortion of the Cr—CN bond should

be very effective in modulating the crystal field at the

Cr+ site. The IR frequencies of Cr(CN)5No3‘ in KBr and

KCl lattices are not markedly different from the corres-

ponding values measured for K3Cr(CN)5NO in a Nujol mull

(Table I). In addition to the ESR spectrum, this is further

evidence that the Cr(CN)5NO3_ complex remains intact in

the lattices.
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Table I. Effect of lattice on IR frequencies of Cr(CN)5NO3_

 

 

 

Stretching Frequencies (in cm-l)

Host N—O C-N Cr-NO Cr-CN

Mull8 1630 vs 2120 s 616 m 428 s

2073 VW 397 s

346 s

305 w

291 W

17
KBr 1656 s 2101 s 434

1634 s 2123 w 401

350

17
KCl 1707 S 2103 S 428

1685 s 2112 m 397

351

347

 

Abbreviations: 8, strong; m, medium; w, weak; v, very.





V. RESULTS AND CONCLUSIONS

General Considerations
 

Before a discussion of individual results for the

electron spin—lattice relaxation of Cr(CN)5No3‘ in KBr

and KCl, some general features common to both cases will

be presented. From the fact that our crystals exhibited

ESR spectra similar to the published results, we conclude

that the complex retained its identity in the lattices.

All our relaxation measurements were made with the spin

echo spectrometer operating at a microwave frequency of

approximately 9.4 GHz. Analysis of the data followed the

h35 except that insteadsame procedure as described by Viet

of measuring the spin echo amplitudes from photographs of

oscilloscope traces, we visually determined the amplitudes

directly from the oscilloscope by the use of a calibrated

grid over the face of the cathode ray tube.

At T = 78°K all three lines of the g” hyperfine triplet

had the same relaxation time which was twice that of the Tl

common to the three gL lines. At 4.2°K, any variation of

T among the lines of a particular triplet was attributed
l

to effects, i.e., diffusion of energy from one com-
Tl2

ponent of the triplet into the other components. The center

line of each triplet was used for determining the temperature

49
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dependence of the relaxation time. Hence, for brevity,

we shall refer to "the g” line" or "the g‘L line", meaning

the central component of the appropriate triplet.

For T < 5°K and for T > 600K, T for the gll line is
1

about twice that for the gi line. At any particular inter—

mediate temperature both lines have the same relaxation

time. The estimated error in the measured values is 10%.

Relaxation Results —— KBr
 

The results of our measurements of T1 as a function

of T for the g” and gL lines of Cr(CN)5NO3_ in KBr are shown

in Figure 8, the data being tabulated in Appendix I. The

first striking feature is that 1 depends on the orienta—
1

tion of the external magnetic field. That is, the El

line relaxes faster than the g” line, except at intermediate

temperatures.

As was shown in Chapter II, a variety of functional

forms for the temperature dependence of I may be expected.
1

The curves in Figure 8 represent the best fits (in the least

squares sense) of the function

i = AT + BT9J8[l19] + Ce'575/T (5.1)
T1 T

to the data for the g” line and the EL line, where J8(x)

is as defined in (2.23). The resultant A, B, and C values

appear in Table II. These fits were obtained with the
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Figure 8. Data for g" (a) and 5l (+) lines in KBr, with

fits to % = AT + BT9J8(170/T) + c exp(—575/T)
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Table II. Least squares fit

+ C exp(—575/T) to

of % = AT + BT9J8(170/T)

relaxation of Cr(CN)5N03‘ in KBr

 

Line A B C

 

g“ 0.112i0.006 (3.67:0.

3L O.l82i0.007 (4.23i0.

16) x 10‘15 (3.32:0.56) x 106

16) x 10‘15 (2.66:0.11) x 107
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MSU Control Data 3600 computer, using the 3600 Fortran pro—

gram TOWPLOT, listed in Appendix III.

Discussion -— KBr
 

We shall now attempt to justify the particular func-

tional form (5.1) chosen for temperature dependence of T1.

As was pointed out in Chapter IV, the Orbach process (2.33)

and the Orbach and Blume process (2.31) can be discarded

on the basis of the energy level assignments of Manoharan.19

The direct process (2.20) is dominant at low tempera-

tures (Figure 8). It has been shown in Chapter II that the

current theory allows for anisotrOpy of the direct process

relaxation rate, and Figure 8 indicates that in the temp—

erature range 1 < T < 50K, the T1 values for the g” and

51 lines differ by a factor of two.

The theory predicts that the Raman relaxation rate

should have the form

2
% a T , for T > 9/2. (5.2)

But for T > 900K, T is a much more rapidly varying func—
1

tion of temperature than given by (5.2). The only allowed

process which satisfies this criterion is the local mode

process. In Figures 9 and 10 we have replotted the data

for the 51 and gH lines, respectively. In addition, each

figure has a least squares computer fit to the direct and
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T9J8 Raman processes. That is, the fits have the same form

as those used in Figure 8 except that the exponential term

(i.e., the local mode process) is deleted. For both the

gll and 5L lines the fit is clearly better when the local

mode process is included. Anisotropy is observed in the

local mode process, as in the direct process. At the very

highest temperatures for which we have data on both lines,

the ratio of T values for the g‘I and gL lines is slightly
1

greater than the factor of two observed in the direct

process, but the qualitative features of the theory discussed

in Chapter II are borne out very well.

The empirical value of 00 in (5.1) was obtained by

fitting

10
% = dT + BT9J8[—%—]-+ ye

l

'e°/T (5.3)

for various 00 values, and observing which value gave the

minimum standard error of fit, i.e., the value of 00 for

which

.1.
T

I
I
M
Z

 

l 2

1 1calcii l .obs.

1

was minimum, where W1 is a weighting factor determined as

in Appendix IV, and N is the number of data points. For

the 31 line, 60 = 550i25°K gave the best fit and for the

g" line the best value of 90 was 600:500K. Neither of

these values is exactly equal to one of the reported
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infrared frequencies (Table II), but in fact the three

IR lines overlap and form a broad band.20 Therefore, for

convenience in comparing the A, B and C values for the gll

and g‘L lines, we feel justified in using 00 = 575°K in (5.1).

Now the question of how to account for the data at

intermediate temperatures (10 < T < 500K) arises. We dis—

card the driven-mode process temporarily, since there is

no spectroscopic evidence for resonant modes of the

Cr(CN)5NO3— which lie within the Debye spectrum of KBr.

This point will be discussed more fully later. Neglecting

the driven—mode process, we are left with two possible

Raman processes, (2.24) and (2.30), which have temperature

dependences T7 9J6 and T J8 respectively. We choose the lat-

ter for a number of reasons. In the first place, T1 is

isotropic for 10 < T < 500K, whereas the theoretical dis-

cussion shows that the T7J6 process should exhibit the same

form of anisotrOpy as the direct process. Also, if the

local mode process (2.46) is written in the form

 

  

 

  

3 _

§ 2 mo hm; (ES>‘202 e 9°/T , (5.5)
L Mv

where

<d|fi-fi|b><a|v2|d>

0 E A , (5.6)

cd

then the Raman process (2.24) becomes

1 =————9 M 7.1 9—02 (5 7)
TR 3210i?— 6T ° °

n p v
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From the computer fit (Table II) we have for the g_L line,

i a 2.66 x 107 e‘9°/T . (5.8)

TL

Comparing (5.5) and (5.8) leads to

02 z 2.21 x 10"33 , (5.9)

where we have used v = 3.56 x 105cm/sec,10 p = 2.75gm/cm3,

M = 1/2(MBr + MK) 2 10—22gm, and mo = 400cm‘l. Substituting

(5.9) into (5.7), we obtain

1 —90 kT 7 0
¥ 2 2.50 x 10 E§_] J6[—] . (5.10).

R

Throughout the temperature range 10 < T < 500K, the relaxa—

tion rates predicted by (5.10) are 100 to 1000 times

greater than the observed values. Hence we conclude

again that the T7J6 Raman process is not operative in the

system under study, for if it were present the relaxation

rates should be much greater than they are observed to be

at intermediate temperatures.

As pointed out in Chapter II, the T9J8 Raman process

is not expected to exhibit any anisotropy unless the

splittings A between the ground doublet and excited doub—

lets are dependent on the orientation of H. Since the split—

tings A are thousands of cm-1 for all levels, the effect

of H upon them is expected to be negligible. This is veri—

fied by the observed isotropy of T for 10 < T < 500K.
1
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In the temperature range 7 < T < 200K, the theoreti-

cal relaxation rate (5.1) does not fit the data nearly so

well as at other temperatures. When this anomaly was first

observed it was tentatively explained in terms of poor thermal

contact between the sample and thermocouple, the idea

being that the thermocouple junction (at the sample) was

cooled by conduction along the thermocouple wires running

to the helium bath (Figure 6). If this were the case,

then the sample temperature would be greater than that indi—

cated by the thermocouple. This, indeed, is consistent with

the data obtained (Figure 8).

Such an effect might also be due to thermal gradients

in the crystal. The slow relaxation rates of the

Cr(CN)5N03_ at low temperatures require crystals having

low concentrations of the paramagnetic impurity in order

to reduce T effects. Hence crystals of relatively large
12

volume are necessary in order to obtain sufficient signal

amplitude at the lower temperatures. The right circular

cylinder cavity required a crystal which was =6 mm on a

side. Such a large crystal was deemed likely to contain

thermal gradients. In particular, the surface of the crys—

tal would be hotter than the interior since heat was

applied to the cavity by the manganin heater above the

cavity (Figure 6).

The vacuum can cryostat (Figure 7), was constructed to

test these ideas. The thermal path from heater to sample
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for this configuration is compared in Figure 11 with that

for the thermocouple and cylindrical cavity. The sample

is suspended at the center of the cylindrical cavity by

a block of styrofoam, whereas in the rectangular one the

sample and thermometer are heat sunk to the relatively

massive brass cavity. The most important point is that

from the geometry we can conclude that the sample temp—

erature is never likely to be greater than the ther-

mometer temperature whenever power is being applied to the

heater on the rectangular cavity. Hence the only type of

anomaly we can envision from such apparatus is a shift

opposite to that for the cylindrical cavity, i.e., the

measured temperature for a given T might appear higher
1

than the actual temperature, but is not likely to appear

lower. But the results obtained from the two different

configurations agree, within experimental error. This

leads to the conclusion that the anomalous T dependence

of T for 7 < T < 20°K is a property of the sample and not
1

merely a thermal effect in either piece of apparatus, since

the considerations outlined above indicate that the results

should be very different in the two cases if the effect

were only a thermal one.

At present we do not feel that a satisfactory explana-

tion of the temperature dependence of T in the range
1

7 < T < 20°K can be given. The only speculation we can

offer is that the Cr(CN)5NO3— complex may have some very
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low frequency bending modes. If so, then we might have

the driven-mode process (2.35). Explicit test of this

requires knowledge of mi, the frequency of the appropriate

mode of the complex. Addition of a driven—mode process

did not improve the computer fit unless hwi was less than

20 cm‘l. For 0r(CN)5N03’ in alkali halides, infrared meas-

urements17 have been made down to energies only as low as

250 cm-1. However, Gans8 et al report a series of IR

spectra of K3Cr(CN)5NO and [(CH3)uN3] [Cr(CN)5NO] down to

80 cm_l. The lowest energy absorption bands they observed

were 126 cm"1 in the latter. When compared with the Debye

l and 160 cm.1 for KBr and KCl, respect—energies of 118 cm-

ively, these bending mode energies are too high for the

driven-mode process to fit the data significantly better

than does equation (5.1). Therefore, until more IR data

are available, the applicability of the driven-mode process

to the case at hand must remain an open question.

Results and Discussion -— KCl
 

The qualitative results for the relaxation of

Cr(CN)5NO3— in KCl are similar to those in KBr. Data for

the g" and gL lines are tabulated in Appendix II and are

plotted in Figure 12 along with least squares fits of

l -6lO/T

T1

_ 9 230
-AT+BT J8[—,IT-] + C8 (5.11)
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to each set of data. The resultant A, B and C values appear

in Table III. The quantity 00 = 610°K in (5.11) is a com—

promise between 00 = 630i25°K for the gL line and

00 590i50°K for the g” line. Our chosen value of

90 610°K in (5.11) falls within the Cr—CN stretching

band (Table I).

There is considerable scatter in the low temperature

data, due to the small sizes of samples available, but

anisotropy of the direct process was observed. Our ina—

bility to grow sufficiently large low—concentration KCl

crystals prevented our obtaining data in the range

4.2 < T < 250K. This precluded looking for the anomaly

of the T dependence, observed in KBr. An isotropic Raman

process is observed in KCl, as in KBr. From Figures 13 and

14 we see that the direct and Raman processes alone do not

adequately describe the data for T > 650K, whereas Figure 12

indicates that the local mode process fits the high temper-

ature data very well.
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Table III. Least squares fit of % = AT + BT9J8(230/T)

l

+ Ce-610/T to relaxation of Cr(CN)5NO3- in KCl.

Line A B C

6 + ‘17 + L; 6
g” . 35_.O3O (6.29i.2l)XlO (6.12_.3 )XlO

1.39:.07 (7.54i.28)x10"l7 (2.01:.62)x107
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Figure 13. Data for g, line in KCl, with fit to

1 AT +BT9J8(230/T)
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Summary

Electron spin—lattice relaxation times T1 of Cr(CN)5NO3—

substitutional in KBr and K01 have been measured for

1 < T < 1500K. Spin echo techniques employing either

picket or single-pulse saturation methods were used.

From the temperature dependence of the observed Tl values,

we conclude that at least three relaxation mechanisms

are operative: an anisotropic direct process at T < 50K,

an isotropic Raman process at intermediate temperatures,

and an anisotropic local mode process at T > 650K.

The functional form of the relaxation rate is

l = AT + BT9J8(e/T) + c exp(—00/T), where e is the
T

Dibye temperature and was taken as 170°K for KBr and 230°K

for KCl. Empirical values of A, B, C, and 00 were deter-

mined by least squares computer analysis. Published

energy level assignments preclude the possibility of an

Orbach process. Therefore, since the parameter 00 is

575i30°K for KBr and 610i30°K for KCl, in agreement with

published Cr-CN stretch frequencies, we conclude that

the exponential process occurs through the interaction

of lattice phonons with vibrational modes localized in

the Cr(CN)5NO3—. An anomaly in the T dependence of T1

for KBr has been tentatively explained as a driven-mode

process, in which relaxation is effected by low frequency

(<20 cmfll) bending modes of the complex.
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GPERPENDICULAR LINE IN KBR

EXPERIMENTAL VALUES OF T1 VS Ta ALONG WITH I1 VALUtS CALCULATED FROM

LFAST SQUARES FIT 10 FQUATION (5.1).

T T1(OBS) T1(CALC) REL WT DATE

78.00 3.200-005 3.5/5-005 0.0000000014 02/08/66

86.50 2.200-005 2.056r005 0.000000000/ 02/08/66

86.50 2.000-005 2.036-005 0.0000000005 02/08/66

89.00 1.650-005 1.746-005 0.0000000004 02/08/66

89.00 1.500-005 1.746-005 0.0000000006 02/08/66

94.00 1.500-005 1.306-005 0.0000000002 02/08/66

94.00 1.300-005 1.306-005 0.0000000002 02/08/66

97.70 1.150-005 1.069.005 0.0000000002 02/08/66

97.70 1.150-005 1.069-005 0.0000000002 02/08/66

78.00 3.000-005 3.575-005 0.0000000012 12/08/65

78.00 3.100-005 3.575-005 0.0000000016 12/08/65

78.00 3.200-005 3.575-005 0.0000000014 12/08/65

78.00 3.200-005 3.5/5-005 0.0000000014 12/08/65

86.70 1.900-005 2.011-005 0.0000000005 12/08/65

94.30 1.150-005 1.285-005 0.0000000002 12/08/65

94.50 1.150-005 1.2/0-005 0.0000000002 12/08/65

99.30 9.600-006 9.832-006 0.0000000001 12/08/65

102.50 8.600-006 8.374-006 0.0000000001 12/08/65

98.50 1.060-005 1.025-005 0.0000000002 12108/65

4.20 1.500+000 1.309+000 3,032/515338 11/05/65

4.20 1,400+000 1.309+000 2.6418635841 11/05/65

3.51 1.850+000 .567+000 4.615151/511 11/05/65

3.51 1,900+000 1.567+000 4.8658810258 11/05/65

2.46 2.200+000 2.236t000 6,525/850915 11/05/65

2.13 2.250+000 2.582+000 6.8266909010 11/05/65

4.20 1,500+000 1.309+000 3.0627516638 11/05/65

6.20 6.600-001 8.852-001 0.5871406582 11/05/65

8.20 2.600v001 6.581-001 0.0911176290 11/05/65

8.40 1.900-001 6.398-001 0.0486588106 11/05/65

12.60 1.600-001 2.814.001 0.0227796622 '11/05/65

4.20 1.650+000 1.309+000 3.6696291159 11/03/65

4.20 1,570+000 1.309+000 3.322412/855 11/03/65

3.58 1.800+000 1.536+000 4.3671619205 11/03/65

3.21 2,200+000 1.713+000 6.5257850915 11/03/65

3.44 2,000+000 1.599+000 5.3915579208 11/02/65

3.44 1,550+000 1.599+000 3.2666044797 11/02/65

2.95 2,600+000 1.864+000 9.1117628960 11/02/65

2.29 2.500+000 9,402+000 7.1606656552 11/02/65

1.98 2.650+000 2.7]8+000 9.4695538898 11/02/65

45.80 5.100-004 4.121-004 0.0000006506 10/15/65

46.10 3.750-004 4.020-004 0.0000001895 10/15/65

50.40 3.100-004 2.851-004 0.0000001295 10/15/65

50.40 3.250-004 2.851-004 0.0000001424 10/15/65

53.80 1.800-004 2.193-004 0.0000000437 10/15/65

54.00 1.750-004 2.160-004 090000000415 10/15/65

59.20 1.600-004 1.452-004 0.0000000645 1U/15/65

58.80 1.350~004 1.497-004 0.0000000246 10/15/65



 

 

 

 



63.20

63.00

72.20

72.20

75.60

76.40

76.50

79.90

79.80

77.50

77.30

73.80

73.50

70.50

4.20

17.60

17.60

19.20

19.50

20.60

20.60

22.80

22.80

24.80

24.80

26.60

26.60

28.20

28.20

29.70

29.70

31.80

32.00

33.40

33.40

38.20

38.20

42.50

42.30

46.60

46.60

46.20

50.30

50.30

56.60

56.60

60.10

59.90

64.00

63.80

68.60

68.60

78.00

78.00

1.060.004

9.700-005

5.400-005

5.700-005

4.600-005

4.700-005

4.000-005

2.550~005

2.750-005

3.100-005

3.300-005

5.200-005

4.500-005

6.200-005

7.900-001

2.800-002

2.000-002

1.700-002

1.800-002

1.450-002

1.600-002

9.000-003

8.500-003

6.000-003

5.700-003

4.250-003

5.750-003

3.200-003

2.800-003

2.500-003

2.700-003

2.000-003

2.000-003

1.4502003

1.550-003

6.500-004

5.400-004

6.500-004

6.700-004

3.700-004

6.000-004

4.000-004

3.000-004

3.200-004

1.600-004

1.700-004

1.620-004

1.500-004

9.700-005

1.070-004

7.200'005

7.200-005

2.850-005

2.600-005
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1.070-004

1.086-004

5.424-005

5.4?4-005

4.2560005

4.001-005

3.973-005

3.136.
005

3.157-005

3.702-005

3.755-005

4.824-005

4.931-005

6.245-005

1.309+000

4.843-002

4.843-002

2.819-002

2.561v002

1.861-002

1.831-002

1.005-002

1.005-002

6.274~003

6.2/4-003

4.322-005

4.322-003

3.?13-003

302I3'0
05

2.496-003

7.496-003

1.815-003

1.764-003

1.458-003

1.458-003

5.579-004

5.579~004

3.858-004

3.858-004

3.987-004

2.8/3-004

2.873-004

1.771-004

1.7710004

1.3779004

1.006.004

1.022-004

7.094-005

7.094.005

3.575.005

3.575-005

0.0000000151

0.0000000127

0.0000000039

0.0000000044

0.0000000029

0.0000000050

0.0000000022

0.0000000009

0.0000000010

0.0000000016

0.DUUDUOUOIb

0,0000000036

0.0000000027

0.0000000092

0.8412178255

0.0010561454

0.0005591556

0.0003899401

0.000466/162

0.0002866908

0.0006450597

0.0001091790

0.0000976850

0.0000485240

0.000043/929

0.0000246463

0.0000445646

0.0000138024

0.00001096/5

0.0000084243

0.0000098261

0.0000056916

0.0000056916

0.0000028669

0.0000032683

0.0000002695

0.0000009511

0,0000005695

0.0000006051

0.0000001845

0.0000004852

0.0000002197

0.0000001216

0.0000001380

0.0000000345

0.0000000390

0.0000000334

0.0000000503

0.0000000127

0.0000000194

0.0000000070

0.00000000/0

0.0000000011

0.0000000009

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

1U/13/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

1U/l3/65

1U/13/65

1U/13/65

10/13/65

10/13/65

10/15/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

10/13/65

lU/13/65

10/13/65

10/13/65

0//23/64

0//23/64



 

 

 

 



80.00

85.50

89.00

94.10

98.20

102.00

102.80

105.00

107.30

110.00

111.60

114.30

123.00

128.50

135.00

141.20

145.00

150.00

150.00

79.50

79.50

70.00

75.00

79.00

79.00

87.00

94.50

99.50

106.50

113.00

113.00

121.00

127.00

4.20

4.20

4.20

3.57

3.01

3.01

2.45

2.41

1.93

1.93

1.56

1.56

6.00

5.80

8.40

8.40

8.95

9.05

10.00

11.70

13.05

3.800-005

2.500-005

1.700-005

300-005

.080-005

.000'000

.750-006

500-006

000'006

.500-006

000-006

.400-006

.000-006

.000-006

.200-006

600-006

.900-006

700-006

.300-006

.950-005

.100-005

.000-005

.300-005

.400-005

.800-005

700-005

.100-005

.400-006

.000-006

.800v006

.200-006

.300-006

.800-006

270+000

.250+000

360+000

280+000

.760+000

950+000

.000+000

.450+000

.520+000

.350+000

.700+000

850+000

.150+000

.200+000

.400-001

.700-001

.700-001

2.500-001

2.200-001

9.700-002

8.000-002

O

Q
H
v
R
J
H
F
J
D
G
N
J
A
C
N
£
>
0
<
)
‘
J
\
J
m
‘
O
H
*
H

O
O
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3.114P005

2.168-005

1.746-005

1.299-005

1.0419005

8.583-006

8.253-006

7.429-006

6.681-006

5.926-006

5.533-006

4.946-006

3.5519006

2.941-006

2.397-006

2.005-006

1.810-006

1.593-006

1.593-006

3.2239005

3.2239005

6.387e005

4.423-005

3.335-005

3.335-005

1.974.005

1.270.005

9.7319006

6.9299006

5.218.006

5.218-006

3.818-006

3.092-006

1.309+000

1.309+000

1.309+000

1.541+000

1.827+000

1.827+000

2.245+000

2,282+000

2,850+000

2.850+000

3.525+000

3.525+000

9.152-001

9.471-001

6.398-001

6.398-001

5.916-001

5.831-001

5.032-001

3.575-001

2.458-001

0.0000000019

0.0000000008

0,0000000004

0.0000000002

0.0000000002

0.0000000001

0.0000000001

090000000001

0.0000000001

0.0000000001

0.0000000000

0.0000000000

0.0000000000

0.00U0000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000012

0.0000000013

0.0000000049

0.0000000025

0.0000000008

0.0000000011

0.0000000004

0.0000000002

0.0000000001

0.000000U000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

2.1740109450

2.1060773121

2.4930563853

2.2083821268

4.1/52224586

5.125349/542

5.3915579268

8.090/066138

8.559637364/

7.4437196626

9.8261143216

10.9482323148

1.7825858396

1.94U9908537

0.0776384341

0.0389540060

0.0962611432

0.0842430926

0.0652678509

0.0126922921

0.0066264927

0//24/64

0//24/64

0//24/64

07/24/64

07/24/64

0//24/64

0//24/64

07/24/64

07/24/64

07/24/64

07/24/64

0//24/64

01/24/64

07/24/64

0//24/64

07/24/64

0//24/64

0//24/64

O/l24/64

0//27/64

0//27/64

0//30/64

0//30/64

09/30/64

09/30/64

09/30/64

09/30/64

09/30/64

09/30/64

09/60/64

09/30/64

09/60/64

09/30/64

09/21/66

06/21/66

09/21/66

06/21/66

06/21/66

06/21/66

06/21/66

00/21/66

05/21/66

06/21/66

09/21/66

09/21/66

06/21/66

06/21/66

05/21/66

00/21/66

09/21/66

06/21/66

06/21/66

06/21/66

06/21/66
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GPARALLEL LINE IN KRR

EXPERIMENTAL VALUES 0? 71 V5 T: ALONG WITH 71 VALUES CALCULATED FROM

LEAST SQUARES FIT TO EQUATION (5.1):

7 T1(OBS) 71(CALC) REL HT DATE

4.20 2.8309000 2.1246000 5.4593390386 03/21/66

4.20 2.8609000 2.1244000 5.5367755047 03/21/66

3.57 3.3009000 2.4999000 7.4232666817 03/21/66

3.57 2.8609000 9.4999000 5.5756982355 03/21/66

3.00 3.6006000 2.9749000 8.8343010822 03/21/66

1.93 4.3009000 4.6229000 12.6036755414 03/21/66

1.93 3.900.000 4.6229000 10.3680339092 03/21/66

1.56 4.5006000 6.7199000 13.8035954414 03/21/66

1.10 5.5006000 0.1109000 20.6201857827 03/21/66

6.00 2.3009000 1.4849000 3.6059762906 03/21/66

5.80 1.7809000 1.5359000 2.1597684838 03/21/66

7.35 8.2009001 1.2009000 0.4503475346 03/21/66

7.35 1.1009000 1.2009000 0.8248074313 03/21/66

8.10 9.4009001 1.0759000 0.6023139226 03/21/66

8.40 5.5006001 1.0239000 0.2062018578 03/21/66

8.40 6.5009001 1.0209000 0.2880009419 03/21/66

9.05 4.4009001 9.3059001 0.1319691890 03/21/66

9.05 5.2009001 9.3059001 0.1843206028 03/21/66

10.00 3.3009001 7.8889001 0.0742326688 03/21/66

10.00 3.9009001 7.8889001 0.1036803391 03/21/66

11.70 3.4009001 5.2829001 0.0787997843 03/21/66

13.00 2.2008001 0.4709001 0.0329922973 03/21/66

78.00 8.2008005 0.4519005 0.0000000046 02/08/66

78.00 8.0008005 0.4519005 0.0000000044 02/08/66

86.00 5.2009005 6.0219005 0.0000000018 02/08/66

09.00 4.8009005 9.3329005 0.0000000016 02/08/66

69.00 4.600-005 5.3329005 0.0000000014 02/08/66

94.50 3.7009005 4.3029005 0.0000000009 02/08/66

94.50 3.8009005 4.3029005 0.0000000010 02/08/66

78.00 1.0209004 0.4519005 0.0000000071 12/08/65

78.00 1.0609004 0.4519005 0.0000000077 12/08/65

78.00 9.8009005 0.4519005 0.0000000065 12/08/65

86.50 6.4000005 6.8999005 0.0000000028 12/08/65

86.00 6.0009005 6.021”005 0.0000000025 12/08/65

93.70 4.350.005 4.436'005 0.0000000013 12/08/65

93.50 4.7009005 4.4709005 0.0000000015 12/08/65

98.70 3.9009005 3.6789005 0.0000000010 12/08/65

4.20 2.4009000 2.124+000 3.9263560366 11/05/65

3.52 3.2009000 9.5349000 6.9801885096 11/05/65

3.51 3.2009000 9.5429000 6.9801885096 11/05/65

2.46 3.300.000 3.6264000 7.4232668817 11/05/65

7.00 7.1009001 1.2659000 0.3436243191 11/05/65

7.30 6.1009001 1.2099000 0.2536453266 11/05/65

9.70 3.6006001 0.3389001 0.0803430108 11/05/65

11.20 3.4009001 4.0479001 0.0707997843 11/05/65

4.20 2.3506000 9.1249000 3.7644620160 11/03/65

4.20 2.3506000 9.1244000 3.7644620160 11/03/65





3.57

3.20

45.10

45.00

46.10

50.10

50.20

54.70

54,10

58,40

58.50

63.50

63.30

67.00

67.00

72.30

72.30

76.00

75.80

30.20

00.20

77.30

77.30

74.00

73.90

70.00

67.30

14.00

14.00

15.90

15.90

16.50

17.80

17.80

19.80

19.80

19.80

21.20

21.20

22.70

72.70

24.60

24.60

26.20

25.80

32.70

32.40

32.40

35.50

34070

34.70

39.00

39000

39.00

2.780*000

3.000‘000

6.5009004

603803004

5.4000004

4.3009004

4.0009004

3.350I004

3.3009004

2.6009004

2.5009004

1.6509004

1.6009004

1.6202004

1.0502004

102903004

1.2505004

1.1205004

100305064

7.0009005

8.6003005

1.2509004

100309004

9.6008005

100305004

1.1403004

1.4505004

7.000.002

1.2008001

3.6009002

3.6005002

2.8005002

2.5000002

2.1009002

1.8009002

1.7009002

1.6009002

8.0008003

9.5000003

1.1408002

9.2009003

4.8009003

5.0000003

6.1009003

4.7009003

1.8009003

1.8009003

1.7509003

1.3009003

1.4009003

1.5009003

101“0“003

1.0000003

1.0000003
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2.4999000

7.780‘000

5.1889004

5.229'004

4.803’004

3.613'004

3.589'004

2.703”004

2.802'004

7.187'004

,9175'004

106699004

1.686'004

1.403*004

1.4039004

19°92'004

1.092'004

0.2319005

9.314.005

79681'005

7.681'005

0.7159005

H.715‘005

1.010‘004

1.015'004

1.2159004

1.382'004

993849001

9.384.001

1.120'001

1.120'001

H.349”002

qo430'002

8.430900?

9.752”002

?.752’002

9.752’002

10805"002

1.805'00?

10202'00?

1.202900?

7.618"003

70618'003

$0423"003

3.883'003

1.851’003

10929'003

1.929’003

10299'003

1.430”003

1.430’003

l.893”004

8.893°004

0.8939004

5.2681336795

6.1349313073

0.0000002880

0.0000002749

0.0000001988

0.0000001260

0.0000001091

0.0000000765

0.0000000742

0.0000000461

0.0000000426

0.0000000186

0.0000000175

0.0000000179

0.0000000075

0.0000000112

0.0000000107

0.0000000086

0.0000000072

0.0000000033

0.0000000050

0.0000000107

0.0000000072

0.0000000065

0.0000000072

0.0000000089

0.0000000143

0.0033401293

0.0098158901

0.0008834301

0.0008834301

0.0005344207

0.0004260369

0.0003006116

0.0002208575

0.0001969995

0.0001745047

0.0000436262

0.0000615197

0.0000885804

0.0000576956

0.0000157054

0.0000170415

0.0000253645

0.0000150578

0.0000022086

0.0000022086

0.0000020876

0.0000011520

0.0000013361

0.0000015337

0.0000008248

0.0000006817

0.0000006817

11/03/65

11/03/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10115/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10/15/65

10115/65

10/15/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65

10/14/65



 



46.40

46.40

50.80

50080

55.50

55.50

79.00

79.00

79.00

87.00

07.00

94.50

09.50

106.50

106.50

113.00

113.00

121.00

70.00

75.00

75.00

79.50

79.50

82.00

02.00

86.50

06.50

90.40

976.00

101.00

101.00

105.20

111.00

30.00

94.00

105.00

78.00

85.80

94.60

98.00

100.00

104.70

110.20

5.3009004

5.5000004

4.2002004

4.1009004

2.5500004

2.7508004

6.1002005

5.3000005

5.0009005

3.1002005

3.5.9.005

2.800-005

2.3809005

1.8002005

2.0009005

1.4009005

1.6009005

9.6002006

1.1”09004

9.5002005

7.0009005

7.4009005

8.0002005

6.5009005

7.400I005

4.8002005

50400’005

4.2002005

303009005

3.1009005

3.2002005

2.8003005

2.5008005

7.4009005

4.2003005

4.5002005

6.1009005

7.2009005

5.0008005

4.5002005

3.300.005

3.7000005

3.550a005
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406969004

4.696'004

3.449.004

3.4499004

9.579-004

7.579’004

8.090'005

0.090’005

0.0909005

5.780.005

4.780-005

493029005

3.572-005

?o794'005

79794.005

?0258'005

?9258'005

1.771~005

0.215.004

0.654'005

9.654’005

799177005

7.917.009

7.113’005

79113-005

50899'005

4.899-005

R9044’005

4.065'005

3.384'005

39384’005

2.921'005

9.4079005

7.748'005

4.385’005

70941”005

0.451'005

0.070"005

4.2869005

3.7740005

30503’005

2.971’005

9.471'005

0.0000001915

0.0000002062

0.0000001202

0.0000001146

0.0000000443

0.0000000516

0.0000000025

0.0000000019

0.0000000017

0.0000000007

0.0000000008

0.0000000005

0.0000000004

0.0000000002

0.0000000003

0.0000000001

0.0000000002

0.0000000001

0.0000000052

0.0000000002

0.0000000033

0.0000000037

0.0000000044

0.0000000029

0.0000000037

0.0000000016

0.0000000020

0.0000000012

0.0000000007'

0.0000000007

0.0000000007

0.0000000005

0.0000000004

0.0000000037

0.0000000012

0.0000000014

0.0000000025

0.0000000035

0.0000000017

0.0000000014

0.0000000007

0.0000000009

0.0000000009

10/14/65

t0/14/65

10/14/65

10/14/65

10/14/65

10/14/65

09/30/64

09/30/64

09/30/64

09/30/64

09/30/64

09/30/64

09/30/64

09/30/64

09/30/64

09/30/64

09/30/64

09/30/64

07/30/64

07/30/64

07/30/64

07/27/64

07/27/64

07/27/64

07/27/64

07/27/64

07/27/64

07/27/64

07/27/64

07/27/64

07/27/64

07/27/64

07/27/64

07/24/64

07/24/64

07/24/64

07/23/64

07/23/64

07/23/64

07/23/64

07/23/64

07/23/64

07/23/64
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GPERPENDICULAR LINE IN KCL

EXPERIMENTAL VALUES 0F T1 VS To

LEAST SQUARES FIT T0 EQUATION (5.9).

T

73.90

73.90

77.20

68.90

68.70

1.77

3.57

3.38

2.83

2.38

2.04

1.67

1.30

1.10

3.83

3.53

2.98

2.49

2.04

1.64

25.20

30.00

30.00

35.00

35.00

40.30

40.30

45.00

45.00

47.70

47.60

27.30

37.00

37.20

45.10

45.10

50.30

50.30

54.70

54.70

59.90

59.80

64.60

64.60

69.10

69.00

71(009)

7.0005005

7.5009005

5.5009005

9.5009005

9.2001005

5.3005001

1.0009001

1.0009001

1.5009001

206603001

300008001

6.5009001

8.2009001

7.8009001

1.5003001

1.9009001

1.3009001

1.3505001

3.6009001

3.6009001

4.9009003

1.9009003

293003003

1.2509003

1.420'003

6.6009004

6.5009004

4.6509004

400009004

3.8009004

4.0509004

2.3309003

2.730'003

1.0109003

1.0109003

4.2009004

4.3409004

3.4003004

3.6009004

3.0009004

3.350'004

2.0509004

1.9409004

1.3509004

1.430'004

8.1009005

8.6005005

T1(CALC)

6.035’005

6.035'005

4.899-005

8.364*005

8.4769005

4.051’001

2.009'001

7.122-001

795347001

3.013'001

3.515’001

4.294-001

50516'001

60519’001

10572-001

2.031'001

2.406'001

2.880’001

3.515'001

4.373*001

9.500’003

3.855’003

3.8559003

19736'003

1.736v003

8.750’004

0.750'004

8.299-004

5.299’004

40106'004

4.145’004

6.447'003

6.325'003

1.317'003

1.283'003

59248’004

8.248.004

3.272-004

34272'004

2.293'004

2.293‘004

095567004

1.568'004

1.119’004

10119-00‘

3.253’006

0.308'005

REL NT

0.0000003104

0.0000003563

0.0000001916

0.0000005717

0.0000005362

17.7940941970

0.6334672196

0.7388761649

1.4253012440

4.4405235492

5.7012049760

26.7639900255

42.5943358438

38.5401456375

1.4253012440

2.2868166625

1.0705596011

1.1544940076

8.2097351654

8.2097351654

0.0015209548

0.0002286817

0.0003351042

0.0000989793

0.0001277323

0.0000275938

0.0000267640

0.0000136971

0.0000101355

0.0000091473

0.0000103904

0.0003439030

0.0004721168

0.0000646200

0.0000646200

0.0000111744

0.0000119317

0.0000073229

0.0000082097

0.0000057012

0.0000071091

0.0000026621

0.0000023841

0.0000011545

0.0000012954

0.0000004156

0.0000004685

ALONG WITH 71 VALUES CALCULATED FROM

DATE

04/12/67

04/12/67

04/12/67

04712/67

04/12/67

04/20/66

04/20/66

04/20/66

04/20/66

04/20/66

04/20/66

04/20/66

04/20/66

04/20/66

04/06/67

04/06/67

04/06/67

04/06/67

04/06/67

04/06/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67
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72.50

72.40

79.70

78.80

78.30

78.00

77.50

79.80

82.30

88.50

95.20

98.80

77.20

77.20

87.50

87.30

87.40

86.00

85.90

84.10

84.00

91.00

91.00

92.50

92.50

94.00

94.10

94.50

94.50

96.50

96.20

99.90

102.70

103.00

103.80

104.90

94.50

97.90

98.00

101.20

101.20

105.80

105.80

107.50

107.50

109.10

110.00

110.10

112.40

112.20

112940

112.40

114.20

114.30

7.5009005

8.0009005

4.4009005

4.7009005

4.9009005

4.6009005

5.3009005

4.0009005

3.6009005

2.3002005

1.5009005

1.7009005

4.3003065

4.8009005

2.5009005

20350’005

2.4009005

2.6009005

2.8009005

2.8509005

2.7002005

2.000'005

1.9002005

1.9009005

1.8502005

1.7709005

1.7009005

1.7509005

1.9009005

1.5509005

1.5503005

1.6009005

1.3509005

102009005

1.2?09005

1.1609005

1.6009005

1.5009005

1.500P005

1.2805005

1.2308005

101‘09005

1.1408005

9.2009006

9.9009006

9.3009006

8.0009006

7.7000006

695009006

6.8009006

7.7009006

8.5009006

7.7009006

7.1008006
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6.6049005

6.6479005

4.1999005

4.4379005

4.576'005

4.6629005

49809'005

4.174'005

3.591'005

29513’005

107567005

1.466'005

4.899'005

4.899-005

206589005

296889005

2.673'005

2.8949005

209107005

3.230’005

3.249'005

2.191'005

2.191'005

9.022'005

2.022’005

1.868’005

1.859'005

1.820'005

{.820’005

1.6439005

4.668’005

1.389’005

1.216-005

10199”005

1.156’005

1.099'005

1.820'005

1.532’005

19525'005

1.305’005

1.305'005

19°56'005

1.056”005

99793'006

9.793'006

9.139'006

0.796’006

8.759’006

7.961.006

8.026'006

7.961'006

70961’006

70402-006

7.373.006

0.0000003563

0.0000004054

0.0000001226

0.0000001399

0.0000001521

0.0000001340

0.0000001779

0.0000001014

0.0000000821

0.0000000335

0.0000000143

0.0000000183

0.0000001171

0.0000001460

0.0000000396

0.0000000350

0.0000000365

0.0000000428

0.0000000497

0.0000000515

0.0000000462

0.0000000253

0.0000000229

0.0000000229

0.0000000217

0.0000000198

0.0000000183

0.0000000194

0.0000000229

0.0000000152

0.0000000152

0.0000000162

0.0000000115

0.0000000091

0.0000000094

0.0000000085

0.0000000162

0.0000000143

0.0000000143

0.0000000104

0.0000000096

0.0000000082

0.0000000082

0.0000000054

0.0000000062

0.0000000055

0.0000000041

0.0000000038

0.0000000027

0.0000000029

0.0000000038

0.0000000046

0.0000000035

0.0000000032

04/10/67

04/10/67

03/25/67

03/25/67

03/25/67

03/25/67

03/25/67

03/25/67

03/25/67

03/25/67

03/25/67

03/25/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67



 
 

 



114.30

116.10

116.10

117.80

117.80

114.50

114050

118.80

118.70

120.40

120.40

122.90

123.00

124.10

124910

125.30

125.30

125.30

127.50

127.50

128.30

128.30

129.70

129.70

131.50

131.40

131.30

131.30

127.90

127.90

131.50

131.40

133.00

133.00

134.00

154.00

135.90

135.90

136.80

137.60

187.40

140.20

140.00

142.80

142.60

144.50

144.60

147.60

147.60

149.60

152.80

152.90

154.10

154.20

7.6005006

7.2009006

7.2009006

6.0005006

6.6009006

794009006

7.5009006-

5.7009006

5.2009006

5.8009006

5.7009006

5.2002006

4.9009006

4.9009006

4.830'006

4.SOOEO06

4.3008006

4.2603006

4.5003006

4.3509006

4.6009006

4.5009006

4.0002006

3.8000006

3.7009006

3.6009006

4.0008006

3.8005006

4.3409006

4.2000006

3.7009006

4.0005006

4.0009006

3.6002006

3.9000006

4.0003006

3.8009006

3.4008006

3.9909006

3.6009006

3.7009006

3.3502006

3.3509006

2.9508006

2.7208006

2.8609006

207‘09006

2.5203006

2.4802006

2.4009006

2.2409006

2.2002006

2.2408006

2.2409006
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7.373’006

6.8689006

6.868’006

69434’006

6.434'006

7.314’006

79314’006

6.1969006

6.219.006

5.838'006

5.8389006

5.335.006

5.316'006

5.114’006

5.114‘006

4.906’006

4.906'006

49906'006

40554'006

4.554'006

4.434’006

404349006

4.236’006

4.236’006

3-998’006

4.011’006

4.024.006

4.024'006

4.493'006

4.493-006

3.998’006

4.0119006

3.814-006

1.814’006

3.698'006

1.6989006

1.492’006

3.492‘006

3.399'006

3.320’006

3.3409006

3.031'006

3009a'006

2.8659006

2.831'006

9.736'006

997299006

7.521'006

9.3969006

2.213'006

2.208'006

2.145*006

2.140’006

0.0000000037

0.0000000033

0.0000000033

0.0000000023

0.0000000028

0.0000000035

0.0000000036

0.0000000021

0.0000000017

0.0000000021

0.0000000021

0.0000000017

0.0000000015

0.0000000015

0.0000000015

0.0000000013

0.0000000012

0.0000000011

0.0000000013

0.0000000012

0.0000000013

0.0000000013

0.0000000010

0.0000000009

0.0000000009

0.0000000008

0.0000000010

0.0000000009

0.0000000012

0.0000000011

0.0000000009

0.0000000010

n.oonooono1o

n.oooonooooa

0.0000000010

o.aooooooo1o

0.0000000009

0.0000000007

0.0000000010

0.0000000008

0.0000000009

0.0000000007

0.0000000007

0.0000000006

0.0000000005

n.0000000005

0.0000000005

0.0000000004

n.oonoooooo4

0.0000000004

0.0000000003

n.0000000005

0.0000000003

0.0000000003

03/27/67

03/27/67

03/27/67

03/27/67

03/27/67

03/29/67

03/29/67

83/29/67

03/29/67

03/29/67

03729/67

03/29/67

03/29/67

03/29/67

03/29/67

03/29/67

03/29/67

03/29/67

03/29/67

03/29/67

03/29/67

03/29/67

03/29/67

03/29/67

03/29/67

03/29/67

03/29/67

03/29/67

03/30/67

03/30/67

03/30/67

03/30/67

03/30/67

03/30/67

03/30/67

03130/67

03/30/67

03/30/67

03/30/67

03/30/67

03/30/57

03/30/67

03/30/67

03/30/67

03/30/67

03/30/67

03/30/67

03/30/67

03/30/67

03/30/67

03/30/67

03730/67

03130/67

03/30/67
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GPARALLEL LINE IN KCL

EXPERIMENTAL VALUES 0: T1 vs T. ALONG WITH f1 VALUtS CALCULATED FROM

LEAST SQUARES FIT T0 EQUATION (5.9).

T T1(OBS) T1(CALC) REL wT DATE

73.90 1.090-004 9.114-005 0.0000001964 04/12767

77.20 8.100-005 7.707-005 0.0000001068 04/12/67

73.90 9.100-005 9.114-005 0.0000001648 04/12/67

69.20 1.180-004 1.171-004 0,0000002267 04/12/67

69.00 1.200-004 1.184—004 0.0000002344 04/12/67

79.40 7.700—005 6.914-005 0.0000000965 06/25/67

78.90 6.700-005 .7.085-005 0.0000000761 06/25/67

78.60 7.600-005 7.190-005 0.0000000940 06/25/67

78.50 8.000-005 7.226-005 0.0000001042 06/25/67

77.90 6.700-005 7.443-005 0.0000000761 06/25/67

77.80 7.400-005 7.480-005 0.000000U891 06/25/67

77.50 7.400-005 7.592—005 0.0000000891 06/25/67

77.50 7.200-005 7.592-005 0.0000000844 06/25/67.

79.50 7.000-005 6.881-005 0.0000000798 06/25/67

79.90 6.800-005 6.748-005 0.0000000793 06/25/67

79.70 7.000-005 6.814-005 0.0000000790 06/25/67

82.20 6.200-005 6.044-005 0.0000000626 06/25/67

81.80 6.000-005 6.160-005 0.0000000586 06/25/67

82.30 5.900-005 6.015-005 0.0000000567 06/25/67

82.60 6.600-005 6.015-005 0.0000000646 06/25/67

88.50 4.600-005 4.595-005 0.0000000344 06/25/67

88.00 4.400-005 4.628-005 0.0000000615 06/25/67

97.10 3.000-005 3.167-005 0.0000000147 06/25/67

97.00 3.220-005 3.149-005 0.0000000169 06/25/67

101.70 2.150-005 2.612-005 0.00000000/5 06/25/67

100.90 2.700-005 2.694-005 0.0000000119 06/25/67

100.20 2.900-005 7.770-005 0.000000016/ 06/25/67

106.80 2.000-005 2.409-005 0.0000000065 06/25/67

103.50 2.500-005 2.409.005 0.0000000102 06/25/67

119.90 1.650-005 1.3/4-005 0.0000000060 06/25/67

118.20 1.500-005 1.451-005 0,0000000067 06/27/67

77.20 7.500-005 7.707-005 0.0000000916 06/27/67

77.20 7.400-005 7.707-005 0.0000000891 06/27/67

87.40 4.600-005 4.754-005 0.0000000601 06/27/67

87.50 4.250-005 4.762-005 0.0000000294 06/27/67

85.80 5.000-005 5.111-005 0.0000000407 06/27/67

85.90 4.600-005 5.088-005 0.0000000644 06/27/67

84.60 5.600-005 5.401-005 0.0000000457 06/27/67

84.50 5.600-005 5.4?6-005 0.000000045/ 06/27/67

90.90 3.450-005 4.072.005 0.0000000194 06/27/67

90.80 3.800-005 4.090-005 0.0000000265 06/27/67

92.50 3.100-005 3.801-005 0.0000000196 06/27/67

92.50 3.400-005 3.801-005 0.0000000188 06/27/67

94.20 2.700-005 3.567-005 0.0000000119 06/27/67

94.30 3.400-005 3.522-005 0.0000000158 06/27/67

94.60 6.500-005 3.522-005 0.0000000199 06/27/67

96.50 2.700-005 3.215-005 0.0000000119 06/27/67



 



96.50

99.90

99.90

104.90

94.50

94.50

97.80

97.80

101.20

101.20

105.80

105.80

105.80

107.60

107.60

109.00

109.00

110.00

110.00

112.60

112.40

112.40

114.10

114.20

116.00

116.10

117.90

117.90

114.40

114.50

118.60

118.60

120.50

120.60

120.50

120.40

126.00

126.00

124.00

124.00

125.60

127.50

127.50

128.60

128.80

129.70

129.70

161.20

161.10

128.00

128.00

161.60

161.60

133.30

2.850-005

2.350-005

2.400-005

2.000-005

3.300-005

3.500-005

2.720-005

2.770-005

2.420-005

2.510-005

2.000-005

2.070-005

2.150-005

2.140-005

2.150-005

2.100-005

1.990-005

1.700-005

1.830-005

1.750-005

1.760-005

1.630-005

1.85Dv005

1.760-005

1.700-005

1.740-005

1.600-005

1.570-005

1.500-005

1.480-005

1.350-005

1.300-005

1.500-005

1.380-005

1.400-005

1.260-005

1.210-005

1.220-005

1.160-005

1.230-005

1.130-005

9.800-006

1.100-005

1.080-005

1.030-005

9.400-006

9.500-006

1.000-005

8.700-006

1.060-005

1.000-005

9.900-006

1.030-005

9.700-006
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3.?15-005

2.803-005

?.803-005

9.311-005

3.492-005

3.492-005

3.049-005

3.049-005

2.663-005

2.663-005

2.264-005

2.264-005

2.091-005

?.091-005

1.988-005

1.9889005

1.916-005

1.915-005

1.769-005

1.763-005

1.763-005

1.663-005

1.658.005

1.555-005

1.466-005

1.646-005

1.641.005

1.433-005

1.453-005

1.348-005

1.357-005

1.348-005

1.393-005

1.247-005

1.210-005

1.?10-005

1.163.005

1.090.005

1.055-005

1.049-005

1.023-005

1.023-005

9.891-006

9.829-006

1.0749005

1.074-005

9.774-006

9.7/4-006

9.247-006

0.0000000162

0.0000000090

0.0000000094

0.0000000065

0.0000000177

0.00000001/7

0.0000000120

0.0000000125

0.0000000095

0.0000000106

0.0000000065

0.0000000070

0.00U0000075

0000UUUUUU/5

0.0000000075

0.00000000/2

090000000064

090000000041

0.0000000025

0.0000000030

0.0000000090

0.0000U00046

0,000000U056

0.0000000049

O.UUUUOUUO4]

0.0000000049

0.0000000042

0.0000000040

0.000000006/

0.0000000066

0.000000U060

0.0000000028

0.0000000028

0.0000000061

0.0000U00062

0.0000000026

0.0000000024

0.000000U024

0.0000000022

0.0000000025

0.0000000021

0.0000000016

0.0000000020

0.0000000019

0.000000001/

0.0000000014

0.0000000015

0.0000000016

0.0000000012

0.0000000018

0.0000000016

0.0000000016

0.000UDOUOJ7

0.0000000015

06/27/67

06/27/67

05/27/67

06/27/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

06/28/67

09/28/67

06/28/67

06/28/67

06/28/67

06128167

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/29/67

06/60/67

06/60/67

06/60/67

06/60/67

06/60/67



 



166.10

164.00

164.00

166.00

166.00

166.70

166.60

166.60

168.00

167.80

169.90

169.90

146.20

146.10

144.80

147.60

147.60

150.00

150.20

152.70

152.80

24.40

24.60

60.20

60.20

65.00

65.00

40.60

40.60

45.00

45.00

47.50

47.50

28.75

29.10

66.20

66.50

45.10

45.10

50.20

54.80

54.90

60.00

60.00

64.70

64.80

69.20

72.60

72.20

4.18

4.18

6.88

6.46

6.04

8.700-006

9.500-006

8.800-006

8.500-006

9.400-006

8.550-006

8.800-006

8.900-006

7.900-006

7.700-006

8.400-006

8.250-006

7.400-006

7.800-006

7.400-006

7.000-006

7.200-006

6.600-006

7.000-006

6.200-006

6.500-006

5.700-005

4.000~003

2.650-005

2.?00-003

1.500-006

1.850-003

1.100-003

1.020-003

6.700-004

7.700-004

2.950-004

3.950-004

2.580-003

2.650-003

1.290-003

1.2?0-003

4.840-004

4.560-004

5.100-004

3.350-004

3.500-004

2.700-004

2.700-004

2.960-004

1.500-004

1.020-004

1.070-004

1.070-004

2.950-001

2.870-001

3.400~001

2.650-001

4.000-001
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9.298-006

9.0/2-006

9.07?-006

8.597-006

8.597-006

8.4599006

8.461-006

8.461-006

8.156-006

8.199-006

7.767-006

7.767-006

7.151-006

7.169-006

6.8789006

6.435-006

6.465.006

6.087-006

6.059-006

5.725-006

5.716-006

1.603-002

1.552~00?

4.787-003

4.787-005

?.157-003

1.07?2003

1.0/2'003

6.485-004

6.485-004

5.155-004

5.165.004

6.317-003

5.899-003

1.8]5-003

1074(1’005

6.429-004

6.422-004

4.076.004

?.865-004

2.844-004

7.014-004

2.014-004

1.511-004

1.50?-004

1.171~UD4

9.908-005

9.961-005

3.7656001

3.7659001

4.056~001

4.549-001

5.177-001

0.0000000012

0.0000000015

0.0000000016

0.00UOU00012

0.0000000014

0.0000000012

0.000000U016

0.0000000016

0.0000000010

0.0000000010

0.0000000011

0.0000000011

0.0000000009

0.000000U010

0.0000000009

0.0000000008

0.000000U008

0.0000000007

0.0000000006

0.0000000006

0.0000000006

0.0005289146

0.0002604669

0.0001146214

0.0000/8/918

0.0000669254

0.0000557159

0.0000196980

0.0000169670

0.0000076076

0.0000096520

0.000001416/

0.0000025400

0.0001086616

0.0001146214

0.0000270904

0.0000242601

0.0000036165

0.0000066851

0.0000042642

0.0000018269

0.00U0019942

0.0000011868

0.0000011868

0.0000014266

0.0000006666

0.0000001694

0.0000001864

0.0000001864

1.4167064415

1.6409100015

1.8818875568

1.1462141622

2.6046886601

06/60/67

06/60/67

06/60/67

06/60/67

06/60/67

06/60/67

06/60/67

06/60/67

06/60/67

06/30/67

06/60/67

06/60/67

06/60/67

06/60/67

06/60/67

06/60/67

06/60/67

06/60/67

06/30/67

06/30/67

06/60/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/07/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/10/67

04/06/67

04/06/67

04/06/67

04/06/67

04/06/67



 

 



2.41

1.79

1.80

6.57

6.68

2.86

2.68

2.68

2.68

2.68

2.04

2.04

1.66

1.60

1.10

4.400-001

.250+000

.000-001

.000-001

.000-001

.800-001

.500-001

.400-001

.900-001

.400-001

.700-001

.500-001

..090+000

9.600-001

1,100+000

H
O
V
A
A
O
‘
V
O
C
A
C
A
‘
O
H
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6.550-001

8.7929001

8.743-001

4.408-001

4.656-001

5.561.001

6.613.001

6.613.001

6.613.001

6.615'001

7.715.001

7.715.001

9.481°001

1.211+000

3.1516762767

25.4664126956

15.1862666416

1.4651676715

1.4651676716

15.6346436816

9.15/1085704

6.665002969/

3.9066609205

3,1516/64157

9.6519994150

14.6960/19729

19.3414412608

15.0060066820

19.69/9579921

04/06/67

04/20/67

04/20/67

04/20/67

04/20/67

04/20/67

04/20/67

04/20/67

04/20/67

04/20/67

04/20/67

04/20/67

04/20/67

04/20/67

04/20/67
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THE FOLLOWING LISTING OF PROGRAM TONPLOT CONTAINS THE THEORETICAL

RELAXATION RATES USED TO OBTAIN FIGURE 8 AND FIGURES 9 AND 10.

PROGRAM anpLoT

THIS PROGRAM IS FOR LEAST SQUARES ANALYSIS OF SPIN5LATTICE

RELAXATION DATA ANN INCLUDES FUNCTIONS FOR EVALUATING TRANSPORT

INTEGRALS. ALSO INCLUDED ARE OPTIONS FOR PLOTTING THE OBSERVED

AND CALCULATED POINTS: AND FOR PRINTING THE RESULTS.

THF FUNCTIONAL FORM OF EACH FIT IS INSERTED INTO SUBROUTINE DEFN.

EACH FIT IS MADE Tn ALL SETS OF DATA READ IN.

THE ORDER OF DATA TO BE READ IN IS AS FOLLOWS

(1)

(2)

(5)

NUNBER OF SETS OF DATA TO BE FITTED (I2).

NUMBER OF FITS PER DATA SET (I2).

THEN FOR EACH SET OF EXPERIMENTAL POINTS THERE SHOULD BE...

(A) HEADER CARD IDENTIFYING THE EXPERIMENT (1OAB).

(B) DECK OF EXPERIMENTAL DATA: EACH CARD HAVING

TEMPERATURE, T1. AND DATE (71001: E15.1o 15X: A8)-

ALL POINTS FROM THF SAME DATE SHOULD BE‘PLACED TOGETHER IN THE

DECK: SINCE ALL POINTS FROM A GIVEN DATE HILL BE PLOTTED

WITH A UAIOUE SYMBOL.

IF NOTPRINT = 1: EXPERIMENTAL AND CALCULATED T1 ARE NOT PRINTED.

IF NOTRLGT = 1. N0 PLOT WILL BE MADE,

NOTPRINT AND NfiTPLOT ARE DEFINED IN SURROUTINE DEFINE.

THE SCALE FACTORS FOR PLOTTING ARE SY. SX; SYY. SXX: AND ARE

DEFINED IN SUBROUTINE DEFINE.

SY AND SX ARE SCALE FACTORS FOR PLOTS OF LOG(T) AND LOG(T1).

THEY ARE 100 TIMES THE NUMBER OF INCHES PER CYCLE ON THE LL PLOT.

SYY AND SXX ARE SCALE FACTORS FOR THE PLOTTING OF SYMBOLS

DENOTI

VALUE.

NG THE EXPERIMENTAL POINTS: AND SHOULD BOTH HAVE THE SAME

THEIR VALUE IS 1000 TIMES THE DESIRED HEIGHT (IN INCHES)

OF THE SYMBOLS.

COMMON

COMMON

COMMON

COMMON

COMMON

T(500).TOH(500)6TOHIN(500)ouAT(500).wAITGSOO).NLO.NHI.NEX

L1N(500). NDATEISOO). NDP. HIPLUS. LTH. NOVAR. NVLESS

DATAISI. VECTOR(6:6). AVE(5), COENtS). SIGMCO(5).SIGMA(5)

NOEATE: KDATFISDOIaSIGY: NOIN: NNNT: INDEXI5)

SY. 9X. SYY. SXX, NOTPRINT, NOTPLOT

DIMENSION LHEADIIOI

TYPE DOUBLE COEN'SIGMA!SIGYIVECTORIDATAIwAIT

LTH = U

READ IN NUMBER OF SETS OF DATA

READ 1. NLINS ’

READ IN NUMBER OF FITS PER DATA SET

READ 1, NFITS

DO 500 K3 10 NLIMS

READ I N READER CARD IDENTIFYING SET OF DATA



 



1RD

105

109

110

115

120

125

400

450

460

500

90

READ 10. (LHEADIL). L31.10)

READ IN NEASURED T AND T1

KDATEIi) a 1

READ 5. 7(1),an(1).VDATE(1>

DO 110 I=2.500

READ 5. T(T). TONII). NDATF(I)

IF (NDATF(I) * NnATE(I-1)> 100. 105. 100

KDAYEII) = KDATF(I-1) * 1

Go TO 1n9

KDATEII) = KDATEIIv1)

IFIYII)) 915. 115. 110

NDP = I

CONTINUE

CALCULATE HEIGHTS FOR LEAST SQUARES FIT

SUMNAT = 0.0

DC 120 I: iaNDP

TONIN(1) a 1.0 / TOW(I)

wAT(I) = Towc1> e T0u(1)

SUMNAT = SUMHAT a JATII)

AVGNT = SLMWAT I NDP

DO 125 I = 1.NnP

HAITI!) = HAT(1) / AVGNT

DU SUD NEN : 1: NFITS

PRINT 1n. (LHEAn(L). L=1:10)

CALL STEPREG

1F(NOTPRIAT9 400a 4n0; 450

CALL VARFIT

1F<NOTPLOT) 460. 46m. 500

CALL GRFTOH

CONTINUE

STOP PLOTTER

CALL pLUTIHIPLUS: 2.50 '1: ST: SX)

FORMAT(!2)

FORMAT(F1n.1. 515.1. 15x. A8)

FORMAT (1nA8)

END



 



0
0
0
0
0
0
0

0
0

0
0

0
0
0
0
0
0
0
0

10

P0

30

4O

50

99
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SUBROUTINF DEFINE (X: Y)

COMMON TISOO).ant5n0)oTONIN(500).NATI500).UAIT(500).NLO.NHI.NEX

COMMON LIAIBOB). NDATEISOO). NDP. HIPLUS. LTH. NOVAR. NVLESS

COMMON DATAISIa VECTORI6ab). AVEIS). COENIEI. SIGMCDI5).SIGMA(5)

COMMON NOBATE. KDATFISOOIOSIGY. NOIN. NNNT. INDEXISI '

COMMON sv. sx. xvv. sxx. NOTPRINT. NOIPLo?

TYPE DOUBLE CDEN.SIGMA.SIGY.VECTORODATA.HAIT

TYPE DOUBLE u. v. w. z

sv=115. s sxszzs.

sxx a 56. s svv = 66.

NOTPRINT a n s NOTPLOT = o

AFTER STATEMENTS 1n YHRU SO THE NUMBER OF VARIABLES TO BE USED IN

IN EACH :1? IS DEFINED av A STATEMENT OF THE FORM

AOVAR a N

NHFRE N IS AN INTEGER CONSTANT EQUAL T0 (1 * THE NUMBER OF

COFFFIDIFNTS Tn 8E DETERMINED IN THE LEAST SQUARES FIT).

GD T0 <10. 20. x0. 40.50). NEX

CONTINUE

NOVAR = 4

GO TO 99

CONTINUE

NOVAR = 3

GO TO 9°

CONTINUE

GO TO 99

CONTINUE

GO To 99

CONTINUE

NVLESS = NOVAR - 1

RETURN

iéttO Obit. tottt «tit. ttttt tittw ttttt titfli tittt

ENTRY DEFN

THE PARAMETERS INPUT TO THIS SURROUTINE FROM STEPREG ARE x. THE

MEASURED TEMPERATURE AND Y. THE INVERSE OF THE MEASURED T1.

AFTER STATEMENTS 100 THRU 500 THE FUNCTIONS TO BE USED IN THE FIT

ARE DEFINED RY STATEMENTS OF THE FORM

DATAII) = BLAH BLAH

DATAIZI : RLAH

OATAISI a ETC

THF DEPENDENT VARIABLE IN THE LEAST SQUARES FIT MUST BE



0
0
0
0
0

1ND

2ND

3ND

4ND

500

999
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EQUATED T0 DATA(M), NHERE M = NOVAR.

NOTE THAT FOUR DUMMY DOUBLE PRECISION VARIABLES HAVE BEEN

PROVIDED FOR CONVENIENCE IN CONSTRUCTING FUNCTIONS.

THESE DUMMY VARIABLES ARE U: V: “D AND 29

GO TO (100. 200. 300, 400. 500), NEX

CONTINUE

V B TRASPRTIRA 17090 X)

U 3 Y $ 2 8 X $ N 3 Z**9 $ DATAI1)

EATAI49 = U 3 HATA(3) = DEYP(fi575./ Z)

60 TO 999

CONTINUF

V = TRNSPRT(RO 170.: X)

U 8 Y S Z = Y $ N = Z**9 $ DATAI1)

UATAI3) = U

GO TO 999

CONTINUE

GO TO 999

CONTINUE

GO TO 999

CONTINUE

RETURN

END

2

2

$

$

DATAIZ)

DATAIZ)

*N

*N



 



0
0
0
0
0
0

170

125

35

40
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SUBROUTINF VARFIT

THIS SUBROUTINE CALCULATES THE STANDARD DEVIATION. CHECKS To

SEE THAT THE SUM OR THE HEIGHTS Is EOUAL TO THE NUMBER OF DATA

POINTS. ANn CALCULATES (FROM THE FIT) A T1 VALUE FOR EACH

EXPERIMENTAL TEMPERATURE.

COMMON

COMMON

COMMON

COMMON

COMMON

TI5OO).T0NI560)ATONINISOO):NATI500)ONAITIBOO):NLOoNHI.NEX

L1N(500). NDATEISUO): NDP. HIPLUSo LTH: NOVAR. NVLESS

DATAIS): VFCTOR(6O6)Q AVE(5)n COENI5): SIGMC0(5)’S!GMA(S)

NODATEA KDATE(500’ISIGYO NOINA NNNT. INDEXIS)

SY. 5X. SYY. SXX. NOTPRINT: NOTPLOT

TYPE DOUBLE cOEN.BIOMA.SIGY.VECTOR.DATA.NAIT

TYPF DOUBLE CALC

PRINT 2%

25 FORMATciHO.AX1HT.OX7HT1(OBSI.BXBHT1ICALCI.4x12M1.0/T1 (088).

1 4X13H1.n/T1 (CALC,16XSHDEV09X6HREL NTA12X4HDATE)

SUMSQ :

SUMNAIT

DO 125

0.0

= 090

N = lgNDP

SUNHAIT = SUMHAIT + NAITIN)

CALL DEFNITIN): 0.0} S CALC = 0.0

DO 120

CALC :

DEV =

TIHCAL

K 5 1: NOIN

CALC * COEN (K) * DATAIINDEXIKII

TOHININ) a CALC

PRINT 30:7(N)OTOHINI1TIMCALATOHININ)oCALCaDEVaflAITIN)oNDATEIN)

SUMSQ = SUMSO o DEV*DEV*WAIT(N)

FORMAT(F10.?A 5F15.1. F15.10: 7XA8)

XNDP s

VAR? =

NDP t 1

SQRTV (SUMSQ/XNDDI

PRINT 39. VARF

PORMAT<//. 17H VARIANCE or FIT: F15.9>

PRINT 4n. SUMNATT

FDRMATIII. *SUM or UEIBNTS =t F15.9I

END
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FUNCTION TRNSPRTINN.DOT)

THIS FUNCTION CALCULATES THE TRANSPORT INTEGRAL OF ORDER NN

FOR DERYF TEMPERATURE D AND TEMPERATURE T,

NOTE THAT FUNCTIONS TINTORND AND SIMPSON ARE REQUIRED.

COMMON INN/N

EXTERNAL TINTGRNn

N=NN

n = n.00001

TRNSPRT = SIMPSON (0. D/T. 0.001. TINTGRNDI

RETURN

END
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FUNCTION TINTGRND (2)

THIS FUNCTION DEFINES THE INTEGRAND FOR FUNCTION TRNSPRT.

COMMON INN/N

TFIZ-3OOI 2: 11 1

TINTGRND = D

RETURN

E2 = EXPF (2)

F21 = El 2 1.0

FliSn 8 E21 9 521

TINTGRND 3 El * (Z**V) / E2150

RETURN

END
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FUNCTION SIMPSONIAA.BAERRpFCT)

THIS FUNCTION EVALUATES THE TRANSPORT INTEGRAL BY SIMPSONS RULE.

DIMENSION DXISO).EPSPISOIAX2ISOIOX3(30)2F2(30):F3(30)oF4(30):

1 FMPISR)OFBPISDIOPVALISOOSIoLVF(30).EST2(30)aESTSISO)

THIS IS A TRANSLATION OF A STANFORD SUBALGOL PROCEDURE

A=AA

EPSzFRR

PSEUOO PARAMETER SETUP. ETC.

LVL=O

ABSAREA=1.0

FST=1.0

FARFCTIAI

ABZ=IA¢8I/2.0

PM=4,00FCTIABZ)

FB=FCT¢BI

DA‘BBA

LVL=LVL+1

DXILVLI=DA/3.0

SXIDX(LVL)/6.0

ADX23A¢DX(LVL)/2.0

P134.0*FCT(AOX2)

X2(LVL)=A+DXILVLI

V2L=¥2ILVLI

FZILVLI=F6T(X2L)

Y3(LVLI=X2(LVL)*RX(LVL)

Y3L=¥3ILVLI

F3¢LVLI=PCT(¥3L)

FPSPILVLIzEPS

Y30=¥3ILVLItDXILVL)/2.0

R4¢LVL)=4.O*FCT(¥3DI

EMPILVLIBFM

ESTl=(PA¢F1*F2(LVL))tSX

FBP(IVL)=F8

ESTZILVLI=¢F2<LVL)*F3ILVL)#FMIPSX

ESTSILVLI=IFSILVL)+F4ILVL)*FB)*SX

SUN=EST1+ESTRILVL)OESTSILVL)

ABSAREAzABSAREAvABSFIESTI+ABSFIEST1)+ABSF(EST2ILVL>I

I OABSFIESTSILVLI)

IFIARSFIESTaSUMIBEPSPILVL)tARSAREA)98.98.97

IFIEST-1.0)96.97a96

IFILVLBSOI92.9S.O6

DONE ON THIS LEVEL

IFILVL930393.95.93

VALI‘ESTHSHM

VAL2=ABSAREAtePSPILVLI

PRINT O4.VAL1:VAL2

FORMAT (74HTHE RECURSION HAS DESCENDED T0 LEVEL 30: NITHO

TUT SATISFYING THE TOLERANCE./37HTHE ESTIMATE OF THE ABSOLUTE ERROR

2 IS.E16.8/4SHAND THE TOLERANCE REQUIRED AT THIS LEVEL IS.E16.8/)

96
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92

91

90

39

38

END

97

VL91 ,

LVL;:£LVE¢LVbF)=SUNAVE

LE:L(LVL LS: i9).LEPv I 91, ,O I60 T

IVE<LVL):}

BAan(LV

FM=F1 VL) 1‘?

‘Béfiéémvw
EET=RSTé

GO TO 9

)=2E(LVL

LXIDX<LVt§

TA:F?(LVVL,

PMsFMPTLL) 7

FB=F3(:g(LVL)/1.

”ifES;2.LVL,
::X2(LVL)

no In 99

‘ )=3E(LVL

RX=DxtL3ti

EA=F3¢LVL)

rmzracL VL) 7

FaaFapét(LvL,/1,

FpgfggTSILVL)

§§¥3TLVL>

do ro ¢9

)VLa3LIL)iPVA)+PVAL(LVL¢2LolALILV. ’91

SU7::t!158::RB

éiMPSON=SU.

RETURN
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SURROUTINF STEPREG

SIMPLE STEPUISE REGRESSION

THIS SUBROUTINE PERFORMS A LEAST SQUARES FIT TO OBTAIN

COEFFI

Y

CIENTS IN AN EXPRESSION OF THE FORM

8 A(1)*X(1) i A(2)OX(2) + 0000,000000

THE VARIABLES 1(1) AND Y ARE THE SUBSCRIPTED VARIABLE DATA(N)

DEFINED IN SUBROUTTNE DEFN.

COMMON

COMMON

COMMON

COMMON

COMMON

T(SOO).TOHCSOO).TONINTSOQ):NAT‘SOO):NAIT(500),NLO.NHI.NEX

LI~(500), NDATE(500). NOP. HTPLUS. LTH, NOVAR. NVLESS

OATA¢5). VECTOR(6:6). AVE(5). COENTS). SIGMCO<5).SIGMA<5)

NODATE. KDATE(500).S!GY. NOIN. NNNTa INDEX(5)

sv, sx, SYY. sxx. NOTPRxNTa NOTPLOT

TYPE DOUBLE COEN.919MA.SIGY.VEOTOR.OATA.RAIT

IFSTEP = 1, no NOT PRINT EAOH STEP

{PRAN : 1 DO NOT PRINT RAH SUNS AND SQUARES

IPAVE = 1 no NOT PRINT AVERAGES

[FRESH 2 1 no NOT PRIVT RESIDUAL SUMS SQUARES

[FCOEN : a DO NOT PRINT PARTIAL COEFFICIENTS

{PPRED : 1 no NOT CALC PREDICTED VALUES

IPCNST a 1 no NOT HAVE CONST TERM IN EQUATION

FORMAT(/)

EPIN=0.0000001

EFOUT=0,0n00001

TOL = .00001

IPCNSTzi

IFSTEP : 1

IFRAH = 1

IRAVE = 1

IFAVG =

IFRFSD a 1

IPCOEN a 1

CALL DEFINE (n.n. 0.0)

{NVAR = NOVAR

NOIN : O

VAR = O

K = n

FLEVEL : fl

NOENT = 0

NOMIN = 0

NOMAX = Q

NVP1 : NOVAR + 1

no 120 I s 1. NVP1

DO 320 J 8 1. NV91

VECTOR(!.J) = 0.0

no 510 N: 1.NDP

CALL DEFN(T(N). TOAIV(N))

Do 540 I 8 1. NOVAR

VECTOR(I,AOVAR t 1) = VECTOR(I, NOVAR + 1) + DATA(I) . NAIT(N)

D0 540 J 3 1: NOVAR

VECTOR(!. J) : VECTOR (I. J) + DATA (1) w DATA(J) t NAIT(N)

VECT0R(NV913 val) S VECTOR‘NVPl: NVPl) * WAITIN)

NQVMI = NOVAR . 1



 



566

650

735

651

652

655

670

660

680

690

780

7B

782

790

701

792

793

794

7°6

797

795

810

800

8?0

840

841

850

830

1000

1001

1002

1010

1015

1016

1017

1018

10?0

1030

1035

1040

1041

1042

1043

1045

1060

1080

n / VECTOR (NOVPL:

99

NOVEL = NOVAR * 1

CALCULATICN OF RESIDUAL SUNS 0F SQUARES AND CROSS PRODUCTS

IP‘IFCNST, 90026511735

GO TO 780

[FIVECTORCNOVpLgNOVDLII 652:652o655

PRINT 634

GO TO 910

DO 660 I 3 in NOVAR

DO 660 J = I, NOVAR

VECTOR (InJI = VECTOR (Ind) 9

NOVPLII

I = 10 NOVAR

a VECTORIIONOVPLI / VECTORINOVPLpNOVPL)

: Q1

(VECTOR(IoNOVRL) * VECTOR (J1N0VPL)

DO 690

AVEII’

NOSTEP

ASSIGN 1320 TO NUMBER

DEFR : VEOTORINOVRLpNOVPL) 9

DO 800 I = ipNOVAR

1PIVECTOR¢I.I)) 702,794,810

PRINT 793; I

GO TO 910

FORMAT (SIR ERROR RESIDJAL SQUARE VARIABLE I4.31H

LEM TERMINATED 9

PRINT 795. I

SIGMAII) 3

GO TO 800

FORMAT (1H010H VARIABLE 15,13H IS CONSTANT )

SIGMAII) ODSQRT (VECTOR (1,1))

VECTOR(I.I) : 1.0

DO 830 I laNOVMI

191 = I .

DO 830 J : IP19

VECTORIIaJ) = VECTORII:J) /¢ SIGMAII)* SIGMAIJ))

VECTOR(J.I) = VFCTOR(I:J)

MOSTER = 00$TEP * 1

IF (VECTORI NOVAR.NOVAR)) 1002.1002:1010

1.0

18 NEGATIVE:PROB

10D

1

NOVAR

NSTPni = ROSTER . 1

PRINT 1004. NSTPMi

GO TO 1331

SIGV a SIGMAINOVAR) *DSQRT (VECTORINOVARaNOVAR)/ DEFR)

DEFR =DEFR-1.0

1F (DEFR ) 1017:1017. 1020

PRINT 1019 .NORTEP

PRINT 1019. NOSTEP

GO TO 1381

VMIN I 0.0

VMAX a 0.0

NOIN = 0

Do 1050 I 3 lnNOVMI

IF (VECTOR TIJII) 10420105011060

PRINT 1044: I: NOSTFP

PRINT 1044: In NOSTEP

GO TO 1381

IF‘VECTORIlfil) m TOL) 10501108001030

VAR = VECTOR(I,NOVAR) * VECTOR(NOVARnI) / VECTORIIoI)



 



1090

1100

1120

1130

1140

1190

904

1170

1180

1190

1160

1110

1210

1220

1050

1230

903

1240

1260

1245

1246

3247

1250

1270

1290

1230

1300

1310

1311

1312

1313

1314

1315

1320

1330

1340

1345

1350

1360

1361

1370

1390

1391

1392

1393

1394

1400

3420

100

IFIVAR)1100.1050s1110

NOIN a NQIN O 1

INDEXINOIA) = I

COEN(NOIN)

SIGMCOINOIN) =

I? (VMIN) 1160at170.904

PRINT 906

PRINT 906

GO TO 910

VMIN 3 VAR

NOMIN = I

GO TO 1050

IPIVAR . VMIN)1050.1050.1170

IF (VAR . VMAX)1050.1050'1210

VMAX a VAR

NOMAX = I

CONTINUE

IF (NOIN) 903.1240,I245

PRINT 907

PRINT 90?

GO TO 910

PRINT 65: SIGV

GO TO 1350

IF (IFCNST) 900.12SO,1246

CNST = 0.0

GO TO 1300

CNST B AVE(NOVAR)

DO 1280 I = inNOIN

J 3 INDEXIII

CNST a ONST e (COENIII r AVEIJII

IFIIFSTEP) 900'131001320

IF INCENT) 1311,131I:1313

PRINT 91,NOSTEP. K

00 TO 1314

PRINT 92.NOSTEP. K

PRINT 70aFLEVELc SIGY.CNST.

IINDEXIJ,ICOENTJIOSIGMCO(J,I J = 1: NOIN I

00 T0 NUMBER. (1320,1580)

FLEVEL e VMIN * DEFR I VECTOR INOVARINOVAR)

IFIEFOUT t FLEVEL) 1350. 1360; 1340

K = NOMIA

NOENT = 0

GO TO 1391

FLEVEL = VMAX * DEFR I (VECTORINOVARaNOVARI-

IF (EFIN n FLEVEL) 1370.1361.1380

1: (5010) 1380:1380-1370

K = NOMAX

NOENT = K

IFIK) 1392.1392,1400

PRINT

PRINT 1395:

GO T0 910

00 3410 I = 1.NOVIR

IF II-K) 1430.1410o1430

VMAX)

1395: NOSTEP

NOSTEP

a VECTOR(I:NOVAR) . SIGMAINOVAR) / SIGMA (I)

(SIGV / SIGMAII)) *DSQRT (VEOTORII.I))
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1430 DO 1440 J = 1, NOVAR

1450 IF (JQK) 1460-144nn1460

1450 VECTOR(I:J) = VFCTOR(I-J) 9 (VECTORIIaK) ' VECFOR (KIJ) / VECTOR

EIK.k)I

1440 anTINUF

1410 CONTINUF

1470 D0 1480 I

1490 IF IIaKI 1

1500 VECTOR (I.

1480 CONTINUE

1510 DO 1520 J = 1. NOVAR

1530 IF IJ-K) 1540.1520.1540

1540 VECTOR(KpJ) = VECTOR IK.JI / VECTOR (K.K>

16?0 CONTINUE

1550 VFCTOR(K.K) : 1.0 / VECTORIKaK)

1550 GO TO 1000

1380 PRINT 75. NOSTEP

1381 IF (IFSTEP) 900, 1500:1570

900 PRINT 905

GO To 910

1570 ASSIGN 1580 T0 NUMBER

1571 00 10 1310

1500 PRINT 1585,(L.VECTOR(LoL):L=1.NOVMI )

910 CONTINUE

65 FORMAT (25H0 STANDARD ERROR OF Y = F12.6 I

1: NUVAR

500-1480:1500

K) a - VECTOR (1.x) / VECTOR (K.KI

70 FnRMAT I11H F LEVEL F12.4/25H STANDARD ERROR 0F Y = F12.4/12,

1 CONSTAAT F13.5/55H VARIABLE COEFFICIENT STD ER

20R nr coer // c150 x-13.515.5.215.5))

75 FORMAT (10H COMPLETED 15.200 STEPS 0F REGRESSION)

o1 FORMAT I9RUSTEP No.75 /19H VARIABLE REMOVED 18)

02 FORMAT «9009159 No.75 /2oa VARIABLE ENTERING 18)

654 FORMAT c310 zeno NuMBER or DATA. so LONG.)

905 FORMAT (42H ERROR IN CONTROL CARD. PROBLEM TERMINATED)

906 FORMAT (25H ERROR. VMIN PLUS. SOLONG)

907 FORMAT czaH ERROR-NOIN MINUS. SOLOVG )

1004 FORMAT (1H037HY SQUARE VON—POSITIVE.TERHINATE STEP

1019 FnRMAT (1H099H NO MORE nEGREES FREEDOM STEP I 5 )

I 5)

1044 FORMAT I1“010H ROUARE XnI5ai7H NEGATIVE. SOLONG 15:6H STEPS)

1395 FORMAT (12H K=0. STEP 16a 7H SOLONG)

1536 FORMAT (24H0 DIAGONAL FLEMFNTS //20H VAR.N0.

1(1H I 7. F16,6))

RETURN

END

VALUE/I
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sUBROUTINE earrcw

T0 PLOT EXPERIMENTAL AND CALCULATED T1 VERSUS TEMPERATURE

ON A L00 L00 SCALE.

COMMON T(%00).TON(500).TONIN(500).HAT(500).HAIT(500).NLO.NHI.NEX

COMMON LIN(500). NDATEISOO). NDP. HIPLUS. LTH. NOVAR. NVLESS

COMMON DATAIS). VECTOR(6.6). AVEIS). COENIS). SIGNCOIS).SIGMA(S)

COMMON NOBAYE. KDATE(500).SIGY. NOIN. NNNT. INDEXIS)

COMMON SY. sx. SYY. sxx, NOTPRINT. NOIPLOT

DIMENSION TCISDR). VKURVISoo)

TYPE DOUBLE CDENISIGM‘DSIGYQVECTORIDATA'NAIT

TYPF ROUBLE YKURV

TYPE DOUBLE BSCHG

BSCHG = 0.4342944819

PLOT T1ICALC) VS TEMP

TCflI a 1.0

no 600 K a 2990

TCIK) = TCIKa1I ¢ 0.1

70(91) = 10.0

00 605 K = 92. 370

TCIK) a TCIKal) + 0.5

no 610 K 3 1:370

YKURV(K) S 0.0 3 CALL DEFNITC(K)A 0.0)

no 606 J g 11 NOIN

YKURVCK) 3 YKURV(K) * COENIJ) t DAIAIINDEXIJII

YKURV(K) 3 DLOGF (YKURV‘K)) * BSCHG

TCIKI = LOGF (TCIK)) t BSCHG

ESTABLISH ROUNDS FOR PLOTTER

LORNU = XFIXFI YKURV(370)) w 1 $ XLOBD = LOBND

KIRND a YFIXF (YKURVI1I) + 1 0 XHIBO = KIBND

INITIALIZE PLOTTER

CALL PL0T(0.OI 0.0. 0! 1000! 1000)

CALL PLOTI0.0. 30.. 2. 100.. 100.)

CALL anT (XLOBHC 2.5: 0: 8Y0 8X)

SET UPPER ROUNn 0N LENGTH OF PLOTTPR PAPER

LTH = 6 t 4 t XABSFIKIBND , LOBND) * LTH

CALL PLOT (LTH. 0.0. 3)

CALIBRATE PLOTTER PAPER AND PLOT CURVE

CALL PLOT (XLOBD: 0.00 1: SY: 8X)

CALL pLOT (YHIBna 0.0. 1: SY. SX)

CALL PLOT (YKURVI1). TCIl). 2)

D0 620 K = 2.370

CALL PLOT (YKURVIK) , ICIK). 1)

CALL PLOT (XLOB0. 2.0. 2)

CALL PLOT (YHIBH: 2.0: I)

cALL PLOT (XHIBn. 0.0. 1)

LHIP a XABSFIKIRND a 1) $ LLOM = XABSFILDRND + 1)

00 630 L 3 LHIP: LLONa 2

YL = -L

CALL PLOTIYLn 0.0. 2)

CALL PL0T(YL) 9.5: 1)

LH = ~L'1

IF (LN " LOBND) 635. 635. 625
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YL = L" $ CALL PLOT (YL: 2.5:

CALL PLOT (YL: 0.0: 1)

CALL PLOTIXLOBD. 1.0: 2)

CALL PLOTIXHIRD, 1,0. 1)

PLOT EXPERIMENTAL POINTS

DO 650 K = 1. N09

KAR : KDATEIK’

EX = LGGP(TIKII v BSCHG $ NY

CALL PLOT‘NYD Ex: 2' SY’ SX)

CALL CHARAC (NYaPXI KAR.SY0 SX:

HIPLUS é XHIBD * 4.0

CALL PLOT (HIPLUS. 7.5: 2: SY: SX)

END

2)

= LOGFITONIK)) * BSCHG

SYY. SXX)
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SUBROUTINE CHARACIYP: XP: KT: 3Y0 SK: SYYp SXX)

TO PLOT SYMBOLS AT THE EXPERIMENTAL POINTS.

DIMENSION YI6). XI6)

GO TO (100.200.300.400.500.600.700.800.900.1000.1100.1200)o KT

To PLOT A DIAMOND AROUT POINT (X.Y)

100 ASSIGN 150 To NUMBER

00 T0 405

150 CALL PLOT (VP. XIi). 2. SYY. SXX)

CALL PLOTIYf4). XP. 1)

CALL pLOTIYP. XIZI. 1)

CALL RLOTIYIS). XP. 1)

CALL pLMIYP. XI1>. 1)

CALL PLDTIYP, xv. 2)

RETURN

To PLOT A RIGHT POINTING TRIANGLE ABOUT POINT (X. Y)

200 A = .1

205 xt1I= xv + A l1.739

Y¢1I= YP

 

XI25= XP 9 A l3,464

207 YIZI= YP-e A /2.0

XI35= Xf2)

VISA: YP t A /2.0

YI4I= YI1)

XI4I=X(1)

208 CALL PL0TIY<1). XIII. 2. SYY. SXX)

210 CALL PLOIIYIJ). XIJ). 1. svv. sxx>

CALL PLRTIYP, X». 2, SYY. SXX)

RETURN

TO PLOT AA X AT POUNT (x.Y)

300 ASSIGN 350 TO NHMRER

305 A= .1

X‘1,= XP * 9354 . A

YI1I=YP a .354 o A

XISI: XP 5 .354 *A

YI3I= YR A .354 t A

XI4I= XIS)

7(4): Y¢1I

XI2)= XI1)

VIZ): YIS)

90 T0 NUMBER. (350.550)

350 cALL PLoTcYI1). XI1I. 2. SYY. SXX)

CALL pLfiTIY‘S’: XI35: 19 SYY: SXX)

CALL PLOTIYIZ’: X‘2,! 2: SYVQ SXX)

CALL PLOTIYt4). X(4). 1. SYY. Sxx)

CALL PLOTIYP. xp. 2, SYV. Sxx>

RETURN

TO PLOT A CROSS AT ROINT (X.Y)

400 ASSIGN 450 TO NUMRER

405 A = .1

XI1I= XP * 95 * A

XI293 XP 9 .5 * A

YI313 Y? a ,5 t A

YI4I= VP 6 ,5 t A
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GO TO NUMEERI (4500 150)

CALL PLOTIYP. XI1). 1. svv. sxx>

CALL PLDTIYPO XCZ): 10 SYY» SXX)

CALL PLOTIYI3): XP: 20 SYY. SXX)

CALL pLOTIYI4’: XP. 10 SYY: SXX)

CALL anT(YP, XP: 2, SYY: SXX)

RETURN

TO PLOT A SQUARE AT POINT (XOY)

ASSIGN 550 T0 NUMBER

90 TO 305

CALL PLOTIYII): XII): 2. SYYO SXX)

XI5)= XI1)

YI55= YIi)

DO 560 J=1.5

CALL PLOTIYIJ). XIJ). 1. SYY. SXX)

CALL PLnTIYP, XP. 2, SYY. SXX)

RETURN

TO PLOT A LEFT POINTING TRIANGLE ABOUT POINT (x, Y)

A = .1

YI1) = YP

XIZ) 3 XP + A/3.464

GO TO 207

TO PLOT AA UprRD PRINTING TRIANGLE ABOUT POINT (X. Y)

A = .1

XI1) = x9

YI1) = VP w A/1,732

YI2) t YP ~ A/3.464

XIZI 3X9 * A’ZQO

XIBI I xP - A12.0

YIS) I VI?)

XIAI I XII)

YI4) 8 VII)

GO TO 208

TO PLOT A DONNNARO ROINTIVG TRIANGLE ABOUT POINT (X. Y)

A = .1

XIII = YR

YI1) = YP - A/1.732

Y¢2) = YP . A/3.464

GO TO 707

TO PLOT A DONNNARD POIVTING Y ABOUT POINT (x.Y)

A = .1 T A0 a .394 t A

XI1) = xP + An S VIS) 3 XP 9 A0 T XI4)

YI1) = YIS) = YP 4 A0 0 YI4) = Y? 0 A0

XI2) = XI!) : XR 5 YI2) = YIS) 8 YR

CALL PLOTIYI1). xcl). 2. SYY. SXX)

D0 910 J 3 103

CALL PLOT (YIJ). X(J)a 1)

CALL PLOT (VIA). VIA). 2)

D0 915 ..I 3 4.5

CALL PLOTIYIJ). XIJ). 1)

CALL PLOT (YP. KP. P)

RETURN

TO PLOT AN UPHARO POINTIVG Y ABOUT POINT (Y.Y)

XP

 

1

i
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A = 01 $ A0 3 9394 * A

XI1) = XP 9 A0 $ XIS) = XP + A0 3 X(4) = XP

Y(1) = V(3) = Y9 - A0 S Y(4) = YP * A9

GO TO 905

T0 PLOT A LEFT POINTING Y ABOUT POINT (X'Y)

A = .1 T AG 3 .354 * A

XI1) ' XIS) = XP * A0 S XC4) : XP 9 AQ

Y¢15 3 VP * A0 $ Y(3) = YP ' A0 1 Y(4) = YP

GO TO 905

TO PLOT A RIGHT POTNTING Y ABOUT POINT (XoY)

A = 01 fi AG 3 .354 * A

XI1) I XIS) = X9 . A0 S XI4) = X? + AU

YI1) = VP - A0 3 vIS) = Y? A AG 1 YI4) = YP

GO TO 905

END

 



APPENDIX IV.

ASSIGNMENT OF WEIGHTS IN CURVE FITTING
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Use of the least squares analysis for fitting

theoretical functions to the experimental data requires

minimizing the weighted sum

2

1g % -% wi , (ALLl)

1obs. lcalc.
1 l

where N is the number of data points. The method of as—

signing values to the weights wi will now be discussed.

Let Yi and yi be the ith observed and calculated

values, respectively, of a dependent variable. For the

set of such values, the least squares condition is that

(Y1 — yi)2wi (Au.2)

I
I
M
Z

i 1

be minimum. Let AYi be the error in the measured value

Yi' Then from the theory of statistics,30

w my >2 = 0 (Au 3)
i i ’ '

where n is a constant. Hence

_ n
wi — —2. (MA)

(AYi)

In our experiments, we estimate that the percentage error

in the measured Tl values is constant over the entire

range of values, i.e.,

—= (:3 (AMoS)
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where C is constant. Combining (A4.M) and (AM.5) results

in

w. =D——1§. (101.6)

The implication of (Au.6) is that the weights used in (A4.l)

should be of the form

2 (ALL?)(I

wi (T10bsi)

Least squares curve fitting was performed by the

regression analysis subroutine STEPREG in the computer

program TOWPLOT (Appendix III). This subroutine requires

that the sum of the weights for a set of data points be

equal to the number of points, i.e.,

N

Z w. = N. (Au.8)

Wi =W . (AU.9)

T1

i=1 Obsi

In our measurements, the fractional error in measured

temperatures was much less than that for T Therefore,1‘

the error in measured T values was not considered in de-

riving (AM.9).
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