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ABSTRACT

TRANSIENT ULTRASONIC FIELDS IN POWER LAW

ATTENUATION MEDIA

By

James F. Kelly

Ultrasonic waves in biological media experience frequency dependent attenuation.

Extensive measurement of the attenuation coefficient in human and mammalian tissue

in the ultrasonic range has revealed a power law dependence on frequency, where

the power law exponent ranges between 0 and 2. For most tissue, the power law

exponent ranges between 1 and 1.7, which cannot be explained by classical theories for

ultrasonic absorption, such as thermo—viscosity or molecular relaxation. The purpose

of this thesis is threefold: 1) to understand the analytical structure of transient fields

in power law media, 2) to provide a possible description of the physical mechanism

responsible for power law attenuation in biological media, and 3) to develop analytical

models for transient, three-dimensional sound beams in power law media.

Insight into general dissipative media is gained by studying the approximations

available in viscous media. The Stokes wave equation is considered in the time do-

main, and an asymptotic, causal Green’s function is rigorously derived and verified

using the material impulse response function (MIRF) approach. A lossy impulse

response for the Stokes wave equation is derived for calculations of transient fields

generated by finite aperture radiators. Expressions for the uniform circular aper-

ture (in both the nearfield and the farfield), the uniform rectangular aperture in the

nearfield, and the spherical shell in the nearfield are then derived . Power-law media

is then studied using fractional partial differential equations (FPDEs), which add loss

to the wave equation with a time-fractional or space-fractional derivative. A FPDE

is derived that exactly describes power law attenuation, and analytical, time-domain



Green’s functions in power law media are derived for exponents between 0 and 2. To

construct solutions, stable law probability distributions are utilized, which are widely

used in the study of anomalous diffusion and in the study of fractal media. For ex-

ponents strictly less than 1, the Green’s functions are causal, while for exponents

greater than or equal than 1, the Green’s functions are noncausal.

To address the lack of causality, alternate power law FPDES based on fractional

spatial operators are considered: the Chen-Helm wave equation and a spatially disper-

sive wave equation. Green’s functions are derived for both equations, yielding causal

solutions for all applicable power law exponents. The Chen-Holm equation is shown

to be non-dispersive, while the spatially dispersive wave equation supports a phase

velocity predicted by. the Kramers-Kronig relations. To address the physical basis for

FPDEs, a fractal ladder network is proposed as a model for the stress-strain relation-

ship in tissue. This constitutive equation is based on a lumped-parameter infinite-

ladder topology involving alternating springs and dashpots to capture the viscoelastic

and self-similar properties of tissue. This ladder network yields a stress-strain con-

stitutive equation involving a time-fractional derivative. The Caputo—Wismer FPDE

is derived from this constitutive equation. Finally, the impulse response derived for

viscous media is generalized to power-law media. Expressions for finite apertures

are then derived in dispersive media, thus forming the basis for ultrasonic image

simulation in biological media.
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CHAPTER 1

Introduction

Ultrasonic waves in biological media experience frequency-dependent attenuation.

This frequency-dependent attenuation has ramifications in ultrasonic imaging. For

instance, the absorption of ultrasonic energy in tissue places constraints on the max-

imum depth that can be imaged at a particular frmuency. Since the lateral and

axial resolution are frequency-dependent, the spatial resolution of B-mode systems

is affected due to absorption of ultrasound. In addition, frequency dependent at-

tenuation implies dispersion by the Kramers-Kronig relations [5—7], which produces

a frequency-dependent phase velocity. As most forms of ultrasound imaging uti-

lize a broadband pulse, each frequency component of the propagating pulse travels

at a different phase velocity, which yields depth-dependent pulse distortion. This

combination of frequency-dependent attenuation and dispersion degrades the spa-

tial resolution of B-mode images, hence limiting the diagnostic utility of traditional

ultrasonography.

Although attenuation is a limiting factor in B-mode imaging, the attenuation of

ultrasonic energy can yield additional diagnostic information that is not captured in

traditional B-mode scans. For instance, in the field of tissue characterization, the

attenuation coefficient has been correlated with the pathological state of liver [8, 9]

and breast [10] tissue; hence, knowledge of the attenuation coefficient may be used to

discriminate healthy tissue from diseased tissue. Several studies have also proposed



methods to extract the attenuation coefficient of tissue from backseattered ultrasonic

echoes [11] or via acoustic macroscopes [10]. Since the attenuation coefficient of soft

tissue is 1) largely independent of sound-speed and density variations captured in

B—mode and 2) displays a larger differential variation than sound-speed and density,

accurate measurement of the attenuation coefficient may provide additional diagnostic

information for clinicians. For these reasons, a rigorous understanding of both the

effect of frequency-dependent attenuation and the underlying mechanism responsible

for the observed absorption, is desirable.

Extensive measurement of the attenuation coefficient in human and mammalian

tissue in the ultrasonic range has revealed a power law dependence on frequency

[1, 10, 12]. For most tissue, the power law exponent typically ranges between 1

and 1.7 [10, 13], although exponents slightly less than one have also been reported

[11]. Although most measurements confirm that the attenuation coefficient in tissue

is governed by a power law, there is no consensus on the explanation why attenu—

ation should follow a power law. Classical theories for ultrasonic absorption, such

as thermo—viscosity [14] and Biot’s porous media theories [15] predict a frequency-

squared dependence in the low-frequency limit, while classical relaxation predicts an

attenuation coefficient with a resonant peak at the relaxation frequency of the ma-

terial (i.e. anomalous dispersion). However, neither of these behaviors is observed

in biological tissue. Multiple-relaxation mechanism models [16] predict power law

behavior over a narrow frequency band by empirically choosing the proper weights

and relaxation frequencies, yet these fail to explain power law behavior over large

frequency bands. Therefore, the power law behavior of the attenuation coefficient

over a large bandwidth in biological media cannot be explained from an underlying

physical principle at the present time.

Finally, our mathematical understanding of the consequences of power law atten-

uation in time-domain acoustics is lacking. Mathematically, the power law frequency



dependence of the attenuation coefficient cannot be modeled with standard dissipa-

tive partial differential equations with integer-order derivatives such as the Stokes

wave equation [17] or the telegrapher’s equation [18]. Rather, integro—differential

equations, or fractional partial differential equations (FPDEs), have been proposed

to capture this power law frequency dependence. These FPDE include modes by

Szabo [19], Chen-Holm [20], and Caputo-Wismer [21]. Unlike their simpler integer-

ordered counterparts, FPDE cannot be solved by classical methods of mathematical

physics discussed in canonical texts such as [18]. Therefore, analytical solutions for

general power law media, generated either by point-sources or finite apertures, have

not been reported in the literature.

In light of our incomplete knowledge of the behavior of ultrasound in power law

media, the purpose of this thesis is threefold: 1) to understand the analytical structure

of transient fields in power law media, 2) to provide a possible description of the

physical mechanism responsible for power law attenuation in biological media, and 3)

to develop analytical models for transient, three-dimensional sound beams in power

law media. Although many FPDE models exist for power law media, the Green’s

function solutions to these equations have neither been report or analyzed. Therefore,

this thesis develops Green’s functions for the recently proposed phenomenological

power law models discussed above. In the process, the physical basis for power law

attenuation is explored. By utilizing these Green’s functions, analytical models for

transient sound beams in power law media are derived. These models may then be

applied to the simulation of ultrasonic phased arrays in dispersive media.

1.1 Ultrasound Absorption Mechanisms

To orient the reader, this chapter surveys three basic mechanisms for ultrasonic at-

tenuation: 1) thermo—viscosity, 2) molecular relaxation, and 3) micro-heterogeneity.



1.1.1 Thermoviscous Model

The underlying physics of both viscous diffusion and thermal conduction are well

documented. All real fluids (except superfluids) possess an internal friction called

viscosity, which results from the diffusion of momentum between fluid particles with

different velocities [14]. Since momentum diffusion is a localized near velocity gradi-

ents, a viscous fluid is memoryless and only weakly dispersive. As shown in standard

textbooks [14, 22], viscous dissipation of sonic energy results in an attenuation coef-

ficient possessing frequency-squared dependence.

Besides viscous diffusion, thermal conduction contributes to absorption in simple

materials like water or air. Since acoustic compression is not perfectly reversible (or

adiabatic), acoustic energy may be converted into thermal energy via heat conduction.

Molecules in compressed regions have higher temperatures than molecules in rarefied

regions, causing higher temperature molecules to diffuse to lower temperature regions,

thus decreasing the potential energy stored in the sound wave. Like viscous diffusion,

thermal conductivity is quadratic with respect to frequency and weakly dispersive.

The combination of viscosity and thermal conduction is known as the thermo-

viscous theory, which has been analyzed extensively in both linear [14] and non-linear

acoustics [23]. Viscous diffusion and thermal conduction play a dominant role in

materials with a simple molecular structure, such a monoatomic gases. For media

with more complicated structure, such as soft tissue, viscosity and thermal conduction

play a reduced role. The viscous model for acoustic loss in linear media, which is

derived by linearizing the well-known Navier-Stokes equations for a Newtonian fluid,

results in the Stokes wave equation, which is discussed in detail in Chapter 2. For

nonlinear media, various approximate models include the Westervelt equation, the

Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and the well-known 1D Burger’s

equation [23].



l.1 .2 Molecular Relaxation

The dual processes of thermal conduction and viscosity transform the organized lon-

gitudinal motion of ultrasonic waves into disorganized translational motion, or heat,

thus increasing the entropy of the medium. In polyatomic molecules, energy may

be transformed into additional degrees of freedom, such as rotational, vibrational, or

chemical modes. These additional degrees of freedom are determined by the molecular

structure of the molecule and the thermodynamic state of the system (e.g. temper-

ature, pressure, etc.). During each compression cycle, there will be a net transfer

of energy from the sound wave to each of these internal degrees of freedom, thereby

attenuating the amplitude of the wave [14].

Each degree of freedom is characterized by a relaxation time associated with the

internal energy state. If period of acoustic oscillation is on the same order as the

relaxation time, translational energy will be transferred into internal energy. Poly-

atomic molecules and mixtures may involve multiple relaxation processes, each with

its own characteristic relaxation time. Theoretically, these relaxation times may be

computed from statistical mechanics via a population function. In practice, however,

these relaxation times are fitted to experimental data. Although relaxation models

may be fitted to observed power law attenuation data, these models do not predict a

power law over a wide band of frequencies. Examples of multiple relaxation models

include the time-convolutional model described in [16] and a nonlinear model based

on the KZK equation [24].

1.1.3 Micro-Heterogeneity and Viscoelasticity

Rayleigh’s theory of sub-wavelength scattering, or diffusive scattering, assumes an

ensemble of scatters with a characteristic diameter. As is well known, diffusive scat-

tering predicts a quartic dependence on frequency [25], which conflicts with observed

attenuation and backseatter data. To resolve this conflict, scattering by heteroge-



neous structures at multiple spatial scales may be considered. Unlike water and air,

mammalian tissue is heterogeneous on scales as small as 1 pm (micron), which con-

tributes to absorption and scattering, as well as larger structures extending upwards

of an acoustic wavelength. Class O scattering, which occurs on the scale of microns,

is associated with the dissolved macromolecules present in tissue. This class of scat-

tering manifests itself as absorption and dispersion on the macro-scale (~ 1 mm)

that is resolved by ultrasound [25]. Class 1 scattering occurs on the level of cells

and ensembles of cells (~ 10 - 100 ,um), and may be measured via the backscattering

coefficient. To explain the sub-quartic dependence of Class 1 scattering in tissue,

Ref. [26] considered fractal arrangements of cells to explain the observed power law

dependence of the backscatter coefficient.

In addition, tissue possesses both solid-like and fluid-like properties, which also

contributes to absorption. Tissue consists of water, protein, lipids, and minerals

[25] arranged in a hierarchical structure (tissues, cells, organelles, etc.). In addition,

individual tissue is highly heterogeneous and composed of over a hundred distinct

cell types. These tissues consists of aggregates of cells suspended by an fluid-like

extra-cellular matrix (ECM) [4]. The ECM is often modeled as an aqueous solution

of viscoelastic polymers, which possess both solid and fluid-like properties. This

combination of micro-heterogeneity and Viscoelasticity may be responsible for the

observed power law behavior of tissue and is explored in Chapter 6.

1.2 Phenomenological Power Law Models

To describe the power law dependence of the attenuation coefficient, attenuation in

the ultrasonic range is assumed to arise from multiple mechanisms: thermo-viscosity,

molecular relaxation, and micro-heterogeneity. The cumulative effect of these mech-

anisms in most biological tissue may be approximated by a power law [13] of the



form

afw) = aolwly (1-1)

over a band of frequencies, where w is angular frequency, a(w) is the frequency-

dependent attenuation coefficient, on is the attenuation slope, and y is the power

law exponent. Measured attenuation coeflicients of soft tissue typically have linear

or greater than linear dependence on frequency [1, 10, 13]. For example, breast fat

has an exponent y = 1.5, while most tissue ranges from y = 1 to y = 1.5. Stratified

tissue, such as muscle or tendon, may have an exponent slightly less than 1. For

non-biological materials, such as castor oil or other organic solutions, power laws are

also observed, although the exponent y is typically closer to 2 [6]. Power-laws are also

found in geophysics (e.g. dispersion by micro—heterogeneous porous earth [27]) and in

electromagnetism (e.g. Cole-Cole relaxation of polar molecules [28]). In underwater

acoustics applications, shallow water waveguides with sandy sediments have power

law exponents 1.6 S y S 2.0 [29].

Figure 1.1 shows published attenuation coefficients as a function of frequency

[1]. Attenuation coefficients, which include the combined effects of absorption and

micro-heterogeneous scattering, of kidney, liver, and tendon were measured via a

transient thermoelectric technique at frequencies ranging from 0.5 MHz to 7.0 MHz

at 37°C. Using least-squares regression, the data was fitted to Eq. (1.1), yielding

power-law exponents y =1.09, 1.14, and 0.76 respectively. Thus, the kidney and liver

considered has a slightly greater than linear dependence of frequency. To account

for the attenuation coeflicient’s power-law dependence exhibited in Figure 1.1, many

phenomenological tissue models have been proposed. These models may be divided

into frequency-domain formulations, which utilize transfer functions and/or filters,

and time—domain formulations, which utilize partial differential equations (PDE),

Frequency-domain formulations, based on the Kramer-Kronig relations [5] be-

tween attenuation and dispersion, have been proposed for linear frequency depen-
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Figure 1.1. Measured attenuation coefficients for kidney, liver, and tendon taken from [1].

The data was fit to Eq. (1.1), yielding power-law exponents of y = 1.09, 1.14, and 0.76 for

kidney, liver, and tendon, respectively.

dence [30] and power—law dependence [31—35]. These models evaluate a frequency-

dependent attenuation coefficient and phase velocity over a bandwidth of frequencies,

and then invert the spectra into the time-domain, usually with the aid of fast Fourier

transforms (FFTs). Although these are flexible, frequency-domain methods provide

neither analytical solutions nor physical insight into the problem.

Dispersion has been incorporated within time-domain models via FPDE, which

add loss to the wave equation with a time-fractional derivative [19, 27, 36] or a space-

fractional derivative [20, 37]. These fractional operators are defined in Appendix A.

Unlike loss models which utilize integer-order derivatives [38, 39], these FPDE support

power-law attenuation coefficients for a range of non-integer exponents y. These

equations are typically solved numerically via finite-difference time-domain (FDTD)

[40, 41] or finite element method (FEM) [21] analysis. All of FPDE considered in this



thesis possess the form

1 62p

V2 —-—-—

1) 03 6t2

+ L(p) = 0 (1.2)

where p is acoustic pressure, CO is a reference speed of sound, and L(p) is a linear op-

erator involving time-fractional and/or space-fractional derivatives. Following Szabo

[19], L(p) is termed a loss operator. The three major FPDE explored in this thesis

are the 1) power law and Szabo wave equations, 2) the Chen-Holm and spatially dis-

persive wave equations, and 3) the Caputo—Wismer equation, each which is discussed

below.

1.2.1 Power Law and Szabo Wave Equation

In particular, the Szabo equation [19] interpolates between the telegrapher’s equation,

which approximates frequency-independent attenuation, and the Blackstock equation

[42], which approximates frequency-squared dissipation, allowing a large range of

lossy behavior to be encapsulated within one equation with two loss parameters:

an attenuation slope a0 and a power-law exponent y. The Szabo wave equation was

originally presented as an integro-differential equation for fractional power law media.

Subsequently, Ref. [43] expressed the Szabo wave equation in terms of fractional

derivatives, thereby allowing the machinery of fractional calculus to be utilized. In

Chapter 4, the Szabo wave equation, and a generalization, called a power law wave

equation, are considered in detail. In particular, Green’s functions to the power law

wave equation are constructed in homogeneous, 3D media.

1.2.2 Chen-Holm and Spatially Dispersive Wave Equations

Recently, alternate FPDE models for power law attenuation have been reported,

including the model by Chen-Holm [20]. The Chen-Holm model utilizes a space-

fractional derivative of order y to support power law attenuation with exponent y in

the zero-frequency limit, which is desirable for biomedical applications. The Chen-



Holm models build on the theory of fractional diffusion [44] and random walk models

[45] by utilizing a fractional Laplacian operator to model absorption. Like the Szabo

equation, the Chen-Holm interpolates between frequency-independent attenuation

(y = 0) and frequency-squared attenuation (y = 2). The Szabo wave equation utilizes

higher-order temporal derivatives of order y + 1 > 2, which require three initial

conditions: 1) p(r,0), 2) p(r, 0), and 3) p'(r,0). Since the third initial condition may

not be available, Chen and Holm incorporated dispersive loss via a symmetric, space

fractional derivative [20] which only requires the first two initial conditions. To explore

the ramifications of the space-fractional derivative, the Chen-Holm equation and a

natural generalization, called the spatially dispersive wave equation, are explored in

Chapter 5.

1.2.3 Fractal Ladder Models and the Caputo—Wismer Wave Equation

Chapters 4 and 5 concentrate on an analytical description of power law attenuation

using the probabilistic tools of stable distributions as solutions. Can the underlying

physics of ultrasonic absorption be described geometrically? Since the pioneering

work of Mandelbrot [46], the concepts of fractal self-similarity have provided an inge-

nious framework for modeling both the physical and the natural world. For instance,

fractals are used to model the branching of air passages in the lung and to model

the folding of cell membranes [47]. Mandelbrot noted the close connection between

fractional calculus, stable distributions, and fractals in his seminal monograph [46].

Therefore, fractals may provide a geometric description of the underlying physics. To

make the connection between fractional calculus and fractals, self-similar networks of

springs and dashpots are introduced to model the dissipative process. Using these

networks, a recently proposed FPDE by Caputo-Wismer [21, 36] is derived. The

Caputo-Wismer FPDE utilizes a fractional time-operator of order y — 1, which yields

a power law attenuation coefficient in the low frequency limit, thus providing an ab

10



initio explanation for the observed power law dependence.

1.3 Fourier Transform Convention

Fourier transforms, and, to a lesser extent, Laplace transforms, are used extensively

throughout this thesis. To maintain consistency with the bulk of the literature de-

voted to acoustic dispersion, the i-convention for \/—1 is used. Temporal Fourier

transforms are denoted by a hat and defined via the following forward/inverse pair:

A m -

1,0(w) = / 1,!)(t)eu"t dt (1.3a)

—OO

1 °° . -

at) = — / wee-W (Lab)
27r _00

Spatial Fourier transforms are denoted by an upper-case letter and defined via

in.) = wee-1"” dnr (1.4a)
Rn

_ 1 ik~r
we) _ —(2,,)n [Rn ‘Il(k)e d"k (1.4b)

where 7?." denotes n-dimensional Euclidean space. In the bulk of this thesis, Eq.

(1.4) is specialized to n = 3.

1.4 Content of Thesis

This thesis consists of three major sections. Chapter 2 and 3 concentrate on the

Special case of time-domain diffraction in viscous media, which is easier to treat

mathematically. Chapters 4, 5, and 6 form the core of the thesis, wherein the three

FPDE models discussed in Section 1.2 are explored in depth. Finally, the tools

developed in Chapters 4, 5, and 6 are applied to time-domain diffraction in Chapter

7, thus generalizing the results of Chapters 2 and 3.

Since viscous media is a special case of power law media, insight into general dis-

sipative processes is gained by studying the special case of viscous media. Therefore,

11



the transient theory of viscous media governed by Stokes wave equation, including an

asymptotic Green’s function, is developed in Chapter 2. To understand the behavior

of transient fields produced by finite apertures, the classical impulse response theory

[48] is extend to viscous media in Chapter 3. Impulse responses of circular, rectan-

gular, and spherical shell radiators in viscous media are then computed, allowing the

coupled effects’of diffraction and viscous loss to be studied in the time-domain.

Chapters 4 and 5 concentrate on the analytical structure of power law transient

fields. In order to extend the lossy impulse response to the general power law case,

Green’s functions need to be calculated. In Chapter 4, a power law FPDE is derived

and 3D Green’s functions in power law media are calculated in homogeneous media

use the machinery of stable distributions [49]. Chapter 5 introduces alternate power

law models based on fractional spatial derivatives. Green’s functions to these space

fractional FPDEs are derived and compared to the time-fractional models studied

in Chapter 4. The FPDEs considered in Chapters 4 and 5, unlike the Stokes wave

equation, are phenomenological and not based on an underlying physical principle.

To shed light on the physical mechanisms responsible for power law attenuation, a

fractal spring-dashpot model in considered in Chapter 6. Using this fractal model,

a constitutive equation is deduced, allowing a previously proposed FPDE, known

as the Caputo-Wismer equation [21, 36], to be derived in both homogeneous and

inhomogeneous media.

Chapter 7 generalizes the lossy impulse response developed in Chapter 3 to lossy

media using the Green’s function theory developed in Chapters 4-6. Impulse responses

of circular, rectangular, and spherical shell radiators in power law media are computed

in terms of stable distributions and compared to their viscous counterparts in Chapter

3. Chapter 8 summarizes the original results of this thesis.

12



CHAPTER 2

Stokes Wave Equation

2.1 Introduction

Viscous loss and thermal conduction, which possess a quadratic dependence on fre-

quency, are modeled by the Stokes wave equation [14]. As discussed in Chapter 1,

viscosity and thermal conduction are the dominant loss mechanisms in simple fluids

such as monoatomic gases and water. For more complicated polyatomic materi-

als, such as polymers, or for materials with heterogeneous micro-structure, such as

tissue, viscosity and thermal conductivity do not accurately describe the observed

attenuation coefficient. Although viscosity fails to describe the mechanism for loss

in biological media, the Stokes wave equation is considered in this chapter for the

following reasons: 1) the basic physics are well understood, allowing a rigorous anal-

ysis, 2) an approximate Green’s function is available in closed-form, and 3) insight

into general dissipative media is gained by studying the approximations available in

viscous media, which is a special case of power law media.

Time-domain studies of wave propagation in viscous and other lossy media have

been primarily limited to one-dimensional plane wave propagation. For example,

the classic study by Blackstock [42] approximated the viscous term in the Stokes

wave equation by a third-derivative, leading to both a noncausal PDE and approx-

imate solution. Wave prOpagation in viscous media has also been modeled by the

13



telegrapher’s equation [50], leading to causal solutions with sharp wavefronts similar

to electromagnetic propagation in conductive media. Recent studies derived causal

Green’s function solutions to the Stokes wave equation in the form of contour integrals

[51], infinite series [52], and closed-form approximations [17]. Although the combined

effects of diffraction and loss have been thoroughly studied in the frequency domain

both analytically [53] and numerically [54], most time-domain studies have been ana-

lytical. For example, the combined effects of diffraction, dissipation, and nonlinearity

were studied numerically in Ref. [55] under the parabolic approximation.

In this chapter, an approximate Green’s function is derived as a shifted and scaled

Gaussian distribution. This Green’s function is numerically compared to a reference

solution and shown to provide an excellent approximation for 1) observation distances

sufficiently far from the source and 2) moderate values of the attenuation coefficient.

The Green’s function is then decomposed into diffraction and loss components, where

the diffraction component satisfies the lossless wave equation and the loss component

satisfies the diffusion equation.

2.2 Formulation

This chapter considers the Stokes wave equation

1 62p2 a 2 _
V p+7—V p—gw—6t 0 (2.1)

where Co is the thermodynamic speed of sound and 7 is the relaxation time of the

medium. The relaxation time is related to the coefficient of shear viscosity a by the

following relation

_ a
’7 —' :3ng (2'2)

where p is the density of the homogeneous medium. Physically, 7 measures the time

necessary to restore equilibrium to the translational degrees of freedom in the fluid

following a small thermodynamic disturbance. The velocity potential <I>(r, t) and the
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particle velocity u(r, t) also satisfy Eq. (2.1). If 7 = 0, equilibrium is restored im-

mediately, and Eq. (2.1) reduces to the lossless wave equation. The loss operator in

the Stokes wave equation, given by the third term in Eq. (2.1), is a singular pertur-

bation which transforms the lossless, second-order hyperbolic wave equation into a

third-order parabolic equation [56]. The dispersion relation between wavenumber k

and angular frequency w are computed via a space-time Fourier transform applied to

Eq. (2.1), which yields (see Eqns. (58) and (59) in Ref. [52]):

kw = w y/l—iw 2.3() co ’_—__51+(w) 7 ( )

thereby yielding an attenuation coefficient that is approximately proportional to w2

 

for w7 << 1. The effects of thermal conductivity may also be included by modifying

the constant 7 [57].

2.3 Green’s Function Solution

Unfortunately, no closed-form analytical Green’s function is known to exist for the

Stokes waves equation. However, approximate Green’s functions may be derived,

which are useful for analytical evaluations. The first approach, developed by Black-

stock [42], approximates the viscous term in Eq. (2.1) by a third-order time-derivative.

This approximate Blackstock equation is then solved via frequency-domain methods,

yielding a non-causal solution. A second approach works directly with the Stokes

wave equation and derive a causal approximation [17, 56].

In this section, a causal Green’s function to the Stokes wave equation is derived

as an infinite series. 1 The first term in this series reduces to a previously derived

solution (see [56] or Appendix A in Ref. [59]). Higher order terms may then be

evaluated in terms of Hermite polynomials if necessary.

 

1Similar analytical techniques are utilized in the solution of fractional ordinary differential equa-

tions (FODE) with constant coefficients [58]. This series expansion technique will be generalized to

FPDE in Chapter 5.
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The transient Green’s function to the Stokes wave equation g(r, t) satisfies

2 “929 78v29= —5 6RVg—goa—tg‘l' ”YE (t)( ) (2-4)

where R = [r — r'| is the distance between observer r and source r’. Fourier trans-

forming Eq. (2.4) from the space-time domain (R, t) to the spectral-frequency domain

(k, 3) via Eq. (1.4a) and the Laplace transform produces

2 32
—k ———7sk2 G=—1 (2.5)

Co

where k = [k] is the magnitude of the spatial frequency vector k. Solving for G and

completing the square yields

63
c“; k, =

( S) (s + 7c8/2k2)2 + c3192 — 72/41:4

(2.6) 

Rewriting Eq. (2.6) yields

6(2) 72/463194 —1

C(k’ 3): (s + 7c0/2k2)2 + ogre? 1 — (s + 7/2k2)2 + c3192 (2'7)

  

Expanding the second factor as a geometric series yields

  

 

00

s) = Z Gn(k, s) (2.8)

n=0

where

c2k2 2n 1

Gu(k, s)—_ cg 7 0 M (2.9)
2 [(3 + 7031.2/2)2 + ogre]

The inverse Laplace transform of Eq. (2.9) is computed via [60]

1 _

—l _ n+1
.C { [(s + (1)2 + A2]n+l}— u(t)2nn:t A”jn (tA) (2.10)

where jn(z) is the spherical Bessel function of the first kind of order n and u(t) is the

Heaviside step function. Letting A = cok and a = 7c(2,k2 /2 yields

71634-371163?! ')’C2th

72 tn+l exp (_7C0
 

 Gn(k, t) = u(t)

8%!
> 971030,“) (2:11)
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The 3D Green’s function is recovered via a three-fold inverse Fourier transform defined

by Eq. (1.4b) in spherical coordinates (k, 9),, (bk), yielding

oo 11' 21r

g(R, t) = —l—/ f / C(k, t) exp (ikR cos 6k) sin 6kk2 dcpk dflk dk (2.12)

8W3 o o 0

where 9k = cos—1(kz /k) and ¢k = tan-1(ky/kx). The (bk and the 6k integrals are

evaluated, producing

1

27r2R

Inserting Eq. (2.8) into Eq. (2.13) yields

 g(R, t) = [000 ksin (kR) C(k, t) dlc (2.13)

 

00

g(RJ) = 2912020. (2-14)

n=0

where

7211 2+3n n+1 00 3n+l 7%leth
Rt = t——— t k —- ° kR ° kt all:at ,> u<>8.,,.,,2Rc0 /0 exp sm< mm) 2

(2.15)

Eq. (2.15) is recognized as an inverse sine transform. Evaluation of Eq. (2.15) is

particularly straightforward for the leading order term (n = 0).

2.3.1 Causal Approximation (n = 0)

The physically significant solution is obtained by examining the leading order term

in Eq. (2.14). For n = 0, the spherical Bessel function reduces to the sine function

20(2) = sinc(z) = y (2.16)

Inserting Eq. (2.16) into Eq. (2.15) yields

  

u(t)co °° 7C3k2t . .t _ _ 2.1790(R, ) 27r2R 0 exp ( 2 sm (kR) Sln (cokt) dk ( )

To evaluate Eq. (2.17), the following identity is utilized

 ilr' /_: exp (—ak2) sin(Rk) sin(bk) dk = «LT—a [exp (—(R — b)2/4a) —

exp (—(R + b)2/4a)[ (2.18)
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Evaluating the inverse transform of Eq. (2.18) by taking a = 7cgt/2 and b = cot

yields

Physically, the first term in Eq. (2.19) represents an outgoing wave, while the second

term represents an incoming wave. For large times 7t >> 1, the incoming wave is

negligible, yielding

u _ 2

g(R, t) z 41r—R\(/t—_2)7rt—7 exp (—(i—§R%@—) (2.20)

Eq. (2.20), which is valid for small viscosity (7 -+ 0) and large times (t -—2 00),

supports infinite propagation speed, yet is strictly causal. As the following section

shows, Eq. (2.20) is an excellent, causal approximation except in the extreme nearfield

or highly viscous media.

2.3.2 First Order Term (n = 1)

Higher order terms in the series expansion Eq. (2.14) may be computed if necessary.

In this subsection, the term 91 (R, t) is computed explicitly in terms of Hermite poly-

nomials. If higher-order terms are required, the technique presented below may be

applied. To evaluate Eq. (2.15) for n = 1, an identity is first required.

First, let

_ exp (—a:2/(4a))
 _ 2.

which may also be expressed as an inverse cosine transform

1 0° _ak2

71(3) = '7; e cos(k:r) dk (2.22)

0

Differentiating both sides of Eq. (2.22) m times and appealing to the definition of

the Hermite polynomial Hn(:z:)

Hna) = (—1)"e$ — (ta-$2) (2.23)



yields the identity

 

 

1 0" —ak2 m mrr (-1)m :1: —$2

- k —) dk: H __ _”/0- e k cos(:z:+ 2 2m+1\/7—r(\/a)m+1 m 2J5 exp 4a

(2.24)

To evaluate gl(R, t), we need

, sinz cosz

31(Z)= 2 — (2.25)
z z

Inserting Eq. (2.25) into Eq. (2.15) with n = 1, applying the sine and cosine addition

formulae, and utilizing Eq. (2.24) with a = 7cgt/2 and :c = cot :l: R yields

(7/(260))2U(

4m 0 [91a(R. t) + 91:.(R, 0] (2.26)
91(R’ t) :
 

with A = (Mt/2, where

—l(—)(—)(%e)w2(t—%e)l
(2.27 )

W=—— [H3 (is) w (as) «3 (ex—co) . (42%))
(2.27b)

111200 = % eXP (-;\ (2.27c)

Higher-order terms gn(R, t) for n 2 2 may be calculated by applying the expansions

of jn(z) and applying the same procedure.

2.4 Green’s Function Evaluation

The error incurred by utilizing the asymptotic Green’s function given by Eq. (2.20)

is quantitatively analyzed in this section. A reference solution to the Stokes wave

equation is evaluated using the material impulse response function (MIRF) approach

outlined in Ref. [31], and the result is compared to Eq. (2.20). The wavenumber

k(w) is calculated via the reference dispersion relation given by Eq. (2.3), allowing
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the material transfer function (MTF) to be calculated in the frequency domain. As

specified by Eq. (10) in Ref. [31], the reference Green’s function, or MIRF, is then

recovered by inverse Fourier transforming the MTF, or frequency-domain Green’s

function, via the fast Fourier transform (FFT)

g(R t) = f—1 (8176003) 1 (2.28)

’ 41rR

Since g(R, t) is necessarily real, conjugate symmetry of the MTF is enforced in the

 

frequency domain. The relative L2 error, defined via

00 _ re 2d

error: \/f-w|¢(t) (1) fan t (2.29)

W320 new)? dt

is calculated with the MIRF approach used as the reference.

 

 

 

Figure 2.1 summarizes the results of this comparison for various combinations of

the observation distance R and the viscous relaxation time 7. Large values of 7 were

chosen to determine the range of acceptable values for this approximation. Panel a),

which shows the numerical reference and approximate Green’s functions using R = 1

mm and 7 = 0.01ps, displays a significant disparity between the reference and asymp-

totic Green’s functions when 7 is relatively large and R is relatively small. Panel b),

which is evaluated with R = 1 mm and 7 = 0.01ps, shows a much smaller difference

between the asymptotic and reference Green’s functions. Panels c) and d) show the

Green’s functions for R = 1 mm and 7 = 0.01ps and 7 = 0.001ps, respectively; these

panels show very close agreement between the reference and asymptotic Green’s func-

tions. The asymptotic and reference Green’s functions are virtually identical in panel

(I) of Fig. 2.1, implying that Eq. (2.20) is an excellent approximation for R > 1 mm

and 7 < .001ps.

A quantitative error analysis comparing the asymptotic Green’s function to the

MIRF result is displayed in Figure 2.2. Error as a function of relaxation time 7 is

displayed on a log-log plot for four different observation distances: R = 0.01 mm,
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R = 0.1 mm, R = 1 mm, and R = 10 mm. As expected, the error increases as

7 increases and decreases as R increases. For a 1% error threshold and a given

observation distance R in mm, a maidmum acceptable relaxation time is determined

from Fig. 2.2 by fixing R and identifying the range of 7 satisfying the 1% error

threshold, yielding the relation 7 S 2 x 10-4R. By fixing 7 and letting R vary, the

minimum acceptable distance is determined by R Z 5 x 1037.

The viscous relaxation time is related to the attenuation coeflicient a at a fixed

frequency f via the relation [57] 7 = coo/(2n2f2). For instance, soft tissue at f = 3

MHz with an attenuation coefficient of 01 = 0.345 cm‘1 and sound speed on = 1.5

mm/ps corresponds to 7 = 3 x 10‘4 us. Applying this error analysis, R must be

chosen larger than 1.5 mm to maintain an error less than 1% in this media.

2.5 Green’s Function Decomposition

Mathematically, Eq. (2.20) consists of a composition of a) the Green’s function to

the 3D wave equation and b) the Green’s function to the 1D diffusion equation. This

observation motivates decomposing Eq. (2.20) into individual diffraction and loss

factors via

g(R,t) =1: [Mt—221260)] [u(t) flimexp 0%)] dt’, (2.30)

where the sifting property of the Dirac delta function applied to Eq. (2.30) yields Eq.

  

(2.20). Identifying the first bracketed expression as a diffraction component and the

second bracketed expression as a loss component via

_ 5(t - R/co)
gD(R, t) — 47rR . (2.318.)

(t t') - u(t)—1—-— ex ——t’—2- (2 31b)

91’ ’ _ (/27rt7 p 2t7 ' '

allows Eq. (2.30) to be expressed as

00

g(R, t) = gut, t’) @9002, t) E / gD(R,t — t’)gt(t,t’) dt’ (2.32)
—00
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where the convolution denoted by (8 is performed with respect to the t’ variable. In

Eq. (2.32), the subscript “D” refers to diffraction, whereas the subscript “L” refers

to loss. Eq. (2.31a) is responsible for the diffraction of the radiating aperture. Eq.

(2.31b) is a Gaussian function centered at t’ = 0 having width, or standard deviation,

J57. In Eq. (2.31b), the t’ variable is interpreted as “propagation time” (fast),

whereas t is interpreted as the “diffusion time” (slow). In fact, Eq. (2.31b) is the

causal Green’s function for the 1D diffusion equation given by [61]

2

(g - g5.) 92a t’) = 6<t>6(t') (233)

where cot’ plays the role of the spatial variable. Thus, Eq. (2.32) is interpreted as

the non-stationary convolution of the 1D Green’s function for the diffusion equation

with the Green’s function of the 3D wave equation. As shown in the next chapter, the

decomposition embodied in Eq. (2.32) facilitates the generalization of the impulse

response for finite apertures in viscous media.
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Figure 2.1. Comparison of the asymptotic form of the Green’s function for the Stokes

wave equation in Eq. (2.20) and the reference Green’s function computed numerically via

the MIRF approach. The Green’s function is shown for a) R = 0.1 mm and 7 = 0.01 as, b)

R = 0.1 mm and 7 = 0.001 as, c) R = 1.0 mm and 7 = 0.01 as, and d) R = 1.0 mm and

7 = 0.001 as. '
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Figure 2.2. RMS error for the asymptotic Green’s function relative to the exact MIRF

result. RMS error is displayed on a log-log plot for a range of viscous relaxation times 7 at

four different observation distances: R = 0.01 mm, R = 0.1 m, R = 1 mm, and R = 10

mm. The error increases with respect to 7 and decreases with respect to R.
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CHAPTER 3

Lossy Impulse Response in Viscous Media

In this chapter, the approximate Green’s function derived in Chapter 2 is applied to

diffraction by finite apertures in viscous media. To solve these problems, the impulse

response method, which is widely used to solve transient problems in acoustics, is

generalized to viscous media by invoking the Green’s function decomposition given

by Eq. (2.32). The tools developed in this chapter will form the basis for modeling

time-domain diffraction in power law media in Chapter 7.

In order to understand the interplay between diffractibn and frequency-dependent

attenuation, expressions that describe time-domain impulse response for simple pis-

ton geometries are needed. Although impulse response expressions exist for circular

[62, 63] and rectangular [48] apertures in lossless, homogeneous media, no analyti-

cal expressions for the transient field radiated by finite planar apertures in a viscous

medium have been published previously. An analytical expression for the on-axis

velocity potential produced by a focused spherical shell was recently derived in Ref.

[64], although field points off-axis were not considered. In particular, the effect of

viscous loss on the impulse response of baffled circular and rectangular pistons will

be addressed in this chapter.
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3.1 Lossy Impulse Response: Theory

3.1.1 Impulse Response in Lossless Media

The impulse response method, developed independently by Oberhettinger [62] and

Chadwick-Tupholme [65], is the de facto standard for computing transient acous-

tic fields produced by finite apertures [66]. The (lossless) impulse response theory

assumes a homogeneous, linear acoustic medium with a finite radiating aperture S

surrounded by an infinite, rigid baffle. The normal velocity is prescribed on the aper—

ture S via uz(r,0) = q(r)v(t) where v(t) is the time-domain input pulse, q(r) is the

apodization which incorporates spatial variation in the surface velocity, and r’ lies in

the plane 2 = 0. Thus, a Neumann boundary condition is imposed via

6<I>

5; 2:0 = q(r)v(t) (3-1)

where <I>(r,t) is the velocity potential. By solving the lossless 3D acoustic wave

equation via the Helmholtz integral equation, the velocity potential is written

<I>(r, t) = u(t) * h(r, t) (3.2)

where “*” denotes temporal convolution and the impulse response is expressed by the

spatial convolution

 h(r, t) = /Sq(r’)6(t 21rI|lr-—Ii"||/CO)d2r" (3.3)

For simple geometries (circle, rectangle, spherical shell, etc.) and apodization func-

tions q(r’), Eq. (3.3) may be computed in closed form. The velocity potential,

pressure, and transmit-receive pressure may then be computed via fast temporal con—

volutions.

In the remainder of this chapter, a uniform surface velocity across the face of

the aperture S (q(r) = 1) is assumed in order to develop relatively simple analyti-

cal expressions. Since the focus here is understanding the basic features of coupled
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diffraction and loss, apodized radiators with non-uniform surface velocities (e. g. sim-

ply supported pistons) [67—69] are not considered in this chapter.

3.1.2 Impulse Response in Viscous Media

The impulse response function hL(r, t) in the half space is defined by integrating Eq.

(2.20) over the surface of the radiating aperture and multiplying by two to account

for the infinite, planar baffle in the z = 0 plane, yielding

hL(r, t) = 2/Sg(r — r',t) dr’ (3.4)

For example, Eq. (2.32) allows the impulse response to be analytically evaluated for

finite apertures. Integrating the decomposed Green’s function over the aperture S

and multiplying by two yields

hL(r,t) = gL(t, t’) ® [SWd2rI. (3.5)

The second factor in Eq. (3.5) is identical to the standard impulse response for a

uniform aperture given by Eq. (3.3), which has been calculated previously for a

circular source. Therefore, the lossy impulse response function is expressed as a non-

stationary convolution of the standard impulse response with a loss function, where

the convolution is taken over t’:

hL(r. t) = gilt, t’) e h<r. t) (3.6)

Similar to the Q-transform [70], Eq. (3.6) maps solutions of the hyperbolic wave

equation to solutions of the parabolic Stokes equation. Physically, the impulse re-

sponse is temporally smoothed by a loss function, which is Gaussian in “slow time” t’.

Although finite radiators necessarily have a finite duration lossless impulse response,

the lossy impulse response has infinite duration due to the Gaussian loss function,

yet the lossy impulse response is quasi-finite duration since both the head and tail of
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the response decay with exponential order. Since the loss function gL(t, t’) is inde-

pendent of R, the integration in Eq. (3.6) is independent of the geometry associated

with the aperture S, vastly simplifying the calculation. Finally, Eq. (3.6) accounts

for the small differences in arrival time of each attenuated spherical wave emitted by

the radiating aperture via the non-stationary convolution. Hence, no additional error

is introduced in the calculation of the lossy impulse response.

3.2 Uniform Circular Piston: Nearfield

Figure 3.1 displays the geometry and coordinate systems used in the following deriva-

tions. The following analysis computes the lossy impulse response for a uniform piston

for all observation points in both the near and far-fields. In this section, the lossy

impulse responses for a uniform circular piston are calculated. Eq. (3.6) is evalu-

ated analytically, yielding either closed-form or single-integral expressions which are

evaluated numerically. The transient velocity potential and pressure fields are then

recovered via FFT-based convolutions.

3.2.1 Lossless Media

The nearfield solution to the transient, lossless, baffled circular piston problem is

expressed piecewise in terms of the rect function and the inverse cosine function

[48, 62]. The non-stationary convolution is difficult to compute with these piecewise

expressions; therefore, a single-integral expression valid for all observation points

is instead utilized. In [71], a single integral expression for the transient pressure

generated by a circular piston was derived. Assuming a Dirac delta excitation v(t) =

6(t) in Eq. (12) in [71] and utilizing the expression h(a:,z,t) = ffoo p(:c,z,t’)dt’/p0

yields the time-domain impulse response

 

_ fl 7' xcosib — a _ _ _

h($, zit) _ 71' A $2 + a2 _ 20,18 COS’l/J [’U.(t T1) U(t 7.2)] db!) (37)
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Figure 3.1. Piston and coordinate geometry. The piston, centered at the origin and

surrounded by an infinite rigid bafie in the z = 0 plane, has radius a and radial coordinate

a. The radial and axial observation coordinates are denoted by 2: and 2, respectively. The

distance between origin and observer is given by r = (/ 2:2 + y2 and the angle between the

radial and axial coordinates is 9.

where the delays 7',- are specified by

 

7'1 2 J32 + Z2 + 0.2 -' 20.113 COS Ip/CO and (388‘)

7'2 = 25/60. (3.8b)

In Eq. (3.7 - 3.8), a: is the radial coordinate and z is the axial coordinate. The

integration over ’l/J can be evaluated in closed form, yielding the piecewise-defined

impulse response given in Ref. [48]. However, the integral representation given by

Eq. (3.7) leads directly to the lossy impulse response that follows. The regularity, or

the number of continuous derivatives, of Eq. (3.7) depends on the axial coordinate r:

for r = 0, there are discontinuities at both the leading and trailing edges; for r g a,

there is a discontinuity at only the leading edge; for r > a, Eq. (3.7) is continuous
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everywhere, yet not differentiable at both the leading and trailing edges.

3.2.2 Viscous Media

The nearfield solution given by Eq. (3.7) is an exact solution to the transient wave

equation assuming a uniform piston in an infinite rigid baffle. The lossy impulse

response is computed by inserting Eq. (3.7) into Eq. (3.6) and evaluating the unit

step functions in Eq. (3.7). The integration over t’ is evaluated in terms of the error

function [72] erf(z), yielding

60a 7' xcos¢—a t-T1 t—Tz

h t = — t f — — f d .

L($’ 2’ ) 27r u( )_/0 x2 + a2 — 2axcosw [er (\flt'y) er (‘/§t7)l 1'0

On axis (:1: = O), the lossy impulse response reduces to

_ c0u(t) t-z/c t—V22+a2/co

hL(0,z,t) — 2 [erf( m ) — erf( \/2t_7 )]. (3.10)

As in the lossless case, the first and second delays in Eq. (3.10) correspond to the

  

   

closest point and the furthest point on the radiating piston, respectively. The “slow”

time scale is embodied in Eqns. (3.9) and (3.10) by the denominator of the erf

functions m whereas the “fast” time scale is embodied in the numerator. As

Eqns. (3.9) and (3.10) show, the lossy impulse response possesses an infinitely long

tail that decays like a Gaussian.

3.2.3 Numerical Results

In this section, the lossy impulse response expressions for the circular piston in the

nearfield are numerically evaluated and physically interpreted. The velocity potential

\Il(r, t) resulting from the temporal convolution of a transient excitation with the

lossy impulse response is also computed and discussed. All single-integral expressions

are numerically integrated using Gauss-Legendre quadrature [73]. In the following
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velocity potential computations, the Hanning—weighted toneburst given by

v(t) = -12— [1 — cos (27rt/W)] rect (57) sin (27rf0t) (3.11)

with center frequency f0 = 6.0 MHz and duration W = 0.5 as is applied, where

rect(t/W) = u(t) — u(t — W).

Since the lossy impulse response solutions utilize an approximate transient Green’s

function to the Stokes wave equation, a numerical comparison is made to a reference

frequency-domain solution. The numerical reference is computed by computing the

Fourier-transform of the velocity potential <I>(r, w) = f2(w)ft(r, k(w)) using the disper-

sion relations k(w) given by Eq. 2.3. This product is computed over the effective

bandwidth of 6(a)) and then numerically inverse Fourier transformed using an inverse

FFT. For a uniform circular piston of radius a, the on—axis (r = 0) transfer function

6(0, 2; w) exists in closed-form, thereby obviating the need for numerical integration.

Figure 3.2 displays the on-axis velocity potential for a circular piston of radius»

a = 10 mm in a viscous medium for the same combinations of z and '7 utilized in Fig

2.1. The velocity potential is obtained for a) z = 0.1 mm and 'y = 0.01 ps, b) 2 =

0.1mm and '7 = 0.001us,c) z = 1mm and 7 = 0.01ps, and d) z = 1mm and '7 =

0.001 ps. The error is computed between the lossy impulse response and the MIRF

method using Eq. (2.29) using the MIRF field as reference. The resulting errors for

the four cases are a) 26.7 %, b) 3.26 %, c) 6.89 %, and d) 2.71 %, respectively. Thus,

larger errors are observed for points closer to the piston and large relaxation times

due to the approximation in the Green’s function given by Eq. (2.20). For 2 > 10

mm and “y 5 0.001 ps, the relative L2 error is less than or equal to 1%. Since the

effect of viscous dissipation is negligible in the extreme nearfield, the lossy impulse

response yields an accurate solution that captures the combined effects of diffraction

and viscous dissipation. Finally, Eq. (3.6) accounts for the small differences in the

arrival time of each attenuated spherical wave emitted by the radiating aperture via

the non-stationary convolution.
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Figures 3.3 and 3.4 display the nearfield impulse response for a circular piston

with radius a = 10 mm for lossless media and viscous media, respectively. Fig. 3.3

shows two snapshots of the lossless impulse response (7 = 0) on a 2D computational

grid extending from cc = —40 mm to :c = 40 mm in the lateral direction and z = 20

to z = 60 mm in the axial direction. Snapshots of the impulse response are shown

at two instances in time: t = 22 ,us and t = 34 us. As shown in Fig. 3.3, the field

within the paraxial region (le S 10 mm) in the lossless case is unattenuated, while the

corresponding region in Fig. 3.4 experiences attenuation and stretching due to viscous

diffusion. For increasing relaxation times, the field becomes progressively closer to

that generated by an omni-directional source as the directivity of the aperture is

weakened far from the source.

The nearfield velocity potential field generated by a piston with radius a = 10

mm within a viscous medium with relaxation time 7 = .001 us is displayed in Figure

3.5 at two successive snapshots in time. At t =22 ,us, distinct direct and edge waves

are evident, with little apparent viscous spreading. As time increases, the edge and

direct waves becomes less distinct, while spreading and attenuation due to viscous

loss become more pronounced. Unlike the lossless case, the direct wave in Fig. 3.5

experiences a significant decrease in amplitude. The physical interpretation of the

uniformly excited circular piston discussed in Ref. [74] is also applicable to transient

propagation in viscous media. Physically, the first term in Eq. (3.9) corresponds to

the edge wave generated by the discontinuity at the of the piston, whereas the second

term corresponds to the direct wave due to the bulk motion of the piston. In the

lossless case given by Eq. (3.7), the direct wave contribution localized within the

paraxial region of the radiator maintains a constant amplitude; however, for the lossy

wave, the direct wave decays as 2 increases. As Fig. 3.3 shows, the direct and edge

waves are clearly discernible in the lossless case, while Fig. 3.4 shows the smooth

transition between edge and direct waves in the presence of loss.
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3.3 Uniform Circular Piston: Farfield

Although Eq. (3.9) is valid for all field points, a simpler expression exists in the

farfield, where the effects of attenuation are more pronounced. Assuming the defi-

nition of the farfield utilized by Morse and Ingard [75], the observation distance is

assumed to be much larger than the radius of the aperture (7' >> a) . This definition

of the farfield is distinguished from the classical farfield distance r > a2/A, which is

only valid over a finite frequency band.

3.3. 1 Lossless Media

A single-integral representation of the farfield lossless impulse response function is

derived from the well-known frequency-domain expression. In the farfield region,

the impulse response is expressed in spherical coordinates r = ng + 22 and 6 =

tan-1(x/z) via an inverse temporal Fourier transform (Eq. (1.4b)):

 

A 1 oo eik‘r _

h(r,0,t) = f—1 [h(r,9,w)] = / D(0;w)e_wtdw (3.12)

g _00 21rr

where D(6;w) is the far-field pattern and k = w/c is the (lossless) wavenumber. Eq.

(3.16) is computed by inverse Fourier transforming the classical frequency-domain

result. The farfield pattern is given by

2J (ka sin 6)
2 1

7m ka sin 0

 m...) = , (3.13)

where J1(z) is the Bessel function of the first kind of order 1. To invert the Bessel

function in Eq. (3.12), an integral representation is utilized [76]:

in

Jn(z) = — f” cos ml) 6.” C051!) (ii/2. (3.14)

0
7r

Inserting Eqns. (3.14) with n = 1 and (3.13) into Eq. (3.12) yields

eiwr/co

—iw

  h(r,6,t) = CO“ r1 [

7f

- —ikasin6cos¢
7rrsin6 f0 cost/2e (11,0 . (3.15)
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Noting the spectral integration and applying the shifting properties of the Fourier

transform yields the final result

 h(r, 6, t) = f“ cosw u(t — r/co + asin Qcos 7.0/CO) dab, (3.16)

firmnfi 0

which is valid for 7‘ >> a and 6 > 0. Note that Eq. (3.16) has support on the

time interval [r/co — asin 0/c0,r/c0 + asin 0/c0], which follows from the fact that

f; coszp d2!) = 0. Thus, the temporal duration of the impulse response increases as 0

increases, which physically corresponds to the piston motion becoming blurred [75].

Unlike the nearfield impulse response [48], Eq. (3.16) is symmetric about t = r/co.

Eq. (3.16) is evaluated in closed form as

 

 

h(r, l9, 7'):

firmnfl

[u(T — r/CO + asin B/co) — u(T — r/co — asin 6/c0)] \[_(r—

(3.17)

which has the form of a semi-ellipse centered at r/q). Unlike the exact impulse

response [48], which is valid for observation points in both the nearfield and the

farfield, Eq. (3.17) is symmetric about t = r/co. On axis (0 = O), the lossless impulse

response reduces to

a2 ‘

h(z,0,t) = -2—26(t — z/co), (3.18)

which is the limiting case of Eq. (3.7) as 2 —* 00.

3.3.2 Viscous Media

The farfield viscous lossy impulse response is now computed from Eqns. (3.16) and

(3.18). For the off-axis case, Eq. (3.16) is substituted into Eq. (3.6). Interchanging

the order of integration and evaluating the unit-step function in the integrand yields

 

ca 1"(1/)) tl2

hL(r, 6’,=t) 7rrsin6\/u2(7tr_t,/fl foo xep(- 2t7')coswdt dip, (3.19)

where

Hap) = t — r/co + asin 6 cosw/co. (3.20)
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The integration over t’ is evaluated usmg 72; ffoo e‘z dz = 1 + erf(a:). Due to

the coszp term in Eq. (3.19), the constant term vanishes, yielding a single integral

 

expression

_ coau(t) /” t—r/c0+asin6cosz,b/c0

hL(r,6,t) —— _2nrsin6 0 erf m coswdw (3.21)

The on-axis case is computed with Eq. (3.18), yielding

a2 _ z 2

hL(Z, O, t) = U(t)m exp ("LQ—tT/yfl), (3.22)

which can also be derived by letting z —+ 00 in Eq. (3.10). Unlike the lossless case,

the lossy impulse response does not have compact support in time. Since both the

Gaussian and error functions have infinite support, the lossy impulse response defined

by Eqns. (3.21) and (3.22) are also non-zero for all positive time values. In physical

terms, this semi-infinite region of support implies wave components traveling with

phase speeds varying from zero to infinity, but the infinite phase speeds are infinitely

attenuated [17], so the result is causal.

3.3.3 Numerical Results

Figure 3.6 displays both the nearfield and farfield lossy impulse responses for a circular

.piston (a = 5 mm). Panel a) evaluates the lossy impulse response at r = 50 mm both

on-axis (6 = 0) and off-axis (6 = 7r/ 12 and ¢ = 0). In this region, the farfield

approximation differs significantly from the nearfield solution. Panel b) evaluates

the impulse response at r = 200 mm both on—axis (6 = O) and off-axis (6 = 7r/ 12

and d = 0). In this region, the farfield approximation agrees with the nearfield

solution, indicating that the simplified farfield expressions accurately represent the

lossy impulse response at distances far from the source.

Numerical evaluations of the lossy impulse response show distinct behavior within

the nearfield, the transition region, and the farfield. For the values of '7 evaluated

in Fig. 3.6, the diffraction component dominates in the nearfield, with only a small
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amount of smoothing in the vicinity of the head and tail of the response. For obser-

vation points in the transition region between the near and farfields, the effects of

diffraction and loss are both apparent. In this transition region, the impulse response

is both smooth and asymmetric. Finally, in the farfield, the effects of viscous loss

predominate, yielding increasingly symmetric and broad responses with a reduced

directivity.

3.4 Rectangular Sources: Nearfield

In ultrasound imaging applications, sources typically consist of large phased arrays of

rectangular or cylindrically curved strips. Since rectangular radiators are not axisym—

metric, the fields produced by these apertures depend on all three spatial Cartesian

coordinates (:l:, y, z) or spherical coordinates (r,6, (1)).

3.4.1 Lossless Media

In this section, a single-integral representation for the nearfield impulse response of a

rectangular radiator is derived. In order to apply a previous continuous-wave result

[2], the rectangle is decomposed into 4 sub-rectangles, as displayed in Figure 3.7. As

shown in [2], the Fourier transform of the impulse response (or transfer function)

hs,[(z;w) due to a sub-rectangle of width 3 and length l is given by

l eiszQ+a§+sQ _ eikz s eisz§+a§+l§ _ eikz

do +1]

0

A pc

h z, w = , .9 do

3’“ ) 2mm [0 02 + 32 02 + 12

   

(3.23)

The total transfer function h(:r,y, z;w) is given by the superposition of the contri-

bution from each sub-rectangle. The resulting expression is an exact solution to the

nearfield diffraction problem and analytically equivalent to the Rayleigh-Sommerfeld

integral.
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The time-domain impulse response from each sub-rectangle is recovered via ana-

lytically inverse Fourier transforming Eq. (3.23), which yields

h,,(:., t) = % (13,,(2, t) + 11,3(2, t)) (3.24)

for a single rectangle, where

l
u(t — Ts) — u(t — z/c)

13,1(2, t) = 3/0 02 + 32 do, (3.25) 

and the delay T3 is specified by

 

T3 = \/22 + 02 + 32/0. (3.26)

The impulse response is then written as

4

he, y, z. t) = Z ihs,,z,(z, t). (3.27)

i=1

where the lengths s,- and widths l,- and signs are determined from the geometry in

Fig. 3.7. In the case of y = 0, the total number of integrals in Eq. (3.27) reduces

from 8 to 4 due to symmetry.

3.4.2 Viscous Media

The lossy impulse response is computed by inserting Eq. (3.24) into Eq. (3.6) and

evaluating the unit step functions in each term of Eq. (3.25). The term I3,1(2, t) in

Eq. (3.24) is replaced by a lossy term L8,l(z, t) given by

l t—Ts t—z/

L3,)(z,t)=u(t)s/O 1 [/ gL(t,t’)dt'—/ cogL(t,t’)dt’] do. (3.28)
.32 + 02 _oo -00

 

Note that the lossless speed of sound 0 has been replaced by the adiabatic speed of

sound co. The integrations over t’ are evaluated in terms of the error function [72]

erf(z), yielding

L.,z<z.t) = MS [01 eff” _ ”Wm ' erf “t ’ WWW)
02+s2

 do (3.29)
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The contribution by each sub—rectangle to the lossy impulse response is then specified

by

C

hL,s,z(z, 15) = ‘27 (113,102.15) + Lz,s(z, t)) - (3-30)

The total impulse response is then obtained by synthesizing Eqns. (3.27) and (3.30).

3.4.3 Numerical Results

Figure 3.8 displays the lossy nearfield impulse response for a rectangular piston with

half-width a = 2.5 mm and half-height b = 10 mm evaluated in lossy media with

sound speed co = 1.5 mm/ps and viscous relaxation times 7 = 0.001, 0.0001, and

0.00001 ps. Eq. (3.30) is evaluated on-axis (a: = y = 0) for a) z = 100 and b) 200 mm,

respectively. In a), nearfield diffraction and loss effects are both visible for all three

viscous relaxation times, resulting in an asymmetric shape with a long duration.

Unlike the lossless impulse response, which possesses discontinuities that are non-

differentiable, all three responses are differentiable everywhere due to the presence of

loss (in fact, the lossy impulse responses are smooth, or infinitely differentiable). As

viscosity increases, the characteristic corners of the impulse response, corresponding

to the edge waves launched by the piston, becomes more rounded. In b), all nearfield

diffraction effects are low-pass filtered by the viscous medium, resulting in symmetric

Gaussian responses for all three relaxation times.

To demonstrate the effect of viscous loss on focused phased arrays, a 64-element

linear phased array radiating into viscous media is modeled using linear superposition.

[The array elements have half-width a = 0.3 mm and half-height b = 2.4 mm. The

kerf is 0.15 mm, and the array is focused on-axis at 80 mm. Each element in the array

is excited by a three-cycle Hamming-weighted toneburst u(t) given by Eq. (3.11) with

a center frequency of 5.0 MHz. To assess the imaging capability of such an array,

the point spread function (PSF) was approximated via the relation PSF(r, t) =

h(r, t) a: h(r,t) * u(t), where h(r,t) is the delayed sum of each element’s impulse
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response. The individual impulse responses, calculated using the nearfield expression

given by Eq. (3.30), are convolved with v(t) using FFT—based convolutions. The PSF

envelope is then detected via a Hilbert transform.

Figure 3.10 displays the normalized pulse-echo envelopes at the focal point

(:r,y,z) = (0,0, 80) mm on a dB scale. Lossless media and viscous media with

relaxation times 7 = 5 x 10-5, 7 = 10'4, and 7 = 2 x 10‘4 us are considered. The

PSF is then computed by moving the lateral observation point within the focal plane

from a: = —6 mm to :c = 6 mm. Figure 3.9 displays the normalized PSF with 50 dB

of dynamic range for a) lossless media and b) viscous media with 7 = 0.0001 us. The

PSF in viscous media differs from its lossless counterpart in several respects. First,

the PSF in panel b) has a much larger lateral extent, indicating a significant decrease

in lateral resolution. The PSF in b) also has a longer effective duration, causing a

decrease in axial resolution. Finally, on-axis, the lossless PSF is unimodal, whereas

the lossy PSF is bimodal.

Unlike idealized frequency-independent attenuation, loss in viscous media causes

beam spreading and widening as well as a decrease in amplitude. Thus, the shape of

the PSF in Figs. 3.9 and 3.10 is altered as well as the amplitude, implying the effects

of viscous loss cannot be completely eliminated by time gain compensation (TGC).

As the viscous relaxation time 7 increases, ultrasonic energy is redistributed from the

main envelope to the leading and trailing edges of the waveform. Thus, the envelope

of the viscous PSF is bimodal, as shown in Figs. 3.9 and 3.10.

3.5 Spherical Shell

Spherical shell radiators are widely used in ultrasonics since they possess a natural

geometric focus. This section derives the impulse response for the focused, transient

field produced by a spherical shell in viscous media. A spherical shell with radius a

and radius of curvature R, surrounded by an infinite rigid baffle, is displayed in Figure
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3.11. The radial coordinate is denoted by r = V32 + yz, and the axial coordinate is

indicated by z.

3.5. l Lossless Media

The lossy impulse produced by a rigid spherical piston embedded in a viscous medium

was evaluated in [64]. An analytical expression was given in the on-axis case; however,

observation points off-axis (r > 0) were not considered. In this section, an analytical

nearfield solution is provided for all field points. The solution is derived for a spherical

shell centered at (0,0, —R) and surrounded by an infinite, rigid baffle. As shown in

[77], the transient solution for a spherical shell with radius a and radius of curvature

R is given by

2a
 h(r. 2. t) = f” f; N.,R(r. «0) Mt — n) — u(t — 72)] «w (331)

where the kernel function Na,R(r, 2,1/1) is given by

rcosgm/R2 — a2 + za
 

 

N r, z, = 3.32

a’R( 71)) R27‘2 + 2am cos 21;ng — a2 — a2r2 0032 1,0 + z2a2 ( )

and the delays 7',- are given by

1'1 = \/R2 + r2 + 22 — 2ar 0082/) + 22\/ R2 - a2/c0 (3.33a)

7'2 = (R + sign(z)\/ 7'2 + 22)/co, (3.33b)

Eq. (3.31) is valid at all observer locations except the geometric focus (0,0,0), where

the impulse response is given by

h(O, 0, t) = 2 (R — 6R2 — a2) 6(t — R/co). (3.34)

3.5.2 Viscous Media

Convolving Eq. (3.31) with gL(t,t’) via Eq. (3.6) yields

hL(r,z, t) = u(t)a n for Na,R(r,z,z/)) [erf (15%) — erf (5%)] dd), (3.35) 
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where erf(z) is the error function [72]. Eq. (3.35) is valid for all points in the acoustic

half—space excluding (0,0,0). The impulse response at the focus is computed by

inserting Eq. (3.34) into Eq. (3.6). The ensuing integration yields

hL(O,O, t) = u(t) i (R — V R2 — (12) exp (W) (3.36)

1rt7 2157

Unlike the lossless case, the lossy impulse response is not infinite at the geometric

focus.

As shown in [64], the on-axis impulse response for the spherical shell is described

by a closed-form expression (no numerical integration is required). Evaluating Eq.

(3.35) for r = 0 and z 7E 0 yields I

erf (t — \/R2 + 22 + zzJRfl—a/co) _ erf(t — (R+z)/c0)

 

  
Rco

hL(0, z, t) = U(t)—z /_2t.7 m

(3.37)

 

which corresponds to Eq. (6) in [64] multiplied by a factor of twol. The delay in the

first term of Eq. (3.37) corresponds to the greatest distance from the observation point

and the shell, whereas the second delay term corresponds to the shortest distance from

the observer to the shell.

3.5.3 Numerical Results

Figure 3.12 displays the lossy impulse response generated by a baffled, spherical piston

with radius a = 10 mm and radius of curvature R = 70 mm in a viscous medium

with 7 = 0.001 ,us and c0 = 1.5 mm/ps. Eq. (3.35) is evaluated on an 80 by 80

grid at times t = 38 us and t = 46 as. Eq. (3.35) is evaluated with Gauss-Legendre

quadrature at each point in space-time. Note that the focus is significantly degraded

due to the absorption of sonic energy by the medium. In particular, the peak value

of the lossy impulse response decreases as 7 —> 00.

To demonstrate the effect of loss on pulse propagation, velocity potentials in a

water-like medium and a liver-like medium are evaluated by convolving the impulse

 

1The baffled boundary condition was not utilized in [64].
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response hL(r, t) with an input pulse v(t). In the following simulations, u(t) is given

by a five-cycle Hanning-weighted toneburst in Eq. (3.11) with center frequency f0 = 5

MHz. For liver, the attenuation coefficient a given in [13] is converted via the relation

7 = coo/(27r2f2), yielding c0 = 1.58 mm/us and 7 = 7x 10“5 us. For water, c0 =

1.54 mm/ps and 7 = 10'6 us. Thus, the viscous relaxation time in liver is almost

two orders of magnitude larger than that in water. The velocity potential is evaluated

on-axis at a) z = -20 mm and b) 2 = 0 mm by performing FFT based convolutions,

yielding the waveforms displayed in Figure 3.13. As shown, the effect of loss has

little effect in water, allowing the pulse to form a geometric focus near z = 0 mm.

In the liver-like medium, however, loss noticeably impacts the focusing of the pulsed

waveform. In the pre-focal regions, shown in a), the pulse has been attenuated and

slightly stretched due to the absorption of sonic energy by the medium. In the focal

region shown in b), the amplitude of the waveform relative to water is diminished by

about a factor of 5.

Off-axis propagation is displayed in Figure 3.14. The velocity potential is shown

in the focal plane 2 = 0 mm at lateral positions a) a: = a/2 = 4 mm and b) a: =

a = 8 mm in both water-like and liver-like media. Relative to the on-axis velocity

potential shown in Fig. 3.13, the duration of the off-axis velocity potential is longer

due to differences in phase observed across the finite extent of the radiating shell. As

expected, this destructive interference increases as the observation point moves for

a: = 4 mm to :c = 8 mm. In the liver-like media, there is additional broadening of the

waveform due to viscous absorption, as well as a down-shift in the center frequency.
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3.6 Discussion

3.6.1 Implementation Issues

Unlike the MIRF method and other schemes that synthesize fields in the frequency

domain, the lossy impulse response solution presented here is computed directly in

the time-domain without inverse FFTs. Numerical inverse FFT’s pose several diffi-

culties, including 1) additional computational burden and 2) possible numerical error

due to undersampling in the frequency domain. Since the bandwidth of the MIRF

decreases as a function of distance from the source, the Nyquist sampling frequency is

a function of distance. Therefore, an efficient MIRF implementation requires multi—

rate sampling. The lossy impulse response method eliminates these problems by

replacing numerical inverse Fourier transforms that utilize a compact time-domain

expression with a constant sampling rate for all observation points. In addition, com-

puting snapshots of the impulse response at one particular point in time is particularly

straightforward with the lossy impulse response method presented in Eq. (3.9).

However, the major benefit of the closed-form expressions derived in this chapter

is intuition for the behavior of the lossy impulse response. The error function is

essentially a smoothed unit step function. As the relaxation time 7 increases, the

error function becomes progressively smoother, indicating that the bandwidth of the

pulsed field decreases. Hence, the basic physics of transient propagation in viscous

media are contained in the analytical lossy impulse response expressions.

3.6.2 Numerical Evaluation and Aliasing

As discussed in Ref. [78], evaluation of the lossless impulse response requires artifi-

cially high sampling rates in order to accommodate the discontinuities in the deriva-

tive of the impulse response, which result in large bandwidths. For circular and

rectangular pistons, these discontinuities are magnified on-axis and in the farfield,
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where the lossless impulse response is represented by a short-duration rect function

in the nearfield and a scaled delta function in the farfield. However, these numerical

difficulties are caused, in part, by an inaccurate physical model which assumes zero

loss. In reality, some loss is always present, effectively acting as a low-pass filter and

removing the high-frequency components of the impulse response. This filtering ef-

fect is reflected in the lossy impulse response expressions, which are infinitely smooth,

implying a Fourier transform that decays faster than 1/fn for any n > 1 where f rep-

resents the frequency [79]. In contrast, the Fourier transform of the lossless impulse

response, due to discontinuities on-axis, decays as 1/f . Due to this rapid decay in the

frequency domain, the lossy impulse response is bandlimited whereas the lossless re-

sponse is band unlimited. The numerical difficulties arising from the band unlimited

lossless impulse response are thus eliminated by the inclusion of a loss mechanism,

which effectively bandlimits the impulse response. Since both the diffraction and loss

components are evaluated simultaneously in Eq. (3.3), sampling errors are reduced

with the lossless impulse response.

3.6.3 Power Law Media

Since the Stokes wave equation serves as a first approximation for loss in biological

tissue, more accurate models, such as power-law media [19, 33—35], also demand con-

sideration. In power-law media, phase velocity is an increasing function of frequency,

resulting in an asymmetric loss function function 91,. Transient fields in power law

media are considered in Chapters 4, 5, and 6. In Chapter 7, loss functions for power-

law media will be derived, allowing the lossy impulse responses generated by various

piston sources to be computed in tissue-like media. The general power-law case will

utilize the same machinery as the viscous case with an altered loss function. There-

fore, the main benefits of the lossy impulse response approach (no inverse FFT’s, lack

of aliasing, etc.) should apply in the more general power-law setting. Since all calcula-
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tions are performed directly in the time-domain, the lossy impulse response approach

should provide a more intuitive solution to transient, dispersive problems. Unlike the

frequency-squared case, the general loss function for power law media cannot be ap-

proximated via a simple expressions such as a Gaussian. Thus, the derivation of the

impulse response for finite aperture radiators in power law media becomes more com-

plicated, necessitating more advanced mathematics. These mathematical subtleties

are discussed in detail in the following three chapters.
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Figure 3.2. On-axis (:1: = 0 mm) velocity potential for a circular piston of radius a = 10

mm in a viscous medium. The piston is excited by a Hanning-weighted toneburst with

center frequency f0 = 6.0 MHz and pulse length W = 0.5 us for 4 combinations of axial

distance 2 and relaxation time 7: a) z = 0.1 mm and 7 = 0.01 us, b) 2 = 0.1 mm and 7 =

0.001 us, c) z = 1 mm and 7 = 0.01 us, (1) z = 1 mm and 7 = 0.001 us. The velocity

potential for each combination of z and 7 is computed via both the lossy impulse response

approach and a MIRF approach for verification.
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Figure 3.3. Snapshots of the lossless impulse response generated by a circular piston with

radius a = 10 mm at t = 22 us and t = 34 us are displayed in panels a) and b). The constant

amplitude component within the paraxial region [2:] < a represents the direct wave. The

remaining component represents the edge wave generated by the discontinuity in particle

velocity at :1: = a.
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Figure 3.4. Snapshots of the lossy impulse response generated by a circular piston with

radius a. = 10 mm with 7 = 0.01 as at for t = 22 us and t = 34 us are displayed in panels

a) and b). Unlike the lossless impulse response depicted in Fig. 3.3, the direct wave is

attenuated due to viscous diffusion. The edge wave also experiences additional attenuation

relative to Fig. 3.3.
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Figure 3.5. Normalized velocity potential field produced by a circular piston of radius a =

10 mm excited by a Hanning—weighted toneburst in a viscous medium with relaxation time

7 = 0.001 us. Snapshots of the normalized velocity potential for t = 22 us and t = 34 us

are displayed in panels a) and b), respectively.
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Figure 3.6. Lossy impulse response for a circular piston (a = 5 mm) and 7 = 0.001 us.

In panel a), the nearfield impulse response and the farfield impulse response were evaluated

at r = 50 mm both on-axis (6 = 0) and off-axis (6 = 1r/12 and ()5 = 0). Panel b) shows

the nearfield and farfield impulse responses evaluated at r = 200 mm on-axis (6 = 0) and

off-axis (6 = 1r/12 and (b = 0). «
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Figure 3.7. Coordinate axis used in the derivation of the impulse response for a rectangular

source. A rectangular piston of half-width a and half-height b is excited by a uniform particle

velocity. The radiator is surrounded by an infinite rigid baffle in the z = 0 plane. Reprinted

from [2].
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Figure 3.8. Lossy nearfield impulse response for a rectangular piston of half-width a = 2.5

mm and half-height b = 10 mm evaluated in lossy media for 7 = 0.001, 0.0001, and 0.00001

,us. The impulse response is evaluated at a) z = 100 mm and b) 2 = 200 mm.
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Figure 3.9. Point spread function for a focused, 64-element linear array with half-width

a = 0.3 mm, half-height b = 2.4 mm, kerf of 0.15 mm, focused on-axis at 80 mm. The

point-spread function is measured in the focal plane at 241 lateral locations in a) lossless

media and b) viscous media with 7 = 0.0001 ps.
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Figure 3.10. Normalized pulse echo envelope for a focused, 64-element linear array with

half-width a = 0.3 mm, half-height b = 2.4 mm, kerf of 0.15 mm, focused on-axis at 80

mm. The point-spread function is calculated at the focal point in lossless media and viscous

media with three different relaxation times.
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Figure 3.11. A spherical shell with radius a and radius of curvature R, surrounded by

an infinite rigid baffle. The origin is located at the geometric focus of the shell, the radial

coordinate denoted by r = V32 + 312, and the axial coordinate is indicated by z.
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(b) t: 4611.3.

Figure 3.12. Lossy impulse response generated by a baffled spherical shell with radius a

= 10 mm and radius of curvature R = 70 mm in a viscous medium with viscous relaxation

time 7 = 0.001 us. Eq. (3.35) is evaluated on an 80 by 80 grid at times a) t = 38 us and

b) t = 46 us.
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Figure 3.13. Velocity potential generated by a spherical shell with radius a = 8 mm and

radius of curvature R = 50 mm in a lossless, water-like medium, and a lossy, liver-like

medium. Velocity potentials are displayed on axis at a) z = —20 mm and b) 2. = 0 mm.
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Figure 3.14. Velocity potential generated by a spherical shell with radius a = 8 mm and

radius of curvature R = 50 mm in a lossless, water-like medium, and a lossy, liver-like

medium. Velocity potentials are displayed off-axis at z = 0 mm and a) :1: = 4 mm and b)

a: = 8 mm.
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CHAPTER 4

Power Law and Szabo Wave Equations

4.1 Introduction

Although the power law model for the attenuation coefficient in Eq. (1.1 is widely

accepted, few closed-form solutions that describe the effects of dispersion in the time-

domain have been reported. To date, approximate closed form Green’s function

solutions have only been previously provided for the special cases of y = 0 (frequency-

independent media) and y = 2 (viscous media). In order to construct Green’s func-

tions for general power-law exponents y, stable law probability distributions, which

have previously been used to study fractional diffusion [80], are required. As shown

below, these stable distributions facilitate analytical descriptions of power-law atten-

uation directly in the time-domain.

The purpose of this chapter is to derive analytical, time-domain 3D Green’s func-

tions in power law media for the intermediate cases of 0 < y < 2 in terms of stable

probability densities. These Green’s functions are exact solutions for power law me-

dia and approximate Green’s functions to the Szabo wave equation. In Section 4.2,

the Szabo wave equation is formulated as a FPDE, as well as a more general power

law wave equation. In Section 4.3, 3D Green’s functions to be obtained for fractional

power law media in terms of the Fox H-function [81] and the Wright function [80].

These functions have previously been used in the study of fractional diffusion [82],
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fractional relaxation [83], and fractional advection—dispersion [37]. In the special cases

of y = 0, 1/3, 1/2, 2/3, 3/2, and 2, the Green’s function is expressed in terms of stan-

dard functions (Dirac delta, Airy, Lévy, hypergeometric, and Gaussian functions).

In the remaining cases, asymptotic and series expansions are provided. 2D Green’s

functions are also derived in power law media.

4.2 FPDE Formulations of the Szabo and Power Law Wave

Equations

4.2.1 The Szabo Wave Equation (0 < y < 1 and 1 < y < 2)

The Szabo wave equation [19] approximates power-law media with an attenuation

coefficient given by Eq. (1.1). In this section, the Szabo equation is expressed in

terms of fractional derivatives, thereby allowing the machinery of fractional calculus

to be utilized. Linear attenuation media (y = 1) must be treated separately from

sub-linear (0 < y < 1) and super-linear (1 < y < 2) attenuation media.

The Szabo equation for acoustic pressure in the regime of O < y < 1 and l < y < 2

is written as (of. B7 in [19]):

13% 4h - t (t’)
v2 _ __ _ ___21 ___E_ I:

p c361:2 Co ,/_00 lt—t’|y+2 dt 0 (4'1)

where Co is a reference speed of sound and hm; = —aOI‘(y + 2) cos [(y +1)y/2]/7r.

The reference sound speed co in Eq. (4.1) is taken as the high-frequency limit coo for

the sub-linear (0 < y < 1) case, while c0 assumes the low-frequency limit c; for the

super-linear( 1 < y < 2) case. Noting that (t — t') > 0 in the integrand and applying

trigonometric identities yields

dt’ :0 (4.2)

V2 _ i921? _ 200 P(y + 2))sin(7ry)

1’ (96%? 2 jf;0 C0 (305(7ry/ ) (t -pt'))3!”

The term in brackets in Eq. (4.2) is now identified as the hypersingular representation

of the Riemann-Liouville fractional derivative given by Eq. (A.1) in Appendix A,
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where y > O and f(t) possesses ceil(y) integer-ordered derivatives. Calculating the

(y + 1)-th derivative and applying the reflection formula for Gamma functions

I‘(z)I‘(1 — z) = sing”) (4.3) 

yields the bracketed term in Eq. (4.2). Thus, Eq. (4.2) is equivalent to

2,,__1_22_ 2..., 3+2
cg 3t2 cocos(7ry/2) arr/+1

 = 0, (4.4)

where the third term accounts for dispersive loss which is valid for 0 < y < 1 and

1 < y < 2. In the special cases of y = 0 and y = 2, the fractional derivative

term reduces to a first and third temporal derivative, respectively. For fractional y,

the third term is defined by the Riemann-Liouville fractional derivative defined in

Appendix A. For y = 1, Eq. (4.4) is invalid since cos 7ry/2 -—> 0 as y —-> 1.

For fractional y, Eq. (4.4) is a FPDE that approximates lossy, dispersive media

satisfying a power-law. As discussed in Ref. [19], Eq. (4.4) is valid for 010 << 1

in the a) high—frequency limit for y < 1 and b) low-frequency limit for y > 1. As

shown below, a. more general model for power law media is obtained by including a

higher-order temporal derivative. As in the case of the Stokes wave equation, the

particle velocity and velocity potential also satisfy Eq. (4.4). From the definition

of the fractional derivative given in Appendix A, Eq. (4.4) is also recognized as a

singular integro-differential equation, where the fractional derivative term depends on

the past history of pressure p(r, t).

4.2.2 The Szabo Wave Equation (y = 1)

In the special case of linear attenuation media (y = 1), the Szabo wave equation is

expressed as (see Eq. (B6) in [19] with ho = 2a0/7r)

162 ,t 8 t
V2p(r,t)—— [9(1‘ )_ 00/ p(l‘,tl) dtl=0. (45)

c? 3t2 7rc1 _00 (t _ t’)3
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Like Eq. (4.1), Eq. (4.5) is a singular integro-differential equation. Unlike the

fractional cases 0 < y < 1 and 1 < y < 2, Eq. (4.5) cannot be expressed as a FPDE

and must be treated as a special case.

4.2.3 Frequency-Independent (y = 0) and Viscous (y = 2) Media

In the special cases of frequency-independent media (y = 0) and viscous media

(y = 2), the Szabo wave equation reduces to well-known integer-order PDEs which

are solved via standard methods. The y = 0 case corresponds to the telegrapher’s

equation

2 1 321) 24200;; _

p ego 6t2 coo 8t —

which models one—dimensional damped string motion and electromagnetic wave prOp-

0, (4.6)

agation in conductive media. The reference frequency coo is the phase speed in the

limit of infinitely high frequency, and do is the attenuation coefficient for w = l. The

3D Green’s function of Eq. (4.6) is [84]

 
 

— 2 I1 00600 t — R /

g(R, t) = €_OOR6(t R/COO)+u (t — R/Coo) LOCK)e—OOCoot ( 00),

47rR
47f (10600 W._ R /coo

(4.7)

where 11(2) is the modified Bessel function of order 1. Eq. (4.7) consists of two terms:

an exponentially attenuated spherical wave and a dispersive wake. For small values

of the attenuation coefficient cm, the dispersive wake is negligible. If 00 is small, the

asymptotic approximation 11(2) z z/2 is utilized, yielding

_ 6t—R 2

g(R.t) a: 6 “0R ( /C°°) +u(t — R/coo) “OCWe-aocoot. (4.8)
47rR 87r

  

Thus, the dispersive wake is of order 013, yielding the approximation

g(R, t) z e—O‘ORCW 1514600) (4.9)

Eq. (4.9) is an attenuated lossless Green’s function, thus indicating the lack of dis-

persion of the frequency-independent case for 00 << 1.
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In the viscous case (y = 2), the Szabo equation reduces to the Blackstock equation

1 02p 2003319

V2p—ggt'2—‘F—Cz—‘6? =0, (4.10)

2

which models acoustic wave propagation in viscous media [42] for small 00 at low

frequencies. Due to the third-order temporal derivative in Eq. (4.10), Green’s func-

tion solutions to the Blackstock equation are noncausal. To demonstrate the loss of

causality, an impulse point-source is applied to the right—hand side of Eq. (4.10),

followed by a temporal Laplace transform and a spatial Fourier transform, yielding

. 1

GU” 8’ = — Hue, s)

 (4.11)

where H(k, s) = 2aO/czs3 — sz/cg — k2. Since 1701:, O) = —k2 < 0 and H(k,s) -> oo,

C(k, s) has at least one pole in the right hand plane. The inverse Laplace transform,

defined by

1 .

k t = — Std 4.1201,) 2,,fLG(k.s>e s < >

where L is the Bromwich contour, is now shown to be nonzero for t < 0. Consider

the closed contour C = L + Coo, where Coo is a semi-circle oriented clockwise in the

right-half plane of radius R —r 00. By Jordan’s lemma, the integral of G(k, s)e3t for

t < 0 along Coo vanishes. Application of Cauchy’s theorem yields

1/Co(ks))e-“ds = ——/LG(,)ks)estals+—L C(k, s)eStds
2_7rz' 27ml Coo

Residue G(k,s)eSt = —./LG(11:, s)eeStds

27ri

Due to the right half-plane pole, the residue is nonzero. Hence, G(k, t) > 0 to t < 0.

Therefore, the solution to Eq. (4.10) is noncausal.

By applying a plane-wave approximation to the third term in the Stokes wave

equation given by Eq. (2.1), Eq. (4.10) is obtained. The reference frequency 0,, is the

phase speed in the limit of zero frequency. Since the spatial bandwidth of a wavefield

is large near the source, Eq. (4.10) fails to capture the high-frequency content in the
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extreme near-field of a radiator [17, 42]. The 3D Green’s function of Eq. (4.10) is

calculated via standard Fourier transform techniques, yielding

N 1 {—1 (t — rye.)2

g(R,t) ~ 47rR 47rRa0 exp ( 4Ra0 ) ’ (413)

which is an approximate solution to Eq. (4.10). Similar to the asymptotic solution

 

to the Stokes wave equation [56] given by Eq. (2.20), Eq. (4.13) predicts Gaussian

spreading of a spherical wave as the field radiates away from the source. However, Eq.

(4.13) is noncausal, which means that Eq. (4.13) specifies non-zero field values fort <

0. However, for (10 small and R sufficiently large, Eq. (4.13) and the causal Green’s

function to the Stokes wave equation (see Eq. (2.20) are virtually indistinguishable,

which is demonstrated numerically in Ref. [17] for the 1D case and in Chapter 2 for

the 3D case.

By utilizing the loss operator defined in Eq. (A.2), the Szabo wave equation

interpolates between the telegrapher’s equation and the Blackstock equation. The

telegrapher’s equation is causal and hyperbolic, whereas the Blackstock equation is

noncausal and parabolic. Mathematically, Eq. (4.4) is a second-order, hyperbolic

equation for y < 1. For y > 1, however, Eq. (4.4) becomes an order y + 1 parabolic

equation where high-frequency components propagate with infinite velocity. As y —+

1‘ in Eq. (4.4), coo -> co, and as y —> 1+ in Eq. (4.4), oz —> 00, which agrees with

the transition between hyperbolic and parabolic behavior at y = 1. Thus, the Szabo

wave equation interpolates between these two different behaviors as the power-law

exponent y varies from O to 2.

4.2.4 Power Law Wave Equation

As discussed in Ref. [19], Eq. (4.4) is an approximate model for wave propagation

in a power law medium for small values of do. To facilitate the analytical solution of

wave propagation in power law media, a FPDE is derived that exactly describes power

law attenuation for arbitrary do. The Szabo wave equation is an approximation to
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this exact power law wave equation. This exact FPDE is then solved for a point-

source in space-time, thereby yielding the desired Green’s function solution. Since

both temporal and spatial Fourier transforms are utilized extensively throughout the

derivation, the Fourier transform given by Eq. (3) in Ref. [19] is utilized here. In

order to derive an analytical time-domain Green’s function solution, a power law

dispersion relationship relating wavenumber k and angular frequency w is required.

This dispersion relationship should yield 1) a power law attenuation coefficient and

2) a frequency—dependent phase speed. The power law dispersion relationship that

satisfies these requirements is

w a0(-i)y+1wy

k = — — 4.14

CD cos(7ry/2) ( )

 

for w 2 O and k(—w) = k*(w) to ensure real solutions. The imaginary part of Eq.

(4.14) yields the power law attenuation coefficient given by Eq. (1.1). The real part

produces

1 _ Re k(w) _ 1 7ry y_1

C(w)_ w —Co+aotan(2)|w| . (4.15)

Letting c1 denote the phase speed at 020 = 1 yields the expression

fi = ;11- + 001331163!) (lady’—1 — 1) , ~ (4-16)

which is valid for all y aé 1. Eq. (4.16) corresponds to the phase velocities computed

via the Kramers-Kronig relations [7, 34] and the time-causal theory [6]. In addition,

Eq. (4.15) is in close agreement with the experimental dispersion data presented

in Refs. [5—7, 32]. Thus, Eq. (4.4) is consistent with the power law attenuation

and dispersion that is predicted by the Kramers-Kronig relationships and supported

by experimental measurements. Note that for O S y g 1, Eq. (4.15) predicts a

monotonically decreasing speed of sound with respect to frequency , while for 1 <

y < 2, the speed of sound increases monotonically with respect to frequency. Finally,

the phase velocities for all y is normal since there are no rapid changes in either the
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attenuation coefficient or phase velocities over any band of frequencies, as opposed to

relaxation-based dispersion observed in acoustics and electromagnetics [28].

In order to invert the wavenumber—frequency relationship into space-time, the

four-fold Fourier transform R(k,w) of the time-domain pressure p(r, t) is multiplied

by the dispersion relationship. Squaring both sides of Eq. (4.14) and multiplying by

R(k, 02) yields

 

—2 93— 20:0 —iw +1————(fi—-——iw2 A w - l

[k +43 mosey/2f ’y 0082(7ry/2)( ’y P(1" "0' ‘4'”)

Performing an inverse spatial Fourier transform produces the power law Helmholtz

equation

(_u__ 200 (—

c3 60008(7ry/2)

 V215 +

 

02

My“ — WPWW] 15 = 0. (4.18)

Finally, performing an inverse temporal Fourier transform using Eq. (A.4) yields the

power law FPDE

_122_p_ 2..., 6”“10- 0% 6%...
cgc'it2 cocos(7ry/2)6ty+1 cosz(7ry/2)6t2y

  

V219 0, (4.19)

which satisfies the dispersion relationship in Eq. (4.14) exactly. For small (10, the

'last term in Eq. (4.19) is negligible, yielding the Szabo wave equation given by Eq.

(4.4).

4.2.5 Linear Attenuation Media (y = 1)

The FPDE formulation of both the Szabo wave equation, given by Eq. (4.4), and

the power law wave equation, given by Eq. (4.19), break down as y ——> 1 since

cos(7ry/2) -—> 0 in the denominator. To circumvent this problem, a convolutional

wave equation is derived that exactly models linear power law media. To derive this

wave equation, a dispersion relationship at a reference frequency 020 = 1 is considered.

The phase velocity is computed by taking the limit of Eq. (4.16) as y —> 1. Without
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loss of generality, let y approach one from the right. Defining y = 1 + e and letting

e —> 0, then

1 1 6
— = — + 040 tan(7r(1+ e)/2) (le — I) (4.20)

6(0)) Cl

_ 1 a [0)]6 — 1

— c1 0tan(7re/2)

1

—» -—+2fl’-<Iwr—1)
c1 we

where the limit tanz —> z is used in the last line. To finish the computation, the

following limit is invoked [85]

 

'7 _

w 1 —. ln(w) (4.21)
7

yielding

1 1 2 a0
= —

U

. 2
—c(w) Cl 7r lnlwl (42 )

Eq. (4.22) is identical to the Hilbert dispersive model derived in Ref. [30] and the

Kramers-Kronig relation given by Eq. (13) in Ref. [7]. Combining Eqns. (1.1) and

(4.22) yields a dispersion relationship between the wavenumber k (spatial frequency)

and the temporal frequency w:

. w 2

k(w) = zaolw] + — — —oz()wln [0)]. (4.23)

CI 1r

A convolutional 3D wave equation that satisfies Eq. (4.23) is now derived. In

order to invert the wavenumber-frequency relationship into Space-time, the four-fold

Fourier transform P(k,w) of the time-domain pressure p(r,t) is multiplied by the

dispersion relationship. Squaring both sides of Eq. (4.23) and multiplying by R(k, 0))

yields

2 1222 2010(—z'w) .. 2 .2 .

—k ‘1' C—2 — -—El—L(LU) — 00L (0)) P(k,td) = O (4.24)

1

where

A 2'

L(w) = [w] + £0111le (4.25)
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Note that L(-w) = L" (02), which is required to ensure real solutions. Performing an

inverse spatial Fourier transform on Eq. (4.24) produces the Helmholtz equation

V2p(r,w) + [LU—22 — ga—(i-lflflw) - 03122010] 15(r,w) = O. (4.26)

‘31

Performing an inverse temporal Fourier transform using Eq. (4.26) with the aid of

the convolution theorem yields the wave equation

 

2 1' a

V2p(r,t) — 21; 2:2”) + 261°; [L(t) 4 p(r,t)] — 33%;) air L(t) 4 p(r, t) = 0 (4.27)

where

L(t) = r1 [L(w)] = 2%?- (4.28)

is a generalized function (or distribution) [86]. Eq. (4.27) is hyper-singular since the

convolution integrals in the third and fourth terms diverge. To mitigate this problem,

Eq. (4.28) is integrated twice, yielding

2

L(t) = —%%M(t) (4.29)

where M(t) = u(t) In [t]. Note that M(t) is weakly singular at the origin and hence

integrable. Inserting Eq. (4.29) into Eq. (4.27) yields

_ 1 3219(1‘, t) 400 53 64

V219“, 15) 2772—— Tel? [M(t) * P(r,t)l - 085;: [M(t) * M(t) * 19(1‘1 U] = 0-

(4.30)

Eq. (4.30) is a convergent, fourth order integro-differential equation.

The Szabo wave equation [19] is an approximation to the convolutional wave

equation when do is small. Assuming 040 << 1 and neglecting the 0% term in Eq.

(4.27) yields

162120, t) 200 6

of at2 cl 6t

Applying a temporal differentiation to L(t) yields

_4u(t)

7rt3 '

 V2p(r, t) — [L(t) =1: p(r, 3)] = 0. (4.31)

L’(t) =  (4.32)

Finally, expressing the convolution in Eq. (4.31) as an integration over the entire

history of p(r, t) yields Eq. (4.5).
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4.3 3D Green’s Function

Time-domain 3D Green’s functions for power law media are derived in this section.

These Green’s functions are exact solutions to the power law wave equation in Eq.

(4.19) and approximate solutions to the Szabo wave equation in Eq. (4.4). Applying

a point-source at time t = 0 to Eq. (4.19) and considering the Green’s function g(R, t)

yields

  

2 y+l 2 2y
1 8 g 200 3 9 “0 6 9 ._ —6(R)6(t) (4.33)2 _ __ __ _ _

V 9 c3 (91:2 c()cos(7r3,//2)6t3/+1 cos2(7ry/2) 3t2y

where R is the relative displacement between the source and the observer and R =

IRI. Applying a temporal Fourier transform to Eq. (4.33) yields

v29 + 142(4)» = —6(R) (4.34)

where h(w) is given by Eq. (4.14). The well-known Green’s function for Eq. (4.34)

is given by 'k( )R

62 O)

47rR '

 

9(R4w) = (4.35)

Inserting Eq. (4.14) into Eq. (4.35) and grouping terms yields

 Q(R,w) = [434.4(1er00)] [exp («04:0wa — Haney/444143440] (4.36)

where the first factor solves the lossless Helmholtz equation. The time-domain Green’s

function for y aé 1 is recovered by applying an inverse Fourier transform and the

convolution theorem, yielding

gum) = f-‘l [404,401 (4.37)

= [_—6(t47rI122/C0)] 4 r1 [exp (—a0R(|w|y — itan(7ry/2)w|w|y_1))]

which is expressed as a temporal convolution

g(R, t) = 91303415) * 9L(R, t), (438)
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Within the framework of linear time-invariant (LTI) filters, Eq. (4.38) combines the

effects of dispersive loss and diffraction as a cascade of two system functions. The

first factor in Eq. (4.38) is the Green’s function for the lossless wave equation given

by Eq. (2.31a), which is responsible for the effect of propagation and diffraction. The

second term is a loss function defined via

gL(R, t) = 3:4 [exp (—aoR(|w|y — itan(7ry/2)w|w|y_l))] . (4.39)

Interestingly, the inverse Fourier transform defined by Eq. (4.39) may be calculated in

closed form using the machinery of stable distributions [87]. The expression within the

square brackets in Eq. (4.39) is identified as the characteristic function of a stable

distribution with index y, center 0, skewness 1, and scale (Rag)1/3’. The inverse

transform given by Eq. (4.39) is then expressed concisely as

1 ~ t

9L(R: t) = mfg;(W) (4-40)

where the function fy(t), which is independent of R and cm, is the maximally skewed

stable distribution of index y with scale 1. An expression for fy is given by Eq. (B3)

in Appendix B by setting the skew parameter 6 = 1. This family of functions has

been studied extensively [49, 88, 89]. Software is available for the computation of

stable probability density functions (PDFs) and cumulative distribution functions [3]

based on formulas developed in Ref. [90]. In the following analysis, an alternate

parameterization fy(t) is defined via Eq. (8.4) in Appendix B in order to utilize

existing expressions for the stable density fy(t). In the case of both sub-linear power

law media (y < 1) and super-linear power law media (3; > 1), fy(t) possesses the

following analytical properties:

1. fy(t) 2 O for all t.

2. fy(t) is infinitely continuously differentiable (or smooth).

3. fy(t) is unimodal.
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4. ffo00 fy(t) dt = 1.

Although these properties are common to all maximally-skewed stable distribu-

tions, the behavior of fy(t) differs for y < 1 and y > 1. Properties of these func-

tions are studied in the following two subsections for sub-linear (y < 1), super-linear

(y > 1), and linear power law attenuation media.

Eq. (4.38) is an approximate Green’s function, valid for small 00, for the Szabo

wave equation given by Eq. (4.4). However, Eq. (4.38) is an exact solution to

the power law FPDE given by Eq. (4.19) for linear, homogeneous media since the

imaginary part of Eq. (4.14) exactly describes the power law behavior that the Szabo

wave equation approximates. Thus, the analytical Green’s function given by Eq.

(4.38) is not restricted to small 040.

4.3.1 Sub-Linear Power Law Media (0 < y < 1)

For the general case of O < y < 1, fy(t) was first considered in Ref. [91] and later in

Ref. [92] as an inverse Laplace transform. Rewriting Eq. (8.4) as a inverse Laplace

transform yields

fy(t) = £‘1[e‘sy} = i- f1. e‘syest d3, (4.41)
27ml

where L is a contour in the left half plane. The notation is Eq. (4.41) was previously

utilized in Ref. [93]. The following analytic properties of fy(t) for 0 < y < 1 are

known [88, 89]

l. fy(t) has support on [0,00).

2. Ast—» oo, fy(t) ~t—y—1.

The inverse Laplace transform defined by Eq. (4.41) is expressed in terms of the

Fox H-function [81] using formulas presented in Ref. [83]. The Fox H-function, which

is defined in terms of a contour integral by Eq. (GI), generalizes many of the special
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functions, such as Bessel, hypergeometric, and Mittag-Leffler [81]. Using Eq. (62) in

Ref. [83], the fractional exponential possesses the representation

1 1,0 (1 1)
ex —sy———’—H1 3 4.42

and the inverse Laplace transform is then calculated using Eq. (30) in Ref. [83],

yielding

H,10 1 (0 1)t _ __
4.43fy-UW11(I(01/y)) ( )

Eq. (4.43) possesses a simpler form for y = O, 1/3, 1/2, and 2/3. For y = 0, 1/3, 1/2,

and 2/3, Eq. (4.43) possesses the following exact representations:

fo(t) = 5(t), (4.44a)

f1/3(t)= (Tag/3461'1[(—1—3t)1/3], (4.44b)

f1/2(t)= ut)( fit—l—gmuXp-(41), anda (4.44c)

f2/3(t)=U(t)-3}Wem (-27t2)21’o(é-%; 121—’2), (4.444)

where Ai(z) is the Airy function and 2F0(a, b; ; z) is the confluent hypergeometric

function of the second kind.

For the general case, an asymptotic expression, valid for t << 1, is derived using

the asymptotic form [81] of H11,’?(z). Alternatively, the inverse Laplace transform

may be approximated via the method of steepest descents [93], yielding

A B

fy(t) ~ u(t); exp (—t—#-) . (4.45)

The coefficients A, B, u and A depend only on y and are given by

yl/(2-2y)

=—, (4.46a)

2”(1 - y)

B = yl/(l-y)1—_y (4.46b)

y
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 , and (4.46c)

=__, 4.(1 1_y ( 46d)

Eqns. (4.38), (4.45), and (4.46) provide a closed form, asymptotic approximation to

the time-domain 3D Green’s function for sub-linear power law media (y < 1). These

equations exactly satisfy Eq. (4.44c) at all times t for y : 1/2 and are valid for y 75 1/2

when t < 1. For y z 1/2, Eq. (4.45) also provides an excellent approximation [94]

for all values of t. For t > 0, fy is infinitely continuously differentiable (or smooth);

moreover, fén)(t) = 0 as t -—> 0+ for all n 2 0, implying strong causality [17, 93].

However, for y 75 1 /2 and t >> 1, the asymptotic solution given by Eq. (4.45) decays

exponentially for large times, while fy(t) decays algebraically. Therefore, for large t,

the first term in the asymptotic series for Eq. (4.43) is utilized, yielding [88]

~ i ( /2)I‘( +1)

fy(t)z‘°’“”ym,+,y .
 (4.47)

which indicates a slowly decaying tail.

To show the behavior of fy(t) for O < y < 1, the PDFs for the sub-linear attenua-

tion cases y = 1/3, 1/2, 2/3, and 9/10 are displayed in Figure 4.1. Since the ordinate

fy(t) is a PDF, the abscissa t is unitless. The expressions given by Eq. (4.44) are

evaluated for y = 1 /3, 1 /2, and 2/3, while the STABLE toolbox 1 is utilized [3] for

y = 9/ 10. In all of these cases, fy(t) is identically zero for t < 0 and smooth. As y

increases from 1 /3 to 9/ 10, the main plume spreads out, while the asymptotic decay

accelerates from t’4/3 to t‘19/10 due to the behavior predicted by Eq. (4.47).

As y -—> 0, fy(t) —+ 6(t), while as y -—> 1’, fy(t) —> 6(t — 1). Thus, there is a delay

incorporated into the stable distribution which accounts for the slower phase velocity

in a dispersive medium. This delay is apparent in the asymptotic representation given

by Eq. (4.45). For t very small, the argument of the exponent in Eq. (4.45) is very

large, causing fy(t) to approach zero. The delay td of fy(t) can be approximated by

 

llittzp : //academic2 . american . edu/"jpnolan/stable/stable . html
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Figure 4.1. Plots of stable PDFs fy(t) for four sub-linear attenuation cases: y = 1/3, 1/2,

2/3, and 9/10. Eqns. (4.44) are evaluated for y = 1/3, 1/2, and 2/3, while the y = 9/10

case is evaluated with the STABLE toolbox [3].

setting the exponential argument of Eq. (4.45) equal to unity, yielding td z 81/“.

Letting y vary from zero to one, td is also seen to increase smoothly from zero to one.

4.3.2 Super-Linear Power Law Media (1 < y S 2)

In super-linear power law media, the qualitative behavior of the loss function gL(t, t’)

differs from that observed in sub-linear power law media. The maximally skewed

stable distributions possess the additional analytical propertias for l < y S 2:

1. fy(t) has support on (—oo,oo).

2. As t —> oo, fy(t) ~ t-3’_1 for y < 2.

3. As t —> —oo, fy(t) decays with exponential order.
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Hence, for y > 1, fy(t) is non-zero for all times t. Since the 3D Green’s function

is simply a delayed and scaled version of fy(t), the power law Green’s function g(R, t)

is non-zero for all t and is therefore noncausal in super-linear power law media for

all values of y such that 1 < y S 2. Since fy(t) decays with exponential order as

t —) —00, the solution is very small relative to the peak value for t << R/co. This

property, which was discussed by Szabo [19] for the quadratic case (y = 2), where

fy(t) is Gaussian, is also true for all 1 < y S 2 according to the stable law properties

listed above.

The stable distribution fy(t) is evaluated in terms of the Fox H-function (see Eq.

(2.13) in Ref. [95]) via

fy(t) = 5H]? (4] (1 ‘ (1)6131”) ), (4.48)

where 1 < y S 2. Eq. (4.48) may be simplified in terms of the Wright function

d>(a, b; 2:), yielding

1 1 1

fy(t) — 9¢ (—§,1 — it) , (4.49)

which is a known solution of the time—fractional diffusion problem [96]. For the

special cases of y = 3/2 and y = 2, Eq. (4.49) is expressed in terms of the confluent

hypergeometric function of the second kind and a Gaussian, respectively:

5722 0 616): 1‘3 1 >

f3/2(t) = 4f“ 443 25 t ) (4.50a)

_ exP l _1.. 27 -

3E71rt ZFO (6’ 6’ ’ 7473) I” < O

eXP(—t2/4)
t =—. 4.50b

Note that the y = 2 case in Eq. (4.50b) yields Eq. (4.13), which is an approximate

solution to the Blackstock equation [42] in Eq. (4.10).

Unlike the solution described earlier for sub-linear power law attenuation (y < l),

fy(t) is non-zero for all t. Therefore, three separate cases are considered: early-time

(t < R/co), late-time (t >> R/co), and times near the wavefront. To obtain an
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early-time estimate, Eq. (4.48) is expanded in a Taylor series [95]. If t << R/co, then

tr -—2 00, allowing an asymptotic representation of Eq. (4.48) to be utilized [95]:

 

fy(t) z Altluexp (—B|t|") (4.51)

where

A y—l/(2y_2) (4 52 )

=—, . a

v27r(y - 1)

B = y“y/(y‘1)(y — 1), (4.5210)

_ 2 - v
V — 2y _ 2, and (4.52c)

_ y
a —— —y_ 1. (4.52d)

For y = 2, Eq. (4.51) reduces to f2 (t) for all t, yielding the non-causal Blackstock so-

lution. Eq. (4.51) has the form of a “stretched exponential,” which is a characteristic

of anomalous diffusion [97]. In other words, the early-time response of super-linear

power law media is characterized by fractional diffusive behavior. For large t, the

asymptotic formula given by Eq. (4.47) is utilized.

Since Eq. (4.51) is non-zero for all t, power law Green’s functions are noncausal

for 1 < y S 2. However, .the rapid exponential decay for t << R/co makes the

solution very small for large negative times (t << —1). Thus, the non-causal nature

of the Green’s function for 1 < y S 2 is not evident in numerical evaluations for

small ao. From a physical perspective, the phase velocity becomes unbounded as

frequency increases, implying that high-frequency components propagate infinitely

fast. However, as noted in Ref. [17] for the special case of y = 2, these high-frequency

components experience high absorption and attenuate over a short distance, implying

the Green’s function g(R, t) << 1 for t << R/co.

To show the behavior of fy(t) for 1 < y S 2, the stable PDFs for the super-linear

power law attenuation cases y = 11/10, 3/2, 19/ 10, and 2 are displayed in Figure

4.2. The expressions given in Eq. (4.50) are evaluated for y = 3/2 and 2, while the
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Figure 4.2. Plots of stable PDFs fy(t) for four super-linear attenuation cases: y = 11/10,

3/2, 19/10, and 2. Eqns. (4.50) are evaluated for y = 3/2 and 2, while the y = 11/10 and

19/10 cases are evaluated with the STABLE toolbox [3].

STABLE toolbox [3] is utilized for y =11/ 10 and 19/10. In all cases, fy(t) is non-zero

for all t and smooth. For y = 11/ 10, fy(t) is skewed to the right and decays very

rapidly for t < —1. As y increases from 11/10 to 2, the PDF becomes increasingly

symmetric, eventually converging to a Gaussian. Although y = 11/ 10, 3/2, and 19/10

decay like t—y‘l, y = 2 decays much more rapidly.

4.3.3 Linear Power Law Media (y = 1)

In this section, Green’s functions to the convolutional wave equation in Eq. (4.30)

are derived following the same procedure used in Section 4.3. Applying an impulsive
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point source at the origin to Eq. (4.30) produces

1 029(r,t) 2002
ET Kat [1;(4) 4 g(r, 4)] — 0.3m) 4 L(t) 4 g(r,t) = —6(t)6(r).

(4.53)

V290.) t) _

Applying a temporal Fourier transform to Eq. (4.53) yields Eq. (4.34) where k(w) is

given by Eq. (4.23). The 3D time-domain Green’s function is computed by inserting

Eq. (4.23) into the frequency-domain Green’s function given by Eq. (4.35) and

assigning the delay term w/c1 to §D(R, w). Inverse Fourier-transforming this product

of diffraction and loss factors yields Eq. (4.38) with a loss function

gL(R, t) = .7-“1 {exp [—a0R|w| (1+ 2isgn(:) 1n |w|)[ } , (4.54)

where the signum function sgn(w) is introduced to enforce conjugate symmetry. Eq.

 

(4.54) is recognized as a stable distribution with index 1, center 0, skewness l, and

scale 040R using the parameterization in Ref. [87]. An expression for f1(t) is given

by Eq. (B2) in Appendix B by setting 6 = 1. Thus, the inverse Fourier transform is

expressed as

gL(R,t)=#f1( ‘ ) (4.55)
00R 00R

where f1(t) is the inverse Fourier transform of Eq. (4.54) with 040R = 1. Carrying

out the transform by integrating over negative and positive frequencies and expressing

the cosine in terms of complex exponentials yields

f1(t) = i/Ooo exp(—w) cos [wt + gwln w] dw. (4.56)

Although f1(t) cannot be expressed in terms of the Fox or Wright functions, this

expression is computable using the STABLE toolbox [3]. Moreover, f1 (t) has the same

analytical properties as the super-linear power law solutions shown earlier, including

smoothness and exponential decay as t —> —00. Since fy(t) is nonzero for all t, the

power law Green’s function is noncausal for y = 1. However, for ac small, the Green’s

function is very small for negative times. For t >> 1, the asymptotic behavior of f1 (t)

is given by Eq. (4.47), which estimates the tail of the Green’s function.
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4.4 2D Green’s Functions

The two-dimensional Green’s function g(p, t), which models radiators with infinite

extent in the z-dimension, may also be calculated via the machinery of stable dis-

tributions. The 2D frequency domain Green’s function may be represented as a

superposition of plane waves via

. (1)

4w) = ’H" [mm (4.57)

= % [000 exp (ik(w)pcosh (b) dip, (4.58)

 

where H61) (2) is the Hankel function of the first kind of order zero and p = \/ :02 + y2

is distance in 2D. Inserting the dispersion relation given by Eq. (4.14) into Eq. (4.58)

and performing the inverse Fourier transform yields

1 0° 1 t—pcoshz/J/c)

9”"): 27/0 (fiopcoshwll/yfy((flopcosh¢)l/y cm (4'59)

Direct substitution of t = p/c into Eq. (4.59) shows that g(p, t) is smooth at the

  

“arrival time,” unlike the lossless case. To gain insight into Eq. (4.59), the integrand

is decomposed into a loss function convolved with a plane wave:

 
 

1 0° 1 t

9(10,t)--/027r (flopcosh ¢)1/yfy ( (flopcosh ¢)1/y)5(t-pcosh¢/C) 61¢ (460)

Noting that the loss function is a slowly varying function of cosh a, while the delta

function is a rapidly varying function allows the approximation cosh ([1 z 1 in the loss

function. Evaluating the resulting integral in closed form yields

t

where gD(R, t) is the lossless 2D Green’s function given by

 

919(4), t) = 24% (4.62)

Thus, the 2D Green’s function is approximated as the lossless Green’s function con-

volved with a loss function. Unlike the 3D case, this decomposition is not exact
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due to the approximation costh x 1. For t z p/c, the loss function in Eq. (4.61)

smoothes the discontinuity due to the first arrival of sound. However, fort >> p/c, the

convolution in Eq. (4.61) is dominated by the lossless diffraction term, yielding long-

term behavior that is similar to the lossless Green’s function. This idea is explored

numerically below.

In the sub-linear case, fy(t) is zero for t < 0, thus yielding a finite range of

integration

   

u (t —- p/coo) /°°Sh_1(C°Ot/p) l (t — pcosh (D/coo)

dtb.

27r 09W) = (fiopcosh¢)1/y ” (fiopcosh 41)”?!
(4.63)

Although the range of integration is infinite in the super-linear case, Eq. (4.51) indi-

cates that fy(t) decays rapidly for t < 0, allowing the upper-limit to be approximated

as finite. Since fy(t) is smooth, g(p, t) must also be smooth (i.e. C°°).

4.5 Stochastic Interpretation

Since the Green’s function for the power law wave equation involves a PDF, a natural

question arises: can power law attenuation be explained by an underlying stochastic

process? To explore this question, consider the velocity potential produced by a point

source with velocity potential v(t):

<I>(R, t) = g(R, t) at u(t) (4.64)

Utilizing Eq. (4.38) and the definition of convolution, Eq. (4.64) is written as

@(R, t) = 17% 1:9,;(R, t' — R/c0)v(t — t') dt’ (4.65)

Since the loss function 91, is expressed as a PDF, the integral in Eq. (4.65) is recog-

nized as an expected value

<I>(R, t) = 171—RE [u(t — T)] , (4.66)
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where the random variable T is distributed by the shifted and scaled stable distribu-

tion

_ 1 ~ t- 55/60
9L(R,t — R/CO) —ny(W) . (4.67)

Physically, the random process T(R) represents time delays that arise from the inher-

ent heterogeneity of the medium. The process T(R) consists of two components: 1)

a bulk delay R/co and 2) additional, random delays due to the micro—heterogeneity

of the intervening medium. Since fl, is skewed to the right, there is a much larger

probability that the outwardly propagating spherical wave encounters delay larger

than R/co.

4.6 Numerical Results

To numerically verify the analytical results presented above, the analytical Green’s

function was compared to the material impulse response function (MIRF) approach

developed in Ref. [31]. In Fig. 4.3a), the 3D Green’s function is computed in a

power-law medium with parameters y = 1.5, co = 0.15 cm/ps, and a0 = 0.1151

Np/MHz1'5/cm using the analytical formula in Eq. (4.38). In Fig. 4.3b), the inverse

Fourier transform defined by Eq. (4.39) was calculated numerically with the MIRF

approach via an inverse FFT. The two panels demonstrate excellent agreement. For

power law exponents y = 1/3, 1 /2, 2/3, 3/2, and 2, the function fy(t) is represented

in terms of the Airy, hypergeometric, exponential, and Gaussian functions. Eqns.

(4.44) and (4.50) are evaluated numerically using the GNU Scientific Library (GSL)

[98]. For other values of y, the function fy(t) is represented as a maximally-skewed

stable distribution computed using the software package STABLE [3], which is a

general-purpose software for analyzing stable distributions. The results of STABLE

have been independently verified using codes developed by G. Robinson [99] and a

combination of asymptotic expressions, power series, and inverse power series. All
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demonstrate excellent numerical agreement. Transient fields are then evaluated using

FFT-based convolutions.

Figure 4.4 shows the 3D power law Green’s function for y = 1 /2, 3/2, and 2 for

a0 = 0.05 mm"1MHz"y. The Green’s functions are shown as functions of the radial

coordinate R for times t = 20, 30, 40, and 50 as in order to emphasize the spatial

distribution of acoustic energy in power law media. The qualitative properties of

sub-linear power law media (y = 0.5), super-linear power law media (y = 1.5), and

viscous media (y = 2) are displayed in these plots. In these figures, the impulsive

excitation has been stretched and smoothed by the filtering effect of the medium. The

Green’s function for sub—linear power law media (y = 0.5) has a sharp wavefront at

R = cot, where the field is identically zero to the right of this wavefront. Neither the

super-linear power law attenuation Green’s function nor the viscous Green’s function

have this sharp wavefront. In the y = 1.5 case, most of the energy is located in the

slowly decaying tail of the Green’s function, whereas in the viscous case (y = 2),

energy is symmetrically distributed about the location B = cot.

As time evolves in Figure 4.4, the peak-amplitudes of all three of the Green’s

functions decrease, thus accounting for the transfer of acoustic energy into random

thermal energy within the intervening medium. In the y = 0.5 and y = 1.5 cases,

the duration of the Green’s function increases, which is a consequence of the heavy

tail behavior predicted by the asymptotic expression in Eq. (4.47). In the viscous

case (y = 2), spreading of the main plume occurs, although the Green’s function is

more localized relative to the fractional cases due to the rapid decay of the Green’s

function for large times. The absence of a slowly-decaying tail is a consequence of the

minimal dispersion associated with viscous and thermo-viscous loss.

To explore the effect of frequency dependent attenuation on broadband pulse

propagation, the velocity potential due to a point source at the origin was computed
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by convolving Eq. (4.38) with the pulse [100, 101]

v(t) = A0t3 exp (—fit) sin (27rf0t)rect (17;) . (4.68)

The following simulations utilize the center frequency f0 = 2.5 MHz, pulse length

W = 1.2 as, damping factor 6 = 9.3750 [rs—1, and a normalization factor of A0 =

616.3 mm/ps. Two examples of velocity potential calculations are shown in two

different power law media using parameters from Ref. [13]: 1) a fat-like medium

with y = 1.5, CO = 1.432 mm/ps, and a0 = 0.086 Np/MHzl°5/cm, and 2) a liver-like

medium with y = 1.139, c0 = 1.569 mm/ps, and do = 0.0459 Np/MHz1-139/cm.

Figure 4.5 displays the velocity potential as a function of time t at radial distances

10 mm, 25 mm, 50 mm, and 100 mm to show the effect of dispersion on the pulse

shape. As R increases in Fig. 4.5, several qualitative features become evident. First,

the pulse experiences rapid attenuation due to the combined effects of loss and spher-

ical spreading. Second, the pulse changes shape due to the more rapid attenuation of

the high-frequency components. In other words, the spectrum of the pulse experiences

a frequency down-shift. There are significant differences between the fat-like medium

and the liver-like medium. The fat-like medium is more dissipative; therefore, greater

attenuation and greater frequency down-shifts are observed for large depths (R = 100

mm). Although the liver-like medium is increasingly attenuated as the propagation

distance increases, there is little change in the pulse shape. The pulse distortion in

the fat-like medium indicates that the effects of dispersion become significant for large

depths, which is consistent with the conclusion reached in Ref. [34].

Figure 4.6 displays the 2D Szabo Green’s function given by Eq. (4.59) and the

lossless Green’s function given by Eq. (4.62) at distances a) p = 10 mm and b) p = 50

mm. In each panel, 040 = 0.05 mm‘lMHz'y for the sub-linear case y = 2/3 and the

super-linear case y = 1.5. Several properties are notable. Unlike the lossless Green’s

function given by Eq. (4.62), the lossy Green’s function is continuous at the arrival

time p/c. While the sub-linear (y = 2/3) Green’s function has a sharp wavefront
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at p/c, the super-linear (y = 3/2) Green’s function is non-zero to the left of this

arrival time. Unlike the 3D case, the long-term behavior of the lossy Green’s function

approaches the lossless case. This limiting behavior is predicted by the approximate

decomposition given by Eq. (4.61), which is dominated by the slow decay of Eq.

(4.62) for t > p/c. That is, the geometric tail in Eq. (4.62) decays like t—l, which is

slower than the decay of the stable PDF fy(t), which behaves like t—i"l for t large.

4.7 Discussion

4.7.1 Causality and the Super-Linear Attenuation Paradox

In Ref. [19], the “Quadratic Loss Paradox” associated with the 1D solution of the

Blackstock equation given by Eq. (4.10) is presented. In the discussion of Sec. VII

of Ref. [19], Szabo notes that the 1D solution is non-causal, yet provides an excellent

approximation to the thermoviscous wave equation for small values of e = ozoco|w|3=’_1

where w is the upper frequency limit. Szabo’s analysis is applied to three dimensions

and super-linear power law media (y > 1).

By letting R = R//\, where A is the wavelength associated with w, the ratio of the

Green’s function at time t = 0 to the peak value is given by

_ a 1/n = fy( R/co/( 0R) 3’) (4'69)

maxfy(z)

f, (_.141—lax)

maxfy(z)

 

 

where x = [sec(1ry/2)|1/y/(c0a(l)/y). Letting the normalized distance R = 1 in Eq.

(43) yields the upper limit 2010g10 n < -136 dB for 1 < y g 2. However, values of 1] are

typically much smaller than this upper limit. For instance, for y = 1.5, 2010g10 17 < -

360 dB. Similar computations for other y 2 1 demonstrate that for observation points

only one wavelength from the radiating source, Eq. (4.38) is effectively causal for all

0<y_<_2.
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4.7.2 Physical Interpretation and Application to Ultrasonic Imaging

Unlike the Green’s function for lossless media, the Green’s function for power law

media is not localized in space. Rather, the energy radiated by a point source is

smeared out over a wide volume. For viscous media (y = 2), the Green’s function,

given by a shifted and scaled Gaussian, decays rapidly for observation points distant

from 60R. For y < 2, however, the Green’s function decays as an inverse power of

distance for observation points r such that |r| << cot. This slow decay is interpreted as

the gradual relaxation of the medium after the initial wavefront has passed. As time

evolves from t = 20 as tot = 50 as in Fig. 4.4, the tail of the Green’s function increases

in both amplitude and duration, indicating that acoustic energy is being transferred

from an organized spherical wavefront to a slowly decaying wake. Since this slow

decay is not evident in the viscous case (y = 2), a mechanism other than viscous

dissipation (such as scattering by sub—wavelength structures) may be responsible for

the observed wake.

Understanding the effect of attenuation on ultrasonic fields is important in B-

mode image synthesis [102] and full-wave simulations in heterogeneous media [41].

Although the predicted change in phase velocity in most biological tissue is small [5],

the effects of dispersion accumulate with propagation distance and may alter pulse

shape over acoustically large distances [34]. For instance, the change in phase velocity

in the fat-like medium over the bandwidth of the pulse is less that 3 m/s, yet the

incident pulse undergoes a significant frequency down-shift at a depth of R = 100

mm.

The 3D power law Green’s functions derived in Section III facilitate the study

of three-dimensional sound beams in dispersive power-law media. In particular, the

impulse response produced by baffled circular and rectangular pistons may be con-

structed by integrating the power law Green’s function over the radiating aperture.

Specifically, the methodology developed in Ref. [59] for circular apertures in viscous
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media and Ref. [103] for rectangular apertures in viscous media may be extended

to power law dispersive media by utilizing the analytical Green’s functions derived

above. Since the power law Green’s function is efficiently evaluated using the tools

such as the STABLE toolbox [3], these analytical expressions may be used to ei-

ther validate fields generated by dispersive full-wave linear solvers [21] or construct

efficient single-scattering codes based on the Born approximation. Therefore, the an-

alytical tools developed in this paper may further the understanding of the influence

of dispersive loss on ultrasonic scattering and image formation.

Fig. 4.5 provides an example of one such evaluation. For large depths (R = 50

mm and R = 100 mm), the distortion of the pulse is clearly evident in the fat-like

medium, but much less apparent in the liver-like medium. In fat, attenuation in-

creases with frequency at a greater rate (y = 1.5) than in liver (y = 1.139), yielding

a larger frequency down-shift. Since attenuation and dispersion increase with fre-

quency, increasing the center frequency f0 of the pulse will increase both the absolute

magnitude of the frequency down-shift and the time delay, thereby degrading the

ultrasound image in a diagnostic application. To address this problem, the analytical

Green’s functions presented in this paper may be used to select and evaluate pulse

sequences for different imaging applications.

4.7.3 Comparison to Frequency Domain Models

To further validate the power law Green’s function, the Green’s function for linear

with frequency attenuation (y = 1) was compared to the dispersive tissue model

presented in Ref. [30], which incorporates a logarithmic frequency-dependent phase

delay that is equivalent to Eq. (4.22). Since Ref. [30] utilizes a 1D model, the

1/(47rR) factor in the power law Green’s function was omitted from this evaluation.

The impulse response associated with the dispersive tissue model shown in Fig. 2 of

Ref. [30] was then reproduced by evaluating Eq. (4.55) using the STABLE toolbox
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at times t retarded by a bulk delay given by T), = 1 /c1 = 6.67 443/cm. The minimum

phase Tm presented in Ref. [30] is not required in the evaluation since this additional

delay is incorporated into the stable density f1(t).

The analytical time-domain Green’s functions presented in this paper may serve

as references for calculations in a dispersive tissue model. These analytical models

may prove advantageous relative to the frequency-domain models proposed in Refs.

[30, 31, 34], which require the evaluation of numerical inverse Fourier transforms.

To expedite these inverse transforms, fast Fourier transforms (FFT’s) are utilized,

which require 1) uniform discretization in time and 2) adequate sampling of g(R,w)

in the temporal frequency domain. In contrast, the time-domain power law Green’s

functions presented above are not limited by these two requirements. The Green’s

functions may be evaluated on a non-uniform grid of time samples without sacrificing

efficiency. For example, the power law Green’s functions may be used to validate

FDTD codes which use non-uniform time-stepping. In addition, error tolerance asso-

ciated with evaluating fy(t) via the STABLE toolbox is user-specified [3], thus making

the present analytical Green’s functions an ideal reference for MIRF and dispersive

tissue model calculations.
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Figure 4.3. Comparison of the 3D Green’s function using a) the MIRF approach and b) the

analytical Green’s function approach given by Eq. (4.38). Green’s functions are displayed

at three different depths with y = 1.5, co = 0.15 cm/us, and a0 = 0.1151 Np/MHzl's/cm.
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Figure 4.5. Velocity potential produced by a point source excited by a broadband pulse

defined by Eq. (4.68) in two power-law media: 1) a fat-like medium with y = 1.5, co =

1.432 mm/ps, and do = 0.086 Np/MHzl‘s/cm and 2) a liver-like medium with y = 1.139,

co = 1.569 mm/ps, and (10 = 0.0459 Np/MHz1'139/cm. The velocity potential is displayed
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CHAPTER 5

Chen-Holm and Spatially Dispersive Wave

Equations

5.1 Introduction

As discussed in Chapter 4, the Szabo and power law wave equations possess several

difficulties for the super-linear attenuation case (y > 1). Firstly, the Green’s function

is not causal. Secondly, the fractional derivative operator has order y + 1 > 2,

which requires three initial conditions: 1) p(r,0), 2) p(r,0), and 3) p(r,0). Since

the third initial condition is not physically meaningful, Chen and Holm modified the

Szabo wave equation given by Eq. (4.4) by incorporating dissipation via a symmetric,

space fractional derivative [20]. Unlike the Reimann-Louville fractional derivative,

which utilizes a convolution on (—oo, t), the fractional Laplacian involves a symmetric

convolution over either the entire real line 'R in a 1D setting, or the real Euclidean

space ’R.” in a general n-D setting. The resulting Chen-Holm wave equation is second-

order and local in time and order y in space, thus only requiring two initial conditions.

Unlike the Szabo and power law wave equations, which are nonlocal in time and local

in space, the Chen-Holm formulation is local in time yet non-local in space. Like the

Szabo equation, the Chen-Holm model assumes a small attenuation parameter a0.

In this chapter, the 3D Green’s function for the Chen-Holm equation is derived
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in terms of symmetric stable distributions [49]. Symmetric stable distributions have

previously been used in polymer physics modeling [104], space-fractional diffusion

equations [45, 82], and relaxation processes [105]. The 1D and 2D Green’s func-

tions are also calculated explicitly in terms of the stable PDF and CDF, respectively.

Finally, the 3D Green’s function is given physical justification by incorporating micro-

heterogeneity into a viscous model governed by the Stokes wave equation.

5.2 Chen-Holm Equation

5.2. 1 Formulation

In 3D, the Chen-Holm wave equation is given by [20]

V2 _i&_fl(_ 2)y/2§E=

6t

0 (5.1)

where the power law exponent y ranges from 0 to 2. Eq. (5.1) is second-order in time

and order y in space. The loss operator, contained in the third term of Eq. (5.1),

contains a fractional Laplacian, or Riesz fractional differentiation, which is defined

by spatial Fourier transforms via Eq. (A5) in Appendix A. In the viscous case

(y = 2), the fractional Laplacian in Eq. (5.1) reduces to the classical Laplacian and

Eq. (5.1) reduces to the Stokes wave equation given by Eq. (2.1) with 7 = Zoo/coo

and c0 = coo. In the frequency-independent case (y = 0), the fractional Laplacian in

Eq. (5.1) reduces to the identity operator and Eq. (5.1) reduces to the telegrapher’s

equation given by Eq. (4.6). Hence, the Chen-Holm equation interpolates between

the telegrapher’s equation and the Stokes’ equation.

Before solving the Chen-Holm equation, the dispersive and causal properties of

Eq. (5.1) are established.
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5.2.2 Dispersion Relationship

Applying a four-fold Fourier transform to Eq. (5.1) yields the dispersion relationship

1:2 — (dz/cg - 2iaow|k|y/c(l)—y = 0 (5.2)

For y 79 1,2, Eq. (5.2) is transcendental in k and therefore cannot be solved in

closed form. Therefore, Eq. (5.2) is considered in the limit of low frequencies w

and small attenuation slopes (10. In order to find an approximate expression for

the attenuation coefficient u(w) and phase velocity C(w), the wavenumber is written

k(w) = w/c(w) + ia(w) and inserted into Eq. (5.2)

= 0 (5.3) 

w 2iwa 2 w 22'an w . y

a ( + 2a)

0

Assuming a(w) << 1 within the bandwidth of interest allows the a2(w) terms to be

neglected. Applying the binomial theorem and grouping the real and imaginary terms

yields

 

2 2

[”22— — “—2] + 2i [% - “Ow'”'y] = 0 (5.4)
CO cé—ylcly

Solving for the real part gives C(w) z c0, indicating a lack of dispersion. Solving for

the imaginary part yields

at») = ac‘i'i’fch-y (5.5) 

which yields a power law function of frequency given by Eq. (1.1). Based upon this

analysis of Eq. (5.1), the Chen-Holm equation has power law dissipation in the limit

of small (10 yet does not have a phase velocity predicted by the Kramers-Kronig given

by Eq. (4.15). Hence, the Chen-Holm model does not properly model the theoretical

and experimental phase velocity observed in power law media.

5.2.3 Causality

Since the Chen—Holm equation interpolates between the telegrapher’s equation and

the Stokes equation, both which are causal, the Chen-Holm equation is expected to

93



be causal for all 0 S y _<_ 2. To establish causality, Eq. (5.2) is solved for w as a

function of k using the analytical technique developed in [17], yielding

424(k) = 44014114“ 4 Co|k|Xy (5.6)

where

 

_ 2

Xy = (/1— ag|k|2y 200“. (5.7)

Noting that Im [wi] < 0 establishes that all poles of G(k, w) lie in the lower half-plane.

Thus for t < 0, the inverse temporal Fourier transform

 C(k, t) = r1 [( ’63 ] (5.8)

w — w+)(w - 00—)

_ _1_ exp(—iwt)

‘ 2w (ye—mews“
 

where the contour C lies below the real axis but above the two poles located at wi.

For t < 0, the contour is closed by a semi-circle in the upper half plane. Since the

integrand is analytic within the interior of this semi-circle, G(k, t) = 0 for t < 0,

thereby ensuring causality.

5.3 Spatially Dispersive Wave Equation

5.3. 1 Formulation

As discussed is the previous section, the Chen-Holm equation is causal for y 2 1,

yet the Chen—Holm equation does not provide a phase-dependent velocity given by

the Kramers-Kronig relations in Eq. (4.15). The Chen-Holm equation, given by Eq.

(5.1), utilizes a symmetric fractional Laplacian, given by Eq. (AS) in the loss oper-

ator. Although this operator yields the correct low-frequency attenuation coefficient,

dispersion is neglected due to the symmetry of the operator. To overcome this defi-

ciency, the symmetric Laplacian is replaced by the skewed Laplacian Vy, defined by
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Eq. (A8) in Appendix A, yielding

1 62 2a 8V2 P 0 Vy P _

p _ 2 642 — l-v Sat _ 0 (5'9)CO cos(7ry/2)cO

 

which is defined for 0 S y < 1 and 1 < y S 2. An additional scaling term of cos(7ry/2)

is introduced to maintain consistency with the previous power law model introduced

in Chapter 4. Like the Chen-Holm equation, Eq. (5.9) interpolates between the

telegrapher’s equation for y = 0 and Stokes’ wave equation for y = 2. However, for

intermediate values of 0 < y < 1 and 1 < y < 2, the skewed fractional Laplacian Vfi

is not equal to the symmetric Laplacian (—V2)y/2.

5.3.2 Dispersion Relationship

Applying a four-fold Fourier transform to Eq. (5.9) using the definition of the skew

Laplacian in Eq. (A.8) yields the dispersion relationship

2
w

00 c0 ycos(7ry/2)

2 .

0‘0“” (—4k3)y=o. (5.10) 

where ks = ksgn (cos k0) is the (signed) wavenumber which may varying between

—oo and 00. Note that k2 = kg. In order to find an approximate expression for the

attenuation coefficient a(w) and phase velocity C(w) in the limit of small frequencies

w, the wavenumber is written k3(w) = w/c(w) + ia(w), where 1/c(w) = l/co + fl(w).

Moreover, both u(w)2 and 6(a))2 are assumed small relative to other terms. After

ignoring the a2 and 62 terms, the result is

 22

23 2w2[3(w) 2iwa(w) £23 2iwao _, y (a , )y

03 + _CO + ————CO Cg + C(l)_y cos(7ry/2) z) CO + wfi(w) + za(w)

413(4)) + 404(4)) z 0.04 [1 — itan (1214)] My [1+ g(ia + wfi)]y

445(4)) + 46(4)) z 020]wa [4 + tan (122)] ,

where an additional approximation is introduced in the final line of the computation.

Equating the imaginary parts yields the power law given by Eq. (1.1). Equating the
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real parts yields

p(w) = aOIwa'l tan (1'23) , (5.11)

thus yielding the phase velocity predicted by the Kramers-Kronig relations given by

Eq. (4.15).

Since several approximations have been utilized in the derivation of the attenu-

ation coefficients and phase velocities associated with the Chen—Holm and spatially

dispersive wave equations, the dispersion equations given by Eqns. (5.2) and (5.10)

are also analyzed numerically. For each frequency w, the transcendental equations in

Eqns. (5.2) and (5.10) are solved numerically using a Newton root-finding algorithm

for wavenumber 112(0)), thereby facilitating calculations of the attenuation coefficients

oz(w) and phase velocities C(w) for both Eq. (5.1) and Eq. (5.9) without approxima-

tions. The material properties for breast fat (y = 1.5) and liver (y = 1.139) utilized

in Section 4.6 are used. The resulting attenuation coefficients and phase velocities

are displayed in Figure 5.1 for breast fat and Figure 5.2 for liver. For small fre-

quencies, both the Chen-Holm and spatially dispersive wave equations yield power

law attenuation coefficients, while for larger frequencies, the attenuation coefficient

grows more slowly than the power law prediction. For frequencies less than 50 MHz,

however, both the Chen-Holm and spatially dispersive wave equations are in excel-

lent agreement with the power law model. Moreover, the phase velocities predicted

by the Kramers—Kronig relations and the spatially dispersive models agree well for

both breast and liver. However, the Chen-Holm model predicts a nearly constant

phase velocity, thus violating the Kramers-Kronig relations. Analysis of these numer-

ical results, combined with the analytical approximation discussed above, suggests

that the spatially dispersive wave equation in Eq. (5.9) 1) provides a power law

attenuation coefficient with exponent y in the low-frequency limit and 2) yields a

frequency-dependent phase velocity in agreement with the Kramers-Kronig relations.
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5.3.3 Relationship to Szabo Wave Equation

In this subsection, the Szabo wave equation in Eq. (4.4) is shown to be a plane wave

approximation of the spatially dispersive wave equation in Eq. (5.9). Far from the

radiating source, the wavefield may be approximated as approximately plane:

Lip.szCO at (5.12)

In the spatial frequency domain (i.e. k-space), this plane wave assumption is equiv-

alent to iks z iw/cO. Taking the temporal Fourier transform of the definition of the

skewed Laplacian given by Eq. (A8) and inserting this approximation yields

1 0° 1 .

V%g(r) x %/ f'_1[(—iw/c0)yG(k,w)]eWtdw (5.13)

—m

1 0° -
z 57/ (-iw)y§(r,w)ewtdw

no .00

~ 3.231%
N cg at?!

'where the temporal derivative is defined in the Reimann-Louville form given by Eq.

(A.2). Inserting this plane wave approximation into Eq. (5.9) yields the Szabo wave

equation given by Eq. (4.4). Hence, the the Szabo wave equation is realized as a plane

wave approximation to the spatially dispersive wave equation considered above.

However, except in the degenerate cases of y = 0 and y = 2, applying Eq. (5.12)

“to the Chen-Holm equation does not yield the Reimann—Louville fractional deriva-

tive. Applying the same steps yields the plane wave approximation to the symmetric

Laplacian

1

W[.00 14414444441 (514)

which is a 1D version of the Riesz fractional derivative in Eq. (A5). Hence, the

(—V2)y/2 =

Chen-Holm equation, for 0 < y < 2, is not approximated by the Szabo equation.
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5.3.4 Causality

Unfortunately, the complex plane technique illustrated in Section 5.2.3 cannot be

invoked to establish the causality of Eq. (5.9). Rather, causality can be proven by

directly constructing the Green’s functions, which is performed in Section 5.5.

5.4 3D Green’s Function: Chen-Holm Equation

Both the Chen-Holm space-fractional wave equation and the spatially dispersive wave

equations are solved by generalizing the analytical technique utilized for the Stokes

wave equation in Chapter 2. The Chen-Holm equation is first analyzed, followed by

the spatially dispersive wave equation. In 3D, the Chen-Holm equation subject to a

point source at the origin is given by

2 2

v29 — ia—g- - m (472)“ :33 = —6(t)6(R) (5.15)

subject to a radiation boundary condition at infinity. Frequency-independent at-

tenuation media (y = 0) has already been solved in Section 4.2.3, and will not be

considered further. The general cases 0 < y < 1 and 1 < y S 2 are first considered,

followed by the special case of linear attenuation media (y = 1).

5.4.1 General case (0 < y <1 and 1< y S 2)

Fourier-Laplace transforming Eq. (5.15) from the space-time domain (R, t) to the

spectral-frequency domain (k, 3), yields

(k2 + s2/cg + 2sa0|k|y/c(l)—y) G(k, s) = 1 (5.16)

where k = [k] is the magnitude of the spatial frequency vector k. Since C(k, s) only

depends on the magnitude of the wave-vector k, the notation G(k,s) is adopted.

Solving for C(k, s) and completing the square yields

2
A c0

C(k, s) = . (5.17)

(s + c110c(1)+y|k|1/)2 + 031:2 — agcg+2y|k|2y
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Rewriting Eq. (5.17) yields

22+2 2 ”1

G(k,s)= Cg (1—( “060 y'k'y > . (5.18)

(s + (marl/(kw)? + car? 3 + aocgfllkly)? + c3102

  

Expanding the second factor as a geometric series yields

A w A

004, s) = Z anus, s), (5.19)

n=0

where 2 2 2

agncon+ + nylkl2yn
A

Gn(k, s) =
 (5.20)

[(3 + ()z()c(l,+y|lc|y)2 + 63k2

The inverse Laplace transform of Eq. (5.20) is computed via Eq. (2.10), and the

]n+l°

constants A = cok and a = aoc6+y|k|y are defined, yielding

n+1
t 2n n+2+2ny k 2yn

u( )CYO CO I l exp (_aoc(1)+ylk|yt) tkn jn(COtk) (5.21)

27172!

  

GTL(k!t) =

As with the Stokes wave equation, the 3D Green’s function is recovered via the three-

fold inverse Fourier transform in Eq. (2.13), yielding the infinite series given by Eq.

(2.14), where each term is specified by

u(t)agn n+2+2ny

0 CO n+1 00 _ 1+1] y - 2yn+1—n -

2n+1nlrr2R t /0 exp( 01000 k t) Jn(cotk)k Sln (kR) dk.

(5.22)

 

9M1“) =

Eq. (5.22) is recognized as an inverse sine transform; unfortunately, this expression

cannot be evaluated in closed form for general 11. However, the first term go may be

calculated explicitly by utilizing the symmetric stable distributions introduced in the

next subsection.

5.4.2 Symmetric Stable Distributions

The symmetric stable distribution wy(t) [88, 89, 106] is a special case of the stable dis-

tributions defined by Eq. (B.3) with skewness fl = 0. These distributions, which are

defined in Appendix B, have been studied extensively [49] and possess the following

analytical properties
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1. wy(t) is infinitely continuously differentiable (or smooth).

2. wy(t) has support on (—oo, oo).

3. wy(t) is symmetric (even) with respect to t and unimodal.

4. As |t| -—> oo, wy(t) ~ Itl—y‘1 for 0 < y < 2.

5. ff?)O wy(t)dt= 1.

6. wy(t) is bell shaped (the k—th derivative possesses exactly k simple zeros)

The symmetric stable distribution wy(t) has several analytical representations. The

special cases 3; = l, 3/2, and 2 correspond to Cauchy, Holtsmark, and Gaussian

distributions. In the special cases of y = 1/2, 2/3, 1, and 2, wy(t) is expressed in

closed-form [95, 105]

1 1 1 1
“ll/2U) = \/2—7r|t|3/2 [ <2 - 0( 27r|t|) COS (Ill—150)

 

 +

2 4

102/30)= 7—317r—I2tl exp (7) W—1/2,1/6 (W) (5.23b)

1121(1) = 7r (1 1 t2) (5.23c)

2

w2(t) = % exp (—€I) ‘ (5.23d)

where C(z) and S(2) are the Fresnel cosine and sine integrals, respectively and

Wk,m(z) is the Whittaker function [49]. For y = 3/2, rational approximations may

be utilized [107]. For other values of y, wy(t) is represented via the Fox H-function

[81,95] via

_ 1 1 (— 1,,—1)( 1/2,1/2) .

M(t)—EH” (I [(— 1/y.1/y>(—1/2.1/2>) ”<1 (“43’
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_ 1 1,1 (1 —1/y11/y)1(1/211/2) -

wy(t) — 9H2’2 (tl (011)1(1/211/2) ) if y > 1 (5.24b)

Figure 5.3 displays plots of the symmetric stable PDFs wy(t) for y = 1 /2, 1, 3/2,

and 2. These PDFs were generated via the STABLE toolbox [3] and verified against

the closed form expressions given by Eq. (5.23). As shown in Fig. 5.3, the densities

display heavy tails for y < 2, with the tails decaying slower as y descends from two to

zero. Also, the densities become more peaked as y decreases from two to zero, thus

yielding a larger fourth moment.

5.4.3 Leading Term (11. = 0)

As in the viscous case (y = 2), the dominant behavior is analyzed by examining the

leading order term in Eq. (2.14). For n = 0, the expresion for the spherical Bessel

function j0(z) in Eq. (2.16) is inserted into Eq. (5.22), yielding

 

oo

90(R,t) = 02015;) sin (kR) exp (—a0cg+1kyt) sin (00kt) dk. (5.25)

7’ 0

Eq. (5.25) is evaluated using Eq. (B.7). Evaluating the inverse transform via Eq.

(B.8) by taking a = 00%“ and b = cot yields

90(R, t) ~ u(t) )l/y [my ($5161) _ my (MN . (5.26)

~ 47rR<cotao Cotaoll/y (actual/y

The first term in Eq. (5.26) represents an outgoing wave while the second term

 

represents an incoming wave. For t sufficiently large, the second term is negligible

yielding the asymptotic Green’s function

~ W) w t-R/co
go(R,t)~ 41rR(c0tao)1/y y(—_(C0t010)1/y) (5.27)
 

In the viscous case (y = 2), Eq. (5.27) reduces to the asymptotic Green’s function

for the Stokes wave equation given by Eq. (2.20). Property 3 of wy(t) implies that

the asymptotic Green’s function possess no skewness, unlike the power law Green’s

function derived in Chapter 4. This is expected, since the phase speed was found to
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be constant in the analysis of the dispersion relationship. Thus, the Green’s function

accounts for spreading due to the filtering effect of the medium but does not account

for dispersion, yet the Green’s function is strictly causal. The symmetric stable

distributions wy(t) have support on (—oo, 00), are smooth, and decay like 1/151"+1 for

0 < y < 2. The PDF wy(t) may be computed numerically using STABLE [88] or

using serias expansions for the H-function. Unlike solutions to the power law wave

equation, Eq. (5.27) are symmetric about the wavefront, possessing heavy tails for

both early and late times. Moreover, these solutions are strictly causal for all values

of 0 < y < 2. Like the Szabo equation, the Green’s function possess a heavy tail for

0 < y < 2, thus displaying the long-term memory of the dispersive media.

5.4.4 Higher-Order (n _>_ 1) Terms

Evaluation of Eq. (5.22) for general n 2 1 and y < 2 is not possible in closed form.

However, an estimate may be obtained which yields the decay properties for t > 1.

For large .2, the asymptotic form of the spherical Bessel function is employed

 

sin(z — n7r/2)

 

jn(z) -—> z (5.28)

Inserting Eq. (5.28) and utilizing [sin 2| S 1 yields the rough estimate

2n n+l+2ny 00

0‘0 C0 1+1: 2 —1
gn(R,t) S 2n+l7r2an tn./0 exp (_GOCO kyt) k( y )n dk (5.29)

The integral in Eq. (5.29) is evaluated in terms of the Gamma function, yielding

 

2n n+1+2ny

a c —1+n—2ny y 1 _ 2

mans §n+i,,2,,.R t"y‘1(aocé+yt)( V 1“(——"—f—"y-) (5.30)

Rearranging terms yields the final estimate

 

 

Cn n/y —n(1—1/y) —n+(n—1)/y
gn(R, t) S 47rR(atc0)1/yao t co , (5.31)

where

0n = r (2n — (n — 1>/y>. (5,32)
2"“1nl7r

104



Eq. (5.31) shows that gn(R, t) -—* 0 as t —» 00. Moreover, gn decays faster with

respect to t than go by a factor of t‘"(1’1/y). In addition, Eq. (5.31) scalae with

n/y-th power of 010, thus becoming negligible for em small and n/y >> 1.

5.4.5 Linear Attenuation Media (y = 1)

In the special case of linear attenuation media (y = 1), the temporal Fourier transform

is evaluated by letting s = —z'w in Eq. (4.23), yielding

(k2 — 5.2/c3 — 2550mm) C(k, w) = 1. (5.33)

Factoring the dispersion polynomial in terms of w and solving for C(k, w) yields

 (5.34)

where

wiUC) = -iao|k|63 i Co|k|X1 (5-35)

and X1 = ‘/1 — agcg. Performing an inverse temporal Fourier transform over w via

Eq. (5.9) and evaluating via contour integration yields

 C(k, t) = 613:) exp (—aoc3|k|t) sin (COIkIX1t) (5.36)

Inserting Eq. (5.36) into Eq. (2.13) and performing the same operations as in the

general case yields

g(R’t) = 47TR(:<E:<)10)X1 [ml (Lfi/fl) — wl (%:10fl)] (5'37)

 

where w1(t) is the Cauchy distribution given by Eq. (5.230). The factor X1 effectively

shortens the path path traveled to R’ = nil. Eq. (5.37) corresponds to Eq. (5.27)

evaluated for y = 1 with the inclusion of a small correction factor of X1- Unlike the

cases 0 < y < 1 and 1 < y S 2, the Green’s function is expressed exactly in terms of

symmetric stable distributions, with no additional correction terms.
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Figure 5.3. Plots of symmetric stable PDFs wy(t) for four cases: y = 0.5 , 1 (Cauchy) ,

1.5 (Holtsmark), and 2 (Gaussian) evaluated with the STABLE toolbox [3].

The linear attenuation media (y = 1) case is very similar to the non-causal solution

derived by Kak and Dines [108], suggesting the Kak and Dines solution is a non-causal

approximation to the Chen-Holm equation.

5.5 3D Green’s Function: Spatially Dispersive Wave Equa-

tion

The same solution technique is applied to Eq. (5.9) in this section. The spatially

dispersive wave equation, subject to an impulse point-source at the origin, is given

by

1 829 2C'0 v Q = —6(t)6(R). (5-38)V29 — — — V

03 8t2 cos(1ry/2)c(l)—y S at
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Fourier-Laplace transforming Eq. (5.38) from the space-time domain (R, t) to the

spectral-frequency domain (k, 3), yields

 ((1342 + s2/c3 + 2800(”k3)y)) 6:05., 3) = 1 (5.39)
Cé—y cos(7ry/2

Solving for G(k, s) and expanding in an infinite series following the same steps used

in Section 5.4.1 yields Eq. (5.19), where

seCZn(7ry/2)(1gnc2n+2+2ny(_ik3)2yn

[<s+sec(vry/2)aocoyew/)2 +63|ks|2

 (33,053, .9) = (5.40)
[n+1

Again, the inverse Laplace transform of Eq. (5.40) is computed via Eq. (2.10) and

constants A = Colksl and a = an sec(1ry/2)c(l)+y(-z'k3)y are defined, yielding

sec2"awry/2)2"c[)H—2+2ny(—zk)21‘mt"+1

Gn(k31t) = u(t) |k3|n2nn'

 

M(COIkslt)X

exp(—ozosec(7ry/2)c1+y(—iks)yt) (5.41)

The inverse Fourier transform is performed in signed spherical coordinates (k3, 6k, (pk),

where -—oo < ks < oo , 0 S Our/2, and 0 S 05]: < 21r. Writing Eq. (1.4b) in signed

spherical coordinates yields and evaluating both the 9k and (1),, integrals yields

1

4i1r2R

 

gn(R, t): /: e’ksRGn(k3,tt)ks dks (5.42)

Finally, performing the inverse spatial transform via Eq. (2.13) yields

u(tsec2n)(7ry/2)(112"c[)’+2+2nyt"+1

i7r22n+2niR

m a

/ (-iks)2ynlks|1"”jn(co|ks|t) exp (—ao sec<wy/2)c5+2<—ik.)yt) 6.1.... die.
—00

(5.43)

 

911(3)” = X

Since each gn(t) = 0 for all t < 0, it immediately follows that the Green’s function

for the spatially dispersive wave equation is causal. In the following subsection, the

leading order term is explicitly calculated in terms of the maximally skewed stable

distributions introduced in Chapter 4.
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5.5.1 Leading Term (n = 0)

For n = 0, Eq. (5.43) reduces to

00110) °°

4i7r2R 0

 sin(c0|ks|t) exp (—ao sec(7ry/2)c(1)+y(—ik3)yt) eiksR dks

(5.44)

90(R1t) =

To perform the integration in Eq. (5.44), the maximally skewed stable distribution

fy(t) [89] is utilized. Writing the sine term in Eq. (5.44) as a sum of complex

exponentials and folding the integration on the real axis yields

60W)
R,t =

m -

Re / e’k3(COt+R) exp (—aosec(7ry/2)c(1)+y(—ik3)yt) dks] (5.45)

0

 [Re foo eik3(60t_R) exp (—a0 sec(7ry/2)c(1)+y(—iks)yt) dies—

0

Applying the scaling and shifting properties of Fourier transforms along with Eq.

(B6) to Eq. (5.45) yields

_ u(t) t—R/co _ t+R/c0

90W) _ “macaw/2 if” (meow/y) ’2 ((flocot)l/y)] ' (5'46)

As with the Chen-Holm equation, the first term in Eq. (5.46) represents an outgoing,

 

dispersive spherical wave, while the second term represents an incoming wave. For

large times t, the incoming term is negligible, yielding the final result

11 t t — R

gaunt) = ( ) 1/ fy (——/—f,9-) (5.47)
47rR(flocot) y (flocot) 3’

Eq. (5.47) thus provides a causal, 3D Green’s function solution to the spatially dis-

 

persive wave equation given by Eq. (5.38). Like the power law Green’s function

derived in Chapter 4, Eq. (5.47) is expressed in terms of maximally skewed stable

distributions. Like symmetric stable distributions, maximally skewed stable distri-

butions may be numerically evaluated via the STABLE toolbox [3]. In the case of

viscous media (y = 2), Eq. (5.47) agrees with the Chen-Holm Green’s function given

by Eq. (5.27). However, the two solutions diverge for y < 2, since Eq. (5.47) is
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skewed, whereas Eq. (5.27) is symmetric. As in the case of the power law Green’s

functions considered in Chapter 4, an alternate parameterization must be used for

linear attenuation media (y = 1), yielding

gnaw) — —"(L’—f1 (ti—1’32) (5.48)
- 41rR(a0c1t) aoclt

5.5.2 Relationship to the Power Law Green’s Function

The power law Green’s function previously derived in Chapter 4 may be recovered

as an approximation to the spatially dispersive Green’s function given by Eq. (5.47).

First, note that Eq. (5.47) contains two separate time-scales: a “fast time” contained

in the t — R/co term, and a “slow time” in which attenuation dispersion occurs.

Substituting t —» R/co in the slow time variable yields

~ 1 t — R/co

90m” t) N 47rR<fioR)1/yf’((fioR)1/y) (5'49)

which corresponds to the previously derived power law Green’s function in the case of

 

super-linear attenuation (y > 1) given by Eq. (4.38). Since fy(t) > 0 for all t for y > 1

[89], Eq. (5.49) is non-zero for t S 0, the power law Green’s function is interpreted

as a non-causal approximation to the spatially dispersive Green’s function.

5.6 1D and 2D Green’s Functions

Asymptotic Green’s functions valid in one and two dimensions are calculated for

both the Chen-Holm wave equation and the spatially dispersive wave equation in this

section.

5.6.1 1D Green’s Functions

The 3D and 1D Green’s functions for any linear operator are related via [18]

1 691D
9 D R t — ___ . 5.50
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Inverting this relation yields

livl

91003.0 = — / 24R9319<R,t) am. (5.51)
—00

The mapping given by Eq. (5.51) is now applied to the asymptotic 3D Green’s

functions for the Chen-Holm equation in Eq. (5.27) and the spatially dispersive

equation in Eq. (5.47).

CHEN-HOLM EQUATION

To compute the 1D Chen-Holm Green’s function, Eq. (5.27) is inserted into Eq.

(5.51), and applying a change of variables yields

can t °°

91D(;r,t) = ——2—(—)- 1/ 7.119(1)) dv. (5.52)

(t—|a:|/c0)/(a0c0t) 3"

Introducing the symmetric, stable cumulative distribution function (cdf) Wy(t) de-

fined via Eq. (BM) in Appendix B allows Eq. (5.52) to be evaluated as

002405) [ (t— [ail/Co )]
:l:,t = —— l — W —— 5.53

Closed-form expressions exist for Wy(t) for the special cases of y = 1 and y = 2 [49]:

1 1 _1
W1(t) = — + — tan (t) (5.54a)

2 7r

1 t

W2(t) = 5 + erf (5) (5.545)

SPATIALLY DISPERSIVE WAVE EQUATION

To compute the 1D spatially dispersive Green’s function, Eq. (5.47) is inserted into

Eq. (5.51), and applying a change of variables yields

CM(t) /°°
g D(a:, t) = —— w (v)dv. (5.55)

1 2 (t—lwl/Co)/(fiocot)1/y y
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Identifying the skewed, stable cumulative distribution function (cdf) Fy(t) defined

via Eq. (B10) in Appendix B allows Eq. (5.55) to be evaluated as

mat) = @391 [1— F4 ($95)] (5.56)

5.6.2 2D Green’s Functions

The 2D Green’s function is calculated by integrating the 3D result along the z—axis.

Putting R = \/ p2 + 22 yields

00

925(4). t) = 2 f0 935m 2. t) dz. (5.57)

which is applied to both the Chen-Holm and spatially dispersive equations.

CHEN-HOLM EQUATION

Inserting Eq. (5.27) into Eq. (5.57) and applying a change of variable yields

_ u(t) t-P/co v

425(p,t>— f wy(E————),—/,;)q(v)dv (5.58)
2”(0106001/2 —oo aocot

 

where the “wake function” q(v) is defined via

 

9(2)) = 1/ \/(t - v)2 - (p/CO)2 (559)

Since wy(t) has support on (—00, 00), Eq. (5.58) is non-zero for t < p/co. Unlike the

lossless Green’s function given by

the lossy 2D Green’s function is finite at the arrival time t = p/co due to the smoothing

 

effect of wy(t). In addition, Eq. (5.58) is nonzero fort < p/co since wy(t) has support

on (-OO,OO).
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SPATIALLY DISPERSIVE WAVE EQUATION

Inserting Eq. (5.47) into Eq. (5.57) yields

_ u(t) t’p/CO v

92000.0 — m40431h, f... fy(———(fiocot)1/y)q(v)dv (5.61)

As with Eq. (5.58), Eq. (5.61) is finite at the arrival time t = p/co due to the

 

smoothing effect of fy(t). In fact, since both wy(t) and fy(t) are 00°, it follows

that the 2D Green’s functions for both the Chen-Holm and spatially dispersive wave

equations are also C°°.

5.7 Numerical Results

5.7.1 Chen-Holm Wave Equation

Figure 5.4 displays snapshots of the 3D approximate Chen-Holm Green’s function in

Eq. (5.27) for y = 1.0, 1.5, and 2.0 with do = 0.05 mm-IMHz-y at times t = 20, 30,

40, and 50 us. Like the power law Green’s functions shown in Fig. 4.4, the Green’s

functions are broader and are attenuated as time progresses. The approximate Chen-

Holm Green’s function and power law Green’s function are approximately the same

for y = 2, and both models have slowly decaying tails for y < 2. However, the Chen-

Holm Green’s functions are symmetric about the radial coordinate R = cot, whereas

the power law Green’s functions shown in Fig. 4.4 are skewed to the left. Thus,

the two models yield different behavior for 0 < y < 2, with the Chen-Holm Green’s

function lacking the characteristic skewness of a dispersive medium. Moreover, the

Chen-Holm model predicts a significant amount of acoustic energy traveling faster

than the reference speed of sound Co, which is not observed in the power law model

developed in Chapter 3.

To explore broadband pulse propagation under the assumptions of the Chen-Holm

model, the velocity potential is computed by convolving a broadband pulse given by
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Eq. (3.11) with the approximate Chen-Holm Green’s function. A liver-like and fat-

like medium are utilized with the same parameters used. in Fig. (4.5). The resulting

velocity potentials are displayed in Fig. 5.5 at distances R = 10 mm, 25 mm, 50

mm, and 100 mm. For small distances (R = 10 mm and 25 mm), both the power

law results in Fig. 4.5 and Chen-Holm results in Fig. 5.5 are very similar. For larger

distance (R = 50 mm and 100 mm), there are noticeable differences between the

two models. In particular, the Chen-Holm velocity potentials have a longer duration

than the power law model, which is caused by symmetric heavy tails present in the

asymptotic Green’s function given by Eq. (5.27).

5.7.2 Spatially Dispersive Wave Equation

Figures 5.6 and 5.7 compare the spatially dispersive and power law Green’s functions

in fat-like and liver-like media, respectively. Fig. 5.6, which evaluates Eqns. (5.47)

and (5.49) at observation points a)R = 1 mm and b) R = 10 mm, displays the simi-

larity between the spatially dispersive and power law Green’s functions. Both Green’s

functions quickly rise to a peak at time t as 0.69 as, after which they both decay very

slowly as t —> 00. At R = 1 mm, the power law Green’s function underestimates the

peak at 0.69 us. Also, the power law Green’s function is slightly delayed relative to

the spatially dispersive Green’s function to the left of the peak. However, for times

occurring after the peak, the spatially dispersive and power law Green’s functions are

indistinguishable. At R = 10 mm, the two Green’s function display similar behavior,

although there is closer correspondence between the two models for times preceding

the peak at t z 6.2 ps.

Fig. 5.7 displays a greater disparity between the power law and spatially dispersive

models, especially for Observation points near the source R = 1 mm and small times.

Although both Green’s function display the same qualitative behavior, the power law

model is noticeably delayed relative to the spatially dispersive model. This delay

113



  

  

4x10.” 4x10?”

-y=2 —y=2

_---y=1.5 _---y=1.5

3 """" Y= 3 """" Y=    
  

—
L

d     G
r
e
e
n
'
s
F
u
n
c
t
i
o
n
g
(
R
,
t
)

N
O

G
r
e
e
n
'
s
F
u
n
c
t
i
o
n
g
(
R
,
t
)

N
O

  

 

\\

‘0

26_ 28 80 32 34 36 4o .42 44.46 48 5o 52
radial coordinate R (mm) radial coordinate H (mm)

(a) t = 20 us. (b) t = 30 us.

x10:3

—Y=2

---y=1.5

....... y._..1

A

 

A

 

  

‘
9

9
°

      

—
L

G
r
e
e
n
'
s
F
u
n
c
t
i
o
n
g
(
R
,
t
)

N

G
r
e
e
n
'
s
F
u
n
c
t
i
o
n
g
(
R
,
t
)

-
*

N

    

 

.1

W
\I

o

s‘

..L A .

54 58 , 52 58 58 2 78 "A 80 84
radial coordinate H (mm) radial coordinate R (mm)

  

O O

(c)t=40ps. (d)t=50ps.

Figure 5.4. Snapshots of the 3D approximate Chen-Holm Green’s function in Eq. (5.27)

for y = 1.0, 1.5, and 2.0 for do = 0.05 Np/mm/MHz”. Snapshots of the Green’s function

are shown for t = 20, 30, 40, and 50 us.
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Figure 5.5. Velocity potential produced by a point source excited by a broadband pulse

defined by Eq. (3.11) in two media governed by the Chen-Holm equation: 1) a fat-like

medium with y = 1.5, co = 1.432 mm/ps, and a0 = 0.086 Np/MHzl's/cm and 2) a liver-

like medium with y = 1.139, co = 1.569 mm/ps, and a0 = 0.0459 Np/MHzl'l39/cm. The

velocity potential is displayed at radial distances 10 mm, 25 mm, 50 mm, and 100 mm.
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arises from the scaling parameters of the Green’s functions. The spatially dispersive

model has a scale parameter given by (flocot)1/y, whereas the power law model has a

scale parameter given by (60R)1/3’. Since the spatially dispersive Green’s function has

a time-dependent scale parameter, Eq. (5.47) possesses greater temporal localization

for t < R/co. Thus, for t < R/co, the spatially dispersive Green’s function decays

faster for times preceding R/co relative to the power law Green’s function, which has

a time-independent scale.

As discussed in Chapter 4, the power law Green’s functions display heavy-tailed

asymptotic behavior due to the slow decay of fy(t), which decays with 0(t’y‘1).

This slow decay is shared by the spatially dispersive Green’s function, which has al-

most identical long—term behavior as the power law Green’s function. As Figs. 5.6

and 5.7 show, the spatially dispersive Green’s function also displays this heavy-tailed

behavior, which yields a slowly decaying wake that trails the primary wavefront. Since

large times correspond to the low-frequency information, the similar behavior of the

power law and spatially dispersive models indicates that both models correctly model

low-frequency power law behavior. On the other hand, the early—time behavior of

the power law and spatially dispersive models differs slightly, due to differing high-

frequency behavior. The power law model has a power law attenuation coefficient

dependence my over all frequency bands, whereas the spatially dispersive model has

power law behavior only for low frequencies. At high frequencies, the spatially disper-

sive attenuation coefficient grows more slowly than ea. As displayed in Figs. 5.6 and

5.7, this differing high-frequency behavior is manifested in different early-time behav-

ior of the power law and spatially dispersive Green’s functions. In fact, this slower

growth of the spatially dispersive attenuation coefficient is a necessary condition for

causality due to the Paley-Wiener condition.
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5.8 Discussion

5.8.1 Stochastic Model for the Chen-Holm Wave Equation

The Chen-Holm approximate Green’s function given by Eq. (5.27) is derived by con-

sidering tissue heterogeneity on the macromolecular level. One possible explanation

of tissue absorption is Class 0 scattering on the length scale of 1 pm. At this length

scale, classical absorption is modeled by the Stokes wave equation with a variable

viscous relaxation time

1 829 6

v29 — 7? + 7(r)—V29 = —6(t)6(R), (552)

Co
at

where the viscous relaxation time 7(r) is a function of position to account for tissue

heterogeneity. However, the speed of sound is taken to be a deterministic constant.

That is, the fundamental loss mechanism is assumed to be a variable viscosity [109]

with a constant background c0. However, at larger spatial scales, the tissue is assumed

to be homogeneous. That is, there exists a volume such that the small scale variations

of 7(r) average out to a constant. The size of this volume is taken to be on the order

of Rayleigh scattering (10 — 100 pm). Equivalently, the relaxation time consists of two

components: 1) a constant '7 valid on the scale of Rayleigh, diffractive, and specular

scattering and 2) a high frequency component 7’(r) valid on the micro-scale. Since

the oscillations of ’y’ (r) are on a small scale, the spatial Fourier transform 7’(k) is

approximately zero for |k| less than some constant.

Assume that 7(r) is a random variable with distribution p(y) satisfying the fol-

lowing conditions: 1) 7(r) is strictly positive (e.g. p(y) = 0 if 'y S 0), and 2) 7(r)

is an infinitely-divisible distribution [89], resulting from the summation of many sim-

ilar random variables. Condition 1 is required since the coefficient of viscosity in a

dissipative medium is strictly positive. Condition 2, although not required, is desired

since Class 0 scattering is modeled as the summation of many independent scatter-

ing events. In other words, 7(r) is the sum of a large number Of independent and
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identically distributed (i.i.d.) random variables. The only distributions that satisfy

both conditions are the maximally skewed stable distributions with PDFs given by

Eq. (4.41). A spread parameter A > 0 is incorporated into Eq. (4.41), yielding the

desired distribution of '7

p()= —/2sz11 ( ,\1/z) . (5.53)

Recalling the asymptotic Green’s function to the Stokes wave equation, the averaged

Green’s function g(R, t) is computed by taking the expected value:

mat) a Elg<R t)] ‘ (5.64)

_ °° “(t___)____ (t - R/co)2

— foo 47rR\/27r7t exp (— «27th )113(7) d7

 

_ _u<_t> 1 R)...
‘ 47m. 000(tT—/2)1/2f2((t7/2)1/2)Al/Zfz(A1/2)d

The integration in the last line is computed in [89], yielding

_ u(t) t—R/co

90” t): 47rR(At/2)1/(2z) 2w“ ((At/2)1/(22)) (5'65)

 

where wy(t) is the symmetric stable distribution defined by Eq. (B.7). Eq. (5.65)

has the same form as the Chen-Holm Green’s function given by Eq. (5.27) with a

spread parameter A = 2a0c0 and a power-law exponent of y = 22. The evaluation

of the integral in Eq. (5.65) is particularly straightforward when 2 = 1/2, yielding a

Cauchy distribution in Eq. (5.65) with a linear frequency dependence.

Thus, the assumption of a spatially varying viscous relaxation time yields the

Chen-Holm Green’s function. Note, however, that the sound speed Co was assumed

constant on all scales, which neglects the effect of dispersion. This analysis shows

that the Chen-Holm model correctly accounts for absorption due to viscous micro-

heterogeneity but neglects the dispersive effect of micro—heterogeneity. This model

agrees with Eq. (5.4), which predicts a frequency-independent speed of sound for the

Chen-Holm model. 3
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5.8.2 Stochastic Interpretation of the Spatially Dispersive Wave Equation

Like the power law and Chen—Holm Green’s functions, Eqns. (5.47) and (5.48) are

probability distributions. Following the analysis in Section 4.5, the convolution of

a pulse u(t) with Eq. (5.47) may be expressed in the form of Eq. (4.66), where

the random variable T in Eq. (4.66) is distributed by the shifted and scaled stable

distribution

_ u(t) ~ 7' — R/co

gL(t,T — R/CO) _ (OOCOt)1/yfy ((aocot)1/y) (5.66)

where P(T(t) S 1') = f—Too gL(t,T' — R/c0)d7". Thus, T = T(t) is a continuous

time random process which is interpreted as randomized delays. Like the power law

model, the process T(t) consists of two components: 1) a bulk delay R/co and 2)

additional, random delays due to the micro-heterogeneity of the intervening medium.

As time evolves, the spread parameter in T(t) grows, indicating a greater probability

of encountering delays far from R/co. Since 1’], is skewed to the right, there is a

much larger probability that the outwardly propagating spherical wave encounters

delay larger than R/cO. Note that the same stochastic interpretation applies to the

1D and 2D spatially dispersive Green’s functions given by Eqns. (5.56) and (5.61),

respectively.
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Figure 5.6. Comparison between the spatially dispersive Green’s function given by Eq.

(5.47) and the power law Green’s function given by Eq. (5.49) in a fat-like medium (y = 1.5)

with attenuation coefficient 0.086 Np/cm/MHz1'5. The two Green’s functions are evaluated

as a function of time t at observation points a) R = 1 mm and b) R = 10 mm.
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Figure 5.7. Comparison between the spatially dispersive Green’s function given by Eq.

(5.47) and the power law Green’s function given by Eq. (5.49) in a liver-like medium (y =

1.139) with attenuation coefficient 0.0459 Np/cm/MHz1'139. The two Green’s functions are

evaluated as a function of time t at observation points a) R = 1 mm and b) R = 10 mm.
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CHAPTER 6

Fractal Ladder Models and the

Caputo-Wismer Equation

6. 1 Introduction

The power law models discussed in Chapters 4 and 5, such the Szabo [19] and Chen—

Holm [20] wave equations are phenomenological insofar as these equations are not de-

rived from an underlying physical principle and/or constitutive equation (as opposed

to the Stokes wave equation studied in Chapter 2). Rather, the order of the fractional

derivative and coefficients are fitted to measured attenuation measurements, but are

not derived from equations of state, continuity, and momentum. Although the FPDE

model may accurately predict wave propagation in biological media, the underlying

FPDE does not provide a physical picture or mechanism of the underlying absorption

processes. Therefore, this chapter focuses on deriving power law attenuation models,

and the corresponding FPDE, from a fractal description of tissue rooted in observed

biophysics. I

In order to derive a biophysically-based constitutive equation, the viscoelastic

propertias of both cells [110—112] and bulk tissue [113, 114] should be considered.

In particular, such a constitutive equation should account for 1) the tissue micro-

heterogeneity and 2) the observed viscoelastic response of tissue. Within the vis-
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coelastic and biomechanics communities, lumped parameter networks, such as the

Maxwell and Voigt models [115], are commonly employed to generate tractable mod-

els that capture the salient properties of a material [112]. These lumped parameter

networks have been extended to include infinite ladder networks consisting of alternat-

ing elastic and viscous elements [115—118], which generate time-fractional rheological

constitutive equations [119] for polymers. As discussed in the above references, the

time-fractional derivative in the constitutive equation captures the l) elastic, 2) vis-

cous, and 3) self-similar prOperties described by these infinite networks. To date,

however, these ladder networks have not been applied to the propagation of pulsed

ultrasound through soft tissue.

In this chapter, a time-fractional constitutive equation, based on the lumped pa—

rameter methodology, is proposed to model the dissipative properties of soft tissue.

This constitutive equation is used to derive FPDE models (the Caputo-Wismer and

Szabo wave equations) found in the literature [19, 21, 36, 120] . In Section 6.2, a con-

stitutive equation is formulated by considering fractal networks of springs and dash-

pots [115, 117, 118]. Using this constitutive equation, the Caputo-Wismer equation is

derived from basic conservation laws in Section 6.3 for linear macro-homogeneous me-

dia and inhomogeneous media. In Section 6.5, the ladder model is analyzed in terms

of previous biomechanical and fractal models, and extensions to nonlinear media are

discussed.

6.2 Fractal Ladder Model and Fractional Constitutive Equa-

tion

This section introduces a lumped parameter, fractal ladder network to model the

stress-strain relationship in biological media. From this fractal ladder network, a

time-fractional derivative constitutive equation is derived, thus providing a physical
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basis for time fractional FPDE such as the Caputo—Wismer equation [21, 36].

A linear constitutive equation postulates a functional relationship between the

time-dependent stress tensor TU-(t) and strain tensor 6,-3- (t) (or, equivalently, the ve-

locity gradient Bui/8331-) via a differential, integral, or integro-differential relationship

that satisfies the principle of superposition. Familiar examples of constitutive equa-

tions, such as as Hooke’s Law for an elastic solid and Newton’s Law for a viscous

fluid, fail to predict the behavior of many viscoelastic solids; therefore, generalized

viscoelastic models, involving fractional derivatives and integrals, have been proposed

[119, 121]. This section proposes an constitutive equation for biological media using a

fractal ladder network as a lumped—parameter model. A qualitative biological model

is first postulated, followed by the basic theory of Viscoelasticity.

6.2.1 Biological Motivation

A mechanical model for the loss mechanism in mammalian biological tissue is consid-

ered in this section. As will be shown, this model satisfies a power law attenuation

coefficient 01(6)) given by Eq. (1.1) over an appropriate bandwidth of frequencies for

power law exponents 1 < y S 2. Specific tissue, such as breast, consist of hierarchical

arrangements of elastic and fluid-like components. For instance, breast consists of

interlobular stroma, which has fluid like properties. Embedded in the stroma are

mammary lobules, which have elastic membranes. The mammary lobules contain

intra-lobular stroma (viscous) and smaller elastic structures such as basal lamina.

This heterogeneity continues down to the cellular and sub—cellular levels. Individual

tissue is highly heterogeneous and composed of over a hundred distinct cell types

These tissues consists of aggregates of cells suspended by an fluid-like extra-cellular

matrix (ECM). The ECM is often modeled as an aqueous solution of viscoelastic poly-

mers, which possess both solid and fluid-like properties. Individual cells are modeled

as elastic membranes containing fluid-like cytoplasm [112]. Within the cytoplasm are
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distributed organelles, such as the nucleus, endoplasmic reticulum, and lysosomes,

which in turn have an elastic membrane containing with a fluid-like interior [4].

This hierarchical arrangement is displayed at several scales in Figure 6.1. For

reference, consider a medium with average sound speed c0 = 1.5 mm/ps excited at

7.5 MHz, yielding an acoustic wavelength of A = '200 um. Panel a), which is on the

scale of an acoustic wavelength /\ ~ 200 pm, contains an ensemble of mammalian cells,

each bounded by an elastic membrane, suspended in a viscoelastic ECM. Both the

ECM and cytoplasm consist of complex polymers (e.g. collagen) dissolved in a viscous

fluid, thus yielding a viscoelastic material. In panel b), which is on the scale of A/10 ~

20 pm, an individual cell is shown at a higher level of magnification. Inside the elastic

membrane is the cytoplasm, which has similar viscoelastic properties to the ECM.

Panel 0) displays the cell nucleus on the scale of A/4O ~ 5 pm, consisting of a double

membrane, a fluid-like nucleoplasm, and an elastic nucleolus in the interior, which

contains chromatin [4]. From this brief description, both the viscoelastic properties

and self-similar, or fractal properties, of tissue are reasonable simplifying assumptions

for a mathematical model. Applying this biological picture, tissue may be visualized

as a recursive arrangement of fluid substrates containing elastic membranes. Similar

models, known as liquid drop models, have been proposed within the biomechanics

community to describe the deformation of eukaryotic cells [110, 112]. These liquid

drop models typically model the cell membrane as a cortical layer with a characteristic

surface tension, whereas the cytoplasm in the cell interior is modeled as a viscous,

incompressible fluid with a characteristic coefficient of viscosity. The cell nucleus may

also be included as an additional elastic component embedded within the viscous fluid.

In the following fractal model for the viscoelastic properties of tissue, the liquid

drop and compound liquid drop models discussed in Ref. [112] are extended to

include an infinite number of nested elastic membranes, each containing a viscous,

125



  “
g
.

u

v
_
—
—
-
-
—
_
-
-
—
-

 

 \ : : \ : :/ .

~200 pm Cell / ~ 20 pm Nuclear ~ 5 pm Nucleolus

Membrane Membrane

Figure 6.1. Schematic showing tissue structure at three different spatial scales (tissue,

cellular, and sub-cellular). The first panel (A ~ 200 pm) displays an ensemble of mammalian

cells, each bounded by an elastic membrane, shown suspended in viscoelastic ECM. The

second panel (A/10 ~ 20 pm) displays an individual cell at a. higher level of magnification.

The third panel (A/40 ~ 5 pm) displays the cell nucleus, consisting of a double membrane, a.

fluid-like nucleoplasm, and an elastic nucleolus in the interior, which contains chromatin [4].

Although the specific biological structures vary at each successive spatial scale, the essential

features are the same: fluid substrates containing elastic compartments. This self-similar

pattern forms the basis for the fractal structure shown in Fig. 6.2.
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compressible, fluid. By allowing an infinite number of layers, larger structures (e.g.

ensembles of cells) and smaller structures (e.g. cell nuclei) may be included within

the lumped parameter framework. By extending the number of structural compo-

nents indefinitely, the self-similarity of biological media is revealed. This topology

is depicted in Figure 6.2, where the alternating elastic and viscous components are

visualized as a self-similar hexagonal packing of spheres within spheres. Each of the

three panels in Fig. 6.2 corresponds to the three panels in Fig. 6.1. That is, the left

panel of Fig. 6.2 models the tissue level, the center panel models the cellular level,

and the right panel models the sub-cellular level. Comparing the three panels of Ref.

6.2, the self-similar nature of this fractal structure is immediately evident. Hence,

this fractal model captures the three essential features of the biological picture shown

in Fig. 6.1: 1) elastic membranes 2) fluid compartments, and 3) self-similarity over

a range of spatial scales.

In order to capture these three salient properties of biological media, a fractal

network of springs and dashpots is proposed in Figure 6.3. The elastic membranes

displayed in Fig. 6.2 are represented by springs with Young’s moduli E, while the

viscous compartments are represented by dashpots with coefficients of viscosity 1].

Each level in Fig. 6.3 corresponds to each pair of elastic/viscous layers shown in Fig.

6.2 and each level of magnification depicted in Fig. 6.1. Similar fractal networks have

previously been used in lumped parameter models of viscoelastic systems [116, 122]

such as cross-linked polymers and gels [118].

6.2.2 Stress-Strain Relationships

In this section, the well—known constitutive equation for a viscous Newtonian fluid

relating the strain 6,-3- and stress Ti]- tensors is generalized. The strain tensor is defined

via eij = wi/asj, where w, denotes the i-th component of displacement. The stress

tensor Tij denotes the i-th component of stress per unit area along a surface normal
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to the j-th direction, where l S 2', j _<_ 3 denote the ac, y, and 2 directions. The viscous

stress tensor Tij for a compressible, viscous fluid with pressure p and velocity u is

given by [14] . 3

Ti]- = —p6,-j — 311V - udij + p (3%; + $3) (6.1)

where p is the coefficient of shear viscosity, 6,5 is the Kronecker delta operator, and

i, j =1,2,3. For homogeneous gases, a may be computed via kinetic theory. For more

complicated fluids, )1 must be measured experimentally. Eq. (6.1) contains three

terms: 1) an elastic term involving the thermodynamic pressure p, 2) an isotropic

frictional term and 3) a shearing term. In Eq. (6.1), the coefficient of bulk viscosity

is assumed to be zero. Eq. (6.1) describes the viscous behavior of monoatomic gases

quite well, yet does not properly describe the dissipative behavior of more complex

polyatomic molecules.

Although Eq. (6.1) may describe the stress-strain relationship on a sufficiently

small micro-scale with a variable viscosity [1, Eq. (6.1) fails to predict dissipative be-

havior on the observable macro-scale in most biological media. To obtain a constitu-

tive equation on a scale commensurate with an acoustic wavelength (macro-scale), Eq.

(6.1) is averaged over a sufliciently large volume to achieve an constitutive equation

with constant coefficients. This averaging, or up-scaling procedure, should account

for the signature micro-heterogeneity and hierarchical micro-structure of biological

media. One simple up-scaling procedure employs a lumped parameter model dis-

cussed earlier, wherein the individual components of the medium (cells, membranes,

organelles, etc.) are represented via hierarchical arrangements of springs and dash-

pots. By assuming tissue is isotropic on the macro-scale, the 3D constitutive equation

can easily be generalized from the 1D expression.

On the macro-scale, the normal stress is decomposed according to

Tz'j(r. t) = -P(r. 19% + 0ij(rat) (65-?)

where 0(r, t) is the component of stress responsible for dissipation. The dissipative
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component of Eq. (6.1) is generalized to include memory effects by relating each com-

ponent of stress and strain to a causal, stationary, hereditary integral (or Boltzmann

superposition integral) [115]:

t 2
aij(r,t) =£mg((t—t’)[-— Egg-[(r,t)6z-j+e,'j(r, t)+ej,-(r, t) dt' (6.3)

where g(t) is a relaxance, or memory, function [115] which relates the present state

of the material to its previous history. Since Eq. (6.3) is a convolution integral, the

stress—strain relationship becomes multiplication in the Laplace domain. In 1D, Eq.

(6.3) is represented in the Laplace domain as

5(1‘. 8) = 9(8)€(r, 8) (5-4)

6.2.3 Fractal Ladder Model

From a mechanical point of view, the combined viscous and elastic components are

modeled as springs and dashpots, respectively. Springs, which model energy storage,

represent the nested elastic membranes shown is Fig. 6.2, while dashpots, which

model dissipation, represent the viscous components, such as cytoplasm. The self-

similar structure is realized as a fractal ladder in Fig. 6.3, which provides a lumped

parameter description of the geometric model shown in Fig. 6.2. For simplicity, all

the springs have the same spring constant, or Young’s modulus, E and the dashpots

have the same coefficient of viscosity 17. Utilizing basic mechanics, the stress-strain

relationship given by Eq. (6.4) is evaluated an an infinite, periodic continued fraction:

1

—l 1
E + —s+—j——

’7 E—I+...

= [713: E-linsiE—l: ' ° ]

—n/Es + \/n/Es(77/Es + 4)

2/E ’

 

0(a) ——- as + (6.5)
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Figure 6.2. Layered fractal model for biological tissue based on the schematic shown in

Fig. 6.1. The first panel displays an infinite number of thin elastic membranes with Young’s

modulus E alternating with viscous compartments that have coefficients of viscosity 1]. The

second panel zooms in on the first panel, thus showing the self-similar layered structure.
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Figure 6.3. Fractal ladder model for tissue micro-structure. The continuum model de-

picted in Fig. 6.2 is described with springs with Young’s modulus E and coefficients of

viscosity 7).
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where the continued fraction has been evaluated in closed form [118]. For 317/E < 1,

the binomial approximation is applied, yielding the low-frequency approximation

6 z nEs. (6.6)

Inserting Eq. (6.6) into Eq. (6.4) and performing an inverse Laplace transform by

applying Eq. (A.3) from Appendix A yields

81/26

where the fractional derivative operator is defined by Eq. (A2) in Appendix A.

Generalizing to 3D (under the macro-isotropic assumption) yields

E812/ 31/2

0ij = -— -\/’f]Ear/23.21%]. (lij + TIE—flatl/z (623’ + Eji) (6.8)

Constitutive equations similar to Eq. (6.7) have been previously proposed for vis-

coelastic materials within the geology community [36]. To cast Eq. 6.8 as a function

of velocity u, the following relationship between the i-th component of velocity u,-

and strain EU is utilized

Bu,- _ 86,-]-

axj — at

 (6.9)

yielding

2 Eva—U2 6-1/2 62.,- an,

TU: 1.3-(19+ VTIE——1—/2Vat_ ) 6ij + "Eat—1” (61“) + 8221'). (6.10)
 

Thus, a time-fractional stress-strain relationship follows from the fractal ladder model

originally proposed in Ref. [118].

6.2.4 Recursive Ractal Ladder Models

The ladder model can also be considered as a fundamental mechanical component (a

“springpot” [123]), allowing more complicated fractal networks, or recursive ladders,

to be constructed. For instance, consider a ladder model constructed by replacing the

132



viscous damper in Fig. 6.3 with a fractal ladder, producing the arrangement shown

in Figure 6.4. That is, a simple ladder with modulus K.97, where K = \/E_fi and 7 =

1/2 is embedded within a larger ladder along with springs with elastic coefficients

E. Computation of g(s) for this model using the low-frequency approximation given

by Eq. (6.6) yields g(s) as E3/4111/431/4. This construction may be generalized by

embedding N — 1 level ladders alternating with springs to create an N—level ladder-

N l N l N 1

z E1—1/2 + 171/2 + 31/2 + . By performing anspring network, yielding g(s)

inverse Laplace transform, fractional derivative stress-strain relationships of order

1 /2, 1/4, 1/8, are generated. As the depth of the ladder increases (N —> 00),

{1(3) -+ E, yielding a purely elastic response.

A similar recursive mechanical network is constructed by replacing the springs

with dashpots in the recursive ladder-spring network. Replacing the springs in

Fig. 6.3 with ladders yields 9(3) z E1/4n3/4s3/4. This model may also be gener-

alized to dampers alternating with N — 1 level ladders (or springpots), producing

9(3) z E”2N+1n1'1/2N+131‘1/2N+1. By performing an inverse Laplace transform,

fractional derivative stress-strain relationships of order 1/2, 3/4, 7/8, are gener-

ated. As the depth of the ladder increases (N —+ 00), 6(3) —> 17.9, yielding a purely

viscous response.

In order to generate fractional derivatives of all orders within the unit interval,

fractal ladders containing alternating damper-M ladders and N ladder-spring net-

works are considered. Computing the frequency-domain modulus for this network

yields

 1+1_111_1+111_1+1
27W+l 2N+l n2 2M+l 2N+l 3’2 2M+l 27V+l (

t
0
>

E 2
2

t
1
] L
a
v
—
I

A 6.11)

Putting B = % (l — 5171:1- + 21713) and performing an inverse Laplace transform

(6.12)



 

 (KY)

(KY)
 

(Kill

(K?!) m
l

..

    
 

Figure 6.4. Recursive fractal ladder model for tissue micro-structure which generalizes

the ladder shown in Fig. 6.3. The dashpots in the simple ladder model are replaced with

springpots with a modulus K.97, where each of the springpots are built from recursive

arrangements of ladders, springs, and dashpots.
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which is a generalization of Eq. (6.7) for all 0 < ,8 g 1. For instance, putting

M = O and N = 1 yields ,6 = 3/8. Hence, arbitrary rational-order stress-strain

relationships of the form Eq. (6.12) are modeled by alternating ladder-spring/damper—

ladder networks. As 6 —+ 0, the response becomes more elastic, and as 6 —-> O, the

response becomes more viscous. Thus, Eq. (6.12) interpolates between Hooke’s law

for an elastic solid and Newton’s law for a viscous fluid.

6.2.5 Constitutive Equation

The generalization of Eq. (6.12) to 3D yields

3

01'3“ = - 5E0 1756—”- ECU 515+ E0 "€37 (EU + éji) (6.13)

i=1

Eq. (6.13) consists of a two viscoelastic terms involving the fractional derivative of

strain with respect to time, where the fractional derivative term is responsible for the

coupled processes of attenuation and dispersion. For [3 < 1, Eq. (6.13) displays a

temporal non-locality commonly utilized in phenomenological Viscoelasticity [36, 119].

Theoretical justification for constitutive equations similar to Eq. (6.13) were also

established [121] on the basis of dilute solutions of polymers [124] within a Newtonian

fluid medium. In the Bagley-Torvik—Rouse theory [121, 124], a polymer solute in a

homogeneous, Newtonian solvent was considered. The polymer solute is modeled as

a chain of sub-molecules, each with a characteristic relaxation time. These relaxation

times are related to physical and chemical properties of the macromolecules, such as

molecular weight and concentration.

By identifying a generalized coefficient of viscosity

1—

p = E0 37763 (6.14)

and repeating the steps performed in the fi = 1/2 case, the following averaged con-
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stitutive equation involving velocity gradients is computed:

 

2 63-1 65-1 611,- an,-
Tij : —P6ij - Bylaw-TV - udij + #atfl_1 (axj + 55;) (6.15)

Eq. (6.15) may also be written in dyadic notation as

—l afi—l

I = —pl — War—IV - u; + [lam-:1- (Vu + uV) (6.16)

where underlines denote rank-2 tensors and l is the rank-2 identity tensor. The

dyad Vu has components Bui/ij, whereas the dyad uV = (Vu)T has components

(911]- /8:1:,-

For 6 = 1, Eqns. (6.15) and (6.16) reduce to the viscous stress tensor for a com-

pressible, Newtonian fluid given by Eq. (6.1). Eq. (6.15) contains three terms: 1)

an elastic term involving the thermodynamic pressure p, 2) an isotropic frictional

term and 3) a shearing term. The frictional terms tend to diffuse momentum through

the flow. In a viscous fluid (,6 = 1), the frictional term involves only a spatial

derivative and is purely local. For a homogeneous fluid with simple molecular struc-

ture, this relation properly accounts for momentum diffusion. For biological tissue,

however, viscous loss does not properly account for observed dissipation. Tissue is

both heterogeneous and has a complex molecular structure, which is best modeled

as a viscoelastic media. Physically, momentum may diffuse faster and/or slower in

some directions due to the heterogeneity of tissue. To describe these effects, the

local constitutive relationship is generalized by a global relation that incorporates

memory into the flow. The temporal operator 3(3—1/(9735—1 is the Riemann-Liouville

fractional derivative for O < ,6 < 1. Since the order of differentiation is negative,

the Riemann-Liouville fractional derivative is equivalent to a fractional integration.

Thus, the viscous shearing term in a standard Newtonian fluid is replaced with a

memory term which relates the stress at time t to the entire history of the velocity

gradient. Similar hereditary constitutive equations, which utilize time-fractional and

time-convolutional operators, are widely used in theoretical Viscoelasticity [125, 126].
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6.3 Derivation of the Caputo-Wismer Equation

This section demonstrates how the fractal ladder model and fractional constitutive

equation prOposed in Section 6.2 lead to previously pr0posed FPDE for dispersive

wave propagation in biological media. In particular, the 3D Caputo-Wismer equation

[21], which models power law attenuation via a time-fractional derivative, is derived

for in a linear, compressible, isotropic, and adiabatic medium governed by Eq. (6.15).

Both homogeneous and inhomogeneous media are considered.

6.3.1 Homogeneous Media

Longitudinal wave motion is considered in a homogeneous medium with density p0,

sound speed c0, generalized coefficient of viscosity )1, and exponent )6. To simplify the

analysis, the adiabatic hypothesis, whereby entropy is assumed constant, is adopted,

which neglects the dissipative effects of thermal conduction. In addition, nonlinearity

is ignored by assuming pressure and density are linearly related.

The constitutive equation given by Eq. (6.15) is complemented by 1) the linearized

Cauchy’s equation, 2) the linearized, adiabatic equation of state, and 3) the linearized

equation of continuity. The linearized Cauchy equation, which neglects the inertial

term u - Vu, restates Newton’s second law of motion for an arbitrary continuum. In

dyadic notation, the Cauchy equation is written

Bu

— = V - T. .17PO at _ (6 )

The linearized, adiabatic equation of state is given by

_ 2

p — COP) (6.18)

where p denotes excess density and Co is the adiabatic speed of sound. Finally, the

linearized equation of continuity is given by

5p
a + pOV ° 11 — 0, (619)
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which accounts for local mass conservation. First, the divergence of Eq. (6.15) is

taken and inserted into Eq. (6.17) using the identities [127] V - (Vu) = V (V - u) and

V-(uV) = V(V-u)—V x V xu, yielding

an 86" 4

p09? — —Vp+MW (§V(V ' 11)- V X V X 11) . (6.20)

Any vector field may be decomposed into a longitudinal component, for which V x u =

0, and a transverse component, for which V - u = 0. Since the transverse component

attenuates rapidly away from any boundaries, only the longitudinal component is

considered, thus causing the V x V x u term in Eq. (6.20) to vanish, yielding

Eq. (6.21) is interpreted as a force balance equation, where the left hand side is

mass per unit volume multiplied by acceleration. The right hand side consists of two

terms: 1) a pressure gradient responsible for longitudinal vibrations and 2) a frictional

term responsible for attenuation and dispersion. The frictional term consists of 1) a

diffusive operator which tends to average momentum variations in the flow and 2) a

temporal integration operator which incorporates the past history of the flow into the

flow’s present state.

The divergence operator is applied to both sides of Eq. (6.21), yielding

3V ' u — _V2 +4. fl v . (V(V . u)). (6.22)

In order to eliminate particle velocity in favor of pressure, Eq. (6.19) is combined

with Eq. (6.18) to produce

1 0p

0

Inserting Eq. (6.23) into Eq. (6.22) and interchanging spatial and temporal differen-

tiation, yields

1 32p 2 4,11. 6B 2

—— = V ——.—V 6.24
6(2) 6t2 19+ 3C3p0 atla p ( )
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Identifying the relaxation time

 

4
75 = 2“ (6.25)

3CoP0

yields the Caputo—Wismer equation [21]

162
V21) — ——I—) + Ty—

633712

where y = 5 +1 is the power law exponent. Frequency-dependent loss is incorporated

1 3161 2 _

via the Riemann-Liouville fractional derivative defined by Eq. (A.1) in Appendix B.

For y = 2, Eq. (6.26) reduces to Stokes wave equation given by Eq. (2.1), which

models wave propagation in a homogeneous, viscous medium. As shown in Ref. [21],

for y > 1, Eq. (6.26) admits an attenuation coefficient with a power-law dependence

in the low-frequency limit. For y = 1, however, the loss operator reduces to a spatial

Laplacian, thereby failing to model power law attenuation. For this reason, the

exponent is restricted to l < y s 2. The 1D version of Eq. (6.26) has previously

been studied within the context of Viscoelasticity [36]. Hence, the Caputo—Wismer

equation arises naturally as the wave equation modeling small-amplitude, longitudinal

disturbances in media governed by the constitutive equation given by Eq. (6.15). In

addition, the parameter T appearing in Eq. (6.26) is given physical meaning by Eq.

(6.25), which depends both on the micro-structural properties of the medium E0 and

770, as well as the macroscopic properties on and p0.

6.3.2 Inhomogeneous Medium

In general, biological media is inhomogeneous on both the microscopic scale (~ 1 11m)

and macroscopic scale (~ 1 mm). The fractional derivative operator in Eq. (6.26)

accounts for the effect of micro-heterogeneity on the macroscopic scale, yet does

not account for macro-heterogeneity responsible for coherent scattering (e.g. tissue

boundaries). To incorporate macro-heterogeneity, the material properties of density

p0(r), adiabatic compressibility 160(r) and generalized viscosity p(r) are assumed to
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be functions of space. The resulting force balance equation, equation of state, and

equation of continuity are

an 4 85—1

P0095 - ‘VP + ‘3‘#(F)5t7_TV(V ' ‘1) (5373)

p = 50(r)p0(r)P (6271))

gt?- + p0(r)V - u = 0. (6.270)

Dividing Eq. (6.27a) and taking the divergence yields

6V - u _ Vp 4 afi-l u(r) )

—at—— — V (p0(r)) + 3atfi-1V (p0(r)V(V u) . (6.28)

To eliminate particle velocity u, Eqns. (6.27b) and (6.270) are combined to yield

5’2at (6.29)V-u= —r.0(r)

Inserting Eq. (6.29) into Eq. (6.28) and moving the time derivative outside the spatial

derivatives yields

2

.El’. 4.93.1412 ,,r _,,r§_P=v (m(r,)+3at).v (p0(r)V(0()P)) (“>222 0. (6.30) 

Finally, in analogy with Eq. (6.25), define a variable relaxation time via

75(r) =M2
3 . (6.31)

yielding

.& 23._T"(1_,,,. _,,,.§32_

V (p0(,,)+a,gv (156200)“ 0‘ )1”) 0‘ ’01)? ‘0' (6'32)

Recognizing fl = y—l, Eq. (6.32) matches Eq. (11) in [21] for constant compressibility

media. From Eq. (6.32), three sources of macro-scattering are recognized: compress—

ibility variations, density variations, and variations in the relaxation time T(r). The

power-law exponent y, on the other hand, is responsible for micro-scattering and the

associated attenuation and dispersion. For 6 = 1 (y = 2), the medium is homo-

geneous on the micro—scale. For 6 < 1, micro-heterogeneity manifests itself via a

temporal integration and the parameter defined by Eq. (6.31).
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6.3.3 Simplified Equations

Eq. (6.32) can be simplified considerably in several important special cases. In most

biological tissue, the density is nearly constant p0(r) z p0. Defining the adiabatic

speed of sound via

600‘) = ——i— (6.33)
M(t)/)0

and applying to Eq. (6.32) yields

2 9.6.. . 2 (a ,. _P_ _ __1_22_P _v p+ atfiv (00(r)7' ( )V(C(2)(r))) 02(1') 6:2 _ 0. (6.34)

If the local sound speed varies smoothly with position, then the second term in Eq.

(6.34) may be approximated:

1 (92p
)0

6.35

Finally, if the relaxation time T(l‘) z r is nearly constant (that is, the only mechanism

for macro-scattering is sound speed inhomogeneity), then

1 0217
2 5.53 2 .___
Vp+r Vp c2(r)6t2atfi = 0. (6.36)

6.4 Qualitative Properties of the Caputo-Wismer Equation

Although the Caputo-Wismer equation has been analyzed in Ref. [21], several facts

are briefly reviewed in the following subsections. First, the dissipative and dispersive

properties of Eq. (6.26) and shown to satisfy both a power law attenuaton coeffi-

cient and a dispersive phase velocity. Secondly, causality is established by examining

the high-frequency limit. Finally, the Szabo wave equation, given by Eq. (4.4), is

interpreted as a plane-wave approximation to Eq. (6.26).

6.4.1 Low Frequency Limit

To derive a power law attenuation coefficient for Eq. (6.26), the dispersion relation-

ship between angular frequency w and spatial wavenumber k is calculated. Applying
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a space—time Fourier transform to Eq. (6.26) yields

2

4.2 + w? — k2Tfi(—iw)5 = 0. (6.37)

0

Solving for the wavenumber k(LU) yields

 (6.38) 2(6)) = w .

c0(/1 + (—z'm)fi .

In the low frequency limit, the binomial approximation is applied, yielding

~ 0) TB ‘ flrr fl 3rfl , ,61r fl

k(w) ~ g (1— —2— co (7) w + 2—2— sm (7) w . (6.39)

The attenuation coefficient 0(a)) and phase velocity C(w) are calculated by inserting

fl = y — 1 such that

y—l
r cos(7ry/2)wy.

2co

 a(w) = Im 16(0)) = (6.40)

Defining

00 = T’Hl C0~°»(7ry/2)|/(260) (6-41)

yields a power-law coefficient given by Eq. (1.1). Likewise, the phase velocity C(w)

is computed by taking the real part of Eq. (6.39) yielding Eq. (4.15), where co is

taken as low frequency limit of phase velocity. Thus, the Caputo-Wismer equation

possesses a phase velocity predicted by the Kramers-Kronig relations [5—7]. In the

low frequency limit, the Caputo-Wismer equation shares the same dissipative and

dispersive properties of the both the power law model (Chapter 4) and the spatially

dispersive model (Chapter 5)

6.4.2 High Frequency Limit and Causality

For high-frequencies, the attenuation coefficient assoCiated with Eq. (6.26) decays

slower than the low-frequency approximation given by Eq. (6.40). Letting w —-> 00,

Eq. (6.38) is approximated via

 (6.42)



Thus, the attenuation coefficient approaches

__) Sin("fl/4) 1—5/2
0(6)) ———COTfi/2w . (6.43)

To establish causality, an impulse point source 6(t)6(r) is applied to the Caputo-

Wismer equation, yielding an FPDE in terms of the Green’s function g(R, t)

1 62 _, 621-1
v29 — gag! + Ty 16221-1 V29 = —6(t)6(r). (6.44) 

Applying a temporal Fourier transform to Eq. (6.44) with the aid of Eq. (A.4) yields

the Helmholtz equation

 v29 + k(w)§1 = — (1+ ((S—(ZW‘IY (6.45)

where k(w) is given by Eq. (6.38). Solving Eq. (6.45) subject to zero initial conditions

 

yields

eik(w)R

‘ R = . 6.46

9( ’w) 41rR(l + (—z‘w)y-1) ( )

Taking the magnitude of Eq. (6.46) in the limit as w —> 00 yields

, ex -a w R

19024)) —» pl ( ’ 1 (6.47) 

47rRTy‘1w3/‘1 ’

where (1(0)) is specified by Eq. (6.43). The Paley-Wiener theorem, which relates

causality to the decay of the Fourier transform, states that g(m,t) is causal if and

only if the Fourier transform given by Eq. (6.47) decays slower than exp(—|w|) as

w -—> 00. Since 0 < B S 1, the high-frequency bound is defined as

a(w) < C(r)wr, (6.48)

where C is independent of 02 (but possibly dependent on r) and r < 1. Application

of the Paley-Wiener theorem [128] thereby guarantees causality for solutions of Eq.

(6.44) for 1 < y S 2.
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6.4.3 Relationship to the Szabo Wave Equation

In this subsection, the Szabo wave equation is shown to be a low-frequency approxi-

mation to the Caputo-Wismer Equation, just as the Blackstock equation in Eq. (4.10)

is the low-frequency approximation to the Stokes wave equation given by Eq. (2.1).

For observation points acoustically far from the radiator, the wavefront is an approx-

imately planar wave that propagates and propagating in the direction k = R/R.

Under this approximation, which is valid in the limit of low frequency,

3%

CO at'

Taking the divergence of Eq. (6.49) and inserting Eq. (6.50) into the third term in

Eq. (6.26) yields

Vp z (6.49)

ay-l-V2 ~ 163’“);

ay-1 “23%:

where the composition rule for fractional derivatives has been employed [129]. Thus,

Ty—l (6.50)

Eq. (6.26) is approximated as

_ 1% + 11222
Cgat2 6(2) aty+1

[which corresponds to the Szabo equation given in Eq. (4.4) by choosing r =

We = 0, (6.51)

(2a0c0/ cos(7ry/2))1/(y‘1). Due to the plane wave approximation, Eq. (6.51) is invalid

for 1) observation points acoustically close to radiating sources, 2) high frequencies,

and/or 3) lossy media where 7' is large.

6.5 Discussion

6.5.1 Bio-Mechanical Interpretation

The physical significance of the power law exponent is explored in this section. The

fractal ladder models covers four special cases, each of which is discussed below.

Case I: Micro-homogeneous Media (6 = 1): Let E = 0 and 17 > 0. The viscous

theory is recovered using a single dashpot, yielding a power law coefficient of y = 2.
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Due to the lack of springs, the media is homogeneous at all scales much smaller than

a wavelength, thereby indicating a lack of micro-heterogeneity.

Case 11: Simple Ladder Model (3 = 1/2): Let M = N = 0. In this case, there are

the same number of spring and dashpots at all levels of the mechanical arrangement,

yielding a power law exponent of y = 3/2.

Case 111: 1/2 < 6 < 1: Put M < N. In this case, there are more springs in the

network than dampers, indicating that the medium has a greater elastic component

than viscous component. The power law exponent y ranges form 1 to 1.5 in this case,

which is typical for most soft tissue [13].

Case IV: 0 < 6 < 1/2: Put M > N. In this case, there are more dampers than

springs, indicating a greater viscous component than elastic component. The power

law y ranges from 1.5 to 2 in this case, which is typical for complex fluids like castor

oil and silicone fluid [7].

Since springs correspond to elastic structures such as cellular and nuclear mem-

branes, while dampers correspond to inter-cellular and intra-cellular fluids such as

cytoplasm, the exponent 6 measures the relative mechanical contributions of elastic

versus viscous structures. For instance, anatomical media such as liver have ,8 close

to zero due to the relatively complex tissue structure. Simpler media such as fat

have larger 6 near 0.5 due to a more fluid-like structure. Due to the complexity of

biological tissue, most media have 6 between zero and 0.5, corresponding to power-

law exponents between 1 and 1.5. The compound ladder model also sheds light on

the dependence of the power law exponent on the pathological state of tissue. For

example, in [8], the power law exponent y in normal liver exhibited y z 1, whereas

y ranged from 1.25—1.4 in fatty liver. The increase in power law exponent was ex-

plained in terms of an increase in Rayleigh scattering in fatty liver relative to healthy

liver. Within the context of the present compound ladder model, the increase in y is

explained as an increase in viscous micro-structure of the tissue, relative to healthy
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liver, which has a greater elastic component.

The recursive ladder model provides a simple explanation for the combined ef-

fects of absorption and incoherent scattering in biological media. First, note that the

(local) speed of sound is proportional to the square root of the spring coefficient E.

Thus, the fractal arrangement of springs qualitatively accounts for sound speed inho-

mogeneity at multiple spatial scales, resulting in incoherent scattering of an incident

sound field. However, sound speed inhomogeneity is not solely responsible for the

observed power-law dependence of the attenuation coefficient. In addition, a viscous

mechanism is required to dissipate both the incident and incoherently scattered sound

fields. This viscous mechanism, like the sound-speed inhomogeneity, is represented at

multiple spatial scales by this model. The interactions between these two mechanisms

is mediated by the hierarchical arrangement of springs and dashpots.

6.5.2 Fractal Geometry Interpretation

Since the pioneering work of Mandelbrot, fractal geometry has been applied to ex-

plained the self-similar structure (e.g. alveolar surfaces, cell membranes, etc.), found

in biological systems [47]. More recently, fractal geometry has been applied to un-

derstanding the pathological architecture of tumors [130]. Since the vasculature of

tumors is more tortuous than healthy tissue, the measured fractal dimension of tu-

mor vessels is significantly larger than normal veins and arteries [130]. To interpret

the power law exponent within the context of fractal geometry, which was discussed

qualitatively in Ref. [20], a quantitative relationship is provided by applying the

analysis presented in Ref. [118]. The exponent fl appearing in the constitutive equa-

tion given by Eq. (6.15) is expressed in terms of the spectral dimension d3 of the

spring-dashpot network 6 = 1 — d3/2, where l S d3 3 2. The spectral dimension (or

fracton dimension) d, is related to the vibrational properties of the underlying fractal

network, such as the density of normal modes in the low-frequency limit [131, 132].
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Intuitively, d3 measures the connectivity of a fractal network. Applying this relation

to the N-level recursive ladder-spring network yields d3 = 2 — 1/2N, which reveals

the fractal nature of the recursive ladder models presented in Sec. II.

The power law exponent y may also be related to the spectral dimension by noting

y = B +1, yielding

' y = 2 — d3/2. (6.52)

Furthermore, the dynamical prOperties are related to the underlying fractal geometry

of the network, which is characterized by fractal dimension df. As a specific example,

consider a spring-dashpot network in the form of the Sierpinskigasket [46], which is

displayed in Figure 6.5, where each node corresponds to a dashpot, and each edge

corresponds to a spring. To construct such a fractal, the initial structure is an equilat-

eral triangle, which is then subdivided into four identical triangles, then the interior

triangle is removed, and this process is applied to the three remaining triangles. The

Sierpinski gasket displayed in Fig. 6.5 has a spectral dimension of df z 1.37, which

yields a power law exponent of y a: 1.31 by Eq. (6.52). Higher dimensional analogs,

such as the 3D Sierpinski gasket may also be constructed [118], which has a fractal

dimension of df = 2 and a spectral dimension of d3 = 1.5474. The Sierpinski gasket

is an analogous model for both the self-similar and porous nature of tissue. Applying

Eq. (6.52) yields a power law exponent of y = 1.23, which is similar to the measured

power law exponents of soft tissue such as brain (y = 1.3) and liver (y = 1.14).

These calculations suggest a connection between the power law exponent and

the underlying fractal geometry of the tissue. As the spectral dimension increases

from 1 for the ladder network to 2 for more higher-connectivity network such as

the Sierpinski gasket or carpet, the power law exponents descends from 1.5 to 1.

Therefore, the power law exponent may describe the underlying connectivity of tissue

structures, with simple tissue such as breast fat has an exponent near 1.5, while more

complex tissue, such as liver or brain, having an exponent closer to 1. Moreover, this
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Figure 6.5. Spring-dashpot network constructed in a Sierpinski gasket network. This

fractal exhibits self-similarity at five levels of magnification. Each node corresponds to a

dashpot, while each edge corresponds to a spring.

analysis suggests that Eq. (6.26) provides the governing equation for dissipative wave

propagation on fractal structures, much as the fractional diffusion equation describes

diffusion on fractals [97].

6.5.3 Stochastic Interpretation

Eq. (6.15) may also be viewed as a macroscopically averaged expression. Although

Eq. (6.3) assumes isotropy and spatial homogeneity on the macro-scale, spatial in-

homogeneity may be manifested by the temporal memory given by Eq. (6.3). At a

sufficiently fine spatial scale, biological tissue may be regarded as a heterogeneous,

Newtonian fluid with spatially varying material properties such as the coefficients of

shear viscosity and adiabatic compressibility. That is, the viscous stress tensor given

by Eq. (6.1) with a variable ,u holds approximately on the micro—scale. Assuming
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the medium to be random with zero mean, the stress tensor is regarded as a random

process Tij(r, t; f) unfolding on some microscopic time-scale 5. Assuming this random

process to be ergodic allows the statistical expectation to be interchanged with a tem-

poral ensemble average. Thus, Eq. (6.15) is regarded as a weighted, temporal average

of Eq. (6.1), where the temporal weight l/tf’ results from the statistical distribution

of a and (possibly) the compressibility K. and density p. Physically, the dissipative

stress at time t is proportional to the weighted averaged of the entire time history of

velocity gradients (or, equivalently, stresses). In short, the spatial inhomogeneity on

the micro-scale is mediated to the observable macro-scale by including this temporal

memory.

6.5.4 Nonlinear Media

The Caputo-Wismer equation, as derived in Section 3, assumes small amplitude os-

cillations and negligible heat conduction by utilizing a linear, adiabatic equation of

state. Although the adiabatic hypothesis is justified in most biological media due

to the negligible thermal conductivity, the linear assumption is not justified in many

biomedical applications where large amplitude effects must be modeled [133]. How-

ever, most nonlinear models, such as Burger’s equation and Westervelt’s equation,

assume a thermoviscous dissipation mechanism, resulting in an attenuation coeffi-

cient with frequency-squared dependence. In order to combine the effects of power

law attenuation with nonlinearity, several authors have formulated nonlinear FPDEs

[19, 20, 134]. Finite amplitude effects may be incorporated into the Caputo—Wismer

model by augmenting the equation of state with a quadratic term. Utilizing the

stress tensor given by Eq. (6.15), a nonlinear generalization of the Caputo-Wismer

equation may be rigorously derived for both homogeneous and inhomogeneous media.

The competing effects of nonlinearity and power law dissipation may then be studied

within the presented framework.
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CHAPTER 7

Lossy Impulse Response in Power Law

Dispersive Media

7.1 Introduction

This chapter returns to the problem of finite aperture radiation in power law media

discussed in Section 3.6.3. We are now equipped to solve this problem using the

Green’s function theory developed in the previous Chapters. Although many papers

have been published dealing with transient propagation in power law media [33, 34,

40], these studies considered plane-wave propagation for simplicity. Hence, the study

of time-domain radiation by finite apertures in power law media is limited. Time-

domain modeling in attenuating media was considered in [102] using the dispersive

tissue model developed in [30], which only considers linear attenuation media (y = 1)

within the Field II program. However, the impulse response was not presented in

closed form, and this expression required 1) numerical inverse Fourier transforms

and 2) approximated frequency-dependent attenuation as a constant for all points on

the surface of the radiator. A general 3D numerical model incorporating power-law

loss and finite apertures was developed in Ref. [35], while the combined effects of

diffraction, dissipation, and nonlinearity were studied numerically in Ref. [55] under

the parabolic approximation.
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In this Chapter, the analytical tools developed in Chapters 3, 4, and 5 are syn-

thesized to provide an analytical description of pulsed finite apertures in power law

media. In particular, the lossy impulse response developed in Chapter 3 is general-

ized to power law media by deriving the loss functions mentioned in Section 3.6.3. To

derive these loss functions, the Green’s function for the spatially dispersive wave equa-

tion discussed in Chapter 5 are utilized. This Green’s function satisfies the following

desirable criteria:

1. In the low-frequency limit, the attenuation coefficient satisfies a power law with

respect to frequency.

2. The frequency—dependent phase speed is commensurate with the Kramers—

Kronig relations.

3. The Green’s function is causal for all power law exponents between 0 and 2.

4. The scale paramter (flocot)1/y does not depend on distance, allowing a closed-

form evaluation of the power law impulse response.

Following the analysis applied to the Stokes wave equation in Chapter 2, the causal

Green’s function given by Eq. (5.47) is decomposed into loss and diffraction compo-

nents. As in the special case of viscous media (y = 2), a mapping between the lossless

impulse response and the power law impulse response is developed. This mapping is

applied to our four canonical geometries: 1) the uniform circular piston the nearfield,

2) the uniform circular piston the farfield, 3) the rectangular piston in the nearfield,

and 4) the focused, spherical shell. Since all of the essential features of the disper-

sive impulse response are exhibited by the circular piston, emphasis is placed on case

1. For biomedical applications, however, cases 3 and 4 are of greater interest. The

qualitative properties of fields produced by each geometry are discussed, followed by

numerical evaluation of each expression over both space and time.
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7.2 Green’s Function Decomposition: Power Law Dispersive

Media

Similar to the viscous case discussed in Chapter 2, the asymptotic 3D Green’s function

to the spatially dispersive wave equation given by Eq. (5.47) admits the following

decomposition for y 74 1:

g(R, t) = L: [W — :fl'éR/Col] [(flotctégl/yfy (—(fi0c:t)1/y)] dt'. (7.1)

Thus, the spatially dispersive Green’s function is given by the non-stationary convo—

 

lution

g(R, t) = 9P6, 13’) ® 90(R, t') (7-2)

where the power-law loss function is given by

u(t) t’

gp(t,t’) = ——fy (——) (7.3)
(flocotll/y (fiotco)1/y

where “P” stands for “power law” and gD(R, t) is again the 3D Green’s function to

the lossless wave equation given by Eq. (2.31a). Eq. (7.3) is a maximally skewed

stable distribution and is a solution to the fractional diffusion equation [82, 129]

(g — 606%) 91.0, t’) = 6(060’). (74)

In the viscous case (y = 2), Eq. (7.4) reduces to the diffusion equation given by

Eq. (2.33) where '7 = Zaoco. Like the asymptotic Stokes Green’s function, Eq.

(5.47) consists of a “fast” time scale t’ over which wave propagation occurs, and a

“slow” time scale t over which dissipation and dispersion occurs. Thus, Eq. (7.2) is

interpreted as a coupled wave/fractional diffusion system. Also note that Eq. (7.3)

is causal on account of the Heaviside step function u(t). In the limit of y —> 2, the

diffusion equation is recovered, while as y —> 1, Eq. (7.4) approaches the one-way

wave equation (or the advection equation).
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For y = 1, an alternate parameterization of the stable distribution f) (t) is utilized:

gpat'): “’l f.( " ) (7.5)
aoclt aotcl

  

7.2.1 Power Law Impulse Response

As in the viscous case, the decomposed Green’s function given by Eq. (7.2) is inte-

grated over the radiating aperture S and multiplied by a factor of 2 to account for

the infinite baffle in the z = 0 plane, yielding

hp(r, t) = 2/Sg(r — r',t) d2r’. (7.6)

Inserting the decomposed Green’s function given by Eq. (7.2) into Eq. (7.6) and rec-

ognizing the definition of the lossless impulse response (Eq. (3.3) with the apodization

function set to unity) yields the mapping

hp(r. t) = gp(t. t’) e h(r. t’) (7.7)

where the convolution is taken over t’. Instead of a Gaussian, the loss function gp(t, t’)

for dispersive media is given in terms of the maximally skewed stable distribution

fy(t). Eq. (7.7), which maps boundary-value solutions of the lossless wave equation

to corresponding boundary value solutions of the spatially dispersive wave equation,

is a generalization of the earlier viscous result given by Eq. (3.6).

7.3 Circular Piston: Nearfield

The baffled circular piston shown in Fig. 3.1 is considered in a homogeneous, power

law media with attenuation slope 0:0 and power law exponent y. Inserting Eq. (3.7)

into Eq. (7.7) and applying a substitution yields

czau 7' ’10“) I I A; (11;) I I
hp(a:,z,t)= (”/0 Ma(a:,¢) [[1 fy(t)dt —/ 2 fy(t)dt] dd (7.8)

71' —oo —oo
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where 7"",(1/2) = (t — rm)/([30tc0)1/y for m = 1 or 2. Noting that fy(t) is the PDF of a

maximally skewed y-stable distribution, the cumulative distribution function (CDF)

Fy(t) is identified as a definite integral of the Wright function

1 t 1 1 1 1

F2“) — 512’ (‘31 ' ,) dz — 5" (‘5’ I"): (’9)

which follows from Eq. (C5) in the Appendix, yielding

hp(:r,z,t)= COW“)7r1r/0 Mama) [17,, (W)— Fy (WM 71¢.

(7.10)

 

In the special case y = 2, Eq. (C.6b) is utilized, yielding

hp(x,z,t)=&:u?(QAflMa(x,w)[erf(2m)— erf(2—t—t\/E_)] dz/J (7.11)

Using the relation '7 = 200C; yields Eq. (3.9). Likewise, letting do —> 0 yields the

lossless case given by Eq. (3.7). Eq. (7.10) therefore generalizes the viscous case to

more general power law media. Finally, letting a0 —2 0 causes Fy(t) —+ u(t), thus

reducing Eq. (7.10) to the lossless expression given by Eq. (3.7). On axis (a: = 0),

the integration in Eq. (7.10) is trivial, yielding

hp(0,z,t) = u(t)c0 [17,, (I’LL/Cl) — Fy (’ ‘ V z + “ /C°)] (7.12)

fiotczll/y (fiotcowy

For y = 1.5, which corresponds to breast fat, the Wright function may be expressed

 

in terms of the generalized hypergeometric function in Eq. (C.6c), allowing the eval-

uation of Eqns. (7.10) and (7.12). In the special case of y = 1, the loss function given

by Eq. (7.5) is utilized, yielding

hp(a:,z,t) = 9%“2 [on Maw/1) (#16162) — 660161)] dd (7.13)

where E1 (t) is the CDF for the maximally skewed stable distribution of index 1 using

  

the parameterization described in Ref. [87]. In Eq. (7.13) corresponds to the phase

velocity at w = 1. On-axis, Eq. (7.13) reduces to

F1(t—z/cl)—F1(t_m/Cl)] (7.14)  h 0,z,t = toP( ) U()1 aotq aOtCl

 

Both Eq. (7.13) and Eq. (7.14) are evaluated using the STABLE toolbox [3].
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7.3.1 Numerical Results

To verify Eqns. (7.13) and (7.14), the dispersive impulse response is compared

to numerical results generated by Field II [66, 135]. The Field II program’, which

is widely used within the medical ultrasonics community, generates apertures using

combinations of rectangular, triangular, and/or bounding-line sub-elements. Disper-

sion is incorporated using the Hilbert dispersive model outlined in Refs. [30] and [102]

for linear attenuation media (y = 1). In addition, Field II decomposes the attenu-

ation coefficient into a frequency independent component, evaluated at a reference

frequency f0, and a frequency dependent component. General power law attenuation

media is not implemented within Field II.

A circular piston of radius 10 mm was generated using 100 triangular sub-elements,

and first tested in lossless media using an artificially large sampling rate of 800 MHz

to avoid aliasing. The computed impulse response was in good agreement with known

analytical results [48]. Linear with frequency attenuation was then activated using 0.5

dB/cm/MHz, and a sound speed of c1 = 1540 m/s. Impulse responses were calculated

on-axis at (0, O, 50) mm and (0, 0 100) mm and off-axis at (10, O, 50) mm and (10,

0,100)rnnr

The Field II dispersion model requires the following input parameters: a frequency

independent attenuation, a reference frequency, a frequency dependent attenuation

slope, and a minimum phase delay. In the following simulation, attenuation is initial-

ized with the following commands

set_fie1d (’att’, 50); % frequency independent attenuation

set_field (’att_f0’, 166); 2 reference frequency

set_fie1d (’freq_att’, 5e-5); % frequency dependent attenuation slope

'set_fie1d(’tau_m’,20.0); % minimum phase delay

 

lField II version 3.00 for MATLAB, http:Hm.es.oersted.dtu.dk/staff/jaj/field/

index.htm1
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set_field (’use_att’, 1); % activate attenuation

The dispersive impulse response was then computed using Eqns. (7.13) and (7.14)

and compared with the Field 11 results. To evaluate the integral in Eq. (7.13), Gauss

quadrature was utilized. Since Field 11 incorporates additional delays in the dispersion

computation, the sound speed was adjusted to c1 = 1536 m/s in Eqns. (7.13) and

(7.14). Figure 7.1 compares these two methods at four observation points. In all

cases, the two models are in good agreement.

Several features of the impulse responses shown in Fig. 7.1 are notable. In all

cases, the impulse response is smooth and does not possess the breaks and corners

seen in the lossless impulse response shown in Fig. 3.3. Thus, like the viscous impulse

response discussed in Chapter 3, the dispersive impulse response is bandlimited and

not subject to the severe aliasing problems encountered in the lossless case. Unlike

the viscous impulse response, the dispersive response has a much longer temporal

duration due to the slowly decaying tail, which extends far beyond the duration of

the viscous impulse response. Hence, the dispersive impulse response is characterized

by a wake which trails the initial wavefront.

To compare the previously derived lossy impulse response developed in Chapter

3 with the power law impulse response derived in the preceding section, Eq. (7.10) is

evaluated in Figure 7.2 for a piston with radius a = 10 mm in media with attenuation

slopes a0 = 0.086 Np /mm/Msz, zero-frequency sound speed c0 = 1.5 mm/us.

Three power law media are considered with exponents y = 1.139, 1.5, and 2 (viscous).

Figure 7.2(a) shows the on-axis impulse response for z = 50 mm, while Figure 7.2(b)

displays the impulse response for z = 100 mm. While all three media display spreading

of the impulse response due to dissipation, there are significant differences between

the three media. In viscous media, the impulse response decays exponentially as

t —-> 00, while for y = 1.5 and y = 1.139, the decay is [an inverse power of t. Hence,

for y < 2, the impulse response decays much slower than the impulse response in
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Figure 7.1. Comparison of the power law impulse response with the Field II model.

A baffled circular piston with radius a = 10 mm radiates in linear attenuation media

(y = 1) with an attenuation slope 0.5 dB/MHz/cm. Impulse responses are shown at a)

(:l:,y,z) = (0, 0, 50) mm, b) (m,y,z) = (10, 0, 50) mm, c) (:r,y,z) = (0,0, 100) mm, and

(:r,y,z) = (10, O, 100) mm.
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viscous media (y = 2). The slow decay, or long-term memory, is characteristic of

dispersive media. As y decreases from 1.5 to 1.139 with (10 fixed, the decay of the

impulse response slows, and the duration of the wake increases. In Fig. 7.2(a), which

lies within the nearfield of the radiator (z = 50 mm), the impulse responses in all

three media display both the “stretching” due to the finite extent of the aperture,

and the “spreading” due to dissipation. However, in Fig. 7.2(b), which is in the

farfield of the radiator (24 = 100 mm), the impulse response is characterized mainly

by the “spreading” due to dissipation and dispersion, while the “stretching” due to

diffraction in Fig. 7.2(a) is absent. The amplitude decrease in all three media is

similar.

The on-axis velocity potential generated by a circular piston of radius a = 10

mm is evaluated by convolving Eq. (7.12) with the broadband pulse defined by Eq.

(4.68) using the same parameters utilized in Fig. 4.5. As with the power law model

analyzed in Chapter 4, two power law media are evaluated: 1) a fat-like medium

with y = 1.5, co = 1.432 mm/us, and a0 = 0.086 Np/MHz1'5/cm and 2) a liver-like

medium with y = 1.139, c0 = 1.569 mm/ps, and do = 0.0459 Np/MHzl'l39/cm. The

velocity potential in Figure 7.3 is displayed on-axis at a) z = 50 mm and b) 2 = 100

mm. In panel a) of Fig. 7.3, which lies within the nearfield of the piston, the velocity

potential has a significantly longer duration than the potential generated by a point

source displayed in panel a) of Fig. 4.5. In the case of liver, the interference between

edge and direct waves dominates Fig. 7.3(a), while the dissipative and dispersive

effects of the medium are minimal. The fat-like medium, which has a much larger

attenuation slope than liver, exhibits the combined effects of diffraction and dispersion

at depth 2 = 50 mm. In panel b) of Fig. 7.3, the temporal stretching of the pulse

caused by the finite extent of the aperture, is not pronounced. However, the frequency

down-shifting and amplitude attenuation are evident. Hence, for observation points

in the farfield of the radiator, the effects of diffraction are much smaller, while the
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Figure 7.2. Evaluation of the power law impulse response generated by a circular piston

with radius a = 10 mm with attenuation slope a0 = 0.086 Np/mm/MHz”, zero-frequency

sound speed c0 = 1.5 mm/us, and power law exponents y = 1.139, 1.5, and 2. Panel a)

shows the on-axis impulse response for z = 50 mm, while panel b) displays the result for

z z 100 mm.
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dispersive properties of both liver and fat are more pronounced. Comparing the

velocity potential generated by a point source in Fig. 4.5(d) with Fig. 7.3(b), the

shapes of the two potentials are very similar in both media, although the magnitude

of traces shown in Fig. 7.3(b) are larger by a factor of 1ra2, which accounts for the

size of the radiating aperture.

7.4 Uniform Circular Piston: Farfield

Utilizing the dispersive loss function given by Eq. (7.5) and following the same steps

that produced the expression for the viscous case in Eq. (7.7) yields

  

 

fl - o

hp(r,6,t) = 6007.40] Fy (t r/CO + asmflcos TNCO) coswdt/J. (7.15)

7rr smH 0 ([306001/3/

The on—axis case is computed by convolving Eq. (3.18) with Eq. (7.3), yielding

2
a u(t) ( t— z/co )

h ,O,t = —— . 7.16

P“ ) 2T(fl0¢0t)1/yfy (flocotll/y ( )

In the special case of linear attenuation media (y = 1), the parameterization described

in Ref. [87] is utilized with ,80 replaced by cm.

7.4. 1 Numerical Results

The nearfield and farfield impulse response for a circular piston are compared in

Figure 7.4. A circular piston with radius a = 10 mm in a power law medium with

exponent y = 1.5, attenuation slope 0.086 Np/cm/MHz1'5, and phase velocity c0 =

1.5 mm/us is considered. In panel a), the nearfield impulse response and the farfield

impulse response were evaluated at r = 50 mm on—axis (6 = 0) and off-axis (9 = 7r/ 12

and 45 = 0). Panel b) shows the nearfield and farfield impulse responses evaluated at

r = 200 mm on—axis (6 = 0) and off-axis (6 = 1r/12 and ¢ = 0). For 1' = 50 mm, there

is significant disparity between the nearfield and farfield responses, especially on-axis,

thus indicating that the farfield approximation in Eqns. (7.15) and (7.16) is invalid
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Figure 7.3. Velocity potential generated by a circular piston of radius a = 10 mm in

power law media: 1) a fat-like medium with y = 1.5, co = 1.432 mm/ps, and a0 = 0.086

Np/MHzl'S/cm and 2) a liver-like medium with y = 1.139, co = 1.569 mm/ps, and a0 =

0.0459 Np/MHzl'139/cm. The input pulse is defined by Eq. (4.68). The velocity potential

is displayed on—axis at a) z = 50 mm and b) 2 = 100 mm.
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this close to the aperture. For 7' = 200 mm, however, the nearfield and farfield results

are in closer agreement. Unlike the nearfield and farfield viscous impulse responses

depicted in Fig. 3.6, the responses in power law media are skewed toward later arrival

times and have much longer temporal durations.

Although the farfield impulse response given by Eq. (7.15) is limited to observation

points far from the aperture, Eq. (7.15) requires only half as many CDF evaluations of

the nearfield formula given by Eq. (7.11). Since the evaluation of stable CDFs requires

the evaluation of numerical integrals and series expansions, this reduction in CDF

evaluations will provide a significant computational speed-up for large simulations.

7.5 Rectangular Aperture

The baffled rectangular piston displayed in Fig. 3.7 radiating in a power law medium

is considered in this section. As in the lossless and viscous cases, the aperture is

sub—divided into four sub-apertures. To compute the dispersive impulse response,

Eq. (7.3) is convolved with Eq. (3.28), which yields

_7-
_z/

W344—3.)
Ps,z(z,t) =u(t)s/ (30600 " (Bocot) y

0
c72+s2

 d0 (7.17)

The contribution from each sub—rectangle to the lossy impulse response is then spec-

ified by

h (t=flP tP t 718)
P,s,l z, ) 27r( 8,1(z! )+ l,s(za )) ° ( °

The dispersive impulse response is formed by Eqns. (7.18) and (3.27) Letting y = 2

in Eq. (7.17) yields the viscous impulse response given by Eq. (3.29). As with the cir-

cular piston, linear attenuation media (y = 1) in handled using the parameterization

described in Ref. [87] and replacing ,60 with (10.
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Figure 7.4. Lossy impulse response for a circular piston (a = 10 mm) in a power law

medium with exponent y = 1.5, attenuation slope 0.086 Np/cm/MHzl'5, and phase velocity

co = 1.5 mm/ps. In panel a), the nearfield impulse response and the farfield impulse

response are evaluated at r = 50 mm both on-axis (0 = O) and off-axis (0 = 1r/12 and

43 = 0). Panel b) shows the nearfield and farfield impulse responses evaluated at r = 200

mm on-axis (0 = 0) and off-axis (0 = 1r/12 and 45 = 0).
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7.5.1 Numerical Results

Eq. (7.17) is evaluated for a rectangular piston with half-width a = 2.5 mm and

half-height b = 10 mm with attenuation slope (10 = 0.086 Np/mm/Msz and zero-

frequency sound speed c0 = 1.5 mm/ps. Three power law media are considered with

exponents y = 1.139, 1.5, and 2 (viscous). Figure 7.5(a) shows the on-axis impulse

response for z = 50 mm, while Figure 7.5(b) displays the impulse response for z =

100 mm. In panel a), which lies within the nearfield of the radiator, characteristics

of both the lossless impulse response and the loss function gp(t, t’) are evident. For

example, the corners in the lossless impulse response, which correspond to the corners

of the rectangular aperture, are smoothed by the dissipation in the media. In panel

b), which is in the farfield of the radiator, the impulse response is dominated by the

dissipative properties of the loss function, such as the slowly decaying tail for media

with y = 1.5 and 1.139.

7.6 Spherical Shell

The lossy impulse response for a spherical shell depicted in Fig. 3.11 evaluated in a

power-law media is considered in this section. The lossless impulse response, given

by Eq. (3.31), is convolved via Eq. (7.7), yielding a lossy impulse response

(11:60 [0“ Na,R(’3z’l/’) [Fy (W) _ Fy (figfladE)

hp(r, z, t) = u(t) 

where Fy(t) is the stable CDF given by Eq. (7.9). Eq. (7.19) is valid for all points

excluding the geometric focus, where

(7.20) 

_ 2u(t)(R — VR2 — a?) t - R/co
121903 2, t) — (fiocoflVy y (_(60c0t)1/y) .

As in the viscous case, Eq. (7.20) is non—singular, thus indicating that the high fre-

quency components of the impulsive excitation have been low-pass filtered by the
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Figure 7.5. Lossy nearfield impulse response for a rectangular piston with half-width a =

2.5 mm and half-height b = 10 mm evaluated in power law media with attenuation slope

a0 = 0.086 Np/mm/MHz”, zero-frequency sound speed co = 1.5 mm/ps, and power law

exponents y = 1.139, 1.5, and 2. Panel a) shows the on-axis impulse response for z = 50

mm, while panel b) displays the results for z = 100 mm.
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medium. On-axis, the integration in Eq. (7.19) simplifies to the closed—form expres-

sion

 

 

we. at) = u(t)—Rz—C°
  

F, (t — \/R2 + z2 +2zx/R2 _ (Is/CO) _ F, (t — (R+z)/c0)]

(flocot)1/y (606061”
(7.21)

 

which reduces to Eq. (3.37) for y = 2. Linear attenuation media (y = 1) is handled

by using the parameterization described in Ref. [87] and replacing ,60 with 070.

7.6.1 Numerical Results

In the following computation, a Spherical shell with radius a = 10 mm and radius

of curvature R = 70 mm centered at (0,0, —70) mm radiates in power law media

with attenuation slope a0 = 0.086 Np/mm/Msz, zero-frequency sound speed c0 =

1.5 mm/us, and power law exponents y = 1.139, 1.5, and 2. Figure 7.6 displays the

on-axis impulse response in the a) pre-focal region 2 = —20 mm and the focal region

2 = —1 mm. In a lossless medium, the impulse response increases without bound

to a scaled and delayed Dirac delta function as the observation point approaches the

focus, and then decreases in magnitude as the observation point moves past the focus.

In contrast, the magnitude of the impulse response is greater in the pre—focal region

relative to the focal region in all three lossy media considered, indicating a severe

degradation in the focusing ability of the radiator due to power law dissipation. In

addition, in media with exponents y < 2, the impulse response has an extended

duration due to the dispersion in the medium, which further degrades the focus.

7.7 Discussion

7.7 . 1 Stationary Approximation

For each point on the aperture S, a time-domain spherical wave given by Eq. (5.47)

is generated. At a given observation point, these spherical waves arrive with varying
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Figure 7.6. Lossy impulse response generated by a bafl‘led spherical shell with radius a

= 10 mm and radius of curvature R = 70 mm in power law media with attenuation slope

a0 = 0-086 Np/mm/Msz, zero-frequency sound speed c0 = 1.5 mm/us, and power law

exponents y = 1.139, 1.5, and 2. Panel a) shows the on-axis impulse response for z = -20

mm, while panel b) displays the result for z = -1 mm.

167



phases and amplitudes. The amplitudes of the transient spherical waves differ on

account of both the diffraction of the wave and the attenuation of the wave. Note

that Eq. (7.7) allows for varying attenuated path lengths due to the finite extent of

the aperture. Hence, the power law loss and diffraction mechanisms are coupled in

Eq. (7.7).

Loss and diffraction may be decoupled by fixing a particular value of time

t = R*/c0 in Eq. (3.6), where R* denotes a representative distance between source

and observer. For instance, R* is chosen to be the mean distance between the aper-

ture and the observer. Physically, this approximation assumes that the attenuated

path between the observer and all points on the source is approximately identical.

Approximating Eq. (7.7) yields a stationary convolution over t:

h(r,t) % 9P(R*/Co,t')®h(l‘,t')

z gp(R*/co, t) a: h(r, t) (7.22)

where the convolution * is now performed over the t variable. For y 2 l, gp(R*/CO, t)

is noncausal since u(R*/c0) = 1 and fy(t) > 0 for all t. However, as discussed in

Section 4.7.1, the loss of causality has little practical impact for observation points

more than one wavelength from the aperture. As shown below, Eq. (7.22) is an

excellent approximation for many problems. Also, since standard convolutions are

involved, Eq. (7.22) is easy to implement using FFTs.

Eq. (7.22) decouples the attenuation and diffraction problems, approximating

the lossy impulse response by cascading the lossless impulse response and a 1D loss

function. As discussed in Ref. [31] and Ref. [102], this approximation captures the

essential field properties “far” from the radiating aperture. Then, using Eq. (7.22),

the velocity potential (I) is expressed via

@(r, t) z u(t) * gp(R*/c0, t) * h(r, t). (7.23)
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7.7.2 Physical Interpretation

The physical interpretation of the impulse response expression for the uniformly ex-

cited circular piston discussed in Ref. [74], which decomposes the impulse response

into direct and edge waves, is also applicable to transient propagation in power law

media. To explain the source of the maximally skewed CDF within the integrand of

Eq. (7.10), a random process T = T(t) is defined, corresponding to randomized delay

times with a PDF given by Eq. (5.66). The nearfield impulse response given by Eq.

(7.10) is then expressed as

hpcr, 2. t) = @fif—(t) f0” Ma(a:,1/1)[P(T s n) -. P(T s 6)] cm. (7.24)

Physically, the first term in Eq. (3.9) corresponds to the edge wave generated by

the discontinuity at the of the piston, whereas the second term corresponds to the

direct wave due to the bulk motion of the piston. The delay 71 represents the time

for sound on the rim of the piston at angle 2;» to travel to the observation point

(r, 0, z) in a homogeneous medium with sound speed c0, while the delay 72 represents

the shortest travel time from the piston to an observation point within the paraxial

region of the piston. Since time has been randomized in Eq. (7.24), the edge wave

in the lossless impulse response given by Eq. (3.7) is replaced with the probability

that the delay T is less than the fixed delay 71. Likewise, the direct wave is replaced

with the probability that the delay T is less than 72. In the lossless case, where time

flows deterministically, P(T S 73-) = u(t — Ti) for the edge ( = 1) wave or the direct

(2' = 2) wave. For power law media, however T may assume a continuum of values

according to the distribution described by Eq. (5.66). In the special case of viscous

(y = 2) media, T is symmetrically distributed about R/co, while for y < 2, T is

skewed toward larger delays due to the dispersion in the medium.

Numerical evaluations of the dispersive impulse response show distinct behavior

within the nearfield, the transition region, and the farfield. For the values of 010 and
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y evaluated in Fig. 7.2, the diffraction component dominates in the nearfield, with

only a small amount of smoothing and skewing in the vicinity of the head and tail

of the response. For observation points in the transition region between the nearfield

and farfield, the effects of diffraction and loss are both apparent. In this transition

region, the impulse response is both smooth and asymmetric. Finally, in the farfield,

the effects of viscous loss predominate, yielding increasingly broad responses with a

reduced directivity.

7.7.3 Complex Apertures and B-Mode Imaging

Ultrasound transducers often employ more complicated, non-canonical geometries in

dispersive media, such as arrays of curved strips [136], apodized circular pistons [69],

or concave annular arrays [137]. These more realistic, albeit more complicated, radi-

ator geometries may be handled by either 1) applying Eq. (7.2) to a single-integral

representation of the lossless impulse response, or 2) constructing the desired geom-

etry using circular or rectangular sub-elements and applying the principle of super-

position, similar to the approach utilized by Field 11 [66]. Since complex geometric

shapes are easily constructed from triangular sub-elements, the fast nearfield expres—

sion derived for uniformly excited triangular aperture in [138] can be utilized within

the present dispersive impulsive response framework to analyze complicated aperture

geometries in lossy media. Tiansient fields due to electronically and/or geometrically

focused 2D and 3D phased arrays may then be synthesized by superposition, allow—

ing the point-spread functions generated by non-circular geometries in viscous media

to be computed. Finally, the analytical results in this chapter may be utilized for

the modeling of diffraction and scattering of phased array imaging systems. Thus,

the analytical tools developed below may be used to analyze the effect of power law

attenuation on B-mode imaging systems.
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CHAPTER 8

Conclusion

8.1 Summary

Chapter 2 develops the transient Green’s function theory for the Stokes wave equation.

A previously derived approximate Green’s function, given by Eq. (2.20), is derived

as the leading-order term in an infinite series solution. The error incurred via the

approximate Green’s function given by is analyzed as function of the relaxation time

7 and the distance from the source R, yielding the simple relation between 7 and

R for a 1% error threshold. The asymptotic Green’s function is decomposed into

diffraction and loss operators, where the diffraction component satisfies the lossless

wave equation and the loss component satisfies the diffusion equation.

Chapter 3 develops the lossy impulse response for circular, rectangular, and spher-

ical pistons using the Green’s function decomposition developed in Chapter 2. This

decomposed Green’s function relates the solutions to the Stokes wave solution and

the lossless wave equation via Eq. (3.6), thereby facilitating the derivation of the

nearfield lossy impulse response for a circular piston in Eq. (3.9). The resulting ex-

pressions are strongly causal and straightforward to implement numerically. Eq. (3.9)

also eliminates the aliasing problems associated with the lossless impulse response.

Expressions are also developed for the farfield of a circular piston in Eqns. (3.21) and

(3.22), the nearfield of a rectangular piston in Eq. (3.30), and the baffled spherical
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shell in Eq. (3.35). Velocity potential computations display a significant attenuation

of the direct wave within the paraxial region of the piston due to viscous diffusion.

Both the physical and numerical properties of the resulting lossy impulse responses

are analyzed, revealing the critical role of dissipation in the farfield. Applications to

phased array ultrasonic imaging show a reduction in both axial and lateral resolution.

In Chapter 4, 3D Green’s functions in power law media are analytically computed

in the time-domain using the tools of fractional calculus. Chapter 4 shows that the

Green’s functions for a medium with an attenuation coefficient given by Eq. (1.1) are

maximally-skewed stable distributions, shifted by a delay R/co, scaled by (aOR)1/y,

and multiplied by a spherical diffraction factor of 1/(47rR). Mathematically, the power

law Green’s functions are represented by a transient spherical wave, which embodies

the diffractive process, convolved with a loss function gL(R, t), which embodies both

the attenuation and dispersion of the medium. Physically, therefore, the solutions to

the power law wave equation are represented as a linear coupling between diffraction

and dispersive loss. The time-domain power law Green’s functions presented here

are exact solutions to the power law wave equation in Eq. (4.19) and approximate

solutions to the Szabo wave equation given by Eq. (4.4). 2D Green’s functions in

power law media are also calculated in terms of stable distributions.

Efficient numerical evaluation of stable distributions is available via the STABLE

toolbox [3]. For all y < l, the Green’s functions are expressed in terms of Fox H-

functions, while for y > 1, the Green’s functions are expressed in terms of the H

function and Wright functions. For y = O, 1/3, 1/2, 2/3, 3/2, and 2, the Green’s

function solutions are expressed in terms of widely-known special functions. These

analytical Green’s functions were numerically verified against the MIRF result [31]

and Hilbert dispersive model [30], and example fields were computed. The results

show that the power law Green’s function is causal for y < 1 and noncausal for

'1 S y S 2. Despite being noncausal for 1 S y S 2, the power law Green’s function
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provides an excellent causal approximation even for observation points close to the

radiating source. For 0 < y < 2, the Green’s function decays as t—y'l'l, leaving a

slowly decaying wake behind the primary wavefront.

The power law model discussed above suffers from one major drawback: solutions

are noncausal for power law exponents greater than or equal to one. To address this

deficiency, alternate power law FPDE based on fractional spatial Operators are con-

sidered in Chapter 5: the Chen-Holm wave equation and a spatially dispersive wave

equation. Green’s functions are derived for both equations, which yield causal solu-

tions for all applicable power law exponents. The Chen-Holm equation is shown to be

non-dispersive, while the spatially dispersive wave equation supports a phase velocity

predicted by the Kramers—Kronig relations. 3D Green’s functions are computed for

both the Chen-Holm and spatially dispersive wave equations. For the Chen-Holm

model, the leading order term is a shifted and scaled symmetric stable distribution

multiplied by a spherical spreading factor. For the spatially dispersive model, the

3D Green’s function is a shifted and scaled maximally skewed stable distribution. In

both cases, the Green’s function is causal, yet the Chen-Holm model does not cor-

rectly account for dispersion. 1D and 2D Green’s functions for both models are also

calculated, followed by a stochastic interpretation.

To model the relationship between viscoelastic parameters and dispersion, Chapter

6 proposes a fractal ladder network of springs and dashpots as a model for power

law attenuation media. In order to derive the constitutive equation, both a simple

and a recursive ladder model are considered in order to capture the viscoelastic,

self-similar, and hierarchical properties of biological tissue. These fractal ladders

capture the hierarchical arrangement of elastic and viscous components present in

biological media. The fractal ladder network produces a stress-strain relationship

with a fractional derivative of order 1 /2, while the recursive ladder produces fractional

derivatives of all orders between zero and one. Hence, the resulting constitutive
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equation interpolates between a Hookean solid and Newtonian fluid via the non-

local fractional derivative operator. The attenuation coefficient computed from this

constitutive equation follows a power law in the low frequency limit, thus agreeing

with previous phenomenological theories and experimental data.

From the fractional constitutive equation in Eq. (6.15) and a linear equation of

state, the Caputo-Wismer equation, which models longitudinal wave propagation in

power law media via a time-fractional derivative, is derived. By applying a plane

wave approximation to the loss operator in the Caputo—Wismer equation, the Szabo

wave equation is recovered [19] as a noncausal approximation to the Caputo-Wismer

equation. Hence, the Szabo and Caputo—Wismer equations, which were originally

proposed as phenomenological models for power law attenuation and dispersion, are

derived from a fractal ladder model. The power law exponent y is related to the

spectral dimension d3 of the underlying fractal geometric structure, thereby supplying

the power law exponent with physical meaning.

Chapter 7 extends the lossy impulse response methodology developed in Chapter

3 to power law media. The Green’s function to the spatially dispersive wave equation,

which is obtained in Chapter 5, is utilized. The Green’s function is decomposed into

diffraction and loss components, and impulse response expressions for the nearfield

circular piston (Eq. (7.10)), farfield circular piston (Eqns. (7.15) and (7.16)), rectan-

gular piston (Eq. (7.17)), and spherical shell (Eq. (7.19)) are derived in power law

media. In the special case of linear attenuation media (y = 1), the nearfield circular

piston is numerically verified against the Field 11 program with good agreement. The

coupled effects of power—law attenuation and diffraction are evaluated in the time-

domain for liver and fat, thus forming the basis for medical ultrasound simulations

in biological media.
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Figure 8.1. Diagram showing the relationships between the spatially dispersive, Caputo—

Wismer, Chen-Holm, Szabo, Stokes, and Blackstock wave equations studied in this thesis.

8.2 Relationships between FPDE Models

Figure 8.1 summarizes the relationship between the Stokes (Chapter 2), Szabo (Chap-

ter 4), Blackstock (Chapter 4), Chen-Holm (Chapter 5), spatially dispersive (Chapter

5), and Caputo—Wismer (Chapter 6) wave equations. The tOp row (spatially disper-

sive, Caputo—Wismer, Chen-Holm, and Stokes equations) are causal for all power law

exponents between 0 and 2, while the bottom row (Szabo and Blackstock) are non-

causal in general due to the plane wave approximation. Finally, in the special case

of viscous media (y = 2), the spatially dispersive, Caputo-Wismer, and Chen-Holm

wave equations all reduce to the Stokes wave equation, while the Szabo equation

reduces to the Blackstock equation.
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APPENDIX A

Fractional Derivatives

The notion of fractional derivative was originally postulated by L’Hospital in 1695,

although a rigorous formulation was not published until Liouville and Reimann’s work

in the 1830’s and 1840’s. Until the 1970’s, however, fractional calculus was limited to

the arena of pure mathematics [129]. In the late 1970’s and early 1980’s, physicists

and engineers, spurred largely by the visionary work of B. Mandelbrot in the theory

of fractals [46], began to apply fractional calculus to problems in anomalous diffusion

and relaxation.

A.1 Riemann-Liouville Fractional Derivatives

The Riemann-Liouville fractional derivative is formally defined via a hyper-singular

integral [129]

dyf__ 1 ‘ f(t’) ,

W — 1“(-y) ./—00 (t - t’)1+y dt' (Al)

The non-integrable singularity is removed from Eq. (A.1) by recognizing a differenti-

ation operator, yielding

1 d2 t 99') I -

1 d3 t g(t’ .

I‘Zz—ngtfif—oom‘ylrrdt'
1f 1 < y < 2.

In the literature, the 0 < y < 1 case is known as the Reimann-Liouville form, whereas

(A.2) 

the 1 < y < 2 case is the Liouville form. The following Laplace transform relationship
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for fractional derivatives [129] is essential for the derivations presented herein:

dyg y
— = .

A03£(d,,) sag) < )

Letting s = —iw yields the Fourier transform relationship

dyg _ _ y

.7: (rt?) — (-—zw) T(g). (A.4)

In the 0 < y < 1 case, Eq. (A.4) assumes g(t) vanishes for t < 0. However, for

l S y S 2, g(t) may be nonzero for t < 0.

A.2 Fractional Laplacian

The fractional Laplacian, or Riesz fractional derivative, is defined via spatial Fourier

transforms [129]

(472)”2 we) a f“ [name]. (45)

where \I'(k) is the spatial Fourier transform of 7,1)(r) defined via Eq. (1.4b). Eq. (A.5)

may also be stated as a symmetric convolution over 723 (see Eq. (12) in [20] with d =

3):

(—V2)y/22,b(r) = A, / ———V—29—(rI—)—d3r', (A.6)
R3 |r - 1J|1+y

where

1" (1/2 + y/2)

(2x/7rlz“yP (1 - y/Z)’

 A, = — (A.7)

A.3 Skew Fractional Laplacian

More general fractional Laplacians may be constructed by introducing skewness. In

the analysis of the spatially dispersive wave equation, we define the skew fractional

Laplacian via

6’40) = F1 [wax—7km] (A8)
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where 163 = |k|sgn (cos kg) is the signed wavenumber which ranges over R. That

is, k3 > 0, if k lies in upper half-space of k-space, while k3 is negative if k lies in

the lower half-space of k-space. In 1D, the skew Laplacian reduces to the Reimann-

Louiville fractional derivative by the relation Eq. (A.4). Thus, Eq. (A8) generalizes

the Reimann-Louville derivative to higher-dimensions.
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APPENDIX B

Stable Distributions

Two classes of stable distributions, namely the maximally skewed stable distribution

fy(t) and the symmetric stable distribution wy(t), are introduced in Chapters 4 and

5, respectively. As noted in these chapters, these stable distributions are actually

special cases of more general stable distributions, which are discussed in detail in Ref.

[49, 87, 89]. Although the mathematical theory of stable distributions was developed

independently of fractional calculus, the deep link between these two subjects has

recently been noted [45]. In brief, the solutions to fractional diffusion equations are

stable distributions, while stable distributions provide a stochastic description of the

underlying physics that give rise to fractional diffusion.

B.1 Definitions

Stable random variables are defined via the characteristic function w(k) [87]

‘I’(k) = exp {—|k|aoa [1 — i6sgn(k) tan(7ra/2)] + iku}, (B.1)

where a # 1 is the index, lfil S 1 is the skewness, o is the spread, and [u is the location.

In the special case of a = 1 [87],

\i/(k) = exp (-—|k|o [1 + 2ifi/7rsgn(k) ln lkl] + wk). (13.2)
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The density 1,5(23) is given by the 1D inverse Fourier transform (see Eq. (1.3b):

213(t)=.’F-1 [xi/(4)] — 1 [00 \II(—k)e"““dk (3.3)_ 5; _00

Two special cases are utilized extensively: 1) the maximally skewed stable distribution

(6 = 1), denoted by fy(t), and the symmetric stable distribution (6 = 0), denoted

by iDy(t).

Like Fourier transforms, alternate conventions are utilized to characterize stable

distributions. The convention defined by [89] is widely used in the literature; in this

alternate convention, the symmetric stable is denoted by wy(t) while the maximally

skewed stable is denoted by fy(t). Fortunately, the symmetric stable distributions

coincide for both conventions (zby(t) = wy(t)). For g # 1,

7.6) = Isec(7ry/2)|’/yfy (I sec(7ry/2)|’/yt) . (8.4)

As noted in Chapters 4 and 5, the stable distributions fy(t) and fy(t) are represented

as Fox H-functions and Wright functions for y 75 1. These higher transcendental

functions are defined and analyzed in Appendix C.

B.1.1 Maximally Skewed Stable Distributions

The maximally skewed stable distribution fy(t) utilized in Chapters 4 and 5 may be

represented via by the one—sided Fourier integral [89]

fy(t) = %Re‘/:0 exp ((—ik)y) exp(—ikt) dk. (B.5)

For y = 0, f0(t) = 6(t — 1). For 3; =1,f1(t)= 6(t — 1). For all other 0 < y < land

1 < y S 2, fy(t) is a smooth (Coo) function of t. By application of Euler’s formula,

fy(t) = l AGO exp (cos (I?) Icy) cos (kt — sin (g) 16”) die. (86)

7f
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B.1.2 Symmetric Stable Distributions

The PDF 103/(t) may be expressed as a one-sided inverse Fourier transform [89]

wy(t) = -71;/000 exp(—wy)cos(wt) dw. (B.7)

By exploiting the cosine addition formula and the scaling properties of Fourier trans-

forms, the following identity is obtained

;/0 exp (—aky) Sln(Rk) sm(bk) dk = —2a1/y [my ( al/y ) _ wy ( al/y )] '

B.2 Cumulative Distribution Functions (CDFS)

The computation of 1D Green’s functions and lossy impulse responses requires the

evaluation of cumulative distribution functions (CDFs). For an arbitrary probability

distribution function p(x), the CDF is defined via

2

P(x) =/ p(x’) dx'. (B9)

-00

The maximally skewed stable CDF is defined as

t

Fy(t) =/ fy(t’)dt', (B.10)

—00

while the symmetric stable CDF is defined via

t

mm = / wy(t’) dt’. (B.11)

—oo

Special cases of Eqns. (8.10) and (BM) are given in the main text as needed.
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APPENDIX C

Special Functions

The Fox H-function and Wright function, while commonly utilized in the fractional

calculus and stable random variable communities, are not included within the common

parlance of electrical engineers and applied physicists. Definitions and properties of

these transcendental functions are therefore tabulated below.

C.1 The Fox-H Function

The Fox H-function [81, 129] is defined via a complex contour integral

mn 3A 3

Hm} (z 8:23:13) ) E 2—17r_i/LX(S)Z ds, (C.1)

 

where

(010: AP) = (a1: A1): (a21A2)9 ' ' ' i (apt/1P)

(bqqu) = (bltBl)!(b2iBz)i°”:(bQiBQ)1

and the integral density x(s) is defined as

= [lg-"=11“,- - Bjs)1—[;’=1I‘(l -- aj + Ajs)

H§=m+1P(l — 03- + Bjs)Hg=n+1I‘(aj — Ajs)

Since the Gamma function is singular when the argument is a negative integer,

x(8)
 (0.2)

Eq. (C.2) contains an infinite number of poles in general. Therefore, the contour

L is chosen to separate the poles of Eq. (C.2). Note that Eq. (C.1) is the inverse
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Mellin transform of Eq. (C2). The Fox H-function, which generalizes most of the

special functions of mathematical physics, is discussed in great detail in Refs. [81]

and [83].

0.2 The Wright Function

The Wright function 65(07, 6;z) is defined by an infinite series (see Eq. (1.11.1) in

Ref. [129]):

Z]:

¢(aaIB;Z) E Igm-fi. (0.3)

The Wright function and the more general H-function are related (see Eq. (6.2.66)

Hi’? (2] [3:03 ) = ¢(—a,b; —z). (C.4)

Eq. (C4) is computed by evaluating the contour integral definition of the H-function,

in Ref. [129]) via

which possesses an infinite number of poles, with Cauchy’s residue theorem. The

resulting infinite series is identified as Eq. (C3).

The Wright function is differentiated and integrated via the following relation

[129]

d n

(a) ¢(a,fl; z) = (t(a, a + n6; z), (C.5)

where n is a positive integer. Three special cases, which were calculated using Math-

ematica, are

1 1 1 32

4) —§,§,Z) —-\7_;exp (—-:1-) (0.68.)

1 z

¢ (—§,1,z) =1+erf(§) (C.6b)

1 15244.22 22 274542

-—',1;Z =1+ F -)_i—:_;— —— —)_1-:-1

¢( 3 ) r(1/3)22(3 633 27)+I‘(—l/3)2F2(3633 272)

(C.6c)

In general, the Wright function may be reduced to sums of generalized hypergeometric

functions when y is rational.
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