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ABSTRACT

FINGERPRINT RECOGNITION: CONTRIBUTIONS TO LATENT MATCHING AND
3D FINGERPRINT TARGET GENERATION

By

Sunpreet Singh Arora

Automatic fingerprint capture and comparison methods have led to the ubiquitous use of

fingerprint-based person recognition in applications ranging from law enforcement and border con-

trol to national identification and smartphone unlock. However, despite tremendous advancements

in the state-of-the-art, improvements are still needed in case of some challenging applications, e.g,

to recognize poor quality and distorted fingerprints acquired from non-cooperative users, improve

fingerprint reader fidelity, and determine anti-spoofing capability of different fingerprint readers.

In this thesis, we address two such impending challenges: (i) comparison of latent prints found at

crime scenes to large collections of reference prints (rolled tenprints or slap fingerprints) in law

enforcement databases, and (ii) operational evaluation of fingerprint recognition systems prior to

large scale deployment.

We develop a feedback paradigm that uses reference print features to dynamically select latent

features during matching. The paradigm automatically determines if dynamic latent feature selec-

tion would improve recognition performance using a statistical hypothesis test and qualitatively

decides the regions in latent and reference prints for applying feedback. The paradigm when used

in conjunction with a state-of-the-art latent matcher demonstrates marked improvement (0.5-3.5%)

in latent matching accuracy.

Further, we develop a framework for crowdsourcing latent print feature markup to a pool

of fingerprint examiners. The framework uses a statistical criterion to automatically determine

when crowdsourcing is required, and a method to dynamically determine the number of examiners

needed for latent feature markup. Significant recognition performance improvements (2.5-11.5%)

are obtained using crowdsourced markups in conjunction with a state-of-the-art latent matcher.



Finally, we design and fabricate single-finger and whole hand 3D targets for operational evalu-

ation of optical and capacitive fingerprint readers as well as for end-to-end evaluation of fingerprint

recognition systems. 2D calibration patterns with known characteristics (e.g. synthetic fingerprints

with known features, sine gratings with known orientation and spacing) are projected onto elec-

tronic 3D finger and hand surfaces to create electronic 3D single-finger and whole hand targets. A

high-resolution 3D printer is used to manufacture physical 3D single-finger and whole hand tar-

gets from electronic targets. Other contributions include: (i) a method to chemically clean the 3D

printed targets without impacting the engraved target patterns, (ii) a procedure to apply conductive

coating of metal/metal oxides on the surface of 3D targets using DC sputtering, (iii) fidelity mea-

surement techniques using optical microscopy to assess the 3D target generation process, and (iv)

methods to evaluate fingerprint readers using the fabricated 3D targets. We demonstrate that the

2D calibration pattern features are reproduced with high fidelity both on the electronic and phys-

ical 3D single-finger and whole hand targets and that the intra-class variations between images of

the 3D targets do not degrade matching accuracy (at 0.01% false accept rate). We evaluate several

commercially available single-finger and slap contact-based and contactless optical readers as well

as capacitive readers using the generated 3D targets.
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Chapter 1

Introduction

”Perhaps the most beautiful and characteristic of all superficial marks are the small

furrows with the intervening ridges and their pores that are disposed in a singularly

complex yet even order on the under surfaces of the hands and the feet.”

- Francis Galton, 1889 [97]

The epidermal ridge patterns found on the palms and fingers of our hands and the soles of

our feet (Figure 1.1) have long captivated the imagination of the layman and intrigued scientists

and fingerprint experts alike. It is these ridge patterns present on our fingers that are commonly

called fingerprints. Fingerprints differ from person to person (even identical twins have different

prints [141]) and do not change over time. Hence, they are a reliable source for uniquely identi-

fying individuals. From being used in ancient Babylon and China as a proof of identification in

business and legal transactions to being deployed in the 21st century for personal identification in

large-scale criminal, civilian and governmental applications [141], the utility of fingerprints as a

personal identifier has manifested ubiquitously. Advances in both the science and technology of

fingerprinting over the last few decades have resulted in widespread applications of fingerprint-

based person recognition, including device unlock mechanisms in modern day smartphones [36]

and online financial transactions [1] [26] (see Figure 1.7).
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(a) (b)

Figure 1.1 Illustrating the friction ridge patterns present on (a) the palms and fingers of our hand
and (b) our feet. Images reproduced from [110].

In this chapter, we first describe the fingerprint formation process and highlight the two funda-

mental properties which purportedly make fingerprints useful for person recognition: uniqueness

and permanence. We then enumerate the key milestones in the progression of the use of finger-

prints. Subsequently, we describe the design of modern day automated fingerprint identification

systems (AFIS), and the existing evaluation methods for these systems. Although the fingerprint

research community has made significant advances over the last few decades, there are still certain

challenging avenues in fingerprint recognition where further advances are required. We identify

and discuss some of these problems in fingerprint recognition. Finally, we conclude the chapter by

detailing the contributions of this dissertation in solving two of the aforementioned problems.

1.1 Fingerprint Formation

It is typically presumed that the outer morphology of the friction ridge skin present on our fingers

is a direct reflection of its function: to provide appropriate friction for assistance in grasping or

holding objects and help in sensing fine texture [139]. The generally believed notion is that fric-

tion ridge skin is created from many small localized ridge units [57]. These ridge units first appear

at 1 or 2 focal points on the fingertip. At approximately 10.5 weeks of gestational age, the ridge
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(a) (b) (c) 

(d) (e) (f) 

Figure 1.2 Simulation of the fingerprint formation process. (a)-(b) Localized ridge units appear,
and (c)-(f) ridge units merge to form ridges with unique characteristics. Image adapted from [110].

units merge together under random forces to form definitive ridge characteristics, such as ridge

bifurcations and endings [57] (see Figure 1.2). Due to the random nature of forces acting on the

ridge units, these characteristics are believed to be unique. The fingerprint formation process pre-

sumably starts deep beneath the skin in the secondary dermal layers, where skin cells are produced

and move upwards to the epidermis [71]. In their study on microcirculation of human fingers,

Sangiorgi et al. [170] noted that the “regular disposition of capillaries beneath the dermis sharply

followed the fingerprint pattern, reproducing an identical vascular fingerprint with the same in-

dividual architecture”. These observations suggest the permanence of fingerprints; minor cuts

and bruises on the fingers do not change fingerprint patterns because new skin cells are generated

beneath the epidermis and facilitate the reformulation of fingerprint patterns on the epidermis.
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(a) (b) (c)

Figure 1.3 Fingerprints of William Herschel’s son at ages (a) 7, (b) 17, and (c) 40 years. Images
reproduced from [102].

1.2 Fundamental Tenets: Uniqueness and Permanence

There are two fundamental tenets of fingerprints that underlie their use for recognizing individuals.

1. Uniqueness: Fingerprints are able to uniquely identify each individual, i.e., no two fingers,

even of the same individual, have identical ridge structure.

2. Permanence: Fingerprints do not change over the lifetime of an individual.

To this date, only a few studies have attempted to validate these two tenets. Several of them

have attempted to show that every individual fingerprint is unique [164] [193] [174] [173] [174].

It is also believed that individuals sharing the same DNA have different fingerprints. For example,

Jain et al. [123] analyzed fingerprints collected from 94 pairs of identical twins and demonstrated

that identical twins can be distinguished using fingerprints. However, all of the aforementioned

studies are either based on relatively simple statistical models of fingerprint features or based on

empirical studies involving only a small number of subjects.

William Herschel was the first to demonstrate the permanence of fingerprints. He captured

fingerprints of his son at three different ages 7, 17 and 40 years old and concluded that the ridge

details present do not change over time [102]. However, Herschel’s conclusions were based on

fingerprints collected from just one subject. Recently, Yoon and Jain [189] conducted a formal

study involving longitudinal fingerprint records of 15,597 subjects. They used multilevel statistical
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Figure 1.4 Clay seals with fingerprint impressions from ancient China. Image reproduced from
[141].

models and a state-of-the-art AFIS to show that fingerprint recognition accuracy of an AFIS does

not degrade with time.

In summary, while anecdotally we have been lead to believe that fingerprints exhibit the two

essential tenets for person recognition, uniqueness and permanence, it is not yet supported by

sound scientific studies. This was one of the critical issues pointed out by the National Research

Council (NRC) in its report on strengthening forensic science in the United States [78]. It is

also extensively discussed in the recently released report on ensuring scientific validity of feature-

comparison methods by the Presidents Council of Advisors on Science and Technology (PCAST)

[45].

1.3 Fingerprint Milestones

The earliest record of the use of friction ridge impressions dates back to 1955-1913 BC when clay

tablets with fingerprints were used for conducting business transactions in ancient Babylon [141].

Clay seals with fingerprint impressions that were being used for legal transactions in ancient China

between 600-700 AD have also been discovered [141] (see Figure 1.4). A prehistoric picture of

a hand with friction ridge patterns was found in Nova Scotia [149]. Historical evidence, clearly,

seems to suggest that human fingerprints were used in ancient times as a means for person iden-
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Figure 1.5 Major milestones in fingerprint recognition. Image reproduced from [122].

tification. However, there is no evidence that any systematic methods were being used for person

identification using fingerprints.

1.3.1 Major Scientific Studies

Despite the evident use of fingerprints as a “seal” for the purpose of person identification since the

ancient era, records of scientific work on fingerprinting are comparatively recent and only began

to emerge in the late 19th century. In the year 1858, Sir William Herschel in his capacity as a

British administrator in the state of West Bengal in India, made it mandatory to use fingerprints

on civil contracts for payroll purposes [98]. In 1880, Henry Faulds first used printer ink to capture

fingerprints [90]. In 1892, Francis Galton wrote the landmark book titled Finger Prints [96],

where he identified features which purportedly make each fingerprint unique, such as ridge endings

and bifurcations, and proposed that fingerprints could be used for person identification. In 1899,

Edward Henry introduced a fingerprint classification system, which later became popular as the
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“Henry System of Classification” [98]. Over 60 years hence, the first scientific paper on automatic

comparison of fingerprints by Mitchell Trauring appeared in the journal Nature [179].

1.3.2 Applications in Law Enforcement

In the late 19th century, fingerprints began to be used by law enforcement agencies for establishing

the identity of crime suspects. In the year 1893, fingerprints were supposedly used for the first time

as an official evidence to convict a mother who had murdered her two children in Argentina [101].

The Scotland Yard started recording fingerprints of criminals around 1900 [76]. Post these devel-

opments, the use of fingerprints for identifying and apprehending criminals became widespread.

The United States Congress made it mandatory to collect fingerprints of criminals in 1924 [98].

Consequently, the Federal Bureau of Investigation (FBI) established its identification division and

began collecting fingerprints of criminals [159].

Manual comparison and maintenance of a large number of prints became increasingly diffi-

cult. As a result, there was a compelling need to automate the manual processes. Following this,

research and development of Automated Fingerprint Identification Systems (AFIS) was initiated

by the FBI in the 1970s [130]. Law enforcement agencies at the state and local level also began

installing such systems. In 1999, FBI’s Integrated AFIS (IAFIS) started allowing electronic record

submissions from state and local law enforcement agencies to the national repository as well as in-

troduced capabilities for these agencies to directly search records in the national repository [130].

The FBI’s repository has over 70 million criminal and 34 million civilian sets of tenprints (Figure

1.6) currently on file [91]. In 2011, the FBI introduced the Next Generation Identification (NGI)

system with enhanced fingerprint (as well as face, palmprint, and iris) recognition capabilities with

reported fingerprint matching accuracy as high as 99.6% [160]. According to their estimates, the

introduction of this system has reduced the need for manual reviews by fingerprint examiners by as

much as 90% [160]. At present, fingerprints are being used for two main purposes by law enforce-

ment agencies: (i) identifying repeat offenders (tenprint-to-tenprint matching), and (ii) determining

who left latent fingerprints or fingermarks at a crime scene [124].
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Figure 1.6 Tenprint card used by the FBI for collecting all ten fingerprints. Image reproduced
from [189]. The top two rows show the rolled fingerprints, and the bottom row shows the four-
finger slap impressions and the plain impressions of the two thumbs.

1.3.3 Other Applications

The last two decades have seen growing use of fingerprints in border control, access control, civil

registry and a host of other applications (see Figure 1.7). Examples include the following: (i)

India’s Aadhaar program initiated by the Unique Identification Authority of India (UIDAI) that

aims to assign a unique 12-digit identification number to every resident of India, and has already

enrolled over one billion Indian residents [38]. (ii) the system to prevent criminals and immigration

violators from crossing the United States border by the Office of Biometric Identity Management

Identification Services (formerly the US-VISIT program) [20], (iii) the finger scan system deployed

at Walt Disney World Theme Parks since 2005 to help prevent the use of stolen or fraudulent tickets

for entering their premises [40], and (iv) fingerprints in mobile devices for authenticating users (e.g.

the TouchID system introduced in 2013 in the Apple iPhones [36] and the fingerprint system in
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India’s Aadhaar program Apple Pay 

U.S. Visit (OBIM) Access Control 

Figure 1.7 Example applications of fingerprint recognition. (a) India’s Aadhar Program [38], (b)
Apple Pay [1], (c) U.S. Visit (OBIM) [20], and (d) Access Control.

Samsung phones [25]) and conducting online financial transactions (e.g. Apple Pay [1] introduced

in 2014 and Samsung Pay [26] in 2015). Figure 1.5 summarizes the major milestones in fingerprint

recognition.

Emergence of important societal applications in the last few years, e.g., vaccination tracking of

children, preventing newborn swapping in hospitals and identifying missing children (see Figure

1.8), has ignited the interest of national and international health organizations, as well as non-

governmental organizations, in exploring methods to recognize children (age range: 0-5 years)

using their physical traits. Compared to other physical traits, fingerprint-based recognition of

children appears promising [114] because fingerprints (i) can be captured with relative ease, in

contrast to iris, for example, which requires the child to be steady and stare directly into the iris

capture device, and (ii) are known to be persistent compared to facial characteristics, for instance,

which can change drastically as the child grows. Research efforts are being made to actively

explore the use of fingerprints for infant and toddler recognition [114] [112] [113].
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(a) (b)

Figure 1.8 Potential applications requiring biometric recognition of children (age range: 0-5 years).
(a) Operation ASHA’s mobile healthcare e-compliance biometric system [22], and (b) Aadhaar
civil registry project in India [38].

Table 1.1 Qualitative comparison of fingerprints with face and iris.

Trait Uniqueness Permanence
Ease of
Capture

Recognition
Performance

Legacy
databases

Fingerprint High High
Medium

(obtrusive)
High Yes

Face
Medium

(identical twins)

Medium

(facial aging)

High

(unobtrusive)
Medium Yes

Iris High High
Low

(most obtrusive)
High No

1.4 Comparison with Other Traits

Fingerprints are arguably the most commonly used physical trait for person recognition. How-

ever, besides fingerprints, there are other physical and behavioral traits, e.g, face, iris, voice and

gait, that are useful for person recognition [118]. Face and iris, in particular, have been used for

person recognition in a variety of applications. Law enforcement agencies, such as the FBI, use

face recognition to identify suspects from still photos and videos recorded at crime scenes, and

the Department of Motor Vehicles (DMV) in the United States uses face recognition technology to

prevent driver’s license fraud [120]. India’s Aadhaar program [38] uses iris in addition to finger-
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Figure 1.9 Design of a fingerprint recognition system. The major steps involved are: (a) Finger-
print acquisition, (b) preprocessing, (c) feature extraction, (d) comparison of the generated tem-
plate against the reference database, and (e) depending on the recognition scenario, verification of
the claimed identity (1:1 comparison) or establishment of the identity (1:N comparisons). Image
adapted from [111].

prints for assigning a unique identity to every Indian resident. Iris recognition is also being used

for smartphone unlock and payments [81].

Table 1.1 shows a qualitative comparison of fingerprints with face and iris. Fingerprints are

more distinctive and permanent and typically provide a higher recognition performance relative to

face. They are easier to capture and have legacy law enforcement databases in contrast to iris. Due

to these reasons, fingerprints are often preferred over face and iris in large scale person recognition

applications.

1.5 Design of Fingerprint Recognition Systems

With fingerprint recognition being used in a wide variety of applications, fingerprint recognition

methods have evolved rapidly over the years. Advancements in both fingerprint sensing technology
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and fingerprint recognition algorithms have resulted in extremely efficient and accurate Automated

Fingerprint Identification Systems (AFIS). Automated fingerprint recognition process consists of

the following two stages:

1. Enrolment: During enrolment, fingerprint of a user is acquired and salient features are ex-

tracted from the resulting image to generate a fingerprint template. The template is then

stored with the user ID in a database which is generally called the reference, background, or

enrolment database.

2. Recognition: In the recognition phase, the goal is to either verify the claimed identity of

a person (verification) or establish the identity of a person (identification). In both these

scenarios, fingerprint is acquired and features are extracted to generate a template which is

often called the probe or the query template. For verification, the query template is compared

to the enrolled templates of the claimed identity (1:1 comparison) in the reference database.

On the other hand, for identification where no explicit identity claim is made, the query

template is matched against each enrolled template in the reference database (1:N search) to

establish the identity.

Below, we explain in detail, the major steps involved in a typical fingerprint recognition system:

fingerprint acquisition, feature extraction and matching1 (see Figure 1.9):

1.5.1 Fingerprint Acquisition

Broadly categorizing, there are two main methods for controlled capture of fingerprint impressions:

(i) off-line methods using, e.g., ink-on-paper, which acquire fingerprints on a physical media, and

(ii) live-scan methods, using fingerprint readers which sense fingerprints electronically (see Figure

1.10). Off-line acquisition methods were primarily used by law enforcement agencies to record

fingerprints of crime perpetrators. However, in the last few years, live-scan methods have largely

1The term matching here refers to the comparison of two fingerprint feature sets to ascertain whether they belong
to the same or different source finger.
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(a) (b)

Figure 1.10 Off-line v. live-scan fingerprint acquisition methods. (a) Traditional ink-on-paper
based fingerprint acquisition (off-line) [79], and (b) fingerprint capture using fingerprint reader
(live-scan) [142]. For acquiring rolled prints, operator holds the finger of the subject and guides it
to “roll” the finger on paper or reader platen.

replaced off-line methods. Live-scan methods are also used in most modern day applications,

e.g., civilian, governmental, and access control. Depending on the application scenario, one or

more of the following three major fingerprint types are usually acquired, (i) rolled impressions,

(ii) plain/slap impressions, (iii) latents (see Figure 1.11). Whereas rolled or slap impressions are

acquired in a controlled manner, latent impressions are lifted from surfaces of objects. Rolled

and slap prints, stored in the reference database, are often referred to as exemplar or reference

fingerprints.

1. Rolled: Rolled impressions are acquired by rolling a finger from “nail-to-nail” on the sensing

surface. Expert assistance is generally required for rolling the finger in the correct manner.

Rolled impressions capture the complete ridge detail present on a finger from the tip of the

finger to the first joint. Therefore, they provide higher recognition accuracies compared

to plain impressions. One disadvantage, however, is the presence of greater distortion in

rolled impressions than plain impressions due to the acquisition dynamics (pressure, shear,

slippage).

2. Plain/Slap: Plain/slap impressions are captured by pressing one or more fingers against a

flat surface which could either be a paper in case of ink-based acquisition or the platen of

a live-scan reader. A single finger capture is termed a plain impression (typical in civilian
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(a) (b)

(c) (d)

Figure 1.11 Different types of fingerprint impressions: (a) rolled, (b) plain, (c) slap, and (d) latent.

and access control applications), whereas a four-finger simultaneous capture (index, middle,

ring and little fingers altogether) is called a slap impression (mostly used in law enforcement

applications). Individual plain impressions of the four fingers are segmented out from a slap

capture before matching. A popular way of acquiring all ten fingerprints (tenprints) is the

4-4-2 capture where two slap impressions of the four fingers of the left and right hand are

captured, followed by simultaneous capture of the two thumbprints.

3. Latent: Latent prints, also known as fingermarks, in the forensics community, are the finger-

print impressions inadvertently left behind on the surfaces of objects when they are touched

or handled [116]. Latents are poor quality partial impressions with incomplete ridge details

impressed against a complex surface background, and can be significantly distorted due to

the uncontrolled manner of deposition on the surface. Proper imaging of such impressions is
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(a) 19 (b)

Figure 1.12 Acquisition principles of optical and solid state sensing technologies. Images repro-
duced from [50].

very important for law enforcement agencies because they can be a vital evidence to identify

crime suspects. Depending on the characteristics of the surface from which latents have to

be acquired, forensic experts use physical (e.g. dust with powder), chemical (e.g. ninhydrin

treatment), and/or photographical (e.g. ultraviolet imaging) methods for latent acquisition.

1.5.1.1 Fingerprint Sensing Technologies

Ink-on-paper based acquisition methods have been traditionally used by law enforcement agencies

to capture plain, slap and/or rolled fingerprints of criminals. However, the spread of fingerprint

recognition to many consumer and government applications, has resulted in the development of

compact, high resolution and low-cost fingerprint sensing technologies. Some of the popular sens-

ing technologies in use today are described below.

• Optical: Fingerprint readers based on optical imaging technology are the most prevalent

in the commercial sector. The acquisition principle of most optical readers is based on

Frustrated Total Internal Reflection (FTIR) (see Figure 1.12 (a)). The major components

in the reader assembly typically are a combination of visible spectrum or infrared LEDs,

a glass prism and a CCD or a CMOS sensor array. Fingerprint acquisition involves the

following steps: (i) placement of the finger on one face of the glass prism (called the glass
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(c) (d)

Figure 1.13 Examples of commercial touchless fingerprint readers. (a) TBS contactless 3D fin-
gerprint reader [32], FlashScan3D’s 3D touchless reader [10], (b) IDair’s OnePrint [21], and (c)
Morpho’s Finger on the Fly [17].

platen), (ii) illumination of the finger using LEDs, (iii) absorption of the light incident at

the ridges and reflection of the light from the valleys, and (iv) deflection of the reflected

light onto the CCD or CMOS array by the glass prism for imaging the fingerprint. Optical

readers, in general, provide good fingerprint image quality, and therefore, are the preferred

choice over other kinds of readers in most applications. One limitation of optical readers,

however, is their bigger form factor compared to, e.g., solid state readers. As a result, so far

it has not been easy to embed them into small electronic devices such as mobile phones. On

the other hand, almost all the slap fingerprint readers are optical.
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• Solid State: Solid state readers typically consist of a silicon plate, where each element of

the plate is a mini-sensor in itself (see Figure 1.12 (b)). Depending on the type of solid

state sensor, fingerprint acquisition is based on one of the following physical characteristics

of the finger, (i) capacitance difference between ridges and valleys, (ii) thermal behavior of

the friction ridge skin upon contact with the silicon plate, or (iii) pressure variations due

to interaction of the finger with the sensing elements. Out of these three, capacitive solid

state readers are the most commonly used. Solid state readers generally have a small sensing

array, typically 5-8 cm2, to keep the reader cost low. Because of their low cost and small

form factor, they are easy to embed in laptops, PDAs and mobile phones. Fingerprint readers

embedded in personal devices, e.g, laptops and smartphones, have a small sensing area which

only captures a part of the finger. To capture the entire fingerprint surface area, these readers

use two different methods: (i) a swipe of the finger from top to bottom, or (ii) multiple partial

captures by aligning the finger in different orientations with respect to the sensing area.

• Ultrasound: The ultrasound sensing technology uses ”active” sensing by transmitting acous-

tic signals of a specific wavelength (e.g., 100 µm) for fingerprint imaging [138]. Ultrasound

signals sent to the finger surface are deflected back and captured to form the fingerprint im-

age. This technology is believed to be robust to dirt, oil and other factors which can poten-

tially degrade fingerprint image quality. Yet the commercial application of this technology

was, until recently, limited. This was due to ultrasound sensors being bulky and expensive,

and fingerprint capture requiring at least a few seconds. However, Qualcomm introduced

a major breakthrough with the release of the Snapdragon Sense [46] which is a real time

authentication technology for mobile devices based on ultrasound fingerprint sensing.

• Multi-Spectral: The multi-spectral fingerprint scanning technology was developed in 2005

by Lumidigm [169], and can be considered as an extension of the optical imaging method

described earlier. The main idea in multi-spectral imaging is to illuminate the finger with

LEDs of different wavelengths (visible and near infrared). Some of the wavelengths get
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reflected from the epidermal layer, whereas other wavelengths are reflected by the underlying

secondary dermal layers. The response obtained from different wavelengths is combined to

produce the final fingerprint image. Because secondary skin layers can be imaged using this

method, an advantage of the method is that the resulting fingerprint image is robust to noise

due to dirt, sweat, and oil often present on the outer finger skin layer.

• Touchless: One major issue with traditional touch-based live scan methods is the inherent

distortion induced in the captured fingerprint image when the finger is pressed against the

reader platen. To alleviate this issue, touchless live-scan technology was proposed [165].

One of the following two imaging techniques is used in touchless fingerprint readers (see

Figure 1.13): structured lighting where a fixed light pattern is used to illuminate the finger

to estimate the finger depth and generate a 3D representation of the finger, or the multi-

view imaging technique where multiple cameras are used to image the finger from different

viewpoints to construct a 3D fingerprint representation.

To sum up, the last few decades has seen the development and adoption of a variety of live-

scan technologies for fingerprint sensing. Easy to use real-time fingerprint acquisition methods

have enabled the spread of fingerprint recognition systems to different applications.

1.5.2 Feature Extraction

Fingerprint features are usually categorized into three different levels based on their granularity

(see Figure 1.14).

• Level-1: Prominent features such as type of the fingerprint pattern (loop, whorl, arch), di-

rection of the ridge flow (ridge orientation), discontinuities (singularities) in the ridge flow

(cores, deltas), and measurement of the spacing between ridges (ridge frequency) are catego-

rized as level-1 features. Note, however, that these features are not unique to each fingerprint.

• Level-2: Salient points where a ridge exhibits special characteristics, e.g, endings and bifur-

cations (also called minutiae), are classified as level-2 features. The recommended scanning
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Figure 1.14 The three different levels of fingerprint features. Image reproduced from [115].

resolution to clearly capture level-2 features is 500 ppi. These features are considered to be

unique to each fingerprint, and hence, are most commonly used in fingerprint matching.

• Level-3: Features at a finer level of granularity such as sweat pores present inside the ridges,

dots between the ridges, incipient ridges, and peculiar features such as creases and warts

are termed level-3 features. Level-3 features can provide additional distinctiveness, but are

only visible in fingerprints acquired at a scanning resolution of 1000 ppi or more. Further, the

available algorithms for level-3 feature extraction are not very accurate and robust. However,

they appear to be implicitly used by forensic examiners for “exclusion”2.

Law enforcement agencies generally acquire fingerprints at a scanning resolution of 500 ppi,

although, the 1000 ppi resolution is being considered for adoption. State-of-the-art feature ex-

traction algorithms typically extract only level-1 and level-2 features (e.g., ridge orientation, ridge
2Exclusion refers to excluding the possibility of match when manually comparing two fingerprints.
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frequency, and minutiae) and their derivatives. The derived meta-features from level-1 or level-2

features are also called descriptors. Most popular ones are (i) ridge orientation descriptors based

on orientation values in the minutiae neighborhood (e.g. [178]) and (ii) neighborhood minutiae

based descriptors (e.g. [68]).

All fingerprint images undergo a preprocessing step (foreground extraction and enhancement)

prior to fingerprint extraction. This step is particularly crucial, in case of latent fingerprints, where

image quality is a major issue. Techniques developed in machine learning and computer vision

such as dictionary learning [66] and convolutional neural networks [64] have been proposed for

this purpose. State-of-the-art commercial feature extraction algorithms designed specifically for

latents are believed to extract multiple feature representations (e.g. at different scales) from a

latent with the goal of improving the overall matching accuracy.

1.5.3 Fingerprint Matching

There are two different matching scenarios typically encountered in most fingerprint recognition

applications: (i) matching rolled/plain (exemplar) prints to exemplars, and (ii) matching latent to

exemplar prints.

1.5.3.1 Exemplar-to-Exemplar matching

This is the most commonly encountered scenario in applications ranging from mobile phone unlock

and border control to criminal background check and national registry. For example, in national

identification systems such as Aadhaar [38], exemplar-to-exemplar (tenprint) matching is used for

“de-duplicating identities” i.e. to prevent enrolment of duplicate identities. Exemplar (rolled/plain)

fingerprints are, in general, good quality prints with clear ridge detail. This allows accurate and

robust feature extraction from exemplar prints. Minutiae are the most commonly used features in

exemplar fingerprint matching. Matching minutiae sets extracted from two different fingerprints

is a classic application of the point pattern matching problem [140]. As an example, one simple

approach for matching two different minutiae sets is to generate an initial set of correspondences
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(a) (b)

(c) (d)

Figure 1.15 A simple method for minutiae matching. (a) and (b) The enrolled and probe fingerprint
templates marked with minutiae sets, (c) alignment of the two templates based on an initial cor-
responding minutiae pair marked in green, and (d) corresponding minutiae points generated based
on the alignment in (c). Image reproduced from [119].

between the two minutiae sets, and then iteratively (i) generate alignment hypothesis based on

the current set of corresponding minutiae pairs (measure of similarity between the minutiae sets),

and (ii) update minutiae correspondences based on the current alignment hypothesis [125] (Fig-

ure 1.15). Descriptor-based fingerprint matching methods [178] [68], on the other hand, establish

minutiae correspondence either in a (i) top-down manner by generating minutiae correspondences

from high similarity descriptor pairs and then eliminating false correspondences using local struc-

tural constraints, or (ii) bottom-up manner where typically, the top n (e.g., n = 5) highest similarity

descriptor pairs are used; each of the n descriptor pairs is used to establish minutiae correspon-

dences by aligning the fingerprint pair or growing the corresponding region, and the pairing that

results in the maximum number of minutiae correspondences is selected as the final result.
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The goal of fingerprint matching is to compute the similarity between the two fingerprint im-

pressions. Once minutiae correspondences between the two fingerprints are generated, similarity

is computed based on the number as well as the strength of these correspondences. Proprietary fin-

gerprint matching algorithms commonly use additional features, e.g., ridge flow and ridge spacing,

besides minutiae.

1.5.3.2 Latent-to-Exemplar matching

For law enforcement agencies and forensic crime labs, matching latent prints lifted from crime

locations to exemplar prints in legacy law enforcement databases is important to establish pos-

sible crime suspects. Latent images typically have incomplete ridge detail and possibly severe

background noise leading to difficulty in automatic extraction of reliable features for matching.

In the absence of robust automatic matching methods, a semi-automatic matching method based

on the Analysis, Comparison, Evaluation and Verification (ACE-V) protocol [57] is practised in

most crime labs. Under the purview of this protocol, a fingerprint examiner determines the quality

of the latent, and if the latent has sufficient quality, marks features, such as region of interest and

minutiae on the latent image. The latent with marked features is then submitted to a latent matcher

for comparing the latent to exemplars in the reference database. A candidate list of top-K match-

ing exemplars from the reference database is returned by the latent matcher3. The examiner then

compares the latent to each exemplar image in the candidate list to determine the corresponding

features. Based on the strength of the correspondences obtained for different latent-exemplar pairs,

the evaluation of whether a candidate exemplar mates with the latent (hit is found) is made. Fol-

lowing this, a second fingerprint examiner then independently inspects the latent-exemplar pairs

and verifies the authenticity of the decision made by the first examiner.

3State-of-the-art latent matchers match multiple feature representations and fuse the results to improve the likeli-
hood of obtaining a hit in the candidate list.
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Figure 1.16 Example targets used for calibrating imaging systems. Images adapted from [107]
[137] [163].

1.6 Evaluation of Fingerprint Recognition Systems

Performance evaluation is a critical step during the design and development of a fingerprint recog-

nition system before its actual deployment. For system evaluation, a two-step evaluation procedure

is usually followed: internal testing to ensure desired accuracy, followed by field testing to validate

the laboratory testing results in field operations. Before deployment, each module of the finger-

print system (sensing, feature extraction and matching) needs to be thoroughly evaluated. In the

following sections, we briefly describe the standard testing procedures for certification of finger-

print readers, as well as the evaluation studies conducted to benchmark existing feature extraction

and matching algorithms.

1.6.1 Sensing Technology Certification

In the United States, fingerprint readers are certified by the Technology Evaluation Standards Test

Unit, part of the FBIs Biometric Center of Excellence (BCOE) led by the Criminal Justice Informa-

tion (CJI) Services Division [9]. Two different standards have been established by the FBI for the

certification of fingerprint readers. The PIV standard [155] caters to single-finger readers designed

for the verification scenario. Fingerprint readers built for use in applications involving large-scale

identification are certified under the Appendix F standard [156] which enforces stricter fingerprint

quality requirements compared to the PIV standard. These standards contain the desired reader
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specifications for different aspects of the reader, such as geometric accuracy, resolution and spa-

tial frequency response. The fingerprint reader certification process requires fingerprint vendors to

show that images captured by their readers exceed the minimum specifications prescribed in the

relevant standard [8]. As a first step, fingerprint vendors internally test their readers using calibra-

tion targets (see, e.g., Figure 1.16) to ensure that the target images captured using the reader are

of sufficient quality to meet the prescribed specifications in the standard. Once they are satisfied

with the captured image quality, they submit test images to the certification agency. The agency

independently verifies that the test images meet the standard specifications and certifies the reader

under the relevant standard.

The testing and certification of biometric devices (fingerprints, iris and face) for use by the

Unique Identification Authority of India (UIDAI) in the Aadhaar project is performed by the

Standardization Testing and Quality Certification (STQC) Directorate, Government of India [37].

UIDAI is one of the largest consumers of biometric readers in the world with 36,000 enrolment

stations deploying 11 different certified biometric readers (5 fingerprint slap sensors, 4 iris sensors,

and 2 face cameras) [80]. Image acquisition requirements equivalent to the Appendix F standard

are mandated for fingerprint readers used for enrolment in Aadhaar [42]. For getting their read-

ers certified, fingerprint vendors submit a certification agreement to the certification agency, the

STQC Directorate. The certification agency evaluates the evidence of conformity of the submitted

agreement to the certification procedure guidelines. Thereafter, provided that the testing procedure

results are satisfactory, the fingerprint reader is certified by the agency for use in Aadhaar [43].

1.6.2 Feature Extraction and Matching Evaluation

Fingerprint feature extraction and matching algorithms are typically evaluated together as a single

component where fingerprint images are fed as input and similarity scores are generated as output.

Different measures are used to evaluate their performance in the two matching scenarios commonly

encountered, verification (1:1 comparison) and identification (1:N comparison).
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To evaluate fingerprint verification performance, two different metrics are frequently used, (i)

true accept rate (TAR), i.e. proportion of subjects, amongst those previously enrolled, that can be

successfully verified, and (ii) false accept rate (FAR), i.e. proportion of subjects, amongst those

not previously enrolled, that are incorrectly determined to have been previously enrolled [141].

These two quantities, TAR and FAR, are not independent of each other, so there is a trade-off

between TAR and FAR. Receiver Operating Characteristic (ROC) curve, a plot of TAR v. FAR at

different operating thresholds, is often used to indicate the verification performance. Some studies

prefer to use the false Reject Rate (FRR) instead of TAR. FRR indicates the proportion of subjects,

amongst those previously enrolled, that cannot be successfully verified. In this case, a Detection

Error Trade-off (DET) curve that plots FRR v. FAR is used to report verification performance.

There are two distinct types of identification scenarios: (i) closed set where the probe or the

query is known to have a mate in the reference database, and (ii) open set where the probe may or

may not have a mate in the reference database. For closed set identification, typically, a candidate

list of the top-K matches is retrieved, and the retrieval rank of the true mate in the candidate list is

used as an evaluation metric [141]. Cumulative Match Characteristics (CMC) curve, where each

point on the curve denotes whether the true mate was retrieved at rank ≤ i in the candidate list,

is plotted to indicate the closed set identification performance. In case of open set identification,

the two most commonly used performance evaluation metrics are: false positive identification

rate (FPIR) which measures the proportion of queries which do not have a mate in the reference

database but were falsely identified to have a mate, and false negative identification rate (FNIR)

which measures the proportion of queries which have a mate in the reference database, but could

not be successfully identified to have a mate.

Since the early 2000s, NIST has conducted several evaluations of fingerprint feature extraction

and matching algorithms. The FpVTE 2003 evaluation [185], performed on a database of 10,000

plain fingerprints, found that the best performing algorithm had a TAR of 99.4% at FAR of 0.01%.

In the most recent evaluation FpVTE 2012 [184], plain fingerprints of 30,000 subjects (10,000

mates and 20,000 non-mates) were searched against plain fingerprints of 100,000 subjects and the
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FNIR of the best performing algorithm, at FPIR of 0.1%, was reported to be 1.9% for single index

finger captures and 0.27% for two index fingers.

To evaluate the state-of-the-art latent matching algorithms, NIST performed ELFT-EFS evalu-

ation in two phases [109] [108]. In Phase I, 1,114 latents were matched against exemplars (rolled

+ plain) obtained from 100,000 subjects. The rank-1 identification accuracy of the best algorithm

was reported to be 62.2%. In Phase II, 1,066 latents were compared against reference database

of exemplars of 100,000 subjects, and the rank-1 identification accuracy of the best performing

method was 67.2%.

1.7 Challenges in Fingerprint Recognition

Although the design of automatic fingerprint recognition systems and the methods to evaluate these

systems have evolved over the past 50 years, there remain a number of open research issues and

challenges. We provide this list of problems from our perspective and then address two of them

that constitute the contributions of this dissertation.

1.7.1 Open Research Issues and Challenges

1.7.1.1 Automatic latent fingerprint matching

Latent fingerprints are important for law enforcement agencies and forensic crime labs to identify

fugitives and to assess if they are guilty or innocent. However, despite recent developments, fully

automatic and accurate matching of latents to reference fingerprints remains an open challenge for

fingerprint researchers.

1.7.1.2 Interoperability of fingerprint readers

Large-scale fingerprint system deployments e.g., Aadhaar [38] have multiple enrolment stations

equipped with different fingerprint readers. Compatibility of fingerprints acquired by the different
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Figure 1.17 Example procedure to create an artificial fingerprint directly from a live finger. Plastic
is used to create the mold and gelatin is used as the casting material. Image reproduced from [143].

readers is essential for successful operation of such a large-scale system. Furthermore, with the ad-

vent of new sensing technologies, such as contact-less 3D fingerprint sensing [165], it is important

to develop methods to match fingerprints acquired by these readers with reference prints in legacy

databases.

1.7.1.3 Operational evaluation of fingerprint systems

Evaluation standards have been developed for certification of fingerprint readers. However, test

results obtained in a controlled environment do not generalize to the operational settings. There is

a need to develop methods for evaluating fingerprint readers in the functional environment. Fur-

thermore, there is a lack of standard procedures for end-to-end evaluation of fingerprint systems,

from fingerprint acquisition to feature extraction and matching.

1.7.1.4 Fingerprint liveness detection

Fingerprint readers embedded in consumer devices, e.g., mobile phones and tablets, and that are

being used for conducting financial transactions, have been shown to be vulnerable to spoof attacks

[144] [145] [65] [143]. Figure 1.17 illustrates a simple procedure to create an artificial finger
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(a) (b)

Figure 1.18 Examples of non-ideal fingerprint images. (a) A fingerprint with worn-out ridge de-
tails, and (b) a fingerprint with altered patterns (image reproduced from [188]).

directly from a live finger that can be used for spoofing fingerprint readers. Several fingerprint

anti-spoofing algorithms have been developed by academic researchers [47] [95] [99]. However,

there is a need to develop commercial-grade liveness detection methods to prevent impostors from

misusing fingerprint recognition technology.

1.7.1.5 Fingerprint template security

In most operational fingerprint systems, fingerprint templates are typically secured by using stan-

dard encryption techniques, e.g., AES. The security of the template, therefore, depends on the

lack of adversary’s knowledge about the decryption key. Further, template matching is usually not

performed in the encrypted domain. As a result, templates are decrypted at the time of authentica-

tion, and this leaves them vulnerable to possible attacks during authentication [154]. To overcome

this limitation, one common approach is to store the encrypted templates and decryption keys in

a secure module (e.g., A10 chip on Apple iPhone74) and perform template matching in a trust-

worthy environment. However, this requires the user to carry an additional device that stores the

encrypted templates. Although numerous fingerprint template protection techniques that aim to

4http://support.apple.com/en-sg/HT5949
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ensure non-invertibility, revocability and non-linkability of templates while maintaining the recog-

nition performance have been proposed over the years (e.g. [182], [153], [152], [126]), there is still

a wide gap between the theoretical claims and the practical applicability of these methods [154].

1.7.1.6 Matching non-ideal fingerprint images

It has been observed that fingerprints of older people and those in certain professions, e.g., farming

and welding, are of poor quality [172] [183]. This is because with repeated use of fingers or

because of the fingers coming in contact with certain chemicals, ridges present on their fingers

wear out over time (see Figure 1.18 (a)). Some people have genetically poor quality fingerprints.

Besides, there have been cases where criminals and those guilty of other significant felonies have

intentionally obliterated or altered their fingerprints to evade identification by the authorities [188]

(see Figure 1.18 (b)). Matching these non-ideal prints is a challenging task.

1.7.2 Automatic Latent Fingerprint Matching

In its 2009 report on strengthening forensic science in the United States [78], the National Research

Council emphasized the need to address the following two major issues facing forensic science: (i)

“lack of mandatory and enforceable standards” for ready reference by crime labs around the world

and (ii) “unacceptable case backlogs in state and local crime labs which likely make it difficult

for laboratories to provide strong evidence for prosecutions and avoid errors that could lead to

imperfect justice”. Following this, efforts were made to understand in depth the different factors

which impact the latent fingerprint examination workflow and to standardize the processes [44].

As an example, to improve the odds of obtaining a match, a common practice used by several

law enforcement and forensic agencies is to involve a fingerprint examiner to (i) mark features on a

latent image before submitting it to an AFIS, and (ii) inspect the list of top-K candidates returned by

the AFIS to verify that a hit has been made. Although this manual intervention process is supposed

to be beneficial for increasing the overall matching accuracy, studies on human factors have shown

that it induces bias and subjectivity in the latent matching process [85] [86]. Further, it has also
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been demonstrated that examiners often have a low degree of agreement with their own decisions,

as well as the decisions made by other examiners, reducing the repeatability of the identification

outcome [181]. Another impending issue is the objective determination of the evidential value of

a latent print [75].

The 2016 report by the Presidents Council of Advisors on Science and Technology (PCAST)

[45] states that “latent fingerprint analysis is a foundationally valid subjective methodology albeit

with a false positive rate that is substantial and is likely to be higher than expected by many jurors

based on longstanding claims about the infallibility of fingerprint analysis” and that “in reporting

results of latent fingerprint examination, it is important to state the false positive rates based on

properly designed validation studies”. This necessitates the need for fully automatic latent match-

ing to eliminate human bias and subjectivity.

The evaluation of latent matching technologies (ELFT-EFS II [108]) conducted by the National

Institute of Standards and Technology (NIST) in 2012, reported the identification accuracy of the

best automatic latent matching algorithm to be mere 67.2%. In contrast, the results of the fin-

gerprint vendor technology evaluation performed by NIST in 2012 [184] reported identification

accuracy numbers as high as 99% for automatic matching of rolled/plain impressions. This indi-

cates that in spite of developments in fingerprint recognition technology during the past 40 years,

improvements to the automatic latent print matching procedure are urgently needed.

For this reason, we pursued this problem in this dissertation. We developed a top-down match-

ing paradigm that takes feedback from reference prints and re-sorts the candidate list generated by

a bottom-up latent matcher to improve its accuracy. We also developed a latent markup crowd-

sourcing framework where fingerprint examiners and the latent matcher work in conjunction with

each other to boost the latent matching accuracy.

1.7.3 Operational Evaluation of Fingerprint Systems

In deploying a large-scale fingerprint recognition system, one of the critical factors is to have a

reasonable estimate of the matching performance of the system in the operational settings. For
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Figure 1.19 2D synthetic fingerprint generation process using the method in [192]. (a) Fingerprint
type is specified, (b) ridge flow map is generated from a learned statistical model, (c) minutiae
are generated based on the ridge flow in (b) and a learned statistical minutiae model, an (d) 2D
synthetic fingerprint is synthesized using (b) and (c).

this purpose, typically, pilot studies are first conducted on a large number of fingerprints of many

subjects to ascertain the operational thresholds on comparison scores to achieve the desired false

accept rate (FAR). This is a tedious process both in terms of time and resource commitment.

Besides, the resulting performance estimate is limited in the confidence of its accuracy by the

amount and nature of data which is available. One possible solution to alleviate this shortcoming

of small sample size is to synthetically generate very large amounts of realistic looking fingerprint

images which can then be used for system performance evaluation. This would entail generating,

say, millions of synthetic fingerprints for evaluating large-scale fingerprint recognition systems

[69] [192].

State-of-the-art fingerprint generation methods [67] [192] output 2D synthetic fingerprints us-

ing mathematical or statistical models of fingerprint features (e.g. fingerprint type, orientation

field and minutiae). The 2D synthetic fingerprint generator proposed in [67] generates ridge flow

map using a mathematical model and ridge density map based on heuristics learned from several

fingerprint images. Directional filters tuned to local ridge orientation and frequency values are

then iteratively applied starting from a few seed locations to generate fingerprint ridge patterns.

Note, however, that minutiae placement cannot be controlled during the 2D synthetic fingerprint
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Figure 1.20 Example of a generated 3D fingerprint target. Shown on the left is the 2D fingerprint
image and on the right is the 3D finger surface used to create the 3D fingerprint target.

generation process. On the other hand, the 2D synthetic fingerprint generation method in [192]

outputs 2D synthetic fingerprints using statistical models of fingerprint features (fingerprint type,

orientation field and minutiae). The features are first sampled from their respective statistical dis-

tributions, followed by a fingerprint reconstruction method (described in [92]) to generate visually

realistic synthetic fingerprints (see Figure 1.19).

The aforementioned methods can generate synthetic fingerprints to evaluate fingerprint feature

extraction and matching. However, there is a lack of an approach to evaluate fingerprint readers

in operational settings (e.g. placement of human finger on the reader platen) , and consequently

an “end-to-end” fingerprint biometric system, from sensing a physical finger and acquiring its

impression (image) to extracting the template and establishing or verifying an identity. Operational

evaluation of fingerprint systems, therefore, still remains a challenge.

To address the aforementioned limitations, we generated single-finger 3D fingerprint targets

(see Figure 1.20). We projected 2D calibration patterns with known features (e.g. sine gratings

of known orientation and frequency, 2D fingerprints with known singularities and minutiae) onto
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(a) (b)

Figure 1.21 Sample 3D printed whole hand target (a), and (b) evaluating a slap fingerprint reader
using the 3D whole hand target shown in (a).

a 3D finger surface to create electronic 3D fingerprint targets. We then used a state-of-the-art 3D

printer to fabricate these targets with materials having similar hardness and elasticity to the human

skin. We showed the utility of 3D targets in evaluating three different single-finger 500/1000 ppi

optical fingerprint readers.

For evaluating contact-based and contactless slap fingerprint readers, we created 3D whole

hand targets complete with all four fingerprints and the thumbprint (see Figure 1.21). Given an

electronic 3D hand model, 3D finger surfaces corresponding to each of the fingers and the middle

portion of the hand were first segmented. 2D calibration patterns were then projected and etched

on the segmented 3D finger surfaces. Following this, wearable electronic 3D targets for all fingers

and the thumb as well as fingerless glove were fabricated with a state-of-the-art 3D printer. The

generated 3D whole hand targets were used for evaluating three different 500/1000 ppi contact-

based slap readers and a 500 ppi contactless slap reader.

The 3D targets fabricated with the 3D printer, although similar in hardness and elasticity to the

human skin, were non-conductive. Consequently, they could not be used for evaluating capacitive

fingerprint readers such as those embedded in modern day smartphones. To impart conductivity

to 3D printed targets, we coated their surface with thin layers of conductive materials (titanium +

gold) via DC sputtering (see, e.g, Figure 1.22). The generated conductive targets were used for

evaluating a 500 ppi capacitive fingerprint reader. It is important to note that besides fingerprint
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(a) (b)

Figure 1.22 Sample conductive 3D target (goldfinger) created by depositing thin layers of titanium
and gold on 3D printed single-finger targets shown in (a), and (b) an impression of the goldfinger
in (a) captured using a capacitive reader.

reader evaluation, our targets can also be used for end-to-end evaluation of fingerprint recognition

systems.

1.8 Dissertation Contributions

The contributions (including the organization) of this dissertation are as follows:

• Design of a framework to improve latent matching accuracy by incorporating top-down in-

formation or feedback from an exemplar print to refine the features extracted from a latent

(Chapter 2). The refined set of latent features (e.g. ridge orientation and frequency), after

feedback, are compared again to the top-K candidate exemplars returned by the baseline

matcher and to generate a new ranked candidate list. Our contributions are: we (i) devise

systemic ways to use information in exemplars for latent feature refinement, (ii) develop

a feedback paradigm which can be wrapped around any latent matcher for improving its

matching performance, and (iii) determine when feedback is actually necessary to improve

latent matching accuracy.
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• Design of a crowd powered latent matching framework where multiple latent examiners and

an automatic latent matcher work in a synergistic manner to boost the overall identification

accuracy (Chapter 3). Given a latent, the candidate list output by the latent matcher is used

to determine the likelihood of a hit at rank-1. A latent for which this likelihood is low

is crowdsourced to a pool of latent examiners for additional feature markup. The manual

markups are then input to the automatic latent matcher to increase the likelihood of finding a

hit in the reference database. Furthermore, a greedy paradigm where markups are obtained

from the examiners in an incremental manner when required, is also proposed. This is shown

to reduce the examiner workload by only requiring a maximum of three examiners to provide

markup for a latent.

• Design and fabrication of 3D fingerprint targets for repeatable behavioral evaluation of

single-finger optical readers (Chapter 4). 2D calibration patterns with known characteris-

tics (e.g. sinusoidal gratings of pre-specified orientation and frequency, fingerprints with

known singular points and minutiae) are projected onto a generic 3D finger surface to create

electronic 3D targets. A state-of-the-art 3D printer is used to fabricate wearable 3D targets

with material similar in hardness and elasticity to the human finger skin. The generated 3D

targets are suitable for behavioral evaluation of three different (500/1000 ppi) PIV/Appendix

F certified single-finger optical readers.

• Generation of 3D whole hand targets complete with four fingerprints, the thumbprint and

the middle portion of the hand for repeatable evaluation of slap and contactless fingerprint

readers (Chapter 5). 2D calibration patterns with known characteristics are projected onto 3D

finger surfaces corresponding to each of the four fingers and the thumb to create electronic

whole hand 3D target. Physical 3D whole hand targets are subsequently fabricated using

a state-of-the-art 3D printer with materials that are similar in hardness and elasticity to the

human skin as well as optically compatible with a variety of optical fingerprint readers.
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Generated whole hand 3D targets are used for evaluating three Appendix F certified contact-

based slap readers and a PIV certified contactless slap reader.

• Fabrication of conductive 3D targets for evaluation of capacitive fingerprint readers (Chapter

6). 3D printed targets are coated with thin layers of conductive materials (titanium + gold)

via DC sputtering to impart conductivity to their surface. We show that the coating proce-

dure does not impact the fidelity of the calibration patterns etched on the 3D targets. The

conductive 3D targets are used for evaluating a PIV certified single-finger capacitive reader.

Furthermore, a simple procedure to create 3D spoofs for performing presentation attacks on

capacitive readers is described. The generated 3D spoofs are successfully used for spoofing

the single-finger capacitive reader and an embedded reader in an access control terminal.

• A brief summary of the contributions of this dissertation and possible future research direc-

tions are discussed in Chapter 7.
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Chapter 2

Latent Fingerprint Matching: Performance

Gain via Feedback from Exemplar Prints

2.1 Introduction

Latent fingerprints1 are partial impressions of the finger with relatively smaller area containing

friction ridge patterns. Automatic matching of latent fingerprints to exemplars is significantly

challenging because latents (i) generally exhibit poor quality in terms of ridge clarity, (ii) have

complex background noise (Figure 2.1), and (iii) have large non-linear distortions due to variations

in finger pressure when an object is touched, resulting in the deposition of latent print on its surface.

In the Evaluation of Latent Fingerprint Technologies (ELFT) [109] conducted by NIST, the Phase-

I results showed that the best rank-1 latent matching accuracy was 80% in identifying 100 latent

images from amongst a set of 10,000 rolled prints [157]. More recently, in the NIST Evaluation

of Latent Fingerprint Technologies: Extended Feature Sets (ELFT EFS) Phase II [108], the rank-1

identification accuracy of the best performing latent matcher was only 67.2% in the “lights-out”

(fully automatic) identification mode 2. So, while Automated Fingerprint Identification Systems

1The term fingermark is also used in the forensic science community to refer to the finger impressions accidentally
left behind on the surface of objects. We use the term latent because it is more popular in the biometrics community.

2The latent matching accuracy is significantly higher in the ELFT Phase-I as compared to Phase-II because the
quality of latents used in Phase-I evaluation was comparatively better.
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(a) (b) (c)

Figure 2.1 Sample images from the NIST SD27 database shown here to elucidate some of the
challenges in latent fingerprint matching: (a) poor ridge clarity, (b) insufficient amount of usable
ridge valley patterns and (c) presence of complex background noise. The red curves are manually
marked foreground area in the image.

(AFIS) work extremely well in matching exemplar fingerprints to each other, there is a considerable

performance drop when matching latent fingerprint images to exemplar images. It is generally

agreed that latent fingerprint matching is a challenging problem whose performance needs to be

significantly improved to reduce the backlog of operational cases in law enforcement agencies. The

FBI’s Next Generation Identification (NGI) program [160] lists “lights-out” capability for latent

matching as one of its major objectives.

2.1.1 Manual Latent Matching

In manual matching of latent prints, latent fingerprint examiners usually follow the Analysis, Com-

parison, Evaluation and Verification (ACE-V) methodology [57]. This basically, is a four step

process:

1. Analysis: The preliminary step involves analyzing the latent image to ascertain if the latent

is of sufficient value for processing and manually marking features such as minutiae, ori-

entation field and ridge frequency. This is usually done by observing the latent image in

isolation.
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2. Comparison: This consists of comparing the latent image to the exemplar image in terms of

their features, and assessing the degree of similarity/dissimilarity between latent and exem-

plar.

3. Evaluation: The latent examiner determines the strength of the evidence between the latent

and exemplar based on the assessed degree of similarity/dissimilarity between the latent and

exemplar in the comparison step.

4. Verification: A second latent examiner independently evaluates the latent-exemplar pair to

validate the results of the first latent examiner.

The ACE-V procedure is a tedious and time consuming process for the latent examiner as

it may involve a large number of fingerprint comparisons between different exemplar fingerprint

pairs. For this reason, AFIS is used in the comparison step. Typically, a list of top K matching

candidates (with K generally being 50) is retrieved from the exemplar fingerprint database using a

latent matcher, which are then visually inspected by the latent examiner to ascertain the best match.

This results in one of the following five outcomes:

1. The latent examiner correctly matches the latent fingerprint to its true mated exemplar from

the candidate list.

2. The examiner erroneously matches the latent fingerprint to an exemplar fingerprint from the

candidate list (which is not the true mate).

3. The examiner correctly excludes an exemplar fingerprint from the candidate list (which is

not the true mate) to be the possible mate of the latent fingerprint.

4. The examiner erroneously excludes the true mated exemplar fingerprint of the latent finger-

print from the candidate list to be the possible mate of the latent.

5. The examiner deems the matching result to be inconclusive because he is unable to find any

candidate exemplar that is sufficiently similar to the latent print.
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Note that while outcome 2) is an erroneous match and outcome 4) an erroneous exclusion,

outcome 5) is a reject in the sense that the true mate does not exist in the reference database. The

proposed feedback based methodology is designed to minimize the occurrence of outcomes 2), 4)

and 5) by initially retrieving a much larger candidate list (e.g. N = 200) using the AFIS. Each of

these candidates is then viewed as the output of a coarse level match which can be used to refine the

features extracted from the latent images. The similarities of theseN candidates to the query latent

are then recomputed based on the refined latent features to re-rank the candidate list. The latent

examiner can then examine the top K candidates (K < N ) from this re-ranked list for determining

the strength of evidence between the latent and candidate exemplars during the evaluation step.

2.1.2 Bottom-up Latent Matching Systems

State-of-the-art latent matching systems [117], [93], [187], [166] are based on the classical bottom-

up matching strategy [87]. The bottom-up approach basically builds a system from several sub-

systems or components. In essence, there is a sequential “bottom-up” data flow from preprocessing

and feature extraction to matching and match score computation. However, the basic assumption

in bottom-up systems is that if all the individual sub-systems are functioning well, the system as

a whole would function well too [77]. In our opinion, this assumption does not hold good for

latent matching systems because the feature extraction sub-system does not work sufficiently well

for extracting features from operational latents due to the presence of different kinds of structural

noise in the latent image [74].

2.1.3 Proposed Top-Down Latent Matching Framework

On the other hand, the importance of a feedback mechanism between components or the “top-

down” data flow is well known [87]. Bottom-up and top-down approaches have been widely

used to model human perception system in cognitive science [103]. Oliver et. al [162] used

these strategies to develop a computer vision system for recognizing and modeling human inter-

actions. Top-down approaches or feedback mechanisms have been used for object detection and
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Figure 2.2 Illustrating the typical bottom-up data flow used in latent to exemplar matching systems.
The dotted line shows the feedback path (top-down data flow) in the proposed matching paradigm.

segmentation [161], [63] and for improving the decision making capabilities of artificial neural

networks [61].

In this chapter, we extend this idea of feedback to latent fingerprint matching by incorporating

a top-down data flow between the matching module and feature extraction module (see the dotted

line in Figure 2.2)3. We devise systemic ways to use information in exemplars for refining latent

features, e.g., ridge orientation and frequency, and use them to develop a feedback paradigm which

could be integrated into a latent matcher to improve its matching accuracy. Note that there is a

difference between the feedback approach used in manual latent matching [85] and the idea of

using feedback from exemplars for refining latent features proposed in this chapter. In manual

latent matching, the top-down information usually refers to the prior training, bias and the state of

mind of latent examiners which may influence the outcome of latent examination. The proposed

paradigm, however, uses feedback in the matching stage to refine the features extracted from the

latent images. This feedback is particularly useful because features extracted from the latent are

often unreliable due to their poor quality. In our opinion, matching latent images based on the

3Preliminary results of this research were published in proceedings of the International Conference on Biometrics
(ICB), 2013 [135]. Extended version with detailed analysis was published in IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 2014 [56].
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initially extracted set of features without any prior information (bottom-up mode) is prone to error.

Additional top-down information flow provided by feedback allows the matching system to use

the hypothesized exemplar mate to refine initially extracted features from the latent and improve

the matching accuracy.

Nevertheless, there are cases when the latent image is of good quality and reliable features can

be extracted in the bottom-up mode, making feedback unnecessary. To determine if feedback is

indeed needed for a latent query, we devise a global criterion based on the match score probability

distribution obtained by matching the latent to the topK candidate exemplars. For determining the

regions within the latent image which need feedback as well the regions of the exemplar which are

of sufficiently good quality to provide feedback, we use a local fingerprint quality metric.

To demonstrate the effectiveness of the proposed feedback based latent matching strategy, we

integrate the feedback paradigm with a state-of-the-art latent matcher [166] and conduct exper-

iments on two different latent databases (NIST SD27 [148] and WVU [150]). A marked im-

provement in matching accuracies is observed when using feedback from exemplars in the latent

matching process. Besides, there is only one latent query for which feedback is not provided when

it could have been useful. This demonstrates the efficacy of the proposed criterion to decide if

feedback is needed for a latent query.

2.2 Feedback Paradigm for Latent Matching

Let IL be the latent probe image and IR be an exemplar image from the reference database. Let

Θ be the set of features extracted from the fingerprint image. Here we denote the feature set

corresponding to the latent by ΘL and that of the exemplar image by ΘR. Typically, feature set ΘR

is pre-computed for each exemplar image. The bottom-up matching process involves matching the

two representations ΘL and ΘR and assigning the initial match score SimI (see Figure 2.2):

SimI = SI(Θ
L,ΘR). (2.1)
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Here SI is the similarity function used to generate the match score between the latent fingerprint

feature set ΘL and the exemplar feature set ΘR.

The top K candidate exemplars based on these similarities are retrieved from the reference

database. Feedback is then provided from the feature set ΘR of the candidate exemplar image to

refine the feature set ΘL initially computed from the latent image. The refined feature set denoted

by Θ̂L is computed using a function f of the initial feature set ΘL and the feedback information F

as follows:

Θ̂L = f(ΘL, F ). (2.2)

The feedback feature similarity SimF between Θ̂L and ΘR is then computed using the similarity

function SF as follows:

SimF = SF (Θ̂L,ΘR). (2.3)

Finally, the updated match score SimU is calculated from SimI and SimF using a match score

fusion operator ⊗:

SimU = SimI ⊗ SimF . (2.4)

2.3 Re-sorting Candidate List based on Feedback

The feedback based paradigm is applied for re-sorting the candidate list of top K candidate exem-

plars retrieved by a state-of-the-art latent matcher [166] (see Figure 2.3). The matcher in [166] is
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Figure 2.3 Re-sorting the candidate list using feedback. Note the refinement of latent features due
to feedback.

chosen because it is one of the best performing available latent matchers4 using minimal human in-

put (requires only marked minutiae for latents). This matcher is referred to as the baseline matcher

henceforth because it is used to match a latent to the reference database to generate the candidate

list.

The feedback implementation broadly consists of the following four steps (see Figures 2.4 and

2.5):

1. Initial Matching and Alignment: The baseline matcher is used to obtain the initial match

score, and to generate the minutiae correspondences between an input latent and an exemplar

image. The latent is then aligned to the exemplar image using the scaling, rotation and

translation parameters estimated based on the minutiae correspondences.

4While we have access to a commercial latent SDK, we were not able to use it in our experiments because the
SDK does not output minutiae correspondences between latent and exemplar. While some of the commercial tenprint
SDKs, such as Verifinger by Neurotechnology (http://www.neurotechnology.com/verifinger.html), provide minutiae
correspondence, they do not perform well for latent to exemplar matching since they were not designed for this
scenario.

44



2. Exemplar Feature Extraction: Exemplar image is divided into blocks of size 16 by 16. Ridge

orientation and frequency features are extracted within each block of the exemplar.

3. Latent Feature Extraction and Refinement: Latent image is divided into blocks of size 16

by 16. For each block in the latent, ridge orientation and frequency features correspond-

ing to peak points in the magnitude spectrum of the frequency domain are extracted. The

extracted features within each block are then refined based on the feedback from features

extracted in the corresponding exemplar block. Feedback consists of orientation differences

between each extracted ridge orientation in the latent block and the ridge orientation in the

corresponding exemplar block.

4. Match Score Computation: The similarity between the refined latent features and the exem-

plar features is used to compute an updated match score between the latent and the exemplar.

The candidate list is re-sorted based on the updated match scores between the latent and the re-

trieved exemplars returned by the baseline matcher.

2.3.1 Initial Matching and Alignment

Manually marked minutiae in the latent image and automatically extracted minutiae from the

exemplar image (using a commercial off-the-shelf (COTS) matcher) are fed as input to the

baseline matcher to obtain the initial match score SimI and a list of matched minutiae.5 Let

ML = {(xLi , yLi , θLi )|i = 1, 2, · · · , P} represent the list of matched minutiae for the latent and

MR = {(xRi , yRi , θRi )|i = 1, 2, · · · , P} represent the list of corresponding matched minutiae for

the exemplar, where (x, y) are the coordinate values, θ is the direction of minutia and P is the

number of matched minutiae pairs.

5Feeding the baseline matcher used in our experiment with automatically extracted minutiae from latents either
does not generate any minutiae correspondences or generates a number of false minutiae correspondences. This
degrades the alignment of the latent-exemplar pair and results in improper feedback. However, this paradigm can
be used in the “lights-out” identification mode, provided the baseline matcher does not produce many false minutiae
correspondences and the latent-exemplar pair can be well aligned.
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Figure 2.4 Major steps involved in latent fingerprint matching using feedback from exemplar.
Shown in yellow is a pair of corresponding latent and exemplar blocks.

Depending on the number of matched minutiae pairs P , the transformation T for aligning the

latent to the exemplar is estimated differently:

Case I (P ≥ 2): The transformation T (x, y; a, b, tx, ty) is estimated by solving the following set of

equations:

xRi
yRi

 =

a −b
b a


xLi
yLi

+

tx
ty

 , i = 1, 2, · · · , P. (2.5)
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Here, a = s cos ∆θ and b = s sin ∆θ, where s is the scale parameter and ∆θ is the rotation angle,

and tx and ty are the translation parameters. This system of linear equations can be solved by

minimizing the least square error.

Now, given the coordinates (xL, yL) of any point in the latent image, its transformed coor-

dinates (xR, yR) in the exemplar coordinate system can be obtained by using the transformation

T : xR
yR

 =

a −b
b a


xL
yL

+

tx
ty

 . (2.6)

Case II (P = 1): If only one pair of matched minutiae is available, the transformation function is

estimated by utilizing both the minutiae location and direction. Let (xL1 , y
L
1 , θ

L
1 ) and (xR1 , y

R
1 , θ

R
1 )

be the matching pair of minutiae in the latent and exemplar, respectively. The rotation angle from

latent to exemplar is then estimated by:

∆θ = θR1 − θL1 . (2.7)

Given a point (xL, yL) in the latent, its transformed coordinates (xR, yR) in the exemplar coordinate

system can be calculated by using the transformation T :

xR
yR

 =

cos ∆θ − sin ∆θ

sin ∆θ cos ∆θ


xL − xL1
yL − yL1

+

xR1
yR1

 . (2.8)

Note that this transformation does not include any scaling factor because it cannot be estimated

based on just a single pair of matched minutiae.

To summarize, translation, scaling and rotation parameters for aligning the latent and the ex-

emplar are estimated based on the matched minutiae pairs. The transformation is then used to align

the two images.
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Figure 2.5 Major steps involved in latent fingerprint matching using feedback from exemplar. The
refined latent features illustrated in (b) are used to rematch the latent to the exemplar and re-sort
the candidate list. Shown in yellow is a pair of corresponding latent and exemplar blocks.
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2.3.2 Exemplar Feature Extraction

Two different types of local features are computed for the exemplar image, namely ridge orien-

tation and ridge frequency. Given an exemplar image IR, its ridge skeleton image IRsk is first

extracted using a COTS matcher. The skeleton image is then divided into 16 by 16 pixel blocks.

Ridge orientation and ridge frequency are then computed for each block IRB in the skeleton image

IRsk.

2.3.3 Latent Feature Extraction and Refinement

The level one features (e.g. ridge orientation and ridge frequency) in the latent image are difficult

to extract because of the presence of structured noise in the background. Local Fourier analysis is

used for this purpose because it has been shown to be resilient to complex background noise [116],

[187].

Similar to the exemplar image, the latent image IL is first divided into 16 by 16 blocks. For

each block ILB in the region of interest (ROI) of the latent, the local ridge orientation and ridge

frequency features are obtained as follows:

1. A 32×32 sub-image ILB′ centered at the block ILB is extracted and convolved with a Gaussian

filter of the same size with σ = 16.

2. The sub-image ILB′ is padded with zeros on the borders to get a 64 × 64 image ILB′′ . This is

done to increase the number of sampling points in the discrete Fourier domain.

3. Fast Fourier Transform (FFT) is applied to the padded sub-image ILB′′ . For each peak (u, v) in

the magnitude spectrum image, the corresponding orientation α and frequency f is computed

by:

αL = arctan
(u
v

)
, (2.9)
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fL =
√

(u2 + v2)/64. (2.10)

4. A set of L peak points H = {(ui, vi)|i = 1, 2, · · · , L} of highest magnitude values, and

with frequency value satisfying 1
16
< f < 13

64
, is selected. Note that L is set to 4 in our

implementation.

5. The (x, y) coordinates of the central pixel in the block ILB are then transformed to the ex-

emplar coordinate system using the transformation function T estimated previously. Let the

transformed coordinates of that pixel be represented as (x′, y′).

6. Let αR be the corresponding ridge orientation of the block containing the pixel (x′, y′) in

the exemplar image. The peak point l (from the set H) corresponding to the closest ridge

orientation to αR from amongst the ridge orientations αLi , is then selected as follows:

l = arg min
i
ϕ(αLi + ∆θ, αR), (2.11)

where 1 ≤ i ≤ L and

ϕ(α, β) =

 |α− β|, if |α− β| < 90,

180− |α− β|, otherwise .
(2.12)

Here, ϕ(α, β) is the function to determine the difference between ridge orientations α and β

and ∆θ is the rotation angle used to align the two ridge orientations α and β.

7. The ridge orientation and ridge frequency values corresponding to the selected peak point

(ul, vl) are then chosen as the refined ridge orientation and ridge frequency features for the

block ILB in latent image.

Note that the refined ridge orientation and ridge frequency features are selected based on the ex-

emplar features, and this essentially constitutes the top-down information flow or feedback from

the exemplar.
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2.3.4 Match Score Computation

The functions to compute the similarity between the exemplar features and the refined latent fea-

tures after feedback should result in improved similarity between mated latent-exemplar pairs.

Thus, the similarity function should be based on the underlying distribution of feature differences

obtained from genuine latent-exemplar matches. Assume that the orientation and frequency differ-

ences between the refined latent features and exemplar features within each block are independent

and identically distributed. To learn the characteristics of the genuine distribution model, 50 mated

latent-exemplar pairs from the NIST SD27 [148] and WVU database [150] are randomly sampled

to estimate the distributions. We observe that the genuine distribution of orientation differences

approximately follows a cosine curve whereas that of ridge frequency differences approximates

an exponential curve; cosine and exponential functions are hence used for computing feedback

orientation and frequency similarities, respectively.

For computing the feedback ridge orientation and frequency similarities, the overlapping region

between the latent and exemplar is first determined using the transformation function T . Within

the overlapping region, the ridge orientation and ridge frequency similarities Simα and Simf are

then computed as:

Simα =
1

Num

Num∑
i=1

cos

(
−ϕ(αLi + ∆θ, αRi )

µα

)
, (2.13)

Simf =
1

Num

Num∑
i=1

exp

−
∣∣∣ 1
fLi
− 1

fRi

∣∣∣
µf

 , (2.14)

Num ≥ Nummin,

where Num is the number of overlapping blocks; Nummin is a threshold on the minimum number

of blocks needed in the overlapping region and is set to 10 in our experiments; αLi and αRi are the

ridge orientations and fLi and fRi are the ridge frequencies of the ith overlapping block from the

latent and exemplar, respectively; µα and µf are two normalization parameters which are empiri-

cally set to 12 and 8, respectively. The initial match score SimI is first normalized using min-max
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score normalization [121], and the orientation and frequency similarities Simα and Simf are then

combined with the normalized initial match score SimNI based on product fusion to obtain the

updated match score SimU as follows:

SimU = SimNI × Simα × Simf . (2.15)

2.4 The Adequacy of Feedback

Although feedback from exemplars can be used to refine latent features, the feedback may not

be necessary when the latent is of sufficient good quality such that its features can be reliably

extracted. Bottom-up latent to exemplar matching may suffice for such cases and feedback may

not add any value to the latent matching process. Clearly, it would be useful to have an objective

criterion to ascertain if feedback can potentially improve the matching accuracy for each latent

query. Besides, since feedback is applied within each block in the latent, decision to apply feedback

can also be made locally at the block level. To determine the need for feedback, we design a global

criterion based on the match score distribution (of the top K match scores returned by the baseline

latent matcher), and a local criterion based on the local quality of the latent-exemplar pair being

matched.

2.4.1 Global Criterion

We design a simple criterion to decide whether feedback is needed for a particular latent query

based on the probability distribution of the top K match scores returned by the baseline matcher.

2.4.1.1 Modelling the Match Score Distribution

This distribution is based on the similarity function used in the baseline matcher. The latent

matcher used in our experiments [166] uses an exponential similarity function, so we use the ex-

ponential distribution to model the probability distribution of match scores. Alternately, we could
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Figure 2.6 Exemplifying the global criterion for feedback: (a) match score distribution for a par-
ticular latent query without an upper outlier, and (b) with an upper outlier present (marked in red).
Feedback is needed in case (a), but not needed in (b).

estimate the probability densities using the match score histogram, and then fit a parametric distri-

bution to the histogram. To measure the goodness of fit of the exponential distribution model in our

case, we used the chi-square goodness of fit test [133]. For this, we randomly sampled 40 latent

images from the NIST SD27 database [148], and then tested the goodness of fit of the exponential

distribution on the set of top K match scores generated by the matcher for each latent.

2.4.1.2 Test for the presence of an upper outlier

We observe that if the true mated exemplar print is indeed retrieved at rank-1 by the baseline latent

matcher operating in bottom-up mode, then there is a sizeable difference between the rank-1 and

other match scores. In other words, the rank-1 match score is an upper outlier in the probability

distribution of the top K match scores. Thus, the problem of determining whether feedback is

needed or not becomes equivalent to the problem of detecting whether an upper outlier exists in

the match score distribution (see Figure 2.6).

We now describe a hypothesis test for detecting the presence of an upper outlier for exponential

density used here [132] and its usage in determining the need for feedback.
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The pdf of the exponential distribution with scale parameter λ is given by

f(x) =
1

λ
e−

x
λ ; x > 0; λ > 0. (2.16)

Let X = {X1, X2, ..., Xn} be an independent and identically distributed (i.i.d) random sample

of size n generated from an exponential distribution given by Eqn. (2.16), and X(1), X(2), ..., X(n)

be the corresponding order statistics. Order statistics are the sample values in the order of their

magnitude with X(1) < X(2) · · · < X(n). In our case, X pertains to the set of top K match scores,

X(1) is the match score obtained by matching the latent to the Kth candidate exemplar, and X(n) is

the match score generated on matching the latent to the 1st candidate exemplar.

To test for the upper outlier, the null hypothesis H0 and the alternative hypothesis H1 are

defined as:

H0: All observations in the set X are i.i.d from the exponential distribution.

H1: Maximum match score is an upper outlier of the match score distribution.

The test statistic Z for testing the hypothesis is defined as:

Z =
X(n) −X(n−1)

Sn
; Sn =

n∑
i=1

Xi. (2.17)

To determine the critical value for the test, we obtain the distribution of the test statistic Z under

the null hypothesis H0. The sum Sn of n i.i.d. exponential random variables in the set X with a

fixed scale parameter λ defined in Eqn. (2.18) follows a gamma distribution with shape parameter

n and scale parameter λ [70]:

g(s, n, λ) =
1

λn
1

τ(n)
sn−1e−

s
λ . (2.18)

Here, τ(n) is the gamma function. The test statistic Z can be viewed as the difference of two

random variables Z1 and Z2 where Z1 = X(n)/Sn and Z2 = X(n−1)/Sn. Each of these random
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variables Z1 and Z2 follows a beta distribution with shape parameters 1 and n − 1; the joint

distribution of Z1 and Z2 [134] is then given by:

h(z1, z2) = n(n− 1)(n− 2)2
{

(1− z1 − z2)n−3

−
(
n− 2

1

)
(1− z1 − 2z2)

n−3

+

(
n− 2

2

)
(1− z1 − 3z2)

n−3

− · · ·+ (−1)t−1
(
n− 2

t− 1

)
(1− z1 − tz2)n−3

}
.

(2.19)

Here t = (1− z1)/z2, (z1 + z2) < 1, z1 + (n− 1)z2 > 1, z1 > z2. Now, the density of Z can be

computed using a bivariate transformation on the joint density of Z1 and Z2 [132] (Eqn. (2.19)):

m(z) =
n(n− 1)2

nn−2

{
(n− 2)n−2

2
−
(
n− 2

1

)
(n− 3)n−2

3

+ · · ·+ (−1)n−3
(
n− 2

n− 3

)
1

n− 1

}
(1− z)n−2.

(2.20)

Here 0 < z < 1. The probability of the test statistic Z being greater than the critical value z(α) at

significance level α can be obtained from Eqn. (2.20) as follows:

P [Z > z(α)|H0] =

1∫
z(α)

m(z) = (1− z(α))n−1 = α. (2.21)

Thus, the critical value z(α) is:

z(α) = 1− α
1

n−1 . (2.22)

For X(n) to be the outlier, the realized value of the test statistic Z = z should be greater than the

critical value z(α). For the global criterion for feedback, we define an indicator random variable

IF which takes the value 1 when feedback is needed and 0, if it is not needed:
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IF =


0, z > z(α),

1, otherwise
(2.23)

(a) (b) (c)

(d) (e) (f)

Figure 2.7 Exemplifying the local criterion for feedback: (a) a latent image, (b) its ridge clarity
map and (c) regions which need feedback (shown in grey); (d) an exemplar image, (e) its ridge
clarity map and (f) regions which are reliable for providing feedback (shown in white).

2.4.2 Local Criterion

Even though feedback may be potentially useful for a particular latent query, there may be some

good quality regions within the latent image which do not require feedback. Besides, the exemplar

print region from where feedback is being taken may be of poor quality which may not be reliable
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for feedback. For deciding whether feedback is needed locally, we use the local fingerprint quality

metric proposed in [190] called the Ridge Clarity. While this metric was proposed for latent im-

ages, we find that it is appropriate for estimating the local quality of exemplar fingerprints (Figure

2.7).

The computation of ridge clarity for an image I involves the following four steps:

1. Contrast Enhancement: Obtain the contrast-enhanced image IC [94]:

IC = sign(I − IS)× log(1 + |I − IS|) (2.24)

Here, IS is the image obtained using a 15 x 15 averaging filter on I , and sign(x) is the

signum function which outputs 1 if x > 0 and 0 otherwise.

2. Frequency Domain Analysis: The contrast-enhanced image IC is divided into blocks of size

16 x 16, and a 32 x 32 subimage IC(x, y) is obtained around the center (x, y) of each block.

IC(x, y) is then padded with zeros to obtain a 64 x 64 subimage I∗C(x, y). This subim-

age I∗C(x, y) is transformed into the frequency domain to obtain F ∗C(s, t). Two peak points

(s1, t1) and (s2, t2) corresponding to the two local amplitude maxima within frequency range

[0.0625, 0.2] in F ∗C(s, t) are then selected [116]. The 2-D sine wave wi(p, q) at the ith peak

point in F ∗C(s, t); i = {1, 2} with amplitude ai, frequency fi, angle θi and phase φi is given

by:

wi(p, q) = ai sin(2πfi(cos(θi)p+ sin(θi)q) + φi), (2.25)

where

ai = |F ∗C(si, ti)|, fi =

√
s2i + t2i
64

,
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θi = arctan

(
si
ti

)
, φi = arctan

[
Im(F ∗C(si, ti))

Re(F ∗C(si, ti))

]
.

3. Ridge Continuity Map Computation: Two neighbouring blocks b1 and b2 are said to be con-

tinuous if the following conditions hold for their corresponding sine waves bw1 and bw2:

min{|bθ1, bθ2|, π − |bθ1, bθ2|} ≤ Tbθ,

∣∣∣∣ 1

bf1
− 1

bf2

∣∣∣∣ ≤ Tbf ,

1

16

∑
{p,q∈ψ}

∣∣∣∣bw1(p, q)

ba1
− bw2(p, q)

ba2

∣∣∣∣ ≤ Tbp. (2.26)

Here, Tbθ , Tbf , Tbp are constants set to π/10, 3 and 0.6, respectively, and ψ refers to the set of

16 pixels which lie on the border of two neighbouring blocks. Define an indicator function

Ifc for ridge continuity as:

Ifc =


1, sw1 and sw2 are continuous,

0, otherwise.
(2.27)

The ridge continuity map Rcont is then computed as:

Rcont[p, q] =
∑

[p∗,q∗∈N ]

max{Ifc(w1(p, q), w1(p∗, q∗)),

Ifc(w2(p, q), w2(p∗, q∗))}

(2.28)
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4. Ridge Clarity Map Computation: Finally, the ridge clarity for each block centered at [p, q]

can be computed by taking the product of the amplitude with the ridge continuity map as

follows:

Rclar[p, q] = a1(p, q)×Rcont[p, q]. (2.29)

To determine the regions within each latent image IL which need feedback, we apply a

threshold th1 on the local ridge clarity value. Let us define an indicator random variable

ILF for each block centered at [p, q] which equals 1 for latent regions which need feedback

(Figure 2.7c):

ILF =


1, IL(Rclar[p, q]) > th1,

0, otherwise.
(2.30)

Similarly, to decide the regions within each exemplar IR which can provide feedback we use

a threshold th2 on the local ridge clarity value. Let us define an indicator function IRF for

each block centered at [p, q] which takes the value 1 in exemplar regions which can provide

feedback (Figure 2.7f):

IRF =


1, IR(Rclar[p, q]) > th2,

0, otherwise.
(2.31)

Different values of the thresholds th1 and th2 were tested, and they are empirically set to 0.1

and 0.9, respectively.
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(a) (b)

(c) (d)

Figure 2.8 Sample latent images from (a) NIST SD27 and (c) WVU latent databases. Their mated
exemplars are shown in (b) and (d), respectively.

2.5 Experimental Evaluation

2.5.1 Databases

The proposed feedback paradigm was evaluated on two different latent fingerprint databases, NIST

SD27 [148] and WVU [150]. To increase the size of the reference database, we included 27,000

rolled fingerprint images from NIST SD14 [147] database and 68,002 rolled images provided by

the Michigan State Police. So, the reference database consisted of 100,000 rolled fingerprints.
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Figure 2.9 Performance of the baseline latent matcher on the two latent databases against a refer-
ence database of 100,000 exemplars.

2.5.1.1 NIST SD 27

NIST SD27 database contains 258 latent images as well as their corresponding exemplar images

from operational cases. The latent images in NIST SD27 have good contrast but contain complex

background noise (Figure 2.8 (a)). The resolution of each image is 500 ppi.

2.5.1.2 WVU

The WVU database was collected in a laboratory environment at West Virginia University. It

includes 449 latent images and 4,740 exemplar images out of which 449 exemplars are the true

mates of the latents. The original resolution of each fingerprint image in the WVU database is

1000ppi but it was downsampled to 500ppi for our experiments. The latent images in this database

have relatively clean background, but poor image contrast as compared to latents in NIST SD27

(Figure 2.8 (c)).
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Table 2.1 The total number of latents where (a) feedback is applied, (b) feedback is applied when it
is not needed (mated examplar retrieved at rank-1 by the baseline matcher), and (c) feedback is not
applied when it could have been useful (mated exemplar returned amongst the top 200 candidates
but not at rank-1 by the baseline matcher) based on the global criterion for feedback (at significance
level = 0.05).

Database
# Latents for which

feedback applied
# Latents where feedback

applied but not needed
# Latents where feedback

not applied but needed

NIST SD27

(258 latents)
172 1 1

WVU

(449 latents)
254 12 0

2.5.2 Size of the Candidate List (K)

One of the critical parameters while applying the paradigm is the length of the candidate list K.

While choosing a large value of K would improve the odds of the mated exemplar being retrieved

in the candidate list, it would also take more time to re-sort the candidate list. To find the optimal

value of K, we plot the Cumulative Match Characteristics (CMC) curves of the baseline matchers

used in our experiments (Figure 2.9). We can see that the performance gain stabilizes by rank 200.

So, to optimize both accuracy and speed, the value of K is set to 200.

2.5.3 Effectiveness of the Global Criterion for Feedback

Applying feedback to a latent when it is not needed adds computational complexity without im-

proving the accuracy. The global criterion for feedback obviates the need for feedback in about

86 out of 258 latent queries for the NIST SD27 database and in about 195 out of 449 cases for

the WVU database at significance level of 0.05. Table 2.1 lists the number of latent queries for

which (i) feedback is applied even when the mated exemplar is retrieved at rank-1 by the baseline

matcher [166], and (ii) feedback is not applied when the mated exemplar is not retrieved at rank-1

(but is amongst the top 200 candidates returned by the baseline matcher [166]). The low number of

such cases demonstrate the efficacy of the proposed criterion in determining the need for feedback.
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Figure 2.10 Performance of the baseline matcher with and without ridge orientation and frequency
feedback on (a) NIST SD27 and (b) WVU latent database (against a reference database of 100,000
exemplars).
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(a)

(b)

Figure 2.11 Genuine and impostor similarity score distributions (scaled to the same similarity
score range) for the NIST SD27 database (a) before and (b) after applying feedback using the
top 200 candidates retrieved by the baseline matcher (against a reference database of 100,000
exemplars). The overlap between the genuine and the impostor score distributions reduces by
˜25% after applying feedback.
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(a) Latent 1 from NIST SD27 (b) Mated Exemplar of (a)

(c) Initial Orientation Field (d) Refined Orientation Field

Figure 2.12 Successful latent feature refinement via feedback for a latent in the NIST SD27
database. Shown in red is the exemplar orientation field and in blue is the initial and refined latent
orientation field in (c) and (d), respectively. Note that the refined latent orientation field is closer
to the exemplar orientation field compared to the initial latent orientation field. The rank of the
mated exemplar of the latent in (a) improved from 49 to 16 amongst the 200 candidate exemplars
returned by the baseline matcher after feedback.

2.5.4 Performance on NIST SD27 Database

The Cumulative Match Characteristics (CMC) curves shown in Figure 2.10a illustrate the perfor-

mance of the baseline matcher [166] with and without feedback on the NIST SD27 database. Us-

ing the proposed ridge orientation and frequency feedback to refine the latent features improves the

rank-1 identification accuracy improves by around 3.5%. Consistent accuracy improvement for all

ranks is also observed. Figure 2.11 shows the genuine and impostor similarity score distributions

before and after applying feedback. The overlap between the genuine and impostor distributions

decreases by approx. 25% after applying feedback. Figures 2.12 and 2.13 shows two latents for
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(a) Latent 2 from NIST SD27 (b) Mated Exemplar of (a)

(c) Initial Orientation Field (d) Refined Orientation Field

Figure 2.13 Successful latent feature refinement via feedback for a latent in the NIST SD27
database. Shown in red is the exemplar orientation field and in blue is the initial and refined
orientation field in (c) and (d), respectively. Note that the refined latent orientation field is closer to
the exemplar orientation field compared to the initial latent orientation field. The rank of the mated
exemplar of the latent (a) improved from 20 to 8 amongst the 200 candidate exemplars returned by
the baseline matcher after feedback.

which the retrieval rank of the mated print is improved by applying ridge orientation and frequency

feedback for the latent matcher in [166].

2.5.5 Performance on WVU Database

The Cumulative Match Characteristics curves (Figure 2.10b) for the WVU database also demon-

strate the advantage of using the proposed feedback framework with the baseline matcher. Al-

though there is a marginal decrease in the rank-1 identification accuracy, it is offset by the perfor-

mance improvement of about 1-1.5% for the higher ranks. Note that the improvement is smaller
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(a) Latent 1 from WVU (b) Impostor Exemplar

(c) Initial Orientation Field (d) Refined Orientation Field

Figure 2.14 Failure of feedback for a latent in the WVU database. Shown in red is the exemplar
orientation field and in blue is the initial and refined orientation field in (c) and (d), respectively.
The refined latent orientation field is closer to the exemplar orientation field compared to the initial
latent orientation field. However, the retrieval rank of the mated exemplar degraded from 16 to 49
amongst the 200 candidate exemplars returned by the baseline matcher after feedback.
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as compared to NIST SD27 because the contrast of latents in WVU is, in general, poor making

it difficult to extract level one features in the frequency domain. Figure 2.14 shows an example

where the retrieval rank of the mated print degrades after feedback for a latent.

The matching performance generally degrades when (i) the ridge structure of the impostor is

similar to latent and (ii) the impostor exemplar is of better quality as compared to the true mate

resulting in better quality features being extracted from the impostor.

2.5.6 Computational Complexity

The current implementation of the feedback paradigm uses local ridge orientation and ridge fre-

quency features extracted at multiple peak points in the frequency representation of the latent

image. To reduce the computational complexity, these features are computed only once for each

query, and then used in matching against all exemplar candidates. Since the feedback mechanism

does not involve the entire exemplar database but is used only to re-rank the top K candidates

returned by the baseline matcher, the algorithmic complexity of the algorithm is O(K).

The algorithm has been implemented in MATLAB and runs on a desktop system with

Intel R©CoreTM2 Duo CPU of 2.93 GHz and 4.00 GB of RAM with Windows 7 Operating sys-

tem. For the NIST SD27 database, the average time to extract local orientation and frequency

features for a latent is about 0.74 sec and the average time to match a latent against the top 200

candidates is about 4 sec. The extra computational cost incurred in matching the latent is worth

the improvement in performance, especially in forensic applications which demand high latent

matching accuracy.

2.6 Conclusions

Given the relatively poor quality of operational latent fingerprint images, feature extraction is one

of the major challenges for a latent matching system. To deal with complex background noise in

the latent, we propose incorporating feedback from exemplar (rolled or plain fingerprint) to refine
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feature extraction in latent with the eventual goal of improving the latent matching accuracy. We

devise a method to use exemplar features (ridge orientation and frequency) for refining the latent

features and then develop a feedback paradigm to use the refined latent features to re-sort the

candidate list returned by a latent matcher. Experimental results show 0.5-3.5% improvement in

the latent matching accuracy using the feedback mechanism. We also propose a global criterion to

decide if feedback is needed for a latent query. A local quality based criterion is used to determine

the regions in latent where it should be applied if needed and to identify reliable regions in exemplar

for providing feedback.
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Chapter 3

Crowd Powered Latent Fingerprint

Matching: Fusing AFIS with Examiner

Markups

3.1 Introduction

In the previous chapter, we presented a framework to improve the performance of automatic latent

matching. Still, latent matching is an extremely difficult problem, particularly when the qual-

ity or information content of latents is inadequate. Most forensic agencies, therefore, follow a

semi-automatic latent matching process, where a fingerprint examiner marks features on a latent,

submits a query (image plus markup) to an AFIS, and subsequently reviews the top-K (usually K

= 20 to 50) retrievals from the database to determine if the latent hit against a reference print. Al-

though the practice of obtaining markups from fingerprint examiners increases the overall chances

of obtaining a hit from the database [108], inaccurate feature markups can lead to mated reference

prints being retrieved at a lower rank in the candidate list. This can, in turn, adversely impact the

examiner decision process [86] [181]. The goal of this research is to harness the combined exper-
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(a) (b)

Figure 3.1 Two markups (by two different examiners) for a latent image from 1000 ppi ELFT-EFS
database. A state-of-the-art AFIS was unable to make a hit for the latent image in lights-out mode
(score of 0 with the true mate in the reference database). However, feeding the AFIS with the
markups shown in (a) and (b) resulted in the mated print being retrieved at rank-1 and rank-129,
respectively.

tise of multiple fingerprint examiners and the AFIS to increase the likelihood of obtaining a hit at

a higher rank from the reference database.

3.1.1 Semi-automatic Latent Matching: Advantages and Disadvantages

The NIST Evaluation of Latent Fingerprint Technologies, Extended Feature Sets (ELFT-EFS) 2

[108] reported that the likelihood of finding a hit in the reference database improves when an AFIS

is provided with a markup1(see Figure 3.1). The identification accuracy of the best AFIS operating

in the lights-out mode2 is reported to be 67.2% in identifying 1,066 latent prints against reference

prints from 100,000 subjects. However, the above accuracy improves to 70.2% when the AFIS is

fed with both the latent image and the extended feature set (EFS) markup provided by NIST.

The above performance gain, however, depends on the precision of the markup being fed to

the AFIS [109]. Imprecise markups can result in the mated reference print being returned at a

lower rank amongst the retrieved candidates [86] [181] compared to the image alone being fed to

1Markup, in this chapter, refers to the latent image with features marked by a fingerprint examiner.
2In the lights-out mode, AFIS automatically extracts features and compares the latent to the reference prints,

without any human intervention.
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the AFIS. Furthermore, markups for the same latent by different examiners can differ significantly

and, consequently, different markups may lead to difference in identification performance of the

AFIS (see Figure 3.1).

3.1.2 Proposed Crowd Powered Latent Matching Framework

To overcome the aforementioned limitations, we propose a latent matching framework where the

AFIS and latent examiners3 operate in synergy to improve the latent matching accuracy4. In this

framework, a latent is first submitted to the AFIS to be matched in the lights-out mode. Based

on the output of the AFIS, the likelihood that the AFIS hit against a reference print at rank-1 is

determined using a variant of the criterion described in [56]. If the likelihood of the AFIS making

a hit at rank-1 is low, the latent is crowdsourced to a pool of latent examiners for marking features.

In this manner, the collective “wisdom” of several latent examiners is utilized to obtain multiple

markups for a latent only when required. The manual markups are then used in conjunction with

the AFIS for improving the latent matching accuracy.

The proposed framework is based on the conjecture that combining markups obtained from

different examiners with the automated encoding of the AFIS can benefit the identification perfor-

mance of the AFIS. The conjecture stems from the classic pattern recognition theory that a group

of experts with diverse and complementary skills can collectively solve a difficult problem, on

average, better than each individual expert [83] [100]. Each latent examiner, as well as the AFIS,

can be viewed as an expert for latent markup. Because manual markups obtained from differ-

ent latent examiners lead to different candidate lists being retrieved by the AFIS, their expertise is

rather diverse. Thus, a combination of AFIS with examiner markups should boost the identification

performance of the AFIS.

State-of-the-art AFIS typically generate multiple templates (encodings) from an input latent.

These templates are then individually compared with the reference prints and the resulting compar-

3The term latent examiner is used to refer to a fingerprint examiner who is trained to analyze and compare latent
prints.

4This work was published in the proceedings of the International Conference on Biometrics (ICB), 2015 [52].
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ison scores are combined to generate a single candidate list. Our method can be viewed analogous

to generating multiple templates, albeit based on feature markup by multiple latent examiners, and

fusing them with the multiple templates internally generated by an AFIS.

To evaluate the proposed framework, we crowdsourced markups for the NIST Special Database

27 (NIST SD27) latents [18] to six certified latent print examiners affiliated to Michigan State

Police. We also conduct experiments using two individual markups provided in the ELFT-EFS

public challenge database [6] and one individual markup provided in the RS&A database [24].

We compute the efficacy of the proposed criterion to compute the likelihood that the AFIS makes

a hit for the latent at rank-1. The proposed criterion is able to reduce the number of latents that

need to be crowdsourced for manual markup from 258 to 151 for NIST SD27, from 255 to 151

for ELFT-EFS database, and from 200 to 35 for RS&A database without impacting the overall hit

rate. Our experimental results on a reference database of 250,000 rolled prints show that by fusing

the scores from lights-out comparison with the scores obtained using the examiner markups, the

rank-1 identification accuracy of the AFIS improves by 7.75% on 500 ppi NIST SD27 (using six

markups), by 11.37% on 1000 ppi ELFT-EFS database (using two markups), and by 2.5% on 1000

ppi RS&A database. Our experimental results indicate that markups obtained from different latent

examiners contain complementary information which, in turn, helps to boost the identification

performance of an AFIS.

The contributions of this chapter are:

• A systemic way to combine the AFIS with examiner markups to boost the latent hit rate,

• A crowd powered latent matching framework where a latent is crowdsourced to a pool of

examiners for obtaining multiple markups,

• A criterion to automatically determine when crowdsourcing is required, and

• A method to dynamically determine how many crowd experts are needed.
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3.2 Collective Wisdom of Multiple Examiners

Harnessing the “collective wisdom” of the crowd is a commonly used methodology for perform-

ing relatively simple tasks (e.g., image labeling, product recommendations). For instance, recom-

mendation systems in Netflix5 and Amazon6 use the collective preferences of a large number of

customers when recommending movies or products to a specific customer. Expert crowdsourcing

is another concept which has recently gained prominence [168] [191]. This involves dynamically

assembling a team of expert crowd workers for accomplishing specialized tasks. We extend these

concepts to latent fingerprint matching in the following manner.

Given a latent, an AFIS operating in lights-out mode is first used to compare it to reference

prints in the background database. Based on the score distribution of the top-K candidate matches

output by the AFIS, we ascertain whether manual markup is needed to boost the identification

performance. If it is determined that manual markup is needed, the latent markup is crowdsourced

to a pool of latent examiners. The obtained markups are input to AFIS individually to generate

multiple scores for each reference print in the database. These individual markup and lights-out

scores are then fused to boost the identification accuracy of the AFIS7 (see Figure 3.2).

3.2.1 Expert crowdsourcing framework

Let a query latent image be denoted by IL, and the set of reference print images in the database be

denoted by IR. Let the total number of reference prints in the database be N , and the ith reference

print be denoted by IR(i). The latent IL is compared against the set of reference prints IR using an

AFIS operating in lights-out mode to generate a set of similarity scores SLO:

SLO(i) = S(IL, IR(i));∀i = {1, 2, . . . N}. (3.1)

5http://www.netflix.com
6http://www.amazon.com/
7Rank-level fusion was also investigated for fusing the lights-out identification results with the identification results

obtained for different markups. However, score-level fusion outperformed rank-level fusion in our experiments.
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Figure 3.2 The proposed crowd powered latent fingerprint matching framework. (a) Latent is fed
to an AFIS, (b) it is determined whether manual markup is needed, (c) markups are obtained via
expert crowdsourcing, (d) multiple markups are fed to the AFIS, and (e) AFIS scores in (b) are
fused with the multiple markup scores in (d).

where S(IL, IR(i)) is the similarity between IL and IR(i) output by the AFIS.

A parametric probability distribution model is fit to the distribution of the top-K scores from

the set SLO, and a variant of the method described in [56] is used to ascertain whether manual

markup is required (see Section 3.2.2). If it is determined that manual markup is not required,

the set of top-K candidates and their corresponding scores are directly output for validation by a

latent examiner. Otherwise, the latent image IL is crowdsourced to a pool of latent examiners for

providing manual markups.

Let P be the number of examiners that provide manual markups. Denote these markups as IM ,

where the jth markup is IM(j). Each of the P markups are individually input to the AFIS to obtain

similarity scores against the set of reference prints IR,
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SMj(i) = S(IM(j), IR(i)); (3.2)

∀j = {1, 2, . . . , P}, ∀i = {1, 2, . . . , N}.

Here SMj(i) denotes the similarity score by comparing the jth latent markup to the ith reference

print. Finally, we fuse the lights-out scores SLO with the similarity score of each markup SMj for

every reference print to obtain a combined score SF ,

SM(i) = ⊗{SMj(i)}, (3.3)

∀j = {1, 2, . . . , P}, ∀i = {1, 2, . . . , N};

SF (i) = SLO(i)⊗ SM(i);∀i = {1, 2, . . . , N}. (3.4)

Here, ⊗ is the score fusion operator, and SM denotes the score obtained by fusing the scores of the

P different markups. The top-K fused scores from the set SF , and the corresponding candidates

based on the fused scores are then output to the latent examiner for evaluation.

3.2.2 When to crowdsource?

Although expert crowdsourcing has its advantages, crowdsourcing every latent to a pool of latent

examiners is costly in terms of time and effort. If it can be established that the likelihood of AFIS

making a hit at rank-1, for a given latent, is fairly high, then expert crowdsourcing is not utilized

for that latent. While latent quality can be an indicator of this likelihood, to our knowledge, there

is no existing satisfactory indicator of latent quality [186]. Therefore, we base our decision on the

order statistic of the top-K candidate scores returned by the AFIS [56].

Let the set of top-K scores returned by the the AFIS be denoted as X = {X(1), X(2), . . . X(K)}

where X(i) denotes the rank-i score. An exponential distribution model is fit to the set X . A hy-
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pothesis test is conducted to determine whether there is an upper outlier present in the distribution

of the top-K scores. The null hypothesis (H0) and the alternative hypothesis (H1) are defined as

follows:

H0: All scores in the set X are i.i.d from an exponential distribution.

H1: Rank-1 score X(1) is an upper outlier of the score distribution.

The test statistic Z for testing H0 against H1 is defined as:

Z =
X(1) −X(2)

SK
; SK =

K∑
i=1

X(i). (3.5)

The critical value of the test z(α) at significance level α is:

z(α) = 1− α
1

K−1 . (3.6)

The value of the test statistic Z = z should be greater than the critical value z(α) when rank-1

score X(1) is an outlier. Thus, we define an indicator random variable IC which takes the value 1

when expert crowdsourcing is needed, and 0 when it is not needed:

IC =


0, z > z(α),

1, otherwise
(3.7)

In other words, if the rank-1 score is indeed an upper outlier, we are sufficiently confident that

lights-out identification retrieved the mated reference print at rank-1. Therefore, the query latent

does not need markups from latent examiners.

3.2.3 How many experts are enough?

A priori information about latent examiners (e.g., years of experience, the number of cases solved)

is often known and can be utilized while crowdsourcing latent markup. Assume that the latent

examiners can be rated based on such prior information. When additional markup is required

for a latent, instead of crowdsourcing the latent to every examiner, it can be first sent to the best
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(a) (b) (c)

(d) (e) (f)

Figure 3.3 Markups by six different latent examiners for a latent image in the 500 ppi NIST SD27.

examiner to obtain a markup. The best examiner’s markup can then be fused with the lights-out

AFIS, and the decision whether additional markup is needed made. Subsequently, the latent can

be sent to the next best examiner, if required. Such a greedy (sequential) strategy can dynamically

determine the number of examiners needed for providing markups, in turn, reducing the required

cost and effort [125].

3.3 Experimental Details

A state-of-the-art AFIS, which was one of the top performing AFIS in the NIST ELFT-EFS 2

evaluation [108], is used for conducting all identification experiments.
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(a) (b)

Figure 3.4 Markups by two examiners for a latent in the 1000 ppi ELFT-EFS public challenge
database.

(a) (b)

Figure 3.5 Markup for a latent image (a) in the 1000 ppi RS&A database. The mated reference
print of the latent is shown in (b).

3.3.1 Databases

The proposed latent markup crowdsourcing framework is evaluated on three different latent

databases (summarized in Table 3.1), the NIST SD27 [18], ELFT-EFS [6] and the RS&A [24].

In addition to the mated reference prints of the latents available from these databases, we use

rolled prints, provided by the Michigan State Police (MSP), to enlarge our reference database to

250,000 rolled prints for all the experiments reported here. The rolled prints provided by MSP

have similar characteristics to the mated reference prints provided with the three latent databases.
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Table 3.1 Summary of the latent databases used.

Database #Latents Resolution Latent Type #Markups

NIST SD27 258 500 ppi operational 6*

ELFT-EFS** 255 1000 ppi operational 2*

RS&A 200 1000 ppi collected in lab 1
*The scope of this research is to investigate how best to combine independent markups.

Therefore, juried markups, although available, are not used because they involve the ex-
pertise of multiple examiners. ** ELFT-EFS database contains 255 latents from NIST
SD27 rescanned at 1000 ppi.

Table 3.2 Number of latents markups provided by each of the six examiners (out of 258) for the
NIST SD27 latents.

Examiner 1 2 3 4 5 6

No. of markups 253 255 255 255 253 257

3.3.2 Latent Markup

Independent feature markups for NIST SD27 latents were obtained from six certified latent print

examiners affiliated to Michigan State Police. The average feature markup time is about 5 min. per

latent (around 20 hours for all 258 latents). Examiners were specifically asked to mark minutiae,

ridge counts between minutiae and/or region of interest (ROI) on the latents. However, not all

examiners marked all 258 latents (see Table 3.2). Figure 3.3 shows sample markups obtained from

the six examiners for a latent in NIST SD27. Some examiners marked ROI while others did not.

For each latent in the ELFT-EFS database, at least two independent feature markups are available

with the database. Standard EFTS-LFFS feature markups (minutiae, ridge counts between minu-

tiae, singular points and ROI) are used in our experiments. Note that latent examiners, in general,

do not mark extended features on a latent because it is a challenging (ambiguous) and time con-

suming process. Hence, our experiments are in accordance with the general markup protocol being

followed by examiners in law enforcement agencies. Figure 3.4 shows sample markups for a latent

from the ELFT-EFS database. Only a single markup is available in the RS&A database [24] which

is utilized in our experiments (Figure 3.5).
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3.3.3 Experiments

To evaluate the efficacy of the proposed expert crowdsourcing framework, we perform the follow-

ing set of experiments8.

3.3.3.1 Lights-out Matching

The Cumulative Match Characteristic (CMC) curves of the AFIS in the lights-out mode on NIST

SD27 are marked as Image only in Figure 3.6 (a). The rank-1 identification accuracy is 64.34%.

Notice the reduction in identification performance of the AFIS on bad and ugly quality latents as

compared to the good quality latents in the NIST SD27 (Figures 3.6 (b)-(d)).

Figure 3.7 (Image only) shows the CMC curves for lights-out identification on ELFT-EFS

database. The rank-1 identification rate is 65.10%. Figure 3.8 (Image only) shows the CMC curve

for lights-out identification on the RS&A database. The rank-1 identification accuracy obtained on

the RS&A database is 87.50%. This is much higher than the accuracy obtained on the NIST SD27

and ELFT-EFS databases because the latents in the RS&A database were collected in a laboratory

and are comparatively of better quality.

3.3.3.2 Matching Individual Examiner Markups

The Image plus Markup performance band in Figure 3.6 (a) indicates the identification accuracy

of the AFIS on the NIST SD27 when fed with individual 500 ppi markups. The best rank-1

identification accuracy obtained using an individual markup is 66.67%. Note that the lights-out

performance is within the performance band of the examiners. As expected, the identification

accuracy is higher for good quality latents, compared to the bad and ugly quality latents (Figures

3.6 (b)-(d)).

Figure 3.7 shows the performance of the AFIS when fed with 1000 ppi markups available for

the ELFT-EFS database. The best individual rank-1 identification accuracy obtained is 72.16%.

8Open set experiments are planned for subsequent studies
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(b) Good quality latents
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(c) Bad quality latents
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Figure 3.6 Identification performance (CMC curves) of the AFIS on NIST SD27 when (i) operating
in lights-out mode (Image only), (ii) fed with markup from a single examiner (Image + Markup),
and (iii) fusion of lights-out and 500 ppi markups from all six examiners (Fusion) for (a) all 258
latents, (b) 88 good quality latents, (c) 85 bad quality latents, and (d) 85 ugly quality latents.
The size of the reference database is 250K rolled prints, including the true mates of latents from
NIST SD27. The performance band of the latent examiners indicates the maximum and minimum
accuracy obtained using an individual examiner markup at different ranks.
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Figure 3.7 Identification performance (CMC curves) of the AFIS when (i) operating in lights-out
mode (Image only), (ii) fed with an individual 1000 ppi markup (Image + Markup), and (iii) fusion
of lights-out AFIS scores with the scores obtained using the two 1000 ppi markups (Fusion) for all
255 latents in the ELFT-EFS database against a reference database of 250K rolled prints.
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Figure 3.8 Identification Performance (CMC curves) of the AFIS when (i) operating in lights-out
mode (Image only), (ii) fed with the single available markup (Image + Markup), and (iii) fusion
of lights-out with examiner markup (Fusion) for the 200 latents in the RS&A database against a
reference database of 250K rolled prints.
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Table 3.3 Identification accuracy (%) of the AFIS, on average, on the NIST SD27 against 250K
reference prints when fed with markups from different subsets of latent examiners.

Combination Rank-1 Rank-50 Rank-100

One examiner 63.11 77.13 78.23

Two examiners 68.04 80.88 81.96

Three examiners 69.42 82.15 83.29

Four examiners 70.00 82.71 83.98

Five examiners 70.80 83.14 84.56

All six examiners 70.93 82.95 84.88

On the RS&A database, on the other hand, the rank-1 identification accuracy obtained using the

single available markup is 90% (Figure 3.8).

3.3.3.3 Fusing Multiple Examiner Markups

Since we have six different markups available for the NIST SD27 latents, we fuse the scores ob-

tained using different markup combinations, and then compute the average accuracy of the AFIS

when fed with different subsets of examiner markups. Several different score level fusion strategies

were investigated. Simple sum fusion rule provided the best performance. No score normalization

is necessary here since all the scores are being generated by the same AFIS. Table 3.3 shows that

while identification performance of the AFIS improves with additional markups, there is a satura-

tion after 3 or 4 markups per latent. For the NIST SD27 with 258 latents, each 1% improvement in

performance, say at rank-1, corresponds to roughly two or three latents being promoted to rank-1.

3.3.3.4 Fusing lights-out AFIS with Multiple Markups

The CMC curves plotted in Figure 3.6 show that the rank-1 identification accuracy of the AFIS

increases by 7.75% on the NIST SD27 by fusing the scores obtained using the six markups with

the scores obtained from lights-out identification. On the other hand, a performance improvement

of 11.37% is observed when fusing the scores obtained from the two individual markups for the
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.9 An example latent for which the mated reference print is retrieved at a higher rank after
fusing the six crowdsourced markups with the AFIS. In the lights-out mode, the AFIS could not
match the latent to the mated print shown in (g) (score=0). The rank of the mated print using the
individual markups by the six examiners shown in (a)-(f) is 80, - (score=0), 45, 7, 57 and 12971,
respectively. The mated print is retrieved at rank-2 using the combination of the AFIS with the six
markups.

ELFT-EFS database with the lights-out scores. Figures 3.9 and 3.10, respectively, show an example

of a successful and failure case using fusion of the AFIS with the examiner markups.

For the RS&A database, although fusion of lights-out match scores with markup scores does

not seem to benefit in terms of the rank-1 identification accuracy in comparison to only using the

manual markup, significant performance improvement is observed for higher ranks (see Figure

3.8).

3.3.3.5 Determining the need for crowdsourcing

To measure the efficiency of the test based on order statistic for determining the need for crowd-

sourcing manual markup, we compute the (i) number of latents where markup is not needed and
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Table 3.4 Number of latents where markup is required, markup is not required when mated refer-
ence print is not at rank-1, and markup is required despite the mated reference print being retrieved
at rank-1 for NIST SD27 (NIST27), ELFT-EFS (ELFT), and RS&A (RSA) databases. The number
of latents in these three databases is 258, 255, and 200, respectively.

Significance
level (α)

#Latents requiring markup
#Latents not requiring markup

when mated reference print
is not at rank-1

#Latents requiring markup
when mated reference print

is at rank-1
NIS27 ELFT RSA NIST27 ELFT RSA NIST27 ELFT RSA

0.01 166 166 46 0 0 2* 74 74 22

0.05 151 151 35 0 0 2* 59 59 11

0.1 137 137 33 0 0 2* 45 45 9

*The mated reference prints are incorrectly labelled for these latents; does not impact the accuracy of the AFIS.

the mated print was not retrieved at rank-1, and (ii) number of latents where markup is ascertained

but the mated print was retrieved at rank-1 (Table 3.4). The value of K used here is 200. For case

(i) we found that the rank of the mated print did not decrease after fusion of lights-out with markup

scores. This demonstrates the efficacy of the order statistic based test.

3.3.3.6 Greedy crowdsourcing

To test the benefit of using the greedy sequential strategy to dynamically determine the number of

examiners required, we rated the individual examiners based on their skill set. This was estimated

based on the AFIS performance obtained on the markups they provided. Figure 3.11 shows perfor-

mance improvement when individual examiners are selected in decreasing order of their skill set.

After fusing the three markups from the top three examiners, additional markups have negligible

impact on the overall identification accuracy. Also, utilizing more number of markups does not

necessarily improve the overall accuracy. Overall, 151 latents in the NIST SD27 require exam-

iner markups based on the lights-out AFIS results (at a significance level of 0.05). 137, 131, 126,

126, 124, and 123 latents need markups after fusion of lights-out AFIS with best-1, best-2, best-3,

best-4, best-5, and all six examiner markups, respectively.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.10 An example latent for which the mated reference print is retrieved at a lower rank after
fusing the crowdsourced markups with the AFIS. In the lights-out mode, the AFIS retrieved the
mated print shown in (g) at rank-1. The rank of the mated print in (g) using the individual markups
by the six examiners shown in (a)-(f) is 54, 1171, 3426, 595, 22 and 8450, respectively. The mated
print is retrieved at rank-26 using the combination of the AFIS with the six markups.

3.4 Conclusions

Matching poor quality latents to reference prints is one of the most challenging problems in fin-

gerprint recognition. In order to match latents to reference prints with high accuracy, we propose

a crowd powered latent matching paradigm which involves a symbiosis of fingerprint examiners

with AFIS. Given a latent print, it is first compared against reference prints using an AFIS. Based

on the output of the lights-out match, an automatic decision is made to determine if manual feature

markups from latent experts would be beneficial. If it is determined that additional markup would

help, the latent print is crowdsourced to a pool of latent examiners. The manual feature markups are

fed to the AFIS and the comparison scores from lights-out AFIS and those from manual markups

input to AFIS are combined to boost the identification accuracy. Experimental results obtained on

three different latent databases (NIST SD27, ELFT-EFS and RS&A), against a reference database
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Figure 3.11 Identification accuracy of the AFIS using greedy crowdsourcing for the 258 NIST
SD27 latents. Starting with the best examiner, a significance level of 0.05 is used to decide if
markup from the next best examiner is needed. Numbers of latents given to the next best examiner
are indicated in red. Due to the preponderance of low quality prints in NIST SD27, the rank-1
identification accuracy tapers off after three examiner markups.

of 250,000 rolled prints, demonstrate that a significant performance improvement can be obtained

using the proposed crowd powered framework.
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Chapter 4

Design and Fabrication of 3D Single-Finger

Targets

4.1 Introduction

Until about 20 years ago, forensic labs and law enforcement agencies were the primary consumers

of fingerprint recognition technology with fingerprints being utilized to identify repeat offenders

and to associate a crime to criminal(s). In chapters 2 and 3, we developed methods to address

one of the most important problems faced by these agencies, namely matching latent fingerprints

commonly encountered in crime scenes to legacy rolled and slap fingerprint databases. However,

the recent past has witnessed large scale deployments of fingerprint recognition technology in

civilian, commercial and personal applications, e.g., the Aadhaar program to uniquely identify each

resident of India [38], the United States’ Office of Biometric Identity and Management’s program

(formerly US VISIT) to prevent illegal immigrants and criminals from entering the country [20],

and the TouchID system to unlock Apple smartphones and make online payments [36]. Given this

rapid growth in large scale deployments of fingerprint identification systems, it is essential to have

a reasonable estimate of their matching performance and robustness in the operational settings.
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Figure 4.1 Structural (White-Box) v. Behavorial (Black-Box) evaluation of fingerprint readers. In
structural evaluation, details of the internal setup of the reader are known and reader component
assembly operation is tested. On the other hand, in behavorial evaluation, the internal details of the
reader are not known and only functionality of the reader is tested based on its input and output.

For thorough evaluation of fingerprint systems, a large number of representative fingerprint

images from the operational scenario are needed. Collecting such a large number of fingerprint

images with different characteristics from human subjects is both expensive and tedious. Bio-

metric synthesis provides a solution to this problem. A large number of 2D fingerprints can be

generated using 2D synthetic fingerprint generators [67] [192] that can be utilized for evaluat-

ing fingerprint feature extractors and matchers. However, they cannot be used for assessment of

fingerprint readers.

Standard calibration targets are typically used for structural evaluation1 of fingerprint readers,

e.g., measuring their geometric accuracy, distortion and resolution. One limitation of these targets

though is that they cannot be used for behavorial evaluation2 of the readers in the operational

settings (see Figure 4.1). Furthermore, these targets are not suitable for “end-to-end” evaluation

of fingerprint recognition systems from fingerprint acquisition to feature extraction and matching.

1Structural or white-box evaluation tests how internal system components and component sub-assemblies should
operate, and requires technical knowledge of the system [59].

2Behavioral or black-box evaluation tests functions supported by the system in the operational or deployment
scenario by focusing on the input and output of the system [59].
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(a) (b) (c)

Figure 4.2 Examples of imaging phantoms used in medical imaging: (a) Phannie, a phantom to
calibrate MRI machines developed at NIST [14], (b) a phantom hand used for evaluating X-ray
machines [41], and (c) a torso phantom used to calibrate CT-Scan machines [34].

This is because the process of user interaction with the reader leading to fingerprint capture cannot

be mimicked using these targets. In this chapter, we propose to generate 3D targets for behavioral

evaluation of fingerprint readers in operational settings.

4.1.1 Structural Evaluation of Fingerprint Readers

As mentioned in the earlier section, structural (white-box) evaluation of imaging systems is gener-

ally done using specially designed objects with known properties, called targets. In the biomedical

domain, for instance, such objects (called phantoms) are used for calibrating and testing optical

measurement profiles of sensing instrumentation [180], [60] (Figure 4.2). Similarly, targets (Figure

4.3) have also been used for calibration of fingerprint readers.

There are two separate standards currently in use by the Federal Bureau of Investigation (FBI)

for the certification of fingerprint readers, (i) the PIV, which caters to single-finger readers designed

for applications involving person verification (one-to-one comparison), and (ii) the Appendix F,

which applies to fingerprint readers designed for use in large scale applications involving person

identification (one-to-many comparisons) [8]. To get their fingerprint readers certified, fingerprint

vendors need to demonstrate that the images captured using their readers meet the image quality

specifications laid out in the relevant standard [155] [156]. A typical procedure is (i) to use 2D/3D

calibration targets to ascertain if the images of the targets captured using the reader meet the spec-
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(a) (b) (c)

Figure 4.3 2D images of standard targets used for calibrating fingerprint readers, (a) ronchi (vertical
bar) target for calibrating the geometric accuracy, (b) sine wave target for measuring the resolution,
and (c) multiple bar target for estimating the spatial frequency response of a fingerprint reader
(images taken from [155]).

ifications, (ii) modify the reader configuration, if needed, to ensure it captures images of sufficient

quality to meet the specifications, and (iii) when satisfied with the reader configuration, submit test

images to the testing agency for review3 [8]. If the test data is found to meet the desired spec-

ifications, the testing agency certifies the fingerprint reader as being compliant with the specific

standard.

4.1.2 Behavioral Evaluation of Fingerprint Readers

Standard calibration targets (see Figure 4.3) are used for structural evaluation of fingerprint readers.

For example, the targets in [33] are utilized for testing frustrated total internal reflection (FTIR)

components (LED, glass prism and platen assembly) of an optical fingerprint reader. However,

these targets are not suitable for behavioral (black-box) evaluation of a fingerprint reader in the

presence of operational variations (e.g., finger placement and pressure etc.) when users interact

with the reader. This is because these targets are not specifically constructed using materials with

properties (e.g., hardness and elasticity) similar to the human finger skin.

3Review of the submitted test data is conducted by the Technology Evaluation Standards Test Unit, a part of the
FBI’s Biometric Center of Excellence (BCOE) led by the Criminal Justice Information (CJI) Services Division [9].
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(c) (d) (e) (f)

Figure 4.4 Evaluating a single-finger optical fingerprint reader using the 3D targets designed and
fabricated by the authors. (a) The 3D target is worn on a finger, (b) the finger is placed on the
fingerprint reader platen, and (c)-(f) multiple 2D impressions (four shown here) of the 3D target
are captured to evaluate the reader.

4.1.3 3D Targets for Behavioral Evaluation

For behavioral evaluation of a fingerprint reader, one possibility is to conduct pilot studies involv-

ing human subjects in the field using the reader. This, however, is a tedious process both in terms of

time and resource commitment, and is limited by the amount and possible variations in the finger-

print data that can be collected. Besides, such a procedure cannot be used for repeatable behavioral

evaluation of the fingerprint reader because, in practice, the same set of subjects is typically not

available for repeat testing. The goal of this research, therefore, is to fabricate standard 3D targets

which can be used for repeatable behavioral evaluation of fingerprint readers. We fabricate 3D

targets with material similar in hardness and elasticity to the human finger skin such that they can

be worn on a finger and placed on the fingerprint reader platen in a natural manner (see Figure

4.4)4.
4This work was published in IEEE Transactions on Information Forensics and Security (TIFS), 2016 [54].
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Table 4.1 Comparison of prevailing 2D synthetic fingerprint based evaluation methods with the
proposed 3D target generation method.

Method Artifacts* Fingerprint Features Evaluation Use Cases

SFinGe [67]
2D synthetic fingerprints

(electronic)

Known fingerprint ridge flow

and ridge density features;

uncontrolled minutiae placement

Fingerprint feature

extractors and matchers

IBG DHS SBIR [105]
2D synthetic fingerprints

(electronic)

Known fingerprint ridge flow

and ridge density features;

partially controlled

minutiae placement

Fingerprint feature

extractors and matchers

Zhao et al. [192]
2D synthetic fingerprints

(electronic)

Known fingerprint ridge flow,

ridge density and

minutiae placement

Fingerprint feature

extractors and matchers

NIST**
3D targets

(electronic and physical)

Known calibration

pattern features

Contactless 3D

fingerprint readers

Proposed
3D targets

(electronic and physical)

Known fingerprint ridge flow,

ridge density and

minutiae placement

End-to-end

fingerprint systems,

including fingerprint

readers, feature

extractors and matchers
*The term electronic is used for digitally generated artifacts, whereas the term physical is used for physically fabricated artifacts from electronic
artifacts. **This research is currently underway at NIST and has not been published yet.

The utility of the fabricated 3D targets extends beyond behavioral evaluation of fingerprint

readers. 3D targets generated using 2D synthetic fingerprint images with known fingerprint fea-

tures (e.g. fingerprint type (loop, whorl, arch), minutiae position and orientation, and core and

delta count and locations) can be used to evaluate fingerprint feature extraction and matching algo-

rithms. Such targets can, therefore, be used for end-to-end evaluation of a fingerprint recognition

system from placing the finger on the reader and capturing the 2D impression to extracting fea-

tures and comparing the captured image to the gallery templates. Further, since the fabricated 3D

targets are similar in characteristics to the human finger skin, in our opinion, they can also be used

to evaluate the next generation touchless fingerprint readers [21] [10] [17]. Hence the proposed

3D targets are better suited for fingerprint system evaluation purposes than the prevailing methods

which only use 2D synthesized fingerprint images (see Table 4.1).

94



Preprocessing 3D 
 finger surface 

Preprocessing 2D 
calibration pattern 

Mapping 2D 
calibration 

pattern to 3D 
surface 

Engraving 2D 
calibration 

pattern on 3D 
surface 

Postprocessing 
3D finger surface 

3D printing 

3D finger 
 surface 

2D calibration 
pattern 

Chemical 
cleaning 

Figure 4.5 Generating a 3D single-finger target A, given a 2D calibration pattern I and a 3D finger
surface S.

A physical 3D target is created by first projecting an electronic 2D calibration pattern onto a

generic electronic 3D model of the finger surface5. The electronic 3D finger surface is aligned

such that the finger length is along the y-axis, width along the x-axis and depth along the z-axis.

The electronic 3D surface is then preprocessed to ensure sufficient fidelity for establishing the

correspondence between the electronic 2D calibration pattern and the electronic 3D finger surface.

The 2D calibration pattern is then mapped onto the front portion of the electronic 3D surface and

correspondences between each vertex on the frontal electronic 3D surface and the pixel locations

in the 2D calibration pattern are established. The 2D calibration pattern is engraved onto the

frontal electronic 3D finger surface by displacing each vertex along the surface normal according

to the texture values at the mapped pixel locations. Finally, the electronic 3D finger surface is

post-processed to create an electronic model of a wearable 3D target ready for 3D printing. The

physical 3D targets are fabricated using a state-of-the-art 3D printer (Stratasys Objet350 Connex6)

with material similar in hardness and elasticity to the human finger skin. The 3D printed targets are

cleaned using a 2M NaOH solution to generate evaluation-ready physical 3D targets. The complete

process is illustrated in Figure 4.5.

5The 3D finger surface could either be the shape of the finger sensed using a 3D scanner or a synthetically generated
surface describing the shape of the finger. In our case, the finger surface was scanned using the Artec Eva 3D scanner
[2].

6The naming of companies and products here does not imply endorsement or recommendation of those companies
or products by the authors or the organizations they represent.
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There are two kinds of errors that can be introduced during 3D target creation from 2D image,

(i) the 2D to 3D projection error of the mapping algorithm used in electronic 3D target creation,

and (ii) the fabrication error introduced by the 3D printer when fabricating the physical 3D target

from the electronic 3D target. To assess the fidelity7 of the 3D target generation process, we esti-

mate the 2D to 3D projection error, and the 3D printing fabrication error by observing the targets

under a digital optical microscope (Keyence Digital Microscope VHX 600 [11]), (iii) matching 2D

calibration pattern features used for 3D target creation to both the electronic and physical 3D target

images, and (iv) evaluating similarity between different images of physical 3D targets. We show

that (i) features present in the 2D calibration pattern are preserved during the creation of electronic

3D target, (ii) features engraved on the electronic 3D target are preserved during physical 3D target

fabrication, and (iii) intra-class variability between multiple impressions of the same physical 3D

target is sufficiently small for matching at false accept rate (FAR) of 0.01%. We also show that

the generated 3D targets are suitable for behavioral evaluation of three different (500/1000 ppi)

PIV/Appendix F certified single-finger optical readers in the operational settings.

In summary, the contributions of this chapter are as follows:

• Design of wearable 3D targets using a 2D to 3D projection algorithm that preserves distances

on the 2D calibration pattern while mapping it to 3D finger surface. In our preliminary

work [53], we used an angle-preserving 2D to 3D mapping [82] which did not preserve

point-to-point spacing in the 2D calibration pattern during 3D projection, especially near the

periphery of the 3D finger surface. Because it is important to preserve distances on the 2D

calibration pattern after 3D projection, here we use a distance preserving mapping [177].

• Fabrication of 3D targets using a state-of-the-art 3D printer with materials having similar

hardness and elasticity to the human finger skin. These targets can be imaged by three dif-

ferent commercial (500/1000 ppi) single-finger optical readers. The 3D printer used to fabri-

7Fidelity refers to the degree of exactness with which the 2D calibration image is reproduced in the generated 3D
target.
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cate targets in [53] only printed hard plastic targets that could not be imaged by commercial

fingerprint readers.

• Procedure to chemically clean the 3D printed targets without impacting the engraved target

patterns.

• Estimation of (i) 2D to 3D projection and (ii) 3D printing fabrication errors; these errors are

accounted for during fingerprint reader evaluations.

• Comprehensive experimentation to show the fidelity of 2D calibration pattern features during

3D target generation.

• Preliminary experimentation for behavorial evaluation of fingerprint readers using the gen-

erated 3D targets.

4.2 Generating 3D Targets

A 3D target A is generated using an arbitrary 2D calibration pattern I with pre-specified features,

and a generic 3D finger surface S. Let the grayscale value in the 2D calibration pattern I at spatial

coordinates (u, v) be denoted by I(u, v). Also, assume that the 3D finger surface S is a triangular

mesh with a set V of vertices and a set T of triangles. Each vertex, v, in V has (x, y, z) coordinates

corresponding to its spatial location in S, and a triangle in T connects a unique set of three vertices.

Generating the 3D target A using I and S then consists of the following main steps (Figure 4.5).

1. Preprocessing 3D finger surface: Align S such that the finger length is along the y-axis

in S. Sample vertices from the set V based on the curvature of S. This sampling process

reduces the density of S, therefore, subdivide S (as explained in Section 2.1) to ensure

sufficient fidelity during projection of the 2D calibration pattern I . Displace S outwards

along the direction of the surface normals computed at each vertex to create an outer finger

surface SO. Separate the front SOF and rear portion SOR of SO (see Fig. 4.6). The front

portion SOF of SO will be used for projection. Retain the original surface S.
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2. Preprocessing 2D calibration pattern: If the pattern I being projected is a 2D fingerprint

image, extract the skeleton IS of the image I . Increase the ridge width of the skeleton

IS using morphological operations, and smooth the image using a Gaussian filter before

projecting it onto the electronic frontal surface SOF . This preprocessing step is necessary

to ensure that ridges and valleys present in I are engraved smoothly onto SOF . Note that

this preprocessing step is not needed if any other 2D calibration pattern (e.g. sine grating) is

being projected.

3. Mapping 2D fingerprint to 3D surface: Project the front portion SOF of 3D finger sur-

face SO to 2D and correct for rotation and flip using corresponding control points between

3D surface SOF and the 2D projection of SOF , and translation with respect to reference co-

ordinates computed from I . Make the front portion of the outer finger surface SO dense

depending on the resolution of I to ensure sufficient fidelity of mapping I . Determine the

mapping between the (x, y, z) spatial locations of the vertices on the front portion of the

outer 3D surface SO and the (u, v) image domain of I .

4. Engraving 2D calibration pattern on 3D surface: To create ridges and valleys, displace

the vertices on the front portion of SO along the surface normals according to the texture

values in I at the mapped (u, v) locations.

5. Postprocessing 3D finger surface: Combine the front and rear portions of the outer finger

surface SO. Make the original finger surface S as dense as the outer finger surface SO and

then stitch the two surfaces together to obtain a watertight solid target. This finishes the

creation of the 3D target A as an electronic (virtual) target.

6. 3D Printing: Specify the physical dimensions as well as the printing material according to

the hardness and elasticity of the human finger skin before printing the 3D target A using a

3D printer (Stratasys Objet350 Connex).
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7. Chemical Cleaning: Clean the 3D printed targets using 2M NaOH solution and water to

remove the printer support material residue and obtain evaluation-ready 3D targets.

A detailed description of each of these steps used in the 3D target creation process for a given

2D calibration pattern I and a 3D finger surface S is given below.

4.2.1 Preprocessing 3D finger surface

A sequence of preprocessing steps is executed on the 3D finger surface S before projecting the 2D

calibration pattern I on S (see Figure 4.6). These steps include: (i) alignment of the 3D finger

surface, (ii) remeshing the 3D finger surface, (iii) subdivision of the 3D surface, (iv) creating outer

surface from the given 3D surface, and (v) separating front and rear portions of the outer 3D

surface.

4.2.1.1 Alignment

The 3D finger surface S, arbitrarily oriented in the (x, y, z) coordinate frame, is first aligned such

that the finger length is along the y-axis, width along the x-axis and height on the z-axis. For

doing this, each vertex in the set V is translated such that the center of the surface S coincides with

the origin of the (x, y, z) coordinate axes. Principal component analysis (PCA) [128] is used to

determine the principle directions of the surface spread. The computed principal components are

then used to align the surface S. Note that this step only alters the absolute (x, y, z) coordinate

values of the vertices in V and retains the geometry of the surface S.

4.2.1.2 Remeshing

The 3D finger surface S is remeshed by sampling vertices from V using the method in [167].

The first vertex v1 is sampled randomly from V , and the geodesic distance map U(v1) from v1

to every other vertex in V is computed by solving the eikonal equation using the fast marching

method [129]:
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6 Preprocessing 3D finger surface. (a) Original finger surface S, (b) aligning S such that
the finger length is along the y axis, (c) aligned S (triangular mesh), (d) remeshing S (triangular
mesh), (e) subdividing S (triangular mesh), (f) subdivided S (profile view), (g) creating outer finger
surface SO from (f), and (h) separating front and rear portions, SOF and SOR, of SO.

|| 5 U(v1)|| = P (v1). (4.1)

Here,5 is the gradient operator, and P = 1/F , where F is the speed of front propagation used in

the fast marching method.

Vertices are then sampled iteratively by adding the farthest vertex among the remaining vertices

in iteration i from the vertices in the sampled vertex set Vi−1 at iteration i−1. Note that the geodesic

distance map Ui, at iteration i, is updated using the following equation:

Ui = min(Ui−1, U(vi)), (4.2)
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where U(vi) is the geodesic distance map of the vertex sampled at iteration i, and Ui−1 is the

geodesic distance map computed at iteration i− 1.

During this iterative procedure of sampling vertices, the speed of front propagation F is set to

1/(1 + C), where C is the aggregate curvature at each vertex in V . This results in more vertices

being sampled in the higher curvature regions of the 3D surface and vice versa. The aggregate

curvature C is calculated using the two principal curvatures Cmin and Cmax as follows,

C = |Cmin|+ |Cmax|. (4.3)

Here, | .| is the absolute value operator, Cmin and Cmax are computed from the 3D curvature tensor

CT calculated using the method in [49]. In particular, Cmin andCmax correspond to the two highest

eigenvalues of the curvature tensor CT .

Finally, Delaunay triangulation is used for recreating the remeshed surface from the set of

sampled vertices [51].

4.2.1.3 Subdivision

Although remeshing makes the surface S uniformly dense depending on its curvature, it reduces

the density of the vertices. To ensure sufficient fidelity for projecting the 2D calibration pattern I

onto the surface S, Loop’s surface sub-division method [136] is used to increase density of vertices.

Let the set of vertices and triangles obtained after remeshing be denoted by VR and TR, respectively.

This method creates new vertices at each edge of every triangle in TR using a weighted combination

of neighborhood vertices, and creates new triangles by connecting the sampled vertices at edges

adjacent to each other. The original vertices are then translated to maintain surface smoothness

and continuity.

4.2.1.4 Creating outer surface

Let VS and TS be the set of vertices and triangles obtained after surface subdivision. Let the normal

n at a vertex v in the set VS be denoted by (nx, ny, nz), where nx, ny and nz represent the normal
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components along the x, y and z directions, respectively. Each vertex v is then displaced by a fixed

factor d along the normal n to obtain the displaced coordinates of the vertex (v′x, v
′
y, v
′
z):


v′x

v′y

v′z

 =


vx

vy

vz

+


nx

ny

nz

× d (4.4)

This is done to create an outer finger surface SO where the 2D calibration pattern will be projected.

The parameter d determines the thickness of the 3D target. Ideally, it is desirable to set d to be as

small as possible. However, due to the limitation of the 3D printer resolution used for fabricating

the targets, choosing a very small d results in the printed model being fragile. Therefore, d is

empirically set to 1.5 mm in our experiments.

4.2.1.5 Separating front and rear portions

Front and rear portions of the outer finger surface SO are then separated by computing the surface

normals at each triangle in TS , and then retaining the triangles and corresponding vertices where

surface normals have the z-component greater than 0 in the front surface, and the rest in the rear

surface. Note that the alignment of the finger surface done in step 1) facilitates this separation

process. Let us denote the front portion of the outer surface SO as SOF having the set of vertices

VOF and triangles TOF . Similarly, let the rear portion be denoted as SOR with the set of vertices

VOR and triangles TOR. We also retain the original finger surface S with the set of vertices VS and

triangles TS .

4.2.2 Preprocessing 2D calibration pattern

If the pattern I being projected on 3D frontal surface SOF is a fingerprint image, the following

preprocessing steps are executed on I (see Figure 4.7):

1. The skeleton, IS , of I , a 1-pixel wide ridge pattern, is extracted using a commercial finger-

print SDK [146].
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(a) (b) (c) (d)

Figure 4.7 Preprocessing a 2D fingerprint pattern before projecting it onto 3D finger surface. (a)
Original fingerprint image I , (b) extracted skeleton IS of the fingerprint in (a), (c) skeleton IS in
(b) after applying the morphological operation of dilation, and (d) dilated skeleton in (c) smoothed
using a gaussian filter.

2. The ridge width on the skeleton IS is increased to 3 pixels by performing the morphological

operation of dilation using a 2 pixel radius disk structured element.

3. IS is filtered using a 4 × 4 Gaussian filter with σ = 2.5 to ensure that ridges and valleys in

2D fingerprint pattern I are engraved smoothly onto the 3D finger surface.

This preprocessing is not needed for other calibration patterns (e.g. sine grating of certain

orientation and spacing).

4.2.3 Mapping 2D calibration pattern to 3D surface

The front portion SOF of the outer finger surface SO is projected from 3D ((x, y, z) space) to

2D ((u, v) space) by computing the ISOMAP embedding [177] (see Figure 4.8). Recall that the

vertices and triangles in SOF are VOF and TOF , respectively. The ISOMAP embedding is computed

by:

1. Constructing adjacency graph: An adjacency graph G is created by connecting all vertex

pairs {vi, vj} in VOF that share an edge of any triangle in TOF . The edge weights in G are

set to the euclidean distance D(vi, vj) between vi and vj . For non-adjacent vertex pairs that

do not share any edge, D is set to an arbitrary large value.
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(a) (b) (c) (d) (e)

Figure 4.8 Mapping and engraving 2D calibration pattern onto the front portion of the outer 3D
finger surface SOF . (a) 3D frontal outer finger surface SOF , (b) frontal surface SOF in (a) is
projected into 2D, (c) the 2D projected frontal surface SOFP is subdivided, (d) correspondences
are determined between the 2D projected frontal finger surface SOFP and 2D calibration pattern I ,
(e) 3D frontal outer finger surface SOF in (a) is displaced along the surface normals to engrave the
pattern.

2. Computing shortest paths: Dijkstra’s shortest path algorithm [84] is used to compute the

shortest path between all pairs of nodes inG. Geodesic distances between all pairs of vertices

in VOF are estimated by the shortest path distances of the nodes in G.

3. Constructing 2D embedding: Let the matrix DG contain the shortest path distances com-

puted in the previous step. Given DG, multidimensional scaling (MDS) [131] is used to

create the 2D embedding of vertices.

ISOMAP embedding is used because it minimizes the distortion induced when projecting

the front portion SOF of the 3D surface to 2D by preserving the geodesic distances between

neighborhoood vertices on SOF 8.

Let the 2D projected frontal surface in the (u, v) coordinate space be denoted by SOFP with the

set of vertices VOFP and the set of triangles TOFP . Rotation and flip during the 3D to 2D projec-

tion of SOF are corrected using corresponding control points between SOF and SOFP . Reference

coordinates [ru, rv] are extracted from the 2D calibration pattern I for translation correction during

the 3D to 2D projection of SOF :
8Discrete conformal mapping was used for projecting a 2D pattern to 3D finger surface in our preliminary work

[53]. It was, however, observed that discrete conformal mapping did not preserve the distances on the calibration
pattern near the periphery of the 3D surface since it is an angle preserving mapping.
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• If the pattern I being projected is a synthetic fingerprint image, then reference coordinates

[ru, rv] are extracted from the fingerprint image using the method in [186].

• If any other calibration pattern is being projected (e.g. sine gratings, horizontal/vertical bar

patterns etc.), then the location of the center pixel in the 2D calibration pattern I is used as

the reference point i.e. [ru, rv] = [w/2, h/2], where w and h are the width and height of I .

The next step is to determine the one-to-one mapping between the pixel locations (u, v) on

I and the vertices VOF on SOFP . For accurately determining the one-to-one correspondence, the

density of SOF as well as its 2D projection SOFP is further increased using midpoint surface

subdivision. Vertices are sampled on the midpoints of the edges in TOF , and the sampled vertices

on the adjacent edges are joined to create new triangles. The resolution of I being projected is

factored into the computations while determining the correspondence between pixel locations on I

and vertices VOF on SOFP . For example, if the calibration pattern being projected has a resolution

of 500 ppi, the scale of projection is 19.685 pixels/mm. Therefore, the coordinates of I are scaled

by this factor before determining the correspondence.

Ideally, the density of SOF should be increased according to the dimensions of the calibration

pattern I being projected. For example, if a calibration pattern of width w and height h with w×h

pixels is being projected, then exactly w×h vertices are required in the projection region for build-

ing the exact correspondence between the pixel locations on I and the vertices on SOF . However,

it would result in a very large number of vertices and triangles on the surface and considerably

increase the computational complexity of any further operations on the surface. Therefore, the

density of SOF is only increased to the extent that it retains the essential topology of the pattern

being projected9. Let the set of vertices and triangles on the 2D projected frontal surface obtained

after this step be denoted by VOFPS and TOFPS , and the corresponding vertices and triangles on the

outer 3D frontal surface be VOFS and TOFS , respectively. The one-to-one correspondence between

the pixel locations on the calibration pattern I and the set of vertices VOFP is then established.

9For the finger surface used in our experiments, the density is increased so that there are approximately 250,000
vertices and 500,000 triangles on the front portion of the 3D surface.
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(a) (b) (c) (d) (e)

Figure 4.9 Postprocessing 3D finger surface. (a) Separated front and rear portions of outer 3D
surface, (b) front and rear portions shown in (a) are combined to create the outer 3D finger surface,
(c) outer 3D finger surface (bottom view), (d) the retained original 3D finger surface (bottom view),
(e) electronic 3D target created by stitching the outer and original surface in (c) and (d).

4.2.4 Engraving 2D calibration pattern on 3D surface

In the penultimate step, surface normals are computed at each vertex in the set VOFPS . The vertices

are then displaced along their surface normals to engrave the fingerprint ridges and valleys on SOF

(see Figure 4.8 (e)). Let the normal at a vertex v in the set VOFPS be denoted by (nx, ny, nz),

where nx, ny and nz represent the normal components along the x, y and z directions, respectively.

The displaced coordinates of the vertex (v′x, v
′
y, v
′
z) along the normal are then computed using the

principle of vertex displacement mapping [39] as follows:


v′x

v′y

v′z

 =


vx

vy

vz

+


nx

ny

nz

× (1− I ′(u, v))×Rd (4.5)

Here, I ′(u, v) is the scale normalized grayscale value in the range [0, 1] of the mapped grayscale

value at (u, v) from the 2D calibration pattern on the vertex v, andRd is the maximum vertical ridge

displacement which is set to 0.22 mm in our experiments10.

10The average ridge height on an adult human fingerprint is about 0.06 mm; however we set Rd to 0.22 mm
empirically due to limitation of the state-of-the-art 3D printer resolution used for fabricating the targets.
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Table 4.2 Comparison of mechanical properties of the two 3D printer materials used for 3D target
fabrication with the human finger skin.

Property Human Skin [88] [89] TangoBlackPlus FLX980 [31] FLX 9840-DM [30]

Shore A hardness 20-41 26-28 35-40

Tensile Strength (MPa) 5-30 0.8-1.5 1.3-1.8

Elongation at Break (%) 35-115 170-220 110-130

4.2.5 Postprocessing 3D finger surface

The engraved SOF and SOR are combined together to recreate the outer finger surface S ′O. The

outer finger surface S ′O is then stitched together with the retained original finger surface SO to

create a continuous watertight 3D shell SW ready for 3D printing. For doing this, the boundary

of the two meshes S ′O and the SO is first computed. Triangles are then synthetically generated to

connect the two boundaries to create a continuous shell (see Figure 4.9). This continuous watertight

shell is basically the 3D target A in electronic form.

4.2.6 3D printing

We use a state-of-the-art 3D printer (Stratasys Objet350 Connex) that has X and Y resolution of

600 dpi and Z resolution of 1600 dpi for fabricating the 3D targets with UV curable rubber-like

polymeric materials. This printer is based on PolyJet printing technology which slices a 3D model

into horizontal layers, and then prints the model layer by layer. The 3D targets are printed in high

speed mode wherein they are sliced into 30 micrometer (µm) layers during the printing process.

Note that the printer does not support printing the target with rubber-like materials in the high

resolution mode which allows for even finer 16 micrometer layer slicing. However, we found that

30 µm slicing suffices with ridge displacement Rd of 0.22 mm. In the high speed mode, the time

taken to fabricate one 3D target using the printer is approximately 90 minutes.

Two different rubber-like materials, TangoBlackPlus FLX980 [31], and FLX 9840-DM [30] (a

digital material synthesized in the printer by combining a rubber-like material and a rigid material)

are used for printing the 3D targets. These materials are specifically selected because they are
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Manually cleaned 
target image 

Image of target cleaned 
using 2M NaOH + water 

Figure 4.10 The 2D images of a manually cleaned 3D target (shown on the left) and the same
target after chemical cleaning (shown on the right) captured using a single-finger optical fingerprint
reader. Chemical cleaning of the 3D target with 2M NaOH solution and water removes the 3D
printer support material residue and provides a better quality image.

similar in hardness and elasticity to the human finger skin (see Table 4.2)11. Note that we are

limited in the choice of the printing material per the printer specifications.

Even though the choice of fabrication materials is limited, our approach is better than a manual

process of creating a 2.5D or 3D mould of a finger and then casting the targets. This is because

the 3D printing process (i) is automated, (ii) can accurately replicate targets, and (iii) is efficient

because it can print several targets in parallel.

4.2.7 Chemical cleaning

While printing the 3D targets, the printer uses a support material to prevent the models being

fabricated from breaking. As a result, once the targets are printed they need to be cleaned to

remove the support material. Manual cleaning removes the bulk of support material, however, still

leaves some residue. Therefore, the manually cleaned targets are dipped in a 2M NaOH solution

for approx. 3 hours to dissolve the support material residue. Subsequently, the targets are cleaned

11 The printing materials used are black in color, and their optical characteristics differ from that of human skin.
Therefore, it may not be possible to image the fabricated targets using some optical readers (e.g. dark field readers).
To overcome this limitation, we are currently exploring the possibility of using alternative fabrication methods.
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Figure 4.11 The two sources of error in 3D target generation (shown in red) given a 2D calibration
pattern and a 3D finger surface: (i) 2D to 3D mapping, (ii) 3D printing fabrication.

with water to obtain evaluation-ready 3D targets. Figure 4.10 shows 2D images of a manually

cleaned 3D target and the same target after chemical cleaning with 2M NaOH and water captured

using a single-finger optical fingerprint reader. The target image quality improves considerably

post chemical cleaning.

4.3 Fidelity of 3D Target Generation

In order to determine the fidelity of 3D target generation, we measure the error introduced during

(i) projection of 2D calibration pattern to 3D surface to create electronic (virtual) target, and (ii)

fabrication of physical 3D target from the electronic 3D target using 3D printing . We also conduct

experiments to determine the fidelity of 2D pattern features during 3D target creation.

4.3.1 2D to 3D Projection Error

Geodesic distances between all pairs of vertices on the frontal 3D finger surface SOF , and Eu-

clidean distances between the corresponding 2D mapping of vertex pairs after the frontal surface is

unwrapped to 2D using the ISOMAP algorithm are computed. Ratio of geodesic distances to eu-

clidean distances is computed to determine the extent to which distances are preserved during 2D

to 3D projection. For the finger surface used in our experiments, the geodesic to euclidean distance

ratio is estimated as 0.942. This indicates that there is a 5.8% reduction in pairwise (point-to-point)
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Table 4.3 Observed average grating spacing on three different targets when viewed under the
Keyence VHX-600 Digital Microscope at two different magnifications (50X and 100X). Expected
average spacing for each target is 0.478 mm.

Target 50X magnification 100X magnification

Horizontal 0.426 mm 0.427 mm

Vertical 0.420 mm 0.412 mm

Circular 0.415 mm 0.419 mm

(a) (b)

Figure 4.12 Estimating 3D printing fabrication error by measuring point-to-point distances be-
tween horizontal gratings on a 3D target at (a) 50X and (b) 100X magnification using the Keyence
Digital Microscope VHX-600.

distances due to 2D to 3D mapping algorithm. We account for this error in fingerprint reader eval-

uation experiments.

4.3.2 3D printing Fabrication Error

Three different 3D targets are created by projecting synthetically generated 2D test patterns: (i)

horizontal, (ii) vertical, and (iii) circular gratings, with a fixed center-to-center spacing of 10 pix-

els. Spacing of 10 pixels in test pattern gratings should correspond to spacing of 0.508 mm in

gratings etched on the fabricated physical targets (at the projection scale of 500 ppi). However,

the expected average grating spacing on the physical targets is 0.478 (0.508 × 0.942) mm due to

the 2D to 3D projection error (5.8%). To measure the observed average grating spacing on the
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fabricated targets, the three targets are viewed under an optical microscope (Keyence VHX 600

Digital Microscope [11]). Five different images of each of the three targets are captured at two

different magnifications of 50X and 100X using the microscope. A total of 20 and 10 point pairs

are manually marked on consecutive gratings in images captured at the magnifications of 50X and

100X, respectively. Point-to-point distances are measured between the marked point pairs using

the software provided with the microscope (see, for example, Figure 4.12). The observed average

grating spacing for the three targets at the two magnifications is estimated as the average of the

point-to-point distance measurements taken between the manually marked point pairs (see Table

4.3). These measurements indicate that the gratings etched on the physical targets by the 3D printer

are much closer to each other than expected or, in other words, grating spacing is reduced upon

during 3D fabrication. Based on the difference between the observed and the expected average

grating spacing for the three targets, the average reduction in grating spacing due to fabrication is

estimated to be 11.42%. Although this error is quite significant, it is expected since we 3D print

very fine (0.5 mm) gratings, and the 3D printer is not very accurate in printing objects at such a

fine scale. This error is compensated for in fingerprint reader evaluation experiments.

4.3.3 Fidelity of 2D pattern features during 3D target creation

To assess if the features in the 2D calibration pattern are adequately preserved during the 3D target

generation process, we determine if the

• features present in the 2D calibration pattern, I , are preserved during projection to 3D surface

to create the electronic (virtual) 3D target,

• features engraved on the electronic 3D finger surface are preserved after fabrication of the

physical 3D target,

• features present in the 2D pattern, I , are preserved on the physical 3D target, and

• intra-class variability between the captured impressions of the 3D target using fingerprint

readers is minimal.
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Table 4.4 Similarity scores between the images (2D) of the electronic 3D targets in Meshlab and
the 2D fingerprint images from NIST SD4 used for target generation. Verifinger 6.3 SDK was used
for generating similarity scores. The threshold on scores @FAR = 0.01% is 33.

Fingerprint S0005 S0010 S0017 S0083 S0096

Score 171 378 212 116 106

Five different rolled fingerprint impressions from the NIST Special Database 4 (NIST SD4)

[19] are used as calibration patterns and projected onto a 3D finger surface to generate electronic

3D targets. The physical 3D targets are fabricated with each of the two fabrication materials using

a state-of-the-art 3D printer (see Section 4.2.6). Three single-finger optical readers, abbreviated as

OR1, OR2, and OR3 are used for imaging the physical 3D targets12. OR1 is a PIV certified 500

ppi single-finger optical reader, whereas OR2 and OR3 are 1000 ppi single-finger optical readers

complying with the IAFIS Appendix F image quality specifications. A commercial fingerprint

SDK [146] is used for conducting all matching experiments. The captured images using the three

readers are upsampled by a factor of 1.1 to account for ridge spacing reduction due to 2D to 3D

projection and 3D printing before conducting the matching experiments.

4.3.3.1 Fidelity of 2D pattern features after projection to 3D surface

Each electronic 3D target is previewed in the 3D mesh processing software Meshlab [15], and its

frontal image is taken. The captured image of the electronic 3D target is rescaled manually to

the same scale as the original 2D fingerprint images used during the synthesis of the target. The

rescaled frontal images of the electronic 3D target is matched to the original 2D fingerprint image

using the fingerprint SDK.

Figure 4.13 shows a sample fingerprint image (calibration pattern) from the NIST SD4 and the

images of its electronic 3D target. The minutiae extracted and matched using the fingerprint SDK

are marked on the two images. Table 4.4 shows the corresponding similarity scores. All similarity

12Capacitive fingerprint readers could not be used in our evaluation because state-of-the-art 3D printers currently do
not allow printing objects using conductive materials. We are currently exploring the possibility of using alternative
fabrication methods to introduce conductivity.
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Figure 4.13 Minutiae correspondence between (a) rolled fingerprint image (S0083 from the NIST
SD4), and (b) 2D rendering of the electronic 3D target generated using (a). Similarity score of 116
is obtained between (a) and (b) which is above the threshold of 33 at 0.01% FAR.

scores are significantly above the verification score threshold of 33 (@FAR = 0.01%) for NIST

SD4. This demonstrates that the features present in the 2D fingerprint images are preserved during

the synthesis of the electronic 3D targets.

4.3.3.2 Fidelity of the engraved features on the 3D surface after 3D printing

The image of an electronic 3D target is matched to captured image of the corresponding physical

3D target using the three single-finger optical readers for each of the ten 3D targets. Figure 4.14

shows minutiae correspondences obtained using the fingerprint SDK between the image of one

electronic target and its captured image using optical reader OR2. Table 4.5 shows the similarity

scores for this experiment. Notice that the similarity scores are significantly above the verification

threshold score of 33 (@FAR = 0.01%) for all ten targets. This demonstrates the fidelity of features

engraved on the 3D surface after 3D printing.
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Table 4.5 Similarity scores between the images (2D) of the electronic 3D targets and the images
captured by the three single-finger optical readers of the physical 3D targets fabricated with two
different materials (TangoBlackPlus FLX980 and FLX 9840-DM). Verifinger 6.3 SDK was used
for generating similarity scores. The threshold on scores @FAR = 0.01% is 33.

TangoBlackPlus FLX980
Fingerprint OR1 (500 ppi) OR2 (1000 ppi) OR3 (1000 ppi)

S0005 165 197 392

S0010 192 350 359

S0017 143 180 207

S0083 372 407 348

S0096 165 204 336

FLX 9840-DM
Fingerprint OR1 (500 ppi) OR2 (1000 ppi) OR3 (1000 ppi)

S0005 201 342 324

S0010 194 390 342

S0017 143 228 302

S0083 326 473 441

S0096 120 210 179

Figure 4.14 Minutiae correspondence between (a) image of the electronic 3D target (of fingerprint
S0083 in NIST SD4), and (b) the image captured by optical reader 2 (1000 ppi) of the physical
3D target fabricated with FLX 9840-DM. Similarity score of 473 is obtained between (a) and (b)
which is above the threshold of 33 at 0.01% FAR.

114



Table 4.6 Similarity scores between the images captured by the three single-finger optical readers
of the 3D targets fabricated with two different materials (TangoBlackPlus FLX980 and FLX 9840-
DM) and the fingerprints from NIST SD4 used in their generation. Verifinger 6.3 SDK was used
for generating similarity scores. The threshold on scores @FAR = 0.01% is 33.

TangoBlackPlus FLX980
Fingerprint OR1 (500 ppi) OR2 (1000 ppi) OR3 (1000 ppi)

S0005 93 161 171

S0010 129 150 183

S0017 93 167 167

S0083 174 344 167

S0096 131 240 197

FLX 9840-DM
Fingerprint OR1 (500 ppi) OR2 (1000 ppi) OR3 (1000 ppi)

S0005 114 410 185

S0010 113 209 173

S0017 122 182 158

S0083 140 374 305

S0096 96 177 177

Figure 4.15 Minutiae correspondence between (a) rolled fingerprint image (S0083 from the NIST
SD4), and (b) the image captured by optical reader 2 (1000 ppi) of the 3D single-finger target
generated using (a) and fabricated with FLX 9840-DM. Similarity score of 374 is obtained between
(a) and (b) which is above the threshold of 33 at 0.01% FAR.
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Table 4.7 Range of similarity scores for pairwise comparisons between five different images cap-
tured by the three single-finger optical readers of the same 3D target fabricated with two different
materials (TangoBlackPlus FLX980 and FLX 9840-DM). Verifinger 6.3 SDK was used for gener-
ating similarity scores. The threshold on scores @FAR = 0.01% is 33.

TangoBlackPlus FLX980
Fingerprint OR1 (500 ppi) OR2 (1000 ppi) OR3 (1000 ppi)

S0005 431-1017 675-1146 929-1286

S0010 638-1049 1053-1455 1169-1620

S0017 464-1155 1230-1592 843-1292

S0083 890-1440 1016-1620 744-1325

S0096 726-1286 842-1443 774-1334

FLX 9840-DM
Fingerprint OR1 (500 ppi) OR2 (1000 ppi) OR3 (1000 ppi)

S0005 597-1295 1103-1689 921-1620

S0010 647-1239 1256-1643 1299-1605

S0017 534-1298 1203-1479 1170-1481

S0083 614-1262 1326-1697 1215-1656

S0096 807-1344 1154-1401 1238-1607

Figure 4.16 Minutiae correspondence between two images (a) and (b) captured by optical reader 2
(1000 ppi) of the 3D target generated from fingerprint S0083 in NIST SD4 and fabricated with FLX
9840-DM. Similarity score of 1494 is obtained between (a) and (b) which is above the threshold
of 33 at 0.01% FAR.

116



4.3.3.3 End-to-end fidelity of 2D calibration pattern features after 3D printing

Table 4.6 shows the similarity scores obtained when comparing the images of all ten 3D targets

captured using the three readers to the corresponding original 2D fingerprint images. Figure 4.15

shows minutiae correspondence between the fingerprint image and images of the generated 3D

target using the fingerprint SDK. The key observations and inferences based on this experiment

are:

• Images of the 3D targets captured using all three single-finger optical readers can be suc-

cessfully matched to the original fingerprint images used for generating the targets; all the

similarity scores in Table 4.6 are significantly above the verification threshold score of 33

(@FAR = 0.01%).

• Because the images of the 3D targets can be successfully matched to the original fingerprint

images (@FAR = 0.01%), it can be inferred that the salient features present in the 2D pattern

are preserved during the fabrication of the physical 3D target.

4.3.3.4 Intra-class variability between 3D target impressions

Five different impressions of each of the ten 3D targets are captured using all three single-finger

optical readers. Pairwise comparisons between the five impressions obtained from a fingerprint

reader are performed using the fingerprint SDK. Figure 4.16 shows the minutiae correspondence

between two different impressions of a 3D target captured using optical reader OR2. Table 4.7

shows the range of similarity scores all of which are significantly higher than the threshold at

0.01% FAR. This indicates that the intra-class variability between different images of the 3D target

is small.
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4.4 Behavioral Evaluation of Fingerprint Readers using 3D

Targets

In behavioral evaluation, the aim is to test the functionality of the fingerprint reader in the opera-

tional scenario. There are several different parameters which can impact the quality of the image

captured by the reader in a functional setting, e.g., the amount and direction of the pressure ap-

plied by a user and the movement of his finger on the reader platen when capturing the fingerprint

image. Our end goal is to assess the effect of these parameters on the reader performance by ex-

plicitly controlling these parameters. For this, we plan to mount 3D targets on a robotic hand and

conduct controlled experimentation. However, to show the utility of the fabricated 3D targets for

behavioral evaluation of fingerprint readers, we conduct two preliminary experiments (i) using 3D

targets created from synthetically generated test patterns to evaluate directional imaging capability

(Experiment I), and (ii) using 3D targets created by projecting fingerprint patterns to evaluate the

capability to capture fingerprint patterns (Experiment II).

4.4.1 Experiment I: Synthetic Sine Grating Targets

Ten different impressions of each of the three targets created using horizontal, vertical and circular

sine gratings of 10 pixel spacing are captured using all three single-finger optical readers. Center-

to-center spacing is then measured in each of the captured impressions using the method in [104].

Directional imaging capability of fingerprint readers is subsequently assessed based on how well

the grating spacing on the three targets is recovered by the readers. Figs. 4.17, 4.18 and 4.19 show

the three directional test patterns, the electronic targets generated using the three patterns, and

some sample images of the three targets captured using the three optical readers. The average and

the standard deviation of the observed center-to-center grating spacing in the captured impressions

of the three targets is reported in Table 4.8. Note that the expected grating spacing on these targets

is 8.278 (10 × 0.827) pixels after taking into account the projection (5.8%) and fabrication error

(11.42%). Following are some observations based on this experiment:
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Table 4.8 Mean (µ) and std. deviation (σ) of center-to-center spacing in the images of the three di-
rectional test targets captured using the three single-finger optical readers (OR). (Expected grating
spacing = 8.278 pixels.)

Test pattern OR1 (500 ppi) OR2 (1000 ppi) OR3 (1000 ppi)

Horizontal µ = 8.307, σ = 0.101 µ = 8.445, σ = 0.085 µ = 8.420, σ = 0.030

Vertical µ = 8.869, σ = 0.076 µ = 8.561, σ = 0.076 µ = 8.592, σ = 0.098

Circular µ = 8.921, σ = 0.044 µ = 8.823, σ = 0.048 µ = 8.721, σ = 0.053

(a) (b) (c) (d) (e)

Figure 4.17 Evaluating single-finger optical readers with a 3D target generated using a horizontal
sine grating. (a) Horizontal sine grating (10 pixel separation between the gratings); (b) electronic
3D target generated using (a); (c), (d) and (e) are sample images of the fabricated target captured
using optical readers 1, 2 and 3, respectively. There is a slight distortion apparent in (b) that is due
to the 2D to 3D projection error.

• The observed spacing in images of all three targets is, on average, greater than the expected

spacing. Since we account for the 2D to 3D projection and 3D fabrication errors in our

spacing measurements, this difference should be due to the flattening of 3D target gratings

when the target is pressed against the reader platen. We performed one-sample t-test [151] to

ascertain if the mean of the observed spacing in each case is statistically different compared

to the expected spacing. In all but one case, the mean observed spacing was determined to

be significantly different than the expected mean at significance level of 0.05.

• The deviation from the expected spacing is found to be greater for the circular target than

the horizontal and vertical targets. This can be explained by the fact that the characteristic

flattening induced when the target is pressed against the reader platen is radial around the
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(a) (b) (c) (d) (e)

Figure 4.18 Evaluating single-finger optical readers with a 3D target generated using a vertical
sine grating. (a) Vertical sine grating (10 pixel separation between the gratings); (b) electronic 3D
target generated using (a); (c), (d) and (e) are sample images of the fabricated target captured using
optical readers 1, 2 and 3, respectively. There is a slight distortion apparent in (b) that is due to the
2D to 3D projection error.

central point of contact. In other words, target regions closer to the central point of contact

with the reader platen flatten out more compared to surrounding regions. The relative effect

of such a flattening is not as profound on both horizontal and vertical gratings compared to

circular gratings because the circular gratings align symmetrically with the radial flattening.

• The horizontal target spacing captured by all three readers is observed to be closest to the

expected spacing compared to vertical and circular targets. This may be due to the way

pressure is applied on the reader platen with respect to the relative orientation of the gratings

while capturing the target images. Controlled experimentation, where both the magnitude

and direction of pressure applied on the reader platen is fixed before capturing the target

impressions, is required to understand the underlying cause, which will be undertaken in

future studies.

4.4.2 Experiment II: Fingerprint Targets

The ten 3D targets generated by projecting five different fingerprint images from NIST SD4 and

fabricated using each of the two printing materials are used to evaluate the imaging capability of the
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(a) (b) (c) (d) (e)

Figure 4.19 Evaluating fingerprint readers with a 3D target generated using a circular sine grating.
(a) Circular sine grating (10 pixel separation between the gratings); (b) electronic 3D target gen-
erated using (a); (c), (d) and (e) are sample images of the fabricated target captured using optical
readers 1, 2 and 3, respectively. There is a slight distortion apparent in (b) that is due to the 2D to
3D projection error.

three fingerprint readers to capture fingerprint patterns. Center-to-center ridge spacing is computed

on the original 2D fingerprint pattern that is used to create each target using the method in [104].

Analogous to Experiment I, the average and variance of center-to-center ridge spacing values is

computed for five different 2D impressions of each target captured using the three single-finger

optical readers. Note that the same method [104] is used to compute ridge spacing on the captured

2D plain impressions of the targets. Table 4.9 shows the computed ridge spacing measurements.

Following are the main observations based on this experiment:

• To determine if they are statistically different, the mean observed spacing in each case was

compared to the expected spacing using one-sample t-test [151]. In all cases, the mean

observed spacing was found to be significantly different than the expected spacing at signif-

icance level of 0.05.

• The 1000 ppi readers OR2 and OR3 are, on average, better than the 500 ppi reader in pre-

serving fingerprint ridge spacing. This may be due to lesser ridge flattening being induced

by the reader platens for these two readers compared to OR1. Amongst the two 1000 ppi
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Table 4.9 Mean (µ) and std. deviation (σ) of center-to-center ridge spacing in the fingerprint target
images captured using the three single-finger optical readers (OR). The expected average ridge
spacing (in pixels) in the target images is indicated in brackets.

TangoBlackPlus FLX980
Test pattern OR1 (500 ppi) OR2 (1000 ppi) OR3 (1000 ppi)

S0005 (7.818) µ = 8.493, σ = 0.096 µ = 8.250, σ = 0.048 µ = 8.099, σ = 0.054

S0010 (8.433) µ = 9.215, σ = 0.156 µ = 9.172, σ = 0.024 µ = 9.128, σ = 0.053

S0017 (8.932) µ = 9.893, σ = 0.118 µ = 9.525, σ = 0.038 µ = 9.523, σ = 0.136

S0083 (8.621) µ = 9.100, σ = 0.191 µ = 9.111, σ = 0.057 µ = 9.110, σ = 0.190

S0096 (8.473) µ = 8.817, σ = 0.056 µ = 8.839, σ = 0.075 µ = 8.670, σ = 0.102

FLX 9840-DM
Test pattern OR1 (500 ppi) OR2 (1000 ppi) OR3 (1000 ppi)

S0005 (7.818) µ = 8.440, σ = 0.129 µ = 8.288, σ = 0.011 µ = 8.135, σ = 0.079

S0010 (8.433) µ = 9.559, σ = 0.065 µ = 9.168, σ = 0.052 µ = 9.077, σ = 0.048

S0017 (8.932) µ = 9.988, σ = 0.073 µ = 9.539, σ = 0.032 µ = 9.565, σ = 0.055

S0083 (8.621) µ = 9.302, σ = 0.061 µ = 9.131, σ = 0.037 µ = 9.080, σ = 0.042

S0096 (8.473) µ = 8.752, σ = 0.102 µ = 8.772, σ = 0.063 µ = 8.654, σ = 0.063

readers, OR3 seems to perform marginally better, on an average, than OR2 in preserving

fingerprint ridge spacing.

• The 500 ppi reader OR1 has a small platen and is only able to partially image the fingerprint

targets. Therefore, overall fewer spacing measurements are used for average spacing com-

putations and the variation in spacing is relatively higher for the reader OR1 than the readers

OR2 and OR3.

• There is no significant impact of the fabrication material on the ridge spacing measurements

in fingerprint images captured using the three readers.

All three single-finger optical readers used for conducting experiments are PIV/Appendix F

certified. Note, however, that the errors obtained in our evaluation experiments are comparatively

greater than permitted geometric errors for the PIV and Appendix F standards. This is because of

the flattening of the patterns on the 3D targets when they are pressed against the reader platens.
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The current certification standards do not explicitly account for this error. However, it is important

to consider this error in the operational scenario where user-dependent parameters, such as finger

placement and pressure applied on the reader platen, directly impact the fingerprint image acquired

by a fingerprint reader.

Another important consideration is how many different targets and imaging samples per target

are adequate for evaluation of fingerprint readers. To this effect, it is important that the set of targets

used for reader evaluation are representative of operational fingerprint data. Targets generated

using fingerprint patterns of different types (whorl, loop, and arch) and using different finger shapes

are desirable to test for variations encountered in the functional environment. It is also important

to capture multiple impressions of these targets to measure the effect of intra-class variations.

4.5 Conclusions

Structural evaluation of fingerprint readers is typically done using 2D or 3D targets designed for

calibrating imaging devices. While these targets are used for structural evaluation of fingerprint

readers, they cannot be used for behavioral evaluation of fingerprint readers in operational scenar-

ios. In this research, we have designed and fabricated wearable 3D single-finger targets that can be

placed on the fingerprint reader platen, and imaged analogous to operational setting where a user’s

finger will interact with the reader. The 3D targets are created by projecting 2D calibration patterns

of known characteristics (e.g. sine gratings of known spacing) onto a generic 3D finger surface to

generate electronic 3D targets. The electronic targets are then fabricated using a state-of-the-art

3D printer with material similar in hardness and elasticity to the human finger skin. Our experi-

mental results show that (i) features present in the 2D calibration pattern are preserved during the

creation of electronic 3D target, (ii) features engraved on the electronic 3D target are preserved

during physical 3D target fabrication, and (iii) intra-class variability between multiple images of

the same physical 3D target is sufficiently small for matching at 0.01% FAR. We also show that
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the generated 3D targets can be used for behavioral evaluation of three different (500/1000 ppi)

PIV/Appendix F certified single-finger optical readers in the operational settings.
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Chapter 5

3D Whole Hand Targets: Evaluating Slap

and Contactless Readers

5.1 Introduction

In the previous chapter, we designed and fabricated 3D single-finger targets for optical readers with

skin-like hardness and elasticity that could be worn on a finger to mimic the fingerprint capture pro-

cess. We projected 2D calibration patterns of known characteristics (e.g. fingerprints with known

ridge flow, ridge spacing and minutiae or sine gratings of pre-specified orientation and spacing)

onto a 3D finger surface of known dimensions to create electronic 3D targets. The electronic 3D

targets were fabricated using a state-of-the-art 3D printer (Stratasys Objet350 Connex); the printed

targets were then successfully used for evaluating single-finger optical readers.

Fingerprint recognition systems designed for large-scale applications (e.g. law enforcement

[160], homeland security [20] and national ID programs [38]) generally require capturing all ten

fingerprints (tenprints) of a person during enrolment (see, e.g., Figure 5.1). To maintain high

throughput, tenprint acquisition is usually done by capturing two slap impressions1 of the four

fingers of the left and right hand, followed by simultaneous capture of the two thumbprints (also

1A four-finger simultaneous capture (index, middle, ring and little fingers altogether) is called a slap impression.

125



(a) (b)

Figure 5.1 Tenprint capture (four finger capture of each of the two hands (shown in (a) and (b))
followed by simultaneous capture of the two thumbs) by a United States (US) Customs and Border
Protection (CBP) officer at a port of entry in the US. Image reproduced from [158].

termed as 4-4-2 capture) using a slap fingerprint reader. Most slap fingerprint readers are contact-

based optical devices that capture fingerprints in the following manner: (i) user places four fingers

or two thumbs of his hand on a glass platen, (ii) his fingers are illuminated with light of a specific

wavelength, (iii) friction ridges on the finger tip absorb the incident light while valleys reflect the

light, and (iv) a glass prism deflects the reflected light onto a CCD or CMOS array for imaging

the fingers. The quality of the acquired slap impression is a function of several user-dependent

variables, e.g., the pressure applied on the reader platen by each finger, and the relative orientation

of the fingers with respect to each other and the reader platen, as well as the reader optics.

Contact-based slap capture, however, induces distortion in the captured image due to flattening

of the skin when the fingers are pressed against the reader platen. It is also typically required to

clean the reader platen after every few captures to prevent accumulated residue due to repeated

use of the reader from impacting the quality of the captured image. Further, some users have

hygiene-related concerns in using contact-based readers. To alleviate these issues, contactless slap

fingerprint capture technology was introduced, and has since garnered significant attention [165].

In 2007, the National Institute of Justice (NIJ) initiated the fast capture initiative to create new
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(a) (b)

(c)

Figure 5.2 3D whole hand target for evaluating slap and contactless fingerprint readers. (a) Elec-
tronic 3D hand target complete with the four fingers, thumb and fingerless glove; the index and
middle fingerprints engraved on the target are shown at full scale in red and blue boxes, respec-
tively. (b) Fabricated hand target with translucent rubber-like material TangoPlus FLX930 [31].
(c) slap fingerprint capture by a contact-based reader using the fabricated hand target in (b).
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technology that will automatically “capture the same images as 10 rolled fingerprints in less than

15 seconds and both palm prints in less than 1 minute” [7]. The goal of NIJ’s initiative was to

improve fingerprint image quality, throughput and the commercialization of contactless fingerprint

readers for law enforcement and homeland security agencies. Given that almost all criminal finger-

print databases contain rolled prints, another objective of this initiative was to improve fingerprint

identification accuracy by comparing rolled prints to rolled prints rather than slap to rolled prints.

Since then, significant advances have been made in the design and development of commercial-

grade contactless slap fingerprint readers.

State-of-the-art contactless fingerprint readers generally use one of the following two optical

imaging techniques: (i) structured lighting, where a fixed light pattern is used to estimate the dif-

ference in the depth of ridges and valleys for generating a 3D representation of the finger, or (ii)

multi-view imaging technique where multiple cameras are used to image the finger from different

viewpoints to construct a 3D fingerprint representation. An important requirement for acquir-

ing good quality fingerprint images using contactless slap readers is the proper positioning of the

user’s hand/finger with respect to the imaging component of the reader. Given that user-induced

variabilities can impact the quality of fingerprint images acquired by contactless slap readers, it is

important to evaluate the readers to ensure that image quality suffices for fingerprint recognition,

i.e., comparing acquired fingerprint images to rolled (or slap) prints in the database. While evalua-

tion procedures have been developed to assess contact-based fingerprint readers [155] [156], there

is still an impending need to develop methods, metrics and artifacts for evaluation of contactless

fingerprint readers. For this reason, NIST started the Contactless Fingerprint Capture Device Mea-

surement Research Program with the aim of “developing methodologies for measuring the image

fidelity of contactless fingerprint capture devices” [3].

Here, we design and fabricate whole hand targets (both electronic and physical) for evaluating

contact-based and contactless slap fingerprint readers (see Fig. 5.2)2. To create a whole hand

2This work was published in the proceedings of the International Conference of the Biometrics Special Interest
Group (BIOSIG), 2016 [55].
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(a) (b) (c) (d)

Figure 5.3 Images of a 3D fingerprint target fabricated with translucent rubber-like material Tan-
goPlus FLX930 [31] (shown in (a)) captured by three different PIV certified [155] single-finger
optical readers using different wavelengths of light for fingerprint capture: (b) blue wavelength,
(c) combination of blue and red wavelengths, and (d) red wavelength. Targets printed with black
colored rubber-like materials (TangoBlackPlus FLX980 [31] and FLX9840-DM [30]) could not be
imaged using these three readers.

target, we first segment an electronic 3D hand surface3 into six different parts: four individual

fingers, the thumb, and the remaining middle portion of the hand surface4. Individual targets for

the four fingers and the thumb are created by projecting pre-specified 2D calibration patterns onto

3D finger surfaces using the method described in the previous chapter. The middle portion of the

hand surface is synthetically processed to make a wearable fingerless glove. Each of the six parts of

the whole hand are printed using a state-of-the-art 3D printer (Stratasys Objet350/500 Connex45)

with materials that are similar in hardness and elasticity to the human skin as well as appropriate

for imaging with optical readers. The printer slices 3D parts into 2D horizontal layers and prints

them layer by layer. It uses a support material to prevent the parts being printed from breaking. The

bulk of the support material can be manually removed from the printed parts. However, to remove

any support material debris remaining on the printed parts, the individual parts are subsequently

33D hand surface can either be obtained directly using a 3D scanner or synthetically generated. We use a syntheti-
cally designed 3D hand surface.

4A single 3D hand target model with all five fingerprints becomes quite complex due to the resolution requirements
for engraving fingerprints. Because the 3D printer software does not accept large electronic model files (>100 MB),
the hand target is designed and manufactured in parts.

5The two printers have X and Y resolution of 600 dpi and Z resolution of 1600 dpi. This suffices for printing
targets with micron-scale gratings, e.g., fingerprints.
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cleaned with 2M NaOH solution and water. The printed parts are then physically assembled to

create the whole hand target (see Fig. 1(b)).

The printed 3D hand targets can be imaged using three different commercial (500/1000 ppi)

Appendix F certified contact-based slap fingerprint readers and a PIV certified contactless slap

reader6. We extract individual plain prints7 for each finger from slap impressions of the whole

hand targets captured using the three slap readers and show that they can be successfully matched

to (i) the original 2D fingerprints used to create the whole hand target, and (ii) the frontal images

of electronic whole hand targets. We also conduct experiments to evaluate the three slap readers

and the contactless slap reader using the generated whole hand target. The contributions of the

research detailed in this chapter are as follows:

1. Generation of whole hand target for evaluating contact-based and contactless slap fingerprint

readers. In the previous chapter, we had generated individual finger targets for evaluating

single-finger contact-based optical readers only. We further extend our method to generate a

whole hand target for use with multi-finger optical devices, e.g. slap fingerprint readers.

2. Determination of optically compatible 3D printing materials for fabricating 3D targets. Pre-

viously, we had printed 3D targets with materials similar in hardness and elasticity to the

finger skin (TangoBlackPlus FLX980 [31] and FLX9840-DM [30]4). However, these mate-

rials were black in color, and could not be imaged with optical readers using certain light

wavelengths (e.g. blue). To remedy this, we now use translucent whitish rubbery mate-

rials (TangoPlus FLX930 [31] and FLX9740-DM [30]4) that provide the desired hardness

and elasticity as well as appropriate optical properties for use with a variety of contact-

based optical fingerprint readers (see Fig. 5.3). A bluish-gray colored rigid opaque mate-

rial (RGD8520-DM [30]) is used to manufacture fingerprint targets for the contactless slap

6The contactless slap reader captures four fingerprints (index, middle, ring and little fingers) with a single hand
movement.

7The term plain print is used to refer to the fingerprint impression of an individual finger extracted from the slap
impression [23].
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Figure 5.4 Generating a 3D whole hand target from a generic 3D hand surface and a set of 2D
calibration patterns.

reader. This material provides optimum contrast between fingerprint ridges and valleys for

imaging the target with the contactless slap reader.

5.2 Generating Whole Hand Target

Let a generic electronic 3D hand surface be denoted by H . Assume that the electronic surface H

is a triangular mesh with a set of vertices VH and a set of triangles TH . Each vertex, v, in VH has

(x, y, z) coordinates corresponding to its spatial location in H , and each triangle in TH connects

a unique set of three vertices in VH . As mentioned earlier, the whole hand target W is generated

from H in parts. Assume that the 2D calibration pattern to be projected onto the ith finger in H is
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2M NaOH solution 
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Manual cleaning 

Rinse with water 
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whole hand 3D target 

3D printed fingers 
and gloves 

Figure 5.5 Cleaning and assembling the 3D printed fingers and gloves to create a whole hand 3D
target.

denoted by Ii (i = {1 . . . 5}). The complete process to create the whole hand target W , given H

and the set of 2D calibration patterns I , is described below (see Fig. 5.4).

1. Partitioning 3D hand surface: The electronic hand surface H is divided into six different

parts: the four fingers Si (i={1. . . 4}), the thumb S5, and the remaining middle portion M

of the hand surface, which can be described as a fingerless glove. The selector tool in open-

source 3D mesh processing software Meshlab [15] is used for selecting the different parts.

A new mesh layer is then created for each selected part. The registration of the six parts with

respect to each other remains intact while partitioning the hand surface. This facilitates as-

sembly of the fabricated parts to create the whole hand target. Assume that the set of vertices

and triangles present in each 3D finger surface Si is denoted by Vi and Ti, respectively. Also,

let Ii(u, v) denote the grayscale value at spatial coordinates (u, v) in the calibration pattern

Ii.
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2. Preprocessing 3D finger surfaces: Electronic finger surface Si is aligned such that the

finger length is along the y-axis in Si. The surface Si is re-meshed by sampling vertices

from the set Vi based on the curvature of Si [167]. Surface re-meshing reduces the density of

Si, therefore, Si is subdivided using Loop’s method [136] to ensure sufficient fidelity during

projection of the 2D calibration pattern Ii. Si is displaced outwards along the direction of

the surface normals computed at each vertex v to create an outer finger surface SOi . Note,

however, that the original electronic finger surface Si is retained. The front portion SOFi and

the rear portion SORi of SOi are separated as only the front portion SOFi is used for projection.

3. Preprocessing 2D calibration patterns: If the pattern Ii being projected is a 2D fingerprint

image, skeleton ISi of the image Ii is created. The ridge width of the skeleton ISi is increased

using morphological operations, and the image is smoothed using a Gaussian filter before

projecting it onto the frontal surface SOFi . This preprocessing step is important to ensure that

ridges and valleys present in Ii are engraved smoothly onto SOFi . Note that preprocessing is

not needed if any other 2D calibration pattern (e.g. sine grating) is being projected.

4. Mapping 2D calibration patterns to 3D finger surfaces: The front portion SOFi of the

outer surface SOi is projected to 2D using the ISOMAP algorithm [177]. Rotation and flip

are corrected using corresponding control points between front portion SOFi and the 2D pro-

jection of SOFi . Translation correction is done using the reference coordinates computed

from Ii. The front portion SOFi is further subdivided depending on the resolution of Ii to

ensure sufficient fidelity (high similarity scores for a FAR of 0.01%) of mapping Ii. There-

after, the mapping between the vertex locations (x, y, z) on the front portion SOFi and the

grayscale values at locations (u, v) in Ii is ascertained.

5. Engraving 2D calibration patterns on 3D finger surfaces: Ridges and valleys are en-

graved on SOFi by displacing the vertices on the front portion SOFi along the surface normals

according to the texture values at the mapped (u, v) locations in Ii.
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(a) (b)

Figure 5.6 Sample single-finger 3D targets fabricated for (a) contact-based readers (using translu-
cent rubber-like material FLX9740-DM [30]) and (b) contactless readers (using rigid opaque ma-
terial RGD8520-DM [30]).

6. Postprocessing 3D finger surfaces: The front and rear portions of the outer finger surface

SOi are combined. The original finger surface Si is made as dense as the outer finger surface

SOi and then the two surfaces are stitched together to create the 3D target Ai in electronic

(virtual) form.

7. Creating glove: The middle portion M of the hand is displaced outward along the surface

normals computed at each vertex v to create an outer replica MO of M . M and MO are then

stitched together to create a wearable glove MW . This finishes the creation of the six parts

of the whole hand target in electronic form.

8. 3D Printing: The thumb and four finger targets Ai and the glove MW are physically fabri-

cated using a 3D printer (Stratasys Objet350/500 Connex). Two different printing materials,

TangoPlus FLX930 [31] and FLX9740-DM [30], are used to fabricate the thumb and four

finger targets Ai as well as the glove MW for contact-based slap fingerprint readers (see,

e.g., Figure 5.6 (a)). These materials are semi-translucent whitish rubber-like materials with

similar hardness and elasticity as human skin (see Table 5.1). Unlike the black rubber-like

materials earlier, these materials are optically suitable for imaging with a variety of contact-
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Table 5.1 Comparison of the mechanical properties of the three printing materials used for 3D
whole hand target fabrication with the human skin. TangoPlus FLX930 and FLX9740-DM are
rubber-like materials similar in mechanical properties to the human skin and are suitable for use
with contact-based slap readers. RGD8520-DM is a rigid opaque material that provides optimum
fingerprint ridge-valley contrast for use with the contactless slap reader.

Property
Human Skin

[88] [89]
TangoPlus

FLX930 [31]
FLX9740-
DM [30]

RGD8520-
DM [30]

Shore A hardness 20-41 26-28 35-40 N.A.

Tensile Strength (MPa) 5-30 0.8-1.5 1.3-1.8 40-60

Elongation at Break (%) 35-115 170-220 110-130 15-25

based optical fingerprint readers. A bluish-gray rigid opaque material, RGD8520-DM [30],

is used to manufacture the individual thumb and finger targets Ai for the contactless slap

reader (see Table 5.1 and Figure 5.6 (b)). This material provides optimum contrast between

fingerprint ridges and valleys for imaging with the contactless slap reader. The wearable

glove MW for the contactless slap reader is fabricated with TangoPlus FLX930.

9. Chemical Cleaning: The majority of the printer support material is removed manually from

the 3D printed parts. After this, the 3D printed parts are soaked in 2M NaOH solution for

3 hours, and then rinsed with water to remove the printer support material residue (Figure

5.5).

10. Part Assembling: The cleaned physical parts Ai (i = 1 . . . 5) and MW are assembled

together with superglue to generate a wearable whole hand target W .

5.3 Fidelity of 3D Whole Hand Target Generation

To ascertain the fidelity8 of the whole hand target creation process, we assess how well the fea-

tures present in the 2D calibration patterns are replicated on the electronic 3D hand target after

the 2D to 3D projection of the patterns, and on the physical 3D hand target post 3D printing and

8Fidelity means the degree of exactness with which the 2D calibration patterns are reproduced on the electronic
and physical 3D hand target.
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cleaning. We create a right hand target using five different rolled fingerprints from NIST SD4 [19].

Two samples of the whole hand target are fabricated with the two printing materials, TangoPlus

FLX930 and FLX9740-DM. Five different slap impressions of the hand target are captured using

three different Appendix F certified contact-based slap readers, SR1, SR2 and SR39 (see, e.g., Fig.

5.7). SR1 and SR3 are 500 ppi readers whereas SR2 is a 1000 ppi reader. Comparisons between (i)

2D fingerprints from NIST SD4 and the frontal images of corresponding fingerprints engraved on

the electronic 3D hand target, (ii) frontal images of fingerprints engraved on the electronic 3D hand

target to corresponding plain prints extracted from slap impressions of the physical 3D hand target,

and (iii) the 2D fingerprints used to generate the hand target to corresponding plain prints extracted

from slap impressions of the physical 3D hand target, are made to ascertain the fidelity of the 3D

whole hand target generation process. Furthermore, plain prints extracted from five different slap

impressions of the 3D hand target are compared with each other to determine the consistency be-

tween different impressions of the target (intra-impression variability). Verifinger 6.3 SDK [146]

is used for conducting all comparison experiments. All slap impressions are upsampled by a fac-

tor of 1.2 using bicubic interpolation to account for reduction in ridge spacing due to 2D to 3D

projection and 3D printing before conducting matching experiments (see Sections 4.3.1 and 4.3.1,

respectively, for 2D to 3D projection and 3D printing fabrication error measurements).

5.3.1 Replication of 2D calibration pattern features on electronic 3D hand

target

Frontal images of individual fingerprints engraved on the electronic 3D hand target are captured

using Meshlab [15]. They are rescaled manually to approximately the same scale as the 2D fin-

gerprints from NIST SD4. Each individual fingerprint image from the electronic 3D target is

compared to the corresponding 2D fingerprint from NIST SD4. Table 5.2 shows the similarity

scores obtained for this experiment. All similarity scores are significantly above the verification

9Vendor names are not provided to maintain their anonymity in this evaluation.
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Figure 5.7 Sample slap impression of the 3D whole hand target captured using a contact-based slap
reader.

Table 5.2 Similarity scores between frontal images (2D) of individual fingerprints engraved on
the electronic 3D hand target captured in Meshlab and the corresponding 2D fingerprint images
from NIST SD4 used for target generation. Verifinger 6.3 SDK was used for generating similarity
scores. The threshold on scores @FAR = 0.01% is 33.

Fingerprint S0005 (index) S0043 (middle) S0083 (ring) S0096 (little) S0044 (thumb)

score 203 150 399 183 249

threshold of 33 @FAR=0.01% for NIST SD4. This demonstrates that the features present in the

2D calibration patterns are replicated with high fidelity on the electronic 3D hand target.

5.3.2 Replication of electronic 3D hand target features on physical 3D hand

target

Individual plain prints are manually extracted (for convenience) from the slap impressions captured

using the three contact-based slap readers. Each plain print is compared to the frontal image of the

corresponding fingerprint engraved on the electronic 3D hand target. All similarity scores are well
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Table 5.3 Similarity scores between the frontal images (2D) of the individual fingerprints engraved
on the electronic 3D hand target and the corresponding plain prints extracted from a slap image of
the physical 3D hand targets captured by each of the three contact-based slap readers (SR1, SR2
and SR3). Physical targets were fabricated with two different materials (TangoPlus FLX930 and
FLX9740-DM). Verifinger 6.3 SDK was used for generating similarity scores. The threshold on
scores @FAR = 0.01% is 33.

TangoPlus FLX930

Fingerprint
SR1

(500 ppi)
SR2

(1000 ppi)
SR3

(500 ppi)

S0005 (index) 87 68 168

S0043 (middle) 66 71 122

S0083 (ring) 327 171 158

S0096 (little) 173 141 108

S0044 (thumb) 65 69 93

FLX9740-DM

Fingerprint
SR1

(500 ppi)
SR2

(1000 ppi)
SR3

(500 ppi)

S0005 (index) 147 159 78

S0043 (middle) 48 201 107

S0083 (ring) 362 441 222

S0096 (little) 140 156 129

S0044 (thumb) 63 62 50

above the verification threshold of 33 @FAR=0.01% for NIST SD4 (see Table 4.5). This shows

that features engraved on the electronic 3D target are preserved post 3D printing and cleaning.

5.3.3 Replication of 2D calibration pattern features on physical 3D hand

target

Plain prints extracted from the slap impressions of the physical 3D hand target, captured using the

three contact-based slap readers, are compared to corresponding 2D fingerprints from NIST SD4.

Table 5.4 shows the similarity scores obtained for this experiment. Because all similarity scores are

well above the verification threshold score of 33 @FAR=0.01% for NIST SD4, it can be inferred
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Table 5.4 Similarity scores between the plain prints extracted from slap impressions captured by
the three contact-based readers (SR1, SR2 and SR3) of the physical 3D hand targets and the cor-
responding fingerprints from NIST SD4 used in their generation. Physical targets were fabricated
with two different materials (TangoPlus FLX930 and FLX9740-DM). Verifinger 6.3 SDK was used
for generating similarity scores. The threshold on scores @FAR = 0.01% is 33.

TangoPlus FLX930

Fingerprint
SR1

(500 ppi)
SR2

(1000 ppi)
SR3

(500 ppi)

S0005 (index) 549 141 321

S0043 (middle) 213 161 315

S0083 (ring) 441 374 411

S0096 (little) 308 392 423

S0044 (thumb) 209 422 345

FLX9740-DM

Fingerprint
SR1

(500 ppi)
SR2

(1000 ppi)
SR3

(500 ppi)

S0005 (index) 719 570 510

S0043 (middle) 221 579 357

S0083 (ring) 426 596 303

S0096 (little) 419 510 366

S0044 (thumb) 119 404 371

that the 2D calibration pattern features are replicated with high fidelity on the physical 3D hand

target.

5.3.4 Consistency between different impressions of the physical 3D hand

target

Individual plain prints extracted from different slap impressions of the same physical 3D hand

target are compared with each other to measure their intra-class similarity. Similarity scores for this

experiment are reported in Table 5.5. All similarity scores are significantly above the verification
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Table 5.5 Range of similarity scores for pairwise comparisons between plain prints of the same
finger extracted from five different slap prints captured by the three contact-based slap readers
(SR1, SR2 and SR3) of the same 3D whole hand target. Results are shown for two physical
hand targets fabricated with the two printing materials (TangoPlus FLX930 and FLX9740-DM).
Verifinger 6.3 SDK was used for generating similarity scores. The threshold on scores @FAR =
0.01% is 33.

TangoPlus FLX930

Fingerprint
SR1

(500 ppi)
SR2

(1000 ppi)
SR3

(500 ppi)

S0005 (index) 839-1373 603-1193 797-1434

S0043 (middle) 551-930 501-909 581-1206

S0083 (ring) 756-1127 843-1290 990-1272

S0096 (little) 644-1071 344-1133 957-1413

S0044 (thumb) 800-1061 743-1263 989-1160

FLX9740-DM

Fingerprint
SR1

(500 ppi)
SR2

(1000 ppi)
SR3

(500 ppi)

S0005 (index) 980-1359 735-1271 779-1229

S0043 (middle) 579-1079 855-1265 539-1190

S0083 (ring) 837-1254 924-1467 897-1503

S0096 (little) 639-1043 710-1059 630-1221

S0044 (thumb) 723-1178 845-1796 822-1469

threshold score of 33 @FAR=0.01% indicating that multiple slap impressions of the same 3D hand

target are highly consistent.

5.4 Evaluating Contact-based Slap Fingerprint Readers

Center-to-center ridge spacing measurements are computed (using the method proposed in [104])

in the plain prints extracted from five different slap impressions captured using the three contact-

based slap readers. We compare these measurements against the expected average center-to-center

ridge spacing in the corresponding 2D fingerprints used during target creation. The expected ridge

spacing is computed taking into consideration the 2D to 3D projection error (5.8%) and the 3D
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Table 5.6 Mean (µ) and std. deviation (σ) of center-to-center ridge spacings (in pixels) in the plain
prints extracted from five different slap images of the 3D whole hand targets captured using the
three contact-based slap readers (SR1, SR2 and SR3). Expected average ridge spacing (in pixels)
for each 2D fingerprint from NIST SD4 is shown in brackets. The spacing measurements take
into consideration the reduction in spacing due to 2D to 3D projection and 3D printing fabrication
errors.

TangoPlus FLX930
Fingerprint SR1 (500 ppi) SR2 (1000 ppi) SR3 (500 ppi)

index (7.82) µ = 8.06, σ = 0.10 µ = 7.87, σ = 0.06 µ = 7.90, σ = 0.05

middle (8.33) µ = 8.64, σ = 0.03 µ = 8.57, σ = 0.06 µ = 8.35, σ = 0.08

ring (8.62) µ = 8.58, σ = 0.05 µ = 8.65, σ = 0.10 µ = 8.65, σ = 0.07

little (8.47) µ = 8.49, σ = 0.07 µ = 8.49, σ = 0.10 µ = 8.49, σ = 0.04

thumb (7.67) µ = 7.67, σ = 0.04 µ = 7.66, σ = 0.06 µ = 7.67, σ = 0.06

FLX9740-DM
Fingerprint SR1 (500 ppi) SR2 (1000 ppi) SR3 (500 ppi)

index (7.82) µ = 7.87, σ = 0.08 µ = 7.80, σ = 0.08 µ = 8.00, σ = 0.08

middle (8.33) µ = 8.61, σ = 0.09 µ = 8.64, σ = 0.05 µ = 8.36, σ = 0.05

ring (8.62) µ = 8.63, σ = 0.14 µ = 8.66, σ = 0.03 µ = 8.64, σ = 0.10

little (8.47) µ = 8.52, σ = 0.10 µ = 8.51, σ = 0.14 µ = 8.54, σ = 0.08

thumb (7.67) µ = 7.66, σ = 0.07 µ = 7.66, σ = 0.03 µ = 7.67, σ = 0.05

printing fabrication error (11.42%) that were estimated in Sections 4.3.1 and 4.3.2, respectively.

Table 5.6 lists the measurements taken from slap impressions of the two hand targets. Following

are some observations based on this experiment:

• The estimated ridge spacings in slap impressions of the hand targets captured using the three

contact-based slap readers, SR1, SR2 and SR3 are, on average, within 0.08 pixels of each

other. In other words, all three slap readers SR1, SR2 and SR3 perform equally well in

preserving fingerprint ridge spacing.

• The estimated ridge spacings in the plain prints of index, middle, ring and little fingers are, on

average, marginally greater than the expected ridge spacing. Although the increase in ridge

spacings is not as significant as that reported previously for single-finger 3D targets, it is
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consistent with our observation. This increase in ridge spacing is due to the flattening of the

finger skin because of the pressure applied on the reader platen while capturing fingerprints.

For the thumb, however, this flattening effect is not observed to be as profound compared

to the other fingers, and does not seem to impact the ridge spacing measurements. One

possible reason could be the difference in pressure on the reader platen for each finger while

capturing slap impressions. Further, using the one-sample t-test [151], for all fingers except

the middle finger, the estimated ridge spacing values are statistically similar to the expected

values at significance level of 0.05. This is in contrast to our observation in chapter 4 for

single-finger optical readers where estimated values were statistically different compared to

expected values. A better understanding of the underlying cause would require controlled

experimentation where known contact pressure is applied by each finger during fingerprint

capture. This is a topic of future research.

• Choice of fabrication material of the hand target does not seem to significantly impact the

ridge spacing measurements in fingerprint images captured using the three slap readers.

5.5 Evaluating Contactless Slap Fingerprint Reader

The contactless slap reader used in our experiment is a PIV certified 500 ppi reader that captures

a 512×512 image of each fingertip from a single wave of the hand. Therefore, for evaluating the

contactless slap reader, we generated a right whole hand target by projecting circular sine gratings

of fixed ridge spacing (10 pixels) such that they cover the entire fingertip10. The rigid opaque

material RGD8520-DM was used to fabricate the thumb and four finger targets whereas rubber-

like flexible material TangoPlus FLX930 was used to manufacture the fingerless glove so that it

is easy to wear. Five different slap impressions of the whole hand target were captured using

the contactless slap reader (see, e.g., Fig. 5.8). Analogous to the earlier experiment, center-to-

center ridge spacing measurements are computed in the plain prints extracted from five different
10We are designing a method to do a similar projection for fingerprints.
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(a)

(b)

Figure 5.8 Circular sine grating (ridge spacing = 10 pixels) used to generate the 3D whole hand
target (shown in (a)) and the slap impression of the corresponding hand target captured using
the contactless slap reader (shown in (b)). The circular sine grating appears to exhibit the moire
effect [16].
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Table 5.7 Mean (µ) and std. deviation (σ) of center-to-center ridge spacings (in pixels) in the
plain prints extracted from five different slap images of the circular grating whole hand target
captured using the contactless slap fingerprint reader (CR). Expected average ridge spacing (in
pixels) of the circular grating engraved on the hand target is 8.28. The spacing measurements take
into consideration the reduction in spacing due to 2D to 3D projection and 3D printing fabrication
errors.

RGD8520-DM
Fingerprint CR (500 ppi)

index µ = 8.12, σ = 0.16

middle µ = 8.35, σ = 0.10

ring µ = 8.28, σ = 0.15

little µ = 8.03, σ = 0.15

thumb µ = 7.67, σ = 0.08

slap impressions captured using the contactless slap reader. We compare these measurements

against the expected average center-to-center ridge spacing in the circular gratings used during

target creation. The expected ridge spacing takes into consideration the 2D to 3D projection error

(5.8%) and the 3D printing fabrication error (11.42%). Table 5.7 lists the measurements taken

from contactless slap impressions of the hand target. Following are some observations based on

this experiment:

• The average deviation in estimated center-to-center ridge spacings in slap impressions of

the circular grating hand target is about 0.25 pixels from the expected ridge spacing. Us-

ing one sample t-test [151], the estimated spacings are statistically different than expected

spacings for all but one finger. Further analysis is needed to interpret this measurement and

understand, in more details, the effects of the unconstrained nature of contactless fingerprint

capture, the size of the captured area as well as the nature of the material used to create the

target.

• The estimated ridge spacings in the plain prints of index, middle, ring and little fingers

are, on average, closer to the expected ridge spacing compared to the thumb. This may

be because the four fingers are captured together in a slap impression whereas thumb is
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captured individually as a separate impression, and the user dynamics involved in the two

capture processes (e.g. finger alignment with respect to the optical capture, relative finger

movement) are quite different. Controlled experimentation where the relative positioning

of the user’s fingers/hand with respect to the reader is fixed at the time of contactless slap

capture is required to investigate this further. It is a topic of future research.

5.6 Conclusions

We have presented a method to design and fabricate whole hand 3D targets for evaluating multi-

finger capture devices, e.g., contact-based and contactless slap fingerprint readers. 2D calibration

patterns of known characteristics (e.g. fingerprints of known ridge flow and ridge spacing, sine

gratings of known orientation and center-to-center spacing) are projected onto a generic 3D hand

model to create an electronic 3D hand target. Physical 3D hand target is fabricated from the

electronic target using a state-of-the-art 3D printer. Material(s) similar in hardness and elasticity

to the human skin as well as optically suitable for use with a variety of fingerprint readers are

used for 3D hand target fabrication. Our experimental results show that features present in the 2D

calibration patterns are replicated with high fidelity both on the electronic and physical 3D hand

target during the 3D hand target generation process. We also conduct experiments to evaluate three

Appendix F certified slap readers and a PIV certified contactless slap reader using the fabricated

3D hand targets. To the best of our knowledge, this is the first study that demonstrates the utility11

of the wearable 3D hand targets for evaluation of slap readers, both contact and contactless.

11Wearable finger spoofs were used to spoof a fingerprint based security system in the CBS crime thriller TV show
Person of Interest’s Season 3 episode 14 titled Provenance (https://www.youtube.com/watch?v=mzfDG2wmqc4). Our
research has shown that this is now possible in reality!
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Chapter 6

Generating 3D Conductive Fingerprint

Targets

6.1 Introduction

There are, at present, over 2 billion smartphone users worldwide, and it is estimated that the user

base will grow to around 2.66 billion by 2019, i.e., within the next few years, every third person

in the world will be using a smartphone [28]. Following the introduction of fingerprint-based

smartphone unlock and payment technology by major vendors (e.g., Apple, Samsung and Google),

a large number of these users now use smartphones equipped with fingerprint readers. One of the

primary reasons of the increasing use of fingerprint-based authentication on smartphones is the

relative ease of use and higher security of fingerprint-based technology compared to traditional

authentication mechanisms such as passcodes. In 2016, about 29% of the smartphones that were

shipped had a fingerprint reader, and this number is expected to more than double in the next

two years. It is estimated that in 2018, two out of every three shipped smartphones will have

a fingerprint reader [29]. Further, the number of users using Near Field Communication (NFC)

technology for mobile phone payments is expected to triple from about 54 million in 2016 to 166

million in 2018 [27].
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(a) (b)

Figure 6.1 3D targets for evaluating capacitive readers. (a) Sample (goldfinger) target, and (b) an
impression of the goldfinger in (a) captured using a PIV certified 500 ppi single-finger capacitive
reader.

The embedded fingerprint readers on most smartphones, including those from major vendors

(Apple iPhone [36], Samsung Galaxy S [25] and Google Nexus1), use capacitive sensing. Capac-

itive readers typically consist of a silicon plate, where each element of the plate is a mini-sensor

in itself that senses the capacitance difference between ridges and valleys. Typically, they have a

small form factor, with the sensing area between 5-8 cm2, to keep the reader cost low. The small

form factor coupled with low cost makes capacitive readers suitable for embedding on mobile de-

vices including smartphones, laptops and tablets. In addition, capacitive readers have also been

embedded in standalone terminals for access control.

In chapter 4, we designed and fabricated 3D targets for operational evaluation of single-finger

optical fingerprint readers. We projected 2D calibration patterns with known features, e.g., sine

gratings generated with predefined orientation and spacing, synthetic fingerprints with known fin-

gerprint type, ridge flow, ridge spacing and minutiae points, onto a generic 3D finger surface to

create electronic 3D targets. A state-of-the-art 3D printer was used for physical fabrication of the

1www.google.com/nexus/
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Table 6.1 Mechanical and electrical properties of human skin.

Property Description/Benefit Human Skin

Hardness [88] [89]
Proper presentation on

the reader platen
20-41 (Shore A)

Tensile Strength [88]
Durability for repeatable

operational evaluation
5-30 MPa

Elongation at Break [88]
Pertinent distortion on contact

with the reader platen
35-115 %

Electrical Resistance [72] [127]
Resistance to flow of

electric charge
˜1-2 MΩm

3D targets with materials similar in hardness and elasticity to the human skin. We showed that the

3D target synthesis and fabrication process was able to reproduce calibration patterns with high

fidelity on both electronic and physical 3D targets. We also performed evaluation of three different

single-finger optical readers using the fabricated targets.

Subsequently, in chapter 5, we extended the single-finger target generation method to create

whole hand 3D targets for evaluating contact-based and contactless slap fingerprint readers. We

segmented 3D finger surfaces pertaining to each of the four fingers and the thumb from a 3D hand

surface and projected calibration patterns onto each finger surface to generate electronic 3D whole

hand target. We used a high-resolution 3D printer to manufacture physical 3D hand target with

materials that were similar in mechanical properties to the human skin as well as compatible for

imaging with a variety of optical fingerprint readers. Furthermore, we used the generated targets

to evaluate three contact-based slap readers and one contactless slap reader.

Although suitable for use with optical readers, the 3D targets designed earlier were not com-

patible with capacitive readers as the fabrication materials used to print the 3D targets (UV-curable

rubber-like polymeric materials: TangoBlackPlus FLX 980, FLX 9840-DM, TangoPlus FLX930

and FLX 9740-DM) were non-conductive. This is because state-of-the-art high-resolution 3D

printers only support printing with limited rubber-like polymer materials and the supported mate-

rials are electric insulators.
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Given that a large number of capacitive fingerprint readers are being used in consumer and

access control applications, e.g., mobile phone unlock and payments (Apple Pay [1], Samsung

Pay [26]), in this chapter we address the aforementioned limitation by designing and fabricating

targets suitable for imaging with capacitive fingerprint readers (see Figure 6.1; also see Table 6.1

for the mechanical and electrical properties of the human skin). We first use the method proposed

in chapter 4 to create 3D targets with materials similar in hardness and elasticity to the human

skin. We then use a sputter deposition technique to coat the surface of 3D targets with thin layers

of specific materials with conductive properties (titanium (Ti) + gold (Au)). We refer to the Ti-

Au coated 3D targets as goldfingers. We show that the sputter deposition of 30 nm Ti + 300 nm

Au does not significantly impact the features etched on the 3D targets. Further, we show that the

coated 3D targets can be imaged with two different types of capacitive fingerprint readers: small

area readers (˜0.5 cm × 1.2 cm) designed for smartphones, and relatively larger area (˜1.3 cm ×

1.8 cm) readers designed for access control applications. In summary, the contributions of this

chapter are as follows:

• Method to coat 3D printed targets with a thin layer of conductive materials (˜300 nm) to

impart appropriate electrical conductivity for the targets to be sensed by capacitive readers.

• Demonstrate both qualitatively and quantitatively that the coating process does not impact

fingerprint features extracted from the 3D printed targets.

• Show the utility of the coated targets for evaluating standalone single-finger capacitive read-

ers, as well as readers embedded in access control terminals and smartphones.

• Investigate the potential use of conductive 3D spoofs to evaluate spoof vulnerability of ca-

pacitive readers.
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2D calibration pattern 

3D finger surface 3D electronic target 3D physical target Goldfinger 
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Figure 6.2 Main steps involved in creating a goldfinger given a 2D calibration pattern and a 3D
finger surface.

6.2 Sputter Coating 3D Targets

We first generate 3D targets using the method detailed in chapter 4. 2D calibration patterns with

known features (e.g. fingerprints with known minutiae locations, sine gratings with predefined

orientation and spacing) are mapped onto an electronic 3D finger surface to create electronic 3D

targets. Wearable physical 3D targets are fabricated using the Stratasys Objet Connex350 with

materials similar in hardness and elasticity to the human skin (TangoBlackPlus FLX980 [31] and

FLX 9840-DM [30]). Bulk of the printer support material is manually removed from the printed

3D targets. The targets are then dipped in a 2M solution of NaOH for approximately 3 hrs. and

rinsed with water for complete removal of the support material residue.

Given the cleaned 3D targets, the DC sputter deposition technique [175] is used to coat their

surface with thin layers of conductive materials. Figure 6.2 illustrates the main steps involved in

generating a goldfinger given a 2D calibration pattern and a 3D finger surface. Sputter deposi-

tion is one of the most popular techniques for depositing thin conductive films on insulators and

semi-conductors [171]. It is widely used in the semi-conductor industry to deposit thin films on

integrated circuit components, for anti-glare coatings on glass in optical applications, and to de-

posit thin metallic layers on CDs, DVDs and solar cells [171]. Different types of sputter deposition

methods, e.g., ion beam sputtering, DC sputtering, RF sputtering, can be used depending on the

characteristics of the substrate and the target material to be deposited and the desired coating thick-
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(a)

(b)

Figure 6.3 DC sputter deposition to coat the 3D targets with thin layers of conductive materials. (a)
Simplified representation of the DC sputtering process (image reproduced from [175]), and (b) the
Denton Vacuum DC sputtering system [4] used for DC sputtering. Titanium (Ti) and Gold (Au)
ions from the cathode target are deposited on the anode substrate using Argon (Ar) as the process
gas.
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ness. Here, we use DC sputtering because this method is both suitable and efficient for applying

conductive material coatings on 3D printed targets.

6.2.1 DC Sputtering Process

Figure 6.3 (a) illustrates the DC sputtering process [175]. The sputtering chamber is first vacuumed

to evacuate potential contaminants, e.g, water vapour and atmospheric gases, that could interfere

with the sputtering process. The sputtering target made of the material to be deposited (e.g. silver

(Au), Copper (Cu), or Gold (Au)) is placed at the cathode, and the substrate on which the thin

layer has to be deposited is placed at the anode. A process gas (typically Argon (Ar)) is then

added to the vacuumed chamber at a pre-specified pressure, typically between 1-100 mTorr. A

negative potential bias that is sufficient for electron emission from the sputtering target (generally

between 500-5000 V DC) is applied to the cathode. Electrons emitted from the target due to this

negative bias strike the molecules of the process gas in the neighborhood of the cathode (sputtering

target) and produce positively charged process gas ions. The generated positive gas ions travel

towards the cathode due to the negative potential bias. When the process gas ions collide with the

cathode (sputtering target), their kinetic energy is transferred to the target resulting in the emission

of sputtering material atoms. The ejected material atoms move towards the anode where they

condense to form a thin layer on the substrate surface.

6.2.2 Choice of Sputtering Materials

We initially sputter coated other metals, e.g., silver (Ag), copper (Cu), and chromium (Cr)) on the

3D targets post the Ti coating (see, e.g, Figure 6.4 (a) and (b)). Although coatings of these metals

were found to be sufficiently conductive for the 3D targets to register on capacitive readers, the

metal coatings would react with atmospheric gases and water vapours over time to form compounds

with low electrical conductivity (e.g. copper carbonate (CuCO3) and chromium oxide (Cr2O3)) on

the 3D target surface. This would render the 3D targets unusable with capacitive readers.
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(a) (b) (c)

Figure 6.4 3D fingerprint targets coated with (a) and (b) a thin layer (300 nm) of silver (Ag)
and copper (Cu), respectively over a thin layer (30 nm) of titanium (Ti), and (c) 100 nm of tin
(Sn) doped indium oxide (ITO). The targets in (a) and (b) were printed with TangoBlackPlus
FLX980 [31] and the target in (c) was printed with TangoPlus FLX930 [31]. Targets coated with
other conductive transparent oxides are not shown here because they are visually similar to (c).

We also attempted to coat transparent conductive oxides, e.g, Tin (Sn) doped Indium Oxide

(ITO) [62], Zinc (Zn) and Al doped Indium Oxide (IZAO) [73], and Sn, Zn and Al doped Indium

Oxide (IZATO) [106] on 3D printed targets using DC sputtering (see, e.g, Figure 6.4 (c)). The pri-

mary advantage of using transparent conductive oxide coatings over metallic coatings is their high

transparency which preserves the underlying optical properties [58] of the 3D targets. However,

the wear and tear (abrasion resistance) of conductive oxide coatings was found to be inadequate for

repeatable evaluation of capacitive readers over time. In our tests, the coatings were found to wear

out after taking about 5-10 impressions of the coated targets with capacitive readers. Based on this

experimental observation, we formulated the following two hypothesis for low abrasion resistance

of conductive oxide coatings: (i) surface of the 3D printed targets is not receptive of conductive

oxide coatings and requires some pre-treatment before sputtering, or (ii) the coatings cannot be

cured, e.g., using high temperature annealing post DC sputtering because the 3D printing materials

are sensitive to high temperatures (≥ 60◦ C). To increase the receptivity of the 3D target surface to
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Table 6.2 Qualitative comparison of different thin film coatings applied on 3D targets using DC
sputtering.

Coating Thickness Conductivity Stability in air Abrasion Resistance

Ti + Au 30 nm + 300 nm Adequate High (doesn’t react) Moderate

Ti + Ag 30 nm + 300 nm Adequate Low (∼1 week) Moderate

Ti + Cu 30 nm + 300 nm Adequate Low (∼2 weeks) Moderate

Cr 300 nm Adequate Low (∼1-2 days) Moderate

ITO 100 nm Adequate High (doesn’t react) Low

IZAO 300 nm Adequate High (doesn’t react) Low

IZATO 300 nm Adequate High (doesn’t react) Low

conductive oxide coatings, we attempted to pre-treat the 3D target surface with high energy plasma

for a short duration of time before sputtering ITO. However, the 3D printing materials were found

to be highly sensitive to this pre-treatment and the high energy plasma impacted the calibration

patterns etched on the 3D surface. Further investigation is required to identify the exact underlying

cause which is a topic of future research.

We also experimented with the application of a thin layer (50 nm) of poly(3,4-

ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) colloidal solution on a 3D target

using spin coating (at 2000 rpm). However, the conductivity of the sample was found to be inad-

equate for registration on capacitive readers. Exploration of methods to improve the conductivity

of PEDOT:PSS (e.g., [176], [48]) before its coating on 3D targets is a topic of future research.

Based on the results of our initial experimentation, Au was specifically chosen for coating 3D

targets because it is an inert metal that does not react with atmospheric gases and Au coating has

relatively high abrasion resistance. Table 6.2 lists the advantages and disadvantages of applying

different conductive coatings on 3D fingerprint targets using DC sputtering.

6.2.3 Sputtering Ti+Au

The Denton Vacuum Desktop Pro [4] which is a compact, high vacuum sputtering system is used

for DC sputtering (see Figure 6.3 (b)). The sputtering system has a rotary platform where the
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(a) (b) (c)

Figure 6.5 3D mount fabricated to hold a 3D target for stable placement on the sputtering system’s
rotary platform. (a) Electronic 3D model, (b) 3D printed physical model and (c) 3D target on the
mount shown in (b) after gold coating.

substrate to be coated needs to be placed and rotated in order to uniformly coat the substrate

surface with the target material. Because directly placing the 3D targets on the rotary platform was

found to be unstable, we fabricated a stable 3D mount to hold the 3D targets before placing them

on the platform. The 3D mount is designed in Meshlab [15] by combining a generic 3D model

of a finger with a rectangular base with dimensions of 35 mm × 37 mm × 10 mm (see Figure

6.5 (a)). The mount is 3D printed using the Stratasys Objet Connex350 with the rigid opaque

white material, VeroWhite [31] (Figure 6.5 (b)). Each 3D target is mounted on this mount before

sputtering. Further, the 3D target region without the etchings is covered with tape to only sputter

target material on regions that contained the etched pattern, e.g, fingerprint pattern. This tape is

removed after sputtering to obtain the coated 3D target analogous to that shown in Figure 6.1 (a).

Table 6.3 lists the experimental parameters used for DC sputtering. High purity (>99%) thick

gold (Au) and titanium (Ti) sputtering targets with 2.00” diameter × 0.125” [12] [13] are used.

Argon (Ar) is used as the process gas at a pressure of 4 mTorr. Power source of 125 W is used.

30 nm of Titanium (Ti) is first sputter deposited on the 3D printed samples because it has good

adhesion/binding properties to the 3D printing material as well as gold (Au). This is followed by
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Table 6.3 Parameter settings for Ti+ Au DC Sputtering.

Parameter Value

Ar gas pressure 4 mTorr1

Power source 125 W2

Ti sputtering rate 0.21 nm/s

Ti layer thickness 30 nm3

Ti sputtering time 2.4 min

Au sputtering rate 1.1 nm/s

Au layer thickness 300 nm

Au sputtering time 5 min
1 milliTorr; 2 Watts; 3 nanometers

sputter deposition of 300 nm of Au2 on the 3D targets. The sputtering rates for Ti and Au at 125 V

negative bias are 0.21 nm/s and 1.1 nm/s, respectively. At these sputtering rates, it takes about 2.4

minutes to sputter 30 nm Ti and about 5 minutes to sputter 300 nm Au. The estimated in-house cost

of sputter coating each 3D target with 30 nm Ti and 300 nm Au, including labor, is approximately

US $2. Given that the cost to generate a physical 3D target is approximately US $10, the total

estimated cost to fabricate a goldfinger is about US $12.

6.3 Impact of Sputter Coating on 3D Target Features

In chapter 4, we had demonstrated that the 2D calibration pattern features are replicated with high

fidelity on electronic 3D targets after 2D to 3D projection and on fabricated physical 3D targets

post 3D printing and cleaning. Because we sputter coat the cleaned 3D targets generated using

the same method, we conduct fidelity assessment of friction ridge etchings on the goldfingers post

sputter deposition with Ti and Au.

To conduct the fidelity experiments, we generate four different 3D targets by projecting dif-

ferent fingerprints (S0005, S0010, S0083, S0096) from NIST SD4 [19] onto a 3D finger surface.

2In contrast, the diameter of a human hair is an order of magnitude thicker (typically between 17-181 µm [5]).
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(a) (b)

Figure 6.6 Sample impressions shown in (b) of a goldfinger captured using the embedded capaci-
tive reader designed for smartphones in (a).

Two of these targets (S0005, S0010) are fabricated with TangoBlackPlus FLX980 [31], and the

other two (S0083 S0096) are fabricated with FLX 9840-DM [30]. In chapter 4, we had reported

the reduction in etching spacings on physical 3D targets due to 2D to 3D projection (5.8%) and

3D printing (11.42%). We set the projection scale to 16.79 pixels/mm during 2D to 3D projection

to account for these errors. Unlike our earlier method of accounting for these errors in distance

measurements by upsampling the target images captured using fingerprint readers, this a priori pro-

jection scale adjustment ensures that spacings in the original 2D calibration patterns are maintained

in the 3D target etchings post 2D to 3D projection and 3D printing. Further, the depth between

ridges and valleys on the 3D targets is set to 0.24 mm.

A commercial 500 ppi Appendix F certified single-finger optical reader3 is used to capture

plain impressions of the physical 3D targets post 3D printing and cleaning, whereas a commercial

500 ppi PIV certified single-finger capacitive reader is used for capturing the plain impressions of

the goldfingers post sputter deposition. Verifinger 6.3 [146], which is a commercially available

fingerprint SDK, is used for conducting all fingerprint comparison experiments.

3The make and model of the readers used in the experiments cannot be disclosed because of proprietary reasons.

157



Table 6.4 Similarity scores between 500 ppi plain impression of fabricated physical 3D targets
captured by the optical reader to 500 ppi plain impression of the corresponding sputter coated
goldfingers captured by the capacitive reader. Physical 3D targets S0005 and S0010 were fabri-
cated with TangoBlackPlus FLX980, and S0083 and S0096 were fabricated with FLX 9840-DM.
Verifinger 6.3 SDK was used for generating similarity scores. The threshold on scores @FAR =
0.01% is 33.

Fingerprint S0005 S0010 S0083 S0096

Score 764 810 680 708

Figure 6.7 Minutiae correspondence between (a) plain impression of the 3D target generated using
fingerprint image S0083 from NIST SD4 captured by the optical reader, and (b) plain impression
of the same target captured by the capacitive reader (a). Similarity score of 680 is obtained between
(a) and (b) which is above the threshold of 33 at 0.01% FAR.

6.3.1 Fidelity of physical 3D target features on goldfingers

Plain impressions of the physical 3D targets captured using the optical reader before sputter coating

are compared to the plain impressions of the corresponding goldfinger captured using the single-

finger capacitive reader after sputter deposition. This comparison of pre and post sputter deposition

target images is used to assess how well the features on the physical 3D targets are preserved on

goldfingers after sputter deposition. Table 6.4 shows the comparison results of this experiment.

The similarity scores obtained for all comparisons are significantly above the verification threshold

score of 33 computed for NIST SD4 at a fixed false accept rate (FAR) of 0.01%. This indicates

158



Table 6.5 Similarity scores between plain impressions of the sputter coated goldfingers captured
using a 500 ppi capacitive reader to the corresponding 2D fingerprints from NIST SD4 used in their
generation. Physical 3D targets S0005 and S0010 were fabricated with TangoBlackPlus FLX980,
and S0083 and S0096 were fabricated with FLX 9840-DM. Verifinger 6.3 SDK was used for
generating similarity scores. The threshold on scores @FAR = 0.01% is 33.

Fingerprint S0005 S0010 S0083 S0096

Score 471 333 183 203

Figure 6.8 Minutiae correspondence between (a) rolled fingerprint image S0083 from NIST SD4,
and (b) plain impression of the 3D target generated using (a) captured by the capacitive reader.
Similarity score of 183 is obtained between (a) and (b) which is above the threshold of 33 at 0.01%
FAR.

that features present on the physical 3D targets are replicated with high fidelity on the goldfingers

post sputter deposition.

6.3.2 Fidelity of 2D calibration pattern features on goldfingers

Plain impressions of the goldfingers captured using the single-finger capacitive reader are com-

pared to the corresponding 2D fingerprint images from NIST SD4 used in their generation. End-

to-end fidelity of 2D calibration pattern features on goldfingers is assessed based on how well the

2D pattern features are replicated on the goldfingers post 3D printing, cleaning and sputter deposi-

tion. Table 6.5 shows the comparison results. For all comparisons, the similarity scores generated
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Table 6.6 Range of similarity scores between five different 500 ppi plain impressions of each sput-
ter coated goldfinger. Physical 3D targets S0005 and S0010 were fabricated with TangoBlackPlus
FLX980, and S0083 and S0096 were fabricated with FLX 9840-DM. Verifinger 6.3 SDK was used
for generating similarity scores. The threshold on scores @FAR = 0.01% is 33.

Fingerprint S0005 S0010 S0083 S0096

Score range 926-1251 884-1164 824-1215 462-1008

Figure 6.9 Minutiae correspondence between two different plain impressions (a) and (b) of the
same 3D target generated using image S0083 from NIST SD4 captured by the capacitive reader.
Similarity score of 1164 is obtained between (a) and (b) which is above the threshold of 33 at
0.01% FAR.

are above the verification threshold score of 33 for NIST SD4 at FAR of 0.01%. This demonstrates

that the 2D calibration pattern features were replicated with high fidelity on the goldfingers.

6.3.3 Intra-class variability between impressions of goldfingers

Five different plain impressions of each goldfinger are captured using the single-finger capacitive

reader and compared against each other in order to assess the consistency between different im-

pressions of the same goldfinger. Table 6.6 shows the range of similarity scores obtained for this

experiment. All similarity scores are significantly higher than the verification threshold score of 33

for NIST SD4 at FAR of 0.01%. This shows that different impressions of the same goldfinger are

highly consistent. In other words, there is low intra-class variability between different impressions

of the same goldfinger.
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Table 6.7 Mean (µ) and std. deviation (σ) of center-to-center spacing (in pixels) in the images of
the goldfingers captured using the 500 ppi single-finger capacitive reader (CR). Expected grating
spacing (in pixels) is shown in brackets.

Test pattern CR (500 ppi)

S0005 (9.45) µ = 9.57, σ = 0.14

S0010 (10.20) µ = 10.34, σ = 0.21

S0083 (10.44) µ = 10.60, σ = 0.14

S0096 (10.24) µ = 10.28, σ = 0.11

6.4 Evaluation of Capacitive Readers

In this section, we describe the preliminary experiments to evaluate (i) a large area PIV certified

500 ppi single-finger standalone reader, and (ii) small area capacitive readers embedded in smart-

phones using goldfingers.

6.4.1 Large area reader

Five different plain impressions of each goldfinger are captured with the capacitive reader. The

ridge spacing in each captured impression is measured using the method proposed in [104]. The

average measured ridge spacing from the five impressions of each goldfinger is compared to the

ridge spacing of the corresponding original fingerprint (computed using the same method [104])

used in the generation of the goldfinger. Table 6.7 shows the average and variation in ridge spacing

measurements from the five impressions of each goldfinger captured using the reader. Following

are the key observations based on this experiment:

• The computed ridge spacing in images of all four goldfingers is, on average, observed to be

greater than (but within 0.15 pixels of) the expected spacing. This is most likely due to the

flattening of goldfinger gratings when they are pressed against the capacitive reader platen

and is consistent with our earlier observation regarding contact-based optical readers. Using

the one-sample t-test [151], the computed ridge spacing values are statistically different than

the expected values for all goldfingers at a significance level of 0.05. Note, however, that
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(a) (b)

Figure 6.10 Evaluation of capacitive readers embedded in smartphones using goldfingers. (a) En-
rolment of a goldfinger on an Apple iPhone 6s, and (b) unlocking of the iPhone 6s using the same
goldfinger.

the increase in ridge spacing observed here is not as significant as that reported with optical

readers in chapter 4. To better understand these differences, controlled experimentation with

known contact pressure during fingerprint capture is required.

• The average deviation in ridge spacing between different impressions of the same goldfinger

is between 0.1-0.2 pixels. These are comparable to the ridge spacing deviation measure-

ments using 3D targets for one of the single-finger optical readers, but slightly greater than

spacing measurements reported for the other two optical readers in chapter 4. This is be-

cause the capacitive reader has a smaller platen compared to the two optical readers which

results in only partially images of the goldfingers. Therefore, overall fewer ridge spacing

measurements are used for spacing computations.

6.4.2 Embedded small area readers

We perform feasibility experiments using two different smartphones, the Apple iPhone 6s and

the Samsung Galaxy S74, and a capacitive reader module designed for smartphones. Figure 6.6

shows the impressions acquired with capacitive reader module designed for smartphones. We first

enroll a goldfinger using the fingerprint enrolment procedure on the two phones (see Figure 6.10
4Commercial smartphones do not provide access to fingerprint images.
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(a) (b)

Figure 6.11 Sample 3D finger spoof. (a) Electronic 3D spoof, and (b) physical 3D spoof after
conductive carbon coating.

(a)). Subsequently, we make ten independent attempts to unlock the two phones using the enrolled

goldfinger. The enrolled goldfinger template is then deleted and we repeat this procedure using a

different goldfinger. We were able to successfully unlock the two phones in all our attempts using

each of the four goldfingers (see Figure 6.10 (b)). This indicates the potential feasibility of using

goldfingers as targets for evaluating capacitive readers embedded in smartphones.

6.5 Presentation Attacks on Capacitive Readers

Although the primary goal of manufacturing conductive 3D fingerprint artifacts (goldfingers) is

evaluation of capacitive readers, a significant by-product is the potential use of such artifacts in

performing presentation attacks (spoofing) on capacitive readers. Below, we describe a simple

procedure that can be used to create a conductive 3D spoof from a 2D plain fingerprint of a known

subject.

1. Use a 3D modeling software, e.g, Meshlab [15] to synthetically generate a cuboidal surface

for projecting the 2D print. Set the length and width of the cuboid to at least 3.5 cm and
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2.5 cm, respectively. This ensures that there is adequate surface area for projecting the plain

print. Also, set the height (wall thickness) of the cuboid to atleast 1 mm for 3D printing the

cuboid as a solid object.

2. Use the method described in chapter 4 to create the 3D spoof by etching the plain print onto

the cuboidal surface. While creating the electronic spoof, set the 2D to 3D projection scale

appropriately (16.79 pixels/mm) to account for 2D to 3D projection error and 3D printing

fabrication error. Print the spoof using a high-resolution 3D printer (e.g. Stratasys Objet

Connex350) with materials similar in hardness and elasticity to the human skin (e.g. Tan-

goBlackPlus FLX 980).

3. Dip the 3D printed spoof in 2M NaOH solution for approx. 3 hrs. and then rinse it with water.

Once it dries, spray coat conductive carbon (e.g. [35]) onto the 3D spoof. This imparts the

required conductivity for registering the spoof with capacitive readers5.

We generated five 3D spoofs from index fingerprints of five different subjects using the afore-

mentioned procedure. The spoofs were fabricated with TangoBlackPlus FLX980. Figure 6.11

shows an example. For conducting spoofing experiments, the index fingerprints of the subjects

were enrolled on two different capacitive readers, a single-finger capacitive reader and an embed-

ded capacitive reader in an access control terminal. Verfinger 6.3 SDK was interfaced with the

single-finger capacitive reader for performing fingerprint comparisons. For the embedded reader,

the fingerprint comparison algorithm built into the access control terminal was used for fingerprint

comparisons. Five separate spoofing attempts were made on each of the readers using the five

spoofs. In all attempts, we were able to successfully spoof the three readers.

Note, however, that the generated 3D spoofs were not able to spoof the capacitive readers

embedded in smartphones. We believe this is because fingerprint comparison algorithms in smart-

phones use texture-based features in addition to minutiae features. Given that the texture charac-

5Spray coating of conductive carbon is non-uniform. Furthermore, the carbon coating only imparts conductivity
for a limited time (1-2 hours), and has low abrasion resistance. This process, therefore, cannot be used for creating
capacitive 3D targets.
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teristics of the created 3D spoofs differ from the human skin, these spoofs are not effective for

capacitive readers in smartphones.

6.6 Conclusions

Capacitive fingerprint readers are now being increasingly used in consumer and access control

applications, e.g., for smartphone unlock and point of sale (POS) payments. Given the widespread

deployment of capacitive readers, an important requirement is to develop standard artifacts and

procedures for repeatable evaluation of these readers. In this chapter, we described a procedure

to generate 3D targets, termed goldfingers, specifically for capacitive reader evaluation. We used

a state-of-the-art method to create electronic 3D targets by mapping 2D calibration patterns with

known features onto a 3D finger surface. Physical 3D targets were fabricated from electronic 3D

models using a state-of-the-art high-resolution 3D printer. A sputter deposition technique was

subsequently used to coat the surface of 3D printed targets with a thin layer of titanium and gold

particles.

We demonstrated that the 2D calibration pattern features can be replicated with high fidelity

on the goldfingers. Furthermore, we evaluated a commercially available 500 ppi single-finger

capacitive reader using goldfingers. We showed that the goldfingers can be used as targets for

testing capacitive readers embedded in smartphones. The spoof vulnerability of commercially

available capacitive readers to presentation attacks using 3D printed spoofs was also assessed.
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Chapter 7

Summary

In this dissertation, we have proposed improvements to (i) the design of fingerprint recognition

systems for latent fingerprint matching, and (ii) the operational evaluation methods for fingerprint

readers using 3D single-finger and whole hand targets. Our contributions are summarized below:

• Design of a top-down matching paradigm for automatic matching of latents to exemplar

prints. This framework takes feedback from the top-K candidate prints from the reference

database, output by a latent matcher, to improve the overall latent matching accuracy. Our

approach can be wrapped around any baseline latent matcher in order to improve its matching

performance. To determine the adequacy of feedback, we developed (i) a statistical test based

on the distribution of similarity scores between the latent and the top-K candidate exemplars

to decide when feedback is required, and (ii) a local quality based metric to determine which

latent regions would benefit from feedback in order to improve the similarity score with the

true mate. Using the proposed paradigm, the matching performance of a state-of-the-art

latent matcher improved by 0.5-3.5% on two latent databases.

• Design of a latent markup crowdsourcing framework where multiple human examiners and

the AFIS work in synergy to boost latent matching performance. Given a latent, an AFIS

is first used to automatically match the latent against exemplars in the reference database.

Based on the output of the AFIS, a statistical test is used to decide if additional markup from
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fingerprint examiners is required. If so, the latent is crowdsourced to a pool of examiners

for providing markups. The set of markups provided by examiners are then individually

fed to the AFIS to obtain the new set of similarity scores. The output of the AFIS for dif-

ferent examiners is fused together via score level fusion with the initial automatic match

output to improve the overall latent matching accuracy. A greedy crowdsourcing framework

is also proposed where instead of crowdsourcing the latent to all examiners at once, exam-

iner markups are obtained incrementally, as determined by our statistical test, to boost the

overall accuracy. Significance performance improvement (2.5-11.5%) is obtained using the

crowdsourced markups in conjunction with a state-of-the-art latent matcher.

• Design and fabrication of 3D targets for operational evaluation of single-finger optical read-

ers. 2D calibration patterns (e.g., sine gratings and 2D fingerprints with known singular

points and minutiae) are projected onto a 3D finger surface to create electronic 3D targets. A

state-of-the-art 3D printer is used to fabricate physical 3D targets from the electronic mod-

els. A procedure to chemically clean the 3D printed targets using 2M NaOH solution and

water is also developed. We measure the (i) 2D to 3D projection error, and (ii) fabrication

error introduced by the 3D printer to assess the fidelity of 3D target synthesis and fabrication

process. We show that the 2D calibration pattern features are replicated with high fidelity

both on electronic and physical 3D targets. We also conduct experiments to estimate the

error introduced by three different 500/1000 ppi commercial fingerprint readers using 3D

targets created using sine gratings as well as fingerprint patterns.

• Design and fabrication of 3D whole hand targets complete with all four fingerprints and the

thumbprint for evaluating slap and contactless fingerprint readers. 2D calibration patterns are

mapped to 3D finger surfaces corresponding to each of the five fingers and a fingerless glove

is created to generate electronic 3D hand target. 3D physical targets are subsequently printed

using a state-of-the-art 3D printer and cleaned with 2M NaOH and water. We show that the

2D calibration pattern features are replicated with high fidelity both on the electronic and
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physical 3D whole hand targets. We also demonstrate that the manufactured 3D whole hand

targets can be used for evaluating three different 500/1000 ppi contact-based slap readers

and a contactless slap reader.

• Fabrication of conductive 3D targets for evaluation of capacitive fingerprint readers. The

3D printed targets are electrically non-conductive. To impart conductivity, the surface of 3D

printed targets is coated with thin layers of metals (titanium + gold) using DC sputtering.

We show that this process imparts conductivity to image the targets with capacitive readers

without degrading the fidelity of engraved features on the target. The fabricated conductive

3D targets are used for evaluating standalone as well as embedded capacitive readers. A

simple procedure to create 3D printed spoofs for performing presentation attacks on capac-

itive readers is also described. We show that the 3D printed spoofs can successfully spoof a

500 ppi single-finger commercial capacitive reader and a capacitive reader embedded on an

access control terminal.

7.1 Future Work

Following are some possible future research directions for the problems investigated in this thesis:

• Feedback paradigm for latent matching: Incorporate level-2 fingerprint features such as

ridge skeleton and minutiae into the feedback paradigm to further improve latent matching

accuracy.

• Latent markup crowdsourcing framework: Validate the proposed framework against a

larger reference database of a few million reference prints. Explore ensemble-based meta

algorithms such as bagging and boosting to further improve the matching performance of

AFIS.

• 3D single-finger and whole hand targets: Explore methods to build universal 3D targets

with the optical and electrical properties similar to human skin for use with both optical
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and capacitive readers, e.g., by creating a negative (mold) of the 3D targets and then casting

universal targets with appropriate materials. Investigate procedures to impart conductivity

to targets manufactured via molding and casting, e.g, mixing conductive inks to casting

materials. This would facilitate benchmarking of different optical and capacitive readers

using the same target, as well as investigation of reader interoperability using 3D targets.

Further, experimental procedures based on 3D targets can potentially be useful to revise the

existing fingerprint evaluation standards (PIV/Appendix F). Simulate the effects of dry and

worn out fingers using 3D targets with different depths of engravings to further study the

imaging capabilities of different readers. Study how user-induced variabilities, e.g. contact-

pressure applied on the reader platen and relative finger orientations with respect to each

other as well as the reader platen, impact the quality of the captured fingerprint images. To

do this, controlled experimentation where known contact-pressure is applied on the reader

platen while capturing fingerprint impressions is required. Develop anti-spoofing solutions

to prevent presentation attacks using 3D printed spoofs.
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