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ABSTRACT

LATTICE BOLTZMANN SIMULATION OF LASER INTERACTION WITH
WEAKLY IONIZED PLASMAS

By

Huayu Li

Laser-plasma interaction (LPI) is an important subject to a variety of disciplines
in engineering and science, such as laser welding, pulsed laser deposition (PLD), laser-
generated x-rays and laser-aided ignition of inertial confinement fusion (ICF). In
particular, laser interaction with weakly ionized plasmas has invoked a great deal of
interest to the laser manufacturing community because plasmas naturally appear and
interact with a laser beam in such high energy manufacturing processes. Due to the
complexity and richness of physics, numerical model studies have been pivotal in the
understanding of LPI. A number of numerical models have been created to study LPI and
help design LPI equipment, and there are basically two kinds of numerical models: the
kinetic-based model and the hydrodynamic model. Although kinetic models (e.g.,
particle-in-cell model) have been very successful, they are computationally expensive in
most cases and their application is rather limited. Hydrodynamic models are also a
powerful tool for LPI simulations, but they fail in some circumstances because they are
based on the continuum assumption.

In this study, a new numerical model based on the lattice Boltzmann method

(LBM) is introduced to simulate laser interaction with weakly-ionized plasmas. The LBM



is a kinetic theory based method, where the distribution functions of the individual
species of particles in the plasma are solved and thus the macroscopic variables (such as
number density and momentum) are obtained. In this study, the Boltzmann equation with
ionization and recombination terms is solved. Since only number density and momentum
can be correctly retrieved from the two-dimensional nine-bit (D2Q9) discretization
scheme, a set of energy equations is derived from the Boltzmann equation and solved
separately to calculate temperature fields. The electromagnetic field from both laser and
plasma is updated by solving Maxwell’s equations using the finite-difference time-
domain (FDTD) method. In the implementation of the present model, a rescaling scheme
is introduced to select the appropriate simulation parameters for the LBM, so that the
physical properties of the plasma can be used. This rescaling scheme has been validated
by hydrodynamic flow problems and the electron diffusion problem. In this study, a two-
dimensional weakly-ionized helium plasma interaction with a continuous wave CO; laser

beam is simulated.

This model is a mesoscale approach based on the kinetic theory and the LBM, so
it has a number of inherent advantages over previous models. Because the LBM solver is
employed, this approach is computationally efficient and easy to parallelize. In addition,
this model is capable of predicting time-dependent number densities, velocities, and
temperatures of all particle species for a fairly large scale problem without employing the
continuum assumption. It is believed that this model has a lot of potential for the studies

of weakly ionized plasmas in a wide spectrum of applications.
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Chapter 1

Brief Review of Laser-Plasma Interactions

Laser-plasma interactions are of great interests to researchers from many different
fields of expertise. The characteristics of laser-plasma interactions are high nonlinearity,
strong coupling, large spans of spatial and temporal scales, and multiple physics. A
complete description of laser-plasma interactions should include laser-induced ionization,
absorption of laser energy, plasma responses and electromagnetic wave propagation
inside the plasma, all of which are strongly coupled and dependent upon the incident
laser intensity. The higher the laser intensity, the more complicated the physics involved
will be. In this chapter, the physics, applications and numerical models of laser-plasma
interactions will be briefly reviewed. The main content of this dissertation is also

introduced.

1.1 Physics of laser-plasma interactions

When a laser beam impinges on a target which is initially in non-plasma state, the
ncutral atoms or molecules will be excited and free electrons will be generated if the laser
irradiance (or intensity) exceeds some threshold. For metals, in which there are alrcady
*“free” clectrons in the conduction band, the electron impact ionization caused by the
thermal collisions between electrons and heavy particles (ions and neutral particles)
dominates the ionization process. The impact ionization mainly depends on the electron
energy that is obtained from the incident laser beam through inverse bremsstrahlung

heating. For diclectrics, there is a well-defined threshold for the laser-induced breakdown



which depends on the laser pulse duration [1, 2], the wavelength of the incident laser
pulse [3] and the band gap or ionization potential of the material. Besides the impact
ionization, the multi-photon ionization also plays an important role in laser-induced
breakdown of dielectric. In the multi-photon ionization, the laser encrgy carried by the
photons shifts the electrons from the valence band to the conduction band and thus
produces the “feed electrons™ for the following impact ionization. If the laser intensity is
high enough, the strong electric field of the laser beam will distort the potential barrier of
the atom (or molecule) drastically. The electrons can pass the barrier easily to become
free electrons. This ionization mechanism is referred as to tunneling ionization or field
ionization. Lasecr-induced ionization of gases has similar mechanisms as the dielectrics.
Parameters of the incident laser beam, ionization potential of the gas and the gas state
(such as temperature and pressure) are the main impact factors of the ionization process.
Besides the 1onization of neutral particle (atoms, molecules, ctc.), other atomic physics,
such as excitation of neutral particles or ions, three-body recombination of charged
particles, charge attachment and de-excitation, also happen simultaneously inside the
plasma. Three-body recombination is the inverse process of ionization and lead to losses
of free clectrons. It depends on the number density of charged particles and the electrons
temperature. Thus it is only prominent in dense, low-temperature plasmas.

Once the laser-induced plasma emerges, the laser energy will be absorbed into the
plasma through different mechanisms. At relatively low laser intensity, the inverse
bremsstrahlung heating [4, 5] (also referred to as collisional heating), absorption of
photons by charged particles undergoing collisions, dominates the absorption of laser

energy. In dense plasma, where the plasma frequency is higher than the laser field
b o



frequency, the stimulated Compton eftects [0] prevails the inverse bremsstrahlung for
heating of plasma electrons [7]. In a nonuniform plasma, the ponderomotive effect due to
the electron acceleration in the nonuniform electric field from the incident laser beam
may be efficient for plasma heating if the nonuniformity of the plasma is sufficiently
strong so that the characteristic gradient scale length is shorter than the electron
oscillation amplitude [7]. At high laser intensities (above 10" Wiem? or so [8]), the
collisions among particles become ineffective [9] and the quiver velocity of electron is
comparable to the thermal velocity, which reduces the effective collision frequency
further [10]. Instead of collisional heating, some collisionless absorption mechanisms
become prominent in this regime of laser intensities. These collisionless mechanisms are
based upon the parametric instabilities that are caused by the plasma parameters
oscillation with the strong laser filed: it is possible for the parameters to become resonant
with the filed fluctuations just as the case of mechanical vibration systems. As the
representative collisionless mechanisms for laser energy absorption, two-plasmon photon
decay, stimulated Raman scattering, stimulated Brillouin scattering and plasma resonance
are strongly depend upon the plasma nonuniformity. The two-plasmon decay [11, 12]
involves the decay of a laser photon into the quantum of a Langmuir plasma wave and an
ion acoustic wave. This mechanism is remarkable in sufficiently dense plasmas where the

plasma density n > n,,./4 where n,, is the critical electron density of the plasma. The
stimulated Raman scattering (SRS) [13, 14] usually happens in underdense plasma where
n<n. /4. In SRS, the laser energy is absorbed by the plasma Langmuir wave and the

transverse electromagnetic field which is shifted in frequency. The stimulated Brillouin

scattering (SBS) [15, 106], which is significant for longer laser pulses, absorbs the laser



energy by exciting an ion acoustic wave. If the nonuniformity of the plasma is
sufficiently strong, the plasma resonance absorption presents and excites a plasma wave.
This plasma wave grows over several laser periods and is eventually damped either by
collisions at low intensity area or by particle trapping and wave breaking at high intensity
area [15]. If the laser intensity increases further to relativistic regime (usually higher than
10 Wf’cmz), two more parametric instabilities emerge: laser filamentation [17, 18] and
laser modulation [19, 20], both of which are closely related with the electron mass
oscillation duc to the relativistic effect. Another hecating mechanism of electrons exists
ncar the interface between vacuum and plasma, which is called vacuum heating [21, 22].
In this scenario, electrons are dragged away from the plasma surface into the vacuum,
turned around and accelerated back into the solid all within half a laser cycle and heated
due to the strongly inelastic inverse bremsstrahlung or the ponderomotive scattering [7].
Vacuum heating occurs when a p-polarized laser pulse is obliquely incident on the
vacuum-plasma surface while another similar heating mechanism, jx B heating [23, 24],
happens when the laser pulse impinges the plasma surface normally. In jx B heating, the
clectrons oscillating near the interface of vacuum-plasma are forced into the plasma by
the magnetic field of the laser beam every half period of the laser.

Besides absorptions of laser pulse energy, the laser pulse propagation inside the
plasma is also an important aspect in lascr-plasma interactions. A basic phenomenon in
this category is the ionization-induced defocusing [25, 20] of the laser beam. When a
laser pulse whose center intensity is close or above the ionization potential propagates
inside the plasma, more free electrons due to the ionization will appear around the center

of the beam, resulting in a steep radial gradient of electron number density. Since the



refractive index of the plasma is dependent on the distribution of electron number density,
this radial gradient of electron number density will lead to a smaller refractive index on
the propagation axis, acting as a defocusing lens for the following laser beam. However,
when the laser intensity is in the relativistic range, the self-focusing mechanism of the
laser pulse propagation emerges due to the interplay between relativistic modification of
the clectron mass and the ponderomotive effect [27]. By considering the relativistic effect,
the distribution of refractive index is not only dependent upon the electron number
density, but also reliant on the relativistic factor that can be modified by the electron mass.
Mecanwhile, the electrons at the center position are expelled by the laser ponderomotive
force, leading to a reduction of the electron number density on axis. Owing to above two
effects, the refractive index of the plasma decreases on axis, acting as a focusing lens for
the following portion of the laser becam. Based upon the dynamical equilibrium between
the defocusing and the self-focusing [28], a plasma channel can be established in the
plasma, through which the laser pulse can propagate a relatively long distance which is
significant in many applications.

Gencration of fast clectrons is a representative physics of plasma responses to the
laser-plasma interaction. In the interaction between underdense plasmas and short-pulsed
high-intensity lasers, electrons can be heated to a very high temperature during the laser
pulse period while the 1ons, due to their large inertia, remain “cold™ at the same time.
Thus. a large local charge scparation is resulted and the electrons oscillate at the plasma
frequency, creating alternating regions of net positive and negative charge. Then a plasma
wave wake i1s generated whose phase velocity is roughly equal to the velocity of the laser

pulse, which is approximately equal to the speed of light in the tenuous plasmas. The



plasma wave wake has a longitudinal electric field so that it can efficiently accelerate the
charged particles [29], potentially to GeV level [8]. Those highly energetic electrons can
lead to a large space charge potential and ions can be accelerated in this electrostatic
sheath to MeV level under short-pulse high-intensity laser-plasma interaction [29].
Another direct result of those hot clectrons is gencration of hard X-rays. A fast electron
can penetrate into the cold target due to its long mean free path where it either emits
bremsstrahlung via collisions with ions, or produces line radiation by knocking out a

bound K-shell electron [8].

1.2 Applications of laser-plasma interaction

Thanks to the robust physics involved in the laser-plasma interaction, there are
many applications of laser-induced plasmas and laser-plasma intcractions.

In the ficld of laser material processing, laser-induced breakdown is considered to
be the main reason for the high ablation precision of mectals and dielectrics by ultrashort
lasers (2, 30]. In the application of pulsed laser deposition (PLD) [31, 32], the
interactions of incident laser pulses and the resulted plasma plume, such as absorption of
the laser energy within the expanding plume, expansion of the plasma plume and
cvolution of the plasma temperature, have significant effects on the uniformity and
quality of the deposited film. In laser welding, the incident laser beam will ionize the
target material so that partially ionized plasma is generated in the keyhole and near the
top of the workpiece surface. The plasma inside the keyhole, as a good conductive
medium, will assist the energy transport from the laser beam to the workpiece [33]. On

the other hand, the inhomogencous distribution of the free electrons in the plasma on the



top surface of the workpiece will affect the propagation of the laser beam, defocusing the
beam and lcading to undesirable laser energy dissipation.

Laser-plasma interaction is even more important in the context of inertial
confinement fusion. In the indirect-drive approach [14], bunch of laser beams heat the
inner wall of a gold cavity called holhraum that contains the deuterium-tritium (DT)
pellet, creating a superhot plasma which radiates a uniform “bath™ of soft X-rays. The X-
rays rapidly heat the outer surface of the fuel pellet. causing a high-speed ablation of the
surface material and mmploding the fuel capsule. Symmetrically compressing the capsule
with radiation forms a central hot spot where fusion process could take place. Comparing
to the indirect-drive approach, the direct-drive approach [34] uses powerful beams of
laser to directly focus on the pellet. The rapid heating caused by the laser “driver” makes
the outer layer of the target explode. The remaining portion of the target is driven inwards
in a rocket-like implosion, causing compression of the fuel inside the capsule and the
formation of a shock wave, which further heats the fuel in the very center and results in a
sclf-sustaining burn. A new ignition scheme, fast ignition [35], has gained more and more
interests recently. The main feature of fast ignition is that the compression stage is
separated from the ignition phase. Fast ignition uses the same hardware as the direct-
drive approach but adds a high-intensity, ultrafast pulsced laser as the “spark™ that
achieves ignition. The DT target is first compressed to high density by laser beams, and
then the short-pulsed laser delivers energy to ignite the compressed core. An advantage of
fast ignition is that the density and pressure of the DT target are less than those in
indirect- or direct-drive approaches. In addition, much less mass of the DT fuel is used in

the fast ignition, resulting in reduced input energy. From the above description of the



three schemes of ignition for ICF, one can conclude that the laser-plasma interaction
plays a very important role and deep understanding of the laser-plasma interaction in the
context of ICF is highly desired.

Based upon the physics of laser-generated fast clectrons and ions as described
above, the concepts of laser wakefield accelerator (LWFA) [36] and self-modulated laser
wakefield accelerator (SMLWFA) [20, 37] have been studied for the potential realization
of table-top particle accelerator. In LWFA, an electron plasma wave is driven resonantly
by a short laser pulse whose pulse length is approximately equal to the plasma wave
length through the laser ponderomotive force [38, 39]. The electron energy up to 200
MeV has been reported by Malka’s group at LOA [40] by using LWFA., SMLWFA is a
hybrid scheme which combines the elements of forward stimulated Raman scattering and
the concept of LWFA, in which an electromagnetic wave decays into one plasma wave
and another forward propagating light wave via the stimulated Raman forward scattering
instability. The most impressive results by using this scheme are reported by a group
working with the Vulcan laser at RAL, UK [40, 41] with observations of electrons at
energies as high as 120MeV.

Laser-plasma interaction can also be used for atomic emission spectroscopy. For
example, laser-induced breakdown spectroscopy (LIBS) [42] utilizes a highly energetic
laser pulse as the excitation source. By focusing the laser onto a small area at the surface
of the specimen, a very small amount of material is ablated. The resulted plasma plume
expands and cools within a very small timeframe. At this point the characteristic atomic
emission lines of the elements can be observed. The main feature of LIBS is that it can

analyze any matter regardless of its physical state, be it solid, liquid or gas, limited only



by the power of the laser as well as the sensitivity and wavelength range of the
spectrograph and detector. Another advantage of LIBS is that it is considered essentially
a non-destructive or minimally-destructive technique because only a small amount of
material is ablated during the LIBS process and there is almost no specimen heating
surrounding the ablation site. In addition, since LIBS is purely an optical technique, the
remote analysis can be achieved easily, which is especially significant for use in
hazardous cnvironments. The drawback of LIBS is that it is subject to variation in the
laser spark and resultant plasma which often limits reproducibility. In order to enhance
the signal from the plasma cmission, double-pulse LIBS [43] was developed. Depending
on pulse separation, the second pulse i1s more or less absorbed by the plasma plume
caused by the previous pulsc, resulting in a rcheating of the laser plasma and leading to
signal enhancement.

Another application of laser-plasma interaction can be scen in the ficld of medical
imaging, which is mainly dependent upon the laser-plasma-generated X-rays. The
advantages of using laser-plasma X-ray source include the possibility of substantial dose
reduction [44], ecnhancement of image contrast and reduction of unwanted information by
using differential imaging with rapid simultaneous exposure [45], and the possibility to

place the X-ray source inside the object of investigation [40].

1.3 Numerical Models
Besides experimental studies and theoretical analysis, numerical modeling is also
a powerful tool to obtain deep understanding of the laser-plasma interaction physics and

to provide guidelines and optimism methods to applications of laser-plasma interactions.



There are mainly two categories of numerical methods for modeling laser-plasma
interactions: hydrodynamics models and Kinetic based models.
1.3.1 Hydrodynamics models

The common feature of the hydrodynamics models is that the individual particle
species of the plasma or the plasma itself i1s treated as a continuum fluid. The
conservations of mass, momentum and energy are described by hydrodynamic equations.
The specific formulations of the conservation equations, generation of free electrons and
laser energy deposition vary in different models.

Hydrodynamics simulation of laser-plasma interaction are widely applied in the
context of laser-driven ICF, providing guidance for the design of hohlraum targets on the
ignition facility and detailed understanding of the interaction physics between incident
laser beam and the plasma. The very first hydrodynamic model for intense laser
interaction with underdense plasma i1s LASNEX [47] that was developed by the
Lawrence Livermore Laboratory in the late of 1980°s. LASNEX solves hydrodynamic
equations in Lagrangian coordinates which include flux-dependent electron and ion
thermal conductivities, radiative transport for the plasma radiation, laser-radiation
absorption and some other physical processes [48]. In the past 30 years, many physical
packages such as magnetic field and ray trace have been added into the code of LASNEX,
making it a powerful simulation tool in many applications [49-51]. Another ecarly stage
hyvdrodynamics model is SAGE [52] which was developed for simulation of thermal sclf-
focusing in laser plasmas. SAGE is a two-dimensional Eulerian code including a self-
consistent ray-tracing algorithm for laser beam propagation. Thus, the dependence of

sclf-focusing on the laser wavelength and the laser encrgy absorption can be simulated



more realistically. This model uses perfect-gas equation of state and a one-temperature
fluid assumption. Laser beam diftraction, radiation emission, superthermal-electron
generation and magnetic effects arc neglected. However, the above assumptions can be
well justified if only low-atomic-number targets are considered [52].

In the past decade, motivated by the fast development of the new concepts and
designs of the ignition facility for ICF, many new hydrodynamics models emerge, such
as HYDRA [53, 54], PONHF2D [55], PF3D [13, 50-58], HARMONHY ([59] and
PARANX [00-03]. HYDRA can be regarded as the successor of LASNEX for three-
dimensional simulation of laser-plasma interaction in the hohlraum. HYDRA is based
upon arbitrary Lagrange Eulerian (ALE) hydrodynamics, employing modern monotonic
artificial viscositics to stabilize shocks. HYDRA includes a ray tracing package for laser
beam propagation and takes into account ponderomotive effects, heavy ion deposition
and rzuliut-ion transport. In addition, local thermodynamics equilibrium (LTE) and non-
LTE opacity models are also included in HYDRA. HYDRA has becn utilized in design
and simulation of laser-driven experiments [64, 65]. In a later simulation [54], a kernel-
based nonlocal clectron thermal conduction package based upon the model in [66] was
installed in HYDRA | enabling the code to handle the effects of long-range electrons.
However, there are still some physics missing in HYDRA [53], including the power loss
from the beam due to laser power instability, beam steering due to the ponderomotive
force and magnetic fields that may affect the electron temperature profile in the low
density regions inside the hohlraum.

In order to simulate the time-dependent filamentation and stimulated Brillouin

forward scattering in ICF plasmas, Schmitt and Afcyan developed a two-dimensional
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code PONHE2D [55]. The laser beam propagation in this model is achieved by a scalar
paraxial wave equation which is coupled to the plasma through the dielectric constant.
Two different approaches are used to model the plasma response. One is to use a two-
dimensional Flux-Corrected-Transport (FCT) algorithm [67] to solve the continuity
equations for the plasma density and momentum, assuming a quasineutral one-fluid
plasma. The other approach uses a spectral FFT based algorithm to solve the
pondecromotive driven ion-acoustic wave (IAW) equation. The PONHF2D model
includes background flow and can treat nonlinear plasma behavior. Furthermore, the
derivatives of the fluids variables in the direction of the beam propagation are not ignored,
which enables correct description of both laser-plasma and plasma-plasma coupling in
the time evolution of filamentation. However, this model neglects the effects of thermal
filamentation and nonuniform inverse bremsstrahlung heating. The ionization level of the
plasma and the plasma temperature are also assumed to be known independently.

In contrast, interplay between strong inverse bremsstrahlung absorption, laser
pulsc temporal profile and target expansion are included in the model of HARMONHY
[59]. A similar three-dimensional model with HARMONHY is PF3D [13], which
includes a nonlinear hydrodynamic package as described in [68] coupled with a paraxial
solver for the laser propagation. PF3D can describe the (nonlinear) evolution of
ponderomotive and thermal filamentatin, forward Brillouin scattering, and such
phenomena as beam deflection in the presence of transverse flows. Instead of prescribing
the plasma parameters (number density, temperature, ctc.) as does in PONHF2D,
simulation results of plasma variables obtained from other hydrodynamic plasma models

are mput to PF3D as the initial conditions. For example, the results from SAGE and



HYDRA are used as the initial conditions for the work in [50] and [57], respectively. The
significant advantage of PF3D over HARMONHY is its prominent parallel computation
performance using message passing.

Another hydrodynamic model that also uses the paraxial wave equation for the
laser beam propagation is PARAX [060]. In this model. nonlocal transport effects [60, 69]
are included by using the nonlocal Navier-Stokes equations [02]. Although PARAX can
describe various physics emerging in the interactions between laser and plasma, the
backscattering processes (SRS and SBS), the expansion of the plasma in the parallel
direction and a nonlocal transport model that would be valid in the strongly nonlinear
regime are still missing. In addition, the present PARAX simulations are implemented
with preformed plasmas. It is expected that the plasmas parameters obtained from other
plasma models need to be input to PARAX as the initial conditions.

The common feature of PONHF2D, HARMONHY, PF3D and PARAX is that all
of them are using a paraxial approximation for the laser beam propagation in the plasma.
However, this approximation is invalid near the critical surface of the plasma inside the
hohlraum [50]. In order to overcome this problem, a hydrodynamic model called
KOLIBRI [70] was developed without the priori of the paraxial approximation. Instead, a
scalar model which corresponds to s-polarization in the two-dimensional case is applied
for the laser propagation, allowing for SBS in backward and all sideward directions as
well as its coupling with filamentation.

The hydrodynamic models are also widely utilized to simulate the laser-produced

plasma and the laser-plasma interaction in the field of laser material processing. By

assuming that the clectrons in the laser-induced plasma in CO3 laser welding are in the
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local thermal equilibrium, Finke er «l. [71] proposed a one-dimensional steady state
model to describe the laser energy deposition into the workpiece. Based upon a steady
state one-dimensional Boltzmann equation of the ions, the mass and momentum
conservations of the tons and the quasineutral plasma can be established through the first
and second moment of the distribution function. Three mechanisms of the energy transfer
inside the keyhole: laser energy absorption through inverse bremsstrahlung, generation of
free electrons and recombination of charged particles on the wall, are considered in the
model and the energy balance equation can be established. A similar model was proposed
by Tix and Simon later [72], in which a system of transport equations for all species
particles inside the keyhole plasma is sctup also based on stationary kinetic equations.
Both the convective and conductive transports and inverse bremsstrahlung heating are
included in the model. The model assumes cylindrical symmetry and no dependence of
the quantitics on the direction of the keyhole axis; that is, the simulation was taken on a
slice of the keyhole, far enough from the surface. The simulation results suggest that the
main part of the plasma (except for the part near the wall) can be considered to be a fully
tonized plasma and can be described by the heat conduction. A model describing the
process of deep-penetration laser welding was developed by calculating the keyhole
profile using a point-by-point energy balance analysis along the wall [73]. The absorption
of laser energy by the plasma is described by Beer-Lambert’s law where the absorption
coefficient is from the dominant inverse bremsstrahlung. The degree of ionization as a
function of temperature is described by Saha’s equation. In the above three models, no
laser beam propagation is considered. However, the laser beam propagation can be

largely affected by the plasma. As a conscquence, the plasma absorption and the laser
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intensity distribution can be altered a lot. In order to deal with this problem, a model
proposcd in [74] uses the paraxial wave equation to calculate the laser beam propagation
through the plasma plume whose properties are pre-set within the calculation. The
simulation results indicate that the focusing of the laser beam is strongly deteriorated in
the plasma plume due to refraction and absorption. This plasma defocusing is believed
the main reason of the so-called “plasma shield” in laser welding. By keeping the
trcatment of laser beam propagation with the paraxial equation, Kim and Farson [75]
proposed a axisymmetric model with compressible Navier-Stikes equations to simulate a

CO»> laser beam impinging on a flat iron surface with helium and argon as the shielding

gas. Besides the refraction and absorption in the plasma plume, the effects of the
shiclding gas and the reflection at the workpicce surface are also included in the
simulation. Chen and Wang developed a model [33] with a simplified three-dimensional
keyhole model to study both the keyhole plasma and the plasma plume. Radiation and
scalar laser encrgy absorption are included in the governing equations as the source term.
But the laser beam propagation is not coupled in their model. Another three-dimensional
keyhole model for laser welding was proposed by Ki er «l. [76, 77]. The main feature of
this model is that the evolution of the liquid/vapor interface is consistent with the fluid
flow and the heat transfer in the model. The level set method is adopted to incorporate the
liquid/vapor interface boundary condition into the Navicr-Stokes equation and the encrgy
equation. The ray tracing method is applicd with the level set method to take into account
the multi-reflection effects inside the keyhole. The laser energy dissipated into the wall is

obtained by the energy balance analysis on the wall surface.



Except for the applications in laser welding, the hydrodynamic models are also
exploited in the fields of pulsed laser ablation of metals and dielectrics, pulsed laser
deposition (PLD) [78-80], and even laser ablation of organic materials [81, 82]. In
modeling of UV pulsced laser ablation of metallic targets, an integral model based on the
encrgy balance analysis of the different processes involved in the laser-solid interaction
was proposed in [83]. Laser energy absorptions due to inverse bremsstrahlung and
photoionization are considered in this model. Moreover, electron-impact excitation and
ionization, three-body recombination process, and energy transfer from hot-plasma
clectrons to the heavy particles are included in the vapor/plasma kinetics. However, no
laser propagation is solved in this modcl. Another hydrodynamics model, MULTI-FS,
was devcloped in [84] to simulate subpicosccond laser interaction with solid density
matter. This method is based upon its previous version MULTI [85], which is a one-
dimensional, one-fluid, two-temperature model including electronic heat conduction and
multigroup radiation transport. Comparing with MULTI, MULTI-FS is improved in the
following three aspects: 1) Maxwell’s equations are solved by the matrix method on a
high resolution mesh whereas a WKB approximation was used in MULTI; 2) electron
collision frequency is modeled to include its effects on the collisional absorption of the
laser, the energy transfer between electron and ion and the thermal conductivity; 3)
SESAME equation of state are used for electron and ion separately. The code of MULTI-
FS is validated by scveral absorption measurement performed with aluminum targets
irradiated by a subpicosecond pulsed laser. In order to resolve the multiple timing scales
in the laser-induced plasma plume dynamics, a combined one-dimensional Lagrangian -

two-dimensional Large Particle Model was developed in [860]. This model consists of two
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parts. The first part describes the rapid laser-matter interaction within 4 ns. A one-
dimensional Lagrangian hydrodynamic model is used in the first part where the two-
temperature approximation is applied. The laser encrgy absorption is treated by
numerically solving the Helmholtz equation coupled with equations of motion. The
second part models the two-dimensional plasma plume expansion until several hundreds
of nanoseconds with the results from the first part as the initial condition. The Large
Particle Method, which includes Euler and Lagrange steps, is used to solve the system of
hydrodynamic equations in the second part. The most recent hydrodynamic model for
diagnostics of the plasma created on a surface of Ag target irradiated by intense
femtosecond laser pulses is proposed in [87]. This is a semiempirical model where the
numerical cocfficients are chosen so as to ensure the best accordance of the simulation to
the experimental measurements. The wave equations are solved for the laser beam
propagation and inverse bremsstrahlung heating is included in the hydrodynamic
equations as the energy source term.

As for the laser ablation of dielectrics, Jiang and Tsai [88] proposed a semi-
hydrodynamic model because, in spite that the electron number density is governed by a
Fokker-Plank cquation, the temperature equation is still in the hydrodynamic form.
Another difference with other hydrodynamic models is that the heating term in this model
is Joule heating term. The ablations of barium aluminum borosilicate and fused silica by
a 220 fs pulsed laser with different fluences are simulated and the free electron number
density, the ablation depth and the reflectivity are obtained as the simulation results. In
order to interpret the cffects of ionization on the interaction between femtosecond laser

and silicon, Li and Ki [89] proposed a model which solves the full Maxwell’s equations
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by the finite-difterence ime-domain (FDTD) method. The generation of free clectrons is
obtained by a local energy balance analysis. The simulation results show that the
ionization of silicon by the incident laser beam makes the silicon behave metallically.
The laser energy is absorbed mostly in the thin layer below the target surface and the
laser beam propagation is even blocked. A threshold characteristic in the regime of
femtosecond laser ablation is clearly scen from the results.
1.3.2 Kinetic Based Models

Although hydrodynamics simulations of laser-plasma interactions have gain great
success in many ficlds, they tend to be invalid at high laser intensities where collisionless
and relativistic characterize the laser-plasma interaction. A relevant research indicates
that the validity range of laser intensity for hydrodynamic simulations is less than 10"
Wem? [84]. Morcover, even with low laser intensity, hydrodynamic modecls are still
mvalid if the Knudsen number of the problem is large, e.g., when a laser-induced plasma
plume expands in vacuum [90].

From the first, simplest one-dimensional collisionless model developed in 1950°s
[91] until today’s sophisticated parallelized three-dimensional collisional code, particle-
in-cell (PIC) method [92, 93] has become the most popular methodology for plasma
modecling, especially in simulating lascr-plasma interactions with high laser intensities.
The principle of PIC methods is to solve the equations of motion of charged particles in
the self-consistent electromagnetic ficlds that are calculated from the full sct of
Maxwell’s equations. The particles are weighted to the spatial grids so that they have an
effective size on the order of the grid, allowing one to model a plasma problem using

fewer particles than in an actual experiment. Except for the numerical errors generated by



the discretization of space and time, PIC methods retain the physics to the maximum
extent theoretically because there are no physical assumptions (such as continuum
approximation) presented. However, due to the limitation of computational expanse and
the diversity of physical characteristics for different problems, there are more or less
approximations applied on PIC codes in the practical implementations.

Nowadays, the representative PIC codes for laser-plasma interactions include
WAKE [94, 95], OOPIC [90-98], QUICKPIC [99], CALDER [100-102], and etc. The
algorithm of WAKE consists of three approximations [94]. The first approximation is
referred to as ponderomotive guiding center motion of the particles whereas only the low-
frequency motion of electrons is retained. However, this approximation breaks if there
are self-trapped electrons in the plasma or the axial speed of electron approaches to the
speed of light. The quasi-static approximation is the second approximation in WAKE. It
assumes that the profile of the laser pulse dose not change significantly during the time of
interaction with the electrons. As the third approximation, extended paraxial
approximation is applied in WAKE to simulate the laser pulse propagation. Based upon
the above three approximations, Chessa et al. [94] applied WAKE including a tunneling
ionization modcl to simulate short laser pulse self-focusing in underdense plasma.
Besides the tunneling ionization, the impact ionization duc to the binary collisions
between clectrons and neutrals are also included in OOPIC, which is a two-dimensional
relativistic object-oriented PIC code [96, 97]. The main fcature of OOPIC is that a
moving window scheme is adopted because only the small vicinity around the laser pulse
in the plasma is of interest. The moving window scheme in which the computational

window moves with the Taser pulse was firstly adopted in the two-dimensional cylindrical
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code of ISIS [103]. In a later work, Decker er «l. [104] extended this scheme to the two-
dimensional Cartesian geometry and simulated forward Raman scattering induced by
short pulse high intensity lasers. The above introduced PIC codes have a common
drawback: highly computationally expansive cven with today’s fastest computers [99].
Encouragingly, a newly developed, full parallelized, full three-dimensional PIC code,
QUICKPIC [99], can largely save the computational time. The main assumption in
QUICKPIC 1s that there are two distinct time scales for the laser pulse and the plasma
cvolution. Besides, the ponderomotive guiding center motion of the particles and quasi-
static approximations are also included. Simulation of a benchmark problem by
QUICKPIC and a conventional PIC code OSIRIS [105] shows that this new code can
reduce the computational time by 2-3 orders of magnitude while reproduce satisfactory
results. However, the ionization mechanisms are not considered in QUICKPIC. Another
representative two- or three-dimensional, parallelized, full relativistic PIC code is
CALDER [100], which has been applied to simulate the fast electron energy deposition in
fast ignition [102], proton accceleration [101] and laser-accelerated ion beams [106].

As another particle simulation method of plasma, molecular dynamics (MD)
modcls are also proactive in simulation of laser-plasma interactions. Unlike PIC, which is
based on particle-mesh (PM) scheme, MD relies on particle-particle (PP) or particle-
particle-particle-mesh (P3M) schemes [93]. Although PM is the most widely applied in
particle simulation, the PP is preferred in some special circumstances, for example, in the
many-body collisions dominated plasmas. In addition, PP can handle three-dimensional
problems just as easily as two-dimensional ones, with insignificant increasc in

computational cxpansc [107]. However, since solving the individual equation of motion



. . 2 .
for each of N particles would require N7/2 individual force calculations to be undertaken

every integration time step, the main drawback of PP scheme is apparent: the

computational expanse is much higher than that of the PIC approach. In order to utilize
the advantages of both PM and PP to the greatest extent, most MD codes applies P’M as

the underlying scheme, where the force on a particle is divided into a collective, long-
range term from the majority of the particles (PM) and a short range term arising from
particles close to the particle of interest [108]. The main feature of MD models is that the
collisions betwceen particles are inherently treated as many-body collisions instead of
binary collisions in most of PICs. Thus, MD models have been applied to simulate
collective collisional phenomena in plasmas, such as inverse bremsstrahlung [108, 109]
and interactions between KrF laser pulses and plasma cluster with ionization [107].
Gibbon et al. [110] also uses MD to simulate the proton acceleration from laser-irradiated
targets in which their calculation is based upon tree algorithm and uses massively parallel
computers.

Comparing to PIC and MD, both of which are particle simulation of plasmas, the
Boltzmann equation with Fokker-Planck collision term governing the electron (ion)
collisions can be directly solved to simulate laser-plasma interactions. The first numerical
solution of Fokker-Planck-type Boltzmann equation [111] was obtained in the study of
the cffects of steep temperature gradients appearing near the critical surface on the
clectron heat transport, where the Boltzmann equation was solved by an expansion of the
distribution function in spherical harmonics. In a later work [112], a one-dimensional
Fokker-Planck code, FPI (Fokker-Planck International), was developed and inverse

bremsstrahlung and ion motion were included in the model. In the past two decades, FPI
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was developed and improved by adding more and more physics into it, such as Coulomb
collision, cold ion hydrodynamics, transport for each energy group and self-consistent
clectric field to ensurce the quasi charge neutrality [113, 114]. In a newer version of FPI
[115], collisional ionization and excitation, three body recombination and de-excitation,
line emission, and the high density effects of continuum lowering and pressure ionization
were included. In this code, the electromagnetic wave was calculated by a Helmholtz
equation solver while the system of equations was solved by finite difference and time-
splitting methods. In order to save the computational expansc, an average ion model
[116], which is often used in hydrodynamics code, was adopted in this code. Besides FPI,
there are also other codes to solve the Fokker-Planck-type Boltzmann equation. For
example, Town ¢r al. [117] used their own Fokker-Planck solver to simulate the short-
pulsed laser interaction with solid but no ionization mechanism was included. In a
subsequent work [118], they added collisional ionization and recombination and also
applied the self-consistent average ion model.

Except for the above mentioned kinetic models, there are other approaches to
simulate laser-plasma interaction on the kinetic base. For example, a cellular automaton
(CA) model was developed to simulate laser-plasma interactions [119]. Although there
are many assumptions applied upon that model, such as no ionization and recombination,
fixed 1on background and quasi-static electrons, the preliminary results show an
encouraging potential to apply CA on laser-plasma simulations. In Ref. [90], Itina et al.
introduced a hybrid model to simulate the laser-induced plasma plume expansion. In the
first stage of plume expansion, a onc-fluid two-temperature gas dynamics modcel was

used to describe the plume and the Large Particle Method [120] was adapted to solve the
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system numerically. When the plume expands into a region where the gas dynamics
modcl becomes invalid due to the steep density gradient and fails to describe the
diffusion process, the direct simulation Monte Carlo (DSMC) method [121] was applied.
Relativistic VIasov simulation [122] and propagator of distribution function [7] are other

examples to simulate laser-plasma interactions by kinetic based methods.

1.4 Main Content of This Research

[n the present research, a new model is proposed to simulate interactions between
laser and weakly 1onized plasmas. In this model, Boltzamnn equation is used to describe
the transports of different species of particles in the plasma. The contributions of electron
impact ionization and threc body recombination arc treated as part of the collision terms
in the Boltzmann cquation. Besides, the elastic collisions between particles are also
included by using the Bhatnagar-Gross-Krook (BGK) approximation. The laser beam
propagation inside the bulk of the plasma is simulated by solving the full set of
Maxwell's equations directly. The Maxwell’s equation and the Boltzmann equation are
coupled by the external force term and the current density. In addition, encrgy equations
of all particle species in the plasma are derived directly from the Boltzmann equations
and arc solved by finite volume method. The advantage of this present model over other
hydrodynamic models is that less assumption are made so that the physics of laser-
plasma interactions can be retained to a great extent, especially for the wave-related
phenomena since they are described by the full set of Maxwell’s equations here.
Comparing to the kinetic based models, this model can be applied in much longer length

and time scales with relatively low computational expanse.
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In Chapter 2, basic theory of lattice Boltzmann method (LBM) with BGK
approximation of the collision term is described, including derivation of the lattice
Boltzmann equation from the continuous BGK-type Boltzmann equation and the
recovery of the macroscopic equations by Chapman-Enskog expansion. As an application
example of LBM for incompressible hydrodynamics flow, the two-dimensional driven
cavity flow is simulated to show the capabilities of the standard LBM. Different
evaluation methods of the external force term are introduced in Chapter 3. Poiseuille flow,
Taylor vortex flow and free diffusion problem under a uniform applied external force are
simulated to compare the different external forcing modcls. Based upon the comparison
results, one external force model is selected for all the plasma simulations in this research.
In this chapter, magnetohydrodynamic (MHD) flows, including Hartmann flow, Orszag-
Tang vortex system (both in 2D and 3D) and magnetic reconnection problem, arc
simulated by a new developed hybrid LBM model, where the induction equation is
solved by the finite difference method and it is coupled with the LBM through the
external force term. Although the standard LBM are successful in many applications of
fluid flow problems, it may produce large simulation errors if the physical propertics of
fluid are used in the calculation. It gets more deteriorated in plasma simulations. In order
to overcome this problem, a rescaling scheme is introduced in Chapter 4 to determine the
simulation parameters of LBM. Isothermal weakly ionized helium plasma is simulated by
using LBM with the rescaling scheme in this chapter. The new model as well as the
rescaling scheme is validated by the simulation results of electrostatic wave in the plasma
and e¢lectron diffusion problem. In Chapter 5, the LBM model developed in Chapter 4 is

extended to simulation of laser interaction with weakly 1onized plasma. This model,
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which is essentially a thermal LBM model, takes into account for the temperature
cvolutions of individual species of plasma particles so that the electron impact ionization
and 1ts reverse process, three-body recombination, can be included. Preliminary results of
interaction between a continuous l;'iser beam and a weakly ionized helium plasma are
presented in this chapter. The capabilities, limitations and future work necessary for

improvement of the present model are concluded in Chapter 6.
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Chapter 2

Lattice Boltzmann Method for Incompressible Hydrodynamics Flows

In recent years, lattice Boltzmann method (LBM) has been widcely applied as a
successful alternative scheme to simulate fluids flows [123]. Unlike the traditional
numerical methods which solve the Navier-Stokes equations for macroscopic variables,
LBM is based on kinetic theory and solves the Boltzmann transport equation for the
evolution of particle distribution functions. The macroscopic averaged properties which
obey the desired macroscopic equations will be obtained from proper moments of the
distribution function. LBM first originated from its Boolean counterparts, the lattice gas
automata (LGA), but it has becen proved that it can be derived directly from the
continuous Boltzmann transport equation by descretization in both time and phase space
[124, 125], which gives LBM a more rigorous theoretical foundation. In this chapter,
some basic theories of LBM for incompressible hydrodynamics flows, including the
BGK approximation of the collision term, derivation of lattice Boltzmann equation from
the continuous Boltzmann equation and recovery of macroscopic conservation equations
by Chapmann-Enskog expansion, are introduced. As a simulation example, a 2D driven

cavity flow is simulated by the standard D2Q9 LBM to illustrate its capabilitics.

2.1 Boltzmann Transport Equation and Its Collision Term
The Boltzmann equation, a nonlinear seven-dimensional (in phase space) partial
diffecrential equation, describes the evolution of the phase space distribution functions of

different species of particles in various types of gases or gas mixtures, including plasmas.



The continuous Boltzmann transport equation for the particle species of s in the fluid has
the following form:

i&'*'v.s' Vyls+ag Vo fi =0/, /") M

Ct
where f, = f,(x,v,.,7) is the single pax.'licle distribution function in the phase space, v,
is the microscopic velocity and a is the acceleration of fluid particles caused by the
external force. Based upon the assumption that only binary collisions in the fluid are

taken into account [120], the collision term Q. ( /', /) representing the change of rate of

the distribution function duc to the collisions can be expressed as:

4
O, (S S = fdvy [dQo Qv =vell/ (VS (V)= fV) S ()
Pe 0

where the subscript s and s represent particle s and particle s° which are involved in
the binary collision, the superscript prime stand for the post collision state, €2 is the solid
angle in the collision and o () is the differential collision cross section of the
collision between particle s and particle s . When s'=s, the above formation of
collision term dcescribes the self-collisions; otherwise, it represents the cross-collisions
between different species of particles in the fluid.

After we obtain the distribution function by solving the Boltzmann equation, the
desirable macroscopic quantities can be deduced by proper moments of the distribution
function. For example, the number density, macroscopic velocity and thermal energy are

given by:

r
n= [ A0y, (3)
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where ¢, =—2—0 B
m

and Dy is the degree of freedom of the fluid particle.

y

Since the Boltzmann equation is essentially a statistical treatment of the
microscopic behaviors of the particles inside the gas or plasma, it is more fundamental
than Navier-Stokes equation which is based on the assumption that the fluid of interest is
continuum macroscopically; unlike Navier-Stokes equation which is only applicable for
small Knudsen number (usually less than 0.1), the Boltzmann equation can be applied in
a much larger range of Knudsen number [127] and thereby it is especially suitable to
describe the complex fluid flows, such as non-ideal fluids, multiphase or multicomponent
fluids and those which cannot be described by Navier-Stokes equation accurately and
cffectively.

Unfortunately, the nature that Boltzmann equation expressed by Eq. (1) with the
collision term (Eq. (2)) is an integral-differential equation makes it almost impossible to
find analytical or even numerical solutions [126]. An alternative way to evaluate the
collision term is provided by the rclaxation model among which the BGK model [128] is
the most commonly used. In this model it is assumed that a situation initially not in
cquilibrium reaches a local equilibrium condition exponentially with time, as a result of

collisions, within a relaxation time A;. The local equilibrium state of the particles is
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characterized by a local equilibrium distribution function f;°/(x,v,r) which often takes

the form of Maxwell-Boltzmann distribution:

,

v n, v,-u, )"

S8V 1) = =3 expl- SR ] ©
2a0?) 2,

where D is the dimension of the space and 6, = \/kgT,/m, is the sound speed of the

fluid particle s with kg as the Boltzmann constant, 7 as the temperature and my as the

mass of the fluid particle s. If there is only one type of particle existing in the gas, the

collision term can be mathematically expressed as

_req
Q,\‘(fx,f:)z__(;&%_) o

Finally, by neglecting the subscript s, the single-particle Boltzmann equation with BGK

approximation for the collision term can be written as:

g _ g
i+v.v‘j'+a.v‘,f:_;/-__;./____
ct ' A

(8)

Note that the simplification of collision term by BGK model expressed by Eq. (7)
is only valid for short-range elastic collisions. Physically, there are also long-range
collisions inside the fluid, such as the Coulomb collision between charged particles in
plasmas. By considering that the charged particle encounters a scries of consecutive weak
(small deflection angle) binary collisions [129], one can derive the Fokker-Planck
collision form to describe the long-range collisions from Boltzmann equation. The

general form of Fokker-Planck collision term for the charged particle s can be written as

[130]:
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The vector (Av/AI) and the tensor (AvAv/At)a describe the dynamical friction and

a

diffusion mn velocity space, respectively. They are given by

b4 A 2
<él> _ 4;[(5\- In \Lz Yy | my tmy J’f-\'(v”': ) dv' (10)
Al m? ov ~\ ¢, m |v —v '
AVAY drq? o q ’
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where fir(vy) = fi(x.vy,1) is the distribution function of particle species s, and ¢,
and ¢, are the charges of particles s and 5", respectively. The summation is over all

charged components including particle s itself. A is the plasma paramcter which is the
number of charged particles in the Debye sphere. In practical calculation, many simpler
forms of Fokker-Planck equation as well as numerical algorithms are adopted to solve Eq.
(9)[131-133].

In weakly 1onized plasmas, since the number density of neutral particles is much
greater than that of charged particles, the collisions with neutral particles dominates the
whole process. Thus we neglect the long-range Coulomb interaction between charged
particles in this rescarch and the collision term approximated by BGK model as
illustrated in Eq. (7) is applicd to evaluate the elastic collisions between charged particle

and neutral particle in all simulations of this research.
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2.2 From Boltzmann Equation to Lattice Boltzmann Equation
By neglecting the external force term in Eq. (8), the single-particle Boltzmann

equation can be rewritten as [125]:

([ cq
a.f_ /7 (12)
dt A A
d ¢ . . . ) . .
where - = —+v-V, is the Lagrangian derivative along the microscopic velocity v and
dr ot

the cquilibrium distribution function /Y takes the form illustrated by Eq. (60). By
integrating Eq. (12) over a small time interval Ar, we can get:
_A,//j' At

[(X+ VALV, L+ Al) = ——— J'e“'/’lf""(x + VS, V, L+ 5)ds + e"l’/’{f(x, v,t)  (13)
0

where 0<s<Ar. Assuming that the time step Ar is sufficiently small and [ is

smooth ecnough locally, f“/(x+ vs,v,t+s) can be expanded by Taylor expansion with

neglecting the term of order O(Arz) :
LU+ Vs, vt +5)= i—f"‘/(x + VALV, I+ A1)+(l ——:—]f""(x,v,r) (14)
! !

Substituting Eq. (14) into Eq. (13) and after some manipulations, we can get:

S(X+ VALY, L+ A= [(X, V1) = (e7M4 D f(x,v,0) = fUx,v,1)]

o , (15)
+(1~Ai+Aie—AIM)[qu(x+ VALV, E+ A~ £(x,v,1)]
t At

-At/ A

Again, expanding e in its Taylor expansion and neglecting the terms of order

()(A["') . we obtain the Boltzmann equation discretized in time as:

S(X+ VALV L+ AL = f(X, V1) = —é[-[f(x,v,t)—./'”/(x,v‘t)] (16)
r
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where 7= 2/A¢ is the dimensionless relaxation time. Note that Eq. (16) has first order
accuracy in time [125].

Eq. (10) is still continuous in the phase space and v € (-, +) for 2D problems.
As illustrated in Egs. (3) to (5), the hydrodynamics variables are proper moments of the
distribution function f(x,v,r) (or equilibrium distribution function f“Y(x,v,r)) with
respect to the microscopic velocity. This can be generalized as:

d(x, 1) = jf(x,v,t)z(v)dv: jf""(x,v,r)z(v)dv (17)

—x -

where ¢(x,7) is the hydrodynamics variable, which is dependent upon both position and
time, and g(v) is a function of the microscopic velocity v . Assuming that the
temperature is constant and the macroscopic velocity of the particle is small (low Mach
number approximation), the equilibrium distribution function can be expanded with

Taylor series up to the order of (u-u) [124, 125]:

2 ) 2 2
eq =———L21—07€Xp _V_z 1+(v 2u)+(v u4) _u : (18)
(2rO° )~ 20 7] 20 20
Substituting Eq.(18) into Eq. (17), ¢(x,r) can be expressed as:
e v2
d(x, 1) = Iexp -—— (v")dv (19)
= 20°

where w(v") is a m-th order polynomial of v. The integration in Eq. (19) has the

2
structure of ¢ and the integration limitation is from o to —» . Enlightened by the
above observation, it is intuitive to apply Hermite quadrature to find the value of Eq. (19)

exactly to the order of m:
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¢(.r,l)=ZWa exp —L‘Z v(el)) (20)
a

where B, and e, are the weights and abscissas (or discrete velocities) of m-th order

Hermite polynomial, respectively. Then the hydrodynamics variables can be computed by

the quadrature as well:

n=y f, (21)
a
m=>ye,/f, (22)
a
ne =%Z(ea —u)zfa (23)
a

According to the dimensions of the physical problem (1D, 2D or 3D) and the number of
macroscopic variables desired, different number of abscissas of the Hermite polynomial
may be nceded, and accordingly, resulting in different sets of discrcte velocities. For
example, the D2Q9 discrete velocity model may be applied for 2D isothermal problems.

To derive this nine-bit lattice Boltzmann equation, a Cartesian coordinate system is used

and y(v") is setas y(v") = vVl where 1<n <m. Then Eq. (19) can be rewritten as:
¢(x,’) — (\/50)"1-1414-2 /,,,1,, (24)
where
)
L= [e> ¢y (25)
-
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and J = \(\./\/5(9 or =v‘./\/§0. In the derivation of the nine-bit model in 2D, it is

natural to use the third order Hermite quadrature to evaluate Eq. (25); that is,

2
I, =) @, where the three abscissas and the corresponding three weights are:

J
/=
G =-3/2, & =0, Gy =+/3/2
1 2 3=y (26)
o) —\/;/6 wz=2\/;/3, (4)3:\/;/()
Then Eqg. (24) becomes:
> 9 4 8 5
P(X,1)=20"w w(0)+ Z ey (e, )+ Z wiy(ey) (27)
a=l| a=5
where the discrete velocitics e, are:
(0,0) a=0
e, =9(cos@,,sing,)c a=1,23,4 (28)

(cosg,,sing, W2c @=5.67.8

6 2 5
A
0

3 |- » 1
Y

7 4 8

Figure 1 Schematic of D2Q9 square lattice. The two-dimensional continuous phase
space is discretized by nine microscopic velocity components in a square lattice.
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with

=(a- =1.2,3.4
{goa (a-Nr/2 a=12.3 29)

¢, =(a@=-5)/2+7/4 «a=5,6,78
where ¢ =+/30 is the lattice speed and is defined as ¢ = Av/Ar. The schematic of the
discrete velocities 1s shown in Figure 1.

Comparing Eq. (20) and Eq. (27), the weights W, is Eq. (20) can be found as:

2
e
W, =2a0° exp[ﬁ]wu (30)
where
49 @ =0
o, =41/9 a=123,4 (31)

1/36 «=5,6,7,8
Then the discretized equilibrium distribution function is:

3(e, -u) N 9e, ~u)2 B 3u?

P ] b
c 2(’4 2¢°

=, (X6 ,,0) = a)an{l + (32)

Note that in the above derivation, the phase space and the configuration space are
discretized simultaneously through the relationship between the lattice speed and the
spacing. Fmnally, the discretized Boltzmann equation, or lattice Boltzmann equation,

takes the follwing form:

Sy = 150
T

Sx+e A r+Ar)= f(X,0)~

(33)

In the practical implementation of standard LBM, there are always two steps
involved: collision step and streaming step. In the collision step, the fluid particles collide

with each other on the local node point to finish the momentum exchange and energy
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exchange (if 1t exists in the physical problem). The particles then stream to the
neighboring nodes along the directions of the descretized velocity vectors in the
streaming step. These two steps can be illustrated mathematically by:

Collision step:

- _ g
fa(x’,)=ﬁ1(x,,)_f(1(x!,) Tf(l (x’[) (34)

Streaming step:
/’a(x+eaA1,1+A1)=_fa(x,1) (35)
where fu(x,r) represents the post-collision distribution function along the direction «a .

From Egs. (34) and (35). we can sce that the collision step is purely local and the
streaming step is a uniform data shifting and only demands little computational effort.
The two-step scheme 1s explicit, casy to implement and straightforward for parallel

computation.

2.3 From Lattice Botzamnn Equation to Navier-Stokes Equation

The desired macroscopic conservation equations, such as the Navier-Stokes
equation, can be recovered by the Chapman-Enskog expansion of the lattice Boltzmann
equation as shown in Eq. (33). The significance of this derivation lics on the fact that
some fluid propertics, such as the kinematic viscosity, can be retrieved from this
derivation.

Introduce the following multiscale expansions to the « -component distribution
function and the time derivative:

”

vef Vel fP =Y e (30)
n=0

(0
_/a =f(,(( )
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-~

Ct N ﬁll 612 =0 cly,
where ¢ is the time step Ar.

By taking the Taylor expansion to [, (x+e,Ar,1+Ar), we can have
Lo (X e AL+ A = £ (%,0)+ Dy [, (X.0) + DP [ (X.1) + O(AL) (38)
&
where D, = —i’—+eu -V . Substituting Egs. (36), (37) and (38) into Eq. (33) and sorting the
Cr

resulted equation by the order of ¢, we can get:

0(50):
= (39)

O(e'):
D, fi0 - : (1) (40)

()(ez):
wC:)) (2;—1) f“) 1 ‘(2) 1)

0
where D, =(—+
n )]
Iy

e, V) . The distribution function in the above expansion is
constrained by:
nu

Z (’”[ }: n>0

(42)

Taking the zeroth and first order moments of Eq. (40). we get:
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N V. (iu)=0 (43)

('1‘10
and
) Lo po-g (44)
Ccly m

where [l“”:mZeaea 0(,0’ is the zeroth order momentum flux dyad and
a

'Y = (0% + uu) according to the kinetic theory. Similarly, by taking the zeroth and

first order moments of Eq. (41), we can get:

n
oy 45
o (45)
and
A 7 —
(.(:zu)+(J Dlg.nmoo (46)
an 2t m

where 1D =mZeaea é” is the first order momentum flux dyad. From Eq. (40), we
a

-(0)
ala

8"(0)
610

have MY = —rz eqey Dy, f(io) =-r +V-e, e, e , where the second term
24

on the right hand side reads V-eueaea/;io) = /;1;/02[(V-u)l +2Vu] [134]. By ncglecting

2
the terms greater than the order of O(u”) [134], we can get:

2r— -
2r 2
Letting the kinematic viscosity v :
v=(r-0.50r (48)
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Eq. (40) can be rewritten as:

) N2 =0 (49)
cy At
. ¢ 0 c :
Recalling that — =—+ Ar— (as shown in Eq. (37) and truncated at the order of
Ct 8[0 61]

()(Alz)) and using Eqgs. (43), (44), (45) and (49), we can finally recover the continuity
cquation and the Navier-Stokes equation from the lattice Boltzmann equation (Eq. (33))
as:

Continuity equation:

A
c—”+V'(nu)=0 (50)
ct

Navier-Stokes equation:

(l(i’u)+V-(nuu)=—le+vnV2u (51
ct m

where p =nkgT is the scalar pressure.

From the above derivation, we can see that there 1s a modification of the fluid
viscosity by 0.5 as illustrated in Eq. (48), which lcads that the viscosity is not only
dependent on the physics but also dependent on the lattice. This means that if the physical
properties of fluid are used in the simulation, the resulted viscosity may not be equal to
the physical onc. This problem can be solved by using a rescaling scheme developed in

this rescarch. It will be explained in details in Chapter 4.

2.4 LBM Simulation of Two-dimensional Driven Cavity Flow
In order to illustrate the capability of the standard D2Q9 LBM as described above,

a 2D incompressible driven cavity flow is simulated on a uniform 256x256 square grid
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system. The driven cavity flow which is bounded by a square enclosure and driven by a
uniform outer flow on the top shows rich vortex phenomena at many scales depending on
the Reynolds number [135-137]. In this simulation, the no-slip conditions are applied at
the left, right and bottom walls; that is, the macroscopic velocities at the boundary node
points on the wall are equal to zero. Viewing from the microscopic point, the distribution
functions just reverse their direction but keep their values on the wall. For the top
boundary, since the outer flow remains unchanged physically, the equilibrium values

with the outer flow speed w,,. are set to the top nodes as the updated distribution function
after cach streaming step in the calculation. The simulation parameters are set as: Av=1,
Ar=1and py =1.0. The driven velocity on the top of the cavity is «,, =0.1 and the

Ju, N,

Reynolds number is defined as Re = where N is the grid number along the top

(r-0.5)
boundary and the viscosity used here is calculated from Eq. (48).
Figure 2 shows the streamlines of the cavity flow at different Reynolds numbers.
The dependence of the vortex on the Reynolds number can be seen very clearly from the
figure. Figure 3 illustrates the x- and y-component velocitics through the geometric
center of the cavity. Their patterns agree with those in the literatures very well. The
detailed quantitative comparison with results in the literatures will be presented in

Chapter 4.

40



o
®
T

0 0.61 |
g = ol

= s >

04F 0.4}

o
N
T
o
N
:

02 O4le06 0.8 WL

Re = 100 Re = 500

[=]

®
oy/Lo o
IS o o

02} = 7 | 027\
AN = Al SIS
0 02 04 06 08 002 04 06

x/L x/L

Re = 1000 Re = 2000
Figure 2 Streamlines of driven cavity flow with different Reynolds numbers. The

flow pattern is strongly dependent on the Reynolds number. If the Reynolds number
is sufficiently large, secondary vortices appear at the right and left lower corners.
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Chapter 3

Evaluation of the External Force Term in Lattice Boltzmann Method

In the simulation of the driven cavity flow presented in the previous chapter, no
external force exerts on the fluid particles. Accordingly, the lattice Boltzmann equation
takes the form illustrated by Eq. (33). But in most practical cases, especially in the
simulation of plasmas, there are always various types of external forces acting on the
particles, affecting the rates of change of momentum and encrgy. It is very important to
evaluate the external force term in the lattice Boltzmann equation accurately. However,

the external force term a-V f in the Boltzmann equation cannot be calculated directly

because the dependence of the distribution function on the microscopic velocity v is
unknown. Thus, it is necessary to develop alternative methods to evaluate the external
force term in the Boltzmann equation. In this chapter, five different external forcing
models arc compared through simulations of Poiscuille flow, Taylor vortex flow and free
diffusion problem under a uniform externally applied force. Based upon the comparisons,
He’s model is selected to evaluate the external force term in this research. By using He’s
model, a new hybrid LBM model is developed to simulate magnetohydrodynamics
(MHD) flows. This model is validated by Hartmenn flow, Orszag-Tang vortex system

and magnetic reconnection problem in this chapter.

3.1 Different External Force Models
The lattice Boltzmann equation with presence of an external force term can be

written as [138]:
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_ e
f;l(x”) ,[(1 (x.{)+
T

So(X+e ALt +Ar)= [, (x,t)- AtF, (52)

where [, is the discretized external force term along the « -th direction of the discrete
velocity vector. The corresponding equilibrium  distribution function in Eq. (52) is

defined as (in D2Q9 scheme):

3(ea-u*)+9(ea-u*)2 3u™? 53)
¢? 2% 262

g _
Jo = omal+

where u” is called the equilibrium velocity. Different formations of £, and u” lead to

different treatments of the external force term in the lattice Boltzmann equation.
The very first and simplest external force model was developed by He er al. [139]
and is referred as to Method 1 in this rescarch. In this model, the external force term F,,

w._ ne,  -a . . - . .
—“—*%— where a is the acceleration of the fluid particle due to

takes the formas [, =
U-

the external force. The equilibrium velocity u” is equal to the fluid macroscopic velocity

: 1 . , . :
u; thatis, u” =u= —Zeaja . This method is suitable for the casc where the spatial and
n
a

temporal gradient of the external force is negligible. Thus, it is always applied for the
flows under a constant body force, such as constant pressure gradient or gravity.

The second method to evaluate the external force term (which is referred as to
Method 2 here) was originally developed to simulate nonideal fluids by the LBM [140-
142]. It was originated independent by two groups within the frame of Hermite expansion,
which is consistent with the derivation of the lattice Boltzmann cquation, and with some

constraints of different order moments. In this model, the external force term is written as
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(e, —u*) (e, -u*)ea
+
02 g*

F, =w,na- and the equilibrium velocity has the same

N : . o * 1 .
definition as the fluid macroscopic velocity, 1.e. u” =u = ——Zeafa . In this model, the
n
a

contribution of the external force to the momentum flux is considered. But like Method 1,
it is still only applicable for the case where the spatial and temporal gradient of the

external force is sufficiently small. In a later research [143], this model is updated by

_ . . . ] l : _
defining the fluid macroscopic velocity as u =—Zeafa +;A!a while the equilibrium
n<

4

velocity keeps the same definition as before. This approach climinates the temporal
gradient constraint of the external force, but still cannot be applicable for the large
spatially varying external force. This updated version of Method 2 was applied by
Breyiannis  and  Valougeorgis  [144] in a recent research to  simulate 3D

magnetohydrodynamics flows where the magnetic force JxB is treated as the external

force.
Mecthod 3 was proposed by Buick and Greated [145]. The external force term in
their modcel 1s £, =(I—7Lj (0“7” (e, -a) . The equilibrium velocity and the fluid
2r ) g°

: : N 1 1
macroscopic velocity have the definition as u* =u=— E eafa+;Ata. In a later
H F4
a

rescarch, Guo er al. developed a model (which is referred as Guo’s model) where the

(e, —u") N (e, -u’)e,

and both
0’ A

. . 1
external force term is defined as £, = [l —2—j(uana-
r

the equilibrium velocity and the fluid velocity have the same definition as Method 3.



The most popular external force model was developed by He er al. [146] (which

is referred as to He’s model here) and it has been widely adopted in many researches
[147-149]. This model is bascd upon the fact that f“/ is the leading part of the
expansion of the distribution function and the gradient of f“/ has the most important

contribution to the gradient of f . Then the external force term can be written as:

a-Vyf=a V[ =_a‘(;—z_u)f"" (54)

Accordingly, the Boltzmann equation with the external force term becomes:

o f=f a(v-u) o
+v.V f=-: + 55
ot o A 2 4 )

By following the similar discretization approach illustrated in Chapter 2, the lattice

Boltzamnn equation reads:

fa(x?’)—f(f
T

T(x,1) .\ Ara-(e, —u)

> 2l (x.t)  (56)

So(X+e ALt +At)= f,(x,1)—

Note that the assumption that the momentum of fluid particles conserves at each collision
[150-152] has been applied in derivation of the above equation.

In summary, Table 1 lists the external force term £, and the equilibrium velocity

u” in different models. The fluid macroscopic velocity u has the same form as the
equilibrium velocity in all the five models and thus has not been listed in the table.

In order to select an accurate external force model for simulation of plasmas, the
above described five models have been applied to simulate the same physical problems
and the results are compared. In all the simulations, the external force term takes the form

listed in Table 1. The discretized equilibrium distribution function follows Eq. (53) where

46



the cquilibrium  velocity 1s evaluated according to the form shown in Table 1.

Correspondingly, the lattice Boltzmann equation shown in Eq. (52) is used.

Model F, u
. ne. -a 1
Method | —“+ —Zeafa
0> n‘;
—u’ ut 1
Method 2 W, na- (e 1) (€U Jeg = eufy
2 4 n
6 7 a
1 Yo n 1 1
Method 3 [l~—2—r]—()“7(ea.a) ’l§eafa+2Ala
o * . * ] ]
Guo's Model [] _lea”a' (e, 7“ )+ (e, -ue, _zeaf(l +;A[a
2r i ot n' 2
a-(e,—u) ., 1
He's Model (—52_2 Ja' (x.1) ;Zeafa
a

Table 1 F, and u” in different external force models

The first simulation example is the Poiscuille flow between two parallel placed
plates which arc located at v =0 and y = 2H respectively. The analytical solution of the

fluid velocity is:

u’ :[i,\-(//—%). 0} (57)

it
where  p is the mass density of the fluid, v is the kinematic viscosity which can be

determined by Eq. (48) and g =—dp/dx is the constant pressure gradient from the inlet
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to the outlet. In this simulation, g is treated as the external force term in the lattice

Boltzmann equation and thus, the acceleration term in £, can be written as a = [—g, 0} :
P

The simulation was taken on a 256x32 grid system. The length and height of the

computational domain are 1.0 and 0.125 respectively. The lattice speed ¢ is set as 1.0

and the dimensionless relaxation time 7 is 0.6. No gradient boundary condition was

applied at the inlet and the outlet while no-slip boundary condition was implemented on

the top and bottom walls. The fluid is initially stationary and is accelerated by the

pressure gradient when ¢ > 0. The calculation is terminated if the flow reaches its steady

state. The convergence criterion is:

n+l, . N I
max JAa (lv/]l) /(,( (I’I)ISIXIO_S (58)
(,(,f,j 174 (13.])

where the supersceript 7+ 1 denotes the values at the next time step. Different values of g

were used in the calculation as long as the low Mach number approximation is retained.
The relative errors between the simulation results and the analytical solution are listed in

Table 2 where the error is defined as:

\[Z[zl.éB(IZ&j)—u"j(.\‘c.,jA}')]z
error =1 (59)

\/Z[z:ﬁ(.\;.,m-)]z
J

LB

where 1" represents the x-component velocity obtained from the simulation while u_'\'.’

is the analytical solution from Eq. (57). The error is only calculated at the center cross
scction along the x-axis (i =128) because the flow is in the steady state and w, is not

dependent upon x . The relative errors listed in Table 2 show that, although the
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performances of Method 3 and Guo’s model are slightly better, the five external force
models almost have the same accuracy for simulation of Poiseuille flow which is driven
by a constant external force. Without surprise, the error grows with the increase of the
magnitude of the force because a larger Mach number is resulted by a bigger external

force. Figure 4 shows the profile of x-component velocity obtained by He's model with

g=5774x 1072 Itis apparent that even with the largest error in Table 2, the simulation

result is still in a good agreement with the analytical solution.

g (<107
1.155 2.309 3.464 4.619 5.774
Models

Method 1 4.499 4.888 6314 8.414 11.043
Method 2 4.500 4.888 6.315 8.416 11.046
Method 3 3.672 3.931 5.116 7.057 9.596
Guo’s Modecl 3.672 3.931 5.116 7.058 9.597
He's Model 4.500 4.888 6.315 8.4106 11.046

Table 2 Relative errors (><104) of Poiseuille flow
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He's Model
Analytical Solution
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Y

X

. . . -2
Figure 4 Profile of x-component velocity obtained by He’s model (g = 5.774x10 °).
The simulation results agree very well with the analytical solution.

As the second simulation example, an unsteady 2D Taylor vortex flow was
simulated by all the five external force models aforementioned. The simulation was
carricd on a 129x129 grid system with the dimensions of the computation domain of

-1 < x,v <. The space- and time-dependent acceleration due the external force is:

- -

R
kg
Il sm(2/(,.\‘)cxp[—zl'(/\'l2 +k22 )]
a= /‘2_2 (60)
ST
—usm(2/\'2'y)cxp[_zv(/\-lz 4 /\-23 ]
) |

where 1 is the magnitude of the flow velocity and it is set as ug =0.001 so that the

compressibility of the flow can be neglected, v is the fluid viscosity, k; and &, are the
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wave numbers and & = k; =1.0 in the calculation. With the external force shown in Eq.

(00), the analytical solution of the velocity field can be found as [138]:

A

0 —1g cos(kl.\‘)sin(kz_\')'EXP[—V(/‘]2 + /\'% )]
{ X J _ (61)
1

uy. - 1 ll‘(—lsin(kl.\‘)cos(kz_v)exp[—v(kl?' +k§ )]
2

In the practical simulation, the time step Ar is set equal to the spacing step Ax. Then the
dimensionless relaxation time 7 can be retrieved from Eq. (48) with the value of
v =0.005 . The initial velocity field is set as Eq. (61) with r = 0. The periodic boundary

condition [153] is applied for all the four boundaries of the computational domain.

v/\
Q
X
5
m (R
. -c"?" r'?.r‘ ':"'i\;‘*' RO N \
'g 3 i Silfe=oN) ‘g' 1 ’ﬁ"‘m‘fkﬁr« ‘&V-L"N{Js"«""? p‘.p
® | — Method 1
g 2l Method 2
--- Method 3
14 = Guo's Model
: ° He's Model
O T M T T T v T L
0 300 600 900 1200 1500
Time Step

Figure 5 Evolution of relative errors of simulation of Taylor vortex flow obtained by
the five external force models. All the errors are in the same order of values.
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Figure 5 shows the relative errors of the simulation versus the time steps where

the error is defined as:

\/Z[u“”(i, j)-uw'ax, jar)?

(J
error =427 (62)

\/Zu"*(im, jAy)?

LJ

where u/‘”(/,‘/‘) represents the velocity at the node point of (4, j) obtained by the LBM

and u"‘(iA\'.jA.\‘) 1s the analytical solution according to Eq. (61) at the corresponding
position (fAx, jAy). It is clear from Figure 5 that all the relative errors are in the same

order of magnitude. Although Method 3 and Guo’s model present better performance in

0.8
1 Analytical Solutions
0.6 1 - o) He's Model at 1500t
1 ) LA He's Model at 3000t
0.4"* / ..-“"""'.. \
;7 oD
—_Q) _ //"{ W‘\\\
’\\ 02 - /,1 \‘\
> 14 N
9/ OO = ‘-“ b,
5 ] A "
W 77
'02 | \‘\ "Iv/
d (R l_"”/
AR A
'0.4_ \\ “.._“::“‘_'.' //
0.6 1 ‘
-0.8

-1.0-0.8-06-04-0200 0.2 04 06 0.8 1.0
y/n
Figure 6 Profiles of x-component velocity along the center line of x-axis

at time steps of 1500 and 3000 by using He’s model. The simulation results are in
good agreement with the analytical solutions.



simulate temporally and spatially varying force as illustrated in Figure 5, other methods
also can give highly satisfactory results. For example, Figure 6 shows the profiles of x-
component velocity along the center line of x-axis by using He’s model at different time
moments. Comparing with the analytical solutions which are represented by the solid
lines in the plot, He's model can reproduce excellent results with respect to the analytical
ones.

Finally, let's check the external force models by simulating a simple free
diffusion problem with a constant force pointing to the positive x-direction. Initially, the
fluid density has a Gaussian distribution centered in the computational domain with the

maximum perturbation of the density as 0.01p,. With a constant external force acting

along the positive x-direction, the analytical solution of the fluid density is:

{ — -V 2 e 2
/)‘4(-\‘,_1’,1)=p0+ 001,00 ex _(-\ X, \(I[) +(" -\(‘)

— (63)
(I+t/1y) P21+ t/1g)

where (x.,V,.) represents the center point of the computational domain, » = 20Ax and

!0:)‘2/41) where D is the diffusivity which can be recovered from the lattice
Boltzmann equation as:

D=(r-0.5)0%Ar (64)
In Eq. (03), v, is the magnitude of the drift velocity v, due to the external force, which

is calculated as follows [154]:

v, =-atAl (05)
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The simulation was taken on a 129x129 grid system with the dimension of the
computational as 1.0. The time step is set equal to the spacing and consequently the
lattice speed ¢ =1.0. Different amplitudes of the acceleration were used in the calculation.

Table 3 lists the relative errors of the diffusion problem with different amplitudes
of the external force. The relative error in this casc has a similar definition as shown in

Eq. (62) where the velocity is replaced by the fluid density:

> e ) - p iy, jar))?
error = 12/ (60)

\/Zp”(im,./moz

i

We can sce from the table that the errors increase with the enlargement of the external
force as expected. However, Mcthod 3 and Guo's model show larger errors with respect
to Method 1, Mcthod 2 and He’s model.

Figure 7 shows the fluid density distribution at 200 time steps with different

amplitudes of the external force. The solid lines represent the analytical solutions. It can

4

0.5 2.0 4.0 6.0 8.0 10.0

Models
Method 1 1.223 1.240 1.297 1.389 1.515 1.673
Mecthod 2 1.223 1.250 1.335 1.471 1.650 1.804
Method 3 1.261 1.755 2.799 3.908 5.172 6.385

Guo’s Model 1.271 1.802 3.060 4.371 5.705 7.033

He's Model 1.223 1.251 1.330 1.409 1.041 1.840

Table 3 Relative errors (XIOS) of free diffusion problem
with different amplitudes of the external force
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Figure 7 Fluid density distribution obtained by He’s model and Guo’s model at 200

time steps with different magnitudes of the external force: (a) ay = 4.0 (b) ay = 10.0.
Both Guo’s model and He’s model can produce good results if the external force is
small (as shown in (a)). However, if the external force is relatively large, Guo’s
model induces larger error than dose He’s model (as shown in (b)).
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be seen that the Guo’s model can give relatively good results if the external force is small
( Figure 7 (a)). However, if the external force is large to some level, e.g. the case of

a, =10.0, Guo’s model cannot reproduce the satisfactory results, as shown in Figure 7

(b). Meanwhile, as illustrated by Table 3 and Figure 7, the results obtained by He’s model
have good agrecment with the analytical solutions even with a relatively large external
force.

In conclusion, although Method 3 and Guo’s model behave better in the
simulations of Poiscuille flow and Taylor vortex flow, they show poor performance in the
simulation free diffusion problem, especially when the amplitude of the external force is
large. Method 1 possess higher accuracy for Poiscuille flow and the diffusion problem,
but it gives large errors in simulation of Taylor vortex flow. Method 2 and He’s model
have the same accuracies for the Poiseuille flow and the Taylor vortex flow, but He’s
model is better in diffusion problem. Comprehensively considering the above observation
from the results obtained by the five external force models, He’s model is chosen in this

rescarch for all the simulations thereafter.

3.2 LBM Simulation of Magnetohydrodynamics Flows

By using He’s model to evaluate the external force term, a hybrid lattice-
Boltzmann finite-difference method is proposed in this research to simulate
incompressible, resistive magnetohydrodynamic (MHD) flows. In recent years, many
attempts have been made to develop LBM algorithms for MHD problems. Chen et al.
[155] and Martinez er «al. [156] employed the bidirectional streaming for 2-D MHD
problems where the distribution is propagated into two different directions associated

with the velocity and magnetic field. The former used 37 discrete velocities while the
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latter reduced 1t to 13. Schaffenberger and Hanslmeier [157] later reduced the number of
velocities even further to nine by employing the standard streaming rule on a 2-D square
lattice. Dellar [158] developed a new method, where two distribution functions are
utilized to represent the hydrodynamic momentum and the magnetic induction. The
hydrodynamic part is simulated using the conventional low Mach number LBM, and the
magnetic field is represented by a separate vector-valued magnetic distribution function,
which obeys the vector Boltzmann-BGK equation. This method has been later extended
to 3-D by Breviannis and Valougcorgis [144].

In all the afore-mentioned methods, both the magnetic induction problem and the
flow problem are dealt with by a lattice kinetic approach. However, while employing
LBM for the Boltzmann equation is natural, the use of a kinetic approach for solving the
magnetic induction equation is not quite intuitive because, after all, the Boltzmann
equation and the magnetic induction equation constitute a set of governing equations for
MHD. In other words, a lattice kinetic approach does not need to be used for the
magnetic induction problem even though it is a more consistent approach and has many
advantages in many cases. In fact, other numerical methods, such as the finite difference
mcthod, can be easily employed to solve the magnetic induction equation with equal or
better accuracy because those methods are well established.

In this proposed hybrid model, the lattice Boltzmann equation with the Lorentz
force term is solved to update the flow field while the magnetic induction equation is
solved using the finite difference method to calculate the magnetic field. This approach is
mcthodologically intuitive because the governing equations for MHD are solved in their

respective original forms. In addition, the extension to 3D is straightforward. To validate
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this newly developed model, the Hartmann flow, the Orszag-Tang vortex system (2D and
3D) and the magnetic reconnection driven by doubly periodic coalescence instability are
simulated. The obtained results agree well with analytical solutions and simulation results
available in the literature.

In the present model, the governing equation is the BGK-type Boltzmann
equation as shown in Eq. (8), where the equilibrium distribution function [/ is

described by the Maxwell-Boltzmann distribution as follows:

2
1= —'D——exp _v-w)” (67)

- 2.D;2 2
(2720%)P? 20*
where p and D are mass density and dimension of space, respectively. For MHD flows,

the acceleration a can be written as:

a=—l—(VxB)xB (08)
PH

Here, B is magnetic induction and g is magnetic permeability. The evolution of
magnetic field is obtained by solving the magnetic induction equation, which is derived

from Maxwell’s equations with the assumption of E/dr = 0[129]:

,|Q)

=nV?B+(B-V)u-(u-V)B (69)
V4

)

where 7 1s magnetic diffusivity and is expressed as 7 = (,ua)_l , Where o is the
electrical conductivity.

For 2D problems, the Boltzmann equation can be discretized by D2Q9 scheme as
described in Chapter 2. The external force term is evaluated by He’s model. Then the

resulted lattice Boltzmann cquation follows the form of Eq. (52) where the discretized
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equilibrium distribution function takes the form Eq. (32). The mass density and

momentum then can be calculated through:

=3, (70
«

pu:zeaﬁl (7D
a

The magnetic induction equation (Eq. (09)) is solved by the conventional finite
difference method. In two dimensions, for example, the x-component of Eq. (69) is

written as:

2 2
B, 1 |0°B, ¢°B, cu cu CB. B,
L= — L+ —L |+ B —+ B, —F-u ——u, — (72)
ot po| oyl o2 Toox T Qy ox )Y

Then the following discretized equation is obtained if the central difference scheme is

employed.

Ct HO (A\-)Z

n n n

B 2B (B |
(A)')Z (73)
+(B ),, (“.\' ):IH, —(“.\' );I—l.j + ,B )" (“"‘ ):""lj _(u" );l.j—]
T 2Ax (8 i.j 24y

n (Bx ):‘1+|‘j _(Bx ):'l_Lj n (B.\' ):".j+l "(Bx );’.j__]
()i e _(“.1’)< : .

. X nJ 2Al

Note that all the terms on the right hand side are evaluated at time step » using the fluid

velocity calculated by the lattice Boltzmann solver. Eq. (73) can be re-written as follows:

B(B;—‘)’”= R((B,\. )”) (74)

ct
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In this study, the time derivative on the left hand side is discretized by the second-order

Runge-Kutta method:

(B, )n+l,"2 = (B, )n +£ R((B_\. )n)
2 (75)
(B_\')’H] = (B, X AIR((BX )n+l/2)

For validation purposcs, the 2D Hartmann flow is simulated because its analytical
solution can be easily obtained. Hartman flow is a channel flow induced by a uniform

magnetic ficld ( B,y) applied perpendicular to the flow direction. For 2D Hartmann flows,
velocity has only one component in the channel direction u=(«,,0) and this flow
induces additional magnetic ficld in the flow direction. Therefore, magnetic field can be
written as B=(B8,,B;) . The magnetic induction equation and the hydrodynamic

momentum equation can be simplified as follows:

2

1°B. lu .,
1 d B"*'BO‘“'\ _0 (76)
HO dy? dy

2
d u, +_li)_ dB, g

PV (77)
(1_\'2 pody
p . . .
where g:(/—l) 1s the constant pressure gradient used to drive the flow along the x-
dx
direction. By using the following boundary conditions
u, =0 at y==L
X J (78)
B,=0 at y==*L
the analytical solutions to Eqs. (70) and (77) are obtained as:
1\" '
(1) =g—lcoth(M) M_l (79)
: 0-33 cosh(M)
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B.(y)=- gul Sm'h(/y/_\.v/ L) r w“
By | sinh(M) L

where A = ByL\/o/pv is the Hartmann number. If there is no external magnetic field,
the Hartmann number becomes zero and the flow reduces to the Poiseuille flow, which
has solutions of u (v) = g(L2 ~_v2)/2pv and B, =0.

For the LBM simulation of the Hartmann flow, the initial distribution function is
set to the equilibrium distribution function with constant density, p=1.0; u, and B, are
sct to zero. A uniform magnetic field By, is applied in the y-direction. The bounce-back

condition is used for wall boundaries while the periodic boundary condition is used at the
inlet and the outlet. The simulation is terminated until a steady state is reached. To drive

the flow, the driving pressure gx is added to the external force as follows:

pa=—]—(VxB)xB+gé.t (81)
H

In Eq. (81), €, is the unit vector in the x-direction.

Figure 8 and Figure 9 present simulation results of w, and B, respectively,
where solid lines denote analytical solutions given by Eqgs. (79) and (80). As clearly seen,
the simulation results agree well with the analytical solutions for all Hartmann numbers
considered. In this simulation, a 200x20 grid is used and the parameters of 7 =0.635,
o=10 and g =2.5x 107 are adopted. The Hartmann numbers of 0. 1, 2, 5, 10 and 20
are considered. Note that the Hartmann number can be changed by varying the magnitude

of the applied magnetic field By. In Figure 8, it is shown that as the Hartmann number

increases the velocity profile becomes flatter, which can be explained by Eq. (80).
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Figure 8 Profiles of x-component velocity with different Hartmann numbers: M=0
(squares), M=1 (circles), M=2 (upper triangles), M=S (lower triangles), M=10
(diamonds), M=20 (stars). The solid lines show the analytical solutions. The
simulation results agree very well with the analytical solutions.
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Figure 9 Profiles of x-component magnetic field for different Hartmann numbers:
M=0 (squares), M=1 (circles), M=2 (upper triangles), M=5 (lower triangles), M=10
(diamonds), M=20 (stars). The solid lines show the analytical solutions. The
simulation results agree very well with the analytical solutions.
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Clearly, the applied magnetic field ( By) tends to reduce the magnitude of x-component

velocity. If the Hartmann number is finite, the velocity profile cannot be entirely flat even
for very large Hartmann numbers and there must be a region with a large velocity
gradient because velocity is forced to be zero due to the no slip boundary conditions.
Figure 9 presents the magnetic field induced by the flow for a variety of Hartmann
numbers, the simulation results agree with llAIC analytical solutions very well.

As the second test problem, the Orszag-Tang vortex system (which is an unsteady,
nonlincar MHD flow problem) was chosen. Since Orszag and Tang [159] first studied
this problem, it has become a popular benchmark problem because many aspects of MHD
turbulent flows appear in this problem, such as the dynamic alignment, selective decay
and magnetic reconnection [160]. In this study, a 2D Orszag-Tang vortex problem is
simulated with the following simple nonrandom deterministic initial conditions:

ug =—up(sin y,-sin x)
By =-By(sin y,—sin(2x))

(82)
where 1y = 2.0 and B = 2.0 are the initial velocity and magnetic induction, respectively.
The simulation is performed on a squarc domain of 0< x,y<27. A 512x512 uniform
grid 1s used and the periodic boundary conditions are applied on all boundaries. Kinetic

fluid viscosity and magnetic diffusivity are assumed to be the same (v =7 =0.02), which
leads to the same Reynolds number (Re) and magnetic Reynolds number (Rem) at the
initial stage. With the initial conditions shown in Eq. (82), the evolution of the vorticity
of fluid (@ = Vxu ) and the current density (j=Vx B/ ) are demonstrated in Figure 10
and Figure 11, respectively. As shown in Figure 10 and Figure 11, initially both velocity

field and magnetic ficld have symmetric structures. As time clapses, the initial flow



i S

=0 t=0.369

t=0.738 t=1.00

Flgure 10 Evolution of vorticity for the 2-D Orszag-Tang vortex. The flow pattern
li d due to the li interactions between the velocity field
and the magnetlc field. A flat quadrupole-like configuration emerges with time lapse.
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t=0 t=0.369

t=0.738 t=1.00
Figure 11 Evolution of current density for the 2-D Orszag-Tang vortex. The existing

current sheet at the center of the figure is enhanced and eventually, a thin elliptic
structure establishes due to the magnetic reconnection occurring there.
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pattern becomes complicated due to the nonlinear interactions between the velocity field
and the magnetic field. In Figure 11, the existing current sheet at the center of the figure
is enhanced and eventually, a thin elliptic structure establishes due to the magnetic
reconnection occurring there. At the same time, a region of sheared flow coexists with the
current sheet, which is shown as the flat quadrupole-like configuration in Figure 10. The
contours of the vorticity and the current density agree well qualitatively with the
simulation results available in the literature [160].

In order to validate this model quantitatively, this problem was simulated by using
the same parameters used in the paper by Dellar [158] (195 =2.0, v=1=0.02, and a
512x512 grid). The maximum vorticity value at # = 0.5 predicted by this model is 6.764
while Dellar’s result gives a values of 6.758. At ¢ = 1.0, the values are 14.457 and 14.20
respectively. The maximum current densities are also compared and the values are given

in Table 4. In order to check if these two models satisfy the divergence-free property of
the magnetic field, the values of [V-B| are calculated. The presented model gives
0.00463 at r = 0.5 and 0.00922 at ¢ = 1.0 while Dellar’s results indicate 0.0062 and 0.0415

at the corresponding times. Therefore, the presented model is validated not only

qualitatively, but also quantitatively.
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Time (sec) | Max vorticity | Max current |V : Bl
0.50 6.764 18.129 0.00463
Present results
1.0 14.457 45.963 0.00922
0.50 6.758 18.24 0.0062
Dellar’s results
1.0 14.20 46.59 0.0415

Table 4 Quantitative comparison of simulation results with Dellar’s work

To show that this model can be casily extended to 3D, the D3QI19 lattice model
[161] has been employed to solve the 3D Orszag-Tang vortex problem with the following
initial conditions [162]:

uy =(-2siny,2sinx,0) 83)
By =0.8(-2sin(2y) +sin z,2sin x +sin z,sin x +sin y)

A cubic domain of 27 x 27 x 27 is used and simulations are conducted on a 64 x 64 x 64
grid. Periodic boundary conditions are used for all boundary surfaces and edges. Figure

12 (a-b) shows the initial contours of the magnitudes of vorticity ( |w|) and current density
(i) In Figure 12 (c-d), le and |J| at t = 0.598 are shown and the slices of|w| and |j| at

z = 0 are presented. The patterns of the current sheet and the corresponding vorticity
rescmble Figure 11 and Figure 10 closely because initially, the variations of current
density and vorticity in z-directions are relatively smaller in values than those in the x-
and y-direction.

Magnetic reconnection is the third example simulated by the present model. It is
the process where magnetic field lines from different magnetic domains merge into one

another, changing the overall topology of the magnetic field. Meanwhile, the stored
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magnetic energy is released in heat and kinetic energy forms. The magnetic reconnection
can be driven by different forms of coalescence instability, for example, by the merging
of a chain of magnetic islands [163] or by doubly periodic coalescence instability [164].
In this study, a magnetic reconnection problem driven by the doubly periodic coalescence
instability is simulated using the present model. As the initial distribution of magnetic

flux, a checkerboard pattern [165] represented by Eq. (84) is employed.
wo(x,y)=Bysin(z(x+y))sin(7(x-y)) (84)

The symmetric initial perturbation of the kinetic stream function is:
3 = 2 2
©o(x.3) =ug exp(—lO(.\ +y )) (85)

where By =0.5/7, 1 =0.05 and the initial magnetic and velocity fields are obtained as

follows:
. 3] ow
BO=GZXV‘//O=(— '//_0,__‘/0)
oy Ox
2 3 (80)
- Py Py
uy=¢6.xVg, =(-—=,—
0=€:xVey=( o o)
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(c) |w| att=0.598 with a 2D contour at z=0 (d) l]l att=0.598 with a 2-D contour at z=0

Figure 12 Iso-surface contours of magnitudes of vorticity and current density at t=0
and t=0.598 sec for the 3-D Orszag-Tang vortex. The patterns of the current sheet
and the correspond

ing vorticity r Figure 11 and Figure 10 closely because
initially, the variations of current density and vorticity in z-directions are relatively
smaller in values than those in the x-and y-direction.
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The simulation is conducted on a square domain of —1<x,y <1 and a 256x256

grid 1s used. Periodic boundary conditions are used on all boundaries. A fixed viscosity of

v=4x10" s used; five valucs of magnetic diffusivity (I]=0.5><10_3 0.8x10*3,

1x107%, 2x1073 and 4x10—3) are considered. Figure 13 presents the evolution of

magnetic flux at different times with the magnetic diffusivity of 1x1072. Note that the
position of the magnetic current sheets does not change with time because the initial
perturbation of the kinetic strecam function has a mirror symmetry with respect to x and y
directions. It can be seen from Figure 13 that the magnetic islands with currents of the
same sign move towards each other. The two corners coalesce into one and the original
two square cells become two adjacent pentagons. A current sheet forms between the two
cells and the intensity of the current sheet increases. Eventually, the neighboring square
cells merge together, simplifying the topology structure of the magnetic field to four
square-like islands. Figure 14, presenting the dependence of maximum current density on
magnetic diffusivity, is a quantitative evidence of the present model. As seen from the

12

plot, the temporal maximum of current density can be approximated as j,.. « 7 as

illustrated by the dashed line in Figure 14, which can be compared with Fig. 3 in [165].
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Figure 13 Evolution of magnetic flux function for doubly periodic coalescence
instability. The position of the magnetic current sheets does not change with time.
The magnetic islands move towards each other. The two corners coalesce into one
and the original two square cells become two adjacent pentagons. A current sheet

forms between the two cells and the intensity of the current sheet increases.
Eventually, the neighboring square cells merge together, simplifying the topology
structure of the magnetic field to four square-like islands.
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Figure 14 Maximum value of current density vs. magnetic diffusivity. The temporal

maximum of current density can be approximated as ;.. < 17‘1"/2.

In conclusion, three classic problems in MHD flows were solved in this study and
the obtained results agreed well with the data available in the literature. This newly
developed hybrid LBM model has the following advantages: first, its implementation is
relatively simple compared to other LBMs and Navier-Stokes equation based methods;
sccond, the extension to 3-D is straightforward. We believe that this approach can be a
good alternative to other MHD-LBMs that are fully based on the lattice kinetic

algorithms.



Chapter 4

Lattice Boltzmann Simulation of Isothermal Weakly Ionized Plasmas

As the governing equation for all transport phenomena, the Boltzmann transport
equation describes the evolution of the distribution function of each species of particles in
the plasma. All macroscopic variables of the plasma, such as number density and
macroscopic velocity, can be retrieved through proper moments of the distribution
function. Many achievements of LBM development (especially multi-component models
[1606-170]) can be inherited in the plasma simulation, since plasmas are mixtures of
diffcrent types of particles. Among those models, the finite difference lattice Boltzmann
(FDLB) models [168, 169] can be used for asymmetric system, which is the system in
which the compositive particles have different properties. However, the direct use of the
FDLB models for plasma simulation is not sufficient due to some exclusive
characteristics of plasmas. For example, if the physical plasma parameters are used, a
very large dimensionless relaxation time will result. This relaxation time will
significantly reduce the effects of the collision term on the evolution of the distribution
function and thus lead to an ill-favored transport behavior of the electrons. Therefore, to
overcome this problem, the LBM simulation parameters should be selected in such a way
that the dimensionless relaxation time is in a valid value range. In this chapter, a new
LBM model is proposed to simulate weakly ionized isothermal helium plasmas. The
simulation parameters used in LBM are sclected according to a rescaling scheme

developed in this research to match the physical properties of the plasma. For the purpose
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of validation, the electron diffusion problem and the electrostatic wave phenomena are
simulated by this new model and the results show good agreement with the analytical

solutions.

4.1 Mathematical Model
The proposed LBM modcl in this chapter is based upon the following
assumptions:
1) Inelastic collisions, such as ionization and recombination, are not considered.
2) The plasma is isothermal, but diffcrent species can have different temperatures.
3) The plasma consists of electrons, neutrals, and singly ionized ions (three species).
Then the Boltzmann transport equation for the three species of particles in a

weakly ionized helium plasma can be written:

A
E{i + V-V +ay 'Vv\- s =((5{; ) (87)
¢l ‘ ot coll

The subscript s denotes the type of particles and can take e, i, and n for electrons, ions,

and neutrals, respectively. In this equation, v, is the microscopic velocity,
Sy = fy(x,v,t) is the number density distribution function, and a, is the acceleration due

to the Lorentz force, which is expressed as

E
a, =h> (88)

n,

if electrostatic behaviors of plasmas are considered. Here, E is electric field, ¢, and mi,

are charge and mass of species s, respectively.
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By only considering the binary collisions in the plasma and applying the similar
splitting technique adopted for binary gas mixture [1606], the collision term for species s

can be written as:

(Qf_s) =Jse+Jsi+an (89)
Ol Jeoll

where J°¢, J* and J*" are the terms that represent the collisions with electrons, ions,
and neutrals, respectively. It is well known that if the plasma is weakly ionized, the
elastic collision with neutral particles is the dominant collision mechanism for all species.
Therefore, J*¢ and J* are negligible in the weakly-ionized plasmas. For the collisions
with neutral particles, the Bhatnagar-Gross-Krook (BGK) model is used, which assumes
that the particles relax to their equilibrium states during the characteristic time period,

which is called the relaxation time A . Then, the Boltzmann equations for electrons, ions,

and neutrals can be written as

A _req
Ye sy, f, +a,v, f,=-Le=tol (90)
Ct ¢ lcn
o - _ req
fﬁli. + \7E ‘Zf; + a; “;7‘r._f; == :Zl__:;zzil__ (S)l )
at ! Ain
5 _req
(/f,, v, 'an - fn Jnn (92)

ct A

nn

where A i A

on > Ain + Agy arc the relaxation times for electron-neutral, ion-neutral, and

neutral-neutral collisions, respectively; fofd , f+7, f4 are the equilibrium distribution

functions of electrons, ions, ncutrals, respectively, due to the collisions with neutrals and

can be written as
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2
ny 5 exp _ vy _“;-n)
276y 207

R}

f.s'(i‘:/ (ug,) = (93)

Note that the collisions with the species other than ncutral particles can be easily added in

the model. In Eq. (93), 8, = JkgT, /m, is the sound specd of species s where 7, is the

temperature of species s; u,, is the barycentric velocity of the binary collision with the

Sh
ncutral particle:

_maag+myu,
u.s'n -

94)
mg +m,

where u, is macroscopic velocity of species s (u,, : macroscopic velocity of neutrals).
Note that u,,, =u, but u,, #u, and u;, #u;. That is due to the fact that the frequency
of self-collisions between charged particles is very low in weakly ionized plasmas and
the charged particles cannot relax to their macroscopic velocity during the relaxation time

period (4, or 4, ) when they collide with neutral particles.
Similar with the concept of density dependent relaxation time [171], 4,,, in Egs.

(90) — (92) are written as [129]:

Ao L (95)

Sn =
Osnlly <‘ s >

Here, o,, 1s the cross section of the elastic collision between species s and neutrals and

calculated as o

o = 7y +r,,)2 , where r, and r, are the radii of species s and n

§_ kBT\'

Tomy

1/2
respectively; <\'_\> is the average speed of species s, and <Tj> =[ J [129]. Note
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that the relaxation time presented in Eq. (95) is independent of temperature because only
isothermal plasmas are considered in this chapter.
Now the Boltzmann equations shown in Egs. (90) - (92) can be discretized by a

traditional D2Q9 scheme and the external force term follows He’s model:

Ara,-(ed —u,)
(580,04 800 = 0= 0 5 () + RS Ue) 0. (90)

en ¢

. Ara: -(e% —u.)
T e AL+ A = [ (x01) = (% (x01) = ,;,’/“(x,z))+%“')/,“/~“ (97)

m i

FE(x+ X AL+ AL = [E (X, 1) == ([E(%,1) = [9°F (x,1)) (98)

nn

where Ar is time step; 7

en» Tin» Ty are dimensionless relaxation times; superscript o

th

denotes the a component in the phase space; e is the a” component of discretized

microscopic velocity of species s as defined by Eq. (28). The discretized equilibrium
distribution functions f;:’ as well as the weights @, are in similar forms defined in

Chapter 2. Note that the self-collision distribution functions of the charged particles are
used in evaluation of the external force term by using He's model. This selection will be
justified later.

In multi-component LBM, if the same grid is used for all species, the time steps

for different species are all different because time step is determined by Ar = Ax/c, ,
where Ax is the spacing and ¢ is the lattice speed of particle species s. Using several

different time steps are very undesirable for a number of reasons, so in this model we use

a single time step based on the lattice speed of electrons. Then, during a time step Ar,
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electrons travel a distance of e Ar to the neighboring node while ions and neutrals travel

a distance of e Ar and e Ar, respectively. Since the lattice speeds of ions and neutrals

are significantly smaller than that of electrons, the travel distance of those heavy particles
will be very small compared to the electron travel distance. As a result, if the same grid is
used for all species, ions and neutrals cannot reach the same node point as the electrons
do and an interpolation scheme [124, 172-175] needs to be used for heavier particles. In
this study, similar to the interpolation scheme used in [173, 174], a second-order
interpolation method is introduced to find the on-node values of the discretized

distribution functions for ions and neutrals. In Figure 15, ¢ and o denote two

neighboring nodes of p along the a™ direction (pointing from o to p ). The ions

(neutrals) that are originally located at o, p, ¢ arrive at o', p’, ¢’ after a streaming step.

The distribution function at p can be obtained by using f,%(0'), fZ(p') and f7(¢") as

follows:

a
€,

2
L@ =215 () + [0 |
2 al?

fg) - [ (0)
2

S = 15" - (99)

a
[

(3

€

where s canbe ¢, i or n and

[50) = £ (0)
2= 1%p) (100)
1254 = f2(q)
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Figure 15 Schematic of second order interpolation method for ion (neutral)
distribution function. The value of distribution function of the heavy particles at p
can be found by using the post-collision values at o’, p’ and ¢’.

where f}a is the post-collision distribution function after the collision step according to

the lattice Boltzmann cquations shown in Egs. (96) - (98). If we define
p= eff/ eS| =T,m,/T,m, , then:

SEpy == 1PN =058 - BN+ 0551+ HT (@) (101)

Note that if s=¢, =1 and f%(p)= f¥(0') = [ (0) which is just the result of the
ordinary streaming step.

Once distribution functions are updated, the number density and velocity of each

species and charge density can be obtained as follows:

ng(x)=Y fE(x) (102)
ny(Xug(x) =) fF(x)ed (x) (103)
£ (x) = e(n;(x) = n,(x)) (104)

The electric field E is updated by solving the following equation:

vig=_£u (105)
€0
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where ¢, is electric permittivity of vacuum; ¢ is the electric potential, and V¢ =-E . Eq.

(105) is solved by a Poisson solver.

4.2 Rescaling Scheme
The governing Boltzmann equation of the present model is discretized by the
traditional D2Q9 scheme. In this standard procedure, there are three parameters that can

be chosen freely: dimensionless relaxation time 7, grid spacing Ax and time step Af.
Then, the sound speed @, in the D2Q9 model, is determined as 6= Ar/\/gAt and the
viscosity is recovered by the Chapman-Enskog expansion of the lattice Boltzmann
equation as follows [134, 137]:

(r-0.5)60Ax

V3

Note that a tilde is used for the viscosity and the sound speed to distinguish themselves

v=(r-0.5)8At = (106)

from the physical kinematic viscosity and the physical sound speed. We will call v and

0 the lattice kinematic viscosity and the lattice sound speed respectively in this
dissertation. For some flow problems, such as driven cavity flow, the fluid flow is
characterized solely by the Reynolds number and the value of viscosity is not important
as long as the same flow pattern is obtained. In such a case, the lattice kinematic viscosity
need not be identical to the physical one, and the three lattice parameters can be selected
freely as just mentioned. In some cases, other dimensionless numbers, such as Peclet
number and Froude number, can be used to scale LB simulations. But for certain flow
problems, actual physical properties need to be used for the simulation because a
particular dimensionless number (such as Reynolds number) does not characterize the

flow and’or the flow depends strongly on some properties of a tfluid. For example, in the
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plasma diffusion problem, the Reynolds number is not important and the diffusion
characteristic 1s governed by the diffusivity. Therefore, the diffusivity (in this case
kinematic viscosity) must be matched explicitly. If the physical properties are used, the
number of parameters that can be chosen freely decreases due to the restrictions imposed
when matching the physical properties and the lattice properties. For example, only two
properties (grid spacing and time step) were selected freely in the fluctuation lattice
Boltzmann model [176], where the authors matched mass density, temperature, and
VISCosity.

In the implementation of the paramecter sclection procedure based on physical
propertics, some problems may arise. Let’s consider the following procedure to choose
the lattice parameters in standard LBM without an external force. First, grid spacing Av

can be determined from the spatial resolution requirement, and then time step is obtained

. : . kgT
from A(:Ar/\/go , where @ 1s the physical sound speed 8= B~ After that,
m
dimensionless relaxation time 7 is calculated by equating # with v :
3
Ry (107)
OAx
where the physical viscosity is
2
8074 (108)
KY/4

according to kinctic theory [126], and A is the physical relaxation time, /’.=1/0'n<v>

[120], where o is the collision cross section, and # is the number density of the fluid
particles. Apparently, only the grid spacing can be selected freely in this parameter

sclection procedure by using physical properties of the fluid. Now, two problems are
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expected depending on the value of 7 that is calculated from Eq. (107) because, as well
known, 7 must be in the range of (0.5,3.0) [147]. Firstly, if the viscosity is very small
(which is the case for most gases under normal conditions), then 7 is very close to 0.5

and the standard LBM schemes diverge. For example, for air at 1 atm and 300 K, v is

1.8245x 1075 m2/s and @ is 293.36 m/s. If the domain size is ImxIm and a 128x128
grid is used, the grid spacing Av is 0.0078125 m. In this case, r is calculated as
0.500014 from Eq. (107), which causes LBM to diverge. Note that this lower limitation
of r is only applicable to the standard LBM. In the past 5-7 years, a newly developed
entropic LBM [177, 178] eliminates the instability caused by small values of 7 and the
algorithm is stable with arbitrary small viscosities. Secondly, if the viscosity is very large

(which is the case for a gas with low density and high tempcrature), LBM becomes very

inaccurate. For instance, for air at 0.00001 atm and 1500 K, v and @ are 20.399/112/3
and 055.97 m/s from kinetic theory, respectively, which lead to 7 =7.394 with the same

grid described above. This value falls outside the valid range of 7 and generates a large
simulation error.

The problem of having too large r becomes aggravated in the simulation of
weakly-ionized plasmas because a low degree of ionization and the corresponding low
electron temperature of weakly-ionized plasmas lcad to a large relaxation time and
subsequently result in a large value of 7. For an example, an electron free diffusion

problem is simulated by using the LBM model described in the previous scction. In this

simulation, a helium plasma with 1% degree of ionization in a 3.71x3.71 mm? domain is

considered, and a 250x 250 grid is used. The number densities of three species are set as



n,=n; = 10'°(m™3) and n, = 10'8(»1_3) . Then the temperature of electrons is calculated

as 0.8008 eV according to the Saha equation [129]:

ﬁaa.oouo”rﬁ’zlexp(-%) (109)

n, n,

where U, is the first ionization energy of helium (U, =24.59 eV) and T, is electron
temperature in eV. By using the above physical parameters of the plasma, the
dimensionless relaxation time 7 is calculated as about 1.034x10° according to Eq. (107).

The initial distribution of the electron number density is in the following Gaussian

distribution:

- 2 P—y 2
(x=x) +(r-x) (110)

2
r

n,(x,t =0)=n,y| 1+0.0lexp| -

where r = 0.290 mm and (x_, y,.) represents the center point of the computational domain.

This free diffusion problem can be described by the Fick’s law:

-
on,

2
-E:Dt,,,v n, (]]])

where D,, is the diffusivity of electrons due to the elastic collisions between electron

and neutral and it is calculated as [154]:

8024,
Dy = —5— (112)
Ir
It is easy to find the analytical solution of Eq. (111):
2 2
0.01n, X—x, =
n(,(x,y,l)=n¢,0+————"1-‘—0—exp i “2) Ty (113)
(I+t/1p) re(l+t/ty)

where 1) = ;'2/4D(,,, .
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Figure 16 Distribution of electron number density at t = 3.5 ns. Non-physical peaks
appear if the physical variables of electrons are used.
Figure 16 shows the distribution of electron number density at t = 3.5 ns obtained
form Eq. (113) and from the simulation. Clearly, by using the physical variables, the
result is very inaccurate and non-physical peaks appear in the solution. The appearance of
these non-physical peaks can be explained as follows. In the case of electrons, the large
non-dimensional relaxation time leads to a near-zero collision term in the lattice
Boltzmann equation, and therefore, the effect of collision step is almost negligible. In
other words, virtually only the streaming step is left in the implementation of LBM.
Figure 17 shows the electron number densities at two time moments with different
ionization degrees. It can be seen that the sub-peaks move with the constant lattice speeds
and the magnitudes do not change. We can also see that the sub-peaks of higher

ionization degree move faster than those of lower ionization degree because the sound
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Figure 17 Electron number density distribution at (a) t =1.116 ns and (b) t = 3.347
ns with different ionization degrees. Non-physical sub-peaks caused by using the
physical variables travel with the constant lattice speed. A higher ionization degree
leads to a higher lattice speed. The ratio of the magnitude of the sub-peaks to that of
the primary peak corresponds to the value of the ratio of the weight coefficients.
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speed is higher in the former case. The magnitudes of all three sub-peaks are also
checked: the ratio of the magnitude of a sub-peak to that of the primary peak is 1:4,
which is the ratio of weight coefficients in the D2Q9 model employed in this study.
Figure 18 is the contour plot of electron number density at t = 1.116 ns. The dashed lines
in the plot represent the discretized phase space and the particles stream to their
neighboring nodes along the directions denoted by the numbers. The numbers in the
brackets are the weight coefficients used in the discretization of the equilibrium
distribution function. Figure 18 clearly illustrates the evolution of the electron number
density along with the vector directions in the discretized phase space if the LBM

simulation was conducted without the collision step.
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Figure 18 Contour plot of electron number density at t = 1.116 ns. The distribution
of electrons is along with the discretized velocity directions if the effects of collisions
are not included in LBM.
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In conclusion, the usage of physical properties of the fluid will probably deduce
an invalid value of the dimensionless relaxation time and thus lead to large simulation
errors. To overcome this problem, a rescaling scheme is presented in this research that
can be used with physical properties of fluids for a wide range of particle number density
in the simulation of fluid flows and weakly-ionized plasmas. The key idea is to design a
scheme in such a way that the kinematic viscosity of the fluid and the characteristic
velocity due to the external force are matched in the implementation of LBM because,
after all, the Boltzmann transport equation solves convection diffusion problems.

First of all, to preserve the diffusion characteristic of the problem, it is assumed

that the lattice kinematic viscosity v (Eq. (48)) is identical to the real kinematic viscosity

v (Eq. (108)). Then the lattice sound speed & can be calculated as:

2
6= 304 (114)
32Ax(r -0.5)
From Eq. (114) the rescaling parameter y is obtained as:
ﬁgzﬁm(r—o‘s) (115)
6 864

Then the lattice sound speed is expressed as a function of the rescaling parameter as

follows:

6=2 (116)
¥

Note that the rescaling parameter y is a function of Ax, A and @, and therefore is fixed
once the type and condition of fluid (A and #) and grid spacing (Ax).are determined.

Next, the lattice relaxation time A is determined from the dimensionless relaxation time,
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A = rdt , where the time step is Af = At/ﬁé. Using Eq. (115), the lattice relaxation time

J is calculated as follows:

j:L,{ (117)
3n(r-0.5)

Secondly, the convective property of the flow when an external force exists must not be
altered by the LBM scheme. If the flow is affected by an external force (such as an
electromagnetic force), depending on the nature of the force we may need another
rescaling to obtain accurate velocity tields. So, we propose the second rescaling rule: the
characteristic velocity of the flow should not be changed by the rescaling, i.e.,

Ug = Uy (118)
where U, is the characteristic velocity of the flow. From this rule, we can obtain the

rescaled acceleration a, which we call the lattice acceleration in this article.

As mentioned earlier, dimensionless relaxation time 7 and grid spacing Ax are
the two parameters that can be chosen freely in this rescaling scheme. Once Ax is
determined, 7 can be selected considering the Mach number (Ma) and the Reynolds
number (Re) of the problem. The following equation is the relationship between the Re

and Ma obtained trom the definition of Re:

_\3MaN
r-0.5

Re (119)

where N is the number of grid points along the characteristic length Lj; Ma =U0/é,

where Uy is the magnitude of the characteristic velocity. From Eq. (119), we obtain:

J3MaN

+0.5 120
Re (120)
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which must lie in the valid range. Note that according to Hou ez a/. [135], there exists a
critical value of 7 below which simulation results show unphysical patterns or the code
diverges even though 7 is greater than 0.5. Eq. (120) is especially useful when the fluid
flow is characterized by the Reynolds number, such as driven cavity flow. Given Ma and
Re, 7 can be determined from Eq. (120). Also, the Mach number of the problem must be
small enough to meet the low Ma requirement. In the mean time, as will be shown later,
LBM converges faster with a higher 7.
In cases where Re is not important or is hard to be defined, the definition of Ma

can be used to choose 7 :

_B3aaxUy(r-0.5)

Ma ) (121)
86°4
from which the following is obtained:
2
;o307 AMa ¢ (122)
3AxU,

In the practical implementation of this rescaling scheme, the first step is to
determine the grid spacing Ax and the dimensionless relaxation time r (following the

method described above) and then the rescaling parameter y according to Eq. (115) with

physical properties of a fluid. Then the lattice sound speed @ and the lattice acceleration
a are determined from Egs. (116) and (118), respectively. Once these lattice parameters
are obtained, the remaining steps are same as the standard LBM.

To validate the present rescaling scheme, the two-dimensional driven cavity flow
is simulated with and without the rescaling. In this flow problem, no external force

appears in the lattice Boltzmann equation, and therefore, only the first rescaling rule is
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Figure 19 Velocity profiles along the central lines of the computational domain
obtained by using the physical properties of air without the rescaling when the
dimensionless relaxation time is in the valid range. (a) dimensionless x-velocity (b)
dimensionless y-velocity
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employed to obtain the lattice sound speed and the acceleration is not rescaled. The
cavity is Imx1Im in size and a 128x128 grid is used. We terminated the computation

when the maximum relative error of the distribution function between two successive

time steps is less than 1x 107°.

Firstly, air at 300 K and 0.0001 atm is considered. At this state, kinematic
viscosity v is 0.18245 m%/s and the dimensionless relaxation time from Eq. (107) is

7 =0.638, which happens to fall in the valid range of 7. Therefore, this problem can be
simulated with this physical 7 value. Note that if 7 calculated from Eq. (107) is used, y
becomes 1 and no rescaling takes place for the sound speed. In Figure 19, the velocity
profiles along the central lines of the computational domain are compared with the data
from [135] and [179]. Apparently, the simulation results agree with the results in [135]
and [179] very well. As expected, if the dimensionless relaxation time is valid, LBM can

be used with physical propertics of air without the rescaling.

r=06 | r=0638]| r=08 | r=1.0

7 0.7252 1.0 2.1757 | 3.6262
Re 400 400 400 400

Ma 0.1804 | 02490 | 0.5413 | 0.9021

Error in u, (%) 0.27 1.53 3.08 0.58
Error in u. (%) 0.99 1.42 2.50 7.28

Table S Simulation parameters and simulation errors for different values of 7 in
the simulation of two-dimensional driven cavity flows
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Figure 20 Number of iterations until convergence vs. 7 (Re =200). A larger 7 leads
to a quicker convergence.

Now, the same problem (Re = 400) is simulated by using the presented rescaling scheme.
In this example, we sclect four different values of r using Eq. (122) and the

corresponding values of y are presented in Table 5. The errors in u, and u, listed in

Table § are the maximum relative errors with respect to the results in [179]. Note that as
mentioned earlier no rescaling takes place when 7 =0.638. As seen from Table 5, this
scheme gives reasonably good results for small values of r but as 7 increases this
method becomes more inaccurate. This increasc in error with increasing r can be
explained by Eq. (119): at fixed Re, a higher value of 7 leads to a higher Ma. Because
the standard LBM is formulated based on the low Ma assumption, a higher Ma tends to

make the algorithm less accurate. On the other hand, as seen in Figure 20, the code
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Figure 21 (a) 7 as a function of Re and Ma (N=128). It is apparent that 7 needs to
be close to 0.5 if a high Ma and/or a high Re are desired. (b) Re vs. 7 at different
grid densities. Increasing grid density is an effective way to increase Re if the other
simulation parameters are kept unchanged.
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converges faster as 7 increases. In Figure 21 (a), the dimensionless relaxation time 7 is

plotted as a function of Re and Ma (when N =128) following Eq. (120); Figure 21 (b)

presents the relationship between 7 and Re at three different grid densities when Ma is

chosen to be 0.2. The points marked by A, B and C are the dimensionless relaxation

times calculated from Eq. (120) when Re=100. At such condition, the dimensionless

relaxation times for N=128, 256 and 512 are found to be 0.943, 1.387 and 2.274,

respectively.

T(K) | platm) ;'(,,,3/5') r Ma Re Result
Casel | 300 1 1.8245x107 | 0.500014 | 1.24x10™ | 200 | Unstable
Case2 | 1500 | 1x10° 20.399 7.394 6.22 200 | Unstable

Table 6 Two examples of the air state that give invalid dimensionless relaxation time

Re Ma T 7 # of iterations
Case 1 200 9.021x10 0.6 7252.43 20380
Case 2 200 9.021x107 0.6 1.45x107 20380

Table 7 Rescaled simulation parameters and # of iterations until convergence
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Re Ma T Y

100 0.1 0.72 15955.35

200 0.0902 0.6 7252.43

500 0.113 0.55 3626.22

1000 0.113 0.525 1813.11

2000 0.225 0.525 1813.11

5000 0.504 0.525 1813.11

Table 8 Simulation parameters for air at 300 K and 1 atm (Case 1)

0.80 . : . '
x Re=10

©

~

()}
T

N

Re =100
<

E
é X Present Simulation
) 0.70F 4+ Data from Hou et al. (1995) _ ]
= - % Data from Ghia etal. (1982)  x "¢ =200
@©
£ 0.65} .
o Re =400
S 0.60 o i
9o =
§ e Re = 1000
8§ 055rF % Re=2000 -
> Re = 5000 ]

0.50 - L : . .

0.50 0.55 0.60 0.65

X location of primary vortex (m)

Figure 22 Locations of the primary vortices at different Reynolds numbers. The
simulation results obtained by the rescaling scheme agree well with other
researchers’ results.
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To show the capabilities of the rescaling scheme, the driven cavity flow is now
simulated for two different conditions of air, under which the dimensionless relaxation
times that satisfy Eq. (107) are outside the valid range. Table 6 shows the properties of air,
and Re is selected to be 200 for both cases. As expected, LBM fails in both cases without
the rescaling. However, both cases are simulated correctly by using the rescaling scheme.
Tablco hists the parameters used in the simulations with the rescaling and the numbers of
iterations until convergence. Note that Ma and 7 are in the reasonable range. Next, we
simulate the driven cavity flow problem at several different Re using the properties used
in Case 1 (in Table 6) with the rescaling. The main simulation parameters are listed in
Table 7. Figure 22 presents the locations of the primary vortices at different Re, and
Figure 23 shows the velocity profiles along the central lines at two different Reynolds
numbers (200, 5000). As seen, the flow patterns are in good agreement with the onecs
shown in [135] and [179]. In Figure 23, we can see that the error at Re = 5000 is
rclatively large, which can be explained by the high Ma (Ma = 0.564) resulting from Re =
5000 and 7 =0.525 as shown in Table 7. According to Eq. (119), there are two ways to
reduce the Ma when Re is large. One way is to decrease 7. But unfortunately, there is a
lower limit of 7 due to the naturc of LBM. The closer the value of 7 is to 0.5, the more
likely the code will be unstable. The other way is to increase the grid density for the
simulation. This is the most straightforward way to solve this problem in a moderate
range of Re but of course will increase the computational expense. Besides these two
methods, there is another way to reduce Ma, i.e., the use of an interpolation scheme after

the collision-streaming steps in LBM [180].
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Figure 23 Velocity profiles along the central lines of the computational domain
(a) dimensionless x-velocity (b) dimensionless y-velocity. The simulation errors are
relatively large if the Reynolds number is high. It is due to the high Mach number

resulted by the high Reynolds number according to Eq. (119).
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4.3 Simulation Results

To illustrate the capability of the present LBM model with the rescaling scheme,
two problems of weakly ionized helium plasma are simulated here. First, we simulate the
electron diffusion problem under an externally applied electric field by neglecting the
internally generated electric field because, in this case, the analytical solution is available.
The details on the problem, such as domain size and grid density, are identical with those
in Section 4.1. If the initial electron distribution is Gaussian and the maximum degree of
ionization is 1%, the temporal and spatial distribution of the electron number density is

calculated analytically as:

2 2
n(x,p.0) = 0.0lmyg exp| - (X% = vgt)” + (V= ve) (123)

(1+1/1) r2(1+1/1y)

where 7 and ¢, have the same definitions and values as in Eqs. (110) and (113). The
electron diffusivity can be calculated by Eq. (112). In Eq. (123), v, is the magnitude of
the electron drift velocity v, due to the external electric field, which is calculated as

follows [154]:

eEO

Vy=- Aen = 2,4, (124)

me
In this problem, the second rule must be applied to rescale the acceleration term. Because
the drift velocity is the characteristic velocity due to the electric field in this case,
ie.,Ujy=vy,, from Eq. (118) and Eq. (124) the following equation can be obtained:
Ao

een

a, A

elen =

(125)

from which the acceleration due to the external force is rescaled as follows:
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L _3x(z-05)

L (126)
where Eq. (117) is used to replace ie,,.
Hao(m™>) | Te(eV) r y Eo(V I m) error
1x10'° | 0.7005 1.5 9.686x107 | 14226.72 | 2.815x10°
1x10" | 0.8008 1.5 9.686x107 | 16270.90 | 3.465x10°
1x10° | 0.9343 1.5 9.686x10™ | 18975.84 | 2.815x10°
1x102 | 1.1186 15 9.686x10° | 2273120 | 2.817x10°®
Ix10%* | 1.3891 1.5 0.9686 | 28288.26 | 2.825x10°
1x10% | 1.820 1.5 96.86 | 58822.30 | 5.360x10°

Table 9 Simulation parameters used for the electron diffusion problem

Table 9 lists neutral number density (7, ), electron temperature (7,) and other
parameters used for the simulation. Here, T, is obtained from the Saha equation [129]
corresponding to the 1% ionization degree and the electric field E; directs from left to
right. The dimensionless relaxation time 7 is set 1.5 for all the calculations. In this
reseach, a wide range of neutral number density (from 1x10'® to 1x10% m'3) is

considered. In Figure 24, electron number density distributions at later times are plotted

together with the analytical solution (Eq. (123)) for two different neutral number density
values (IXlOI(’ and 1x10% m'3). The simulation errors for six different initial number

density values are listed in Table 9 using the following formula [181]:

99



1.0x10"4 ---- Initial Distribution .
: Ne.’ N
A o
8.0x10”4 °  Ne, o
“c 6.0x10"* b
2 w po
4.0x10" - P
2.0x10" P
0.0 —eaiiiagr Iur"u-': i ix s A;lL“.“‘f;"_ === _I_ - _'L_."»' ; IEEEITRTEIR: u)li?)l"J"L 0 lxm
0 1 2 3 4 5 6 7
X {(mm)
_ -16
(a) II”O=]><lOl6m 3 att=2.3l><101 s
1.0x10%*4  ---- Initial Distribution N
| e '
8.0x10°{ °  Ne o
£ 6.0x107 Do
) b
prd ) ! '
4.0x107 Lo
2.0x10°%- . o
00 T T —r_"ﬂ""-l‘-':'i B ,Il l\\ T
0 1 2 3 4 5 6 7
X (mm)

(b) nyp =1x10%m™ art=1.433x10s

Figure 24 Electron number density distributions with different initial number
densities of neutrals. The simulation results obtained by the rescaling scheme are in
good agreement with the analytical solutions.
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2
LB, . .
Z n, (z,J,t)-ntf’(.\'i,yj,t)

A, .
ij ng (i, j,t)

error = mn (127)

where m and n are numbers of grid points in x and y directions, respectively; nfB(i,j,t)
is the electron number density at node point (i, j) obtained by the simulation; and
;zf(.\'i,yj,t) is the electron number density at the corresponding space point by Eq. (123).

As clearly shown from Figure 24 and Table 9, the presented LBM model and the
rescaling scheme give good results for the electron diffusion problem for a wide range of
clectron number density.

Next, the electron diffusion problem is simulated again by taking into account the
internal electric field generated by the charge density. The computational domain as well
as the grid density is the same as before. The initial number densities of the heavy
particles are uniform in the space while the initial distribution of the electron number

density is in the Gaussian form as shown in Eq. (110). The initial neutral number density

of n,5 =1x 108 m™ and 1% ionization degree are considered in this calculation. Figure

25 presents the effect of internal electric field on the diffusion process. In this case, the
external electrical field is not applied and only the internally generated electric field is
considered during the diffusion process. It can be seen that the diffusion process is
enhanced since the internal electric field generates outward forces which make the
electrons escape from the center quickly. The dynamics of electrons under both external
and internal electric fields is also simulated. Figure 26 shows electron number density
and ion number density at t = 1.116 ns. The dashed line in the plot represents the number

density contours of ions while the solid line stands for electrons. Under the effects of the
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Figure 25 Electron number density distribution (Circle: without internal electric
field, Squares: with internal electric field, both at 0.223 ns. Solid line shows the
initial distribution). The internal electric field generated by the charge density

largely enhances the electron diffusion process.
external applied electric field, the electrons will move along the inverse direction of the
clectric field. Note that the ions respond to the electric fields very slowly because they are

much heavier than electrons and their temperature is much lower in this simulation. That

is why the contour of ion number density seems to stay at its original position in the

figure.
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Figure 26 Snapshot of electron number density (solid lines) and ion number density
(dashed lines) at t = 1.116 ns. The electrons and ions move along opposite directions
because they have opposite charges. The ions travel much more slowly than the
electrons since the ions have much heavier mass.

One thing to recall at this point is the fact that the external force in lattice
Boltzmann equation (Egs. (96) and (97)) is evaluated by using self-collision equilibrium
distribution function (SCEDF) rather than cross-collision distribution function (SCEDF).
To justify this we used both CCEDF and SCEDF for the same simulation and the results
are shown in Figure 27 (without considering of the internal electric field). Since it is a

simple convection-diffusion problem, the ratio n,/n,, cannot be smaller than 1.

However, it is seen that when CCDEF is used the number density away from the peak
can take values smaller than the initial value. As shown in Figure 27, the minimum value

is roughly 0.9997, which means that the number density drops by about 3% of the initial
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Figure 27 Electron number density distribution (at t = 6.69 ns) obtained by using
different equilibrium distribution functions for the external force term. Apparent
simulation errors would be resulted by using the cross-collision equilibrium
distribution function in He’s external force model.
perturbation of electron number density. On the other hand, physically realistic results

were obtained with the used of SCEDF.

The grid independency and computational efficiency of the model are also studied
by conducting the same simulation on three different grids (064x64, 128x128 and
250%2506). The error at time ¢ was calculated by Eq. (127) (no internal electric field is
considered). Figure 28 shows that, as expected, second order convergence is observed
from the simulation results. In order to test the computational efficiency of the multi-
component model, CPU times per time step are mecasured on a single-CPU PC for the
present three-component model with the interpolation and a simple LBE model for
clectrons only. The electrostatic equation is not considered in the test. Test results show

that the three-component model takes 4.07 times more CPU time than the electron-only

model.
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Figure 28 Relative errors in electron number density vs. time for three different
grids. The errors are calculated at the center of the domain with comparison to the
analytical solution. Second order accuracy in space discretization can be seen from

the figure.
As a second validation of the model, we consider the electrostatic wave problem
by neglecting all collision terms in Egs. (96) to (98). If the collision term in the
Boltzmann equation is neglected, the Boltzmann equation becomes the Vlasov equation

for collisionless plasmas. The initial spatial distribution of electron number density is

perturbed slightly as follows:

n, (.1 =0)=n(,0[1—0.01cos(?]] (128)

Ay
where /. is the length of the physical domain (3.71 mm). The periodic boundary

condition is employed for both the streaming step for the LBM and the Poisson equation
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for the electric potential. For this problem, we used both with and without the rescaling. It
is possible because all the collision terms are neglected. Figure 29 shows the evolution of
electron number density and x-component velocity at the center point of the domain. It is
clear that the results obtained with the rescaling scheme agree very well with the ones
obtained using original variables. In addition, the wave period measured from the figure

agrees well with the theoretical value of electron oscillation period ( 27/ Wpe [129]). The

maximum relative error between the theoretical and simulation results is 0.22 %.
Therefore, both the standard LBM and the rescaled LBM can be used for the collisionless

Vlasov equation.
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Figure 29 Time evolution of number density and x-component velocity of electrons
at the center of the computational domain. (Solid lines: simulation results obtained
without the rescaling scheme, circles and squares: simulation results obtained with
the rescaling scheme)
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In summary, a lattice Boltzmann method for weakly-ionized isothermal plasmas
has been presented. A rescaling scheme has been proposed by which the LBM with an
external force term can be used with physical properties of fluids, so that effects of
collisions arc taken into account correctly in LBM. This scheme only rescales the sound
speed and the acceleration term due to external forces based on the following two rules:
(1) the physical viscosity is equal to the lattice viscosity, and (2) the characteristic
velocity due to the external force is not affected by the rescaling scheme. The 2D driven
cavity flow 1s simulated to validate the rescaling scheme. Finally, the newly developed
LBM model for weakly tonized plasmas with the rescaling scheme has been applied to
simulate the electron diffusion problem and the electrostatic wave problem. Simulation
results agree well with the data available in literature and the analytical solutions.
Especially, this scheme can be applied to a wide range of number densities in plasma

simulations.
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Chapter 5
Lattice Boltzmann Simulation of Weakly lonized Helium Plasma with lonization

and Recombination

A ncw LBM model is developed in this chapter to simulate laser interaction with
weakly ionized plasmas. Comparing to the model proposed in the previous chapter, the
present mode has the following features. First, ionization of neutral particles in the
plasma and its inverse process, three-body recombination, have been taken into account
in this model, which is achieved by adding an additional term in the Boltzmann equation;
Secondly, the evolution of temperatures of the three species of particles are resolved by
solving a set of energy equations derived directly from the Boltzmann transport equation;
and thirdly, the Lorentz force is cvaluated in this model as the external force term and the
finite-difference time-domain (FDTD) method is adopted to solve the full set of
Maxwell’s equation to obtain the time- and space-dependent electromagnetic field. The
interaction between a continuous laser beam and a weakly 1onized helium plasma is
simulated by using this newly developed model in this chapter. The preliminary results
that show ionization and recombination dynamics of the weakly ionized plasma are

presented following the detailed description of the model.

S.1 Mathematical Model
As the governing equations of the present model, the Boltzmann equations are

listed based upon the following assumptions:
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1) The plasma is weakly ionized. Therefore, the long range Coulomb interactions
are not considered.

2) Only electrons at the outmost shell are 1onized. Consequently, there are only
three species of particles in the plasma: electrons, ions and neutrals.

3) Only clectron impact ionization and three-body recombination are included in
the present model. Other inelastic collisions, such as excitation, de-excitation, and charge
attachment are neglected.

Based upon the above assumptions, the Boltzmann transport equations for

clectron, ions and neutrals in a weakly ionized plasma can be written as:

2 eq . -
([( v, Vf, = e Jen PR L4 v(,2 u,) <q (129)
ot en °
&, SimSin o opeq, B (ViU e
~_l+‘,i.vfi___L_ul_+Rf‘/ _'__'f.‘/ (130)
A 2 !
al “in 0[
afu f /;/(1 cq
o Yy Vfy = Ry Ju (131)

nn

where the external force term a, -V, f,;) has been evaluated by He’s model as

described in Chapter 3.

There are two main differences between the above Boltzmann equations and Egs.
(90) to (92). First, one term is added on the right hand side of the above equations to
represent the rate of change of the particle distribution due to ionization of neutral
particles and recombination of charged particles. In this model, only electron impact
ionization and three-body recombination are considered. Then the physical ionization and

recombination (IR) cocfficient for electrons can be expressed as:
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R,=R.-R! (132)

€
where RL’; and R/ represent the electron impact ionization rate and the recombination
rate, respectively. The electron impact ionization rate can be expressed as:

R. =oin, (7,) (133)
where <TL> i1s the average value of the thermal speed of electrons and
<\_'(,>: J8kgT,/mm, according to kinetic theory [126] and o, is the cross section of
electron impact ionization which is dependent on the electron energy mcvg/?_. The data
of o; for helium as a function of electron energy can be found in many literatures [182-

184]. For the three-body recombination, the formula in [185] is adopted in this simulation:

. 0.822x107%?

R 43 NN (134)
o

(&
where the electron temperature 7, is in the unit of eV. Once R, is calculated by Eqgs.

(133) and (134), the IR coefficients of ions and neutrals can be found by R; = fﬁRe and
h;

n, .
— ¢ N .
R, = ; R, respectively.
n

The second difference is the definition of the cross-collision equilibrium

distribution function. f,/ is defined in this model as:

2
eq _ He exp| - (V() —Uy,)
en 2 7

270, 20,

€N en

(135)
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Comparing to Eq. (93), a new defined sound spced 6, replaces the original electron

en
sound speed:

kBT(‘!II (]36)

m,

Qen =

where 7,

wn 1s the electron temperature after elastic collisions with neutrals in the time

period of A,, . From the kinetic theory [126] and considering the ionization and

recombination process, T, can be found as:

2
T, =T,+ zmun(Tn -T.) + ny,Mep (U, —W,) _ 2/it’"R¢'U’.e
‘)
m,+m, 3kg(m, +m,) 3k

ol

(137)

m,n,

where m,,, = is the reduced mass of electron and neutral, U; is the first

m,+m,

ionization potential of helium (U; =24.59¢V ) and e is the unit electronic charge

(le=1.6x10""¢). The T,, is adopted here because, to correctly describe the ionization

and recombination dynamics, it is necessary to describe the post-collision states of the
particles in the plasma, including both the self-collisions and cross-collisions. It can be

seen later that the adoption of 7, in the equilibrium distribution function just describes

CH
the heat transfer between electrons and neutrals due to the collisions, which is significant
for the energy evolutions between different species of particles in a system where the

composing particles have far different properties. Similarly, the cross-collision

equilibrium distribution function f[;;q has the following definition:

2
fit = i exp| - M) (138)
216 26;,

m
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where 0, = [=821 and T,

» ;n 1s calculated as:

2
+ 2’"1’;1(7;1 ~ 7;) + mnmin(un “ul')

(139)
m; +m, 3kg(m;+m,)

Tl'n =T

) . nm;m , )
where the reduced mass of ions and neutrals is m;, = ——"— . Note that there is no
m; +m
1 n

ionization term in the above equation. That is natural because there is no ionization
happening during the collisions between ions and neutrals in the plasma.

The Boltzmann equations shown in Egs. (129) to (131) can be discretized by the
traditional D2Q9 scheme. However, in such a case, only particle number densitics and
momentums can be retrieved correctly from the lattice Boltzmann equation. Thus, a
supplemental set of energy equations are included in this model to describe the heating
patterns of the particles. Starting from the Boltzmann equation, the corresponding energy
equation can be obtained by taking proper moments of the distribution functions with
respect to the microscopic velocity. Taking electrons as the example, the distribution

function f, has the following property:

ne(2(ve)) = [2(vo) fodv, (140)

where z(v,) is a function only dependent on v, . By setting different expressions of
x(v,),we can have the following macroscopic quantities listed in Table 10. In Table 10,

¢, = v, —u, Is the random velocity of electron which is closely related to the temperature.

L 1 . . . .
Multiplying z(v,) =;mc,v(2, on every term in Eq. (129) and integrating each term with

respect to v, from the negative infinity to positive infinity, we can get:



i

of,
J‘Z(V(,)-éjdve + Il’("e)"e Vf,dv,=-
\4 A\ 4

1
A

cn

[xvexse-rs8
\4

2, a) d
+R, jz(ve)fe‘"dve +-0—‘2- Il(v(,)(ve —u,) /S av,
v ;

v

)dv,

2

(141)

Macroscopic .
E}uwntits x(vo) Expression
¢l
. n,=|f.dv,
Number Density 1 ¢ .[f‘ ¢
v
Macroscopic v ne(vy)= Iveﬂ,cl\", =n,u,
> 1 t‘)
Velocity v
Kinetic Pressure c.c myn, <cece> =m, J’cecefedve =P,
Dyad ere v
Momentum V.oV, myn, (veve> =m, I"e"eﬁ‘["e =P, +m,n,u,u,
Dyad € ¢ v
1 1 2\ 1 D) 3
Temperature =My, -C, Ne Emece = E"’e j'cefedve = E”ekBTe
2 v
I b2\ _1 2 _3 ! 2
Total Energy | —myv, v, | e\ 5MeVe | =5 M, J"’efe‘["e = kT, + = mynu,
8 5 2 2°¢; 2 2

Table 10 Macroscopic Quantities from Moments of Distribution Function




Using the expressions listed in Table 10 and following the similar derivation

procedure in [129], we can finally find the energy equation of electrons as:

-~

Ce,

+V-(gu,)=-V-(P,-u,)-V.q,+m,n.a,-u,
c (142)
_3nkp(T, =T,,)  mgn,

2 22

¢

2 2
(ue —U,y, )+ che

en

3 1 ) .
where ¢, ==n kpT, +——m,n,u% is the total energy of electrons; and q, is the electron
¢ 5 ' Ble 5 elleTe 29 ¢

<

1 — .
heat flux and q,=-x,VT, where h’e=5n(,/\'8 (V.)Aen is the electron thermal

B e(E+u,xB)

m,

conductivity. Recalling that a, = where E and B are the electric field

and magnetic ficld respectively, the third term on the right hand side of Eq. (142) can be
rewritten as:
myn,a, u, =-en,(E+u,xB)-u, (143)
Noting that (u, xB)-u, =0 and defining the electron current density as J, = —en,u,, the
above equation becomes:
myn.a, - u,=J,-E (144)
which can be interpreted as the Joule heating term for electrons. Further, substituting 7,

(Eq. (137)) into Eq. (142) and after some manipulations, the energy equation of electrons
can be expressed as:

%+V-(5¢,u(,) =-V-(P,-u,)+V(x,VT,)+J,-E
: (145)

3kgn.m, (T, -T,) m,n
c'en ¢ n e e
- + u,, (u,, -u,)-RnUe+R,é,

Aen(m, +m,) Aen

Similarly, the encrgy equations of ions and neutrals are:
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ct
(140)
konm (T =T '
_ 3 B”l’”lﬂ( | n) + ’”I"” u[ll .(ul," —u1)+ ng
Ap(m, +m,) Ain
and
ce
CTI” +V-(eu,)=-V-(P,-u,)+V-(x,VT,)
3kgn.my, (T, =T,) myn,
, 3kpn, (T, ,,)+ n'e u,,  (u, —u,) (147)
Aon (M, +my,) Aen

3kgnim; (T =T,) m,n; - +R
ghim,(I; =T, +—+u,, (v, —u,)+R,¢,
A (i +m,,) %
“in i n ‘m

Egs. (145) to (147) constitute a full set of the energy equations of the three species of
particles in a weakly ionized plasma. The temperatures can be solved from the above
equations by using the hydrodynamics quantities calculated from the Boltzmann
equations. However, evaluation of the Joule heating term in the energy equation as well
as the external force term in the Boltzmann equation requires an accurate solution of the
Maxwell’s equations. In this model, the finite-difference time-domain (FDTD) is adopted

to directly solve the full set of Maxwell’s equations.

5.2 Finite-Difference Time-Domain Method

The external force term in the Boltzmann equation is generally the Lorentz force
in plasma simulation. This external force essentially governs the dynamics of the
individual species of charged particles and thereby influences the macroscopic quantities
of the plasma. Inversely, the variation of charge density in the plasma affects the
clectromagnetic ficld which determines the Lorentz force together with the macroscopic
velocities. Mcanwhile, the Joule heating term in the energy equation can also be

mterpreted as the work done by the Lorentz force on the charged particle. Conclusively,
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the most detailed information about the evolution of the electromagnetic field is needed
so that the Lorentz force in LBM solver can be evaluated accurately. As the most exact
governing equations for all electromagnetic phenomena, Maxwell’s equations are solved
directly in this research to obtain the field quantities. Maxwell’s equations consist of the

following four equations:

V-D=p, (148)
V-B=0 (149)
VxE=—a—B—M (150)
Ot
VxH=J+§P— (151)
ot

where p,. is the free charge density, p, =e(n, —n,); J is the electric current density,
J=e(nu;—n,u,); M is the equivalent magnetic current density which is neglected in

this study; E is the electric field; H is the magnetic field; D is the electric flux density;
and B is the magnetic flux density.

To solve the Maxwell’s equations, the finite-difference time-domain (FDTD)
method [180] is adopted in this research. Figure 30 shows the positions of the electric and
magnetic field vectors about a cubic unit cell of the Yee space lattice. This configuration
ensures Eq. (149) to hold. Accordingly, the Maxwell’s equations can be discretized by
using the central-difference scheme upon both space and the time domain. The concrete
expressions of descretized Maxwell’s equations for different cases can be found in
Taflove and Hagness’s book [186]. Then the new value of an electromagnetic field vector
component at any lattice point can be calculated from its previous value and the previous

values of the components of the other field vector at adjacent points.
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Figure 30 Position of the electric and magnetic field vector components about a
cubic unit cell of the Yee space lattice

Since the electromagnetic waves in nature can reflect back into the computational
domain at the computational boundaries, a proper boundary condition must be applied to
terminate the computational domain if a physical problem with open boundaries is of
interest, such as an electromagnetic wave propagation in an infinite medium. In order to
eliminate the fake waves caused by the reflection of the incoming wave at the boundaries,
Berenger introduced a highly effective absorbing boundary condition called the perfectly
matched layer (PML) in 1994 [187]. However, this PML boundary condition is a
hypothetical medium based on a mathematical model. Indeed, a physical model based on
an anisotropic perfectly matched medium can be formulated. This was first discussed by

Sacks er al. [188]. For a single interface, the anisotropic medium is uniaxial and is
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composed of both electric and magnetic permittivity tensors. This kind of boundary
condition is called UPML (uniaxial PML).

To illustrate the capabilities of FDTD for simulation of laser-plasma interaction, a
femtosecond laser pulse interaction with a target silicon substrate is simulated here. The
laser-induced ionization is included in this calculation by using an ionization model based
upon local energy balance analysis of electrons at successive time steps. The current
density is modeled by Ohm’s law, i.e. J = cE where o is the conductivity of silicon at a
given point, in using the FDTD. A two-temperature model developed by Kaganov et al.

[189] is used to calculate the heating pattern of the electrons and lattices in this

simulation.
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Figure 31 Sch ic of p ional d in for simul of a f d laser

pulse interaction with a silicon substrate.

In this simulation, a femtosecond laser with the wavelength of 800 nm and the

pulse width of 80 fs is used. The beam is assumed radially polarized (TEMgy mode) and
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is focused through a numerical lens located at the top of the computational domain. Four

pulse energies (7.5 xJ, 15 pJ, 30 pJ and 60 uJ) are used for the calculation. The

target silicon with the electrical conductivity of 1.4 Q“l/m is assumed. Figure 31

illustrates the computational domain used in this study.
Figure 32 and Figure 33 are the time histories of the radial component of the

electric field ( £, ) and the corresponding energy absorption patterns in the silicon
substrate respectively. The pulse energy is 30 gJ ; and the pulse width is 80 fs. The top

row in each figure shows the results obtained without the ionization model; and the
bottom rows are the results after incorporating the developed ionization model. As shown
clearly, the major difference is that the laser beam is blocked significantly near the
interface when the ionization process is accounted for while the laser beam propagates
through the silicon freely when the ionization is not considered. In fact, the laser pulse is
blocked almost completely except near the rim of the laser pulse. This is because the
ionization process leads to a sudden increase in the electron number density. As a result,
the clectrical conductivity increases accordingly and the silicon substrate can behave
almost like a metal. This can be explained more clearly from the energy balance
viewpoint. As illustrated in the bottom row of Figure 33, almost all the energy carried by
the laser pulse is dissipated in a very thin layer near the interface due to the very high
electron number density. The thickness of this energy absorption layer is called the skin
depth (for metals) and it is believed to be closely related to the ablation thickness. As

clearly seen from these figures, the thickness is very well defined even for a
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(A) Without the ionization model

(B) With the ionization model

(Ht=-11.6fs (2)t=652fs (3)t=140.2fs (4)t=218.8fs

Figure 32 Time history of laser pulse propagation. (In these plots, the radial
component of the electric field (E;) is used.)
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(A) Without the ionization model

(B) With the ionization model

(1)1=652fs (2)t=1036fs (3)t=180.4 s (4)t=257.2fs

Figure 33 Time history of laser energy absorbed by electrons
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semiconductor like silicon and this explains the superior ablation quality of femtosecond
laser pulses for various materials. In the mean time, it is also shown that near the outer
rim of the laser pulse, the EM wave penetrates into the substrate. This “leaking”
phenomenon occurs because, for a Gaussian laser beam, the laser intensity at the outer
edge is not high enough to induce strong ionization.

Other simulations results, such as the evolutions of the electron temperature,
electron number density, electrical conductivity and the absorption coefficient of the
target silicon are also obtained through the simulation and they are discussed in detailed
in [89]. In conclusion, by using the FDTD method, the wave nature of the laser beam can
be retrieved to the greatest content. Thus, the FDTD method is adopted in the present
model to calculate the electromagnetic field which is essential in evaluation of the
external force term in the Boltzmann equation and the Joule heating term in the energy

equation.

5.3 Numerical Implementation

In the practical implementation of the present LBM model to simulate laser
interactions with weakly ionized plasmas, there are several points worthy to be noted
numerically.

1) Selection of the time step. Because the present model is actually a hybrid

model in which three sub-models involve, the time step should be selected as:
At = min(ArLBM,AIFDTD,AIENG) (152)
where Ar;pys is the time step determined merely by lattice Boltzmann method,

Ax
Al gy = N7

“rmax

(where 6,,,, denotes the maximum sound speed of the three different



species of particles in the weakly ionized plasma and 6,,,, is usually equal 6, in the

o . A
most cases); Alpprp is time step merely decided by FDTD method, Atgprp <=
c

(where ¢ 1s the speed of light) and Argp is the time step required by the solution of the

O.SC‘L,A\'2

energy equation, Afpyg < , where C, and k, are the volumetric heat capacity

¢

and thermal conductivity of electrons respectively. Through preliminary quantitative

probe, we can find that Afgp7p is the usually the smallest one among the above three

mentioned time steps. Thus, we choose the time step as:

Ax
AI=AIFDTD ='5‘Z (153)

where the constant 0 > 2 in our simulation without loss of generality.

2) Rescaling scheme. Although the basic idea of the rescaling scheme used in this
model is the same as the one described in Chapter 4, there is a little difference in the
practical implementation. Besides the two free parameters, the spacing Ax and the
dimensionless relaxation time 7, there is another free parameter which can be prescribed
here; that is, the time step At as described above. The lattice viscosity recovered from the

LBM has the same form as before (taking the electrons as the example):
v, = (7, -0.5)62A (154)
where the time step is determined by Eq. (153). By equating the physical viscosity to the

lattice viscosity, we can easily have:

- \/Bn(re -0.5)At (15%)

8/1(3'7
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following the same definition of the rescaling paramcter y as shown in Eq. (115). It can
be scen that once the physical properties of the electron, the dimensionless relaxation

time 7, and the time step Ar are determined, the lattice sound speed of electrons can be

determined accordingly as:
0 =2¢ (156)

The rescaling of the relaxation time A, is straightforward, i.e. 4,, =7,Ar. Then the

en
rescaled acceleration can be found as:

a = ’1011
¢ 7
A

on

(157)

4

according to the sccond rule of the rescaling scheme introduced in Chapter 4. The
rescaled parameters for ions and neutrals can be found in a similar way.

3) Interpolation scheme. The distance traveled by electrons in a time step At is

A\'L,=\/§(7t,Ar . Comparing to the spacing Ax , it is apparent that the ratio

A\'(,/A\'=\/Sét,At/Ar=\/§9~e/§c is less than one because the lattice sound speed is

impossible to be greater than the speed of light. In another word, during a time step Af,
the electrons cannot stream to the adjacent node points, so do the ions and neutrals. Thus,
it 1s nccessary to apply the interpolation scheme to find the on-node value of the
distribution functions after the streaming step in LBM. The interpolation scheme applied

here is similar to the onc described in Chpter 4. However, since the lattice sound speed

0. 1s dependent on the temperature, and consequently, dependent on both time and space,

the interpolation formula used here is different with the one shown in Eq. (101). Instead,

by referring Figure 34, the formula takes the following form:
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nkfe(p) ___ mnfe(0)  kmf.(q)
(n=m)k-m) (k—m)n—-k) (n—m)(n-k)

Sfo(p)= (158)

where m = f.(p), n=B.(¢)+1 and k = f,(0)-1. Note that the interpolation parameter
now is dependent on both time and space and it is defined as f,.(x,t) = x/iéc,(x,t)At/A\'.
It 1s casy to sce that if £, is uniform throughout the whole domain, Eq. (158) becomes

Eq. (101). Further, if g, =1, f,(p) = f.(0") which means no interpolation exists.

Ax
[ >
—e > *~— >
0 0 p P q q
le—»] le—->] [
B.(0)Ax Be(p)Ax B.(q)Ax

Figure 34 Schematic of the rescaling scheme. The value of distribution function at p
can be found by using the post-collision values at o’, p’ and ¢q’.

4) Positions of simulation variables in the grid system. Unlike the isothermal
plasma model developed in Chapter 4, the present model also has the temperature as a
variable. The primary variables used in the calculation are listed in Table 11. All
thevariables listed in Table 11 are dependent on both space and time. But in the actual
simulation, not all the variables are located on the same position in the grid system. That
is due to the staggered scheme of the field vectors used in FDTD method. In order to
satisfy the divergence free law V-B =0, the electric field and magnetic field are
discretized on staggered node points as shown in Figure 30. The grid system as well as

the positions of the primary variables i1s shown in Figure 35. As illustrated, magnetic field,



number density, macroscopic velocity and temperature are located at the primary nodes
which are denoted by the white knots while the x- and y-component of electric field are

located at the staggered grid nodes which are denoted by the solid knots respectively.

Number density ng
Macroscopic velocity u
Temperature of electron T,
Electric field E
Magnetic field H

Table 11 Primary simulation variables

Ex !
S S S T__,.L.__...‘_ _____
. By |.. |Ey |,
1(i-1, J) (i J) )(i+1,))
: Hz, ns.: us, Ts
I ]
| Ex |
——-—0——-—1'————0—-»:-———0— —————
]
(Irj-1)

e

O
/

Figure 35 Positions of the simulation variables. H,, ng, ug and T are calculated at

the white node points while Ex and Ey are staggered in space and evaluated at the
black node points.
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Besides the above mentioned primary variables, there are also many secondary
variables which depend on the primary variables used in the simulation. They are listed in

Table 12.

Speed of sound 6,
Current density J

Relaxation times An
Field ionization rates R.'s-f
Impact ionization rates R:
Recombination rates R’
Volumetric heat capacity C,
Thermal conductivity Ky
Interpolation factors B

Table 12 Secondary simulation variables

Note that in the evaluation of the variables which involve electric field, such as
current density and Lorentz force, the value of electric field should be calculated at the

primary node point (7, j). In the practical simulation, we just use the average value of the
electric field neighboring the node point (i, j):

Ey =0.5(Ex(i, j)+ Ec(iy j +1))

E,=05(E,(, )+ E(i+1,))) (159)
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Besides the space discretization, the electric field is also staggered in time. Thus, the
value of electric field should be used at the same time level in the time marching process:

E_‘.“—] — O.S(E'\."_ljlz + E.\‘n—l,'Z)
Ev“ﬂ—l — O.S(E)'H—l/’z + Eyn—l/Z)

(160)

In conclusion, the Boltzmann equations, Maxwell’s equations and energy
equations arc coupled to establish the present model. The Boltzmann equations are solved
by using the traditional D2Q9 lattice Boltzmann method. In order to match the physical
propertics of the plasma, the rescaling scheme is applied to select the simulation
parameters used in LBM. Besides the standard collision step and streaming step, an
interpolation step is needed in this LBM model to find the on-node values of the
distribution functions of the plasma particles. As the governing equation of the evolution
of the temperatures, a sct of particle energy equations are derived directly from the
Boltzmann equations by taking the proper moments of the distribution functions. The
energy equations are solved by the finite volume method. The FDTD method is adopted
here to solve the Maxwell’s equations where the UPML boundary condition is applied to
terminate the outgoing clectromagnetic waves. Figure 36 shows the flowchart of the
present model. It can be seen that there are complicated correlations among those three
equations. The external force in the Boltzmann equation is calculated by using the
solutions of Maxwell’s equation. The sound speeds, relaxation times, ionization and
recombination rates are evaluated by using the results of the energy equation. When using
FDTD method to solve the Maxwell’s equations, the current density needs to be attained

from the Boltzmann equation. In solving the energy equation, the Joule heating term is

calculated by using the results from both Boltzmann equation and Maxwell’s equations
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while the other transport coefficients are evaluated from the results of Boltzmann
equation. Figure 37 shows the correlations among the three equations. The elements

through which one equation affects another are illustrated in the figure.
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Figure 36 Flowchart of the present model
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Figure 37 Correlation among three equations

5.4 Simulation Results

The interaction between a continuous CO, laser beam and a weakly ionized

helium plasma is simulated by using the model developed here. The computational
domain is a 135.08x135.68 /,Lm2 square which is discretized by a uniform 256x256 gnd

system. As illustrated in Figure 38, the computational domain is surrounded by a PML
layer used as the boundary condition in the FDTD solver. The PML thickness is 30 grids.
The origin point of the computational domain is located at the left lower commer. The
interface between helium and vacuum is at j = 200. A continuous CO, laser beam whose
wavelength is 10.6 pm is incident from the top of the computational domain and
propagates along the negative y-direction. The no-gradient boundary condition is applied

on all the boundaries enclosing the helium. Initially, the helium is assumed to have a
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0.01% ionization degree. The initial number densities of ncutrals, tons and electrons are

2.687x10%em™ , 2.687x10%em™ and  2.687x10"em™3 | respectively. The

temperatures of all the three species of particles are set identical. According to Saha’s

equation, T,y = T;y = T,,0 =1.058¢V .

: (0, 256) L

| Vacuum

Helium :

....... 0)

Figure 38 Schematic of the computational domain for simulation of interaction
between a continuous CO, laser beam and a weakly ionized helium plasma.

After the laser beam crosses the interface, the free electros in the weakly ionized
helium plasma will be accelerated and heated by the laser field. As a result, the electron
energy, including both the macroscopic kinetic energy and the thermal energy
(temperature) will be increased. If the electron energy is higher than the ionization
potential of helium, new frec electrons will be generated through the electron impact

ionization. Figure 39 shows the evolution of the maximum electron number densities
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Figure 39 Evolution of maximum electron number density with different laser
intensities. At the early stage, the electron number density increases exponentially
because of the laser-induced ionization. However, it shows saturation later due to

the equilibrium between ionization and recombination.
under exposure to different laser intensities. Note that the values shown in the figure is
actually the maximum ratio of the electron number density to the initial neutral number
density. Thus, it also can be interpreted as the maximum ionization degree throughout the
whole computational domain. From the figure, the exponential increase of the electron
number density due to the electron impact ionization can be seen clearly. We can also see
that the electrons are generated with a higher rate if the laser intensity is higher. That is
natural because higher laser intensity indicates that more laser energy is input into the
domain in a unit time and thus leads to a quicker heating of the electrons. As long as the

electron energy is above the ionization potential, the ionization will keep taking place and

more and more new free electrons will be generated. However, ionization itself is a

133



36

1 — 1 x 10" wiem?
329 ~ --- 2 x 10" Wicm?
g 4 x 107W.fcm2
6 x 107 Wicm?
8 x 107 W/cm?

TR T L T T IS

Temax (eV)

—

250 300

0 50 100 150 200
Time (ps)

Figure 40 Evolution of maximum electron temperature with different laser
intensities. The electron temperature increases very quickly due to the rapid heating.
It decreases after the ionization takes place because the generation of new free
electrons consumes the laser energy.
cooling scheme for electrons because, after all, the electron energy obtained form the
laser beam is used to overcome the ionization potential and thus less laser energy is used
to hecat the electrons. This is evident in the energy equation where the ionization is just
the sink term. Consequently, with more electrons generated, the electron temperature
begins to decrease as shown in Figure 40. In this plot, the electron temperature increases

very quickly at the early stage when the ionization hasn’t taken place effectively. This

can be verified by referring to Figure 39. For example, under the laser intensity of

8x10’ W/c-m2 , the maximum electron number density starts to increase around 18 ps,

which corresponds to the temperature decrease at about the same time moment as shown
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Figure 41 Evolution of ionization coefficient with different laser intensities. The
ionization coefficient shows a similar pattern with the electron temperature because
it mainly dependent on the electron energy.
in Figure 40. As the electron temperature decreases, the ionization rate is reduced
accordingly. At the same time, since the recombination rate is proportional to the number
densitics of charge particle and inversely proportional to the electron temperature, the
recombination becomes more and more prominent in the plasma. Reduction of ionization
and enhancement of recombination lead that the generation rate of new free electrons gets
lower and thus the electron number density shows a “saturation” phenomenon in Figure
39. This can be explained more evidently by Figure 41 and Figure 42 which are the
evolutions of the ionization coefficient and the recombination coefficient respectively.
Referring to Eq. (133), the ionization coefficient is mainly dependent on the electron

energy. That is why the evolution of the ionization coefficient shown in Figure 41 has the
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Figure 42 Evolution of recombination coefficient under different laser intensities.
The recombination coefficient increases due to the generation of new free electrons
and the decrease of the electron temperature.
similar pattern as the electron temperature. The pattern of evolution of the recombination
coefficient can be explained by Eq. (134). Note that there are also ‘‘saturation’”
phenomena for the recombination coefficient. That happens when the electron number
density and the electron temperature approach the *‘static” state as shown in Figure 39

and Figure 40.

Figure 43 and Figurc 44 show the temperature evolutions of ion and neutral
respectively. The ions are also heated by the laser field directly. But the heating rate is
much slower because the ions are much heavier that the electrons. The ion temperature
also decreascs after some time as do the electrons. However, the cause of this temperature
decrease is mainly due to the attenuation of the electric field instead of the cooling

scheme of the ionization. That is why the decreasing points of the ion temperature are
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much later than those of electron temperature. Of course, the attenuation of the electric

field, which will be shown later, also affects the heating of electrons. But it is believed to

be the minor factor comparing to the effects of the ionization for electrons. Unlike the

charged particles, the neutrals are only heated by the heat transferred from the charged

particles. That explains the latest increasing time of the neutral temperature as shown in

Figure 44 and its continuous increases with time: as long as there is temperature

difference between charged particles and neutrals, the cross hcat transfer will be

continued and the neutrals will be kept heated.
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Figure 43 Evolution of maximum ion temperature with different laser intensities.
Compared to the electron temperature, the ion temperature increases with a lower
rate because of the heavy mass. It decreases due to the attenuation of the electric

field.
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Figure 44 Evolution of neutral temperature with different laser intensities. Unlike
the temperatures of electrons and ions, the neutral temperature keeps increasing
because the neutrals are heated by the cross-heat transfer from the charged
particles.

Figure 45 and Figure 46 show the distributions of electron temperature and

clectron number density along the beam propagation axis respectively where the incident

laser intensity is 2 x 107 W/('m2 . It can be seen from the figures that, very naturally, the

electrons are heated first near the interface and thus the largest electron number density
always emerges at the interface. As analyzed above, after some time, the temperature
near the interface decreases due to the ionization. The temperature distribution on the axis
becomes more and more uniform with time lapse. Finally, an almost uniform temperature
is established along the axis and it decreases very slowly which is believed to be due to
the temperature diffusion process. The saturation of electron number density can also be
scen from Figure 40 where the number density ncar the interface increase very slowly

with time in the later stage.
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Figure 45 Distribution of electron temperature along beam propagation axis at
different time moments. The highest temperature always appears at the interface.
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Figure 46 Distribution of electron number density along the beam propagation axis
at different time moments. Most of the new free electrons are generated near the
interface.
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(a) t=49.93 ps

(b) t = 149.80 ps

Figure 47 Snapshots of electron and neutral number densities at (a) t = 49.93 ps and
(b) t=149.80 ps
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Figure 47 shows the contours of electron and neutral number densities at two time
moments where the unit of the number density in the plot is em ™. The laser intensity in

this illustration is 2x 10’ W/cm2 . The generation of free electrons and loss of neutral

particles are matched very well from the plots, which is evident by the ionization terms
introduced in the Botzmann equations. Further, it is clearly that more electrons are
generated along the axis. That is understandable because the laser intensity is higher
along the axis due to its Gaussian distribution in space. It also can be seen that most of
the free electrons are generated in the flat thin layer below the interface as shown in
Figure 47 (b). This can be explained as follows. The electrons on the axis are heated at
the carliest and when their energy is high enough, they will ionize the neutrals due to the

clectron impact ionization. On the other hand, the electrons at the outer rim of the laser
ficld will not be heated so quickly because the laser intensity there is not as high as in the
center. This leads to the highest temperature on the axis at the early stage as shown in
Figure 48 (a), (b) and (c) where the temperature is in unit of eV. However, because the
tonization rate is higher at the center, the temperature decreases also quicker there due to
the ionization. In such a case, it is possible that the temperature at the outer rim of the
laser field is higher after some time as shown in Figure 48 (d). As a result, more electrons
are generated at those locations than on the axis. Then a flat pattern of the electron
number density below the interface emerges. This can be seen more clearly from Figure
49 which is the clectron number density distribution along the x-axis at j = 195, 1.e. 5 grid

points below the interface. The above analysis can be verified more evidently by Figure

50 which shows the snapshots of ionization coefficient R, (s_l ) and recombination
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(a) t=4.86ps (b)t=13.26 ps

(c) t=49.93 ps (b) t=149.80 ps

Figure 48 Contours of electron temperature at (a) t = 4.86 ps, (b) t =13.26 ps, (¢c) t =
49.93 ps and (d) 149.80 ps

coefficient R} (:’1) at t = 149.80 ps. It can be seen that the ionization becomes stronger

at the outer rim of the laser beam below the interface. At the same positions, the

recombination is weaker while it is more prominent in the center. This leads to relatively

less electron generated in the center and more generation of electrons at the outer rim of

the laser beam.
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Figure 49 Electron number density distribution along x-axis at j = 195 at different
time moments

(a) (b)

Figure 50 Snapshot of (a) impact ionization coefficient and (b) recombination
coefficient at t = 149.80 ps

143



The temperature evolution as shown in Figure 48 can be explained from the point
view of Joule heating, which is essentially the laser energy deposited into the plasma. The
snapshots of Joule heating at four time moments are shown in Figure S1. It is clearly scen
that the Joule heating is attenuated along the laser beam propagation and most of the laser
energy 1s deposited in the thin layer below the interface eventually. According to the
definition, Joule heating is dependent on two factors: the current density and the electric
ficld. After a further analysis, one can find that the Joule heating is essentially
proportional to the number densities of the charged particles and the square of the electric
ficld while inversely proportional to the electron temperature. Thus, it is natural to
conclude that the Joule heating decreases in the region where the number densities of
charged particles are low and the electron temperature is high, just as shown in Figure S1.
For the electric field, with the increase of the current density (mainly due to the increase
of number densities of charged particles), the electric field is reduced according to the
Maxwell’s equation. It is apparent that the current density is the highest on the axis below
the interface because the strongest ionization takes place there. Thus, the electric field is
attenuated most in that region as shown in Figure 52. Comprehensively considering the
cffects of the current density and the electric field, the Joule heat shows the “leaking”
phenomenon as shown in Figure 51. This also explains why there is similar phenomena

in temperature evolution.
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(a) t=4.86 ps (b)t=13.26 ps

(c) t=49.93 ps (d)t=149.80 ps

Figure 51 Snapshots of Joule heating at (a) t = 4.86 ps, (b) t = 13.26 ps, (c) t = 49.93
ps and (d) t = 149.80 ps
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(a) 1=4.80 ps (b)t=13.26 ps

(c) t=49.93 ps (b) t=149.80 ps

Figure 52 Snapshots of x-component of electric field at (a) t = 4.86 ps, (b) t =13.26
ps, (¢) t =49.93 ps and (d) t = 149.80 ps
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Finally, the evolutions of number densities, temperatures, lonization and
recombination coefficients, and magnitude of electric field at Point A (the center point

just below the interface whose coordinate is (128, 199) in the grid system) are shown in

Figure 53. Those results are obtained by using the laser intensity of 2x10’ W/cm2 .

Generation of electrons and loss of neutrals happen correspondingly as illustrated by
Figure 53 (a) where the saturation phenomenon can be shown very clearly. This
saturation can be explained directly by Figure 53 (c). In that plot, the ionization
coefficient reaches a “'static” state due to the decrease of the electron energy. As analyzed
above, this energy loss is caused by the ionization itself because ionization here also
plays a role for cooling the electrons. Meanwhile, the recombination coefficient increases
thanks to the combined effects of electron number density and temperature. Moreover,
recombination of charged particles also releases heat which can contribute to increase the
electron temperature. Eventually, the recombination coefficient approaches to the
ionization coefficient as shown in the plot. Then the equilibrium between the ionization
and recombination is expected to be established. The electron temperature and ion
temperature are shown in Figure 53 (b). The different heating rate of electrons and ions
caused by their far different masses are apparent from the plot. The electron temperature
increases very quickly at the early stage mainly due to the rapid heating from the laser
encrgy through Joule heating in this model. After the effective ionization takes place, the
electron temperature starts to decrease due to the dynamics of ionization and
recombination as analyzed before. Like the electrons, the ions are also heated by the

incident laser beam but with a much lower heating rate. Decrease of the ion temperature
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is mainly caused by the attenuation of the electric field as illustrated in Figure 53 (d).
This attenuation of electric field 1s deduced by the increased current density which is
dependent on the temperatures and number densities of charged particles. Since both the
temperatures and number densities illustrate the saturation behavior, the attenuation of

the electric field is also presenting the similar pattern as expected.
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Figure 53 Evolution of (a) number densities (b) temperatures (c) ionization and
recombination coefficients and (d) magnitude of electric field at Point A
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In conclusion, the interaction between laser and weakly ionized plasma shows
very complicated behaviors due to the dynamics of ionization and recombination. The
propagation of the laser beam and the laser energy deposition are significantly affected
by the generation of the free electrons. Meanwhile, the heating pattern of free electrons
by the laser beam also determines the ionization and recombination dynamics of the
plasma. The spatial distribution of the laser field makes the problem more complicated.
The simulation results presented above show the great potential of the current model to
simulate laser interaction with weakly ionized plasma. Not only the wave characteristics
of the laser beam are retained, but also the physical heating patterns for all the plasma
particles are illustrated by using this model. Unlike the kinetic-based model, such as PIC,
this model can be applied for physical problems with much larger timing and spatial
scales. Comparing to the hydrodynamic models, the present model has less assumptions
(such as continuum assumption) and thus can be used to simulate a wide range of

problems.
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Chapter 6

Conclusion

A new LBM based model is developed in this dissertation, for the first time, to
simulate laser interaction with weakly ionized plasmas. By introducing an additional term
in the Boltzmann equations, the effects of electron impact ionization and its inverse
process, three-body recombination, on the change of rate of the distribution functions are
included so that the ionization and recombination dynamics can be taken into account in
this model. The Boltzmann equations, particle encrgy equations and Maxwell’s equations
are coupled and constitute the governing equations of the present model. The Boltzmann
equations are solved by the traditional D2Q9 LBM on a uniform square grid system. The
external force term in the Boltzmann equation is evaluated by using He’s model after an
elaborate comparison of the results of some hydrodynamics flows obtained by the other
four models. In the evaluation of the external force term and the Joule heating term in the
energy equation, the FDTD method is adopted to solve the full set of Maxwell’s equation
so that the wave nature of the electromagnetic field carried by the laser beam and
generated by the plasma dynamics can be retained to the greatest content. The energy
(temperature) evolutions of the individual species of particles in the plasma are solved
from the energy cquations which are directly derived from the Boltzmann equations by
taking proper moments of the distribution functions.

To match the physical properties of the plasma, a rescaling scheme is proposed in

this study to select the proper simulation parameters used in LBM. This rescaling scheme
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is validated by the two-dimensional driven cavity flow and the isothermal weakly ionized
plasma simulations. In the practical implementation of the present model, the spacing Ax
is usually determined by the resolution requirements of the physical problem, the time
step Ar is selected by the stability requirement of the FDTD solver and the dimensionless

relaxation time 7 can be prescribed arbitrarily as long as it is in the valid range. Once the

above three parameters are determined, the lattice sound speed 673. , the lattice relaxation

time A,, (s=e,i,n)and the lattice acceleration term a; (s =e,i) can be found according

to the rescaling rules and would be used in the LBM calculations. After the standard
collision step and streaming step, it is necessary to introduce an interpolation step to find
the on-node values of the distribution functions. This is due to the fact that the particles in
the plasma cannot travel to their neighboring nodes in the period of a time step Ar.
Conclusively, the Boltzmann equations with the ionization and recombination term are
solved by the standard D2Q9 LBM with supplement of the rescaling scheme and an
interpolation step following the streaming step. The number densities, macroscopic
velocities and current densities of the plasma particles can be found as the results of the
LBM solver and are used in the solvers of the FDTD and the energy equations.

As a simulation example, the interaction between a continuous CO, laser beam

and a weakly ionized helium plasma is simulated by using the proposed model in this
dissertation. The results show the physical heating patterns of the particles in the plasma
due to the laser energy deposition. The ionization and recombination dynamics and its
effects on the heating and generation of free electrons are also illustrated from the
simulation results. Although the simulation conducted in this dissertation is only a

preliminary application, it still could show the capabilities and limitations of the present
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model. Compared to the kinctic-based methods, such as PIC models and MD simulations,
our model 1s much less computationally expansive because there is no need to solve the
Newton-Lorentz equation for every single particle. Thus it is possible to use the “real”
plasma particles in the simulation instead of those “super-particles” used in PIC and MD
simulations. The advantage of the present model over the hydrodynamics models is that
there is no continuum assumption employed in this model. As a consequence, this model
can be applied in a wide range of the physical problems. Another prominent feature of the
present model is that Maxwell’s equation is directly solved here to retain the most
detailed wave behaviors of the electromagnetic field. Thus, this model is applicable for
even the most complicated wave related problems, such as complex geometries, multiple
incident lascr beams and ablation of gradient materials. Finally, the present model is very
easy to implement because each of the three solvers is well developed and many
achievements in the individual field can be inherited in development of this model.

Of course, no “general”” model which can be applied for all physical problems
exists. The limitations of the present model include the following aspects. First of all, this
model is only applicable for relatively low laser intensity. This limitation is mainly due to
the low Mach number assumption made in the derivation of the lattice Boltzmann
equations. High laser intensity, as expected, will induce high electron velocities which
might break the low Mach number assumption. To overcome this problem, it is intuitive
to abandon the low Mach number assumption and adopt more velocity components in
discretization of the phase space. But unfortunately, this multiple-speed approach for
high Mach flow is still under development and always suffers from high instability.

Therefore, a high Mach number LBM scheme is highly desired for plasma simulation.
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Second, the physical spatial and temporal scales that can be simulated by this model are
largely limited by the FDTD method. In order to capture the wave nature of the
electromagnetic field accurately, the spacing Ax in FDTD is required to be much less
than the wave length of the laser beam. Further, due to the stability requirement, the time
step Ar also needs to be sufficiently small. Thus, an ultra-stable FDTD solver is needed
for simulation of real size physical problems. Third, an interface tracking technique may
be needed to simulate the plasma plume expansion in vacuum. Plasma plume expansion
is very important in many applications, such as laser welding and pulsed laser deposition.
However, one difficulty in simulating this phenomenon is how to track the evolution of
the interface between the plasma and the vacuum. One possible approach is to use the
level set method. But apparently, there is a long way to go to combine the level set
method with the LBM.

In conclusion, although the LBM model developed in this dissertation is only in
its preliminary stage, it has already shown great potential for simulation of laser
interaction with weakly ionized plasmas. It is hoped that those aforementioned limitations
could be eliminated in the future and as a result, this new model could be applied widely

and successfully.
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