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ABSTRACT

LATTICE BOLTZMANN SIMULATION OF LASER INTERACTION WITH

WEAKLY IONIZED PLASMAS

By

Huayu Li

Laser-plasma interaction (LPI) is an important subject to a variety of disciplines

in engineering and science, such as laser welding, pulsed laser deposition (PLD), laser—

generated x-rays and laser-aided ignition of inertial confinement fusion (ICF). In

particular, laser interaction with weakly ionized plasmas has invoked a great deal of

interest to the laser manufacturing community because plasmas naturally appear and

interact with a laser beam in such high energy manufacturing processes. Due to the

complexity and richness of physics, numerical model studies have been pivotal in the

understanding of LPI. A number of numerical models have been created to study LPI and

help design LPI equipment, and there are basically two kinds of numerical models: the

kinetic-based model and the hydrodynamic model. Although kinetic models (e.g.,

particle-in-cell model) have been very successful, they are computationally expensive in

most cases and their application is rather limited. Hydrodynamic models are also a

powerful tool for LPI simulations, but they fail in some circumstances because they are

based on the continuum assumption.

In this study, a new numerical model based on the lattice Boltzmann method

(LBM) is introduced to simulate laser interaction with weakly-ionized plasmas. The LBM



is a kinetic theory based method, where the distribution functions of the individual

species of particles in the plasma are solved and thus the macroscopic variables (such as

number density and momentum) are obtained. In this study, the Boltzmann equation with

ionization and recombination terms is solved. Since only number density and momentum

can be correctly retrieved from the two—dimensional nine-bit (D2Q9) discretization

scheme, a set of energy equations is derived from the Boltzmann equation and solved

separately to calculate temperature fields. The electromagnetic field from both laser and

plasma is updated by solving Maxwell’s equations using the finite-difference time-

domain (FDTD) method. In the implementation of the present model, a rescaling scheme

is introduced to select the appropriate simulation parameters for the LBM, so that the

physical properties of the plasma can be used. This rescaling scheme has been validated

by hydrodynamic flow problems and the electron diffusion problem. In this study, a two-

dimensional weakly-ionized helium plasma interaction with a continuous wave C0; laser

beam is simulated.

This model is a mesoscale approach based on the kinetic theory and the LBM, so

it has a number of inherent advantages over previous models. Because the LBM solver is

employed, this approach is computationally efficient and easy to parallelize. In addition,

this model is capable of predicting time-dependent number densities, velocities, and

temperatures of all particle species for a fairly large scale problem without employing the

continuum assumption. It is believed that this model has a lot of potential for the studies

of weakly ionized plasmas in a wide spectrum of applications.
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Chapter 1

Brief Review of Laser-Plasma Interactions

Laser-plasma interactions are of great interests to researchers from many different

fields of expertise. The characteristics of laser—plasma interactions are high nonlinearity,

strong coupling, large spans of spatial and temporal scales, and multiple physics. A

complete description oflaser-plasma interactions should include laser-induced ionization,

absorption of laser energy. plasma responses and electromagnetic wave propagation

inside the plasma, all of which are strongly coupled and dependent upon the incident

laser intensity. The higher the laser intensity, the more complicated the physics involved

will be. In this chapter, the physics, applications and numerical models of laser-plasma

interactions will be briefly reviewed. The main content of this dissertation is also

introduced.

1.] Physics of laser-plasma interactions

When a laser beam impinges on a target which is initially in non-plasma state, the

neutral atoms or molecules will be excited and free electrons will be generated ifthe laser

irradiance (or intensity) exceeds some threshold. For metals. in which there are already

“free" electrons in the conduction band, the electron impact ionization caused by the

thermal collisions between electrons and heavy particles (ions and neutral particles)

dominates the ionization process. The impact ionization mainly depends on the electron

energy that is obtained from the incident laser beam through inverse bremsstrahlung

heating. For dielectrics. there is a well-defined threshold for the laser-induced breakdown



which depends on the laser pulse duration [1, 2], the wavelength of the incident laser

pulse [3] and the band gap or ionization potential of the material. Besides the impact

ionization. the multi—photon ionization also plays an important role in laser-induced

breakdown of dielectric. In the multi-photon ionization, the laser energy carried by the

photons shifts the electrons from the valence band to the conduction band and thus

produces the “feed electrons” for the following impact ionization. Ifthe laser intensity is

high enough, the strong electric field ofthe laser beam will distort the potential barrier of

the atom (or molecule) drastically. The electrons can pass the ban‘ier easily to become

free electrons. This ionization mechanism is referred as to tunneling ionization or field

ionization. Laser-induced ionization of gases has similar mechanisms as the dielectrics.

Parameters of the incident laser beam, ionization potential of the gas and the gas state

(such as temperature and pressure) are the main impact factors of the ionization process.

Besides the ionization of neutral particle (atoms. molecules, etc.), other atomic physics,

such as excitation of neutral particles or ions, three-body recombination of charged

particles, charge attachment and de-excitation, also happen simultaneously inside the

plasma. Three-body recombination is the inverse process of ionization and lead to losses

of free electrons. It depends on the number density of charged particles and the electrons

temperature. Thus it is only prominent in dense, low-temperature plasmas.

Once the laser-induced plasma emerges, the laser energy will be absorbed into the

plasma through different mechanisms. At relatively low laser intensity, the inverse

bremsstrahlung heating [4, 5] (also referred to as collisional heating), absorption of

photons by charged particles undergoing collisions. dominates the absorption of laser

energy. In dense plasma. where the plasma frequency is higher than the laser field



frequency, the stimulated Compton effects [6] prevails the inverse bremsstrahlung for

heating ofplasma electrons [7]. In a nonunifomt plasma, the ponderomotive effect due to

the electron acceleration in the nonuniform electric field from the incident laser beam

may be efficient for plasma heating if the nonuniforrnity of the plasma is sufficiently

strong so that the characteristic gradient scale length is shorter than the electron

oscillation amplitude [7]. At high laser intensities (above 10'5 V’Wcm2 or so [8]), the

collisions among particles become ineffective [9] and the quiver velocity of electron is

comparable to the thermal velocity, which reduces the effective collision frequency

further [10]. Instead of collisional heating, some collisionless absorption mechanisms

become prominent in this regime of laser intensities. These collisionless mechanisms are

based upon the parametric instabilities that are caused by the plasma parameters

oscillation with the strong laser filed: it is possible for the parameters to become resonant

with the filed fluctuations just as the case of mechanical vibration systems. As the

representative collisionless mechanisms for laser energy absorption, two-plasmon photon

decay, stimulated Raman scattering, stimulated Brillouin scattering and plasma resonance

are strongly depend upon the plasma nonuniformity. The two-plasmon decay [11, 12]

involves the decay ofa laser photon into the quantum ofa Langmuir plasma wave and an

ion acoustic wave. This mechanism is remarkable in sufficiently dense plasmas where the

plasma density 11> n(.,./4 where rim. is the critical electron density of the plasma. The

stimulated Raman scattering (SRS) [13, 14] usually happens in underdense plasma where

n < nor/4. ln SRS, the laser energy is absorbed by the plasma Langmuir wave and the

transverse electromagnetic field which is shifted in frequency. The stimulated Brillouin

scattering (88$) [15, 16], which is significant for longer laser pulses, absorbs the laser



energy by exciting an ion acoustic wave. If the nonuniformity of the plasma is

sufficiently strong, the plasma resonance absorption presents and excites a plasma wave.

This plasma wave grows over several laser periods and is eventually damped either by

collisions at low intensity area or by particle trapping and wave breaking at high intensity

area [15]. If the laser intensity increases further to relativistic regime (usually higher than

1018 Wr’cmz), two more parametric instabilities emerge: laser filamentation [17, 18] and

laser modulation [19, 20], both of which are closely related with the electron mass

oscillation due to the relativistic effect. Another heating mechanism of electrons exists

near the interface between vacuum and plasma, which is called vacuum heating [21, 22].

In this scenario. electrons are dragged away from the plasma surface into the vacuum,

turned around and accelerated back into the solid all within halfa laser cycle and heated

due to the strongly inelastic inverse bremsstrahlung or the ponderornotive scattering [7].

Vacuum heating occurs when a p-polarized laser pulse is obliquely incident on the

vacLiam—plasma surface while another similar heating mechanism, jx B heating [23, 24],

happens when the laser pulse impinges the plasma surface normally. In jx B heating, the

electrons oscillating near the interface of vacuum-plasma are forced into the plasma by

the magnetic field ofthe laser beam every halfperiod ofthe laser.

Besides absorptions of laser pulse energy, the laser pulse propagation inside the

plasma is also an important aspect in laser-plasma interactions. A basic phenomenon in

this category is the ionization-induced defocusing [25, 26] of the laser beam. When a

laser pulse whose center intensity is close or above the ionization potential propagates

inside the plasma, more free electrons due to the ionization will appear around the center

of the beam, resulting in a steep radial gradient of electron number density. Since the



refractive index ofthe plasma is dependent on the distribution ofelectron number density,

this radial gradient of electron number density will lead to a smaller refractive index on

the propagation axis, acting as a defocusing lens for the following laser beam. However,

when the laser intensity is in the relativistic range, the self-focusing mechanism of the

laser pulse propagation emerges due to the interplay between relativistic modification of

the electron mass and the ponderomotive effect [27]. By considering the relativistic effect,

the distribution of refractive index is not only dependent upon the electron number

density. but also reliant on the relativistic factor that can be modified by the electron mass.

Meanwhile. the electrons at the center position are expelled by the laser ponderomotive

force. leading to a reduction ofthe electron number density on axis. Owing to above two

effects. the refractive index of the plasma decreases on axis, acting as a focusing lens for

the following portion of the laser beam. Based upon the dynamical equilibrium between

the defocusing and the self-focusing [28], a plasma channel can be established in the

plasma, through which the laser pulse can propagate a relatively long distance which is

significant in many applications.

Generation of fast electrons is a representative physics of plasma responses to the

laser-plasma interaction. In the interaction between underdense plasmas and short-pulsed

high-intensity lasers, electrons can be heated to a very high temperature during the laser

pulse period while the ions, due to their large inertia, remain “cold” at the same time.

Thus. a large local charge separation is resulted and the electrons oscillate at the plasma

frequency, creating alternating regions ofnet positive and negative charge. Then a plasma

wave wake is generated whose phase velocity is roughly equal to the velocity ofthe laser

pulse, which is approximately equal to the speed of light: in the tenuous plasmas. The



plasma wave wake has a longitudinal electric field so that it can efficiently accelerate the

charged particles [29], potentially to GeV level [8]. Those highly energetic electrons can

lead to a large space charge potential and ions can be accelerated in this electrostatic

sheath to MeV level under short-pulse high-intensity laser-plasma interaction [29].

Another direct result of those hot electrons is generation of hard X-rays. A fast electron

can penetrate into the cold target due to its long mean free path where it either emits

bremsstrahlung via collisions with ions, or produces line radiation by knocking out a

bound K-shell electron [8].

1.2 Applications of laser-plasma interaction

Thanks to the robust physics involved in the laser-plasma interaction, there are

many applications of laser-induced plasmas and laser-plasma interactions.

In the field of laser material processing, laser-induced breakdown is considered to

be the main reason for the high ablation precision of metals and dielectrics by ultrashort

lasers [2, 30]. In the application of pulsed laser deposition (PLD) [31, 32], the

interactions of incident laser pulses and the resulted plasma plume, such as absorption of

the laser energy within the expanding plume, expansion of the plasma plume and

evolution of the plasma temperature, have significant effects on the uniformity and

quality of the deposited film. In laser welding, the incident laser beam will ionize the

target material so that partially ionized plasma is generated in the keyhole and near the

top of the workpiece surface. The plasma inside the keyhole, as a good conductive

medium, will assist the energy transport from the laser beam to the workpiece [33]. On

the other hand, the inhomogeneous distribution of the free electrons in the plasma on the



top surface ofthe workpiece will affect the propagation ofthe laser beam, defocusing the

beam and leading to undesirable laser energy dissipation.

Laser-plasma interaction is even more important in the context of inertial

confinement fusion. In the indirect-drive approach [14], bunch of laser beams heat the

inner wall of a gold cavity called holhraum that contains the deuteriurn-tritiurn (DT)

pellet, creating a superhot plasma which radiates a uniform “bath” ofsoft X-rays. The X-

rays rapidly heat the outer surface ofthe fuel pellet. causing a high-speed ablation ofthe

surface material and imploding the fuel capsule. Symmetrically compressing the capsule

with radiation forms a central hot spot where fusion process could take place. Comparing

to the indirect-drive approach, the direct-drive approach [34] uses powerful beams of

laser to directly focus on the pellet. The rapid heating caused by the laser “driver” makes

the outer layer ofthe target explode. The remaining portion ofthe target is driven inwards

in a rocket—like implosion, causing compression of the fuel inside the capsule and the

formation ofa shock wave, which further heats the fuel in the very center and results in a

self-sustaining burn. A new ignition scheme, fast ignition [35], has gained more and more

interests recently. The main feature of fast ignition is that the compression stage is

separated from the ignition phase. Fast ignition uses the same hardware as the direct-

drive approach but adds a high-intensity, ultrafast pulsed laser as the “spark” that

achieves ignition. The DT target is first compressed to high density by laser beams, and

then the short-pulsed laser delivers energy to ignite the compressed core. An advantage of

fast ignition is that the density and pressure of the DT target are less than those in

indirect- or direct-drive approaches. In addition, much less mass ofthe DT fuel is used in

the fast ignition, resulting in reduced input energy. From the above description of the



three schemes of ignition for ICF, one can conclude that the laser-plasma interaction

plays a very important role and deep understanding ofthe laser-plasma interaction in the

context ofICF is highly desired.

Based upon the physics of laser-generated fast electrons and ions as described

above, the concepts of laser wakefield accelerator (LWFA) [36] and self-modulated laser

wakefield accelerator (SMLWFA) [20, 37] have been studied for the potential realization

of table—top particle accelerator. In LWFA, an electron plasma wave is driven resonantly

by a short laser pulse whose pulse length is approximately equal to the plasma wave

length through the laser ponderomotive force [38, 39]. The electron energy up to 200

MeV has been reported by Malka‘s group at LOA [40] by using LWFA. SMLWFA is a

hybrid scheme which combines the elements of forward stimulated Raman scattering and

the concept of LWFA, in which an electromagnetic wave decays into one plasma wave

and another forward propagating light wave via the stimulated Raman forward scattering

instability. The most impressive results by using this scheme are reported by a group

working with the Vulcan laser at RAL, UK [40, 41] with observations of electrons at

energies as high as 120MeV.

Laser-plasma interaction can also be used for atomic emission spectroscopy. For

example, laser-induced breakdown spectroscopy (LIBS) [42] utilizes a highly energetic

laser pulse as the excitation source. By focusing the laser onto a small area at the surface

of the specimen. a very small amount of material is ablated. The resulted plasma plume

expands and cools within a very small timeframe. At this point the characteristic atomic

emission lines of the elements can be observed. The main feature of LIBS is that it can

analyze any matter regardless of its physical state, be it solid, liquid or gas, limited only



by the power of the laser as well as the sensitivity and wavelength range of the

spectrograph and detector. Another advantage of LIBS is that it is considered essentially

a non-destructive or minimally-destructive technique because only a small amount of

material is ablated during the LIBS process and there is almost no specimen heating

surromrding the ablation site. In addition, since LIBS is purely an optical technique, the

remote analysis can be achieved easily, which is especially significant for use in

hazardous emt'ironments. The drawback of LIBS is that it is subject to variation in the

laser spark and resultant plasma which often limits reproducibility. In order to enhance

the signal from the plasma emission, double-pulse LIBS [43] was developed. Depending

on pulse separation, the second pulse is more or less absorbed by the plasma plume

caused by the previous pulse, resulting in a reheating of the laser plasma and leading to

signal enhancement.

Another application of laser-plasma interaction can be seen in the field ofmedical

imaging, which is mainly dependent upon the laser-plasma-generated X-rays. The

advantages of using laser-plasma X-ray source include the possibility of substantial dose

reduction [44], enhancement of image contrast and reduction ofunwanted information by

using differential imaging with rapid simultaneous exposure [45], and the possibility to

place the X-ray source inside the object ofinvestigation [46].

1.3 Numerical Models

Besides experimental studies and theoretical analysis. numerical modeling is also

a powerful tool to obtain deep understanding of the laser—plasma interaction physics and

to provide guidelines and optimism methods to applications of laser-plasma interactions.
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There are mainly two categories of numerical methods for modeling laser—plasma

interactions: hydrodynamics models and kinetic based models.

1.3.1 Hydrodynamics models

The common feature of the hydrodynamics models is that the individual particle

species of the plasma or the plasma itself is treated as a continuum fluid. The

conservations of mass. momentum and energy are described by hydrodynamic equations.

The specific formulations of the conservation equations, generation of free electrons and

laser energy deposition vary in different models.

Hydrodynamics simulation of laser-plasma interaction are widely applied in the

context of laser-driven ICF, providing guidance for the design of hohlraum targets on the

ignition facility and detailed understanding of the interaction physics between incident

laser beam and the plasma. The very first hydrodynamic model for intense laser

interaction with underdense plasma is LASNEX [47] that was developed by the

Lawrence Livermore Laboratory in the late of 1980’s. LASNEX solves hydrodynamic

equations in Lagrangian coordinates which include flux—dependent electron and ion

thermal conductivities, radiative transport for the plasma radiation, laser-radiation

absorption and some other physical processes [48]. In the past 30 years, many physical

packages such as magnetic field and ray trace have been added into the code of LASNEX,

making it a powerful simulation tool in many applications [49-51]. Another early stage

hydrodynamics model is SAGE [52] which was developed for simulation ofthemral self-

focusing in laser plasmas. SAGE is a two—dimensional Eulerian code including a self-

consistent ray-tracing algorithm for laser beam propagation. Thus. the dependence of

self-focusing on the laser wavelength and the laser energy absorption can be simulated



more realistically. This model uses perfect-gas equation of state and a one-temperature

fluid assumption. Laser beam diffraction, radiation emission, superthermaI-electron

generation and magnetic effects are neglected. However, the above assumptions can be

well justified ifonly low-atomic-number targets are considered [52].

In the past decade, motivated by the fast development of the new concepts and

designs ofthe ignition facility for ICF, many new hydrodynamics models emerge, such

as HYDRA [53, 54], PONHFZD [55], PF3D [13, 56-58], HARMONHY [59] and

PARAX [60-63]. HYDRA can be regarded as the successor of LASNEX for three-

dimensional simulation of laser-plasma interaction in the hohlraum. HYDRA is based

upon arbitrary Lagrange Eulerian (ALE) hydrodynamics, employing modem monotonic

artificial viscosities to stabilize shocks. HYDRA includes a ray tracing package for laser

beam propagation and takes into account ponderomotive effects, heavy ion deposition

and radiation transport. In addition. local themrodynamics equilibrium (LTE) and non-

LTE opacity models are also included in HYDRA. HYDRA has been utilized in design

and simulation of laser-driven experiments [64, 65]. In a later simulation [54], a kernel-

based nonlocal electron thermal conduction package based upon the model in [66] was

installed in HYDRA , enabling the code to handle the effects of long-range electrons.

However. there are still some physics missing in HYDRA [53], including the power loss

from the beam due to laser power instability, beam steering due to the ponderomotive

force and magnetic fields that may affect the electron temperature profile in the low

density regions inside the hohlraum.

In order to simulate the time-dependent filamentation and stimulated Brillouin

forward scattering in lCF plasmas, Schmitt and Afeyan developed a two-dimensional
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code PONHFZD [55]. The laser beam propagation in this model is achieved by a scalar

paraxial wave equation which is coupled to the plasma through the dielectric constant.

Two different approaches are used to model the plasma response. One is to use a two-

dimensional Flux-Corrected-Transport (FCT) algorithm [67] to solve the continuity

equations for the plasma density and momentum, assuming a quasineutral one-fluid

plasma. The other approach uses a spectral FFT based algorithm to solve the

ponderomotive driven ion-acoustic wave (IAW) equation. The PONHF2D model

includes background flow and can treat nonlinear plasma behavior. Furthermore, the

derivatives ofthe fluids variables in the direction ofthe beam propagation are not ignored,

which enables correct description of both laser-plasma and plasma-plasma coupling in

the time evolution of Iilamentation. However, this model neglects the effects of themtal

filamentation and nonuniform inverse bremsstrahlung heating. The ionization level ofthe

plasma and the plasma temperature are also assumed to be known independently.

In contrast, interplay between strong inverse bremsstrahlung absorption, laser

pulse temporal profile and target expansion are included in the model of HARMONHY

[59]. A similar three—dimensional model with HARMONHY is PF3D [13], which

includes a nonlinear hydrodynamic package as described in [68] coupled with a paraxial

solver for the laser propagation. PF3D can describe the (nonlinear) evolution of

ponderomotive and thermal filamentatin, forward Brillouin scattering, and such

phenomena as beam deflection in the presence oftransverse flows. Instead ofprescribing

the plasma parameters (number density, temperature. etc.) as does in PONHFZD,

simulation results of plasma variables obtained from other hydrodynamic plasma models

are input to PF3D as the initial conditions. For example, the results from SAGE and



HYDRA are used as the initial conditions for the work in [56] and [57], respectively. The

significant advantage of PF3D over HARMONHY is its prominent parallel computation

performance using message passing.

Another hydrodynamic model that also uses the paraxial wave equation for the

laser beam propagation is PARAX [60]. In this model. nonlocal transport effects [66, 69]

are included by using the nonlocal Navier-Stokes equations [62]. Although PARAX can

describe various physics emerging in the interactions between laser and plasma, the

backseattering processes (SRS and SBS), the expansion of the plasma in the parallel

direction and a nonlocal transport model that would be valid in the strongly nonlinear

regime are still missing. In addition, the present PARAX simulations are implemented

with preformed plasmas. It is expected that the plasmas parameters obtained from other

plasma models need to be input to PARAX as the initial conditions.

The common feature of PONHF2D, HARMONHY, PF3D and PARAX is that all

ofthcm are using a paraxial approximation for the laser beam propagation in the plasma.

However. this approximation is invalid near the critical surface of the plasma inside the

hohlraum [56]. In order to overcome this problem, a hydrodynamic model called

KOLIBRI [70] was developed without the priori ofthe paraxial approximation. Instead, a

scalar model which corresponds to s-polarization in the two-dimensional case is applied

for the laser propagation, allowing for SBS in backward and all sideward directions as

well as its coupling with filamentation.

The hydrodynamic models are also widely utilized to simulate the laser-produced

plasma and the laser-plasma interaction in the field of laser material processing. By

assuming that the electrons in the laser-induced plasma in C02 laser welding are in the

13



local thermal equilibrium, Finke et al. [71] proposed a one-dimensional steady state

model to describe the laser energy deposition into the workpiece. Based upon a steady

state one-dimensional Boltzmann equation of the ions, the mass and momentum

conservations of the ions and the quasineutral plasma can be established through the first

and second moment of the distribution function. Three mechanisms ofthe energy transfer

inside the keyhole: laser energy absorption through inverse bremsstrahlung, generation of

free electrons and recombination of charged particles on the wall, are considered in the

model and the energy balance equation can be established. A similar model was proposed

by Tix and Simon later [72], in which a system of transport equations for all species

particles inside the keyhole plasma is setup also based on stationary kinetic equations.

Both the convective and conductive transports and inverse bremsstrahlung heating are

included in the model. The model assumes cylindrical symmetry and no dependence of

the quantities on the direction of the keyhole axis; that is, the simulation was taken on a

slice of the keyhole, far enough from the surface. The simulation results suggest that the

main part of the plasma (except for the part near the wall) can be considered to be a fully

ionized plasma and can be described by the heat conduction. A model describing the

process of deep-penetration laser welding was developed by calculating the keyhole

profile using a point-by-point energy balance analysis along the wall [73]. The absorption

of laser energy by the plasma is described by Beer-Lambert’s law where the absorption

coefficient is from the dominant inverse bremsstrahlung. The degree of ionization as a

function of temperature is described by Saha’s equation. In the above three models, no

laser beam propagation is considered. However, the laser beam propagation can be

largely affected by the plasma. As a consequence. the plasma absorption and the laser
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intensity distribution can be altered a lot. In order to deal with this problem, a model

proposed in [74] uses the paraxial wave equation to calculate the laser beam propagation

through the plasma plume whose properties are pre-set within the calculation. The

simulation results indicate that the focusing of the laser beam is strongly deteriorated in

the plasma plume due to refraction and absorption. This plasma defocusing is believed

the main reason of the so-called “plasma shield” in laser welding. By keeping the

treatment of laser beam propagation with the paraxial equation, Kim and Farson [75]

proposed a axisymmetric model with compressible Navier-Stikes equations to simulate a

C0: laser beam impinging on a flat iron surface with helium and argon as the shielding

gas. Besides the refraction and absorption in the plasma plume, the effects of the

shielding gas and the reflection at the workpiece surface are also included in the

simulation. Chen and Wang developed a model [33] with a simplified three-dimensional

keyhole model to study both the keyhole plasma and the plasma plume. Radiation and

scalar laser energy absorption are included in the governing equations as the source temt.

But the laser beam propagation is not coupled in their model. Another three—dimensional

keyhole model for laser welding was proposed by Ki 6! a]. [76, 77]. The main feature of

this model is that the evolution of the liquid/vapor interface is consistent with the fluid

flow and the heat transfer in the model. The level set method is adopted to incorporate the

liquid/vapor interface boundary condition into the Navier-Stokes equation and the energy

equation. The ray tracing method is applied with the level set method to take into account

the multi-rcflection effects inside the keyhole. The laser energy dissipated into the wall is

obtained by the energy balance analysis on the wall surface.



Except for the applications in laser welding. the hydrodynamic models are also

exploited in the fields of pulsed laser ablation of metals and dielectrics, pulsed laser

deposition (PLD) [78-80]. and even laser ablation of organic materials [81. 82]. In

modeling of UV pulsed laser ablation of metallic targets, an integral model based on the

energy balance analysis of the different processes involved in the laser-solid interaction

was proposed in [83]. Laser energy absorptions due to inverse bremsstrahlung and

photoionization are considered in this model. Moreover, electron-impact excitation and

ionization. three-body recombination process, and energy transfer from hot-plasma

electrons to the heavy particles are included in the vapor/plasma kinetics. However, no

laser propagation is solved in this model. Another hydrodynamics model, MULTI—FS,

was developed in [84] to simulate subpicosecond laser interaction with solid density

matter. This method is based upon its previous version MULTI [85], which is a one-

dirnensional. one-fluid. two—temperature model including electronic heat conduction and

multigroup radiation transport. Comparing with MULTI. MULTl-FS is improved in the

following three aspects: 1) Maxwell’s equations are solved by the matrix method on a

high resolution mesh whereas a WKB approximation was used in MULTI; 2) electron

collision frequency is modeled to include its effects on the collisional absorption of the

laser, the energy transfer between electron and ion and the themral conductivity; 3)

SESAME equation ofstate are used for electron and ion separately. The code of MULTI-

FS is validated by several absorption measurement performed with aluminum targets

irradiated by a subpicosecond pulsed laser. In order to resolve the multiple timing scales

in the laser—induced plasma plume dynamics. a combined one-dimensional Lagrangian —

two-dimensional Large Particle Model was developed in [86]. This model consists oftwo
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parts. The first part describes the rapid laser-matter interaction within 4 ns. A one-

dimensional Lagrangian hydrodynamic model is used in the first part where the two-

temperature approximation is applied. The laser energy absorption is treated by

numerically solving the Helmholtz equation coupled with equations of motion. The

second part models the two-dimensional plasma plume expansion until several hundreds

of nanoseconds with the results from the first part as the initial condition. The Large

Particle Method. which includes Euler and Lagrange steps, is used to solve the system of

hydrodynamic equations in the second part. The most recent hydrodynamic model for

diagnostics of the plasma created on a surface of Ag target irradiated by intense

femtosecond laser pulses is proposed in [87]. This is a serniempirical model where the

numerical coefficients are chosen so as to ensure the best accordance ofthe simulation to

the experimental measurements. The wave equations are solved for the laser beam

propagation and inverse bremsstrahlung heating is included in the hydrodynamic

equations as the energy source term.

As for the laser ablation of dielectrics, Jiang and Tsai [88] proposed a semi-

hydrodynarnic model because, in spite that the electron number density is govemed by a

Fokker—Plank equation, the temperature equation is still in the hydrodynamic form.

Another difference with other hydrodynamic models is that the heating term in this model

is .loule heating term. The ablations of barium aluminum borosilicate and fused silica by

a 220 fs pulsed laser with different fluences are simulated and the free electron number

density, the ablation depth and the reflectivity are obtained as the simulation results. In

order to interpret the effects of ionization on the interaction between femtosecond laser

and silicon, Li and Ki [89] proposed a model which solves the full Maxwell’s equations
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by the finite-difference time-domain (FDTD) method. The generation of free electrons is

obtained by a local energy balance analysis. The simulation results show that the

ionization of silicon by the incident laser beam makes the silicon behave metallically.

The laser energy is absorbed mostly in the thin layer below the target surface and the

laser beam propagation is even blocked. A threshold characteristic in the regime of

femtosecond laser ablation is clearly seen from the results.

1.3.2 Kinetic Based Models

Although hydrodynamics simulations of laser-plasma interactions have gain great

success in many fields, they tend to be invalid at high laser intensities where collisionless

and relativistic characterize the laser-plasma interaction. A relevant research indicates
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that the validity range of laser mtensrty for hydrodynamic Simulations IS less than 10

W/cm2 [84]. Moreover, even with low laser intensity, hydrodynamic models are still

invalid ifthe Knudsen number of the problem is large, e.g., when a laser-induced plasma

plume expands in vacuum [90].

From the first. simplest one-dimensional collisionless model developed in 1950’s

[91] until today’s sophisticated parallelized three-dimensional collisional code, particle-

in-cell (PIC) method [92, 93] has become the most popular methodology for plasma

modeling, especially in simulating laser-plasma interactions with high laser intensities.

The principle of PIC methods is to solve the equations of motion ofcharged particles in

the self-cor‘rsistent electromagnetic fields that are calculated from the full set of

Maxwell’s equations. The particles are weighted to the spatial grids so that they have an

effective size on the order of the grid, allowing one to model a plasma problem using

fewer particles than in an actual experiment. Except for the numerical errors generated by



the discretization of space and time, PIC methods retain the physics to the maximum

extent theoretically because there are no physical assumptions (such as continuum

approximation) presented. However, due to the limitation of computational expanse and

the diversity of physical characteristics for different problems, there are more or less

approximations applied on PIC codes in the practical implementations.

Nowadays. the representative PIC codes for laser-plasma interactions include

WAKE [94, 95], OOPIC [96-98], QUICKPIC [99], CALDER [100—102], and etc. The

algorithm of WAKE consists of three approximations [94]. The first approximation is

referred to as ponderomotive guiding center motion ofthe particles whereas only the low-

frequency motion of electrons is retained. However, this approximation breaks if there

are self-trapped electrons in the plasma or the axial speed of electron approaches to the

speed of light. The quasi-static approximation is the second approximation in WAKE. It

assumes that the profile ofthe laser pulse dose not change significantly during the time of

interaction with the electrons. As the third approximation, extended paraxial

approximation is applied in WAKE to simulate the laser pulse prOpagation. Based upon

the above three approximations, Chessa et a]. [94] applied WAKE including a tunneling

ionization model to simulate short laser pulse self-focusing in underdense plasma.

Besides the tunneling ionization, the impact ionization due to the binary collisions

between electrons and neutrals are also included in OOPIC, which is a two-dimensional

relativistic object-oriented PIC code [96, 97]. The main feature of OOPIC is that a

moving window scheme is adopted because only the small vicinity around the laser pulse

in the plasma is of interest. The moving window scheme in which the computational

window moves with the laser pulse was firstly adopted in the two-dimensional cylindrical



code of ISIS [103]. In a later work, Decker er al. [104] extended this scheme to the two-

dirnensional Cartesian geometry and simulated forward Raman scattering induced by

short pulse high intensity lasers. The above introduced PIC codes have a common

drawback: highly computationally expansive even with today’s fastest computers [99].

Encouragingly. a newly developed, full parallelized. full three—dimensional PIC code.

QUICKPIC [99]. can largely save the computational time. The main assumption in

QUICKPIC is that there are two distinct time scales for the laser pulse and the plasma

evolution. Besides, the ponderomotive guiding center motion of the particles and quasi-

static approximations are also included. Simulation of a benchmark problem by

QUICKPIC and a conventional PIC code OSIRIS [105] shows that this new code can

reduce the computational time by 2—3 orders of magnitude while reproduce satisfactory

results. However. the ionization mechanisms are not considered in QUICKPIC. Another

representative two- or three-dimensional, parallelized. full relativistic PIC code is

CALDER [100]. which has been applied to simulate the fast electron energy deposition in

fast ignition [102]. proton acceleration [101] and laser-accelerated ion beams [106].

As another particle simulation method of plasma. molecular dynamics (MD)

models are also proactive in simulation of laser—plasma interactions. Unlike PIC, which is

based on particle-mesh (PM) scheme, MD relies on particle-particle (PP) or particle-

particle-particle-mesh (P3M) schemes [93]. Although PM is the most widely applied in

particle simulation, the PP is preferred in some special circumstances, for example, in the

many-body collisions dominated plasmas. In addition, PP can handle three-dimensional

problems just as easily as two-dimensional ones, with insignificant increase in

computational expanse [107]. However, since solving the individual equation ofmotion
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for each ofN particles would require N /2 rndrvrdual force calculations to be undertaken

every integration time step, the main drawback of PP scheme is apparent: the

computational expanse is much higher than that of the PIC approach. In order to utilize

the advantages of both PM and PP to the greatest extent, most MD codes applies P3M as

the underlying scheme, where the force on a particle is divided into a collective, long-

range term from the majority of the particles (PM) and a short range term arising from

particles close to the particle of interest [108]. The main feature of MD models is that the

collisions between particles are inherently treated as many-body collisions instead of

binary collisions in most of PICS. Thus, MD models have been applied to simulate

collective collisional phenomena in plasmas, such as inverse bremsstrahlung [108. 109]

and interactions between KrF laser pulses and plasma cluster with ionization [107].

Gibbon er al. [I 10] also uses MD to simulate the proton acceleration from laser-irradiated

targets in which their calculation is based upon tree algorithm and uses massively parallel

computers.

Comparing to PIC and MD, both of which are particle simulation ofplasrnas, the

Boltzmann equation with Fokker-Planck collision term governing the electron (ion)

collisions can be directly solved to simulate laser-plasma interactions. The first numerical

solution of Fokker-Planck-type Boltzmann equation [111] was obtained in the study of

the effects of steep temperature gradients appearing near the critical surface on the

electron heat transport, where the Boltzmann equation was solved by an expansion ofthe

distribution function in spherical harmonics. In a later work [112], a one-dimensional

Fokker-Planck code, FPI (Fokker-Planck International), was developed and inverse

bremsstrahlung and ion motion were included in the model. In the past two decades, FPI
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was developed and improved by adding more and more physics into it, such as Coulomb

collision, cold ion hydrodynamics, transport for each energy group and self-consistent

electric field to ensure the quasi charge neutrality [113, 114]. In a newer version of FPl

[115], collisional ionization and excitation, three body recombination and de—excitation,

line emission, and the high density effects of continuum lowering and pressure ionization

were included. In this code. the electromagnetic wave was calculated by a Helmholtz

equation solver while the system of equations was solved by finite difference and time-

splitting methods. In order to save the computational expanse. an average ion model

[I 16], which is often used in hydrodynamics code, was adopted in this code. Besides FPI,

there are also other codes to solve the Fokker-Planck-type Boltzmann equation. For

example. Town er al. [117] used their own Fokker—Planck solver to simulate the short-

pulsed laser interaction with solid but no ionization mechanism was included. In a

subsequent work [118], they added collisional ionization and recombination and also

applied the self-consistent average ion model.

Except for the above mentioned kinetic models, there are other approaches to

simulate laser-plasma interaction on the kinetic base. For example, a cellular automaton

(CA) model was developed to simulate laser-plasma interactions [119]. Although there

are many assumptions applied upon that model, such as no ionization and recombination,

fixed ion background and quasi-static electrons, the preliminary results show an

encouraging potential to apply CA on laser-plasma simulations. In Ref. [90], Itina er (1!.

introduced a hybrid model to simulate the laser-induced plasma plume expansion. In the

first stage of plume expansion, a one-fluid two-temperature gas dynamics model was

used to describe the plume and the Large Particle Method [120] was adapted to solve the

I
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system numerically. When the plume expands into a region where the gas dynamics

model becomes invalid due to the steep density gradient and fails to describe the

diffusion process. the direct simulation Monte Carlo (DSMC) method [121] was applied.

Relativistic Vlasov simulation [122] and propagator ofdistribution function [7] are other

examples to simulate laser-plasma interactions by kinetic based methods.

1.4 Main Content of This Research

In the present research. a new model is proposed to simulate interactions between

laser and weakly ionized plasmas. In this model, Boltzarnnn equation is used to describe

the transports ofdifferent species ofparticles in the plasma. The contributions ofelectron

impact ionization and three body recombination are treated as part of the collision terms

in the Boltzmann equation. Besides, the elastic collisions between particles are also

included by using the Bhatnagar-Gross-Krook (BGK) approximation. The laser beam

propagation inside the bulk of the plasma is simulated by solving the full set of

Maxwell‘s equations directly. The Maxwell’s equation and the Boltzmann equation are

coupled by the external force term and the current density. In addition, energy equations

of all particle species in the plasma are derived directly from the Boltzmann equations

and are solved by finite volume method. The advantage of this present model over other

hydrodynamic models is that less assumption are made so that the physics of laser-

plasma interactions can be retained to a great extent, especially for the wave-related

phenomena since they are described by the full set of Maxwell’s equations here.

Comparing to the kinetic based models, this model can be applied in much longer length

and time scales with relatively low computational expanse.
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In Chapter 2, basic theory of lattice Boltzmann method (LBM) with BGK

approximation of the collision term is described. including derivation of the lattice

Boltzmann equation from the continuous BGK—type Boltzmann equation and the

recovery ofthe macroscopic equations by Chapman-Enskog expansion. As an application

example of LBM for incompressible hydrodynamics flow, the two-dimensional driven

cavity flow is simulated to show the capabilities of the standard LBM. Different

evaluation methods ofthe external force term are introduced in Chapter 3. Poiseuille flow,

Taylor vortex flow and free diffusion problem under a uniform applied external force are

simulated to compare the different external forcing models. Based upon the comparison

results, one external force model is selected for all the plasma simulations in this research.

In this chapter, magnetohydrodynamic (MHD) flows, including Hartmann flow, Orszag-

Tang vortex system (both in 2D and 3D) and magnetic reconnection problem. are

simulated by a new developed hybrid LBM model, where the induction equation is

solved by the finite difference method and it is coupled with the LBM through the

external force term. Although the standard LBM are successful in many applications of

fluid flow problems, it may produce large simulation errors if the physical properties of

fluid are used in the calculation. It gets more deteriorated in plasma simulations. In order

to overcome this problem, a rescaling scheme is introduced in Chapter 4 to detemrine the

simulation parameters ofLBM. Isothermal weakly ionized helium plasma is simulated by

using LBM with the rescaling scheme in this chapter. The new model as well as the

rescaling scheme is validated by the simulation results of electrostatic wave in the plasma

and electron diffusion problem. In Chapter 5, the LBM model developed in Chapter 4 is

extended to simulation of laser interaction with weakly ionized plasma. This model,
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which is essentially a thermal LBM model, takes into account for the temperature

evolutions of individual species ofplasma particles so that the electron impact ionization

and its reverse process. three-body recombination, can be included. Preliminary results of

interaction between a continuous laser beam and a weakly ionized helium plasma are

presented in this chapter. The capabilities, limitations and future work necessary for

improvement ofthe present model are concluded in Chapter 6.
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Chapter 2

Lattice Boltzmann Method for Incompressible Hydrodynamics Flows

In recent years, lattice Boltzmann method (LBM) has been widely applied as a

successful alternative scheme to simulate fluids flows [123]. Unlike the traditional

numerical methods which solve the Navier-Stokes equations for macroscopic variables,

LBM is based on kinetic theory and solves the Boltzmann transport equation for the

evolution of particle distribution functions. The macroscopic averaged properties which

obey the desired macroscopic equations will be obtained from proper moments of the

distribution function. LBM first originated from its Boolean counterparts, the lattice gas

automata (LGA), but it has been proved that it can be derived directly from the

continuous Boltzmann transport equation by descretization in both time and phase space

[124, 125], which gives LBM a more rigorous theoretical foundation. In this chapter,

some basic theories of LBM for incompressible hydrodynamics flows. including the

BGK approximation of the collision term, derivation of lattice Boltzmann equation fi‘om

the continuous Boltzmann equation and recovery of macroscopic conservation equations

by Chapmann-Enskog expansion, are introduced. As a simulation example, a 2D driven

cavity flow is simrrlated by the standard D2Q9 LBM to illustrate its capabilities.

2.1 Boltzmann Transport Equation and Its Collision Term

The Boltzmann equation. a nonlinear seven-dimensional (in phase space) partial

differential equation, describes the evolution of the phase space distribution functions of

different species of particles in various types ofgascs or gas mixtures, including plasmas.



The continuous Boltzmann transport equation for the particle species of s in the fluid has

the following form:

i4" V5. 'Vx/Is' +35 'vas 2 Q5 (ft/’) (1)
(71

where f, = f, (x,vs ,1) is the single particle distribution function in the phase space, v3.

is the microscopic velocity and a, is the acceleration of fluid particles caused by the

external force. Based upon the assumption that only binary collisions in the fluid are

taken into account [126]. the collision term Q,(f.f’) representing the change of rate of

the distribution function due to the collisions can be expressed as:

472'

Q..<jxf'>= ldv.» ] (190...»(Qilvs-v,»|[frv;)frvf,«)—/(v.,.)f(v,«)] (2)

I 0

where the subscript s and 5' represent particle s and particle s' which are involved in

the binary collision. the superscript prime stand for the post collision state, Q is the solid

angle in the collision and 05.540) is the differential collision cross section of the

collision between particle s and particle 5'. When s'=s , the above formation of

collision term describes the self-collisions; otherwise, it represents the cross-collisions

between different species of particles in the fluid.

After we obtain the distribution function by solving the Boltzmann equation. the

desirable macroscopic quantities can be deduced by proper moments of the distribution

function. For example, the number density, macroscopic velocity and thermal energy are

given by:

N, = [ftg(x,vs,r)rlv5 (3)
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where .95 2 ~31 8 5 and DO rs the degree of freedom ofthe fluid particle.
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Since the Boltzmann equation is essentially a statistical treatment of the

microscopic behaviors of the particles inside the gas or plasma, it is more fundamental

than Navier-Stokes equation which is based on the assumption that the fluid of interest is

continuum macroscopically; unlike Navier-Stokes equation which is only applicable for

small Knudsen number (usually less than 0.1). the Boltzmann equation can be applied in

a much larger range of Knudsen number [127] and thereby it is especially suitable to

describe the complex fluid flows, such as non-ideal fluids, multiphase or multicomponent

fluids and those which cannot be described by Navier-Stokes equation accurately and

effectively.

Unfortunately, the nature that Boltzmann equation expressed by Eq. (I) with the

collision term (Eq. (2)) is an integral-differential equation makes it almost impossible to

find analytical or even numerical solutions [126]. An alternative way to evaluate the

collision term is provided by the relaxation model among which the BGK model [128] is

the most commonly used. In this model it is assumed that a situation initially not in

equilibrium reaches a local equilibrium condition exponentially with time. as a result of

collisions, within a relaxation time /l_,.. The local equilibrium state of the particles is



characterized by a local equilibrium distribution function [SW/(xxx) which often takes

the form ofMaxwell—Boltzmann distribution:

7
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where D is the dimension of the space and 65 =.//cBTS/ms is the sound speed of the

fluid particle s with [(3 as the Boltzmann constant, Ts as the temperature and ”’3 as the

mass of the fluid particle s. If there is only one type of particle existing in the gas, the

collision term can be mathematically expressed as

_ (f5 _ freq ) 7

A ( )Q5 ([3 ’ ff) :

.8'

Finally, by neglecting the subscript s, the single-particle Boltzmann equation with BGK

approximation for the collision term can be written as:

T+v~fo+a-va:————— (8)

Cl zl

c7 .f—./“"’

Note that the simplification of collision term by BGK model expressed by Eq. (7)

is only valid for short-range elastic collisions. Physically, there are also long-range

collisions inside the fluid. such as the Coulomb collision between charged particles in

plasmas. By considering that the charged particle encounters a series ofconsecutive weak

(small deflection angle) binary collisions [129], one can derive the Fokker-Planck

collision form to describe the long-range collisions from Boltzmann equation. The

general form of Fokker-Planck collision term for the charged particle s can be written as

[130]:
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The vector <Av/AI>a and the tensor <AvAv/At>a describe the dynamical friction and

diffusionin velocity space. respectively. They are given by
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where f3.I(v,.I) :f,I(x.v5I,t) is the distribution function of particle species 5', and (I,

and (/_v' are the charges of particles 5 and s', respectively. The summation is over all

charged components including particle s itself. A is the plasma parameter which is the

number ofcharged particles in the Debye sphere. In practical calculation, many simpler

forms of Fokker-Planck equation as well as numerical algorithms are adopted to solve Eq.

(9) [l3l-133].

In weakly ionized plasmas, since the number density of neutral particles is much

greater than that of charged particles, the collisions with neutral particles dominates the

whole process. Thus we neglect the long-range Coulomb interaction between charged

particles in this research and the collision term approximated by BGK model as

illustrated in Eq. (7) is applied to evaluate the elastic collisions between charged particle

and neutral particle in all simulations ofthis research.
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2.2 From Boltzmann Equation to Lattice Boltzmann Equation

By neglecting the external force temr in Eq. (8), the single-particle Boltzmann

equation can be rewritten as [125]:

 

er]

:z._f_- f (,7,
(ll 21. A.

(f 5 . . . . . . .

where T = :— + v - V7,, rs the Lagrangian derivative along the microscopic velocrty v and

t I CI ‘

the equilibrium distribution function f6" takes the form illustrated by Eq. (6). By

integrating Eq. (12) over a small time interval Ar . we can get:

—Ar/’/i 4’
‘ e ,/ ., _, /

f(x+vAt,v,t+At)= ,2 Ie‘S/flft(](x+vs,v,t+s)ds+e ‘3""1f(x,v,r) (I3)

I 0

 

where 0353A! . Assuming that the time step Al is sufficiently small and f‘"I is

smooth enough locally, f“"’(x+ vs,v,t +5) can be expanded by Taylor expansion with

neglecting the term of order O(AI2):

f"‘/(x+ vs,v,t +3) :ES—f"‘/(x+vAt,v.r+AI)+[l——AS—]f‘jq(x,v,t) (I4)

I 1

Substituting Eq. (14) into Eq. (13) and after some manipulations. we can get:

f(x + vAt, v.1 + At) — f(x, v,t) = (e—A’M — l)[f(x, v.1) — f"‘/ (x, v,1)]

. I, 1 ) (15)

+(1~—§—+-§-67A”’1)[f‘q(x+ vAr,v,t +Ar)—f‘"(x,v,t)]

t r

—;\I//l -
Again, expanding e in its Taylor expansion and neglecting the terms of order

()(AIZ) , we obtain the Boltzmann equation discretized in time as:

_/'(x+ vAr,v.r +At)—f(x,v,r) = ——A—t—[f(x,v,I)—f"q(x,v.t)] (16)

r
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where r : xi/Ar is the dimensionless relaxation time. Note that Eq. (16) has first order

accuracy in time [125].

Eq. (16) is still continuous in the phase space and v e (—w,+oe) for 2D problems.

As illustrated in Eqs. (3) to (5), the hydrodynamics variables are proper moments of the

distribution function f(x, v.1) (or equilibrium distribution function f"q(x,v,t)) with

respect to the microscopic velocity. This can be generalized as:

I I:

raw): [/‘(x.v,I)z(v)IIv = ] f""(x, \’.I)2./(V)dv (17)

-—I —’f‘

where ¢(x,r) is the hydrodynamics variable, which is dependent upon both position and

time. and ;_/(v) is a function of the microscopic velocity v. Assuming that the

temperature is constant and the macroscopic velocity ofthe particle is small (low Mach

number approximation), the equilibrium distribution function can be expanded with

Taylor series up to the order of (u-u) [124, 125]:

  

,2 , , 2 2

“"l =————————’2I0,2 exp ——-V2 1+(v 2")+(v "4) — " 2 (18)

(276 ) 219 6 20 20

Substituting Eq.(18) into Eq. (17), ¢(x,t) can be expressed as:

’J.‘ V2

¢(x,r)= [exp ———7— (Vm)(/V (19)

_x 20"

where r//(v"’) is a m-th order polynomial of v. The integration in Eq. (19) has the

2

structure of c7" and the integration limitation is from cc to —-oc. Enlightened by the

above observation. it is intuitive to apply Hermite quadrature to find the value of Eq. (19)

exactly to the order ofm:
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e".

¢(.r,r)=ZWa exp -——“3 my) (20)

C!

where WM and ea are the weights and abscissas (or discrete velocities) of m-th order

Hermite polynomial. respectively. Then the hydrodynamics variables can be computed by

the quadrature as well:

n = EL; (21)

Cl

nu = Zea/a (22)

a

118 = %Z(ea -u)2fa (23)

a

According to the dimensions ofthe physical problem (ID, 2D or 3D) and the number of

macroscopic variables desired, different number of abscissas of the Hemtite polynomial

may be needed, and accordingly, resulting in different sets of discrete velocities. For

example, the D2Q9 discrete velocity model may be applied for 2D isothermal problems.

To derive this nine-bit lattice Boltzmann equation, a Cartesian coordinate system is used

and r//(v’”) is set as r/I(v"') = t)_¥’iI',’. where I S n S m . Then Eq. (19) can be rewritten as:

‘00,,” = (x/EHYNHHZINIIN (24)

where

x -2

1m = J‘e—b Sym‘ E: (25)

—3c
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and L; = v,./\/2(7’ or t: =v\./\/20. In the derivation of the nine-bit model in 2D, it is

natural to use the third order Hermite quadrature to evaluate Eq. (25); that is,

3

,VIII . . , . ' . . ' . . ‘ .

I," = Z (015/ , where the three abscrssas and the corresponding three weights are.

i=1

Then Eq. (24) becomes:

4 8

7 7 7
¢(x,l) : 20‘(u§w(0)+ Z (elegy/(ea)+ Z mfg/(ea) (27)

a=l 0:5

where the discrete velocities ea are:

(0, 0)
a = 0

ea 2 (cosrpmsin (12a )c' a 21.2.3, 4

(cos (pa .sin (pa )v/2c a = 5,6, 7,8

 

 

   
 

6 2 5

A

0

3< >1

Y

7 4 8

Figure 1 Schematic of D2Q9 square lattice. The two-dimensional continuous phase

space is discretized by nine microscopic velocity components in a square lattice.
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with

{ma =(a—l)7r/2 a=1,2,3,4 (29)

(pa = (a—5)7r/2+7r/4 a = 5,6,7,8

where (cs/30 is the lattice speed and is defined as ('.=. Art/AI. The schematic of the

discrete velocities is shown in Figure 1.

Comparing Eq. (20) and Eq. (27), the weights W0 is Eq. (20) can be found as:

 

2

We! 2 2,7612 exp ea) (ya (30)

26”

where

'4/9 (1 =0

ma 2 1/9 a=l,2,3,4 (31)

1/36 a = 5,6,7,8

Then the discretized equilibrium distribution function is:

 

-

7

, 3 . t . -
((l _ I ‘L’(] _ I _

fa —llaj (x,ea,I)—a)an 1+ 2 + 4 2 (32)

(' 2(' 26

Note that in the above derivation, the phase space and the configuration space are

discretized simultaneously through the relationship between the lattice speed and the

spacing. Finally, the discretized Boltzmann equation, or lattice Boltzmann equation.

takes the follwing form:

/"(X~I)- .IJ‘HXJI

Z'

 _/"(x+eaAI,r+Ar)=f(X.r)—‘ (33)

In the practical implementation of standard LBM, there are always two steps

involved: collision step and streaming step. In the collision step, the fluid particles collide

with each other on the local node point to finish the momentum exchange and energy
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exchange (if it exists in the physical problem). The particles then stream to the

neighboring nodes along the directions of the descretized velocity vectors in the

streaming step. These two steps can be illustrated mathematically by:

Collision step:

fa(x9’)—,/;)(l(xvt)
 f~U(x,I)'-'fa(X,I)- (34)

Streaming step:

‘/‘a(x+eaAi,t+Ai)=fa(x,1) (35)

where fa(x,i) represents the post-collision distribution function along the direction a.

From Eqs. (34) and (35), we can see that the collision step is purely local and the

streaming step is a uniform data shifting and only demands little computational effort.

The two-step scheme is explicit. easy to implement and straightforward for parallel

computation.

2.3 From Lattice Botzamnn Equation to Navier-Stokes Equation

The desired macroscopic conservation equations, such as the Navier-Stokes

equation, can be recovered by the Chapman—Enskog expansion of the lattice Boltzmann

equation as shown in Eq. (33). The significance of this derivation lies on the fact that

some fluid properties. such as the kinematic viscosity, can be retrieved from this

derivation.

Introduce the following multiscale expansions to the a -component distribution

function and the time derivative:

-() ~ I ,2 ‘ 2 , ~

fa =12. Hrs-1.; We 1.: ’+--- = Z My” (36)

11:0
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where r: is the time step Ar.

By taking the Taylor expansion to /;1(x + eaAm + A!) , we can have

fa(x +eaAr,i + Ar) = fa(x,r) + 0,]? (x,r) + D,2fa(x.i) + ()(Al3) (38)

'l

where D, = —:’—+ea IV. Substituting Eqs. (36), (37) and (38) into Eq. (33) and sorting the

0!

resulted equation by the order of 8, we can get:

 

0(50):

(£0) =f5" (39)

, ‘1 .

0(1, ).

I

DIr—rféo’ =7- 3.” (40)

()(a‘z):

1) ‘10) _ .
(fa +(2r DD, /;1)=_lfc((2) (41)

all 22' 0 T

q

7c
where D, 5(—

II D,

" II

+ea-V). The distribution function in the above expansion is

constrained by:

(0) 1 7 n

Zfa : _
0 ea‘ nu

. (42)

1
2m] :0 ">0

0 ea—I 

Taking the zeroth and first order moments oqu. (40). we get:
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~——+V--(nu)=0 (43)
CIO

and

8+(nu) 1V "(0): (44)
 

cto +m

where “(OlznzZeaeaféO’ is the zeroth order momentum fiux dyad and

Cl

"(0’ = Inna/“I + uu) according to the kinetic theory. Similarly, by taking the zeroth and

first order moments of Eq. (41 ), we can get:

—‘—_—.0 (45)

and

5+(nu) (2 —l) l

811 21' I71

 —V [1‘1 =0 (46)

where fl“) = InZeaeafl,” is the first order momentum flux dyad. From Eq. (40), we

CI

()0 Ell—“0) (0)

have” )z—rZeaeea D,0/',],) =—r ——(fil—[—+V-e,,eaeaja , where the second term

" 0

on the right hand side reads V-eaeaea. “(0) 21211102 [(V u)l + 2Vu] [134]. By neglecting
(1

7.

the terms greater than the order of O(u”) [134], we can get:

7 _

ELEV-Hm: —(2T———1—)mnr‘)2V"u (47)

2r

Letting the kinematic viscosity v

v = (r —0.5)03Ar (48)
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Eq. (46) can be rewritten as:

  

(3‘ nu l’ -.7

(. )— n\ 'u = 0 (49)

CI] A!

. a 0 8 .

Recalling that ::—+At:— (as shown in Eq. (37) and truncated at the order of

ct EIO ct,

(')(A12)) and using Eqs. (43), (44), (45) and (49), we can finally recover the continuity

equation and the Navier-Stokes equation from the lattice Boltzmann equation (Eq. (33))

as:

Conlinuirv equation.“

 

0n

—+V-(nu)=0 (50)

(3

Nuvic’r-Sm/tcs equal/tin:

“.‘ 1

dim)+V-(nuu)=——Vp+vnV2u (51)

C! m

where p = n/cBT is the scalar pressure.

From the above derivation, we can see that there is a modification of the fluid

viscosity by 0.5 as illustrated in Eq. (48), which leads that the viscosity is not only

dependent on the physics but also dependent on the lattice. This means that ifthe physical

properties of fluid are used in the simulation, the resulted viscosity may not be equal to

the physical one. This problem can be solved by using a rescaling scheme developed in

this research. It will be explained in details in Chapter 4.

2.4 LBM Simulation of Two-dimensional Driven Cavity Flow

In order to illustrate the capability ofthe standard D209 LBM as described above.

a 2D incompressible driven cavity flow is simulated on a uniform 256><256 square grid
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system. The driven cavity flow which is bounded by a square enclosure and driven by a

uniform outer flow on the top shows rich vortex phenomena at many scales depending on

the Reynolds number [135-137]. In this simulation, the no-slip conditions are applied at

the left. right and bottom walls; that is, the macroscopic velocities at the boundary node

points on the wall are equal to zero. Viewing from the microscopic point, the distribution

functions just reverse their direction but keep their values on the wall. For the top

boundary. since the outer flow remains unchanged physically. the equilibrium values

with the outer flow speed ur are set to the top nodes as the updated distribution function

after each streaming step in the calculation. The simulation parameters are set as: Ar = 1,

A! =1 and po = 1.0. The driven velocity on the top of the cavity is 11,, 20.1 and the

V

3”“f. A .\'

Reynolds number is defined as Re 2 where N, is the grid number along the top

(I — 0.5)

boundary and the viscosity used here is calculated from Eq. (48).

Figure 2 shows the streamlines of the cavity flow at different Reynolds numbers.

The dependence of the vortex on the Reynolds number can be seen very clearly from the

figure. Figure 3 illustrates the x- and y—component velocities through the geometric

center of the cavity. Their patterns agree with those in the literatures very well. The

detailed quantitative comparison with results in the literatures will be presented in

Chapter 4.
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Figure 2 Streamlines of driven cavity flow with different Reynolds numbers. The

flow pattern is strongly dependent on the Reynolds number. Ifthe Reynolds number

is sufficiently large, secondary vortices appear at the right and left lower corners.
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Figure 3 Velocity profiles through the geometric center of the cavity (a) Profiles of

x-component velocity; (b) Profiles of y-component velocity



Chapter 3

Evaluation of the External Force Term in Lattice Boltzmann Method

In the simulation of the driven cavity flow presented in the previous chapter, no

external force exerts on the fluid particles. Accordingly, the lattice Boltzmann equation

takes the form illustrated by Eq. (33). But in most practical cases, especially in the

simulation of plasmas, there are always various types of external forces acting on the

particles, affecting the rates ofchange of momentum and energy. It is very important to

evaluate the external force term in the lattice Boltzmann equation accurately. However,

the external force term a-va in the Boltzmann equation cannot be calculated directly

because the dependence of the distribution function on the microsc0pic velocity v is

unknown. Thus, it is necessary to develop alternative methods to evaluate the external

force term in the Boltzmann equation. In this chapter, five different external forcing

models are compared through simulations of Poiseuille flow, Taylor vortex flow and free

diffusion problem under a unifomt externally applied force. Based upon the comparisons,

He’s model is selected to evaluate the external force term in this research. By using He’s

model, a new hybrid LBM model is developed to simulate magnetohydrodynamics

(MHD) flows. This model is validated by Hartmenn flow, Orszag-Tang vortex system

and magnetic reconnection problem in this chapter.

3.1 Different External Force Models

The lattice Boltzmann equation with presence of an external force term can be

written as [138]:
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fa(x+ea/_\i.r+Ai) =fa(x,i)—
 

_ er]

fu(x’{) f“ (x°{)+AfF(1
(52)T

where Fa is the discretized external force term along the a -th direction of the discrete

velocity vector. The corresponding equilibrium distribution function in Eq. (52) is

defined as (in D2Q9 scheme):

:1: a: 2 *2

3(e. -u) 9(e -u) 3n

“7 + a -— 7 (53)

c~ 204 26"

  
er] _ .

fa —(.),,n 1+

where u* is called the equilibrium velocity. Different formations of Fa and u* lead to

different treatments of the external force term in the lattice Boltzmann equation.

The very first and simplest external force model was developed by He 8! a]. [139]

and is referred as to Method 1 in this research. In this model, the external force term Fa

manea -a

7
0..

takes the form as Fa = where a is the acceleration of the fluid particle due to

. . . . . It . . . .

the external force. The equilibrium velocrty u rs equal to the fluid macroscopic velocrty

u; that rs, u* = u = :z’zeaja . This method rs suitable for the case where the spatial and

a

temporal gradient of the external force is negligible. Thus. it is always applied for the

flows under a constant body force, such as constant pressure gradient or gravity.

The second method to evaluate the external force term (which is referred as to

Method 2 here) was originally developed to simulate nonideal fluids by the LBM [140-

142]. It was originated independent by two groups within the frame of Hermite expansion,

which is consistent with the derivation of the lattice Boltzmann equation, and with some

constraints ofdifferent order moments. In this model, the external force term is written as
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(ea —u*) (ea -u*)ea
+

02 04

 Fazwana- and the equilibrium velocity has the same

- . . . . . . . l .

defrrntron as the flurd rnacroscoprc velocrty. 1.e. u = u = —Zeafu . In this model, the

n
(1

contribution ofthe external force to the momentum flux is considered. But like Method 1,

it is still only applicable for the case where the spatial and temporal gradient of the

external force is sufficiently small. In a later research [143], this model is updated by

- . . . . l 1 . .. .
defining the flurd macroscopic velocrty as u =—Zeafa +—7—Ata while the equrlrbrrurn

n , -
(1

velocity keeps the same definition as before. This approach eliminates the temporal

gradient constraint of the external force. but still cannot be applicable for the large

spatially varying external force. This updated version of Method 2 was applied by

Breyiannis and Valougeorgis [144] in a recent research to simulate 3D

magnetohydrodynarnics flows where the magnetic force J x B is treated as the external

force.

Method 3 was proposed by Buick and Greated [145]. The external force term in

 their model is Fa :[l—ij (0‘12”(ea-a). The equilibrium velocity and the fluid

0

. . - . . .. 1 l

macroscopic velocrty have the definition as u =u=— E ea.fa+;Aia. In a later

it ..
Ct

research, Guo er a/. developed a model (which is referred as Guo‘s model) where the

 

Ii: Ir:

(ea—u )+(ea-u )ea

7
_, and 170th

0“ 0

- . 1
external force term rs defined as Fa :[1—2— mana-

r

the equilibrium velocity and the fluid velocity have the same definition as Method 3.



The most popular external force model was developed by He 6! a]. [146] (which

is referred as to He’s model here) and it has been widely adopted in many researches

[147-149]. This model is based upon the fact that fa] is the leading part of the

expansion of the distribution function and the gradient of f“l has the most important

contribution to the gradient of f. Then the external force term can be written as:

{...va 2. a‘V‘_.‘/WI :_E.iv7;l£2

‘—

.f°“/ (54)

Accordingly, the Boltzmann equation with the external force term becomes:

 

(3f fr-fm a'(Vr—u) er .
—+v-V =—‘ + I (55)

at "f zi 93 f

By following the similar discretization approach illustrated in Chapter 2, the lattice

Boltzamnn equation reads:

 

fa(X+eaAl,l+
At):fa(x,,)_

fa( ) fa ( )+ (a )

T

62 f;‘/(x,z) (56)

Note that the assumption that the momentum of fluid particles conserves at each collision

[150-152] has been applied in derivation ofthe above equation.

In summary, Table 1 lists the extemal force temr F and the equilibrium velocity
(1

u* in different models. The fluid macroscopic velocity u has the same form as the

equilibrium velocity in all the five models and thus has not been listed in the table.

In order to select an accurate external force model for simulation of plasmas, the

above described five models have been applied to simulate the same physical problems

and the results are compared. In all the simulations, the external force term takes the form

listed in Table 1. The discretized equilibrium distribution function follows Eq. (53) where
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the equilibrium velocity is evaluated according to the form shown in Table 1.

Correspondingly. the lattice Boltzmann equation shown in Eq. (52) is used.
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He‘s IV’IOCICI —(—0aT——)—féq(x,l) ZZeafa
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Table 1 Fa and u'" in different external force models

The first simulation example is the Poiseuille flow between two parallel placed

plates which are located at ,v = O and y = 2H respectively. The analytical solution ofthe

fluid velocity is:

u"‘ =[i'l‘(H—%), 0] (57)
pl’

where ,0 is the mass density of the fluid, v is the kinematic viscosity which can be

determined by Eq. (48) and g = —dp/dx is the constant pressure gradient from the inlet
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to the outlet. In this simulation, g is treated as the external force term in the lattice

Boltzmann equation and thus, the acceleration term in Fa can be written as a = [5, 0 .

,0

The simulation was taken on a 256><32 grid system. The length and height ofthe

computational domain are 1.0 and 0.125 respectively. The lattice speed c is set as 1.0

and the dimensionless relaxation time 2' is 0.6. No gradient boundary condition was

applied at the inlet and the outlet while no-slip boundary condition was implemented on

the top and bottom walls. The fluid is initially stationary and is accelerated by the

pressure gradient when 1 >0. The calculation is terminated ifthe flow reaches its steady

state. The convergence criterion is:

 

~n+l - - "I ' '

(1.1'J
a (lit/I)

where the superscript n+1 denotes the values at the next time step. Different values of g

were used in the calculation as long as the low Mach number approximation is retained.

The relative errors between the simulation results and the analytical solution are listed in

Table 2 where the error is defined as:

 

Jinn-58028.1)—u_‘,.4(.v,.,jA_v)]2

error = I (59)

\[Z [113.4 (.t',. . jA)‘)]2

j

 
 

[,3 . . , . . . ,.

where n, represents the x—component velocrty obtained from the srmulatron while 11,1

is the analytical solution from Eq. (57). The error is only calculated at the center cross

section along the x-axis (i=128) because the flow is in the steady state and ii, is not

dependent upon -r. The relative errors listed in Table 2 show that, although the

48



performances of Method 3 and Guo’s model are slightly better, the five external force

models almost have the same accuracy for simulation of Poiseuille flow which is driven

by a constant external force. Without surprise, the error grows with the increase of the

magnitude of the force because a larger Mach number is resulted by a bigger extemal

force. Figure 4 shows the profile of x-component velocity obtained by He’s model with

g = 5.774x10‘2 . It is apparent that even with the largest error in Table 2. the simulation

result is still in a good agreement with the analytical solution.

 

 

 

 

 

 

      

g (X102)
1.155 2.309 3.464 4.619 5.774

Models

Method 1 4.499 4.888 6.314 8.414 11.043

Method 2 4.500 4.888 6.315 8.416 11.046

Method 3 3.672 3.931 5.116 7.057 9.596

Gtto’s Model 3.672 3.931 5.116 7.058 9.597

He‘s Model 4.500 4.888 6.315 8.416 11.046

 

Table 2 Relative errors (x104) of Poiseuille flow
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Figure 4 Profile of x-component velocrty obtained by He’s model (g = 5.774X10 ).

The simulation results agree very well with the analytical solution.

As the second simulation example, an unsteady 2D Taylor vortex flow was

simulated by all the five external force models aforementioned. The simulation was

carried on a 129><129 grid system with the dimensions of the computation domain of

—zr S .\',_i‘ S 2?. The space- and time-dependent acceleration due the external force is:

P" _

 

  

7

It It“ .

— 1 0 8111(2/t'lx)exp[—Zl’(/\'12 +k§)’l
a = A2- 2

(00)

' u .
——l—Q8111(2/t2y)exp[—2V(/\'i2

+ A22 )1]
_ ._ 1'2

J

where 110 is the magnitude of the flow velocity and it is set as 113 = 0.001 so that the

compressibility of the flow can be neglected, v is the fluid viscosity, k1 and k2 are the



wave numbers and k1 2 k2 21.0 in the calculation. With the external force shown in Eq.

(60). the analytical solution ofthe velocity field can be found as [138]:

u- ’“0 coslki-Y)Sinlk2.l-‘)€XP[-V(/<12 + 4% )I]

— no {1 sin(k1x) cos(k2y) exp[—v(kl2 + k7? )t]

2

1n the practical simulation, the time step AI is set equal to the spacing step Ar. Then the

dimensionless relaxation time I can be retrieved from Eq. (48) with the value of

v = 0.005 . The initial velocity field is set as Eq. (61) with I: 0. The periodic boundary

condition [153] is applied for all the four boundaries ofthe computational domain.
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Figure 5 Evolution of relative errors of simulation of Taylor vortex flow obtained by

the five external force models. All the errors are in the same order of values.
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Figure 5 shows the relative errors of the simulation versus the time steps where

the error is defined as:

where u U”

 

JZ[uLB(t',./‘) — u"‘(z‘4v../4.ttiiz

111'

JZuAtiAr../Ar)2

1'. j

 
C’I‘I'OI' =  

(1.)) represents the velocity at the node point of (1',_/') obtained by the LBM

and ll'i1(1'A\‘.‘/'A_i') is the analytical solution according to Eq. (61) at the corresponding

position (1'At‘,j£\v). It is clear from Figure 5 that all the relative errors are in the same

order ofmagnitude. Although Method 3 and Guo’s model present better performance in

U
x
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0
,
y
)
/
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0

Figure 6 Profiles of x-component velocity along the center line of x-axis
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at time steps of 1500 and 3000 by using He’s model. The simulation results are in

good agreement with the analytical solutions.



simulate temporally and spatially varying force as illustrated in Figure 5, other methods

also can give highly satisfactory results. For example, Figure 6 shows the profiles of x-

component velocity along the center line of x-axis by using He’s model at different time

moments. Comparing with the analytical solutions which are represented by the solid

lines in the plot, He’s model can reproduce excellent results with respect to the analytical

ones.

Finally. let‘s check the external force models by simulating a simple free

diffusion problem with a constant force pointing to the positive x-direction. Initially. the

fluid density has a Gaussian distribution centered in the computational domain with the

maximum perturbation of the density as 001,00. With a constant external force acting

along the positive x-direction, the analytical solution ofthe fluid density is:

2 2
0001

1‘-.. .— ’ I
‘0_ P.

p'*(x,,t».t)=p0+ p0 ex _(‘ ’9 HI) +0 .1.)
—-——.— (63)

(1+t/lt0) I'2(i+I/[0)

 

where (31.116) represents the center point of the computational domain, r=20Ar and

10:1'2/41) where D is the diffusivity which can be recovered from the lattice

Boltzmann equation as:

D=(r-—0.5)t92dt (64)

In Eq. (63), 1", is the magnitude ofthe drift velocity "(1 due to the external force, which

is calculated as follows [154]:

"d = —a TA! (65)
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The simulation was taken on a 129><129 grid system with the dimension of the

computational as 1.0. The time step is set equal to the Spacing and consequently the

lattice speed c' = 1.0. Different amplitudes ofthe acceleration were used in the calculation.

Table 3 lists the relative errors ofthe diffusion problem with different amplitudes

of the external force. The relative error in this case has a similar definition as shown in

Eq. (62) where the velocity is replaced by the fluid density:

 

Zip/“B (1', j) — pA (rm, 74.1112

1.]

(66)

f2724114
1374.l

e

 error =

117'

We can see from the table that the errors increase with the enlargement of the extemal

force as expected. However. Method 3 and Guo’s model show larger errors with respect

to Method 1, Method 2 and He’s model.

Figure 7 shows the fluid density distribution at 200 time steps with different

amplitudes ofthe external force. The solid lines represent the analytical solutions. It can

 

 

 

 

 

 

a" 0.5 2.0 4.0 6.0 8.0 10.0

Models

Method 1 1 223 1.240 1.297 1.389 1.515 1.673

Method 2 1 223 1.250 1.335 1.471 1.650 1.864

Method 3 1.261 1.755 2.799 3.968 5.172 6.385

odo’s Model 1.271 1.862 3.060 4.371 5.705 7.033

He‘s Model 1.223 1.251 1.336 1.469 1.641 1.840         
 

Table 3 Relative errors (X105) of free diffusion problem

with different amplitudes of the external force
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Figure 7 Fluid density distribution obtained by He’s model and Guo’s model at 200

time steps with different magnitudes of the external force: (a) ax = 4.0 (b) ax = 10.0.

Both Guo’s model and He’s model can produce good results if the external force is

small (as shown in (a)). However, if the external force is relatively large, Guo’s

model induces larger error than dose He’s model (as shown in (b)).
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be seen that the Guo’s model can give relatively good results ifthe external force is small

( Figure 7 (a)). However, if the external force is large to some level, e.g. the case of

a, =10.0. Guo’s model cannot reproduce the satisfactory results, as shown in Figure 7

(b). Meanwhile, as illustrated by Table 3 and Figure 7, the results obtained by He’s model

have good agreement with the analytical solutions even with a relatively large external

force.

In conclusion, although Method 3 and Guo’s model behave better in the

simulations of Poiseuille flow and Taylor vortex flow, they show poor performance in the

simulation free diffusion problem, especially when the amplitude ofthe external force is

large. Method I possess higher accuracy for Poiseuille flow and the diffusion problem,

but it gives large errors in simulation of Taylor vortex flow. Method 2 and He’s model

have the same accuracies for the Poiseuille flow and the Taylor vortex flow, but He’s

model is better in diffusion problem. Comprehensively considering the above observation

from the results obtained by the five external force models, He’s model is chosen in this

research for all the simulations thereafter.

3.2 LBM Simulation of Magnetohydrodynamics Flows

By using He’s model to evaluate the external force teml. a hybrid lattice-

Boltzmann finite-difference method is proposed in this research to simulate

incompressible, resistive magnetohydrodynamic (MHD) flows. In recent years. many

attempts have been made to develop LBM algorithms for MHD problems. Chen et al.

[155] and Martinez er (ll. [156] employed the bidirectional streaming for 2-D MHD

problems where the distribution is propagated into two different directions associated

with the velocity and magnetic field. The former used 37 discrete velocities while the
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latter reduced it to 13. Schaffenberger and Hanslmeier [157] later reduced the number of

velocities even further to nine by employing the standard streaming rule on a 2-D square

lattice. Dellar [158] developed a new method, where two distribution functions are

utilized to represent the hydrodynamic momentum and the magnetic induction. The

hydrodynamic part is simulated using the conventional low Mach number LBM, and the

magnetic field is represented by a separate vector-valued magnetic distribution function,

which obeys the vector Boltzmann-BGK equation. This method has been later extended

to 3-D by Breyiannis and Valougeorgis [144].

In all the afbre-mentioned methods. both the magnetic induction problem and the

flow problem are dealt with by a lattice kinetic approach. However, while employing

LBM for the Boltzmann equation is natural, the use ofa kinetic approach for solving the

magnetic induction equation is not quite intuitive because, after all, the Boltzmann

equation and the magnetic induction equation constitute a set ofgoverning equations for

MHD. In other words, a lattice kinetic approach does not need to be used for the

magnetic induction problem even though it is a more consistent approach and has many

advantages in many cases. In fact, other numerical methods, such as the finite difference

method. can be easily employed to solve the magnetic induction equation with equal or

better accuracy because those methods are well established.

In this proposed hybrid model. the lattice Boltzmann equation with the Lorentz

force term is solved to update the flow field while the magnetic induction equation is

solved using the finite difference method to calculate the magnetic field. This approach is

methodologically intuitive because the governing equations for MHD are solved in their

respective original forms. In addition. the extension to 3D is stl'aiglltfbl‘ward. To validate
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this newly developed model, the Hartmann flow, the Orszag-Tang vortex system (2D and

3D) and the magnetic reconnection driven by doubly periodic coalescence instability are

simulated. The obtained results agree well with analytical solutions and simulation results

available in the literature.

In the present model, the governing equation is the BGK-type Boltzmann

equation as shown in Eq. (8), where the equilibrium distribution function f” is

described by the Maxwell-Boltzmann distribution as follows:

_ 2

f6" -——’2——exp _____(vu) (67)
_ 2 0.1-'2 ‘ .2

(2776’ ) 1‘ 20

where ,0 and D are mass density and dimension ofspace. respectively. For MHD flows.

the acceleration a can be written as:

a=-—l—(V><B)><B (08)

plu

Here. B is magnetic induction and ,u is magnetic permeability. The evolution of

magnetic field is obtained by solving the magnetic induction equation, which is derived

from Maxwell’s equations with the assumption of aE/cit = 0 [129]:

,

i—B=zyv23+(B-V)u-(u-V)B (69)

CI

where 77 is magnetic diffusivity and is expressed as 1] 20101—1, where 0 is the

electrical conductivity.

For 2D problems, the Boltzmann equation can be discretized by D2Q9 scheme as

described in Chapter 2. The external force term is evaluated by He’s model. Then the

resulted lattice Boltzmann equation follows the form of Eq. (52) where the discretized
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equilibrium distribution function takes the form Eq. (32). The mass density and

momentle then can be calculated through:

p=Zfa (70)

pu=Zeafa (71)

The magnetic induction equation (Eq. (69)) is solved by the conventional finite

difference method. In two dimensions, for example, the x-component of Eq. (69) is

written as:

     

.. 7 ..9 ’ ..

CB . 1 5‘8 0‘8. cm . 811 . GB. 58.

" = —- 2x + 2" + Bx “ + 8V " -—ux 4 " —u,. —" (72)

8! ya at a], at " Ely 0x ’ 6y

Then the following discretized equation is obtained if the central difference scheme is

employed.

(1in >19]. _ 1 (Bx)::1yj _2(Bx),nj +(B.v):’_]_j

 

 

  

  

(ff 1110’ ( At‘)2

H n H

+ (B-")l'./‘+l — 2(BX )1.j + (Bx )I'.j—l]

(4.1-)2 (73)

ll )1
II II

+(B )n (”x )l'+l.j _(u.t’ )i—I.j +(B )n (“xx-+1.]- ‘(llx )I'.j-—1

I 1" I 2Ar y 1.]. 2A).)

)1 n
N N

-(u )n (Bx )1'+1.j — (Bx )i—l,j -(u )n (Bx ),"j+| —(Bx )1"j'_]

.t‘ 1' , j- 2 Ar '1‘ in]. 2A)?

Note that all the terms on the right hand side are evaluated at time step It using the fluid

velocity calculated by the lattice Boltzmann solver. Eq. (73) can be re—written as follows:

——’l= R((B,.)”) (74)
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In this study, the time derivative on the left hand side is discretized by the second-order

Runge-Kutta method:

I I A r(B )’+l/2=(B_,.)’+—2:R((B,.)’)

.i'

(75)

(BryHl : (Bx)" + A!R((Bx)”+l/2)

For validation purposes, the 2D Hartmann flow is simulated because its analytical

solution can be easily obtained. Hartman flow is a channel flow induced by a uniform

magnetic field ( 30) applied perpendicular to the flow direction. For 2D Hartmann flows,

velocity has only one component in the channel direction u=(u,..0) and this flow

induces additional magnetic field in the flow direction. Therefore, magnetic field can be

written as B=(B',.,BO). The magnetic induction equation and the hydrodynamic

momentum equation can be simplified as follows:

2
I B. *1 .

ya dy“ d}:

  

2
v d 1.4,. +531 (7'83. :

772 # (1y ( )

(11'

(I) . . .

where 51:7]— ls the constant pressure gradient used to drive the flow along the x-

(x

direction. By using the following boundary conditions

 

(1,. =0 at y=iL

' (78)
BI = 0 at y = i].

the analytical solutions to Eqs. (76) and (77) are obtained as:

11' . r '

u,(y) =—g—Lcoth(M) COSNMJ/l‘) —1 (79)
' 03g cosh(M)
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1L sinhr’lltxll. 1‘BX(.\,):_8! [ ( ., )_,_] (80)

30 sinh(M) L

where M = BOL a/pv is the Hartmann number. If there is no external magnetic field,

the Hartmann number becomes zero and the flow reduces to the Poiseuille flow, which

. , 2 2
has solutlons of ll_\.(_i‘) =g(L -_i’ )/2pv and Bx =0.

For the LBM simulation of the Hartmann flow, the initial distribution function is

set to the equilibrium distribution function with constant density, p = 1.0; ux and 8,. are

set to zero. A uniform magnetic field 30 is applied in the _1~'-di1'eetion. The bounce-back

condition is used for wall boundaries while the periodic boundary condition is used at the

inlet and the outlet. The simulation is temiinated until a steady state is reached. To drive

the flow, the driving pressure gx is added to the external force as follows:

paz—l—(VXB)XB+géx (81)

y

In Eq. (81). ex is the unit vector in the x-direction.

Figure 8 and Figure 9 present simulation results of ux and Bx respectively,

where solid lines denote analytical solutions given by Eqs. (79) and (80). As clearly seen,

the simulation results agree well with the analytical solutions for all Hartmann numbers

considered. In this simulation, a 200><20 grid is used and the parameters of r =0.635,

a =: 10 and g = 2.5><10‘5 are adopted. The Hartmann numbers of 0. 1. 2, 5, 10 and 20

are considered. Note that the Hartmann number can be changed by varying the magnitude

of the applied magnetic field 80. In Figure 8, it is shown that as the Hartmann number

increases the velocity profile becomes flatter, which can be explained by Eq. (80).
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Figure 8 Profiles of x-component velocity with different Hartmann numbers: M=0

(squares), M=l (circles), M=2 (upper triangles), M=5 (lower triangles), M=10

(diamonds), M=20 (stars). The solid lines show the analytical solutions. The

simulation results agree very well with the analytical solutions.
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Figure 9 Profiles ofx-component magnetic field for different Hartmann numbers:

M=O (squares), M=l (circles), M=2 (upper triangles), M=5 (lower triangles), M=10

(diamonds), M=20 (stars). The solid lines show the analytical solutions. The

simulation results agree very well with the analytical solutions.
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Clearly, the applied magnetic field (80) tends to reduce the magnitude ofx-component

velocity. Ifthe Hartmann number is finite, the velocity profile cannot be entirely flat even

for very large Hartmann numbers and there must be a region with a large velocity

gradient because velocity is forced to be zero due to the no slip boundary conditions.

Figure 9 presents the magnetic field induced by the flow for a variety of Hartmann

numbers. the simulation results agree with the analytical solutions very well.

As the second test problem, the Orszag-Tang vortex system (which is an unsteady,

nonlinear MHD flow problem) was chosen. Since Orszag and Tang [159] first studied

this problem, it has become a popular benchmark problem because many aspects of MHD

turbulent flows appear in this problem, such as the dynamic alignment, selective decay

and magnetic reconnection [160]. In this study, a 2D Orszag-Tang vortex problem is

simulated with the following simple nonrandom detemiinistic initial conditions:

“0 = -—uO(sin '1‘, —sin x)

. . (82)
30 = —BO(sm _v,-—sm(2x))

where 110 = 2.0 and [30 = 2.0 are the initial velocity and magnetic induction. respectively.

The simulation is performed on a square domain of ()Sx._1'S 2,7. A 512><512 uniform

grid is used and the periodic boundary conditions are applied on all boundaries. Kinetic

fluid viscosity and magnetic diffusivity are assumed to be the same (v = 77 = 0.02 ), which

leads to the same Reynolds number (Re) and magnetic Reynolds number (Rem) at the

initial stage. With the initial conditions shown in Eq. (82), the evolution ofthe vorticity

of fluid (a) = Vx u ) and the current density (j = Vx B/yo ) are demonstrated in Figure 10

and Figure l 1, respectively. As shown in Figure 10 and Figure 1 I. initially both velocity

field and magnetic field have symmetric structures. As time elapses. the initial flow
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t= 0.738

Figure 10 Evolution of vorticity for the 2-D Orszag-Tang vortex. The flow pattern

becomes complicated due to the nonlinear interactions between the velocity field

and the magnetic field. A flat quadrupole-like configuration emerges with time lapse.
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t= 0.738 t= 1.00

Figure 11 Evolution of current density for the 2-D Orszag-Tang vortex. The existing

current sheet at the center of the figure is enhanced and eventually, a thin elliptic

structure establishes due to the magnetic reconnection occurring there.
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pattern becomes complicated due to the nonlinear interactions between the velocity field

and the magnetic field. In Figure I I, the existing current sheet at the center ofthe figure

is enhanced and eventually, a thin elliptic structure establishes due to the magnetic

reconnection occurring there. At the same time, a region of sheared flow coexists with the

cun‘ent sheet, which is shown as the flat quadrupole-like configuration in Figure 10. The

contours of the vorticity and the current density agree well qualitatively with the

simulation results available in the literature [160].

In order to validate this model quantitatively, this problem was simulated by using

the same parameters used in the paper by Dellar [158] (140 = 2.0, v =27 =0.02, and a

512><512 grid). The maximum vorticity value at t = 0.5 predicted by this model is 6.764

while Dellar’s result gives a values of 6.758. At t = 1.0, the values are 14.457 and 14.20

respectively. The maximum current densities are also compared and the values are given

in Table 4. In order to check if these two models satisfy the divergence-free property of

the magnetic field, the values of IV-Bl are calculated. The presented model gives

0.00463 at I = 0.5 and 0.00922 at t = 1.0 while Dellar’s results indicate 0.0062 and 0.0415

at the corresponding times. Therefore, the presented model is validated not only

qualitatively. but also quantitatively.
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Time (sec) Max vorticity Max current IV-Bl

0.50 6.764 18.129 0.00463

Present results

1.0 14.457 45.963 0.00922

0.50 6.758 18.24 0.0062

Dellar’s results

1.0 14.20 46.59 0.0415       
 

Table 4 Quantitative comparison of simulation results with Dellar’s work

To show that this model can be easily extended to 3D, the D3Q19 lattice model

[161] has been employed to solve the 3D Orszag-Tang vortex problem with the following

initial conditions [162]:

"0 =(—251ny,2sinx,0)
(83)

BO = 0,8(——2 sin(2y) + sin 2, 2 sin x + sin 2, sin x + sin y)

A cubic domain of 27rx 227x 27r is used and simulations are conducted on a 64x64x64

grid. Periodic boundary conditions are used for all boundary surfaces and edges. Figure

12 (a-b) shows the initial contours ofthe magnitudes of vorticity (lwl) and current density

(ljl ). In Figure 12 (c-d), loll and [j] at t = 0.598 are shown and the slices of [to] and |j| at

z = 0 are presented. The patterns of the current sheet and the corresponding vorticity

resemble Figure 11 and Figure 10 closely because initially, the variations of current

density and vorticity in :-directions are relatively smaller in values than those in the x-

and y-direction.

Magnetic reconnection is the third example simulated by the present model. It is

the process where magnetic field lines from different magnetic domains merge into one

another, changing the overall topology of the magnetic field. Meanwhile, the stored
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magnetic energy is released in heat and kinetic energy forms. The magnetic reconnection

can be driven by different forms of coalescence instability, for example, by the merging

ofa chain ofmagnetic islands [163] or by doubly periodic coalescence instability [164].

In this study, a magnetic reconnection problem driven by the doubly periodic coalescence

instability is simulated using the present model. As the initial distribution of magnetic

flux, a checkerboard pattern [165] represented by Eq. (84) is employed.

W003 ,v) = 80 sin (7r(x + y))sin (77(x — 1)) (84)

The symmetric initial perturbation ofthe kinetic stream function is:

. . _ ,2 2
(00(-t.,1)—u0 exp(—10(.t +y )) (85)

where 80 = 0.5/fr, no = 0.05 and the initial magnetic and velocity fields are obtained as

follows:

6 6/

Bo-e~XVV/0=(--fl)-. V0)
6y 6

a 6 (86)

(PO €00
u —e-xV — —,0 (P ( 5‘ 8x)
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(c) [to] at t = 0.598 with a 2D contour at z=0 (d) [j] at t = 0.598 with a 2-D contour at z=0

Figure 12 Isa-surface contours of magnitudes of vorticity and current density at t=0

and t=0.598 sec for the 3-D Orszag-Tang vortex. The patterns of the current sheet

and the corresponding vorticity resemble Figure 1] and Figure 10 closely because

initially, the variations of current density and vorticity in z-directions are relatively

smaller in values than those in the x-and y-direction.
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The simulation is conducted on a square domain of —1$x,y$l and a 256><256

grid is used. Periodic boundary conditions are used on all boundaries. A fixed viscosity of

v=4><10'3 is used; five values of magnetic diffusivity (77:0.5x10_3 0.8><10_3 ,

w 1 1

3

1x10”. 2x10“ and 4x10”) are considered. Figure 13 presents the evolution of

magnetic flux at different times with the magnetic diffusivity of 1x10_3. Note that the

position of the magnetic current sheets does not change with time because the initial

perturbation of the kinetic stream function has a mirror symmetry with respect to x and y

directions. It can be seen from Figure 13 that the magnetic islands with currents ofthe

same sign move towards each other. The two comers coalesce into one and the original

two square cells become two adjacent pentagons. A current sheet fomis between the two

cells and the intensity of the current sheet increases. Eventually, the neighboring square

cells merge together. simplifying the topology structure of the magnetic field to four

square-like islands. Figure 14. presenting the dependence ofmaximum current density on

magnetic diffusivity, is a quantitative evidence of the present model. As seen from the

-I/2

plot. the temporal maximum of current density can be approximated as jmax at I] as

illustrated by the dashed line in Figure 14, which can be compared with Fig. 3 in [165].
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Figure 13 Evolution of magnetic flux function for doubly periodic coalescence

instability. The position of the magnetic current sheets does not change with time.

The magnetic islands move towards each other. The two corners coalesce into one

and the original two square cells become two adjacent pentagons. A current sheet

forms between the two cells and the intensity of the current sheet increases.

Eventually, the neighboring square cells merge together, simplifying the topology

structure of the magnetic field to four square-like islands.
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Figure 14 Maximum value of current density vs. magnetic diffusivity. The temporal

maximum of current density can be approximated as jmaX oc 17-1/2 .

In conclusion. three classic problems in MHD flows were solved in this study and

the obtained results agreed well with the data available in the literature. This newly

developed hybrid LBM model has the following advantages: first, its implementation is

relatively simple compared to other LBMs and Navier-Stokes equation based methods;

second, the extension to 3-D is straightforward. We believe that this approach can be a

good alternative to other MHD-LBMS that are fully based on the lattice kinetic

algorithms.



Chapter 4

Lattice Boltzmann Simulation of Isothermal Weakly Ionized Plasmas

As the goveming equation for all transport phenomena, the Boltzmann transport

equation describes the evolution ofthe distribution function of each species of particles in

the plasma. All macroscopic variables of the plasma, such as number density and

macroscopic velocity, can be retrieved through proper moments of the distribution

function. Many achievements of LBM development (especially multi-component models

[166-170]) can be inherited in the plasma simulation, since plasmas are mixtures of

different types of particles. Among those models, the finite difference lattice Boltzmann

(FDLB) models [168, 169] can be used for asymmetric system, which is the system in

which the compositive particles have different properties. However, the direct use ofthe

FDLB models for plasma simulation is not sufficient due to some exclusive

characteristics of plasmas. For example. if the physical plasma parameters are used, a

very large dimensionless relaxation time will result. This relaxation time will

significantly reduce the effects of the collision term on the evolution of the distribution

function and thus lead to an ill-favored transport behavior of the electrons. Therefore, to

overcome this problem, the LBM simulation parameters should be selected in such a way

that the dimensionless relaxation time is in a valid value range. In this chapter, a new

LBM model is proposed to simulate weakly ionized isothermal helium plasmas. The

simulation parameters used in LBM are selected according to a rescaling scheme

developed in this research to match the physical properties ofthe plasma. For the purpose
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of validation, the electron diffusion problem and the electrostatic wave phenomena are

simulated by this new model and the results show good agreement with the analytical

solutions.

4.1 Mathematical Model

The proposed LBM model in this chapter is based upon the following

assumptions:

1) Inelastic collisions. such as ionization and recombination, are not considered.

2) The plasma is isothermal. but different species can have different temperatures.

3) The plasma consists of electrons. neutrals, and singly ionized ions (three species).

Then the Boltzmann transport equation for the three species of particles in a

weakly ionized helium plasma can be written:

 

8 . c3 .

—{; + vs 'st +35 'V\'(.f.s‘ :( (is) (87)

C’ ‘ 0’ call

The subscript 5' denotes the type of particles and can take 6, i, and n for electrons, ions.

and neutrals. respectively. In this equation, v5 is the microscopic velocity,

1; = fs(x,v,t) is the number density distribution function, and a5 is the acceleration due

to the Lorentz force. which is expressed as

E
as : (lb (88)

Ill

 

.S'

if electrostatic behaviors ofplasmas are considered. Here, E is electric field, (15. and ”’5

are charge and mass of species 3 . respectively.
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By only considering the binary collisions in the plasma and applying the similar

splitting technique adopted for binary gas mixture [166], the collision term for species 5'

can be written as:

[Oi/:8] :JSB+JSI'+JSII (89)

0’ coll

where J“), J“. and J‘m are the terms that represent the collisions with electrons, ions,

and neutrals, respectively. It is well known that if the plasma is weakly ionized, the

elastic collision with neutral particles is the dominant collision mechanism for all species.

Therefore. J“) and J” are negligible in the weakly—ionized plasmas. For the collisions

with neutral particles. the Bhatnagar-Gross-Krook (BGK) model is used, which assumes

that the particles relax to their equilibrium states during the characteristic time period,

which is called the relaxation time 2.5. Then, the Boltzmann equations for electrons, ions,

and neutrals can be written as

67, f. - ff”

:7 + VeW + 3.) 'Vv..fe = --—“—”- (90)

CI AU)!

6% f.- - f-""

:’-+v.~-Vf.-+a.--V.,.f.~=-——.—’fl— (91)
(x! m

a. ”I
(,1 —

41+ vn 'Vfll = ‘— fn} fun (92)

('1
”NH

5

where A”), Am, 21”,, are the relaxation times for electron-neutral. ion-neutral, and

fa], 1,3? are the equilibrium distributionneutral-neutral collisions. respectively; ft)" m
(’11 ’ .

functions of electrons, ions. neutrals, respectively, due to the collisions with neutrals and

can be written as



 

C, n . (v . - u . )

[xii] (“571) = A 2 exp __s%_ (93)

7:695 26’;

Note that the collisions with the species other than neutral particles can be easily added in

the model. In Eq. (93), ()3. = kart/"1..- is the sound speed of species 5 where T, is the

temperature of species 3; um is the barycentric velocity of the binary collision with the

neutral particle:

’71 ll . 'i' ”I ll
“5" = .S .5 N n (94)

”15 + ”In

 

where U, is macroscopic velocity of species 5 (un: macroscopic velocity of neutrals).

Note that u,,,, = u,, but um at u(, and um at ui. That 15 due to the fact that the frequency

of self-collisions between charged particles is very low in weakly ionized plasmas and

the charged particles cannot relax to their macroscopic velocity during the relaxation time

period ( rim or xi,” ) when they collide with neutral particles.

Similar with the concept ofdensity dependent relaxation time [171], xi“, in Eqs.

(90) — (92) are written as [129]:

2. =——1—— (95)
.m _’.

0'5"”): <‘ s>

Here, 0' is the cross section ofthe elastic collision between species 3 and neutrals and
All

calculated as 0",." =7r(rS+r”)2, where rs and r” are the radii of species 3 and n

. . . __ 8 k T.

respectively; <13.) 13 the average speed ofspecres s. and (its) : [——§——-‘-

1,12

] [129]. Note

7: m
.S'
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that the relaxation time presented in Eq. (95) is independent oftemperature because only

isothermal plasmas are considered in this chapter.

Now the Boltzmann equations shown in Eqs. (90) — (92) can be discretized by a

traditional .D2Q9 scheme and the external force term follows He’s model:

 

 

.- . 1 . Ara,-ec,'—u. .

jj‘(x+effAt,t+At)=ff(x,t)———(ff(x,t)—f(f,;/~a(x,t))+ ‘- (a; ‘) e‘”‘“(96)

(’11 (3

- . l -V .. Ara- (1-. ..

./.“(x +ef‘4t.t + At) = /,A“(x.t) ——11,“(x.t)—./,-§,"“‘1x.t)) + ’ (e; "’ ) 1f” (97)

Till (95

. 1 )

/,f‘(x+effdt,t+At)=f,;’(x,t)——T—-(f,f‘(x,t)-f,§,‘/~a(x,t)) (98)

H)?

where A! is time step; r r rm, are dimensionless relaxation times; superscript a
tell r 171 ’

[1

denotes the a’ component in the phase space; e? is the am component of discretized

microscopic velocity of species 5 as defined by Eq. (28). The discretized equilibrium

distribution functions A? as well as the weights (0a are in similar forms defined in

Chapter 2. Note that the self-collision distribution functions of the charged particles are

used in evaluation ofthe extemal force temr by using He‘s model. This selection will be

justified later.

In multi-component LBM, if the same grid is used for all species, the time steps

for different species are all different because time step is determined by At =Ar/cls ,

where Ar is the spacing and (7,5. is the lattice speed of particle species 5. Using several

different time steps are very undesirable for a number of reasons, so in this model we use

a single time step based on the lattice speed of electrons. Then. during a time step At,
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electrons travel a distance of 63.51 to the neighboring node while ions and neutrals travel

a distance of eszr and eSAI , respectively. Since the lattice speeds of ions and neutrals

are significantly smaller than that of electrons, the travel distance ofthose heavy particles

will be very small compared to the electron travel distance. As a result, if the same grid is

used for all species, ions and neutrals cannot reach the same node point as the electrons

do and an interpolation scheme [124, 172-175] needs to be used for heavier particles. In

this study, similar to the interpolation scheme used in [173, 174], a second-order

interpolation method is introduced to find the on-node values of the discretized

distribution functions for ions and neutrals. In Figure 15, q and 0 denote two

neighboring nodes of [2 along the am direction (pointing from 0 to p). The ions

(neutrals) that are originally located at 0, p, q arrive at 0', p' , q’ after a streaming step.

The distribution function at p can be obtained by using [3(0'), ff(p') and ff(q') as

   
 

  

follows:

a r (1 I e? a ,I a I a r €6,112

e ie‘)

where s can be e, 1' or n and

ff‘to’) =fo’to)

f," (p') = 7:11p) (100)

f..-a(¢/') = 711(9)
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Ax = efAt effmAt
 

  

Figure 15 Schematic of second order interpolation method for ion (neutral)

distribution function. The value of distribution function of the heavy particles atp

can be found by using the post-collision values at o’,p’ and q’.

where is“ is the post—collision distribution function after the collision step according to

the lattice Boltzmann equations shown in Eqs. (96) — (98). If we define

,6: 6? /eff =,/7;.mL,/71,ms , then:

    

frail?) = ('1- flz )fg-QUY) -0-5fl(1 ~fl)fsa(C/') + 0.530 + meaW') (101)

Note that if 5' =6, [3:1 and ff’(p)=fcfz(0')=fca(0) which is just the result of the

ordinary streaming step.

Once distribution functions are updated, the number density and velocity of each

species and charge density can be obtained as follows:

n,.(x) = Egan) (102)

n_,.(x)u_,(x) = fo(x)ef(x) (103)

10.01): etn,-(x)-n..(x)) (104)

The electric field E is updated by solving the following equation:

Wen—PL (105)
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where 8,, is electric permittivity of vacuum; (15 is the electric potential, and V¢ = —E. Eq.

(105) is solved by a Poisson solver.

4.2 Rescaling Scheme

The governing Boltzmann equation of the present model is discretized by the

traditional D2Q9 scheme. In this standard procedure, there are three parameters that can

be chosen freely: dimensionless relaxation time T, grid spacing Ar and time step At.

Then, the sound speed 63, in the D2Q9 model, is determined as 9 =Ar/J3At and the

viscosity is recovered by the Chapman-Enskog expansion of the lattice Boltzmann

equation as follows [134, I37]:

(r—O.5)éAx

J3

Note that a tilde is used for the viscosity and the sound speed to distinguish themselves

(106) fi=(r-0.5)5’2At=

from the physical kinematic viscosity and the physical sound speed. We will call 17 and

~

(9 the lattice kinwnarl‘c viscosity and the lattice sound speed respectively in this

dissertation. For some flow problems, such as driven cavity flow, the fluid flow is

characterized solely by the Reynolds number and the value of viscosity is not important

as long as the same flow pattern is obtained. In such a case, the lattice kinematic viscosity

need not be identical to the physical one, and the three lattice parameters can be selected

freely as just mentioned. In some cases, other dimensionless numbers, such as Peclet

number and Froude number, can be used to scale LB simulations. But for certain flow

problems, actual physical properties need to be used for the simulation because a

particular dimensionless number (such as Reynolds number) does not characterize the

flow and/or the flow depends strongly on some properties of a fluid. For example, in the
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plasma diffusion problem, the Reynolds number is not important and the diffusion

characteristic is governed by the diffusivity. Therefore. the diffusivity (in this case

kinematic viscosity) must be matched explicitly. If the physical properties are used, the

number of parameters that can be chosen freely decreases due to the restrictions imposed

when matching the physical properties and the lattice properties. For example, only two

properties (grid spacing and time step) were selected freely in the fluctuation lattice

Boltzmann model [176], where the authors matched mass density, temperature, and

viscosity.

In the implementation of the parameter selection procedure based on physical

properties, some problems may arise. Let’s consider the following procedure to choose

the lattice parameters in standard LBM without an external force. First, grid spacing Av

can be determined from the spatial resolution requirement, and then time step is obtained

 

 

. . . k T

from Al=Ar/\/30 , where 19 is the phySlcal sound speed (9: B After that,

m

dimensionless relaxation time I is calculated by equating 1% with v:

3

.=1CZ+63 non
61M:

where the physical viscosity is

_ 2

v = 8? A (108)

37:

according to kinetic theory [126], and 2. is the physical relaxation time, xi. =l/0n(v)

[126]. where o is the collision cross section, and n is the number density of the fluid

particles. Apparently, only the grid spacing can be selected freely in this parameter

selection procedure by using physical properties of the fluid. Now, two problems are
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expected depending on the value of I that is calculated from Eq. (107) because. as well

known, I must be in the range of (0.5.3.0) [147]. Firstly, if the viscosity is very small

(which is the case for most gases under normal conditions), then r is very close to 0.5

and the standard LBM schemes diverge. For example. for air at 1 atm and 300 K, v is

1.8245x10—5 mz/s and 6 is 293.36 m/s. Ifthe domain size is 1111le and a l28><128

grid is used, the grid spacing Ar is 0.0078125 m. In this case, r is calculated as

0.500014 from Eq. (107), which causes LBM to diverge. Note that this lower limitation

of r is only applicable to the standard LBM. In the past 5-7 years, a newly developed

entropic LBM [177, 178] eliminates the instability caused by small values of r and the

algorithm is stable with arbitrary small viscosities. Secondly, ifthe viscosity is very large

(which is the case for a gas with low density and high temperature), LBM becomes very

inaccurate. For instance, for air at 0.00001 atm and 1500 K, v and 0 are 20.3991712/5

and 655.97 m/s from kinetic theory, respectively, which lead to 7 =7.394 with the same

grid described above. This value falls outside the valid range of r and generates a large

simulation error.

The problem of having too large I becomes aggravated in the simulation of

weakly-ionized plasmas because a low degree of ionization and the corresponding low

electron temperature of weakly-ionized plasmas lead to a large relaxation time and

subsequently result in a large value of I. For an example, an electron free diffusion

problem is simulated by using the LBM model described in the previous section. In this

simulation, a helium plasma with 1% degree ofionization in a 3.71X3.71 mm2 domain is

considered. and a 256x 256 grid is used. The number densities ofthree species are set as



He =11, =1016(m"3) and 11,, = 10180714) . Then the temperature of electrons is calculated

as 0.8008 eV according to the Saha equation [129]:

E: e 3.00x1027rj/2 iexp[—9Ti) (109)

If” "6

where U, is the first ionization energy of helium (U, =24.59 eV) and T is electron'6'

temperature in eV. By using the above physical parameters of the plasma, the

dimensionless relaxation time I is calculated as about 1.034x106 according to Eq. (107).

The initial distribution of the electron number density is in the following Gaussian

distribution:

._ 2 ,t— .’ 2(.t x.) +(3 Jr) (110)
2r

 I1L,(X,I'=0)=I'le0 1+0.01exp —

where r = 0.290 mm and (.vwvc ) represents the center point ofthe computational domain.

This free diffusion problem can be described by the Fick’s law:

a.one _

7E— — Deni/72,16, (11])

where DU” is the diffusivity of electrons due to the elastic collisions between electron

and neutral and it is calculated as [154]:

 

 

86?4-

Den 2 L w (112)

37!

It is easy to find the analytical solution of Eq. (111):

2 2
0.01 , .—-.'. ._ ._

I1(,(X,_l’,1)= 716.0 +————’,i‘iex -(Y X‘z) +0 '1‘) (113)

(Hr/10) r (i +4770)

where ’0 = 1'2/4Dm .
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Figure 16 Distribution of electron number density at t = 3.5 ns. Non-physical peaks

appear if the physical variables of electrons are used.

Figure 16 shows the distribution of electron number density at t = 3.5 ns obtained

form Eq. (113) and from the simulation. Clearly, by using the physical variables, the

result is very inaccurate and non-physical peaks appear in the solution. The appearance of

these non-physical peaks can be explained as follows. In the case of electrons, the large

non-dimensional relaxation time leads to a near-zero collision term in the lattice

Boltzmann equation, and therefore, the effect of collision step is almost negligible. In

other words, virtually only the streaming step is left in the implementation of LBM.

Figure 17 shows the electron number densities at two time moments with different

ionization degrees. It can be seen that the sub-peaks move with the constant lattice speeds

and the magnitudes do not change. We can also see that the sub-peaks of higher

ionization degree move faster than those oflower ionization degree because the sound
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Figure 17 Electron number density distribution at (a) t = 1.116 ns and (b) t = 3.347

ns with different ionization degrees. Non-physical sub-peaks caused by using the

physical variables travel with the constant lattice speed. A higher ionization degree

leads to a higher lattice speed. The ratio of the magnitude of the sub-peaks to that of

the primary peak corresponds to the value of the ratio of the weight coefficients.
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speed is higher in the former case. The magnitudes of all three sub-peaks are also

checked: the ratio of the magnitude of a sub-peak to that of the primary peak is 1:4,

which is the ratio of weight coefficients in the D2Q9 mo‘del employed in this study.

Figure 18 is the contour plot of electron number density at t = 1.1 16 ns. The dashed lines

in the plot represent the discretized phase space and the particles stream to their

neighboring nodes along the directions denoted by the numbers. The numbers in the

brackets are the weight coefficients used in the discretization of the equilibrium

distribution function. Figure 18 clearly illustrates the evolution of the electron number

density along with the vector directions in the discretized phase space if the LBM

simulation was conducted without the collision step.
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Figure 18 Contour plot of electron number density at t = 1.116 ns. The distribution

of electrons is along with the discretized velocity directions if the effects of collisions

are not included in LBM.
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In conclusion, the usage of physical properties of the fluid will probably deduce

an invalid value of the dimensionless relaxation time and thus lead to large simulation

errors. To overcome this problem, a rescaling scheme is presented in this research that

can be used with physical properties of fluids for a wide range of particle number density

in the simulation of fluid flows and weakly-ionized plasmas. The key idea is to design a

scheme in such a way that the kinematic viscosity of the fluid and the characteristic

velocity due to the external force are matched in the implementation of LBM because,

after all, the Boltzmann transport equation solves convection diffusion problems.

First of all, to preserve the diffusion characteristic of the problem, it is assumed

that the lattice kinematic viscosity 17 (Eq. (48)) is identical to the real kinematic viscosity

v (Eq. (108)). Then the lattice sound speed 19 can be calculated as:

 

 

2

6” = 86 ’1 (114)

J37rAx(r—0.5)

From Eq. (1 14) the rescaling parameter 7 is obtained as:

e J3me — 0.5)
y E —. = (115)

(9 862

Then the lattice sound speed is expressed as a function of the rescaling parameter as

follows:

61:9 (116)

7

Note that the rescaling parameter y is a function of Ax, /1 and 6, and therefore is fixed

once the type and condition of fluid (xi and 61) and grid spacing (Ax)iare determined.

Next, the lattice relaxation time xi is determined from the dimensionless relaxation time,
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/l = rd! , where the time step is At = Arc/J39. Using Eq. (1 15), the lattice relaxation time

xi is calculated as follows:

,1ng (117)

371'(Z'—0.5)

Secondly, the convective property of the flow when an external force exists must not be

altered by the LBM scheme. If the flow is affected by an external force (such as an

electromagnetic force). depending on the nature of the force we may need another

rescaling to obtain accurate velocity fields. So, we propose the second rescaling rule: the

characteristic velocity of the flow should not be changed by the rescaling, i.e.,

u0 = 00 (I 18)

where U,) is the characteristic velocity of the flow. From this rule, we can obtain the

rescaled acceleration 5 , which we call the lattice acceleration in this article.

As mentioned earlier, dimensionless relaxation time t and grid spacing Ar are

the two parameters that can be chosen freely in this rescaling scheme. Once Ax is

determined, 1 can be selected considering the Mach number (Ma) and the Reynolds

number (Re) of the problem. The following equation is the relationship between the Re

and Ma obtained from the definition of Re:

__ J3Ma/V

r—0.5

Re
 (119)

where N is the number of grid points along the characteristic length L0; Ma =U0/t9.

where U0 is the magnitude ofthe characteristic velocity. From Eq. (1 19), we obtain:

JEMaN

Re

 +0.5 (120)
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which must lie in the valid range. Note that according to Hou et al. [135], there exists a

critical value of r below which simulation results show unphysical patterns or the code

diverges even though I is greater than 0.5. Eq. (120) is especially useful when the fluid

flow is characterized by the Reynolds number, such as driven cavity flow. Given Ma and

Re, I can be determined from Eq. (120). Also, the Mach number of the problem must be

small enough to meet the low Ma requirement. In the mean time, as will be shown later,

LBM converges faster with a higher 2' .

In cases where Re is not important or is hard to be defined, the definition of Ma

can be used to choose I :

Ma: fieAxUO(r—0.5) (121)
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from which the following is obtained:

sezzMa
r=——+0.5 (122)

fifl'AXUO

In the practical implementation of this rescaling scheme, the first step is to

determine the grid spacing Ax and the dimensionless relaxation time 2' (following the

method described above) and then the rescaling parameter y according to Eq. (1 15) with

physical properties of a fluid. Then the lattice sound speed d and the lattice acceleration

a are determined from Eqs. (1 16) and (118), respectively. Once these lattice parameters

are obtained, the remaining steps are same as the standard LBM.

To validate the present rescaling scheme, the two-dimensional driven cavity flow

is simulated with and without the rescaling. In this flow problem, no external force

appears in the lattice Boltzmann equation, and therefore, only the first rescaling rule is
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Figure 19 Velocity profiles along the central lines of the computational domain

obtained by using the physical properties of air without the rescaling when the

dimensionless relaxation time is in the valid range. (a) dimensionless x-velocity (b)

dimensionless y-velocity
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employed to obtain the lattice sound speed and the acceleration is not rescaled. The

cavity is 1mle in size and a I28><128 grid is used. We temiinated the computation

when the maximum relative error of the distribution function between two successive

time steps is less than 1x10"6.

Firstly, air at 300 K and 0.0001 atm is considered. At this state, kinematic

. . . , 2, . . . . .

viscosny v IS 0.18245 in 1's and the dimensmnless relaxation time from Eq. (107) IS

I = 0.638, which happens to fall in the valid range of r . Therefore, this problem can be

simulated with this physical r value. Note that if I calculated from Eq. (107) is used, y

becomes 1 and no rescaling takes place for the sound speed. In Figure 19, the velocity

profiles along the central lines of the computational domain are compared with the data

from [135] and [179]. Apparently, the simulation results agree with the results in [135]

and [179] very well. As expected, ifthe dimensionless relaxation time is valid, LBM can

be used with physical properties ofair without the rescaling.

 

 

 

 

 

 

r=0.6 r=0.638 r=0.8 r=1.0

7 0.7252 1.0 2.1757 3.6262

Re 400 400 400 400

Ma 0.1804 0.2490 0.5413 0.9021

Error in 1.1,. (°/o) 0.27 1.53 3.08 6.58

Error in u... 1%) 0.99 1.42 2.56 7.28       
Table 5 Simulation parameters and simulation errors for different values of r in

the simulation of two-dimensional driven cavity flows
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Figure 20 Number of iterations until convergence vs. 7 (Re = 200). A larger 1 leads

to a quicker convergence.

Now, the same problem (Re = 400) is simulated by using the presented rescaling scheme.

In this example, we select four different values of I using Eq. (122) and the

corresponding values of y are presented in Table 5. The errors in 11,. and u‘. listed in

Table 5 are the maximum relative errors with respect to the results in [179]. Note that as

mentioned earlier no rescaling takes place when r = 0.638. As seen from Table 5, this

scheme gives reasonably good results for small values of 2' but as 2' increases this

method becomes more inaccurate. This increase in error with increasing r can be

explained by Eq. (1 19): at fixed Re, a higher value of r leads to a higher Ma. Because

the standard LBM is formulated based on the low Ma assumption. a higher Ma tends to

make the algorithm less accurate. On the other hand. as seen in Figure 20. the code
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Figure 21 (a) r as a function of Re and Ma (N=128). It is apparent that 2' needs to

be close to 0.5 if a high Ma and/or a high Re are desired. (b) Re vs. 2' at different

grid densities. Increasing grid density is an effective way to increase Re if the other

simulation parameters are kept unchanged.
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converges faster as 7 increases. In Figure 21 (a), the dimensionless relaxation time I is

plotted as a function of Re and Ma (when N = 128) following Eq. (120); Figure 21 (b)

presents the relationship between I and Re at three different grid densities when Ma is

chosen to be 0.2. The points marked by A, B and C are the dimensionless relaxation

times calculated from Eq. (120) when Re=100. At such condition, the dimensionless

relaxation times for N=l28, 256 and 512 are found to be 0.943, 1.387 and 2.274,

respectively.

 

 

 

 

TiKl Pia/”1) Ming/s) T Ma Re Result

Case 1 300 1 1.8245><10'5 0.500014 l.24><10'4 200 Unstable

Case 2 1500 1><10'5 20.399 7.394 6.22 200 Unstable        
Table 6 Two examples of the air state that give invalid dimensionless relaxation time

 

 

 

 

      

Re Ma r 7 # of iterations

Case 1 200 9.021 ><10’2 0.6 7252.43 20380

Case 2 200 9.021><10'2 0.6 1.45><10'2 20380

 

Table 7 Rescaled simulation parameters and # of iterations until convergence
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Re Ma r 7

 

100 0.1 0.72 15955.35

 

200 0.0902 0.6 7252.43

 

500 0.113 0.55 3626.22

 

1000 0.113 0.525 1813.11

 

2000 0.225 0.525 1813.11

 

5000 0.564 0.525 1813.11     
 

Table 8 Simulation parameters for air at 300 K and 1 atm (Case 1)

.
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o
o
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Figure 22 Locations of the primary vortices at different Reynolds numbers. The

simulation results obtained by the rescaling scheme agree well with other

researchers’ results.
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To show the capabilities of the rescaling scheme, the driven cavity flow is now

simulated for two different conditions of air, under which the dimensionless relaxation

times that satisfy Eq. (107) are outside the valid range. Table 6 shows the properties ofair,

and Re is selected to be 200 for both cases. As expected, LBM fails in both cases without

the rescaling. However, both cases are simulated correctly by using the rescaling scheme.

Table6 lists the parameters used in the simulations with the rescaling and the numbers of

iterations until convergence. Note that Ma and r are in the reasonable range. Next, we

simulate the driven cavity flow problem at several different Re using the properties used

in Case 1 (in Table 6) with the rescaling. The main simulation parameters are listed in

Table 7. Figure 22 presents the locations of the primary vortices at different Re, and

Figure 23 shows the velocity profiles along the central lines at two different Reynolds

numbers (200, 5000). As seen, the flow patterns are in good agreement with the ones

shown in [135] and [179]. In Figure 23, we can see that the error at Re = 5000 is

relatively large, which can be explained by the high Ma (Ma = 0.564) resulting from Re =

5000 and r = 0.525 as shown in Table 7. According to Eq. (1 19), there are two ways to

reduce the Ma when Re is large. One way is to decrease I. But unfortunately, there is a

lower limit of 7 due to the nature of LBM. The closer the value of 2' is to 0.5, the more

likely the code will be unstable. The other way is to increase the grid density for the

simulation. This is the most straightforward way to solve this problem in a moderate

range of Re but of course will increase the computational expense. Besides these two

methods. there is another way to reduce Ma, i.e., the use of an interpolation scheme after

the collision-streaming steps in LBM [180].
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Figure 23 Velocity profiles along the central lines of the computational domain

(a) dimensionless x-velocity (b) dimensionless y-velocity. The simulation errors are

relatively large if the Reynolds number is high. It is due to the high Mach number

resulted by the high Reynolds number according to Eq. (119).
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4.3 Simulation Results

To illustrate the capability of the present LBM model with the rescaling scheme,

two problems of weakly ionized helium plasma are simulated here. First, we simulate the

electron diffusion problem under an externally applied electric field by neglecting the

internally generated electric field because, in this case, the analytical solution is available.

The details on the problem, such as domain size and grid density, are identical with those

in Section 4.1. If the initial electron distribution is Gaussian and the maximum degree of

ionization is 1%, the temporal and spatial distribution of the electron number density is

calculated analytically as:

2 2

n;1(x,y,t) :_____0_01n,,0 exp — (x—xc. — vdt) +0) y“) (123),

0+dm) wu+ym)

 

where r and ’0 have the same definitions and values as in Eqs. (110) and (113). The

electron diffusivity can be calculated by Eq. (112). In Eq. (123), vd is the magnitude of

the electron drift velocity vd due to the external electric field, which is calculated as

follows [154]:

=a x1 (124)

In this problem, the second rule must be applied to rescale the acceleration term. Because

the drift velocity is the characteristic velocity due to the electric field in this case.

i.e., U0 = vd, from Eq. (1 l8) and Eq. (124) the following equation can be obtained:

~

ae’ien : £1e en (125)

from which the acceleration due to the external force is rescaled as follows:
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e 8W2 C (126)

where Eq. (1 17) is used to replace x16”.

”1200774) Te(eV) r 7 50(V /m) error

1><1016 0.7005 1.5 9.686x10'9 14226.72 2.815><10'8

l><1018 0.8008 1.5 9.686><10'7 16270.90 3.465><10'8

1><1020 0.9343 1.5 9.686x10'S 18975.84 2.815><10'8

1><1022 1.1186 1.5 9.686x10‘3 22731.20 2.817><10‘8

1><1024 1.3891 1.5 0.9686 28288.26 2.825x10'8

l><lo26 1.820 1.5 96.86 58822.30 5.360><10'8         
Table 9 Simulation parameters used for the electron diffusion problem

Table 9 lists neutral number density (HMO), electron temperature (T0) and other

parameters used for the simulation. Here, Te is obtained from the Saha equation [129]

corresponding to the 1% ionization degree and the electric field E0 directs from left to

right. The dimensionless relaxation time r is set 1.5 for all the calculations. In this

. . 16 26 -3 .

reseach, a Wlde range of neutral number densrty (from 1X10 to 1X10 m ) IS

considered. In Figure 24, electron number density distributions at later times are plotted

together with the analytical solution (Eq. (123)) for two different neutral number density

values (l><10l6 and IMO26 m'3). The simulation errors for six different initial number

density values are listed in Table 9 using the following formula [181]:
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Figure 24 Electron number density distributions with different initial number

densities of neutrals. The simulation results obtained by the rescaling scheme are in

good agreement with the analytical solutions.
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2
L8 . . A

2 n6 (1,],1)’”e (xli’ij) mn
(127)

 
error = A

i,j nc, (1,},t)

where m and n are numbers of grid points in x and 1 directions, respectively; HELBUJJ)

is the electron number density at node point (1', j) obtained by the simulation; and

nf(.rI-,yj,t) is the electron number density at the corresponding space point by Eq. (123).

As clearly shown from Figure 24 and Table 9, the presented LBM model and the

rescaling scheme give good results for the electron diffusion problem for a wide range of

electron number density.

Next, the electron diffusion problem is simulated again by taking into account the

internal electric field generated by the charge density. The computational domain as well

as the grid density is the same as before. The initial number densities of the heavy

particles are uniform in the space while the initial distribution of the electron number

density is in the Gaussian form as shown in Eq. (110). The initial neutral number density

of ”no =lx1018m‘3 and 1% ionization degree are considered in this calculation. Figure

25 presents the effect of internal electric field on the diffusion process. In this case, the

external electrical field is not applied and only the internally generated electric field is

considered during the diffusion process. It can be seen that the diffusion process is

enhanced since the internal electric field generates outward forces which make the

electrons escape from the center quickly. The dynamics of electrons under both external

and internal electric fields is also simulated. Figure 26 shows electron number density

and ion number density at t = 1.1 16 ns. The dashed line in the plot represents the number

density contours of ions while the solid line stands for electrons. Under the effects ofthe
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Figure 25 Electron number density distribution (Circle: without internal electric

field, Squares: with internal electric field, both at 0.223 ns. Solid line shows the

initial distribution). The internal electric field generated by the charge density

largely enhances the electron diffusion process.

external applied electric field, the electrons will move along the inverse direction ofthe

electric field. Note that the ions respond to the electric fields very slowly because they are

much heavier than electrons and their temperature is much lower in this simulation. That

is why the contour of ion number density seems to stay at its original position in the

figure.
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Figure 26 Snapshot of electron number density (solid lines) and ion number density

(dashed lines) at t = 1.116 ns. The electrons and ions move along opposite directions

because they have opposite charges. The ions travel much more slowly than the

electrons since the ions have much heavier mass.

One thing to recall at this point is the fact that the external force in lattice

Boltzmann equation (Eqs. (96) and (97)) is evaluated by using self—collision equilibrium

distribution function (SCEDF) rather than cross—collision distribution function (SCEDF).

To justify this we used both CCEDF and SCEDF for the same simulation and the results

are shown in Figure 27 (without considering of the internal electric field). Since it is a

simple convection-diffusion problem, the ratio rte/1260 cannot be smaller than 1.

However, it is seen that when CCDEF is used the number density away from the peak

can take values smaller than the initial value. As shown in Figure 27, the minimum value

is roughly 0.9997, which means that the number density drops by about 3% ofthe initial
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Figure 27 Electron number density distribution (at t = 6.69 ns) obtained by using

different equilibrium distribution functions for the external force term. Apparent

simulation errors would be resulted by using the cross-collision equilibrium

distribution function in He’s external force model.

perturbation of electron number density. On the other hand, physically realistic results

were obtained with the used of SCEDF.

The grid independency and computational efficiency ofthe model are also studied

by conducting the same simulation on three different grids (64X64, 128><128 and

256050). The error at time t was calculated by Eq. (127) (no internal electric field is

considered). Figure 28 shows that, as expected, second order convergence is observed

from the simulation results. In order to test the computational efficiency of the multi-

component model, CPU times per time step are measured on a single-CPU PC for the

present three-component model with the interpolation and a simple LBE model for

electrons only. The electrostatic equation is not considered in the test. Test results show

that the three-component model takes 4.07 times more CPU time than the electron-only

model.

104



 

2.0xio‘3

     

    

//o-——-——- O O

1 ,/

-3 0

1.6x10 4

.1

_ l-leO'Bi o —<>—— 256*256 Grid Density

9 —D—— 128*128 Grid Density

133 —o—— 64*64 Grid Density

8.0x10'4~

/D ELMOX0

4.0x10‘44

of”
O O o

0.0 , , , , . . I .

1 2 3 4 5

Time (ns)

Figure 28 Relative errors in electron number density vs. time for three different

grids. The errors are calculated at the center of the domain with comparison to the

analytical solution. Second order accuracy in space discretization can be seen from

the figure.

As a second validation of the model, we consider the electrostatic wave problem

by neglecting all collision terms in Eqs. (96) to (98). If the collision term in the

Boltzmann equation is neglected, the Boltzmann equation becomes the Vlasov equation

for collisionless plasmas. The initial spatial distribution of electron number density is

perturbed slightly as follows:

27m

1.2,,(x,t =0)=n(,0[1—O.Olcos{T-]] (128)

X

where 1,. is the length of the physical domain (3.71 mm). The periodic boundary

condition is employed for both the streaming step for the LBM and the Poisson equation
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for the electric potential. For this problem, we used both with and without the rescaling. It

is possible because all the collision terms are neglected. Figure 29 shows the evolution of

electron number density and x-component velocity at the center point of the domain. It is

clear that the results obtained with the rescaling scheme agree very well with the ones

obtained using original variables. In addition, the wave period measured from the figure

agrees well with the theoretical value of electron oscillation period ( 27: / (ape [129]). The

maximum relative error between the theoretical and simulation results is 0.22 0/o.

Therefore, both the standard LBM and the rescaled LBM can be used for the collisionless

Vlasov equation.
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Figure 29 Time evolution of number density and x-component velocity of electrons

at the center of the computational domain. (Solid lines: simulation results obtained

without the rescaling scheme, circles and squares: simulation results obtained with

the rescaling scheme)
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In summary, a lattice Boltzmann method for weakly-ionized isothemial plasmas

has been presented. A rescaling scheme has been proposed by which the LBM with an

external force term can be used with physical properties of fluids, so that effects of

collisions are taken into account correctly in LBM. This scheme only rescales the sound

speed and the acceleration term due to external forces based on the following two rules:

(1) the physical viscosity is equal to the lattice viscosity, and (2) the characteristic

velocity due to the extemal force is not affected by the rescaling scheme. The 2D driven

cavity flow is simulated to validate the rescaling scheme. Finally, the newly developed

LBM model for weakly ionized plasmas with the rescaling scheme has been applied to

simulate the electron diffusion problem and the electrostatic wave problem. Simulation

results agree well with the data available in literature and the analytical solutions.

Especially, this scheme can be applied to a wide range of number densities in plasma

simulations.
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Chapter 5

Lattice Boltzmann Simulation of Weakly Ionized Helium Plasma with Ionization

and Recombination

A new LBM model is developed in this chapter to simulate laser interaction with

weakly ionized plasmas. Comparing to the model proposed in the previous chapter, the

present mode has the following features. First, ionization of neutral particles in the

plasma and its inverse process, three-body recombination, have been taken into account

in this model, which is achieved by adding an additional term in the Boltzmann equation;

Secondly, the evolution of temperatures of the three species of particles are resolved by

solving a set of energy equations derived directly from the Boltzmann transport equation;

and thirdly, the Lorentz force is evaluated in this model as the external force term and the

finite-difference time-domain (FDTD) method is adopted to solve the full set of

Maxwell’s equation to obtain the time- and space-dependent electromagnetic field. The

interaction between a continuous laser beam and a weakly ionized helium plasma is

simulated by using this newly developed model in this chapter. The preliminary results

that show ionization and recombination dynamics of the weakly ionized plasma are

presented following the detailed description ofthe model.

5.] Mathematical Model

As the governing equations of the present model, the Boltzmann equations are

listed based upon the following assumptions:
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l) The plasma is weakly ionized. Therefore, the long range Coulomb interactions

are not considered.

2) Only electrons at the outmost shell are ionized. Consequently, there are only

three species of particles in the plasma: electrons, ions and neutrals.

3) Only electron impact ionization and three-body recombination are included in

the present model. Other inelastic collisions, such as excitation, de-excitation, and charge

attachment are neglected.

Based upon the above assumptions, the Boltzmann transport equations for

electron, ions and neutrals in a weakly ionized plasma can be written as:
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where the external force term a -)-va.(,-) has been evaluated by He’s model as
an

described in Chapter 3.

There are two main differences between the above Boltzmann equations and Eqs.

(90) to (92). First, one term is added on the right hand side of the above equations to

represent the rate of change of the particle distribution due to ionization of neutral

particles and recombination of charged particles. In this model, only electron impact

ionization and three-body recombination are considered. Then the physical ionization and

recombination (1R) coefficient for electrons can be expressed as:
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where R: and R: represent the electron impact ionization rate and the recombination

rate, respectively. The electron impact ionization rate can be expressed as:

R; = 0,11,, (17,) (133) ,

where <th is the average value of the thermal speed of electrons and

<E.>:‘/8/\’BT(,//THIU according to kinetic theory [126] and a, is the cross section of

electron impact ionization which is dependent on the electron energy mag/2. The data

of 0,- for helium as a function of electron energy can be found in many literatures [I82-

184]. For the three-body recombination, the formula in [185] is adopted in this simulation:

 
. _ 0.822x10‘33

R], T45 nan,- (134)

e

L

where the electron temperature Te is in the unit of eV. Once RC, is calculated by Eqs.

(133) and (134), the IR coefficients of ions and neutrals can be found by R, = 23R6 and
I.

’I

,7 1 o

— _( ') r‘

R — Re, respectively.

)1

The second difference is the definition of the cross-collision equilibrium

distribution function. f5? is defined in this model as:

 

2

f5? = ""7 exp -(—v—u3‘l')— (135)
2.70;” 26m
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Comparing to Eq. (93), a new defined sound speed 68,, replaces the original electron

sound speed:

k T.
8 L11 (136)

’71

en 2

e

where T8,, is the electron temperature afler elastic collisions with neutrals in the time

period of firm. From the kinetic theory [126] and considering the ionization and

recombination process, T can be found as:
UN

  

2

+ 2mcii(Tn " 7;) + mnmen(un '— ue) _ Z’lwiRcUie
(137)

mL, + m" 3k3(me + m”) 3kg
U)! L’

HIJII. . .

where mm =-—‘—1— is the reduced mass of electron and neutral, U,- is the first

I'll +HI
L‘ H

ionization potential of helium (U,- =24.59eV ) and e is the unit electronic charge

(le =1.6X10_19(’). The T6,, is adopted here because, to correctly describe the ionization

and recombination dynamics, it is necessary to describe the post-collision states of the

particles in the plasma, including both the self-collisions and cross-collisions. It can be

seen later that the adoption of T in the equilibrium distribution function just describes
(’11

the heat transfer between electrons and neutrals due to the collisions, which is significant

for the energy evolutions between different species of particles in a system where the

composing particles have far different properties. Similarly, the cross-collision

equilibrium distribution function [If has the following definition:

-2

fig] 2 l 2 €Xp _( I 2111) (138)

27rd 26,-”
IN
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where 0m = ‘8 ’” and T- 18 calculated as:
[I]

”11’
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Tm — T,- + V , + 3k (139)

m,- + m" 3(m, +171”)

mimn

where the reduced mass of ions and neutrals is ”’m = . Note that there is no

HI,- +171"

ionization term in the above equation. That is natural because there is no ionization

happening during the collisions between ions and neutrals in the plasma.

The Boltzmann equations shown in Eqs. (129) to (131) can be discretized by the

traditional D2Q9 scheme. However, in such a case, only particle number densities and

momentums can be retrieved correctly from the lattice Boltzmann equation. Thus, a

supplemental set of energy equations are included in this model to describe the heating

patterns ofthe particles. Starting from the Boltzmann equation, the corresponding energy

equation can be obtained by taking proper moments of the distribution functions with

respect to the microscopic velocity. Taking electrons as the example, the distribution

function It has the following property:

it, < 109)) = [1(ve)fedve (140)

where five) is a function only dependent on ve. By setting different expressions of

five), we can have the following macroscopic quantities listed in Table 10. In Table 10,

ct, = Vt, — u(, is the random velocity ofelectron which is closely related to the temperature.

Mit'IFWI-1 ,2 ‘E 179‘d't0‘t' lt "tiu ip ying [hey—3mg” on every term in q. ( .. ) an in egia mg caCi erm tn 1

respect to vc, from the negative infinity to positive infinity, we can get:
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v   
Table 10 Macroscopic Quantities from Moments of Distribution Function
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Using the expressions listed in Table 10 and following the similar derivation

procedure in [129], we can finally find the energy equation ofelectrons as:

q

 

 

('8,

‘1‘ + v'(€eue) : ‘V'U’e 'll(,)—V°qe + mencae 'ue
CI

(142)

3n ,k T, —T, m,n,
_ L 32:; (I?) _ 2:1 ( (“(2) —ug/1)+Re£e

en en

3 l . .

where .9, =—n,/t T, +—m,n,u% is the total ener of electrons; and , is the electron
t. 7 L B L 7 L L c L

‘—

1 _ .

heat flux and qc,=—KL,VTL, where A’e=§Iz(,kB(v(,)/lm IS the electron thermal

_e(E+uL, xB)

m

where E and B are the electric field 
conductivity. Recalling that at, =

L.

and magnetic field respectively, the third term on the right hand side of Eq. (142) can be

rewritten as:

incneae -ue =—ene(E+ue xB)-ue (143)

Noting that (u(, x B) - up = 0 and defining the electron current density as J6 = —en£,ue , the

above equation becomes:

meneae cue = Je -E (144)

which can be interpreted as the Joule heating term for electrons. Further, substituting Ten

(Eq. (137)) into Eq. (14.2) and after some manipulations, the energy equation ofelectrons

can be expressed as:

“:1“. V-(a‘cue) = 471p, .u,,)+ V'(KUVT(,)+J(, - E 

(145)

3kg]? m
L)

—' UL,” ' ("UN - He) — Renal/,6 '1' R688

(’71 <7; — T.) +

2.8,, (me + m”) 4w:

Similarly, the energy equations of ions and neutrals are:
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Eqs. (145) to (147) constitute a full set of the energy equations of the three species of

particles in a weakly ionized plasma. The temperatures can be solved from the above

equations by using the hydrodynamics quantities calculated from the Boltzmann

equations. However, evaluation of the Joule heating term in the energy equation as well

as the external force term in the Boltzmann equation requires an accurate solution of the

Maxwell‘s equations. In this model, the finite-difference time-domain (FDTD) is adopted

to directly solve the full set ofMaxwell’s equations.

5.2 Finite-Difference Time-Domain Method

The external force term in the Boltzmann equation is generally the Lorentz force

in plasma simulation. This extemal force essentially govems the dynamics of the

individual species ofcharged particles and thereby influences the macroscopic quantities

of the plasma. Inversely, the variation of charge density in the plasma affects the

electromagnetic field which determines the Lorentz force together with the macroscopic

velocities. Meanwhile, the Joule heating term in the energy equation can also be

interpreted as the work done by the Lorentz force on the charged particle. Conclusivcly,
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the most detailed information about the evolution of the electromagnetic field is needed

so that the Lorentz force in LBM solver can be evaluated accurately. As the most exact

governing equations for all electromagnetic phenomena, Maxwell’s equations are solved

directly in this research to obtain the field quantities. Maxwell’s equations consist of the

following four equations:

VWng. (M&

VRB=O 04%

Vsz—QE—hl 05m

a

VxH=J+§B USU

a

where ,0, is the free charge density, p,. 26011-126); .1 is the electric current density,

J =e(n,-u,- —n(,u(,); M is the equivalent magnetic current density which is neglected in

this study; E is the electric field; H is the magnetic field; D is the electric flux density;

and B is the magnetic flux density.

To solve the Maxwell’s equations, the finite-difference time-dornain (FDTD)

method [186] is adopted in this research. Figure 30 shows the positions ofthe electric and

magnetic field vectors about a cubic unit cell ofthe Yee space lattice. This configuration

ensures Eq. (149) to hold. Accordingly, the Maxwell’s equations can be discretized by

using the central-difference scheme upon both space and the time domain. The concrete

expressions of descretized Maxwell’s equations for different cases can be found in

Taflove and Hagness’s book [186]. Then the new value of an electromagnetic field vector

component at any lattice point can be calculated from its previous value and the previous

values ofthe components ofthe other field vector at adjacent points.
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Figure 30 Position of the electric and magnetic field vector components about a

cubic unit cell of the Yee space lattice

Since the electromagnetic waves in nature can reflect back into the computational

domain at the computational boundaries, a proper boundary condition must be applied to

terminate the computational domain if a physical problem with Open boundaries is of

interest, such as an electromagnetic wave propagation in an infinite medium. In order to

eliminate the fake waves caused by the reflection ofthe incoming wave at the boundaries,

Berenger introduced a highly effective absorbing boundary condition called the perfectly

matched layer (PM L) in 1994 [187]. However, this PML boundary condition is a

hypothetical medium based on a mathematical model. Indeed, a physical model based on

an anisotropic perfectly matched medium can be formulated. This was first discussed by

Sacks er al. [188]. For a single interface, the anisotropic medium is uniaxial and is
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composed of both electric and magnetic permittivity tensors. This kind of boundary

condition is called UPML (uniaxial PML).

To illustrate the capabilities of FDTD for simulation of laser-plasma interaction, a

femtosecond laser pulse interaction with a target silicon substrate is simulated here. The

laser-induced ionization is included in this calculation by using an ionization model based

upon local energy balance analysis of electrons at successive time steps. The current

density is modeled by Ohm’s law, i.e. J = O'E where 0 is the conductivity of silicon at a

given point, in using the FDTD. A two-temperature model developed by Kaganov et al.

[189] is used to calculate the heating pattern of the electrons and lattices in this

simulation.

 

15 um
 

 

50 um

feel

    
OI 

Figure 3] Schematic of computational domain for simulation ofa femtosecond laser

pulse interaction with a silicon substrate.

In this simulation, a femtosecond laser with the wavelength of 800 nm and the

pulse width of 80 fs is used. The beam is assumed radially polarized (TEMOO mode) and
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is focused through a numerical lens located at the top of the computational domain. Four

pulse energies (7.5 yJ, 15 yJ, 30 ,uJ and 60 ,uJ) are used for the calculation. The

target silicon with the electrical conductivity of 1.4 9‘1 m is assumed. Figure 31

illustrates the computational domain used in this study.

Figure 32 and Figure 33 are the time histories of the radial component of the

electric field (E,.) and the corresponding energy absorption patterns in the silicon

substrate respectively. The pulse energy is 30 ;JJ ; and the pulse width is 80 fs. The top

row in each figure shows the results obtained without the ionization model; and the

bottom rows are the results after incorporating the developed ionization model. As shown

clearly, the major difference is that the laser beam is blocked significantly near the

interface when the ionization process is accounted for while the laser beam propagates

through the silicon freely when the ionization is not considered. In fact, the laser pulse is

blocked almost completely except near the rim of the laser pulse. This is because the

ionization process leads to a sudden increase in the electron number density. As a result,

the electrical conductivity increases accordingly and the silicon substrate can behave

almost like a metal. This can be explained more clearly from the energy balance

viewpoint. As illustrated in the bottom row of Figure 33, almost all the energy carried by

the laser pulse is dissipated in a very thin layer near the interface due to the very high

electron number density. The thickness of this energy absorption layer is called the skin

depth (for metals) and it is believed to be closely related to the ablation thickness. As

clearly seen from these figures, the thickness is very well defined even for a
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(B) With the ionization model

(l)t=-11.6 fs (2)t=65.2 fs (3)t=l40.2 fs (4)t=218.8 fs

Figure 32 Time history of laser pulse propagation. (In these plots, the radial

component of the electric field (Er) is used.)
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(B) With the ionization model

(I) t = 65.2 fs (2) t = 103.6 fs (3)1: 180.4 fs (4) t = 257.2 fs

Figure 33 Time history of laser energy absorbed by electrons
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semiconductor like silicon and this explains the superior ablation quality of femtosecond

laser pulses .for various materials. In the mean time, it is also shown that near the outer

rim of the laser pulse, the EM wave penetrates into the substrate. This “leaking”

phenomenon occurs because, for a Gaussian laser beam, the laser intensity at the outer

edge is not high enough to induce strong ionization.

Other simulations results, such as the evolutions of the electron temperature,

electron number density, electrical conductivity and the absorption coefficient of the

target silicon are also obtained through the simulation and they are discussed in detailed

in [89]. In conclusion, by using the FDTD method, the wave nature ofthe laser beam can

be retrieved to the greatest content. Thus, the FDTD method is adopted in the present

model to calculate the electromagnetic field which is essential in evaluation of the

external force term in the Boltzmann equation and the Joule heating term in the energy

equation.

5.3 Numerical Implementation

1n the practical implementation of the present LBM model to simulate laser

interactions with weakly ionized plasmas, there are several points worthy to be noted

numerically.

1) Selection of the time step. Because the present model is actually a hybrid

model in which three sub-models involve, the time step should be selected as:

A! = min(AtLBM ’AIFDTD’AIENG) (152)

where A’LBM is the time step determined merely by lattice Boltzmann method,

Ar

4’ Lle/I = 732,——

‘ ITTQX

(where Hum denotes the maximum sound speed ofthe three different



species of particles in the weakly ionized plasma and 6m,1X is usually equal Be in the

. . . A

most cases); A’FDTD IS time step merely decrded by FDTD method, A’FDTD S—l

c

(where c is the speed of light) and A’ENG is the time step required by the solution of the

,

. 0.5C Ar“ . .

energy equation, A’ENG S ———e———, where C6 and KL, are the volumetric heat capacrty

K
e

and thermal conductivity of electrons respectively. Through preliminary quantitative

probe, we can find that A’FDTD is the usually the smallest one among the above three

mentioned time steps. Thus, we choose the time step as:

Ax

AletFDTD =5 (153)

where the constant 6 2 2 in our simulation without loss of generality.

2) Rescaling scheme. Although the basic idea ofthe rescaling scheme used in this

model is the same as the one described in Chapter 4, there is a little difference in the

practical implementation. Besides the two free parameters, the spacing Ax and the

dimensionless relaxation time I , there is another free parameter which can be prescribed

here; that is, the time step At as described above. The lattice viscosity recovered from the

LBM has the same form as before (taking the electrons as the example):

0, =(re—0.5)é§m (154)

where the time step is determined by Eq. (153). By equating the physical viscosity to the

lattice viscosity, we can easily have:

37rr—0.5At

7.=\[ (e ) (155)

 

 

8/1.
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following the same definition ofthe rescaling parameter y as shown in Eq. (1 15). It can

be seen that once the physical properties of the electron, the dimensionless relaxation

time TL, and the time step At are determined, the lattice sound speed of electrons can be

determined accordingly as:

‘ (156) 

The rescaling of the relaxation time 1 is straightforward, i.e. xi”, = r,.At. Then the
U!“I

rescaled acceleration can be found as:

V" a, (157) 

according to the second rule of the rescaling scheme introduced in Chapter 4. The

rescaled parameters for ions and neutrals can be found in a similar way.

3) Interpolation scheme. The distance traveled by electrons in a time step At is

At',,=\/30~,,At . Comparing to the spacing Ax , it is apparent that the ratio

Are/Av:J35,,At/Av=\/36~c/§c is less than one because the lattice sound speed is

impossible to be greater than the speed of light. In another word, during a time step At,

the electrons cannot stream to the adjacent node points, so do the ions and neutrals. Thus,

it is necessary to apply the interpolation scheme to find the on-node value of the

distribution functions after the streaming step in LBM. The interpolation scheme applied

here is similar to the one described in Chpter 4. However, since the lattice sound speed

~

0,, is dependent on the temperature, and consequently, dependent on both time and space,

the interpolation fomiula used here is different with the one shown in Eq. (101). Instead,

by referring Figure 34, the formula takes the following form:
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_k) (nmenh-

k)
(158)

where m = flew) , II = fl,.(q)+1 and k = fl,,(0)—1 . Note that the interpolation parameter

now is dependent on both time and space and it is defined as ,l)’,,(x,t) = J39,.(x,t)At/Ar.

It is easy to see that if [3,, is uniform throughout the whole domain, Eq. (158) becomes

Eq. (101 ). Further, if ,Bt, =1, few) 2 fe(0') which means no interpolation exists.
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i< +i
r I H7—
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MOW fle(p)Ax fle(q)Ax

Figure 34 Schematic of the rescaling scheme. The value of distribution function atp

can be found by using the post-collision values at 0’, p’ and q’.

4) Positions of simulation variables in the grid system. Unlike the isothemial

plasma model developed in Chapter 4, the present model also has the temperature as a

variable. The primary variables used in the calculation are listed in Table 11. All

thevariables listed in Table 11 are dependent on both space and time. But in the actual

simulation, not all the variables are located on the same position in the grid system. That

is due to the staggered scheme of the field vectors used in FDTD method. In order to

satisfy the divergence free law V~B=0 , the electric field and magnetic field are

discretized on staggered node points as shown in Figure 30. The grid system as well as

the positions ofthe primary variables is shown in Figure 35. As illustrated, magnetic field,



number density, macroscopic velocity and temperature are located at the primary nodes

which are denoted by the white knots while the x- and y—component of electric field are

located at the staggered grid nodes which are denoted by the solid knots respectively.

 

 

 

 

 

   

Number density n5.

Macroscopic velocity u 3

Temperature of electron TS

Electric field E

Magnetic field H

 

Table 11 Primary simulation variables
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Figure 35 Positions of the simulation variables. Hz, ns, ns and T5 are calculated at

the white node points while Ex and Ey are staggered in space and evaluated at the

black node points.
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Besides the above mentioned primary variables, there are also many secondary

variables which depend on the primary variables used in the simulation. They are listed in

Table 12.

 

 

 

 

 

 

 

 

 

Speed of sound 63

Current density J

Relaxation times 25,,

Field ionization rates Rf

Impact ionization rates R:

Recombination rates R;

Volumetric heat capacity CS

Thermal conductivity KS

Interpolation factors 133    
 

Table 12 Secondary simulation variables

Note that in the evaluation of the variables which involve electric field, such as

current density and Lorentz force, the value of electric field should be calculated at the

primary node point (1',j) . In the practical simulation, wejust use the average value ofthe

electric field neighboring the node point (i,,j) :

E, = 0.5(Ex(1',j)+ E_,.(z',j + 1))

E, = 0.5(E_,,(r,_/)+ 5,11,. (j),
(159)
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Besides the space discretization, the electric field is also staggered in time. Thus, the

value ofelectric field should be used at the same time level in the time marching process:

Exit—l : 0...]5(E\H—32 + Exit—1,2)

Evfi‘l : 0.5(E).”_3/2 + Evil—V2)

(160)

In conclusion, the Boltzmann equations, Maxwell’s equations and energy

equations are coupled to establish the present model. The Boltzmann equations are solved

by using the traditional D2Q9 lattice Boltzmann method. In order to match the physical

properties of the plasma, the rescaling scheme is applied to select the simulation

parameters used in LBM. Besides the standard collision step and streaming step, an

interpolation step is needed in this LBM model to find the on-node values of the

distribution functions ofthe plasma particles. As the governing equation ofthe evolution

of the temperatures, a set of particle energy equations are derived directly from the

Boltzmann equations by taking the proper moments of the distribution functions. The

energy equations are solved by the finite volume method. The FDTD method is adopted

here to solve the Maxwell’s equations where the UPML boundary condition is applied to

terminate the outgoing electromagnetic waves. Figure 36 shows the flowchart of the

present model. It can be seen that there are complicated correlations among those three

equations. The external force in the Boltzmann equation is calculated by using the

solutions of Maxwell’s equation. The sound speeds, relaxation times, ionization and

recombination rates are evaluated by using the results ofthe energy equation. When using

FDTD method to solve the Maxwell’s equations, the current density needs to be attained

from the Boltzmann equation. In solving the energy equation, the Joule heating term is

calculated by using the results from both Boltzmann equation and Maxwell’s equations
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while the other transport coefficients are evaluated from the results of Boltzmann

equation. Figure 37 shows the correlations among the three equations. The elements

through which one equation affects another are illustrated in the figure.
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Figure 36 Flowchart of the present model
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Figure 37 Correlation among three equations

5.4 Simulation Results

The interaction between a continuous COz laser beam and a weakly ionized

helium plasma is simulated by using the model developed here. The computational

domain is a l35.68><135.68 pmz square which is discretized by a unifomi 256><256 grid

system. As illustrated in Figure 38, the computational domain is surrounded by a PML

layer used as the boundary condition in the FDTD solver. The PML thickness is 30 grids.

The origin point of the computational domain is located at the left lower comer. The

interface between helium and vacuum is atj = 200. A continuous C0; laser beam whose

wavelength is 10.6 am is incident from the top of the computational domain and

propagates along the negative y—direction. The no-gradient boundary condition is applied

on all the boundaries enclosing the helium. Initially, the helium is assumed to have a
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0. 01%1011ization degree. The initial number densities of neutrals, ions and electrons are

2.687x10‘9rnr‘3 , 2.687x10‘5r-m‘3 and 2.687x10‘5cm‘3 , respectively. The

temperatures of all the three species of particles are set identical. According to Saha’s

equation, T0 —-7}0-— T110 =1 ..OS88V

 

 

 

       
Figure 38 Schematic of the computational domain for simulation of interaction

between a continuous C0; laser beam and a weakly ionized helium plasma.

After the laser beam crosses the interface, the free electros in the weakly ionized

helium plasma will be accelerated and heated by the laser field. As a result, the electron

energy, including both the macroscopic kinetic energy and the thermal energy

(temperature) will be increased. If the electron energy is higher than the ionization

potential of helium, new free electrons will be generated through the electron impact

ionization. Figure 39 shows the evolution ofthe maximum electron number densities
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Figure 39 Evolution of maximum electron number density with different laser

intensities. At the early stage, the electron number density increases exponentially

because of the laser-induced ionization. However, it shows saturation later due to

the equilibrium between ionization and recombination.

under exposure to different laser intensities. Note that the values shown in the figure is

actually the maximum ratio of the electron number density to the initial neutral number

density. Thus, it also can be interpreted as the maximum ionization degree throughout the

whole computational domain. From the figure, the exponential increase of the electron

number density due to the electron impact ionization can be seen clearly. We can also see

that the electrons are generated with a higher rate ifthe laser intensity is higher. That is

natural because higher laser intensity indicates that more laser energy is input into the

domain in a unit time and thus leads to a quicker heating of the electrons. As long as the

electron energy is above the ionization potential, the ionization will keep taking place and

more and more new free electrons will be generated. However, ionization itselfis a
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Figure 40 Evolution of maximum electron temperature with different laser

intensities. The electron temperature increases very quickly due to the rapid heating.

It decreases after the ionization takes place because the generation of new free

electrons consumes the laser energy.

cooling scheme for electrons because, after all, the electron energy obtained form the

laser beam is used to overcome the ionization potential and thus less laser energy is used

to heat the electrons. This is evident in the energy equation where the ionization is just

the sink term. Consequently, with more electrons generated, the electron temperature

begins to decrease as shown in Figure 40. In this plot, the electron temperature increases

very quickly at the early stage when the ionization hasn’t taken place effectively. This

can be verified by referring to Figure 39. For example, under the laser intensity of

8x107W/(7112 , the maximum electron number density starts to increase around 18 ps,

which corresponds to the temperature decrease at about the same time moment as shown
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Figure 41 Evolution of ionization coefficient with different laser intensities. The

ionization coefficient shows a similar pattern with the electron temperature because

it mainly dependent on the electron energy.

111 Figure 40. As the electron temperature decreases, the ionization rate is reduced

accordingly. At the same time, since the recombination rate is proportional to the number

densities of charge particle and inversely proportional to the electron temperature, the

recombination becomes more and more prominent in the plasma. Reduction of ionization

and enhancement of recombination lead that the generation rate of new free electrons gets

lower and thus the electron number density shows a “saturation” phenomenon in Figure

39. This can be explained more evidently by Figure 41 and Figure 42 which are the

evolutions of the ionization coefficient and the recombination coefficient respectively.

Referring to Eq. (133), the ionization coefficient is mainly dependent on the electron

energy. That is why the evolution ofthe ionization coefficient shown in Figure 41 has the
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Figure 42 Evolution of recombination coefficient under different laser intensities.

The recombination coefficient increases due to the generation of new free electrons

and the decrease of the electron temperature.

similar pattern as the electron temperature. The pattern of evolution of the recombination

coefficient can be explained by Eq. (134). Note that there are also “saturation”

phenomena for the recombination coefficient. That happens when the electron number

density and the electron temperature approach the “static” state as shown in Figure 39

and Figure 40.

Figure 43 and Figure 44 show the temperature evolutions of ion and neutral

respectively. The ions are also heated by the laser field directly. But the heating rate is

much slower because the ions are much heavier that the electrons. The ion temperature

also decreases after some time as do the electrons. However, the cause of this temperature

decrease is mainly due to the attenuation of the electric field instead of the cooling

scheme of the ionization. That is why the decreasing points of the ion temperature are
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much later than those of electron temperature. Ofcourse, the attenuation of the electric

field, which will be shown later, also affects the heating of electrons. But it is believed to

be the minor factor comparing to the effects of the ionization for electrons. Unlike the

charged particles, the neutrals are only heated by the heat transferred from the charged

particles. That explains the latest increasing time of the neutral temperature as shown in

Figure 44 and its continuous increases with time: as long as there is temperature

difference between charged particles and neutrals, the cross heat transfer will be

continued and the neutrals will be kept heated.
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Figure 43 Evolution of maximum ion temperature with different laser intensities.

Compared to the electron temperature, the ion temperature increases with a lower

rate because of the heavy mass. It decreases due to the attenuation of the electric

field.
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Figure 44 Evolution of neutral temperature with different laser intensities. Unlike

the temperatures of electrons and ions, the neutral temperature keeps increasing

because the neutrals are heated by the cross-heat transfer from the charged

particles.

Figure 45 and Figure 46 show the distributions of electron temperature and

electron number density along the beam propagation axis respectively where the incident

laser intensity is 2x107 W/cm2 . It can be seen from the figures that, very naturally, the

electrons are heated first near the interface and thus the largest electron number density

always emerges at the interface. As analyzed above, after some time, the temperature

near the interface decreases due to the ionization. The temperature distribution on the axis

becomes more and more uniform with time lapse. Finally, an almost uniform temperature

is established along the axis and it decreases very slowly which is believed to be due to

the temperature diffusion process. The saturation of electron number density can also be

seen from Figure 46 where the number density near the interface increase very slowly

with time in the later stage.
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Figure 45 Distribution of electron temperature along beam propagation axis at

different time moments. The highest temperature always appears at the interface.
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Figure 46 Distribution of electron number density along the beam propagation axis

at different time moments. Most of the new free electrons are generated near the

interface.
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(a) t = 49.93 ps

 

(b) t = 149.80 ps

Figure 47 Snapshots of electron and neutral number densities at (a) t = 49.93 ps and

(b) t = 149.80 ps
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Figure 47 shows the contours of electron and neutral number densities at two time

moments where the unit ofthe number density in the plot is CHI—3. The laser intensity in

this illustration is 2x107 W/sz . The generation of free electrons and loss of neutral

particles are matched very well from the plots, which is evident by the ionization terms

introduced in the Botzmann equations. Further, it is clearly that more electrons are

generated along the axis. That is understandable because the laser intensity is higher

along the axis due to its Gaussian distribution in space. It also can be seen that most of

the free electrons are generated in the flat thin layer below the interface as shown in

Figure 47 (b). This can be explained as follows. The electrons on the axis are heated at

the earliest and when their energy is high enough, they will ionize the neutrals due to the

electron impact ionization. On the other hand, the electrons at the outer rim ofthe laser

field will not be heated so quickly because the laser intensity there is not as high as in the

center. This leads to the highest temperature on the axis at the early stage as shown in

Figure 48 (a), (b) and (c) where the temperature is in unit of eV. However, because the

ionization rate is higher at the center, the temperature decreases also quicker there due to

the ionization. In such a case, it is possible that the temperature at the outer rim of the

laser field is higher after some time as shown in Figure 48 ((1). As a result, more electrons

are generated at those locations than on the axis. Then a flat pattem of the electron

number density below the interface emerges. This can be seen more clearly from Figure

49 which is the electron number density distribution along the x-axis atj = 195, i.e. 5 grid

points below the interface. The above analysis can be verified more evidently by Figure

50 which shows the snapshots of ionization coefficient Rf. (s_1 ) and recombination
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(a)t=4.86 ps (b)t= 13.26 ps

  
(c) t = 49.93 ps (b) t = 149.80 ps

Figure 48 Contours of electron temperature at (a) t = 4.86 ps, (b) t = 13.26 ps, (c) t=

49.93 ps and (d) 149.80 ps

coefficient R; (5‘1) at t = 149.80 ps. It can be seen that the ionization becomes stronger

at the outer rim of the laser beam below the interface. At the same positions, the

recombination is weaker while it is more prominent in the center. This leads to relatively

less electron generated in the center and more generation of electrons at the outer rim of

the laser beam.
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(a)

 

(b)

Figure 50 Snapshot of (a) impact ionization coefficient and (b) recombination

coefficient at t = 149.80 ps

143



The temperature evolution as shown in Figure 48 can be explained from the point

view ofJouie heating, which is essentially the laser energy deposited into the plasma. The

snapshots ofJoule heating at four time moments are shown in Figure 51. It is clearly seen

that the Joule heating is attenuated along the laser beam propagation and most ofthe laser

energy is deposited in the thin layer below the interface eventually. According to the

definition, Joule heating is dependent on two factors: the current density and the electric

field. After a further analysis, one can find that the Joule heating is essentially

proportional to the number densities ofthe charged particles and the square ofthe electric

field while inversely proportional to the electron temperature. Thus, it is natural to

conclude that the Joule heating decreases in the region where the number densities of

charged particles are low and the electron temperature is high, just as shown in Figure 51.

For the electric field, with the increase of the current density (mainly due to the increase

of number densities of charged particles), the electric field is reduced according to the

Maxwell’s equation. It is apparent that the current density is the highest on the axis below

the interface because the strongest ionization takes place there. Thus, the electric field is

attenuated most in that region as shown in Figure 52. Comprehensively considering the

effects of the current density and the electric field, the Joule heat shows the “leaking”

phenomenon as shown in Figure 51. This also explains why there is similar phenomena

in temperature evolution.
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  (a) t = 4.86 ps

  
(c) t = 49.93 ps (d) t = 149.80 ps

Figure 51 Snapshots of Joule heating at (a) t= 4.86 ps, (b) t = 13.26 ps, (c) t = 49.93

ps and (d) t = 149.80 ps
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(a) t = 4.86 ps

 

 

 

 

  
(c) t = 49.93 ps (b) t = 149.80 ps

Figure 52 Snapshots of x-component of electric field at (a) t= 4.86 ps, (b) t = 13.26

ps, (c) t = 49.93 ps and (d) t= 149.80 ps
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Finally, the evolutions of number densities, temperatures, ionization and

recombination coefficients, and magnitude of electric field at Point A (the center point

just below the interface whose coordinate is (128, 199) in the grid system) are shown in

Figure 53. Those results are obtained by using the laser intensity of 2x107 W/cm2 .

Generation of electrons and loss of neutrals happen correspondingly as illustrated by

Figure 53 (a) where the saturation phenomenon can be shown very clearly. This

saturation can be explained directly by Figure 53 (c). In that plot, the ionization

coefficient reaches a “static” state due to the decrease ofthe electron energy. As analyzed

above, this energy loss is caused by the ionization itself because ionization here also

plays a role for cooling the electrons. Meanwhile, the recombination coefficient increases

thanks to the combined effects of electron number density and temperature. Moreover,

recombination of charged particles also releases heat which can contribute to increase the

electron temperature. Eventually, the recombination coefficient approaches to the

ionization coefficient as shown in the plot. Then the equilibrium between the ionization

and recombination is expected to be established. The electron temperature and ion

temperature are shown in Figure 53 (b). The different heating rate of electrons and ions

caused by their far different masses are apparent from the plot. The electron temperature

increases very quickly at the early stage mainly due to the rapid heating from the laser

energy through Joule heating in this model. After the effective ionization takes place, the

electron temperature starts to decrease due to the dynamics of ionization and

recombination as analyzed before. Like the electrons, the ions are also heated by the

incident laser beam but with a much lower heating rate. Decrease of the ion temperature
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is mainly caused by the attenuation of the electric field as illustrated in Figure 53 (d).

This attenuation of electric field is deduced by the increased current density which is

dependent on the temperatures and number densities of charged particles. Since both the

temperatures and number densities illustrate the saturation behavior, the attenuation of

the electric field is also presenting the similar pattern as expected.
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Figure 53 Evolution of (a) number densities (b) temperatures (c) ionization and

recombination coefficients and (d) magnitude of electric field at Point A
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In conclusion, the interaction between laser and weakly ionized plasma shows

very complicated behaviors due to the dynamics of ionization and recombination. The

propagation of the laser beam and the laser energy deposition are significantly affected

by the generation of the free electrons. Meanwhile, the heating pattern of free electrons

by the laser beam also determines the ionization and recombination dynamics of the

plasma. The spatial distribution of the laser field makes the problem more complicated.

The simulation results presented above show the great potential of the current model to

simulate laser interaction with weakly ionized plasma. Not only the wave characteristics

of the laser beam are retained, but also the physical heating patterns for all the plasma

particles are illustrated by using this model. Unlike the kinetic-based model, such as PIC,

this model can be applied for physical problems with much larger timing and spatial

scales. Comparing to the hydrodynamic models, the present model has less assumptions

(such as continuum assumption) and thus can be used to simulate a wide range of

problems.
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Chapter 6

Conclusion

A new LBM based model is developed in this dissertation, for the first time, to

simulate laser interaction with weakly ionized plasmas. By introducing an additional temt

in the Boltzmann equations, the effects of electron impact ionization and its inverse

process, three-body recombination, on the change ofrate ofthe distribution functions are

included so that the ionization and recombination dynamics can be taken into account in

this model. The Boltzmann equations, particle energy equations and Maxwell’s equations

are coupled and constitute the governing equations ofthe present model. The Boltzmann

equations are solved by the traditional D2Q9 LBM on a uniform square grid system. The

external force temi in the Boltzmann equation is evaluated by using He’s model after an

elaborate comparison of the results of some hydrodynamics fiows obtained by the other

four models. in the evaluation ofthe extemal force term and the Joule heating term in the

energy equation, the FDTD method is adopted to solve the full set of Maxwell’s equation

so that the wave nature of the electromagnetic field carried by the laser beam and

generated by the plasma dynamics can be retained to the greatest content. The energy

(temperature) evolutions of the individual species of particles in the plasma are solved

from the energy equations which are directly derived from the Boltzmann equations by

taking proper moments ofthe distribution functions.

To match the physical properties ofthe plasma, a rescaling scheme is preposed in

this study to select the proper simulation parameters used in LBM. This rescaling scheme
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is validated by the two-dimensional driven cavity flow and the isothermal weakly ionized

plasma simulations. In the practical implementation ofthe present model, the spacing Ax

is usually determined by the resolution requirements of the physical problem, the time

step AI is selected by the stability requirement of the FDTD solver and the dimensionless

relaxation time t can be prescribed arbitrarily as long as it is in the valid range. Once the

above three parameters are determined, the lattice sound speed 61. , the lattice relaxation

time Jim (5 = 6,1, n ) and the lattice acceleration term 5,. (s = e,z' ) can be found according

to the rescaling rules and would be used in the LBM calculations. After the standard

collision step and streaming step, it is necessary to introduce an interpolation step to find

the on-node values ofthe distribution functions. This is due to the fact that the particles in

the plasma cannot travel to their neighboring nodes in the period of a time step At.

Conclusively, the Boltzmann equations with the ionization and recombination term are

solved by the standard D2Q9 LBM with supplement of the rescaling scheme and an

interpolation step following the streaming step. The number densities, macroscopic

velocities and current densities of the plasma particles can be found as the results of the

LBM solver and are used in the solvers of the FDTD and the energy equations.

As a simulation example, the interaction between a continuous C02 laser beam

and a weakly ionized helium plasma is simulated by using the proposed model in this

dissertation. The results show the physical heating patterns ofthe particles in the plasma

due to the laser energy deposition. The ionization and recombination dynamics and its

effects on the heating and generation of free electrons are also illustrated from the

simulation results. Although the simulation conducted in this dissertation is only a

preliminary application, it still could show the capabilities and limitations of the present
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model. Compared to the kinetic-based methods, such as PIC models and MD simulations,

our model is much less computationally expansive because there is no need to solve the

Newton-Lorentz equation for every single particle. Thus it is possible to use the “real”

plasma particles in the simulation instead ofthose “super-particles” used in PIC and MD

simulations. The advantage of the present model over the hydrodynamics models is that

there is no continuum assumption employed in this model. As a consequence, this model

can be applied in a wide range ofthe physical problems. Another prominent feature ofthe

present model is that Maxwell’s equation is directly solved here to retain the most

detailed wave behaviors of the electromagnetic field. Thus, this model is applicable for

even the most complicated wave related problems, such as complex geometries, multiple

incident laser beams and ablation of gradient materials. Finally, the present model is very

easy to implement because each of the three solvers is well developed and many

achievements in the individual field can be inherited in development ofthis model.

Of course, no “general” model which can be applied for all physical problems

exists. The limitations ofthe present model include the following aspects. First of all, this

model is only applicable for relatively low laser intensity. This limitation is mainly due to

the low Mach number assumption made in the derivation of the lattice Boltzmann

equations. High laser intensity. as expected, will induce high electron velocities which

might break the low Mach number assumption. To overcome this problem, it is intuitive

to abandon the low Mach number assumption and adopt more velocity components in

discretization of the phase space. But unfortunately, this multiple-speed approach for

high Mach flow is still under development and always suffers from high instability.

Therefore, a high Mach number LBM scheme is highly desired for plasma simulation.
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Second, the physical spatial and temporal scales that can be simulated by this model are

largely limited by the FDTD method. In order to capture the wave nature of the

electromagnetic field accurately, the spacing Ar in FDTD is required to be much less

than the wave length of the laser beam. Further, due to the stability requirement, the time

step At also needs to be sufficiently small. Thus, an ultra-stable FDTD solver is needed

for simulation of real size physical problems. Third, an interface tracking technique may

be needed to simulate the plasma plume expansion in vacuum. Plasma plume expansion

is very important in many applications, such as laser welding and pulsed laser deposition.

However, one difficulty in simulating this phenomenon is how to track the evolution of

the interface between the plasma and the vacuum. One possible approach is to use the

level set method. But apparently, there is a long way to go to combine the level set

method with the LBM.

In conclusion, although the LBM model developed in this dissertation is only in

its preliminary stage, it has already shown great potential for simulation of laser

interaction with weakly ionized plasmas. It is hoped that those aforementioned limitations

could be eliminated in the future and as a result, this new model could be applied widely

and successfully.
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