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ABSTRACT

MODELING AND SIMULATION OF TURBULENT MULTIPHASE FLOWS

By

Zhaorui Li

The atomization of liquid spray in turbulent reacting and non-reacting flows

usually occurs in two successive steps, i.e., primary breakup and secondary breakup. In

the primary breakup region, the evolution of the interface between the phases is usually

complex and very difficult to model. In the secondary breakup region, the average droplet

size and volume occupied by the droplets are relatively small but the number of droplets

is usually very significant.

In this study, we use different mathematical and numerical models for different

regions of the spray. For dense spray simulations, a coupled Lagrangian interface-

tracking and Eulerian level set method is developed and implemented. In this method, the

interface is identified based on the locations of notional particles and the geometrical

information concerning the interface and fluid properties are obtained from the level set

function. The level set function maintains a signed distance function via the particle-

based Lagrangian re-initialization technique. Numerical simulations of several ‘standard

interface-moving’ problems and two-fluid laminar and turbulent flows are conducted to

assess this new hybrid method. The results of our analysis indicate that the hybrid

particle-level set method can handle interfaces with complex shape change, and can

accurately predict the interface values without any significant mass loss or gain. The

results obtained for isotropic two-fluid turbulence via the new particle-level set method



are validated by comparison with those obtained by the ‘zero Mach number’, variable-

density method. The two-way interactions between the turbulent velocity field and the

interface are studied by the particle-level set method. Extensive analysis of vorticity and

energy equations indicates that the destabilization effect of turbulence and stability effect

of surface tension on the interface motion and interface’s effect on turbulence are

strongly dependent on the density ratio and Weber number.

For dilute spray simulations, a robust and efficient Eulerian-Lagrangian-

Lagrangian mathematical/numerical LES model is employed. This is based on the filtered

mass density function (FMDF) methodology and is applicable to two-phase turbulent

reacting flows with two-way mass, momentum and energy coupling between phases

included. In the LES/FMDF methodology, the “resolved” carrier gas velocity field is

obtained by solving the filtered form of the compressible Navier-Stokes equations with a

high-order finite difference scheme. The sugrid species, energy and combustion are

modeled with the two-phase scalar FMDF transport equation, which is solved by a

Lagrangian Monte Carlo method. The liquid droplet/spray is simulated with a non-

equilibrium Lagrangian model and stochastic SGS closures. The two-way coupling is

implemented through series of source/sink terms. The two-phase LES/FMDF is

employed for systematic analysis of turbulent combustion in the double swirl spray

burner and spray-controlled dump combustor for various flows and spray parameters. The

effects of fuel type, spray/injection angle, mass loading ratio, droplet size and its

distribution, fuel/air composition, wall, and other parameters on the combustion and

turbulence are investigated.
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CHAPTER 1

A Hybrid Lagrangian-Eulerian Particle-Level Set Method

for Numerical Simulations of Two-Fluid Turbulent Flows

1.1 Introduction

Two-fluid flows have been widely studied due to their importance in variety of

engineering and scientific problems such as the spray atomization, oil-water separation,

ink jet printing and coating [1-3]. One of the important issues in the study of two-fluid

flows is the stability and evolution of the interface between the fluids [4-6].

Experimentally, it is often difficult to visualize and quantify the interface motion in

transitional and turbulent flows. This is due to intrinsic features of the interface, such as

the near-zero thickness and complex topological changes. Numerical methods offer three

advantages over the experimental methods: (1) numerical simulations can provide wealth

of data on almost everything, (2) various physical processes can be turned on and off at

will in numerical simulations [7], (3) it is relatively convenient to numerically study the

effects of various fluid/flow parameters. Despite these advantages and extensive efforts

that have been devoted to the development of reliable methods, the numerical study of

two-fluid turbulent flows has been somewhat limited. A challenge is that in most two-

fluid systems the physical properties (e.g. density and viscosity) change abruptly across

the interface, creating a hard-to-capture “discontinuity” in the system. Another challenge

is associated with the breakup and coalescence of interfaces; processes which are very

much dependent on the fluid properties as well as the kinematics of the flow.



Generally, the interface motion is computed by (i) “tracking” and (ii) “capturing”

methods. Examples of the interface tracking methods are the boundary integral [8-9] and

front-tracking or surface-marker [4, 10] methods. In the boundary integral method, only

the points on interface are discretized, making it relatively efficient in locating the

interface. However, once the interface experiences merging, breaking and other

significant topological changes, the boundary integral method often becomes hard to

implement [1.1]. The advantage of front-tracking or surface-marker method is that the

interface can be tracked explicitly and accurately via marker particles, whose number can

be increased to improve the accuracy. In comparison with the interface-capturing

method, the computational time needed to resolve the interface accurately is less in the

front-tracking method since the interface is represented by Lagrangian particles.

However, the front-tracking methods need special efforts like particle

reseeding/eliminating to deal with stretching, disconnection and reconnection of the

interface. Also, it is difficult to calculate the surface tension and curvature from the

Lagrangian particles [12].

In contrast to interface-tracking methods, interface-capturing methods implicitly

locate the interface based on an indicator function. There have been two popular

interface- capturing methods, one is the Volume-of—Fluid (VOF) method, and the other is

the level set (LS) method [13]. In the VOF method, the indicator function is the volume

fraction which is governed by a convection equation. This method can handle relatively

complex topological changes and is implemented in many commercially available codes

[14-16]. The VOF method is usually implemented in two steps, advection and interface

reconstruction. The former updates the volume fraction and the latter constructs an



approximated interface. The piecewise linear interface reconstruction algorithms that are

used in most VOF schemes have limited accuracy and suffer from discontinuity problem

[16-18]. Another problem with the VOF method is that it is usually difficult to calculate

the interface curvature from the volume fraction. To address some of these problems,

higher order interface reconstruction algorithms are suggested [7,19].

In contrast to VOF methods, LS methods do not need interface reconstruction.

In the LS method, the interface is modeled as a smooth interface function. Also in this

method, the interface always has a fixed thickness to alleviate the numerical oscillations

caused by discontinuities in fluid properties across the interface. Therefore, the interface

is described as a signed distance function at any time to keep a uniform and constant

front thickness. Like VOF method, no additional procedure is needed in the LS method

to model the complex topological changes of the interface. Also, the interface related

curvature and surface tension can be directly obtained from the level set function. Due to

these advantages, the LS method has been widely adopted in numerical simulation of

multi-fluid flows [20-24]. However, there are some problems with the LS method, the

most important one being the unphysical mass loss/gain. To alleviate this problem, a “re-

initialization” procedure is proposed in which the signed distance function is adjusted

during the simulation [20,24-26]. The re-initialization procedure cannot completely

remove mass loss/gain problem and as shown below generates erroneous results in two-

fluid turbulent flows. Hybrid schemes have been suggested to improve the accuracy of

VOF and LS methods by combining them [15,27]. Most numerical methods developed

for VOF and LS methods so far are based on the low order finite volume and/or finite

difference schemes. Examples are the variable density project method of Bell et al.



[7,24,28,29] for structured grids and the artificial compressibility matrix-free implicit

dual-time scheme of Zhao et al. [30] for unstructured grids. These methods can usually

handle large density and viscosity ratios but are not fully applicable to two-fluid

turbulent flows due to low order numerical accuracy.

Motivated by the fact that the level set function can provide smooth geometrical

information about the interface and the Lagrangian particle method can accurately

capture the interface location without any mass loss/gain, we have developed and tested a

coupled (Lagrangian) interfacial particle and (Eulerian) level set method that takes the

advantages of both methods. The new method, termed the interfacial particle level set

(IPLS), is different than the other hybrid particle-LS and particle-VOF methods [31-34]

and is successfully applied here to various laminar and turbulent flows. The effect of

turbulence on the interface and the effect of interface on the turbulence are studied via

IPLS method for various flow/interface parameters. This chapter is organized as follows:

in Section 1.2, the two-fluid “incompressible” particle-level set equations and the zero

Mach number form of the Navier-Stokes (ZMA) equations are presented and compared.

The numerical solution procedure for IPLS and ZMA along with the re-initialization

technique for IPLS is described in sections 1.3 and 1.4. Section 1.5 discusses the IPLS

and ZMA results for some representative two-fluid problems. The main summaries or

conclusions are presented in section 1.6.

1.2 Mathematical Formulation

Two different sets of equations are presented in this section. The first one

corresponds to the interfacial particle level set (IPLS) method and the second one

describes the variable-density zero Mach number (ZMA) method. The ZMA method is



considered here for the assessment of the IPLS method. The IPLS and ZMA equations

and the numerical solution procedures employed for solving them are different.

However, these two methods should yield similar results under special limiting

conditions, at least in theory. It is shown below that the results generated by them for a

two-fluid isotropic turbulent flow are indeed similar. This indicates the consistency and

the accuracy of both methods.

1.2.1 lnterfacial Particle Level Set Equations

In the IPLS method, instead of treating the two fluid regions separately, a coupled

solution is sought via one set of equations and “appropriate” representation of the

interface. The non-dimensional equations describing such a two-fluid incompressible and

immiscible system include the continuity and momentum equations [35]:

-o

 

V-U=O (1.1)

LU:__VL_(0.W;+_LV'<2#<¢>D>_LW__L;, (1.2)

a: pm) Re M) We p(¢) Frly

where U and p represent the velocity and pressure fields, respectively. Equations (1.1)

and (1.2) are non-dime‘nsionalized with the dimensionless parameters being the Reynolds

number Re = plLU0 /#1 , the Weber number We = plLUg /0' , and the Froude number

Fr 2 U8 /gL , where ,0,- and ,ui are the density and dynamic viscosity for fluid 1'

and L and U0 are the reference length and velocity, respectively. In equation (1.2), the 5'2

vector denotes the gravity direction and D=(VU+(VU)T)/2 is the rate of deformation

tensor. Gravity and surface tension parameters are represented by g and 0, respectively.



Here, the fluid density p, the viscosity ,u , and the curvature coefficient k are all

functions of the level set function (I) ,

mm = II + (IT/0115“”)

#(¢)=77+(1-77)H8(¢) (1-3)

K(¢) =V-(V¢/|V¢ll

where/i = p2 / ,0] is the density ratio and 77 = #2 / ,ul is the viscosity ratio. The level set

function itself is defined as:

> 0, if E fluidl

$06,!) = = 0,556 interface (1.4)

< 0,55 6 fluid2

In the IPLS method, the evolution of the level set function is described by the standard

level set equation

5’9 = —(U -V>¢ (1.5)
at

and the interface movement is obtained via the Lagrangian particle equation

3” U*<‘ ) <16): x .

dt p

where Ftp is the location of the particle p and (7*(5c'p) is the fluid velocity at the

corresponding particle position. In theory, the Heaviside function is defined as:

O ¢<O

H(¢)= 1/2 $20 (1.7)

1 ¢>O



However, to alleviate the numerical difficulty due to discontinuity of the fluid

properties across the interface, the interface is given a nominal thickness 8comparable to

the grid size and equation. (1.7) is modified as:

0 ¢<-e

Hg(¢)= (1+¢/e+sin(7r¢/e)/7r)/2 Mgr: (1.8)

l ¢>e

1.2.2 Zero-Mach Number Variable Density Equations

For numerical simulations of low speed variable density flows, the compressible

’ equations may be solved in the zero Mach number limit. For this, the acoustic field

which imposes stringent Courant—Friedrichs-Lewy (CFL) restriction on the time step is

removed from the compressible equations [36]. In this limiting condition, the non-

dimensional ZMA equations take the following form:

 

23+V-(pl7)=0
(1'9)3:

3(10U)+V_(pg0)=_vp+_l_v.r (1.10)
at

RC =

Br — 1 l
at+( ) RePrp (.11 ) ( )

_ 0
pT_p (1.12)

where the viscous stress tensor is defined as: Z=fl[20‘%(v'0)l] and L is the unit

second-order tensor.

In equations (1.9)-(1.12), p0, T are the thermodynamic pressure and temperature,

respectively. Note that, p0 is uniform in space and its non-dimensional value is unity.



The Prandtl number in temperature equation is defined as Pr: Cpy/ K , where K is the

thermal conductivity, Cp is the specific heat at constant pressure, and ,u = ,u(T) = T" is

the dynamic viscosity.

It should be emphasized here that ZMA and IPLS equations describe the flows in

different fluid systems; while ZMA is for an ideal gas, IPLS represents the flow in two

incompressible (liquid or gas) fluids, separated by the interface. However, ZMA and

IPLS equations become similar for some limiting conditions. When Pr—>oo, the energy

(temperature) equation in the ZMA formulation (equation (1.11)) becomes the same as

the interface equation in the IPLS formulation (equation (1.5)). Also in this limit,

equations (1.1) and (1.2) can be derived from equations (1.9) and (1.10) by ignoring the

surface tension and gravity terms. Thus, under the above limiting conditions, ZMA and

IPLS equations are the same and should yield similar results for velocity and density,

even though the temperature in the ZMA equations might not have any physical

meaning. This suggests that in theory the ZMA method is applicable to any two-fluid

flow problem. However, in practice this method is limited to “low” density ratios and is

not suitable for liquid-liquid or liquid-gas systems. Nevertheless, we are using the ZMA

method here for partial validation of the IPLS method. In the numerical solution of

ZMA equations presented below, the density and dynarrric viscosity are not constant in

each fluid region as they are in the IPLS method. But the variations are found to be very

small and negligible in the tested conditions.



1.3 Numerical Solution of IPLS Equations

The numerical scheme for the velocity and pressure calculations in the IPLS method

is based on a variable density projection algorithm [35,37]. In this algorithm, the

momentum equation (1.2) is written as:

fl+—Zp—=W (1.13)

a: pm)

where Wz—(U-Vfl7+iv.(2’u(¢)D)——l_k(¢)VH(¢)—_l_i .

Re pm» We p<¢> Frlrl

 

By taking the divergence of equation (1.13) and using the continuity equation, one can

readily derive the Poisson equation for pressure p ,

v.(&_):V.W (1.14)

PM)

Once the pressure field p is determined via equation (1.14), U is updated from the

following equation:

29;...an (1.15)

8! mm

1.3.1 Temporal Discretization

The time differencing in the IPLS equations is based on the second-order

Adams-Bashforth scheme [38] which yields the following difference equations:

¢II+I :¢N _dtx(%(ljll 'V)¢II __;_(Un—I _V)¢Il-‘I) (1.16)

-: [1+1 _ '3" +th 20* '1 N)_ll—]*(-° Il‘l)) (117)

1,, —x p (2 (11,, 2 xp .

(7* =U" +dtx(%VI/" —%W"—l) (1.18)



-°*
011+I _U -VPn+l

dt p11

 (1.19)

With the known interrnedial velocity, [7 * and the time step,dt, equation (1.19) is solved

together with the following Poisson equation forU "+1 and P"+1 at time step n+1with an

iterative method proposed by Yu [39]:

 

n+1

v.(VP )=(;ll_)v.(j* (1.20)

n l,0

1.3.2 Spatial Discretization

To minimize the numerical oscillation near the interface, which is caused by the

discontinuity of the density in the Poisson equation, a second-order finite volume method

is used to discretize the left hand side (LHS) of equation (1.20). The final form of the

discretization scheme can be summarized in the following (two dimensional) compact

form:

VP
. u I : n u u I u u I O ._ I l 1.21[v (7)1“ Ax(P),+1’J +Bx(P),_LJ +Cx(P),,J+1+Ex(P),,J_1 FX(P),,J ( )

 

  

 

,0

where,

A— I _ 2

_ 2 n. .- 2 n. . n..

Ax )0 l+I/2,j Ax (,0 l+1,} +10 1,1)

8_ 1 _ 2

szpni—1/2,j sz(p"i, j + p"i—1.j)

C_ 1 _ 2 (1.22)

Ayzpni,j+l/2 Ay2(p"i,j+1+ pniJ)

E: 1 2
  

Ayzp”i, j—1/2 Ay2(p"i, j + p"‘i.j—1)

F = (A + B + C + E)
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For low to moderate density ratios, both standard multigrid method (MG) [40]

and multigrid preconditioned conjugate gradient method (MGCG) [41] yield quick

convergence when they are applied to the above 5-stencil linear system (equation (1.21)

and (1.22)). However, for larger density ratios, the convergence rate of the MG method is

relatively slow [42]. Thus in this work we have used the MGCG method to solve the

Poisson equation.

For the convection term in the interface equation, the following second-order

upwind scheme is applied,

[(17 -V>¢li,j = (“131' +|u,-,j|X3¢,-,j —4¢,-_1,j +¢i_2,j)/(4Ax)+ (um- —|u,-,jl)

Xl— 3¢i,j +4¢i+1,j -¢i+2,j)/(4Ax)

+ (Vi, j + In, jlx3¢i, j -4¢i,j—1 + ¢i, j—2)/(4AY) + (Vi, j -Ivz', 1|)

>< (— 3a, j + 44, j+1 — a, j+2)/(4A)’)

(1.23)

The convection term in the momentum equation is solved by a sixth-order central

compact scheme proposed by Garnet [43]. Here, the continuity equation (1.1) is

employed to rewrite the convection term, (U -V)U as:

((7 -V)U = f, + g, (1.24)

2 uv

where f = [u j , g =[ 7] and the subscripts x and y imply partial differentiation in x

LIV V

and y directions. Taking fx as an example to show the details of compact scheme, fl- is

the sixth-order approximation of (fx ) ,- and satisfies:

1 ., , 1 ., l4 fi+1-fi-1 1fi+2-fi—2

3fll f’ 3f”1 9 2m 9 4m ( )

  

The viscous term is rewritten as
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iv-(MDL 1 {ZwaquDywwyu+va>)} (126)

Re p<¢> ' ReM) szMDva Dxmwyu + va>)

where Dx and Dv derivatives are again approximated by a sixth-order central compact

scheme. The divergence term in equation (1.20) and the pressure gradient term in

equation (1 . 19) are also calculated by similar compact schemes.

The curvature in the surface tension term is rewritten into a new form

suggested by Osher [44],

3

kw» = V ' (V¢/|V¢l) : (¢x2¢yy _ 2¢x¢y¢xy + ¢y2¢xx)/IV¢| (1-27)

and then approximated by a fourth—order central difference scheme.

To stabilize the high order scheme, the unphysical high wavenumber numerical

oscillations in velocity and level set function are removed by a sixth-order accurate filter

function [45],

A. . . d C b

aft-1 + fi + 0fi+1= aft +5(fi+3 + fi—3)+§(fi+2 + fi—2) +-2-(fi+1 + fi—l) (1-28)

with a -—l—(11+10a) b —i(15+34a) c —i(-3+6a) d —i(1—2a)

16 ’ 32 ’ 16 ’ 32

where fi is an unfiltered variable at grid point x,- and fi denotes the filtered value. In

this work, the filtering effect is very small and is confined to the smallest flow scales

with a = 0.475.

1.3.3 The Interface Algorithm

In order to keep a uniform and constant interface thickness in the level set method

[24], the level set function, e is usually set as a signed distance function close to the

. interface. However, it is often difficult to properly maintain this distance function when

12



the interface undergoes significant changes. To resolve this problem, Sussman er al. [24]

proposed a “re-initialization” procedure for maintaining o as a proper signed distance

function. In this procedure, an auxiliary equation,

3% = Sign(¢0)(1—]V¢|) , (1.29)

is solved for the “corrected steady-state” value of the interface function. In equation

(1.29),Sign(¢)0) = $0 “M63 +62 , where 19 is a small number comparable to grid size and

(2)0 , (I) are the level set functions before and after re-initialization. As mentioned in

reference [46], equation (1.29) may introduce significant error into the calculations as the

interface is not normally located on the grid points. Even with the re-initialization

procedure, the level set method still generates considerable unphysical mass loss/gain

[24]. Despite various re-initialization procedures and constraining techniques proposed to

alleviate this problem [20,25,26], there still remains considerable numerical error in the

level set method. Also, it is often difficult to obtain a pseudo steady-state solution for

equation (1.29) in turbulent flows, where the interface geometries are complex and

undergoes significant topological changes.

In contrast to the particle-level set method described in reference [32], in our

IPLS method, the position of interface is explicitly and accurately represented by a set of

Lagrangian particles. The level set function provides smooth geometrical information

concerning the interface, while the particles are used for keeping the level set function as

a signed distance function in the interface region without using any constraining

techniques. The interface algorithm and the basic features of the IPLS method can be

described in three main steps:

13



(1) Calculate the terms in the right hand side (RHS) of equations (1.5), (1.6) and (1.13) by

.9

using the variables at present and previous time steps (i.e.U",¢",xz,U"_1,¢"_1,

—. — . . "* ... . . .

1;; 1). Note that the particle velocrty U (x2) rs obtarned from the surroundrng

Eulerian velocity U" by a fourth-order interpolation scheme.

-:H+I11+], ¢n+l and "p

(ii) The primary variables at next time step (i.e. U ) are obtained

from equations (1.16)- (1.20).

(iii) After certain number of iterations, the values of level set function W“ are

corrected by using a new re-initialization technique based on the Lagrangian particles’

- ~ +
locanons r" l. p to maintain the level set function as a signed distance function. The re-

initialization procedure is described in details below with the help of Figure 1-1.

For correcting the level set function¢ at an Eulerian grid point, like grid (i,j) in

the Fluid 1 side in Figure 1-1, the particle that has the minimum distance to this point is

found first . This particle is represented with index IP in Figure 1-1. The indexes of

Lagrangian particles resided on the interface are monotonically increased in an initially

predetermined direction (anti-clockwise in Figure 1-1) along the interface. So, for the

particle with index IF, the tangential direction vector "1' of interface at the particle

location can be approximated as? = (3,1)“ — 361,34 )/|.Y',p+l - EULII . The vector starting

from particle IP and heading to the node (i,j) is given by I: = 5&(i,j) — 52”)“. In the two-

dimensional space, the corrected (9,7,1: is the cross product of f and 11¢); j =fo,

where the magnitude of (15,7,1- (i.e. h in Figure 1-1) is the approximate distance of node
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(i,j) to the interface. The positive sign of Q; j indicates that the node (i,j) is in Fluid 1

side and the negative sign of ¢i+l,j—1 means node (i+l,j-1) is in the Fluid 2 as shown

in Figure 1-1. The advantage of this technique is that the corrected ¢i, j automatically

maintains the right signed distance function and less number of particles is needed. Note

that, the computational cost of particles’ transportation and re-initialization are linearly

dependent on the number of particles. The IPLS method described here has some

similarities with the hybrid Lagrangian-Eulerian method proposed by Ceniceros and

Roma [47]. In the later, the interface is represented by piecewise linear functions and

polygons containing a series of nearby points are used to find the minimum distance.

Hybrid particle level set methods are also proposed by Enright et al.[32] and Hieber and

Koumoutsakos [33]. However, in these works the particles are uniformly distributed in a

narrow band around the interface and are only used for adjusting the zero level set

function.

For the IPLS method, the particle addition and removal procedures are necessary

as the particle number density may become too low or two high in the “stretching” and

“compressing” regions of the interface especially in turbulent flows. Inadequate number

of particles makes the re-initialization erroneous and cause numerical oscillations as

discussed, in Section 1.5.4. Too many particles cause unnecessary computational cost.

The particle addition and removal algorithm implemented in the IPLS method are

straightforward and are based on the distance between neighboring particles. Taking

particles in Figure 1-1 as example, once the distance between IP-l and IP particles

becomes larger than an upper threshold, the indexes larger than IP-l is increased by l.

and a new particle with index IP is added in the middle location between particles IP-l
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and IP+1. On the contrary, if the distance between particles IP-l and [PH becomes

smaller than a lower threshold, the particle IP is removed (or is given a zero weighting)

and those indexes larger than IP is reduced by 1. In practice, it is not necessary to

implement the particle addition/removal procedure at every time step.

1.4 Numerical Solution of ZMA Equations

In this chapter, the predictor-corrector integration algorithm of Najm [48] is used

for solving the ZMA equations (1.9)-(1.12). The algorithm is briefly described here.

First, the equation of state (equation (1.12)) is used to rewrite the time rate of change of

density as:

a_p_ = —E—qr— (1.30)
a: T 31

Subsequently, equation (1.30) is used together with equation (1.11) to calculate

the local time derivatives of (GT/8t)" and (dp/dt)" in the predictor step. The second-

order Adams-Bashforth scheme is implemented to evaluate the predicted density ,0* and

the intermedrate velocrtyui, while predrcted temperature T rs obtained from equatron

(1.12),

* n n n—l

.___'0_'0 23(2) __l_{§'2) (1.31)

dt 2 a: 2 at

 

*A '
—1

p u,- —p"u{’ _§{_ 3(Wi”1)+ifl]n _l[_m+iir‘l]n (132)
dz — 2 dxj Re dxj 2 dxj Re dxj

T = (1.33) 

l6



The intermediate (dynamic) pressure is determined by inverting the Poisson equation,

2 * 1 a(paicllhz') 1 * n n—
V P =— + 3 —4 +

(II ax, 2dt( p '0 p

1
 ) (1.34)

Finally. in the projection step, the predicted velocity u: is determined as:

>1: =1< *. *

,0 u,- —p u; :_BP (135)

dt axl' .

 

In the corrector step, the new corrected values for density are calculated via a

second-order quasi Crank-Nicolson integration scheme to stabilize the oscillation caused

by the variable density effects,

n+1 n '1 **

p -p __1. 92. in.). It.) i. )

In equation (1.36), (GT/8t)” and (dp/dt)W are calculated from equations (1.11) and

n+1

(1.30) based on the “predicted” values. By replacing p*, T*,P* , and u; with ,0 ,

T”+1 , P"+1 and 15”“, equations (1.32)-(1.35) are employed again for the corrected

values of T"+1 , P"+1 and uin+l.

The Poisson equation is solved by the spectral method and Fast Fourier

Transform (FFT). Note that, there is no discontinuity in the Poisson equation which is

solved in the predictor and corrector steps. The above predictor-corrector integration

scheme improves the maximum computable density ratio to increase [36]. In this work,

all spatial derivatives are calculated by high-order spectral/FFT schemes.
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1.5 Results and Discussions

Before applying the IPLS method to a two-fluid turbulent problem, its reliability

and accuracy are first established for simpler “standard” test problems. In section 1.5.1, a

single-fluid isotropic turbulent flow is simulated via IPLS and ZMA methods by setting

the fluid properties the same and by ignoring the surface tension term. The ability of

IPLS method in capturing the interface evolution in various moving—interface problems

is demonstrated in section 1.5.2. In section 1.5.3, the rising of a low density bubble in a

high density fluid is simulated by the IPLS. The results obtained by the IPLS and ZMA

methods for a two-fluid isotropic turbulent flow are presented in section 1.5.4.

All turbulent simulations are conducted in a square domain with uniform grids and

grid resolutions of 256x256 and 512x512. The turbulent kinetic energy spectrums in

Figures 1-2(b) and 1-16(b) and all the other results not shown in this chapter indicate that

for both single- and two-fluid flows thetturbulence is well resolved with 256x256 grid

points. The results shown below are obtained with lower (256x256) grid points to

establish the performance of the IPLS method and its interface tracking algorithm in the

limiting conditions.

1.5.1 Single-Fluid Isotropic Turbulence

In this section, simulations of an isotropic decaying turbulent flow with periodic

boundary conditions are conducted to establish the accuracy of the numerical models for

single-fluid flows before applying them to two-fluid flows. The initial turbulence in all of

our isotropic turbulent flow simulations is the long time solution of an initially random

solenoidal velocity field with Gaussian spectrum [49]. In addition to ZMA method,

spectral-based incompressible and compressible methods are also employed for further
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assessment of the IPLS method. The compressible simulation is conducted at low Mach

number (Ma=0.05). In the following, several important turbulent statistics as obtained

by different methods are compared. This includes the mean turbulent

energy k, = <11illi>/ 2, the mean enstrophy, £2 = (wiwi>/ 2 and the enstrophy dissipation

rate, 771 = (,u/p)<|foul>, whereL = k,“2 /7711/3 and ReL are turbulent macro length

scale and the corresponding Reynolds number.

Figure 1-2 shows that the predicted long time statistics by the IPLS, ZMA and

spectral methods (compressible and incompressible) are virtually identical. This indicates

the reliability and the accuracy of both ZMA and IPLS methods in single-fluid turbulent

flows. Note that in the IPLS method, the pressure (Poisson) equation is solved with a

second-order finite volume scheme to avoid the numerical instability due to discontinuity

in density in two-fluid calculations. Nevertheless, the IPLS results remain accurate as

long as the other spatial derivatives are approximated with high-order difference

schemes. This is confirmed in Figure 1-3, where it is shown that the IPLS method loses

its accuracy when the spatial derivatives are calculated by second-order schemes instead

of sixth or forth-order schemes. The IPLS results discussed below are all based on high

order space differencing.

1.5.2 Interface Tracking via IPLS Method

In this section, the IPLS method is used for prediction of the interface movement

in two types of problems. In the first one, the velocity field, I7 = 17(3) is independent of

the interface and is externally imposed. The so-called Zalesak and vortex stretching

problems belong to this type. The other type of problem considered here is the one in
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which the velocity field is self-generated and is directly dependent on the interface. An

example is a closed interface that moves inward with a local velocity which is

proportional to the local curvature of the interface, i.e.l7 = —C1KJ\7 (C1 is a constant),

where A7 =V¢/|V¢] is the unit normal direction vector, and K=V - (IV) is the curvature.

9, ‘6

The so called “collapsing circle, collapsing C-shape” and “collapsing star-shape”

problems are among the second type of problems which are considered here. These

problems are more difficult to model or simulate than the first type of problems in which

the velocity field is not affected by the interface.

1.5.2.1 Zalesak Problem

In the so-called Zalesak problem [50], the interface is a two-dimensional rotating

slotted disk that is moved with a specified velocity field. This problem has been

considered by many investigators for testing of the interface-tracking numerical models

and is considered here for preliminarily assessment of the Lagrangian interface tracking

algorithm in the IPLS method. Figure 1-4 shows the IPLS results for the Zalesak

problem. The computational domain size is 100x100 units and the slotted circle which

has the radius of 15 units is initially centered at (x = 50,y = 75) point. The width and

length of the slot are 5 and 25, respectively. The interface is revolved by a pre—specified

velocity field defined as u = (7r/314)x(50—y),v = (7r/314)x(x—50), where u and v

are the x and y components of the velocity vector, respectively. The level set function, is

set as (D < 0 inside the disk, and a > 0 outside the disk. The interface moves from time

t = 0 to I = 628 to its initial position after a complete revolution of the disk. Figure 1-4

shows the interface (¢=O) contours at initial (t=0) and final (t=628) times as

obtained by the IPLS and standard level set methods. Evidently, the IPLS predictions in
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Figure 1—4(c) are very accurate as the final and initial interfaces are virtually identical

and there is no measurable numerical error even though the grid resolution is moderate in

these calculations. Unlike IPLS method which perfectly maintains the interface shape at

all locations, the standard level set method is not so accurate and causes significant

interface shape change (Figure 1-4). This indicates that the IPLS method is superior to

standard level set methods as it can handle complex interface topology with high level of

accuracy. It is to be noted that the level set simulations are conducted with no

“reinitialization” technique. The level set results obtained with sophisticated

reinitialization techniques [26,46] (not shown here) are better than those shown in

Figure 1-4(a) but are still considerably less accurate than those predicted by the IPLS

method.

1.5.2.2 Vortex Stretching Problem

Turbulent flows are usually characterized by complex vortical motions with

various length and time scales. Consequently, the interface is expected to experience

significant changes in a turbulent environment. In some cases, the distance between two

adjacent interfaces or the characteristic length scale of a fluid filament moving in another

fluid could become comparable or smaller than the grid size. This could create some

difficulties for the standard grid-based methods. The vortex stretching problem involves

the stretching and folding of a fluid filament in an isolated vortex and was first

introduced by Bell et al. [28] to assess the performance of numerical methods. Here we

consider this problem to access the accuracy and reliability of the IPLS method. For this,

an initially circular interface is moved according to a pre-specified velocity field:

u=—sin2(7zr)xsin(2izy),v=sin2(7zy)xsin(27zx). The computational domain size is
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chosen to be 1x1 unit and the initial circle is centered at (050,075) with radius of 0.15.

Theoretically, the circle should be stretched into a long, thin fluid filament which

progressively wraps itself around the center [32]. Figure 1-5 shows the predicted

interface contours ((7) = 0) and the Lagrangian particles by the IPLS method. Evidently,

the interface evolution is more accurately predicted by the IPLS (Figure l-5(c)) than by

the standard level set method with and without reinitialization (Figures 1~5(a) and (b)).

In fact, the IPLS is able to capture the smallest scales in the interface which are

comparable to or even smaller than the mesh size without the necessity of refining the

grids near the interface [35]. With the Lagrangian scheme, the filament size is not limited

by the grid size in the IPLS method and can be much smaller than the grid size. Accurate

results are expected as long as the velocity field is well resolved and the interpolation

scheme is sufficiently accurate.

1.5.2.3 Collapsing Circle

The collapsing circle is an interesting interface moving problem that has an

analytical solution. Here, the tangential velocity is zero on the interface and the normal

velocity is a simple function of the interface curvature, K,

V" =dr/dt=-K=-I/r (1.37)

By integrating the above equation, we get the interface evolution equation,

r2 = r02 — 2t , where r is the radius of the circular interface that has the initial radius of

r0 = 0.6. Figure 1-6 (a) shows that the predicted interface via IPLS method match with

the analytical solution very well at all times. Theoretically, the level set function¢

cannot stay as a perfect signed distance function because the magnitude of interface
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advection velocity increases with 1/r and the distance between any two «2 contours

increases in time in a collapsing circle. However, Figure l-6(b) shows that the level set

function, ,1 remains a proper signed distance function in the IPLS method.

1.5.2.4 Collapsing C-shape and Star-shape

To further assess the IPLS method, the collapsing of a C-shape and a star-shape

interface under the influence of its curvature are also studied. The initial C-shape is made

out of a 6x6 square and is shown in Figure 1-7(a). The initial star—shape interface is

shown in Figure l-7(b) and is described by the following five-pointed star function:

y(s) = 2.0 + 0.6 sin(5 >< 2m)(cos(2m), sin(2m)) + O.9(cos(27z‘s), sin(27zs)), s 6 [0,1]

where s is a number between 0 and 1. The surface advection velocities for both

problems are l7 = —IdV, where KIS the curvature and IV is the unit normal vector as

defined before. Figure 1-7 shows that for both problems the interface collapses into a

circle due to curvature dependent velocities. Also, in both problems, the interface

experiences a relatively complex evolution that is not easy to capture with the standard

interface tracking algorithms [51]. Nevertheless, the IPLS method is able to accurately

predict the interface movement and its evolution from a C-shape or a star-shape initial

form to a circle. The results in Figure 1-8(b) for the level set function are consistent with

those in Figure 1-7 and indicate that the IPLS method maintains the level set function, ¢

as a signed distance function very well. In contrast, without re-initialization the standard

level set method is not accurate and yields erroneous results for the level set function

(Figure l-8(a)).
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1.5.3 Rising Bubble

In this section, the temporal evolutions of a two-dimensional bubble [30] in a fully

filled container for various density ratios are studied via IPLS method. Initially, the

bubble is a circle with radius R and the computational domain size is 4Rx8R. The

density ratio,/i and the viscosity ratio, 77are defined in section 1.2.1, where the fluid 2 is

air inside the bubble and the fluid 1 is the liquid in the container. All the other parameters

are set to be same as those considered in the numerical simulations of Zhao et al. [30],

e.g. Fr : 1.0, Re = 100 and We = 200.

Figures .1-9 and 1-10 show the temporal evolution of the rising bubbles with the

density ratios of /i =1 :5 and}. = 1 : 100, respectively. In both figures, the viscosity ratio

is 77:12200 and the grid resolution is 256x512. Expectedly, the bubble is driven

upward by the buoyancy force and the larger the density ratio, the faster the rising speed

would be. The larger pressure gradient on the lower surface of the bubble induces a jet of

liquid that pushes the lower surface upward and causes the formation of vortex sheet

around the lower surface. Owing to the presence of surface tension, the lower surface

cannot fully penetrate and break the upper surface and the bubble takes a mushroom

shape. At later times, the vortex sheet around the lower surface generates two

symmetrical bubble skirts which folds inward. Eventually, the two bubble skirts detach

from the bubble under the intensive stretching caused by the vortex sheet. Note that,

although our results for density ratio of 2 = 1:5 are similar to those in Zhao et al. [30],

there is a noticeable difference between the results obtained with smaller and larger

density ratios. Figure 1-10 shows that the shedding bubbles can continue to break up into

two separate smaller bubbles at later times, which is a reasonable and physically possible
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phenomenon that may not be well captured by low-order numerical methods. Also,

unlike some of the other numerical methods which are not able to predict shedding

bubbles and sometimes generate (unphysical) asymmetric results, the IPLS predictions

are accurate and symmetric. These results further confirm that the H’LS method is able to

accurately predict the two-fluid flows. In Figure 1-1 1, the rising bubbles as predicted by

the IPLS method with different grid resolutions are compared at different times. At

earlier time (t=3.0), there is virtually no difference between the interfaces predicted with

different resolutions. At later time (t=6.0), only the smallest scales of the broken bubble

are not adequately resolved in the lower resolution case and most of the interface

including the two shedding bubbles are similarly predicted in both cases. This indicates

that the employed high resolution grid system used in Figures 1-9 and 1-10 is adequate.

1.5.4 Two-Fluid Isotropic Turbulence

The two-fluid turbulent flow simulations considered in this chapter are two-

dimensional. We are well aware of the differences (and similarities) of material-

element/interface transport in two-dimensional and three-dimensional turbulent flows.

However, even a two-dimensional two-fluid isotropic turbulent flow is a very

challenging flow to model and simulate. We consider this flow as a relatively simple

two-fluid turbulent flow that has some important features of more realistic three-

dimensional inhomogeneous flows. Here, not only the interface experiences complicated

changes (e. g. stretching, folding and breaking) due to turbulence, but the turbulence itself

is affected by the interface in a two—way coupling manner.

To correctly capture the interface movement in turbulent flows and the subsequent

effects of the interface on turbulence, a particle addition/removal algorithm is
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implemented in the IPLS method. This is an inexpensive algorithm which is based on the

distance between neighboring particles. When the distance becomes larger than an upper

threshold, new particles are added and particles’ indexes are adjusted accordingly.

Alternatively, when the distance between particles becomes smaller than a lower

threshold value, particles are removed and again their indexes are adjusted to maintain a

proper order.

The importance of particle addition algorithm is illustrated in Figure 1-12, where

the contours of the vorticity magnitude and the interface, obtained by the IPLS method,

in two-fluid isotropic turbulent flow are shown. Evidently, without the particle addition

algorithm, the number of particles is inadequate in the “stretched” regions of interface

which may cause some numerical oscillations as described in section 1.3.3. However, the

IPLS method with particle addition algorithm is able to accurately predict the interface

evolution in a two-fluid turbulent system.

As shown in Figure 1-13(a), the two-fluid system considered in this chapter is an

oil layer that is surrounded by water. The oil thickness is changed by changing L0 / Ly ,

where L0 and L), are the initial thicknesses of oil layer and domain size in the normal (y)

direction, respectively. A fully developed isotropic turbulence, illustrated by the vorticity

contours in Figure l-l3(b), is implemented as the initial velocity field and periodic

boundary conditions are applied in all directions. This two-fluid flow is simulated by the

IPLS and ZMA methods. In the IPLS method, the density and viscosity ratios are set to

fixed values ofA = 0.8 :1 and 77 = 200:1, while the other parameters are varied. In the

ZMA method, the desired viscosity ratio is obtained from ,u=,u(T)=T" and equation

(1.12).

26



As indicated before, in the IPLS method, the interface can be identified by either

particles’ locations or the zero level set (¢=0) contours. In contrast, in the ZMA

method. the interface is identified by monitoring the density itself. This is illustrated in

Figures l-l4(a)-(d), where the results obtained by the ZMA method for two different

Prandtl numbers are shown. Figures l-l4(a) and (b) show that for Pr = 0.7 the initial

sharp density (or temperature) gradient is smoothed and the minimum density increases

from 0.8 to 0.87 due to relatively high values of the thermal diffusivity coefficient in the

energy equation. In contrast, the initial density jump across the interface is well

maintained when Pr =60 and the thermal diffusion is low (Figures 1-l4(c) and (d)).

Also for Pr = 60, the results obtained by the ZMA method are reasonably close to those

predicted by the IPLS method when Weber number is large or surface tension is small

(Figures l-l4(e) and (f)). Furthermore, Figure 1-15 shows that the computed turbulent

vorticity contours via IPLS and ZMA methods are very similar; indicating the

consistency of these two methods and the accuracy of their numerical solution

procedures. Further evidence is provided in Figure 1-16, where several statistical

quantities, obtained from the ZMA and IPLS data are compared.

It is to be emphasized here that the governing equations and the numerical

solution procedures in the ZMA and IPLS methods are very different. Nevertheless, the

interface evolution, the vorticity field and all the flow/turbulence statistics, predicted by

these two methods, are similar when the Prandtl number in the ZMA equations and the

Weber number in the IPLS equations are sufficiently large. This supports the argument

we made in section 1.2.2 that when the surface tension and the thermal diffusion are

negligible, both IPLS and ZMA methods should yield similar results. Note that, since the
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numerical approximation in the ZMA method is based on a high-order Pseudo-spectral

scheme, the similarity of the IPLS and ZMA results indicates that the IPLS method is

indeed a high-order numerical method for two-fluid turbulent calculations. The results in

Figures 1-17 and 1-18 confirm that the IPLS method is able to accurately predict the

two-fluid turbulence and interface evolution for a variety of flow parameters. Figure 1-17

shows the interfaces for various values of the Weber number. It is clear that for a higher

Weber numbers, the interface becomes more “active” and less “stable” as the surface

tension decreases and the interface shape becomes very complex. In fact, in some cases,

the interface is broken up into fluid ligaments or droplets. Nevertheless, the IPLS

method is able to capture the complicated interactions between the turbulence and the

interface. The effects of the oil thickness or L0 / Lyon the interface are shown in Figure

l-18. A comparison between the results in Figures 1-17 and 1-18 indicates that for

thinner oil layer ( L0 /Ly = 1/10 ), the interface is broken up quickly into several portions

and the oil ligaments entraps in the surrounding water. In this case, the overall effect of

the turbulence on the interface is indeed substantial. In contrast, for the thicker oil layer

(L0 IL), = l/ 6), the large distance between the two neighboring vorticity fields in water

reduces the global effect of turbulence and the pinching effect of the turbulence on the

oil layer becomes more important. This is shown in Figure 1-18, where it is observed that

some small ligaments or droplets are pinched off from the thick oil layer by small-scale

turbulent motions, while the large scale motions are not able to completely break up the

layer. The formation of ligaments and droplets in a liquid-gas system is studied by Boeck

er al. [52], who discuss the effects of Weber number and Reynolds number in details.

Again the results in Figures 1—17 and 1-18 demonstrate the ability of the IPLS method to
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capture the complicated features of the interface evolution in two-fluid isotropic

turbulent flows.

1.6 Summary

A hybrid Lagrangian-Eulerian interfacial particle level set (IPLS) method is

developed for numerical simulation of two-fluid turbulent flows. In this method, the

interface is identified based on the locations of notional (Lagrangian) particles and the

geometrical information concerning the interface and the fluid properties are obtained

from the (Eulerian) level set function. The Lagrangian particles can accurately represent

the interface evolution without any numerical mass loss or gain and the level set function

provides smooth geometrical information concerning the interface and its effects on the

flow. The new methodology has been assessed by applying it to several standard

interface-moving and two-fluid laminar problems. It has also been used for simulation of

two-fluid isotropic turbulent flows under various flow/fluid conditions. The numerical

results are evaluated by monitoring the mass conservation law, the turbulence energy

spectral density function and the consistency between Eulerian and Lagrangian

components of the method. It is shown that the IPLS method can handle interfaces with

substantial topological complexity, and accurately predict the interface evolution even at

the “sub—grid range” as long as the velocity field is well resolved. The accuracy of the

Navier-Stokes flow solver in the IPLS method is established first by comparing the

results obtained by the IPLS method for a single-fluid isotropic turbulent flow with those

obtained via high-order incompressible and compressible Pseudo-Spectral numerical

schemes. The IPLS results for a two-fluid isotropic turbulent flow are also compared

with those predicted by a high-order zero-Mach number variable density flow solver.

29



Despite the differences in the equations and the numerical schemes, we have found that

the IPLS method generates virtually identical results with other methods. The similarity

of the results confirms the accuracy of the IPLS flow solver in single—fluid and two-fluid

turbulent systems.

Analysis of the velocity statistics and vorticity/interface contours in turbulent

flows indicate that the destabilization effect of turbulence and the stability effect of

surface tension on the interface motion are strongly dependent on the fluid density and

viscosity ratios. As expected, the interface becomes more stable and less “active” as the

surface tension increases or the Weber number decreases. The turbulence can

completely break up a thin layer of oil in water. However, for an initially thick layer,

turbulence can only pinch off small ligaments or droplets from the layer. Despite the

complex and sometimes very significant effects that the turbulence and the interface have

on each other, it is shown that the IPLS method can correctly capture the interface

evolution and the effect of turbulence on the interface in all the cases considered in this

study.
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1.7 Figures
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Figure 1-1. A schematic view of the interface, Eulerian grid and Lagrangian

particles, illustrating the re-initialization technique in the particle level set method.

(i, j) are the coordinates of the Eulerian grid point and IP represents the nearest

particle index number.
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Figure 1-2. Turbulent statistics calculated by different methods: (a) enstrophy; (b)

turbulent energy spectral density at t=4.0; (c) enstrophy dissipation rate; and (d)

 

   
 

35o _

ReL_

250 _

 

Q

(d)

Spectral_Incomp

...... Spectral_Comp

—o— ZMA

IPLS

 

 

O A 1 r 1 l 1 L A LL L #4 4 I 1 L A l l A A 1 1 200 1 A ‘ L

Reynolds number based on integral scale and turbulent energy.

32

 

 



 

 

400

[ ( b)

: Spectral_Incomp

350 -

“ —-O— IPLS_Low oder

Re L —

300 h

 250 h

 

      200 A A A 1 LLL 1 A I l l A A A l A A A A 1 A A 1 A

Figure 1-3. Turbulent statistics obtained by lncompressible Pseudo-Spectral and

modified IPLS method: (a) enstrophy dissipation rate and (b) Reynolds number

based on integral scale and turbulent energy. In the modified IPLS method all the

derivatives are calculated by second-order numerical methods.
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Figure 1-4. The interface movement as predicted by various methods for the

Zalesak problem: (a) level set method without reinitialization; (b) level set method

with reinitialization; and (c) IPLS method.
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Figure 1-5. The interface and particles’ distribution in a vortex flow (vortex

stretching problem) as obtained by different methods at t=0.0, 3.0; (a) level set

method without reinitialization; (b) level set method with reinitialization; and (c)

IPLS method. In Figures (a) and (b), NX=NY=200 and in Figure (0) NX=NY=128.

A total of np=2000 particles is used in the IPLS method.
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Figure 1-6. A collapsing circle interface with NX=NY=100, np=1000 as predicted

by the IPLS method: (a) the interface at different times and (b) the contours of

level set function at t=0.175, the contour levels from outer to interior are

¢ = 0.1, 0.05, 0.0, — 0.05, — 0.1
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Figure 1-7. Temporal variation of the interface for: (a) collapsing C-shape and (b)

collapsing star. In Figure (a), t=0.0, 1.0, 2.0, 3.0, 4.0 from outer to interior,

respectively. In Figure (b), t=0.0, 0.05, 0.1, 0.2, 0.4 from outer to interior,

respectively. In both figures, NX=NY=200, np=2200.
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Figure 1-8. Signed distance function for the collapsing C-shape interface at

t=2.0 as obtained by: (a) level set method without reinitialization and (b) IPLS

method.
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Figure 1-9. Temporal variation of the rising bubble as predicted by the IPLS

method for the case with Re = 100, We = 200, 11. = 1:5 and 77 =1: 200.
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Figure 1-10. Temporal variation of the rising bubble as predicted by the IPLS

method for the case with Re = 100, We = 200, 2 = 1:100 and 77 = 1: 200.
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Figure 1-12. The predicted vorticity contours and interface in a two-fluid isotropic

turbulent flow by the lPLS method: (a) without particle addition algorithm and (b)

with particle addition algorithm.
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Figure 1-13. Initial contours of (a) density and (b) vorticity for an oil-water two-

fluid isotropic turbulent system.
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Figure 1-14. Density contours at different times as obtained by IPLS and ZMA

methods in an oil-water two-fluid isotropic turbulent system. Figures (a)-(d) are

obtained by the ZMA method and Figures (e)-(f) by the lPLS method. In Figures

(a) and (b) Pr =0.7, and in Figures (c) and (d) Pr = 60. Figures (3), (c) and (e)

show the results at t=1.0 and Figures (b) , (d) and (f) show the results at t=3.0. In

all figuresLO/Lv zl/lO, Re=1000,77=200:1,and 2:082].
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Figure 1-15. The vorticity contours as obtained by ZMA and IPLS methods in an

oil-water two-fluid isotropic turbulent system at different times. Figures (a) and (b)

are obtained by the ZMA method and Figures (c) and (d) by the IPLS method.

Figures (a) and (0) show the results at t=1.0 and Figures (b) and (d) show the

results at t=3.0. In all figures L0 /Ly =1/10,Re =1000,77 = 200:1 and ,1 = 0.8 : 1.
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Figure 1-16. Turbulent statistics calculated by different methods: (a) enstrophy;

(b) turbulent energy spectral density at t=3.0; (c) enstrophy dissipation rate; and

(d) Reynolds number based on integral scale and turbulent energy.
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Figure 1-17. Interface contours in a two-fluid (oil-water) turbulent flow as

predicted by the IPLS method. In Figures (a) and (b) We = 100 and in Figures (0)

and (d) We = 20. Figures (a) and (c) show the results at t=2.0 and Figures (b)

and ((1) show the results at t=4.0. In all figures,77=200:1, LO/Ly =1/10 and

Re =1000.
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Figure 1-18. Interface contours in a two-fluid (oil-water) turbulent flow as

predicted by the IPLS method. In Figures (a) and (b)We = 100 and in Figures (c)

and (d)We = 20. Figures (a) and (0) show the results at t=2.0 and Figures (b)

and ((1) show the results at 1:40. In all figures, 77:20021, L0/Ly z1/6 and

Re=1000.
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CHAPTER 2

Turbulence-Interface Interactions in a Two-Fluid

Homogeneous Isotropic Flow

2.1 Introduction

Liquid atomization, the process of liquid jet break up into droplets in sprays, is a

typical two-fluid flow problem which has been extensively studied due to its importance

in numerous applications, which range from combustion in aircraft engines to spray

forming and coating in material processing. Fundamental understanding of liquid

atomization is indispensable to achieve the best performance in all of these applications

which require atomization to produce desired droplet size and velocity distributions.

All atomizers force the liquid to break up by disrupting the balance between the

consolidating effects of surface tension, liquid viscosity and the aerodynamic forces

created by relative motion between the gas and liquid phases at their interface [1]. When

the flow is laminar, a vibration in the liquid jet or an external disturbance could cause

atomization as predicted by the classical Rayleigh [2] and Kelvin-Helmholtz [3-4] break

up theories. However, when the flow is turbulent, the break up of the liquid jet or sheet

can take place from the rapid deformation in the liquid-gas interface created by the

turbulent structures; the average relative motion between the phases may not be that

critical.

The atomization in turbulent flows usually takes place in two successive steps as

defined by Faeth [5]. The initial part of liquid jet/sheet break up into large ligaments and
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droplets takes place in the so-called primary breakup zone, where the large-scale liquid

jet/sheet has strong interactions with the gas at their interface. Secondary breakup refers

to the break up of the initially formed ligaments and droplets into smaller droplets until

the stable droplet sizes are achieved. In the region followed by the secondary break up

zone, the average droplet size and the volume occupied by the droplets are small. The

droplets in this region, referred to as dilute spray region, are often treated as point

particles [6], which are dispersed by turbulent fluid motions.

In the primary break up region, the interactions between the turbulence in both

fluids occur through a very sharp interface. 80, besides turbulence, the interface’s

location, topology and curvature have to be precisely simulated to assure accuracy.

However, the accurate prediction of interface in turbulent flows is extremely difficult

since it involves highly convoluted interface and the breakup of liquid ligaments or

droplets. Furthermore, the turbulence near the interface is affected by the interface. For

example, the normal component of the turbulent kinetic energy is found to be

redistributed into the tangential component through pressure fluctuations [7] or

dissipated by the surface tension. Also, the deformed interface could generate high-

intensity, small-scale vortical motions.

The importance of liquid atomization has motivated extensive number of

theoretical, numerical and experimental investigations [1, 8-12]. Though much has been

Ieamed, the understanding is mainly qualitative in the form of experimental correlations.

Theory has been limited to idealized situations and progress has been hampered by the

difficulties involved in making detailed experimental measurements.
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Based on current computing capacity, it is not possible to simulate the turbulence

and the liquid interface during the entire atomization process via three-dimensional (3D)

direct numerical simulation (DNS) methods. It is also very challenging to conduct large

eddy simulation (LES) of the entire spray. Therefore, it is not surprising that most of

previous efforts on modeling and numerical simulations of atomization have considered

the flow to be laminar [13-23] and there are limited studies on two-fluid turbulent flows

[24-31]. There are, however, several numerical (LES and DNS) studies which consider

droplets’ dispersion, evaporation and combustion in the dilute spray region with point

particle methods [32-45].

The main objective of this work is to investigate the two-way interactions between

the turbulence and highly convoluted interface in a two-dimensional incompressible

homogeneous isotropic flow by a recently developed two-fluid DNS method [46]. In this

method, the interface is tracked by the hybrid Lagrangian-Eulerian interfacial particle

level-set (IPLS) algorithm. The effects of density ratio, viscosity ratio and Weber number

on the turbulence and interface are studied in details.

2.2 Results and Discussions

In this section, the numerical data obtained by DNS for several different two-

fluid isotropic turbulent flows are analyzed for detailed investigation of turbulence-

interface interactions. The effects of density ratio and Weber number on the evolution of

interface and turbulence are also studied. The parameters of simulations considered in

this chapter are listed in Table 2-1. The reference Reynolds number, as defined in chapter

I, is 100 in these simulations and the gravity is omitted.

54



The initial vorticity field in both fluids is a fully developed 2D isotropic turbulent

flow and the interfaces are two straight lines separating the fluid 2 from fluid 1 (Figure 2-

5(a)). Unless otherwise mentioned, the initial conditions for velocity and interface are the

same in all cases listed in Table 2-1.

Most simulations are carried out on uniform grids with a resolution of (256x256).

In order to keep the turbulence decay rate in both fluids the same for different density

ratio 1., the viscosity ratio r] is adjusted so that the Reynolds numbers remain the same. In

case 0, the flow is essentially the same as that in single-fluid isotropic decaying turbulent

flows. Casesl-4 are considered to investigate the effects of density ratios, while cases 3,

5-7 are for studying the effects of Weber number or the surface tension.

2.2.1 Numerical Accuracy

Before using the DNS data for investigation of turbulence-interface interactions,

the numerical accuracy of the computational model has to be established. This includes

finding the minimal interface thickness 6‘ for the given resolution. Figures (from Figure

2-1 to 2-4) show the results for case 3 for various interface thicknesses and grid

resolutions. The results for other cases are similar and not shown.

Despite the differences in interface thickness and resolution, Figure 2-1 shows

that the instantaneous vorticity contours as strongly affected by the interface are virtually

identical for all grid resolutions and interface thicknesse. The temporal variations of

total interface area are also similar for different interface thicknesses and resolutions as

shown in Figure 2-2. All the other turbulence and interface statistics such as the decay

rate of mean turbulent kinetic energy in the interface zone and the turbulent energy

spectrum are found to be the same for lower and higher resolutions and different 8.
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To better assess the numerical accuracy of the model, the vorticity equation along

the interface is considered:
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The subscript p in equation (2.1) denotes the interface as marked by the interfacial

particles and c?) = V x0 is the vorticity vector. The terms I, II, IH, and IV in the RHS of

equation (2.1) are the vortex stretching, baroclinic vorticity generation, viscous and

surface tension terms, respectively. Obviously, the term I is zero in two-dimensional

flow. Terms II and IV are only important in the interface region and automatically vanish

as one move away from the interface. By employing equations (1.3) and (1.8), the terms

11, IV can be written into different formats (labeled 11a and Na ) as shown below,

(Ila) = l5(¢X1—1//1)V¢XVp/p2(¢)Jp

1 (2.2)

(W a > = —l6(¢)V¢><Vk /p(¢)l,,
We

where 6(¢) is the modified delta function,

0 ¢ < -c

(W) = (1+ cos(7r¢/6)/(28) |¢| s s (2.3)

0 (0 > 6‘

The expressions for terms Ila and Na in equations (2.2) could be further

simplified by using equations (1.3), (1.8) and (2.3), knowing that ¢=O at interface for

any given interfacial particle,
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where terms IIb and IVb are inversely proportional to the interface thickness 8 .

Mathematically, IIb and IVb are the same as H and IV.

A noticeable advantage of IIb and IVb over II and IV is that the spatial derivative

of density, which sharply changes in space, is avoided. This makes the numerical values

of IIb and IVb to be much closer to the exact values. Here, we compare these terms to

evaluate the numerical error caused by the derivative of density across interface.

Figure 2-3 shows that the numerical values of terms 11 and IV are noisy and very

different than those of IIb and IVb when interface thickness 8 is too small. These results

are obtained for Lagrangian particle C on the interface (point C in Figure 2-1). The

results for other points on the interface exhibit similar trends and are not shown here. As

the interface thickness increases, the magnitudes of baroclinic and surface tension terms

are decreased with almost the same rate and the temporal variations of terms 11 and IV

become smooth and nearly the same as those of terms Hb and IVb, respectively. We

found the numerical error associated with sharp density change across interface to be

negligible when the interface thickness 8 is about 4Ax or bigger.

Figure 2-4 shows that at a given interfacial (particle) location, the values of

baroclinic and surface tension terms in equation (2.1) are roughly doubled when the

resolution is increased from (256x256) to (512x512) while the ratio of interface

thickness 8 to grid resolution Ax is kept constant. This indicates that the variations of
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different variables along the interface’s normal direction, such as the curvature and

pressure gradient are similar when properly scaled with interface thickness.

Basedon the results discussed in this section, the resolution (256x256) and

interface thickness of 4Ax are considered to be sufficient and are employed in all

simulations.

2.2.2 Physical Structures of Turbulence and Interface

Examination of flow structure, primarily in the region close to the interface,

reveals several interesting features of turbulence-interface interactions and is considered

in this section. The evolutions of vorticity and interface for case 3 are shown in Figure 2-

5. Evidently, the two interface planes (or lines) between fluids 1 and 2 experience

significant topological changes due to turbulent stretching and compression by large

scale vortical fluid motions in both fluids. As expected, the interactions between

turbulence and interface are not important in the regions away from the interface, where

the vorticity magnitudes in both fluids are shown to decrease monotonically in time,

consistent with the decay rate of two-dimensional isotropic turbulence [47-48]. However,

in the regions close to the interface, particularly in the low density (fluid 2) side, larnellar

like vortical structures are generated with dimensions much larger in the tangential

direction of the interface than the normal direction. The vorticity magnitude in this

region is much higher than those in other flow regions.

The instantaneous vorticity contours and the geometrical shapes of interfaces for

different density ratio and Weber number are shown in Figure 2-6. Obviously, at

locations away from interfaces, the vorticity contours are identical in all cases. However,

in the vicinity of interfaces, the intensity of interface-generated vorticity, as measured by
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vorticity magnitude is enhanced with the increase in density ratio (Figure 2-6(b)-(d). This

is expected since the vorticity generation terms in the vorticity equation are proportional

to density ratio. On the contrary, for the cases with the same density ratios, as shown in

Figure 2-6(a), (b), (e) and (f), the magnitudes of the generated vorticity are decreased as

the Weber number increases. As Figure 2-6 suggests, the influence of density ratio and

Weber number on the interface is such that the total interface area/length is decreased as

the density ratio increases and or the Weber number is decreased. Again, this is expected

as the vorticity generation terms are directly dependent on the inverse of Weber number.

In Figures 2-1, 2-5, and 2-6, several sample particles, labeled as particles A-E, are

considered for studying the dynamics of interface and turbulence, which would be

discussed in the next section. Also in next section, we will examine the turbulence

structure and the geometrical variations of interface by considering several statistical

quantities, such as the mean vorticity, the mean kinetic energy, and the interface area.

2.2.3 Statistical Analysis

To make a clear distinction between various flow regions, the computational

domain is divided here into five regions based on the density and distance to the

interface. The mean value of a given variable in these regions is calculated by the

followings relations.

(a)l = (al ¢ > 26‘)

(oi/)2 = (al ¢ < —28>

<a>i=<al|¢|SZ€> <2-s>
(CI/>11 = (a| 0 < (D S 28)

(0')” =<a| -28 S¢SO>
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where (a) denotes the ensemble average value of variablea , while< )1 and < )2 represent

the averages in fluid 1 and fluid 2 regions, respectively. The averages in the entire

interface region, in the interface region on fluid 1 side, and in the interface region on the

fluid 2 side are denoted by< )1, < >11 and( >12, respectively.

As the results in Figure 2-5 and 2-6 suggest, one of the important flow variables

that is significantly affected by the interface is the vorticity. Figure 2-7 shows the

temporal variations of the average vorticity magnitude or enstrophy,£2 = (Ti-(DI 2. The

mean enstrophy plots for case 3 in Figure 2-7(a) indicate that the vorticity generation is

very significant in the interface region ( |¢>| s 25 ) when density ratio is significant.

However, away from the interface (M > 25) in the fluid 1 and fluid 2 sides, the temporal

variations of mean enstrophy as shown in Figure 2-7(a) and 2-7(b), are not affected by

the interface and are the same for different density ratios and Weber numbers. Close

examination of the results in Figure 2-7(a) indicates that the vorticity is generated mainly

in the low-density side of the interface; this is due to the fact that the density ,0 appears

as the denominator in the enstrophy generation terms (terms II and IV) in equation (2.6).

The vorticity generation is more significant at higher density ratio and lower Weber

number as shown in Figure 2-7(c)-(d). The results in Figure 2-7 are in agreement with

those shown in section 2.2.2.

To further explain the above results and to identify the mechanisms responsible

for generation and destruction of mean enstrophy, the transport equation for mean

enstrophy is considered below:
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Terms 1, II, III, and IV in the RHS of equation (2.6) represent the “vortex stretching”, the

“baroclinic”, the “viscous dissipation” and the “surface tension” effects on mean

enstrophy, respectively. The vortex stretching term I is zero in two-dimensional flows.

The contributions of the last three terms are discussed below.

Away from the interface, terms 11 and IV are negligible in both fluid 1 and fluid 2

regions, and the mean enstrophy are monotonically decreasing in these regions (Figure 2—

7(b)) due to negative term III (Figure 2-8(a)). Figure 2-8(a) also shows that the

magnitude of mean viscous dissipation term in the interface region (111) is larger than
I

those in the regions away from the interface ((III)land ([102). Figure 2-8(b) indicates that

the contribution of mean baroclinic term (“)1 to the mean enstrophy in the interface

region proportionally increases with the density ratio. The average contribution of

surface tension term in the interface region (IV) is small and negative at the beginning
I

but becomes much larger and positive later on as shown in Figure 2-8(c). In contrast to

baroclinic and surface tension terms, Figure 2—8(d) shows that the sign of mean viscous

dissipation term is always negative while its magnitude always increases with the density

ratio. Another observation is that the evolutions of baroclinic and surface tension terms

are contrary to each other, i.e. the baroclinic term increases early on and decreases later

on but the surface tension term decreases at the beginning then increases. Also the
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positive peak of baroclinic term at early times is accompanied with the negative peak of

surface tension term at nearly the same time. This indicates that in the interface region,

the surface tension opposes the baroclinic effects.

Since the vorticity is mainly generated in the interface region by the baroclinic

and surface tension terms, the physical scale of the generated vorticity field, at least in

the direction normal to the interface, is smaller than those already exist in fluids 1 and 2

sides. This is not only observed in the vorticity contour plots in Figure 2-1, 2-5 and 2-6,

but is also evident in Figure 2—9, where it is shown that the effects of interface on the

turbulence kinetic energy and enstrophy spectrums primarily appear at large

wavenumbers or small scales.

The total surface area (or length) of the interface is an important variable in

quantification of turbulent effects on the interface. The results in Figure 2-10 are

consistent with the geometrical shapes of interface shown in Figure 2-6, indicating that

the total interface area, A has a tendency to increase in time as the density ratio decreases

or the Weber number increases. However, for smaller Weber number, A either increases

slowly or does not increase at all. At long time, A tends to not increase so much or even

decrease.

Another important turbulent quantity that is affected by the interface is the

turbulent kinetic energy, ek = 14,-u,- / 2. The temporal variations of mean turbulent kinetic

energy in different regions of the flow are shown in Figure 2-11. The results in this

figure indicate that the decay rates of mean turbulent kinetic energy in both fluids

become almost identical with those in single-fluid isotropic homogeneous turbulence

62



[47-48]. However, the mean turbulent kinetic energy in the interface region is decaying

faster than those in fluid 1 and 2 sides.

Figure 2-12 also demonstrates that the decay rate of mean turbulent kinetic energy

in the interface region is varied with the density ratio and Weber number. For all cases

considered in this figure, the initial decay rate of mean turbulent kinetic energy is

significant. At later time the decay rate decreases for the case 4 with higher density ratio

and the kinetic energy may even increase (Figure 2-l3(a)). Figure 2-12(b) shows that for

case 5 with smaller Weber number, the mean turbulent kinetic energy decays faster at

early time in comparison with other cases, but it exhibits irregular and oscillatory

behavior at later times. Comparing the evolution of kinetic energy in Figure 2-12 with

that of the interface area in Figure 2-10, one can conclude that with the decrease in mean

turbulent kinetic energy, the interface area increases or vice versa. This implies an

inverse relationship between the interface area and mean turbulent kinetic energy in the

interface region. To understand the mechanisms responsible for this relationship, the

transport equation of the instantaneous turbulent kinetic energy is considered here:

Ifl 37-11217) V-(2#(¢)l7-D) _2#(¢)D:D _6(¢)x(¢)
  

 

= + —— Vomit-1.) (2.7)
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Terms 1, II, III, and IV in the RHS of equation (2.7) represent the pressure work, the

energy transport by viscous stress, the viscous dissipation and the surface tension work,

respectively.

The average values of the above four terms in different regions of the flow for

case 3 are shown in Figure 2-13. Obviously, the viscous dissipation is always negative

and the work done by the surface tension force (term IV) is zero away from the interface.
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The results in Figure 2-13 indicate that away from the interface, in fluid 1 and 2 sides,

the viscous dissipation term is the most significant term and the contributions of the other

terms are negligible. However, the mean turbulent kinetic energy in the interface region

is affected by all terms. The viscous transport term seems to be the least important term

in comparison with other terms. Also at early times, the magnitudes of pressure and

surface tension terms are larger than that of viscous dissipation term. The positive

contribution of term I implies that the turbulent kinetic energy is increased by pressure

work near to interface. In turn, the surface tension work is negative at early times and

tends to cancel the effects of pressure work. Later on, the surface tension work turns

positive, while the pressure work is nearly zero. At these times, the positive effect of

surface tension on turbulent kinetic energy is cancelled by the viscous dissipation term.

The early (rapid) decay of the mean turbulent kinetic energy in the interface region is

shown in Figure 2-11 to be mainly due to negative contribution of surface tension and to

a lesser extend the viscous dissipation terms. The later one is somewhat reduced by the

positive pressure work. Figures 2-11 and 2-13 also show that the decay rate of the

turbulent kinetic energy and the contributing terms to its evolution are nearly the same in

fluids 1 and 2 away from the interface. The effects of density ratio and Weber number on

various terms in equation (2.7) in the interface region are shown in Figures 2-14 and 2-

15, respectively.

Figure 2-14 indicates that the magnitudes of surface tension, pressure and viscous

dissipation terms all increase with the density ratio and the contribution of viscous

transport term remains smaller than those of the other three terms as expected. Figure 2-

14 also shows that, for the case with large density ratio (i.e. case 4), the surface tension
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work will turn from a large negative value to a large positive value, while the pressure

work remains to be positive or close to zero. At early times, when the contributions of

the surface tension and viscous dissipation terms are both negative, the magnitude of

viscous dissipation term increase slowly because both terms are balanced by the pressure

work. However, once the surface tension work turns positive, the magnitude of viscous

dissipation term increases sharply to take over the role of pressure to counteract the

effect of surface tension in the interface region. ,

Figure 2-15 shows that the magnitudes of surface tension and pressure works are

both increased by decreasing the Weber number, or by increasing the relative effect of

surface tension force, as expected. While at low Weber number, there is a significant

variation and oscillation in the mean turbulent kinetic energy and the terms contributing

to its evolution (Figure 2-15) in the interface region, they seem to vary much less at

higher Weber numbers. The oscillations in surface tension term cause the oscillations in

the mean turbulent kinetic energy and other terms in its transport equation. Nevertheless,

the magnitude of surface tension work is higher than that of pressure work, while they

seem to be inversely proportional. For cases with smaller Weber number or bigger

surface tension, the magnitude of viscous dissipation term increases rapidly at early

times then becomes very small later on. The magnitude of viscous transport term is

somewhat correlated but is far smaller than that of pressure work. The faster decay of

mean turbulent kinetic energy for the cases with smaller Weber number (Figure 2-12(b))

is caused by the large surface tension work and viscous dissipation which are both

negative at early times.
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To further better understand the effects of surface tension, the temporal variations

of turbulent kinetic energy along the interface are considered in Figure 2-16. These

results are obtained by averaging the turbulent kinetic energy and its components normal

and tangential to the interface over all particles as described in the following equations:

NP _. _.

ep = 2(vp -vp /2)/NP

n=l

NP

em = Z((V,,)P -(v,,)P /2)/NP (2.8)

n=l

NP

ep, = Z((V,)P -(V,)p/2)/NP,

n=l

where 17,), (V,,) and (V,)p are the fluid velocity, the normal component of the fluid
[2

velocity, and the tangential component of the fluid velocity at particle p, respectively. NP

is the total number of interfacial particles. Figure 2-16(a) shows that in case 1 the normal

component of turbulent kinetic energy decays faster than its tangential component, where

the surface tension work is negative at all times. However, for case 3, the results in

Figure 2-l6(b) indicate that the normal component of energy increases at later time when

the net surface tension work at interface becomes positive (Figure 2-l3(a)). It is shown in

Figures 2—l6(c) and (d) that at early time the normal component of turbulent kinetic

energy decays faster than the tangential component and then oscillates at later times

consistent with the surface tension oscillation shown in Figure 2-15(a). Nevertheless, in

all cases the tangential component of kinetic energy seems to be less sensitive to the

surface tension work in comparison to the normal component.

To explain why the normal component of the turbulent kinetic energy is more

sensitive to surface tension than the tangential component, the transport equation for 6,, is
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considered below:
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where (2,, = U ,, -U ,, / 2 is the instantaneous normal component of turbulent kinetic energy

at Eulerian grid point and U” = U - N is the normal velocity component. IV = V¢/IV¢| is

the unit normal vector at interface.

Note that, term V in equation (2.9) is the same as term IV in equation (2.7), which

indicates that the surface tension work only changes the normal component of the

instantaneous and average turbulent kinetic energy in the interface region. This confirms

that only the normal component of kinetic energy can be directly affected by the surface

tension in the interface region.

It has been stated before that there is a direct relation between the total interface

area and the mean turbulent kinetic energy in the interface region. This is confirmed in

Figure 2-17 and 2-18, where the temporal variations of the rated interface area change2

and the mean surface tension work change O in the interface region are plotted for

different cases. The variables 2, O are normalized and are defined as:

2=z/

, MM” (2.10)

e=e/]e|Max ,

where 1:? andO=<—i§l¢—I)OK(:D)2V-(¢l7)> .

e

I
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Figures 2-17 and 2-18 clearly show that the rated interface area change is

inversely proportional to the mean surface tension work in the interface region,

regardless of density ratio and Weber number. In other words, when the value of mean

surface tension work is positive, the rate of interface area change is negative and vice

versa. Also, when ,1? increases, 9 decreases with the same rate and vice versa. Figure 2-

17 also shows that at higher density ratio, the rate of interface area change rapidly

decline shortly after its early rapid increase. This explains why the total interface area in

the case with higher density ratio is generally smaller than that in the case with lower

density ratio (Figure 2-10(a)). Figure 2-18 shows that with an increase in Weber number,

the mean surface tension work oscillates less and mostly attains negative values, while

the rate of interface area change decreases slowly and stays mainly positive. This

explains the larger total interface area values in cases with higher Weber number (Figure

2-10(b)).

The destabilization effect of turbulence and the stability effect of surface tension

on the interface as observed in Figures 2-6 and 2-10 can be explained through the

turbulent kinetic energy, primarily its normal component. For this explanation, we

consider the interface evolution at various stages. At the first stage, the flat interface is

stretched rapidly by the nearby turbulent strain field, resulting in an early rapid and

significant increase in total interface area (Figure 2-10, 2-17 and 2-18). This is

accompanied with a loss in turbulent kinetic energy, especiallyits normal component,

primarily due to the surface tension which opposes the increase in interface area. The

lower the Weber number and the higher the density ratio, the more the turbulent kinetic

energy of the surrounding flow is damped (Figures 2-12, 2-14(a), 2-15(a)). At the second
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stage of interface evolution, turbulent stretching effect is not as strong as that in the first

early stage since the surrounding turbulence loses most of its kinetic energy, particularly

its normal component. Although the total interface area continues to increase, the rate of

interface area change is considerably lower in the second stage. In this stage, the

turbulent kinetic energy’s loss due to surface tension is decreasing as shown in Figures 2-

l7 and 2-18. For the cases with higher density ratio or lower Weber number, the total

interface area decreases at later time. The main reason for the decrease in interface area

is that the strain field or turbulent kinetic (especially its normal component) is becoming

too weak to overcome the strong surface tension force generated by large curvature.

During the time that the interface area decreases, the surface tension is so significant that

may even increase the turbulent kinetic energy in the interface region as Figures 2—12, 2-

17 and 2-18 indicate. By increasing the kinetic energy of the surrounding turbulent flow,

the surface tension counteracts the further decrease in interface area, such that it again

makes the interface more stable.

Figure 2-19 shows that in the interface region, the normalized value of viscous

dissipation )7 in the mean turbulent kinetic energy equation is proportional to that of

mean enstrophy—£3. These normalized quantities are indicators of the turbulence or strain

field at small scales and are defined as:

17 = 747le

:2 21911 /|Q1I,Max

> . In the interface region, the increase in enstrophy is

I

(2.11)

_ 2#(¢)D : D
where y = < Re 1009)

primarily due to small-scale turbulent motions generated by the baroclinic and surface

tension terms (Figures 2-7 to 2-9).
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For better understanding of the turbulence/interface dynamics, the vorticity

equation for several interfacial particles (described in equation (2.1)) is analyzed. Two

representative interfacial particles, i.e. particle A and Particle B in Figure 2-6 are

selected. The behaviors of terms 11, III, and IV in equation (2.1) for these two particles

are shown in Figures 2-20 and 2-21. Note that the initial locations of the particles are the

same in different cases. Figures 2-20 and 2-21 indicate that in the absence of baroclinic

term in case 1, the viscous term counteracts the surface tension effect with a comparable

strength. As density ratio increases, the magnitudes of surface tension and baroclinic

terms are both increased while the magnitude of viscous term is decreased. The

contributions of surface tension term and baroclinic term seem to be comparable but

opposite to each other. With the decrease in Weber number (or increase in surface

tension force), the magnitudes of both surface tension and baroclinic terms increase, as

expected. The contribution of viscous term is negligible in the vorticity equation in

comparison with those of baroclinic and surface tension terms (Figures 2-20(b) and 2-

21(b)).

2.3 Summary and Conclusions

The interactions between turbulence and interface are investigated via data

generated by direct numerical simulations of two-dimensional, two-fluid incompressible

and immiscible isotropic turbulent flow. The interface motion is simulated with a

recently developed hybrid Lagrangian-Eulerian interfacial particle level-set (IPLS)

method, where the interface is explicitly represented by the positions of massless

particles and the geometrical information concerning the interface is provided by the
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level-set function (D which is kept as a signed distance function with the particle-based

re-initialization process.

The destabilization effect of turbulence on the interface is shown to be primarily

due to stretching by large-scale vortical motions which increase the total interface area

depending on the density ratio and Weber number. The deformed interface not only

creates a complicated surface tension force distribution, but also misaligns the pressure

and density gradient vectors, causing the baroclinic effect to enhance. The baroclinic

term counteracts the influence of surface tension in both momentum and vorticity

equations. The generated small-scale high-intensity turbulence by the baroclinic and/or

surface tension terms causes the strain rate and viscous dissipation of turbulent kinetic

energy in the interface region, especially in the low density side, to become much larger

than those away from the interface region. Away from the interface, the turbulence

behaves similar to single-fluid isotropic turbulent flows.

The surface tension force opposes the increase in interface area by the

neighboring turbulent strain field. The stability effect of surface tension on the interface

is mostly associated with intense damping of neighboring turbulent flow’s kinetic

energy, primarily its normal component. However, in some cases, the surface tension

force acts oppositely and increases the kinetic energy of neighboring turbulent flow to

oppose the decrease in interface area. The rate of interface area change is found to be

inversely proportional to the mean work done by the surface tension force in the interface

region.

Examinations of the density ratio and Weber number effects on the turbulence

and interface indicate that with an increase in density ratio or a decrease in Weber
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number, the total interface area and the mean turbulent kinetic energy in the interface

region are both decreased, while the mean enstrophy in the interface region is increased.

In the kinetic energy equation, the magnitudes of pressure work, surface tension work

and viscous dissipation of turbulent kinetic energy increase as the density ratio increases

or the Weber number decreases. The magnitudes of baroclinic, surface tension and

viscous dissipation terms in the mean enstrophy equation are increased by an increase in

density ratio. However, the magnitude of viscous term in the vorticity equation decreases

as density ratio increases.

At early stage of interface evolution, as the interface is stretched rapidly by the

nearby turbulent strain field, the turbulent kinetic energy, especially its normal

component in the vicinity of interface decreases. This is primarily due to surface tension

which opposes the increase in interface area. Later on when turbulent stretching become

weaker, the rate of increase in interface area decreases and even in some cases the

interface area starts to decrease. At this time, the surface tension starts to increase the

turbulent energy in the nearby region of interface. By increasing the kinetic energy of the

surrounding turbulent flow, the surface tension effectively opposes the decrease in

surface area of the interface.

Close to interface, when the contribution of surface tension and viscous

dissipation terms in the turbulent kinetic energy are both negative, the viscous dissipation

remains moderate because both terms are balanced by the pressure term. However, once

the surface tension work turns positive, the magnitude of viscous dissipation term

increases sharply to take over the role of pressure to counteract the effect of surface

tension in the interface region.
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2.4 Table

Table 2-1. The Specifications of DNS Cases

 

 

 

Case No. A T] We

0 1 1 00

1 1 1 10

2 5 5 10

3 10 10 10

4 20 20 10

5 10 10 2

6 10 10 5

7 10 10 20
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2.5 Figures
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Figure 2-1. Instantaneous vorticity contours for case 3 at t=2.0 for various grid

resolutions and interface thicknesses. (a) a = 2Ax, 256x256 grid resolution;

(b)£ = 3Ax, 256x256 grid resolution; (0) e = 4Ax, 256x256 grid resolution; and (d)

6‘ = 4Ax, 512x512 grid resolution.
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Figure 2-2. Temporal variations of the total interface surface areas for various

interface thicknesses and various resolutions.
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Figure 2-3. Comparison between different forms of baroclinic and surface tension

terms in vorticity equation for various interface thicknesses: (a)-(b)e = 2Ax; (c)-(d)

a = 3Ax; and (e)-(f) e = 4Ax. The results are plotted for point C or particle C on the

interface. Grid resolution is 256x256.
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Figure 2-4. Temporal variations of baroclinic and surface tension terms for

different grid resolutions.
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Figure 2-5. Vorticity contours and interface topologies in case 3 at different times:

(a) t=0.0; (b) t=0.5; (c) t=1.5; and (d) t=2.5.
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Figure 2-6. Instantaneous vorticity contours and interface topologies at t=2.0 for

different cases: (a) case 0; (b) case 1; (0) case 3; (d) case 4; (e) case 5; and (1)

case 7.
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Figure 2-7. Temporal variations of mean enstrophy for various cases and in

different regions of the flow: (a) case 3, fluids 1 and 2 and interface regions; (b)

various cases, fluid 1 region; (0) and (d) various cases, interface region.
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Figure 2-8. Temporal variations of different terms in the mean enstrophy

equation in different regions for various cases: (a) viscous dissipation term I” in

different regions in case 1; (b) baroclinic term II in interface region; (c) surface

tension term IV in interface region; and (d) viscous dissipation term III in interface

region.
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Figure 2-9. Two-dimensional spectral density function of (a) turbulent kinetic

energy and (b) enstrophy at t=2.0.
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Figure 2-10. Temporal variations of the total interface areas for different cases: (a)

various density ratios and (b) various Weber numbers.
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Figure 2-11. Temporal variations of mean turbulent kinetic energy in various

regions for (a) case 1 and (b) case 3.
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Figure 2-12. Temporal variations of mean turbulent kinetic energy in interface

region for different cases: (a) various density ratios and (b) various Weber

numbers.
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Figure 2-13. Temporal variations of different terms in the mean turbulent kinetic

energy equation in various regions for case 3: (a) surface tension work; (b)

pressure work; (0) viscous dissipation; and (d) viscous stress transport terms.

84



 
 

j

(a).
0

4s
.

'
r

 
   

 

(1)11

02 1
~ Case 1

----- Case 2

-0 4 .. —0— Case 4

.2 A 1 1 1 1 J 1 1 1 1 
    
  

-0.08

(IIDI:

0.12:

016'

    

    
   

)-

r-

02 AAA1 ‘AlLlAlLl AAAA AAlJAlJl l4l‘l

-

0

0 0.5 1 t 1.5 2 2.5 0 0.5 1 t 1.5 2 2.5

  

Figure 2-14. Temporal variations of different terms in the mean turbulent kinetic

energy equation in interface region for cases with different density ratios: (a)

surface tension work; (b) pressure work; (c) viscous dissipation; and (d) viscous

stress transport terms.
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Figure 2-15. Temporal variations of different terms in the mean turbulent kinetic

energy equation in interface region for cases with different Weber numbers: (a)

surface tension work; (b) pressure work; (0) viscous dissipation; and (d) viscous

stress transport terms.
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Figure 2-16. Temporal variations of interfacial kinetic energy and its two-

components in different cases: (a) case 1; (b) case 3; (c) case 6; and (d) case 5.
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Figure 2-17. Temporal variations of normalized interface area change rate and

mean surface tension work in interface regions with various density ratios: (a)

case 1; (b) case 2; (c) case 3; and (d) case 4.
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Figure 2-18. Temporal variations of normalized interface area change rate and

mean surface tension work in interface regions with various Weber numbers: (a)

case 5; (b) case 6; (c) case 3; and (d) case 7.
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Figure 2-19. Temporal variations of normalized viscous dissipation term of mean

turbulent kinetic energy and normalized mean enstrophy in interface region: (a)

case 1; (b) case 4; (c) case 5; and (d) case 6.
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Figure 2-20. Temporal variations of different terms in the vorticity equation on

particle A for different cases: (a) case 1; (b) case 3; (0) case 5; and (d) case 7.
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Figure 2-21. Temporal variations of different terms in the vorticity equation on

particle B for different cases. (a) case 1; (b) case 3; (0) case 5; and (d) case 7.
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CHAPTER 3

LES/FMDF Methodology for Two-Phase Turbulent

Reacting Flows

3.1 Introduction

As stated before, turbulent two-phase reacting flows are important to a large

variety of applications including spray combustion, pollutant dispersion in atmosphere,

heat and mass transfer in chemical reactors, material processing, among many others.

This chapter is focused on the LES of dilute two—phase turbulent reacting flows. The

extent of research and the rate of progress in the field of modeling and large-scale

simulations of two-phase turbulent flows have been significant. In fact, the span of the

developments has been much more than can be described, with justice, in a short

introduction. Therefore, this section is focused on selected issues concerning the

droplet/particle transport in turbulent flows and dilute spray combustion. Some of the

challenges associated with LES of multiphase flow are also discussed. This discussion is

not exhaustive as the physical and the mathematical complexity of multiphase transport

do not allow a “complete” coverage.

All three simulation strategies, namely direct numerical simulation (DNS), large-

eddy simulation (LES), and Reynolds-averaged simulation (RAS), have been widely

employed in computational analysis of turbulent two-phase flows. Despite all of the

progress in supercomputer technology, and even considering the (most optimistic)

projected rate of progress of this technology, DNS will remain primarily as a basic

research tool. This should not imply a “shortcoming” of the method. On the contrary,
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DNS has proven very effective in capturing many physical phenomena which could have

not been studied by other means. It has also been very useful in assessing the

performances of many of the closures in RAS and LES. RAS has been the method of

choice for practical applications and perhaps this trend will continue for many years to

come. This is the case even with proven non-universality of the currently employed RAS

closures for two-phase turbulent (non) reacting flows. LES has experienced significant

growth in two-phase flow simulations within the past decade or so. This methodology

makes use of many of the pleasing features of both RAS and DNS. It is more reliable

than the former, and is less computationally intensive than the latter. The predictive

capability of LES depends on the success of its SGS closures and the numerical scheme.

Nevertheless, it can be argued that LES provides the most optimum means of capturing

the unsteady physical features of the flow. It is also easy to predict that LES will

continue to replace RAS in many applications. In addition to these three general

simulation methodologies there are some schemes which are labeled as “hybrid”. That

is, they are based on the combination of some of these methods [1-2]. The success of

these methods is dependent on that of the original methods.

The analytical methods that have been developed for two-phase turbulent flows

are generally based on three different approaches: (i) Eulerian-Eulerian approach [3-10],

(ii) Eulerian-Lagrangian approach [7,11-20], and (iii) Lagrangian-Lagrangian approach

[21-23]. In the first approach, the continuum transport equations for both phases are

solved. These equations are somewhat similar and are often obtained by some sort of

volume averaging which is conceptually different than the ensemble averaging in RAS or

space averaging in LES. In the second approach, the continuum carrier fluid equations

99



are solved in its instantaneous form in DNS or in its “averaged” form in RAS and LES

over a fixed Eulerian grid system. However, the “dispersed” phase (particles, droplets,

micro bubbles, ...) are described by a set of modeled Lagrangian equations which

determine the position, velocity, temperature, and other properties [7,13-14,16] of the

dispersed phase. In the third method, both phases are described in the Lagrangian context.

The Eulerian-Eulerian and Eulerian—Lagrangian models have been employed for

RAS, LES and DNS of a wide range of two-phase or two-fluid turbulent flows including

free surface flows, or dispersed turbulent flows [3-4,6-8,11-16,24-27]. In comparison,

there are limited numbers of models based on Lagrangian-Lagrangian approach. An

example is the two-phase random vortex model of Salman and Soteriou 21]. The two-

phase Lattice-Boltzmann and Molecular Dynamics Simulation models [22-23] may also

be considered as examples of Lagrangian-Lagrangian models. These models have not

been seriously employed for LES and are not discussed here. Neither we will discuss the

RAS models that have been developed based on Eulerian—Eulerian and Eulerian-

Lagrangian approaches. We refer the interested reader to review articles and books by

Faeth [11], Crowe [13], Sirignano [.14] and others on this subject. Furthermore, the

extent of the previous DNS studies of two-phase flows is too broad to be discussed here

and is not the focus of this chapter. In Ref. [7], a comprehensive collection of the DNS

studies is provided by categorizing them based on flow configuration and coupling

between the phases. As indicated, homogeneous two-phase turbulent flows (reacting or

non-reacting) have been the subject of a large number of studies [28-39] due to their

relative simplicity. Inhomogeneous two-phase turbulent flows have also received a great

deal of attention because of their extensive technological applications [36,40-56].
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From modeling and computational point of view there are many similarities

among liquid-gas, solid-gas, and liquid-solid two-phase (or two-fluid) turbulent systems.

For example, turbulent flows laden with droplets or solid particles all involve a large

number of small elements with densities very different than the carrier fluid density [16].

These flows are often computed with similar Eulerian-Lagrangian or Eulerian-Eulerian

models, although different models are usually needed in different regions of the flow,

depending on the concentration, size, and shape of the “particles”. The two-phase/two-

fluid systems are often classified by the flow regimes: dilute, moderately dense, and very

dense. All of these regimes are present in sprays [11,13-14,57—59]. In dilute flow regime,

the particle-particle interactions are rare and the volume fraction of the particle to carrier

fluid is very small, making the continuum assumption and Eulerian—Eulerian formulation

essentially invalid. In these regimes, the particles are often treated as point masses (or

point volumes for micro bubbles) which are affected by the carrier gas through mass,

momentum, and energy interactions. The coupling could be two—way, allowing the

particles to also modify the carrier fluid. In the most early studies on the LES of dilute

two-phase turbulent flows with one-way coupling [60-61], particles were tracked by

using only the Eulerian filtered velocity field and the effects of subgrid scale velocity

field on the particles were not taken into account. However, these effects are often

considered in later studies. For example, Armenio et al. [62] studied the SGS carrier gas

velocity effects on dispersed phase by comparing the DNS and LES results. The two-way

coupling effects were incorporated in LES by Boivin et al. [63] through grid-averaged

source terms in the filtered Navier-Stokes equations. Yuu et a1. [64] consider the two-

way coupling between the carrier fluid and the particle phases at SGS level by modeling
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the subgrid-scale turbulent mass flux of particles with a gradient transport closure similar

to molecular transport Closures and have achieved a good comparison with experiment

for a planar turbulent jet flow. The SGS effects of particles on the fluid (and vice versa)

are also modeled with a more rigorous PDF-based closure [5].

The Eulerian-Lagrangian dilute two-phase [LES models have been applied to

turbulent flows in complex geometries. For example, Apte et al. [65] consider solid

particle dispersion in a non-reacting swirling coaxial jet combustor. In this work, the

incompressible Eulerian carrier fluid equations are solved over an unstructured grid

system and the cell-averaged effects of particles on the turbulence are incorporated via a

source term in the momentum equation. Also in this work, as other works discussed

above, a modified nonlinear version of the Lagrangian Stokes equation is used for the

particle velocity calculations [l3-14,16]. With the point mass approximation, the entire

mass and heat transfer and surface stress around the particle surface are represented as

integrated local variables in the physical space such that the continuous-fluid domain is

not affected by the presence of particles [16]. Subsequently, the average effect of heat

and mass transfer and surface stress is obtained from a set of semi-empirical relations.

Sirignano [l4] and Crowe et al. [13] provide a comprehensive review of available

momentum, heat and mass transfer models for small particles and droplets. Also, in a

comprehensive review article, Loth [16] compares the point mass models for interphase

momentum transfer. The models provide the drag and lift forces for solid particles or

droplets in the particle momentum equation. The effects of turbulence, compressibility,

particle spin, particle deformation, virtual mass, Basset history, stress gradient, and wall

on the particle forces are discussed in details. By comparing their numerical results with
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experiment, Apte et al. [65] indicated that the LES predictions are significantly more

accurate than those of RAS, despite the fact that the effects of SGS fluctuations of the

carrier fluid on the particles are ignored in their LES calculations. Consistently, by

comparing various multiphase turbulent flow models for environmental and

hydrodynamic applications, Lakehal [8] concluded that the RAS is inherently inadequate

for these applications and should be transcended by the LES.

In the dense regime of any particulate turbulent flow, the particle-particle

collisions are significant, the particle number density is large and the volume displaced

by the particles often have noticeable influence on the carrier fluid. Normally, a

significant portion of the physical activities associated with the fluid-particle and

particle-particle interactions take place at SGS which are not calculated in LES and have

to be modeled. This imposes serious challenges on LES of dense two-phase turbulent

flows. The particle tracking LES models discussed above are based on point mass (or

point volume) approximation which is only suitable for dilute systems with insignificant

particle-particle collisions and small particle to fluid volume fraction. In theory, it is

possible to simulate the flow domain outside the particle in the boundary layer and wake

region. However, these simulations, referred to as “resolved-volume simulations” [16]

are very expensive and are usually limited to one or handful number of particles in

simple flows and do not seem to be practical for LES. Also, as discussed below,

Eulerian-Eulerian mathematical/computational models may be used for dense two-phase

flow simulations. However, these models may not be viable for complex turbulent flows

that involve preferential concentration of the particles and the simultaneous presence of

both dense and dilute regimes.
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For LES of dense two-phase particulate flows, efficient particle-particle and

droplet-droplet collision models are available in the literatures [66-68] that can be and

have been incorporated in the Lagrangian particle simulations. For example, by using

their Monte Carlo model of inter-particle collision, Yamamoto et al. [69] have simulated

a gas-particle turbulent flow in a vertical channel and have shown that by adding the

particle-particle collision models, the LES results compare better with those of

experiment. They also show that the turbulence attenuation by particles agree well with

experiment when particle collision models are included in the LES. Gorokhovski and

Chtab [68] have suggested a similar collision model for LES of dense particulate flows.

Their model is computationally more efficient than that of Yamamoto et al. [69] but

generate almost the same results. Also, to incorporate the finite particle volume and

particle collisions effects in an incompressible suspending fluid, Apte et al. [70] have

developed a mathematical/computational model that is a modification of that by

Dukowicz [71] for spray computation. The model has been shown to produce accurate

results in simple laminar flows and has been incorporated in an unstructured LES code

[70] for simulations of spray in complex flow configurations.

While the interface tracking LES models described in previous chapters appear to

be promising for primary breakup and free surface simulations, they do not seem to be

appropriate for secondary breakup and dispersed regions of spray, where there are

extensive numbers of individual droplets. In these regions, the volume fraction occupied

by the droplets or ligaments are high and there is considerable collisions between

droplets, which can lead to coalescence (forms bigger drops), shattering (forms smaller

droplets), and bouncing or glancing (leaves droplet sizes unchanged). For LES of
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atomizing spray, Apte et al. [17] have also proposed a Lagrangian stochastic SGS model

for droplet transport and break up for dense part of the spray. The breakup model is

based on Kolmogorov concept of viewing solid particle —breakup as discrete random

process and considers the droplet breakup process as series of uncorrelated events that

are independent of initial size of the droplets. The LES results obtained with this

Lagrangian stochastic SGS model was shown to be more accurate in comparison with the

standard parcel-approach usually employed in spray computations. There are some

ongoing efforts by us and others on the development of hybrid numerical schemes for

simultaneous and coupled simulation of dense and dilute spray flow parts. The LES

models of this type seem to be practical for simulations of sprays in turbulent flow

configurations.

Most of LES models are developed for isothermal two-phase turbulent flows; the

application of LES to non-isothermal flows with evaporating/reacting dr0plets is

somewhat limited [7,15] and it has been only recently that LES models for realistic

combustion systems are developed and tested. From the limited number of LES studies

on two-phase turbulent flows that involves evaporating and reacting droplets, we refer

here to the works by Okong'o, N. and Bellan [72]; Leboissetier et al. [73]; Sankaran and

Menon [74]; Patel et al. [19]; Ham et al. [75]; Mahesh [20]; Cuenot et al. [10]; Afshari et

al. [76] and Li &Jaberi [77]. In the first two papers [72-73], the three-dimensional DNS

data on a temporal mixing layer laden with evaporating droplets are used to assess, a

priori and posteriori several different SGS models for carrier gas, droplet phase and

evaporated vapor. It is shown that with the scale-similarity models for the carrier gas

velocity, the predicted droplet distribution by LES compare reasonably well with that

105



obtained from DNS data. However, the mass, momentum and heat transfer between

evaporated droplets and carrier gas are not accurately represented by the proposed

deterministic closures. The two-phase reacting LES model in Refs. [19,74] is based on

the Euelrian-Lagrangian approach. In this model, the carrier gas equations are solved

over fixed grid points. The mixing and reaction are implemented in one-dimensional

(1D) domain via linear eddy model (LEM) which is coupled with 3D LES flow solver.

The spray is based on a Lagrangian droplet model which includes an empirical

vaporation model and a secondary break-up model for the droplets. A global multi-step

reaction model is employed. The model is applied to realistic (complex) gas turbine

combustors. Similarly, the two-phase reacting LES closures in Refs. [20,75] are based on

the hybrid Eulerian-Lagrangian approach. In the Eulerian part, the zero Mach number

Navier-Stokes equations are solved on the unstructured grid system.The spray part also

employs similar Lagrangian closures with some empirical evaporation and break up

submodels. The combustion is included via a flamelet/progress variable reaction

submodel. This model is also applied to practical gas turbine combustors. The two-phase

reacting LES model of Cuenot et al. [10] is fundamentally different than the above

models as it solves the Eulerian equations for both phases. Our two-phase reacting

LES/FMDF model [76-77] is also different than the other models mentioned above. It is

based on an Eulerian-Lagrangian-Lagrangian method that is described in greater detail

below.

3.2 LES/FMDF for Two-Phase Turbulent Reacting Flows

The two-phase LES/FMDF model is based on an Eulerian-Lagrangian-Lagrangian

mathematical/numerical methodology and can handle the two-way interactions between
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particle and fluid phases and particle—particle interactions for low particle to fluid volume

fraction ratio. Figure 3-1 shows various elements of the model and its computational

flow solver in a block diagram. The gas-phase part of the model is based on a high-order

compact finite-difference numerical scheme. The subgrid gas-liquid combustion is

modeled with the two-phase scalar FMDF [26,78-82]. The spray is simulated with a non-

equilibrium Lagrangian model and stochastic SGS closures. The two-way mass,

momentum, and energy coupling between phases is implemented through series of

source/sink terms. The LES/FMDF employs a variety of different fuels based on two

reaction models: (1) a finite rate, reduced chemistry model for non-equilibrium flames,

or (2) a near equilibrium model employing detailed kinetics. In (1), a system of nonlinear

ordinary differential equations (ODEs) is solved together with the FMDF equation for all

the scalars (mass fractions and enthalpy). Finite-rate chemistry effects are explicitly and

“exactly” included in this procedure since the chemistry is closed in the FMDF

formulation. In (2), the LES/FMDF is employed in conjunction with an equilibrium fuel-

oxidation model. This model is enacted via “flamelet” simulations which normally

consider a laminar counterflow (opposed jet) flame configuration. For two-phase flow

calculations only non-equilibrium models based on (1) are used.

The two-phase LES/FMDF model has been used for detailed and large-scale

simulations of various droplet-laden turbulent systems with and without droplet

evaporation and combustion. Figure 3-2 shows for example the vorticity and mass

fraction contours and droplet distribution in one of the experiments we have simulated.

In this experiment, a lean premixed preheated air-decane flame is controlled by injection

of a relatively small amount of liquid n-decane fuel. Also shown in this figure are the
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interactions between Eulerian grid points, Lagrangian droplets and Monte Carlo

Particles. There are basically three interacting fields: (i) the Eulerian finite difference

field for the gas dynamic variables, (ii) the grid-free Lagrangian Monte Carlo field for

gaseous species and temperature as obtained by FMDF, and (iii) another Lagrangian

field for liquid-fuel droplets and spray.

In “conventional” LES methods, the “resolved” field is obtained by solving the

filtered form of the compressible Navier-Stokes, energy and scalar equations with the

filtered equations being closed by appropriate SGS stress and scalar flux models. In

reacting flows, additional models are normally required for source/sink terms. Here, we

use the FMDF which has been implemented in two ways: (Formulation I) to consider

only the SGS scalar quantities, and (Formulation II) to consider the SGS velocity—scalar-

pressure quantities. Formulation I is more manageable computationally, and formulation

[1 is more rigorous from the statistical standpoint. Most of our previous contributions are

based on formulation I which considers the joint scalar (species and energy) FMDF. For

two-phase flows, the modified version of the scalar FMDF is employed.

3.2.1 Governing Equations for Carrier Gas Field

For a two-phase reacting system, the filtered Navier-Stokes, energy and scalar

equations are in the following forms:

 

    

at + ax, 2 (3'1)

a<p> <u > a<p> (a) (u -> a<P> a<2) an-
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where (f(x,t)), and (f (x,t)) L =(pf),/(p), represent the filtered and the Favre—

filtered values of the transport variable f(x,t), and ,0 , ui, P , TandH are the fluid

density, velocity, pressure, temperature, and total enthalpy, respectively. The species’

mass fractions represented in a common form with ¢a 5 Ya,“ = 1,2, ...... N3. In equation

(3.5) R0 is the universal gas constant and Wat is the molecular weight of species a. Note

that, in equation (3.3), the viscous dissipation and pressure gradient terms are neglected.

The viscous stress tensor TI-j, heat flux qiand mass flux Jl-a(a =1,2...,NS) are defined

as:
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where 11, K, Cp. Pr and Le are dynamic viscosity coefficient, the thermal conductivity

coefficient, the specific heat, the Prandtl number and the Lewis number, respectively.

The SGS closures appear in the above filtered equations include the SGS stress

sz = <p>1]<”i”j>L _<ui>L<"I>LJ’ the SGS enthalpy flux N,- = <p>ll<uiH)L —<u,->L<H>L]

and the SOS scalar flux M,“ = <p>[[<u,-¢a>L —(u,->L<¢a)L] [56,78-79, 82]. In multiphase

reacting flows, additional models are required for the filtered source/sink terms. Here,

modeling of these filtered source/sink terms is the subject of the probability formulation

described below. For hydrodynamic SGS quantities, a diffusivity-type closure model is

used [56,78-79,82]. The variable-density form of the model for SGS stress can be

expressed as:

1 2

r0- : ”(9): ”t [<51le ‘§<Skk >150 ] + 3%, K505511- (3.10)

where <50- >1. is the resolved strain rate tensor and defined as:

(3.11) 
1 a<u-> alu-l

<50]in 3x11.” a)?

In the Smagorinsky model, the subgrid eddy viscosity v, and coefficient KSGS are given

by the following formulations,

Vt : CS (3)2
 

(5,7)Ll (3.12)

2

(3.13)

 

— 2

K505 =C1(A) |<Sij>L

While in the modified kinetic energy viscosity (MKEV) closure [78], they are expressed

BS:
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v, = CR(Z)(8)“ 2 (3.14)

K505 =C18 (3.15)

<1~*>,<~z-*>,.-<<z~*>.>.,<<ui*>.>.2

reference velocity in the x,- -direction. The subscript L2 denotes the filter at the

:1:

where E = , u,- =u,— —U,-,,ef and Ui,ref is the

  

secondary level of size with (3L2 )> (K).

A similar model is used for the closures of SGS enthalpy flux and SGS scalar flux

 

 

N,- =-—y, ar- L (3.16)

'l

a

Mr“ =-71 <::_>L (3.17)

where y, = (0)11”, = (,0) I J:— and Sc, is the subgrid Schmidt number, assumed to be

Sc,

constant and equal to the subgrid Prandtl number. Note that, the subgrid eddy viscosity

v, is the same one used in modeling of SGS stress I‘l-j. It must be indicated here that this

model is not used directly in the FMDF but the modeled FMDF transport equation is

constructed to be consistent with it.

The effects of droplets and combustion on carrier gas are expressed through the

mass, momentum, energy, and species source/sink terms Sp, Sui, SH , Sa, and 55. In

conventional LES methods, the filtered equations for the scalars (i.e. equation (3.4)) are

solved together with other equations. In these equations, the filtered chemical source/sink

terms are not closed and need modeling. Here, the subgrid combustion model is based on
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the FMDF methodology and the temperature and mass-fraction fields are obtained from

the FMDF. The chemical source/sink terms are determined exactly with the knowledge

of FMDF.

3.2.2 Two-Phase FMDF Equations for Scalar field

The scalar filtered mass density function (FMDF) is a joint probability density

function of the scalars at the subgrid-level and is defined as:

may) = [:p<.r_’.t)é<$,g(3_flr))0<: -£)d£f (3.18)

0'

433960) = 6(1 -93(3,t)) = 1160110, -— tram» (3.19)

a=1

where C denotes the filter function and the term {f(fiLQQJ» is the “fine-grained”

density [83-84]. The scalar field, 96g):(¢l(£,t),¢2(§,t),¢3(g,t)---~,¢0(g,t)) ,

represents the mass fractions of the chemical species and the specific enthalpy

(00,0 2 N5 +1), and is obtained from the joint scalar FMDF. E = (T135313 ----,‘1’0)

is the composition domain of scalar array and 6 denotes the delta function. The equation

(3.18) implies that the FMDF is the mass weighted spatially filtered value of the fine-

grained density. The integral property of the FMDF is such that

KFL‘EWWE = f:10(£',t)G(£’ 1061; = (M30), (3.20)

For further development, the mass-weighted conditional filtered mean of the

variable Q(._r,t) is defined as:

[:ch.t>p<az>amran)c<¢
—ad;

F1134,”

 

(Miami), = (3.21)
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which implies

(z) For Q(._v.r)=c, (QQJHE), =c (3.22)

(it) For Q(-_\3t) = exam», (comm), = 0(3) (3.23)

(iii) Integral property: E:<Q(:x_',t)l_‘1:>l FL (E;£,t)d_‘lj = <p(§,t)>l <Q(J_r,t)>L (3.24)

where c is a constant, and Q(Q(gg,t)) E Q(5,t) denotes the case where the variable Q can

be completely described by the compositional variable QQJ). From these properties, it

follows that the filtered value of any function of the scalar variables (such as

050@(5,t)] for low Mach number flows and Sa, =Sa@(§,t)]) is obtained by

integration over the composition space. It is noted that the mass-weighted conditional

filtered mean reduces to the conditional filtered mean [85] when the density can be

completely expressed in terms of the compositional variables.

By applying the method proposed by Lundgren [86] and Pope [87] to the

original(unfiltered) two-phase scalar and energy equations, the transport equation for

fine-grained density is obtained

apart —9m» + amid: —em» =  

  

 

at 0x,-

ajfl aag —gem) _ mad! - 9%,!» (3 25)

0x,- awa as", '

as “601' -<I>(x,t)) aa 5 501’ —<I>(x,t)) .
_ p —— — —- a p -— — — _

a‘Pa + ana + Sp§(g Q(£’I))

The transport equation for FL (feet) is obtained by multiplying equation (3.25)

by the filter function 0(5' — g) and integrating over 1' space. The final result after some

algebraic manipulation is
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BFL a a (< 1 31,.“
__ _ \{I F =

0! +0.1'1-(<ul(l I)|—>’ L) 0‘1", 062) (ix,-
 

$> FL ‘53—(5a (30171.)

I

 
   

\ a

(3.26)

_ a (52:12)). + a Miran + sprain.
8% [3(1) 8% 73(2) [2(3)

This is an exact transport equation for the two-phase FMDF which can be solved

by some models for unclosed terms and standard numerical methods like finite-

difference method. However, standard methods are very expensive due to added

dimensions. The second term on the right-handside of equation (3.26) is the chemical

reaction term and is in a closed form. The last three terms on the right-handside of this

equation represent the effects of droplets on the carrier gas and are unclosed. The

unclosed nature of SGS convection (second term on the left-handside) and mixing (first

term on the right-handside) is indicated by the conditional filtered values. These terms

are modeled in a manner consistent with Reynolds averaging and conventional LES in

non-reacting flows. The convection term is first decomposed via

(u, IE>1FL = <1I1>LFL +((u,~ If)! FL —<u,->LFL) (3.27)

where the second term on the right-handside of equation (3.27) represents the influence

of SGS convective flux and can be modeled as

a F /

(cram-<u.->LFL)=—y,~—(—g—}£>—L) (3.28)

The advantage of the decomposition [equation (3.27)] and the subsequent model

[equation (3.28)] is that they yield results similar to that in conventional LES [88-90].

For example, the first Favre moments corresponding to equations (3.27) and (3.28) are

(ultra), = (away), + (area), —<u,->L<¢a>L ) (3.29)
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(p), (<"i¢a>L - <111>L<¢alil= -r1 ”3:” (3.30) 

The term within brackets in equation (3.29) is the generalized scalar flux. This

makes equation (3.30) identical to equation (3.17). The closure adopted for the SGS

mixing is based on the linear mean square estimation (LMSE) model [83,91], also known

as the IBM (interaction by exchange with the mean) [92]

a [< 1 _8_(_y§_¢g g> FL]:i(ya<FL/p@»]

l axi ax,-081a ixg) 0x, 0x,-

a

+ @152": (1P0 T<¢a>L)FL]

  

 
(3.31)

where $2,,,(§,t)is the “frequency of mixing within the subgrid”, which is not known a

priori. This frequency is modeled as S2," = CQ(}/+ y, )/(<,0)1AZG) here but other models

can be used too. For the first term on the right-hand side of equation (3.31), an additional

minor assumption is made

“ a F /__a_[ya(FL/p@_)))z_a_[y < L (9)1] (33,)

0x,- 0x,- 0x,- 0x,-

 

This assumption is not necessary for the treatment of FMDF and is only adopted

to establish consistency between the FMDF and conventional LES. Also, for the droplet

effect terms, the following approximations are made

a [Sglilfl ~ 6 <53>1FL

awa ,5($) ~ a‘ya (10)]

  (3.33)

a (sp|:1{_)lrr’aFL ~ 8 <5p>l‘1’aFL

. ~ (3.34)

awe! 0(2) 0‘11“ (10)]
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(SHE/FL : (Sp),Fz (335)

be!) (p), '

 

With these approximations, the modeled two-phase FMDF transport equation becomes

 

 

 

BFL a _ a .. .. 3(FL/<p>,) a _
V+5zl<lli>LFLl-5;[(7 +71) 6x, + 8‘1", Qm(‘*’a <¢a>L)FL]

a

a A a <Sp >1FL
—— S (3)17 — (3.36)

B‘i’a [ a L] a?“ (,0),

a (spywarr, (5,),F,

”We! (0), (,0),

3.2.3 Lagrangian Equations for Droplet field

The droplet field is solved with a Lagrangian mathematical/computational

method [93—94]. In this method, the evolutions of the droplet displacement vector (X ,- ),

the droplet velocity vector (v,- ), the droplet temperature (Tp ), and the droplet mass (mp)

are governed by the following equations

 

 

Xm-
__ = V. 3.37dt , ( )

fl z 1104.“ _ v,)+_l_n,. (3.38)
dt 7,: Fr

dT
____.P_ = Kim“ 4p ) + LV de (3.39)

(1! TP "IPCL (It

”mp = —————’"”f3 ln(1+ BM) (3.40)
dt Tp
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where the asterisk refers to the local fluid variables which are interpolated to the droplet

positions. z'P : pp (dp )2 /l8,u* is the normalized droplet time constant and ,0p , dp are

droplet density and droplet diameter (the droplet is assumed to be spherical),

respectively. The Stokes drag, fl is modeled as [95]

f 1+0.0545Rep+0.1Relp/2(1—O.03Rep)
l: b (3.41)

1+a|Reb|

*

lli —Vl' rip/21* and Reb=,0*Ubdp/,u* are particle Reynolds

  

where R6,: = ,0*

numbers based on slip velocity and blowing velocity U =—(dm /dt)/(7r,0*d2),
b p 1)

respectively. The coefficients “a” and “b” are functions of droplet Reynolds number as

a = 0.09 + 0.077 exp(—0.4 Rep) and b = 0.4 + 0.77 exp(—0.04 Rep) . In the energy

equation (3.39), 77 = ,B/[exp(,6)—1] is an analytical evaporative heat transfer correction,

/mp is evaluated atwhere the non-dimensional evaporation parameter ,8 = —1.5P,Tpn'r p

previous time step. Also, the parameters f2 and f3 in these equations are corrections to

the equilibrium heat and mass transfer coefficients and are calculated by the following

relations:

_ Sh
f NuCp f

'7 3—3Sc

= , 3.42
- 3P,CL ( )

 

where Pr and Sc are the Prandtl and Schmidt number of gas mixture at droplet location,

respectively. A mass averaging [94] is used to calculate the gas mixture heat capacity,

N?

CI, = ZCIMY¢C¢ and CL is the heat capacity of the liquid droplet. The Nusselt (Nu)

a=l
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and Sherwood (511) numbers are modified for finite Reynolds number effects on the

semi-empirical Ranz-Marshall correlations:

Nu = 2 +0.552Re‘p’2 P)”, Sh = 2 +0.552Re];2 52/3 (3.43)

The evaporation rate is dependent on the mass transfer number

BMZn/m —Yv )/(1 —YV,5) , where Y” =Z,,eq,s/ new +(1—Z,,eq,,)MWC IMWv]

and Yv are the non-equilibrium vapor surface mass fraction and vapor mass fraction

away from droplet surface. The non-equilibrium vapor molar fraction at droplet surface,

2’11qu is given by Langmuir-Knudsen evaporation law [93] as

  

2L

Ina/,5 : let/,5 —[—d—E_]fl (344)

P

P L

2.94.3 = “if." exp 0 V l —i (3.45)
P R IMWV TB,L Td

where T3914 is the liquid droplet’s boiling temperature and Rois the universal gas

constant. Lv 2128 —(CL —Cp,v )7',, is the droplet latent heat of evaporation and I28 is

the vapor reference enthalpy. MWV and MWC are molecular weights of vapor and

carrier gas, respectively. While the Knudsen layer thickness is given by

,1 0 /2

,u (ZnTpR /MWV)l

LK = * (3.46)

ScP

 

The volumetric phase coupling source/sink terms appearing in the filtered carrier

gas equations and two-phase FMDF equations are evaluated based on the volumetric

averaging of the Lagrangian field as
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 sp = 1 {— "'Pf3 ln(1+ BM )} (3.47)

TP

1 dm

5“,. 2757215 +vi—d7’3) (3.48)

 

s~=—-.:72l'"'”"‘:“2%<)l
p (3.49)

31‘ ’1‘

1 vv +u-u. >1: dmp
_3V-Z{(hv’s +;I_z_l._l_ui 12,-)7}

where the summation is taken over all droplets in a volume centered at each Eulerian

grid point and hm = Cp.va +h8 is the evaporated vapor enthalpy at droplet surface.

:1:

17,-2m £01,- —p TP v,) is the drag force and a2 = CL/Cp is the ratio of liquid droplet

heat capacity to the gas capacity.

3.3 Numerical Solution

As mentioned before, the two-phase LES/FMDF model is based on an Eulerian—

Lagrangian-Lagrangian mathematical/computational methodology, namely (i) the

conventional Favre-filtered Eulerian LES equations are solved with high-order finite-

difference scheme for the velocity field, (ii) the Lagrangian non-equilibrium droplet

equations are solved with standard time-differencing methods, and (iii) the FMDF

equation is solved with Lagrangian Monte Carlo method for the scalar field. The

numerical methods used for each part are solved very different and they are discussed in

detail below.
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3.3.1 An Eulerian Finite Difference Method for Velocity Field

The filtered Eulerian carrier-gas equations are solved together with diffusivity-

type closures for the SGS stress and scalar flux terms via “standard” finite-difference

schemes. The time differencing is based on the classical third-order TVD Runge-Kutta

(R-K) scheme, which belongs to the strong stability-preserving (SSP) R-K family

proposed by Shu and Osher [96] and can be expressed as

(7 ‘1’ = U " + mud") (3.50)

*(2) 3~n 111) 1 (1)
U =—U" +—U +—AtL(U ) (3.51)

4 4 4

0”“ =éu" €09) +§AtL(U(2)) (3.52)

—.

Here, the vector U z{<p>l’<p>l<”i>L’<p>I<H>L’<p>l<¢a>L} and the operator L((7)

represent all the source terms and spatial derivatives in the filtered equations. In the

equations (3.50)-(3.52), (7" and (7"Hdenote the primary variables at present and next

time steps, respectively. While (7 m and (7 ‘2’ are solutions at intermediate time steps.

For any flow variable, the spatial derivative of the variable is computed by the

sixth-order central compact differencing scheme (COMP6) proposed by Lele [97]. Given

a flow variable f , its spatial derivative inxdirection f'can be obtained by solving the

following tn'diagonal system

14 f_i_________+1-fi—l +lfi+2-fi_2 (3.53)

9 2Ax +9 4Ax

 
l I I

:fi—1+fi'+':31fi+l:_

with using the Thomas algorithm. The fifth-order one-sided and lop-sided compact

boundary schemes of Cook and Riley [98] are implemented for boundary points and

points next to boundary can be written as



5
1

'+4 ' =— (3.54)f1 f2 Ax[§‘11fi]

, , , 1 5
afl +f2 +0)"3 =—— be (3.55)

Ax H:

where al 2 —37/l2,az = 2/3,a3= 3,04=—2/3, a5 =1/12 for the equation (3.54) and

a = 0.2142857143, bl = —0.6785714286, b2 = —0.1 19047619,b3 = 0.8571428571,

b; = —0.07l42857l43 and b5 = 0.0119047619 for the equation (3.55).

The application of non-dissipative spatial schemes, such as the central compact

schemes causes a pileup of energy at the smallest scales of the flow. To avoid numerical

instability and to eliminate numerical oscillations at very small scales due to mesh non-

uniformities and boundary conditions [99], the low-pass, hi gh-order implicit spatial filter

[100-101] is applied to interior and near boundary points (no filter is needed for

boundary points). This filtering operation is very different than the standard LES filtering

operation but is an important component of the solution algorithm. The eighth-order

central and sixth-order one-sided filtering are used in this study,

4
x x x a .

affr—1+ft+a’fft+1 = 271((fnk‘l’fi—k) 5515N‘4 (3-56)

k=0

A A A 3

aff,-_l +f,- +aff,,1—_ Z—(f,+k +f,-_k) i=4and N—3 (3.57)

k:02

A ,. A 3

aff,_1 +f,- +0sz,+1 = ZakJ-fk i=2and3 (3.58)

k=l



where f is the filtered value of the original variable f . The filtering parameter af lies in

the range of (-0.5, 0.5), with higher values representing less filter. The coefficients

ak and bk in equations (3.56)-(3.58) are the same used by others [100-101].

3.3.2 Lagrangian Model for Dilute Spray

Once the fluid velocity, density and temperature are obtained from LES and two-

phase FMDF solvers, the droplet transport equations are integrated with a second-order

time differencing scheme. The evaluation of the fluid velocity at the droplet locations is

based upon a fourth-order accurate Lagrangian interpolation method. Also for the droplet

phase, a stochastic velocity model is considered by which the residual or subgrid velocity

of the carrier gas at the droplet location is constructed as

2

* 0P 1 a <“i>L (a: )

(Iii = ———+ +G--u- — u- dt+ C EdW. 3.59

3x1 Reo axjaxj ’1 ‘ <‘>L 0 I ( )
 

where Gij = —w[% ECO )ng , E = C5k2/3/Af anda) = E/k. The combined large- and

small-scale fluid velocity is then used for calculations of droplet location and velocity.

No model is needed for subgrid energy (or temperature), density and mass fraction, since

they can be obtained exactly from the subgrid two-phase FMDF equation.

3.3.3 Lagrangian Monte Carlo Solution of FMDF

From an operational standpoint, PDF or FMDF methods are implemented via

stochastic differential equations. The full two—phase FMDF equation (3.36) is a partial

differential equation in physical and composition space. The connection to stochastic

differential equations is via the Fokker-Planck equation: the Fokker-Planck equation of

the stochastic model is a transport equation for the FMDF. Rather than solving that
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partial differential equation, and then computing statistics, the statistics can be obtained

far more economically by averaging of the stochastic process. Hence, in FMDF modeling

one actually solves a set of stochastic differential equations (SDEs), with the partial

differential equations being a point of reference. The most convenient means of solving

the SDE equations is via the “Lagrangian Monte Carlo” procedure [78-79]. With the

Lagrangian procedure, the two-phase FMDF is represented by an ensemble of

computational “stochastic elements” (or “particles”) which are transported in the

“physical space” by the combined actions of large scale convection (filtered flow

velocity) and diffusion (molecular and subgrid). In addition, changes in the “composition

space” occurs due to chemical reaction, SGS mixing, and droplet effects, such as

evaporation. Again, all of these are implemented via a stochastic process described by a

set a SDEs. These SDEs are fully consistent with the original two-phase FMDF transport

equation (3.36). The two-phase FMDF represents the gaseous scalar and energy fields

and is used to evaluate the local values of the temperature, density and species mass

fractions at droplet location. The droplets in turn modify the species concentration and

temperature values of the Monte Carlo particles or FMDF due to mass and energy

coupling. Hence, the three-way coupling between the carrier gas velocity field, FMDF

scalar field and droplet field are included in the computations.

In physical space, the spatial transport of the two-phase FMDF is represented by

the general diffusion process governed by the following stochastic differential equation

(SDE) [102-103]

dzmc (t) : QUIC (EINC (t),t)dt + E(X”1C(t),t)d—W-INC , (3.60)
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where 5"“ is the Lagrangian position of a Monte Carlo particle, 2"“ and E are the

“drift” and “diffusion” coefficients respectively, and Wm denote the Wiener process

[104]. The drift and diffusion coefficients are obtained by comparing the Fokker-Planck

equation corresponding to equation (3.60) with the spatial derivative terms in the two-

phase FMDF transport equation (3.36),

 

III(.‘ "(C
8 ~ ~

2 (2S (z).z)=[(g)L +< 1) (75”? (3.61)

p I E xnlC(t)

E(_>§”"(r),z) {(281m)} + )7)/<,0>l )Wlxmfi) (3.62)

t

In composition space, the subgrid mixing, reaction and droplet effects are

implemented by altering the compositional makeup of the particles via the following

 
 

equafion:

. S a + S We)
We")=_oiz[¢;(r)-<¢;(z>> ]+sa<g+(z»+< p,>' ‘< p>l+ a ’ (3'63)

dt L 10(9 (2)) 0(9 (0)

where (I); 200((1(t),t)denotes the scalar value of the Monte Carlo particle at the

+

Lagrangian position vector 2gp) . The same notations are used for <Sg> ,

I

<5p>l+ and 9+0). The solutions of equations (3.60) and (3.63) should generate fully

consistent statistics with those obtained by the original two-phase FMDF transport

equation (3.36), according to the principle of equivalent systems [84,105].

In the Monte Carlo method, each particle is initially assigned a weight which

represent the mass of carrier gas and satisfies the following equation in each cell,
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2W," z (0)] AV (3.64)

we cell

where Wm and AV are the weight of particle m and the volume of the ensemble domain

used for particle averaging, respectively. In an attempt to reduce the computational cost,

a procedure involving the use of non—uniform weights is also considered. This procedure

allows a smaller number of particles to be imposed in regions where a low degree of

variability is expected. Conversely, in regions of high varying character, a larger number

of particles are allowed. This is akin to grid compression in the finite-difference (or

finite-volume) schemes. At locations far away from chemical reaction zone and spray, no

Monte Carlo particles are deployed. For the case with droplet evaporation, the weights of

particles are modified according to the following equations to include the added mass

(density) effect on FMDF.

flat. = <Sp>+AV (3.65)

<5e>+ "’ WASP),I_ Zwm

me cell

(3.66)

Equation (3.65) is consistent with the filtered continuity equation (3.1).

Statistical information, such as the first filtered moment, at any point is obtained

by considering an ensemble of NE computational particles residing within an ensemble

domain characterized by the length scaleA E- This is necessary because, with probability

one, no particle will coincide with the point considered [105]. From a numerical

standpoint, specification of the size of the ensemble domain is important. Ideally, it is

desired to obtain the statistics from the Monte Carlo solution when the size of sample
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domain is infinitely small (AE ——> 0) and the number of particles within this domain is

infinitely large. With a finite number of particles, if the ensemble domain is too small

there may not be enough particles to construct reliable statistics. A larger ensemble

domain decreases the statistical error, but increases the spatial error which manifests

itself in “artificially diffused” statistical results. This compromise between the statistical

accuracy and dispersive accuracy as pertaining to Lagrangian Monte Carlo schemes

implies that the optimum magnitude of A E cannot, in general, be specified a priori [84-

85]. This limitation does not diminish the capability of the scheme, but exemplifies the

importance of the parameters which govern the statistics.

Fourth-order interpolation is implemented for the transfer of information from the

Eulerian grid points to the Monte Carlo particles. While the transfer of information from

Monte Carlo particles to the Eulerian grid points is accomplished by using ensemble

averaging as described above. The ensemble or Favre-filtered average value of a

transport quantity like Q(Q) is constructed from the weighted average,

ZWmQ(Q—rrr)

<Q>L = "M5 (3.67)

2Wm

mEAE

 

Again, the approximations in equation (3.64) and (3.67) improve when AE ——> 0

and the number of particles within the ensemble domain increases [84].

3.4 Consistency of Eulerian LES and Lagrangian FMDF

Solutions

An important issue in a hybrid Eulerian-Lagrangian mathematical/computational

methodology like LES/FMDF, is the consistency of its sub-components. Figure 3-3
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shows some of important attributes of conventional LES and FMDF parts of LES/FMDF.

It is shown that some of the variables are calculated by finite difference method (FD),

some by Monte Carlo method (MC), and some by both. That is, there is a “redundancy”

in the determination of some of the quantities. This seems to be a disadvantage of

LES/FMDF as extra efforts are needed to calculate the redundant variables. However, the

redundant variables provide an opportunity for testing the numerical accuracy of the

model. We have examined the consistency of the two-phase FMDF and its Lagrangian

Monte Carlo solver with the finite-difference and conventional LES models in our

LES/FMDF calculations for all simulated cases. This is done for (1) non-reacting flows

without spray, (2) non—reacting flows with spray and droplet evaporation, (3) reacting

flows without spray, and (4) reacting flows with fuel spray and evaporation. In the

discussion below, the scalar (temperature and species mass fraction) values generate by

the finite-difference method on the Eulerian grid points are denoted by FD and the results

obtained by ensemble averaging of the Monte Carlo particles are denoted by MC. For the

density, MCl denotes the density calculated through equation (3.67) with replacing

A

Q(_<l_>) by 1/,0(§3) and MC2 denotes the density calculated via equation (3.64). The

consistency between the FD and MC indicates the accuracy and reliability of the

computed values for both of them. We would like to emphasize that it is possible to

compare the FD results with the MC results in our simulation because the corresponding

reaction/droplet source/sink terms in FD are computed from the MC. Such terms are not

available in “standard” LES/FD methods.

Sample results obtained by our two-phase LES/FMDF method for the dump

combustor experiment [106] are presented in Figure 3-2, where the contours of the
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carrier gas vorticity and droplets are shown. In the dump combustor experiment, a lean

premixed air-fuel flame is controlled by injection of a relatively small amount of liquid

fuel. We have simulated this experiment with and without (Heptane) fuel droplet

evaporation and combustion and with realistic flow and droplet parameters. Contours of

the instantaneous temperature as obtained by LES-FD and FMDF-MC are compared in

Figure 3-4 for the case with combustion but no fuel spray. There seems to be a good

agreement in the instantaneous results, even though the values obtained from the MC

particle seems to be a little noisy, which is due to the limited number of MC particles.

The corresponding fuel mass fraction contours (not shown) also indicate a nearly perfect

match between FD and MC results. Figure 3-5 shows the radial variations of the filtered

temperature and the fuel mass fraction at three locations from the inlet for the Eulerian

FD and Lagrangian MC fields in the dump combustor for the case that there is

combustion but liquid-fuel spray is off. Evidently, the MC predictions are in good

agreement with the FD results in all cases considered, which again demonstrate the good

consistency of the LES/FMDF method for single-phase reacting flows. Similarly, the

instantaneous contours of fuel mass fraction (Figure 3—6), the instantaneous contours of

temperature (Figure 3-7) and the radial plots of both fuel mass fraction and temperature

at different axial locations (Figure 3-8) for the case with combustion and liquid-fuel

spray, indicate a good consistency between FD and MC values. With the evaporation of

liquid-fuel, the cooling effect on the temperature and added effect of sprayed fuel on the

gas field are shown to be important in the above contour and radial plots.

To further demonstrate the consistency between LES-FD and FMDF-MC and to

establish the numerical accuracy of LES/FMDF model, the contours of instantaneous
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values of the filtered temperature and the radial variations of filtered temperature, fuel

mass fraction and density in a double swirl spray burner [107] are compared in Figure 3-

9 and Figure 3-10, respectively. In the double-swirl burner the combustion is controlled

by liquid fuel kerosene spray. There is no fuel in the swirling air streams. Evidently, the

FMDF-MC predictions of the instantaneous temperature are very close to those of LES-

FD. The radial variations of the filtered temperature, fuel mass fraction and density as

obtained from the LES-FD data at different axial locations are shown to be very close to

those obtained from FMDF data. The discrepancy between MC2 and FD values of the

density at larger radial locations is due to that fact that no Monte Carlo particles are

deployed there in the original simulations. This can be and is easily fixed by adding

particles.

The above results demonstrate the consistency of the two-phase LES/FMDF

methodology and its numerical solution in the presence of spray and combustion. Based

on these results, we can conclude that the MC and FD formulations in the two-phase

LES/FMDF method are both mathematically correct and numerically accurate. Again,

we note that in the reacting two-phase flows, the reaction and droplet source/sink terms

in the FD equations are obtained from the MC particles. This is for the testing of the

numerical methods and for showing the consistency. Such information is not available in

“standard” LES-FD methods.

3.5 Summary

In this chapter, a new Eulerian-Lagrangian-Lagrangian two-phase LES/FMDF

mathematical/numerical methodology is presented for two-phase turbulent reacting flows

which include with two-way mass, momentum and energy coupling between phases. In
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this two-phase LES/FMDF methodology, the filtered Eulerian equations for the carrier

gas are calculated by a high-order compact finite-difference numerical scheme. The

subgrid species energy transport, mixing and combustion are modeled with the two-

phase scalar FMDF transport equation, which is solved by the Lagrangian Monte Carlo

method. The liquid droplet/spray is simulated with a non-equilibrium Lagrangian model

and stochastic SGS closures. The two-way mass, momentum, and energy coupling

between phases is implemented through series of source/sink terms.

The main features of the two-phase LES/FMDF model are (1) Large scale,

unsteady, non-universal, geometry-depended quantities are explicitly computed in

LES/FMDF. (2) FMDF accounts for the effects of chemical reactions and droplet

source/sink in an exact manner and maybe be used for various types of chemical

reactions. (3) Two-phase LES/FMDF can be implemented via complex chemical kinetics

models and is applicable to 3D simulations of hydrocarbon flames in complex

geometries. (4) Two-phase FMDF contains high-order information on sub-grid (or small-

scale) fluctuations. (5) The Lagrangian Monte Carlo solution of the two-phase FMDF is

free of artificial (diffusion) numerical errors, which is typical of FD simulations on fixed

grid points.

The demonstrated good consistency between LES—FD and FMDF-MC results for

various turbulent flows with and without fuel spray and combustion indicates that the

MC and FD formulations in the two-phase LES/FMDF are both mathematically correct

and numerically accurate. The results shown in this chapter (and those not shown) also

indicate that the two-phase LES/FMDF model is a reliable and affordable methodology

for detailed calculations of turbulent spray combustion. The model is based on a robust
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mathematical/computational framework and can be continuously improved and applied

to increasingly more complex systems without having to change its basic framework.
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3.6 Figures

LES of Two-Phase Turbulent Reacting Flows

A New Lagrangian-Eulerian-Lagrangian Methodology
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Figure 3-1. A block diagram showing different components of the LES/FMDF

and its Lagrangian-EuIerian-Lagrangian flow solver.
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Figure 3-2. Contours of the instantaneous vorticity magnitude, droplets, Monte

Cario particles and grid layout in a spray-controlled dump combustor as obtained

by LES/FMDF.
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Figure 3-3. The attributes of LES/FMDF methodology and its LES-FD and FMDF

subcomponents.

 

(b)

Figure 3-4. Contours of instantaneous filtered temperature in the premixed dump

combustor without fuel spray: (a) FD values and (b) MC values.
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Figure 3-5. Radial variations of instantaneous filtered temperature and fuel mass

fraction at different axial locations in the premixed dump combustor without fuel
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(a)

 

(b)

Figure 3-6. Contours of instantaneous filtered fuel mass fraction in the premixed

dump combustor with fuel spray: (a) FD values and (b) MC values.

 

(b)

Figure 3-7. Contours of instantaneous filtered temperature in the premixed dump

combustor with fuel spray as obtained by LES/FMDF: (a) FD values and (b) MC

values.

136



 

T
e
m
p
e
r
a
t
u
r
e

.
1
A
m

0
0

e
.

o
r

o
r

\
1

    
 

\
i

O
)

I
I
I
I

 

 

  

   

  

 

 

 

 

   

F
u
e
l
M
a
s
s
F
r
a
c
t
i
o
n

0.2

0.15"

c

. .9 ~

: ‘5 0.15

e 5» e

3 4 IL

9 ill
a (U 0.1%

E 3 E

o _ '5' y

'- 2» E 0.05‘

 

0.1

 

x/D 2

FD

MC

 

 

 

 

  
 

 

 

 

7. 0.2

6f. ,3 FD

C .9 MC

2 5; '3 0.15»

.—. l ,,
ii 4“- a,

2 E 3
e 33‘ 2
m b -

" 2: ii
1 : X/D=6 ' ~

0 1 l . 1 1 4_l O’- 1 l 4 A .

o 0.5 r/D 1 1.5 o 0.5 r/D

 

 

 
Figure 3-8. Radial variations of instantaneous filtered temperature and fuel mass

fraction at different axial locations as predicted by LES/FMDF in the premixed

dump combustor with fuel spray.
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(a) (b)

Figure 3-9. Contours of instantaneous filtered temperature in the double swirl

spray burner as obtained by LES/FMDF: (a) FD values and (b) MC values.
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predicted by LES/FMDF.
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CHAPTER 4

Applications of Two-phase LES/FMDF Model to Spray

Combustion

4.1 Introduction

With the advancements in computational power and numerical algorithms, the

high fidelity models such as those based on large eddy simulation (LES) are becoming

more popular and are more frequently employed for the development of low-emission,

compact and/or efficient combustors. LES can provide detailed time-dependent spatial

data for model assessment and improved understanding of turbulent combustion in

realistic conditions. Despite great contributions that have been made in the LES of

turbulent combustion in recent years, there remain several important challenges in the

subgrdi-scale (SGS) modeling and numerical implementation of LES. In particular,

modeling and numerical simulations of turbulent spray combustion has proven to be very

difficult. A major challenge is to develop affordable models which can properly describe

the complicated interactions among turbulence, combustion and spray at a wide range of

time and length scales.

This chapter discusses some of the results we have recently obtained with our

new two-phase LES methodology (as described in chapter 3) for high Reynolds number

compressible turbulent reacting flows in a spray—controlled lean premixed dump

combustor [l] and non-premixed double-swirl spray burner [2]. The new LES model is

implemented via an Eulerian-Lagrangian-Lagrangian numerical scheme [3]. The

Eulerian gas-phase part of the scheme employs a generalized high-order finite-difference
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method and is applicable to turbulent flows in complex geometries. This is based on

compact differencing and monotonicity-preserving methods and a multi-block strategy.

The subgrid gas-liquid combustion is modeled with a two-phase PDF-based

methodology, term the filtered mass density function (FMDF) [4-8]. The two-phase

LES/FMDF model is capable of capturing the complex interactions among turbulence,

combustion, and spray, and has shown to be applicable to a variety of turbulent flames

(slow, fast, nonpremixed, premixed, and partially premixed). The spray is simulated with

a Lagrangian model [9-10] which allows full two-way mass, momentum, and energy

coupling between phases.

For systematic assessment of the two-phase LES/FMDF methodology and its

submodels, simulations of low-speed and high-speed, single-phase and two-phase

turbulent reacting flows in various flow configurations have been conducted and the

generated results have been compared with the experimental and DNS data whenever it

is possible. Among the flows that have been simulated, there are double-swirl spray

burner [2] and spray-controlled square dump combustors [,1]. These combustion systems

are geometrically simple but are relevant to those used in air-breathing propulsion

systems.

4.2 Results and Discussions

The two-phase LES/FMDF is employed for systematic analysis of turbulent spray

combustion in two different combustion systems mentioned above. The performance of

the combustor in a typical liquid-fuel combustion system is dependent on the

complicated and often coupled effects of various parameters such as input/output

operating flow conditions, the geometry, the fuel spray type and the fuel/chemistry
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characteristics. The effects of some of these parameters on the combustion and

turbulence are discussed below.

4.2.1 Double swirl spray burner

The schematics of “Enclosed” combustion chamber with co-annular air passages

and central fuel injector nozzle for the double swirl spray burner [2] are shown in Figure

4-1. The swirl number,S which characterizes the degree of tangential momentum or

swirl in the incoming air, is known to have significant effects in the stability and

structure of the flame and is defined by Gupta [11] as:

Ge
S :

ROGa

 (4.1)

where R0 is the outer radius of the swirl. The terms G9 and Ga are the axial flux of

angular momentum and the axial flux of axial momentum, respectively, and are defined

as

G = IROpu u rzdr (4.2)

G _ 1R0 2

a — . (,oua +P)rdr. (4.3)
R1

where an, Mg and R,- are the axial velocity, tangential velocity and inner radius of the

swirl, respectively. For the vane angle of 450 /500(inner/outer annulus) used here, the

corresponding swirl number, S is 0.8/1.0 for the inner/outer annulus.

There are obviously many important parameters that affect the combustion in this

burner. However, here we only consider the effects of enclosures (wall and endplate with

nozzle), droplet to gas mass loading ratio, spray angle and injected droplet size

distribution on the combustion.
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4.2.1.1 Enclosed and Unenclosed Burners

Numerical simulations of double-swirl spray burner with and without enclosure

are carried out to examine the effects of wall and flame confinement on the flame and

turbulent structures. Figure 4-2 shows that the flame in the enclosed case is considerably

wider than that in unenclosed case. This is reflected in the temperature distribution and

other variables’ behavior. Also, the flame seems to be longer in the enclosed case in

comparison to that in the unenclosed case. These observations are quantitatively

consistent with the experimental results [1] and the radial plots of temperature obtained

from LES/FMDF data as shown in Figure 4-3. Additionally, it is observed that the

strength and the width size of the “vorticity layer” in the enclosed case are larger than

those in the unenclosed case. The difference between enclosed and unenclosed flames is

due to the entrained cold air in the unenclosed case, which cools the flame and restrains

its expansion. The end-plate or nozzle also plays an important role in enhancing the

combustion, as expected. Again, the numerical results are found to be consistent with the

experimental results [2].

Interestingly, Figure 4-4 shows a significant number of survived fuel droplets

accumulated in the region close to the exit nozzle, where the turbulence is considerably

suppressed by the droplets. The accelerated axial velocity of the outgoing gas in that

region also contributes to the damping of turbulence. These are all due to side and end

walls which significantly affect the near-field combustion and turbulence. The end-wall

or nozzle effects seem to be much more significant.
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4.2.1.2 Effects of Mass Loading Ratio

In the spray combustion, the evaporation of liquid fuel droplets has two major

effects on the flow and flame. First, it provides gaseous fuel for chemical reaction and

sustains or promotes combustion. Second, the drag, added mass and the cooling effects

of droplets on hot carrier gas significantly change the temperature, turbulence and

species distributions. These two effects often counter each other in the overall process of

spray combustion. In this respect, the mass loading ratio (MLR), which is defined as the

ratio of fuel flow rate to air flow ratio, is a critical parameter that not only characterizes

the degree of richness/leanness of the flame but also indicates how much the physical

structure of the turbulence and the flame are affected by mass, heat and momentum

couphngs

Figure 4.5 shows that when the temperature of the air at the inlet section (exits of

inner/outer swirler) is Tm 2 500K , the flame can be maintained for both MLR=0.04 and

MLR=0.1. The gas temperature in the central region is lower in the case with MLR=0.1

as shown in Figure 4-6. When the inlet temperature is decrease to ambient temperature

(Tm =300K ), the flame may no longer be maintained and is lifted for larger mass

loading ratios as shown in Figure 4-7. This is primarily due to cooling effects of the

droplets and also the “richness” of the fuel-air mixture. Note that the momentum (drag)

effect of the larger number of droplets causes considerable damping of the turbulence,

more so when MLR is higher. The droplet damping (and cooling) effects on the

turbulence is important in both reacting and nonreacting flows as the results in the Figure

4-5 and 4-6 suggest.
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4.2.1.3 Effects of Droplet Size Distribution

In this study, two types of droplet size distributions are considered both with the

same mean diameter. One is the uniform distribution, and the other is a nearly Gaussian

distribution. Figure 4-8 shows that the profiles of droplet temperature in different axial

locations are very different for cases with uniform and Gaussian inlet droplet size

distribution. As the fuel droplets pass through the flame and evaporate, their

temperatures increase and their mass decrease in a rate that is dependent on many

factors including the turbulent velocity and temperature structure and the droplet size

distribution. In the cases with inlet Gaussian droplet size distribution, the droplet

temperature becomes more uniform in the radial direction as they move downstream.

Figure 4-9 also indicates that at locations close to inlet, the droplet mass or diameter is

almost constant in radial direction for the case with uniform drOplet size distribution.

However, further downstream the droplet mass is decreased in the radial direction with a

distribution that is very different for uniform and Gaussian inlet droplet size

distributions. The profiles of droplet axial velocities (not shown) are qualitatively similar

to that of droplet mass or diameter. The axial velocity of the injected droplet with smaller

diameter is decreased more by the momentum interaction with the carrier gas.

4.2.1.4 Effects of Spray Angle

The instantaneous contours of the gas temperature and vorticity in Figure 4-10

indicate that with smaller spray angle, the flame is longer and narrower in the region

close to the inlet. This is confirmed in the Figure 4-11, where the radial variations of the

gas temperature for different spray angles are plotted. It is also shown in Figure 4-11 that

the flame temperature for the case with higher spray angle is higher that that for the case
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with smaller spray angle. The effect of spray angle on flow and turbulence is also

significant. For example, with the increase of spray angle, the vorticity field grows more

and covers a wider region at locations close to inlet.

4.2.2 Spray-Controlled Dump Combustor

In the dump combustor experiment [1], a lean premixed air-fuel flame is

controlled by injection of a relatively small amount of liquid fuel. We have simulated

this experiment with and without (Heptane) fuel droplet evaporation and combustion and

with realistic flow and droplet parameters. Sample results are presented in Figure 3-2 in

chapter 3, where the contours of the carrier gas vorticity and droplets are shown.

The two-phase LES/FMDF results are consistent with the experiment and indicate

that the spray tend to decrease the pressure oscillations in the combustor. Expectedly, the

cooling of gas due to (fuel) droplet evaporation decreases the local temperature at the

location close to droplet injection point. However, the maximum fuel droplet evaporation

may or may not occur at high temperature flame zones. Depending on the spray

parameters (droplet size, spray and injection angles, injection frequency & duty cycle,

etc.) the characteristics of the combustion is noticeably different for different spray

parameters. In general, the spray may have “negative” or “positive” influence on the

combustion in terms of flame temperature, product species concentration, pressure, etc.

The effect on turbulence is also complicated.

4.2.2.1 Effect of Droplet Size

The effects of average droplet size or Sauter mean diameter (SMD) of the injected

fuel are shown in Figure 4-12 and 4-13, where contours and radial variations of

temperature and fuel mass fraction of gas mixture are plotted, respectively. Evidently and
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expectedly, the overall number of evaporated droplets is increased by employing smaller

droplet size. However, the cooling and added fuel mass effects of droplets appear very

differently at different locations for different droplet SMD. For small and medium size

droplets, the cooling and added fuel mass occur primary in the location close to the inlet.

On the other hand, the cooling and added fuel mass of larger droplets take effect at

downstream locations, which is due to the fact that evaporation time scale is increased

with droplet diameter and decreased with droplet temperature. In the later case, the

droplets will have more effects on the turbulence. Note that, the droplet’s evaporation

cannot be always described by just the cooling effect. The evaporated fuel does also

increase the local equivalence ratio of the lean premixed mixture, leading to higher

reaction rate and temperature, depending on the local flow conditions and amount of

added evaporated fuel.

4.2.2.2 Effects of Injection Angle and Spray Angle

Figure 4-14 shows the effects of injection angle B on the radial variations of

temperature, fuel mass fraction and pressure fluctuations in the gas phase at axial

locations of x/D=2 and x/D=6. Evidently, for the case with larger injection angle, the

peak droplet concentration moves close to inlet, where the cooling and added fuel mass

effects have significant effect on combustion and turbulence. However, at the

downstream locations, the pressure oscillation is larger for the case with large injection

angle.

Our results (not shown) also indicate that, as the spray angle or in gradually

increased from 30 degree, the droplet distribution becomes more homogeneous at

downstream locations, and the overall dr0plet evaporation increases. The evaporated fuel
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increase the equivalence ratio of the incoming lean premixed mixture, leading to higher

reaction rates and temperature at downstream locations.

4.2.2.3 Effects of Injection Frequency and Pulsed Duty Cycle

In Figure 4-15, the effects of pulsed spray duty cycle for a fixed injection

frequency of 38Hz and the effects of pulsed spray injection frequency for a fixed duty

cycle of 50% on the carrier gas pressure fluctuations are shown. The duty cycle is the

percentage of the time that the spray is on in each cycle. These results are compared with

those obtained. for the case with continuous spray. Due to dampening effect of the

droplets on the pressure, the oscillations are less significant when spray is on, which is

consistent with the experiment. However, the effect of spray on the pressure field is

dependent on the distribution of added fuel. In the cases considered here, the added fuel

significantly changes the intensity and the physical structure of the pressure, depending

on the injection frequency and the duty cycle. This is clearly shown in Figure 4-15.

4.3 Summary

Large eddy simulations of two-phase turbulent reacting flows are conducted via a

PDF-based two-phase subgrid combustion model, termed the filtered mass density

function (FMDF). The numerical solution of LES/FMDF is based on an Eulerian-

Lagrangian-Lagrangian scheme. A high-order finite difference method is used for the

simulation of velocity field and the scalars are obtained by the solution of FMDF

equation with a Lagrangian Monte Carlo scheme. The spray is simulated with a

Lagrangian model which allows two-way mass, momentum and energy coupling

between phases. The LES/FMDF can be employed in conjunction with non-equilibrium

and equilibrium reaction models and reduced and detailed chemical kinetics
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mechanisms. LES of two-phase turbulent flames in various flow configurations are

conducted and the generated results are employed for detailed analysis of these flames

under various operating conditions. The numerical results indicate that the new two-

phase LES/FMDF methodology is a reliable and affordable methodology for detailed

calculations of turbulent combustion. The effects of droplet size distribution, spray angle,

fuel-air equivalent ratio and several other parameters on combustion in two different

burners are studied: (1) the double swirl spray burner, (2) the spray-controlled lean

premixed combustor. The results clearly indicate the significance of these parameters and

the possibility of modifying the combustion by changing them.
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4.4 Figures
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Figure 4-1. A schematic of double swirl-stabilized spray burner and its fuel

injector.
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Figure 4-2. Contours of the instantaneous the filtered temperature and vorticity in

the double swirl spray burner: (a) with enclosure and (b) without enclosure.
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Figure 4-3. Radial variations of the instantaneous filtered temperature at different

axial locations for both enclosed and unenclosed double swirl spray burners.

  

 

(a) (b)

Figure 4-4. The 3D instantaneous vorticity lso-surface and fuel droplets'

positions in the double swirl spray burner: (a) with enclosure and (b) without

enclosure.
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Figure 4-5. Contours of the instantaneous filtered temperature and vorticity in an

unenclosed double-swirl spray burner with different mass loading ratios, MLR

and inlet air temperature ofT,-,, = 500K , (a) MLR=0.04 and (b) MLR=0.1.
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Figure 4-6. Radial variations of instantaneous filtered temperature at different

axial locations for an unenclosed double swirl spray burner with different mass

loading ratios, MLR and inlet air temperature ome = 500K .
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Temperature Vorticity

 
Figure 4-7. Contours of the instantaneous filtered temperature and vorticity in an

unenclosed double-swirl spray burner with different mass loading ratios, MLR

and inlet air temperature of Tin =300K , (a) MLR=0.04; (b) MLR=0.1; and (c)

MLR=0.3.
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Figure 4-8. Radial variations of the droplet temperature in an unenclosed double

swirl spray burner for (a) uniform droplet size distribution and (b) nearly Gaussian

droplet size distribution.
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Figure 4-9. Radial variations of the droplet mass in an unenclosed double swirl

spray burner for (a) uniform droplet size distribution and (b) nearly Gaussian

droplet size distribution.
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Figure 4-10. Contours of the instantaneous filtered values of temperature and

vorticity in an unenclosed double swirl spray burner with (a) spray angle of

a = 200 and (b) spray angle ofa = 60°.
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Figure 4-11. Radial variations of the instantaneous filtered temperature in an

unenclosed double swirl spray burner with different spray anglesa at (a) axial

location 0fo R = 2 and (b) axial location 0fo R = 4 .
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Temperature Fuel mass fraction

Figure 4-12. Contours of the instantaneous filtered temperature and fuel mass

fraction in a spray-controlled dump combustor for different droplet sizes: (a)

SMD=30am; (b) SMD=45pm; (c) SMD=60um; and (d) SMD=90um.
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Figure 4-13. Radial variations of the filtered temperature and fuel mass fraction

of the gas mixture in a spray-controlled dump combustor for different droplet

sizes (SMD=30,45,60,90) at two axial locations of x/D=2, 4.
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Figure 4-14. Radial variations of the filtered temperature, the filtered fuel mass

fraction and the RMS pressure fluctuations of the gas mixture in a spray-

controlled dump combustor for different injection angles ,6 at two axial locations

of x/D=2, 6.
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Figure 4-15. Instantaneous lso-surface of the filtered pressure of the gas mixture

in the spray-controlled dump combustor for different pulsed spray injection

frequencies (11 and duty cycles D.
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