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ABSTRACT

ON THE MONO’I‘ONICITY AND

CRITICAL POINTS OF THE PERIOD FUNCTION

OF SOME SECOND ORDER EQUATIONS

By

Duo Wang

The period function p(c) of the equation 5% + g(x) = 0 is studied.

We give sufficient conditions for the monotonicity of p(c) in the cases

where the closed orbits surround only one critical point and also more

than one critical point. The boundedness of the number of critical

points of the period function in an example where g(x) =

x’(x - a)(x - l) (0 i a < l) is a certain polynomial of degree 4 is

established.
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INTRODUCTION

Consider the scalar equation

u n d2)!

(0.1) x + 80‘) = 0 . (x = -2-)

(it

where g(x) is smooth for all x e R. Let

(0.2) coo = [X acme + co .
0

where 0., is an arbitrary real number. If there exist a < O < b

such that G(a) = G(b) = c, G(x) < c for all a < x < b and g(a) °

g(b) 1 0, then there exists a periodic orbit Of (0.1) in the phase plane

with energy c, intersecting the x-axis at (a,0) and (b,O). Let the

least period of this periodic orbit be denoted by p(c), which will be

referred to as the period function in this note. It is well known that

p(c) is a smooth function of c (see [2]). In fact, if g is 07, 7 i 1,

then p is C7. Furthermore, p(c) is given by the following formula

_ b

(0.3) p(c) = «2 I A .

a Jc-G(x)

Since the monotonicity Of- p(c) plays a very important role in the

study of subharmonic bifurcations from a planar Hamiltonian system (see

[4]), there have been many authors who have studied the monotonicity

of p(c). See, for example, Loud [6], Obi [7], Opial [8], and Schaaf [9].



In this note, we will also discuss some of the properties of p(c).

In Chapter I, we study the monotonicity Of the period function of

(0.1) for general g’s. In 91.1, we derive some formulae for p'(c) and

p' (c), and then give some useful theorems and corollaries for the

monotonicity. In 51.2, we apply the results of 91.1 to some specific

equations. We will prove the monotonicity of periodic function of

equation

(0.4) 52+e"-1=o,

that cannot be derived from previous results. This will complement the

results of Wang [11] and will be useful for bifurcation problems [4].

Another important problem about the period function of (0.1) is: If

g(x) is a polynomial in x of degree n, is there a bound (depending

only on n), denoted by C(n), of the number of the critical points of

period functions of (0.1)? This problem is raised by Chow and Sanders

[5], and also by Smoller and Carr independently. It is related to the

"weakened Hilbert's 16th problem" (Arnold [1], p. 303). In [5], Chow

and Sanders proved that 0(2) = 0 and 0(3) 2 3. For n i 4, this

problem is still open. Even for n = 4 we do not know whether this

bound exists.

If g(x) is a quartic polynomial, then by scaling, all the cases

under which the equation (0.1) has periodic solutions can be normalized

to the following two cases:

(1) sh) = w: - 1)(X’ + «X + R). (a’ < 45);

(ii) s(x) = w: - a)(xi- b)(x - 1).

(0‘a6b51,a3+(b-1)‘#0).



In Chapter II, we study the critical points of the period function of

the equation

(0.5) x' - x’(x - a)(x - 1) = 0 , (o c a < 1) ,

which is a special case of the case (ii) (b = 1). Our main result is that

the number of critical points of the period functions p¢(c) of (0.5) for

any a e [0.1) is bounded (Theorem 2.2.24). The proof is mainly based

on the analyticity of pa(c) in a and C, which is proved by using

the Picard-Fuchs equation.

In 92.1. we prove the analyticity of p¢(c) of (0.5) when (a,c) is

in the domain D = D. U D, (see Figure 2.1.2), which is a bounded but

not compact set in a - 0 plane.

In order to prove that there exists a bound for the number of

critical points of p¢(c), we try to find a compact subdomain D, such

that when (a.c) e D - Do. p¢(c) has at most one critical point for any

fixed 0:. SO in 92.2. we first prove that p¢(c) is monotone for each

a e (0,1) and when c varies such that (a.c) is in D, (Lemma

2.2.1). Then we prove that for any so e (0.0.6) and (cameo) e JD.

there is a neighborhood of (some) in which p¢(c) has no critical

points (Lemma 2.2.6 and 2.2.10). The main difficulty in finding 0,. is

to prove that there is a 6 > 0. such that for each a e [0.6) and

a e (0.6 - 6, 0.6), p¢(c) has exactly one critical point (Corollaries

2.2.19 and 2.2.23).

It does not seem easy to obtain the bound for the number of critical

points of the period function p¢(c) Of (0.5) for all a e [0.1). The

computer results suggest that p¢(c) may have 7 critical points for

some a c (0.0.6).



Chapter I

MONOTONICITY 01: THE PERIOD FUNCTION

OF x + g(x) = 0

91.1. MAIN RESULTS

Let g(x), G(x) and p(c) be as in the introduction.

Since we are interested mainly in either the monotonicity or the

number of critical points of p(c) (a critical point of p(c) is the point

c at which p'(c) = 0). we may assume that g(x) has been scaled by

g(x) 9 k g(ax + 3). where k - a > 0. Hence. we will assume g(O) '2 0.

We consider now periodic orbits which contain only one critical point

in their interior. In this case. we define G(x) by (0.2) with Co = 0

and then consider the hypothesis:

(HI) There exist - l at < 0 < b! i +0, an integer n i 0 and a

smooth function h(x) such that

h(x) > 0 . a* < x < b* ,

(1.1.1)

211+
g(x) = x 1 h(x) , a* < x < b* ,

and

0 < G(a*) = c(b*) = c* . +. .

Note that under the above hypothesis, the graph of y = G(x) and

the corresponding phase portrait of (0.1) are shown in Figure 1.1.1.

Furthermore. p(c) is defined for every 0 < c < c‘.



Y'9 (x) x //"\ x

 

  

FIGURE 1.1.1

For simplicity, let

(1.1.2) 7(x,c) = 2(c - G(x)) .

Note that

a - _(1.1.3) 3-; - 2m) .

(1.1.4) p(c) = 2f 9-“.- .

a J1

where at < a < 0 < b < b3. 7(a.c) = 7(b.c) = 0. 7(x.c) > 0 if

a < x < b.
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Theorem 1.1.1. Assume that (H1) holds. Then for any 0 < c < c*.

1)

(1.1.5) cp'(c) =I 7'1?— dx . (p'(c) = 35>
a 41 s (X)

where a* < a < 0 < b < b‘, G(a) = G(b) = C. and

(1.1.6) R(x) = g2(x) — 2G(x)g'(x) .

Proof: Let

I = Ib J? dx .

8

and

(1.1.7) J = [b (1 - 2c) J; dx .

a

Then

b

(1.1.8) 1' = I -§ dx ,

3 J7

b - 2c
J':I Lr—dX-T-I‘ZCI'

8 J1

Hence

(1.1.9) J' = -I' - 2cI' .

On the other hand. integration by parts in (1.1.7) yields



3 a (91)
3x

. _ 2 lb ,3/2 dw

3 a (3%)

 : _ g Ib 3/2 20‘) - G X ' x'll (1X

3 2 °

8 s (X)

Differentiating the above equality with respect to c twice, we have

 

2 .

(1.1.10) J" = -2 [b KPQX) ' g(x)5-$¥l dx .

a fish)

Then from (1.1.8). (1.1.9) and (1.1.10). we have

b 2 .

(1.1.11) 2c1' = 2 I 5"“) ’ “(‘15-151 dx - I'

a «1; 320:)

 

b

__(_)__Rx dx
.— z '

a Jr a (X)

Note that p(c) = 21'. Therefore (1.1.11) gives the desired result.

Remark 1.1.2. The hypothesis (H1) guarantees that all the

integrations in the proof of Theorem 1.1.1 make sense.

Corollary 1.1.3. If (H1) holds and

x g'(x) < 0 (or > 0) , x i 0 , a* < x < b* ,

then

p'(c) > 0 (or < 0) , 0 < c < c* .



gm: Since R'(x) = -26(x)g'(x), R(0) = 0, then R(x) > 0

(or<0), x10.a‘(x(b‘.

Corollary 1.1.4. If (H1) holds and

_l31(£)_ _ 431.15.15.21 (0 (or>0). a*<x<0.

s (X) s (A(X))

where R(x) = g'(x) - 26(x)g'(x) and A(x) is defined by

(1.1.12) G(A(x)) = G(x) , a* < x < 0 , 0 < A(x) < b*,

then

p'(c) > 0 (or < 0) , 0 < c < c* .

Proof: By the implicit function theorem. A(x) e C‘ (a‘,0) and

. = __£1§l_ x
(1.1.13) A (x) g(A(x)) . a < x < 0 .

In the integral

Ib Rgx) dx

_ 2 .

0 47 s (X)

related to (1.1.5) we change variables by x = My) to Obtain

 

b a

(1.1.14) I 1312‘de = I jug“) A'(x)dx .

0 47 8 (X) 0 “‘7 8 (M10)

From Theorem 1.1.1 and (1.1.13), (1.1.14). we have

cp'(c):Io Mlfll-Mde.

a 3(X) 33(A(X))



 

Note that g(x) < 0. a’ < x < 0. The conclusion now follows.

Corollarz 1.1. . Suppose (H1) holds. If g‘(0) > 0 and

(1.1.15) H(x) = g2(x) +.-411191-§ g3(x) - 26(x)g‘(x) > 0 (or < 0) ,

3(8’(0))

x750. a*<x<b*.

then

p'(c) > 0 (or < 0) . 0 < c < c* .

Proof: By L’Hopital’s rule.

1., .1200 = -IJIJQL.

M .30.) 3 (won2

Thus H(x) > 0 (or < 0) implies

_§(& (-3; .1112)? < w ’ a¥<x<o’

g(x) (8'(0)) 9(A(X))

(or lgfl ) _%_flgl_2 ) €122.11, 8*<X(0),

8 (X) (8'(0)) 8 (4(8))

since A(x) > 0, x s (a‘,0) and x - g(x) > 0 for x 1 0, x e (a*,b*).

By Corollary 1.1.4. we thus have

p'(c) > 0 (or < o) , 0 < c < c* .

Corollary 1.1.6. Suppose (H1) holds. If g'(0) > 0 and

(1.1.16) v = 5(g'(0))2 - 3g'(0)g‘(0) > 0 (or < 0) ,
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then there exists 6 > 0 such that

p'(c) > 0 (or < o) , 0 < c < a .

Proof: By using Taylor’s series we Obtain.

x4 - v + 0(IXI5) . as le . 0

SI
..
.

H(x)=

The conclusion now follows from Corollary 1.1.5.

Theorem 1.1.7. Suppose (H1) holds. Then for any 0 < c < c‘,

b 2

2c2p'(c) = I ‘--1-1—- dx. (p'(c) = 9-5)
8 J7 s4 (X) do

where a‘ < a < 0 < b < b", G(a) = G(b) = c. and

(1.1.17) 5(x) = —g4(x) - 40(x)gz<x)g'<x) — 402(x)g(x)z'(x) +

12 cz<x><g’<x))2

Proof: Let

(1.1.18) K = [b -151i1 dx,

8 s2(X)

and

(1.1.19, .:I M d.

82 (X)

Differentiating (1.1.18) and (1.1.19) with respect to c, we Obtain
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Rgx) dx ’
(1.1.20) 11' _

4? 62(X)e
b
b

L' =Ib 211(x) G(x) dx .

a J; 82(X)

By Theorem 1.1.1 it follows that K' :: cp'(c). Since 7 - 2c = -ZG(x).

-L' = K- ZCK' , we have

p'(c) + cp'(¢) = K" .

(1.1.21)

K' + ZCK' = L"

0n the other hand, integration by parts in (1.1.8) yields

_ g Ib Rgx) G(x) (1 73/2

3
(1.1.22) 1. = 3

a s (X)

= g_ ib 13/24dla(x)36(x)]

3 a 93(3)

2 Ib_13/28W(X)

= -3- ,

a s(X)

where

(1.1.23) 51‘“) = ¢4(x> — sc<x)¢2<x)c'(x)

- 262(x)s(x)s'(x) + 602<x)(¢'(x))2

Differentiating (1.1.22) with respect to c twice, we then have
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81(X)

(1.1.24) 1." = 2r 7-?— dx .

a J7 g (x)

From (1.1.20), (1.1.21) and (1.1.24) and by Theorem 1.1.1.

2 2 U _. U l

c p (C) - L ‘ 3C? (C)

S(x)

2r+.-.r-__w..
a «”00 . 41:20:)

2810:) - amazon

a «'7' 340:)

 

The desired result now follows from (1.1.6) and (1.1.23).

Ila-r1: 1.1.8. The hypothesis (H1) guarantees that all the

integrations in the above proof make sense.

We now extend the previous results to periodic orbits whose interior

may contain more than one critical points.

Note that we can also define G(x) as follows:

G(X) = Ix s(£)dt + co .

0

where co can be any real number.

We need the following hypothesis:

(H2) Thereexist «ia*<a6066<b*£+o, integers mbo.

n h 0 and a smooth function h(x) such that



l3

h(x)50, a’<x<b‘,

xg(x)>0. a*<x<a, p<x<b*,

0<G(s*)=0(b’)=c*‘+0,

and

2l+
(1.1.25) G(x) = (x - a) 1 (x — ”2”“ h(x). a* < x < 5*.

The graph of y = G(x) and the corresponding phase portrait of

(0.1) are shown in Figure 1.1.2.

  

FIGURE 1.1.2
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Thggr_em 1.1. . Suppose (H2) holds. Then for 0 < c < c‘ ,

a b

(1.1.26) cp'(c) = [ + TEEL— dX - 2C In '3!- ,

I. In «7 320:) a 73/2

where a* < a < a, p < b < b‘. G(a) = G(b) = c. R(x). 7(x,c) are the

same as those in Theorem 1.1.1.

Proof: Define

J=Ib(1-2c)~/;dx.

a

Note that G(a) = 6(5) = 0. Hence

(
.
1

l
l

zl‘”+ b]z-2cd3/2 J" -
- 7 + (v-ZC)~/1dx
3 Ia I, (3:5) 0

 

-% l J.“ + Ib] 3/2: i2(x)2___ G(X) :0 {x22 dx

a F 8 (X)

+Ip(1-2c)~l;dx.

0

The rest Of the proof is similar to that of Theorem 1.1.1.

Remark 1.1.10. Hypothesis (H2) guarantees that all the integrations

in the above proof make sense.

MIt (112) holds and

(1.1.27) -§-§’-‘1-—§$M¥11>0, a*<x(aa

8 (X) 8 (4(3))

where A(x) is defined by
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C(A(x)) = G(x) , 8* < x < a , p < A(x) < b‘ ,

and R(X) = s'(X) - 26(X)¢'(X). then

p'(c) < o , o < c < c* .

Proof. It is similar to that of Corollary 1.1.4.

W. Suppose (32) holds. If

(1) sun in odd.

(ii) s(«l = 0.

(iii) g'(x)60.a*<x<a,

then

p'(c) < 0 , o < c < c‘ .

Proof: By the Oddness of g(x), (1.1.26) becomes

a ‘C

ZR 1: dx
(1.1.28) cp'(c) = _—-(—L dx - 2c ——I. J, g2(x) I“ 73/2

Because g'(x) ‘ 0. so R‘(x) I 0, a‘ < x < 0:. Therefore

20:) . 8020 = :20») - more») = o. a* < x < .. .

From (1.1.28), the conclusion of the corollary is obvious.

Theorem 1.1.13. Suppose (H2) holds. Then for any 0 < c < c‘,

2 - - “ _£(212_ 2 dX2cp(c)—[ +Ib _ dx+12cr—’

In I J7 140:) a 15/2

where s(x), 1(x.c), a, b, c are the same as those in Theorem 1.1.7.
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1.1.14. Suppose (H2) holds and

_(_)_Sx__L_(_)_)_§AX (0, a*<x<a.

850:) s 0100)

where A(x) is the same as that in Corollary 1.1.11, S(x) is the same

as that in Theorem 1.1.7. then

p'(c) > 0 , 0 < c < c* .

Remark 1.1.15. Theorems 1.1.1 and 1.1.7 are special cases of

Theorems 1.1.9 and 1.1.13 respectively.



91.2. APPLICATIONS

In this section, the results of 91.1 will be applied to several

examples to show the monotonicity of the period function p(c). The

following theorem is useful in applications.

Theorem 1.2.1. Suppose (H1) holds. If g‘(0) > 0, g'(0) i 0. then

each of the following conditions implies H(x) > 0 for x 7- 0, x e (a.,b.)

(see (1.1.15)).

(i) 8"(x) > 0 and

s(x) = x (s'(0)s'(x) - g'(0)s'<x)) . 0. x e (81.51) .

where at is. 6 0 6 b. ‘ b3.

(ii) i s'(X) > 0. 3"(X) ‘ 0. x e (anbt). where

at ‘ 81 ‘ O ‘ b; ‘ b‘o

(iii) 8"(1) < 0, “'(X) fi 0. 0 ‘ a} < x < b! ‘ bt, and H‘fiy) . 0.

(iv) g'(x)£0, 0<a.<x<b.6b¥.

(v) g'(x) < 0. g"(x) i 0. at i a. < x < b. < 0 and H(a.) i 0.

H‘bg) i 0.

Example 1. Let

g(x) = ex - 1 , -o < x < +0 .

17
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Since g'(x) : g'(x) 2 ex > 0 , -. < X ( +0 , and s(x) =

x(g'(0)g'(x) -g'(0)g"(x)) I 0. By Theorem 1.2.1 (i) and Corollary 1.1.5,

p'(c))O, 0<c<+o.

From the results Of Opial [8],

lim p(c) = 2n . li- p(c) = +6 .

c+0+ c-H-O

Remark 1.2.2. The above result does not follow from the

monotonicity results in [6]. [7]. [8] and [9].

Exam le . Let g(x) be a quadratic polynomial. We may consider

the normal form [5]:

g(x) = x(x + l) , -l < x < +6 .

Since g'(x) = 2, g'(x) I 0. by Theorem 1.2.1 (ii) and Corollary 1.1.5,

o * _ 1

p(c)>0, 0<c<c-§.

Since c* corresponds to a homoclinic orbit, so 11mm; - p(c) : +6.

By the result of Opial [8]. limcgo... p(c) = 21!.

Example . Let g(x) be a cubic polynomial. For periodic orbits

with only one critical point in the interior, we may consider the

following normal forms:

(3.a) g(x) -(x + a)x(x - 1), 0 < a 6 1, -a < x < 1 .

(3.b) g(x) x(x+a)(x+1). 0<a61. -a<x<+0.
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(3.c) g(x) x(x'+bx+1). 06b<2,-6<x<+o.

(3.d) g(x)=x’. 4<x<+6.

For (3.a). g(x) = -x’ + (1 - a)x' 4- ax. Then

g'(x) -6x + 2(1 - a) ,

g'(x) -6 < 0 .

By Theorem 1.2.1 (ii). (iii), (iv) and Corollary 1.1.5.

p'(c) ) 0 , 0 < c < ct = G(-a) .

For (3.b), g(x) = x3 + (1 + a)xa 4- ax. Then

s'(X) 6X + 2(1 + a) .

6>0.s'(X)

Hence g'(x) ) 0 if and only if x > -% (1 + a).

x2[6(1 + a)x + 4(1 + a)2 - 6a]s(x)

I
'

xztsu + tax-3% (1 + a» + 4(1 + a)2 - 6a]

x2[2(1 + a)2 - 6a]

5 0 , x > - § (1 + a) .

By Theorem 1.2.1 (i). (v) and Corollary 1.1.5. we conclude that

p‘(c) > 0 , 0 < c < c* = G(-a) .

For (3.0), if b = 0. then g(x) = x3 + x. g"(x) = 6x. Thus by

Corollary 1.1.3.
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p'(c)<0. 0<c<+o.

If b > J9/10. then

urwnz-uwmrm>

2

4 l
l

20b -18)0.

By Corollary 1.1.6. there exists 6 > 0 such that p'(c) > 0, 0 < c < 6.

On the other hand. by a result of Opial [8]. p(c) 4 0 as c 9 +.. This

implies that p(c) is not monotone.

For (3.d), g“(x) = 6x. Then by Corollary 1.1.3,

p'(c) < 0 , 0 < c < +6 .

Remark 1.2.3. In [5]. Chow and Sanders proved that there are at

most three critical points of period function when g(x) is a polynomial

of degree three.

Example . Let g(x) = -x‘ + x3. -6 < x < +1. A direct calculation

shows that

16 15 14 13
S(x) = 5% (156 x - 624 x + 896 x - 550 x + 125 x12) .

Hence S(x) > 0 for x < 0. Furthermore.

4
S(x) = 55 x12[156(x - 0.65)4 + 218.4(x - 0.65)2(1-x)

+ 4.879025(1 — x) + 2.439025(1 - x)x + 0.659025 x2]

> 0, 0 ( x < 1 .

By Theorem 1.1.7.

1
p'(c) > o , 0 < c < 6* = 6(1) = 55 .



21

Since

11. p(c) = 11- P(C) = +° .

c-DO"' c-Dcr

p(c) has exactly one critical point.

Exam 1e . Let g(x) = x(x’ - 1)’ and

_ 1

G(x) - J: 8(£)d€ - g

Then

G(x) =%(x + 1)3 (x - 1)3.

Since g(x) is odd, g(-1) = G(-1) = 0, and g'(x) = 20 x3 - 12 x < 0.

x < -1. by Corollary 1.1.12, the period function of the periodic orbits

with three critical points in their interior is decreasing for c e (0,+6).

If we let

G(x) = I: 8(€)d€ a

then by Theorem 1.2.1 (i). (iii), (iv), (v). we have H(x) > 0 for x 1 0,

x e (-l.1). Therefore

p'(c) > 0, 0 < c < C! =

O
fl
h
i

We may thus conclude that there are no critical points of the period

function Of equation

k + x(x2- 1)2 = 0 .



Chapter II

CRITICAL POINTS OF THE PERIOD FUNCTION

OF x-x’(x-¢)(x-1)=0 (06¢<1)

92.1. ANALYTICITY OF THE PERIOD FUNCTION.

Let

_ 2

8(X) - -X (X - a)(X - 1).

G(x)=rg(£)d£=—lx5+l(a+1)x4-lax3
o 5 4 3 '

The curves y = g(x). y = G(x) and the corresponding phase

portraits are shown in Figure 2.1.1.

Let

(2.1.1) I = Ib xny dx. n = 0.1.2.3,

n a

where a < a < b < 1, y = (2c - ZG(x))‘/’. y(a) = y(b) = 0.

Lemma 2.1.1.

b n

I' = I 5- dx ,
n a y

where "'" denotes the differentiation with respect to c.

Proof. Since

2

y = Zc - 2G(x) ,

then

22



23

  

  

 
 

Y Y
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x x

7 A
/A

V .3 V

y (X) y-Gix)

x _\_ __/\ x

  

 

Figure 2.1.1

Lem 2.1.3. Let 1 : (I.,I.,I,,I,)T. Then

(2.1.2) ’I' = Q1 ’

where
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' 42 0 o 0 ‘

. ___ -(3¢ + 3) 54 0 0

-(3a2 - 24 + 3) -(6a + 6) 66 0

. -(3a3 - 242 - 25 + 3) —(6¢2 - 4a + 6) -(9s + 9) 78 .

' 60c 0 3a2+3a -3a2+2a—3

_ 0 60c 3G3-2¢2+3¢ -3a3+2a2+2a-3

’ ‘ 4 3 2 4 3 2
0 0 60¢+3a -2a -2a +3a -3a +2¢ +2a +2a-3

0 0 3a5-2a4-2a3-2a2+3a 60c-3¢5+2a4+263+2a2+2a-3

Proof. Since

yyx = 10:) = x4 — (. + m" + axz .

x = yyx + (a + 1)):3 - axz

It follows then

 

 

b

I0 = a y dx

b3

:J‘de

air

= Ib 20 + 2/5x5 - l/2(a + 1):.4 + 2/3ax3 dx

8 y

b x(yy* + (a + 1)..3 - axz)

30 I = 60 cI' + 12 dx

0 o a y

4

- 15 + 1 Ib 5- dx + 20 I'(«083, «3
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60 C10 + 12 I: xyxdx - 12 «13

2
yyx+(a+l)x3—ax

-3(a+1) dx+20¢I'

a y 3

 

60 cIé - 12 I0 + 8a 15 - 3(a + 1)215 + 3a(a + 1)Ié .

Hence

(2.1.3) 42 I = 60 CI'
2 . _ 2 _ .

o+(3a +mu2 ma za+m§.
0

Similarly. we have

(2.1.4) —(3a 4- 3)Io + 54 I1 =

= 60 cIi + (3c3 - 2a2 + 3a)Ié - (3a3 - 262 - 2s + 3)Ié

(2.1.5) -(3az-2a+3)Io - (6a+6)I1 + 6512 =

432
= (60c+3¢ -2a -2a +3¢)Ié - (3.4-2.3-2az-2¢+3)I3

(2.1.6) -(3a3-2..2-2¢+3)1o - (6a2—4a+6)1l - (9.49):2 + 7813 =

4 2 5432
= (ass-Zn -2a3-2¢ +3¢)Ié + (60c-3a +2a +2a +2¢ +2¢-3)Ié.

Combining (2.1.3) ~ (2.1.6), we have the desired result.

The equation

2
(2.1.7) § - x (x - a)(x - 1) = 0

has three critical points: (0.0). (01.0) and (1.0), which have energy

constants C, = 6(0), c. = c.(a) : G(a) : 1/20 s' - 1/12 s‘ and C. =

c,(¢) = 6(1) = 1/20 - 1/12 a respectively. Then c.(¢) and c,(s) are
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both strictly decreasing. c.(a) < c,(a). 0 6 a < 1. Furthermore,

Cg(0) : 0, 03(006) : 00

Although g(x), G(x) and the period function Of (2.1.7) depend on

a, for simplicity, we usually suppress the subscript a in g“(x). G¢(x)

and p¢(x).

Theorem 2.1.3. p(c) is analytic in a and C. provided (a.c) is

in the domain D = D. 0 D3, where

D {(a.c) e R2 | o 5 a < 0.6, o < c < 02(G)}
1

D2 {(a.c) e R2 l 0 < a < 1, c1(a) < c ( nin(0,cz(a))}

(see Figure 2.1.2).

Proof. A direct calculation shows that

det ! = 604 c2(c - c1(a))(c - c2(a)) .

Therefore (2.1.2) is equivalent to

(2.1.8) I' = 3;%-; +91, if c ¢ 0, c y 61(6), 6 y cz(a),

where v is the adjoint matrix of !. So the right hand side Of (2.1.8)

is analytic in I, a. c, when (3.0) e D. -o < Ij ( a, j = 0.1.2.3.

Therefore any solution of (2.1.8) I = (10.1.,I,,I,)T is analytic in a. c.

when (a.c) e D (see. e.g., [10]). Since P(c) = 2I5. the conclusion now

follows.

Remark 2.1.4. (2.1.8) is generally called the Picard-Fuchs equation

to the algebraic curve i— y3 + G(x) = C.
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0.05

  

 

 

Figure 2.1.2



92.2. BOUNDEDNESS OF NUMBER OF CRITICAL POINTS OF THE

PERIOD FUNCTION.

Consider the period function p(c) of the equation

(2.2.1) 1 — x2(x - a)(x - 1) = o, 0 4 a < 1 .

We have

Lemma 2.2.1. For any a e (0.1). p(c) is strictly increasing when

c varies from c.(a) to min(0,c,(a)).

Proof. By scaling g(x). we have

1

(1‘9)

 Rn 4n41-nx+o

X(X + 1)(X - a)2 .

where a = all-a. Let

&O=C&mu.

Thus it suffices to prove p'(c) > 0. 0 < c < c* = min(G(-1).G(a)).

(1) Suppose a 6 2. Then

§'(x) = 4x3 + 3(1 - 28)X2 + 2(a2 - 2a)x + 82 ,

~. _ 2 2
g (x) — 12x + 6(1 - 2a)x + 2(a - 2a) ,

§"(x) = 24x + 6(1 - 2a).

28
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It is easy to Check

(i) g'(x) > 0. g'(x) < 0 for -1 < x < x,. where

 

x1 = -% (1 - 28) - 3% «9(1—26)’ - 24(a’-2a) u o .

(ii) there exists x. s (x..a) such that

g'(x) < 0, g'(x) > 0, x e (x1,xo) and

g'(x) < o, x 5 0.0.6) .

Then by Theorem 1.2.1 (ii). (iii), (iv) and Corollary 1.1.5,

p'(c) > 0, 0 < c < ct .

(2) Suppose 0 < a < 2. We consider

31(X) = -§(-X) = -X(X - 1)(X + a)2 .

Then

Eio.) = -4x3 4» 3(1 - 28))(2 + (4a - 282))! + 82 ,

310.) = ~12x2 + 6(1 - 28))! + (4a - 2&2) ,

§;(X) = -24x + 6(1 — 28) .

It is easy to check

(i) g.'(x) > 0, if x. < x < x,, where

 

 

x1 = 71!- (1 - 28) - T11: «9(1-2a)’ - 24(a'-2a) ,

x2 = fi- (1 - 28) + 11% «9(1-28)’ - 24(a’—2a) ,
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and -a<x.<0<x,<1;

(ii) There exists xo 6 (x,,1) such that

Ei<x) < 0. Eicx) > 0. x . (x2.xo> .

Ei(x) < 0. x e (xo.1> ;

(111) Ei(x) < 0, gi(x) > o, x e (-a,x1).

(iv) {g(x) < 0, if x > l (1 - 2a) .

.
h

We rewrite s(x) = x’Q(x). where

G(x) = 8(a2 - 2a)x2 - [6(a2 - 2a)(1 - 2a) - 12a2]x

2
+ 4(a2 - 28)2 - 6a (1 - 28) .

Note that Q(x) is quadratic and 8(aa - 2a) < 0. SO G(x) > 0 if and

only if x c (11.3,), where i. < 0 < II, are the two real roots Of

Q(x). Therefore s(x) 6 0 if and only if x e [52.51,]. Thus to prove

s(x) 6 0. x. 6 x 6 x,. it suffices to show s(x.) 6 0 and A(x,) 6 0.

By definition. s(x) = x(g'.'(0)g;(x) - E;(0)E:(::)). Since x. and x,

are the roots of Em), s(xi) = Em) - xi gun). i = 1.2, in this case.

Note that 2:10) > 0. The sign of s(xi) is the same as that of

xi ° Em.) (i = 1.2). It is easy to see gflx.) < 0. an.) > 0 and

x. < 0 < x,. Then s(x) 6 0 (x. < x < x.) follows.

Then by Theorem 1.2.1 (i). (iii), (iv). (v) and Corollary 1.1.5, we

conclude

Pi(c) > o, o < c < ct .
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Remark 2.2.2. We can prove in a similar manner that the period

function p(c) of periodic orbits which contain only one critical point

in their interiors Of the equation

i + X(x - 1)(x - a)(x — b) = 0, 0 4 a 4 b 4 1,

82 + (1 - b)2

is strictly increasing.

Remark 2.2.3. Lemma 2.2.1 implies that p(c) has no critical points

when (a,c) is in D3. Thus. in order to study the critical points of

p(c). we can turn our attention on the case (a,c) e D.. which

corresponds to the periodic orbits of (2.2.1) that contain more than one

critical points in their interior. We will henceforth always assume

(“10) 5 01°

Lemma 2.2.4. When (me) e D.,

(2.2... c...) [1° 1217:4744): 137,. 

 

0
2 ' _ SI I 2 dx

(2.2.3) 20 P (C) - [ Ia + I: )5 g‘(x ) dx + 12 c I: 73/3 ’

where a < 0 < b < 1 such that G(a) = G(b) = c; R(x). S(x). 7 = 1(x.c)

are the same as those in Theorem 1.1.9 and 1.1.13; 0: 6 p < 1 such that

6(9) =

Proof: (2.2.2) and (2.2.3) follow from Theorem 1.1.9 and 1.1.13

respectively.
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Remark 2.2.5. By the implicit function theorem. the functions F =

5(a). s ' a(a.c) and b = b(a.c) implicitly defined by G(fl) = 0

(a 6 p < 1). G(a) = G(b) = c (a < 0 < b < 1) are continuous.

M For any a. s (0. 0.6), there exists 6 > 0 such that

P'(C) < 0. la - col < 6, 0 < c < 6 .

Proof: Let A(x) be the function implicitly defined by

(2.2.4) G(A(x)) = G(x). for x < 0, A(x) > 6.

Then A(x) e C'(a’.0). where a" < 0 such that G(a’) = (3(1). and

. _ 8‘32 1
A (x) - g(A(x)) , a < x < 0.

Since

11- 40104)) = «mo» 7‘ o .
M‘

“*“o

11- ((8) = 0 a
230’

“2‘0

we have

11- % A'(x) = o .

N90- 8 (4(8))

On the other hand, it is easy to show that
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(2.2.5) —’}Q‘l<-%, x<0.

s(X)

Then there exists 6. > 0 such that

—(—l§"- M‘” A(x)<---(- %)<0.

9(8) 8(A(X))'

if la - sol < 6., -61 < x < 0 .

Hence

-§£§l- -§£AL§11 ) 0, |¢ - sol < 61, -61 < x < 0 .

9 (X) 8(A(X))

Take

6 = min(6 . min G(-61)) .

1 l“‘¢ol‘5i

Now by Corollary 1.1.11. we have

P'(c) < 0, la - «0| < 6, 0 < c < 6 .

Lemma 2.2.7. For any “0 e [0,0.6). there exist 6 > 0, M ) 0

such that

Io—EL’Q—ax>—M, Ia-ao|<6, lc-c2(ao)|<6.

“4180!)

Proof: Let G = 1/2 a(¢..c.(¢.)). Then G < 0. By continuity of
 

a(¢.c). there exists 6. > 0 such that
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a(a,c) ( 6, la - «0| ( 61. Ic - c2(¢o)| ( 61 .

It follows that

C = G(8(¢,C)) > 6(6): I“ - “0' < 619 IC - c2(“o)l < 61 °

Therefore

 

 

IOQ=JIO (,3 (514m d,

t J; J2 f JC-G(x) ‘ 40(£)-G(X)

P(G(G))‘* Pa (Ga (6)). as «‘9 a.

e o

where A(x) is defined by (2.2.4). On the other hand, by the mean

value theorem,

 

 

 

 

I‘g=_1I‘_g_=_1I‘ dx

4 J; «2 *1 «(z—(area) «5 a «ti—(nun)

G —_

<-}_- 2 (x-a)‘/3I =M,a<n<£.

J2 J>s(e) 3 4‘8(6)

Note that a(c,a) > -1 always. Then

6 ——

I 9.1:: < 42 +1 _, 42 +1 ’ as a _, a0 .

a 4? 4>s(:) 4‘Eé (6)

Therefore there exist M > 0. 6 > 0 (6 6.) such that

I

0 0

a: ‘ 3x. ._.; (Ia + Ir) J; < M. | on < a,

k

lc - c2(¢o)| < 6 .

It is easy to show that
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—121L’£l>-1, x<0

80:)

Hence the conclusion now follows.

Lemma 2.2.8. For any so 5 [0. 0.6) and 1., e (p(ao).1). there

exist 6 > 0, M > 0 such that if la - sol < 6, lo - c.(ao)| < 6, then

(i) 9(a) < 7o. New!) > 76.

(11) Iyo—iflL-dx > —M.

3 4; f(x)

Proof: (i) is obvious. Now suppose (1) holds if la -ao| < 6..
 

|c - c.(a.)| < 6. for some 6. > 0.

Claim: There exist 6, > 0 (6 6.), M. > 0 such that

(2.2.6) gig > -Ml, Ia — «0| ( 62, 6(a) < x < 70 .

In fact. if a. 1 0. then p(ao) > a... and (2.2.6) holds by

continuity. When “0 = 0, we let

 

4

s (X) 68 (X)

where f(x) = 4 a3 + 3 x2 - 6 ex 4- 0 (”II + |a|)°) as |x| 4 0. a -6 0.

Since 4 a3 - 6 ex 4- 3 x’ is positive definite, there exists 6. > 0

(6 6;) such that

f(x))O, 06¢<62, o<x<32.

Therefore
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(2.2.7) -§$¥l > -1, '0 4 a < 52, o = 3(0) < x < E

s (X)

2 .

Take 63 = 1/2 :30 Then

40040. 04444 ‘2. 626x670.

Therefore there exists M. > 1 such that

(2.2.8) -§1¥1 >-4ul, 0 4 a 4 a ‘

s (X)

2, 626x610.

Combining (2.27) and (2.28). we Obtain (2.26).

Proof of (ii). Since

660) -> 9.0”.) < 6%”) = c260). as a -> «o .

there exists 6, > 0 (6 6.) such that

C (a ) + 26 (7 )
2 0 an 0 _

Take

G(a)-G (7)

6=min[63. 2 0 31%]:

M 1
M = —_ ° ‘/2.

43 [g(ao) - Ga (70)

3

fl

Then



 

 

 

 

 

  

I’°T!2131_.__1I° 11-3

4130:) «'2' 2c<a>+c(1)
p p 2 o 3 an o _ G(To)

) _ 52’ (1o - 3)

J2 J/'2°a(“o)+Ga (1°) - C,(¢o)+ZGa (7°)

3 3

> "Mo l“‘°‘ol < 6’ IC‘C2(°‘O)| < 6 °

Lemma 2.2.9. Suppose so 6 [0,0.6). If there exist 70 e (p(ao).1)

and 6.. > 0 such that

g'(x) ( 0. 70 < x 6 1, la - «0| < 60.

then for any M > 0. there exists 6 > 0 such that

b

4051...... ..-.0..., .. c (a )| < 6 .

70 J; 82(X) 2 0

Proof: Since

11- F(a) = 5(ao) < 70 .

mo

11- % +6 ,

aT¢o 8 (x)

x-Dl‘

11- £99. = 1‘“o>°’

mo x

1191’

and

lim b(a,c) = 1 ,

mo

CTCa(¢o)
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there exist 6 > 0. 7. c (70.1) such that

fl(¢) < 70 0

-£K¥l' > 42'“ 41 - a

 

 

 

s'(X) °

8(71) ’/' _

1

1 + 11 .

b = b(a.c) > 2 . 1f la — «0| < 6,

IC - c2(so)| < 6. and 11 6 x < l .

Note that R(x) > 0, 7.. 6 x 6 b. In: - 6.] < 60 under the condition of

Lemma 2.2.9. Therefore

RIx) dx > J'b RIx) dx

7. J; g'(X) 1. J; 83(3)

1)

> M 41 - so I dx

1; JB(b)-G(x)

 

=Mn-ao d" 0.444!»

7! 48(6)(b-X)

—/‘”")mJl-ao W

> M, if [C — «0| < 6, IC - c2(ao)| < a .

Lemma 2.2.10. For any “0 s [0,0.6). there exists 6 > 0 such that

P'(C) > 0. |a - aol ( 6, IC - c2(ao)| < 6 .
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gm: Sin“ 813123.13 (1) =¢e" 1 <09 88 X*1-:“"¢ev

there exist 6. > 0 and 1. c (l(¢.).1) such that g'(x) < 0, la - so]

(6;,7°<X<lo

It is not difficult to show that there exists M. > 0 such that

2c 1
o 73/: dx < M1, if c )'5 02(60), '3 - col ( 6 1 .

By Lemma 2.2.7 and 2.2.8, there exist M. > 0. M, > 0 and 6. > 0

(6 min(6., 1/2 C.(%))) such that

I0 -3$51- dx >

a 4'7- 3’04)

-”2

I7°-§£¥1- dx > -M

F 47 g'(X) 3 o

2 9

By Lemma 2.2.9. there exists 6 > 0 (6 6.) such that

__£1§1__ dx > H

1. J? g’(x)
1+5+%'

Ia - col < 6 , Ic - 62(¢0)| < 6 .

It then follows from (2.2.2) that.

p'(C) > 0. la - «0| < 6, IC - c2(¢o)| < a .

M. There exists 6 > 0 such that

(i) 4/3 a 6 6(6) 6 1.3333401. if 0 6 a < 6 ,

(ii) g'(x))0. g'(x))O. 06a(6. ¢<x<1/3.
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(iii) R(X) = s‘h) - 26(X)s'(X) < 0. 0 6 a < 6.

1.5794 4 x < 1/3.

Prod: Since

G(ks) = - 5} (ka)3 . a . (314(4). — 5) + 5(4 — 31.)] .

So (i) is Obvious from the definition of 6(a).

(ii) is trivial. Therefore. there exists 6 . > 0 such that

0
3
1
-
0

R‘(x) = -26(x)g"(x) < 0, 0 6 a < 61, 6(a) < x < - .

Note that

R(1.579a) = 1.579446[—0.000954 + 0(1)], as a .. 0.

Then (iii) holds.

Lemma 2.2.12. If k., k. > 0 and

4 4_ 3_ _ 3
Hl(kl,kz) _ (151‘ + 2°“. ) (151.2 201.2 ) > o ,

then there exists 6 > 0 such that

G(-kla) 6 G(kza), 0 6 a < 6 .

Proof: It follows from the fact that

G(-k1¢) - G(kza)

4

= 30' (8101.22) + 0(1)], as a -> o .
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Lemma 2.2.13. If 11.. k. > 0, and

3

) 0 ,Hz(k1.k2) = -l.40475(k13 + 112) + (123 - k

then there exists 6 > 0 such that

482(fl)s(-kla) + 63(kza> 4 0. o 4 a < a .

Proof: By Lemma 2.2.11 there exists 6. > 0 such that

p(«) 4 1.333344 < l , 0 4 a < 6‘.
0
)

8'(X)>0 . 06a<6‘. 6(a)6x<%.

Therefore. since g(-k.a) < 0, we have

4gz<n>s(-k,a) + 23(kza)

4 4g2(1.33334a)g(-k1a) + g3(k2a)

tahgmpg)+muh a «+0.

Lemma 2.2.14. If

(0 1., > k.. . 0. 1.. > 1 .

(ii) Haflhukn) > 0 .

(iii) H.<k...k..) > 0 .

where H.. H. are as defined in the previous lemmas, then there exists

6 > 0 such that

_4¥wmu>+?umD40. 04a<a.

'k12“ ‘ x ‘ ‘k11“ '
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where A(x) is, the function implicitly defined by (2.2.4).

PM: By lemma 2.2.12 and (ii), there exists 6. > 0 such that

0 6 a < 6 .G(-k11¢) 6 G(k21a), 1

Then

c<4<x>) = G(x) t G""11“) . “(“21“) .

0 ‘ a < 6“ “kg,“ ‘ x ‘ ‘kggae SO

-k a6x6-k a.
0 ‘ “ < ‘1' 12 11

A0!) 6 16210:,

Since

Mar) -’ 0, as a 9 0*, x -’ 0“,

there exists 6, > 0 (6 6.) such that

H

A(x)(-. 06a<6 —ka6x6-ka.

2’ 12 110
.
1

Since

g'(x) > 0, x < 0,

and by Lemma 2.2.11. there exists 6, > 0 (6 6.) such that

g'(x))O. 0602(63, a<x<%,

we have

482(fl)s(x) + 23(A<x)) . 442(n>s(—k124) + 83(k219)

06a<6 -ka6x6-ka.

3’ 12 11

By Lemma 2.2.13 and (iii), the conclusion now follows.
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Lem. 2.2.15. There exist 6 > 0. xo > 0 such that

-§L§1§211A’(x) a _ % ’ 0 6 a < 6, -x0 ( x < 0.

s (A(X))

Proof: It suffices to show that there exist 6 > 0 and x. > 0
 

such that

f(x) = 4R(A(x))g(x) + 83(A(X)) :- 0, 0 4 a < 8, -x0 < x < 0.

From Lemma 2.2.11. there exists 6. > 0 such that

1
fl(¢) ‘ 1.579“ ( '3- ,

g'(x) > 0 , 0 6 a < 6‘, a < x < %',

and

R(A(x)) < 0, 0 4 a < a, 1.5794 4 A(x) < % .

Therefore

(2.2.9) f(x) 4 0, 0 4 a < 3‘, 1,5794 4 A(x) < % .

On the other hand,

1
R'(x) = -26(x)g'(x) < 0, 0 6 a < 6‘, 6(a) < x < '5 .

Thus

80:) 4 801(4)) = 4204(4)). o 4 a < .1, 4(4) < x < § .

Hence

(2.2.10) f(x) 4 482(P(¢))8(X) + 30100).

0‘¢<6‘, fl(¢)<A(x)<%-.

Let
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0 = k‘(0) < k‘(1) = 0.33256 ( k‘(2) = 0.38391

I
I

0< k‘(3) 0.41305 < k:(4) 0.43379 < k:(5) .45058

I
t

O .49426< k‘(6) 0.46549 < k’(7) 0.47973 < k1(8)

0.55094< k‘(9) 0.51004 < k‘(10) = 0.52830 < k‘(11)

< k‘(12) 0.58129 < kl(l3) = 0.62617 < k‘(14) = 0.70162

< k‘(15) 0.77200 .

Correspondingly. let

1.333 = k2(0) < k2(1) = 1.35771 < ka(2) = 1.37094

< ka(3) 1.393531.38005 < k3(4) 1.38725 < k2(5)

1.41166< k2(6) 1.39942 < ka(7) 1.40534 < k,(8)

< ka(9) 1.41884 < ka(10) = 1.42756 < ka(11) = 1.43896

< k2(12) 1.45524 < ka(13) = 1.48123 < ka(14) = 1.52958

< k3(15) 1.57900 .

Computer results show that

Hl(k‘(I),ka(I)) > 0, I O.1,2.....14,15.

0.1,2.....l4.nogr+nagn>>m I

By Lemma 2.2.14, there exist 6(1) > 0, (I = 0.....14). such that

4Ewonnmfia<uw)4m u 04a<un ma

-k‘(I + 1)a 6 x 6 -k‘(I)a, I = 0,1,...,14 .

Taking 6. = min(6..6(1),...,6(14)). we have

waan 4fwonnw+gkum)4m u 04a<%.

-0.772a ( x ( 0 .
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By Lemma 2.2.12, there exists 6, > 0 (6 6.) such that

G(A(-0.772¢)) = G(—0.772a) 6 G(1.579a), 0 6 a < 63 ,

i.e.

A(-0.772¢) 6 1.57901, 0 6 a < 63 ,

(2.2.11) then implies that

(2.2.12) 422(4)::(x) + 330104)) 4 0. o 4 .. < 43 .

p(«) 6 MR) < 1.5790: .

Take 6 > 0 (6 6,) and x0 > 0 such that

G(-xo) 4 0(319, o 4 a. < a .

The conclusion follows from (2.2.9), (2.2.10)) and (2.2.12).

Lemma 2.2.16. There exists 6 > 0 such that

p'(c)<0, 06a<6, 0<C<6.

Proof: From (2.2.5) and Lemma 2.2.15, there exist 6. > 0 and x. >

0 such that

 M__m21)(-%+1). 1 ,0
, 06a66 ,-x <x<0.

430:) 330100) 4 3‘”) ‘ °

Take

6 = min(6 , sin G(—x )) .

1 Odada‘ 0

By Corollary 1.1.11. we have
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p'(c)<0. 06a<6, 0<C<6.

Lemma 2.2.17. There exists 6 > 0 such that

-§L§l > -4, 0 6 a < 6.4 flaz<1~c<6,

s(X)

3

where S(x) is as defined in Theorem 1.1.7.

Proof: It is equivalent to show that

%S(x)+g4(x)>0. 06a<6, §a(x<6.

A direct calculation shows that

% S(x) + g“(x)

-_1_84 2.3.4. 2-3.3 12-32
— 602 x [x (4300(x 4) 4900(x 4) + 2212 2(x 4)

— 56 21“; - I) + 10 g) + R(x.a)] .

where R(x,a) is a polynomial containing higher order terms only. The

conclusion now follows.

Lemma 2.2.18. There exist a > 0, E > 0 (< 1/20) such that

p‘(c)<0. 04a<5, 0<c4E

P'(C) > 0. 0 6 a < 6, C < c < c2(a).

Proof.

(i) By Lemma 2.2.16, there exist 6. > 0. C ) 0 (< 1/20) such that
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p'(C) < 0. 0 6 a < 61, o < c 6 E.

(ii) a(c-:,a) -6 a(C,0) < 0. c.(¢) 9 1/20, as a -4 0. Therefore, there

exist a. < 0, 6. > 0(6 6.) such that

a(;.a) < a1, c203) > C, 0 6 a 6 62 .

It is not difficult to show that S(x) > 0, if x < 0. Then

1

feel—Mr“ Tam—d... 0......
a «y g‘(x) a. «1 g‘(x) '

C<c<ca(a).

Since

1

a 8‘ S(x) dx

- O

8. ¢7 s (X)

is continuous in a and C when ~0 6 a 6 6., C 6 c 6 C,(a), there

exists In > 0, such that

I

I' --§151- dx 6 m > 0, 0 6 a < 6’,
._ ‘ -c-<C<ca(a).

3: 478(3)

Therefore

0 SIX)

dx>m>0, 06a<6a,_ ‘ C<c<ca(a).

a 47 s (X)

(iii) 55...) 4 56.0) > 0, as a 4 0

G(x)-’0. as 6+0, x40.

Therefore there exist 6. > 0 (6 6.). b. > 0 such that
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_ 3 _

b(c,a) > b‘, G(x) < 4 c. 0 6 a < 63, 0 < x < 63.

From Lemma 2.2.17. there exists 6. ) 0 (6 6,) and

70 > 0 (4 min(63,b1. 15%))

such that

6(a) < 70 O 6 a < 6‘ ,

and

-§$¥l > —4, o 4 a < 6‘, 8(a) < x < 70

s(X)

Then

I70 SEX) dx > _4 170

9 J; 8 (X) 0 Jb‘G(X)

To 7

> —4 I -——9¥-- = -8 5% > -m

042-33 «E
4

06a<6. C<C<C(a)

Therefore.

II:+ I I—J-L-dx>m-m'0 06a<6‘.

47 8 (X)

E < c < 62(e) .

(iv) S(x) is continuous in a: and x. and from Example 4 of 91.2,

when a = 0.

S(x) > 0, 0 ( 1° 6 x 6 1 .

Then there exists 6 ) 0 (6 6.) such that
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S(x) > 0, 0 6 a < 6, 1° 6 x 6 1 .

Therefore

26%.“)- [1° I:°]_LL¢HJ‘ _J_2_d,‘

4? a (X) 1o 4; 8(X)

+ 12c2 I,

0

  

 

2 dx > o, o ‘ a < a, E < c < c2(¢).

Gorollarz 2.2.19. There exists 6 > 0 such that for any a: e [0.6),

p(c) has exactly one critical point.

Proof. The proof follows from Lemma 2.2.10 and Lemma 2.2.18.

Lemma 2.2.20. There exists 6 > 0 such that

(i) g'(x) < o, g'(x) < o, g'(x) < o, 1 - a < x < 1,

(ii) 3(1 - 0.54JBTE'Z'3) > 0,

(iii) G(-0.51(0.6 — g)‘/’) . G(l - 0.54J576'3'2),

(iv) 1 - 0.54JBTE'I'; > p(«) > 1 — 0.65J6761313,

provided 0.6 - 6 < a < 0.6, where S(x) is as defined in Theorem

1.1.3.

Proof: (i) is trivial. (ii), (iii) and (iv) are proved by using the
 

Taylor’s series.

Lemma 2.2.21. There exists 6 > 0 such that

MA'(x) ( - , if p(c) ( A(x) < 1,

S(A(X))

0.6-6<a<0.6,
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where MI!) is as defined by (2.2.4).

Proof: From Lemma 2.2.20(i) it is easy to show that there exists

6, > 0 such that

S'(x) > 0, if 0.6 - 61 < a < 0.6, 5(a) < x < 1.

Therefore it suffices to show that there exists 6 > 0 such that

334(fl(a))g(x) + 2g5(A(x)) > o, 0.6 — a < a < 0.6 ,

fi(a) < A(x) < 1 - 0.5440.6 — a ,

since S(1 - 0.5445???) > 0 when a is close to 0.6 by Lemma

2.2.20(ii).

Let

_ 4 5

f(X.y) - 38 (fi(«))s(X) + 28 (y) .

Then

'35 (st) :: 334(fi(a))g'(x) > 09 if X < 0.

From Lemma 2.2.20(i), there exists 6, > 0 (6 6.) such that

g; (x,y) = 1034(y)g'(y) < o, p(«) < y < 1, 0.6 - 62 < a < 0.6

Therefore, if 11., < x < O, 3(a) < y < A0 ( 1, then

(2.2.13) f(x.y> > 3:4(n<a>)g(xo) + 285(A.>»

0.6-62<a<0.6.

Let Ao(a) = 1 - 0.54JO.6 —'3. Take 1(a) < 0 such that

G(7(a)) = G(Ao(a)). Then by Lemma 2.2.20(iii), there exists 6;, > 0
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(6 6,) such that

(2.2.14) 7(a) . -o.51 (0.6 - «)1/3, if 0.6 - 53 < a < 0.6 .

By (2.2.13), (2.2.14) and Lemma 2.2.20(i), (iv), there exists 6. > 0 (6

a.) such that if p(a) < A(x) < 1 - o.54¢o.s :52, 0.6 - a. < a < 0.6,

then

x > -0.51(0.6 - «)1/3 ,

and

4 5 -
38 “(0)800 + 28 (M8)) - f(X.A(X))

> 3g4(1 - 0.65Jb.6 - a)g(-0.51(0.6 - «)1/3)

+ 235(1 - 0.54Jb.6 2'3)

= 2 - 0.2165(o.6 - «)5/2 + o(0.6 — «)5/2), as a a 0.6.

Therefore there exists 6 > 0 (6 6.) such that

3g4(p(a))g(x) + 2g5(A(x)) > o, p(a) < h(x) < 1 - 0.54Jb.6'=':

0.6-6<a<0.6.

Lemma 2.2.22. There exists 6 > 0 such that

p'(c) > 0, 0.6 - 6 < a < 0.6, 0 < c < c2(a) .

Proof: Since

, asx+0-, «+0.6-,

s(X)

O
D
I
N

there exists 6, > 0 such that
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-§$¥l > 3», 0.6 - a < a < 0.6, -a < x < o .
e 3 I 1

s (X)

By Lemma 2.2.21, there exists 6, > 0 (6 6,) such that

hymn “x, < .3, 0.6 - a, < a < 0.6. 5(a) < am < 1.

s (A(X))

Note A(x) + 1" as x 9 0" and a + 0.6“. There exists 6 ) 0 (6 6,)

such that

S(x) _ smxn A'(x) > g _ g 0 ’

g‘(x) (mm 3

if 0.6 - 6 < a < 0.6, -6 < x < 0. Then by Corollary 1.1.14 and note

that c,(a) a O as a + 0.6, the conclusion now follows.

Corollary 2.2.23. There exists 6 > 0 such that p(c) has exactly

one critical point if 0.6 - 6 < a < 0.6.

Proof. The proof follows from Lemmas 2.2.6, 2.2.10 and 2.2.22.

Theorem 2.2.24. There exists a uniform bound for the number of

critical points of the period function p(c) of equation (2.2.1) for

06a<l.

Proof: From Lemmas 2.2.1, 2.2.6, 2.2.10 and Corollaries 2.2.19 and

2.2.23, there exists 6 > 0 such that p(c) has at most one critical

point when (a,c) e D5 U D,, where

D6 = {(a,c) 5 D1 l dist((a,c),JDl) < 6} .

Theorem 2.1.3 shows that p(c) is analytic in a and c when
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(a,c) e D ,\D5. We claim that there exists a uniform bound for the

number of zeros of p'(c) for any a e [6.0.6 - 6] and c varying

from 6 to c,(a) -6.

Suppose not. Then there is a sequence {an} C [6,0.6 - 6] such

that

(2.2.15) a 4 a , N 9 o, as n -) +a,

where Nn denotes the number of zeros of p&n(c) in [6,c,(an) - 6].

Since p&o(c) is analytic in c, it has a finite nudaer N

(counting by multiplicity) of zeros in [6,c,(a.) - 6]. From the

analyticity of p&(c) and the compactness of [6,c,(a.) - 6], it is clear

that there is a 6, > 0 such that for any a e (a, - 6,, a, + 6,),

p&(c) has at most N distinct zeros when c varies from 6 to

c,(a) - 6. This contradicts (2.2.15).
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