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ABSTRACT

INTERACTION OF ELECTROMAGNETIC WAVES WITH

HETEROGENEOUS BODIES OF

ARBITRARY SHAPE AND PARAMETERS

By

Huei Wang

This thesis consists of two parts: The first part deals with the quantification of

interaction of electromagnetic fields with finite heterogeneous bodies, and the second

part presents an application of electromagnetic waves for detecting a small movement

of a biological body behind a barrier.

In the study on the quantification of interaction of electromagnetic fields with

finite non-magnetic lossy bodies, some new numerical methods have been developed.

These new methods improve the numerical accuracy of the existing tensor integral

equation method. The induced electric field of electric mode which is excited by the

symmetrical part of incident electric field can be solved accurately from the tensor

electric field integral equation with the method of moment and pulse basis expansion.

However, the induced electric field of the magnetic mode excited by the antisymmetri-

cal part of incident electric field can not be determined accurately by the same method.

The solution of magnetic mode can be improved by using an iterative loop-EMF

method which is designed to calculate the induced electric field of magnetic mode by

the incident magnetic field. Another alternative is to introduce an equivalent magnetic

current to compensate for the discontinuity of the tangential component of electric field



at the boundary created by using the pulse-basis expansion.

The EM fields with finite lossy magnetic bodies has also been investigated in this

research. A set of coupled tensor integral equations has been derived to solve for the

induced EM field in a finite heterogeneous body which is irradiated by an incident EM

field. This set of equations can be decoupled into a separate tensor electric field

integral equation (EFIE) and a tensor magnetic integral equation (MFIE). Numerical

solutions of the coupled integral equations and decoupled EFIE are compared. The

procedures for calculating numerical solutions of these integral equations are also

included.

In the study of an application of electromagnetic waves for detecting a small

movement of a biological body behind a barrier, a series of experiments were con-

ducted to measure the breathing and heart signals of a human subject behind a thick

layer of bricks with microwave life detection systems. A theory was developed to

predict the transmission of a non-uniform plane wave passing through a wall. Experi-

mental results on the detection of breathing and heart signals of human subjects behind

brick walls of various thicknesses are presented. The basic principle of the microwave

life—detection system is also included for completeness.
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CHAPTER I

INTRODUCTION

The interaction of an electromagnetic (EM) field with a heterogeneous material

body, with arbitrary electric and magnetic parameters and finite physical dimensions, is

a fundamental and important research subject. This subject has received attentions of

many researchers because of its relevance in medical and engineering applications.

For example, the induced EM field in a human body when it is irradiated by an.

incident EM wave is an important piece of in formation in the assessment of potential

health hazard, or in some medical applications such as the hypertherrnia cancer therapy

using EM radiation. In the field of engineering, the knowledge of interaction of EM

waves with a finite body of arbitrary compositions has direct applications in the

modification of radar scattering from space vehicles. This knowledge is also relevant

in other electronic fields whenever a material body of a device is exposed to an EM

field.

To quantify the induced EM field in an irradiated heterogeneous body is not an

easy task. The mathematical complexity of three-dimension computation exacerbates

this problem. A tensor electric field integral equation (EFIE) was derived by Livesay

and Chen to quantify the induced fields in a non-magnetic and lossy body [1], where

the method of moment (MOM) was used for the numerical calculation, the piecewise

constant functions (or pulse functions) were chosen as basis functions (trial functions)

to expand the components of unknown induced electric field distribution and the

Dirac-Delta functions were selected as weighting functions (it is the so called colloca-

tion or point-matching testing procedure). Some researchers [26], [27] solved this



problem by an equivalent EFIE in terms of free space scalar Green’s function, with the

choice of some other basis and weighting functions for the method of moment. The

results of the latter approach, when compared with the analytical solution of the

induced electric field distribution in a homogeneous non-magnetic lossy sphere, seem

to improve over the results of Livesay and Chen [1]. However, to use the pulse-basis

expansion and point-matching in the method of moment is still advantageous over

other choices of basis and weighting functions from the viewpoint of the simplicity in

the procedures of calculation. There are some limitation of solving this EFIE with

pulse-basis expansion and point-matching which have been reported [5], [6]. A

reported problem [6] states that induced electric field of electric mode which is excited

by symmetrical part of incident electric field can be solved accurately but the induced

electric field of magnetic mode which is excited by the antisymmetrical part of

incident electric field can not be determined accurately unless a large number of parti-

tion of the body is used. This thesis presents some methods, namely, the iterative

loop-EMF method and the equivalent magnetic current compensation method, to

improve the efficiency and accuracy of the existing method (solving tensor EFIE with

pulse—basis expansion and point-matching). The results of these new methods in the

frequency range of several hundred MHz are compared with the results of Livesay and

Chen [1].

To study the interaction of EM waves with magnetic and lossy bodies, a set of

coupled tensor integral equations [3], [14] have been derived based on the method of

equivalent polarized currents to relate the induced EM fields with incident EM fields.

Since the unknown induced electric and magnetic fields are coupled together in this set

of equations, we need to solve them simultaneously. In order to reduce the number of

unknowns, we can decouple this set of equations into a separated tensor EFIE and a

separated tensor magnetic field integral equation (MFIE) in which case the electric and



magnetic field distributions can be solved separatedly and only one half of unknowns

need to be handled in the procedure of numerical calculation. The method of moment

solutions of coupled and decoupled tensor integral equations are compared and the

effect of induced fields due to the magnetic material is investigated. These tensor

integral equations are constructed in terms of free space dyadic Green’s functions and

can be transformed into integral equations in terms of free space scalar Green’s func-

tions. Similar numerical results can be obtained by solving the integral equations in

terms of the scalar Green’s functions.

A study of an application of electromagnetic waves for detecting a small move-

ment of a biological body located at a distance or behind a barrier is also presented in

this thesis. The so called microwave life detection systems are developed to measure

the small movements due to breathing or heartbeats of a human subject at a distant

away or behind a barrier. The original purpose of the systems was that Navy needed a

system to indicate whether a wounded soldier on the battlefield is still alive or not.

Such a system can prevent fellow soldiers from taking risks attempting to help a dead

combatant. It turns out that there are many other applications. For example, this sys-

tem can be used to find out whether there are people under a collapsed building after

an earthquake or it can be used as an alarm system to monitor intruders into a room.

The basic principle of the systems is to illuminate the human subject with a low

intensity microwave beam and then extract the body movement of the subject from the

modulated back-scattered wave with a detecting system. Two different operating fre-

quencies have been selected to construct the systems, one is 10 GHz (X-band) and the

other is 2 GHz (L-band). The L-band system is specially designed for detecting small

body vibrations behind a thick wall because of the better penetration ability of the EM

wave of the lower frequency. Plane wave spectrum theory [17], [18] is used to

analyze the nonuniform plane wave from the antenna passing through a layer of lossy



material and to predict the electric field distribution on the other side of the barrier.

The predicted electric field distributions and experimental results for the detection of

breathing and heart signals of a human subject behind brick wall of various thicknesses

are presented.

In chapter II, a brief outline of the derivation of the tensor EFIE which can be

used to quantify the induced electric field distribution in a non-magnetic body is given

in the beginning and then an example is given to show the limitation of the MOM

solution with pulse-basis expansion and point-matching of this equation. We introduce

two new methods to improve the accuracy and efficiency of the tensor EFIE method.

The iterative loop-EMF method and the equivalent magnetic current methods are dis-

cussed in sections 2.3 and 2.4, respectively. For the iterative loop-EMF method, we

use the concepts of impedance networks and Faraday’s law to relate the induced

currents and the induced EM fields, then apply a coupled tensor integral equation to

perform the iterative process. For the equivalent magnetic current compensation

method, an equivalent magnetic current on each adjacent cell boundary is introduced to

compensate the discontinuity of the tangential component of the induced electric field

distribution which is artificially produced by the pulse-basis expansion. Discussions

and numerical results are included at the end of chapter.

Chapter III discusses the interaction of EM fields with magnetic bodies. An out-

line of the derivation of the coupled tensor integral equations which can be used to

quantify the induced EM field distribution in a magnetic body is given in section 3.1.

The transformation from this set of coupled equations into a separate tensor EFIE and

a separate tensor MFIE in various forms [13], [16] are presented next These sets of

integral equations in terms of the free space scalar Green’s function, rather than the

dyadic Green’s function, can be derived from the concept of potential functions main-

tained by equivalent current and charge densities. The derivations are given in section



3.3. Numerical solutions of the coupled equations and decoupled equations are com-

pared and the effects of the induced EM fields due to the magnetic material are inves-

tigated in this chapter. Both the advantages and disadvantages of each set of the

integral equations are also discussed.

Chapter IV is devoted to the study of the application of electromagnetic wave for

detecting a small movement of a biological body located at a distance or behind a bar-

rier. Plane wave spectrum analysis is outlined in the beginning of chapter and fol-

lowed by some numerical simulations of the predicted electric field distributions for a

nonuniform plane wave passing through a layer of lossy barrier. The description of

the microwave life detection systems, along with the circuit diagram and the principle

of operation, is included in section 4.3. Finally, a series of experimental results for the

detection of the breathing and heartbeats of a human subject behind a brick wall are

presented.



CHAPTER II

NEW METHODS FOR QUANTIFICATION OF INDUCED EM FIELDS

IN

FINITE, NON-MAGNETIC AND LOSSY BODIES

Some new numerical methods for quantifying the induced EM field in a finite,

heterogeneous, non-magnetic body irradiated by an incident EM field are investigated

in this chapter. The numerical solutions of the tensor electric field integral equation

(tensor EFIE) [1] by using conventional pulse-basis expansion with point-matching are

compared with the results of the new methods. In the first two sections, we introduce

the derivation of the tensor EFIE and discuss some limitation of this method. Section

2.3 and 2.4 illustrate the new methods, i.e., the iterative loop-EMF method and the

equivalent magnetic current method, to improve the accuracy of the numerical solu-

tions of the induced EM field distribution. For the iterative loop-EMF method, we use

the concepts of impedance networks and Faraday’s law to relate the induced currents

and the induced EM fields, then apply a coupled tensor integral equation to perform

the iterative process. In the equivalent magnetic current method, an equivalent mag-

netic current is introduced to compensate the discontinuity of the tangential component

of the induced electric field distribution which is produced by the pulse-basis expan-

sion. The comparisons and comments between various methods are presented in sec-

tion 2.5.

2.1 Tensor Electric Field Integral Equation (Tensor EFIE)



A brief outline of derivation of the well known tensor EFIE is given in this sec-

tion. Fig-2.1 shows a finite heterogeneous system composed of dielectric, and lossy

medium with arbitrary shape, being irritated by an incident EM field E’ and Hi of

angular frequency to. The conductivity 0’ and permittivity e of the medium consisting

this system are both functions of location, i.e.,

o: o(r) (2.1.1)

8 = E(r) (2.1.2)

where r is the position vector in R3.

The incident fields E’,H’ must satisfy Maxwell’s equations in free space:

V x E’(r) = 1'qu H’(r) (2.1.3)

V x H‘(r) = —icoeo E’(r) (2.1.4)

where

i = «I: , (2.1.5)

the time harmonic factor 42"“ is assumed and so, 110 are the permittivity and permea-

bility of the free space, respectively.

The total fields E and H inside the system which is induced by incident fields

should also satisfy Maxwell’s equations:

V x E(r) = icouo H(r) (2.1.6)

V x H(r) = c(r)E(r) - ime(r)E(r) . (2.1.7)

The scattered fields are defined as the total fields subtracted by the incident fields,

that is,

E‘(r) = E(r) — E’(r) (2.1.8)



E(r).H(r)

E(r),r10.o(r)

 

 

Fig-2.1 An arbitraily shaped non-magnetic

lossy body in free space illuminated

by an incident plane wave.

 

 



H‘(r) = H(r) — H’(r) . (2.1.9)

From the set of equations (2.1.3), (2.1.4) and (2.1.6), (2.1.7), and using (2.1.8),

(2.1.9), the following equations are easily obtained:

V x E‘(r) = icouo H‘(r) (2.1.10)

V x H‘(r) = {6(r) - i0) [E(r) - 80]} E(r) - icoeo E‘(r) . (2.1.11)

Suppose we define an equivalent volume current density as

Jeq(r) = 1(r)E(r) . (2.1.12)

where

t(r) = o(r) - in) [E(r) - 80] (2.1.13)

is the equivalent complex conductivity of the medium, then we can rewrite (2.1.10)

and (2.1.11) as

V x E‘(r) = 1'qu H‘(r) (2.1.14)

V x H‘(r) = Jeq(r) — imeo E‘(r) . (2.1.15)

We can determine E‘ in terms of Jeq from (2.1.14) and (2.1.15) now. By taking

curl operation in both side of (2.1.14) and making use of (2.1.15), a differential equa-

tion is obtained:

V x V x E‘(r) — k3 E‘(r) = £qu Jeq(r) for all r , (2.1.16)

where

k0 = romeo (2.1.17)

is the wave number of free space.
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To find the solution of this equation, we can find the Green’s function first. The

Green’s function 80 is a tensor quantity and must satisfy the following dyadic

differential equation in free space:

V x V x 80(r,r’) - k3 800,1“) = 7’5(r-r’) (2.1.18)

where

7’: xx + yy + zz (2.1.19)

is the unit dyad and x, y, z, are the unit vectors in x—, y—, z- direction, respectively.

The free space dyadic Green’s function 80 must also satisfy the radiation condition at

infinity.

60 can be determined as [4]:

_1.
6003]") = ( r+ k3 VV)¢(r,r’) for r¢r’ (2.1.20)

where

I eikOR f I

¢(r,r) -m or r¢r (2.1.21)

is the free space scalar Green’s function and

R = lr—r’l . (2.1.22)

Thus, the solution of (2.1.16) is

E’(r) = j , itoqueq(r)-80(r,r’) dv’ (2.1.23)

where v is the volume of the body.

Since the integrand of (2.1.23) is not in the L1 space, i.e., not integrable, this

integration is valid only in the sense of Cauchy principal value and a correction term is

needed to overcome the singularity problem, [1], [2], i.e.,
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s . . , , J. (r)
E (r) = P.V. [ , rmttoJeqfl ):G’0(r,r) dv + 7120—8; . (2.1.24)

From (2.1.8) and (2.1.24), we can easily obtain the well known tensor EFIE:

[I + :t—OEZTJE“) - P.V. I v icou01(r’)E(r’)-Go(r,r’) dv’ = E’(r) . (2.1.25)

This integral equation can be transformed into a system of linear algebraic equa-

tions by applying pulse-basis expansion and point-matching and then solved numeri-

cally. The details of the transformation are shown in section 2.4 where we will illus-

trate the differences between this method and the equivalent magnetic current method.

Another integral equation, which will be used in the iterative loop-EMF method

in section 2.3, in terms of incident magnetic field can be derived by taking curl opera-

tion of (2.1.23) and utilizing (2.1.9) and (2.1.14):

V x E-‘(n = V x j , imnoz(r')E(r')-8o(r,r') dv’ . (2.1.26)

Using equations (2.1.14), we have

H‘(r) = -$ V x E’(r) , (2.1.27)

then (2. 1.27) becomes

mm = - j , t(r’)E(r’)-[V x 80(r,r’)] dv’ . (2.1.28)

By applying (2.1.9) and (2.1.28), we can obtain a coupled tensor integral equation

in terms of H’:

H(r) + j , 1:(r’)E(r’)-[V x 60(r,r')] dv' = H’(r) . (2.1.29)

We will make use of this equation to establish the iterative process in the iterative

loop«EMF method since the induced magnetic field H(r) is easily obtained via
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numerical integration provided the induced electric field distribution E(r) and the

incident magnetic field H’(r) are known. More details are presented in section 2.3.

2.2 The Limitation of the Existing Tensor Integral Equation Method

The limitation of the Existing Tensor Integral Equation Method has been dis-

cussed by several researchers [5], [6]. One limitation is concerned with the specific

absorption rate of energy (SAR). It was reported that the tensor EFIE method with

pulse-basis expansion and point-matching gives good values for whole-body average

SAR, but the convergence of the solutions for the electric field distribution and the

SAR distributions is questionable. The convergence problem has also been indicated

by Chen and Rukspollmuang [6] by using a cubic body as an example. This example

is given here to illustrate the limitation of the tensor EFIE. An incident plane elec-

tromagnetic wave of frequency to,

E‘ = x 50‘3"“ (2.2.1)

Hi = y Hoe’k“ , (2.2.2)

where E0 and H0 are some complex constants, can be decomposed into two standing

waves as

1;:i = E; + Ef, (2.2.3)

Hi = Hf, + Hf, , (2.2.4)

where

E; = x Eocos(koz) (2.2.5)
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151;, = x iEosin(koz) (2.2.6)

. E0 .

H; = y i-C—srnacoz) (2.2.7)

. E0

H; = y -C—cos(koz) (2.2.8)

and

1 I 110
= — 2.2.9C 80 ( )

is the free space wave impedance. The induced electric field E due to E‘, is called the

electric mode solution, while the induced electric field E due to BL, is called the mag-

netic mode solution.

Two sets of numerical solutions of electric mode and magnetic mode field distri-

butions in a cubic body obtained by solving the tensor EFIE with pulse-basis expan-

sion and point-matching are shown in Fig-2.2 and Fig-2.3, respectively. Fig-2.2 shows

the x- components of the amplitude of the induced electric fields IEXI inside a

4 x 4 x 4 cm cube with the conductivity 0' = 4.5 S/m and the relative permittivity

e, = 50, excited by a symmetrically impressed electric field E’ = x cos(koz) of fre-

quency 750 MHz. The middle part of Fig-2.2 shows the distribution of the amplitude

of Ex within one eighth of the cube, obtained when the cube was subdivided into 216

cubic cells. In the lower part of Fig-2.2 the distribution of the amplitude of 1'3Jr within

one eighth of the cube obtained with 512-cell subdivision is shown.

Fig-2.3 shows the distribution the amplitude of Ex inside the same cube excited

by an antisymmetrically impressed electric field Ei = x isin(koz) of frequency 750

MHz. The numerical results for the amplitude of E, are given in Fig-2.3 for the cases

of 216-cell subdivision and the 512-cell subdivision. It is noticed that the electric
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( 216-cell subdivision ) 1 ( 512-cell subdivision )
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0
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19.1 19.1 25.3 r17 14.5 20.0 15.1 14.9 20.3

22.8 22.8 27.9 20.1 19.8 24.3 21.1 20.7 25.1
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( 216-cell subdivision )
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23.5 23.4 23.4 27.7 23.0 22.6 21.8 25.6I/ 25.6 25.0 24.0 zfi 26.9 26.3 25.2 28.4

     
 

         

 

 

      
( 512-cell subdivision)

 

Fig-2.2 Electric mode disuibution of the x-component of

the induced electric fields in the body based on

216-cell division and 512-cell division.
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2 1

r a

14.4 14.2 15.3 7.0 6.9 7.6 2.4 2.3 2.6

28.9 28.4 29.2 28.9 28.4 29.2 5.3 5.2 5.3

36.2 35.6 36.2 36.2 35.6 36.2 6.9 6.7 6.7

(216-cell subdivision )

I Exl in(mV/m)

4 3 2

I

19.6 19.41189 19.8 12.2120 11.6 12.2/ 7.6 7.4 7.2 7.4 / 2.5 2.5 2.4 2.5

42.5 42.3 41.1 40.8 29.2 28.8 27.72773 18.2 17917.2 ‘16".7 6.1 6.0 5.8 5.6

58.7 58.0 56.3 55.1 41.1 40. 38.8 37.7 25.7 25.2 24.1 23.2/ 8.7 8.5 8.1 7.8

66.6 66.0 64.0 62.4 47.2 46.4[446 43L 29.5 28.9 27_.7'26.'4' 10.0 9.8 9.4 8.9

( 512-cell subdivision )

Fig-2.3 Magnetic mode distribution of the x-component

of the induced electric fields in the body based

on 216-cell division and 512-cell division.
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mode solution exhibits a good convergence but the magnetic mode results for the 512-

cell subdivision deviate significantly from those of the 216.cell subdivision, especially

at the outer layer of the cube. A simple physical explanation is that the electric mode

solution is induced by a symmetrically impressed electric field so that it is linear in

nature while the magnetic mode solution is induced by an antisymmetrically impressed

electric field so that it is circulatory in nature. Intuitively, for the latter case, we do

not expect good results with the pulse-basis expansion which is linear in nature. To

produce accurate results for the magnetic mode of induced electric field field, the cell

size should be smaller in comparison with the case of the electric mode shown in Fig-

2.2.

2.3 Iterative loop-EMF method

A finite body can be considered as an impedance network system from the

viewpoint of electric voltage and current [7], [8]. The body is subdivided into a

number of cells, each of which is then replaced by an equivalent impedance loop. One

can find the induced current distribution of this network when it is exposed to an

incident field with the applications of Faraday’s law and Kirchhoff’s circuit theory to

the network. The electric field distribution of the body can thus be determined by the

relation:

J.q(r) = t(r)E(r) . (2. 1.12)

An iterative process can be added to improve the accuracy of the induced currents

in the resulting network and hence the induced electric fields inside the body by using

the coupled integral equation (2.1.29). The iterative loop-EMF method is based on the
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concept of impedance network combined with the iterative process. The procedures of

this method are given in this section.

Fig-2.4 is an example of a single layer of body illuminated by an antisymmetric

incident electric field Efn of

Ejn = x iEosin(koz) , (2.2.6)

which has the associated magnetic field Hf, of

50

C

The single layer body is cut into N cubic cells of width d while we regard each cell as

Hf" = y cos(koz) . (2.2.8)

a loop in the whole system. In each loop, say the n-th one, we define a loop current,

1,, = IRE, (2.3.1)

where En can be considered as a loop electric field in the n—th cell and 1,, is the

equivalent complex conductivity of this cell. This loop current can be calculated in

terms of magnetic field by Faraday’s law:

I , E-dl = 161110] A, H-ds . (2.3.2)

Let us apply (2.3.2) in the i-th cell for illustration. From (2.1.12) we have

L (l')
E = —"——, 2. .(r) 1:(r) ( 33)

then (2.3.2) and (2.3.3) give

1’44 11d Jkd J’d—' (H d?- (234)
T,- rj 1,, t, _ 103110 i)’ ’ ° °

or in other words,

451° - Ej -Ek - E1 = 10.)“.0(Hi)yd , (2.15)
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N   

Fig-2.4 A single layer of non-magnetic lossy body

regarded as an impedance network system

with N loops.
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where (HR), is the y- component of the H field for the n-th cell. Eventually, (2.3.4)

can be thought as the application of Kirchhoff’s voltage law while Ji’s are correspon-

d . .
dent to mesh currents and ? correspondent to branch 1mpedances along the srdes of

1'

the cell.

The application of (2.3.5) to all the cells will give rise to

      

 

. ‘F . r .

011 012 . . . 011v 51 (Hl)y

“21 022 - - - 021v E2 (”fly
. . . . . . . = . (2.3.6)

[am am ' ' ' aNN‘ [Ev _(HN)y.

where

am = c Lmn for m=1,2,...,N n=1,2,...,N (2.3.7)

C: ,d (2.3.8)
1031-10

and Ln”, belonging to the set {—4,-3,—2,—1,0,l,2,3,4}, is dependent on the relative loca-

tion of the loop in the network system.

We can obtain 5,, in terms of (Ha), by solving the system of simultaneous linear

algebraic equations (2.3.6). After that the loop current density of each cell 1,, is sim-

ply obtained as

1,, = r 5,, . (2.3.9)
7:

The actual current density along the side of each cell can be found by subtracting

those loop current densities of the adjacent cells. For example, in Fig-2.4, Jxl’ 1,1, Jfl

and 1,2 are the actual current density of four sides along the i-th cell respectively, and

can be expressed as follows:



 

distn'

whic.‘

(2.1.2

in the

is the

moth-

are the

lively.

Till

(2.3.10)

fiCld at l

[he Sides

 



2O

er = - J; (2.3.10)

1,, = 1,. - J,- (2.3.11)

1,2 = 1,. - 1,, (2.3.12)

1,, = J,- - J, (2.3.13)

Once we know the actual current distribution, we can easily find the electric field

distribution by (2.3.3).

The remaining problem is that we still do not have the magnetic field distribution

which is needed to apply (2.3.2). Thus, an iterative process is developed by using

(2.1.29) to estimate the H field. We can choose the initial guess as

11“” = Hi (2.3.14)

in the zeroth-iteration, where

H“) , for k=0,1,2,..., (2.3.15)

is the estimated magnetic field distribution in the k-th iteration.

From (2.3.6), we are able to calculate for the loop electric field 15:?) in this

zeroth-iteration, and thus for the loop current 1):”, where

ESP and 131‘), for k=0,1,2,..., (2.3.16)

are the loop electric field and loop current of the n-th cell in the k—th iteration, respec-

tively.

The actual electric field distribution can be easily constructed similarly to that in

(2.3.10) to (2.3.13) in this zeroth-iteration. In order to make use of the actual electric

field at the center in each cell, we can approximate that by averaging the values along

the sides of each cell, for example,

_ (5,, + 5,2)
,x 2 (2.3.17)

.—
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_ (£21 + 522)

i2 2
(2.3.18)

for the i-th cell as shown in Fig-2.4, where Eb, and E], are x— and 2— components of

electric field at the center in the cell. So EU”, the zeroth E field distribution, is con-

structed automatically.

Now we are on the way to proceed the iteration process. For the first-iteration,

Hm can be calculated from (2.1.29):

11mm = H‘(r) - j , t(r’)E(°)(r’)-[V x 80031-0] dv’ , (2.3.19)

where the integration in (2.3.19) should be carried out numerically. Again, we can

obtain 5),” from (2.3.6) by using H(l).

Similarly, for the kth-iteration:

110%) = H’(r) - j , t(r’)E("'l)(r’)-[V x 80(r,r')] dv’ , (2.3.20)

and then ESP can also be obtain from (2.3.6) with HU‘) calculated from the (k—l)-th

iteration.

This iteration process should continue until both 5,, and H converge.

As we can observe, a nearly uniform, incident magnetic field will enable us to

apply the Faraday’s law accurately and thus will give better approximation in this

method. This process, as described above, will be more accurate and efficient if we

applied it on an electrically small size body with an antisymmetric incident electric

field.

2.4 Equivalent Magnetic Current Compensation Method
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When (2.1.25) is solved numerically with pulse-basis expansion in a finite body,

this body is partitioned into a finite number of cells and the induced field in each cell

is assumed to be uniform. In this way, we allow the induced electric fields to vary

from cell to cell. Obviously, this assumption creates a discontinuity of E field between

adjacent cells.

In a homogeneous region, the induced E fields need to be continuous everywhere

but the consequence of the above assumption clearly violates this fact. When point-

matching is applied as the testing procedure, there is a physical explanation for the

discontinuity of the normal component of the E field [9] and a brief discussion is

given here.

In (2.1.18), the dyadic Green’s function can be regarded as the E field generated

by a current element and a pair of opposite charges at the ends of the element. A

source region with conventional current and charge density can be considered as an

ensemble of small cells each containing a current element or an electric dipole of cer-

tain magnitude and orientation. Based on this picture, two adjoining cells containing

current elements of different magnitudes or orientations will result in a net charge at

the boundary of these cells. On the other hand, the discontinuity of the normal com-

ponent of the E field between two adjacent cells as we mentioned earlier will also

yield a net charge at the interface by applying the boundary condition of the

Maxwell’s equations.

From this argument, we say the discontinuity of the normal component of E field

is compensated by the equivalent surface charge at the boundary which effect is taken

into account by the free space tensor Green’s function 80.

The discontinuity of the tangential components of E fields, however, still exists

between adjacent cells. An equivalent magnetic surface current Km is proposed at the
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cell boundary to compensate for this discontinuity. Fig-2.5 illustrates a rough picture

of the equivalent surface charge and the equivalent magnetic surface current between

neighboring cells.

By definition of magnetic surface current and the principle of equivalence [10],

we have:

K =-nXE=(n1XEl+n2XE2) (2.4.1)
03

where n is the unit normal vector and n1, n2, are the unit normal vectors on the

adjoining surface of cell 1 and cell 2 respectively, as shown in Fig-2.5. This Km will

maintain another scattering electric field:

E"(r) = - j s (n x E(r’)) x V¢(r,r’) ds’ . (2.4.2)

Thus (2.1.8) becomes

E = E’ + E‘ + E" . (2.4.3)

Therefore the tensor EFIE (2.1.25), is then modified as follows:

[I + %JE(r) - PM] v imuo‘t(r’)E(r’)-Go(r,r’) dv’

+ j for x E(r’)) x Vq>(r,r’) d5" = E’(r) , (2.4.4)

where s-represents all the six surfaces of each cell except the outrnost boundary sur-

face enclosing v.

Equation (2.4.4) can be solved numerically in a similar way as before with a

modification in the matrix elements, as described below.

In the tensor EFIE (2.1.25), the inner product E(r)-Cour) can be represented as

a matrix product as

E(r’)-Go(r,r’)
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Fig-2.5 Illustration of the equivalent suface charge

and the equivalent magnetic current created

by the discontinuity of the electric field

between neighboring cells.
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Era-r) + —‘-¢..(r.r’) -1-¢.,(r.r’) irntrr’)
k3 k5 "3 5,0)

= —’-¢,.<r,r’) 40.1“) + —’—¢,,(r.r’) iryzmr’) Em
k% ’43 k3 Ez(r’)

213-930,“) £094”) ¢(r.r’) + $92M“)

(2.4.5)

where

, 32 I

¢xpx‘(r7r) " axpaxq ¢(r3r)

kgeikok

411R3

I I

xp ‘ ‘10qu ' x4)
{[(koR)2 - 1 + ikoR]5pq + ( R2  [3 416,1?)2 - 31kg)?”

(2.4.6)

for p,q=l,2,3, and x1, x2, x3 stand for x, y, 2, respectively for convenience, Ex, E), and

E2 are x—, y—, and 2— components of the electric field E. Note that 8m is defined as

P=q_ 1

5P4 ’ {0 otherwise (2'4‘7)

Suppose the body is divided into N cells with the center of each cell vn located at

r", n=l,2,...,N. After applying pulse-basis expansion and point-matching, (2.1.25) is

then transformed into a system of linear equations of order 3N:

011 012 013 El 5‘1

G21 G22 G23 52 = 52

G31 G32 G33 E3 E5

(2.4.8)

where Gm is an N x N matrix, EI, and E; are N x 1 column vectors, for p,q=l,2,3.

The elements of those matrices and vectors are



 

 intc‘

IO”
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(qu)mn = Spqfimn [I + (1030]

30380

+ £00110 P.V. I v" t(r’)[8pq¢(rn,r’) + Zlgoxpx'(rn,r’)] dv’ ,

m,n=1,2,...,N (2.4.9)

(Ep),, = Jr”(rn) , n=l,2,...,N (2.4.10)

(5;), = Exp’(r,,) . n=l,2,...,N (2.4.11)

Note that the integration in (2.4.9) has the singularity problem when m = n. A

correction term and the Cauchy principal integration are needed to evaluate (qu),,,,.

The results of (qu),,,, can be obtained analytically by approximating v,, as a sphere

with the same center and an identical volume [12]:

‘

 

 

 

Ziwllofll‘n) 11:04“ . “('31)

(qu)m = 5P4 —3—k(2)—[e (1 -1koan) - l] + [I + 30380] >, (2.4.12)

where

3V 1/3

an = [41‘ J (2.4.13)

is the radius of the approximated sphere and V" stands for the volume of the n-th cell.

The rest of elements in GM can be carried out numerically.

Now in the modified integral equation (2.4.4), the integrand of the surface

integration (n x E(r’)) x V¢(r,r’) can also be represented in another matrix product

form:

(n X E(r’)) >< V¢(I‘,r')
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n2¢y(r7r’) + n3¢z(r7r,) ‘nl¢y(rrr’) -n1¢z(rrr’) Ex(r’)

= _n2¢x(rrr’) nl¢x(rrr,) + n3¢z(r7r’) -n2¢z(rrr’) Ey(r’)

-n3¢x(r.r') -n3¢,(r.r’) n1¢x(r.r’) + n2¢,(r,r’) Eztr’)

(2.4.14)

where n1, n2 and n3 are x—, y- and 2— components of the unit normal vector 11, i.e.,

 

n = nlx + nzy + n32 (2.4.15)

n? + 11% + n3 = 1 , (2.4.16)

and

, _ a I _ 5“ (xp-xp’) .
9x,(r.r) - 3390;) _ 4M2 R (1 - szR) (2.4.17)

for p=1,2,3.

Suppose we apply pulse-basis expansion and point-matching at the center of each

cell, the system of linear algebraic equations will become

P_ — _ q F .1

(:11 G_12 913 El E1

021 622 623 E2 = 55 (2.418)

G31 G32 G33 E3 5%    

where (TM is again a N x N matrix, the elements of the matrices for p,q=l,2,3 are

i1:(r,,)

30380

 

 

((34% = 812480141 "'

i' + icouo P.V. [ ,_ r(r’)[8pq¢(rmr’) + kg
0

¢xpx'(rn,r')] dv’

3

+1 3;, [5m )3 n.9,...(rmr’) — (1 — 8,,1n,¢.,(r...r’n 44',

I34

r=l

m,n=1,2,...,N (2.4.19)
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where 57,, represents the six surfaces of vm, except for those surfaces which belong to

the outrnost surface s, and of course, up depends on s}. The surface integration in

(2.4.19) should also be carried out numerically.

Now we can find the electric field at the center of each cell by solving the above

matrix equation. Numerical examples will be shown in section 2.5.

2.5 Numerical Comparison between the New Methods and the Existing Method

Several sets of numerical solutions of induced electromagnetic fields inside some

block models solved by the new methods described in this chapter are compared with

the corresponding induced fields obtained from the tensor integral equation method.

This comparison is shown in Fig-2.6 to Fig-2.24 and is the subject matter of discussion

in this section.

In Fig-2.6, a single layer, homogeneous rectangular biological model with dimen-

sions of 6 x 6 x 1 cm is illuminated by a plane wave with a vertically polarized field

at end-on incidence. The total volume is divided into 36 subvolumes and each of

them is 1 x l x 1 cm in dimensions. Fig-2.7 indicates the numerical solutions of the

tensor integral equation due to symmetric part of the incident electric field,

Ei = Ef, = x cos(koz) (2.5.1)

with a frequency f = 100 MHz.

Those numbers in the figure are the x— and 2- components of the total induced

field at the centers of the cells. The y— component is very small compared with the

other two components so that it can be disregarded. In this calculation, the conduc-

tivity 0' is assumed to be 0.889 S/m and the permittivity e is assumed to be 71.780.



 

Fig-2.6 A homogeneous rectangular biological model with dimensions 6 x 6 x 1 cm
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Due to the symmetry of the geometry and hence the field distribution [11], [12], only

the values of the induced fields in the first quadrant of the model are shown in Fig-2.7.

Fig-2.8 shows the solutions of a model with the same dimension and material which

was subdivided into 288 cells with each subvolume of dimensions 0.5 x 0.5 x 0.5 cm

exposed to the same incident field as Fig-2.7. Each numerical value is obtained by

taking average of the fields at the centers of eight neighboring subcells which are

includeded in the original 1 cm3 cubic cell in order to compare with the numerical

values in Fig-2.7. Fig-2.9 and Fig-2.10 are the similar results as those shown in Fig-

2.7 and Fig-2.8 except that the incident electric field is antisymmetrical:

E’ = Ef, = x isin(koz) . (2.5.2)

It is observed that the values in Fig-2.7 are quite close to those in Fig-2.8, but the

values in Fig-2.9 are only about one third to one half of those in Fig-2.10 which are

regarded as more accurate solutions. This is not surprising since we have already seen

an example in section 2.2.

Fig-2.11 shows the field distribution obtained by the iterative loop-EMF method

in the same body with an antisymmetrical incident electric field of frequency 100

MHz. Here the body is subdivided into 36 cells of size 1 cm3. We find that the

values in this figure are closer to those in Fig-2.10 than those in Fig-2.9.

Fig-2.12 presents the results of the equivalent magnetic current method, with the

same body and the same incident fields as the case of Fig-2.11. The body is again cut

into 36 cells and we have added the effect due to the equivalent magnetic current

between adjacent cells. The improvement in this case is not very significant since the

electric field distribution is not changing rapidly and hence the effect due to the

discontinuity assumption by using pulse-basis expansion is also not very noticeable.



31

 

IExl .0332 .0334 .0418  

 

 

 

    

|E,| .0030 .0089 .0150 1cm 1 [

. , —>
m (V/m) .0465 .0472 .0560 flora z

.0014 .0041 .0063 y

WET—633T"W  
.0005 .0013 .0021

   4

Z

  
Fig-2.7 Conventional EFIE solutions

 

based on 36-cell division.
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Fig-2.8 Conventional EFIE solutions

' based on 288-cell division.
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Fig-2.9 Conventional EFIE solutions

based on 36-cell division.

E=xammm

‘ x f= 100 MHz

IE; .0013 .0039 .0073

IEQI .0189 .0131 .0053

.0028 .0088 .0155

.0097 .0075 .0030

'TUU§5""70?09""TUT§5"‘

.0032 .0024 .0010

.443»

Z 
Fig-2. 10 Conventional EFIE solutions

based on 288-cell division.
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Fig-2.11 Iterative loop-EMF solutions
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Fig-2.13 to Fig-2.16 show the induced fields in the same body illuminated by an

antisymmetrical incident electric field of frequency 300 MHz. Fig-2.13 shows the

solution of tensor EFIE method with 36 cells, Fig-2.14 indicates the solution of same

method with 288 cells, while Fig-2.15 and Fig-2.16 depict the solutions by iterative

loop-EMF method and equivalent magnetic current method, respectively, with 36 cells.

It is obvious that the improvements by the new methods are increased. The physical

explanation is that as the frequency goes up, the electric field distribution varies more

rapidly and hence those new methods will give more compensations to the inaccuracy

created by the piece-wise constant assumption of fields in each cell in the conventional

method.

Fig-2.17 to Fig-2.24 illustrate the induced field in the same body, exposed to

antisymmetric incident electric field of frequencies 500 and 700 MHz. The improve-

ment of the iterative loop-EMF method is quite significant as we can observe when the

frequency is 500 MHz. The effect is not so significant when the frequency is 700

MHz, as we observe in the figure, since there are certain limitations of this method as

discussed at the end of section 2.3. The equivalent magnetic current method improves

the results about 20 to 30 percents on the amplitude of the field distribution in each

C356.

An example of the induced field in a heterogeneous body is given at the end of

this section. The iterative loop-EMF method is used to calculate the field distribution

in this example. Fig-2.25 shows a heterogeneous body of dimensions 6 x 6 x 1 cm

again. The shaded region indicates different material of conductivity 0 = 0.048 S/m

and permittivity e = 7.4580, the remaining part is the same as the previous cases. An

antisymmetrical incident electric field of frequency 500 MHz is used. The difficulty of

this case is the determination of the impedance at the boundaries of those cells which

are of different materials. The impedances which are related to the complex
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Fig-2.14 Conventional EFIE solutions

based on 288-cell division.
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Fig-2.15 Iterative loop-EMF solutions

 

based on 36—cell division.
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Fig-2.16 Equivalent magnetic current

method solutions based on

36-cell division.
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Fig-2.18 Conventional EFIE solutions

based on 288-cell division.
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Fig-2.19 Iterative loop-EMF solutions

based on 36-cell division.

Ei = x isin(koz)

x f = 500 MHz
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Fig-2.20 Equivalent magnetic current

method solutions based on
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Fig-2.22 Conventional EFIE solutions

based on 288-cell division.
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Fig-2.25 A heterogeneous body of dimensions 6 x 6 x 1 cm with the parameters

specified in the shaded and unshaded regions.
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conductivities at boundaries of heterogeneous cells can be determined by two different

approaches which do not yield the same result. The first approach simply uses the

complex conductivity in each cell itself in the evaluation of the left hand side of

Faraday’s law (2.3.2). The second approach takes the average of the two different

complex conductivities of two adjacent heterogeneous cells for the impedance of the

common side. Fig-2.26 and Fig-2.27 are the numerical results of these two different

approaches. It is observed that the field distribution is about the same in the region

away from the heterogeneity but is somewhat different in the area near the hetero-

geneity. Further study is needed to determine which approach is more accurate.
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CHAPTER III

INTERACTION OF ELECTROMAGNETIC FIELDS

WITH

FINITE, HETEROGENEOUS, DIELECTRIC, MAGNETIC AND LOSSY BODIES

The induced EM fields in a finite, heterogeneous, dielectric, magnetic and lossy

body irritated by an incident plane EM wave are investigated in this chapter. Field

integral equations of various forms are used to solve this problem. The first formula-

tion is based on the method of equivalent polarized currents that yield a set of coupled

tensor integral equations [3], [14]. Another set of coupled integral equations can be

derived using the free space scalar Green’s functions and the concepts of scalar and

vector potentials maintained by equivalent currents and charges. This two sets of cou-

pled integral equations are essentially equivalent and a proof will be given. The cou-

pled tensor integral equations can be decoupled into a separated tensor electric field

integral equation (Tensor EFIE) and a separated tensor magnetic field integral equation

(Tensor MFIE) in different but equivalent forms [l3], [16]. The separated tensor field

integral equations can also be expressed in terms of free space scalar Green’s functions

instead of dyadic Green’s functions in forms of more conventional EFIE and MFIE.

Derivations of the integral equations and relations of different formulations are

presented. The numerical comparisons of various integral equations are also included.

In section 3.1, we introduce the derivation of the coupled tensor integral equations.

Section 3.2 illustrates the procedures of decoupling the set of equations derived in sec-

tion 3.1 and the relations with another set of decoupled integral equations developed

by Tai [13]. Those integral equations in terms of free space scalar Green’s function

are presented in section 3.3. We will discuss and compare the numerical solutions of

45
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these different equations in the last two sections.

3.1 Coupled Tensor Integral Equations

A set of coupled tensor integral equation has been derived by Chen [3] in 1981 to

relate the induced EM fields inside a finite, arbitrarily shaped, heterogeneous body with

the EM fields of an incident time harmonic plane wave. A brief outline of derivation

is given in this section. Fig-3.1 shows a finite heterogeneous system composed of

dielectric, magnetic and lossy medium with arbitrary shape, being exposed to an

incident plane EM wave (13’, H’) with an angular frequency 0). The conductivity, per-

rrrittivity and permeability of medium consisting this system are all functions of loca-

tion, i.e.,

o = o(r) (3.1.1)

8 = E(r) (3.1.2)

11 = 110') 1 (3.13)

where u is a complex number since the system is assumed to possess some magnetic

loss.

The generalized Maxwell’s equations govern the electric and magnetic fields, E

and H, maintained by a time harmonic source consisting of an electric current density

J‘ and a magnetic current density J’” in a medium with permittivity e and permeability

11:

V x E(r) = — J’"(r) + i0)u(r)H(r) (3.1.4)

V x H(r) = J‘(r) —1‘0)£(r)E(r) (3.1.5)
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Fig-3.1 An arbitrarily shaped magnetic lossy body in free space illuminated by an

incident EM wave.
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V°[u(r)H(r)l = p’"(r) (3.1.6)

V-[e(r)E(r)] = p"(r) , (3.1.7)

where the time harmonic factor e”"" is assumed and p‘, p’" are electric and magnetic

volume charge density, respectively. The charge densities and current densities are

related by the continuity equations as

V-J‘(r) - imp‘(r) = 0 (3.1.8)

V-J’"(r) — icop’"(r) = 0 . (3.1.9)

Our derivation. is based on (3.1.4) to (3.1.9). In a source free region of free

space, or in absence of the body, the incident electric and magnetic fields E’ and Hi

must satisfy the following equations:

V x E‘(r) = 165110 H’(r) (3.1.10)

V x 11"(r) = —icoeo E’(r) . (3.1.11)

The internal fields E and H inside the system which are induced by incident

fields should also satisfy Maxwell’s equations:

V x E(r) = im11(r) H(r) (3.1.12)

V x H(r) = o(r)E(r) - itoe(r) E(r) , (3.1.13)

or we can rewrite them as

V x E(r) = - 3;,(r) +i03110H(r) (3.1.14)

V x H(r) = 3,0) - 16120150) , (3.1.15)

where

.1240) = re(r)E(r) = {60) - iwl E(r) — so ]} E(r) (3.1.16)
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E(r) = m(l’)H(l') = - i0)[ 90') - 110 ] H(I‘) (3.1.17)

are defined as equivalent electric current density and equivalent magnetic current den-

sity, 1:, and 1:", are complex electric and magnetic conductivities, respectively. The

scattered fields E’ and H5 are defined as follows:

E‘(r) = E(r) - E’(r) (3.1.18)

H’(r) = H(r) — H’(r) . (3.1.19)

Subtracting (3.1.10) and (3.1.11) from (3.1.14) and (3.1.15), we can obtain equa-

tions in terms of E‘ and H‘:

V x E’(r) = - Jz;(r) + icotrOH‘(r) (3.1.20)

V x 113(1) = ngm — itonE‘(r) . (3.1.21)

It is advantageous to express the scattering fields E‘ and H‘ as the sum of the

electric mode fields, E: and Hi, which are excited by Jfiq, and the magnetic mode

fields, Efn and Hf,” which are excited by J2:

E‘ = E“; + Efn (3.1.22)

H‘ = H: + Hf" . (3.1.23)

Therefore (3.1.20) and (3.1.21) can be divided into two sets of differential equations of

the electric mode and the magnetic mode:

V x Eitr) =im110Hg(r) (3.1.24)

V x H§(r) = 54(1) — 161801230 (3.1.25)

and

V x Efn(r) = — J39“) — impOanm (3.1.26)

V x an(r) = - imeoEfnm . (3.1.27)



50

Now we can solve E‘ and HS in terms of .12., and J2. From (3.1.24) and (3.1.25),

we have

V x V x Ego) - k3 Ego) = 165110 .120) (3.1.28)

V x V x Hg(r) - k3 H§(r) = V x ngm . (3.1.29)

Similarly from (3.1.26) and (3.1.27), we have

V x V x an(r) - k3 an(r) = £0380 Jg;(r) (3.1.30)

V x V x Efn(r) - k3 Efn(r) = — V x .1310). (3.1.31)

As mentioned in chapter H, the free space dyadic Green’s function 50 must

satisfy the differential equation,

V x V x Go(r,r’) - kg 80(r,r’) = 7’8(r-r’) , (3.1.32)

and by Tai [4],

L

'6

where ¢(r,r’) is the free space scalar Green’s function. By the definition of the

500.0 =<T’+ VV>¢(r.r’) for m’. (3.1.33)

Green’s function and the discussion of the singularity problem, that is, the correction

term and the principal value integration, we obtain the expression of E: and H; [3] as

Ego) = j , imnngq(r’)-8o(r,r') dv’

 

. e , , , J? (r)
= P.V. ] , 1651101,,“ )-80(r,r) dv + 3in20 (3.1.34)

Hm) = j v 1820130348001") dv’

I I I J’: (r)

= P.V. j ,1 3:,(1- )-80(r,r) dv + 371E . (3.1.35)

E; and H: can be determined by using (3.1.24) and (3.1.27):
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s _ _ _i_ .-
H.(r) — (”“0 V X Ee(r)

= j v [V x 80(r,r')]-ng(r') dv’

S — _‘__ s
Em(r) — 0380 V x Hm(r)

= — I v [V x 80(r,r’)]-J’¢’;(r’) dv’ .

The principle of superposition gives

E(r) = E’(r) + E‘(r) = E’(r) + Eg(r) + Em)

H(r) = H’(r) + H‘(r) = H‘(r) + Him + 11;,(r) ,

and this leads to the final results of the coupled tensor integral equations, i.e.,

 [I + :32]: ]E(r) — P.V. I v impote(r’)E(r’)-Go(r,r') dv’

-1. Tm(r’)H(r’)'[V x 50(r,r’)] dv' = E’(r)

 [I + 23:2]HU) - P.V. I v imotm(r)H(r’)-80(r,r’) dv’

+ I . r.(r’)E(r’)-1V x 80(r.r’)] w = H’(r) .

Suppose we define

530.1") = @110800‘11")

9,141) = @8060031")

520.8) = - 53.033 = V X 500;) = V¢(r,r’) >< 7’,

(3.1.36)

(3.1.37)

(3.1.38)

(3.1.39)

(3. 1.40)

(3.1.41)

(3.1.42)

(3.1.43)

(3.1.44)
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then (3.1.40) and (3.1.41) can be written as

 [I + “‘(r)]E(r) — P.V. I , re(r’)E(r’)-5:(r,r’) dv’

3018

 

0

+1 v Tm(r’)H(r’)'5Z(r.r’) dV’ = E’(r) (3-1-45)

[1 + mm“) H(r) — P.V. I ,, tm(r’)H(r’)-G’,,';(r,r’) dv’

3mllo

 

+1 v T.(r’)E(r’)-5’."(r.r’) dv’ = H’tr) . (3. 1.46)

Equations (3.1.45) and (3.1.46) are the so called coupled tensor integral equations

and can be transformed into a system of linear algebraic equations via pulse-basis

expansion and point-matching. Both the electric and magnetic field distributions, E(r)

and H(r), can thus be solved simultaneously. More descriptions about the transforma-

tion will be presented in section 3.4.

3.2 Decoupled Electric Field Integral Equation (EFIE) and Magnetic Field

Integral Equation (MFIE)

The coupled tensor integral equations (3.1.45) and (3.1.46) which we have

derived in the preceding section can be decomposed into a separated EFIE and a

separated MFIE. Let’s derive the tensor EFIE from (3.1.45) first. Rewriting (3.1.45):

 

ite(r) , ,

[I + 30360 ]E(r) — P.V. I v t¢(r’)E(r’)°G:(r,r) dv

+ j , em(r')H(r')-5;(r,r') dv’ = E’tr) . (3.1.45)
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Equation (3.1.45) has the unknown H in the second integral of the left hand side.

To eliminate H, we can apply the Maxwell’s equation:

_ - ___i_ ,
H(r’) — 03110") V x E(r’) . (3.2.1)

The integrand of the integral can then be written as

Mr)

wutr’)

 

tremor-5:180 = — [V x E(r’)l°5§.(r.r’) . (3.2.2)

We need to make use of the following dyadic and vector identities [15] to remove

the curl operation on E:

V-(A x 5’) = (V x A)-6’ — A-(V x 8) (3.2.3)

V x (6A) = (V6) x A + 6 (V x A) . (3.2.4)

Equation (3.2.2) then becomes

Tm(r')H(|")'5:(r.l")

, 11,,(r’) . , itm(r’) , _ .
_ {V [(01103] x E(r’)} 5:,(nr’) — {V x [WM]. )J}5:0; )
 

  

 

, i‘cm(r’) , itm(r’) , , ,

_ {V [(01103] x E(r3}5:,(r,r) - C0110") E(r) [V x m(r,r )]

_ V’- [:38 E(r’) x 6f,(r,r')] . (3.2.5)

Since

V’ x Gimr’) = V’ x V’ x80(r,r’) = kfifiour’) + 6(r—r’)r, (3.2.6)

by integrating both sides of (3.2.5) over v and applying the divergence theorem to the

last term of the right hand side, we have

I , tm(r’)H(r’):G:,(r,r’) dv’
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. 11,,(r’) , , w’)
= I ”{V [(1)1100] x E(r )}'an(r,r’) dv — I v k2_’;)__(0W,’-E(r))800,r’) dv’

  

itm(r) itm(r’) ’ , I

_ (0110') E(r) - I, 11 [(01100 E(r) x 5:0; )] ds , (3.2.7)

Note that the second volume integral in the right hand side of (3.2.7) is valid in

the sense of Cauchy principal value, a correction term is again needed to overcome the

singularity problem, i.e.,

 

I v krzil—(Zfigmr’lgoflx’) dv’ = P.V.], 8°——(”1—-;(,)')———-’E(r)830-,r’) dv

Mr) E 3 2 8+ i30)rr(r) (r). ( . . )

Substituting (3.2.7) and (3.2.8) into (3.1.45) and arranging terms, the decoupled

EFIE can be written

[_3__:(r+r+) 83‘0“)__]E(r) + P.V.] v ia)[e(r’) — -8%u%]E(r’)5:0,r’) dv’

M[_—)(—l:)140] x E(r)-5:,(rx’) dv’

—j_,n[—:—:;:u3E0») x (‘7‘(r,r’85)] --E’(r) , (3.2.9)

where

e(r) = e(r) +—-’——"('). (3.2.10)

The decoupled MFIE can be derived through a similar procedure. Rewriting

(3.1.46):

 

it...“)
[I + 3‘0110 ]H(r) - P.V. I tm(r’)H(r')G’"(r,r’) dv’
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+ I ., r.<r)E(r)-5’:(r.r’) W = Him . (3.1.46)

To eliminate E in the second integral of the left hand side, we can apply the

Maxwell’s equation:

 E(r’) = f V’ x H(r’) , (3.2.11)

(08 I'

then its integrand can be written as

ire(r’)

¢,(r')E(r')-6:'(r,r’) = — —.(——’)-[V’ x H(r’)]-5:”(r,r’) . (3.2.12)

8 I'

By using the dyadic and vector identities (3.2.3) and (3.2.4), (3.2.12) then become:

re(r’)E(r’)-5’:(r,r’)

maul)
iTe(l")

={ ’[-— x H(r)}???(r,r’) -{V’ x[ ,, BO“)

(08(r’) 008 (1")

_{ ,[ ir¢(r’)

— cor—'0')

_ V'.[ 11"“) H(r’) x 5:"(r,r’)] . (3.2.13)

(08 (r’)

 

}5’¢"(r.r’)

  

 

xH(r’)}5’"(r,’ir)-w:((rr’3)H(r’)[V’x5’e"(r,’r)]

 

 

Now since

V’ x @(rm’) = - V’ x V’ x60(r,r’) = — k350(r,r’) — 8(r—r’)7’, (3.2.14)

by integrating both sides of (3.2.13) over v and applying the divergence theorem to the

last term of the right hand side, we have

I , c,(r)E(r’)-Z?:(r,r’) dv’

 

1’0") (l‘)
=_ ' ‘ H’fi’”,’d’—ka—e——n*H 6’ d’I {V L:(IBJX (r)} e(rr) v I 0—(08——(r) (r’) 0(r,r’) v
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it,“)

(06(r)

“A——3)-rH(r’) x (7"(r,r’)ds (3.2.15) 

H(r+)jn

The second volume integral in the right hand side of (3.2.15) again needs a correction

term and the principal value integration to overcome the singularity problem. This

leads to

 

11:41") 1101341")

, H(r’)-,”C’(rr)d =P..V ——H(r’-)5”‘,,,(r,"r)d

’ kgwem 0 v ’ 8‘0) V

 _ H(r) . (3.2.16)

Substituting (3.2.15) and (3.2.16) into (3.1.46) and arranging terms, the decoupled

MFIEcanbewrittenas

[i89— + £91 H(r’)-(’7,;',(r,r’) dv’

36(1) 3110

  

H(r) + P.V. j , i0) [110") - iii";-
8 (r’)

+1 v V' 53:53 >< H(r’)°5:’(r,r’) dv’
l‘

  

it, r’ ,

- I s n' #HU’) >< 5:”(rr’) ds’ = H‘(r) . (3.2.17)

we (1")

To summerize the results, we rewrite (3.2.9) and (3.2.17) as

2% £52
8")r’)

[3u(r—)—+ 30 E(r)- P.V.I .A—Ic%[£0 -—(-3-]E(r’)80a,3 d,

_. J’ v E(r’) x V’[%u3]-[V’ x 60(r,r’)] dv’

‘1 [LianM-“0]“! ><E<r)J-IV’><<‘5’o(r.r’)1ds’=E‘(r) (3.2.18)

H(r’)-80(r,r’) dv’ 

+M “0.)" PHVIVI%[flfl-—t-EO_

38(1)3110 110 e (r’)
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8*(r’) - so

I.(nx [ €w>

_ i [87") ' 80
s 8.0")

Equations (3.2.18) and (3.2.19) are decoupled tensor EFIE and MFIE, and can be

]-[V’ x 0(r,r’)] dv’

 

[n x H(r’)]-[V’ x 0(r,r’)] ds’ = H’(r) (3.2.19)

transformed into two systems of linear algebraic equations with a proper choice of

basis functions. The electric field and magnetic field distributions are computed

numerically in section 3.4.

To check the validity of (3.2.18) and (3.2.19), they are compared with a set of

decoupled integral equations for homogeneous body derived by Tai [13] here. Tai’s

integral equations are:

E(r) - (k2 - k5) j , 80(r,r’)-E(r') dv’

 

+[u-w

11 J I s 50(rfl'l" x V’ x E(r)] dr’ = E‘(r) (3.2.20)

H(r) - (k2 - k%) I v 80(r,r’)-H(r’) dv’

 + [’3 8:60] I 3 80(r,r’)-[n x V’ x H(r’)] ds’ = H‘(r) (3.2.21)

where the complex permittivity 8' and the complex permeability p. are both constants

inside the body and

k = Vcozue' . (3.2.22)

is the wave number in the homogeneous medium.

He started from the fact that the EM fields both inside and outside the body must

satisfy the Maxwell’s equations, then applied the vector-dyadic Green’s theorem,

finally matched the boundary conditions to obtain the above equations. This set of
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equations can be proved to be equivalent to the equations derived in this section when

the body is homogeneous. The proof is given in the appendix A.1. More discussions

about the decoupled tensor integral equations are presented in section 3.5.

3.3 Coupled and Decoupled Integral Equations in Terms of Free Space Scalar

Green’s Function

The problem of solving induced EM fields in a finite, heterogeneous, dielectric,

magnetic and lossy body due to an incident plane EM wave as described in the begin-

ning of this chapter can be solved through another approach. When such a body is

exposed to an incident EM field, there must exist induced electric and magnetic

volume current densities and induced electric and magnetic volume charge densities

inside the body, in addition to induced electric and magnetic surface charge densities

on the boundary as indicated in Fig-3.2. We can then treat these induced currents and

charges as equivalent sources in free space, and the scattered fields maintained by

these sources are determined via the concept of potentials. In Fig-3.2, ng, J27, pgq, p2},

represent volume equivalent electric, magnetic current densities and volume electric,

magnetic charge densities, respectively, while pg and pf," stand for the electric and

magnetic surface charge densities, respectively.

The scalar and vector potentials, (be and A‘, due to the electric sources can be

expressed as:

<I>‘(r) = 21; j . pi,(r)¢(r.r'> dv’ + 8—10 I . p:(r’)¢(r,r’) ds' (3.3.1)

A‘(r) = j , J§q(r’)¢(r,r’) dv’, (3.3.2)
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(WQJZ)

E(r).H(r)

  

E(r).u(r) o(r)

  t“ A‘

/1 - s

”0 F!" O

Fig-3.2 Illustration of the equivalent sources induced by

the incident EM wave in the volume region v and

on the enclosing surface s.



where v stands for the volume source region and s for the closed boundary surface

enclosing region v, and

Mar) = 5E (3.3.3)
4rtR

is the free space scalar Green’s function.

Similarly, the scalar and vector potentials, CD“ and A“, due to the magnetic

sources are

(17"(1') = :11: I v pZ'q(r’)¢(r,r’) dv’ + hi0- I s pg"(r’)q>(r,r’) ds’ (3.3.4)

Am(r) = j , Jg;(r')¢(r,r’) dv’. (3.3.5)

The equivalent volume current densities have the following relations with the

induced EM fields:

Jiqm = t.(r)E(r) (3.3.6)

J20) = rm(r)H(r) (3.3.7)

where

re(r) = - ico(e‘(r) - 80) (3.3.8)

r...<r) = — iwm‘m - 110) (3.3.9)

are the complex electric and magnetic conductivities and

2"(r) = E(r) + 1351 (3.3.10)

u'(r) = Mr) (3.3.11)

are the complex permittivity and permeability of the medium.
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The scattered EM fields can be determined by knowing those scalar and vector

potentials, namely,

E‘(r) = - VCD‘(r) + impOAeU) — V x A’"(r) (3.3.12)

H‘(r) = V x A‘(r) - V<D’"(r) + icoeoA’"(r) . (3.3.13)

The volume charge densities are related to the volume current densities by the

continuity equations:

92,0) = — {:V'ngu') (3.3.14)

922,0) = - éV’JZJr’) . (3.3.15)

Integrating (3.3.14) and (3.3.15) over the small pillowbox volume v0 as shown in Fig-

3.2, we obtain

I ”0 934") W = - j; Iv, V" :40) dv’ (3.3.16)

I vo P210") dV' = - 1% I ,0 V"J;"q(r’) dv’ . (33.17)

After the application of the divergence theorem to the right hand sides of (3.3.16) and

(3.3.17), the results are simply

[—n:J§q(r’)]As = impgm (3.3.18)

[-n:JZ;,(r’)]As = imp?As , (3.3.19)

where As is the inner surface of so enclosing v0 as shown in Fig 3.2. The surface

charge densities are thus

p§(r') = i n-ngu') (3.3.20)

pm) = £11030!) (3.3.21)
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over the exterior boundary s.

Since

V ><[J§4(r’)¢(rr’) ] =¢(rr’)[ V ><J§4(r’) 1+ V¢(rr’) x J:4(r’)

= _ ng(r’) x V¢(r,r’) (3.3.22)

V x [J(r’)¢(rr’) ] =¢(rr’)[ V ><J';4(r’) 1+ V¢(rr’) XJQ"4(r’)

= - JZ4(r’) >< V¢(r.r) (33-23)

and from (3.3.12), (3.3.13), we can to express the scattering fields, E‘ and H3, in terms

of the equivalent volume current densities:

E’(r)= j .. 1—“(V’J§4(r))V¢(rr)+imqu§4(r)¢(r.r') 1 dv'

-J'swe;o(n°§4J(r’))V¢(rr’)ds’——I V¢(r,’;"r)xJ(r”)dv

(3.3.24)

H‘(r>=J V¢<rr’) x J.40) dv’ -I.a+”(am4'0) ) V¢(r.'r) ds'

+ I v I—( V’J24(r)) V¢(rr’) + iweoJZ'4(r’)¢ ] dv’ . (3.3.25)

Again by the definitions of scattered fields,

E — E3 = Ei (3.3.26)

H - HS = Hi , (3.3.27)

in addition to the relations (3.3.6), (3.3.7) and (3.3.24), (3.3.25) we have just derived,

another set of coupled integral equations are constructed as

E(r) - 1,3] . {1V'-(r.<r')E(r)>1V¢(r.r') + k6r.(r’)E(r'>¢(r.-’)} dv'
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+ it] _. [ne(c.(r)E(r’»1V¢(r.-') ds’ + I . c...<r)H(r’) x V¢<r.r’) dv’

= E‘(r) (3.3.28)

H(r) - TU . {[V’-(‘c,,.(r’)H(r’))lV¢(r.r’) + k61...(r')H(r’>¢(r.r’>} dv’

+ it] . 1n-(r...(r3H<r’»1V¢<r.n-) ds’ — I . r.<r’>E(r3 x V¢(r.r') dv’

= H(r) , . (3.3.29)

‘- — 3.3.30

is the wave impedance in the free space.

where

Equation (3.3.28) and (3.3.29) are the coupled integral equations in terms of free

space scalar Green’s function. They can also be transformed into a system of linear

algebraic equations in a similar way as will be discussed in a latter section.

The two different formulations of the coupled integral equations derived in sec-

tion 3.1 and here are actually equivalent The proof is given in the appendix A2.

The decoupled Tensor EFIE and MFIE (3.2.18) and (3.2.19) can also be

expressed in terms of the free space scalar Green’s function instead of the free space

dyadic Green’s functions. Since

.1.
80(r,r,) = ( r‘i' k3 VV)¢(r,r’) , (3.1.33)

(3.2.18) can be rewritten as



__2“0 8(1‘) e'(r’)_ _ll_o_

[3H(r) +_320—-r—]E() Ivk<2)[ 80 ' Tit) E(F'UWO'I‘) dv’

_ e'(r’) _ F10
P.V. I v [“80l1'(r_]E(r’))VV¢(r,r’) dv’

- I v E(r’) x V’ [ELLIS—“0]{V’ x 80(r,r’)] dv’

_ u__(__rr)- “om x E(r’)]-[V’ x 0(r,r’)] ds' = E’(r) (3.3.31)

“0')

In appendix A.2, we have shown that

I . [V'-A(r)1V¢<r,r') dv' — I .[n°A(r)1V¢<r,r') ds’

= P.V. I v A(r’)-VV¢(r,r’) dv’ -¥ , (A2.1)

the second integral in the left hand side of (3.3.31), denoted as 11, can be written as

11=IV{V’-[[5-(Efl— W]E(r)]}V¢(rr")dv

- I 3 [n[%l— mug-JEN])V¢(r,r’) ds’

 

1 e‘(r) Ho

— -— E . 3.3. 2+3[80 #0)] (r) ( 3)

By using (A2.12),

A(r’)-[V x 80(r,r’)] = A(r’)-[V¢(r,r’) x 7] = A(r’) x V¢(r,r’) . (A2.12)

the third and fourth integrals in the left hand side of (3.3.31), can be rewritten in terms

of the free space scalar Green’s function.
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Substituting (3.3.32) into (3.2.18) and using (A2.12), the decoupled EFIE can be

expressed as follows:

no e‘(r’) lJo
—Er k2——--

() w L. H

— I v {V5 [[yé—z’l- 1:0)—]E(r’)]}V¢(r,r’) dv’

. 8*(r') _ Flo , , ,

+ I s [n [ £0 u(”JEO‘)JV<1>(I',I‘) 0'3

t1(r’) - Ho

I " (r) X [ Mr)

——]E(r’)¢(r,r’) dv'

 

] x V¢(r,r’) dv'

— I 3 [Whn x E(r’)] x V¢(r,r’) ds’ = E’(r) (3.3.33)

Similarly the decoupled MFIE (3.2.19) can be rewritten as

2’30 £9211- w- 80

[B—e—‘(o 3qu1”) I"k‘z’Lto e’m

 

H(r’)¢(r,r’) dv’

 

—P.V. Jig—in -VV ,’d’LL10 8.0.3] 0") MN) v

-I H(rx') V’[—(e_:r:-)_][V’ x 800,r’)] dv’

‘l [E(r’)r-)80

Suppose we make use of (A2.1) again, the second integral in the left hand side of

 

[n x H(r’)]-[V’ x 80(r,r’)] ds’ = H’(r) (3.3.34)

(3.3.34), denoted as [2, can be written:

I I 80 I I I

12: JV{ . [2:12) _ 8‘(r’)]H(r)l}V¢(r,r) dv 

 



 

hand

don.

expn 

Spa.

Can
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H(r’) V¢(r,r’) ds’
S “0 8.0")

+J_BU)_ E0

3 no 6'0)

   

H(r) . (3.3.35)

Let us apply (A2.12) once more, then the third and fourth integrals in the left

hand side of (3.3.35), can be rewritten in terms of the free space scalar Green’s func-

tion.

Substituting (3.3.35) into (3.2.19) and using (A2.12), the decoupled MFIE can be

expressed as follows:

 H(r’)¢(r,r’) dv’

g r

*0 H(r)-Ivkg[flu:_)-—f-L

e (r) 8 (1")

80 I

_J' {V’V-P—(lflllo —8*(r,)]H(r’)]}V¢(r,r') dv

 

 

  

°£&Q-—EL-H V7 ’df+Is H “0 8.03 (r) ¢<r,r)

8(r3- 80
-J H(r’)x V’[8 J x V¢(r,r’) dv’

"I [2:3-20

Equations (3.3.33) and (3.3.36) are decoupled EFIE and MFIE in terms of free

e(r')

 

[n x H(r’)] x V¢(r,r’) ds’= H’(r). (3.3.36)

space scalar Green’s functions. Numerical solutions of these integral equations can be

canied out similarly as before. It is noted that we have attempted to derive (3.3.33)

and (3.3.36) directly from (3.3.28) and (3.3.29) without success.
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3.4 Numerical Solutions of Various Integral Equations with Pulse-Basis Expansion

and Point-matching

The various integral equations introduced from section 3.1 to 3.3 are solved

numerically by pulse-basis expansion and point-matching. After the testing procedure,

these integral equations can be transformed into systems of linear algebraic equations

which can be solved easily in a manner as described in section 2.3. In all cases dis-

cussed in this section, the body is assumed to be partitioned into N cells, while Vn

denotes the n-th cell with the center point located at r". The field at the center of each

cell is formed by solving a system of linear algebraic equations. Some symmetry pro-

perties of the problem were used to reduce the order of the system of linear algebraic

equations. The coupled tensor integral equations (3.1.45) and (3.1.46) are investigated

first.

Let us rewrite the coupled tensor integral equations:

 

i1e(r) ,

[I + 3060 ]E(r) - P.V. _[ ,, re(r')E(r')-5:(r,r’) dv

+ I v rm(r’)H(r)-5:(r.r) dv’ = E‘m (34-45)

 

i’tmO') I I I

[I + 3C0Llo ]H(r) — P.V. I ,, 1:,,,(r )H(r')-G:,",(r,r) dv

+ j , r,(r’)E(r’)-5’,"(r,r’) dv’ = H‘lr) . (3-1-45)

Note that

6:(r,r') = imu080(r,r’) (3.1.42)

5),:(1'3’) = iam080(r,r’) (3.1.43)



68

5’:(r,r’) = — an(r,r’) = V x 80(r,r’) = V4) x ‘7. (3.1.44)

In (3.1.45), the inner product E(r’)'80(r,r’) can be represented by a matrix pro-

duct as

  

E(r’)'50(r,r’)

I 1 1 1
¢(r,r’) + g¢n(r,r’) E‘bxyux’) fi¢n(r.r’)

0 E ('r’)
1 1 1 x

= -¢ (131“) ¢(r.r’) + —¢ (r,r’) —¢ z(I',r’) E (r’)

kl?) ’x 1 k3 ” ’63 ’1 [5:03]

g¢u(r,r’) g¢,,(r,r) ¢(r,r’) + wam’)

(3.4.1)

while the inner product H(r')~[V x 80(r,r’)] can be represented by another matrix pro-

duct as

¢,(r1") 0 -¢x(r1") H’),(r

-¢,(rr) M"r’> 01m)

0 -¢z(r1") ¢,(r1") H')x(r

H(r’)[V x 5’0“,r’)]-_ (3.4.2)

 

Similarly in (3.1.46), the inner product H(r’)-80(r,r’) can be represented by a

matrix product as

 

 

H(r)-806;)

f. 'l

¢(r,r’) + i¢n(r,r’) -1—¢,,(r,r’) i¢n(r,r')
k3 k3 k% H

1 ’ ’ 1 ¢ ( ’) 1 «1 (r r') 1133= --¢ (r,r) ¢(r.r) + — r,r — ,

161(2) yx 1 k3 yy 1‘3 ’21 H:(r’)

—¢zx(r’r’) —¢z (rar’) ¢(r:r’) + _¢zz(r9r’)

L k% k3 ’ k?) 4 
(3.4.3)
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while the inner product E(r’)°[V x 80(r,r’)] can be represented by another matrix pro-

duct as

o -¢z(r,r’) ¢y(r,r’) Ex(r’)

E(r’)-[V x 60(r,r’)] = ¢,(r,r') o —¢,(r,r’) Ey(r’) (3.4.4)

-<|>y(r,r’) ¢x(r’r’) O E,(r’)

where ¢x'x'(r,r’), ¢xp(r,r’) and x1, x2, x3 are the same as defined in section 2.4.

After applying pulse-basis expansion and point-matching, the coupled tensor

integral equations become a system of linear algebraic equations of order 6N:

A B i

[C D] [15] = [15] (3'45)

where each of A, B, C and D is 31v x 3N matrix, E, H, 15" and H‘ are 3N x 1 column

vectors. These matrices and vectors can be expressed as follows:

A11 A12 A13 311 312 313

A = A21 A22 A23 B: 821 322 323 (3.46)

A31 A32 A33 331 332 333

where Ape and BM are both N x N matrices for p,q=l,2,3, and the elements of these

matrices are

1.180.!»

(qu),,m = 5pq5mn [I + 30380

.1.+ 1'qu P.V. I , te(r')[5pq¢(l'm"') +
- k3

¢.,.,(r,..r')1 dv',

m,n=1,2,...,N (3.4.7)

3

(qu)mn = 21 €qu J. v tm(r’)¢x'(r,r’) dv’ . m,n=1,2,...,N (3.4.8)
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Note that e is defined as
Mr

1 p,q,r form a cyclic permutation

em, = -1 p,q,r form a anti—cyclic permutation p,q,r=l,2,3 (3.4.9)

0 otherwise

Matrices C and D are represented as

C11 C12 C13 Du 012 013

C: C21 C22 C23 D: D21 D22 D23 (3.410)

C31 C32 C33 D31 D32 D33

where CM and DM are also N x N matrices for p,$l,2,3, and the elements of these

 

matrices are

3

(94),,“ = - )3 cm, I , te(r’)¢x'(r,r’) dv’, m,n=1,2,...,N (3.4.11)

r=l

itm(r,,)

(qu),,,,, — Spqfim [1 + 30410 ]

+ £0160 P.V. I v" tm(r’)[8pq¢(r,,,r’) + 212_¢x,x,(rmr’)] dv’ .

o

m,n=l,2,...,N (3.4.12)

The column vectors E, E’, H and H’ are

 

 

E1 El

E: E, E‘: 55 (3.4.13)

E3 Egj

H FH‘i.
1 o e

H: H2 11': [1‘2 (3.4.14)

”3 ng

 

where Ep, 15;, Hp and H}, are N x l vectors for p=1,2,3 with the n-th elements
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(5,), = Exp(r,,) , n=1,2,...,N (3.4.15)

(5;), = 520,) , n=l,2,...,N (3.4.16)

(Hp),, = pr(r,,) , n=1,2,...,N (3.4.17)

(11;), = Hip(r,,) , n=1,2,...,N (3.4.18)

From the expressions above, it is noticed that the diagonal submatrices Bpp and

CW of the matrices B and C are null matrices. The diagonals of the off-diagonal sub-

matrices BM and CM are all zeros since the integration will be canceled out by the

symmetry property.

By solving the 6N x 6N matrix equation (3.4.5), we can obtain both electric and

magnetic field distributions over the body simultaneously.

The decoupled tensor integral equation (3.2.18) and (3.2.19) are investigated next.

For a heterogeneous body, these equations contain two terms which involve the gra-

dients of the complex permittivity and permeability functions. This will cause

difficulty especially for heterogeneous body with jump discontinuities of parameters

within the body. Therefore, we will concentrate on the cases of homogeneous bodies

in the discussion of the decoupled tensor inteng equations.

The decoupled tensor integral equations when applied to a homogeneous body

can be written:

 

2110 e' 2' “o , , , .
{-3—};- + 380]E(r) — P.V.! v kgL—O - TJE“ ) 800x ) dv

 

- I s [u Ito Jln >< E(r’)]°[V’ X 50(r,r’)] ds’ = E(r) (3.4.19)

H(r’)-(‘§"0(r,r') dv’ 

2
£3 + .11_

[38 3140

 

H(r) —P.v.j , k3[-u% — :3
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[n x H(r’)]-[V’ x 80(r,r’)] ds’ = H’(r) . (3.4.20)
 

 

8*-

-Jls[ 8.80

It is sufficient to analyze the tensor EFIE only since the tensor MFIE can be han-

dled similarly.

In the tensor EFIE (3.4.19), the inner product E(r’)-80(r,r’) is exactly the same as

that shown in (3.4.1) while the inner product [11 x E(r’)]-[V’ x 0(r,r’)] can be

expressed in the following matrix product form:

[n x E(r-311V x 800.0]

42450.1") + n3¢,(r,r’) -n1¢,(r.r’) -n1¢z(r.r’) Ex(r’)

= " “n2¢x(l‘,|") "14’4".” + n3¢z(l‘,l") “"2¢z(l‘,l") 5,0")

—n3¢x(r’r’) ’n3¢y(r’r’) nl¢x(r9r’) + n2¢y(rar’) £20")

(3.4.21)

where n1, n2 and n3 are the three components of the unit normal vector n as defined in

section 2.4. Applying similar testing procedure as before, we can transform (3.4.19)

into a 3N x 3N matrix equation:

  

F .7

011 012 013 E1 E}

021 022 023 E2 = E‘z (3.422)

G31 G32 033 E3 ES

The elements of the N x N matrix GM for p,q=l,2,3 are:

-1.(0,4),“ = Cl swam, + e2 P.V. j ,_ [5pq¢(r,,,r’) + k2

0

¢x,.,(r,.,r’)] dV’

3

+ c3 j ,_ [8,, 2‘, nfibxi(r,,,r’) — (1 — Spq)np¢xq(rn,r’)] ds’,

£44
i=1

m,n=1,2,...,N (3.4.23)
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where

c, = '23? 3:0 (3.4.24)

62 = - 1.4.2: .. 5”? (3.4.25)

c3 = u :10 (3.4.26)

and s”, stands for the surface of m-th cell which are common with the closed surface s

enclosing v.

We can now solve the matrix equation (3.4.22) to obtain the electric field distri-

bution of the body. Similarly we can obtain the magnetic field distribution if we fol-

low the same procedure to transform the MFIE into a matrix equation.

The numerical solutions of the coupled tensor integral equations and decoupled

tensor integral equations are compared in section 3.5.

The coupled integral equations with scalar Green’s function (3.3.28) and (3.3.29)

can be transformed similarly. Since these two equations contain the terms involving

the divergences of E and H, they are in fact integro—differential equations instead of

pure integral equations. To avoid the complexity of the equations, we again discuss

this set of equations for the case of a homogeneous body where the volume charge

density should vanish inside the body. Furthermore, the pulse-basis expansion of the

induced field distributions will satisfy this charge-free condition inside each cell

automatically except on the adjacent boundaries of the cells. Those boundaries of the

adjacent cells are then assumed to contain some surface charge so that we should

extend the domain of the surface integration when the pulse-basis expansion is applied.

The set of integral equations when applied on a homogeneous body then becomes:
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E(r) - £de . r.E(r’)¢<r.r’) dv’ + .25! .1n-(r.E<r’))1V¢(r.-’) ds'
0

+ I . r..H(r’) x V¢(r.r’) dv’ = E‘m (3.4.27)

”‘0 , 1 I i I I I

H(r) - TI v TmHO‘ )<l>(r.r) dv + 30-] .. [n'(t,,,H(r ))]V¢(r,r) d3

- I . I.E(r’) >< V¢(r.r’) dv’ = H‘(r) . (3.4.28)

where I, and 1:", are both constants inside the body now.

In (3.4.27) and (3.4.28), the inner products [n°E(r’)]V¢(r,r’) and [n-H(r’)]V¢(r,r’)

are expressed in matrix forms as

n.¢.<r.r) n,¢.(r.r) nz¢.(r,r’) ’15,.(r’)

[n°E(r')]V¢(r.r’) = nx¢,(r,r’) ny¢,(r.r’) nz¢,(r.r’) Ey(r’) (3.4.29)

nx¢z(r.r’) ny¢z(r.r’) nz¢z(r.r’) _E,(r’)

n.¢.(r.r) n,¢,(r.r) n,¢.(r.r) 'H.<r’)

[n-H<r)1V¢(r.r’) = n.¢,<r.r') n,¢,(r.r) nz¢,(r.r') H,<r') (3.4.30)

nx¢z(r.r’) n,¢,(r.r’) nz¢z(r.r’) _H,(r’) 
while H(r’) x V¢(r,r’) and E(r’) x Vq>(r,r’) can be represented by the same matrix

product forms as those in (3.4.2) and (3.4.4).

The system of linear algebraic equations of order 6N obtained after we applied

pulse-basis expansion and point-matching is then

1841,5142:

where the matrices B, C', and the column vectors E, H, E’ and H’ are the same as those

(3.4.31)

 

in (3.4.5). X and 13' are also 3N x 3N matrices:

   

F— _ _ . ._ _ _ .

_ 1:11 I112 1113 _ 1:11 £12 1:13

A: {21 1:22 11.23 D = 321 13.22 323 (3.432)

LAM A23 A33 031 023 033 
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Km and 5M are both N x N matrices for p,q=l,2,3 with elements

(,1;an = 5m [5m - iCkore j ,m ¢(rn,r’) dv’ ]

iCr,

ko

+ I§.nq¢xp(rmr’) d5, : m,n=1,2,...,N (3H433)

_ ikotm , ,

mm)... = 6,, [6,... -T I ._ ¢<r,..r) dv 1

ictm I I

+ Tko- Ennqoxpumr) ds , m,n=l,2,...,N (3434)

where 5,, stands for all the surrounding surfaces of the m-th cell.

Again, the electric and magnetic field distributions can be obtained simultaneously

by solving the matrix equation (3.4.31). The reason we extend the domain of the sur-

face integration in (3.4.33) and (3.4.34) is related with some physical picture, more

discussion will be presented in section 3.5.

The transformation procedure of the decoupled EFIE and MFIE with free space

scalar Green’s function into matrix equations is very similar to that of coupled integral

equations (3.4.27) and (3.4.28) so that we will omit it here. Since both the equations

(3.3.33) and (3.3.36) contain the terms involving the divergence of E and H, we will

apply this set of equations to homogeneous bodies for the time being and also note

that the surface integration in the equations should also be handled in the same way as

that in (3.4.33) and (3.4.34).

The transformed matrix equations are of order 6N for coupled integral equations

and 3N for decoupled integral equations. However, if there are some symmetry pro-

perties in the geometry of the body and the incident EM fields, the induced EM field

distributions will also be symmetric along certain directions. Therefore we should be

able to reduce the number of unknowns in the system of linear algebraic equations and
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hence the size of matrix. The symmetry properties of the induced electric field E(r)

have been studied by previous researchers [ll], [12] while the symmetry properties of

the induced magnetic field H(r) can be inspected similarly and confirmed by numerical

calculation also.

Suppose the body is symmetric about its center, as shown in Fig-3.3, we can

locate the origin of the coordinate system at the center of the body. The planes x=0,

y=0 and 2:0 divide the body into eight octants. The material parameters are distri-

buted symmetrically in each octant, that is,

ten-1) = te(r2) = - - ' = te(r8) (3.4.35)

tm(r1) =t,,,(r2) = = ”,(rg) (3.4.36)

where r,- stands for the position vector in the i-th octant for i=1,2,...,8.

An incident plane EM wave with EM fields E‘(r) and H’(r) can be decomposed

into two standing wave as mentioned in section 2.2. Let (E2, Hi) = (Bi, Hg) =

E . . . .
(x Eocos(koz), y iTOSinUcoz» be the symmetric mode of (E‘, H‘) and (Efin, Hi")

i

c

subscripts s and a stand for the words symmetric and antisymmetric, and simply mean

(E2, Hg) = (x iEosin(koz), y cos(koz)) be the antisymmetric mode of (E‘, H‘). The

that the incident electric field is either symmetric or antisymmetric with respect to the

x—y plane. It is noted that the incident magnetic field will be antisymmetric for the

subscripts and symmetric for the subscript a.

Now let Es(r) and Hs(r) denote the EM fields induced by the symmetric mode of

E‘(r) and Hi(r), then the three components of Es(r) and H,(r), denoted as En(r),

Eys(r), E230) and [in(r), l-IyS(r), H230), will obey the following relations:

Exs(rl) = E302) = Exs(r3) = Exs(r4) = Exs(r5) = Exs(r6) = 515(1‘7) = En(r8)
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VIII V j
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III y 11

    

Fig—3.3 A symmetric body partitioned into symmetrical octants, denoted by Roman

numerals. The origin of the coordinate system is located at the center of the

body.
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(3.4.37)

Eysm) = — we) = Ewe) = - mm = Ems) = - E,.<r6) = E,.(r7) = - 5,.(r8)

(3.4.38)

£2.01) = - ”(72) = - 52.03) = 52.0.) = - 52.05) = Emu.) = 52.07) = — E..(r8)

(3.4.39)

Hum) = - H..<r2) = Hum) = - H..(r.> = - H..(rs) = Hues) = - H..(r7) = Hum)

(3.4.40)

H,.(r1) = — H,.<r2) = 115.0.) = - H,.(r.) = H,.(r5> = - H,.<r.> = H,.(r7) = - H,.(r8)

(3.4.41)

st(|‘1) = H..(r2) = — Hum) = — Hum) = Hues) = Haas) = - Hum) = - z.(rg)

(3.4.42)

Similarly, let Ea(r) and Ha(r) denote the EM fields induced by the anti—symmetric

mode of E‘(r) and H‘(r), then the three components of Ea(r) and Ha(r), denoted as

EMU), Eya(r), Eza(r) and Hm(r), Hya(r), Hza(r), will obey the following relations:

Exam) = Emu» = Emu.) = Emu.) = — ”(u-5) = - Emu.) = — mm) = - was)

(3.4.43)

5 nyrl) = — £3.02) = Eyars) = - Emu.) = - Eya("5) = E,.(r6) = - E,.(r7) = 5,.(r8)

(3.4.44)

Emu.) = - 52.02) = - 52m) = Emu.) = Ewes) = - Emu.) = - Earn) = Enos)

(3.4.45)

Hxa(r1) = - 12102) = Hxa(r3) : _ xa(r4) = Hm(r5) = " Hxa(r6) = Hxa(r7) = _ xa(r8)
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(3.4.46)

Hya(|'1) = Hya(r2) = Hya(|'3) = Hya(l‘4) = Hya(r5) = Hya(r6) = Hya(r7) = Hya(r8)

(3.4.47)

Hza(l‘1) = Hza(l'2) = " Hm“3) = - Hza(|'4) = - Hza(|'5) = " Hza(|‘5) = ”2.107) = Hza(l'3)

(3.4.48)

By using the relations (3.4.37) to (3.4.48), we can reduce the number of unk-

nowns in the system of linear algebraic equations by a factor of eight if a particular

mode of incident field is given. To manipulate the reduced systems, we only match

the points at the centers of those cells in the first octant, and then rearrange those

linear algebraic equations by collecting the terms which possess symmetric properties.

Once we find the induced field distributions in the first octant, the distributions in other

octants can be easily obtained by employing the relations of (3.4.37) to (3.4.48).

3.5 Discussions

Numerical examples of induced fields in a magnetically permeable body irritated

by an incident plane wave are presented in this section. Solutions of various integral

equations applied to different bodies are investigated and some comments about each

set of equations are made.

In Fig-3.4, a homogeneous cubic body of dimensions 6 x 6 x 6 cm is illuminated

by an incident EM plane wave. If the incident EM wave is decomposed into sym-

metric and antisymmetric modes, we can choose the origin of the coordinate system at

the center of this cube so that we merely need to investigate the induced EM field
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Fig-3.4 A homogeneous cubic body of dimensions 6 x 6 x 6 cm illuminated by an

incident plane EM wave.
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distributions of different modes in the first octant owing to the symmetry properties.

It is noticed that when the body is non-magnetic, that is, 11" = no, the first equa-

tion of the set of coupled integral equations is decoupled automatically and we will

find that (3.1.45) becomes identical to (3.2.18). Similarly in the non-dielectric case

8" = 80, equation (3.1.46) will become identical to (3.2.19). We will study the numeri-

cal solutions of the coupled tensor integral equations first and then investigate the

effects of the magnetic material on the induced fields. The numbers presented in Fig-

3.5 to Fig-3.10 are all numerical solutions of (3.1.45) and (3.1.46).

Fig-3.5 shows the induced electric field distribution in a homogeneous body of

the dimensions specified in Fig-3.4 with permittivity e = 580, conductivity

0 = 0.0444 S/m and complex permeability u' = (5 + i3)uo, i.e., the relative complex

permittivity e: = 5 + i4 and the relative complex permeability tr: = 5 + £3, excited by

i

C

quency at 200 MHz. The body is divided into 216 cubic cells of size 1 x 1 x 1 cm,

a symmetric mode of incident EM field (E‘, H‘) = (x cos(koz), y sin(koz)) of fre-

but only the numerical solutions in the 27 cells of the first octant need to be presented

We simply indicate the amplitude (in V/m) and phase angle (in degree) of the x— com-

ponent of the electric field E in this figure since lEyl and [5,] are much smaller than IEXI

in the symmetric mode solution. Fig-3.6 shows the distribution of EJr in a nonmagnetic

cube with identical size and e: excited by the same incident fields. We observe that

the numerical solutions in these two cases are almost the same, this tells us the mag-

netic property of the material does not affect too much on the induced electric field

when the incident electric field is symmetric and almost constant throughout the body.

The reason for this phenomenon is that the incident magnetic field is zero at the center

of the body, and also the permeability is not high enough to have a significant

enhancement of the induced fields.
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g: .-. 5 +14
T 11

u: = 5 + [3
”I!

15,; in (Wm) .3734 .3819 .4344

‘5’ m (a) .273 -27.3 -25.1 m

3

2.4314 .4432 .4331 W 1

48.4 48.3 45.2

.4548 .4890 .4978

-25.9 -25.3 .252

l

.3138 .3221 .3777
.3040 .3122 .3877

49.7 49.9 47.9
49.4 49.8 48.2

.3948 .4078 .4400 .3798 .3919 .4227

45.9 48.4 - 48.7
45.2 48.1 47.0

.4255 .4403 .4522 .4149 .4254 .4451

44.8 45.5 48.3 44.1 45.1 48.8

2
3

 

 

F' -3.5 Solutions for the symmetric mode of induced electric field obtained from the

1g coupled tensor integral eguations based on 216-cell drvrsron 1n the magnetic

body. (x- component of field)



H: = 851?!

IE; in (Wm) .3597 .3791 .4345 A

‘5‘ m (a) -25.0 -27.7 -24.5 m

3
2

.4254 .4425 .4543 f 1

-25.5 -25.1 «24.3 /

.4491 .4553 .4993

-25.9 -25.5 -24.1

1

.3077 .3175 .3771 .2959 .3059 .3555

-31.3 -31.1 -27.7 -31.5 -31.4 -25.1

.3545 .4005 .4400 .3577 .3534 .4224

-25.1 -27.9 -25.2 .254 .252 .257

.4159 .4321 .4523 .4009 .4155 .4447

-27.3 .270 -25.7 -27.5 -27.4 -25.1

2 3

a: = 5+ 14
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Fig-3.6 Solutions for the symmetric mode of induced electric field obtained from the

coupled tensor integral equations based on 216-cell division in the non-

magnetic body. (x- component of B field)
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Now let us investigate the case for an incident field of the antisymmetric mode.

Fig-3.7 and Fig-3.8 (indicate the induced electric field distributions in the magnetic

body with the same parameters and dimensions as in Fig-3.5 excited by an incident

EM field (E‘, H‘) = (x isin(koz), y €cos(koz)) of frequency at 200 MHz. The body is

divided as before and only the cells of the first octant are of interests. In this case

only y— component of the electric field is insignificant. The distribution of Ex is

presented in Fig-3.7 and E, in Fig-3.8. The x- and z— components of the induced

electric fields in the same non-magnetic body as described in Fig-3.6 excited by the

same antisymmetric incident field are shown in Fig-3.9 and Fig-3.10. It is observed

that the amplitude of the electric field E in the magnetic material increases by a factor

of 2 compared with that in the non-magnetic material. This indicates that the magnetic

material plays an important roll in the induced electric field excited by the incident EM

field of antisymmetric mode which has a maximum incident magnetic field at the

center of the body.

Fig-3.11 to Fig-3.13 give the numerical solutions of the decoupled tensor integral

equation (3.2.18) applied to the same magnetic body as described above. The distribu-

tion of 5,, of symmetric mode is shown in Fig-3.11 while the distributions of E, and 15‘z

of the antisymmetric mode are shown in Fig-3.12 and Fig-3.13. The frequency is 200

IVle as before. We find that not only is the induced field distribution of the sym-

metric mode very close to that solved by the coupled tensor integral equations but also

the distribution of the antisymmetric mode.

From the examples shown above, it appears that the agreement of the numerical

solutions between the two different sets of tensor integral equations is satisfactory.

We will investigate the convergence of the numerical solutions next.



 

 

 

     

 

 

 

     

e: = 5 + £4

T 11

u: = 5 + :3

85:11

15:1 in (V/m) .0130 .0407 .0835 A

‘5: i“ (a) 75.0 75.5 50.5 5.3,.

3

2

.0195 .0828 .1239 7

85.1 85.8 88.2 /

.0229 .0731 .1409

87.8 88.3 90.7

1

.0135 .0428 .0895 .0141 .0448 .0930

80.3 80.5 83.3 81.8 81.9 84.2

.0224 .0722 .1418 .0237 .0784 .1488

89.9 89.9 91.1 91.8 91.4 92.1

.0288 .0854 .1832 .0284 .0909 .1721

92.3 92.4 93.4 1 93.9 93.7 94.4

2 3
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Fig-3.7 Solutions for the antisymmetric mode of induced electric field obtained from

the coupled tensor integral equations based on 216-cell division in the mag-

netic body. (x- component of E field)



IE,I in (Wm)

15', in (’)

Fig-3.8 Solutions for the antisymmetric mode of induced electric field obtained from

the coupled tensor integral equations based on 216-cell divrsron 1n the mag-
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§

netic body. (2- component of E field)
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5: = 5 + 1'4 T 1‘

“r. = Gem

15,; in (WM) .0095 .0292 .0559

4 E, in (°)
1

59.7 70.0 72.7 5a.,

3

2
.0130 .0405 .0740 f 1

75.5 77.0 75.5

.0145 .0455 .0513

75.9 79.4 51.2

Io—— .. ——~1
1
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Fig-3.9 Solutions for the antisymmetric mode of induced electric field obtained from

the coupled tensor integral equations based on 216-cell division in the non-

magnetic body. (x- component of E field)
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Solutions for the antisymmetric mode of induced electric field obtained

from the coupled tensor integral equations based on 216-cell division in the

non—magnetic body. (x- component of E field)
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Solutions for the symmetric mode of induced electric field obtained from

the tensor EFIE based on 216-cell division in the magnetic body. (x- com-

ponent of E field)
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Fig-3.12 Solutions for the antisymmetric mode of induced electric field obtained

from the tensor EFIE based on 216-cell division in the magnetic body. (x-

component of E field)
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Since for the symmetric mode of incident field, regardless of the body being

permeable or not, the induced electric field distribution does not change much in the

previous examples. We also know from section 2.2 that the symmetric mode solution

converges quite well in the non-magnetic body hence so does the symmetric mode

solution in the magnetic body. In fact the numerical results will confirm the predic-

tion. Thus, we omit the symmetric mode case and concentrate on the cases of

antisymmetric mode.

The convergence of the solutions of the coupled tensor integral equations are

shown in Fig-3.14 to Fig-3.17. Fig-3.14 and Fig-3.15 show the distributions of E, and

E, in the same magnetic body divided into 512 cubic cells excited by the same

antisymmetric incident EM field. Each octant contains 64 cells and we depict the first

octant distribution by dividing the octant into four l6-cell layers as shown in the

figures. Each layer has a fixed y— coordinate. The numbers in Fig-3.14 are the ampli-

tude and the phase angle of E, and in Fig-3.15 are of E,. We next divide the body

into 1000 cells and present the first octant induced field distributions in Fig-3.16 and

Fig-3.17. Now we divide the first octant into five 25-cell layers and the numbers in

each cell again show the amplitude and phase of the electric field at the center of each

cell. The distribution of E, is shown in Fig-3.16 and E, is in Fig-3.17. The agreement

between these two sets of data is quite satisfactory.

Fig-3.18 to Fig-3.21 indicate the induced electric field distribution of 512 and

1000 subdivisions of the same body solved by the decoupled tensor EFIE. The

incident EM field is the same antisymmetric mode with frequency at 200 MHz. The

distributions of E, and E, of 512 subdivision are shown in Fig-3.18 and Fig-3.19 and

that of 1000 subdivision are shown in Fig-3.20 and Fig-3.21. Again the results of

these two divisions agree well.
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Fig-3.14 Solutions for the antisymmetric mode of induced electric field obtained

from the coupled tensor integral equations based on 512-cell division in the
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Fig-3. 15 Solutions for the antisymmetric mode of induced electric field obtained

from the coupled tensor integral equations based on 512-cell division in the

magnetic body. (2- component of E field)
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Fig-3.16 Solutions for the antisymmetric mode of induced electric field obtained

from the coupled tensor integral equations based on lOOGcell division in

the magnetic body. (x- component of E field)
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Fig-3.17 Solutions for the antisymmetric mode of induced electric field obtained

 
from the 6013 led tensor integral equations based on 1000-cell division in 

   the magnetic 1body. (z- component of E field)
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Fig-3.18 Solutions for- the antisymmetric mode of induced electric field 'obtained

from the tensor EFIE based on 512-cell division in the magnetic body. (x-

component of E field)
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Fig-3.19 Solutions for the antisymmetric mode of induced electric field obtained

from the tensor EFIE based on 512-cell division in the magnetic body. (2-

component of B field) -
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Fig-3.20 Solutions for the antisymmetric mode of induced electric field obtained

from the tensor EFIE based on 1000~ce11 division in the magnetic body. (x-

component of E field)
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Fig-3.21 Solutions for the antisymmetric mode of induced electric field obtained

from the tensor EFIE based on 1000-cell division in the magnetic body. (2-

component of E field)
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We observe that in this particular body excited by an a antisymmetric mode of

incident EM field of frequency at 200 MHz, the numerical solutions of both coupled

tensor integral equation and decoupled tensor EFIE achieve a good convergence as evi-

denced from the numbers shown in Fig-3.14 to Fig-3.21.

For practical purposes, the materials used in industry, for example, the coating

materials of the airplane, are of the parameters around 8 = 2080 and it ‘~" 10110. Work-

ers who are interested in the backward scattering EM fields of this kind of materials

can find the induced EM fields inside the body and then calculate the EM fields out-

side the body from the equivalent sources which are related to the induced EM fields

in the body. An example is given next.

Fig-3.22 shows a larger rectangular model of permeable material of dimensions

12 x 6 x 12 cm with e: = 20 + £5 and p: = 5 +13, irritated by an incident plane EM

wave polarized in x— direction and propagating toward z— direction of frequency at

200 MHz.

' Fig-3.23 and Fig-3.24 present the symmetric mode solutions of E, of coupled ten-

sor integral equations and tensor EFIE respectively. The body is divided into 256

cubic cells of dimensions 1.5 x 1.5 x 1.5 cm. Again owing to symmetry property only

the distribution of the first octant is shown. It is observed that the two sets of solu-

tions are very close to each other and in fact they are close to the induced fields of the

non-magnetic case which are not presented when all the conditions remain the same

except if = 1.10.

The antisymmetric mode solutions of EJ: and E2 of two different equations are

indicated in Fig-3.25 to Fig-3.28. The non-magnetic case is shown in Fig-3.29 and

Fig-3.30 for reference. We observe the agreement of the numerical solutions between

the two sets of integral equations from the comparison of the numbers shown in those
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Fig-3.22 A homogeneous cubic body of dimensions 12 x 12 x 6 cm illuminated by an

incident plane EM wave.
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Fig-3.23 Solutions for the symmetric mode of induced electric field obtained from

the coupled tensor integral equations in the rectangular magnetic body. (x-

component of E field)
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Fig-3.24 Solutions for the symmetric mode of induced electric field obtained from

the tensor EFIE in the rectangular magnetic body. (311- component of B

field)
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Fig-3.25 Solutions for the antisymmetric mode of induced electric field obtained

from the coupled tensor integral equations 1n the rectangular magnetic body.

(x- component of B field) .
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Fig-3.26 Solutions for the antisymmetric mode of induced electric field obtained

from the coupled tensor integral equations in the rectangular magnetic body.

(z- component of E field)
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Fig-3.27 Solutions for the antisymmetric mode of induced electric field obtained

fé'om the tensor EFIE in the rectangular magnetic body. (x- component of

field)
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Fig-3.28 Solutions for the antisymmetric mode. of induced electric field obtained

from the tensor EFIE in the rectangular magnetic body. (z- component of B

field)
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Fig-3.29 Solutions for the antisymmetric mode of induced electric field obtained

from the tensor EFIE in the rectangular non-magnetic body. (x- component

of E field)



114

 

 

 

 

 

   
 

   
 

 

 

 

 

 

 

          
 
 

Gem

6: = 20 +15 —_'

120"! j 2 z
e 1

u, =1

Y

I*— ..... _..

|E,| in (Vlm)l .0953 .0828 .0569 .0161 .0990 .0863 0599 0187

‘5' m (a) -89.2 -89.1 -88.5 -82.1 -89.3 -89.2 -88.8 -84.2

.0635 .0550 .0377 .0125 .0660 .0573 .0395 .0138

-88.1 ~88.4 -87.9 -84.9 -88.6 -88.5 -88.1 -86.3

.0364 .0314 .0215 .0072 .0379 .0328 .0226 .0079

-88.0 -87.9 -87.3 -84.7 -88.0 -87.9 -87.5 -85.8

.0119 .0102 .0070 .0024 .0123 .0107 .0073 .0026

-817 -87fi £111 -84L, -8717 -816 -87-L .8515

1 2

Fig-3.30 Solutions for the antisymmetric mode of induced electric field obtained

from the tensor EFIE in the rectangular non-magnetic body. (z— component

of E field)
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figures and the significant differences in the induced fields between magnetic and non-

magnetic cases.

The coupled tensor integral equations will become a 6N x 6N matrix equation

after transformation via pulse-basis expansion and point-matching if the body is

divided into N cells while the decoupled EFIE will become a 3N x 3N matrix equa-

tion. Obviously, the former needs four times of the computer memory storage as that

of the latter thus requires more computation time to solve the matrix equation by exist-

ing numerical methods. However, in the tensor EFIE, we have an extra surface

integration term to evaluate when the transformation is performed in contrast to the

coupled tensor integral equations. The other advantage of the coupled tensor integral

equations is that the heterogeneous problem can be handled easilier by applying this

set of equations since we only need to vary the parameters 1:, and 1:", in the coefficients

of the elements in the transformed matrix equation.

An example of heterogeneous case is given as here. Fig-3.31 shows a hetero-

geneous body of dimensions 6 x 6 x 6 cm. The shaded region in the center consists

of permeable material with e: = 20 + £5 and u: = 5 + £3 and the rest of the body is

non-magnetic material with e: = 20 + £5 and 11:: 1. Again we concentrate on the

antisymmetric mode of incident field and omit the case of symmetric mode due to the

same reason as previous examples. The frequency is the same 200 MHz.

Fig-3.32 shows the distribution of 5,, E2 and Hy of the first octant of the hetero-

geneous body described in Fig-3.31. The reason we indicate y- component of induced

magnetic field only is simply because this component is the only significant one since

H‘ is polarized in y- direction and almost uniformly distributed. The body is divided

into 64 cubic cells with dimensions of 1.5 x 1.5 x 1.5 cm. Fig-3.33 presents 5,, E,

and I-ly of a homogeneous non-magnetic cube with e: = 20 + £5 and of the same



EI=120 + (5)120

ui=uo

e; = (20 4 1511:.)

Fig-3.31

115 :15 + 13100
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A heterogeneous cubic body of dimensions 6 x 6 x 6 cm with different

parameters specified in the shaded and unshaded regions.
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Fig-3.32 Solutions for the antisymmetric mode of induced EM field obtained from

the coupled tensor integral equations in the heterogeneous body.



 

 

  

 
 
  

 
 
   
  

  

 
 
 

  

 

 
 

  
 

 
 

 
 

 

  
 

  
 

T p

Z

60m

2

1

l y /

4——

115,1 in (V/m) .0071 .0271 .0062 .0246

LE; i“ (0) 80.4 81.3 80.1 81.1

.0115 .0401 .0107 .0379

81.8 82.5 81.5 82.3

1 2

IE I in (VIII!) .0221 .0090 .0226 .0095

2

25,111 (") -94.2 -924 -947 -93.3

.0065 .0028 .0065 .0028

-94.1 -93.4 -94.7 -944

1 2

1111,1111 (A/m) .0027 .0026 .0027 .0027

M, in W 0.1 0.0 0.1 0.0

.0027 .0027 .0027 .0027

0.2 0.1 0.3 0.1

1 2

  

 

 

 
Fig-3.33 Solutions for the antisymmetric mode of induced EM field obtained from

the coupled tensor integral equations in the non-magnetic homogeneous

body.
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dimensions and incident field for comparison. We observe that the induced electric

field in the heterogeneous case is larger than that in the homogeneous case, especially

in the cell consisting of magnetic material, but the induced magnetic field becomes

smaller in that cell. We may use a simple picture to explain this result. Since the B

field has to be continuous inside the body, the magnetic cell which has larger value of

u then has a smaller strength of the H field. By the definition of the magnetization M

M=£—H, (3.5.1)

110

the smaller H implies a larger magnetization M and hence a larger circulatory electric

‘ fields.

Fig-3.34 to Fig-3.36 show the distributions of 5,, E2 and Hy of the above hetero-

geneous example with 512 subdivisions. A fair convergence is indicated by the com-

parison of the numbers in Fig-3.33 and Fig-3.34 to Fig-3.36.

The convergence and agreement in the numerical solutions of the coupled tensor

integral equations and the tensor EFIE shown in the above examples, however,

deteriorate when the relative permittivity 8, goes up to the value about 50. The unsa-

tisfactory results also occur if we increase the frequency of incident EM fields. It

appears that there are certain limitations for the numerical solutions of the integral

equations. A series of numerical results of the two set of integral equations have been

compared to investigate the limitations of the convergence and agreement properties.

Table-3.1 and Table-3.1a summarize these properties under various circumstances such

as different frequencies of the incident EM fields or parameters of the materials. It is

noted that in the cases of 1.1: = l, the agreement between two sets of equations is

always satisfactory since they are identical equations.
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Fig-3.34 Solutions for the antisymmetric mode of induced EM field obtained from
the coupled tensor integral equations based on 512-cell division in the

heterogeneous body. (x- component of E field)



 
 

 

 
 

 
 

 
 

     
 

 

 

 

 

       

  

IEAintV/m) .0552 .0477 .0326 .0098 .0618 .0533 .0365 .0120

45,1116) -87.6 -87.6 -87.3 -82.0 -87.0 -87.0 -86.9 -83.4

.0383 .0329 .0224 .0077 .0459 .0393 02660097

-87.0 -87.0 -86.7 -84.4 -85.8 -85.8 -85.8 -84.6

.0227 .0195 .0132 .0047 .0281 .0240 .0162 .0059

-86.6 -86.6 -86.3 -84.3 -85.7 -85.7 -85.5 -84.6

.0075 .0064 .0044 .0015 .0090 .0077 .0052 .0019

-86.4 -86.3 -86.1 -84.4 -86.2 -86.2 -85.9 -85.4

1 2

.0687 ,0589 .0393 .0132 .0733 .0625 04190139

-86.0 -86.1 -86.2 ~83.2 -85.3 -85.5 -85.8 -83.0

.0589 .0499 .0328 .0120 .0671 .0565 03670134

-83.8 ~83.8 -83.9 -82.9 -82.8 -82.0

' .0220 .0081 .0262 .0096

-82.7 -82.0 -81.0 -80.2

.0067 .0024 u _" .0081 .0029

-83.7 -83.5 : -8l.4 -81.2        

 

3

Fig-3.35 Solutions for the antisymmetric mode of induced EM field obtained from

the coupled tensor integral equations based on 512-cell division in the

heterogeneous body. (z- component of E field)
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Fig-3.36 Solutions for the antisymmetric mode of induced EM field obtained from

the coupled tensor integral equations based on 512-cell division in the

heterogeneous body. (y- component of H field)
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Table-3. l

 

Summary of Agreement and Convergence Properties

for the Coupled tensor IE and tensor EFIE (I)

 

 

 

 

      
 

 

      
 

 

 
       

 

       
        

s;=50+110 e;=5+i4

Type of Incident

u; = u; = u; = ' = u; = u: =

Electric Field 50+1'10 5+1'3 l+i0 50+i10 5+i3 1+1'0

E C E C E C E C E C E C

conv. X X X X X X F X F O O O

f = _

srn

agr. X X 0 X F 0

750MHz conv. X X X X X X X X 0 O 0

cos

agr. X X 0 X X 0

conv. X X X X X X 0 O 0 0 O O

f = .

srn

agr. X X 0 O O O

200MHz conv. O X F O O O O O O O O 0

cos

agr. X 0 O F O O

 

E: Tensor EFIE C: Coupled Tensor IE

0: Satisfactory F: Fair X: Poor
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Table-3. la

Summary of Agreement and Convergence Properties

for the Coupled tensor IE and tensor EFIE (II)

e:=50+i10 g;=5+i4

Type of Incident

. = . = . = u; = u; = u; =

Electric Field 50+i10 5+1”3 1+i0 504-110 5+i3 l+i0

E C E C E C E C E C E C

conv. X X X X F O O O O O O

f = .

srn

agr. X F O O O O

SOMHz conv. O O O O O O O O O O O 0

cos

agr. O O O O O O

conv. X X X X F O O O O O O

f = .

sin ._...

agr. X F O O O 0

lOMHz conv. O O O O O O O O O O O 0

cos

agr. O O O O O O

 

E: Tensor EFIE C: Coupled Tensor IE

0: Satisfactory F: Fair X: Poor
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We now gain some insights about the numerical solution behaviors for the cou-

pled tensor integral equations and the tensor EFIE by comparing the numerical results

of the induced electric field distributions presented above. However, to investigate the

behavior of the magnetic field distribution, the solutions of tensor MFIE and the cou-

pled equations should be compared. Since both sets of equations are dual in E and H,

it is logical for us to expect the numerical solution behavior of the induced magnetic

field to be similar to that of the electric field if we interchange 8* and 11*, and also

symmetric and antisymmetric modes of incident fields. In fact, the numerical results

which are not presented here will confirm our expectation.

There are some advantages in the decoupled tensor EFIE and MFIE which we

derived in section 3.2 over the formulations derived by Tai [13] although they are

equivalent in the homogeneous case. One thing is that there exist the terms of V x E

and V x H in Tai’s equations. This will cause difficulty when one attempts to solve

the equations numerically. The other advantage of our equations is that they are

derived for a heterogeneous system so that they can be used to handle more compli-

cated cases, although some numerical skill is needed to calculate the terms involving

the gradient of the permittivity or permeability functions.

The set of coupled integral equations in terms of the free space scalar Green’s

functions (3.3.28) and (3.3.29) has also been investigated when it is applied to a homo-

geneous body. As we mentioned before, there are no induced volume charge inside

the homogeneous body therefore the terms of VE and V-H should vanish in the equa-

tions. However, if we simply solve the reduced equations (3.4.27) and (3.4.28) via

pulse-basis expansion and point-matching, we will find that the numerical results are

completely different from what we obtained by the coupled tensor integral equations

and tensor EFIE. The reason is that the pulse-basis expansion assumption satisfies the

charge free condition inside each cell, but the jump discontinuities created by the
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pulse-basis at the boundaries of adjacent cells will imply some charge distributions on

the cell surfaces which need to be taken into account in the evaluation of the induced

EM fields. Therefore we need to extend the domain of the surface integration from

the enclosing surface s to all the surrounding surfaces of each cell in (3.4.27) and

(3.4.28). After this extension process, we are able to get numerical results very close

to what we have obtained by the tensor integral equations. The numerical results are

also omitted.

To compare the advantages and disadvantages of the two sets of coupled integral

equations, a few things need to be pointed out. Since these two sets of equations are

both transformed into matrix equations of order 6N, they cost equally in computer

memory storage. In the tensor equations, we need to handle the singularity problem

with a correction term before we get into computer but the formulations turn out to be

easier to program since there are only volume integrations involved. On the other

hand, we need to calculate both the volume and surface integrations in the other set of

coupled integral equations.

The arguments of the two different formulations of decoupled integral equations

are similar to that of the two sets of coupled integral equations except that both sets of

decoupled equations contain the surface integrations. We should also notice that only

the domains of the surface integrations involving the n-E and n-H terms which imply

surface charge distributions need to be extended to all the surrounding surfaces of each

cell.

Let us summarize the relations among the four sets of integral equations briefly.

The two sets of coupled integral equations will give similar numerical results provided

the surface integration terms are properly treated when we apply the pulse-basis expan-

sion and point-matching to solve the induced field distributions in a homogeneous

body, and so will the two sets of decoupled integral equations. The coupled integral
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equations can determine both E and H simultaneously but will require four times of

memory storage in the computer and need a longer CPU time to solve matrix equa-

tions of larger size. The agreement of the numerical results between the coupled

integral equations and the decoupled ones is satisfactory for certain ranges. However,

in the heterogeneous cases, it is easy to program for the coupled tensor integral equa-

tions.



CHAPTER IV

PLANE WAVE SPECTRUM ANALYSIS OF A NONUNIFORM PLANE WAVE

PASSING THROUGH A LAYER OF LOSSY MATERIAL

This chapter presents an application of electromagnetic wave for detecting a small

movement of a biological body behind a barrier. A microwave life detection system

Operating at a frequency of 10 GHz [20], [21] has been constructed to measure the

breathing and heart beats of a human subject located at a distance of 100 feet. The

principle of the system is to illuminate a human subject with a low intensity

microwave beam, and then extract the breathing and heart signals from the modulated

back-scattered wave with a detecting system. In order to detect small body vibrations

behind a barrier, a system constructed on the same principle with an operating fre-

quency at 2 GHz is developed because of the better penetration ability of EM waves

with a lower frequency. A series of experiments have been conducted to measure the

breathing and heart signals of a human subject behind a thick layer of bricks with the

microwave life detection systems. Plane wave spectrum theory [17], [18] is used to

analyze the nonuniform plane wave radiated from the antenna and passing through a

layer of lossy material in order to predict the field distribution on the other side of the

barrier. The predicted electric field distributions and experimental results on the detec:

tion of breathing and heart signals behind brick wall of various thicknesses are

presented.

In section 4.1, the plane wave spectrum analysis is introduced. Some predictions

of the elecuic field distributions of the nonuniform plane wave passing through a layer

of lossy material are shown in section 4.2. A brief description of the microwave

detection systems is included in section 4.3. Section 4.4 presents experimental results

128



129

of detecting the small vibrations due to breathing and heart beats of a human body

behind a brick wall.

4.1 Plane Wave Spectrum Analysis

The plane wave spectrum approach has been summarized by Paris [17]. Simply

speaking, any arbitrary electric field distribution of a particular frequency can be

represented as a superposition of plane waves traveling in different directions with

different amplitudes and the same frequency. The resultant expansion is known as a

model expansion of the arbitrary monochromatic wave. The object of this expansion

is to determine the unknown amplitudes and directions of propagation of the plane

waves in the superposition.

A plane wave in free space must satisfy the Maxwell’s equations which lead to

the vector Helmholtz equation:

V2E(r) + 1% E(r) % 0 (4.1.1)

where

k3 = (0211020 . (4.1.2)

The trial solution of (4.1.1) can be written as

E = A(k)e-J‘” (4.1.3)

where the time harmonic factor of aim is assumed, j = ‘1——1 is used in this chapter and

k = xkx + yky + zk, (4.1.4)

denotes the direction of propagation of the plane wave represented by (4.1.3). The
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three Cartesian components of k should satisfy the following relations:

k§+k§+k§=kfi=m2uoeo. (4.1.5)

Thus at a frequency, only two of the components of k can be independently

specified. Suppose k, and ky are independent components, then

 

\lké-ki-kfi, k§+kzskfi
y

k = 1 (4.1.6)
 

 

The negative radical is chosen specifically in order to ensure that the wave is bounded

at infinity.

Since the region is charge free, we have

V-E = O . (4.1-7)

Substitute (4.1.4) into (4.1.7) gives

k-A(k) = 0 (4.1.8)

or

12,4,(1‘) + 194,01) + k,4,(k) = 0 . (4.1.9)

This implies only two components of A(k) are independent for all k. Let these be Ax

and Ay, then

A,(k) = "kl—[154414) + k,4,(k)] . (4.1.10)

The general solution for E(r) can be constructed as linear combinations over kx

and ky if A(k) is known:

E(r) = 1:1: A(k)e"fi"" dk,dky (4.1.11)
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where A(k) is the so called plane wave spectrum. The expression of (4.1.11) is essen-

tially a 2-dimensional inverse Fourier transform when the z coordinate is specified.

Suppose we aim to predict a electric field distribution of a nonuniform plane

wave passing through a layer of lossy barrier with thickness d as shown in Fig-4.1.

The complex permittivity of the barrier is 8' and the permeability is 110. An antenna is

placed right next to the barrier and the aperture is on the z=0 plane. The aperture field

of the antenna is then denoted as E(x,y,0). Now we can find the plane wave spectrum

of the aperture field on the 2:0 plane by the twoodimensional Fourier transform:

4.0) = fngl" I" 5.05.018” * ’9” dxdy (4.1.12)

A,(k) = 21:11" Ey(x,y,0)e""-" + ’9” dxdy (4.1.13)

It is noticed that only tangential components of E field on the z=O plane are needed to

determine the spectrum A(k) since A, can be derived from (4.1.10).

We treat a nonuniform plane wave as a linear combination of uniform plane

waves coming from all directions. In order to analyze a single uniform plane wave

passing through the one-layer barrier, a very simple approach [19] by means of wave

matrix and transmission-line theory is used. This analysis is valid for both cases that

the barrier consists of loseless (0' = 0) or lossy (0' at 0) material. The lossy layer is

replaced by an equivalent transmission-line circuit as shown in Fig-4.2. The transmis-

sion coefficients of the barrier for an obliquely incident plane wave can be determined

as follows:

The reflection and transmission coefficients at the two interfaces are

 

 

z-1

1 Z+1 ( )

R2- 1‘2 (4.1.15)
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Fig-4.1 An incident plane EM wave on a lossy layer of thinkness d.

 

1
"
"
'
—
—
-

1

Fig-4.2 Equivalent circuit for a lossy dielectric layer.
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T1=1+R1=
 

(4.1.16)

1 Z+

2

1+Z

 

T2=1+R2= (4.1.17)

where Z is the normalized impedance of the section of line representing the lossy

layer. Using the wave matrix theory [19] gives the over-all transmission coefficient

  

7172 l 2. -1
T: . . = cos¢+j srnq) , (4.1.18)

where

9 = k0 K — sinzei (4.1.19)

is the electrical length of the lossy layer of thickness d, K = e: is the relative complex

permittivity and 9,- is the angle of incidence measured from the interface normal in

Fig-4.1.

For the cases of perpendicularly polarized and parallelly polarized incident waves,

we have different expressions for the normalized impedances:

Z = K - 311120,. (4 1 20)

P Kcosei ' '

 

cosO;

ZN = . 2

VIC - srn 9"

where the subscripts N and P stand for perpendicular and parallel polarization, respec-

 

(4.1.21)

tively. Similarly for the two different over-all transmission coefficients:

 

.1 + Z}, . ‘1

Tp = cos¢ + 1 51nd) (4.1.22)

22?

 

1 + Z}, _ ‘1

TN = 0056 + j srn¢ . (4.1.23)

221v
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Notice that in a particular direction of incidence k,

 

k'Z 1‘2

cost) = = — 4.1.24

‘ Ikl Ill k0 ( )

sinOi = -iko—k—3 . (4.1.25)

The normal vector aN of the incidence plane for a uniform plane wave traveling

in the direction of k can be expressed as

aN = z x k = -xky + ykx. (4.1.26)

Thus the perpendicularly polarized component of A, denoted as AN, is the projection

of A on aN:

_ (A-aN)aN

~- Ia I2 (4.1.27)

N

and the parallelly polarized component of A, denoted as Ap, can be obtained by sub-

tracting AN from A:

AP = A — AN . (4.1.28)

The direction of a single uniform plane wave remains the same after passing

through the barrier by the Snell’s law. So we simply multiply the two different over-

all transmission coefficients with AN and Ap to obtain AN’ and Ap’, the two different

polarized components of the plane wave spectrum, behind the barrier:

AN' = TNAN (4.1.29)

Ap’ = TPAP . (4.1.30)

The total plane wave spectrum behind the barrier A’ is then

A, = A’(kX’ky) = AN, '1' AP, = TNAN + TPAP . (4.1.31)
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Therefore we can determine the electric field distribution behind the barrier at any par-

ticular 2 through the inverse two-dimensional Fourier transform:

E(x,y,z) = fl A’(kx,k,,kz)e'j[k"‘ + ’9’ + ““01 dkxdky (4.1.32)

where k2 is related to k, and k, by (4.1.6).

Now we can predict the E field distribution at any point behind the barrier for a

given antenna aperture field distribution, or in other words, a nonuniform plane wave,

passing through a infinite one-layer barrier. Some examples simulating the practical

situations are presented in next section.

4.2 Predictions of Field distributions for a Nonuniform Plane Wave Passing

through a Layer of Lossy Material

Some examples of the predicted electric field distributions for a nonuniform plane

wave passing through a layer of lossy material are presented in this section. Suppose

some antenna aperture field distribution are given, we can use the formulas derived in

section 4.1 to calculate the desired field distributions behind the layer.

We use the aperture field of an open ended rectangular wave guide with dimen-

sion a and b (b < a) as the nonuniform plane wave at r=0 plane in our example as

shown in Fig-4.3. The origin of the coordinate system is set at the center of the aper-

ture. The E field of T1310 mode in a rectangular wave guide is

E(x,y) = x Bows? e'jB’ (4.2.1)

where

N

11:

[5 = k% .. 23 (4.2.2)
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is the propagation constant of the z— direction.

On the 2:0 plane, we have

E,(x,y,0) = P(x,y) Bows? (4.2.3)

Ey(x,y,0) = 0 . (4.2.4)

where P(x,y) is defined as

<6:1,; 4:13.344
By using (4.1.12), we obtain the plane wave spectrum of this aperture field:

1 0° 0° .

4.00 = 2.721 [ 5.05.0140“ " *1” My

Eon

 

  
  

=._... 1,: fl .k’y

41:2 me, dx cos a e’ dy

1 . kg) 1 kya 1
E0 SlnT COST

= ‘1:— ’9. J _—i- (4.2.6)

' _ (:2

A,(k) = 0 . (4.2.7)

From (4.1.10), we will have

kx

A,(k) = -k—A,(k) . (4.2.8)

2

The perpendicularly polarized and parallelly polarized components of the plane

wave spectrum A are

_ (A'aN)aN _ Axky

AN - -

lale 1‘3 + k3

 (—xky + ykx) (4.2.9)
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k3 1,1. k
A =A—A =4 x——+ ’ —z—" . (4.2.10)P N x é+§ yé+6 @

 

Then the total plane wave spectrum A’ behind the barrier is

A’(kx,ky) = TNAN '1' TpAp

x 71ng + Tpkg + kzky(Tp -' TN) _ Tpkx

4.2.11
x ki-i-k; y [cg-Pk; z [(2 ( )

  

Suppose we like to know the electric field distribution on the plane at a distance 5

from the barrier, this field distribution can be obtained from (4.1.32) as

E(x,y,d+s) = f' [°° A'(k,,k,,k,)e"'"‘-’ f "r’ " ’9" dkxdky . . (4.2.12)

The two-dimensional discrete Fourier transform (DF'I') [23], [24] is used to evalu-

ate (4.2.12). The spectrum on the plane at a distance 5 from the wall can be obtained

by multiplying a phase factor e’jk" to A’, then we can calculate the value of spectrum

at each discrete grid point on the kx—ky plane. The electric fields at corresponding grid

points on this plane 2 = d+s can be obtained by taking two-dimensional inverse DFI‘.

The fast Fourier transform (FFI‘) algorithm was used to perform the DFT in our calcu-

lation because for efficiency computation. Fig-4.4 shows the amplitude of the x— com-

ponent of plane wave spectrum le’l on the plane of s = 0.2 m. In this example, the

dimensions of the aperture are a = 32 cm, b = 15 cm and the value of E0 is assumed

to be 1 Wm. The relative complex permittivity a: of the barrier is 5 - j0.3. Since the

field decays very fast when k0 SW (evanescent waves), we can truncate the

spectrum at k, = il.lko and ky = il.lko and assume that the function values of the

spectrum are all zero outside the square. The frequency of this nonuniform wave is 2

GHz, so the boundaries shown on the figure are kx = i1.1k0 = i46.08 m‘1 and
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Fig-4.4 The magnitude of the x— component of plane wave spectrum behind the bar-

rier (d = 0.2 m).
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ky = i1.lk0 = $46.08 m‘l. We sample 100 points in k, direction and 30 points in ky

direction. The numbers of sampling points are decided by the Nyquist rate which

prevents the aliasing of the result of the inverse DFI‘. After taking two-dimensional

inverse FFI', we obtain the x— component of electric field distribution E, on the same

plane, where IExl is shown in Fig-4.5. The bounds for the truncated domain of IExl,

x S $3.4 m and y S $1.02 m, are determined by the sampling rates and so are the

bounds for the truncated domain, k, = 5:46.08 m-1 and k, = 21:46.08 m-l, of 14,1. It is

noticed that since Ax’ is an even function of k, and k), EJr is also even function of x

and y by the Fourier transform theory [22].

Fig-4.6 indicates the amplitude of the 2- component of plane wave spectrum |A,’|

and Fig—4.7 the presents 2- component of electric field distribution lEzl on the same

plane. Now, since A,’ is odd in k, but even in Icy, E, is odd in x and even in y. There-

fore lAz’l is zero when k, = 0 and lEzl is zero when x = O as observed in the figures.

The y— component is much smaller than the other two components so that it is

neglected in this example.

If we increase the distance 3 to 0.4 m, we expect that the field distribution spreads

out and the peak value decreases. The numerical simulations in Figs-4.8 and 4.9

confirm our predictions. Only the electric field distributions are shown in the figures

since the amplitude of spectrum remains the same in spite of the variation of s which

only introduces a phase change to the spectrum functions.

Another example for the barrier with a different thickness of d = 0.5 m is shown

in Figs-4.10 to 4.15. We observe similar results except that the amplitudes of both

spectrum and electric field are smaller than those in the previous case because of more

attenuation caused by the thicker barrier.
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Fig-4.5 The magnitude of the x— component of electric field distribution behind the
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Fig-4.8 The magnitude of the x— component of electric field distribution behind the

barrier (d
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Fig-4.9 The magnitude of the z— component of electric field distribution behind the

barrier (d = 0.2 m) at a distance of 0.4 m.
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Fig-4.10 The magnitude of the x- component of plane wave spectrum behind the

barrier (d = 0.5 m).
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Fig-4. 12 The magnitude of the z— component of plane wave spectrum behind the

barrier (d = 0.5 m).
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Fig-4.13 The magnitude of the z— component of electric field distribution behind the

barrier (d = 0.5 m) at a distance of 0.2 m.
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Fig-4.14 The magnitude of the x— component of electric field distribution behind the

barrier (d = 0.5 m) at a distance of 0.4 m.
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Fig-4.15 The magnitude of the z— component of electric field distribution behind the

barrier (d = 0.5 m) at a distance of 0.4 m.
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The DFT scheme we used here to carry out (4.2.12) is restricted to some short

distances. Since as the distance goes further, the field distribution will spread more

and more. Therefore, very many sampling points are needed to reconstruct the field

distribution accurately by means of performing the inverse DFI‘ without aliasing. The

array size which the computer is capable of handling indeed limits this distance 3.

4.3 Brief Description of Microwave Life Detection Systems

The objectives of the microwave life-detection systems are to sense remotely the

breathing and heartbeats of human subjects who are lying on the ground at a distance

(about 100 feet) or located behind a wall or other barriers. The principle of the sys-

tems is simple. We illuminate the subject with a low-intensity microwave beam. The

small amplitude body vibrations due to heartbeat and breathing of the human subject

will modulate the back-scattered wave, producing a signal from which information of

the heart and breathing rates can be extracted using phase detection in the microwave

receiving system.

Two life-detection systems have been deveIOped. The first system is an X-band

(10 GHz) system which is capable of detecting the breathing and heartbeats of a

human subject lying on the ground at a distance of 100 feet or sitting behind a wall of

about 6 inches thickness. The second system is a L-band (2 GHz) radio frequency

system which was specially designed for detecting the body movements of human sub-

jects located behind a very thick wall (up to 3 feet brick wall).

The back-scattered wave from the human body is both phase and amplitude

modulated by the small amplitude body vibrations. The behavior of the back-scattered

wave is analyzed in [25] by assuming that the body is a sphere or an infinite cylinder
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of complex permittivity and the breathing and heartbeats cause small vibrations of the

spherical or cylindrical surface due to changes in its radius. Since the phase variation

is more linear by the analysis in [25] and easier to be detected from the viewpoint of

the signal/noise ratio, we detect the phase modulation of the back-scattered wave to

measure the vibrations of the body surface caused by the heartbeats and respiration.

The schematic diagram of the microwave life-detection system is shown in Fig-

4.l6. A phase-locked oscillator produces a stable output of about 20 mW. This output

is amplified by a low-noise microwave amplifier to a power level of about 200 mW.

The output of the amplifier is fed through a 6 dB directional coupler, a variable

attenuator, a circulator and then to a horn antenna. The 6 dB directional coupler

branches out 1/4 of the amplifier output to provide for a reference signal for clutter

(the reflected wave due to stationary subjects such as wall, building and ground, etc.)

cancellation and another reference signal for the mixer. The variable attenuator con-

trols the power level of the microwave to be radiated by the antenna. Usually, the

radiated power is kept at a level of about 10 to 20 mW. The microwave coming out of

the variable attenuator is fed to the horn antenna through a circulator. The horn

antenna radiates a microwave beam of about 15 degrees bearnwidth aiming at the

human subjects lying on the ground. The received signal by the antenna consists of a

large clutter and a weak return signal scattered form the body. The large clutter signal

is canceled by a reference signal, amplitude and phase of which are adjusted by a vari-

able attenuator and a phase shifter, in a 10 dB directional coupler. After this clutter

cancellation, the output of the 10 dB directional coupler contains mainly the weak

scattered signal from the body. This body scattered signal is a CW microwave modu-

lated by the breathing and the heartbeats. This signal is then mixed with another refer-

ence signal in a double-balance mixer. In between the microwave pre-amplifier and

the double-balance mixer, a 10 dB directional coupler is inserted to take out a small
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portion of the amplifier signal for monitoring its intensity. This monitoring is mainly

for checking how well the clutter is canceled. The mixing of the amplified, body scat-

tered signal and a reference signal (7 to 10 mW) in the double-balance mixer produces

a low-frequency breathing and heart signals which modulate the scattered microwave

from the body. This output from the mixer is amplified by an operational amplifier

and then it passes through a low-pass filter (4 Hz cut-off) before reaching a recorder.

The two systems of different bands have the same circuit diagram, except that

various components for different frequency bands are used.

4.4 Experimental Results of Detecting Movements of a Human Body across a

Wall by Using Microwave Detection Systems

The experimental results of detecting movements of a human body at a distance

away from the system can be found in [21]. In this section we will present the test

results on the detection of the heart and breathing signals of a human subject who is

located behind brick walls of various thickness, using both the X-band and the L-band

system.

We have found that with the X-band system, it was possible to detect the heart

and breathing signals of a human subject through a brick barrier of up to about 15

inches thickness. However, if the wall was thicker than that, the detection become

difficult with the X-band system. The L-band (2 GHz) system was then design for the

purpose of detecting the heart and breathing signals of human subjects who were

behind a very thick wall or buried under a thick layer of rubble.
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As mentioned in section 4.3, the L-band system has the essentially same circuit

arrangement as that of the X-band system, but the radiation beam of the former can

penetrate a thicker wall than the latter due to its lower Operating frequency. With the

L-band system, it is possible to penetrate the brick barrier of up to about 34 inches

thickness.

Fig-4.17 depicts the experimental setup of the first series of experiments. A brick

wall (3 feet wide and 4.5 feet high) of various thicknesses was lined with microwave

absorbers along the edges. New Orlean’s homestead bricks were used. A human sub-

ject sat behind the brick wall within a distance of l to 2 feet. The antenna of the life-

detection system was placed close to the other side of the brick wall.

Fig-4.18 shows the heart and breathing signals of a human subject measured by

the 10 GHz system through one layer (3 3/8") and two layers (6 3/ ") of dry bricks.

In each recorded graph, the breathing signal, the heart signal (the subject holding

breath) and the background noise were included. Both the heart and breathing signals

were clearly detected. Fig-4.19 shows the heart and breathing signals of a human sub-

ject measured by the 10 GHz system through three layers (10 1/8"), four layers (13

1/2") and five layers (16 7/8") of dry bricks. It is observed that both the heart and

breathing signals were detected through four layers of bricks, but only the breathing

signal was measured through five layers of brick. It is noted that as the thickness of

the brick wall was increased, the amplifier gain of the system was increased accord-

ingly. We estimate that with the 10 GHz system, it is possible to penetrate a dry brick

wall of about 15 inches thickness.

Fig-4.20 shows the heart and breathing signals of a human subject measured by

the 2 GHz system through five layers (16 7/8") and six layers (20 1/4") of dry bricks.

In each case, both the heart and breathing signals were easily detected. It is noted that

for a thinner brick wall, it was even easier to measure these signals. Fig-4.21 shows
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Fig-4.17 Experimental set up for the measurement of heart and breathing signals of.a

human object through brick wall, using microwave life detection system.



158

- breathing heart beat breathing background

I m_I‘noise

FL—fiz

   

I layer 3‘. fl

(3 3/8")° :———=:——=—_=E—-‘__;‘—:==" —-— —_—=—_:_
dry bricksf _:.._'_____._.._ ___==-E.=-_-;._ _ __ _‘ .,,___,,__._

breathing heart beat background

noise

2 layers

(6 3/4") of

dry bricks

 

Fig—4. 18 Heart and breathing signals of a human subject measured through brick

walls of various thicknesses using the 10 GHz life detection system.
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Fig-4.19 Heart and breathing signals of a human subject measured through brick

walls of various thicknesses using the 10 GHz life detection system.
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Fig-4.20 Heart and breathing signals of a human subject measured through brick

walls of various thicknesses using the 2 GHz life detection system.
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Fig-4.21 Heart and breathing signals of a human subject measured through brick

walls of various thicknesses using the 2 GHz life detection system.
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the results for the cases of seven layers (23 5/8") and eight layers (27") of dry bricks.

Clear heart and breathing signals of a human subject were measured in each case. We

were able to measure the heart and breathing signals of a human subject through ten

layers of dry bricks with the 2 GHz system. This leads to an estimation that with the

2 GHz system, it is possible to penetrate a dry brick wall of about 34 inches thickness.

We also tested the effect of moisture on the performance of the life-detection sys-

tems. For this purpose one layer of the brick wall was constructed with wet bricks.

When we used wet bricks which were soaked in water for several hours, the perfor-

mance of the system was affected insignificantly. However, a significant effect was

observed when we used very wet bricks .which were soaked in water for three days.

Fig-4.22 shows the heart and breathing signals of a human subject measured through

three layers (10 1/8") of very wet bricks, using the 10 GHz system. It is observed that

with one layer of very wet bricks present, the penetration of 10 GHz microwave beam

was severely hampered. It is then conjectured that the 10 GHz system may not be

effective in detecting the heart and breathing signals of human subjects through a very

wet barrier. This difficulty may be overcome by using the 2 GHz system. Fig-4.23

shows the results of the same experiment of Fig-4.22 except using the 2 GHz system.

It is observed that one layer of very wet bricks reduced the magnitudes of the meas-

ured heart and breathing signals but we were still able to detect these signals clearly

without much difficulty. Therefore, it is reasonable to conclude that for the purpose of

detecting vital signs of human subjects through a thick layer of wet rubble, the life-

detection system should be designed to operate at low frequencies, such as lower than

1 GHz.

The second series of experiments was conducted with a setup depicted in Fig-

4.24. Varies layers of bricks were laid on a wooden frame which formed a cavity for

a human subject to lie down in it. Microwave absorbers were used to line the sides of
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Fig-4.22 Heart and breathing signals of a human subject measured through brick

walls of various thicknesses using the 10 GHz life detection system. One

layer of wet bricks severely hampered the penetration of the microwave

beam.
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Fig—4.23 Heart and breathing signals of a human subject measured through brick

walls of various thicknesses using the 2 GHz life detection system. One

layer of wet bricks had a considerable effect on the penetration of the

nucrovvave beanL



165

BRICK LAYERS ' /(\'

  

  

  

ABSORBE .

MI CROHAVE L I FE- OETECT I ON

SYSTEM
  O

SIDE-VIEW

 
FRONT- VI EN

Fig-4.24 Experimental set up for the measurement of heart and breathing signals of a

human object under layers of bricks, using microwave life detection system.
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this brick structure. This setup simulated a human subject trapped under a thick layer

of rubble. The antenna of the life-detection system was placed on the top of the brick

structure aiming at the human subject.

Fig-4.25 shows the heart and breathing signals of a human subject lying with

face-up or face-down position under three layers (10 1/8") of dry bricks, measured by

the 10 GHz system. Both the heart and breathing signals were clearly detected for

each position. Fig-4.26 shows the similar results for the case of four layers (13 1/2")

of dry bricks, with the 10 GHz system. When the thickness of the brick structure

exceeded more than five layers (16 7/8") of bricks, the performance of the 10 GHz

system became marginal.

Fig-4.27 to Fig—4.29 show the heart and breathing signals of a human subject

lying with face-up or face-down position under five layers (16 7/8"), six layers (20

1/4") and seven layers (23 5/8") of dry bricks, respectively, measured by the 2 GHz

system. In each of these figures, the heart and breathing signals were both clearly

recorded. As the thickness of the brick structure was increased, the amplifier gain of

the system was increased accordingly. It was found that it is easy to penetrate a pile

of dry rubble up to about three feet thickness with the 2 GHz life-detection system.
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Fig-4.25 Heart and breathing signals of a human subject, lying with face-up or face-

down position under 3 layers of bricks, measured by the 10 GHz life detec-

tion system.
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Fig-4.26 Heart and breathing signals of a human subject, lying with face-up or face-

down position under 4 layers of bricks, measured by the 10 GHz life detec-

tion system.
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Fig-4.27 Heart and breathing signals of a human subject, lying with face-up or face-

down position under 5 layers of bricks, measured by the 2 GHz life detec-

tion system.
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Fig-4.28 Heart and breathing signals of a human subject, lying with face-up or face-

down position under 6 layers of bricks, measured by the 2 GHz life detec-

tion system.



7 layers

(23 5/8“) of

dry bricks.

subject

face-up

7 layers

(23 5/8") of

dry bricks.

subject

face-down

171

Z-GHz Lif

 

e-Detection System

background

'I' noise "I

 

I__ breathing +_ heart beat

 

 

 

 

 

 

 

 

 
 

- . z‘

r: f“ - .é ~-
4 ~-‘ 4—— — —

g- 2 .- 2.W

r- z . ' . . I "I 345.1. . 4-

i 3.. 3' . ‘.-."’, f " .2 .-

_ I .' L- I" "" "' " “'1‘ Z: - -

— 0.- — _‘I I.-

1 sec.

rbreathing ,I... heart beat

 

background

'Ifinoise TI

 

 

 

 

 
 

.E‘ l. =:_ ._ - ___. _

[I 5' " E311 1 -

1'- 5:1 1". 3:.- _ __ ____-____

 

 

 

Fig-4.29 Heart and breathing signals of a human subject, lying with face-up or face-

down position under 7 layers of bricks, measured by the 2 GHz life detec-

tion system.



CHAPTER V

SUMMARY

This thesis presents of the study on the quantification of interaction of elec-

tromagnetic fields with finite heterogeneous bodies and an application of electromag-

netic waves for detecting a small movement of a biological body behind a barrier.

In the study on the quantification of interaction of electromagnetic fields with

finite non-magnetic lossy bodies, an iterative Imp-EMF method and an equivalent

magnetic current compensation method have been developed to improve the efficiency

and accuracy of the existing tensor integral equation method. The induced electric

field of electric mode which is excited by symmetrical part of incident electric field

can be solved accurately from the tensor EFIE with the method of moment and pulse-

basis expansion. However, the induced electric field of the magnetic mode which is

excited by the antisymmetrical part of incident electric field can not be determined

accurately by the same method. A series of numerical examples at various frequencies

for the induced field distributions in a rectangular biological body are presented. It is

observed that for an antisymmetric incident electric field in the range of several hun-

dred MHz, the latter method can improve the accuracy of the numerical solution of

induced electric field while the former method achieves more improvement. It is felt

that the latter method can be further refined if a proper magnetic current can be found

to compensate the discontinuity of the tangential electric field at the air-body interface,

or the outmost boundary of the body. One can also use the iterative loop-EMF

method to calculate the induced fields in a heterogeneous body, but the determination

of the irrrpedance at the boundaries of the cells which are of different materials needs
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further investigation.

The interaction of EM fields with finite lossy magnetic bodies has also been stu-

died in this thesis. A set of coupled tensor integral equations has been derived to

solve for the induced EM field in a finite heterogeneous body with arbitrary electric

parameters which is exposed to an incident EM field. This set of equations can be

decoupled into a separate tensor EFIE and a separate tensor MFIE. If the coupled ten-

sor integral equations are used, we need to solve for the unknown fields E and H

simultaneously while we can solve E and H separately if the decoupled equations are

used. This means twice the number of unknown variables when the coupled equations

are solved numerically. Both coupled and decoupled integral equations can be

expressed in terms of the free space scalar Green’s functions instead of the dyadic

Green’s functions. With pulse-basis expansion and point-matching, either solving the

tensor integral equations or the integral equations in terms of the scalar Green’s func-

tions will give similar numerical results. One advantage of the coupled tensor integral

equations is that they are easy to be formulated in the heterogeneous case. The agree-

ment of the numerical solutions of the coupled and decoupled equations was observed

for the cases of low permittivity (e, < 20) and frequency below a few hundred MHz.

The phenomenon that the induced electric field is enhanced by the magnetic material

in a finite body has also been investigated through the comparison of the numerical

solutions for a magnetic body and a non-magnetic body with the same dimensions and

complex permittivity.

In the study of the application of electromagnetic wave for detecting a small

movement of a biological body behind a barrier, a nonuniform plane wave passing

through a layer of lossy barrier has been analyzed by using the plane wave spectrum

analysis. Also a series of experiments were conducted to measure the breathing and

heart signals of a human subject behind a thick layer of bricks with microwave life
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detection systems. The predicted electric field behind the barrier distributions calcu-

lated by the FFI‘ algorithm indicate some perturbations of the original electric field

distributions due to the barrier. Varying the thickness of the barriers causes different

attenuations and perturbations to the electric field distributions behind the barrier.

Experimental results on the detection of small vibrations of a biological body using the

microwave life detection systems clearly indicate the breathing and heart signals of a

human subject located behind a brick wall of up to 3 feet thick. The comparison of

the results obtained from the X-band and L-band systems confirms that the EM waves

of lower frequencies achieve better penetration through a barrier.
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APPENDIX I

We will prove that the decoupled tensor EFIE and MFIE derived in section 3.2

are equivalent to the set of decoupled integral equations derived by Tai [13] when they

are applied to a homogeneous body.

When (3.2.18) and (3.2.19) are applied to a homogeneous body, i.e., re, rm, 6*

and 11 are not functions of location, then the equations becomes:

2 I

312. ., e
I 311. 380

‘1. [11' — “'0

‘ u

2

6? +-I‘— H(r)-P.V.],kfi J‘— ~52-

38 3110 110 e

T I s a

e

The decoupled integral equations by Tai are

 

IE(r) - P.V.I v kgI-E; - -:£IE(r’)-80(r,r’) dv’

 

In x E(r’)l°[V’ >< o(r,r’)l ds’ = 13’0“)

 H(r’)°80(r,r’) dv’

 

[n X H(r’)l'[V' >< o(r.r’)] ds’ = H’(r) ,
 

 

E(r) - (k2 — k3) I , 80(r,r’)-E(r’) dv’

 + ILl 11110] Is 5'_:"o(r,r’)'[n x V’ X E(r)] 613' = ET")

H(r) - (k2 — 1:3) I v 80(r,r’)-H(r’) dv’

 

.

+ I8 e- 80I I . goon-[n x V’ x H(r)] 49' = H‘tr)

(A1.1)

(A 1 .2)

(3.2.20)

(3.2.21)

where the Cauchy principal value for the volume integration containing 80(r,r’) and

the extra correction term are implied by the usual integral notations.
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Suppose we rewrite (Al.l) also by using the usual integral notation to represent

the Cauchy principal value for the volume integration containing 80(r,r’) and the extra

correction term, then we can have

it"! 801»:

1 - — E T v e '1' — E at 9 d ,I c0111“) I (r u ) (r) (rr') v

- I s gfi-MEU’) x 5?..(r.r’)] ds’ = E‘(r) (A1.3)

Let us compare term by term in (A1.3) and (3.2.20). In the second term of the

left hand side of (A13), we obtain the following equality after some algebraic opera-

tions:

8 cm 1:", . 1 1

(re + -OE—)G:(r,r’) = (1,, + %—) 103110800,” = “i0? — k3)§0(r,r) (A1.4)

where

= L A1511. “o ( l

is the relative complex permeability of the body. For the first term of the left hand

side of (A1.3), we can obtain

I1 it”‘IE( ) 1 E( ) (A16- — l‘ = — r . .

wit u )f

The following equality can be proved by using (15), (16) and (17) of Tai’s paper [13],

the proof is given at the end of this appendix.

I s n-[(V’ x E(r’)) x 80(r,r’)] ds’ = u, [— E‘(r) — I , n-[E(r’) x (V’ x 0(r,t-’))] ds’I

(Al.7)

For the rest two terms in (3.2.20), we can have
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u-uo
 

E11?) - I I I s 80(r,r’):[n x V’ x E(r’)] ds’

”-110

0

 

= 15‘1") - I II— E’(r) - I , n-[E(r’) x (V’ x 80(r,r’))] ds’I

. it,,,

= I1,IE‘(r) + I _, Bin-[E(r’) x fi(r,r’)] ds’I . (Al.8)

From (Al.4), (A16) and (Al.8), we know that (Al.3) becomes

1 1

—E ———k2—k2 ,8 ,’-E ’d’”r (r) ”'1 6)] 0(1‘1') (r) v

 

AIM"
s5 , - V’ E ds’=-1-E" A1.9u, 11 I] 0(l‘r')[n>< x (01 “r (r) ( 1

which is essentially equivalent to (3.2.20).

Therefore we can conclude that (Al.l) is equivalent to (3.2.20) since (A13) is

simply a short form of (Al.1).

The remaining thing is to prove (Al.7).

Proof: Tai denoted the total electric and magnetic field distributions outside the body

as E2(r) and H2(r), the induced field distributions inside the body as Em and H1(r)

and the incident fields as Em and H0), while we use E(r), H(r), Ei(r) and H‘(r)

instead of E1(r), H1(r), E‘0 and H“) as shown in Fig-A.1. Note that the outward nor-

mal vector of region I (inside of the body) in the figure of [13] is denoted as n1, and

that of region 11 (outside of the body) as n2. We use the notation n = n1 = — n2 to

denote the normal vector when the boundaries conditions are applied on the closed sur-

face 3 enclosing region 1.

Equations (15) to (17) in Tai’s paper are needed to prove this equality. On s the

boundary conditions are
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5..

Fig-16.1 Different norations of the parameters and

variables in a permeable body used by

Tai andthis thesis whenitisilluminawd

by a plane wave.
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nX(E—E2)=O,
(15)

VxE

nx VXE- 2 =0, (16)

I.1 “0

hence

nxVxE=-“EO-nxVxE2=[l+ u-uoInxVsz

Thus, we can have

- I .. n-1E2<r') x (V' x our» + (V' x E209) x 800.191 4’

 

— 111 1.10110] Is "'[(V' X E2(1") x 800,0] ‘15,

u-

14

 = E‘(r) — I no] I _, n°[(V’ x E(r’)) x 50(r,r')] ds’ . (17)

From equation (17) of [13], we have

u-

11

 E’(r) - I no] I s n.[(V’ x E(r’)) x 50(r,r’)] ds’

= *1 . 11113203 x (V’ x our» + (V' x 22(1)) x 560431 ds’

 

- [11 RouoI I , n°[(V’ x E2(r’) x 80(r,r’)] ds’

= -1 1 [(n x E2(r’»-<V' x 56M» + (n x V’ x 132091560431 ds’

 

- I 3 I“ ;OHOI[n x (V’ x E2(r’))°80(r,r’)] ds’

= - I s (n x E2(r’))-(V' x 50(r,r’)) dr’
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 — I 3 [I + H LOWJm x (V’ x E2(r’))-8O(r,r’)] ds’

= I s (n X E(r’))'(V’ >< 500,0) ds’ - I s [n x (V’ x E(r’))°8o(r.r’)] ds’ ,

(A1.10)

where we have applied the boundary conditions (15) and (16) of [13] in the last step.

Therefore we obtain

 {Mo
11 J I s {“'[(V' X E(r’))'5o(r,r’)]} ds’ + j s {n°[(V’ x E(r’)) x 80(r,r')]} ‘3'

= — E‘(r) — J‘ S (n x E(r’))-(V’ x 60031-3) ds’, (A1.11)

or in other words,

.1:— I 3 n-[(V’ x E(r’)) x 80(r,r’)] ds’ = - EiO‘) - I 3 n-[E(r’) X (V' X 0031")” 615' .

(A1.12)

Equation (3.2.21) can be proved to be equivalent to (A12) in a similar way.



APPENDIX II

A proof of the equivalence between two sets of coupled integral equations is

given here.

The coupled tensor integral equations derived in section 3.1 are:

 

“((1') , .
[I + 3060 ]E(r) - P.V. I v imuOt¢(r')E(r’)-5o(r,r’) dv

- I v tm(r’)H(r')-[V x 60(r,r')] dv’ = E‘(r) (3.1.40)

 

irm(r) . , 6’ ,

1+ 3% H(r) -P.V.I’ v zmotm(r’)H(r)- 0(r,r’) dv

+ I v 1.(r’)E(r’)-[V x 50(r,r’)] dv’ = H‘m . (3.1.41)

The coupled integral equations in terms of the free space scalar Green’s function

derived in section 3.3 are:

E(r) - ikE-I v {[V"(T.(r’)E(r’))]V¢(r.r’) + k%n(r')E(r’)¢(r.r’)} dv’

+ if! . [n-(1.(r')E(r’))]V¢(r.r’) dv' + I . r...<r')n<r') x wan dv’

= 350-) (3.3.28)

H(r) - 3;;I v {[V’°(t,,.(r’)H(r’))]V¢(r.r’) + k31m(r’)H(r’)¢(r.r’)} dV’

+ 2;:I , [n-(rm(r’)H(r’))lV¢(r.r’) ds’ - I v t¢(r’)E(r’) x V¢(r.r’) dV’
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= H‘(r) . (3.3.29)

We shall prove that these two sets of integral equations are equivalent. It is

sufficient to show (3.1.40) and (3.3.28) to be equivalent since (3.1.41) and (3.3.29) can

be proved to be equivalent in a similar way. We need the following relation first:

I .. [V'-A(r')1V¢<r,r') dv’ - I . [n-A(r')1V4>(r,r’) ds’

= P.V. I v A(r’)-VV<I)(r,r’) dv’ — Agil- . (A2.1)

for any continuous vector function A(r).

Proo . Since V¢(r,r’) is an inte rable vector function for r and r’ in v, we haveg

Iv [V’-A(r’)]V¢(r,r') dv’ = 1i_r)n0 I wv'[V’°A(r’)]V¢(r,r’) dv’ . (A2.2)

From the dyadic identity

V’-[A(r’)V¢(r,r’)] = [V"A(r’)]V¢(r,r’) + A(r’)'V’V¢(r,r’) , (A23)

or

[V"A(r’)]V¢(r,r’) = V"[A(r’)V¢(r,r’)] - A(r’)'V’V¢(r,r’) , (A24)

we can have

I v...[V’-A<r')1V¢(-.r') dv’

= I H.V’-[A(r3V¢(r,r’)1 dv’ — I ...,A(r')-W¢(r,r’) dv’

= Ifise[n-A(r’)]V¢(r,r’) ds’ + I H¢A(r’)-Vvq>(r,r’) dv’

= I. [n-A(r’)1V¢<r.r3 ds’ + I ..[n~A(r’)1V¢(r.r’) ds’

+ I WVEA(r’)-VV¢(r,r’) dv’ (A25)
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where v is the volume source region, s is the closed boundary surface enclosing region

v, Vs is a small sphere centered at r with radius a and Se is the closed boundary surface

enclosing region v8, as shown in Fig-A2. Note that the unit normal vector u of the

surfaces 3+3e enclosing v—vs points outward to the the surfaces, i.e., it is in the oppo-

site direction of the outward normal of the small sphere vE when we consider the sur-

face integration on se in (A25).

We use the following expression by the definition of Cauchy principal value,

P.V. I v A(r’)-VV¢(r,r’) dv’ = li_r)no I H,‘ A(r’)-VV¢(r,r’) dv’ . (A2.6)

8

Let us take limits for both side of (A25) when 8 goes to zero, we have

I ., [V’-A(r’)lV¢(r.r’) dv’ - I , [n'A(r’)lV¢(r,r’) ds’

= lim I ,¢[n'A(r’)]V¢(r,r’) ds’ + P.V. I ,, A(r’)-VV¢(r,r’) dv’

c->0

= P.V. I v A(r’)-VV¢(r,r’) dv’ - A? , (A2.7)

since

lim I s [n-A(r’)]V¢(r,r’) ds’ = — 319- (A2.8)

e—rO ‘ 3

for a continuous vector function A(r). The result of (A2.8) can be carried out by fun-

damental calculus as shown in [2] and [3].

Now let us compare (3.1.40) and (3.3.28) term by term:

I v impote(r’)E(r')q>(r,r’) dv’ = is-I v kgre(r’)E(r’)¢(r,r’) dv’ ; (A29)

0

by (A2.7),

he“) E(r) — P.V. I ,, motto te(r’)E(r’)-VV¢(r,r’) dv’

30380 kg
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Fig-A2 Illustration of the exclusion of a small region

which contains the singularity point when

evaluating the principal integration.

 



185

= _ 1kgI , [V'.te(r’)E(r’)]V¢(r,r’) dv’ + itI , [n-te(r’)E(r’)]V¢(r,r’) ds’ ;

(A2.10)

and

I . ammo-[V >< gnu-3] dv’ = I . ammo x mm dv’ (A2.11)

since

A(r’)-[V >< 80(r.r’)] = A(r’)-[V¢(r,r3 x Tl = A(r’) >< V¢(r,r’) (A2.12)

for any vector function A(r’) and hence in particular, (A2.12) holds when

A0") = H(r’).

From (A2.9), (A2.10) and (A2.11), we can conclude that (3.1.40) and (3.3.28) are

equivalent.

It is noted that the limiting processes and the evaluation of the Cauchy principal

values are all based on the assumption that the excluded volume vs is a small sphere.

The different infinitesimal geometries will end up with different results as mentioned

by Van Bladal [2] and Chen [9].

Similarly, we can prove that (3.1.41) and (3.3.29) are also equivalent.



COMPUTER PROGRAMS



Fortran-77 Program Guide for the Coupled Tensor Integral Equations

This program is used to calculate the induced EM field distribution in a finite, hetero-

geneous, dielectric, magnetic and lossy body exposed to an incident EM field.

COMPUTER PROGRAM I

Description of key variables and arrays for using the program:

 

 

 

 

 

 

 

 

 

  

Variable or Description

Array Name

NT no. of cells in first octant of a symmetric body,

integer variable

DL length of a side of each cubic cell, in (m), real variable

X(L,I) L coordinate of the center of the I-th cell, in (m),

L=1,2,3=x,y,z coordinate, real array

SIG(I) conductivity of the I-th cell, in (Sim), real array

EPR(I) relative permittivity of the I-th cell, real array

MUR(I) relative permeability of the I-th cell, complex array

symmetry of incident EM field, INCI is 1 or 2.

INCI 1 stands for antisymmetric and 2 for symmetric,

integer variable

f uenc of the incident EM field, in ,FREQ rec1 y (MHZ)

real variable
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Input data file structure:(free formats are used for all the variables)

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Line No. Variable Name

1 NT,DL

2 (X(L,1),L=l,3), SIG(l), EPR(I), MUR(I)

3 (X(L,2),L=l,3), 816(2), EPR(Z), MUR(2)

NT+1 (X(L,NT),L=1,3), SIG(N'I'), EPR(NT), MUR(NT)

NT+2 INCI, FREQ

The following data are for the symmetry of geometry and EM field

distributions and should remain at the end of this data file.

NT+3 l l 1

NT+4 -1 l 1

NT+5 -l -1 1

NT+6 1-1 1

NT+7 1 1-1

NT+8 -1 1-1

NT+9 -l -l -1

NT+10 l -1 -l

NT+11 llll-l-l-l-l

NT+12 1-11-1-11-1 l

NT+13 1-1-1 1 1-1-11

NT+14 1 1 l l l 1 l l

NT+15 1-1 1-1 1-1 1-1

NT+16 l-l-l 1-1 1 1-1

NT+17 1-11-11-11-1

NT+18 l 1 l l l l l l

NT+19' ll-l-l-l-lll

NT+20 l-l l-l-l l-ll

NT+21 l 1 l l-l-l-l-l

NT+22 1 1-1-1 1 1-1-1
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Output data file structure:

There will be 5 numbers in each line. The first one is an integer and indicates

the numbering of the cell. The 2nd and 3rd numbers stand for the phasor (real and

imaginary parts) of EM field of each cell. The 4th and 5th numbers stand for the

amplitude (in V/m or Mar) and phase angle (in degree) of the EM field. Three com-

ponents of EM field are all printed out.

The program listing is attached from the next page.
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ctiitfitti*fiitritttttitfltttttiiitiiiittfiititittititttitttttttiitiitittfltttttfltttt

c Coupled Tensor Integral Equations

C*****t*tti***i*ttiitifltttititttitfiflfiitifittifi*t************t***ii****fittitttttit

c This program is used to calculate the induced EM field distribution in

c a finite, heterogeneous, dielectric, magnetic and lossy body exposed to

c an incident EM field

Cfit*tiiittttiiittttit*tiitfititttiitititittiiit********t**tt***ttititittititrttit

PROGRAM COUPLEIE

PARAMETER (NTMAX-64,NTMAX3-l92,NTMAX6-384,NTMAXSl-385

5rNTMAXB'SlerTMAX83-1536)

REAL X(3,NTMAX8),SIG(NTMAX),EPR(NTMAX)

COMPLEX A(2,3,NTMAX83).D(NTMAX6,NTMAX61)

$.MUR(NTMAX),TAUE(NTMAX),TAUM(NTMAX)

$.CON1(NTMAX).CONZ(NTMAX),CON3(NTMAX),CON4(NTMAX)

INTEGER NS(NTMAX.6)

Cttittifii*fi*fl*'**ittiftiiflifit***ifiiiiffliitttifiiifi*fl*****fii********i*********titt

c Input data:

cttttit!****i***tttittiit******fi****fiitfitti*tittttiiiiiitflttiiitittflittitittiiti

c NT-No. of cells in first octant of a symmetric body, integer

DL-length of a side of each cubic cell, in (m)

X(L,I)-L coordinate of the center of the i-th cell, in (m),

L-l,2,3-x,y,z coordinate

SIG(I)-conductivity of the i-th cell, in (S/m)

EPR(I)-relative permittivity of the i-th cell, a real number

MUR(II-relative permeability of the i-th cell, a complex number

***t*iiifltitflttiiiiitttfltflfi*****t******t*i**t***********tt***titti*iiititititit

open (l,file-’cplin.dat’)

read (l,*) NT,DL

do 391 i-l,nt

read (1,*) X(l,I),X(2,I),X(2,I),SIG(I),EPR(I),MUR(I)

cit*tttttiittitfiiitiitiiittttfltttfitttttttttittitittii*tititiiit*iititflitttttttti

nt3-3*nt

nt6-6*nt

nt8-8*nt

nt83-24*nt

nt61-nt6+l

call main(x,sig,epr,a,d,mur,taue,taum,con1,con2

S,con3,con4,ns,NT,NT3,NT6,NT61,NT8,NT83)

stop

end

(
)
0
0
(
)
(
)
O

O

subroutine main(x,sig,epr,a,d,,mur,taue,taum,conl,con2

S,con3,con4,ns,NT,NT3,NT6,NT61,NT8,NT83)

REAL MUO,K0,XJV(8,3),X(3,NT8),XC(3),Xl(3),SIG(NT),EPR(NT)

COMPLEX A(2,3,NT83),D(NT6,NT61)

$.JC,MUR(NT),MU,mur2,TAUE(NT),TAUM(NT)

$.SUMV,DT1,DT2,CON1(NT),CON2(NT),CON3(NT),CON4(NT)

INTEGER P,Q,NS(NT,6),ISE(2,3,8),ISM(2,3,8),IO(3,8)

COMMON /A/JC,K0,PI/F/DL,HDL,QDL,DS,Dv

OPEN (4,?ILE-'cplout.dat')

nt2-2'nt

nt4-4'nt

ntS-S'nt

ct**t**i**tfi**iiifliitittttititttttiittitiitittttttttflttiiitit*fifittitflttittittttt

c Input data:

cttttfltflittttttitit*tttiflifitt*ttt*ttttitt*ttttttiittttttttiit*ifltitittittfltitttt

c INCI-smetricity of incident EM field, INCI is 1 or 2

c 1 stands for antisymmetric and 2 for symmetric

c FREQ-frequency of the incident EM field, in (MHz)

ciiiifliifitfliflflflfififiiflitiii*ti**t***ii*fit**i**t*fl**fl*******t************fi§*tiititi

READ (1r*) INCI,?REQ

c*tii**i***t***fl*i*******fl***fl*****ii******tfli**************i***t*i**fl*i******tt

c Output Format:

Citflirtfittitittftflitttitittttifi*ttttfltttflitittititttttiittttt*titttttittittwitit

WRITE (4,*) 'HETRO COUPLED IE WITH 8 QUA SYMMETRY'

IF (INCI.EO.1) WRITE (4,*) ’Ei - x j*sinkz, Hi - y coskz/ZO'
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IF (INCI.EQ.2) WRITE (4,*) 'Ei ' X COSKZ' Hi ' y j'sinkz/ZO’

DO 73 I'1,NT

Cttitititittititiitiitttt*titfitttttiittttiti*tttitittitititttitt**tttttit*ttrtrt

73 WRITE(4,50) IISIG(I)IEPR(I)IMUR(I)

50 FORMAT (IS,F15.8,3X,F15.8,3X,2315.8)

Ci********fi******it*****iiifi********************t****t**************i*i**twtttit

c IQ(L,J)-sign of L cooridnate of center of each cell in J-th octant,

c IQ is 1 or -1

c ISE(INCI,L,J)-sign of L component of E field distribution in J-th octant,

c ISE is l or -1, INCI is 1 or 2

c ISM(INCI,L,J)-sign of L component of H field distribution in J-th octant,

c ISM is 1 or -1, INCI is l or 2

ctr*********fli**tttfititi*t*t*ti**iti*******************tittiitttiiifii*ttttittit

DO 31 9.7-1! 8

31 READ (l,*) (IQ(L,J),L-l,3)

DO 32 I-1r3

32 READ (1,*) (ISE(1IL'J)'J-l'8)

DO 33 1.1: 3

33 READ (l,*) (ISE(2,L,J),J-l,8)

DO 52 I'l,3

52 READ (1,*) (ISM(1,L,J),J-l,8)

DO 53 I‘ll 3

53 READ (1,*) (ISM(2,L,J),J‘1,8)

c*fi***************************i***'*********fi*************fi***********fi***tttft

JC'(0.,1.)

PI-DATAN(1.D0)*4.

WG-2.D6*PI*EREQ

K0-WG/3.D8

EPO'l.E-9/36./PI

MUG-4.E-7*PI

DO 74 I'1,NT

MU-MUR(I)*MUO

EP‘EPR(I)*EPO

TAUE(I)'SIG(I)‘JC*WG*(EP-EPO)

TAUM(I)--JC*WG'(MU-MUO)

CON1(I)'-K0*TAUE(I)*JC’WG*MUO/4./PI

CON2(I)-+KO**2*TAUM(I)/4./PI

CON3(I)'-KO**2*TAUE(I)/4./PI

74 CON4(I)"KO*TAUM(I)*JC*WG*EPO/4./PI

Ds-DL*DL

DV‘DS*DL

HDL-DL/Z.

QDL-DL/4.

Cit****fl*fi**fi*i****tfi*fl*fl***fi*****fiflt*i*fifl*fi*t*tfl1ft.t#*****fi*ttiffiifittitflt**if!

c Calculate the corresponding coordinates from the 2nd to 8th octants

ctitttittflitttit?*itflfliififitttitfiitiflititt*itittitfliwitiiittittttttttittttflittttt

DO 15 I-1,NT

DO 15 L-l,3

15 X(L,I+(M-l)*NT)-X(L,I)*IQ(L,M)

Cifltfl****.Q**************fl*iiQ*******i*tiitfiiftitittit!tit!tittittiiifiiftfiffifii

c Filling matrix elements

c**********iflt**fi***t***fifiii******t****ttiiittiflttititfiitfittiititifltttttttfititifl

DO 18 I-erT

PRINT *,I

DO 79 L-l,3

79 XC(L)-X(L.I)

DO 18 MQ-1,2

DO 17 J-1,NT8

JMODNT-J-(J-l)/NT*NT

DO 78 L-1,3

78 Xl(L)-X(L,J)

DO 17 Q-1,3

LL-J+(Q-1)*NT8

DO 17 P-l,3

CALL VPT(X1,XJV,QDL)
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CALL VINTE(I,J,XC,XJV,MQ,P,Q,SUMV)

IF (MQ.EQ.1) THEN

A(l,P,LL)-CON1(JMODNT)*SUMV

A(2,P,LL)'CON4(JMODNT)*SUMV

IF ((I.EQ.J).AND.(P.EQ.Q))

$A(1,P,LL)-A(1,P,LL)+1.+JC*TAUE(JMODNT)/3./WG/EPO

IF ((I.EQ.J).AND.(P.EQ.Q))

$A(2,P,LL)-A(2rPrLL)+1.+JC*TAUM(JMODNT)/3./WG/MUO

ELSEIF (MQ.EQ.2) THEN

A(l,P,LL)-CON2(JMODNT)*SUMV

A(Z.P.LL)‘CON3(JMODNT)*SUMV

ENDIF

l7 CONTINUE

Citiitti*******t**fii*fi**t*******ittt******flifii***it*fi******tfifi**tiitifittiiflirt?

c Using symmetric properties to reduce matrix size

ctittit********t*tt*ttiifiitiiiiititititititfittiittttttttitttittttittttttt*tttttt

DO 41 K-1,NT

DO 41 9-103

DO 41 Q-1,3

DTl-(0.,0.)

DT2-(0.,0.)

KT-K+(Q-l)*NT

IF (MQ.EQ.1) THEN

DO 42 M-l,8

DT1-A(1,P.(Q-l)*NT8+K+(M-1)*NT)*ISE(INCI,Q,M)+DT1

42 DT2-A(2,P.(Q-1)*NT8+K+(M-1)*NT)*I$M(INCI,Q.M)+DT2

ELSEIF (MQ.EQ.2) THEN

DO 43 H-118

DT1-A(l,P,(Q-l)*NT8+K+(M-1)*NT)'ISM(INCI,Q,M)+DT1

43 DT2-A(2,P,(Q-l)*NT8+K+(M-1)*NT)*ISE(INCI,Q,M)+DT2

ENDIF

D(I+(P-1)*NT,KT+(MQ-1)*NT3)-DT1

41 D(I+(P-1)*NT+NT3,KT+(2-MQ)*NT3)-DT2

18 CONTINUE

c*ifii*fiit**ti*tfiitiififiiitfififlfiittittitiiitififlititi*fltififltiiflfitiflflffiifittfiittiiit

c Filling the vector of incident EM field in the center of each cell

Ctit!*tfiitttttififlti*ttiiitttfititi**flitfitttt*tfifltittifltflttti*ttitittflitiflttt*ttifi

DO 35 I-1,NT

B-K0*X(3,I)

IF (INCI.EQ.1) THEN

C-SIN(B)

E-COS(B)

D(I,NT61)-CMPLX(0.,C)

D(I+NT4,NT61)-CMPLX(E/120/PI,0.)

ELSEIF (INCI.EQ.2) THEN

C-COS(B)

E-SIN(B)

D(I,NT61)-CMPLX(C,O.)

D(I+NT4,NT6l)-CMPLX(O.,E/lZO/PI)

ENDIF

D(I+NT,NT61)-(O..O.)

D(I+NT2,NT61)-(O.,O.)

D(I+NT3,NT61)-(0.,O.)

35 D(I+NTS,NT6l)-(0.,0.)

cttifiif*Qiitii'itfiflifl'itiififi*t****t*itflfl.*fifliiifliiflttiififi*tiittiiiiiiflflfliiifittit

c SolVing the matrix equation

ctttttttitflittttit!it*iii*tfiiflitiitti*itttfititittttitfltit*ttttttitittitttttttttt

CALL CMATPA(-1,D,NT6,1,DET,1.E-38,NT61)

ciiii***i**9***fi*i***fi*fl*********fi******fl*i********ii*fl******t*fiifii**flfifl****tit!

c Print out the induced EM fields at the center of each cell

cittittttttttittttttt*ttititttiiitttt*tttttifittttittfi*ttttttiititiiiitttttttit?!

c FABS-Magnitute of the EM fields, in (V/m) or (A/m)

c PHASE-Phase angle of the EM fields, in degree

ctfl*t***t*ti**t*ifi*ttt*i**tttittfittttttt*****t*****fii*t*ttfitiitflttttttttttttittt

DO 36 K-1,6

IF (K.EQ.1) WRITE (4,*) 'EX'
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IF (K.EQ.2) WRITE (4,*) ’EY'

IF (K.EQ.3) WRITE (4,*) ’EZ’

IF (K.EQ.4) WRITE (4,*) 'HX'

IF (K.EQ.5) WRITE (4.*) 'HY'

IF (K.EQ.6) WRITE (4,*) 'HZ'

DO 36 I'1,NT

Il-I+NT*(K-l)

FABS-CABS(D(I1,NT61))

PHASE-ATANZ(AIMAG(D(II,NT61))rREAL(D(Il,NT61)))*l80/PI

36 WRITE (4,150) I,D(Il,NT61),FABS,PHASE

150 FORMAT (1X,I4,2E20.11,3X,E15.8,F10.4)

RETURN

END

Ctiii*fi*ifl*******i**fi***i**i*******t***iftififlift*ttiffl***i**********tfitiitiittt

c This subroutine is used to calculate each entry of the matrix except the

c diagona1 element via numerical integration, the integration is approximated

c simply by cutting a cell into 8 subcells and summing up the function value

c in each subcell

ctttiiii.fittttittttttittiifiittfittit*ttttttttittttttttitt§tffittitt§ttittittttitit

SUBROUTINE VINTE(M,N.X,XJ,MQ,P,QrST)

REAL X(3),X1(3),XJ(8,3)

COMPLEX GPQ,GP,ST,GB

INTEGER P,Q

COMMON /F/DL,HDL,QDL,DS,DV

ST-(0.,0.)

IF (MQ.EQ.1) THEN

IF (M.EQ.N) GO TO 69

DO 30 J-1.8

DO 46 L-1,3

46 X1(L)-XJ(J.L)

3O ST-ST+GPQ(P,Q,X,X1)

ST-ST*DV/8.

GO TO 99

69 IF (P.NE.Q) GO TO 99

ST-GB(DL)

ELSEIF (MQ.EQ.2) THEN

IF (P.EQ.Q) GO TO 99

K-6-P-Q

DO 40 J-l,8

DO 56 L-1,3

S6 X1(L)-XJ(J,L)

40 ST-ST+GP(KIX'XI)

KD-(P-Q)/2

IF (KD.EQ.0) ST-ST*(P-Q)

IF (KD.NE.0) ST--ST'KD

ST-ST*DV/8.

ENDIF

99 RETURN

END

cfiiflfi*fiiffifltflfiifiititfitfiiftif*fi*tfiitit*ifl*tffi'itit*flf**********iit*ii*iititfiit

c This function subroutine is used to evaluate the 2nd derivative of the

c free space Green's function at center of each cell

Cittitttitttttitt*ttittttttttttiitfittttflttttiwitfitttttttfi*itittflifltttitiiitttttt

FUNCTION GPQ(P,Q.X,XI)

REAL K0,X(3),X1(3),XD(3)

COMPLEX JC.GPQ,B,C,D

INTEGER P,Q

COMMON /A/JC.KO,PI

DO 75 L-1,3

XD(L)-X(L)-X1(L)

IF (ABS(XD(L)).LT.1.D-8) XD(L)-0.

7S CONTINUE
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R-SQRT(XD(1)*XD(1)+XD(2)*XD(2)+XD(3)*XD(3))

A-KO'R

D-CEXP(JC*A)

C-(3.-A*A-3.*JC*A)*XD(P)*XD(Q)/R/R

IF (P.NE.Q) THEN

GPQ'C*D/A/A/A

ELSEIF (P.EQ.Q) THEN

B-A*A-l.+JC*A

GPQ-(B+C)*D/A/A/A

ENDIF

RETURN

END

cit************fit*ffl*********ii**fi************tfifl*i*******t***********i**t*i**tt

c This function subroutine is used to evaluate the lst derivative of the

c free space Green's function at center of each cell

Ctttwflfittti*ttiiiitiitiittitittitit*flitiittitfliiitt*ti*fl*t*t*tt*tititititit*itit

FUNCTION GP(P,X,X1)

REAL K0,X(3),X1(3),XD(3)

COMPLEX JC,GP,C,D

INTEGER P

COMMON /A/JC,KO.PI

DO 75 L-1,3

XD(L)-X(L)-X1(L)

IF (ABS(XD(L)).LT.1.D-8) XD(L)-O.

7S CONTINUE

R-SQRT(XD(1)*XD(1)+XD(2)*XD(2)+XD(3)*XD(3))

A-K0*R

D-CEXP(JC*A)

c-(JC*A-1.)*XD(P)/R

GP-C*D/A/A

RETURN

END

cfli*ii*'**fi********fl**fiti***********ffiifliflitflflfiiflfltfliii**fl****fl************fiit!

c This function subroutine is used to calculate the value of the diagonal

c element of the matrix, this value includes a pricinpal integration plus

c a correction term

C**t**********titttittiifiittiitit******t****itttt************i**t*****ttiitwrit.

FUNCTION GB(DL)

REAL K0

COMPLEX GB,JC

COMMON /A/JC,K0,PI

DV-DL**3

AN-(3.*DV/4./PI)**(1./3.)

GB-4.*PI*2.*(CEXP(JC*K0*AN)*(l.-JC*K0*AN)-l.)/(3.*K0**3)

RETURN

END

citit****************§***********************i******f*ttflttifittttii*t****§*i***t

c This subroutine is used to calculate the coordinates of 8 subcells

c of each cell in order to perform the numerical integration

cit*tttttitii*tttitiittitttttii*ttttttiittittitttttt************t****tttitttttit

SUBROUTINE VPT(B,BN,QRDL)

REAL QRDL,B(3),BN(8,3)

BN(1,l)-B(l)+QRDL

BN(1,2)-B(2)+QRDL

BN(1,3)-B(3)+QRDL

BN(2,1)-B(1)+QRDL

BN(2,2)-B(2)+QRDL

BN(2,3)-B(3)-QRDL

BN(3.1)-B(1)+QRDL

BN(3,2)-B(2)-QRDL
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BN(3,3)-B(3)+QRDL

5N(4,l)-B(l)+QRDL

BN(4,2)-B(2)-QRDL

BN(4,3)-B(3)-QRDL

BN(5,1)'B(l)-QRDL

BN(S,2)-B(2)+QRDL

BN(S,3)-B(3)+QRDL

BN(6,l)-B(l)-QRDL

BN(6,2)-B(2)+QRDL

BN(6,3)-B(3)-QRDL

BN(7,1)'B(l)-QRDL

BN(7,2)-B(2)-QRDL

BN(7,3)-B(3)+QRDL

BN(8,1)-B(l)-QRDL

BN(8,2)-B(2)-QRDL

BN(8,3)-B(3)-QRDL

RETURN

END

cii****fi***fi***§***itiifliiflittiitiifififliifiit*i**tfi*******fl*ti***itttttittiifittfiii

c This subroutine is used to solve the matrix equation via Gaussion

c ellimination

Citit*ttttiiittiiitti*itttittfltitttttttititii*itittttfitfitttttttittttiitttiwititr

SUBROUTINE CMATPA(IJOB,A,N,M,DET,EP,N031)

COMPLEX A.B.DET,CONST,S

DIMENSION A(N,N031)

30 FORMATllX,42HTHE DETERMINANT OF THE SYSTEM EOUALS ZERO./

11X,36HTHE PROGRAM CANNOT HANDLE THIS CASE.//)

DET-l.

NP1-N+l

NPM-N+M

NMl-N-l

IF(IJOB) 2,1,2

1 DO 3 I-l,N

NPI-N+I

A(I,NPI)-1.

IP1-I+1

DO 3 J-IP1,N

NPJ-N+J

A(I,NPJ)-O.

A(J,NPI)-O.

DO 4 J-l,NMl

C-CABS(A(J.J))

JP1-J+l

DO 5 I-JPl'N

D-CABS(A(I.J))

IF(C‘D) 615,5

6 DET--DET

DO 7 K-J,NPM

B-A(IIK)

A(I,K)-A(J,K)

7 A(J.K)-B

C-D

5 CONTINUE

IF(CABS(A(J.J))-EP) 14,15,15

15 DO 4 I-JP1,N

CONST-A(I.J)/A(J,J)

DO 4 K-JP1,NPM

4 A(I,K)-A(I,K)-CONST*A(J,K)

IF(CABS(A(N,N))-EP) 14,18,18

14 DET-O. '

'IF(IJOB) 16,16,17

16 PRINT 30

17 RETURN

C 18 DO 11 I-1.N

N
U
)
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11 DET-DET*A(IrI)

10

19

12

IF(IJOB) 10,10,17

DO 12 I-1,N

K-N-I+1

KPl-K+1

DO 12 L-NP1,NPM

S-O.

IF(N-KP1) 12,19,19

DO 13 J-KPer

5-S+A(K,J)*A(J,L)

A(KrL)'(A(KrL)-S)/A(K,K)

RETURN

END



COMPUTER PROGRAM II

Fortran-77 Program Guide for the Decoupled Tensor EFIE

This program is used to calculate the induced electric field distribution in a finite,

dielectric, magnetic and lossy body exposed to an incident electric field.

Description of key variables and arrays for using the program:

 

 

 

 

 

 

 

 

 

   

Variable or Description

Array Name

NT no. of cells in first octant of a symmetric body,

integer variable

DL length of a side of each cubic cell, in (m), real variable

X(L I) L coordinate of the center of the I-th cell, in (m),

’ L=l,2,3=x,y,z coordinate, real array

surface index, which is actually the sign of the normal

vector of the K-th face of the I-th cell, NS is l, or -1

NS(I K) if the face is on the outrnost surface, otherwise NS is 0.

’ K=1,2,...,6 where K=1,2,3 stand for the outword normal

vectors pointing to +x,+y,+z directions, and K=4,5,6 for

-x,-y,-z directions, integer array

SIG conductivity, in (S/m), real variable

EPR relative permittivity, real variable

MUR relative permeability, complex variable

symmetry of incident electric field, INCI is 1 or 2.

INCI 1 stands for antisymmetric and 2 for symmetric,

integer variable

f uenc of the incident electric field, in z ,FREQ rcq .Y (MH )

real vanable
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Input data file structure:(free formats are used for all the variables)

 

 

 

 

 

 

  

Line No. Variable Name

1 NT,DL,SIG,EPR,MUR

2 (KHAN-=15). (NS(1.K).K=1.5)

3 (X(L,2),L=l,3), (NS(2,K),K=1,6)

NT+1 (X(L,NT),L=1,3), (NS(NT,K),K=1,6)

NT+2 INCI, FREQ
 

The following data are for the symmetry of geometry and electric field

distributions and should remain at the end of this data file.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NT+3 l l 1

NT+4 -l 1 l

NT+5 -l -1 l

NT+6 1-1 1

NT+7 1 1-1

NT+8 -1 l-l

NT+9 -l-1-1

NT+10 1-1 -1

NT+ll 1 1 l 1 -l -1 -1-1

NT+12 1-1 1 -1 -1 1-1 1

NT+13 1-1-1 1 l-l-ll

NT+14 l 1 1 l 1 1 l l

NT+15 l -1 1-1 1-1 1-1

NT+16 1-1-11-111-1    
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Output data file structure:

There will be 5 numbers in each line. The first one is an integer and indicates

the numbering of the cell. The 2nd and 3rd numbers stand for the phasor (real and

imaginary parts) of electric field of each cell. The 4th and 5th numbers stand for the

amplitude (in V/m) and phase angle (in degree) of electric field. Three components of

electric field are all printed out.

The program listing is attached from the next page.
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Ct!ititit*tttflififiittfifiitiitiittttttittttti*ttttiflttitiiiritttttiitittttttvttttw

c Decoupled Tensor EFIE

Cttttflrifltwitti*iiittttititittitttttt***t***t*itttitittttittittttttttitttitkttrr

c This program is used to calculate the induced E field distribution in a

c finite, dielectric, magnetic and lossy body exposed to an incident field

Ctttwiiti******t*ifittii*fittti'tiittfltiitflfltttifiiittttttttflititiiiitittttitwtti’ttt

PROGRAM DECOPULEEFIE

PARAMETER (NTMAX-343,NTMAX3-1029,NTMAX31-1030

$,NTMAX8-2744,NTMAX83-8232)

REAL X(3,NTMAX8)

COMPLEX A(2r3,NTMAX83),D(NTMAX3,NTMAX31)

INTEGER NS(NTMAX8,6)

cit*fifliiiffiiitiiiifliifltt*********************i********************i*****fitittit

c Input data:

Citit*iittttiff*t*flttttfiiiititttiittttttfitttt*fittfiitttttttttfltitttttfiiitttttwit.

c NT-No. of cells in first octant of a symmetric body, integer

DL-length of a side of each cubic cell, in (m)

X(L,I)-L coordinate of the center of the i-th cell, in (m),

L-1,2,3-x,y,z coordinate

SIG-conductivity, in (S/m)

EPR-relative permittivity, a real number

MUR-relative permeability, a complex number

NS(I,K)-surface index, which is actually the

sign of the normal vector of the K-th face of the I-th cell,

N5 is 1 or -1 if the face is on the outmost surface,

otherwise N5 is 0. K-1,2,...,6 where K-1,2,3 stand for the outword

normal point to +x,+y,+z directions, and K-4,5,6 for the -x,-y,-z

directions

*tiiiifliifittitititflttit.ifliiitflirttiiii?itiiifliittiiflt'kfi*titfifltitiititiittit!it?

open (1,file-'efiein.dat')

read (1,*) NT,DL,SIG,EPR,MUR

do 391 i-1,nt

read (lr*) X(1rI)rX(2rI)IX(2rI)I

$NS(I,1),NS(I,2),NS(I,3),NS(I,4),NS(I,S),NS(I,6)

citiiti*ttttifittiitttitttitittiititittittfitiittflttittiiiti’!tiiiifiiitiitiitfiittit

NT3-3*NT

NT8-8*NT

NT83-24*NT

NT31-NT3+1

CALL EFIE(SIG,EPR,MUR,X,A,D,NS,NT,NT3,NT31,NT8,NT83)

STOP

END

0
(
3
(
)
O
0
(
7
(
)
0
0
(
3
(
)
0

O

SUBROUTINE EFIE(SIG,EPR,MURrXrA,D,NS,NT,NT3,NT31

$.NT8,NT83)

REAL MUO,K0,XJV(8,3),XJS(4,3,6),X(3,NT8),XC(3),X1(3)

COMPLEX A(3,NT83),D(NT3.NT31),GD(3r3)

S,JC,EPS,MUR,MU,CON1,CON2,SUMV,SUMS,DT

INTEGER P,Q,NS(NT8,6),IS(2,3,8),IQ(3,8)

COMMON /A/JC,K0,PI,EPO,EP,EPS,MUO,MU,CON1,CON2

$/F/DL,HDL,QDL,DS,DV

OPEN (4,FILE-’efieout.dat’)

NT2-2*NT

c*iiiifififiitt*****ttflfltfi*t*fliittiflifi******i**ii****f****t**fiiififiififit**fifi*ttiiii*

c Input data:

C****t**********t***t*tttttttttttittiflittiitttttttfltittitttii*ttttttittittitttti

c INCI-smetricity of incident E field, INCI is l or 2

c 1 stands for antisymmetric and 2 for symmetric

c FREQ-frequency of the incident EM field, in (MHz)

cfiiiflfliififltfliififlt*fliiiitifititflfi*****t*i********fi******i*****iitfltiflfiffi****t*iii

READ (1,*) INCIrFREQ

ct**********i***i**i******itfiiittiiitt***ti***************t****fi*******i******tt

c Output Format:

Cti*tttititttttitttittttt*tititfltttittttitt*tttttitfittttttiflt*ttttttttttflttttitw

WRITE (4,*) 'DECOUPLED EFIE'

IF (INCI.EQ.1) WRITE (4,*) 'INCI - x j*sinkz'
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IF (INCI.EQ.2) WRITE (4,*) 'INCI - x coskz'

WRITE(4,*) 'DL -’ ,DL

WRITE(4,*) ’FREQ -’ ,FREQ

WRITE(4,*) 'SIG -' ,SIG

WRITE(4,*) ’EPR -' ,EPR

WRITE(4,*) 'MUR -' ,MUR

Ct*itiitt9*titittifiitttifittttitfitittttttttttttttittiwtitttttittttfititttiittrtw't

c IQ(L,J)-sign of L coordinate of center of each cell in J-th octant,

c IQ is l or -1

c IS(INCI,L,J)-sign of L component of E field distribution in J-th octant,

c ISE is 1 or -1, INCI is l or 2

Citittifittitittiiti*ttifliit*tttttiititt******it**t******t**tt**tittttttttttitttt

DO 31 J-1,8

31 READ (1,*) (IO(I,J),I-1,3)

DO 32 I'lr3

32 READ (l,*) (IS(1,I,J),J-1,8)

DO 33 I-1,3

33 READ (1,*) (IS(2,I,J),J-1,8)

Ctittttittitffiiiitfitifitiititttiiiitt***t***titttifittitttt'itititttiiiiiittttittt

JC-(O.,l.)

PI-ATAN(1.)*4.

WG-2.E6*PI*FREQ

K0-WG/3.E8

EPO-1.E-9/36./PI

MUO-4.E-7*PI

MU-MUR*MUO

EP-EPR*EPO

EPs-EP+JC*SIG/WG

CONl--KO**3*(EPS/EPO-MUO/MU)/4./PI

CONZ-K0**2*(MU-MUO)/MU/4./PI

PRINT *,JC,PI,WG,K0,EPO,MUO,EP,MU,EPS,CONl,CON2

DS-DL*DL

DV-DS*DL

HDL-DL/Z.

QDL-DL/4.

Citttttti*tiiiitttittitfltiitttttiitittttiitffitittfit****it*ttittflttiittitflitttttt

c Calculate the corresponding coordinates and the surface indecies

c from the 2nd to 8th octants

Cttttttfltittfltttitwitttttit***ittttttfltittflttitit*ttttitttiitittttttititttiflirt!

DO 15 I-1,NT

DO 15 M-2,8

DO 15 L-l,3

15 X(L,I+(M-1)*NT)-X(L,I)*IQ(L,M)

DO 16 I-1,NT

DO 16 M-2,8

DO 16 L-1.3

IF (IQ(L,M).GE.0) THEN

NS(I+(M-1)*NT.L)-NS(I.L)*IQ(L,M)

NS(I+(M-l)*NT,L+3)-NS(I,L+3)*IQ(L,M)

ELSEIF (IQ(L,M).LT.0) THEN

NS(I+(M-1)*NT,L)-NS(I,L+3)*IQ(L,M)

NS(I+(M-l)*NT,L+3)-NS(I.L)*IQ(L,M)

ENDIF

16 CONTINUE

CALL SELF(GD)

cfl*********fl****tt**it*it*ittifitt*********ttttt****fiti*ti*t**********tti*ttitit

c Filling matrix elements

citfiittti*flttfit*tttfittittittittflttiiiitttittittttiittittttt*tttiiflittttt.**tt*tt

DO 18 I-1,NT

PRINT *,I

DO 79 L-l,3

79 XC(L)-X(L,I)

DO 17 J-1,NT8

DO 78 L-1,3

78 X1(L)-X(L.J)

DO 17 Q-1,3  
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LL-J+(Q-l)*NT8

DO 17 P-1,3

IF (I.EQ.J) THEN

CALL SPT(X1,XJS,HDL,QDL)

CALL SINTE(XC,J,XJS,P,Q,SUMS,NT8,NS)

A(P,LL)-GD(P,Q)+CON2*SUMS

ELSEIF (I.NE.J) THEN

CALL VPT(X1,XJV,QDL)

CALL VINTE(XC,XJV,PrQrSUMV)

CALL SPT(X1,XJS,HDL,QDL)

CALL SINTE(XC,J,XJ$,P,QrSUMS,NT8,NS)

A(P,LL)-CON1*SUMV+CON2*SUMS

ENDIF

l7 CONTINUE

citt****i********it******t*i*fli********fi*fittt************fi********i*********titi

c Using symmetric properties to reduce matrix size

cw*itit***iifli*ii*t***t****t**ittttitfiitiittiitii****fi***t*i******i*titttititiwt

DO 41 K-l,NT

DO 41 P-1,3

DO 41 Q-l,3

DT-(0.,0.)

DO 42 M-1,8

42 DT-A(P,(Q-l)*NT8+K+(M-1)*NT)*IS(INCI,Q,M)+DT

41 D(I+(P-1)*NT,K+(Q-1)*NT)-DT

18 CONTINUE

C**it*iitiiiiii*********t*fi****ti*iii*******tttiifiiitfi****fl****i***fifltfifitittrtit

c Filling the vector of incident E field in the center of each cell

Ctrttiiititflttititfi*tttiiittitttttttitittittttttt*tttttttittttiiiittt'iittiflirt!

DO 35 I-1,NT

B-KO*X(3,I)

IF (INCI.EQ.1) THEN

C-SIN(B)

D(I,NT31)-DCMPLX(0.,C)

ELSEIF (INCI.EQ.2) THEN

c-COS(B)

D(I,NT31)-DCMPLX(C,0.)

ENDIF

D(I+NT,NT31)-(0.,0.)

35 D(I+NT2,NT31)-(0.,O.)

cfitti*fi****fifi*****i**fli*fl****fi***tfiitfli'tif*ttiiifit*flti*fl*fl*t*******i***ifi*iiiii

c Solving the matrix equation

Cttttittttiiittti**i***t*t*i**t**tt*******t********t*i*titt*iiiitttitt*****i*ttt

CALL CMATPA(-1,D,NT3,1,DET,1.E-38,NT31)

cittfiiifliiiiiit********fi*fi*****f*****tifl*****fi**#*flitt************i**********i*i

c Print out the induced EM fields at the center of each cell

cittt*ifltfitttt*ittiiiiiiittiitti*titit*tiiittititi*tiittittwtiittitwttittttitti

c FABS-Magnitute of the E fields, in (V/m)

c PHASE-Phase angle of the E fields, in degree

Citittitittfliit*fiiitiitttttititti*tiifiittttttttiitt***tti*****w****ii*fltttitttit

DO 36 K-1,3

IF (K.EO.1) WRITE (4,*) 'EX'

IF (K.EQ.2) WRITE (4,*) ’EY'

IF (K.EQ.3) WRITE (4,*) ’E2'

DO 36 I-1,NT

Il-I+NT*(K-1)

EABS-CABS(D(I1,NT3I))

PHASE-ATANZ(AIMAG(D(Il,NT31)),REAL(D(Il,NT31)))*180/PI

36 WRITE (4,150) I,D(Il,NT31),EABS,PHASE

150 FORMAT (1X,I4,2E20.11,3X,E15.8,F10.4)

STOP

END

cit******i**********************
********************************

*******i******tt

c This subroutine is used to calculate the volume integration, the

c integration is approximated simply by cutting a cell into 8 subcells
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c and summing up the function value in each subcell

cifitt*t'ktiwitt*'i*t**i***tti*tttiflittiiitttiiit'ttttifrivttt'ittttitrtrtittwtnew

SUBROUTINE VINTE(X,XJ,P,Q,ST)

REAL X(3),X1(3),XJ(8,3)

COMPLEX GPQ,ST

INTEGER P,Q

COMMON /F/DL,HDL,QDL,DS,DV

ST-(O.,0.)

DO 30 J-1,8

DO 46 L-1,3

46 X1(L)-XJ(J,L)

3O ST-ST+GPQ(P,Q,X,X1)

ST-ST'DV/8.

RETURN

END

ctt*ttiifiiiifi'fit‘kiitflitffiflfiifit‘tti*tttii’it‘ti’********fi*******it*titfiiiittitttttr

c This subroutine is used to calculate the surface integration, the

c integration is approximated simply by cutting a surface into 4 pieces

c and summing up the function value in each piece

Cititit*tt**i*itittttttttittittiitiiitiitttti*titttfittttiiitiiiiititiititttttitt

SUBROUTINE SINTE(X,M,XJ,P,Q,STT,NT8,NS)

REAL X(3),Xl(3),XJ(4,3,6)

COMPLEX GP,ST,STT

INTEGER P,Q,NS(NT8,6)

COMMON /F/DL,HDL,QDL,DS,DV

STT-(0.,0.)

IF (P.EQ.Q) GO TO 39

DO 31 K-P,P+3,3

IF (NS(M,K).EQ.0) GO TO 31

ST-(0.,0.)

DO 30 J-1,4

46 X1(L)-XJ(J,L,K)

30 ST-ST+GP(Q,X,X1)

STT--ST*NS(M,K)+STT

31 CONTINUE

GO TO 99

39 IF (P.EQ.1) THEN

IP1-2

IP2-3

ELSEIF (P.EQ.2) THEN

IPl-l

IP2-3

ELSEIF (P.EQ.3) THEN

IPl-l

IP2-2

ENDIF

DO 41 K-IP1,IP1+3,3

IF (NS(M,K).EQ.0) GO TO 41

ST-(O.,0.)

DO 40 J-1,4

DO 56 L-1,3

56 X1(L)-XJ(J,L,K)

4O ST-ST+GP(IP1,X,X1)

STT-ST'NS(M,K)+STT

41 CONTINUE

DO 51 K-IP2,IP2+3,3

IF (NS(M,K).EQ.O) GO TO 51

ST-(0.,O.)

DO 50 J-1,4

DO 66 L-l,3

50 ST-ST+GP(IP2,X,X1)

STT-ST*NS(M,K)+STT
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51 CONTINUE

99 STT-STT*DS/4.

RETURN

END

ct*****§***i***fi**********fi**i*****i*******fi*****iifltt****i****itfit.*tiiitiittt

c This subroutine is used to calculate the volume integrations involved

c with the singularity problem

cw********titiiittititiittitt*******t*ittiititttitflttitittiiiiittiiittiitwrittit

SUBROUTINE SELF(GD)

COMPLEX DT,GNN,GD(3,3)

INTEGER P,Q

COMMON /F/DL,HDL,QDL,DS,DV

DO 81 9-113

DO 81 Q-1,3

IF (P .EQ . Q) THEN

DT-GNNlDL)

ELSEIF (P.NE.Q) THEN

DT-(O.,O.)

ENDIF

GD(P,Q)-DT

81 CONTINUE

RETURN

END

ctti***ifl***fi*fi***ifli*i**fltfi***fi******i********fiftii**fi***t****flit*fi*****'****ii

c This function subroutine is used to evaluate the 2nd derivative of the

c free space Green's function at center of each cell

cittttitttitiiittititittitittttttttfl*****ttt**tttiittttttttifiittittititttrtttitt

FUNCTION GPQ(P,er,X1)

REAL KO,MUO,X(3),X1(3),XD(3)

COMPLEX JC,EPS,MU,CON1,CON2,GPQ,B,C,D

INTEGER P,Q

COMMON /A/JC,K0,PI,EPO,EP,EPS,MUO,MU,CON1,CON2

DO 75 L-1,3

XD(L)-X(L)-X1(L)

IF (ABS(XD(L)).LT.1.E-8) XD(L)-0.

75 CONTINUE

R-SQRT(XD(1)*XD(1)+XD(2)*XD(2)+XD(3)*XD(3))

A-K0*R

D-CEXP(JC*A)

c-(3.-A*A-3.*JC*A)*XD(P)*XD(Q)/R/R

IF (P.NE.Q) THEN

GPQ-C*D/A/A/A

ELSEIF (P.EQ.Q) THEN

B-A*A-1.+JC*A

GPQ-(B+C)*D/A/A/A

ENDIF

RETURN

END

c***fl****i****fi**fi*flflflt*f**#***************tflflifiiftttfl*i**§*******i*ttfiffititttt

c This function subroutine is used to evaluate the lst derivative of the

c free space Green’s function at center of each cell

ctittfiiititiflii*tittfliitittitttittit****titi*i*ttititititttt**tt**t*titittiitttt

FUNCTION GP(P,X,X1)

REAL KO,MUO,X(3),X1(3),XD(3) .

COMPLEX JC.EPS,MU,CON1,CON2,GP,C,D

INTEGER P

COMMON /A/JC,K0,PI,EPO,EP,EPS,MUO,MU,CON1,CON2

DO 75 L-1,3

XD(L)-X(L)-X1(L)

IF (ABS(XD(L)).LT.1.E-8) XD(L)-0.
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75 CONTINUE

R-SQRT(XD(1)*XD(1)+XD(2)*XD(2)+XD(3)*XD(3)l

A-K0*R

D-CEXP(JC*A)

C-(JC'A-l.)*XD(P)/R

GP-C*D/A/A

RETURN

END

cit*fiii'iiiiiii*fitiiiii**fli*fl**iiti*tittfl*fit**fit****fitt*fii*t*itfltflfiittittttt1*?

c This function subroutine is used to calculate the value of the diagonal

c element of the matrix, this value includes a pricinpal integration plus

c a correction term

ctifit!tittttiflfliiiittflitiflit*tfli*ttt*tfltiittitttitititttttt*tttfiitiitiitittiret

FUNCTION GNN(DL)

REAL KO,MUO

COMPLEX JC,EPS,MU,CON1,CON2,GNN,GC,GB

COMMON /A/JC,K0,PI,EPO,EP,EPS,MUO,MU,CON1,CON2

Dv-DL**3

AN-(3.*DV/4./PI)**(1./3.)

GC-Z.*MUO/3./MU+EPS/3./EPO

GB-CON1*4.*PI*2.*(CEXP(JC*KO*AN)*(1.-JC*K0*AN)-1.)/(3.*K0**3)

GNN-GC+GB

RETURN

END

ctififl*iiitit.Witt******fi*****§tifitifft***fi****i..i***fi**i****fl*i*fii*iiiitititiit

c This subroutine is used to calculate the coordinates of 8 subcells

c of each cell in order to perform the numerical integration

Ctitttit,tittiiiiititttttii*itttittttittifftit.*ttttfiitttt'ittiittttt*ittt*t*tw*

' sueaourrNr VPT(B,BN,QRDL)

REAL QRDL,B(3),BN(8,3)

BN(l,1)-B(1)+QRDL

BN(1,2)-B(2)+QRDL

BN(1,3)-B(3)+QRDL

BN(2,1)-B(1)+QRDL

BN(2,2)-B(2)+QRDL

BN(2,3)-B(3)-QRDL

BN(3,1)-B(1)+QRDL

BN(3,2)-B(2)-QRDL

BN(3,3)-B(3)+QRDL

BN(4,1)-B(1)+QRDL

BN(4,2)-B(2)-QRDL

BN(4,3)-B(3)-QRDL

BN(S,1)-B(1)-QRDL

BN(S,2)-B(2)+QRDL

BN(5,3)-B(3)+QRDL

BN(6,1)-B(1)-QRDL

BN(6,2)-B(2)+QRDL

BN(6,3)-B(3)-QRDL

BN(7,1)-B(l)-QRDL

BN(7,2)-B(2)-QRDL

BN(7,3)-B(3)+QRDL

BN(8,1)-B(l)-QRDL

BN(8,2)-B(2)-QRDL

BN(8,3)-B(3)-QRDL

RETURN

END

Cit*iif****t*ifi***fi********iiiti***fi**ttitiflt****fliifiii*i*#***flt****t***i***fitti

c This subroutine is used to calculate the coordinates of 4 pieces of

c 6 surfaces on a cell in order to perform the numerical integration

ctt*itiit*tiitt*itttifititittfitflitfittitttttttttfitiittititiflttitttttttttitttttitit



205

SUBROUTINE SPT(B,BS,HFDL,QRDL)

REAL QRDL,HFDL,B(3),BS(4, 3, 6),X(3,5)

DO 20 L-1,3

X(L,l)-B(L)-HFDL

XtLr21-B(L)-QRDL

XILr3)‘B(L)

X(L,4)'B(L)+QRDL

X(L,5)'B(L)+HFDL

BS(1,1,1)'X(1,5)

BS(2,1,1)-X(1,5)

88(39 1' 1)-X(1'S)

BS(4,1,1)‘X(1,5)

BS(l,2'1)-X(2'2)

BS(2,2,1)'X(2,2)

BS(3r211)-X(204)

35(4r211)-X(214)

BS(1,3,1)-X(3,2)

BS(2,3,1)-X(3,4)

BS(3,3,1)-X(3,4)

85(4r3tl)-X(3o2)

35(1, 1,4)'X(1,1)

35(2, 1,4)'X(1,1)

85(4, 1, 4)-X(1, 1)

BS(1,2,4)‘X(2r2)

BS(2,2,4)-X(2,2)

85(3, 2, 4)-X(2, 4)

BS(4,2,4)-X(2,4)

85(1, 3, 4)-X(3, 2)

35(2, 3, 4)'X(3, 4)

35(3, 3, 4)-X(3, 4)

85(41314)-X(312)

35(lr 1'2)-X(1I4)

83(2, 1, 2)'X(1,4)

85(3, 1, 2)‘X(1,2)

85(4, 1, 2)-X(1, 2)

BS(1,2,2)'X(2,5)

33(2, 2, 2)'X(2, 5)

33(312r2)-X(215)

83(41 2! 2)-X(2I 5)

BS(1I3'2)-X(3I2)

85(21 3' 2)-X(3I 4)

35(3, 3, 2)-X(3, 4)

85(4, 3, 2)-X(3,2)

85(1, 1' S)-X(1I4)

35(2, 1, 5)'X(1,4)

35(3111 S)-X(112)

35(4, 1,5)'X(1,2)

38(112r 5)-X(2rl)

BS(2,2, 5)-X(2, 1)

85(312r S)-X(211)

BS(4,2, 5)"X(2, 1)

85(113, 5)-X(312)

33(2, 3, 51-X(3,4)

BS(3,3,5)-X(3,4)

35(4, 3, 5)'X(3,2)

85(10113)-X(114)

35(2, 1, 3)-X(1, 4)

BS(3( 1,3)-X(1,2)

35(4, 1, 3)-X(1, 2)

BS(1r 2, 3)-X(2, 4)

83(2, 2, 3)-X(2, 2)
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BS(3.2,3)-X(2,2)

85(4,2,3)-X(2,4)

85(1’3I3)-X(3l5)

BS(Z,3,3)-X(3,S)

BS(3,3,3)-X(3,S)

BS(4,3,3)'X(3,S)

85(1, 1, 6)-X(1r4)

35(2, 1, 6)'X(1, 4)

BS(3,1,6)-X(1,2)

BS(4,1,6)-X(1,2)

85(1r2r5)‘X(2r4)

BS(2,2, 6)'X(2r2)

BS(3,2,6)'X(2,2)

BS(4,2,6)'X(2,4)

85(1, 3, 6)-X(3, 1)

88(293r6)-X(3r1)

BS(3I3'6)-X(3I1)

85(4, 3, 6)-X(3, 1)

RETURN

END

cittifi***fi*fli**fiifiitiifiifflfiifiiflfifitii*ifflfii*flifl*fififiiiflfl'iit**i*tifl*fiiii*iiiittit

c This subroutine is used to solve the matrix equation via Gaussion

c ellimination

Cit***************i********itit*************fl***fi********ifi*********************

SUBROUTINE CMATPA(IJOB,A,N,M,DET,EP,N031)

COMPLEX A,B,DET,CONST,S

DIMENSION A(N,N03l)

30 FORMAT<1X,42HTHE DETERMINANT OF THE SYSTEM EQUALS ZERO./

11X,36HTHE PROGRAM CANNOT HANDLE THIS CASE.//)

DET-l.

NPl-N+l

NPM-N+M

NMl-N-l

IF(IJOB) 2,1,2

1 DO 3 I-1,N

NPI-N+I

A(I,NPI)-1.

IP1-I+1

DO 3 J-IP1,N

NPJ-N+J

A(I,NPJ)-O.

A(J,NPI)-0.

DO 4 J-1,NM1

C-CABS(A(J,J))

JPl-J+1

DO 5 I-JP1,N

D-CABS(A(I,J))

IF(C‘D) 61515

6 DET--DET

DO 7 K-J,NPM

B-A(I,K)

A(I,K)-A(J,K)

7 A(JtK)-B

C-D

5 CONTINUE

IF(CABS(A(J,J))-EP) 14,15,15

15 DO 4 I-JP1,N

CONST‘A‘IIJ)/A(JIJ)

DO 4 K-JPLNPM

4 A(I,K)-A(I,K)-CONST*A(J,K)

IF(CABS(A(N,N))-EP) 14,18,18

14 DET-O.

IF(IJOB) 16,16,17

h
)
U



H
(
‘
)

(
‘
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16 PRINT 30

17 RETURN

18 DO 11 I-1,N

11 DET=DET*A(I,I)

IF(IJOB) 10,10,17

10 DO 12 I-1,N

K=N-I+1

KPl-K+1

DO 12 L-NP1,NPM

S-O.

IF(N-KP1) 12,19,19

19 DO 13 J-KP1,N

13 $-S+A(K,J)*A(J,L)

12 A(K,L)-(A(K,L)-S)/A(K,K)

RETURN

END
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