MSU

LIBRARIES
A——

RETURNING MATERIALS:
Place in book drop to
remove this checkout from
your record. FINES will
be charged if book is
returned after the date
stamped below.




INTERACTION OF ELECTROMAGNETIC WAVES WITH
HETEROGENEOUS BODIES OF

ARBITRARY SHAPE AND PARAMETERS

by

Huei Wang

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
Department of Electrical Engineering and
Systems Science

1987



ABSTRACT

INTERACTION OF ELECTROMAGNETIC WAVES WITH
HETEROGENEOUS BODIES OF
ARBITRARY SHAPE AND PARAMETERS

By

Huei Wang

This thesis consists of two parts: The first part deals with the quantification of
interaction of electromagnetic fields with finite heterogeneous bodies, and the second
part presents an application of electromagnetic waves for detecting a small movement

of a biological body behind a barrier.

In the study on the quantification of interaction of electromagnetic fields with
finite non-magnetic lossy bodies, some new numerical methods have been developed.
These new methods improve the numerical accuracy of the existing tensor integral
equation method. The induced electric field of electric mode which is excited by the
symmetrical part of incident electric ﬁefd can be solved accurately from the tensor
electric field integral equation with the method of moment and pulse basis expansion.
However, the induced electric field of the magnetic mode excited by the antisymmetri-
cal part of incident electric field can not be determined accurately by the same method.
The solution of magnetic mode can be improved by using an iterative loop-EMF
method which is designed to calculate the induced electric field of magnetic mode by
the incident magnetic field. Another alternative is to introduce an equivalent magnetic

current to compensate for the discontinuity of the tangential component of electric field



at the boundary created by using the pulse-basis expansion.

The EM fields with finite lossy magnetic bodies has also been investigated in this
research. A set of coupled tensor integral equations has been derived to solve for the
induced EM field in a finite heterogeneous body which is irradiated by an incident EM
field. This set of equations can be decoupled into a separate tensor electric field
integral equation (EFIE) and a tensor magnetic integral equation (MFIE). Numerical
solutions of the coupled integral equations and decoupled EFIE are compared. The
procedures for calculating numerical solutions of these integral equations are also

included.

In the study of an application of electromagnetic waves for detecting a small
movement of a biological body behind a barrier, a series of experiments were con-
ducted to measure the breathing and heart signals of a human subject behind a thick
layer of bricks with microwave life detection systems. A theory was developed to
predict the transmission of a non-uniform plane wave passing through a wall. Experi-
mental results on the detection of breathing and heart signals of human subjects behind
brick walls of various thicknesses are presented. The basic principle of the microwave

life-detection system is also included for completeness.
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CHAPTER 1

INTRODUCTION

The interaction of an electromagnetic (EM) field with a heterogeneous material
body, with arbitrary electric and magnetic parameters and finite physical dimensions, is
a fundamental and important research subject. This subject has received attentions of
many researchers because of its relevance in medical and engineering applications.
For example, the induced EM field in a human body when it is irradiated by an
incident EM wave is an important piece of in formation in the assessment of potential
health hazard, or in some medical applications such as the hyperthermia cancer therapy
using EM radiation. In the field of engineering, the knowledge of interaction of EM
waves with a finite body of arbitrary compositions has direct applications in the
modification of radar scattering from space vehicles. This knowledge is also relevant
in other electronic fields whenever a material body of a device is exposed to an EM

field.

To quantify the induced EM field in an irradiated heterogeneous body is not an
easy task. The mathematical complexity of three-dimension computation exacerbates
this problem. A tensor electric field integral equation (EFIE) was derived by Livesay
and Chen to quantify the induced fields in a non-magnetic and lossy body [1], where
the method of moment (MOM) was used for the numerical calculation, the piecewise
constant functions (or pulse functions) were chosen as basis functions (trial functions)
to expand the components of unknown induced electric field distribution and the
Dirac-Delta functions were selected as weighting functions (it is the so called colloca-

tion or point-matching testing procedure). Some researchers [26], [27] solved this



problem by an equivalent EFIE in terms of free space scalar Green’s function, with the
choice of some other basis and weighting functions for the method of moment. The
results of the latter approach, when compared with the analytical solution of the
induced electric field distribution in a homogeneous non-magnetic lossy sphere, seem
to improve over the results of Livesay and Chen [1]. However, to use the pulse-basis
expansion and point-matching in the method of moment is still advantageous over
other choices of basis and weighting functions from the viewpoint of the simplicity in
the procedures of calculation. There are some limitation of solving this EFIE with
pulse-basis expansion and point-matching which have been reported [5], [6]. A
reported problem [6] states that induced electric field of electric mode which is excited
by symmetrical part of incident electric field can be solved accurately but the induced
electric field of magnetic mode which is excited by the antisymmetrical part of
incident electric field can not be determined accurately unless a large number of parti-
tion of the body is used. This thesis presents some methods, namely, the iterative
loop-EMF method and the equivalent magnetic current compensation method, to
improve the efficiency and accuracy of the existing method (solving tensor EFIE with
pulse-basis expansion and point-matching). The results of these new methods in the
frequency range of several hundred MHz are compared with the results of Livesay and
Chen [1].

To study the interaction of EM waves with magnetic and lossy bodies, a set of
coupled tensor integral equations [3], [14] have been derived based on the method of
equivalent polarized currents to relate the induced EM fields with incident EM fields.
Since the unknown induced electric and magnetic fields are coupled together in this set
of equations, we need to solve them simultaneously. In order to reduce the number of
unknowns, we can decouple this set of equations into a separated tensor EFIE and a

separated tensor magnetic field integral equation (MFIE) in which case the electric and



magnetic field distributions can be solved separatedly and only one half of unknowns
need to be handled in the procedure of numerical calculation. The method of moment
solutions of coupled and decoupled tensor integral equations are compared and the
effect of induced fields due to the magnetic material is investigated. These tensor
integral equations are constructed in terms of free space dyadic Green’s functions and
can be transformed into integral equations in terms of free space scalar Green’s func-
tions. Similar numerical results can be obtained by solving the integral equations in

terms of the scalar Green’s functions.

A study of an application of electromagnetic waves for detecting a small move-
ment of a biological body located at a distance or behind a barrier is also presented in
this thesis. The so called microwave life detection systems are developed to measure
the small movements due to breathing or heartbeats of a human subject at a distant
away or behind a barrier. The original purpose of the systems was that Navy needed a
system to indicate whether a wounded soldier on the battlefield is still alive or not.
Such a system can prevent fellow soldiers from taking risks attempting to help a dead
combatant. It turns out that there are many other applications. For example, this sys-
tem can be used to find out whether there are people under a collapsed building after

an earthquake or it can be used as an alarm system to monitor intruders into a room.

The basic principle of the systems is to illuminate the human subject with a low
intensity microwave beam and then extract the body movement of the subject from the
modulated back-scattered wave with a detecting system. Two different operating fre-
quencies have been selected to construct the systems, one is 10 GHz (X-band) and the
other is 2 GHz (L-band). The L-band system is specially designed for detecting small
body vibrations behind a thick wall because of the better penetration ability of the EM
wave of the lower frequency. Plane wave spectrum theory [17], [18] is used to

analyze the nonuniform plane wave from the antenna passing through a layer of lossy



material and to predict the electric field distribution on the other side of the barrier.
The predicted electric field distributions and experimental results for the detection of
breathing and heart signals of a human subject behind brick wall of various thicknesses

are presented.

In chapter II, a brief outline of the derivation of the tensor EFIE which can be
used to quantify the induced electric field distribution in a non-magnetic body is given
in the beginning and then an example is given to show the limitation of the MOM
solution with pulse-basis expansion and point-matching of this equation. We introduce
two new methods to improve the accuracy and efficiency of the tensor EFIE method.
The iterative loop-EMF method and the equivalent magnetic current methods are dis-
cussed in sections 2.3 and 2.4, respectively. For the iterative loop-EMF method, we
use the concepts of impedance networks and Faraday’s law to relate the induced
currents and the induced EM fields, then apply a coupled tensor integral equation to
perform the iterative process. For the equivalent magnetic current compensation
method, an equivalent magnetic current on each adjacent cell boundary is introduced to
compensate the discontinuity of the tangential component of the induced electric field
distribution which is artificially produced by the pulse-basis expansion. Discussions

and numerical results are included at the end of chapter.

Chapter III discusses the interaction of EM fields with magnetic bodies. An out-
line of the derivation of the coupled tensor integral equations which can be used to
quantify the induced EM field distribution in a magnetic body is given in section 3.1.
The transformation from this set of coupled equations into a separate tensor EFIE and
a separate tensor MFIE in various forms [13], [16] are presented next. These sets of
integral equations in terms of the free space scalar Green’s function, rather than the
dyadic Green’s function, can be derived from the concept of potential functions main-

tained by equivalent current and charge densities. The derivations are given in section



3.3. Numerical solutions of the coupled equations and decoupled equations are com-
pared and the effects of the induced EM fields due to the magnetic material are inves-
tigated in this chapter. Both the advantages and disadvantages of each set of the

integral equations are also discussed.

Chapter IV is devoted to the study of the application of electromagnetic wave for
detecting a small movement of a biological body located at a distance or behind a bar-
rier. Plane wave spectrum analysis is outlined in the beginning of chapter and fol-
lowed by some numerical simulations of the predicted electric field distributions for a
nonuniform plane wave passing through a layer of lossy barrier. The description of
the microwave life detection systems, along with the circuit diagram and the principle
of operation, is included in section 4.3. Finally, a series of experimental results for the
detection of the breathing and heartbeats of a human subject behind a brick wall are

presented.



CHAPTER I1

NEW METHODS FOR QUANTIFICATION OF INDUCED EM FIELDS
IN
FINITE, NON-MAGNETIC AND LOSSY BODIES

Some new numerical methods for quantifying the induced EM field in a finite,
heterogeneous, non-magnetic body irradiated by an incident EM field are investigated
in this chapter. The numerical solutions of the tensor electric field integral equation
(tensor EFIE) [1] by using conventional pulse-basis expansion with point-matching are
compared with the results of the new methods. In the first two sections, we introduce
the derivation of the tensor EFIE and discuss some limitation of this method. Section
2.3 and 2.4 illustrate the new methods, i.e., the iterative loop-EMF method and the
equivalent magnetic current method, to improve the accuracy of the numerical solu-
tions of the induced EM field distribution. For the iterative loop-EMF method, we use
the concepts of impedance networks and Faraday’s law to relate the induced currents
and the induced EM fields, then apply a coupled tensor integral equation to perform
the iterative process. In the equivalent magnetic current method, an equivalent mag-
netic current is introduced to compensate the discontinuity of the tangential component
of the induced electric field distribution which is produced by the pulse-basis expan-
sion. The comparisons and comments between various methods are presented in sec-

tion 2.5.

2.1 Tensor Electric Field Integral Equation (Tensor EFIE)



A brief outline of derivation of the well known tensor EFIE is given in this sec-
tion. Fig-2.1 shows a finite heterogeneous system composed of dielectric, and lossy
medium with arbitrary shape, being irritated by an incident EM field E' and H' of
angular frequency ®. The conductivity ¢ and permittivity € of the medium consisting
this system are both functions of location, i.e.,

o = o(r) 2.1.1)
€= €(r) (2.1.2)
where r is the position vector in R3.

The incident fields E\,H’ must satisfy Maxwell’s equations in free space:

V x E¥(r) = iopg H(r) (2.1.3)
V x Hi(r) = —iwey E¥(r) (2.1.4)

where
i=V-1, (2.1.5)

the time harmonic factor e~ is assumed and €, g are the permittivity and permea-

bility of the free space, respectively.

The total fields E and H inside the system which is induced by incident fields

should also satisfy Maxwell’s equations:
V x E(r) = iopy H(r) (2.1.6)
V x H(r) = o(r)E(r) - iwe(r)E(r) . 2.1.7)
The scattered fields are defined as the total fields subtracted by the incident fields,
that is,

ES(r) = E(r) - E(r) (2.1.8)



E(r),H(r)

e(r)sp »olr)

Fig-2.1 An arbitraily shaped non-magnetic
lossy body in free space illuminated
by an incident plane wave.




H(r) = H(r) - Hi(r) . (2.1.9)

From the set of equations (2.1.3), (2.1.4) and (2.1.6), (2.1.7), and using (2.1.8),

(2.1.9), the following equations are easily obtained:

V x E*(r) = iopy H¥(r) (2.1.10)

V x Hr) = {o(r) — i® [e(r) - eo]} E(r) - iy ES(r) . (2.1.11)

Suppose we define an equivalent volume current density as
Joo(r) = UNE(r) , (2.1.12)
where
(r) = o(r) - iw[e(r) - 80] (2.1.13)
is the equivalent complex conductivity of the medium, then we can rewrite (2.1.10)
and (2.1.11) as
V x E(r) = iopy H(r) (2.1.14)
V x H¥(r) = Jeq(r) - ineg E(r) . (2.1.15)
We can determine E° in terms of Jeq from (2.1.14) and (2.1.15) now. By taking

curl operation in both side of (2.1.14) and making use of (2.1.15), a differential equa-

tion is obtained:

V x V x ES(r) - k§ ES(r) = iooptg J(r) forall r, (2.1.16)
where
ko = 0lgEo (2.1.17)

is the wave number of free space.
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To find the solution of this equation, we can find the Green’s function first. The
Green’s function 60 is a tensor quantity and must satisfy the following dyadic

differential equation in free space:
V xVx 80(r,r') - K 80(r,r') =8(r-r) (2.1.18)
where
T'=xx + yy + 2z (2.1.19)

is the unit dyad and x, y, z, are the unit vectors in x—, y—, z— direction, respectively.
The free space dyadic Green’s function 50 must also satisfy the radiation condition at
infinity.

50 can be determined as [4]:

L

5'0(r,r’) =(T+ k?,

Wo(r,r) for r#r’ (2.1.20)

where

eikoR f ’
o(r,r) = yrry or r#r (2.1.21)

is the free space scalar Green’s function and
R =|r-r|. (2.1.22)
Thus, the solution of (2.1.16) is
ES(r) = [ , iopol (r)-Go(r.r’) av’ (2.1.23)
where v is the volume of the body.

Since the integrand of (2.1.23) is not in the L! space, i.e., not integrable, this
integration is valid only in the sense of Cauchy principal value and a correction term is

needed to overcome the singularity problem, [1], [2], i.e.,
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E(r) = P.V. [, iopgd, (r)-Go(rr) @' + -‘;-::g- : (2.1.24)

From (2.1.8) and (2.1.24), we can easily obtain the well known tensor EFIE:

[1 + %]E(r) ~PV. [, iopguIER) Eyrr) & = Eir) . (2.1.25)

This integral equation can be transformed into a system of linear algebraic equa-
tions by applying pulse-basis expansion and point-matching and then solved numeri-
cally. The details of the transformation are shown in section 2.4 where we will illus-

trate the differences between this method and the equivalent magnetic current method.

Another integral equation, which will be used in the iterative loop-EMF method
in section 2.3, in terms of incident magnetic field can be derived by taking curl opera-

tion of (2.1.23) and utilizing (2.1.9) and (2.1.14):
V x EXr) = V x [ , iopgt(t)E®)-Go(r,r) @’ . (2.1.26)

Using equations (2.1.14), we have

H'(r) = -ﬁ V x EXr) 2.1.27)

then (2.1.27) becomes

H(r) = - [, w)E@) [V x Gy(rr)] av’ . (2.1.28)

By applying (2.1.9) and (2.1.28), we can obtain a coupled tensor integral equation
in terms of H%
H(r) + [, W)EW) [V x Gy(r,r)] @’ = Hi(r) . (2.1.29)

We will make use of this equation to establish the iterative process in the iterative

loop-EMF method since the induced magnetic field H(r) is easily obtained via
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numerical integration provided the induced electric field distribution E(r) and the

incident magnetic field Hi(r) are known. More details are presented in section 2.3.

2.2 The Limitation of the Existing Tensor Integral Equation Method

The limitation of the Existing Tensor Integral Equation Method has been dis-
cussed by several researchers [S], [6]. One limitation is concemed with the specific
absorption rate of energy (SAR). It was reported that the tensor EFIE method with
pulse-basis expansion an.d point-matching gives good values for whole-body average
SAR, but the convergence of the solutions for the electric field distribution and the
SAR distributions is questionable. The convergence problem has also been indicated
by Chen and Rukspollmuang [6] by using a cubic body as an example. This example
is given here to illustrate the limitation of the tensor EFIE. An incident plane elec-

tromagnetic wave of frequency ,
E' = x Ege™* .2.1)
H =y Hpe™ | 2.2.2)

where Ey and Hj are some complex constants, can be decomposed into two standing

waves as
E'=E. +E}, (2.2.3)
H =H. +H,, (2.2.4)
where

E. = x Eycos(kq2) (2.2.5)
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E!, = x iEgsin(kgz) (2.2.6)
. Ey .

H,=y iTsm(koz) 2.2.7)
. E,

H,=y —C-cos(kcz) (2.2.8)

and

Ho
=1\ / _— 2.2.9
g & ( )

is the free space wave impedance. The induced electric field E due to E: is called the
electric mode solution, while the induced electric field E due to Ef, is called the mag-

netic mode solution.

Two sets of numerical solutions of electric mode and magnetic mode field distri-
butions in a cubic body obtained by solving the tensor EFIE with pulse-basis expan-
sion and point-matching are shown in Fig-2.2 and Fig-2.3, respectively. Fig-2.2 shows
the x- components of the amplitude of the induced electric fields |E,| inside a
4 x4 x4 cm cube with the conductivity ¢ = 4.5 S/m and the relative permittivity
g, = 50, excited by a symmetrically impressed electric field E‘ = x cos(kgz) of fre-
quency 750 MHz. The middle part of Fig-2.2 shows the distribution of the amplitude
of E, within one eighth of the cube, obtained when the cube was subdivided into 216
cubic cells. In the lower part of Fig-2.2 the distribution of the amplitude of E, within

one eighth of the cube obtained with 512-cell subdivision is shown.

Fig-2.3 shows the distribution the amplitude of E, inside the same cube excited
by an antisymmetrically impressed electric field E' = x isin(kyz) of frequency 750
MHz. The numerical results for the amplitude of E, are given in Fig-2.3 for the cases

of 216-cell subdivision and the 512-cell subdivision. It is noticed that the electric
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1 1
<+ 4 32
y y 4
z f = 750 MHz z
€r = 50
4 %
( 216-cell subdivision ) i ( 512-cell subdivision )
E = xcosk z
0
| Ex| in (mV/m)
2 1
FQ { <
19.1] 19.1 | 25.3 14.7] 145 | 20.0 15.1] 149 | 20.3
2281 228 | 279 20.11 19.8 | 243 21.1] 20.7 | 25.1
2431 24.1 ] 29.0 22.11 21.7 | 26.0 23.51 229 | 27.0
( 216-cell subdivision )
| E,| in(mVim)
4 3 2 1
< = Ve g V- P
19.2] 19.419.6] 26.6 14.4{14.5|14.4{ 20.5 14.9115.0114.9] 20.8 15.1115.2115.11 20.8
‘ifs 21.8(21.9127.4 19.4]19.2118.9{ 23.6 20.9120.6{20.21 24.5 21.6{21.4120.8] 25.0|
23.0] 22.9922.8] 27.7 21.8121.5]20.8125.0 24.0123.6]22.8 26.5/ 25.2]124.7|23.8] 27.3
23.5123.4123.4] 27.7 23,0122.6 21.8 25.6‘/ 25.6/25.0 [24.0] 27.4] 26.9126.3125.2] 28.4

( 512-cell subdivision )

Fig-2.2 Electric mode distribution of the x-component of

the induced electric fields in the body based on

216-cell division and 512-cell division.
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4x
f X
1
y <— 2 1
y ¢+ 43
z f = 750 MHz .
< — q €r= 50
(216-cell subdivision E =xisink z ( 512-cell subdivision )
| Ex| in (mV/m)
2 1
< <
144142 | 15.3 70} 69 | 76 24 23| 26
289 284 | 29.2 289 284 | 29.2 s3] 52| 53
36.2| 35.6 | 36.2 36.2| 356 | 36.2 69| 67| 67
( 216-cell subdivision )
| Ex| in (mV/m)
3 2 1
< < V-
19.6] 19.418.9| 19.8] [12.2[12.0]11.6[12.2 76| 74|72 7.4 25| 25]24] 25
42.5/42.3[41.1]40.8| [29.2]28.8[27.7[27.3| [182] 17.9417.2| 16.7 6.1] 6.0] 5.8 5.6
58.7| 58.0156.3| 55.1| |41.1] 40.4{38.8]{37.7| |25.7[25.2]|24.1|23.2 87| 8.5|8.1]| 78
66.6| 66.0064.0 62.4] [47.2 46.4144.6 43.(ﬂ/ 29.5128.9[27.71 26.4] [10.0] 9.8]9.4| 8.9
( 512-cell subdivision )

Fig-2.3 Magnetic mode distribution of the x-component

of the induced electric fields in the body based
on 216-cell division and 512-cell division.
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mode solution exhibits a good convergence but the magnetic mode results for the 512-
cell subdivision deviate significantly from those of the 216-cell subdivision, especially
at the outer layer of the cube. A simple physical explanation is that the electric mode
solution is induced by a symmetrically impressed electric field so that it is linear in
nature while the magnetic mode solution is induced by an antisymmetrically impressed
electric field so that it is circulatory in nature. Intuitively, for the latter case, we do
not expect good results with the pulse-basis expansion which is linear in nature. To
produce accurate results for the magnetic mode of induced electric field field, the cell
size should be smaller in comparison with the case of the electric mode shown in Fig-

2.2

2.3 Iterative loop-EMF method

A finite body can be considered as an impedance network system from the
viewpoint of electric voltage and current [7], [8]. The body is subdivided into a
number of cells, each of which is then replaced by an equivalent impedance loop. One
can find the induced current distribution of this network when it is exposed to an
incident field with the applications of Faraday’s law and Kirchhoff’s circuit theory to
the network. The electric field distribution of the body can thus be determined by the

relation:
Jq(r) = T(NE(r) . (2.1.12)
An iterative process can be added to improve the accuracy of the induced currents

in the resulting network and hence the induced electric fields inside the body by using

the coupled integral equation (2.1.29). The iterative loop-EMF method is based on the
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concept of impedance network combined with the iterative process. The procedures of

this method are given in this section.

Fig-2.4 is an example of a single layer of body illuminated by an antisymmetric

incident electric field E}, of
E!, = x iEgsin(kq2) , (2.2.6)

which has the associated magnetic field H:, of

) E,
H,=y —c-cos(koz) . (2.2.8)

The single layer body is cut into N cubic cells of width 4 while we regard each cell as

a loop in the whole system. In each loop, say the n-th one, we define a loop current,

J, =1,E, 2.3.1)

where E, can be considered as a loop electric field in the n-th cell and 1, is the
equivalent complex conductivity of this cell. This loop current can be calculated in

terms of magnetic field by Faraday’s law:

[ ¢ Edl = ioopf 5, Heds . (2.32)

Let us apply (2.3.2) in the i-th cell for illustration. From (2.1.12) we have

Jeg(™)
E(r) = —/— 2.3.
(r) vy (2.3.3)
then (2.3.2) and (2.3.3) give
J; VAN A A
24d-Ld-=d-Zd=iougH).d, 234
T; T % T opo(Hd 234)

or in other words,

4E; - E; -E; - E; = iojpo(H),d , 2.3.5)
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Fig-2.4 A single layer of non-magnetic lossy body
regarded as an impedance network system
with N loops.

N
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where (H,), is the y— component of the H field for the n-th cell. Eventually, (2.3.4)

can be thought as the application of Kirchhoff’s voltage law while J;’s are correspon-

dent to mesh currents and -Ti correspondent to branch impedances along the sides of
i

the cell.

The application of (2.3.5) to all the cells will give rise to

. iIr 1 r .

ay ap .. . awl||E (Hy),

@Gy GGy - - - Gy Ez (Hz)y
. ... Aol - 2.3.6)

anvt av2 0 ann|[En]  |(HN)y

where
pp =C L, for m=1,2,...N n=1,2,..N 2.3.7)
d

c= oty (2.3.8)

and L, belonging to the set {—4,—3,—2,-1,0,1,2,3,4}, is dependent on the relative loca-

tion of the loop in the network system.

We can obtain E, in terms of (H,), by solving the system of simultaneous linear
algebraic equations (2.3.6). After that the loop current density of each cell J, is sim-

ply obtained as

(2.3.9)

The actual current density along the side of each cell can be found by subtracting
those loop current densities of the adjacent cells. For example, in Fig-2.4, J;;, J;1, /o
and J,, are the actual current density of four sides along the i-th cell respectively, and

can be expressed as follows:
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Ja=-J; (2.3.10)
Ja=Ji—=J; (2.3.11)
Jp=Ji-J (2.3.12)
Jo=Ji-1, (2.3.13)

Once we know the actual current distribution, we can easily find the electric field

distribution by (2.3.3).

The remaining problem is that we still do not have the magnetic field distribution
which is needed to apply (2.3.2). Thus, an iterative process is developed by using
(2.1.29) to estimate the H field. We can choose the initial guess as

HO = § (2.3.14)
in the zeroth-iteration, where
H®, for k=0,12,.., (2.3.15)
is the estimated magnetic field distribution in the k-th iteration.

From (2.3.6), we are able to calculate for the loop electric field E? in this
zeroth-iteration, and thus for the loop current /9, where

E® and J® | for k=0,1,2,..., (2.3.16)
are the loop electric field and loop current of the n-th cell in the k-th iteration, respec-
tively.

The actual electric field distribution can be easily constructed similarly to that in
(2.3.10) to (2.3.13) in this zeroth-iteration. In order to make use of the actual electric

field at the center in each cell, we can approximate that by averaging the values along

the sides of each cell, for example,

_ (Eq+Ey)

o - 2.3.17)

o L.
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_ (Ezl + Ezz)

iz 2 (2.3. 1 8)

for the i-th cell as shown in Fig-2.4, where E;; and E;, are x- and z— components of
electric field at the center in the cell. So E(o), the zeroth E field distribution, is con-

structed automatically.
Now we are on the way to proceed the iteration process. For the first-iteration,
H™ can be calculated from (2.1.29):

HO(r) = Hi(r) - [, «EO() [V x Gyr,r)] @, (2.3.19)
where the integration in (2.3.19) should be carried out numerically. Again, we can
obtain E{ from (2.3.6) by using H(V,

Similarly, for the kth-iteration:

H®(r) = H(r) - [, (EE D)V x Go(rr)] oV, (2.3.20)
and then Ef,") can also be obtain from (2.3.6) with H® calculated from the (k—1)-th
iteration.

This iteration process should continue until both E, and H converge.

As we can observe, a nearly uniform, incident magnetic field will enable us to
apply the Faraday’s law accurately and thus will give better approximation in this
method. This process, as described above, will be more accurate and efficient if we
applied it on an electrically small size body with an antisymmetric incident electric

field.

2.4 Equivalent Magnetic Current Compensation Method
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When (2.1.25) is solved numerically with pulse-basis expansion in a finite body,
this body is partitioned into a finite number of cells and the induced field in each cell
is assumed to be uniform. In this way, we allow the induced electric fields to vary
from cell to cell. Obviously, this assumption creates a discontinuity of E field between

adjacent cells.

In a homogeneous region, the induced E fields need to be continuous everywhere
but the consequence of the above assumption clearly violates this fact. When point-
matching is applied as the testing procedure, there is a physical explanation for the
discontinuity of the normal component of the E field [9] and a brief digcussion is

given here.

In (2.1.18), the dyadic Green’s function can be regarded as the E field generated
by a current element and a pair of opposite charges at the ends of the element. A
source region with conventional current and charge density can be considered as an
ensemble of small cells each containing a current element or an electric dipole of cer-
tain magnitude and orientation. Based on this picture, two adjoining cells containing
current elements of different magnitudes or orientations will result in a net charge at
the boundary of these cells. On the other hand, the discontinuity of the normal com-
ponent of the E field between two adjacent cells as we mentioned earlier will also
yield a net charge at the interface by applying the boundary condition of the

Maxwell’s equations.

From this argument, we say the discontinuity of the normal component of E field
is compensated by the equivalent surface charge at the boundary which effect is taken
into account by the free space tensor Green’s function 50.

The discontinuity of the tangential components of E fields, however, still exists

between adjacent cells. An equivalent magnetic surface current K, is proposed at the
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cell boundary to compensate for this discontinuity. Fig-2.5 illustrates a rough picture
of the equivalent surface charge and the equivalent magnetic surface current between

neighboring cells.

By definition of magnetic surface current and the principle of equivalence [10],

we have:

K,=-nxE=mn; xE; +n, xE,) (2.4.1)

m

where n is the unit normal vector and n,, n,, are the unit normal vectors on the
adjoining surface of cell 1 and cell 2 respectively, as shown in Fig-2.5. This K,, will

maintain another scattering electric field:
E“(r) = - [ ; (n x E(r)) x Vé(r,r') ds” . (2.4.2)
Thus (2.1.8) becomes
E=E +E*+E*. (2.4.3)

Therefore the tensor EFIE (2.1.25), is then modified as follows:

[1 * %]E(r) - PV, iopgt(r)E() Gy(r,r') dv’

+ [ - (n x E(r) x Vo(r,r) ds’ = EX(r) , 2.4.4)
where 5 represents all the six surfaces of each cell except the outmost boundary sur-
face enclosing v.

Equation (2.4.4) can be solved numerically in a similar way as before with a

modification in the matrix elements, as described below.
In the tensor EFIE (2.1.25), the inner product E(r')-&’o(r,r') can be represented as

a matrix product as

Er)Gyr,r)
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Fig-2.5 Ilustration of the equivalent suface charge
and the equivalent magnetic current created
by the discontinuity of the electric field
between neighboring cells.
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[
o) + ;‘;%(r,r') —k‘5¢,,(r,r') 'kl?"’”"”"
L " L Er)
=] FOsEr)  0EN ey e (B
k;% 1 k 8 E(r)
-_¢zx(r:r’) —¢z (l',l") ¢(r,r’) + —¢zz(r’r')
[ 3 ]
(2.4.5)
where
2
O n (FF) = ——0(r,F")
axpaxq
K™ . (x, = 5,)(x, = X;) ,
= [(koR)2-1+zk0R]5pq+ e R [3—(k0R)2—3zkoR]
(2.4.6)

for p,g=1,2,3, and x;, x;, x5 stand for x, y, z, respectively for convenience, E,, E, and
E, are x—, y—, and z— components of the electric field E. Note that §,, is defined as

p=q

_d1
8Pq - {0 otherwise 2.4.7

Suppose the body is divided into N cells with the center of each cell v, located at
r, n=1,2,.,N. After applying pulse-basis expansion and point-matching, (2.1.25) is
then transformed into a system of linear equations of order 3MV:
G Gy, Gul[E] [E

Gy Gp Gyl|Ey| = Eﬁ
G3; G3; Gas||Es| |ES

(2.4.8)

where G,, is an N x N matrix, E, and E, are N x 1 column vectors, for p,g=1,2,3.

The elements of those matrices and vectors are



inte

fory
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it(r,)
(qu)mn = 8pqamn [1 + 3 we, ]
L

+iopg PV. [, wr)[8,00(r,r) + 2
0

Oz Tr] Y,

mn=1.2,..N (2.4.9)
(EJn=E (r), n=12,..N (2.4.10)
(Ep)a = Egl(ry) . n=1,2,..N (2.4.11)

Note that the integration in (2.4.9) has the singularity problem when m=n. A
correction term and the Cauchy principal integration are needed to evaluate (G,g)nn
The results of (G,,)n, can be obtained analytically by approximating v, as a sphere

with the same center and an identical volume [12]:

2iwpgt(r,) . . it(ry,)
(Gpn = 8pq —g-k%—[e"*’“ (1 = ikga,) — 1] + [1 + 30)80] , (24.12)
where
3y 13
ap = [‘m ] (2.4.13)

is the radius of the approximated sphere and V,, stands for the volume of the n-th cell.

The rest of elements in G,, can be carried out numerically.

Now in the modified integral equation (2.4.4), the integrand of the surface
integration (n x E(r)) x Vo(r,r’) can also be represented in another matrix product

form:

(n x E(r")) x Vé(r,r’)
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n2¢y(r’r’) + Il3¢z(l',l',) —n1¢y(r9r’) _nl¢z(r’r') Ez(r,)

= _n2¢x(r’r,) ”14’;(",1") + n3¢z(r1r’) —n2¢z(r1r,) Ey(r’)
—n3¢x(rvr') -n3¢y(r’r,) nl¢x(r:r ,) + n2¢y(r7r ') Ez(r’)

(2.4.14)

where n;, ny and n3 are x—, y— and z— components of the unit normal vector n, i.e.,

n=nx+ny+nz (2.4.15)
2+ni+ni=1, (2.4.16)
and
gikoR
¢x(rr)=——p-¢(rr) s (”R”) (1 - ikgR) (2.4.17)
for p=1,2,3.

Suppose we apply pulse-basis expansion and point-matching at the center of each

cell, the system of linear algebraic equations will become
Gn Gz Gy E;
Gs; Gy, Gy E3

where G_pq is again a N X N matrix, the elements of the matrices for p,g=1,2,3 are

it(r,)
3(.080

(qu)mn = 8pgdmn [1 +

4 iy P.V. J' va UC)[B,0(rnr’) + %o%px'(r,,,r')] av’

3
+ [ [8g X na(rpr’) - BpgIy0s, (T,o)] ds”
g

=1

mn=12,....N (2.4.19)
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where 5, represents the six surfaces of v,,, except for those surfaces which belong to
the outmost surface s, and of course, n, depends on 5,. The surface integration in

(2.4.19) should also be carried out numerically.

Now we can find the electric field at the center of each cell by solving the above

matrix equation. Numerical examples will be shown in section 2.5.

2.5 Numerical Comparison between the New Methods and the Existing Method

Several sets of numerical solutions of induced electromagnetic fields inside some
block models solved by the new methods described in this chapter are compared with
the corresponding induced fields obtained from the tensor integral equation method.
This comparison is shown in Fig-2.6 to Fig-2.24 and is the subject matter of discussion

in this section.

In Fig-2.6, a single layer, homogeneous rectangular biological model with dimen-
sions of 6 X 6 X 1 cm is illuminated by a plane wave with a vertically polarized field
at end-on incidence. The total volume is divided into 36 subvolumes and each of
them is 1 X 1 x 1 cm in dimensions. Fig-2.7 indicates the numerical solutions of the

tensor integral equation due to symmetric part of the incident electric field,
E' = E! = x cos(kg2) (2.5.1)

with a frequency f = 100 MHz.

Those numbers in the figure are the x— and z— components of the total induced
field at the centers of the cells. The y— component is very small compared with the
other two components so that it can be disregarded. In this calculation, the conduc-

tivity o is assumed to be 0.889 S/m and the permittivity € is assumed to be 71.7g,,.
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€, = 71.7
G =089 S/m
p <1

Fig-2.6 A homogeneous rectangular biological model with dimensions 6 X 6 x 1 cm
illuminated by an EM wave at end-on incidence.
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Due to the symmetry of the geometry and hence the field distribution [11], [12], only
the values of the induced fields in the first quadrant of the model are shown in Fig-2.7.
Fig-2.8 shows the solutions of a model with the same dimension and material which
was subdivided into 288 cells with each subvolume of dimensions 0.5 x 0.5 x 0.5 cm
exposed to the same incident field as Fig-2.7. Each numerical value is obtained by
taking average of the fields at the centers of eight neighboring subcells which are
includeded in the original 1 cm® cubic cell in order to compare with the numerical
values in Fig-2.7. Fig-2.9 and Fig-2.10 are the similar results as those shown in Fig-

2.7 and Fig-2.8 except that the incident electric field is antisymmetrical:
E' = E}, = x isin(kyz) . (2.5.2)

It is observed that the values in Fig-2.7 are quite close to those in Fig-2.8, but the
values in Fig-2.9 are only about one third to one half of those in Fig-2.10 which are
regarded as more accurate solutions. This is not surprising since we have already seen

an example in section 2.2.

Fig-2.11 shows the field distribution obtained by the iterative loop-EMF method
in the same body with an antisymmetrical incident electric field of frequency 100
MHz. Here the body is subdivided into 36 cells of size 1 cm®. We find that the

values in this figure are closer to those in Fig-2.10 than those in Fig-2.9.

Fig-2.12 presents the results of the equivalent magnetic current method, with the
same body and the same incident fields as the case of Fig-2.11. The body is again cut
into 36 cells and we have added the effect due to the equivalent magnetic current
between adjacent cells. The improvement in this case is not very significant since the
electric field distribution is not changing rapidly and hence the effect due to the

discontinuity assumption by using pulse-basis expansion is also not very noticeable.
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|El .0332 .0334 .0418
E,| .0030 .0089 .0150 fem
>
in (Vim) | .0465 0472 .0560 f jcm z
.0014 .0041 .0063 y
0522 0530 | .0823
.0005 .0013 .0021
—
4
Fig-2.7 Conventional EFIE solutions
based on 36-cell division.
E' = x cos(kyz)
N x f=100 MHz
IEd .0353 .0363 .0430
|E,| .0036 .0107 .0170

0511 .0524 .0597
.0017 .0051 .0076

.05875 .0590 .0664
.0005 .0016 .0024

>

Fig-2.8 Conventional EFIE solutions
" based on 288-cell division.
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X
4 !I x
|ES .0007 .0021 .0044
IE,| .0067 .0052 .0021 1cm
-
in (Vim) | .0013 .0040 | .0078 cm z
y
.0037 .0029 .0011
—.0016 0095 |
.0012 .0010 .0004
—>
14
Fig-2.9 Conventional EFIE solutions
based on 36-cell division.
E' = x isin(kyz)
A S =100 MHz
|E,) .0013 .0039 .0073
|E,| .0169 .0131 .0053
.0028 .0088 0155
.0097 .0075 .0030
0035 | .0109 | 0135 |
.0032 .0024 .0010
>
r4

Fig-2.10 Conventional EFIE solutions

based on 288-cell division.



33

X
4
X
|E,| .0025 .0082 .0166
IE,| .0303 .0261 .0166
. icm
in (Vim) | 0043 | .0137 | .0261 o Jiom B
.0163 .0137 .0082 y
0051 0163 | 0303 |
.0051 .0042 .0028
>
r4
Fig-2.11 Iterative loop-EMF solutions
based on 36-cell division.
E' = x isin(kyz)
b4 =1
A f=100 MHz
|E, .0007 .0022 .0045
|E,| .0070 .0054 .0022

.0014 | .0041 .0081
.0039 | .0030 | .0012
0017 | .0051
.0013 .0010 .0004

>

Fig-2.12 Equivalent magnetic current
method solutions based on
36-cell division.
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Fig-2.13 to Fig-2.16 show the induced fields in the same body illuminated by an
antisymmetrical incident electric field of frequency 300 MHz. Fig-2.13 shows the
solution of tensor EFIE method with 36 cells, Fig-2.14 indicates the solution of same
method with 288 cells, while Fig-2.15 and Fig-2.16 depict the solutions by iterative
loop-EMF method and equivalent magnetic current method, respectively, with 36 cells.
It is obvious that the improvements by the new methods are increased. The physical
explanation is that as the frequency goes up, the electric field distribution varies more
rapidly and hence those new methods will give more compensations to the inaccuracy
created by the piece-wise constant assumption of fields in each cell in the conventional

method.

Fig-2.17 to Fig-2.24 illustrate the induced field in the same body, exposed to
antisymmetric incident electric field of frequencies 500 and 700 MHz. The improve-
ment of the iterative loop-EMF method is quite significant as we can observe when the
frequency is 500 MHz. The effect is not so significant when the frequency is 700
MHz, as we observe in the figure, since there are certain limitations of this method as
discussed at the end of section 2.3. The equivalent magnetic current method improves
the results about 20 to 30 percents on the amplitude of the field distribution in each

case.

An example of the induced field in a heterogeneous body is given at the end of
this section. The iterative loop-EMF method is used to calculate the field distribution
in this example. Fig-2.25 shows a heterogeneous body of dimensions 6 x 6 X 1 cm
again. The shaded region indicates different material of conductivity 6 = 0.048 S/m
and permittivity € = 7.45¢,, the remaining part is the same as the previous cases. An
antisymmetrical incident electric field of frequency 500 MHz is used. The difficulty of
this case is the determination of the impedance at the boundaries of those cells which

are of different materials. The impedances which are related to the complex
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4* N
s
|E,] .0037 0110 .0221
IE;) | .0311 | .0240 | .0094 1em
in (V/m) .0067 .0204 .0385 ﬁcm b1
.0175 .0134 .0053 y
.0058 .0044 .0017
>
r4
Fig-2.13 Conventional EFIE solutions
based on 36-cell division.
E' = x isin(kyz)
x f =300 MHz
f
IE, .0054 .0168 0311
|E,] .0631 .0488 0191

.0114 .0350 .0626
.0360 .0277 .0108

—.0142 0438 0774 |
.0117 .0097 .0034

>

¥4

Fig-2.14 Conventional EFIE solutions
based on 288-cell division.
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|E, .0066 0221 .0466
Ej | o825 | .0715 | 0465 lem >
1cm Z
in (Vim) | .0111 .0361 0715 y
.0425 .0359 .0219
—.0132 | .0427 0822 |
.0131 .0110 .0065
>
Z
Fig-2.15 Iterative loop-EMF solutions
based on 36-cell division.
E’ = x isin(ky2)
x f =300 MHz
4
|E,| .0039 .0116 .0238
|E,| .0350 0272 .0109

.0072 0217 .0420
.0193 .0149 .0080

.0064 .0050 .0020

>

z

Fig-2.16 Equivalent magnetic current
method solutions based on
36-cell division.
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p 9
'y
X
CEZZ?
|E .0074 .0219 .0424
|E,| 0814 .0470 .0184
) 1cm
in (Vim) | 0136 .0408 .0742 ‘/‘wm
.0354 .0270 .0107 y
.0118 .0090 .0036
>
R 4
Fig-2.17 Conventional EFIE solutions
based on 36-cell division.
E' = x isin(ky2)
x f =500 MHz
r'y
|E| .0114 .0346 .0610
|E;| .1288 .0981 .0378
.0245 .0736 .1250
| 0773 .0587 .0226
.0256 .0914 .0075
>
4

Fig-2.18 Conventional EFIE solutions
based on 288-cell division.

NY



38

‘ X
‘ X
1% 0113 .0376 .0765 - —
|E4l .1326 1142 0731
in (Vim) | .0184 .0595 1142 icm
.0846 .0540 .0323 / fom
0278 | 0636 | 1304 ’
0196 0162 .0095
>
4
Fig-2.19 Iterative loop-EMF solutions
based on 36-cell division.
E' = x isin(kyz)
x f =500 MHz

IEJ .0080 .0236 .0467
|E,| .0715 .0552 .0223

.0151 .04486 .0830
.0407 .0312 0127

.0137 .0105 .0043

>

Fig-2.20 Equivalent magnetic current
method solutions based on
36-cell division.



39

—
|E,| .0128 .0376 .0682
|E;| .1094 .0834 .0032 1em
in (Vim) | .0244 0717 1232 cm
0661 | 0502 | .0204 y
0303 0889 | .1506
.0224 0171 .0694
>
¥4
Fig-2.21 Conventional EFIE solutions
based on 36-cell division.
E’ = x isin(kyz)
A x /=700 MHz

|Ed .0239 .0695 1112

|E,| .2696 .2025 0775

.0540 .1559 .2395

.2025 1557 .0504

.0614 .0445 0177

>
¥4

Fig-2.22 Conventional EFIE solutions
based on 288-cell division.
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|E| .0097 .0336 .0828
icm
|E,| .1309 .1165 .0815 /'qcm >
in (Vim) | .0148 .0496 1165 y

.0542 .0473 .0315

.0155 0134 .0088

>
r 4
Fig-2.23 Iterative loop-EMF solutions
based on 36-cell division.
E'=x isin(kqz)
x f =700 MHz
'\
|E .0146 .0422 .0780
|E,| .1331 .1021 .0422
.0282 .0820 1427
.0801 | .0612 .0255
0352 1022 1754
.0275 .0210 .0088
>
¥4

Fig-2.24 Equivalent magnetic current
method solutions based on
36-cell division.
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ex’ 71.7 eo
o‘- 0.889 S/m
ezz 7.45 80
azs 0.048 S/m

Fig-2.25 A heterogeneous body of dimensions 6 x 6 x 1 cm with the parameters
specified in the shaded and unshaded regions.
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conductivities at boundaries of heterogeneous cells can be determined by two different
approaches which do not yield the same result. The first approach simply uses the
complex conductivity in each cell itself in the evaluation of the left hand side of
Faraday’s law (2.3.2). The second approach takes the average of the two different
complex conductivities of two adjacent heterogeneous cells for the impedance of the
common side. Fig-2.26 and Fig-2.27 are the numerical results of these two different
approaches. It is observed that the field distribution is about the same in the region
away from the heterogeneity but is somewhat different in the area near the hetero-

geneity. Further study is needed to determine which approach is more accurate.
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.0163 .0018 0212 0212 .0018 .0163
.0027 .0208 .0050 0027 _
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0221 .0023 0225 5 .0019
.0005 .0014 .000S .0005
0221 .0023 .0266 .0266 .0023 0221
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0163 0018 0212 0212 .0018 0163
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loop-EMF solutions in the heterogeneous body with

impedances determined by the complex conductivity of each cell.

the
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E 0178 .0001 0196 0148 .0027 .0124
Ed 1 0015 | 0236 | 0008 0043
in (Vimy | .0236 .0023 .0196 .0079
.0015 .0073 .0035 .0003
E'=x isin(kyz)
0251 .0022 .0209 .0079
/=500 MHz
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.0218 0015 0261 0228 .0005 0192
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Fig-2.27 TIterative loop-EMF solutions in the heterogeneous body with

the

impedances determined by the average of the complex conductivities

between two adjacent cells.



CHAPTER III

INTERACTION OF ELECTROMAGNETIC FIELDS
WITH
FINITE, HETEROGENEOUS, DIELECTRIC, MAGNETIC AND LOSSY BODIES

The induced EM fields in a finite, heterogeneous, dielectric, magnetic and lossy
body irritated by an incident plane EM wave are investigated in this chapter. Field
integral equations of various forms are used to solve this problem. The first formula-
tion is based on the method of equivalent polarized currents that yield a set of coupled
tensor integral equations [3], [14]. Another set of coupled integral equations can be
derived using the free space scalar Green’s functions and the concepts of scalar and
vector potentials maintained by equivalent currents and charges. This two sets of cou-
pled integral equations are essentially equivalent and a proof will be given. The cou-
pled tensor integral equations can be decoupled into a separated tensor electric field
integral equation (Tensor EFIE) and a separated tensor magnetic field integral equation
(Tensor MFIE) in different but equivalent forms [13], [16]. The separated tensor field
integral equations can also be expressed in terms of free space scalar Gr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>