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ABSTRACT

A GRADIENT COMPUTATIONAL TECHNIQUE

FOR A CLASS OF OPTIMAL CONTROL PROBLEMS SUBJECT TO

INEQUALITY CONSTRAINTS

BF

Shyh Jong Wang

A broad class of Optimal control problems with

isoperimetric constraints and instantaneous algebraic cons-

traints, the control problem of Bolza, are considered. An

important subclass of the general control problem of Bolza

which contains the bang-bang control problems and problems

with continuous control variables as well as discrete

control variables are also considered.

Local linearization and perturbation techniques

are used to obtain the computational algorithms for the

solutions of these problems. Iterative procedures for

these algorithms are given in detail. A sample program

for the general algorithm written in FORTRAN is presented

in APPENDIX A.

ISOperimetric inequality constraints are trans-

formed into equality constraints by introducing additional

control parameters, and a penalty function technique is

used for treating the instantaneous algebraic constraints.



Shyh Jong Wnag

‘Ihree numerical examples are given to illustrate

the application of the optimization process, and to demon-

strate the influences of the alternative choices of the

iterative parameters and their reSpective updating schemes.

The solutions of these examples are presented in curves

and in tabular forms, and the results are discussed.
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I INTRODUCTION

The behavior of a physical system can usually be

described mathematically in terms of the parameters of the

system. One may call this representation the mathematical

model of the system. The behavior of a large class of such

physical systems can be represented or approximated by a

set of simultaneous ordinary differential equations of the

first order, and the scepe of this thesis is limited to

this class.

Once a mathematical model is given or identified,

one can, at least in principle, choose the parameters, or

the control variables of the system such that the perfor-

mance of the system is optimized in a sense which is

specified beforehand. The object or the functional which

is to be extremized subject to the mathematical constraints

of the system is called the performance index, or the cost

functional of the system.

A complete understanding and mastering of the

problem is not a simple matter; it has been the major work

of a branch of applied mathematics, the calculus of varia-

tions, for almost three hundred years.

The calculus of variations has been studied and

developed by many mathematicians, necessary and sufficient

conditions for many problems have been developed. However,



only relatively few problems can be solved using these

conditions directly.

The primary interest Of engineers and scientists

is perhaps the realization of a given problem, that is to

obtain a specific solution Of the problem. In most cases,

practical Optimization problems are sufficiently complicated

that solutions in compact form can not be obtained. There-

fore numerical techniques have been studied extensively

since high speed computers became available.

_ One of the most general problems in the calculus

Of variations is the sO-called problem of Bolza. This

problem was first formulated by Bolza in 1913 [BL-l], has

stimulated a great deal Of research and study since 1930,

and has become a very important problem in Optimal control

theory. Hestenes [HE-l, -2] formulated an equivalent

problem to the problem Of Bolza which is in a more desirable

form for the study of Optimal control theory, we shall call

this problem the control problem Of Bolza. In Chapter II

Of this thesis, we shall review briefly the work of the

classical variational theory and modern Optimal control

theory develOped in the past three hundred years. This

material will serve as background for the later develOpment

of this thesis.

The contributions of this work are in Chapter III

and Chapter IV. The contribution in Chapter III is the

extension Of the method Of gradients [KE-l, BR-l] to the



control problem Of Bolza with various constraints, and that

in Chapter IV is the formulation of an important subclass

of the control problem Of Bolza, and the derivation Of a

computational algorithm for the solution Of the problem.

Three numerical examples are given in Chapter V

to illustrate the application of the computational algorithm

for the general problem, and to show the effects Of the

iteration parameters on the speed of convergence.

In Chapter VI, we summarize this work and discuss

the possible extensions for further research.

A sample program is given in Appendix A.



II THE CLASSICAL VARIATIONAL THEORY AND

OPTIMAL CONTROL PROBLEMS

The variational calculus has been developing since

the late seventeenth century, having its beginning with

JOhann Bernoulli who posed the brachistochrone problem in

1696. This problem.was solved by the Bernoulli brothers,

Newton, de l'Hospital, and others. In 1697, Johann Bernoulli

solved another well known problem-—the problem Of geodesics,

later L. Euler and J. Lagrange solved the general problem.of

this type.

Besides these two problems there is another problem-—

the classical isOperimetric problem. The general method of

solving this problem was given.by L. Euler. These three

problems have had a great influence on the development Of the

variational calculus.

. For convenience as well as to introduce notation,

we shall now give a brief discussion of the classical varia-

tional theory, indicating the various mathematical arguments

employed and the results obtained. This will lead us to the

consideration of Optimal control problems.

2.1 The First Variation of a Functional

Let X be a normed linear space, whose elements are

real-valued functions defined on a closed interval I of R,

where R is the real line. ‘A functional J(-) is defined as

u
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a mapping which maps X into R. We shall particularly be

interested in the functional

.151 ,

J(x) = ./t F(t,x,x)dt (2.1.1)

~ O

. A dx . . .
where x - d't' , and F is a real-valued function of its

arguments. The space X will be considered to be endowed

with the norm (H .H) defined by

Hxll = sup HUSH (2.1.2)

#561

where I = [to , 1, and x E X. The notion Of distance
t:L

between two elements x, y of the space X can be defined as

the norm of their difference (1.6., the distance induced by

11.“),

d(x,y) = iix - y“ (2.1.3)

Give a fixed function x(t) and its increment €(t)

of the space X, the corresponding increment of the functional

J(x) is a functional of g,

AJ(€) = J(x + 6) - J(x) (2.1.14)

Suppose we can write

AJ(€) = 1(5) + €ii€il (2.1.5)

where l(€) is a linear functional of §, and 3-DO as lléll-DO.

The functional J is differentiable if it has the above
 



property. 1(5) is called the first variation of J along x, and
 

we shall denote it by Jl(x,€). One can show that J'(x,€)

is unique (GE-1).

2.2 Extremmn of a Functional; A Necessary Condition

Let X1 be a normed linear Space of all real-valued

continuous functions on I having piecewise continuous

derivatives. It is clear that an element ole is also an

element of X. The elements of X.l will be called admissible

functions. It is convenient for the subsequent discussion
 

to define another norm, H '“l’

“x“l = “x“ + “x“ -"-’- sup lx(t)l + sup but“ (2.2.1)

{:61 t€I

Let x be an arbitrary but fixed element of X1. The strong

neighborhood of x corresponding to 6 > O, Ns(x,€), is the

set of all functions x in X such that “x - x" < 8, while

1

the weak neighborhood of 2': with e > o, Nw(x,8), is the set

of all functions x in x such that “x .. SEMl < 8. It is
1

clear that for a given 8 and 3%, the strong neighborhood

contains the weak neighborhood. We shall say that x = 32

yields a strong relative extremum of J if there is an 8 > 0

such that for all x 7 5’: and x E Nah-5,8), J(x) - J(x) has the

same sign. 0n the other hand, we say that x = 32 yields a

weak relative extremum of J if there exists a weak neigh-
 

borhood Nw(x,€), such that J(x) - J(x) has the same sign

for all x 7‘ 5': and x E Nw(x,8). Since “x - EH1 < e
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implies llx - in s e, if 5% yields an extremum of J with

respect to all x with “x - i“ S 8, then 5: yields an extremum

of J with reapect to all x with “x - illl S 6. Hence it is

clear that if i furnishes a strong extremum of J it also

furnishes a weak extremum. A necessary condition for a weak

extremum is also a necessary condition for a strong extremum.

‘ It is important to note that a relative extremum is

determined by local properties of the functional in question and

it is always associated with a neighborhood of that which

yields the extremum. 0n the other hand, an absolute extremum

is determined by global properties of the functional. In the

subsequent discussions, only relative extrema are considered;

therefore, necessary and sufficient conditions for an

extremum are local although, for simplicity, we may not

mention it explicitly.

The following lemma is basic in the calculus of

variations and is known as the fundamental lemma [HE-LL].

Lemma 2.2.1 Let M(t), N(t) be piecewise continuous func-

tions on I. Then

t .

ftl (M(t)€(t) + N(t)€(t))dt = 0 (2.2.2)

0

holds for all 5 in X1 and €(to) = €(tl) = 0 if and only if

there exists a constant c such that

l
/
\

C
‘
-

M

d

t

N(t) = [to M(T)dT + c t0 1 (2.2.3)



Theorem 2.2.1 A Necessary Condition. If J is differen-

tiable, and if i furnishes an extremum.for J, then

J'(i,§) = 0 (2.2.10

for all g in.X1.

The proofs of this theorem.and.those which will be

stated in the subsequent sections can be found in.most of

the standard texts (see, for example, [BL-2, GE-l, HE-h1).

2.3 The Second Variation of a Functional; A Necessary

Condition Involving the Second Variation

we say that the functional J is twice differentiable

if its increment can be expressed as

Mtg) = 1(a) + q(&;) + ensug (2.3.1)

where 1(5) is the first variation of J, q(g) is a quadratic

functional, and e—po as Nan—>0. q(g) is called the

second variation of J along x. The second variation of J

is also unique and is denoted by J"(x,€).

Theorem 2.3.1 A Necessary Condition. Let J(x) be twice
 

differentiable, then x = i yielding a minimum.(maximum) of

J implies that

J"(i,€) 2 o (s 0) (2.3.2)

for all 5 in.X1.



2.11. The Euler-Lagrange Equation

Consider all the arcs x in X1 having fixed end

points x(to) = x0 , x(tl) = x1 . We ahall refer to these

arcs as the admissible arcs of fixed end-point. In this

section we are going to state the first necessary condition

of the following problem:

Among all the admissible arcs of fixed end-

point, find the one yielding a weak extremum

for the functional

1:1

J(x) = ft F(t,x,x)dt (2.u.1)

c

We shall assume that F is a known function of (t,x,5c) with

continuous first and second partial derivatives with respect

to all its arguments. This problem is known as the simplest

variational problem.

Theorem 2.1L.l If x = x“. furnishes the functional J(x) an

extremum in the class of all admissible arcs connecting its

end-points x0 and x1, then there exists a constant c such

that

t

F}; = f det + c (2.1+.2)

t
o

__ i:- A 61“

holds at every point of the are x - x , where Fx —- BE , and

Fe 9. é; .

x 5::

Equation (2.1+.2) is known as the integral form of
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the Euler-Lagrange equation

Ed? Pi = F (2014-03)
X

An admissible arc satisfying the Euler-Lagrange equation is

call an extremaloid.

Note that the extremum of J in Theorem 2.Lt.l is a

weak extremum. However, as mentioned earlier, a strong

extremum is also a weak extremum and any necessary condition

for a weak extremum is also a necessary condition for a

strong extremum. This implies that Theorem 2.L|..l gives a

necessary condition for both weak and strong extrema.

2.5 A Generalization of Euler-Lagrange Equation to the

n-Dimensional Fixed End-Point Problem

Let x = (JCJ',...,xn)T be an n-vector and each com-

ponent of x be a real-valued function on I. Let X1 be a

linear space of all n-dimensional functions x and each

component of x is continuous on I and has a piecewise con-

tinuous derivative. We shall call members of X1 admissible

arcs. Let F(t,x,x) be a continuous function having conti-

nuous first and second partial derivatives with respect to

all its arguments. The problem is stated as: find the

necessary conditions (Euler-Lagrange) for the functional

J to have a weak extremum furnished by an admissible arc
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x‘= x* with fixed end-points x(to) = x0 and x(tl) = x1 .

J is defined as

t

1

J(x) = / F(t,x,x)dt (2.5.1)

1;0

Let g = (51,...,€n)T be an increment of an

admissible arc x. ‘We shall call s an admissible incre-

ment of an arc x if g is a.member of X1 and

€(to) = €(t1) = O. The correSponding increment AJ is

J(XHS) - J(X)AME)

t

1 .

/ (F(t,x+g,5c+g) - F(t,x,x))dt (2.5.2)

t
o

The first variation of AJ can be obtained by expanding

(2.5.2) using Taylor's Theorem,

t

1 .

J'(x.€) = / mg. + Pinata (2.5.3)

to

where FI and Pi are the row vectors of partial derivatives
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with respect to x and x reSpectively. We can write

%=(F1uu.Ffl (agm
X X

Pi: (F.1 eooee F.n) (20505)

X X

In (2.5.3) choosing all the components of {5. except the ith

one to be zero, we have

,t . .

J'(x,€) = Jtl (F 1&1 + F.i€i)dt i = 1,...,n (2.5.6)

o x x

Suppose x* extremizes J among the admissible arcs connecting

its end-points, by Theorem 2.2.1 the eXpression (2.5.6) must

be zero for x = x*, then by Lemma 2.2.1 there exists a

constant ci such that the equations

dt + Ci 1 = 1,...,n (205.7)

hold along x*. We thus have the following theorem:

Theorem 2.5.1 If the are x* extremizes J among all the

admissible arcs connecting its end-points, then there exist

:1 constants ci such that

F. ./t F 1 dt + c i = 1,...,n

X

hold along x*.



13

Equation (2.5.?) is the integral form of the Euler-

Lagrange equations

F = F i i = 1,...,n (20508)

I

2.6 Weierstrass Necessary Condition (For a Strong

Extremm)

Let x = x35 be a (strong) minimizing arc for J

among all admissible arcs with fixed end-points. The

arcs considered are n-dimensional. The Weierstrass

E-function is defined as

E(t,x,x,X) = F(t,x,X) - F(t,x,x) - Fi(t,x,x)(X-x)

(2.6.1)

In (2.6.1) (t,x,x) is a point on the arc x* at time t

and having derivative 5:. Similarly, (t,x,X) is a point

on an (neighboring) admissible are x (see Figure 1).

The following theorem is due to Weierstrass,

Elleorem 2.6.1 Weierstrass Necessary Condition. If

the arc in furnishes a strong minimum for J among the

class of admissible arcs connecting its end-points, then

E(t,x,:’c,x) 2 0 (2.6.2)

1'll-celds for every (t,x,x,X) with (t,x,5c) on 26:. and (t,x,X)

0-1:: an admissible arc and X 9‘ x.



 

11L

    
 

X1

X
/

ii-

I

1

t2 t2+rd t2+d t1

Figure 1 The arcs x“- and X
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Remark 1: The condition (2.6.2) is trivially satisfied

ifX=2°c.

Remark 2: If x* (strongly) maximizes J the inequality

sign in.(2.6.2) should be reversed.

2.7 Legendre's Necessary Condition

Theorem 2.7.1 If the arc x* (weakly) minimizes the

functional J in the class of admissible arcs connecting

its end-points, then

aTFii(t,x,x)a 2 0 (2.7.1)

along x* for each non-zero vector a = (al,...,ap)T. Where

  

PF 0 O O O O F. . q

x1 1 1 n

Fee = .

F O O O O O F. .

xnxl n :1.4

This condition is a consequence of the weierstrass

necessary condition, although Legendre proved it very

differently and at a.much.earlier time.

2.8 Corner Conditions

The following is known as the Weierstrass-Erdmann

corner conditions,
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meorem 2.8.1 Let x* be an admissible arc satisfying

the necessary conditions (2.5.7), the Euler-Lagrange

equations, then (I) Fi(t,x,x) is continuous along x*,

and (II) If x* also statisfies the Weierstrass necessary

condition then F - Fix is continuous along x*.

2.9 Jacobi's Necessary Condition; Conjugate Points

An admissible are x* without corners vmich is a

solution of (2.5.7) is called an extremal. Any solution

of (2.5.7) consists of a finite number of extremals. An

admissible are 1: along which the determinant of F3.“-c is

non-zero is said to be nonsingular.

An extremal which is also nonsingular is called

a nonsingular extremal. From the hypothesis on F and the

above theorem, a nonsingular extremal has a continuous

second derivative.

We say that a point (t2,x(t2)), to< taé t1 , on

the extremal x* is conjugate to (to,x(to)), if there is

an accessory extremal 5 such that €(to)= €(t2) = 0 but

€(t)¢0 on to< t<t2.

Theorem 2.9.1 Jacobi's Necessary Condition. If x65 is

a nonsingular minimizing are without corners for the

functional J (2:) defined by equation (2.5.1) in the class

of admissible arcs connecting its end-points, then there

does not exist any point (t2,x(t2)) with to< t2< t on x*
l

conjugate to the point (to,x(to)).



.17

2.10 Necessary Conditions; Sufficient Conditions

I. Necessary Conditions for a Weak Extremum: If the

admissible are x* on I provides the functional

t

J(x) = ftl F(t,x,x)dt (2.10.1)

O

a weak (relative) extremum among the class of admissible

arcs connecting its end-points x0 and x1, then

(Ia) The Euler-Lagrange equations are satisfied

by in (Theorem 2.5.1).

(lb) The Legendre's necessary condition holds

along x* (Theorem 2.7.1).

(Ic) The Jacobi's necessary condition holds

(Theorem 2.9.1).

II. Necessa_ry Conditions for StrongEbctremm: If x“. on I

provides a strong (relative) extremum for the functional

(2.10.1) among the class of admissible arcs connecting its

end-points, then the conditions (Ia), (Ib), (Ic) and (Ila)

are satisfied , where (IIa) is

(Ila) The Weierstrass necessary condition (Theorem

2.6.1).

III. Sufficient Conditions for a Weak Extremmn: If for

an admissible are x‘”, the following conditions hold simul-

taneously, then it.“ provides a weak (relative) minimum for

the functional (2.10.1):

(IIIa) The arc x* is an extremal, that is, x*

satisfies (Ia) and x“. has no corners.
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(IIIb) The strengthened Legendre's necessary condi-

tion, that is, the inequality of (2.7.1) is

replaced by strict inequality.

(IIIc) The strengthened Jacobi's necessary condition,

that is, there is no point in (t°,tl] on x*

conjugate to (to,x(to)).

IV. Sufficient Conditions for a Strong Minimum: If the

admissible arc satisfies (IIIa), (IIIb), (IIIc) and (IVa)

then :6“ provides a strong (relative) minimum for the functional

(2.10.1) with fixed end-points , where (IVa) is

(IVa) There exists a neighborhood of the elements

(t,x*,x*) on x* such that the strict

inequality E(t,x,x,X) > 0 holds for all

(t,x,x,X) with (t,x,x) in the neighborhood,

(t,x,X) admissible, and X )6 5:.

For further discussion of sufficient conditions,

see [HE-)1, GE-l, BL-2].

2.11 Variable End-point Problem

Let x and y be admissible arcs defined on I = [to,t1]

and I' = [t5,t'] respectively, with end-points x0 = x(to),

x1 = x(tl), yo = y(t('>), yl = y(ti). Extending x and y to

some interval containing IUI'. The distance between the arcs

x and y is defined as

d(x " n 1 1

i=1



 

19

 

  
  

Figure 2 Neighboring curves for variable

end-point problem
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where

d(xi.yi) = 83p lxi(t) - yi(t)| + 8:p lii(t) - §i(t)l

 + lxi(to) - vinyl + kiwi) - Sri(ti)l

(2.11.2)

Let x and y be neighboring arcs, let g be their

difference

€(t) = y(t) — x(t) (2.11.3)

and write the endppoints of y as

+
y (to + dto , xO dxo)
O

y1 (t1 + dt1 ’ "1'+ dxl)

The functional J(x) is defined as

t

J(x) =/t1 F(t,x,x)dt (2.11.h)

0

where F is a known function.having continuous partial

derivatives up to the second order with respect to all its

arguments.

The first variation of J is defined as the linear

part of the increment AJ(€) with respect to g, g, dto, dxO

and dxl, and is denoted by J'(x,€). We state the following

theorem,
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Theorem 2.11.1 If the arc x”" minimizes the functional J

on the class of admissible arcs with variable end-points,

then x“. satisfies the necessary conditions stated in

Section 2.10, and the boundary condition

1:1

[(F - Fix)dt + Fidx] = 0 (2.11.5)

t
o

The boundary condition (2.11.5) is called the

transversality condition.

2.12 A General Problem of the Calculus of Variations—

the Problem of Bolza

The problem of Bolza can be stated as follows:

Find in the class of arcs x satisfying the equality

constraints

”8(t9x9i) = 0 S = 1,000’q < n (2.1201)

and the boundary constraints

9Y<t°.x(to).tf.X(tf)) = 0 Y = 1.--o.p S (2n+'1)

(2.12.2)

the one which minimizes the functional
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t

J(x) = g(to,x(to),tf,x(tf))-+./tf L(t,x,x)dt (2.12.3)

o ,

where as, BY, g, and L are real-valued functions of their

arguments. The continuity properties of these functions will

be given in Section 2.13.

This form of the problem of Bolza was formulated by

Bliss [BL-3]. There are two other equally general problems,

the problem of Mayor, and the problem of Lagrange. These two

latter problems can be obtained from the problem of Bolza by

setting, reapectively, L E O and g .=_ 0 in (2.12.3). On the

other hand, one can obtain the problem of Bolza from the problem

of Mayer and that of Lagrange through suitable transformations

as introduced below: Consider the n+1 dimensional are x, an'

defined on I = [to’tf] satisfying the constraints

¢s(t,x,x) = O s = 1,...,q

in+1 - L(t,x,x) = 0 (2.12.4)

mnd

97(to.x(to),tf,x(tf)) = 0 Y = 1,...,p

x9*1(to) = 0 (2.12.5)

With this transformation, the functional J becomes

J(x) = g(to,x(to),tf,x(tf)) + xF*1(tf) , (2.12.6)
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which defines the problem of Mayer.

If we consider the class of arcs x, x”1 on I

satisfying the constraints

3 - _

g (t,X,X) " O s = 1,...,q

inn“) = 0 (2.12.7)

and

eY(to,x(to),tf,x(tr)) = 0 Y = 1,...,p

Flog.) - FEET-3(to,x(to),tf,x(tf)) = 0 (2.12.8)
o

The functional J becomes

t

f . n+1

J(x) = / [L(t,x,x) + x (t)]dt (2.12.9)

t
o

This is the problem of Lagrange. Hence we have proved the

equivalence of the problems of Bolza, Mayer, and Lagrange.

2.13 The Multiplier Rule for the Problem of Bolza

Let x be an n-dimensional point which represents the

"state" of an arc x at time t E I, thus (t,x,x) is a

(2n+1)-tuple. Let R2nl-l be an open region (arcwise connected

open set) of elements (t,x,x), and let “s and L be continuous

on R2n+l and have continuous first partial derivatives.

Assume that the matrix ”3': has its maximum rank q on the
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subset R0 of R defined by the constraints (2.12.1).
21ml Zml

Note that ¢ is the vector notation for $3, 8 = 1,...,q.

Let x(to) = x , x(tf) = xf, and let S be an Open region
0 2n+2

of (2n+2)4tuples (to’xo’tf’xf) on which.6Y, and g are

continuous and have continuous first partial derivatives,

and the matrix (9 9 9 G ) has its maximum rank p
to xo tr x,f

Points in R

o

2nrl°

continuous and has piecewise continuous derivatives is

at each point of S are
2n+1’ $2n+2

An arc x which is

2n+2‘

admissible if they are also in.R

admissible if its elements (t,x,x) and (to,xo,tf,xf) are

admissible. With these assumptions we can state the

multiplier rule for the problem of Bolza formulated in the

last section [BL-2, HEph],

Theorem.2.13.l The Multiplier Rule. Let x* be an

admissible arc defined on [t°,tf], which.minimizes the

functional J, then there exist multipliers 1°, 18(t),

s = l,..,q«<n, and by, y = 1,...,p such that (1) 1° and h?

are constants and are not all zero; (2) 13(t) are continuous

on [to,tf] except possibly at those t corresponding to

corners of x* where the left and right limits exist, and 1°,

and 13(t) do not vanish at the same time on [to,tf]; (3) If

we define

F(t,x,$c,x) = x°L(t,x,:'c) + AT¢(t,x,5c) (2.13.1)

then
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t

11.1 = / F.1dT + c1 i = 1,...,n (2.13.2)

x to x

¢s(t9x,;t) = O S = 1,...,q (201303)

hold along x* , where cl are constants.

(h) The conditions

t
f

[(F .. Fix)dt + Fidx] + A°dg + the = o (2.13-LL)

to

and

eY(to,xo,tf,xf) = O Y = 1,...,p (2.13.5)

hold at the end-points of x* for every choice of dto, dtf’

dxo and dx And furthermore (5) The Weierstrass condition1..

E(t,x,5c,x,1) 2 0 (2.13.6)

hold for every (t,x,3c) on x* and for each “5:393” in 32ml

such that X 3‘ i, where

E(t,x,x,X,7\) = F(t,x,x,).) - F(t,x,i,1) - Fi(t,x,x,}.)(X - 5c)

(2.13-7)

It is easy to see, from (2.13.2), that along x“.

F3: is continuous and has piecewise continuous derivatives,

and

HE Pi = FX (201308)
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‘JZhis is the Euler-Lagrange equation (in row-vector form).

2.111 The Control Problem of Bolza

We shall formulate a very important class of Optimal

control problems which have their origin in the classical

problem of Bolza. We shall call the new problem the control

problem of Bolza. Later in this section, we shall show that

these two problems of Bolza are equivalent.

Let the cost functional J be defined as

t
r

J = g(tf,x(tf),a) + / L(t,x,u,a)dt (2.1.11.1)

tn’o

where to is the initial time and t is the final or terminal
1'

time, which can either be fixed or variable; x is an n-vector,

(x1,...,xn)T, called the state variable (vector); u is an

m-vector, (u1,...,um)T, called the control variable (vector),

and a 18 an r-vector, (0-1,...,0-r)T, called the control

parameter (vector). We shall also use

x : t,x(t),u(t),a,t E [to,tf]

to represent the solution arc of the differential constraints

5: = f(t,x,u,a.) (2.11.1.2)

Equation (2.1h.2) may be considered as the mathematical model

of a system which is nonlinear in general. Let E be a region

in an (n+m+r|-l)-dimensiona1 Euclidean space whose elements
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are the (n+m+r+1)-tup1es (t,x,u,c). We assume that the

real-valued functions f1, 1 = 1,...,n, are continuous and

have continuous first partial derivatives on E. Let Eo be

a. subset of E defined by the side constraints

¢8(t9x9u9a) s o s = 1,ooo,q' (2.11-L038.)

08(t,x'u,a) = O S = Q'+l’eeo,q (20m03b)

therefore the elements of EO are those in E that also satisfy

(2.11.)..3). Assume that each as is continuous and has con-

tinuous first partial derivatives on E, and the

qx(m+q)-matrix [flu I91] has its maximum rank q at each point

of E0, where {D = (¢1,...,¢q)T, ”u = 3% , and I is the qxq

identity matrix. Elements of Eo are called admissible

elements. We shall assume that the control functions u(t),

t E [to,tf] are piecewise continuous. A solution are x of

(2.11.1.2) with x(to) in a given initial manifold is called an

admissible arc if all its elements (t,x,u,a.) are admissible.

Consider the isoperimetric constraints

IY s O Y = 1,...,p. (Balk-(+3)

IY = 0 Y = p'+l,eee,p (20114-01413)

where

1‘1‘:

1* = 6Y(tr,x(tf),c) + / MY(t,x,u,c)dt (2.1LuS)

t
O
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We shall use I, 9, and M to represent the vectors (11,...,Ip)T,

(91,...,9p)T, and (M1,...,MP)T resPectively. Assume that

97, and M‘{ are continuous and have continuous first partial

derivatives on E. Note that terminal constraints are Special

cases of isOperimetric constraints and hence are included in

(2.11-1.11).

Now we state the control problem of Bolza as follows:

Find in the class of admissible arcs

x : t,x(t),u(t),a. t G [to,tf]

satisfying the constraints (2.1L|..2), (2.11.1.3) and (2.11.1.11),

the one which minimizes the cost function J.

A problem, perhaps somewhat less general than the

one given here, was first formulated by Hestenes in 19119

[HE-1,2,3]. Since the new formulation and the classical

formulation of the problem of Bolza are equivalent, necessary

conditions for the new problem can be obtained from the

classical one through translation [HE-l, BE-l]. Necessary

conditions for this problem have been obtained directly by

Pontryagin, and the result is called the maximum principle,

see [PO-l]. The methods of McShane [MOS-l] and Pontryagin

were generalized by Hestenes, who obtained more general

results [HE-3], and the results were also obtained by Guinn

With weaker hypotheses [GU-l]. We shall state the first

necessary condition for the control problem of Bolza obtained

by Hestenes.
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Setting

._ 0 T T
F(t,x,u,a,l,h) "' A L + X g + h M (2.11-L06)

and

H(t,x,u,c,p,l,h) = pr - F (2.1J+.7)

“where

T T

A = (llyoooglq), h = (ha-900091113): PT = (pl,""pn)

(2.1.11.9)

we have the following:

Theorem 2.11.91 Let x45 be a solution to the control problem
 

of Bolza, then there exist multipliers 1°, 13(t), pi(t), and

3hY such that (1) 1° 2 O, hl,...,hp are constants and for

v= 1,...,p', hYao if IY= o, hY = OifI <0 along x*,Y

Furthermore 1° , hY , pi(t) do not vanish simultaneously

at any t E [to,tr]. (2) 11(t),...,1q(t) are continuous

except possibly at the discontinuities of u*(t) at which

the left and right limits exist. For s = 1,...,q',

as“) a o it ¢8= o and= o if as <0 along x”. (3)

P1(t),...,pn(t) are continuous and along the arc x* H is

continuous and

3LT = Hp {F = - Hx (Euler-Lagrange Equations) (2.111.10)
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H=o dH=H (211111)
u 35 t ° '

hold along x*.

()1) The Weierstrass condition

'11: 41' 4!- *-

H(t,x (t),u,c ,p(t),o,h) s H(t,x*(t),u (t),a. ,p(t),o,h)

(2411.12)

holds for all t 6 [to,tf], and for all u with

(t,x*(t),u,e*) e E0 , that is, for all u satisfying the

(3 anstraints

s8(t,x*(t),u,a*) s o s = 1,...,q'

98(t,x*(t),u,c*) = 0 s = q'+1,...,q

(5) The transversality condition

T tr 1‘1'

(B + [-Hdt + p dx] - / (Hnda)dt a o

t t
O 0

holds on x* for every choice of dto, dtf, dxo, dxf and do.

To show the equivalence of the control problem of

Bolza and the classical problem of Bolza, consider the case

with equality constraints only, 1.9.,

¢8(t,x,u,a) = 0 3 = 1,...,q (2.1-(+013)

Y Y tr Y
I = e (tf,x(tf),a) + /t M (t,x,u,o.)dt y = 1,...,p

o

(2.111.111)
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Let y1 = x1, 1 = 1,...,n; 53’” = M7, me(to) = o,

‘r = 1,...,p. And replace u3 by WW3, J= 1,...,m, and for

definiteness, set WP” = o, for j = 1,...,m. Substituting

these new variables into equations (2.1L)..1), (2.11.1.2).

(2.1mm) and (2.111.111), we have

t

J = 3(tf3y1,...,yn;a) + f: L(t:v1,....yn:§n+p+1.nuirmpmzfldt

° (2.1h.15)

51 - f1(t;y1,...,yn;yn+p+1,...,ymp+m;a) = 0 i = 1,...,n

(2.1h.16)

¢s(t;y1,...,yn;?fip+l,...,yn+p+m;a) = O s = 1,...,q

(2.1u.17)

if = emonluo),...,yfi(to);tf;y1(tf),...,y“(tf)) + WWI.)

Y = 1,...,p

(2.1h.18)

If we set y = (y1,...,yn+p+m)T, and

c1 = 52 - f1(t,y,y,o.) i = 1,...,n (2.1h.19a)

ng = W7 - MY(t,y,y,a) Y = 1,...,p (2.111.19b)

€2n+p+s == ¢8(t,y,y,a) s = 1,...,q (2.111.190)

and

aY = eY(tO,y(to),tf,y(tr)) + me(tf) y = 1,...,p (2.1h.20a)
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op+3 = ym‘1(to) .1 = l,...,p+m (2.m.20b)

‘nlen, from equations (2.111.15) to (2.111.20), we have the

following,

és(t,y,§hya) = 0 3 = 1,...,mp‘l'q (ZeMeZl)

6*(to.y(to).tf.y(tf)) = 0 Y 1."..2mm (2.114.22)

tr

J = 8(tf.y(tf),a) + ft L(t,y,y,a)dt

O

(2.14.23)

We thus have showed that the control problem of Bolza can

be expressed in the same form as that of classical problem

of Bolza. Similarly, one can show the reverse. Note that

one may have to use the condition that 9):} has maximum rank

1 i

so that at least one set, x 1,...,x q, can be chosen from

1:1,.."1:n such that (2.12.1) can be written as

i i i i

X r g f r(t;x lgeaagx qzzlgeeepzm3ulgaeagum)

where m s n- q,and uj, j= 1,...,m are the rest of the

variables among x ,...,xn, and z‘1 satisfies the constraints

J: 1,000,171

1'
more x , r = 1,...,q are the state variables, and

113, J = 1,...,n, the control variables.
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2.15 Summary

The variational calculus and the optimal control

theory is a very extensive subject which has proven to be

increasingly important to modern technology. In this chapter

we have briefly reviewed the history and the develOpment of

the subject, from the classical treatment of the so called

simplest problem of variational calculus to a reasonably

sophisticated modern control problem. For further generali-

zation of the subject, see [BE-2, GU-l, HE-h, PO-l, DR-l,

BR-2].

In the next chapter we shall develop a computational

method to obtain numerical solutions for the control problem

of Bolza.



III A GRADIENT COMPUTATIONAL TEDHNIQUE

FOR THE CONTROL PROBLEM OF

BOLZA, AIGORITHM I

In this chapter, we shall first restate the control

problem Of Bolza in a form which will be more convenient for

computational purposes. A technique. similar to that used by

Valentine [VA-l] is used to convert the inequality isoperimetric

constraints into equality constraints. The instantaneous

side constraints are not treated directly; instead, the

penalty function technique is used to treat the constraints

in a indirect fashion.

Variations of various quantities of the control

problem of Bolza are derived in terms of adjoint variables,

or influence functions, and the variations of control

function, control parameters, and initial time and state.

A technique due to Bryson and Denham [BR-1] is then employed

to obtain the Optimal variations of various quantities. A

computational procedure is given, and measures for prediction

errors in dJ and d1 are defined.

3.1 A Formulation of the Control Problem of Bolza

Let t, x, u, o. be the independent variable—time,

the n-state vector, m-control vector, and r-control parameter

respectively. Let E be a region in the Euclidean space with

311
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elements (t,x,u,a). Let f1 (i = 1,...,n), L. No. MY (Y = lac-.13)

be defined on E, and assume that fi, L, 14°, M)r are of 01(3).

Futhemore, let g, 9°, BY (Y = 1,...,p) be functions of

(t,x,a), and of CI for each (t,x,a.) such that (t,x,u,o.) E E.

We shall assume that the control function uj(t) (j = 1,...,m)

is piecewise continuous on [to,tf], where to and tf are the

initial and terminal times respectively. We shall call u(t)

an admissible control function, if it is piecewise continuous,

and the corresponding (t,x,u,a) is in E for each t 6 [to,tf].

' Define the cost functional, the differential constraints,

and the isOperimetric constraints as those defined in Chapter II ,

t
f

J = g(tf,x(tf),a.) + ft L (t,x,u,a)dt (3.1.1)

0

5: = f(t’x,u,a) (3.102)

iY s o Y : 1,...,P' (301033)

iY = 0 Y = p'+l,eee’p (3010313)

t

"Y Y r Y
1 = o (tf,x(tf),a)+ ft M (t,x,u,a)dt (3.1.3c)

O

For computational convenience, we shall define a stOpping

functional,

tf

S(tf) = 9°(tf,x(tf),a) + / M°(t,x,u,c)dt (3.1.11)
t
O

A

where S = 0 defines the value of t and we assume that .
f,
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s ,5 o for all t e [to,tr].

Let x be a solution arc of the system (3.1.2) which

can be written explicitly as,

x : t,x(t),u(t),c t 6 [to’tf]

We shall call elements Of E admissible elements, and we shall

call x an admissible are if x is a solution arc Of (3.1.2)
 

corresponding to an admissible control, and each element Of

x is in E.

The control problem of Bolza is to determine the

admissible control function u(t), the control parameter a,

and the corresponding admissible arc x, such that the cost

functional J is minimized and the constraints (3.1.3) are

satisfied.

Since the instantaneous constraints (2.1.11.3) are

treated indirectly, the admissible set E0 has been relaxed

to E. This is satisfactory especially when iterative

computation is concerned.

3.2 A Simple Transformation

It is convenient from the computational point of

view to transform the constraints (3.1.3) into equality

constraints at the elqaense Of introducing additional control

parameters.

Let B be the additional parameter vector with

components 81,...,(3P', and let Z be a p-vector whose
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components are defined as ,

ZY = (BY)2 Y .-_-_ 1,...,p! (3.2.13)

z)r = o y p'+1,...,p (3.2.110)

If we set IY = 17 + 2?, then constraints (3.1.3) are equiva-

lent to

IY = 0 Y = 1,0009p (30202)

The control problem defined in Section 3.1 can be

restated in terms of the new constraints as follows:

Determine the admissible control u(t) , the

control parameters a, [3, and the corresponding

admissible are x such that the cost functional J

is minimized and the constraints (3.2.2) are

satisfied.

3.3 Derivation of Variational Formulas for Some Quantities

of Interest

Let x* be an admissible arc, we shall call it a

nominal solution are,

«a sit-«u- aa- s-zz- it- s «u-
x : t ,x (t ),u (t ),a. ,B t E [t°,tf]

Let s be an arbitrary small positive number, and let d(x,x*)

be a distance measure between the arcs x, and x* defined by
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can?) = sup It-t*| + max Ixiwo) - x*1(t‘f,)l

t6 1w“ i=1, . . ,n

+ max Ixiuf) - x*1(t§)l

i=1,..,n

+ sup max Iuj(t) - u*J(t*)|

term?“ j=1,..,m

+ max Iak- a*k| + max IBY - (3*YI

k=1geepr F110'2p'

.. a- __ a- s .
where T - [to,tf], and T - [to , tr]. Let x be a neighboring

. «-
arc of x

x 3 t,X(t),U(t),a,B t E [toatf]

such that d(x,x*) < a. Let At, and Ax(t*) denote the

increments

At = t - t* (3.3.1)

Ax(t*) = x(t) - x*(t*) (3.3.2)

Let 5t and 5x(t*) be the variations corresponding to At and

Ax(t*) respectively, then for arbitrarily small a, we can write

At = 5t + o(e) (3.3.3)

me") = 6x(t*) + cos) (3.3.11)

where 0(8) satisfies
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lim 1‘“ = 0 (3.3.5)
a +0

 

Let Ai(t*)be the increment

Ai(t*) = x(t*) .. x*(t*) = tan?) + 0(8) (3.3.6)

where 552(9)) is the corresponding variation. In a later

develOpment we shall need the relation between 6x(t*) and

6i(t*) which can be Obtained as

x(t) - x*(t*)Ax(t*)

[x(t*) - x*(t*)1 + [x(t) - x(t*)]

5i(t*) + 93‘— At + 0(a)

dt*)
'1!-

t

'11-

oi(t*) + 95.. 5t + one) (3.3.7)
{-

dt l
17*

In the above derivation we used the facts that 0(8) + 0(8) = 0(8)

a-

and if; = if; 4» 0(8). Comparing (3.3.11) with (3.3.7) and

noting that both ox(t*) and oi(t*) + i*(t*)ot are principal

linear parts of Ax(t*) , we have

ox(t*) = oi(t*) + i*(t*)ot (3.3.8)

«3(- s- A dx*

where x (t ) - 7| . Now we shall derive the variational

_ dt
«-

t
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equation for 6x(t*). The state equations (3.1.2) corresponding

to x*, and x are

0-H- '31-

x (t ) = r(t*.x*(t*).u*(t*).a*) 6* 6 (ti. ti)

i(t) = f(t,x,u,a.) t e [to,tf]

Their difference is

  

Aim") = f<t.x<t).u(t>,a) - r(t*.x*(t*).u*(t*).a*)

_ 6f of «- af a

- (5%).“- MS "' (5-5).} AX“? ) + (5-5).} All“? )

+ (95 Ac + cm (3 3 9)& * O 0

where

F l l -

ar 91.

SP axn

(is-i) = :

6r“ at?
3;”: each *

and (g—E) , a (g—E) and (3%) are defined similarly. The symbol

4!- 41- #-

(.)‘_meana that the quantity in the parentheses is evaluated

along the nominal are x*.

If the notions Of the variations 6t, 5x(t*), Ou(t*),

and 50. are introduced in (3.3.9) and the result compared with



Ai(t*) = oi(t*) + o(e) (3.3.10)

we have the variational equation:

- -::- a
Ox(t*) n (3%) 6t + (gé) ox(t*) + (gt—11') 6u(t ) + (35* do

a- * a-

(3.3011)

Let Q be the quantity Of interest, and be of the

general form

tf

Q = G(tr,x(tf),a.) + 2(5) + / F(t,x,u,a.)dt (3.3.12)

1so

Adjoining the differential constraint (3.1.2) to (3.3.12), and

forming the difference of Q along the arcs x and x* , we have

A0, = G(tf,x(t ,c) .. G(t:,x*(t:),a*) + 203) - MAX.)1.)

tf

+ / [F(t.x(t).u(t).a) + 1T(t)(r(t.x(t).u(t).a)- i(t))1dt
t

0

t*

f
I e‘ - 0".

- /, [F(t*.x*(t*).u*(t*).a*> + xT(t*)(r(t*.x*<t").
t ,

o .

u*(t*).a*) - i*<t*))1dt*

(3.3-13)

SO far we have treated the matter in a fairly general way,

from now on we shall focus our attention on our Specific

problem. Letting

c
f II t: + Ato (3.3.1Aa)

t = t* + At (3.3.1Ab)
f f f



[12

'3!-

t = t for t e [t’f3 + At°,tr] (3.3.1Ac)

and extending the definitions of the arcs x and 25* to

(tint: + Atf]. (3.3.13) becomes,

AQ = G(tf+Atf.X(tffAtf).a) - G(tf.x*(tf).a*) + 2(a) - up")

1:

f

+ / [F'(t,x,u,o.) - F(t,x*,u*,o.*) + AT(f(t,x,u,0.)

t

O

t +At
f 1' T a

+ / [F(t,x,u,a) + A (f(t,x,u,a) - x)]dt

tf

t +At
O O T a

- f [F(t,x,u,a) - A (f(t,x,u,o.) - x)]dt

to (3.3.15)

Note that in (3.3.15) we have, for simplicity, drOpped the is

associated with t. Elcpanding (3.3.15), we have

AQ=.& “+99. At+aG A+a.ZA(at)Mr I. (89m, x( 1.) ($1Mr a (21?)... a

t
f

+/ 5F A't-i- 6F A-t...a:: ,-
to {(5).} X( ) (35).)? u( ) (80).} a.

+ X A t + —- A t + -— A -A t (it“'55).“ X( ) (311),, u( ) (5,1)“. <1 3d )1

+ (F)*,tf Atf - (F)*’to Ato + 0(8) (3.3.16)
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In (3.3.16) we have used the relations

(F)|x,to At(o
(F)* t Ato + 0(a)

’ o

and

At + 0(a)(Fth At = (F) I.
, f 1‘ *,tr

(3030173)

(IS-3.1713)

If we replace the differences by their correSponding variations

and combine the higher order terms relative to 8 with 0(a)

in (3.3.16), and compare the result with

AQ = 6Q + 0(8)

we have

50. = (353+ F), t étf + (g—i) anti.) - (F),,
f *Otf

t
f

+ / [(KT(§§)*+ (g—312*) )6»: - 1Todet

O

t
f

T of
+/t [x (619+ @—))6udt

O

t

f Ta
'* bf (1 (§§)* + (%F)* )dt + (%G)* 15a

1‘0 (“tr

where 5i(t) satisfies the variational equation

-.‘. 6f - 8f - 8f

-ox=( ) 6x+( ) 8u+( ) 50.

E a E a E a-

with

5i(to) = 5x(to) .. (it), ,3 etc

’ 0

(3.3.18)

to OtO + (95%).}-OD

(3.3.19)

(303.208.)

(3.3.20b)



 

 

 

 
     

I 1 1 J J
 

+Ato to to t t

Figure 3 A nominal solution are and its neighboring

arc with variable end-points
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6i(tr) = 5x(tf) - (22),,”f Ctr (3.3.20c)

In deriving (3.3.20), the relations (3.3.17) with f replacing

F are used. In this case, the variational equations (3.3.20)

and (3.3.11) are equivalent.

1:

f

Integrating /t A

O

to satisfy the following adjoint equation and the terminal

T15:"Edt by parts and choosing Mt)

condition

{T = - lag-jg) - (331E) (3.3.21a)
{- «n-

T _ as
1 (tr) - (an t (3.3.21b)

' f

and substituting these relations into (3.3.19). we have

.. ‘ T T. ,-
5Q - (G + F)*,tf6tf + (A 5X)*’to - (A x + F)-11-,t°0to

t1.

+ (§§)H61s+/11%;”) +(ag-F*)16u<it

t0

t‘f

+ 1/ (3M(1*) + 1%,-F*)hung;G) 16a (3.3.221
tau-,1:
o f

where

(é) = (86' + 8G i) . (66' + KT.

*’tf 3.5 E *,t 3'1? x)-::-,t
1‘

We shall call by the variation Of y, and by the total

variation of y. Therefore 6Q is the total variation of Q
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corresponding to the total variations OtO, 6t 6X(to).f,

Ox(tr), 5a and OB, and the variations 6fi(t) and Oi(t). For

convenience we shall replace by by dy, and 65‘ by 5y, thus

(3.3.22) and (3.3.20) become, respectively,

= ' T T- az ..
dQ (G + F)* t dtf + (a dx)*,to - (A x + F)*’todt° + (5'15)ng

’ f

tf
T af OF

+ [to [A (55-h? + (5-5)*]8udt

t

+ 1/ f (9%) + (2%) )dt + (32 1a: (3.3.23)
to '31- «:1- *,tr

and

oi = (§§)*Ox + @331. + (§)*m (3.3.211a)

with

5x(to) = dx(to) - (31).} t <11;o (3.3.2Ab)

’ 0

anti.) = u(tf) - (a’c),,,tfdtf (3.3.211c)

The solution of the variational equation (3.3.21.1) is

not needed directly. Instead, the solution of the adjoint

equation (3.3.21) is required to evaluate the total variation

Of Q. A different approach to the derivation of the variation

of Q will show clearly that the adjoint variable Mt) defines

the variation of Q in toms of the variations or perturbations

of the control variable u(t), the control parameters a, p,
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and the initial and final times and states. For this reason,

x(t) is frequently called the influence function.

It is also important to point out that the adjoint

variable A(t) is a linear combination Of the column elements

of the transition matrix of the equivalent Mayer problem.

Therefore, one may call A(t) the modified transition

function [EV-l]. To show this, let X = (x0 xT)T , where x0

satisfies

= F(t,x,u,a) x°(to) = 0 (3.3-25)

The variational equation correSponding to the new state

variable X is

ox = (%a)OX.+ (——) ou +(%2:) dc (3.3.26a)

* a

with

OX(to) = dX(to) - X(to)dto (3.3.26b)

where

— F

f =
(303027)

f

the corresponding adjoint equation is

AT = — 11%;?) (3.3.28a)



1.1.8

A (3.3.28b)

The transition matrix <I>(t,t') of (3.3.26) is nonsingular and

satisfies the homogeneous linear differential equation (see,

for instance, Coddington and Levinson [CO-1]),

: _ of - _

ai-

Differentiaing the inverse of <I>(t,t'), we have

fisher) = - <I"l(t,t')<f>(t.t')é-l(t.t')

__= _ é-1(t,t,)(§_§)*
(3.3.30)

Using the relations

9'1(t,t') = a(t1,t) (3.3.31a)

and

<I>T(t,t) = <I>(t,t) = 1 (3.3.3112)

(3.3.30) can be written as

AT tut = .. 51'; T eT(tv,t) aT(t,t) = I (3.3.32)( 1 (31*

Therefore <I>T(t',t) is the transition matrix of the adjoint

equation (3.3.28). If we assign tf for t, and t for t',
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A(t) can be expressed as

Mt) = aT(t.tf)A(tf) (3.3.33)

01‘

ATM = AT(tf)<b(t.tr) (3.3.311)

Thus we have shown that A(t) (and thus 7((t)) is a linear

combination Of the column elements of <I>.

Now, we shall return to our main subject. In the

expression (3.3.23) for dQ, there is a term which involves

dtf explicitly. This term can be eliminated by using the

stOpping condition S(tf) = 0. Since 8 is defined as a

stopping function, 8 = 0 is always satisfied at t = t and
f,

f.

Q = S(tf), and drOpping the term involving (3 in (3.3-23):

therefore the total variation of S, as, is zero at t Let

we have

dS(tf) = (6° + M°) dt + (1gdx) + M°)
a,tf f dto{Wt'(s *’to

tr T of oM°
+ /' [15(55 ~+ (35 ) JOudt

t i:- e:-

O

t
f (360

+1/t (3%:1 +132C’))<it+3-1<3a--—-o (3.3.35)

Since we have asmed that S )6 0, one can solve dtf from

(3.3.35). For convenience we set
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(3),“: = (63° + M°)*'tf (3.3.36a)

(<31)Mr = (a + emf (3.3.36b)

Solving for dtf and substituting it into (3.3.23), we have

t t
__ f BHQS f OHQS

dQ — ft (33 )*6udt + [ft (3a- )*dt + YQJdo.

O O

H”) dB + K db (3 3 37)
3F ,, Q ' '

where

H05 = 135(t)f(t,x,u,a) + F(t,x,u,c) - (§)*,th°(t,x,u,a)

(3.3-38)

"os = AQ - 1.5%): t (3.3.39)

’ 1‘

Note that )‘S is the (nxl) influence function correSponding

to S, and (‘8 satisfies the adjoint equation (3.3.21a) and

the terminal condition (3.3.21b) with F replaced by Mo, and

G by 9° . AQ is the influence function corrOSponding to Q,

and AQ satisfies (3.3.21). If we assign J to Q, than F is

replaced by L, and G by g, and AJ is an n-vector, HJS is a

scalar; on the other hand, )‘I is an (nxp)-matrix function

which satisfies (3.3.21) with F replaced by M, and G by 9,

and consequently HIS is a p-vector-valued function . where
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OH '

Q5 _-. AT 81' 6F .. 9'. 5M0 . e O(3": )* Qs(gfi)* + (55).“. (8)*,tf(6—u )* (3 3 (4- )

KQ = I: -(HQS)*,t° )‘Qs(to) ] (3.301(1)

de = 1 at, de(to) 1 (3.3.112)

_ as 6) 39°
Y .. - —

a aQ (3;)*’tf (S)*,tf(a )*9tf (3 3 (L3)

where the partial derivatives with reapect to vector variables

are defined in the usual way. For example,

  

2!: = 6L 9.1.: , ,
(an * [31:1 0 a e a a e e e Bum] ‘3‘. (3 3 (414')

8M1 1121

36-1 Our

(391* - 3 (3.3.1151

9gp . . . . . . . . 213?

-6011 act’- *

F2131 0 . . . . o ‘1

o . .

az ' ' °
_ a e o . . 6)

(53).”. : 'Zép' (3 3 LL

. 0

6 O O O O O 6

L J *  
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3.1.1. Constrained Effort and Successive Optimization,

Algorithm I

In the previous section we derived the total varia-

tion of the generic quantity Q in terms of the influence

functions AQ and AS, and the variations of controls and

initial time and state. If we successively assign J and I

to Q, we have, reapectively

ea /tf (aHJS1 ff (BHJS)
= __ 5 dt + dt + Y do + K db

to du * u [ t E a." J] J

° (3.11.1)

ft (a1EIIS1 /:f aHISd1 = 6 dt + dt + Y do
t 3— u [ (a )4? I]

O to

+(-B-)dB + KIdb (3.11.2)

Note that dJ and (11 are Obtained by adjoining the differential

constraint (3.1.2) to J and I and by choosing the adjoint

variables AJ, and 711 to satisfy the adjoint equations (3.3.21).

Thus far J and I are not related except that they are both

constrained by the state equation (3.1.2).

I In the optimization process we shall derive in this

section, dJ is minimized under the constraints (11 by choosing

511(t), (h, d5 and db Optimally in each iteration. Therefore,

we are not trying to minimize J with the constraints I directly.

In our previous derivations, perturbations and local

linearizations were used. The closeness between the predicted
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improvement in J, dJ, and the actual improvement in J,

( Jnew

I, (11, and the actual correction (Inew - Iold) are heavily

- J01d), and that between the predicted correction in

dependent upon the degree of validity Of these linearizations.

In order to avoid excessive error, constraint must be placed

on the perturbations 0u(t), d1, dB, and db. To this end, we

shall follow an approach which was first used by Bryson and

Denham [BR-1].

Let (d0) be a'small' positive number, and let U(t),

A, B, and W be mxm, rxr, (1+n)x(l+n), and p'xp' symmetric

positive definite weighting matrices, reSpectively. Set

1:

(do)2 = /’ f ouT(t)U(t)ou(t)dt + daTAda + dewdb + deBdb

t° (3.11.3)

thus, (dC)2 is the sum of the cumulated weighted squares of

the control variations Ou(t), d1, dB and db. Since (6.0) is

a measure of the effort in the (u,o. ,B,b)-Space, we shall

call (dC) the weighted control effort or the iterative step-
 

size in the (u,c,0,b)-Space-—the control effort Space.

3 In order to take account of the constraints (11 and

(dC)2, adjoin (3.11.2) and (3.1.1.3) to (3.11.1), to Obtain

t
f 5H cm

(H = f ( JS) - hT( IS - cOuTU oudt

to [ 5T." 3:- 5-1: )s'. 1

tr aHJS T aHIS T 213
+[ft ((3; ) -h(53 ))dt+YJ-hYI-cdo. Mda

'25 t!-

O



5L1-

g) + chTWJda + [KJ .. hTKI - cdeB]db

'11-

+ thI + c(dC)2 (3.11.11)

where h is a p-vector multiplier, and c is a scalar multiplier.

The variation of dJ corre3ponding to the perturbations

on Ou, d1, dB, and db is

t
f as as

6(dJ) = f ( JS - hT —13 - 2 o TU 62 dtt13—51* (au1* quu

0

[tr ((aHJS T 8HIs T T 2
+ -h )dt+Y-hY -2cdaAd

I: to a )* ('55: )* J I J 0'

- [hT(g-§-) + 2chTW]d2(3 + [KJ - hTKI - 2cdeBJd2b

‘K'

T 2
+ 11 5(d1) + 05(dC) (3.8.5)

The stationarity of dJ due to perturbations in 011, d1, dB,

and db implies the vanishing of the variation of dJ, 6(dJ).

By applying a fundamental lemma in the calculus of variations,

see, for examle, [GE-l], the vanishing Of 5(dJ) implies the

vanishing of the coefficient of 6211 for all t E [to,tf], and

the vanishing Of the coefficients of (120., d2(3 and dab. Note

that 6.1 and (d0)2 are Specified quantities. Therefore, the

variations of <11 and mm2 are zero. By equating the

coefficients of various quantities to zero, we have, after

taking transposes



U-l 8H 8H
_ JS T I

511 "' E; [(a-fi' )* - (5";

tr
A-1 aH

da = 331/((EJSF-

1:0

d5 = - §-’1(5-9*h

_ 3'1 T T
db — 23 (KJ - Kih)

55

S1Th1
'31-

SH

(80'.
'2!-

In order to shmplify'the expressions,

notations:

= + '-

QII U11 AII + BII + wII

_ = T

PIJ ’ UIJ'+ AIJ + BIJ PJI

PJJ = UJJ + AJJ + BJJ

tf
aH 18H

_ IS IS T
UII -./f (5— )*U%(u )*dt -

0

t
f on

t a a

O

f an an
_ fiJs -1 JS T _

O

= - T = T

AII RlsA 1RIs AII

- -l T _ T

AIJ “ RISA RJs "AJI

T

‘ QII

I

C
‘
.

—IS)Th)dt-+'y§ - Yin]

(Pxp)

(pxl)

(scalar)

(3-h.6)

(3ch.7)

(Bohwe)

(3.h.9)

we define the following

(3.A.1o)

(Bohcll)

(3.A.12)

(3.h.13)

(3014'01-(4')

(Bah-15)

(3.h.16)

(Bah-017)
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.A.JJ = RJSA'J'RES = AEJ (3.1+.18)

an = 193%? = 3% (34.19)

BU = KIB'J‘K}: = BE]: (3.LL.20)

BJJ = KJB'J-Kg = 33.1 (34.21)

_ oz -1 az T T
w — w = w . .22
II (35')* (330* 11 (3 LI- )

t

f 6HIs
RIS = ft (a )*dt + YI (PX?) (30’4023)

O

t
r GHJS

RJS = ft (go-L )*dt + YJ (lxr) (3.1+.2LL)

0

Substituting (34.6) to (3.h.9) and their transposes into

(3.L|..3), and using the notations (3.14.10) to (3.1;.21i), we have

T

(do)2 = fit?” - Pain - h PIJ + hTQIIh] (3.1+.25)

Similarly, substituting (34.6) to (34.9) into

(Boll-.2), and 113138 (Bah-010) to (Bel-Leah), “’3 have

Solving for h from (3.14.26), we have

b = q'I'JflPIJ - 2ch] (3.1M?)
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Substituting (34.27) and its transpose into (34.25), we have

(<10)2 = i? [PJJ - Pi). Qfi PU] + dIT 42% 6.1 (34.28)

Solve for c using (34.28) and assuming that

2 T -1

we obtain

T -1 t

c = t 1 PJJ " PIJ Q11 PLI ’ (34.29)

2 (do): dIT Q52} (11

 

Then substituting c into (34.27), we obtain

T -1 it
P - P P

-1 JJ IJ Q11 IJ
h = Q P - (3:) T“ 6.1 (34.30) 

Substituting (34.29) and (34.30) into (34.6) to (34.9).

we obtain the Optimal perturbations°

 

5H

._ -1 IS T -1
511(t) - U (13) [ (33 )* Q11 (11

an an (dC)2-dITQ dI $2
1' (___JS)T _ (___IS)T Q-J. P 111

an * au * II IJ PJJ-PEIJQII PIJ

(3.1+.31)

 

1

2 T -1 ‘2
(dC) — dI 2Q (11

_-lT-1+TT-1 II

d“ ' A [R15 Q11 ‘11 " (RJs'RIs Q11 PIJ)( T .-1

PJJ " PIJ QII PIJ

(Boll-62)
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2 T -1 1a
(do) - dI Q (11

d" = W1‘§%)T QEI ‘11 " (“PIA T $1 ) ]* PJJ ' PIJ Q11 PIJ

(3.u~33)

2 T -1 %

(do) - (11 Q (11
_ -1 T -1 T T -1 II

db " B KI QIIdIi(KJ'KI QII PIJ)( P Pf P ) ]

JJ ' IJ QII IJ

(Bah-3h)

Finally, substituting (34.31) to (3.4.311) into (34.1) we

obtain the predicted optimal dJ

35
32

dJ __ PIJ Q11 d1t((dc) .. dI Q11 ‘11) (PJJ "' PIJ QII PIJ)

(34.35)

Since the quantity

t *2
2 T -1 T _. -1

((d0) " ‘11 Q11 dI) (PJJ " PIJ Q11 PIJ)

is nonnegative, we have the following rule for choosing the

signs in (3.14.31) 1:0 (Lil-.35):

If J is to be minimized, choose the "-" sign

associated with the radical terms in

(34.31) to (34.35); Ir J is to be maxi-

mized, use the "+" sign instead.

Since we are discussing the minimization problem, we shall use

the "-" sign in our subsequent develOpment.

If we set d1 = O in (3.14.35), we have

1»:_ T -1
dJ - - (dc)(PIJ - PIJ QII PIJ)
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or

6.1! 1

66 = " (PIJ " PEEJ Q13 PIJré ‘3'“36)

Recalling that J is the cost functional which we want to

minimize and that (dC) is the weighted control effort, we

therefore, may interpret the right-hand side of (34.36) as

the negative gradient of J in the function space of control

effort.

By examining the Optimal perturbations (3.11,.31) to

(34.31;), one may recognize that each of the optimal pertur-

bations consists of two parts; one of them is for achieving

the error correction <11, and the other part is for the

minimization of M. The weighting between the two parts

depends on how large an isoperimetric error correction (11

was specified.

The predicted dJ in (3.14.35) also consists of two

parts; the term PEJ QE§ 6.1 is due to the effort made to

accomplish the correction of I, <11, and the rest of (3.1L.35)

is due to the effort made toward minimization of the varia-

tion of the cost functional dJ.

3.5 An Iterative Procedure for Algorithm I

The following iterative procedure is suggested:

(1) Initialization: Guess and store the nominal u*(t), (1*,

(3* and b*.

(ii) Forward integration: Integrate the state equation

(3.1.2) from to until 8 = 0, and store x*(t). Also

integrate L, M, and M°, add to g, e + z, and 6° at



(iii)

(iV)

(V)

(v1)

(vii)

(viii)

(ix)

(x)

(xi)

3.6
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tr, respectively, to obtain J, I, and S.

Check the validity of linear approximation. Modify

the value of (d0). Stop the iteration if (10 S (101. .

Evaluate (3/é)-n-,tf , (i/é)*,tf , YJ , and Y1 .

Update the symmetric positive definite weighting

matrices U'1(t), A'l, B'l, W'l.

Backward integration: Integrate the adjoint equation

(3.3.21) from t to to to obtain lJ(t), AI(t), and
f

ls(t). Simultaneously integrate to obtain UII’ UIJ ,

UJJ , AII , AIJ , and AJJ , and store (BHJS/au)*’t

and (BHIS/Bu)*,t .

Evaluate BII , BIJ’ BJJ , and WII to obtain QII , PIJ

and PJJ and invert QII .

Cheese suitable dI and (dC) with (dC)2-dIT-QII d1 2 0.

Compute the optimal 5u(t), da, dp, db and the

predicted dJ.

Simultaneously with (ix) update u(t), a, (s, and b,

and store both new and old values of u(t), a, (i, and b.

Go back to (ii).

Some Measures for the Validity of Linear Approximation

As mentioned before, this optimization process

depends heavily upon linearization. Therefore, it is impor-

tant to check the validity of this approximation. In this

section we shall define some measures of the validity of

linear approximation in terms of the predictabilities of dJ
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and d1.

Let eJ and eI be the relative prediction errors of

dJ and d1, respectively, and define them as

 

 

dJ - (J - J )

OJ = 23w Old (306.1)

and

HV(dI - (I - I ))H
_ new old

"' e 02

°1 HVdIn (3 6 )

where V is a diagonal weighting matrix, and the norm H'H is

defined as

(vu = sup Ivil (3.6.3)
i=1,..,p

_ 1 p T
where v - (v ... v ) is any bounded p-vector.

Let eJO and eIo be specified tolerances for eJ and

eI repectively, then eJ and eI can be used to define test

criteria to determine the step-size for the iterative process.

In practical optbmization problems, Judicious test

criteria must be used, otherwise great computational diffi-

culty may result.

3.7 The Instantaneous Algebraic Constraints and the

Penalty Function Technique

So far we have treated the control problem.of Bolza

with differential constraints and isoperimetric constraints
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only, but we have not treated the problem with instantaneous

algebraic constraints given in (2.11.).3). For convenience,

we shall redefine the instantaneous algebraic constraints as,

¢8(t,x,u,a) ,/
/

O 3 = 1,000’Q' (307018)

¢3(t.x.u.a) - q'+1.....q (3.7.1b)I

O t
o II

more a is defined on E and is of Cl(E). And as can either

be a control variable constraint, or a state variable cons-

traint. Similar problems have been treated analytically by

many authors, see, for instance, Gamkrelidze [GA-1],

Berkovitz [BE-1,2], Hestenes [HE-3] and Guinn [GU-l]. Problems

with state variable constraints are more difficult than those

with control variable constraints in both analytical treatment

of the problem, and from the computational point of view.

Dreyfus [DR-l] considered the control problem of Mayer with

terminal equality constraints and Kth order state variable

inequality constraints, where both the inequality constraint

and the control variable are single scalar quantities. Denham

and Bryson [DE-l] obtained a steepest-ascent solution to this

problem by employing this direct approach to inequality cons-

traints. Denham [DE-2] discussed the case of two inequality

constraints with one or two control variables involved.

Although this method seems feasible for single constraints

and single control variable problems, it becomes more and

more involved for systems with increasing numbers of constraints
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and control variables. A method known as the penalty function

technique was first introduced by Courant and Moser [COU-l]

for ordinary minimum problems. Kelley [KB-2] extended the

penalty function method to the control problem of Mayor by

introducing additional state variables. Okamura [OK-l]

applied the penalty function method to the control problem of

Lagrange with side constraints and established some mathe-

matical basis for this method.

There are a number of reasons why one would wish to

use the penalty function technique: (1) Due to the form of

the cost functional of our problem, no alternation is needed

in our algorithm, whether or not there are instantaneous

algebraic constraints. (2) No additional state variables

need to be added to our original system. (3) This method

is valid for any finite number of constraints and any finite

number of control variables.

Let PW) be a vector penalty function for the cons-

traints (3.7.1), the components of P(¢) can be defined as

PS(¢8) > o if as > o for s = 1,...,q' (3.7.2a)

P‘(¢‘) = o if as s o for s = 1,...,q' (3.7.2b)

P’(¢“) > o if as); o for s = q}+l,...,q (3.7.2c)

P°(¢’) = o if fl“ = o for s = q}+l,...,q (3.7.2d)

whore Paws) (s = 1,...,q) are real-valued continuous functions
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defined for all finite values of 33.

Let w be a q-vector, whose components wl’,...,wq

are real nonnegative numbers. We shall call w the weighting

vector for the vector penalty function PM). The weighted

penalty function is then defined as wTP(¢). Let JP be the

penalized cost functional defined as:

t;

. f T

JP = J + / w P(¢)dt (3.7.3)

to

or

t

f T
J,=s+/t[L+menfi 6J4)

0

If we define

L = L + pr(¢) (3.7.5)
P

then the penalized cost functional J can be written as
P

tr

J = g + f L dt (3.7.6)
P t P

0

Note that JP and J are of the same form. The quantity

tf T

/ WP(¢)dt

1so

is a measure of cumulated violation of the instantaneous

algebraic constraints.

By suitably choosing the weighting sequence {w} .

the corresponding sequence {JP} of the approximated control



65

problem will converge to J of the original problem under

some convergence hypotheses on the initial state, terminal

time, and control functions associated with the penalized

system [OK-l].

Therefore by introducing penalty terms to J, one

can apply Algorithm I to the general control problem of Bolza.

Further , it should be emphasized that the method applies

equally well to problems with control variable constraints,

or state variable constraints, or with mixed constraints.

3 . 8 Conclusion

In this chapter we have first formulated a compu-

tational version of the control problem of Bolza. Variations

of the various quantities of the problem are derived by using

the notion of variable region of integration. An algorithm

for the computation of the problem is then developed. A

penalty function technique is used to treat the instantaneous

algebraic constraints, and additional control parameters are

introduced to convert the inequality isoperimetric constraints

into equality constraints.

Before closing this chapter, we shall illustrate

some advantages of this formulation of the optimal control

problem over that of the earlier formulations, such as those

given by Bryson and Denham [BR-l], Kelley [KE-l], and

Vachino [VAC-l]. The present formulation is based on the

problem of Bolza, where the earlier ones are based on the
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problem of Mayer. From the theoretical point of view, as

demonstrated in Chapter II, the problem of Bolza and that

of Mayer are equivalent. However, from the computational

point of view, this is not the case. For instance, if one

has a control problem of Mayer, the present computational

algorithm is readily applicable. One the other hand, if

one has a control problem of Bolza with isoperimetric

constraints and if the stopping function S also has an

integral part, then, in order to use the earlier formulations,

one will have to transform the problem by introducing (p+ 2)

additional state variables, and (16+ 2)‘2 additional adjoint

variables. Thus the number of equations needed to be integrated

in each iteration increases from nx(p+ 3)+p+ 2 to (n+p+2)x(p+3),

or a net increase of (p+ 2)2. This will increase the computing

time as well as the memory required to store the state history

and other quantities. The equations in the present

formulation of the problem are not significantly more complex.

In the next chapter we shall identify an important

subclass of problems treated in the present chapter; they

are so important that a separate chapter is devoted to

their study.



IV A SUBCLASS OF THE CONTROL PROBLEM

OF BOLZA, ALGORITHM II

The control problem we shall consider in this chapter

is a very important subclass of the control problem of Bolza.

Since this subclass contains a large number of problems of

practical interest, we shall treat this problem separately

from the general problem considered in Chapter III, and an

algorithm will be derived for the numerical solution of the

problem.

Bang-bang control problems and problems with both

bang-bang control variables as well as continuous control

variables with various constraints are contained in this

category.

Denham and Bryson [DE-1] considered a bang-bang

control problem with a single control variable, and an a

priori specified number of switches of the control variable.

Vachino [VAC-2] considered the case of multiple control

variables, and without the need of a priori information on

the number of switches. We shall consider more general

problems and we shall not assume an a priori knowledge of

the number of switches.

(4.1 Formulation of the Problem

me cost flmctional is defined as

67
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t

f

J = g(tf,x(tf))+ ft L(t,x,u,v)dt 04.1.1)

0

The state equation (differential constraint) is

2.: = f(t,x,u,v) (Ll-0102)

l uml)T
where x = (x1 ... xn)T is the state vector, u = (u ...

m

is the continuous control vector, and v = (v1 ... v 2)T is

the discrete control vector. Assume u(t) is piecewise

continuous on [t°,tf], and v(t) 6 ( 1:1,sz , or

Vj(t) 6 {1%. kg} , j= 1,...,m2, wherlrle k

.. l 2 T
i "' (k1,...’ki)

is no loss of generality in assuming that k{ < kg for all

.1 J
1 and k2 are any

fixed real numbers, and k , i = 1,2. There

:1 = 1,...,m2 . The instantaneous algebraic constraints are

similarly defined

as S. O 8 = 1,...,Q' (LI-01033.)

a“ = o s = q'+1,...,q (h.i.3b)

where (is = ¢8(t,x,u,v). Define the isoperimetric constraints

II S o y = 1,...,p' (b.1421)

IY :.- 0 Y = phi-1,...,p (14-01-0143))

where

t

- 1'

IT = 97(tf,x(tf)) + ft MY(t,x,u,v)dt (14.1.!4c)

O
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The stopping condition is determined from

S = 0 . (LL-1.5a)

which defines 'the terminal time tf’ where

tr

_ S(tf) = 9°(tf,x(tf)) +./; M°(t,x,u,v)dt (h.l.5b)

o

and it is assumed that S 7‘- O-for all t E [to,t The assump-
r3'

tions of continuity properties for the various functions are

essentially the same as those defined in Chapter III for the

general problem, and notions of admissible quantities are

similar to that defined in Chapter III.

As we did in Chapter III, we shall treat the instan-

taneous algebraic constraints by using the penalty function

technique, and we shall transform the inequality isoperimetric

constraints to their equivalent equality constraints. Let

B = ((31 ... Bp')T be an additional control parameter, and

let Z be a p-vector with components

- (pY)2 Y = 1,0e09p' (LI-01.68.)N
.
.
<

I

P'+1,o.o,p (hele6b)zY = 0 Y

Set I = (11 ... 1P)T and let

IY=IY+ZY Y 1,...,P

rIhen
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IV = 0 Y = 1.....p

are equivalent to the constraints defined in (14.14.).

We want to determine the controls u(t), v(t), (5,

and the corresponding state x(t) such that the cost functional

is minimized and the constraints are satisfied.

Li.2 A Multiple-stage Formulation of the Problem

The problem formulated in Section I4..l is a single-

stage problem. Due to the discrete nature of the control

variable v, it will be convenient to treat the problem as a

multiple-stage problem. Since the number of stages is deter-

mined by the number of discontinuities of v, and in general

the number of the discontinuities is not known for a given

problem, we, therefore, have to treat the problem as a

variable-multiple-stage problem. The following formulation

is similar to that used in [VAC-1].

Let u(t), t 6 [t°,tf] be a nominal continuous control

function, and v(t), t G [to,tf] be a nominal discrete control

variable. Since v (nominal) is discrete, both of its values

and switching times have to be specified. Let t3, ,

r3 = 1,...,N‘1 , be the nominal switching times forjv'j. For

convenience, assume to < ti and ti?I3 < tf for all

3 = 1,...,n.2 . Therefore to and t1. are not considered as

switching times. Let t(N) -- f t1,...,tN( be the ordered set

< < < = J
of switching times of v with t1 t2 ... tN and tr trj
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for at least one 36 {1,...,m2( , and for some rj€{1"”’Nj} .

Note that N S N1 + ... + Nm . With these notations, we shall

2

reformulate the problem in Section L)..l as the following

multiple-stage problem: The cost functional

t

N+l r

' J = g(tIIH-l’xlhl‘th-l)) + r21 ft Lr(t’xr’ur’vr)dt

r-l
(h.2.1)

where tN+l is the terminal time t and xr, ur, vr are the
1"

state vector and the control vectors for the rth stage

respectively. The function L1‘ is defined as

Lr(t,x ,u ,v ) = L(t,x,u,v) , t E T , r = 1,...,N+1
r r r r

(I4..2.2)

where Tr = [tr-l’tr]'

The state equation for the rth stage is:

xr = fr(t,xr,ur,vr) , t e Tr , r = 1,...,N+l (4.2.3a)

23e009N+1 (LI-0203b)x(t ) r
r r-l) = xr-l(tr-l

where

’ fr(t,xr,ur,vr) = f(t,x,u,v) , t 6 Tr , r = 1,...,N+l

(LL-2J4)

The isoperimetric constraints are

IY = 0 Y = lgeee'p (LI-'205a)
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t

Y Y Y N+1 r Y
I - e (tN+1,xN+l(tN+1)) + z «3)4- z. /" Mr(t,xr,ur,vr)dt

r=l tr-l

2 (h.2.5b)

ZY = (fiY) a Y = lav-onp' 3 ZY = O 1 Y = p'+l""’p

(u-Z-SC)

and the stopping condition is

S = O
(h.2.6a)

o N+1 .tr 0

S“"N+l) = e (tN+l’x‘N+l(tN+l)) + Z ‘/ Mr(t’xr’ur’vr)dt

r=l t
r-l

(h.2.6b)

where

M;(t,xr,ur,vr) = MY(t,x,u,v) , t e Tr , r = 1,...,N+l

Y = 09-00:?

(II-2.7)

also assumes it o for all t e [to,t Note that v13. isf].

constant in Tr for each ,1 and r, and furthermore, v3 may

be constant in more than one interval.

The problem is to determine the control variables

u(t), v(t), the control parameter (3, and the corresponding

state x(t) such that the cost functional J is minimized and

the constraints are satisfied.

I We shall divide this problem into two parts. One is

to consider the problem with a fixed number of stages, and

to obtain a computational algorithm for determining u(t), (5,

and the switching sequence of v(t). The other part is to
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consider the problem of varying the number of stages,

especially, to add new stages if it is desired.

Ii.3 The Variations of the Multiple-stage Problem with

Fixed Number of Stages

The variations of quantities of interest can be

obtained in a similar way as those obtained in Chapter III.

We, therefore, will omit some of the details involved in

obtaining the variations for the present problem.

Let Q be the quantity of interest,

I:
' N+1 r

I) + 2(9) + 1:51 ft Fr(t’xr’ur’vr)dt

r-l

Q'= G(tN+1'xN+1(tN+l

(h.3.1)

where Q can be J, I, or S. The term 2((3) is dropped if we

designate J or S for Q.

Let x: be a nominal solution are of the system

(ll-0203). Then

r = l,...,N+l

(h.3.2)

is the explicit expression for the are x: . If we perturb the

nominal I; by perturbing u: , v: , (3*, to , "”tN+1’ and

x:(to), xN*+1(tN+l)' and adjoin the differential constraints

x: : t.x§(t).u§(t).v§<t).a* . t e T.- .

(LI.l.3) to Q, the corresponding total variation of Q is
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N+1 / r T arr aFr

dQ.= Z [A (5——) + (-—-) Jéu dt

r=l tr-l r “r * aur * r

+ [ifdxl - (@221 + slump,to + [G + FINJp’tzfduslf + (§.—f)as

N

+ 2 [(ITrxr+ Fr ) - (AT

r=l
r+15W1 Fr+1H..,trdtr (u.3.3)

'vdlere we have used the fact that the state xr(t) is continuous,

and therefore, the total variatlons dxr(tr) and dxfi1(tr)

are equal, correct to first order for all r = 1,...,N. Also

oxr satisfies the variational equation

8f 61‘

= r 1‘ ‘ ::
(fin-511, + (5;)*Our , t E Tr , r 1, . . .,N+l

xr

(LI-030143)

and

5xr(tr-l) = dxr(tr_1)- xrt(M1)dt-l , r = l,...,N+l

(u.3.ub)

and Ar satisfies the adjoint equation and the boundary

conditions

of BF

'T _ T r r . =
Kr " - Kr(§i;)* - (ESE—1.).” , t 6 Pr , r 1,000’N+1

(h.3.5a)

T __ T _
Kr(tr) xfi1(tr) 1' - l,eee,N (“.305b)

T _ aG (h.3.SCI
l (t ) — (3———-)

N+1tN+1 xN+l *,t
1'

Note that the only changes of vr considered here are the
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r 0

Now we shall use the stOpping condition to eliminate

changes of switching times Tr-l and tr associated with v

t from dQ, Substitute S for Q, in (I4..3.3), and set A31, for
f

)(r in (h.3.3) to indicate that Ar is associated with s.

Furthemore, by the same reason employed in Chapter III,

setting dS = 0 , and solving for dtf , we have

t o
N'I'l 1' 1 of 5M

_. T r r

dt--Z/ —;— [6 (3—I+( )]5 at
f 1‘31 t (S) Sr ur * 311-; * LIT

r-l *,tr

1 I (IT )dt
' T [ Sldfi ' 81x1 Ml 1*,

( Tit- t
’ f

2T --1— [(IT + 11°) (AT M° )] dt
F1 (5‘).“- t err Sr+lxr+1+ MrI-l *,tr

' f

(h.3.6)

where A satisfies the adjoint equation and boundary condition
Sr

04.3.5) with G = 9° and Fr = M: . and where

(é)*stf = [5° + MN+1]*,tr (LL.B.7)

Substituting dtf into dQ, we have

N+l tr HQSr o I:

dQ - :1 ft 1 (7:4,, urdt + r—-1[HQ’ST - HQSfi1]*,trdt

r...

where
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= T _ é o ...
HQ” T‘QSrfr + Fr (5)*,thr , r 1,...,N+l (u.3.9)

A = A - A (ET-)1. r = l N+l (LI- 3 10)er Q1. Sr é*’tf 3000, e e

_ T

de = [dt dx$(t )] (u.3.13)
O O

and IQ}, satisfies the adjoint equation and the boundary

condition (14-0305).

I44 Successive Optimization Process for the Problem with

Fixed Number of Stages

Let Ur(t) (r = l,...,N+l), vr (r = 1,...,N). B and

W be (mlxml), (1x1), (1+n)x(l+n), and (p'xp') symmetric

positive definite weighting matrices, respectively, selected

in each iteration to provide suitable weighting and faster

convergence. Let (do) be the step-size in the control effort

space. For the same reason as that in Chapter III, set

1:

2 Nil 1' T .. 15
(dc) - 121/1; our(t)Ur(t)our(t)dt + rildtrvrdtr

r-l

T T
+ db Bdb + d(3 we (II4.1)
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If we substitute J and IforQ in (t.3.3). we shall

obtain the eXpressions for dJ and d1 reSpectively. .Adjoin

the dI and (dc)2 constraints to dJ, the stationarity of the

constrained dJ corresponding to variations in Our , dtr , db

and db yields the following Optimal variations and the

predicted optimal value of dJ:

OH

_ -1 ISr T -1

6111,”) - Ur (t) (T—ur)* QII d1

 

2 T -1 35

_ ((aHJSr)T _ (aHISr)T Q-1 P (do) ' ‘11 QII ‘11

3u an II IJ T' -l

1' * 1‘ PJJ ' PIJ QII PIJ

t e T , r = 1,...,N+l

 

r

(halt-2)

_ -l T T -l

dtr vr (HISr ' HISrTl)* t QII dI ' ((HJSr I HJSr+l)* t

’ r ’ r

(dC)2- dIT q'l dI 3"

- (HT - HT ) Q‘1 P ) II
ISr ISr+1 * t II IJ P PT Q—l P

’ r JJ - IJ II IJ

r = 1,...,N (h h-B)

2 T -1
(d0) - dI QII dI

T .1

PJJ " PIJ QII PIJ

 

4.

d5 = WHSE): afi a: + PIJ( ) (tint)

db = 3'1  

T .-

T -1 T T -1 “0’2" ‘11 QII ‘11 T

KI QII ‘11 ' (KJ " KI QII PIJ) P _ PT Q—l P

JJ IJ II IJ

(Lula-.5)
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= T -l 2 T -1 a T -l a

dJ PIJ'QII d1 ' [(dc) ' d1 QII d1] [PJJ ' PIJ QII PIJ]

04.4.6)

Note that, except for dtr , the expressions for the Optimal

Our(t), dB, db and dJ are essentially the same as the

corresponding ones obtained in Chapter III. Except in the

expression for dtr , we can drOp the subscript r and let t

run from toto tf instead of from tr-l to tr .

We have used the following notations:

t
N+1 r 5H 8H

_ ISr -l ISr T
U - z /‘ ( ) U ( ) dt (h.u.7)
II r=1 tr-l Eur * r Eur *

v = T (H - H ) v‘1(HT - HT )
II r=1 ISr ISr*l T’tr r ISr ISr+l T’Tr

(huh-08) '

andUIJ , UJJ , VIJ , VJJ are defined similarly. And W ,

II

BII , BIJ , BJJ , QII , PIJ , and PJJ are precisely the same

as we defined in Chapter III.

Ii.5 A Computational Procedure for the Problem with Fixed

Number of Stages

For convenience, we shall name the following procedure

the Computational Procedure A:

(i) Initialization: Guess and store the nominal

t(N) = {t1,...,tN} , u:(t), v:(t), t e Tr , r = 1,...,N+l,

(3*, and b*.



(ii)

(iii)

IIV)

(V)

(VI)

(vii)

(viii)

(ix)

(X)

79

Forward integration: Integrate the state equation

(u.2.3) from to until 3 = o (i.e., until t = tf),

and store xT(t). Also integrate L, M, and.M°, and

add respectively to g, e + z, and 9° at tf to obtain

J, I, and 8.

Except for the first iteration, check to see if the

prediction errors are tolerable. Modify the value

of (do). StOp the iterative process if dc S d.Cf .

Evaluate (J/S)*,tf and (I/S)*,tf at tf .

Update the weighting matrices ‘U;l(t), V'l, B'l,
r

and‘W'l.

Backward integration: Backward integrate the adjoint

equation (h.3.5) fromtf to to obtainkJr , TIr ,

and TSr , and simultaneously evaluate the integrals

and sums to obtain'UII , UIJ , UJJ , VII , VIJ and

VJJ and store (aHJSr/aur)*,t , (aHISr/aur)*,t ,

(H - H and (H — H
JSr JSr+l)*,tr Isr ISr+lT*,tr '

Evaluate WII , BII , BIJ., and BJJ at to to obtain

Q11 , PIJ and PJJ . Invert QII .

Choose suitable dI and (dC).'

Compute the Optimal Our(t) (r = 1,...,N+l),

dtr (r = 1,...,N), ds, db and the predicted dJ.

Simultaneously with (ix) update ur(t), tr . B. b,

and
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T
new r = ”new r-l ’ tnew r] = [t + dtr-l r-l ’ tr+ dtr]

Store both new and old values.

(xi) Go back to (ii).

Note that, although this procedure will not add any

new stages to the system, it has the capability to decrease

the number of stages by moving consecutive switching times

to the same position.

I4.6 Optimization Process for Adding a New Stage and the

Corresponding Computational Procedure

So far we have only considered the problem with fixed

number of stages. In this section, we shall consider the

problem of adding new stages. There are two important

questions we have to answer in this section: first,

"Should we add a new stage?", and secondly "If the answer

is yes, where shall we add?".

For simplicity, we shall consider the case of adding

one stage at a time, and we shall not consider the isoperi-

metric constraints (I4.2.S). The generalization of this

simple case to a more general treatment is not difficult

and shall not be considered here.

The unperturbed system 04.2.3) with N + 1 stages is

called the nominal system. x“. is used to denote the nominal

solution are of (14.2.3), and ur(t) will be held unperturbed

for all r = l,...,N +1.



at t =

[t',t'4-dt'](: (t

The perturbed system.can be expressed

t!
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Let a subarc (or stage) be added to the nominal are

x; = f; t 6 T1‘

xr(tr-l) — xr-l(tr-l)

where f; is defined as

f; = fr(t,xr,ur,vr) ,

r; = f;,

f; = fr(t,x£,ur,vr) ,

and f;, is

f;' = fr,(t,xr',ur',v

' f;, = fr,(t,xr,,ur,,v

f;, = fr'(t,x§',ur,,v

.As a first order effect, the partial variations Of fr

Let Q be the quantity of interest defined in

with duration dt' ,

r!

I

r!

r!

rg_l 9 t1”) 9

t e T ,
I‘

t E T
r!

t e Tr ,

)

)

)

where

r' E {1,...,N+1I

as

1,...,N+l

2,000,N+1

lgeee’r'“l

r'+l,...,N+l

[t t')
r'-l.’

[t',t'+dt']

t 6 (t'+dt',tr,]

(h.6.1)

(h.6.2a)

(h.6.2b)

(n.6-38)

(h.6.3b)

(h.6.3°)

(u.e.ua)

(u.6.ub)

(u.6.uc)

(h.3.1).

and Fr

‘with respect to the variation of vr due to the addition of a
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subarc can be considered as impulses occurring at t' with

strengths

If}: -fr'TIt,dt' = [fr,(t,xr,,ur,,v1'fl)-fr,(t,:5‘,,ur',vr')]lt'dtt

(h-6.5)

and

[Fin Fr'JIt,dt' = [Fr'(t’xr',ur',vr')- F’r'“: xI'"ur"vr')]lt,dt‘

(14.6.6)

where F1)" is defined by replacing f by F in (14.64).

After adjoining the system (1.4.2.3) to Q, the total

variation of Q is

N+1 [tr (oar) T arr ,
dQ=Z [ Ox+?\(( Ox-Ox)dt

r=l tr-l SEQ.” r r Fiji, r r]

+ [(3%)dt + (XNfil)d-XN+1]*’ tf - [Fldt]*’to

N

+ 2: [Fr -F 1 dt + [F dt],
1‘]. xvi-1 *,tr I' N+1 4-,tf

T

+ [Arl(fz"1 -frt) + (Fél-Fr|)]lttdt' (LI-.607)

t

r 0

Integrating / A: Oxrdt by parts and choosing I to

t

satisfy the r-l adjoint equation and the terminal

condition (14.3.5),
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. = ' T To .
dQ [G + FN+1]*’tfdtf + [Aldxl _ (ilxl + Fl)dt]*,to

N

+ 2 (xTrr + Fr ) - (xT ) dt
F1 [ r+1f+r+1FrI-l 1s,tr r

+ [Ag (fb -rr,)-+ (F! Fr,)]| dt' (u.6.8)

1;!

If we substitute 8 and J for Q in (h.6.8), set dB to zero,

solve for dtf from d8 = O and then substitute dtf into

dJ, we have

N

dJ=de+Z[H -H ] dt
J r=1 JSr JSr+1 *,tr r

dt' (u.6.9)
+ [H33r' 'HJSr'1lt,

where HJSr , KJ and db are defined.in (u.3.9). (u.3.12),

and (u.3.13), respectively, with Q replaced by J. Hgsr.

is defined as

) M°' (“3.10)
1"

*,tr

I _. T 5'

HJSr' kJSrvfrt + Lrv “ (5

where AJSr , (J)*,tf , (3)-313%. are defined in 04.3.10),

(14.3.11), and (h..3.7) respectively.

It is understood that fr, , Lr, , and.M:' at t'

are evaluated on 316*, furthermore, xr'(t')' ur'(t') in I}, ,

Lé, , and Mg: are also on 2*, but v£,(t') is different from

vr,(t').
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In the iterative procedure we shall give later, the

process will be iterated a number of times to minimize dJ

with optimal choices in 6ur , dtr , dB, and db, and the

number of stages will be held fixed (with possible decreases)

during the iterations. Then the process will change its

phase to determine whether and how to add a new stage.

In order to make the process simple and workable,

we shall hold “r , tr , and b fixed in the process of adding

a new stage. Setting dtr and db to zero, 04.6.9) becomes

dJ = [H'
JSr' 'HJSrv3|t,dt'

= AHJSr,(tt)dtt (h.6.ll)

Choosing dt' positive, the minimization of dJ is equivalent

to the minimization of AHJSr,(t') . Note that if v is not

changed or if there is no stage to be added, then AH = O.
JSr'

Therefore any new value for v which will minimize dJ must make

AHJSr , negative .

Let At be a selected step-size for the evaluations

of AH (At may be chosen to be the same as the integration
JSr'

step-size or greater), and choose dt' the same size as the

integration step-size.

The following procedure is called the Computational

Procedure B:

(1) Start from r' = rl and t' = to up to r' = N+1, and

t'St —dt' 0
1‘

(ii) (a) At t' assign a value to v, call it v' .



(iii)

(iV)

(V)

1»?

(b)

(c)

(d)

(a)

(b)
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Evaluate AH t' ) e

JSr'(

Compare AH (t!) with different values of
JSr'

vI'”(t') for fixed t' . Store the minimum

r,(t').

Compare the result of (c) with the Best—up-to-

AfiJSr,(t'), and the corresponding *7

date, store the smaller and call it the Best-

up-to-date, and denote it by AfiJ35,(t'). Also

store the corresponding 39(9).

Increase t' by At, call it t' .

Repeat (ii) for the new t' .

Repeat (iii) until t! reaches t - dt'

(a)

(b)

(e)

(d)

f 0

If AITIJsi-‘Jtd is zero, then make no change of v.

If Afi (t!) is negative, then add a new stage
JSi'"

to the system after the r'th stage with

TEE-H1 = “’5

Change the number N accordingly and again call

,, trt+1]=[t"t'+dt']

it N, and reorder the switching sequence as

t(N) = {t1’...,tr', tr'+1,ooo’tN+1}

Relabel the system equation and other functions

A Computational Procedure for Algorithm II

The overall computational procedure for Algorithm II

can be obtained by repeatedly executing Procedures A and B

and skipping Block (1) of Procedure A:

(i) Guess and store the nomimal t(N), u:(t), v':(t). 45*,

and b*.
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(ii) Execute Procedure.A (skip (i) of A) for a given

number of times.

(iii) Execute Procedure B once.

(iv) Go back to (ii).



v NUMERICAL EXAMPLES

Three examples are given in this chapter to illus-

trate the application of the computational technique: (1)

Brachistochrone problem with inequality state constraint; (2)

Orbit transfer of a solar sail ship; (3) Low thrust trajec-

' tory optimization problem. In each of the examples, alter-

native choices of dC and automatic schemes for updating dC

and (11 are discussed.

A FORTRAN program for Algorithm I is presented in

APPENDIX A. The program is written in such a way that for

each specific prolbem one has only to rewrite the subroutines

corresponding to the given problem; however, the major part

of the main program will remain the same.

The computer used for the preparation of the

numerical data is a CDC-6500 digital computer.

5 .1 Brachistochrone Problem with inequality State Constraint

The classical brachistochrone problem was first

proposed by Johann Bernoulli in 1696. This problem can be

stated as follows: Find the path of a heavy particle falling,

under the influence of constant gravitational field, from a

given initial point to a final point on a specified vertical

line in minimum time. The initial point is not contained in

the vertical line.

87
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We shall modify the classical problem so that the

path of the particle will be restricted in a given region.

The motion of the particle can be described by the differen-

tial equations:

5:1 = x3 cosu = fl (5.1.11!)

5:2 = x3 sinu = f2 (5.1.lb)

i3 = g sinu = f3 . (S.l.lc)

where x1 is the horizontal displacement (feet), x2 is the

vertical displacement (feet, directed downward), x3 is the

velocity of the particle (feet/second), u is the path angle in

radians , that is, the angle between the horizontal axis and

the path at time t. We shall call x = (x1 x2 x3)T the

state variable (vector), and u the control variable. Here g is

the gravitational acceleration (see Figure 14.). The constraint

is

¢=x-%~x-lSO (5.1.2)

This problem has been studied by many authors, for

instance, Dreyfus [DR-l],Denham[DE-2], Bryson et al. [BR-2],

and McGill [MC-1]. In order to compare results with other

authors, the following data are used and they were used in

[DR-l]:

to = 0

29(0) = 23(0) = o



89

 

 

' 11

x3\\ \<!(///r-CONSTRAINED PATH x

\x.

\\. ¢

‘\\

I
A

3

\
V

O

CONSTRAINT BOUNDARY

¢ = 0

Figure A Brachistochrone problem

 

 

 
 



90

x3(0) = l feet/second

x1(tf) = 6 feet

g = 32.2 feet/second/second

The cost functional J is the terminal thme

J = t - (5.1.3)

and the stopping functional is

sat) = x1(tf) - 6 (5.1.10

where S = 0 is the stopping condition which defines the

terminal time tf . Instead of minimizing J directly, we

shall minimize the penalized cost functional 3 defined by

stf

J'+ / wP(¢)dt

0

3

t
f

0

where w is a positive weighting coefficient, and P(.) is the

penalty function

P(m = (NZHM) (5.1.6)

H(.) is defined by

Hm) = 1 if {a > o (5.1.751)

H(¢) = 0 otherwise (5.1.710)
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In order to apply Algorithm I, we identify the following

a“:f .x(tf)) = 131. (5.1.8)

L(t,x,u) = MMZHUD) (5.1.9)

9°(tf ,x(tf)) = x1(tf) - 6 (5.1.10)

and

M°(t,x,u) = 0 (5.1.11)

Applying the formulas derived in Chapter III formally, one

obtains the following adjoint equations:

' i} = w¢H(¢) A}(tf) = 0 (5.1.1220

i2 = - 2w¢H(¢) A2(t ) = 0 (5 1 12b)J J r O C

i3 = - A1 cos u- A2 sinu A3“: ) = O (S l 12c)
J J J J r ’ °

' 1 _ 1 _.
AS - O AS(tf) "‘ 1 (5010133)

'2 __ 1 -
AS — o 13(tf) — o (5.1.13b)

lg = - A; cosu- A: sin 11 Ag(tf) = O (5.1.130)

and

_ .. ' +1.

"Js " >‘J )‘S(8'é_")*,tf (S'l'lb’)

_ T
HJS - 1J3: + L (5.1.15)
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where

‘é’m, = 1 (5.1.16)

0 = 3

(3)-refit. (x cos u)*,tf (5.1.17)

r = (r1 r2 r3)T (5.1.18)

The constraint on the effort space, the predicted optimal

improvement in 3‘, and the optimal variation in u are,

respectively

t

2 r 2
(dc) =f0 U(t)(bu(t)) dt (5.1.19)

' _ 3: (5.1.20)
dJ - - (dC)(UJJ)

-1 8Has -35
511“?) = - U (tum—)(dCHUJJ) (5.1.21)

more

~tf -1 BHJS 2
UJJ = ./O U (t)(-—55-) (113 (5.1022)

Before one can obtain a numerical solution of the

problem, one has to face a number of difficult problems,

such as, how to choose the iterative step-size do, the

weighting matrix (scalar here) U, the weighting factor w

for the penalty function, and the integration step-size.

There are no straight forward answers to these questions:

they can only be found by guess and experiment. Since dc
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is a measure of control effort, it has direct control on

the progress of the iterative process as well as the

linearization error. Therefore, the value of (10 must be

updated according to iteration number and error test. It

is possible in some iterations that excessive linearization

errors are observed. ‘Ihen one may have to go back to the

previous iteration, and therefore, both new and old control

functions have to be stored to provide suitable back-up

capability. The sample program presented in APPENDIX A

is fully automatic; there is no operator interface required.

In obtaining the following numerical results, the

same integration step-size (.001 second), and weighting

factor for penalty function (100) were used along with

different schemes in updating do and the alternative choices

of the weighting matrix U. An initial guess for the control

function u(t) = (7/6 (30°), t 6 [0,1] was used throughout

the computations.

Case I: (1) d0 = .1; (2) U'1 = 1; (3) In each iteration, a

linearization test was performed. If the prediction

error (due to linear approximation) exceeded the

prescribed tolerance, d0 was then reduced to 70%. (L1)

Subroutine SELCT was called by the main program once

in each iteration, and dC was then reduced to 70% if

1 $ N S 10, and no effect if- N > 10.

Figure 6 shows the terminal time tr as a function

of iteration number N. In Figure 6, N = 0 is the initial
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iteration, 0 indicates that there was no violation of the

constraint boundary, and 0 indicates that the state constraint

was violated in that iteration. After 26 iterations (including

the initial iteration), the terminal time drOpped from..86767

second at N = 0 to .71.).589 second at N = 25. In Figure 5,

several of the descentpaths corresponding to N = 0, l, 2, 25

were plotted. The average computer time was 1.1.389 seconds/

iteration.

_1 t--.5t2 2

Case II: (1) d0 = .2; (2) U = a+ (b -a)(-—-‘-5-£-——) , 136 [0,1],

t2 = l, a = 2/3, b = 3/2; (3) Same as thgt in I(3)

except 95% instead of 70%; (h) Same as that in 1(h).

Withthese changes in (10, U’1 , and the updating

process, the terminal time decreased more rapidly than that

of Case I. As shown in Figure 7, t decreased from .86767
1'

second at N = 0 to .7L(J.(.78 second at N = 214.. The average

computer time was 11.14.23 seconds/iteration.

Case III: (1) d0 = .2; 0‘1 = 3511-? , t 6 [0,11, s = -1.5,

b '- 2; (3) Same as that in 1(3) except 80% instead of

70%; (1).) In subroutine SELCT, dC was reduced to 90% if

1 s N s 10, 85% if N > 25, and no effect otherwise.

After 25 iterations with (1.399 seconds/iteration

average execution time, the terminal time dropped from

.8676? second to .711289 second.

Case IV: (1) do = .2; (2) 11"1 = 1 ; (3) Same as that in

111(3); ((1) Same as that in 111(k).
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With this combination the terminal time drOpped to

.711221 second after 26 iterations (N = 25), .711207 after 37

iterations, and {Ill-199 second after 14.3 iterations (N = L12)

with an average computer time (1.1125 second/iteration (or

3.171 minutes for 113 iterations on CDC-6500 computer). This

result agrees with that obtained by Dreyfus [DR-l], in his

work, after 31 iterations, the terminal time was .71122 second,

and after a total of 50 iterations and L). corner modifications

the terminal time dropped to .71120 second with 10 minutes of

computer time (IBM-7090 computer).

Figure 8 shows the terminal time tf as a function

of iteration number N, N = 0,1,...,25, for Case IV. Several

control functions obtained during the iterative process

corresponding to the iteration numbers 0, l, 3, 25, L12 are

plotted in Figure 9, the corresponding paths of the particle

are presented in Figure 10. Here N = 0 represents the

initial iteration, N = 1, 3, 2S correspond to the intermediate

solutions, and N = [12 corresponds to the computed optimal

solution.

From the results presented in this section, we can

draw the following conclusions:

(l) The values of do and U and the updating scheme have

direct influence on the speed of convergence of the

Optimization process. As one can see from the results,

Case IV is superior to Case III, Case III is superior to

Case II, and Case II is superior to Case I.
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(2)

(3)

5.2

100

It seems not advisable to start with a large do in the

experimental stage of a given Optimization problem. In

general, a small (10 may cause a slow convergence;

however, too large a value of (if) may create computational

difficulty, such as poor predictability. Smaller (10 will

usually be associated with smoother tr vs. N plots (compare

Figure 6 and Figure 7).

It is inaccurate to say that the present iteration is

inferior to the proceeding one by an argument simply

> O. For instance,based on the measurement Jn - Jo

ew ld

in Figure 6, tf(6) > tf(5), however, the 6th iteration is

not inferior to the 5th, since during the 5th iteration,

the state constraint was violated and that was not the

case for the 6th iteration. Furthermore, tf(17) > tf(l6),

in Figure 6, the 17th iteration is again not inferior to

the 16th although in both of these iterations the cons-

traint was violated. This is because the degree of

constraint violation incurred in the 17th iteration is

less than that in the 16th (the accumulation of the

weighted penalty for the 16th iteration was .02).).50, and

it was .00021 in the 17th iteration).

Orbit Transfer of a Solar Sail Ship

A solar sail ship develOps its propulsion energy

from solar radiation. The radiation pressure is inversely

proportional to the square of the distance between the sun

and the sail. By controlling the sail angle, the ship can
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be driven to any destination in the solar system.

Assume that the orbits of the planets in the solar

system are circular and coplanar. Furthermore, only the

gravitational force due to the sun is considered. the

equations of motion of the ship are:

2
(v ) r

vr = 39 + ao(-r2)2 cos3u - go(-i;9-)2 (5.2.181)

, v v r

v¢ = - 2 —%:9'+ ao(;?)2 sin u 008211 (5.2.lb)

r = vr (5.2.10)

where u is the sail angle; vr and v¢ are the radial and

circumferential velocities of the ship, respectively; rO,

r, and rp are the initial orbital, instantaneous, and final

orbital radii respectively; go is the solar gravitational

acceleration at the initial orbit; a0 is the acceleration of

the ship due to solar radiation pressure exerted normally on

the sail at r0; v is the orbital speed of the final orbit

(see Figure 11). F

We want to find the optimal sail angle and the

associated trajectory of the ship such that the ship is

driven from a given initial orbit to a specified final orbit

in shortest time.

Tsu [TS-l] studied the problem and found an approxi-

mate analytic solution by setting tr = 0 with constant

sail angle 0, The resulting trajectory of the ship was a



102

 
 

FINAL

ORBIT

1‘

p

INITIAL _.., v SAIL

ORBIT u

vr

SHIP

(1

SUN REFERENCE AXIS

Figure 11 Orbit transfer of a solar sail ship
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logarithmic spiral. London [LO-l] obtained an exact solution

of the problem by assuming a logarithmic Spiral trajectory

and constant sail angle. Kelley [KE-l] obtained numerical

solutions for variable sail angle for a transfer from Earth

orbit to Mars orbit. We shall, in particular, consider the

case of transfering from Earth orbit to Venus orbit with

matching terminal orbital Speed.

Let vo be the initial orbital Speed, and VI) be the

terminal orbital Speed. One readily finds that

Vp = VOW-1171:)— (50202)

The following data were used for the Earth to Venus transfer

problem:

80 = .592 X 10'"2 m/sec/sec (at Earth orbit)

2
a = .2x10' m/sec/sec (at Earth orbit)

r 2 ”19.6 X 109 m

r = 108.2 x 109 111

v = 29.76 11:103 m/sec

VI) = 35 x 103 m/sec

For computational purposes,the system is normalized by setting

x1 x2 = lO-3v and x3 = 10‘9r. Note that x1 and x2
=-3
10v, (p

1‘
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are in km/sec, and x3 is in GM (1A9.6 GM==1 astronoumical unit).

With this notation, and the given data, (5.2.1) becomes

22

i1 = 10"6 £531 + .0hh76(x3)'2 008311 - ,132h9(x3)-2

x

= fl (502033)

1 2

x2 = - 21110-6 x x + .OI.(J.1.76(x3)'"2 sinu cosau

x

= f2
(5.203b)

i3 “ lO-6x1

= £3 (502030)

.. 1 2 3 T
where x - (x x x ) is the state vector, and u is the

control variable. The cost functional is defined as

where w = 1.15711. xlo'sis anormalization factor which
1

converts seconds into days, that is, J represents the

terminal time in days rather than seconds. The initial

states are x1(0) = O, x2 = 29.76 and x3(0) = 1119.6. The

terminal constraints are

1
I x2(tf) - 35 = 0 (5.2.5a)

I2
x3(tf) - 108.2 = 0 (5.2.5b)

and the stopping function was chosen to be

s(t x}(tf) (5.2.6)
f) =
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S = 0 defines tf if the ship is inside the Earth orbit.

The adjoint equations and their terminal conditions

are

1'3 = .. 1§(§§)* 1§(tf) = [0 0 0] (5.2.7)

11$ = - 1T§—(£1} flux.) =[g g; 3] (5.2.8)

1% = - Igg—(13* 1§(tf) = [l 0 0] (5.2.9)

where f = (fl f2 f3)T , and (g—in.) is the nxn-matrix of

partial derivatives which can be obtained by differentiating

(5.2.3). The following were used in formulating the combined

multipliers AJS and AIS:

‘ _ l
(S)*,tf "' (f )*,tr

(502010)

(2),”? = "1 (5.2.11)

((31)emf = (1'2),Mr (5.2.12a)

:2 = 3 ‘ ,
(0 ) ,tr (1' )*,tf (5.2.l2b)

In the. following computations, a d0 of 200 was used,

the integration step-size was 21600 seconds or .25 day. The

initial guess for the control variable was «qr/1.1..

t “'05Sat

Case I: (1) 0’1-= - (b- a) (T) , t e [0, 17280000]
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a = .6666667, b = 1.5; (2) In the subroutine SELCT, (10

was reduced to 95%. and the error correction in I was

d11 -.05 11 if |11| s .7

= -.2 11 otherwise

d12 = -.1 12- if IIZI s 1.082

_ 2
- -.2 I otherwise

each time SELCT was called.

Table 1 shows the results for some iterations:

Table 1 Numerical results, solar sail--Case I

N tf(days) do I1 12

0 190.257 -- .66L132 4.5114112

1 183.708 200.00000 .87103 -1.382hh

5 177.872 162.90125 .60193 - .3015?

9 176.989 132.68A09 .33188 .A2920

20 178.796 75.17072 -.19132 .72elh

35 180.00A 31.96192 -.20613 .31793

50 180.228 16.1989A -.1255l .1077A

70 180.09h 5.80709 -.0507A .01969

From.this table one observes that the terminal time tf

decreases to a minimum at N = 9, then increases to 180.228

at N = 50, and then decreases to 180.09)... at N = 70.

However, the terminal constraint errors are much smaller

at N = 70 than those at N = 9.
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Case II: (l) U'1 = 1; (2) In the main program, the value of

do was reduced to 90% if the prediction error exceeded

the tolerance; (3) Same as that in I(2).

Table 2 shows some of the results obtained during

the optimization process:

Table 2 Numerical results, solar sail--Case II

N tr(days) d0 11 I2

0 190.257 -~ .66432 -l.51AA2

1 183.861 200.00000 .86967 -1.AO991

5 178.270 162.90125 .59353 - .10070

8 177.695 139.667u6 .A7217 - .01108

20 178.57u. 75.17072 .126A5 .22976

35 179.092 25.h89h3 .03152 .0930?

50 179.7u6 3.33522 .0130? .02197

70 179.850 .1u536 .OOA76 .00273

Comparing these results with thoseobtained in Case I, we

conclude that Case II is more satisfactory than Case I, for,

N = 70, t = 179.850 days in Case II, and t = 180.0911 days
if f

in Case I, furthermore I = (.OON76 .00273)T in Case II,

and I = (-.050711 .01969)T in Case I. In both cases the

average computer time was about 7.723 seconds/iteration.

Figure 12 shows the initial trajectory, the inter-

mediate trajectory (N = 8), and the computed Optimal

trajectory (N = 70). Their corresponding sail angles (the

control functions) were plotted in Figure 13 for Case II.
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5.3 Low Thrust Trajectory Optimization Problem

We shall consider the orbit transfer of a low thrust

rocket. As in the solar sail problem, circular and ceplanar

orbits are assumed, and all but the sun's gravitational

field are neglected. Only Earth to Venus orbit transfer will

be studied numerically. Figure 111 shows the notation and the

configuration of the problem.

The motion of the rocket can be described by the

following set of differential equations:

° (v9) 1‘0 2
v1‘ = r + — sinu - g ( ) vr(0) == 0 (5.3.18)

. vrv T

v(p = - 2 “Jr + - cosu V¢(0) 7" V0 (SeBelb)

£- = vr r(O) = r0 (5.3.1c)

where ro = 1119.6 x 109 111 (average Earth orbital radius);

v0 = 29.76 x 103 m/sec (average Earth orbital Speed);

T = .56119336 newton (constant thrust); go is the same as that

given in the last section. The mass of the rocket and fuel is

m = me + mt
(5.3.2)

where

mo = 679.602 kg (initial mass);

m = -l.012108 X10"5 kg/sec (fuel flow).
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Figure 111 Orbit transfer of a low thrust rocket
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Let vp be the final orbital Speed and rp be the

final orbital radius, then, for Earth- Venus transfer,

vp == 35 )(103 m/sec and rp = 108.2 11109 m.

The problem is to determine the Optimal trajectory

and the optimal thrust angle of the rocket such that the

rocket is transferred from.Earth.orbit to Venus orbit with

matching final orbital Speed in shortest time. Similar

problems have been considered by Lindorfer and Mayer [LI-l] ,

Kelley [XE-2], Kelley et al. [KB-3], Moyer and Pinkham

[MO-l], Kenneth and McGill [KEN-l], McReynolds [MGR-1],

Sage [SA-l] and others.

If we use the same normalized variables as we did

in the last section, and substitute the given data into

(5.3.1), we obtain the normalized equations of motion:

 

. 2 2 -7
X1 = 10-6 LES)- + 8031 X10 T 81111]. _ .132u9(x3)-2

 

x 1-1.l(-9 x10' t (5,3.3a)

= fl

i2 = _ 2xlO-6 x1x2+ filXIO-ZU cosu

x l-lJ-l-9 X 10 t

= r2
(5.3.3b)

i3 - 10"6 x1

= r3
(5.3.30)

x(0) = (0 29.76 1119.6)T
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where x = (x1 x2 x3)T is the state variable (vector), and

u is the control variable. The cost functional is

J = wltf (5.3.11)

where wl = 1.157(1. 1110-5. The terminal constraints are

I1 = x2(tf) - 35 = 91 = 0 (5.3.521)

12 = X3(tf) - 108.2 = 92 = 0 (503-513)

the stopping functional is

- x1(t = 9° _ (5.3.6)S(tf) - f)

where S = 0 defines the terminal time tf if the rocket is

inside the Earth orbit.

The adjoint equations and their reSpective terminal

conditions are:

‘T _ Ta T _
xJ - - 1Jr):46) 13%,.) - [0 0 0] (5.3.7)

' 'T_ T6 T 0 1 0
AI — - 11(3—126) 1I(tf) = [0 0 1] (5.3.8)

.T - —

AS - nag—(51311,) -- [l 0 0] (5.3.9)

where f = (f1 1':2 1:3)T and (3%; is the partial derivative
'1"

matrix evaluated along the trajectory of the rocket. The

O . 01 02

quantities (Shut: , (3)41"tf , (e )*’tf , and (e )*’tf ,
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are the same as that given in the last section.

In the previous two examples, we used different

values of dC, and different updating schemes to obtain

different speeds of convergence. In this example we studied

two cases with everything identical except different initial

guesses of the control function 11. For both cases, do was

reduced to 70% if the prediction error exceeded 2, and the

present iteration would then be discarded, the program would

regenerate the trajectory of the immediate preceding iteration,

and then continued for further improvement. In the subroutine

SEICT, do was reduced to 97.5% for each 1 S N ff S 15, and no

effect otherwise. Where N6 is the effective iteration

ff

number which differs from N by 2 times the number of iterations

discarded preceding the Ne th effective iteration. The same
ff

scheme for choosing (11 was used as that in I(3) of Section 5.2.

Case I: u(t) = 2w/3, t E [0, 17280000].

Table 3 shows the numerical results for this case.

One Observes, from Table 3, that the terminal time tf increased

from 211.732 days to a maximum of 2118.993 days (at N= Nerf: 18),

however the constraint 12 was driven from 9.65560 to a much

more satisfactory value, 1.12011. The terminal time then

decreased to 202.370 days at N = 57 or Ne f = 53 with

1 = -.05333 and I2 = .030115.

f

I



Table 3 Numerical results, low thrust--Case I
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N Neff t1.( days) 92 I: if

0 0 211.732 -- -.073h9 9.65560

1 1 212.806 100.00000 -.06891 9.11231

3 3 215.677 95.00000 -.05A62 8.05579

5 5 219.369 90.25000 -.O3620 7.03335

7 7 223.707 85.73750 -.01318 6.037u1

9 9 228.5h2 81.A5062 -.01AA5 5.06257

18 18 2h8.993 69.83373 .1191h 1.12011

25 25 237.318 69.83373 .09829 .h823h

30 30 228.980 69.83373 .09199 .28691

no 10 21u.1A7 69.83373 .0869? .102A1

50 50 203.369 69.83373 .0311711 .ouoou

57 53 202.370 38.21853 -.05333 .030u5

Several trajectories are plotted in Figure 15, the

corresponding thrust angles are plotted in Figure 16. Here

N = 0 corresponds to the initial iteration, and Neff = 53
eff

corresponds to the computed Optimal trajectory.

Case II: u(t) = 511/6, t E [0, 17280000].

The numerical results for some iterations are given

in Table (4..

Figure 17 and Figure 18 Show some of the trajectories

and the correSponding thrust angle of the rocket reSpectively.
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Table )1 Numerical results, low thrust--Case II

N ESEE tf(days) If I: 12

0 0 168.783 -_ 2.60378 .79A75

1 1 170.559 100.00000 2.A6572 .7579N

3 3 171.602 95.00000 2.182AA. .67727

5 5 179.36A 90.25000 1.87816 .58379

7 7 185.083 85.73750 1.5258A .A7010

9 9 192.192 81.A5062 1.05155 .31809

11 11 196.054 77.37809 .6A266 .23335

15 15 191.235 69.83373 .520h6 .1588h

20 20 192.706 69.83373 .39178 .09931

27 27 191.768 69.83373 .268116 .05286

30 28 191.785 A8.8836l .25923 .0h783

12 hO 192.751 A8.88361 .16A38 .02926

52 50 193.h57 88.88361 .0883? .036A7

Comparing Table 3 and Table 1.1., we conclude that to

use 11 = 5rr/6 as an initial guess for the thrust angle is more

favorable then that of 21r/3. It is true in both cases that

longer travelling time (tr) pays the price for better satis-

faction of the terminal constraints.

In the computation of this example, the integration

step-size was 21600 seconds (or .25 day), and the average

computer time used was 8.788 seconds/iteration in Case I,

and 7.786 seconds/iteration in Case II.
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VI SUMMARY AND CONCLUSION

This thesis considers the gradient computational

technique for a class of optimal control problems, the control

problem of Bolza, with various constraints. The major objec-

tive is to derive computational algorithms and their reSpective

iterative procedures.

Some basic theorems and necessary and sufficient

conditions of the variational calculus, from the simplest

problem of the calculus of variations to a SOphiscated control

problem of Bolza, are presented in Chapter II. . This

introductory treatment of the variational theory serves as

background material for the later develOpment of the central

Objective of this thesis.

The control problem of Bolza is redefined in Chapter

III as a computational version of the problem. Algorithm I

is then derived in some detail. Iterative formulas are given

in terms of the step-size (TC in the control effort Space, the

error correction d1 of the iSOperimetric constraints I, the

adjoint variables, and the stored nominal solution arc of the

system obtained in the preceding iteration. As discussed in

Chapter III, the present formulation of the Optimal control

problem is more general and is superior to those formulated

earlier by other authors if computing time and memory require-

ment are considered.
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An important subclass of the general control problem

of Bolza is defined in Chapter IV. Bang-bang control problems,

and problems with discrete control variables as well as conti-

nuous control variables belong to this category. Since it is

so important in application, a Special algorithm—Algorithm II

is derived for this Special class of problems, although the

general algorithm—Algorithm I is also applicable. Iterative

procedures for both algorithms are given in detail.

In Chapter V, three numerical examples are given to

illustrate the application of the general computational

algorithm. Alternative choices of the iterative parameters

and their updating schemes are presented in detail. Solutions

of these examples are plotted, tabulated and discussed. A

sample program written in FORTRAN is given in APPENDIX A. The

major part of the main program is machine independent,

will not need to change for individual problems, however, the

user has to write his own subroutines to fit the Specific

problem.

As a common character of all gradient techniques,

the convergence of a problem is relatively insensitive to the

initial guess of the problem. The convergence is fast in the

starting iterations, and the speed of convergence slows down

when the number of iterations increases.

Suitable choices of the iteration parameters (such

as the iteration step-size, the weighting matrices, the error

correction (11) and their updating schemes are the key factors
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for obtaining a reasonable solution of a Specific problem

with a reasonable‘number of iterations. There seem to be no

general rules for choosing these parameters besides reason-

able guessing and conducting meaningful experiments.

Relatively larger integration step-size can be used during

the elqaerimental stage of the problem so that computer time

can be saved for obtaining final solution. One Should not

over emphasize the importance of the measurements of lineari-

zation errors. The suitability of linear approximation

directly affects the degree of predictabilities in dJ and d1;

however , it has no effects on the accuracy of the solution

are of the system, and the latter can only be affected by the

integration step-size. It is important to note that each

time an iterative solution is rejected, it is necessary to

regenerate the nominal solution obtained in the preceding

iteration, hence one has to pay twice as much computer

time needed for one iteration before any attempt can be

made for further iteration. Therefore, one should not

reject any solution unless it is important to do so.

Throughout this work, a digital computer to carry

out the iterative process is assumed, however, the use of

a well equippedhybrid computer is obviously possible. The

problem of how convenient or inconvenient it will be and

the problem of how much chutation time can be saved

against the use of a digital machine are left Open.
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The following extensions or further research work

related to this study seem promising:

(I) Formulate a multiple-stage control problem of Bolza and

derive computational algorithms for the solution of the

problem.

(2) Search for new techniques for solving problems with

inequality constraints.

(3) Add further realism to the control problem of Bolza by

incorporating stochastic effects in the system model.
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APPENDIX A

A SAMPLE PROGRAM
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