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ABSTRACT

RESPONSE OF SIMPLE BEAM T0

SPATIALLY VARYING SEISMIC EXCITATION

By

We 1j un Wang

'The stochastic response of a simply supported beam is analyzed by

using a space-time earthquake ground motion model. The effect of the

spatial variation of ground motion is considered and results for several

types of support motion correlations are compared. For practical use,

an approximate method which can be used to quickly estimate the beam

response is proposed.
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The following symbols are used in this paper:

C

f(t)

Hj(w)

H (w,x)

VJ

Hud(w.X.£)

Yj(X)

L

m

Ru (f). Ra (T)

A

R- a (r)

uAuB

damping per unit length;

flexural rigidity of beam;

linear frequency (Hz);

fundamental linear frequency of soil;

modal linear frequency;

frequency at which the Kanai-Tajimi spectrum has its

peak;

load which is the function of time;

modal frequency response function;

modal displacement frequency response function;

frequency response function (transfer function);

modal displacement;

length of beam;

mass per unit length;

autocorrelation functions of accelerations at A and B;

cross correlation function of accelerations at A and B;

constant intensity parameter;

spectral density function of ground acceleration;

cross spectral density of accelerations at A and B;

horizontal transverse displacement of beam;



aA<c>. (130:)

us(x,t)

ud(x,t)

X

Superscripts

iv

accelerations at supports A and B of beam;

pseudo-static displacement;

dynamic displacement;

length along beam;

apparent seismic wave propagation velocity from A to B;

ratio of critical damping of soil;

Dirac delta function;

mode shape;

modal damping ratio;

modal response cross spectral density function;

separation distance;

frequency-dependent spatial correlation function;

variance of curvature response for case i;

variance of dynamic displacement response;

variance of curvature response;

area corresponding to correction Aaz(x);

correction to approximation of ain(x);

circular frequency (rad/sec);

fundamental circular frequency of soil;

modal circular frequency;

first partial derivative with respect to time;

second partial derivative with respect to time;

second partial derivative with respect to x;

fourth partial derivative with respect to x.
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1. INTRODUCTION

Due to the complexity of the earth's structure (inhomogeneity,

anisotropy, etc.), rigorous investigations of structural responses to

earthquake ground motions should consider the effects of wave propa-

gation and spatial correlation of ground motions. These effects would be

expected to be especially significant for large structures such as

bridges, lifelines, dams, etc. Studies of the space-time variation of

strong ground motion and its effect on structures has only recently

gained prominence (Lab, at al., 1982; Bolt, et a1., 1984; Harichandran &

Vanmarcke, 1986; Harichandran, 1987).

In this report, the simplest model of a bridge or lifeline - a

simply supported beam - is studied, and attention is focused on the

stochastic response under seismic support excitations. Consideration is

given to both wave propagation effects and spatial correlation effects.

A stochastic space-time ground motion model resulting from studies of

the space-time variation of earthquake ground motion based on the data

obtained from the SMART-1 seismograph array in Lotung, Taiwan (Harichan-

dran & Vanmarcke 1986) is used to analyze the effect of spatial varia-

tion of ground motion on structural responses.

The bending response of the beam due to transverse base-excitation

is analyzed. In the analysis, stationary random vibration is assumed.

The maximum response of the structure for various types of support

motions with different characteristic parameters are compared. Also,



the variations of the maximum response with variations of the natural

frequency and length of beam as well as the fundamental frequency and

damping of the soil are determined. Finally, approximate methods for

the quick evaluation of the beam responses are evaluated.



2. ANALYSIS OF SIMPLY SUPPORTED BEAM

2 G o Mot o e

In order to study the response of structures to spatially varying

earthquake ground motion, a suitable ground motion model is required.

In this study a space-time ground motion model proposed by Harichandran

and Vanmarcke (1986) is used. In this model the ground Aaccelerations

are assumed to constitute a homogeneous random field. The point spec-

tral density function (SDF) of the ground acceleration, Sa (w), is

8

therefore assumed to be the same at all spatial locations. The correla-

tion between the accelerations at two different points is characterized

by a coherency function p(u,f), and the phase due to the time delay

caused by wave propagation is accounted for by an exponential function,

exp (-iwv/V). The cross SDF between the accelerations at two locations

A and B is then written as the product of the point SDF, coherency

function and phase delay

 

SGABn(w) - Sug(”) p<u.£) e"””/V <2-1 >

where p(u,f) - A exp [ 37%)- (1 - A + aA)]

+ (1 - A) exp [ 9%?) (1 - A + aA)] (2-2 )

o<f> - k [1 - <f/fo)b>]'” <2—3 >



A, a, k, f0 and b are empirical constants, whose values for the radial

components of a specific earthquake in Taiwan (Event 20 recorded by the

SMART-1 array) were:

A - 0.736; a - 0.147; k - 5,210; fo - 1.09 and b - 2.78; (2-4 )

f - w/2n - linear frequency;

v - separation between locations A and B - L for the simply

supported beam;

V - apparent wave propagation velocity in direction AB.

Any reasonable model may be used for the point SDF, and for a

single-span beam the Kanai-Tajimi spectrum is adequate. This spectrum

is obtained by passing a white-noise bedrock acceleration, whose spec-

trum is So, through a filter (transfer function) corresponding to a one

degree-of—freedom dynamic system, and has the form

{1 + 4fi2[w/wg] }

Sago”) ‘1 - [co/«>812!2 + afi’Iw/wg1’s

 

(2-5 )

where “3 and fig are the fundamental frequency and damping of the ground,

respectively, and So is an intensity parameter. The parameters w and

fig are usually estimated by fitting equation (2-5) to the spectra of

real acceleration records.

2 Ra V b t on es onse

,ru = Horizontal. Displacement

_-_.-_.__.e,,§_o_.x
B on

uA(t) UB(C)

M We...
7‘ug Horizontal transverse

acceleration of supports

 

 

Figure 2-1 : Simple Beam With Support Excitation



Consider a simply supported beam excited by horizontal transverse

accelerations, uA(t) and fiB(t), at supports A and B, respectively, as

shown in Figure 2-1 above. For a constant flexural rigidity EI, mass,

m, per unit length and coefficient of viscous damping, c, per unit

length, the equation of motion for the beam is

2 a

mu,cas+mu_o (2_6)

2 at 2
at 6x

where u is the horizontal transverse displacement of the beam.

Decomposing the displacement into a pseudo-static part, us, and a

dynamic part, ud, we obtain:

u(x,t) - us(x,t) + ud(x,t) (2-7 )

where us(x,t) - uA(t) + [uB(t) - uA(t)] x/L

x - distance from support A;

L - length of the beam.

Substituting (2-7) into (2-6)

. iv . .

mud + cud + EI ud - - mus - cus (2-8 )

For light damping cus is small compared to mas, and the equation

of motion can be written as

.. . V

u + 9 u + £1 1 -d m d m “d 8(xvt) (2'9 )

where

g(x,t) e - mus - - aAu - 15‘) - (13% (2-10)

and the boundary conditions are ud(0,t) - ud(L,t) - 0.

Using modal synthesis, we let

ud(x,t) - 2 4’3 (X)Yj(t) (2-11)

.1

It is well known that for a simply supported beam with length L, the

normalized mode shape , ¢j(x), is



a .

$10!) - [12:] sin Lit—x (2-12)

and the natural frequency w is

J

A - [51]“ [:32
Now consider a point load at x - {z- g(x,t) - 6(x-£)f(t). Substi-

tuting (2-11), (2-12) and (2-13) into (2-9), mutiplying by wk and in-

tegrating with respect to x over the length of beam, we obtain

 

~ g . 2 f3 ¢1<x> f(t) sec-s) dx
Yj+in+ijj- - L

- $3“) f(t) (2-14)

since

L

J0 ¢j¢k dx - 0 j v k

and

L

for the harmonic input f(t) - eiwt, the response is

Y (we) - H (w;£) em (2-15)
3 YJ

Substituting (2-15) into (2-14), we obtain

 

C

, 1;,
arms) - [(032 2 15(5)

 

J - w + 1w-

- h) ¢
2'16

H 1

where j(m) - 2

w - w + iwg

j m

In Hj(w), i is the modal bandwidth and is constant. Therefore,

mej’

the ratio of critical damping for mode j, {j - -£—— varies inversely

with natural frequency, and we can rewrite



Hj(w) - 2 1 (2-17)

m - + 12

J “’ ‘3‘”1”

Using (2-15) and (2-16), equation (2-11) becomes

ud(X.t;€) - 2 ¢J(X) Yi(t;€)

J

- § ¢J(X) Hj(w) ¢j<€) f(t)

or

ud(X.t;€) - Hud(X.w;€) f(t) (2-18)

where

Hud(x,w;€) - § ¢j(x) Hj(w) ¢j(€)

is the frequency response function (or transfer function).

For stationary support excitations, the autocorrelation function,

Rg(x1,x2,r), of the input g(x,t) is

Rg(x1,x2,r) - E [g(x1,t) g(x2,t+r)]

an 1‘2] a“- l - 1 - R (r) + R- (r)
[ L L aA L2 uB

x x X X

+[1'L1]E2Raa(’)+il[1'fz] Rfifih) (2-19)

A B B A

where R (r) and R (r) are the autocorrelation functions of u and u ,

(1A OB A B

respectively, and R (r) and R - (r) are the cross correlation func-
a a a u

A B B A ~

tions of a and a . (Note that R (r) - R (-r).)

A B GARE OAOB

Taking the Fourier transform of R8(x1,x2,r), we can obtain the

spectral density function of g(x,t)

 

x x x x

1 ,_2 l 2,, -.-][.-]s.. . )
Sg(xl x2 w) [ L L uA(w) L2 uB(w

X]X x[ X2] _

+ 1 - "l ‘2 S. - (w) + “l l - -— S" (w) (2 20)
[ L L uAuB L L uBuA



l

where S- (w) and S (w) are the autospectra of a and u , respectively,
uA OB A B

and SBA93(w) and SfiBfiA(w) are the cross-spectra of 6A and 68.

The spectral density function of the response is (Crandall, 1979)

L L

Sud(x1.x2.w) - Jo Jo Hud(x1.-w;€1) Hud(x2.-w;€2) Sg(€1.€2.w) dél déz

- E Z We) ¢k(x2) HJ(-w) aka») ejkw) (2-21)

3-1 k-l

where éjk(w), the modal response cross spectral density function, is

L L

éjk("9) "' Jo Jo ¢j(€1) ¢k(€2) 88(619529‘0) d€1 (152 (2'22)

According to the definition the variance of response is the value

of autocorrelation function Rg(x1,x2,r) when x1- x2 and r - 0. Since the

spectral density function Sg(xl,x2,w) and autocorrelation function

Rg(x1,x2,r) are Fourier transform pair and the spectral density function

gives a decomposition of the variance (power) with frequency, so the

variance of the dynamic displacement at any locations along the beam is

the integration of spectral density function at the all frequency range

with xl-xz-x

2

aud(x) - If” Sud(x,x,w) dw

.. Z z 430:) Ifikhi) foo Hj(-w) Hk(w) ij(w) dw (2‘23)

j-l k-l

For well-separated modes, the contributions from the cross-terms

(for which j i k) are very small compared to the terms for which j - k.

Thus, as an approximation, we can write



O

Q

aide) z X I¢j<x>12 r IHJ.(w)|2 ejjw) dw (2-21.)

-1

In order to evaluate Ojj(w), we use the ground motion model spe-

cified by equations (2-1) and (2-2). Ojj(w) can then be obtained in

closed form as

ejj(e) - ——L—— [1 - ( 1)jp(L, f) cos (wL/V)] sfi (w) (2-25)

(Jr)2 . us

In engineering design, we are often more interested in stress

levels, and the stress due to bending is propotional to the curvature u"

(the second derivative of displacement u with respect to distance x.

For a simply supported single span beam

u" - ua + u; - ua

32_ a2_[
or u" - u - 2 ¢ (x)Y (t)]

6x2 d 6x2 j J J

1':
- 2 2 ¢j(x) Yj(t) - Z ¢j(X) Yj(t) (2-26)

J

Repeating the same procedure as before (the only difference being

the use of ¢3(x) instead of ¢J(x)), the variance of the curvature is

ai.(X) - 02u. (X) - E: E: ¢3(X) ¢"(X) I” Hj(-w) Hk(w) éj k<w> dw

j-l k-l

“ E: [¢3(X)]2 In IHj (w)l2 j(w) dw (2-27)

where

¢3(X) - iii ¢j(X) - - [%]1/2 [%£]2 sin iflfi (2-28)
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ume a esults

2 3 Ge c tat 0

Equation (2-27) represents the variance of curvature, 03", for the

general case, i.e., considering the correlation between different sup-

ports excitations as well as the phase shift (or the time delay for the

seismic waves to travel from one location to another). If some parame-

ters (such as the length L and fundamental frequency f1 of the beam, the

fundamental frequency f8 and damping fig of the ground) change, ai"(x)

will also change. Some numerical results are presented here which

investigate the effect of these parameters on the beam response. A

computer program was written by the author to perform the necessary

calculations. Due to the very small contribution of higher modes to

ain(x), and the symmetry in ai"(x) along the beam, only the first four

modal responses were accounted for and only the left half of beam was

examined.

Figure 2-2 depicts the distribution of the normalized variance of

curvature, 0:,(x), along the beam. The normalization is performed by

dividing the values of 0:,(x) by afi"(L/2). It can be seen that aiu(x) -

0 at the supports (because the moment is zero) and the maximum value of

a§"(x) is at midlength. Since we are mostly interested in the maximum

variance, we will mainly focus our attention on ai"(x) at the midspan,

i.e., at x - L/2.

It should be pointed out, however, that the maximum value of 0:"

is not always at the midspan, and may appear at some other location for

specific cases. Figure 2-3 shows an example of this. For the case of

f8 - 4 Hz, f1 - 1 Hz and fig - 0.35, the maximum values of can are at

approximately x - 0.4L and x - 0.6L. This occurs due to the fact that

when fundamental frequency of the structure, f is equal to 1 Hz, the
1’
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second mode frequency is 4 Hz and is equal to the ground motion

‘frequency. Hence for this case the second mode response becomes

significant, and the maximum values of 03" for the second mode response

are at x - L/h and x - 3L/4. The combination of the first four modal

responses makes the maximum values of 03" shift slightly to the two

points x - 0.4L and x - 0.6L. However, the difference between ai"(L/2)

and au",max is small, usually less than 10%, and therefore this rare

situation can perhaps be neglected.

Figures 2-4 to 2-7 show how the parameters f1, L, fig and f8 affect

02 . Figure 2-4 and 2-5 indicate that can is very sensitive to changesu"

in f1 and L. As the natural frequency and length of the structure

increase, 0:" decreases very rapidly. It should be noted, however, that

the variance of the 'stress response is equal to (EI)203", and E1 is

expected to be quite different for beams of different fundamental fre-

quencies and lengths. Figure 2-6 shows that 0:" does not change signif-

icantly with fi8 over its normal range. When the damping ratio of the

2
ground, fig, decreases below that of the structure, {1 - 0.05, au"

increases sharply, but when fi8 is larger than {1, 03" decreases only

slightly. (It should be noted that fig is almost never less than {1.)

As expected, Figure 2-7 shows that the maximum value of 03" occurs when

the ground motion frequency, f8, is near the fundamental natural fre-

quency of the structure (resonance). When fg tends to zero (i.e., when

the base excitation becomes static) the dynamic curvature response

vanishes, as it should. When fg is higher than and well separated from

the structure fundamental frequency, f1, 03" is approximately constant.
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2,3,2 Some Special Cases

In order to examine the effect of correlation decay and phase

shift between different support excitations on the response of the

structure, we consider some special cases of support excitation.

Case 1: Fully correlated and in-phase excitations at supports A and B.

This corresponds to the current practice of considering identi-

cal support excitations. For this case, p cos (wL/V) - 1, and

from equation (2-27) it is clear that only odd modes contribute

to the response.

Case 2: Phase shift only. Here we assume that there is no loss in

coherency between the support excitations at A and B, but that

there is a time delay for seismic waves to propagate from A to

B, i.e., p - 1.

Case 3: The excitations at supports A and B are uncorrelated, i.e.,

coherency is zero. For this case p - 0.

Case 4: No phase shift. If the waves propagate vertically, the excita-

tions at every point would be in phase, i.e., there would be no

time delay between support excitations at A and B and hence cos

(wL/V) - 1.

Case 5: Fully correlated but out-of-phase excitations at supports A and

B. For this case p cos (wL/V) - -1 and only the even modes

contribute to the response.

Figures 2-8 to 2-15 show comparisons of the five special cases

with the general case. In these figures, we denote the response vari-

2

i!

1,2,...5. Since we are interested in the maximum response, for cases 1

ance for the general case by 0:" and those for case 1 to 5 by a i =

to 4 the response ratio, ai(L/2)/a§"(L/2), vs. the non-dimensionalized

fundamental frequency of the beam, flL/V - wlL/(ZnV), is plotted; for
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case 5, the maximum values of variance are at quarter-Span and three-

quarter-span (the dominant mode being the second mode), and thus we

consider the response ratio a§(L/4)/ai"(L/2).

Figures 2-8 to 2-11 depict results for different lengths of the

beam with V - 1000 m/s, fig - 0.6 and fg - 2 Hz. Figures 2-10 and 2-12

to 2-14 allow comparisons for various values of fig and f with L = 100 m

and V - 1000 m/s. From these results we can conclude that:

1)

2)

3)

The longer the structure, the larger the relative difference between

oi and 03". The maximum ratio of ai/ai" increases from 1.5 to 4.5

as the length L increases from 20 m to 200 m. This clearly shows

that the effect of spatial variation of ground 'motion on the re-

sponse of the beam depends on the separation of the supports and the

time delay for wave propagation.

The extremes of the ratio ai/ain occur at approximately flL/V - k/2,

k - l,2,3,..., for which cos (21rf1 L/V) - -1 and +1, i.e., when the

excitations at frequency f1 are predominantly out-of-phase and in-

phase, respectively. At the minimum points, cases 1, 3 and 4 (which

do not contain any phase shift) give higher responses than the

general case (except for very short beams). Case 2 has a lower

value of 03" at the minimum points due to the assumption of fully

out-of-phase excitations at all frequencies.

The variance of curvature for the fully correlated case is always

higher than that for the general case. This is because there is no

coherency loss between the support excitations for the fully corre-

lated case. In equation (2-27), p(L,f) represents the coherency

between the two support excitations and it decreases very rapidly
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with increasing L, and is close to zero for high natural requencies.

On the other hand, the dominant contribution to the response comes

from the first mode and when p(L,f) is zero a will be equal to

P
H
V

20:". This is why for longer beams (say, L > 200 m), oi z 20in for

large £1. The results also show that no matter how long the beam

and how high the fundamental frequency, over-conservative estimates

of the response are always obtained if fully correlated and in-phase

excitations are assumed.

For case 5 (fully correlated but out-of—phase excitation), 02 is

5

always much less than can (see Figure 2-15). For this case, the

first mode is not excited and hence the second mode is most

dominant. Consequently the maximum value of a: is at f1 z fg/4,I

i.e., f2 z f8. Note that the function IHj(w)|2 decreases very

rapidly when ”j increases (wj - jzwl), and it is due to this that a:

is only 2 to 15 percent of the value of 03".

For other cases, the response variances are sometimes over-predicted

and sometimes under-predicted depending on the length L, fundamental

frequency f1 and wave velocity V. Here one point worth noting is

that for case 4 (neglecting phase shift but considering coherency

decay), the response is usually always higher than that for the

general case. The difference, however, is relatively small ( aZ/ai"

usually being less than 1.5) when flL/V is greater than 1.

The values of fg and fi8 also have an effect on the ratio 03/02"u .

From Figures 2-10 and 2-12 to 2-14 it is apparent that for the same

2

length and velocity, the relative difference between 0% and 0

N
C

2

becomes larger when fg increases from 2 to 4 Hz. The ratio al/OU

also changes as fig changes but no simple trend is apparent.

Of the five special cases, cases 1, 2, 3 and 5 do not consider the
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correlation decay between different support excitations, so they are

simpler than the general case; case 4 does not consider wave propagation

but accounts for correlation decay. From the numerical results, it is

apparent that the coherency affects the variance of curvature more than

the time delay, and therefore in order to obtain more accurate response

predictions, at least the correlation decay between difference support

excitations should be taken into account.

2 4 A roximate Methods 0 Evaluatin the es onse Variance

Equation (2-27) allows the evaluation of the response variance of

the beam excited by random ground motion. However, for practical pur-

poses, it would be desirable to find an approximate method which simpli-

fies the numerical computations while yielding reasonably accurate

results.

Since the first mode response is most dominant, it should be

easonable to consider only the first mode response in equation (2-27).

i.e.,

a2 (x) z [¢"(x)12 In (w)|2 e (w) aw <2-29)
u" 1 _m l 11

Assuming that .¢11(w) is 'slowly varying in the vicinity of the narrow

spike, IH1(w)I2, we obtain the commonly used approximation:

2
fig o11(w) IH1(w)|2 dw z o11(w1) If” IHl(w)| dw

n
- ¢11(w1) 3 (2-30)

zglwl

 

where the well-known result

 

I” lul(w)|2 dw - " 3 (2-31)

-co Zflwl
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has been used. Thus we can write

02.00 .... [$0012 <1» (w ) A (2-32)
u 1 ll 1 2; w3

1 1

The above approximation was evaluated for different beam lengths,

and fig and f8 values. Figures 2-16 and 2-17 give the percentage error

of the approximation compared to exact value of 03" at midspan. The

results indicate that when the fundamental frequency of the beam, fl, is

small (say, lower then ground motion frequency f8), the approximation is

quite acceptable - the error usually being less than 10%. But when f1

increases, the error also increases - up to -70% at f - 10 Hz. In
1

order to obtain better results, an improved approximation is necessary.

In order to derive an improved approximation, the behavior of the

functions in equations (2-27) and (2-32) were investigated. Figures

2-18 and 2-19 show comparisons of the actual and approximate shapes of

the product ¢11(w)|H1(w)I2. It can be seen that for f - 1 Hz (i.e., f
l l

< fg)’ the actual curve and approximate curve almost coincide, but for

f1 - 5 Hz (f1 > £8) there is a significant deviation between the two

curves. This is the main source of error. To reduce the error we can

perhaps add a correction term when f1 is large.

From the separate plots of @11(w) and IH1(w)|2 plotted in Figures

2-20 and 2-21 it can be clearly seen that the maximum value of ¢11(w) is

at a frequency slightly lower than fg’ after which ¢11(w) decays very

quickly. For IH1(w)|2, the peak occurs approximately at f - f1 and the

values of IH1(w)|2 become very small when f departs from f Note also1’

that the magnitude of |H1(w)|2 decreases extremely rapidly at all fre-

quencies when f1 increases. Thus, when f1 is larger than fg’ the pro-

duct of ¢11(w) and |H1(w)|2 becomes significant at the lower frequency

range. We should, therefore, add a correction when f is larger than
1
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the frequency at which ¢11(w) attains its maximum value:

To determine the frequency at which @11(w) attains its maximum

value is difficult for all conditions, but for the fully correlated case

the peak occurs at the frequency at which the Kanai-Tajimi spectrum has

its peak, namely

f (was
p 2B3 fg (2-33)
 

For small fig, fp z fg' Figure 2-22 depicts plots of Q11(w) for differ-

ent beam lengths and it shows that the location of the peak of Q11(w)

changes for the general case depending on the parameters used. The

frequency V/(hL) plays an important role, since cos (2nfL/V) becomes

negative as f increases beyond V/(hL), and therefore ¢11(w) begins to

decrease (see equation (2-25)). If fp < V/(AL) then the peak of ¢11(w)

occurs near fp’ otherwise it occurs near V/(AL). Hence it would seem

reasonable to add the correction when either f1 is larger than fp or

V/(AL).

In equation (2-30) it was assumed that ¢11(w) was constant and

equal to ¢11(w1). The shaded area of Q11(w) shown in Figure 2-21 was

not accounted for. Assuming that in the frequency range from O to

wl - 21rf1 we can approximate IH1(w)I2 by |H1(0)I2 - l/wa, the correction

to equation (2-31) may be written as

A02(x) - lz [¢i(x)]2 x (shaded area in Figure 2-21)

m

w

1

- i: [¢i(x)]2 [ Io ¢11(w)dw - w1¢11(w1) (2-3A)

The integral in the above equation may be evaluated through a

numerical quadrature rule such as Simpson's rule. The integrand is now
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a smoothly varying function without the peak-like behavior of |H1(w)l2

and can therefore be evaluated easily without significant error.

The corrected approximation may thus be summarized as follows:

r n 2 _I_. 1!

l¢1(X)] 011(w1)2fi1wi , when wl 5 mp and wl 5 2L

0:"(x) - I ' (2-35)

n 2 2
[$1(X)] ¢11(w1)§§§;§ + Aau" , elsewhere

L 
where w - fo .

P P

Figures 2-23 and 2-24 show the percentage errors between the

corrected approximation and the exact solution of 03" at midspan. As

expected, the errors are greatly reduced. The corrected approximation

was usually accurate to within 15%, although for some cases it was in

error by about 25%. In all cases the corrections substantially improved
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the variance estimates.

Finally, the distribution along the length of the beam of the

exact solution, the exact first mode reponse, and the corrected approxi-

mation, are compared in figures 2-25 to 2-28. The variance ai"(x) is

2
normalized by au",exact (L/2) in these firgures, and it can be seen that

the corrected approximation matches the exact first mode solution very

well. As discussed earlier, for some cases there are errors arising

from considering only the first mode, especially when f1 - fg/h (for

which case the second mode response gives significant contribution).

But as far as the maximum responses are concerned the approximation is

still acceptable.
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3. CONCLUSIONS

From the above study of the response of a simply supported beam to

differential support excitations caused by the Spatial variation of

ground motion, the following conclusions may be drawn:'

1)

2)

3)

4)

5)

The spatial variation of ground motion will significantly affect the

response of structures to the random ground motion, especially for

long structures;

The excitation condition (or input condition) is very important for

estimating the response of structures to ground motion. For simply-

supported beam-like structures, assuming identical support

excitations will lead to conservative response estimates compared to

the general case which includes correlation decay and phase delay.

Assuming out-of-phase fully correlated support excitation is un-

reasonable and will seriously under-predict the responses.

The correlation between support excitations is more important than

the time delay (or phase shift) in predicting the response for

typical simply-supported bridge lengths and seismic wave velocities.

The response of a beam-like structure to random ground motion is

very sensitive to the length and the fundamental frequency of the

structure, though the properties of the ground soil also affect the

response.

For a simply supported beam, estimates of the response to correlated

support excitations obtained by considering only the fundamental

33
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modal response yields sufficiently accurate results. For practical

purposes, the proposed approximate method can be used to obtain very

reasonable results with a minimum of computations. If the natural

frequency of the structure is very low (lower than one quarter of

the ground motion frequency), consideration of higher mode responses

will give better results, since higher mode frequencies may lie

within the dominant excitation frequency range.
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