THES‘S I It 4“, v This is to certify that the dissertation entitled Statistical Inference For Randomly Censored Linear Regression Model presented by Wei-Hong Wang has been accepted towards fulfillment of the requirements for Ph.D. degree in Statistics_ 11 - Major professor Date NM MSU is an Affirmative Action/Equal Opportunity lnsu'lulion 0-12771 HA...— “ ~' __¢~ . vb” muhn. . \«r‘ ‘1 V w. 995% Q "at, w, “4 i.” gotta ".13 0.19: an 1_ 0‘3“- 1.1L ¢- 3 Lin‘ ‘je‘n- .' 'i —. —r __‘..,v .—-— ‘— ééia .. ,Q 3‘ . “I". .l Fifi”. «aft: ah‘V-au-a—I’ ['1' ”*hd’“‘b $7! \ a MSU LIBRARIES .—:— RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below. STATISTICAL INFERENCE FORRANEXIVILY CENSORED IMARREBRESSICNMGDEL By Wei-ng Wang A DISSERTATION] Suhnitted to Michigan State University in partial fulfillment of the requiremnts for the degree of DWIOROFPHIILBCPHY Department of Statistics and Probability 1983 /3A/- /f///) ABSTRACT STATISTICAL INFERENCE FOR RANDOMLY CENSORED LINEAR REGRESSION MODEL By Nei-Hong Wang In this theSis we construct an estimator of the slope parameter in a simple linear regression model with randomly censored survival data. The estimator is obtained by the minimum distance method and is shown to be asymptotically normal under appropriate assumptions. We also discuss the sufficient conditions for a randomly censored multiple regression model to be locally asymptotically normal (LAN). WIS I wish to express my sincere gratitude to Professor Hira L. Koul for the patience he accorded me in the preparation of this thesis . His guidance and cements greatly inproved and simplified the results in this work. Deep appreciation to Professor James F. Harman, Professor Roy Erickson and Professor John Masterson for serving on my Guidance Calmittee. I owe my special thanks to Professor Hannan for teaching me on many aspects of mathematical statistics, and for his encouragenent and consis- tent help during Professor Koul ' s sabbatical leave. His suggestion of the inequality (2.1.13) also greatly improved the result in Chapter 2. I am much indebted to Mrs. Vera Stephan and Miss Carol Jeane Case for their excellent typing. I also appreciate the warm friendship frun graduate assistants in Michigan State University, especially Mr. Rotana Kanmammi. Finally, I am most grateful to my parents and my wife for their understanding through the years of this work. TABLE OF CONTENTS Page INTRODUCTION AND SUMMARY .................... 1 Chapter 1 MINIMUM DISTANCE ESTIMATOR FOR REGRESSION WITH RANDOMLY CENSORED DATA ............... 3 1. Introduction and Preliminaries ......... 3 2. Asymptotic Normality of 31 ........... 5 3. Asymptotic Normality of Q ........... 11 2 LOCAL ASYMPTOTIC NORMALITY OF RANDOMLY CENSORED LINEAR REGRESSION MODEL .............. 24 1. Introduction and Preliminaries ......... 24 2. Lemmas and the Main Theorem .......... 28 APPENDICES 1. Proof of Theorem 2.1 ............. 34 2. Verification of (1.3.35) ........... 36 3. Verification of (1.3.36) ........... 38 4. Verification of (1.3.37) ........... 4O 5. E§(t,8) = 0 .................. 41 6. Upper bound of Var {§(t,8)} .......... 41 7. Verification of (1.3.42) ............ 43 8. Calculation of Var (0d(2 - 8)) ......... 44 9. Calculation of g ............... 46 BIBLIOGRAPHY .......................... 52 INTRODUCTION AND SUMMARY Of interest are mathematical models for life-testing problems, for example, cancer or heart-transplant data. Usually, at the end of a clinical study, a patient may be still alive or lost-to-follow-up and thus yields censored survival data. The problem of handling censored survival data has received a great deal of study in recent years. See, for example, Kalbfleisch and Prentice (1981), or R. Miller (1981). Mathematically, we define survival variables {Xj} and censoring variables {Yj} as sets of measurable functions and observe .=‘ , , 5.: . . ZJ min (XJ, Y3) and J I(XJ 5Y3) 9 where I(A) is the indicator of the set A. If 6j = 0, then Xj is said to be randomly censored on the right by Yj; 6j = 1 means it is not censored. The dataiXZj, 6j): 1 n} is said to be randomly censored I/\ j IA data. Note that if Yj = t) = Gi(t)' Gi is continuous and Gi(t) > O, for all t. Let (1.3) S(t,A) = 2d.5.G71(Zi) IEZi 5 t + Adi], di = c l l l (1.4) 0(a) = Isz(t.A) du(t); where u is a fixed o-finite measure on (R,B). Note that S(t,A) is a weighted empirical process and ES(t,A) Edi P(Xi 5 t + Adi) ‘—2di F(t - a - BE'+ di(A - 8)). It is then clear that ES(t,B) = O; ES(t,A) 2 O, for A‘> B and ES(t,A) 5 O. for A < 8. Hence, similar to a rank test in Hajek and Sidak (1967, p. 103) for testing H0: 8 = 80, H0 is rejected for large values of 0(80). Therefore A if {Gj} are known, it is reasonable to define an estimator 3 for 3 by the relation (1.5) 0(31) = inf 0(3). A For the case Gj = G and G is unknown, we estimate it by a product-limit estimator of G, same as KSV (1981), and then obtain an estimator g for B. In section 2 we prove the asymptotic normality of $1 when {Gj} are supposed to be known. In section 3 we prove the asymptotic normality of g. The numerical calculation of A will be shown after we formally introduce an estimator for the unknown censoring distribution G. 2. Asymptotic Normality of 31. /’/ Under model (1.1) and (1.2), we define “3 assume Giis continuous and F has a- density f. The index i in the summation (2.1) = Edi, F1.(t) = P(X1. > t) = F(t - a - 861.); and maximization runs from 1 through n. The assumptions needed in proving ' A the asymptotic normality of 81 are as follows. (A1) 051- max Idil'T O , as n +-~. (A2) ff2(t + a) du(t) < a, for all a; ffdu < w, and f is continuous a.s. [u]. _ (A3) ff2(t + a + s) du(t)l+ ff2(t + a) du(t), as s‘+ O, for all a. .'. -1 ' (A4) of 2d? Var {61.61. (21.) 1521. s t + Bdilldu(t) <. on. n > 1 (A5) 0’2 2d? fit + Bdi + an -GTl(x)dF.(x)du(t) + 0 , where a = adalomax Id.l+ O . d 1 t + 8d. - a 1 1 n 1 1 n (A6) max Iiimu - 8d,, a) G€1Tn(x)d(-Fi)(x) < .. where‘a(A) = fAf(t - a - BE)du(t), and n is O or some small positive number. Remarks on Assumptions 1. For the uncensored case, (A4) reduces to (A4.1) fF(t + a)(1 - F(t + a))du(t) < w, for all a; which is similar to (3.8) of Koul-Dewet(1983). For the censored case, (A4) holds under (A4.2a) u is a finite measure, and (A4.2b) max Var(6iG;1(Zi)) = max I -G;1dFi < m. Note that to verify (A4.2b), it is enough to check that 4.11;, I; -G;1dF1. < 0°, for some b > 0. Assume for t > b, F(t) = Cle Gi(t) = G(t) = Cze’AZt, for all i, A1 > 12 and {di}I are bounded. Then ‘r: - G'1(t)dFi(t) f I: -G'1(t + a + BE'+ maxlei|)dF(t) (m. )t 0(1)e dt l2(a + BE'+ maxlei|)fl;ne-(>.1 - A2 It is important to realize that for this case, 11 > A2 means F(t) < C(t) or P(ei > t) < P(Y > t). For the case Xi = ei’ this implies that at time t the probability of getting complete data is larger than the probability of getting ‘incomplete data. Another example for (A4.2b) is that F is N(u,02) and G,{di} are as before. Then f; -e‘1(t)dF,(t) = 0(1) f; expi-(t - u - a - BC, - *2.°2)2/202}dt < ., Again, the tail of a normal random variable is smaller than the tail of any exponential random variable. 7 2. For the censored case, (A5) holds under (A4.2) and the fact that F and G are continuous functions. For the uncensored case, (A5) holds under (A5.1) lim f f(t + a + s)du(t) = f f(t + a)du(t) < m, for all a. 5+0 3. (A6) holds under (A5.1) for the uncensored case or (A2)and the following assumption (A4.2+). (A4.2+) u is finite and max I -G.'1'ndF. < a, is" 1 1 for some small positive number n. 4. (A4.1) can be simplified to be I F(1-F)dUo < °. 1T u < < u. (Lebesgue measure) and du is bounded. So is (A5.1). V O 5. One of the crucial assumptions in KSV (1981) is that E(ai) = 0. Note that this assumption is not required here. For the finite sample property, we have Lemma 2.1. Let (2.2) L(A) = f S(t,A)/f(t)du(t), where S(t,A) is defined in (1.3). Then (2.3) S(t,A) and L(A) are non-decreasing in A, (2.4) L2(A) s Q(A)rf(t)du(t).and (2.5) 0(a) achieves its minimum in a compact set of R. Proof. First consider the case A < A1. If di 2 0 , then 1 w di{I(Zi 5 t + A di) I(Zi s t 1-Ad,); = diI(t + Adi < Zi IA t + Aldi) 3 0 ; and if di < 0, then I. dl{I(Zl S t + A d1) I(Zl S t + Adl)} = _ 1 di( 1)I(t + A d, < z, s t + Adi) 3 o. 1(2,.) IV Note 616; O , for all 1, hence 5(t,A1) - $(t,A) z o . The same conclusion holds for the case A > A1. This proves (2.3). The Cauchy-Schwartz inequality yields (2.4), whereas (2.5) holds by'(A21(2-3), (2.4) and the fact that L(A) is not constant in A.. D To prove the asymptotic normality of ’31 we need the asymptotic ' quadratic approximation of O(A) by the quadratic fUnction' (2.6) 01(A) = 01(B;A) = f {S(t,8) + (A - B)°§f(t - a -ABE)}2du(t). Theorem 2.1 Under assumptions (A1) - (A5), we have (2.7) E{ 'SUP 0&2 IQlA) - 01(A)l} +~0 . as n +-~ ; OdlA ' 8| S a where a is a fixed number. Proof. See Appendix 1. D Denote (2.8) t = t - a - BE', and (2.9) (m2 = r f2(i)du(t) . Note that Ql(A) has unique minimum at Al with 21 defined by (2.10) o (3' - s) = «'1 JUII’2° J'S(t B)f(ft\:l)du(t) ° d 1 d ’ = -oc—iIML-Z 2d151‘3iluifiui - Bdi. 1») ’b where u is defined in (A6). Note that 05(31 - B) is a sum of independent random variables and A E0d(A1 - 8) = O. Straight-forward calculation yields A (2.11) Var {Od(A1 - 8)} = ufnf4052 Edi rri LEIAti-e;1dri(x) - (1 - F(§))(1 - F<¥))}dt(t)di(s) . where (2.12) ti = t + 8d,. Theorem 2.2 Under (A1) and (A6), ord(’A‘1 - B) is asymptotically normal with mean 0 and the asymptotic variance as in (2.11). 10 Proof. Denote = l ”’20"1 ‘ "‘1 ” \P 7 _ a m (2.13) AnI if; d d] 310i (Lila-(hi "div ) \ 2 _ .1 2 = Y 2 (2'14’ cni - Var (Ani)’ On ”Uni By (Al) and (A6), we have 2 : . 2 : l ('7 A _ = (2.15) max Uni 0(I), and on lar(..d(_.1 3)) 0(1). Note -2 _ 2 _ (2.16) “n 2 E(Ani EAni) IIIAni EAnil > e an} o - A o A o - EA 0 e a 2 n1 n1 n 5 max E( n1 "1) III ' > -—-———— } . “n1 “n1 ‘ ”ax “n1 By_(2.15), (2.16) plus Holder and Markov inequalities, to Verify the Lindeberg's condition, it suffices to prove (2.17) Max E cag'”lAnil2 T n < w , for same n > O . , Note, by (A6), aim amazi”=MU-(QI NAM. 'while (2.19) cg, = 0(1)agzd§(r-tz(x-adi,~)e;1(x)dri(x) -{rfi(x+a+a3, a )dF(x)}2) '3 0(1)e;2df- Vari§(ei + a + SE; an)1 By (2.18) and (2.19), (2.17) holds since the errors {5i} are non-degenerate. We therefore complete the proof of the theorem. 0 11 The asymptotic normality of B1 now follows by Theorem 2.2 and A A by a standard argument (see Williamson, 1979) that od(B1 - A1) = op(1) Note we assume the measurability of $1 without further discussion. 3. Asymptotic Normality of g In the previous section, we proved the asymptotic normality of the minimum distance estimator for the regression parameter 8 with censored survival data when the censoring distributions are known. In this section,, we extend the result to the case where the censoring distributions are the same but the common distribution is unknown. To estimate the unknown censoring distribution, following KSV (1981), IQt + A 1+ N (23.) 1 a (3'1) S(t) ‘2 Et{ + 1 ‘ i , where j- 2 + N (Zj) n (3.2) N+(t) = 2 1rzk > t] . k=1 Consider A A_1 (3.3) S(t,A) = 2di6iG (Zi)I(Zi s t + Adi) , (3.4) 6(a) = f§2(t,A)duh(t) . (3.5) 61(B;A) = mime) + (A - B)o§f(t)}2dun(t) , (3.5) I(A) = fS(t,A)f1/2(t)dun(t) . We now define A A A A (3.7) B to be such that Q(B) = inf Q(A) . A Note that the finite sample properties in Lemma 2.1 hold again. That is A (3.8) S(t,A) and L(A) are non-decreasing functions in A; A A L2(A) < Q(A)flffl, and Q(A) achieves its infimum in a compact set of R. 12 He further denote (3.9) F = nTIZFi, A = is . The assumptions needed in this section are listed in below. (81) maxldil < w , for all n; and n'loj = 0(1). -1-n (82.a) maxf-G dFi < 0° , (BZ.b) max/:G'3'anidG <<» . where n is a fixed small positive number. -2 2 (82.c) max I-F'le FidG < .. . (B3) un< < vo(Lebesque measure). dun/dvo is bounded and ff2 < w . (84) “n is a finite measure on (-m,£n), where {an} satisfy (85). (B5.a) max n'lfinR-BGdFi + O . isn (85.b) n‘lfi'4(an) + o . We denote in = E for the sake of convenience. Remarks on Assumptions 1. In the proofs, (82.b) can be replaced by weaker assumptions: (82.b1) maxf-G’z'IiFidG < w, and (82.b2) maxf([:-szG)2 + nd(-FiG) < a . Then (82) family holds for the special cases discussed in Remark 2.1 with A1 > (1 + n)l2 when both F and G have exponential tails. Note n is arbitrarily small and is negligible in application. 13 2. For the case Fi(t) = F(t) = C e 1 (B5) reduces to -1e(711-+712)a cn n + O . A In order to prove the asymptotic normality of B, we have to A prove the asymptotic quadratic approximation of Q(A), i.e. (3°13) E{ SUP 0d 2|Q(A) " 01(8 AH} + 0 ° < A-8|-a In view of the proof of Theorem 2.1, it suffices to verify A A . -2 ' 2_ (3.14) l1mnsup 0d EJLSA - SB - SAfl_ - o , and (3.15) lim sup 03256(3) < m . n (3.14) will be proved in Lemma 3.2 and (3.15) will be proved after Lemma 3.6. We first state Lemma 3.1 which will ease up a lot of calculations. Lemma 3.1 Under (B5.b), for large n, we have,(r1{Zi 5 an}, (3.16) 3,5,18'1(zi) - G‘1(z1.)}2 5 Ch 5 H (2.) , A 4 . n + 1 -1 2 -1 2 3.17 6.E.{lnG(Z.) - lnG(Z.)} i— . + G (2.)) 5 G (2.)) ( ) I 1 I 1 1 + N+(Z.i ) 1 T 5 Ch 23.1l'8(z ). l A A A _ (3.18) ((6'1- 6‘1) - G'1(1ne - lnG)|s%ilnG - 1n(;)21%—$—.§_.+ + e 1}. for all nzzl. Wmere Ei is the conditional expectation given (61,2i), and C is a constant. 14 Proof. Note (BS.b) implies (3.19) lim inf nH(an) 3 b , for some b > 2. Hence in view of (7.4), (7.5), (7.7) of KSV(1981) as wellas an argument in (7.15), we have --3 -1 z, ---8 % LHS(3.16) s CGiH (2,)n {-54, FH d6} 5 RHS(3.16). Similarly, _ z- --8 Zr 1-FH dB 5 RHS(3.17) . -oo LHS(3.17) s Céin Finally, (3.18) holds by a similar argument as in (7.4) of KSV. Lemma 3.2 (3.14) holds, under (Bl), (BZ.a), (B3), (B4) and (BS)_ 2599:, By'Appendix 1-(ii), we have LHS(3.14) 5 lim sup 2052 E fl_§A - g - SA + 58 fl_ + 0(1) . B A A _ - . Let SA - SB - SA + SB -. D - D1 + 02 , where D1 15 the sum of all terms with Ed, 3 Adi , while D2 picks up the rest. -2 Edd flplfl? IA where an is defined in (A5). By using (3.16) and (BS.b) we have -2 2 Cd E flp1fl_t d2 zd§8d1+ an -H'6(x) F—1(x)dFi(x)dun(t) an IA ft + 8d; - 0'2 2d§1i3(:-:3;-:2 d“n(t) H'7(X)d(‘Ffi) x) ° IA _ 2 co A_ _1 nodz Edi L. 531(3 1(21) - e (Zi))zI(t + Bdi — an < z, D Note m A- - 032' 51. {2d151(G 1(21.) - G 1(21.))I(t + ad, < 21 5 t + Bdi)}2d"n(t) < t + Bdi + an)}dun(t). 15 By (B3), (BS.a), (Bl), we conclude -2 0d Eflp1fl_ . . -1. -2 2 E "7 + s C bO a Gd maxldil 0d Edi f n H (x)dFi(x) 0 . Similarly, 0&2 EHDZH2 + 0 . This completes the proof of the Lemma. D Next to verify (3.15). Note by Appendix 1-(i), (3.20) LHS(3.15) 5 lim sup 2xoazs{§(t,s) - S(t,B)}2dun(t) + 0(1) , where A A_1 _1 (3.21) S(t,B) - S(t,8) = 2di6i{e (2i) - G (Zi)}I(Zi s t + Bdi) . Note (3.16) is not enough to find a finite upper bound for the RHS(3.20). We will use (3.17) and (3.18) for this. The following Lemmas 3.3 - 3.6 will accomplish the proof of (3.15) and serve for further purpose. Lemma 3.3. Under (BS), we have .. A (3.22) 052 Ef{(§(t,8) - S(t,8)) - ZdidiG I(Zi)(lnG(Zi) - lnG(Zi)) . I(Z. 2 1 s t + Bdi)} dun(t) + 0- Proof. By (3.21), (3.18) and CauanSchwartz inequality, LHS(3.22) .. 2 2 , A 1+ 5 nod 2dif EéiEi{1nG(Zi) - 1nG(Zi)} . { 1 I " + G'1(Zi)}ZI(Zi s t + Bdi)dun(t) . 1 + N (Zi) 16 Hence by using (3.17) and (85), we have LHS(3.22) -2 2 -2-—8 s cnod lair E61.n H (2))I(Zi s t + Bdi)dun(t) f cn'loazzdgffi fi-8(X)G(x)dFi(x)dun(t) + o , 0 Lemma 3.4 Under (B4) and (BS), -2 -1 A (3.23) 0d Er(§diaie (Zi)I(Zi s t + 6di){lnG(Zi) + _ + 2 End]. - 0. ZJ- s Z1.)/(2 + N (z.)}) dun(t) 3 o . J Proof. Argue as (7.21) of KSV(1981), and use Canchy-Schwartz inequality, LHS(3.23) -2 2 -2 _ + -2 2 nod Edif E5iG (Zi)Ei(j;iI(55—0, Zj s Zi){1 + N (Zj)} ) . I(Zi S t "A + Bdi)dun(t) 4' -1+ “2052 Zdfir eaie‘z(zi)ei 2 1(6. 1' 3H 3 IA I(Zi A t + 8d,)dun(t). where E1. J is the conditional expectation given (6i,Zi) and (aj,Zj). By using (7.6) of KSV(1981) and (3.19), + -4 -4 ' 2 -4 Eij{1+N(Zj)} an {H(ZJ.) - F} Sen'4b4(b - 2)'4H'4(zj) . 4 Using (B4), (BS.a) and the fact that B- is non-decreasing, 17 LHS(3.23) -2( IA -2 -2 2 _ "4 . cn 0d Edi! EéiG Zi)E1 Z I(é. - o, z. < Z.)H (2.) I(Zi < t + Bdi)dun(t) 2( '4( IA -2 —2 2 - " cn ad {dif EdiG Zi)H Zi)(n-1)I(Zi 5 t + Bdi)dun(t) IA cn'loazxdfini H‘4(x)e‘1(x)dn=1.(x)dun(t) + o . (3 Lemma 3.5. Under (B4) and (BS), (3.24) 05251 (zd.a.e'1(z.)1(z. < t + 3d.)21(5. = o, z. s z.) . i 1 1 1 1 1 j J {(2 + (1“(zj))‘1 - n‘1(2H'1(zj) - H(zj)H'2(zj))})2dun(t) + o , A where H(x) = n-IZHZk > x) . Proof. Argue as Lemma 7.5 of KSV(1981). D By Lemmas 3.3 - 3.5, we have (3.25) A 'b 2 -2 _ _ odews sB 5J530. where ’ W _ ‘1 o ’1 = o (3.26) S(t,B) - édidiG (Zi)I(Zi 5 t + Bdi) {lnG(Zi) + n §I(6j o, 23 s 2,) --1 A --2 (2H (Zj) H(Zj)H (Zj))} To prove (3.15), it now suffices to prove ’b‘ . - 2 (3.27) l1m sup odzEfl§Bfl_ < «=. This will be done in Lemma 3.6. 18 Denote "t (3.28) S(t,8) = B1 + 82 - B3 . 1 e n _1 - (3.29) 31 = iéldiaic (zi)1(zi g t + Bdi)lnG(Zi) = :zui, say _ 2 -1 _ --1‘ (3.30) 32 — 5% E (11.311; (21.)1(z1. s t + 3d,)(1 aj)1(zj g z.)H (23.) , 2 = : - U.. n E E 13 (3.31) 83 = 1- Z 2 E d-5.G-1(Z-)I(Zi s t + ediXI-éj)I(zj < z.)H'2(zj)I(zk>zi) 1 J . n2 1 1 1 = -2 "H153 Note _ n -1 . _ (3.32) B2 - (2) 1Ean-IHUU. + Ujk} , ($1nce Uii — 0) , and {U.. + U. . + U.. (3 33) B3 = (3)-1 g {12:l%%fl:é) 13k 1k1 31k + °p, (ii) Under (B4) and (BS), ’1: __ r1. r1, ' lim sup odz Ef{S(t,B) - S(t,B)}2dun(t) + 0 . 20 Proof. (i) See Appendix 6. (ii) Let ’1) (3.40) Ut:= n'P0515(t,s) , (3 41) w - n‘Pc-1§(t 8) ° t d ’ ’ where p is a fixed number and .5 < p < 1 . By Appendix 7, we have (3.42) sup not - Ht)2 = 0(n‘2) . tsE Hence 2 m k (3.43) sup 0; E{S(t,B) — S(t,s)2 tsE n = sup E{nfijt - npwt}2 tsE n = n2P ° 0(n-2) + 0 . This together with the fact that {un} are finite measures yield the desired result. U Note (3.15) holds now by (3.20), (3.25% (3.27). and the above Lemma. Theorem 3.1 Under (Bl) - (BS), (3.44) E{ sup 052|6(A)- 6*(B;A|} + 0 , where (filA’Blfa (3.45) 6*(1) f{S(t,B) + 's’(t,s) + (1.- 8).o§f(rt)}2dun(t) . Proof. Let (3.46) 61(1) = x_:{§(t,e) + (1-3)o§f(1’)}zdun(t) . By the discussion before (3.14) and (3.15), we have 21 (3.47) E{ sup 452l3(3) -81(A)I} + 0 . odIA—Blsa Using (3.25), (3.27) and Appendix 1 - (i), E{ sup 082l61(A) - 0*(A)I} odlA-Blsa IA -2 A ’b' 2 - A ’b N °d Eflfis - SB - SBH— + 2E0d fiss- SB - Ssflgo lzugle) 5 4EA21(|A|> 8/2) + 4EBZI()B( > e/z), to prove the asymptotic normality of od(A-8), it suffices to verify the Lyapounov condition for "1% a” m - fwd 0d I (t,B) un(t), where un(A) - IA (t) un(t) < «>, for all AcR and for all n. Denote % (3.51) W; fS(t, 8)dun (t t)= Xan, and (3.52) In = Var( (Ean) , with (3.53) an , = a‘ln‘lzd.(1-a.)f°° "1 W "I d i 1 J Zj-Bd H ( ZJ.){F1.(ZJ.) - F(t)}dun(t) + o-ln-lid rrZJAt*Bdi e W H( ){F (y) - F(t )}dG(y)du (t ) l = : Bnlj + anj , say. Then, 2+0 (3.54) EIBnljl -2-n -2-n 2+n --1 m _ W 2+n 5 0d n max Idil E((1-6j)H (Zj)§ ij-Bd.{Fi(Zj) F(t)}dun(t)) 23 5 032-” . 0(1)E((1-6j)fi‘1(zj)n‘1§Fi(zj))2+n _ - - -2- - od2 ” - O(1)E(1-6j)G n(23.) aaz-h - 0(1) - f-e‘z'”(y)F.(y)dG(y) J = 0(1)oaz'n for all jsn, by using (BZ.b1); and 2+n (3.55) EIanjl z. __ m m < 0&2-n 0 max Idi|2+n . E(f[mJ_G‘1(y)H I(Y)n-IZ(Fi(Y) _ F(t))dG(Y)dun(t))2+n 1 052-" - 0(1)E([£§ - G‘Zde)2+” IA 032‘” - 0(1) . for all jsn, by (BZ.b2). Using (3.54) and (3.55), the Lyapounov condition reduces to (3.56) noaz'n 132‘” + O . But (3.56) holds obviously by using (BI) and the fact that Tn2+n > 0. This completes the proof of the Theorem. D CHAPTERZ ImALASYMPI‘OI‘ICNOEMALITYCF RANDCMIX CENSORED LINEAR MERESSION MODEL 1. Introduction and Preliminaries For each A a RP, let (Q , F ’PA) be a probability space and X1, X2, ..., ane random variables on ($2 , F ) whichare independent underPAandaresuchthat _. = _ T . (1.1) PA(xj>t) -. FAj (t) F(t A Cj), l i j in, whereF is adistribution functionandC§= (le’ ..., ij) isavector of known constants, l f_j f. n. Furthennore, let Y1 setof independent randanvariableson (S2 , F , PA) suchthat , ..., Yn be another (1.2) {Xj} and {Yj} are independent, and PA(Yj>T) = Gj(t), for all A 6 12", 1 _<_j in; i . e. the censoring variables are irrelevant to the regression parameters . In survival analysis, what one gets to observe is not the Xj's or Yj's, but (1.3) zj = min (Xj, Y3.) and 63. = I(Xj :Yj). Note that (Zj, 5].) is a measurable transfomation from ($2 , F ) to (Rx {0, 1}. B x {0, 1}). Let (1.4) unAj be the induced treasure of (Zj' 63.) on B x {0, l}, and (1.5) fAj be the density of FAj with respect to the Lebesgue measure. 'Ihen (1.6) “mj((‘°°' t] x {1}) = PA(Zj _<_ t, 53. = 1) = fiGj(x)fAj(x)dx, uij-oo, t] x {0}) = pA holds, if (i) For all n, Mn is a p x p positive-definite matrix, and Yn is a p-din‘ensicnal randcm vector on Fn' such that (ii) Yn =>N(O,I) under En where I is the identity matrix, and 6! (iii) For any given bomded sequence in RP, if 1/2 A =6+M- t iseventuallyin9,thenwehave n n n n as n'An T 1 2 . (1.9) log as - (tnyn - Elfin“ )+0 in <1:n e> prob. n,9 ’ 26 Remark 1.1 If tn+ t, then the log likelihood ratio dE‘r n'An dNt l. .2 2. (1.10) log (33 =>log arr“ N(- 511th , {It}: ). n,6 where Nt is the expectation of p—dimensional normal random vector with mean t and covariance I. ‘Ib prove the IAN property for the model (1.1) - (1.3), we need the following assumptions: (Al) F has density f with respect to the Lebesgue measure; f is absolutely continuous and the Fisher informatial amount I(f) = -f (1%) 2d}? is finite, where f' (x) is the a.e. derivative of f(x) . (A2) (Noether cmditon) max [C?(CTC)-1Cj] + 0, where C is the design 3531 matrix with raw vectors {Cg}. (A3) Mne is positive definite, T -l __ where n T (1.11) M =: 4 Z R .c.c., n6 ._ n63 j 3 j-l (l 12) R =- 1'6 (x + eTc “(9)2 (x)dx - I—f-i(x)dG (x + eTc ) ' nej ° 3' a" f F j 3' ° Remark 1.2 (i) For the uncensored case, Rnej = I(f) and Mne = I(f)CTC is positive-definite whenever C has full column rank. 27 (ii) Since I(f) < 0°, f(x) +0 as x+j~_ 0° (see lemma I.2.4.a of Hajek and Sidak (1967)). Hence I 00 i 2 (1.13) f2(x) = (f°° L(x) ./f(x) ax)2 < f EJ-mdy-Nx) X /?- — X f an important inequality which will be used to prove the main Theorem. We first apply (1.13) to claim (1.14) Rnej _<_ I(f), for all 3 i n. Indeed, by using (1.13) and 'Ibnelli's Theorem, we have Rne j 2 2 T (f') 0° (f') T _<_ ij (x + 6 Cj) -—f——(x)dx - ffx -?——(y)ddej(x + 6 Cj) 2 , 2 = ij (x + eTCj) g—L—(XMx + I(l - Gj) (y + STCj) (f ) (Y)dY I f = I(f). ‘Iherefore, for the case p = 1, O < Mne <°° and (A3) is always true. 2. The Main Theorem Denote (2.1) s =: 131/2, 3 =: 5'1/2. du . _. n11] 1/2 (2.2) hnAj -- (dvnj ) , ' I - _._ ,_T d., _T 1—d. (2.3) hm]. —. (l){s (x ch)} {S(x chn cJ where s' and S' are a.e. derivatives of s and S, respectively (see e.g. Hajek and Sidak, 1967, p. 212). Note that if f' were everywhere derivative of fthenhnAj 15%5hnAj' We furtherdenote , fine. (2'4) qnej =‘ 5—1. I(hnej > 0" n6] 28 and _:-1/2 - (2.5) Unej ZMn qnej o (Zj , (S. 3.) Note that straight— forward computation yields . T (2.6) Nine: 4jzlff(hne j)(hnej) dvnj We new state the main Theorem. Theorem Under (Al) - (A4), the condition lAN holds for ne' the model (1.1) - (1.3). To prove the main Theorem, we need the following lemma. lemma (Fabian and Hannah) OonditicmlAN <9, Mn, XUne j> holds, if (i) ”h nGjHELZan ' (ii) ffqnejdunej = o, n (iii) j=1 Enzeuunejufluu nje “_>_a}+Oasn+°°, foralle>0, and (iv) For all bounded sequence in RP, let A = e +M’1/2t , wehave n n n T‘ 2 Proof. See Fabian-Hannah (1980), Theorem 4.5. Proof of the Theorem We will verify (i) - (iv) in the above lemma. (i) By a similar carputaticn for M n6 in (1.11), (1.12) and (2.6), we have ff11hnej11 dvnj - HC]. )1 RnGj' Therefore (l) holds by (1.14) and (A1). (ii) Denote _ l d. f' _ T d. g. _ T l-d (2-7) Onej --2'('1) {(—f-) (X 6 Cj)} {F(X 9 Cj)} tren onej = Qnej‘cj. Note that ”onej'dunej = 0' bythefactthat f(x) +0asx+:m, andthe integrationbyparts (see, e.g. Hewitt and Strarberg, Theorem 21.67) . This catpletes the proof of (ii). (iii) LHS -l/2 2:2 _<_ j: lne411M c.1123n6Qnej(zj, 6 j)I{411Qnej(Zj , cs )11>max W“ M.l/2C “2} i WINE/2 Ciszhiu - G]. )(x) = (I) + (II), say. Note (2.8) xmax11M;19 1/2c. 112 =max CT (cT C) 1[(CTC)M;1]Ci + o, i Zmu-an j=l ne f f maXHMne -I|./2C €12" = 0(1) ° °(1) Next to claim (2.10) (II) ~> 0. To see this, note that by (2.9) (II) f2 f2 T (2.11) _<_ 0(1) max f—- --(x)I[-—2-(x) > K]d(1 - G.) (x + 6 C.), if?! F J 3 where E:2 (2.12) K = + °°o as n + °°r ”1114,19”chle i K]d(l " Gj) (X + B Cj) f2 .gfifi‘fi’2(w@1§gm>Kmu-G”)m+eC) Yumm<$§hm1-GWHx+ech’2(we -00 n Fe -1 I(f) ( )F- ].(_I___(f))}’an dF-l(£1(<fl)'*F1-(O)=°°IaSK+°°° Hence by (2.11) - 2.13), we have (II) + 0 This concludes the proof of (iii). (iv) In View of (1.7), (1.8), (2.1) - (2.3), we have '1" 2 ”{hnAnj - hnej - (An -6) hnej} dun]. _ _ T _ _ T _ T T 2 f{s(x Ancj) Sb; e (3].) + (An 6) c. S(x 6 c3.)} Gj(x)dx T T T 2 + f{S(x - AT nj—C) S(x - e cj) + (An - e) CjS(x - e cj)} d(l - G3.) (x) (2.14) = Bnlj + Ban’ say, l_<_j in. By using Ietrma VI.2.l.b of Hajek-Sidak (1967), we have (2.15) {.ij = 0(1). ‘lb prove 23an = 0(1) , we first claim 3' (2.16) (s' (y))2 = .h-IH uanIN (y) +0, asy+i°°, and (2.17) 71(2) = Y Indeed, by (1.13), we have (S'(y) - S' (y - 2))2 is continuous at 0. (s on)2 _<_4 fy f°°"—E——’2 (x)dx+o. asy +00. since I(f) < 00. By Cathy-Schwartz inequality, we also have (s' (y))2 5&1: -‘—E—'l(x)dx Tnis concludes (2.16) . (1-F) (x) + ., ..., F(y) 0, as y . (2 17) now follows by using (2.16) for large y and by usmg the fact that S' is continuous and hence uniformly continuous 32 on compact sets. Next, let — _ T. (2.18) bnj - (An 6) le + + . . and denote 2‘3an = 2 Ban +2En2j’ where Z 15 the sum over those 3 for whichbnj > OandZ" isthesumoverthosejforwhichbnj < o. Wethen have, by using (2.9), (2.14), (2.17), (2.18), Cauchy-Schwartz and Tonelli, + Ban = Z+f{S(X - b -) - S(X) + b .S'(x)}2d(1 - G.)(x + 6Tb.) n3 n3 3 J = Z+f{-Ibnj S'(x - u)du + b .S'(x)}2d(l - G.)(x + 01C.) 0 n] J J b . _ + 2 1 n] . _ _ . 2 _ T -2 bnd{ 3; I0 (8 (x u) s (x)du} d(1 Gj)(x + e cj) b . 0(1) max+ b'l. I njn(u)du. 2.19 ( ) jm n] 0 IA By (2.17), for any given a > 0, there exists 6 > 0 such that |n(u)| < e for all |u| < (S. For this (3, by (2.8), there exists no such that max+ b . < 6. Therefore “3 b . RHS(2.19) _<_ 0(1) °max+ til; Ion] e du = 0(l)°e, for all n 3 no. By j_<_n a similar argument for z- B n2j we conclude (2.20) 23an = 0(1). (2.20), (2.15) and (2.14) then yield (iv) of the Lemma. ‘Ihis also canpletes the proof of the main Theorem. Remark (a) An alternative proof of (2.10) is as follows. By (2.11), we have (2.21) (II) 5 0(1) sup (S'(x))2I[/\2(x) > K], X where 33 (2.22) A2 = hid H)” By (2.16), S'(x) + 0 as x+j_-_°°. Hence for alle> 0, there exists x0 such that IS' (x)| <./E/2 for all |x| > x0. Note A2 is continuous and hence has a maximumvalue on the compact set [-x0, x0]. Choose n such that K: Kn?— | Tax A2(x), where K is defined in (2.12), then x K] = o, and lxl: x0 A m 0 sup (8' (x))21[A2(x) > K] le> x0 Thus by (2.21) (II) + 0. . , _ 1 f . . . (b) Since 8 - 2 FJ7§ is the everywhere derivative of S, we can prove (2.19) by another approach: ZBn2j S(x-AnTC.) - S(x - eTc.) T 2 _<_maxf{ 3 T J +S'(x-0C.)}d(l-G.)(x) jin (an - e) cj 3 3 , _ T 2 Emu e)cj} T T S(x-AnCi) - S(x-e Ci) : 0(1) max sup{ T jin x (An - 0) C3. + s' (x - ech)}2 = 0(1) max sup {8' (x) - S'(x - 5.)}2, jin x j bythemean-value Theorem; where |§.| < IATC. - GTC.| < maxlb .| =O(l). 3 -' n3 3 _jn n3 Hence )3an = 0(1) by (2.17). 34 APPENDIX 1. PROOF OF THEOREM 2.1 N Recall t = t - a - BE'. Denote (1.1) §(t,A) ES(t,A) - ES(t,B) ’b ’b -Xdi{F(t + di(A - B))- F(t)} . To simplify the notations, we further denote . - . 2 2 01(8,A) - .fl§B + (A - 8)odffl_ , ‘ - 2 I {S(t,A)-S(t,8) - S(t,A)}Zdu(t) = :fl5A - SB - SAfl_ , and f {S(t A) - (A-B)02f(t)}2du(t) = ° 3' 4 (A - B)02f 2 a d °.u.A dlL . Hence (1 2) lQlA) - 01(B;A)| sij-sB-§QE+¢§E-(A-snfimf + 215A - SB - 31 111(le o§fl +113 - (A - swim} + 21158 + (A- (3)031‘1- 15A - (A - (3)0311 By the fact that §(t,A) is monotone in A and by following the method in Koul-DeWet (1983), it suffices to prove 35 (i) lim sup 0&2 50(3) < w , n .. -2 — 2 (11) 0d EflfiA - SB - SA” + O , and ... -2 2 (111) 0d HSA - (A - B)o§ffl_ + 0 , Proof of (i). Since S(t,B) is a sum of independent random variables variables and ES(t,B) = 0, we concluded, by (A4) and Tonelli's Theorem, LHS(i) = 0&2 E 1;: Sz(t,B)du(t) _ 2 co .. = ad2 Edi f, Var {die 1(2,)I(zi 5 t + Bdi)du(t) < e . Proof of (ii). Note EHsA - SB - An? = f E{XdiRi(t)}2du(t) where _ . -1 Ri(t) — '5iG (Zi){I(Zi s t + Adi) - I(Zi < t + Bdi)} Since {Ri(t)} are independent random variables and ERi(t) = 0, for all i, we have E{2diRi(t)}2 = Zd§Var{Ri(t)} 2 -2 2 s 2diE6iGi (Zi){I(Zi s t + Adi) - I(Zi g t + Bdi)} 2 t + 8d. + a -1 o 0 §'- Edi ft + 8d} _ a: Gi (x)dFi(x) , w1th an as 1n (A5) . Therefore, by (A5), LHS(ii) + 0 . 36 Proof of (iii). By standard arguments, LHS (iii) < ka2 1 f eil {f(% + S) f(%)}2du(t)ds .nax " I " lZj JE . . - . 6. . . . Z 2J61 1 J J’ 1‘ 1 d. WE£IEZZ>Z 1(1-6fl)2(z.)(Fi (2.) - F(¥))I(z.fi'2 (y)(F,(y) - F(t))de(y) . (3.2) EKUifik = di(1-6£)H-2(Z E a.e‘1(zi)1(z 2 ) £) £ 1 Z' i' Z k K --2 m . = di(1-6£)H (z£)(Fi(Z£) - F(t)) Fk(Zg)G(Z2) ° I(Zzs ti) (3.3) E£U2jk _ --2 _ d262 e 1(Z£)I(Z£ xt1dF,st ' 2 -1 H (Zj)n k§j6(zj)Fk(Zj) fi'zajnffizj) -n‘le(zj)Fj(zj)} .. _1- -2 H (Zj) - n ii (Zj)G(Zj)Fj(Zj) . Hence by using (BS.a) for the second term of above, we have (4.3) EB3 = .SEB2 + 0(od) = -E81 + 0(06) Combining (4.1) - (4.3), we have (4.4) (5.1) (5.2) 6. (6.1) Then, (6.2) (6.3) then 41 (n-1)EB + (n—2)EB2 -(n-3)EB = 0(0 1 3 d) ‘ % ES(t,B) = O. E (first term) n4 2 2 d. fti - F£(y)H (mam - F(indeo) 1 “a Edi I}; - e‘lonnm - F(indeo) . ”1 (second term) "-1 z 2 d1. I“- Mi fi‘lom'lomo) - F(t) dee‘1(y)u=i (y) -F<¥>}(F£e)(y) - dam Zdi L2: G’l(y){Fi(y) -F(¥)}de(y) -_E (first term) D % nger Bound of Var {S(t,8)}. Denote % -1 S(t,B) - n E EdiDiK 2 k a 052 ES(t,B) = 0&2 Var {S(t,8)} [A -2 2 r: %4 E E£§diDi£} !A -1.2 2 2 n 0d XZdiE(Di£) . Let Ki(.) = fi'1(-){Fi( ) - F(¥)}, By 42 (6.4) 01. = ”‘32 1- Z)I(z11) < t1) + if” 6—1111 )mymem . and (6.5) EDEK = E(1-6£)K§(z£)1(z£s t.) + E2(1- «8 £1)K (Z )I(Z£_ t1.) rm“ 6 (y)K1(y)dG(y) ‘00 + E{ I_Z§At1 G 1(y)K1-(y)dG(y)}2 (6.6) n‘1 2 2 d? E(D.£ )2 = id? 111' - F'(y)K1-2y( may) 1 -co 1 + 22d1. 4E: - E