: Airy! Ami: ..-:.. v 5'. A o .. . . . ..r (4.. . ”.rfluan ....‘..I A . ml. . . I; .A.,”.mr;.. ...(o - ,n. l....!.. .......u.../ A. 1. .J. .././..m.r. 1. Hum. a... :4: r {h Eta gs . . . It. . .. . l . .. . n 27/53. . . /v v , . . . .. ..,. , , . . . . . . . . . . . . ~ c n . . .5 . A . . . . . ..l.... ‘ .vfprlrt... ‘, - . 1: .3 1.. . .nuc . . ....,m........ . 3.52%.. a...» a . .. . . . 4... 9.1.1.4.... :...1¢m.~..wuxu¢..m{ . .. . . . . . . . . . . . . MHH§5W .- .- A...- ... W Miatlwidan .‘EttJJC ' . a I. ‘5‘1" ‘1‘. .h’ ‘1. '._, p. This is to certify that the thesis entitled SIMPLE EXCITATIONS OF DOUBLY CLOSED SHELL NUCLEI presented by Richard Trilling has been accepted towards fulfillment of the requirements for Ph.D. dggreein Physics mmnmdawr H . McManus Date M 0-7639 a... LIBRARY 3 'ABSTRACT SIMPLE EXCITATIONS OF DOUBLY CLOSED SHELL NUCLEI BY Richard Trilling The problem of describing low lying excitations in doubly clOsed shell nuclei by simple one particle-one hole excitations has long been of theoretical interest. Without including either core correlation or core polarization contri— butions in the matrix elements the agreement between eXperi- ment and theory of previous calculations has been marginal. The previous calculations have failed to produce enough separation between the T=0, 1 states of N=Z nuclei and there- fore have produced too much isospin mixing in these light nuclei. Another failure of the previous calculations was that the binding energy of the states (T=0, l) was too small. The error in the binding of the T=O states (N=Z nuclei) was much greater than the error in the binding of the T=l states. The present calculation replaces the monopole term of the multipole expansion of the interaction by a one parameter isospin dependent spherical potential. The para- meter is evaluated from the symmetry energy between Ca49 C49 and S . The reason for the replacement is to take into account the difference between the single particle energies of the Richard Trilling Ail mass nuclei used in the calculation and those of the A mass system in which the excited particle moves. Two different interactions, the Kallio-Kolltveit and the Sussex, were used in two different approximations, the TDA and the RPA. The results obtained with the two different interactions are quite similar and aside from the lowest 3- state the results obtained from the TDA and the RPA were almost identical. Using the monOpole shift the results for O16 are .greatly improved. The T=O, 1 separation energies increase, along with their binding energies, to where they are in close agreement with experiment. The isospin mixing of the new vectors is such that most of the calculated B(El)'s are now in good agreement with experiment. 40 includes only the 3-, The transition data for Ca 5- T=O levels. The monopole shift does not effect these transitions but gives a net improvement of the position of the levels arising from the three lowest multiplets. The resultant placement of the levels is also in good agreement with the deformed basis calculation of Ca40 by Gerace and Greene. The giant dipole state is however about 1 MeV too low when the shift is used. In Ca48 and Sr88 only the T< states were calculated. The monOpole shift leads to a definite improvement in the level positions of both nuclei for both the negative parity and the positive parity states. Richard Trilling In all nuclei the RPA over binds the lowest 3- state; a reduction of the interaction strength to 65%, in order to simulate screening, for all the nuclei leads to a fair agreement between experiment and theory. It should be noted that the calculations for Sr88 predict a strong low lying 5- state which up to now has not been seen. SIMPLE EXCITATIONS OF DOUBLY CLOSED SHELL NUCLEI BY Richard Trilling A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Physics 1972 r , ~;' 3’5? ACKNOWLEDGEMENTS I would like to thank Professor Hugh McManus for suggesting this problem and for his guidance and support during the time this work was performed. Thanks are also due to Dr. Richard Schaeffer for his assistance in the final stages of this work and to Dr. Fred Petrovich for his assistance many times during the course of this work. Mrs. Julie Perkins is also thanked for the typing of this manuscript, ii TABLE OF CONTENTS ACKNOWLEDGEMENTS . . . . . . . . . . LIST OF LIST OF Chapter I. II. III. IV. V. VI. VII. TABLES . . . . . . . . . . FIGURES . . . . . . . . . . INTRODUCTION. . . . . . . . . THE MONOPOLE SHIFT. . . . . . . 016. 3.1 General Discussion . . . 3.2 Discussion of States in 015 . 3.3 3’ States in O16 . . . . . 40 C o o o o ‘ o o o o o o o 4 1 General Discussion . . 4.2 Discussion of States of Ca40 4 SUMMARY AND CONCLUSIONS . . . . . REFERENCES 0 O O I O O O O O O O 0 Appendix A. RPA PHASE CONVENTIONS AND TRANSITION FORMULAS . . . . . . . . . . MONOPOLE SHIFT . . . . . . . . SINGLE PARTICLE IDENTIFICATION CODE . ENERGY AND TRANSITION SUMMARY . . . VECTOR AMPLITUDES . . . . . . . iii Page .ii iv vi 10 10 14 26 41 41 42 61 73 84 88 91 94 100 102 161 LIST OF TABLES EA-€A+l for N=Z Nuclei . . . . . . . ISA-€A+l for N#Z Nuclei. Overall T equals that of the g.s. TO' . . . . . . . 016 Single Particle Energies . . . . . 016. ISt, l—T=O vector components . . . . 00 Sussex Matrix Elements for (lsl/2 Opl/Z) State in 016 o o o o o o o o o o 1’, 2’ T=0 Splitting . . . . . . . . Partial Summary of O16 for Explanation of Maj. Comp. see Appendix C. . . . . . l6 Centroid Energies, Energy Dispersions and Sum Rules for Representative Configu- rations of the K—K Interaction with the MonOpole Shift (For Formulas See Appendix A) . . . . . . . . . . . . . Ca40 Single Particle Levels. . . . . . 0 Relative Strengths of the 3-, T=O States in ca40 0 O O O O O O O O O O 0 Partial Summary of Ca40 for Explanation of (Maj. Comp.) See Appendix C . . . . Ca40 Centroid Energies, Energy Dispersions and Sum Rules for Representative Configu— ration of the KK Interaction with the MonOpole Shift (For Formulas See Appendix A) . . . . . . . . . . . . . Ca48 Single Particle Levels. . . . . . iv Page l4 16 20 29 32 35 45 49 54 56 61 Table Page Zero Point Energies of the 3 Low Lying Multiplets in Ca48 . . . . . . . . 63 Partial Summary of Ca48 for EXplanation of (Maj Comp. See Appendices C and D). . 68 48 Ca‘ Centroid Energies, Energy Dispersions and Sum Rules for Representative T Configurations of the K-K Interaction with the MonOpole Shift (For Formulas See Appendix A) . . . . . . . . . 69 Sr88 Single Particle Levels. . . . . . 75 Partial Summary of Sr88 for Explanation of (Maj. Comp. See Appendices C and D) . . 79 Sr88 Centroid Energies, Energy Dispersions and Sum Rules for Representative T< Configurations of the K-K Interaction _with MonOpole Shift (For Formulas See Appendix A) . . . . . . . . . . 81 LIST OF FIGURES Page 016 MonOpole Shifts . . . . . . . . 36 Ol6 K-K Energy Levels. . . . . . . . 37 Ol6 Sussex Energy Levels. . . . . . . 39 Ca40 (Of7/2-Odgiz) Multiplet . . . . . 57 Ca40 (1p3/2-0dgiz), (0f7/2—ISI}2) Multiplets. . . . . . . . . . . 59 Ca48 MonOpole Shifts . . . . . . . . 70 Ca48 Energy Levels. . . . . . . . . 71 Sr88 Energy Levels. . . . . . . . . 82 vi CHAPTER I INTRODUCTION There are several factors which motivated the present series of calculations. A systematic study of the doubly closed shell nuclei 016, Ca4o, Ca48, and Sr 88 would be useful in order to compare their various prOper- ties, particularly the distribution of the multipole strengths. All the above nuclei possess a low lying collective 3- state which exhausts an appreciable part of the octOpole transition strength. Another common phenomena is the existence of low lying positive parity states such as a 0+ which cannot be explained on a lp-lh basis. A common failure of previous lp-lh calculations was that they failed to provide enough separation between the T=O states and the T=l states in N=Z nuclei such as 016and Ca40. This leads to too large estimates of Coulomb mixing. Very often also the T=0 levels were found to be too high in energy. This has been avoided in the present set of calculations by adding an empirical monOpole shift. 8 Additional data have also become available on 16 some of the higher lying T=l states in 0 through inelastic electron scattering (8169) and also T=l states in Ca40 3 40 through the charge exchange reaction Ca40(He ,t)Sc (Sc7la). 88 There also exists new data on Sr through the two particle 88 (Ra70). transfer reaction Sr86(t,p)Sr The particle-hole matrix elements were calculated for two different interactions, the Kallio-Kolltveit (K—K) interaction and the Sussex interaction. The K-K interaction has a hard core potential and an exponential radial depen— dence (Ka64). It fits the nucleon-nucleon S—wave phase shifts up to 300 Mev. The matrix elements are evaluated by the Scott-Moszkowski separation method (M060): i.e. a separation distance is chosen such that within that distance the repulsion due to the hard core is cancelled by the attraCtive part of the potential. This matrix element is the first term in the expansion of the reaction matrix acting in states of even angular momentum. The best description of the reaction matrix is perhaps given by M. Macfarlane (Ma69). The Sussex interaction is derived from the experi- mental nucleon-nucleon phase shifts by deducing matrix elements of the nucleon-nucleon interaction in a harmonic oscillator basis of the interparticle distance (Er68). The particle-hole states were calculated within the frame work of both the Tamm-Dancoff Approximation (TDA) and the Random-Phase Approximation (RPA), (La64). The TDA assumes that the ground state of the nucleus is a particle-hole vacuum and that the excited states are obtained by acting on the ground state with a particle-hole creation Operator. The RPA does not assume that the ground state is a particle-hole vacuum, but that it contains correlations, i.e. the ground state has components of Op-Oh, 2p-2h, 4p-4h, etc. There then are two ways of creating excited states, by either creating or destroying a particle—hole pair. There is a slight violation of the Pauli principal in the RPA, i.e. denoting particle levels by 'm' and hole levels by 'i', the particle-hole creation . . + . . Operatior is then bmi = ariai from which it follows =1-- ml ll m mi m where |O> is the correlated ground state. If the number of levels is large compared to the number of holes or particles then and are approxi- mately zero and then + ~l which is the basic assumption of RPA and is called the quasi-boson approximation. (For a description of the RPA vectors and phases see Appendix A). The basis states for the calculation were chosen following the prescription by Ripka (Ra68). For an N=Z nucleus there are two types of excitations T=0, 1. When N¢Z four types of excitations are considered, proton- proton hole, neutron—neutron hole, T=O and T=l. The realistic forces used do not give a good account of the centroids, so it is necessary to supplement these interactions by a monOpole Shift discussed in Chapter II. 'Each suCceeding chapter discusses a single nucleus and treats in detail the basic configurations of the low lying states and the comparison with such experimental information as is available. The energy level information is summarized in level diagrams. Also a table at the end of each chapter summarizes this information on the levels and transition rates. Another table gives the calculated sum rule strengths and widths for various multipole transi- tions. A corresponding appendix D lists the energy levels and transition rates for all the levels calculated for the particular nucleus and in addition lists the principle componant of the vector along with the transition rate due to it alone. Appendix E gives a list of representa- tive state vectors. Overall conclusions are presented in Chapter VII. The algebra and labeling for single particle levels are summarized in Appendices A through C. CHAPTER II THE MONOPOLE SHIFT In a particle-hole calculation the Hamiltonian H=H0+V is diagonalized in the basis lph_l,J>. The diagonal term -1 -l J = Ep—€h+vc+vph h are the single particle energies obtained from the Ail nuclei, where VC contains all the core contri- where Sp, 6 butions and where VJ is the diagonal particle-hole matrix ph element. The centroid of a given p-h multiplet is not at €p-€n+VC but is shifted away from this value by the average value of Vgh for a given p-h multiplet. I" (D Q II 0 Z J E ph J(2J+l)Vph/J(2J+l) 1 (2p+1)(2h+1) (2J+l) J This is also equal to the monopole term in the multipole expansion i.e. = i ugh(-l)p+h+KthW(phph;JK) K of the interaction. The centroid for a given p-h multiplet is therefore located at e -s +V +do p h c ph An explanation for the presence of ugh is that since the single particle levels from the A mass nucleus were not used, the centroid for the p—h multiplet as determined by the Ail mass nuclei single particle levels must be corrected. This correction arises because the system does not contain Ail particles and the single excited particle sees a core of only A-l particles. The correction is prOvided by the J independent part of the interaction, the monopole term. The centrOid shift as determined by the interaction does not provide good agreement between observation and theory. An attempt will be made to correct this by removing the monOpole term from the diagonal matrix element and by substituting in its place another term. This procedure is due to R. Schaeffer (8071). It can be shown (Appendix 8.1) that the monOpole term of a diagonal particle hole matrix element coupled to a good J is equivalent to a Single particle matrix element where the particle moves in a spherical potential; i.e. a single particle energy term. The monOpole term will therefore be replaced by a term which takes into account this difference in Single particle energies. The spherical potential chosen to evaluate this difference will contain both an iso-scalar part, V0, and an iso-vector part, V1, both of which are assumed to be Slowly varying functions of A. The potential corresponding to A+l nucleus will be written as 4 —> V00?) + m Vl(r)t + p°TA while for the A mass nucleus it is 4 + g V0(r) + K»Vl(r)tp lA_l The single particle contributions to the Single particle energies from this potential are e -e +£50.11: “T |A> A” O A 1 p A-1 and e ~e + 3 S A+1~ O A 1 p A The corrections to the diagonal elements become The values of S are for the various 6 -e -a0 -e A A+l ph' A A+l occuring cases, (Appendix B.2), are in the tables 2.1 and 2.2 TABLE 2.l.-—€A-€A+1 for N=Z Nuclei. lpp-l> -€ l/A -l Inn > —€l/A -l . _ _ Iph ,J,T-O> 3el/A _l _ lph ,J,T—l> El/A TABLE 2'2'--€A-€A+l for NfiZ Nuclei. Overall T equals that of the g.s. To. -1 lpp > -€l/A -l Inn > -€l/A lph’l J°T=O> -36 I I l/A [ph-l J°T=l> -S ’ ’ l/A For N¢Z and where the T of the state equals TO+1 lph-1,J;T=l> (2To+l)/A The value of 81 can be obtained from the symmetry energy of a particle in the 2p3/2 orbital of Ca48 49 49 where A is the coulomb difference between Ca and Sc . The value of el~20 MeV. This value will be used for all nuclei. It is somewhat doubtful whether or not the monOpole shift should be used with the RPA due to the multipartiCle-multihole nature of the RPA ground state. CHAPTER II I 016 3.1 General_Discussion From looking at the energy spectrum of O 16 (Fig. 2,3) the most immediate observations that can be made are the following: A. The Sussex interaction produces levels which are less bound then those levels which result from the K—K interaction. This can best be explained by looking at Fig. l where the average centroid shifts are illustrated. For the K-K interaction there is a shift downward of approximately .6 MeV for the T=O levels while the T=l levels are Shifted upwards approximately 2.3 MeV. For the case of the Sussex interaction there is virtually no down- ward shift of the T=0 levels while the T=l levels are shifted upwards about 2.3 MeV. The netresult is that not only are the Sussex interaction T=0 levels less bound then the T=0 levels from the K—K interaction but also the 10 ll T=O, T=l separation is less with a Sussex interaction then with a K-K interaction. For a given interaction and shift configuration the major effect of the RPA compared with the _TDA is to lower the energy of the lowest 3_, T=O state by approximately 1.5 to 3 MeV. The effect of the RPA on the next highest level namely the lowest 1-, T=O level is con- siderably smaller and is only about .5 MeV. On the other states the effect of the RPA is even less. It is known (Bl69)(Sc7la) that screening contributions should be added to the interaction in the RPA; this is simulated by a calculation where the strength of the K-K interaction has been reduced to 65% of full strength (Sc7la). The ugh term of the monOpole Shift was also reduced by the same amount. The main effect of this reduction of the strength is to decrease the binding of the lowest 3-, T=0 state. All the other states were much less sensitive to the strength of the interaction. The main effect of the monOpole Shift for a given configuration is to separate the T=0 and T=l levels by shifting them both downwards, (Fig. 1,2,3) but while the T=l levels are shifted 12 downward by about .8 MeV the T=O levels are shifted downwards by approximately 3.4 MeV. This tends to increase the isotOpic purity of the vectors. Since the contribution of the T=l .component to a B(MJ) is approximately 25 times larger than the T=0 component one would eXpect the change in isospin mixture to affect the magnetic transitions which come from primarily T=0 states. Similarly since B(El)=0 for a T=O state, due to the center of mass correction to the effective charge, one would also expect the monOpole shift to affect the B(El)'s, for the T=O states. The final placement of both the T=O and T=l levels for both interactions is approximately the same. The low lying positive parity states of 016 cannot be described as Simple lp-lh states. Brown and Green (Br66) have calculated these states using a 2p-2h and 4p-4h deformed basis created by exciting particles out of the core. The present calculations are therefore confined to the negative parity states. For the O16 calculations the oscillator energy, 'fiw=l3.3 MeV was chosen from electron scattering and corresponds to an oscillator length, b=l.77 fm. The Sussex matrix elements were linearly interpolated from the tables for b=1.7 and b=l.8. 13 Previous calculations using the RPA with 016 have been done by V. Gillet and N. Vinh Mau (Gr64). They used a fitted interaction with 4 parameters with a gaussian radial dependence along with harmonic oscillator wave functions. .A least squares fitting of the interaction was done within the framework of the RPA. Their results are quite similar to the present ones. In the present calculations the single particle energies used were obtained from the neighboring nuclei, 015, N15, F17, O17 and the particle-hole gap was derived from binding energies obtained from mass tables (Wa65). These can be seen in Table 3.1. The single particle energies given are with respect to the well edge of 016. This was done by evaluat- ing ep = 016-N15-p = -12.126 p1/2 en = Ole-OlS-n = —lS.668 p1/2 SE = F17-Ol6-p = -0.601 5/2 52 = 017—Ol6-n = —4.143 5/2 The single particle energies are then 14 16 TABLE 3.1.--O Single Particle Energies. O O O i O 0s 0 d d 1/2 p3/2 p1/2 5/2 31/2 3/2 P -42.126 -18.454 -12.126 -0.601 -O.101 4.500 N -45.668. -21.828 ~15.668 -4.l43 -3.272 0.937 These energies compare quite closely to those used by Gillet (Gi64). It might be useful for the reader while reading this section to refer to Table 3.5 at the end of this section which briefly summarizes the findings for a number of the levels discussed in this section. Table 3.5 is organized in a manner such that the lower levels are separated from the higher lying levels and the latter are organized into complexes as found experimentally. 16 For a complete summary of the O calculation the reader is refered to Appendix D.l, and Appendix E.l. 3.2 Discussion of States in O16 A 1-, T=0 state is seen at 7.12 MeV with reported B(El)'s of 1.24xio’4e2f2 and 1.64x10’4e2f2 (Aj7l). A spectroscopic factor of .41 is observed (B069) from the 1 reaction 5N(3He,d)l6O for this level which indicates a fair amount of lp—lh structure. From the 15N(d,n)l6O 15 reaction an i=0 transfer was seen (Fu67, Mu70), this would indicate that a large component of the 1-, T=O state is lsl/Z-OPI}2’ Without using the monOpole shift the cal— culated energy of this state is about 3.5 MeV too high irrespective of the interaction used. Using the monOpole shift the energy is brought to within 0.5 MeV of the observed level. For the K-K interaction in the TDA with the shift the calculated energy is 7.42 MeV and the Sussex interaction gives an energy of 6.69 MeV. The transition rates, B(El)'s for the various cases calculated are all approximately 2x10.4 ezf2 (Appendix D.l). Theoretically the only contribution to a B(El) from a 1-, T=O comes from the isospin mixed T=l component of the vector. This is because the T=0 component of the vector has an effective charge e'=e(l-2§) arising from the center of mass motion of the nucleus. The T=l admixture arises from the difference in the neutron and proton single particle energies. The major component of this 1- vector is in fact a T=O, Isl/2-0p1}2 excitation with an amplitude about .85. There is however a significant amount of mixing among the T=O components. For the K—K interaction in the TDA with shift the amplitudes are 16 TABLE 3.2.--Ol6. lSt,l_,T=0 vector components. —1 -1 -1 0d5/2‘093/2 ls1/2'0P3/2 0d3/2'091/2 -.308 . .334 -.231 The results from the Sussex interaction are similar to those of the K-K except the level energies are slightly lower. The major component of the lowest 1-, T=O state is lsl/2-0p1;2 with zero point energy 6.33 MeV so the K-K interaction pushes the level further away from the zero point energy than does the Sussex. This behavior is expected since the K-K interaction is stronger than the Sussex. The monOpole shift decreases the transition rate by increas- ing the T=0, T=l splitting, i.e. for the K—K interaction without the monOpole shift B(El) = 3.5xlO-4e2f2, with the shift B(El) = 1.1x10-4e2f2. The monOpole Shift thus is essential for the energy and improves the transition rate for this lowest 1-, T=0 state. The 1-, T=0 state seen at 9.60 MeV has a small Spectroscopic factor of .017 for the N15(d,n)Ol6 reaction and is probably a multiparticle-multihole state. It would not then be described within the framework of this calcu- lation. 17 The next reported 1-, T=O state (Aj71) is at 12.44 MeV with a spectroscOpic factor of .75 (B069) and a mixed '£| transfer of 0,2 (Fu67, Mu70) is seen in the N15(d,n)016 reaction. This implies that the proton is either an 51/2 or (13/.2 coupled to a pl/2 hole or if correlations exist in the core (and these are needed to eXplain the 6.05 MeV 0+ state) then the proton can be a d5/2 coupled to - a p3/2 hole. Using TDA and the K-K interaction one must 'again use the monopole shift in order to obtain decent results. Without the Shift the energy of the state is at 16.77 MeV and with the shift the energy of the state decreases to 13.60 MeV.. The RPA results with either the K—K or Sussex interaction are essentially identical for this level and for all the other levels. Unless the RPA is specifically discussed it can be assumed that it yields the same results for a given interaction and shift con- figuration. The major configuration for this 1-, T=0 level is ls -o§§/2 which is consistant with the '1' transfer. 1/2 The monOpole shift increases the B(El) from 1.7x10-4e2f2 to 4.5x10-3e2f2, the experimental values (Aj7l) cited are 3.5xlO-3e2f2 and 6.5x10-3e2f2 so the monOpole shift again seems to improve the transition rate. The increase in the .. . ' . -1 tranSition rate arises from the change in the 151/2 Cpl/2, T=l part of the vector. With the addition of the monopole 18 Shift this cOmponent increases from .051 to .350. What has happened is that with the addition of the shift the 1-T=0 at 16.77 MeV is moved down to 13.60 MeV where it is mixed somewhat strongly with the 13.17 MeV T=l state. The Sussex interaction starts off with this 1- T=0 state higher (18.87 MeV) so after the shift has been added in, the state only comes down to 15.03 MeV which is not as close to the l“, T=l at 13.2 MeV as with the K-K interac- tion. The B(El) after the shift is therefore smaller (4.7xio'4e2f2) than with the K-K interaction. A 2‘, T=O at 8.87 MeV is observed along with a 0-, T=0 at 10.95. The '2' transfer and spectrosc0pic factors 3,d)Ol6 reaction (B069) indicate that these from the N15(He levels have a large lp-lh component. The '1' transfer and spectrosc0pic factor for the 2- state are £=2, S=.87 while for the 0- state they are i=0, S=1.77. The major component would seem to be for the 2-, 0d5/2-0p1}2 since it is lower in energy then the 0d3/2-p1}2 and for the 0- it would be the lsl/z-Opi}2. The K-K interaction without the shift has E(2-)=12.25 and E(O_)=12.93, with the shift E(2-)=8.87 and E(0-)=9.78. The major component for the 2- is in fact 0d5/2-0p1}2. Again the monopole shift brings the energy into much better agreement with eXperiment. The experimentalB(M2)=5.44x10_3e2f4 for the 2— state. The calculated B(M2)'s are too large without the shift, 19 -2 4.2x10 e2f4 and also too large with the Shift, 2.2x10-2e2f4. The change in the B(M2) is however in the right direction. The reason for the decrease in the B(M2) with the shift is that the Shift reduces the mixing of the OdS/Z-Opi/Z, T=l amplitude of the state from .144 to .041. This mixture arises from the lst 2-, T=l level near 13 MeV. When the T=l component is completely eliminated the B(M2)=1.4x10_2e2f4. Most of the contribution to the B(M2) is from the T=l componant as it is in general for a B(MJ). For T=0 states the magnetic moment contribution to the transition matrix element is u +uu = .88 while for T=l states the contribution is up-un=4.71. The ratio of the 2 parts of the B(MJ) are approximately BMJ(l)/BMJ(O)Z(4.7l)2/(.88)2=28.6 The Sussex interaction reverses the ordering of the 2-,0- states placing them at E(2-)=12.12 MeV and E(O-)=10.66 MeV without the shift while with the shift they are at E(2')=7.96 MeV and E(0')=10.38 MeV. The B(M2)'s are weaker as eXpected. The reason for the reversal is that while the 0-, T=O diagonal matrix elements for the K-K interaction are repulsive, they become attractive for the Sussex interaction. The K—K interaction is restricted to s-waves only. The major component of the 0-, T=0 state is (lsl/Z-Op1}2)00. With the Sussex interaction restricted to s-waves only;the above matrix element is also repulsive but the p and d wave contributions make the matrix element attractive. 20 ' __ - _ 00 TABLE 3.3. Sussex Matrix Elements for (lsl/2 Cpl/2) state in 016. s-ane contribution 1.18 s,p-wave contribution -O.70 s,p,d-wave contribution -l.l7 A quartet of T=l states (0_,l-,2_,3_) is seen at 13 MeV. For both interactions without using the monopole shift the quartet comes slightly high in energy. With the monOpole shift the energy of the quartet is lowered slightly and is in better agreement with experiment. The T=0,1 splitting is also improved. The T=l quartet comes from two different particle—hole configurations. - - -1 2’ 3’ - 0d —0 '1 ' ° 5/2 p1/2 There is virtually no I-spin mixing in any of the T=l states except for the 0- which has a significant ls -0p1}2, T=0 amplitude for the K-K interaction. The 1/2 shift decreases the I-spin mixing of T=0 component of this amplitude for the K-K interaction from .4 to .1. The l-, T=l member of the quartet is mainly ls -0p;}2 and has its admixture with the T=0 component 1/2 increased when the monOpole shift is used. Without the 21 shift the lsl/Z-Opgiz, T=0 amplitude is .08 and with the shift the amplitude becomes .33. What happens is that the 1-, T=l level is mixing with a higher 1-T=0 level which has been brought down by the shift to 13.60 MeV from 16.77 MeV. (Experimentally the level is seen at 12.44 MeV). The B(El) for the 1-, T=l has been measured (Aj71) as both .021e2f2 and .013e2f2. The calculated value of the B(El) from the K-K interaction is .032e2f2 without the shift and with the shift B(E1)=.027e2f2 so the T=0 admixture is necessary to decrease the B(El) and move it towards the experimental value. This can be checked by turning off the Coulomb mixing so the state becomes pure T=l and then the B(El)=.032e2f2. The single configuration has a _ 2 2 ' _ -l _ B(El)-.083e f so the OdS/Z 0p3/2 T—l component of the vector is contributing incoherently. The 2-, T=l part of the quartet at 12.97 MeV has reported B(M2)'s of .24e2f2 and .26e2f4 (Aj7l). The calculated B(M2)'s for the K-K interaction are too large and the shift increases the value from .36 ezf4 to .38 e2f4: this is reduced from the single particle value of 1.26 e2f4. What appears to happen as the T=0 admixture of the state decreases, the B(M2) increases. ,With the K-K interaction and the RPA with no Shift the B(M2)=.30 e3f4 which is slightly less then the TDA value, the reason being that the X and Y amplitudes for the major component, Ods/z-OpS}2 subtract and the B(M2) is sensitive to the T=l components. The 22 B(M2) for the Sussex interaction is larger, approximately 2 4 05-06 f . . - -1 = e as the interferring OdS/Z Cpl/2, T 1 component has been reduced by 50%. . Bernstein (Be7l) reports seeing two strong isospin admixed levels at 17.63 MeV and 18.10 MeV. Calcula— tions for the K-K interaction without the shift yield a 1', T=0 state at 17.99 MeV which is very strongly admixed with a l—, T=l level at 18.18 MeV. With the use of the monopole shift both levels become isotopically pure, the 1‘, T=0 at 17.99 MeV goes to 15.13 MeV while the 18.18 MeV state becomes an almost pure T=l state at 17.16 MeV. The net result is that no strongly admixed isospin states are predicted near 18 MeV. In nuclei with T=0 ground states the T=l states can be preferentially excited by e,e' at large scattering angles and high momentum transfer. The 016(e,e')0l6 eXperiment has been performed (Si69) and a number of T=l complexes have been seen. The complex around 13.5 MeV has already been discusSed. Another complex is seen at 17 MeV. An unresolved T=l doublet is seen at 17.20 MeV (St70), one component of which is a 1‘. Another level which has been given a tentative assignment as a 2- is seen at 17.60 MeV. Calculation yields for the KK-TDA with the monopole shift a l_, T=l at 17.16 MeV and a 2-, T=l at 17.03 MeV. Without using the shift the energies are 23 l—(19.18), 2-(17.99), about one MeV too high. The Sussex interaction yields energies for these two states which are too high, even with the monopole shift, namely l-(l7.84), 2-(l6.88). I. Sick, gE_al. (Si69) used a Serber-Yukawa interaction to calculate the T=l complexes and obtained energies almost 1.5 MeV too high. The experimental B(El) for the 17.20 MeV 1-, T=l level is .0122 e2f2. The calculated value from the KK-TDA with monopole shift is .023 ezfz. The -Op-l (amp 3/2 1/2 ' by itself would give a B(El)=.41 e2f2, i.e. 20 times larger. major component of the vector is 0d 90) which The B(El) is reduced because the state has sizable cOmponents which add incoherently to the main component. For the 2—, T=l state corresponding to the state at 17.03 MeV the experimental B(M2)=.051 e2f4. The B(M2)=.054 ezf4 for the KK-TDA with the monopole shift is approximately twice the single configuration value of .02 e2f4. The T=0 part of the B(M2) is adding coherently, since for a pure , 9 , T=l vector the B(M2) = .048 ““14. Other T=l states with KK-TDA and monOpole shift fall (into three groups, 18 MeV, 20 MeV and 22 MeV-26 MeV. The 18 MeV Complex contains 3 levels, a 2-(18.64), a 4-(18.77) and a 3-(17.89). Stroetzel (St70) reports seeing a 2- at 18.5 MeV via (e,e') but he does not report any parity or decay assignments. The calculated B(M2) = .086 e2f4 for the state compared with the single configuration B(M2) = .61 e2f4. 24 . —l i -1 T _ - he two major components OdS/Z 0p3/2 (.662) and 151/2 Op3/2 (-.696) of the State have Opposite signs for the amplitudes and they contribute incoherently to the transition rate. The strength which is lost goes into the 2-, T=l (20.13) where the 2 major amplitudes have the same Sign. Nobody has reported Seeing a 3_, T=l state near 18 MeV or a 4-, T=l state around 18.5 MeV. The 4-, T=l state has the largest transition strength in that neighbor- hood, B(M4) = 830 e2f8 with the monOpole shift. There is however a tentative assignment of a (l-,S-) to a state at 2 18.6 MeV, obtained from c12 (0,0')Cl (Ca64). The 2’(20.13)T=i (Si69) carries most of the 2', T=l transition strength, B(M2) = 2.24 ezf4 which is twice the single configuration value and 1.5-2 orders of magnitude greater than any of the other B(M2)'s. In this case it is interesting to note that the KK-RPA value is smaller, B(M2) = 1.99 e2f4, because the X and Y components of the wavefunction subtract in calculating the transition rate. This is the magnetic quadrupole state seen at 20.32 MeV by (e,e') with an experimental B(M2) = 1.04 e2f4. The state is quite collective as seen by looking at the amplitudes (Appendix E.l). Without the monOpole shift the calculated energy 2-, T=l is 20.94 MeV about .5 MeV too high. 25 The 1_ state from the 20 MeV complex calculated from the KK-TDA with the monopole shift is at 19.55 MeV. A 1- state is seen at 19.5 MeV with a B(El) = 5.2x10-3 e2f2. The shift in this case brings the energy down from 20.21 MeV 2 2 2 e to 19.55 MeV but also decreases the B(El) from 1.5x10_ f to 8.3x10m3 e2f2, so the B(El) agrees much better with experiment. The 22-26 MeV complex contain a number of 1. states, they are seen at 22.80 MeV and 22.5 MeV (Aj7l). The KK—TDA with shift yields states at 22.62 MeV, B(El) = 1.12 e2f2, which is probably the giant dipole state, and a state at 25.46 MeV, B(El) = .31 ezf2 whose transition strength is about 1/3 the giant dipole strength. The 22.26 MeV does not have a B(El) reported, however from (Da65) the photo nuclear cross section has a large peak between 22 and 22.5 MeV. At about 24.5 MeV the photo nuclear cross section shows another peak about 1/2 the height of the 22.2 MeV peak. This would probably correspond to the 25.46 MeV calculated level. A 2-,‘T=1 state at 23.7 MeV has been tentatively identified. This could correspond to the state at 23.14 calculated with the K-K interaction using the monOpole Shift. The calculation also yields the following other T=l states a 3_ (24.19, B(E3) = 45 e2f6), and a 0- (26.25). None of these states has of yet been identified, however there are lots of unidentified states in the region. 26 3.3 3’ States in O16 The first negative parity state inOl6 is a 3- T=0 observed at 6.13 MeV with reported B(E3)'s to the ground state of 188, 214, 209 e2f6 (Aj7l). Calculation with the bare K-K interaction yields an energy for the state of 8.46 MeV and a B(E3) of 71.3 e2f6. The monOpole shift while decreasing the energy of the state to 5.08 MeV has very little effect on the B(E3), decreasing it to 69.7 e2f6. The state vector for the bare KeK interaction without the shift is mainly OdS/Z—Oplfiz’ T=O (amp. = .92) but contains other significant T=0 components, OdS/Z-OpS}2 (amp. = .30) and 0d3/2-0p3}2 (amp. = -.26). The largest T=l component is the Dds/Ztopiiz (amp. = .028) which arises from Coulomb mixing. Including the monopole Shift in the calculation decrease the T=0, l mixing, because of the increased separation of T=0 and T=l levels. The Od5/2-0p1}2' T=l amplitude then becomes .019. Since the B(E3) has been decreased slightly, the T=l part of the vector seems to contribute constructively to the transition rate. To verify this a further calculation was done with the K-K interaction with the Coulomb mixing turned off such that there could be no T=0, 1 mixing. Another slight decrease was then observed in the B(E3) down to 67.9 e2f6. The results obtained with the bare Sussex interaction are similar to those with the K-K. Since it is a weaker interaction 27 then the K—K interaction, the energy of the lowest 3-, T=0 state of the Sussex interaction (9.59 MeV) is displaced less from the centroid energy at 11.5 MeV and is therefore found higher in energy than the 3', T=0 (8.46 MeV) calculated from the K—K interaction. 2 6 The B(E3) is also slightly larger, 72.8 e f and is accompanied by aslightly larger admixture of the T=l component of the vector, 0d5/2-0p1}2 (.036). The relative strengths of the weaker T=0 components have switched as compared to the K-K interaction, Dds/2-0p3}2 (amp. = .26) and 0d3/2-0p;}2 (amp. = -.31). Adding the monOpole shift to the Sussex interaction lowers the energy of the 3‘, T=0 state to 5.34 MeV and the B(E3) is decreased to 69.5 e2f6. As before with the K—K interaction the T=l part of the vector has decreased. The net effect of the shift for both inter- actions is to bring the 3- level into better agreement with experiment. However, the effect of the shift on the transi- tion rate is negligible. Looking at other 3—, T=0 levels ‘ in the TDA one observes that all the transition strength is in the lowest 3-, T=0 state. The ratios of the transition strength to the single particle transition strengths for the 3-, T=0 states are 28 R = 2.25, R = .68, R3 = .32 One expects the RPA to have a large effect on the lowest 3- T=0 state. For the K—K interaction the energy of the state is lowered to 7.05 MeV (8.46 for TDA) and the B(E3) = 147 e2f6. The large increase in the B(E3) is due to the large Y components of the vector which add coherently to the X components. It should be pointed out that since normaliza- tion requires X2 - Y2 = 1, large Y's imply large X's. Results with the Sussex interaction are similar except that the 3-, T=O is at 8.80 MeV and the B(E3) = 117 e2f6. The RPA moves both the transitions and the energies in the correct direction. In the case of the K-K interaction Ithe RPA already over binds the lowest 3-, T=0 state without ' increasing the B(E3) enough. Similiar effects are observed for Ca40. This point will be discussed further in the next section. Using the monopole shift in RPA, the 3- T=0 is extremely over bound for both interactions, the K—K interaction places it at 2.12 MeV while the Sussex inter— action places it 3.86 MeV. This is accompanied by a large increase in the transition rate, 367 ezf6 for the K-K and 2 6 180 e f for the Sussex interaction. The large increase for the K—K interaction is due to the large diagonal matrix 29 elements in the B matrix, approximately 2 MeV coupled with the large reduction of the diagonal elements in the A-matrix, approximately 3 MeV. This results in producing Y components in the vector of the order of .6 which in turn leads to large X components of the order of 1. Since the Sussex interaction is weaker the results are similar but smaller. Second order diagrams, such as core polarization have not been used and since the major effect of these diagrams is to screen the interaction, one should not be surprised at the over binding. To simulate the screening the overall strengths of the interaction were reduced to 65% along with the potential contribution, do to the monOpole shift. This reduced the ph’ binding of the 3-, T=O to 5.68 MeV and decreased the B(E3) to 104 e2f6. Aside from charging the position of the 3-, T=0 state the interaction reduction decreased the 1-, T=0 and 2-, T=0 splitting such that it was too small (Table 3.4). TABLE 3.4.--l-, 2’ T=0 Splitting. K-K-TDA K-K-TDA KK(65)-RPA exp. MS MS MS 2’ 8.87 8.87 8.82 8.48 l” 7.12 7.42 7.11 7.98 dif 1.75 1.45 1.71 .51 30 Within the RPA it is found that in order to reproduce correctly the energy of the 3-, T=0 state the transition rate becomes too small and in order to obtain the correct transition rate for the state the energy becomes too small. Similar problems have been found in 40 a C (B169). The 3-, T=0 state is extremely sensitive to the shift and it is perhaps not a good idea to use this state as a criteria for the validity of the monopole shift. Another approach to the 016 problem that avoids the use of the monOpole shift is to use a C12 core and consider 4-particle excitations where the single particle levels are obtained from C13. Such a calculation was done by Zuker, et al. (Zu68). The particle levels outside the C12 core were limited to Cpl/2, OdS/Z’ 151/2. With such a model space the positive parity levels can also easily be calculated. For the low-lying states (i.e. up to 8 MeV) Zuker §E_ai. obtained very good agreement with experiment and quite reasonable agreement with experiment up through . . . 15 the low—lying T=l quartet. The binding energies of O , 017 also came out quite well. In summary the present calculation with "realistic" interactions and a monOpole shift gives results for the O16 p-h Spectrum which are quite comparable to calculations like that of Gillet where the force is treated as a para- meter. There is a correspondingly good identification with 31 many of the experimentally observed states. There are some significant differences from previous calculations, particularly in the estimates of isospin mixing, which is in general less in the present calculation and more in agreement with experiment as measured by transition rates. The position of the giant electric dipole (22-25 MeV) and magnetic quadrupole (~20 MeV) excitations is given quite well, i.e. from Table 3.6 E(i',T=l) = 22.93 MeV and E(2-,T=l) = 19.79 MeV but their strength is overestimated by 50-100%, a feature common to all p-h excitation calcula- tions. 0N NH Am.~\ev om.me 1m.~\ev em.ee ma.me o.-m see. are. Am.m\oe em.me 1m.m\ee me.oe «mo. mm.~a o.-~ meoo. oaooo. mmoo. Am.m\me oo.ma Am.m\mv ee.oa eeoo. ee.ma o.-a me.ee o.-m ee.ea o.-m % mwmum OHOEHDHOE mloaxvm.H noeoannoeaeass sEchoes muoexmm.m oo.a o.-a «mo. Nee. Am.m\ev ee.m Am.m\ee mm.~a emoo. em.m o.-m euoexma.a enoexae.m auoexae.a Am.m\me Ha.e 1m.m\mv mo.oa enoexeN.H me.e o.-a a.ao an Am.m\ev mo.m Im.m\evoe.m mma ma.o o.-m em on mxumaom A.QE00 .wmevm A.QEOO .mmavm Anxmvbm mxm mz-ss as .0 xflpsmmm< 00m .QEOU .mmz mo coflumcwamxm.H0m mac m0 mumEESm aneuummul.m.m mammfi 33 mbcmasmflmmm omo. mHo. mmoop Ho wuflumm 0: Am.m\mv em.mH Am.m\mv mm.mH om.mH H.AIHVN mm em coon nos Am.m\ev am.ea Am.N\ec me.me H.-m .0.0 Eoum mam>mq .mflou >02 ma emo. mmo. Am.m\ov mo.ea im.m\ov aa.ea Hmo. oe.aa H.A-mv Ia pawsomEoo 0:0 mmo. oao. emansoo oo>aomoncs Am.m\ov eH.eH Am.m\ov we.ea Nee. o~.ee H.-H .0.m Eoum ma0>0q .mEoo >02 5H me me 1m.m\av Hm.~a Am.m\ev mm.me o~.me a.-m emo. mmo. Hmo. Am.m\mv ee.ma im.m\mv mm.ma mac. ao.me H.-H mm. em. am. e o >62 one on coon omen Am.m\ec Hm.me Im.m\ev e~.ma om. sm.me H.«~ Am.m\mv eo.me 1m.m\mv mm.ma om.~H H.-o .Heeoo >62 me we _ mmeEOm A.QEOO .mmEvm A.Eoo .mmavm_ Amxmvbm dxm wZIMM .UOSSHDCOUII.m.m mqméB 34 2666.6o2 Am.~\ov m~.e~ Am.m\ov oH.e~ H.no Hm. om. 2m.~\ov oe.m~ Am.m\ov em.om m.m~ H.-H me me 2666 con 2m.m\ov ae.e~ 2m.~\oe He.m~ H.1m He. no. Am.~\oe ee.m~ Am.~\ov eo.em e.m~22.ume . «2.2 22.2 6Hooao nonao 2m.~\ae ~e.- 1m.~\ev em.m~ m.- H.-H .msoo >62 emnmm maomsupmsv «N.N oN.N oae6coce ncceo Am.~\ev me.om Am.m\ev ea.om eo.e mm.om H.-~ moo. mac. Am.m\me mm.oe Am.m\mv 2m.o~ mmoo. om.ae H.-e .QEOO >02 on one . mom 6666 nos Am.~\ac me.ma Am.~\ev He.aa 1e mmeEmm A.mEoo .flmevm A.maoo .mmavm Amxmvwm mxm mZIMM .Umscflacooll.m.m mam<9 35 TABLE 3.6.--Ol6 Centroid Energies, Energy Dispersions and Sum Rules for Representative Configurations of the K-K Interaction with the MonOpole Shift (For Formulas See Appendix A). 1‘,T=1 2',T=1 3'T=0 3'T=o 3'T=l 4'T=1 2+T=0 2+T=l . 65RPA f5 22.93 19.79 8.29 9.03 19.95 18.77 35.34 45.52 232 1.92 2.95 4.99 4.87 4.73 0.0 3.58 2.50 s; 34 69 840 1431 1765 15581 118 112 Observed 1-, T=l E s 23.5 S~15 36 O" - TDA ’I’ “\\ T = I T= 0,! ,’ \\\ K. K. \\ \L_ T = O CENTROID SHIFT l” \\ ~~ T=l T= 0.: 1:--- SUSSEX ‘\ T = 0 FIGURE l.--Ol6 MonOpole Shifts. FIGURE 2.--O (31 U 0 [1'1 '71 16 37 K-K Energy Levels. exp. KK-TDA KK-MSTDA KK-RPA KK-RPA Shift KK-RPA Shift 65% 38 2- .. . I. _ . 3 O 23 .o .. .. . . .. .. O 2 P .. .. . : .. 3 u : :. .. .. . -. . 1.03 “(3 .. .. mu _ .. _. 2 .u .. .I n. .. 2 = . u" = 3 = . . . . 25 O 2 . . A n . . .. 3 ._ .- .- = U . _ . 3:0 r? AHV : .. Mu _ : .. 2 = .. ._l _. _. ..o : .. .. _. 2 = . . _ . 23 O 2 : ..u = . .. 3 = = = .- = — . ...I. . . . _ 33 20 2.... _ _ _ _ O . . . m 3 3 O . . . . . 2 . . . _ . 1... . . . . . . _ 30 II . . . . .- p - . _ _- 0+ 0+ 0+ 0+ 0+ 0+ FIGURE 3.--Ol6 A: 39 Sussex Energy Levels. exp. Sussex-TDA Sussex-Shift TDA Sussex RPA Sussex MS - RPA 40 o. 2 3.102 2.... 2 0: . .. __ . —_u : J __ __ __ _- : __ 2.50 :2 II. I: I: - I: 2 3 I_M2 u" _ : I e .6. H __ __ O .212 I . .2. G I: _ _ L I: _ . . 2366662.: 6.... 6 s ..,. I we .I O z: .. ... I "m: T T A . . _ : 1 2 5 4 B 0.. H mw 9 8 7 6 5 4 3 CHAPTER IV Ca40 4.1. Ca40 General Discussion A number of studies have been made of Ca4o. Gillet and Sanderson (Ge67) calculated the odd parity spectrum of (Ca40 within the framework of a lp-lh model. They used a parameterized interaction fitted to the lowest 3-, T=0 and 5-, T=O levels. ’Correlations in the ground state were taken into account through the RPA which yielded a ground state wavefunction whose Op-Oh amplitude was only .6 or about 36% pure shell model. They also found the lowest 3-, T=0 state to be extremely sensitive to the interaction. This sensitivity for the lowest 3- state has also been observed in 016, Ca48, Sr88 and Pb208. Gillet also reported strong T=0, l admixtures for the higher octopole states. This admixture is contrary to results found by Erskine (Er66) in 3 40 the K39(He ,d)Ca reaction. In this reaction Erskine identified the major components of the configurations '-l -l -l 7/2‘0d3/2)T=0' ‘0f7/2'0d3/2)T=1 and (193/2‘0d3/2)T=0 through a DWBA analysis of the '2' transfer. T. Kuo (Ku7l) (0f recently did a Ca40(p,p')Ca4O experiment and confirmed some of Erskine's tentative level assignments and in 41 42 addition deduced a number of transition rates. Both 3,d) and (p,p') reactions excite both T=0 and T=l states in Ca4o. In order to locate the T=l states the~(He by themselves one could use a charge transfer reaction 0 40 Ca40(He3,t)Sc4 to excite the T=l states of Sc . This experiment does not seem to have been done. _ _ -l . The T-l states from the (0f7/2 0d3/2) multiplet in Ca40 are the isobaric analog of the Sc40 states. The energy of the analog states can be obtained frOm the average Coulomb shift. The energy differences Sc4O-Ca4o and K4o-Ca4o are mainly due to the difference in the Coulomb energies of the nuclei. A slightly more accurate description would also include the proton-neutron mass difference. The average Coulomb shift is _ (Sc4O-Ca40)+(K40-Ca4o) _ V - — 7.8 c _ 2 The first T=l state seen in Ca40 is the 4- at 7.69 MeV which is the analog of the 4- ground state of K40 or $040. 4.2. Discussion of States in Ca40 In order to simplify the discussion, each of the previous three multiplets will be discussed separately. The reader is urged to make use of Table 4.3 found at the end of this section which is organized by multiplet. A 43 complete summary of the calculation will be found in Appendices D.2 and E.2. Thereexists a large number of low-lying states of both parities in Ca40 which can not be explained from a-simple 1p—lh Shell model calculation. The low-lying positive parity states have been explained microscopically as multiparticle-multihole states calculated on a deformed basis.l Gerace and Green (Ge67) constructed these deformed states from 2p-2h states and 4p-4h states where they placed the 4p¥4h states below the 2p-2h states. They found the 0+ vectors to be .90]0p-oh>+.41|2p-2h>+.ll|4p-4h> |0+l(0.oo)> |o+2(3.55)> .2o|0p-0h>-.18|2p—2h>—.96|4p-4h> i.e. the ground state is mainly 0p-0h but contains 16% 2p42h while the second 0+ is mainly 4p-4h. Four 3- states are observed between the ground state and the first T=l state at 7.69 MeV, three of these 3- states are below 7 MeV. The low-lying lp-lh configurations are (0f7/2-0dgiz), (1p3/2-0dgiz), (0f7/2-lsi}2), the latter two being almost degenerate, all of which have their centroid energies above 7 MeV. Using realistic interactions and the particle-hole gap of 7.2 MeV obtained from the mass table it is difficult to position more than one of the 3- states arising from those configurations below 7 MeV. The monopole Shift however places two levels below 7 MeV. Gerace 44 and Green (Ge68) described the negative parity states by 'coupling shell model states on to the deformed states or micrOSCOpically as mixtures of lp-lh states and 3p-3h states. They alSo used a different value of the particle- hole gap by calculating it with shell model state energies and found it to be 5.4 MeV. In the present calculation the particle—hole gap was obtained from the mass tables and the single particle levels used were chosen from neighboring nuclei. Coulomb mixing was accomplished as in O16 by mixing the T=0,l states through the off diagonal matrix elements 1/2(€g-Sfi+€;-E:) and the proton particle hole gap was reduced by .3 MeV to simulate the Coulomb shift of the single excited proton. _l . 4.2.1. (sz/2-0d3/2) Multiplet Erskine (Er66) observed i=3 transfers in the 0 reaction to states at 3.72 MeV, 4.49 MeV, K39(He3,d)0a4 5.61 MeV, a mixed £=l,3 transfer to the state at 6.03 MeV and a i=1 transfer to the state at 6.75 MeV. Upon the basis of the i=3 transfer Erskine identified the first four levels as belonging to the (0f7/2-0d3}2)T=0 multiplet. His identifications were 3'(3.72), 5'(4.49), 4'(5.61), 2'(6.03). T. Kuo (Ku71) agreed with Erskines first three '1' transfers. However he could not assign an '2' transfer to the state at 6.03 MeV but assigned an i=3 transfer to a state at 6.75 MeV. 45 Nv.ml mm.ml mm.mHI Nb.mHI mm.aml C 66.2- om.~: oe.~- 26.6- em.m Ha.e Hm.e Ho.m Hm.o mo.au mm.m . mH.HH- m~.een o ~\meo m\mce m\moo «\Hea «\moa «\eeo «\moo ~\Hna mxmoo .mH0>0A OHOHuHmm OHmQHm ow MUII.H.v mqmflfi 46 Experimentally both the 6.03 MeV (2-1) and the 6.75 MeV (2-2) states have been identified as 2- T=0 states, but the two experiments quoted disagree as to which is the state tobe assigned to the configuration. The present calculation with the K-K interaction and without the monOpole shift places the energy of the (0f7/2-0d3}2)T=0. multiplet too high, i.e. 3‘(5.6), 5’(5.83), 4‘(7.15), 2-(8.10). With the monopole shift the states are at 3'(4.34), 5‘(4.48), 4‘(5.91), 2‘(6.81). The monOpole shift is needed in order to bring the 5- and 4- states into good 'agreement with experiment. The results with the Sussex interaction using the monOpole shift for the 5-(6.35) and 4-(7.ll) are also in good agreement with eXperiment. However, the K-K interaction with the monopole shift places the 2- at 6.80 MeV which is in better agreement with the 2-2 then the 2-1, on the other hand the Sussex interaction with the shift places the 2- at 6.23 MeV which is in better agreement I than the 2- . 1 l 2 Gerace and_Green have calculated that the 5-1 and 4-1 with the 2' states are almost pure shell model while the 2.1 level is mostly deformed, being 67% 3p-3h. They found the 2-2 level to be 29% 3p-3h. The major shell model componant was _1 . ' Of7/2-0d3/2. These admixtures of the 3p-3h states in the 2‘ vectors could explain the ambiguities between Erskine's results and Kuo's results in the '1' transfers. Gerace's 47 identification of the 2—2 being mostly shell model tends to favor the K-K calculation with monopole shift over the similar Sussex calculation. For the 5- member of the multiplet the eXperimental B(E5)=2.43x105 ezflo, the K-K interaction without the shift has B(E5)=l.75x105 erlO while with the monOpole shift 5 2 10 B(E5)=l.69x10 e f , a slight decrease. For the 4‘, T=0 level of the multiplet the values of B(E4) for the K-K potential with and without the shift are 92 ezf8 and 35 ezf8 respectively. The decrease in the B(M4) with the monOpole shift is due to the decrease in the T=l admixture. The Gillet vector for this state is very similar to the K-K interaction vector when the monOpole shift is used, i.e. about 10% of the vector is T=l. The screened RPA (65% K-K with the monOpole shift) places the 5-(4.80) and the 4-(5. 84) states close to the right values, the B(E5)=2.12x105 er10 which is a slight improvement over the TDA results while B(E4)= -31e2f8. The 3-, T: 0 state of the (0f7 H/- W/z) multiplet is quite collective, its largest component, as expected is (0f7/2- 0d3/2) but it represents less than 40% of the vector, the (0f7 7/2 -151/2) configurationl contains about 18% while the ) and the(Of7 ) each contain about 10% (193/20 d3/2 7/2 0d5/2 of the vector. This structure for the vector along with a negligible T=l admixture is independent of whether or not the monOpole shift is used. The calculated B(E3)= 869 ezf6 48 for the KK—TDA no shift, this is an order of magnitude higher than the single configuration value of 66 ezf6 and is a 2f6. The KK-RPA without the monOpole shift gives a B(E3)=3 190 e2f6 factor of 3 smaller than the experimental value of 2410 e These results are quite similar to the results obtained by J. Blomqvist and T. T. S. Kuo (Be69) with the bare G-matrix. The K-K interaction in the RPA with monOpole shift (drives the 3- level imaginary. The screened RPA has B(E3)=1120 e2f6 (6.62 MeV). A slightly smaller value for the screening, say 70% of full strength for the matrix elements might have given an almost perfect fit to the energies of the 0f7/2-0d;}2 quartet. The problem of fitting the 3- energies and the B(E3)'s has been discussed by ' J. Blomqvist (B169). They used various combinations of second order graphs in the RPA to try and fit both the energy of the 3- state and the relative transition strengths. Their best fit to the relative transition rates resulted in the 3- energy being too low, 1.33 MeV, while their best fit to the energy (using a different combination of graphs than with the relative transition rates) resulted in all the 3- strength being put into the lowest state whereas experimentally the 3-2 has about .28 the strength of the 3 1. 49 TABLE 4.2.--Relative Strengths of the 3-, T=0 States in Ca40. Exp. Blomqvist K-K KK-Shift 351 1.00 1.00 1.00 1.00 3‘2 .28 .12 .03 .19 3; .16 .15 .17 .06 The same problem exists in the bootstrap theory (G070). Attempts to find self consistant solutions of the equations for Ca40 resulted in the phonon energy of the 3- state being driven to zero if an attempt was made to stabilize the transition rate-near the experimental value. A first order solution to the bootstrap equations confirmed Gerace and Green's choice of 5.4 MeV for the particle-hole gap. If one ~inputs a 5.4 MeV particle-hole gap in the Hartree-Fock levels into the bootstrap equations then the first order solution to the observed particle-hole splitting is 7.2 MeV in agreement with the value obtained from the mass table. The (0f7/2-0d3}2), T=l levels were also identified by 0 Erskine through i=3 transfers in the K39(He3,d)Ca4 reaction. He found them at, 4-(7.66), 3‘(7.70), 2‘(8.47) and 5-(8.55). They were however mainly identified through their position . . . . . . ' -l in relationship to their being analogs of the (0f7/2-0d7/2) 40 and K40. The K-K interaction without the multiplet in Sc shift places the levels slightly high, at 4-(7.82), 3-(7.75), 5-(8.43): 2-(8.99) while with the monOpole shift they are 50 found slightly low, at 4-(7.lS), 3—(7.47), 5-(7.87), 2-(8.42). In both cases it should be noted that the '2‘, 5- splitting has been reversed by the K-K inter- action. The results for the Sussex interaction are similar except that the levels come a little lower and closer together. The monOpole shift also provides the correct separation between the T=0,l parts of the multiplet. Without the shift the two sets of levels intermix (Fig. 4). R. Schaeffer (Sc7la) calculated the position of 40 _l _ ‘. i u the (0f7/2-0d3/2) T-l configuration states in Ca from the 40 and Sc40 experimental levels of K by taking into account the Coulomb shifts. The results of this calculation agree much better with the results obtained from the K-K inter- action with the shift than they do with eXperiment. -l (0f7/2-lSl/2)T=0 Multiplets Erskine also observed a number of i=1 transfers along with the i=3 transfers. The lowest lp—lh configuration which would exhibit an i=1 transfer in the K39(He3,d)Ca40 ireaction is the (lp3/2—0d3}2)° The allowed values of J for this multiplet are J=0‘,1“,2‘,3‘. The (lp3/2-Odgiz) is almost degenerate with the (0f7/2-lsl}2) whose allowed J values are J=3-,4-. (Fig. 5). Since the two configurations are almost degenerate one should eXpect a lot of configuration mixing for the 3- states. 51 The 1-, T=O state from the (lp3/2-0d3}2> multiplet for the K-K interaction with the monOpole shift is at 7.19 MeV (8.45 without the shift). There are two observed 1-, T=0 states at 5.90 MeV (1—1) and at 6.94 MeV (1-2). Gerace and Green find that the 1.1 is mostly deformed and has a 3p-3h amplitude of .98. On the other hand they assign the 1-2 tobe practically pure shell mode (4% deformed) with the major componant the (lp3/2—Odgiz). This is in good agreement with the present calculation. “Nobody has yet reported seeing the 0- level or the 2- level from this multiplet. The 3- state from the (lp3/2-0 d3/2) multiplet mixes quite strongly with the 3- state from the (Of7/2-lsi/2) multiplet as expected. The K-K interaction with the monopole shift predicts two 3-, T=0 states with major components, 13‘ (6 56)>= 6511 —0c1"l >— 6010f ~15“l > 2 ' ° p3/2 3/2 ' 7/2 1/2 13 3(7.75)>=-.51|lp3/2-0 d3/2>+. .64l0f7 H/ -lsl/2> the 3.3 state has a significant T=l component from (Of , Gerace and Green calculate that the 3—2 -1 7/2'0d3/2) state is about 50% deformed with major shell model con- figurations of (1p3/2-0dgjz) and (0f7/2-lsi}2) while the 3.3 is pure shell model with major configuration of (Of Experimentally there are two 3-, T=0 states -1 near 3-2, at 6.28 MeV and 6.58 MeV. Erskine found a i=1 II] It'll Ill-III] llllllll‘lllllllvt 1‘ ll|l|l|1 52 transfer to both the states. It doesn't seem that one can make a firm identification for the theoretical 3_2(6.56) with either the 6.28 MeV or 6.58 MeV level, but 'that the strength is split between both levels. A third 3-, T=O level is seen at 7.53 MeV. Erskine assignedit to the (lp3/2_Od;}2) multiplet on the basis of an £=1 transfer. Gerace and Green calculate a 3-, T=0 level at 8.05 MeV which is 36% deformed and whose major shell model configuration is a (1p3/2-0dgiz). Part of the 3_3(7.75) strength may be contained in this level. There appears to be seen exerimentally much more 3‘ strength then can be accounted for in a lp-lh calculation. Most of the 3- levels in the 7 MeV region are probably mixtures of 3p-3h states and the above two multiplets. The effect of the monopole shift is to decrease the T=O,1 mixing for some of the levels but to increase the mixing for other levels. ’This is due to the large size (18x18) of the 3- matrix (i.e. accidental degeneracies occur). The 4’, T=0 state from the (0f7/2-lsliz) multiplet is found at 9.08 MeV with the K-K interaction and the monOpole shift. The effect of the monOpole shift on the state is to remove the T=l componants, greatly reducing the theoretical transition rate. .No 4-, T=0 state has yet been identified in that region. There is however a 4-, T=0 level seen at 7.11 MeV. Gerace and Green have calculated a total of three 4- states, 4‘2(7.27) which is 83% deformed and 4’3(9.70) which is 53 mainly (0f7/2-lsiiz). The state seen is probably the deformed state and not the shell model state. As in the case of 016 one notices that the Sussex interaction is much more attractive for the O_l level then K—K interaction. The giant dipole resonance is found through the photo nuclear reactions (y,p), (y,n) and is centered about 19 MeV. The K-K interaction with the monopole shift predicts it to be at 18.0 MeV and without the shift at 18.5 MeV (see Table 4.4). we. we. Am.e\ev me.m Am.e\sv am.m se.m H.-m mm mm Am.m\ev me.e Am.e\ev me.e se.s a.-m mm.H so.H Am.e\sv ma.s Am.e\sv mm.s ee.e H.1e Huelm\mso-~\eeov me. am. Amemov sm-em saw Am.e\ev em.m Am.e\ev ee.m ome.e .nm Amemwv smumm wee mmo.e .IN 4 5 mm mm emusoems Aezlm os Am.e\sv Hm.m Am.e\sv me.s moe.m -e moexme.e meexme.e Am.e\ev me.e Am.e\sv mm.m moexme.~ . eme.e ..m mew mew m>esomeeoo Am.e\ev me.e Am.e\ev ee.m oeem Hme.m .um omsxmfimeonm\eeov am nm N mmeEwm A.mfioo .mmfivm A.mfioo .flmevm A.mxmvbm .mxm mEIMM MM .U xflpcommd mom A.QEOU .mmzv mo coaumcmamxm Mow ow .m0 m0 MHmEESm Hmwuummll.m.¢ mqm¢e .oumum any Eoum mucmcomeoo Hue mcfl>oamu .m.z on map No.v mmn mocmuwMMHc mmumq .cmmm uoz Am.m\nv mo.m Am.m\nv mm.cH Iv >m2 hm.n pm on ou emumesoemo Amemwv smuem wmm He.e us he vm Am.m\sv ms.s Am.m\sc mm.m m.Hm mm.e um hmH,m:flxflE Op map game .uxmu mom .cwxfla Amm.mv wm.m Icmflmmm wme u.cmo mma mm.m m >Hm> mmumwm Hmpoa Hawnm I munmcomfioo amumm mmumq hmm mm.m Im mm. Nv. seem hos Am.e\mc mm.e Am.e\mc me.m um comm uoc w.m m.m no 5 mnoaxmo.m vaoaxm>.a 5 “memos smuem we Am.e\mv ee.s Am.e\mv me.m em.e .ue Amomov smumm wmm om.m .ne euelmxemenm\eeov ouelm\mwonm\meae eoaxm.m voaxm Am.e\ec em.s Am.e\sv me.m em.m H.-m hm hm , mmeEmm A.QEOO .mmEvm A.mEoo .floEVm A.mxmvhm .mxm mSIMM 7 MM ..pmscaucooll.m.v mqmde qv m m.me m Hue . a pm>ummno 56 Hoe mmm moexmm.e momma cease meow mmm so mm m es.s ee.e oe.m es.m em.m me.e oo.m oe.H me.e me em.o~ mm.me em.me me.me mm.e em.e mm.ee ee.ee oo.me m «ammo. «ammo. Hus+m oue+~ . ensue ensum oueum onenm Husam finale ensue .Aé xflpcmmmm mom mmasEHom Howe amezm maomocoz may aha; Goeuomnmch MM may mo cowpmnsmflmcou m>wumucmmmummm MOM mmasm 85m mam mcoflmnmmmfio hmnmnm .mmwmumcm cwoupnmo ovm0||.v.v mqmda 57 40 -1 . FIGURE 4. Ca (Of7/2 Od3/2) Multiplet. A = exp. B = KK C = KK-MS D = Sussex E = Sussex-MS F = .65 KK-RPA MS IO 58 u U! . 0 C040 H, -l-1 u n O FIGURE 5.--Ca A B 40 -1 -1 (193/2’0d3/2)' (0f7/2'151/2) exp. KK KK-MS Sussex Sussex-MS. .65 KK-RPA MS 59 Multiplets. 60 ...m w. d .5 0 ll . _ 2 2 _y fw m w 0 4 O C T=l—_— T=O— ------3- 4- .4 .D. .. 30 I32 . - : . ._ ... _. ... — . : . . u :- ..o — a. 4 anz _ ... _ ... _ ... . ... . ... _ :— u . ma... 4 0.1... ... ... ... ... :. ... .. . 04 .I3 = .m = .. = .. = _- = _- = .. .... 4 032| .a .- .- .3 .3 I - u 21. _ ... _ :. 3r...a..a. CHAPTER V Ca48 The reader is urged to make use of Table 5.3 at the end of this section which briefly summarizes the levels of Ca48. For a more complete summary of the Ca48 calculation the reader is referred to Appendices D.3 and E.3. Ca48 differs from the previous two nuclei in that N is greater than Z and that the isospin of the ground state is no longer zero but T=4. The eXperimental levels (Fig. 7) were obtained from various experiments (p,p') (Pe65, Le67) and transition rates for the 2+(3.830) B(E2)=4S.7 e2f4, 3'(4.50) B(E3)=l.05x103e2f6 and the 5 erlo were obtained from C. Gruhn 5‘(4.49) B(E5)=7.77xlO (Gr72). The single particle levels used were obtained ~from the neighboring nuclei. TABLE 5.1.--Ca48 Single Particle Levels. 0d5/2 1S1/2 0d3/2 0f7/2 1p3/2 5/2 1p1/2 Og9/2 P -18.73 -15.32 -l4.95 -9.62 -5.20 -3.74 -2.75 0.00 N -l6.63- -l3.64 ~13.63 -9.94 -5.14 -l.18 —3.12 -l.12 61 62 The zero point energies of the T=O, l excitations are no longer equal for Nfz nuclei due to the admixture of the 2pr2h configurations to the Tel excitations which are necessary in order to form states of good total T. Coulomb mixing was obtained in the usual way by adding off diagonal matrix elements between the T=0 and the T=l matrix elements. The proton particle-hole gap was also reduced by .3 MeV to take into account the Coulomb shift. It should be emphasized that despite the references to T=O and T=l excitations the iSOSpin of the states calculated is equal to the ground state isospin of the nucleus, T =4, i.e. only T=4 states are 0 calculated. From Fig. 6 one can see that the main effect of the monopole shift is to move all the centroids down by roughly 48 E1 the same amount. For Ca , —X'= 5/12. In 016 and Ca40 the way to obtain low lying positive parity states was to use a deformed basis consiting of multiparticle-multihole states. This is not necessary in Ca48 since lowest nn"l configuration is (lp3/2-0f;}2) which can yield a low lying 2+ state. There is however a low lying 0+ at 4.28 MeV which can not be accounted for by lp-lh shell model excitations. As in O16 or Ca4o this is probably a 2p~2h state on a deformed basis. Since this state has been excited through (p,p') it implies that the ground state contains multiparticle-multihole excitations which could also contaminate the 2+ state.v 63 The three low lying configurations in Ca48 have as.their zero point energies (energy before the switching on of the interaction). TABLE 5.2.--Zero Point Energies of the 3 Low Lying Multiplets in Ca48. pp_l (Of -0d'l ) 5 33 MeV 7/2 3/2 ' -l —l -l -l nn (lp7/2-0f7/2) 4.80 MeV Since the two pp-l configurations are less than .4 MeV apart one expects a lot of mixing of the 3- and 4- states originating from these configurations. This is in fact the Case and the lowest calculated 3- state comes from the higher of the two pp"l configurations. 48 The lowest excited state in Ca is a 2+ at 3.8 30 MeV with a B(E2)=45.7 e2f4. The nn-'l (lp3/2-Of;}2) configuration with the K-K interaction and no monOpole shift places the 2+ energy at 4.52 with a B(E2)=.34 er4 the same interaction with the monOpole shift lowers the 2+ energy to 3.88 MeV however the B(E2)=.37. Energies calculated from the Sussex interaction are slightly higher and the transition rates are about one third the size. The large discrepancy between theory and eXperiment for the B(EZ) is due to the fact that the vector is more than 99% nn—1 which does not contribute to a B(EJ). An effective charge of 1 would give i ' 64 a B(E2)#30 e2f4. More serious is what the other members of the nn-l (1p3/2-0f;}2) multiplet have not been seen in the region of 4-5_MeV with the possible exception of the 4+ state. Gruhn (Gr72) has reported a possible 4+ at L 4.62 MeV. Two other 4+ states have been seen (Pe65) but at a higher energies, 6.35 MeV and 6.65 MeV. The 3+ and 5+ members of the multiplet have not been reported. The Sussex interaction without the monopole shift places a 4+ state with the above configuration at 4.91 MeV. The K-K interaction places the level at 4.69 MeV without the shift and at 4.06 MeV with the shift. 40 One notes that in Ca there is'a possibility of a 0+, 2+ and4+ rotational band, where there is no such candidate in Ca48 at present. Multishell calculations predict large numbers of positive parity states (Mc70) which do not form a rotational band. Again very few of these states have been identified in the experimental spectrum. One should be able to account for low lying negative parity states by mostly the (0f7/2_0d3}2) and (0f7/2-lsi}2) proton configurations which are almost degenerate. The lowest observed negative parity state is the 3- at 4.50 MeV with an observed B(E3)=l.05x103e2f6. The calculated TDA levels with or without the monOpole shift using the K-K interaction are too low. For the TDA with the Sussex inter- action the 3- level is almost correct with no monOpole shift 65 and is too low with the monOpole shift. All the TDA B(E3)'s are the same, B(E3)=l.27x103e2f6 which is slightly higher than the experimental value of l.05x103e2f6. The RPA With the K-K interaction and the monOpole shift gives an imaginary3f state. Reducing the K-K interaction and monOpole shift to 65% still places the 3- too low by about .8 MeV but at the same time it doubles the transition rate, B(E3)=2.l6x103e2f6. As can be seen from Appendix D.3, most of the 3- transition strength is placed into 2 levels, the lowest 3- state which is mainly pp-1 and the highest 3- state near 15 MeV which is mainly a T=l excitation. Due to the near degeneracy of the low pp-l configura- tions the lowest 3- (3.14 MeV) vector does not have as its main componant the lowest energy particle-hole configuration, (0f7/2-0d3}2) but instead its main componant (50%) is the 2nd lowest configuration (0f7/2—lsi}2). This lowest 3- state 1 (14%) and T=0 (23%) Vector also has significant nn- excitations. Three other 3- excitations have been observed below 8 MeV at 5.15 MeV, 5.37 MeV and at 7.65 MeV. The K-K inter- action with the monOpole shift predicts three such 3- states (Fig. 7) below 8 MeV at 4.79 MeV (mainly pp-l), at 6.61 MeV (significant pp‘l, nn-l, T=0) and at 7.39 MeV (significant pp-l, nn-l, T=0). All three states have B(E3)'s less than the single cOnfiguration Values. 66 At the present there is insufficient information (such as 2 transfer), on the experimental levels to be able I to match the theoretical states with the experimental states. 40 As in Ca there are probably deformed contributions to the negative parity states. ' - -1 The other state namely the 4 , from the (0f7/2 151/2 ) configuration has not been seen. This is predicted at 5.49 MeV with the K-K and no shift and at 4.62 with the K—K and the monOpole shift. There is however a possible candidate at 5.26 MeV. The 5- state seen at 5.723 MeV has a theoretical 5 2 10 B(E5)=2.9x10 e f which is approximately four times bigger than the reported experimental value of 7.74x104e2f10. The‘ calculated 5- level even without the shift is too low. One possible reason for the large calculated B(E5) is that the wavefunction is most pp-l, (0f7/2-0p3}2) if however the level was slightly higher it would mix more with the nn—l excitation and the pp.1 strength would then be weakened. In summary there are not too many conclusions one can draw about Ca48. The predicted multiplets are not observed experimentally. The theoretical results are very similar to those of Ripka who used a force fitted to the 3_ and 5- states. The monopole shift has virtually no effect on transition rates or on the composition of state vectors (Appendices D.3, E.3). While there is not too much experimental evidence, there is a definite discrepancy between 67 experiment and this and other simple theoretical calculations. . The discrepency is that experimentally a 2+ level is the lowest state with the 3- state above it. The 3- state is also less collective then the 3- state in Ca4o. The theory predicts both the 3- and 5- states too low in energy and too collective, with the 3_ below the 2+. The 2+ state is predicted to be too high and almost degenerate with the 4+, where experimentally the 2+ and 4+ are well separated, the tentative assignment for the 4+ being accepted. Though there is no experimental evidence it seems unlikely that the dipole excitation.liesat.the predicted value of 14 MeV, below that observed in the Strontium region 40 (16.5 MeV) and far below that observed in Ca (19 MeV). 68 mo.m mmo. schemeeoxm one Am.e\mv am.e Am.m\mv emm me.e um comm uoc .pwEHOmmp manmnoum oa.m A+Nv moaxmm.m moaxam.m Ae.m\ev eH.e Ae.m\sc eo.m eoexs.e me.m -m comm uoc .meHOMmp manmnonm ow.m o GQSOM “on + coHuMOflwHucmpfl wyflummncflmm mm.v aw.m wm.m Alvv .sOeemoemeusmte meme 0» ~.m mm. em.m um mama on Oh coflumeuowcfl o: Aa.m\nv mn.¢ Aa.w\hv mw.m mH.m um pcsom uo: cofluMOAMflucopfl wuflummlcflmm mo.v mm.v No.v A+vv omma chma m>epomseoo Ae.m\ev HqH.m As.m\sv em.m omoa om.e um comm yo: .meMommp mm.v +o .omzmmm mm>flm H mo mmumso m>Huomwwm .sOHumHsmeesoo sowesms woe A~.e\mv mm.m A~.e\mv Hm.e s.me mm.m +~ hm hm mmeEmm A9800 mmzv m AQEOO nmfiv m Amxmvbm .mxm mZIMvH .Ao can 0 mmoflpcmmmd mom mfiou mmzv mo coaumc wamxm How we mu mo mumEESm HMfluHmmLI.m.m mqm<9 69 1H pm>ummno oaXo.H N. X. K. N. m moe m m mam eoa m a woe m m «ca 5 H mma so m mH.m om.~ mm.~ em.~ em.m mm.v mm.~ mm.a me me.ea mm.ea Hm.ma ee.m oe.m oa.e, No.oe mo.ea m «same. +e +4 +N :e um um um 1H maomocoz may nufl3 coauomumucH MIM mcu mo chAumnamflmcoo HOM mmasm 55m pcm mc0flmuwmmflo hmumcm .mmfimnmcm pwouucwo .Ad xflpcmmmm mom mmazfiuom Homv uwflcm V mv a m>flumwcowmummm MUII.¢.m mqmfifi 7O KK - TDA 48 Co I \ l’ \ T = O / \\ ‘ ~- \ T "' I \\\ \\ T 3 \\ lp3/2- Ody/2 T = O CENTROID SHIFT pp-' v ’ ’: \\‘ PP" , ” “5. ‘l - '| . I \ ‘ pp 0sz ”W? - ' ‘ \‘ ... _ - nn ‘ , l \ pp 01‘.”2 ‘ Dds/2 ‘~ -I -I "" l"312" 0fIvz FIGURE 6.4-Ca48 Monopole Shifts. FIGURE 7.--Ca48 A B C D ['11 ’13 II N 71 Energy Levels. exp. KK KK-MS Sussex Sussex—MS 65% KK-MS RPA 72 0+ 48 Co 00 pp’l (Of ...... pp‘|(0f nn" 7/2 7/ 2 - ~I 0d 3,2) ‘|S" ) l/2, '(Of -lp"3/2) 7/2 5*._ 5- 213+ 0+ CHAPTER VI Sr88 Sr88 is similar to Ca48 in that there is a neutron excess. In this case both the 0g9/2 and lpl/2 levels are filled for neutrons and empty for protons. Several eXperiments (Go70a) have been performed to study the levels of Sr88. Proton lp-lh states incorporating a lpl/Z proton 8 have been observed in the Y89(He3,d)Sr8 reaction and the 88 reaction. Neutron lp-lh states based on a 8 Y§9(t,a)Sr Og9/2 hole have been studied by the Sr87(d,p)Sr8 reaction. The neutron 2p—2h and lp-lh components of the levels have 88 86 been studied by the Sr86(t,p)Sr reaction. Since the Sr target is largely a mixture of the neutron components (099/2)-2. (lp3/2)_2, etc. the t,p reaction populates states which have neutron components (ld5/2)2(0g9/2)-2, etc. The collective prOperties of some of the levels have been investigated by inelastic scattering of protons, deuterons, alphas and electrons. The experimentally observed levels along with the present calculation are in Fig. 8. 88 The results from the Y89(He3,d)Sr reaction and 88 ‘the Y89(t,a)Sr reaction have shown that the low lying 73 74 states are mostly proton-proton hole. The single particle energies used were again obtained from neigthring nuclei. ! The neutron particle- -hole gap is seen to be 4. 71 MeV while the proton particle-hole gap after deducting the .3 MeV due to the Coulomb shift is 3.22 MeV. This leads one to eXpect, as has been confirmed eXperimentally, that the low lying levels in Sr88 would have mainly proton-proton hole components. The value of the oscillator parameter used waS‘fiwe9.0 MeV. The size parameter for the monopole shift el/A=.23. As in the other closed shell nuclei a low lying 0+ level is observed. Again there is no explanation for this state in Iterms of lp-lh excitations and one must go to multiparticle- multihole states for the explanation. These multiparticle- multihole states can also contaminate the other positive parity states. The lowest observed state in Sr88 is the 2+ at 1.84 MeV with a B(E2)=l99 e2f4. The calculated 2: is too high in energy for the K-K interaction. In the TDA the monOpole shift lowers the energy from 2.76 MeV to 2.26 MeV. The transition rate changes very little, B(E2)= 62 er4 and is about twice the single configuration value. The 'RPA increases the transition rate to B(E2)= 83 e2f4. A calculation of Sr88 by T. A. Hughes (Hu69) using a two proton hole basis (i.e. the core would be ngo) places the 2: close to the right energy, with a B(E2)= 66 e2f4. So while the two hole basis does slightly better for the 75 mn.e- em.m- ~e.m- em.m- mm.e- oe.ee- me.een NH.mH- me.meu me.me- z em.o Ho.e no.0- me.H- me.~- ee.e I 50.5 I mm.oau oo.HHI mm.men e mxeeso m\smo m\mse mhmH «\msH m\mmo ~\Hea ~\meH m\mwe «\eeo .mHm>ma maofluumm mamcfim aH III. 0 mm m H o mqmdfi 76 energy of the state it does not improve the transition 88 rate. The cross section in the Sr86(t,p)Sr reaction is much smaller for 2: then the cross section for the higher lying 2+ states which would indicate a very small 2p-2h neutron component to the state. From the Y89(d,He3 88 )Sr reaction Kavalaske (Ka67) et_al. concluded that the (lpl/Z—lp372) and (lpl/z-Of;}2) proton configura- tion made up 80% of the 2; state. The present calculation shows that these two configurations form 83% of the state .when the monOpole shift is used and 96% of the state without the monOpole shift. Most of the B(E2) strength is predicted to be concentrated in the lowest 2+ state (2.26 MeV) and in the highest 2+ state at 14.8 MeV. The 2: is seen experimentally at 3.22 MeV, the K—K interaction with and without the shift yields energies of 3.55 MeV and 3.04 MeV, So the monopole shift moves the 2: state down too far but still closer than before. The B(E2)=l.0e2f4 without the monOpole shift ' 2 4 and .037 e f with the monOpole shift. The experimental B(E2) obtained from inelastic scattering (d,a') is .08 e2f4. The present calculation with the monopole shift indicates that the state is 90% pp-l. This 2; state is also observed to have a small cross section (Ra70) in Sr86(t,p)Sr88. 77 The next calculated 2; with the K-K interaction and the monOpole shift is at 4.55 MeV and is 79% neutron- neutron hole with the main component (ld5/2-0g572)' The higher 2+ states between 4 MeV and 5 MeV all have significant cross sections in the t,p reaction. Some of these states are possibly deformed since a simple lp-lh shell model calculation can't generate the number of states required. The two protOn hole calculations by Hughes yields one more level but this is still about 6 or 7 levels short. The K-K interaction with the monOpole shift yields levels 1: (3.39), 3: (3.56), 3; (3.05), and 6: (4.32). These levels seem to correspond to the experimental levels 1+(3.48), 3+(3.64), 3'(3.99), 6+(4.41). In addition there' is a 4+ doublet seen at 4.23 MeV and 4.30 MeV. The K—K interaction with shift puts the 4: at 4.07 MeV which could be split by coupling to a deformed state. The lp-lh shell model breaks down in other ways besides not being able to deduce the correct number of 2+ states.. The 1p-lh model predicts a low lying 5- state at 3.36 MeV (K-K interaction with monOpole shift) whose major component is a (099/2-lp372) proton-proton hole. This state as of now has not been seen. Since it should ~be a proton configuration the state should be seen in a 88 reaction. This state carries most of the Rb87(He3,d)Sr E5 transition strength, its B(E5) is an order of magnitude greater than the single configuration B(E5). The lp-lh 78 model also predicts a 5;(4.00) and 71(3.84) both of which are mainly proton configuration and are not seen. In the 1p-lh model the 3- state comes too low in energy. The K-K interaction with monopole shift places it about .75 MeV too low. The RPA makes it imaginary, by reducing the strength of the K-K interaction to 65% of its strength the RPA with the monopole shift places the state at 2.10 MeV. The Sussex interaction without the monOpole shift in the TDA places the state at the correct energy but no real meaning can be attributed to this. The 3- state carries most of the 3- transition rate B(E3) (exp)=8960e2 6. B(E3)(K-K)=4850e2f6 and B(E3)=12500e2f6 for the 65% K-K interaction in the RPA. Insummary the calculations do predict a collective 3- and a fairly collective 2+ state corresponding roughly to eXperiment along with a set of positive parity levels - in the region 3.50 to 5.50 MeV. However there are many extra positive parity states observed which are not accounted for by simple particle-hole calculations. The theory also predicts a collective 5- state which is not 48 the 2+ and 3- states are inverted. seen and as in Ca The dipole centroid is much too low at 12.3 MeV as compared with 16.5 MeV experimentally. 79 moexm.e mOHxG.H AN.HH\~HV A+eveam.e AN.HH\HHV A+mvee.e He.e +e+m mpmum @mEHOmmp mo sheeehemmOQ .mmsmhm moexem.m moexme.m e smsoso godsend hoslm.ee\mav mo.e AN.HH\NHV ee.e om.e +4 mOOU Muomcp mumum +v “Mano (eased on we seeesmwe u.sso m~.e +4 m~.H mm.e le.mxeev luncheo.e Ae.m\HHV lumeem.e mm.m -m.+e oeo. eve. Ae.m\oev mm.m Ae.m\oev mm.m ee.m +m «me. «me. Ae.m\oev mm.m Ae.m.oev mme.e ae.m +H eo. ~o.a Ae.m\eev mo.m Ae.m\oev mm.m mo. -.m +m theh0ems meanness mH.m +0 oeme emme 6>e566eeoo Ae.m\eev em.e AH.m\HHV m~.~ chem me.m um memo mom .coflw ushehssoo smuem we each me me smsmsd 6n Shoes sees ooe Ae.m\oav .em.m Ae.m\oev se.~ ems emm.e +m . an em mmeEmm AQEoo mmavm Amfioo flmavm Amxmvhm .mxm males mm wooepcmmmm mom .QEOU .mmzv mo coaumcmamxm How am mo mumfifism Hafiuummll.m.m mqm645 mm 56H90hd mshmlm.ee\mel mm.4 AN.HH\NHV 54.4 45.4 +5 54.4 +5 46640466 seemsosd 44.4 +o em . em 5 wamem AQEoo flmfivm AmEoo nmzvm Amxmvhm .mxm mzuxx mm .UODCHpGOUII.N.m mam¢5 81 TABLE 6.3.--Sr88 Centroid Energies, Energy Dispersions and Sum Rules for Representative T< Configurations of the K-K .Interaction with MonOpole Shift (for Formulas See Appendix A). 1‘ 2‘ 3’ 3’ 4’ 2+ .65RPA E 12.27 9.03 5.66 8.16 8.65 9.31 AB V 1.22 2.41 4.12 3.44 2.51 5.38 s 122 272 5.4xlo4 5.8xlo4 4.0xlo5 1834 Observed 1' (in Zr90) E = 16.5 MeV s : 100 MeV f2 FIGURE 8.--Sr88 82 Energy Levels. exp. KK-TDAC KK-TPA MS 65% KK-RPA MS Sussex-TDA Hughes 2p—l 83 SF 88 4 .4 2 6365.. ..l 6 11111.11 6W 463 764 1:1: .2 ..466 45¢..r 1? 1: 11. 2.4 6.635%6wl.4 l3 ..3 ).\.‘O .0 O 3 . 3 o 2 . .1 CHAPTER VII SUMMARY AND CONCLUSIONS It is felt that the results of this work demon— strate a number of things. First that the corrections provided by the monopole term of the particle—hole inter- action are inadequate. This inadequacy is reflected in that the calculated centroid energies of the identified multiplets are too high in energy and that for the two N=Z nuclei, 016 and Ca40 the T=0, 1 splitting is too small. The inclusion of the monopole shift in the calculation significantly improves the position of the centroids and of the T=O,1 splitting for the N=Z nuclei. The improvement reflects the l/A dependence of the isovector part of the monopole term. lThe relative T=O,1 mixing of the vectors in O16 has also been improved. The B(El)'s which are particularly sensitive to the T=l component, since the T=0 component does not contribute to the transition rate, are also significantly improved, at times by an order of magnitude. The B(M2)'s from all but the lowest 2_ state are within 84 85 an order of magnitude of the experimental transition rate. In addition both the giant dipole and quadrupole states are correctly predicted in energy when the monOpole shift is used. In Ca4O only the transition rates from the lowest 3- and 5_ levels are known. There is however a net improve- ment of both the T=O,1 splitting and of the centroid energies for the lowest multiplets. The giant dipole state is however placed about 1 MeV too low by the monOpole shift. There is a good correspondence between the states calculated with the monOpole shift and the shell model states from the deformed basis calculation of Gerace and Green. It should be emphasized that this however is a comparison between mathematical models. Much less is known about structure of the two N#Z 48 and Sr88. The only transitions rates reported nuclei Ca are the B(E3)'s from the lowest 3- state. In both cases the use of the monOpole shift does little to improve the agreement between the observed and calculated levels. It also has virtually no effect on either the transition rates or on the composition of the state vectors of these two 16 40 -nuclei. 0 and Ca have proved to be a much better test of the monopole shift. 86 The two interactions used, the Sussex and the K—K, are with one exception similar in behavior. The exception 16 and Ca40 is the 0- states in O , where the K—K and the Sussex matrix elements have opposite sign due to the large attractive nature of the p and d wave contributions in the Sussex matrix element. Other than this it is generally observed that the Sussex interaction is weaker than the K-K interaction and therefore the levels of a given multiplet are closer to the centroid energy when using the Sussex interaction. The RPA and TDA yield almost identical results except for the lowest 3- state with the same isospin as that of the ground state. For this state the binding increases such that the level is over bound for O16 and a4O 48 88 C and driven imaginary for Ca and Sr . If the strength of the interaction is reduced by 35% to simulate screening then there is fairly good agreement between the experimental and calculated results when the monopole shift is used for this lowest 3- state. 48 88 For the N#Z nuclei, Ca and Sr , the theoretical calculation inverts the order of the lowest states, the 2+ and 3—, and tends to overestimate in the RPA the collectivity of the 3- state. Also in Sr88 a low lying collective 5_ state is predicted but up to now has not been seen. The dipole centroid is also predicted much too low, though the strength is approximately correct. 87 Particle—hole calculations in lead, such as those of Gillet and Sanderson give similar results. They predict a very 'collective 3- state below a weakly collective 2+, 4+, etc. band of states. In lead this happens to agree with the observed spectrum. The prediction for the dipole state, however is 3-4 MeV too low. This points to a persistant failure of the model for NfiZ nuclei, which can not be correCted by a simple monopole shift dependant on the symmetry potential. Some systematic effects of neutron excess are missing from the model. As has been noted (Fi70) the TDA calculation systematically overestimates sum rule strengths. Only the electric dipole and quadrupole excitations have a narrow enough width to show a "giant" multipole excitation character. For other excitations, remembering that we have not looked at the monopole, the strength is widely distributed, though in a different fashion for different excitations. REFERENCES 88 Aj7l Be71 B169 B069 Br66 Ca64 E168 Er66 Fi70 Fu67 Ge64 'Ge67 Ge67 Ge68 G070 Go70a Gr72 » 2: <3 2' REFERENCES F. Ajzenberg-Selove, Nucl. Phys. A166(197l) E. M. Bernstein, et a1., Phys. Rev. 93(1971)422. J. Blomqvist and T. T. S. Kuo, Phys. Lett. 29B (l969)544. Bohne, et a1., Nucl. Phys. A128(1969)537. G. E. Brown and A. M. Green, Nucl. Phys. 15(1966) 401. ‘ Carter, Mitchell, Davis, Phys. Rev. 133(1964)Bl421. J. P. Elliot, A. D. Jackson, H. A. Mavromatis, E. A. Sanderson and B. Singh, Nucl. Phys. A121 (l968)24l. J. R. Erskine, Phys. Rev. l49(l966)854. F. W. Fink, Ann. Rev. Nucl. Sci. 20(1970)39. Fuchs, Grabisch, Kraaz, Roschert, Nucl. Phys. A105 (1967)590. ,V. Gillet and N. Vinh-Mau, Nucl. Phys. 54(1964)321. . J. Gerace, A. M. Green, Nucl. Phys. A93(l967)110. Gillet and E. Sanderson, Nucl. Phys. 9241967)296. J. Gerace, A. M. Green, Nucl. Phys. All3(l968)64l. . Goswami, O. Nalcioglu, A. Sherwood, Nucl. Phys. A 3(1970)445. _1__ C. D. Goodman, T. A. Hughes, M. W. Johns, K. Way, Nuclear Data Tables A§(1970)323. G. R. Gruhn, T. Y. T. Kuo, C. J. Maggiore, B. M. Preedom, Phys. Rev. 96(1972) 89 Hu69 Ka64 Ka67 Ku7l ‘ Li67 La64 -Ma69 Mc70 Mu70 M060 Pe65 Ra70 Sc7l Sc71a Si69 St70 Wa65 Zu68 Zu68 90 T. A. Hughes, Phys. Rev. 181(1969)1586. A. Kallio and K. Kolltveit, Nucl. Phys. 53(1964)87. C. D. Kavaloski, J. J. Tilley, D. C. Shreve and N. Stern, Phys. Rev. 161(1967)1107. T. T. Kuo, Thesis Unpublished. E. P. Lippincott, A. M. Bernstein, Phys. Rev. 163 (l967)ll70. A. M. Lane, Nuclear Theory (New York: Inc., 1964). W. A. Benjamin, .Proc. Inter. School of Physics 49(1969)457. J. B. McGrory, B. H. Wildenthal and E. C. Halbert, Phys. Rev. 92(1970)186. Murphy and Ritter, Bull. Am. Phys. Soc. 15(1970)483. S. Moszkowski and B. Scott, Annals of Phys. 11(1960) 65. R. J. Peterson, Phys. Rev. 140(1965)Bl479. R. C. Ragaini, J. D. Knight, W. T. Leland, Phys. Rev. 2(1970)C1020. R. Schaeffer, F. Petrovich, Phys. Rev. Letts. 36 (1971)1380. R. Schaeffer, Private communication. I. Sick, E. B. Hughes, T. W. Donnelly, J. D. Walecka, G. E. Walker, Phys. Rev. Letters 23(1969)1117. Stroetzel, Goldmann, Walecka, et a1., Nucl. Phys. 61(1965)1. A. P. Zuker, B. Buck, J. B. McGrory, Phys. Rev. Letts. 21(1968)39. A. P. Zuker, B. Buck and J. B. McGrory, Phys. Rev. Letts. 21(1968)39. APPENDIX A RPA PHASE CONVENTIONS AND TRANSITION FORMULAS 91 92 Part a) Iso-Spin Independent Part b) with Iso-spin Formalism l. Particle-Hole Creation Operator h-m . + —l _ X _ h a) A (ph ,JM) — apma hm (- 1) m m. p h pn b) A+( h-l JMT ) = Z < m h-m |JM>a+ . p ’ MT m p p h 2 p2 h MT pm hmh pmh - %t %t h-mh+15-th p h . x(-l) 2. RPA Basis Vector a) Q+JM(n) =2 [x3 (ph)A (ph 1,JM>-(-1)J‘MY3(ph)A(ph‘l,JM)1 ph b) Q+JM (n) = 2 [x3 TA+(ph'1,JMTMT>-<-1)J+T‘M‘MT TMT ph YnT(ph)A(ph-1,JMTMT)] 3. RPA Matrices -1 -1 -l —l a) = (e p— Eh)6pp 6hh,+ = (-l)p+h+J+l -1 . .-l _ ' -l b) — (e )6 6 + 93 l = (_l)p+h+J+T+l "l = E<3132 IJIVL(rlIr2)CL(l)' . .-l CL(2)lJl]2 ,J> ignoring exchange terms = z(-l) j j W(j j j j ;JL)M. . M. . I L l 2 l 2 l 2 3131 3232 l where L . . M. . = < C 1 > _ * . * . . . 3 3 and IL - I¢ (ll)¢ (32)vL(rl.r2)¢(Jl).¢(32)d rld r2 therefore a; . = %M9 . MP . IL 3132 L 3131 3232 the monopole componant is o _ o 0 * . 3 ' ' — o o a u I = I = . U . d “3132 3131 3232 O o f¢ (31) (rl)¢(31) r1 * . . 2 . . where U(rl) — f¢ (32)vo(rl,r2)¢(32)d r2 and 18 spherical. 96 2. Symmetry Energy The symmetry energy is the difference between neutron land proton energies where the Coulomb energy has been added to the neutron energy. E = e + A - e s n p X x — ...—.4816 “E 'T If {V ...—2&1 eh-Eo A 1:11).1 —€oA O X = Md] sp A + so + 4 X—< ltp TA 6 2T = A + 60 + 4A1[2TO$1<(%, T 00)T -4, T o-ssltp ~T Al(%, T o)T- a, T O-%> + ETEII<<%,TO)TO+%,TO-%lEp-TAI(5TO)TO+%,TO-%>J X upon resolvingl . into state of good TA i.e. T i% 26 l = A +760 ‘ ‘K‘To The symmetry energy is therefore 97 3. N=Z nucleus (TO#O) T=l excitation - -——- °T |A> A 8A EA+1 ' A -1 p A 3 where IA> is a T=l state A O 1T+E I = I . P 461 el eA-EA+1 = 53—42-3/4-3/4-3/4-3/4) = X- _'l . , 4. N¢Z pp excrtation 28 e = e - —l(T +3/2) ,__. A o A o X 0 . 281 eA+l a 8o - A (To+l) E”EA+1 z El/A 5. N#Z, T=O excitation X X IA) = LHO +1 01> /§ . .€A+l = %(Ep+€n) X X - + ffl<[f:] E T [1:]; T -T +§ en - eo ’ A I Al A+1— o 98 X x - + 31:31? ‘T’ Hi} €p _ 6o A . A expanding with Clebsch-Gordon coefficients 1:3:]>= 2T: +1 ITO a, To %>+ 1+1|Tozcro’“li'To;5> ll 0) Therefore €A+l 0 EA evaluation 2To lfl’ = WITO * T015>+ '2T—::I'To "“5 T 0"? The expansion of lA> in terms of states of good T is therefore ‘ 2T |A> = -}-I (lair +p>T >- L\I:I MT -is)T > /7 o 0 V5 2TO+1 o 0 .then 8A = 6o - 3;; and e _ a _ _BEI 99 6. N#Z nucleus T=l excitation coupled to To to form a state of To, i.e. (1T0) 0. Expand |A> by using 6-J symbols in a baSis of lA-l> states coupled to a good T. i.e. A): l(tt)lT 'T>=\/§2V2T+I {15 1} It (tT)T°T> p h o’ o T To TO I p h o ’ o h T — T w ere T - A-l 'therefore - +5.1“: .T 1» EA ‘leo A p A-l 261 2 T0 TO 1 2 = so + _X—{T0(To+l)-3/4-3 T(2T+l) {% % T} T(T+l)] To+l for T = T -%, 6-J = o 6To(2To+l) To T = To““ 6'J = 6(T +1)(2T +1) 0 o and e _ _ 1 EA - 8o X— €A+l = so see N#Z, T=O eXC1tation therefore a — _ _l 8A €A+1 ‘ A ‘APPENDIX C SINGLE PARTICLE IDENTIFICATION CODE lOO TABLE C.l.--Single Particle Identification Code. 101 l 10 ll 12 l3 14 15 16 17 ~°S1/2 Op3/2 0p1/2 Dds/2 181/2 18 19 20 21 22 '23 24 25 26 27 28 29 3O 31 32 33 34 35 9/2 0i13/2 2p3/2 lf 2p1/2 lg9/2 Oi11/2 OJ15/2 2d5/2 lg7/2 351/2 3/2 lh11/2 0k17/2 °j13/2 7/2 1h 0£19/2 APPEND IX D .ENERGY AND TRANSITION SUMMARY 102 103 This appendix consists of four sections, summariz- ing the theoretical calculations. 1. Summary of O 2. Summary of Ca 3. Summary of Ca ’4. Summary of Sr 16 -Each section consists of several columns, where each column represents a specific interaction and approxi- mation, the headings of which are found before each of the sections of Appendix D. Each entry in a column consists of four lines: line 1 -- Transition rate of that state to the ground state. line 2 -- Transition rate of that state to the ground state where the state consists soley of its major configuration. line 3 -- Major p-h configuration of that state (see Appendix C). comma is l 2 3 4 5 -1 PP -l nn T=0 T=l T=l If last number after excitation excitation excitation excitation excitation line 4 -- Energy of that state. 104 TABLE D.l.-- Column a I OlG-TDA K-K b 016-TDA K-K M.S. C - 016-TDA K-K M.S. E.M. Off. d OlG-RPA K-K e 016-RPA K-K M.S. f 016-RPA K-K M.S. 65% Strength g 016-TDA Sussex h 016—TDA Sussex M.S. i ' 016—RPA Sussex j 016-RPA Sussex M.S. 105 .IIIIIFHH\ JIIIM oon.m~ :m¢.m mm¢.wm mnfi.om nmo.:m mmm.mm om«.om nm:.mm wm..m~ mom.om m.m \o m~m \o m.m \o m‘m \o msm \o m.m \o m.m \o msm \o m.~ \o m.~ \o no.msm.m mnxmam.m mo.mum.o mu.wsm.w moomn~.w mo.unm.m mo.m~m.m mo-un~.w mo.mnm.n mo.w-.n mnnmum.s mucmmm.n Neuumm.n mouman.o Honmwm.a «oomum.~ "unmom.m «u:mcu.m Hoau00.n donmmo.m an mam.um omm.mm “mo.mm «ms.mm ”ud.sm mmm.mm dosumm ~no.~m nmo.m~ amn.m~ nsm \c m‘m \¢ m~m \: m.m \4 m.m \: n- \a m.m \: m~m \: m~m \c msm \c "o.mqa.s «p-m44.n «o.u.:.n so.u::.n do.u::.s do.u¢4.~ «o.u:¢.~ «u.m.:.u o.u4:.u «o.mae.n on mum.“ no mm". no mcm.fi ou umm.~ oo moo.” «u.mmm.m Ho.mam.m ou wmfi.fl oo uma.« 00 was.“ on mwu.um :«m.n «mfi.om :ca.om hsm.ma nmn.o« hw«.om m3momu ammomn uflmoom m.m \m m.m \n m.w \m m.m \n m.m \m m.m \m m.m \m m.m \m m~m \m m.m \m “n.mps.d so.mmm.n Ho.muo.n «o.ume.d “comma.“ "o.mmu.~ «o-mmo.« "o.mmw.« «o-mmo.« «o.wmo.« so.uua.m mu.mom.o mo.wmo.m soummo.m muummm.m mo.mnm.o mouwom.« mo.wm:.m mauumm.m mo.mma.u .« nsn.s" smfi.sfl :sm.nd omm.nfi mn:.nfi nu«.nfi m:fl.wfl mom.m« omfl.n« mna.md m.m \« m.m \o m.m \o m.m \o m.m \o m.m \o m.m \o w.m \m m.m \o m.m \o nuwrfi.: wolmrfloa «Olm4«.a auow:Mo: HOIm:~.: «Onw:n.3 «Olm:flo: NOImhmgm «OOU¢«03 avau:noa «o.m¢m.m mu.mma.m mu.wwoum mo.wou.a mc-mom.s mu.wmo.~ mu.umm.w mu.unfi.m mo.wom.~ mo.umo.« .« cno.ms m.n.md Asu.mc mmfl.md msm.ms ass.m~ omm.ms mmo.s~ mos.ns o:n.m« m.m \m m.m \n m.m \m m.m \m m.m \m n.m \n m.m \m m.m \o m.m \m m.m \m no-mnm.n mu.mnm.m mo.msm.m Noumnm.m mnumnm.m mo.unm.m mo-mnm.m muounm.w «ouwnm.w mo.unm.n mn.mrfi.m mu..,m.m mo.mmn.~ o.mmm.m mo.o~m.m mo.w¢4.m mo.mso.m oo woo. NQmeo.~ mo.um~.m .s on:.mm nafl.nm nm:.mm mma.nm mma.om mfio.flm omm.:m m:«.n« mmu.«~ mm:.:~ m.a \o m.m \o m.m \o m.m \c m.m \o m.m \« m.m \o m.m \o m.m \o .m.m \o muumnm.m muumnm.m mo-mnm.n muumnm.w mnummw.x monu-.w «Oumnm.m ao-mmH.¢ moumnm.m muown~.w :nuuu".m moummc.n :o.wmn.m :uuw:m.fl :oomnm.m auamro.u munmn”.« monumm.m moouoo.n mo.mom.fi on moo..fl sow.um Mifi.sfl Hmu.o www.31 oma.ms m¢m.ns nmfi.mfi smfl.ma smm.ns m.m \c m.m \n m.m \o m.m \< m.m \o m.m \u m.m \o m.m \o m.m \o n.n \o “n.w3«.: a¢-mmr.fi ”n.m:H.4 flu.mam.: cum,«.a acausfl.4 No.m:fl.4 a¢.mca.c «ouu:~.: «oom:~.c so.woo.m su.urc.m Tu-won.m :v.m:u.¢ To.m:m.m .o.unc.d mn.mno.« oo moo. co-moo.~ mo.u~d.« .n www.3fl man.Wn mmr.ma mun.mfl mm9.mH mun.Mn omn.o« mmm.m«. nmm.m« wom.on m.m m m.m \n m.m \m m.m \w m.m \@ m.m \n m.m \m m.m \m m.~ \m m.~ \m unamuw.“ no- no.“ “Unwde.u n.ommo.a "n.mme.« Hnomm<.H “Oummc.a aouumo.« «cowwo.u. «uuumooa .o.a.fl.p oo-mflv.fl .o-u.s.¢ mh.mmu.fl mo.w.o.4 mu.mxm.: :u-mum.s on on. mo.u:m.¢ .u.mno.« .« amm.w mnw.ou :wc.o .230H nno.n mfifi.h m~a.o« «m:.n o«:.h :mo.o« m.a \A m.m \A m.m \n n.m \m m.m \n n.m \A m.m \m m.m \m m.m \m n.m \m onuwnw.m mu.mnn.m no-unm.w mnumnu.m mu.mnm.m wo.mnm.w mo.w~m.w mouunm.o mo.u~m.n mo-unm.o :o-wnn.u ao.w«m.: no.Mm:.n anumnfl.m auhumm.m :unmoo.m snouoa.: on muu. aoummn.« so.wm:.m .3” h A a m m o o o n m 1(16 wmh.md m.m \m «cuumo.o no mm~.m ONmomH mum \J 00 mwo.« Nonm3m.m mam-On m.m \o nonwfio.m mouwfin.m mm4.m« m.m \: no mew.“ so.mflm.m wm:.o« m.m \o JOIJCmod 30-mmm.m :om.<« m.m \m mo.mmfl.m mo.w¢n.o mmmom« msm \o MOIWJOVOMH mnommm.a N0h.md Msm \: “Othm-H "Olwfimun sms.h m.m x: moumnm.fi no-unn.e :no.om msm \a so use." 00 mmo.m sum.wd m‘m \c 00 mos.“ mo.mmm.m nom.os nqm \o mulman.m moomofi.m m~m.mH n.m \: 00 “mm.“ ”Onwmo.m 63m.mm m.m \o :ouwmm.fi moumwm.a :«m.om m~m \@ moummfi.m floummo.m snm.~fl m.m x: Ho-unm.fi mo-mmq.m nomsod m.m \o mo.m::.m floummm.u Cowomm m.m x: moumso.a mu. an.“ m:m.m« .m.m \m fio.wmo.o no m:m.m som.wu m.m x: no use." Ho.mufi.d «mw.os m.m \o NOUMHUON mo-u:fl.h mmm.md m.m x: 00 mom." “OommmTO mmmdH m.m \o :OImumon no.1mm.m Ommowa m.m \m mo.umfl.m mo.mno.n ma0o3u mxm \o MOIMQ$OM NOIUUQ-ON «0m.ma m.m \: Houmwm.« acumen." moo.~ m.m \: mo.mnm.« mo.mwm.u :m«.o~ m.N \0 oo moo.“ oo mmm.~ mam.mfi m.m \m so.umo.o mo.mm~.n mmm.ou m.m \o mo.ufio.~ mn.mw:.m ma:.ms m.m \c 00 mom.fl HOOWOQom abNoMN m.m \@ auuumm.« muumflu.~ mwm.om m.m \m mo.mms.~ so.mnm.m :mm.m« m.~ x. HOImmMOH Diwadoo mm4o0« man \0 nonmaq.m Houwmu.u mmn.mu m.m \: mnumnm.« NOIWONUN osn.m« m.m \m dOIUMOOQ oo uao.~ m4howu m.m \a co moo.“ Ho.uom.~ mxmohu man \0 monw«0.m mo.umo.~ Am:.~u m.m \: oo mom." Ho-ucm.¢ nmm.m« m~m \o 4o.umm.« mo.umm.o Ass.md m.~ \m «o.mms.m mo.mmo.m mmm.:~ m.m x: so.omm.« so.m:~.« amm.m« m.m \o mcuua¢.m mouuan.o mw:.m m.m \c mo.unm.« moumun.~ muooom m.m \m d00NMO-0 oo mom.“ :mmoma m.m \: 00 won.” «o.mdo.n mum.oa m.m \o NUIUHU-N moomxa.c gnu-NH m.n \3 oo uom.« «oowna.m hOmomH n.~ \o ao-mmm.a mo.uom.m motefl m.m \m mu.mms.m mo.um¢.m :htoma n.m \: acuuxm.« ~u.mom.o mmw.m« m.m \o muouca.m mouu:w.m Hmw.w m.m \: Noumhm.« moowoa.a m«m.o~ m.m \m «Comeoo oo mmm.n Junoma m.m \m “OlUmOoo mo.wdn.s ommokn man \0 mo.m~0.m moammmom mo“.mn m.m \: 00 wow.“ dogwnm.~ mmm.m~ m~m \o scummm.n mo.uxm.« mmo.m« msm \m moummfl.~ aouwsm.« ammflwa nsm \: dODUGMOH «cummo.« mon.o« m‘m \o manmsa.m moumfin.w anmoma m~m \: muomnm.« mo.uoa.n ~m«.o~ m.m \m so.uwu.o Oo won-N GNOoma m.~ \m «oaumu.o mn-mo«.m ONO-ha m.m \o mo.wso.~ mo.mmn.4 oon.~d m.m \: oo mom.“ “on“:m.n 0mm.ms m‘m \o :o.u¢m.« mo.umw.n 004.0“ m.m \m mo.mm«.m muuwmo.n mum.m« n.m \a «Oluxm.« Noummmoh msw.m« n.m \o mo.m;e.n moausm.m mum.m m.m \: mn.unm.« mo.moc.« «n«.o~ m- \m «CONGO-0 OO meNoN Ntoowu m~N \m «Oumwooo NUummoon mmuoha m.m \o NQIU«OON mo-mmm.m Nanomn m.m \c 00 “cm.“ «uummm.n www.mu m.~ \o *o.mmmofl mo.uoo.~ . m...o~ .n.m \m mo.mm«.~ “ounce.“ mom.m« n.~ \: «oommn.« mo.unm.o mow.nu m.m \o mo.u¢¢.n wu.um«.m mom.» n.m \: No.15m.d moamwu.~ mnm.o~ m.~ \c 00 woo.“ oo wom.~ ammomu m.~ \m «cummo.o NOowam.u omm.nn m.m \o mo.m«u.~ ~o.m-.~ om~.nn msm \o oo mom." acummm.n onm.m~ m.~ \o ecummm.n mo.umm.« amo.m« m.m \m NOONNHoN uo-u3m.« nonomd n.m \: “Osman.“ acumen.“ enn.o~ n.m \o mo.u::.n mo.umo.n omm.m« n.n x: Nu.u~m.a monumu.o uN 0N om nu um u~ om 1(37 «3m.mn m.m x: mo unm.w mo mwo.h mmimd m~m \4 do mum.m Ho mwm.m www.mm m.m \o #0 mum.m «o mmm.m wwm.w« m~m \4 so Mmm.~ so mufi.m m‘m \: _o mnfl.m no mum." m:m.rm m.m \c “mum"m.fi uUthN-M LIIIITIIT llllw mxs.m« omm.wn Ams.md m.m \; m.m \: m.m \: mu w~m.m mo mnm.m No mum.» mu wsm.m mo mom.o we use.» 0¢m.m« :omom“ Nam.m« m.m \3 m‘m \c m.m \4 so mmw.~ so mwo.m an.mmm.~ no mm:.fi do wwo.m oo mow.~ :mm.:m meo.:m :on.:m m.m \o m.m \o m.m \o no wow.m so mom.m so mow.m «0 umw.m do ms:.. «0 mmm.: m:w.ms 5:3.wfi mom.m« m.m \4 m~m \: m~m \: do mmm.m do mmm.m an mmm.m "o mms.~ so mn¢.~ so mfim.m mmm.mfi dsm.md mom.m« m.m x: m~m \: m.m \a «0 unfi.m do wnfl.m “o mnfi.m so “on." so mum.“ so umm.fl m::.mm mow.cfi mam.mm m.m \o m.m \o m.m \c «o unw.m so mum.m so mn,.n so mn;.m no mmm.s on was.» oom.nfi nw4.mfl :mm.nfl m.m x: m.m \: m.m \a so mmm.m do mam.m do umm.m in mm,.m so mwm.~ so usd.m mma.m mmm.m soo.m m.m \s m.m \: m.m \a no mnfi.m «o wnfi.m «n wn«.m mo uns.fl so mwm.o «o wxm.n oflm.:m nmw.mm mmm.:m n.m \‘ m.m \o m.m \r fl).unm.fi Ho.mfim.n auumam.fl ”sowWH.m «Quwufi.: “oammu.: ion.ws m.m \: mo mum.» mo mom.” QanmH m.~ x: no mmm.~ so wxm.n «30.:m m.m \o «o mnw.n «o umm.m www.mfi m.m \c «0 wmm.~ no umo.~ m«:.m« m.m \3 Ho ms".n «0 was." mem.nu m.w \o «o mmw.n Ho u:m.m NmNoMfl m.m \. do umm.a so mam.n who.m m.m \: "u ons.m mo m:o.u umn.m~ m.m \o sonunm.n "Oumn:.n www.ma msm \: mo mum.» ~o wdm.h mmh.ms m.m \a «o umm.~ so wnm.n wmo.¢m m.~ \o «o uow.m «o wnw.m ommohd mrw \c «o mmm.~ «o w:«.~ m«m.ma m.m \a «o mh«.n «o umm.« ooo.w« Msm \o «o mow.m «u um4.« mmu.m« m.~ \: «0 mmm.~ «o uao.m om«.~ m.m \a do usfl.m mo who.n mou.mm m.m \c «nouam.« «o.~o:.m mmo.m« m.m \c mo mam.» mo m:m.s mowown n.m \c «0 umm.m «o m:m.m mnm.a~ msm \o no wom.n so unm.m mo~.mn m.m \: do umm.m do usm.m o:a.m« m.m x: «o mn«.n so “we.” :ooomm m‘m \0 so wow.m «o mo:.« wo«.on m.m \: so mmm.~, do who.m «mo.n m.m \: «o usu.m we was." www.mm m.m \o «o-uflm.a «cuumm.m Nhhowa m.m \c mo mum.» mu usm.» can.mfl m.m \c o mmm.m no umm.m «m«.:~ m.m \0 Ho mum.m no uom.c now.nd m.m \: no dmm.~ do mmn.~ OHM.N~ m~m \: «0 usfi.n no mmm.~ omn.w~ m.m \o «0 uow.m do use.“ ooNoMu m-m \c «o mmm.~ no use." m«o.m m.m x: «c mnfi.m do umn.o :3H.mm m.m \o doumfim.a flo.mxu.s man.ws m.~ \c mo mnn.m No mon.m mmfi.m« msm \c "u umm.~ «o mmo.m «m«.a~ m~m \o «0 mom.n so uom.. mma.nu m.m \o «o mam.m "o umm.m mam.ms m.m \a «0 mn«.n «0 mum.“ own.w« m.m \0 do mom.m flu mom.“ som.m« m.“ x. no mmm.~ so ohm." mwo.m m.m \: do whuom do mnm.o no~.mm n.~ \o «u.mflm.« "onmmu.~ Mumomn m.m \c we uhn.u mo mmo.o nnm.n« m.~ \: no umm.~ so umn.m mu«.mm m.m \o «0 uom.n «o mne.o www.ms m~m \o «0 mmm.~ so mam.~ mmm.m~ m.m \o «o mn«.n so “mm.“ :«~.mm nsm \o «o mom.n «0 wow.“ mom.o« n- \o «o wmm.~ so “on.“ :0:.@ m.m \: “o mn«.n do mm~.n hmo.i~ m.~ \o «unuam.« «o.mmn.o no to on an un on on 0m .m 1()8 com.mm m.“ \: «numum.m «o.mmn.s «mn.ss m.“ \o no nos." 0 mom." mn«.m: msfi \: no man.“ no mmm.H m:a.n¢ m~a \0 OD mud.“ so.msn.s mmo.mm m.“ x: on m.a.a no oio.m nmn.n: m.“ \c on one. no moo. ooo.ma m.“ \m on “no. Co moo. mmm.m: m.o \o no mpo. mfi.wmc.: mmd.ns n." \n mdlmhmom mfllmuaou Unhomt m." \o no mofi.u MDIUOWIm omm.sn m.a \4 on n:n.« on mflfi.m mam.m4 m.H \o 00 man. mdnmsn.¢ nnq.¢: m.“ \m no woo. :flumqm.m ha:oh: m‘a \o 00 woo. ".mon.a sdm.nm m.« \: "Ouuum.m «oamen.n mfla.n: m.“ \o no “on.“ no umm.« mmu.m: m.“ x: no m:n.« no men." mm«.ma m.“ \o on own.” Ho.mno.a ann.mm m." x: no m:n.a no nnm.m mom.h¢ m.“ \0 no uno. no non. mmn.m¢ m." \m no moo. no woo. maooac ms“ \0 oo moo. onnmoo.o snm.n: m." \m ms.onm.m mnuwm«.« “Chow: m.“ \: Hn-mum.m oo mon.m m0«ow¢ m." \o no new.“ 00 mum.“ mmm.M¢ m.“ \e on w:n.« no mam.” man.m4 m.“ \o ea “As.“ mo.osw.m mmx.sm M.“ \a 00 ~35." oo mmm.~ 0mmom: m‘u \c 00 WHO. .m~.oxs.s Ndmo¢é m.— \m 00 woo. mu.omfl.fl mm3oh: mud \o 00 who. nnnmo¢.h mhh.m: m.“ \@ ma.whm.m ma.m¢".d .ms.mm m.” \: an.ua~.m ”ouw:n.n mmhahc m.“ \o no mos.“ no mmm.« www.ma p.” x: at w:m.u no umx.a oan.mc n.“ \o no woo." mo-maa.m Homomm n.“ x: no man.“ no mos.m mom.n: m.” \o on non. oo woo. uao.m: m.« \m no moo. .s.mom.s mamomo Ms“ \0 no woo. uo mn . oom.o: m." \m HIMBMON J J I ) to hUCo mom.mn m.“ \: «o.u«m.m «o.msm.m mmm.h: m.« \o no meg.“ no mum.“ ~mw.m¢ ms“ \: on men." no own.“ mm".m: m.« \o on men.“ so.osa.m momomm m.“ \a on men.“ 00 wmu.m wmn.n: m.“ \o 00 wow. 00 moo. omm.m: m.« \m 00 woo. m~.u:n.o :m:.:: m.“ \o oo moo. oo moo. mm;.«: m." \m m«.msm.~ 00 who. .17. m:m.mo m." \. «o.u«~.m oo mm“.~ ”Oh-mt m.“ \0 no men.“ no u:~.« mmo.na m.“ x: no man.“ no mmm.a wmm.oc m." \o no wed.“ so.umm.n HmA.mm n." \o no man." no om0.m Od:.m4 m.“ \o on man. on woo. nno.mn m.” \m on woo. mdonma.u mmo.~: n.“ \o oo moo. no woo. 9m0o3: n.“ \m mflumnm.m mfl.om«.n :sm.mm m." \c 3.33 «n.ufl~.m omwoh: m.” \o on no“.— oo mom." :mw.m: m.“ x: 0 “show no wnm.« Ocuom: Ms" \0 on we“.— annunm.m :nn.mm m~n \: no w:n.« on mxo.m :mm.n4 m." \o 00 won. mmm.m: m." \m no man. .s.no~.. :0;.:: n." \0 on woo. oo moo. :mm.«c m." \m m”.ohm.m ouoomo.¢ vulo..lvl. . .flzfiflurfihP\:)Hfinr con.mn n.” \c «o.u«~.m Houumm.o :mwoh: m.“ \o on new." 00 own." «ow.ma m." \c on m:n.« on own." mmd.m¢ n.« \o 00 was.“ do.wwn.m «o~.mm n‘n \: oo m:n.« oo mon.~ o:m.no ms“ \0 on mno. oo moo. oso.n¢ m." \m 00 moo. auummm.~ sma.cc n.“ \o oo moo. no moo. nu:.«: n.“ \m WHUWNMON maomau.« mcm.~c m.“ \o «o.m«~.m on m~«.~ man-wt m‘a \o no mod." 00 wow." «as.me m." x: no m:n.« oo um..s o:n.oc m~a \o 00 won.” Hosmc«.n mum.om m." \. oo was.“ on mmn.~ «m:.w: m.« \o no moo. oo moo. m.~.m. m." \m oo woo. mfl.ums.« ~¢o.nc ms“ \0 on non. no moo. n««.:: n.~ \m maamnn.~ muawmu.u on om ON om ow on on On On 109 o omohmo 4m“.m¢ onn. nm«.m: moo.mc nom.mc mm¢.~¢ mmm.m: ece.me «mc.mc mnn.no m.fl x: 0.0 \o m.« \a m.« \a m.“ \: ms" \e man \o m." \o m.« \c m.« \c an was." on mnn. do boa.“ «o mm:.« no one.“ no one.“ no nos." «0 mm:.« no one." «0 was.” . mm:.~ on own. so mus.“ on o:n.m fin “.3.“ no one.“ so won.“ «n was.“ no uo¢.« no umm.~ on 110 TABLE D.2.-- Column a Ca4o-TDA K—K b Ca4O-TDA K-K M.S. c Ca4O-RPA K-K d Ca40-RPA K-K M.S. e Ca40-RPA K—K M.S. 65% Strength f Ca4O-TDA Sussex 40 g Ca -TDA Sussex M.S. h Ca40-RPA Sussex . 4O 1 Ca -RPA Sussex M.S. lll som.flo moo.”fi smo.«" omo.m« «do.«u nmm.du omm.~a omm.au mo«.n~ m.o \oa m.o \o« .m.o \od m.o \o« n.o \OH m.o \o« m.o \o« m.o \OH m.m \o «o.nnfl.m so.oofi.~ "n.uo«.m «ouoo«.m «o.uo«.~ «o.uo«.~ «ouuo«.~ no.u0a.~ «ouu:~.m mo-mno.m no.1am.m mo-omm.~ wo-om..m mo.umo.n mo-ons.m mo.o~m.n mo.o.«.« ~o.mm..n .« «ma.m omn.o 03m.a .ma.m on~.m :mu.m «am.na smn.o omm.m« m.c \m m.e \m 9.0 \m m~c \@ n.o \m mgc \@ moo \m moo \m mso \0a mounnfi.¢ wo.nnd.: mo.om«.: anunn«.: o.uma.: mn-um~.c moooma.o moamm«.¢ Ho.mn«.~ mo.omn.n o.oofl.m mo.m:s.m mn.oom.m mo.uon.o mo.oxm.~ mo.oo..« mo.m:m.m mo.nmo.m .« :mo.im Hom.mm ons.~m mom.mm oww.o« :m..m« emu.» mo4.md mom.ofl m.: \m m.: \m m.: \m m.. \m m.: \m m.¢ \m m.e \» m.: \m m.o \w m--om..m mo-1m:.m mo.mm¢.m mo.om:.m mo.om:.m mo.om:.m mo.mma.c mo.om:.m mo.omn.. mo. no.5 mnuuom.o moamnm.c moan«~.« mo.uo«.d mecooo.m nnomm«.« moumnn.m onmmo.u nu :nm.no noo.oa nmm.mfi :mn.oa mm«.n~ n«o.n« o:n.n~ «mo.n~ o«~.m m.o \n n.: \m m.o \n m.o \m n.m \oa n.m \ou m.c \m n.o \m m.o \n oo mom.“ so.onx.m on mom.” oo mom.“ «o.o~o.~ «o.omo.m mm.oms.m oo omn.« mo.omfi.. mo.mmo.a do-ocm.m mo-omo.« so.ooo.fi :o.ono.o so.omo.~ mn.uos.m mo.oom.m mo.wdm.u .n omm.:fi omA.mo . oun.:fi mon.m« "oo.m« :om.md “no.3“ o«m.ms «oo.o~ n.m \od m.m \ofl n.m \nd m.m \od n.: \» n.m \ou m.m \na n.m \od m.o \m «o.omo.m so.nmo.m so.omo.m Ho.omo.m «o.msn.m «o-omo.m do.umo.m Ho.umo.m mo.mm:.m mo.omm.m mo.oom.d :o.oo4.. mo.omo.s mo.uo..n mo.omm.d no.wwd.m mo.on~.. mo.mn~.. .« m«n.mfi wmn.mu “em.mH moo.md who.m« «om.m« omo.:« ¢:w.m« ooo.:« m.: \n m.4 \n m.: \m m.¢ \w m.m \n« m.: \n n.: \n n.: \m m.: \m so.oAA.m so.omn.m in-omm.m no.orn.n «o.omo.~ Ho.oAA.m so.ons.n so.whn.m so.ona.m mn-noa.m :n.wum.: mo-mfi(.m :o-oon.m n.mom.m mo.omo.a mn.oflm.a no.mom.u no.mmm.« u” m:m.n ms~.na mna.o mmn.n— “mm.m mmm.m www.mu 5mm.» nnm.m« m.o \oH m.1 \m «.0 \o« m.t \os m.m \m m.m \m m.m \os m.m \m n.m \ou so-ood.m mo.oon.4 so.uom.m on.on~.m on.m:m.m «o.w.~.m so.oao.m No.u..m.m «o.mmo.~ . so.omo.s 4o.oqn.m .o.mmu.o .o-m~m.m 4o.o«m.m :o-o.o.x no.ooo.o :o.u.m.m mo.wmn.o .a «so.» :mm.ofi mun.» wom.ufi «mm.m fisc.x onm.o “no.o muo.n« msm \m m.w \m m.m \x m.n \m m~0 \Ua mso \w mom \0 moo \On Now \Q «nuusm.m “numgm.m «unb1m.m "nou:m.n Ho-mo”.m muammu.: «unw:m.m «Unmodom onm:m.m monomo.m. :n-tn«.n An-uo:.m onunwu.m mn.unn.m mo4unu.« anumno.n mn-mwm.n :o.mnn.n u” .mm.o no... ooo.~ oom.w mso.x Adm.m Adm.¢ nm«.n ems.» n.o \1 m.. \n n.¢ \. m.» \u m.o \A m.c \m n.m xx n.o \m . m.o \w mn.omfi.: nn.scfi.4 mo-nnfl.: on-wc~.s mn.mo«.: mouurfi.a mn.um«.: mnumw«.: mo.um«.c mmwmne.m nozomu.m no.mfin.m anumno.~ an.mm:.a :ouunm.m :numfim.: muummo.o souumn.a on A a o o m o o a m lJLZ “om.m m.o xoa mo.wmx.x mnummn.m nom.x m.o xm moomno.m mngmmw.o mma.o m.o xx mo.oxm.m .Ho.oxfi.~ omo.«m m.¢ xm mo.um¢.m NOlmOhom m 5 \CU (uh \ d O (I; mm L) ()U) ru I Lulu) -? 0 ()fi Lnr\ mmn.ofl ms: xm Ho-mxx.m «Olm¢moo mmm.:fi m.m xofi «o.omo.m .o.oow.m :m«.:« mac \0 CO ummofi mununm.m mmo.m« m.m xm «ouusm.m N00w01om «Hm.aa Mxo x0" mo.omx.« soummo.m xco.m m.o xm mo-oxo.o so-nmo.~ mmm.x m.o xx mocmxm.m Ho.oxo.m omx.«m m.: xm mo-mm¢.m anuon«.« Sixd m.. xo so-nxx.n no mmm.n wmm.o« m.¢ xo Ho-oxx.m so-oo~.a omo.m« m.m xod “naumo.m mo.mso.~ o:m.:u mxo xm on non.“ moumm«.m mom.m« mxm xw doumom.m monumm.n mxo.m .m.o x0“ monomx.d mo.mxx.o mmm.x m.o xx mOIMNUow no.mso.~ mom.o m.o xx moumxm.m Ho.o.s.« o:n.dm m.¢ xm mn.mn¢.m mo.mom.m 2m;H m.: xo Ho.oxx.m oo oum.n mm1.ofl m.¢ xo so.oxx.m Ho.wmm.o TBA.d m.m xou no.mmo.~ mn.w:m.m 00".:u m.m xo« «n.wmo.~. mo.w::.m «mo.mu mom \x Olusmom mo.omm.m em~.«« n.o xo« mo-omx.« mo.omm.d mmm.n m.o xm vocmno.w «ouux«.m ~mm.x m.o xx mo-oxm.m no.oox.~ mxo.m~ mx: xm mo.ome.m «oauxa.« «mmokd m.: xm flo.oxx.n no mmm.n omn.c« m.: xw so.oxx.n flocmmo.c mmm.md m.m xo" an.mmo.~ mn-uxa.m mom.¢« mxm \o« ao.mmo.~ mn-m:m.u NMN.M« m.m xm «ouu:~.m moummo.c «m«.o« mxo \Oa ”ClumBOA Nouwnmod oxx.h m.o xw mDIMBOoQ :nuuo¢.x mm¢.o m.o xx mo.uxm.m do.m"x.a oom.om m.o xm mo.mm:.m «o.umm.u mmo.od m.: xm so.wxx.m oo w:w.m mox.ma m.o xm do.oxx.m no.oms.o mmo..« m.m xou so.omo.m mo.u:m.x mm«.:n m.o xm on own.“ mo.mxn.~ m«:.~« mxm \m «ocuem.m «Ouwoooa won-On Moo xo« monumx.« mo.w~m.« mmo.x mxo \w mo.uxo.n menace.” 03x.o m.o xx mo.wxm.m so.oxo.o mm:.«~ mx: \m NOIwmaom "o.n:x.~ mmo.x« m.: xx on own.“ no mnm.m mm«.oa m.¢ xm «o.uxx.n «o.mn:.a hmho:n mxm \Ou do.uxo.m OOIUWN. d moo.an mxm \OA so.omo.~ mo.umc.« xon.~— m.m xn «o-u:m.m mo.uxo.m ouc.an axe \o« "Clumhod mo.u:H.n nmo.m m.o xn MOlthoO «n.u:n.« m:o.n m.o xx ~o.nxm.m «n.umm.~ «:o.mm mxc \m mo-mn:.m no.omo.~ :mm.n« m.a xx oo moo.” 00 musom osm.ou m.. xo so.oxx.n mo.on~.m «mm.m« mxm xo» an.umo.~ onummx.« www.cx m.m x0“ finammc.~ noummaoo o:«.n« m.m xo no.usm.m NOIUdtoB m«n.on n.o xou no.umx.x ~0.w~n.« xtn.x n.o xo mo.oxo.o .o.umn.x som.o m.o xx mo.uxm.m so.mom.~ mam.a~ m.a xm mo.mm:.m «o.uxo.n cmo.w« mx4 xn 00 wow.“ 00 wooot «x~.o« m.. xo so.oxx.n mo.noo.o mmwooa mxm x0” ”OIUNQON n.u:x.¢ mmooen mxm \On Ho.umo.~ mouu:¢.« owmomu mom \n «oumam.m «OOUuOon xmc.aa nxo \o« noaumx.u no.mxm.m :no.m fixo \m WOIMNOOQ «oou:N.c ~o«.n m.o xx mo.mxm.m «o.o:m.~ mxd.mm m.: xm mo.um:.m «o.mox.n oom.o« m.¢ xx 00 won.“ no usa.c ooo.o« m.: xo ao.uxx.n ~o.mmo.n «hmomu mxm x0" «oomm0.~ monumm.o oom.:« mxm xo« ao.omo.m noumam.m ‘00..“ m.o xm oo own." .nouumm.n. u~ am am on nu on on 11.3 mom.m m.o xm o.u:c.x do.oom.s mxm.n mxo \x on mm«.m Ho.omx.m m«m.mx Mx: xm :n-m:w.a an-mom.~ momo¢fi m.: xnd mo.nmo.m onsm:¢.fi m:m.m« mxm \m o moo. mnamx".: www.mfi mx: xw mo-mmm.o mnuuwm.« «0:.md m.o xm mo:ma0.m oo mfim.fl mfla.«~ m.m xw. mo-omx.o oo.oxx.x 000.0” mx: xx Houmsm.m “oummm.m xtx.dn m.o xo« mo.wmn.« ”0-x.m.a nxx.m m.o xm mnuu:o.x Hnsmwx.a mom.m m.o xx no mmw.m no.w:o.o .mm.mfi m.: xm Tnamqm.o “oumxo.m moo.os. m.m xm oo moo. mo.u1m.m «od.wfi n.e xx mOnmamoo acum4¢.m omfl.ms mxm \m NOlmmhoo no w:a.m nfln.m« n.: xx anumxm.m annu-.o amm.m .o.o xo mo.m:c.x ao-mn:.d 00:.x m.o xx on wmm.m no o:m.u oxméH m.: xm :numsm.: Ho-om..s mmm.o« m.: xnu mo.onm.m snnwdn.x :mm.nd n.m xm on moo. mnumm:.« mwn.mx n.: xx monumu.o mu.mofi.~ «:aomn Mxo \m ”-mmm.n on ufl:.n mmuonn m.m xx mn.wmx.o mn.m«fi.m :xm.nn m.: xx an.mxm.m n.u«x.w mox.d« mxo x0" mnnmmo.n mnammn.m mmx.n m.o xw mo.m:o.x "Guam“.m Mad-m mxo xx no mmm.m n.nmn.: mmOoON m.¢ xm snuan.o doumoa.m :mc.ofi m.m xm no “no. mnumxm.u om«oma mx: xn mouuwm.o nn-m3m.o xxx.m« n.o xm onummmom ancmxm.m omaom« m.m xo mo.omx.o no omm.x anomn m.: xx "nonam.w do.umn.m xo¢.m m.o xo o.o¢o.x mo.omm.m nmm.n m.o xx no mnw.n no wmm.« am¢.n« mx: xm :o.m¢m.: mo.oox.~ 850.0“ n.: xod mo.omo.m mnammm.a mmm.m« m.m xm on moo. moummw.« o~m.m« no: \m .NUmeQoo anamo¢.n xmo.m« mxo xm mo.oom.m so.o.o.« mxa.ou m.c xx «nuuam.m “Ulwmwoh mmo.xn m.m xm monumx.o answmu.c o«n.m mxo \n moau:o.x NOIUhmnB mom.» m.o xx oo moo.n no.oom.x omo.wu ms: \m :o.o¢o.o ~o.mmfi.o ~:m.oa fix: x0" mo.nnm.m ooaoxm.m :xm.m« m.m xm no woo. «o.umm.¢ mom.na n.: xo mnammm.o anoflx.m :om.nn m.e xn mo-moo.m mo.oxx.o «mm.ss n.m xn mo.mxx.o n.nxm.m nm«.«n mxc xx so-o—m.m «nowna.w omxom mxo xo mnom:o.x mn.umw.n ommoc mxo \x 00 umwon «OIUNMOW oom.na n.e xm :num:m.: Ho.oos.~ moo.x— ms: xna ”Ulwmmom anumms.m amx.oa n.m xm on non. Ho.mwfi.« mon.m« ms: \m mo.oom.o mo.omx.a me.:« mxc xn mo.nmm.m no mum." mmo.mu n.m xo mo.omx.o «n.umo.x nmm.m« mxa xx «n.u~m.m «nuuxm.m an.m mxo \n mnumeo.x mo.mox.m ms..o m.o xx oo mm».n Ho.oox.m NNhoma Mx: xm :o-mso.: mn-omx.n own-flu n.c xna mo.omm.m mn.umo.« coo-mu m.m xm on woo. nonmam.x :mm.m« m.a xn mo.o.m.o «onwxx.n m:m.m« m.o xm monumm.m mnouno.m cmm.«« m.m xm moumxx.o on-o««.c mmaoun Mom \w NOIumhoO «Ulmumoh ocx.n m.o xo ~o.u:o.x “o.um«.« mmm.n m.o xx oo mmo.n douumc.o mmm.mn mx: xm :o.u:n.c "o-wmx.~ mmo.x« Mxo \OH no.omm.m «oommn.n oox.ox m.m xm no moo. so.umu.« :m«.mn m.: xn monumm.o moommo.~ «Ntoau m.o xm mo.omm.m no mom." xeo.~“ nxm xo mo.m~x.o «oawnm.n n:m.m« n.m xc moawmx.o «o.uno.m om aw um um 0N um um ow 0N 114 mxm.~ mxo xx do umo.o no.uxw.~ 0:“.nm mxc xm do.owm.. anammx.m xmo.xx m.¢ xnn anummm.o on woo.m «mx.o~ n.m xm on non. no.wmn.~ xwo.mfl mxc xm «o.mm¢.o oo mom." :nm.:x mx4 \n on ufifi.¢ on mmfl.m «na.¢~ m.c xm mo-mow.x do.omx.m oxd.mo m.m xx 00 mmo.d. on mmo.n mwm.flx mxo x0" mo.oxo.o «oamna.m mxaom m.o xx so mmo.o mo oxm.« nox.om m.¢ xm «00mmmoc “n.mmx.n nnm.nu m.: xod Hounmn.o no one.“ xmm.xu mxo on «onmmm.o oo woo." beach" m.m xm no moo. mo-wo:.¢ «mm.ms m.. xo Ho-nm:.o no max.“ mmo.4fl ax: xx no uflfi.a no mam.m onm.:n m.o xm mnuonw.x fin-nmx.o nom.mn mxm xm no mum.“ on own.~ mwx.: ,.m.o xx so omo.o mo omm.x omm.om m.: xm n.nmm.: on mom.“ moo.xfi m.: xon «DimmMoc oo omm.~ m0m00« m.m xm oo moo. mo.oxm.x xox.md n.¢ xw oo.om¢.o oo owm.~ :cm.:a m.o xx on w«~.a no mod.c mafio¢n m.o xm NClmumofi “unuaa.x nnm.ma m.m xm no mmm.« on wmn.¢ ono.u« nxo x0" no.omn.u «n.m00.N os:.o n.o xx do omc.o mo omm.o x:m.nm m.. xx ho.omm.e no Una." mmm.mu m.a xna Holmmm.o no man.” oom.x« w.¢ x0a «numxm.o no new.“ momohn m.m xm no moo. mo.nmm.o xxx.m« m.. xo «n.om¢.o on om".~ 0050:“ m.: xx on uflfi.o no uxx.n mom.:n m.o xm mo.ooo.x do.omm.o mmm.ms m.m xo oo mom." on “mm.~ mmm.c Mxo xx do umo.o no umaon omo.o~ m.4 xm «Clummo' “o.wox.m mmu.xd m.: xod douwmn.o no mwm.m coo-x" mxm xm 00 won. Noouxm.m owfiomfi mxc xm «numn¢.n 00 umm.« mu:.aa mxo xm mncmnm.x no omm.m x..x.nd n.. xx oo ofls.. oo o«o.~ mmm.md m.m xo oo “mm.“ oo onm.c omoouu mxo an OOUNOod auounu.m 000. 0.0 \o no won. 00 ~00. mm«.om mxa xm «Onurm.c no omm.« :om.x« m.: xnu «OIMWMOO on wmn.~ m:n.xu m.m xm no moo. anuux«.~ mmm.m« m.: xw «ouwnc.n 00 mod.“ 000.3“ mx: xx no m«H.: no uxo.m m:o.n« mxo xm moumnw.x no mmm.« o«m.mu mxm xw on own." no omo.c hmoona moo x0" mouuno.~ onummo.m mnn.n n.o xx «o mmo.o no oo«.n nox.o~ mxc xm on.uwm.: oo oxfi.n com-ma mxa x0" Houumm.o on omn.m mma.xu m.m xm on woo. so.oom.s cmm.mn m.: xn «ncmm:.m on wmm.« mmm.m« mo: xx no u~«.c on umo.m nam.:« mxo xm NOOUowON anomxm.x mxo.m« m.m x» on mom." on umaon meonn moo \ou Noomeon MUUUOQOC o:m.¢ m.o xx «0 “No.0 no moc.o xm«.o~ mx: xm HOOMWflo‘ oo max.” mum.xa mxo xo« HOIUWMOO oo wo«.n mmoxfl m.m xm on non. «numoo.m hemomn m.: xm «o.mna.m on own.“ mox.:x mxc xx 00 undo: oo m~x.n mxo.n« m.o xm monunw.x no mxo.u omm.md m.m xn oo own." no mnm.: mmo.~« m.o x0" mo.omo.~ mo.o¢o.n o:o.m m.o xx do “No.0 mo mmo.n nan.om mxa xm «onmmm.o no no:.« mun.n« m.: xo« do.mmm.o no wm«.n am:.xn mxm xm on woo. doummo.~ m:m.m« mx: xo doamne.n oo umm.« oum.mu ms: xx no muu.c no mnm.n :mm.:« mxo xm mo.ooo.x ~o.unm.n mo«.n" m.m xo oo woo.“ oo.unn.n mom.”— m.o x0“ mnuumo.« no.umc.o on om ow om om ow om .N om 11.5 exo.ox m.: xm do w:m.x an mofl.x xmm.mx m.: xox mo wmooa no mom.“ mox.mx mxm xm Uo omo.fi ( on mmn.m m:c.mn mxa xm «o u3m.w oo wmm.m oom.nx mx: xm so o:m.w do mum.m mxo.mx n.o xm NO wax.“ oo mxx.m “mm.ox mxa xx mo mom.“ Ho oom.~ xnm.x mxm xx. mu uam.m no won.x xm:.o Mxo xm mo m:m.x mo mom.” m:x.x o.o xx do omo.o Ho oxm.m xmm.nm m.: xm an msm.x mo moo." mmo.xx mxc xn« m0 mm0.fi no wxo.x omo.os m.m xm mo umo.o mo woo.“ "m“.mfi . m.: xm «o u;m.m mo new.“ mxm...H mxo xm mo max.“ “0 wxo.m mox.xx mxc xx mo mon.a mo wmm.m oxm.n m.m xx mo xxx.m no omn.: mam.n Mxo xm mo mam." mo mum." Nom.mn m.o xm do u:m.x so omx.o o.o.mu m.a xou mo moo." do moo.“ omfl.mx m.m xm mn own.“ no mm".o mom.nfl n.: xm «o u:m.o oo woo.~ own.mx mx: xm do u:m.n no mom.m mmx.md mxo xm mo uma.« on mmn.: nxo.ox m.: xx mo nnn.« an mom." mxm.x mxm \x u mam.m n m:o.x an: mmm.o n.o xm mu m:m.« No man.“ tNmoh m.o xx do omo.o do mox.c nom.om mx: xm “0 u:m.x mo owe.” ONO-ha mxo xo“ mo mmo.u .0 mxx.x cxo.oa mxm xm own.“ \I Ix no moo.“ x:«.m« nx: xm no m:m.« no man.“ xom.:« mxo xm no dog.“ “0 mo“.0 )hmomfl mx: xx mom.“ .owoom mxo xo mo won.“ an wan.n «no.x m.o xx do omo.o oo mmn.m muu.mu mxo xm «0 mam.x «o mofi.m omm.mo m.: xox N0 wmo.u so omw.x msn.sa m.m xm mo own.“ mo own.“ omm.mo m.¢ xo an u:w.m so ooo.m .mm.mo m.o xm No man.” no nco.c NC undo: n«c.x mxo xx .0 umo.o on mx«.o nmm.mu nxc xm «0 w:m.x «o mox.o oxm.mx mxe x0“ mo moo.“ Ho oox.m :on.:~ n.m xm mo one." do mmo.m o:m.m« Mx: xx Ho o.m.o do moo.n mm:.m« mxc xo mo max." Ho.mmm.~ mmn.od an xx mo man.“ no uxo.m oxo.x nxm xx mo uxm.m do o:x.n n«c.o nxc xx «o omo.o mo “mm." ..o.x m.o xx do omo.o no moo.o www.mo mx: xm no osn.x «0 men.o moo.ox mxa x0" mo gnu." no owm.m on«.o« m.m xm mo omo.x mo oxfl.x x«:.a« m.¢ xn do m:m.w do.oom.s :on.:n mxo xm mo mod.“ «n max.“ xo:.m« mxo xm mn mod.“ «o.omm.¢ mmx.xa m.¢ xx mo wmm.a mo own.“ tamow mxo xm mo o.~.« do own." 00¢.x m.o xx do oxo.o on mm~.o mm~.ox Mxo xm do wam.x .«o u:x.n mum.mn n.c xo« mo wmo.« "o umm.m oom.c« mxm xm no one.“ so uxx.¢ mxm.mx mx: \w «o mam.o do moo.~ oom.m« mxc xm no nos.“ «o.m:m.« Hxa.n« m.a xx mo mom.“ mo.oxo.o xex.x n.m xx mo m«m.~ do mnx.: oom.o n.o xo no mom." «0 uxmou m.x.x m.o xx so omo.o «o moo.» omn.mx mxo xm no m:m.x «0 mac.” ~om.ox nxc xox no mmo.a «o moc.~ mmm.o« mxm xm no one.“ No mug.“ mm:.:« ch xm do nom.o on own.“ :«o.:« Mxo xm mo wow.“ «u moo.“ mac.m« m.o xm mo wax.” «o.omm.m omo.«« nxc xx no unm.« mo u::.a ammom nxm xx wo w«~.m do woo.~ on on on on on an on on .n 11.6 0mm.m mxo xx no mma.m an w:m.« omo.nm mx: xm «0 mam.x mo moo." omm.xfi m.. xox mo omo.x mo omm.x oom.ox m.m xm mo moo.— xo moo.m «m:.mx mx: xm «0 m:m.m do me.m oam.:fl mxo xn Nu mmaoa mo u:x.m mon.xx mxm xx mo mam.m mo oom.m "030m mxo xm mo usx.x. do oom.x "om.x axe xx so omo.o on mmm.m moo.x m.o xx no mm:.n «o mmm.¢ nxw.om mx: xm No mom.x no omm.m mnH.wd mxc xna mo one.” mo mnH.« :xa.xu m.m xm mo one." no wmm.: mxo.md m.: xo do m:m.m oo oxx.x no uflm.m do omo.m :nx.m mxo xm No wow.” do mmm.m xn:.m mxo xx no mm:.n Ho mom.“ :xu.nm m.: xm do nom.x mo mn:.« :«m.xx m.e xo" mo mmo.~ mo mxx.u «mo.ox m.m xm mo owe." do mmm.o mo:.m« m.¢ xx do m:m.o mo woo.“ oom.:« m.o xm no won." mo wmo.m oxn.x« mxm xx mo mom.~ mo omm.n 40m.n m.o xx mo mom." do uoo.. xmm.x mxo xx an umo.o on wax." :«aoh Mxo xx on uma.n do wsmom mxm.om m.: xm no Q:m.x an mmm.c o«m.m« mx: xo" mo umo." mo mmm.« morxfl m.m xm mo one." oo oxm.m mmo.m« m.: xo do m:m.m no omo.. mn:.a« mxo xm mo mmfi.x mo mmm.u mmm.m« m.o xm mo mmnon oo mom." mmx.do mxm xx mo mam.m mn nxm.« :ox.m mxo xo mo u:m.— do mom.m eco.m nxo xx 00 mmo.n do max.m mmx.om mxo xm do n:m.x mo meg.“ mmx.x« ox: xox mo mno.« mo mom.“ oom.ox m.m xm no one." so oom.o mmm.mx m.c xm «0 w:m.n no mo~.m xoo.:u m.o xm mo wax.“ mo mom.“ ow:.nd m.: xx mo mom.“ «o wmm.¢ mmm.o« mxm xx mo w«m.~ No mxmon oomoou mxm xx No m~m.~ «Oouomoo xon.m mxo xx no um:.n on wax.~ mam.o~ mxa xm «o u:w.x mo own." mmx.xu mxe xou mo moo." mo uxm.« mmx.ou m.m xm mo own.“ so oom.m xmaomu mxa xo «0 o.m.o an u:c.o 300.3“ m.: xx no mom.“ on mxn.m xm~.n« mxo xm mo and.“ «o mmo.m mmwoon m.m xx mo oH~.~ mo om~.m :oo.o mxo xo mo w:m.~ «o umo.m om«.x mxo xx on omc.n an umm.x omx.om mxa xm do w4m.x mo mom.“ :mn.nx mxc xo~ mo non." mo mom.” do«.x~ mxm xm no one.” an umm.o omJomd mx: xm an osm.o do mam.“ :mo.4« mxc xx mo mom." mo mxo.~ 000.0“ m.m xx mo oom.~ «n umo.x mxm.m mxo xo mo mom.“ on mmm.~ xmx.o mxo xx an wmo.o go om~.o moo.m n.o xx no mmo.n do mam.n :om.o~ mxc xm «o mam.x Nu muo.m xwxoxn mx: \Ou mu umoon No mom.” moo.o. mxm xm mo moo.“ an mom.o Nam-mu mxo xo #0 m:m.o “o wnx.x omo.au mx: xx mo mom.“ mo oom.~ oun.m« m.o xm no nos.“ «0 mnm.m wmm.nu mxm xx no oxm.~ mo uwo.~ xoo.m m.o xo mo mam." .o woo.~ om».x nxo xx no uno.n «o uo«.n nom.o~ m.. xx no o.m.x wo oox.x "mo.o« mxo xo« mo wno.« mo mmx.« mod.xx m.m xo mo moo." «0 women wdmomu mx: xo «0 mtm.o an mc«.n mmo.o« mxc xx mo mam." mu mxm.~ nnm.ou mxm xx mo w«m.~ do unx.m onm.m mxo xo mo man.” do mon.~ xm«.o m.o xx «o.w~o.o «o “no.9 to on an on on an on on rm $11.7 x:m.m« m.o xm do one.“ mo.uoo.o mmm.m~ mxo xx mo omx.m mo mno.m mom.ox mxm xx no mn4.m no mmc.o amm.x mxo xx mo oo..x mo umx.~ mmoxd Mxo xm do-nmm.m on um¢.: omm.:x mx: xm “0 uam.m mo mnx.m :mo.m« mxo \m 00 mmx.m an mmn.m :w:.«« m.: xx mo woo.“ mo mon.: mmm.m mxm xx No uw—oa do mom.“ mmm.m« mx: xx mo umx.n no mom.“ :x¢.mx m.o xm on man.“ mo moo.m :mm.n« mxw xx mo on:.m no mmx.x oomox mxo xx NO uueox mo wmoom oxmdd mxa xm «Ouwmm.m “o moo.m m:«.ox mxa xm an mxm.m mo mmm.n oxm.¢x mxc xm no mox.m m0 mom.m . a 3 xx wxm.~ nn¢.m ‘1' m m x n.m O on O non.ou Mxm xx mo oo«.x. no nmx.o oxm.m« .mxo xm «0 man." no um«.x monod mxa xx mo omfl.m no mam.m “No.0“ oxm xx mo un4.m mo oom.o mmm.x m.o xx mo mo:.x mo oo«.m mom;fl m.: xn do.omm.~ oo oom.o nom.:« m.: xm Ho mom.m an mna.: mox.~H m.o xo on nox.~ «o xnx.o Dmmoau mxc xx mn mom.“ mo mxm.c «mn.m mxm xx mo max.“ on oxx.~ mxn.na mxc xx no umx.n no one." xo..m« m.o xm do ouo.x xo ocm.m mxn.ofl mxn xx no wu:.m mn mxo.m nmm.x m.o xx mo wnc.x mo mxm.~ Ma:oma mx: xm so.omm.x "o o:n.n Nh«.Qu mxo xx do mum.m mo moo.” nan.:« n.o xn on dcx.m mo uma.m oo«.¢« mxo xm «0 man.“ no un:.~ mom.no mx: xx mo umx.n mo moo.m oon.ox mxm xx mo moa.m no moo.o oxm.x mxo xx mo mn:.x mo o.m.~ «on.ma mxc xm «ouumm.~ oo mx«.x oom.m« m.¢ xx «0 oxm.m mo omo.~ omx.md Mxo xn oo oox.m Ho owe.” mmucma mx: xx NO Named N0 uvwofl mmmoc mxm xx mo mod.“ «0 memo" :m~.c« mxo xm do one.“ no unm.~ mw:.m« mxc xx no omx.m no mmm.m mmm.o« m.m xx no oo:.m mo omH.m nmu.x mxo xx mo mo¢.x mo uc:.« m«~.ou nx: xm oo.omm.~ do woo." o«~..« mxa xw no mom.m mo mmo.: omn.n« n.o xn no mox.~ do unc.n www.ma n.: xx xo uxm.« no woo.o mmo.m n.m xx mo mox.v Ho woo-a xxx.ou mxo xm «0 one.“ mo mmx.« oc«.¢« mxc xx mo omx.m no own." m:w.ox mxm xx mo mo:.m no oxo.. soo.x mxo xx No wooox «o umm.o :e:.mu m.: xm «ouumn.~ on wax.“ www.mx nxo xm do oom.m no moo." omo.:x nxo xm no oox.~ mo mcx.x xnm.m~ ox: xx mo mom." no uon.« :nm.o~ mxm xx mo um«.« Nu umnoo on“.0u mxo xm do one.“ mo umx.~ mom.Mx mxa xx mo owd.n mo mmo.~ mm:.o« mxm xx no mo:.m no omm.m «mach mxo xx N0 mocox on own.” mmm.wu nx: xm «o.omm.m «o mum-m xmm.:« mxa xo «0 mam.m No moooo oxo.n« mxo xm oo mox.~ Ho umo.m mom.mu no: \x N0 mwmon NO mmNoh mxo.m n.m xx NO wad-n on umo.o -o.ou moo xm «0 mun." mo m:«.~ «tweed ox: xx no mmx.n no won.“ xoo.o« m.m xx 0 uo:.n mo o«o.m moo.x m.o xx mo unc.x ~o mxo.x mm:.mx nxc xm «o.omm.~ mo won.“ mxm.mH n.. xo do oxm.m .mo man.n mmo.:u mxo xm no mox.~ mo won.— omm.nn Mxo xx mo woo." no men.“ omm.o« nxm xx mo man.“ no mnn.x 0: o: a: 0c 00 no IO .88 0‘ 11.8 oxm.mx m.4 xx mo.uoo.x no mxfi.d «ma.om mxc xm mo won." :0 mmfi.w xmm.mo mxe xx :o uox.: :o umn.m omo.x mxo xx :0 mom.m :o mm:.m mnxxd mx: xm mo non.“ on omo.o xtx.nn Mxe xx :0 uom.a :o wmfi.x :mo.: mxo xx :0 mom.m mo u:m.m max.mfl mxe xm mo m«¢.m. mo unw.m xtmoma mx: xm mo omx.m no oo¢.¢ o«n.¢u m.a xx mo woo.“ mo mmm.m :mx.om m.: xm mo won.“ so omo.o mox.mx mxa xx :0 mom.¢ mo own.“ nma.w m.o xx :0 mom.m so omm.¢ n:m.m« mx: xm mo moo.“ :o mxx.m mm«.m« nxa xx 4o mom.¢ so nom.n mxm.m m.o xx :0 wan.m mo mmo.m mmn.om m.. xm mo mx¢.~ mo omm.m mn:.m« mx: xo no mmx.m mo mom.m moo.mx m.4 xx mn moo.” on mom.“ :xm.om m.: xo mo moo.“ so oxm.m mom.md m.: xx :n,mom.: on umo.m «mm.x m.o xx on me.m on uoa.o 03.xd m.¢ xm mo moo.“ on moo.x mon.a« mxa xx :0 mom.: on m:m.o «no.3 nxc xx so uzm.m mo wnx.« Mcxomu m.: xm mo m«:.~ mo um:.: mom.mx m.o xo no umx.~ no umx.: mmm.¢« m.: xx mo moo.“ mo umn.n mox.om mxa xm no man." :0 oo¢.x omx.m« mo: xx :0 uom.: mo oxm.m xom.w moo xx :0 m:m.n on una.m mon.oo mx: x0 we won." on umm.o moo.m~ m.: xx :0 mom.a on uno.n NmMoQ Mxo xx an m:m.m mo u:o.« m:n.n~ m.4 xm mo ox:.~ mo oxo.¢ mm:.mx m.. xo no mmx.~ mo omx.m o:m.~x m.: xx mo moo.“ mo woo.x mowoom mxo xm mu moo.“ no umm.w mom.mu mx: xx :0 mom.: on w«m.m mmm.x m.o xx on mon.m co mxm.m o~m.x« mx: xm mo moo.“ mo mo~.« mm:.~d m.. xx :0 memo! :o nom.o omx.: m.o xx an mom.m no um~.~ ooooma ms: xm mo wacom mo mam.m omo.md mxc xo no umx.~ no uo¢.c «om.~« mxo xx mo moo.a mo mox.o m:m.o~ ox: xm mo won.“ on non.» «mo.nx mo: xx :0 wo~.: co wmmom Nowoh mxo xx .0 o3m.m on u:n.m mmm.xa mxa xn mo men.“ so wox.m ono.«x mxo xx :0 wc~.: on mox.o mmm.n nxo xx an u:m.m mo u¢«.m m::.mo m.. xm mo ox..~ mo uno.¢ mmo.mx m.: xo no oxx.~ no wmo.o mxo.mx nxa xx mo moo." on moo.“ o«x.o~ m.. xm mo won.“ on nmx.x «mo.m« m.¢ xx so oom.c on men.“ :om.o mxo xx :0 w:m.m so noo.m «xo.oo ox: xm mo moo." on own.“ omm.x« nxc xx on mom.c :n wmo.x nmm.m m.o xx :0 osm.m mo uxx.~ x««.n~ m.c xm mo u«:.~ mo m~x.n “no.0“ ox: xo no omxxn no uxo.n mom.mu mxc xx mo moo.“ mo mom.n :om.o~ mxc xm mo moo.“ co mmm.m m:n.n« mxa xx :0 mom.: on moo.m moo.x mxo xx an u:m.m so uxm.o xmaoxu n.: xm mo moo.“ on um:.o xomouu nxa xx :0 mwmot :0 mxmom mxo.c nxo xx an mom.n no one.” noe.m« m.¢ xm mo on..~ mo uxo.m mmx.ma m.. xo no oxx.~ mo o.m.m noo.n« no: xx mo moo." on umx.a oxm.om ox: xm mo woo." so omo.o omo.m« mxc xx on uo~.o on moo.m omaow mxo xx so osm.m so uno.o omxofl mxc xm mo moo.“ on us«.« xoo.~n Mx: xx won mom.c no mxaoo omo.m mxo xx so u:m.m mo umx.x nm«.o~ mx: xm mo uxc.~ no um... can.o« mxe xo no umx.m no out}: to um am on um 0: re 11.9 mxn.xa m.: xmn on mom.~ no on:.m mxc.mx m.c xxx so mmx.m no umx.m 00m.m« m.m xmx oo www.o «o moo.“ mmx.~« moo xmn Ho-omo.x Ho.mmx.o xno.nm mx: xxx ox.o¢n.m no mno. mxm.:n m.o xxx mdUMQBo: md.mm¢.m oom.xn m.: xmfi mauuxx.x nd.uon.m omx.«~ mxo xmfi xflcwo:.x :x.mnm.« xn:.m~ mo: xx on mox.o on omm.m ono.o« n.o x~x no oom.m no mmo.~ xmo.xu mxa x«« H0 mnx.m do mmm.m mmo.mo m.n xmx no omm.o no moo.“ ax:.n~ m.o x~« «o-mm¢.x no.osx.m mnx.om mx: xmx oxunaw.m no non. xom.ao m.o xmx m«.m:x.: ofl.ooo.m omo.mx an xmn mo.onx.x oxuoxm.x nom.m~ mxo xmx xaouucox :Hamxn.« nnm.m« m.: xx o0 u:x.c on wxo.: omn.xx m.c xmn no uno.~ oo onm.m mom-ma n.o xxx «o mnx.m no oxo.~ Nam.m« m.m xmx no mmm.o an mom.” :2“.ma m.o xma no.om..x «o.Uon.o moo.nm mxe xmfl :«uuoo.~ on moo. mom.¢o m.o xnd m~.m:x.: nxumnfi.u mxm.xd m.: xmx mn.oon.x :«.uom.m Omxoda m.0 xmu xn.ooa.x ‘4H.mxn.~ mon.nd m.o xx on u:x.: on wmm.n nom.nu n.¢ xm« no onm.~ no odm.~ meaoxn m.: xxx do onx.~ no nnm.~ xoo.mx m.m xxx no omm.o so umm." mw:.Ma n.o xmx no.om:.x no wxo.a emx.nm mxo xxx yxuoon.m xx.onn.m xmm.:d mxw xmu Talmaxo: Jfilmmmoh man-mu ox: xma nxumox.x oacmomoe omn.md mxo xxx xx.on:.x ox.o««.x momom« m.a xx xo u:x.a on m«c.c mm«.xn n.. xxx oo onm.~ no omm.n mw:.m« m.o xxx no umx.~ an mmm.m mxm.mx m.m x~x oo omm.o Ho mmw.u mox.xx m.o xxx n.oma.x no one.“ o:«.nm mx: xma a~.w:m.~ Macmmu.n nom.:a m.o xxx mH.u:x.c nxuwmm.m NNOoha fix: xmn nuomauox Mulwwuoa www.mn Moo xmn xx.mna.x no moo. omx.n~ o.. xx no maxoc co mxm.n. xmm.o« nxc xmn no wnm.~ oo umn.m «mo.c« m.: x«« «o wax.m «0 mod.“ m:n.m« Mxm xm« .no mmm.o «o mmm.m xox.na moo xNH do.omo.x oo mom.m mom.o~ mo: xma QaIM#woN nanwmoom mmm.:~ mxo xwa muuuox.: :«.oom.o onx.xo nxc xmu ox.mno.x m«.ooo.~ no:.mx Moo xma x~nx>e.x :xnoxn.x omx.m« mx: xx no max.c on moo.n ~m«.nu Mxo xmu on unm.~ on o:m.~ xmm.mx Mxo xxx an nox.~ no mmc.m xmw.s« n.m xmu on “No.0 «0 un~.n «moonu m.o xmu «00mm:ox o uxx.~ wnm.om ms: xmn caouaa.m Muuumoon n:o..~ m.o xmn mH.o.x.. mo.ooo.~ xxm.oo n.¢ xmx mx-m««.x ¢«.omm.n oox.m« n.o xxx xn.on..x mx.ono.x nxn.:n mxc xx on ocx.o 00 Homom onn.ou no: xmu no non.~ on um«.n mmx.cn nxo x«« no oox.~ «0 won.“ mxo.nd n.m xmx oo mmm.o no um:.~ mmx.~x mxo xmx «UOMWQON no mmm.m m~:.o~ m.: xmx ax-uan.~ nauumo.n m«:.:« m.o xm" mn.o.x.. :«omnmom mcxoxu m.c xma mxuw««.x n«.uxm.~ no:.m« mxo xmn xx.oo..x a«.umm.~ oxx.nn mxo xx on u.x.c on axa.n m«~.o« nxc xmu on unm.~ no.unx.~ mmooo« not x«« no omx.~ oo ooo.a nmx.e« nxm xmx oo omm.o no mmx.~ «xo.mu non xmu no.ume.x on mox.m ono.nm mxc xmu oatmsm.~ no moo. “no.0" mxm xmu m~.u:x.o Muamoo.~ monoH Mo: xmu Mulwdaob ndoux~.c moo.no Mxo xxx x~.one.x mx.nnx.~ untooa moo xx no u:x.o no mox.n ON on om om z On on 9n .00 1.2(1 oom.xx n.o xmn no woo." oo moo.m mmmooa m.e xx" an mom.“ «0 moo.m oom.:x mxm xmx on own." on us".m mmm.m« nxo xxx no w,n.m do mmx.a mmm.xfi m.o xx" monuma.: on mwa.m xmm.nm mxo xHH an mwx.m do umm.m mom.mo m.: xxx 00 mum-m on own.“ NNmoOw m.m xx". on umm.o on wmo.m oox.ma n.o xmu «o-on:.x mn.mmx.a moo.m« mxo xmx oo omx.¢ no oom.m x:o.ma mx: xmn no man." «o omn.m m:n.mx mxo xx“ do now.“ no u4:.m mom.on nxm xmd no own.” mo mon.x www.mx m.o xmx mouomo.a no wmx.~ omo.nm m.: xxx #0 mnxom on nxw.m mmmoma mxo xmx no mum.m no.omx.x mmo.o« mxm xmx no mum.o no wox.o 00n.4n m.o xmx «o.nmo.x no.uxx.« Mon.xo m.; xxx oo woo.“ oo onm.m non.ox fix: xnd an mom." on umu.~ oom.:x m.m xxx ) own.“ 0. no mm:.m mam.mx mxo xx“ no mom.m «0 won." :om.«« nxo xma mn-mmo.¢ on oom.~ mowoom nx: xHH «n omx.m no ooo.m Ham.0H mx: xxx on mam.m on w:m.« nmm.co m.m xmx on mxm.o on unn.m :mx.nx m.o xxx no.om..x mo.oxo.~ omo.no mxo xmx no mnx.o do omm.m OmOoMm no: xma oo umo.u no mom." nmm.na mx: xfix an mom.“ on unc.n mmn.ou mxm xmx on non." no own.“ amn.mn ‘mxo xmn mnumm:.e no “xx.“ noo.n~ m.¢ xoo on omx.m an n:x.~ 030.0“ m.; xmu no mom.~ _n.nmo.x nmx.ox mxm xmn no umm.m no umooa :xn.:« mxo xmfi «o.om:.x onaoox.m nmo.x« n.c xmu oo woo.“ oo nmm.m. «xooxa Mx: x«« #0 mom.“ “0 wmoom n:m.;x Mxm xma on own.“ no mox.n xxn.ox mxo x«« no u:m.~ on own." demo—u n.o xxx mn.om..o on.o.n.o .nm.om m.¢ xx" no nxx.m an omo.m :mx.m« ox: xmx on mmm.~ on wxm.m xdo.oa mxm xmn oo oxo.o on max.m nox.mx mxo xxx oncom4.x n.oco.n mmn.o« nxo xma .00 one.“ no wmm.» «mo.xx nxc xau Ho mom.“ on m:x.~ mmo.mx nxm xmx on “no.“ no on:.m m:«.mu mxo xx“ 00 mamom «0 mac.“ o:n.«« m.o xxx mo.ume.a no.ooo.~ omm.n~ mx: xxx do mmx.m no oxx.m nnx.on mxa xmu oo uxmom no mc¢.m xnn.ox m.m xmx 00 wmmoo no mmc.m mmx.m~ m.o xxx on.mme.x no man.“ mo~.m« n.o xmx on moo.“ an wmo.m moo.oo n.: x«« on now.“ no mmooQ onx.o« mxm xwa on won.“ an mma.« nxa.mfi «.0 xxx no u:m.~ «O wmxom on~.m~ Moo xm« nnunm;.c anuuwmoo max.om mxa xxx on omx.~ «n onx.~ ovmomn mxa xmu o moo.m on uo«.m nnw.on mom xmn 00 MNMoO 0v utwom w~n.:« m.o xmd «numm:.x mounnm.m mmoond nxc xma oo woo.“ no umo.o moo.x~ Mx: xxx Ho mom." no omx.m mmo.ma m.m xmo oo own.“ no moo.m om~.mx moo x«« on mom.~ «0 moo.“ omo.on n.o xmx mo.mm:.: oo.o:n.x mom.on mxc xxx no mmx.m no moo.m xmxxmn m.: xmx no oom.~ oo unmom «ncocn mxm xmu no oxm.o oo oxm.~ onm.nn m.o xxx no.mm..x no uxc.a oom.nfl nxa x~« on one.” no uoo.~ «mm.w« ch xau «o mom." on msx.o mam.oa nxm xnx on won.“ no one." own-Mn Mxo xxx on m:m.~ «o unn.~ no«.nn m.o xmx mo.mmc.o oo.onx.o nmm.x~ mx: xxx no omx.~ no mox.~ omm.mn mxc xmu on oom.~ no on~.~ xom.ox mxm xmu no umm.o no umo.c mmu.:« m.» xmn «nummo.x mouuxm.o on on on on on ow ON ON ON 1221 mao.n« m.: \«a mo won.c mo mmm.n n¢m.m" m‘m \a# mo ox~.o mo mmo.» nmm.fin m‘o \a« no new.“ no u:o.n mmfi.~“ mso \ma mo u:H.m mo wnm.m www.m— ms: \mn «0 wH4.m mo ww«.« mm¢.ma m.¢ \fia mo mam.“ ao mnm.: mmm.cfl m.m \mfi do mom.m mo mmn." mam.mn msw \HH mo m54.d. do mm¢.~ ofio.mfi m\o \mn oo mmn.c “0 was." mom.wfl m.c \«a mo mmu.c mo mmm.m nno.mfl m.m \flfi mo mmn.o :0 “mo.“ :4m.mfi msc \«u mo wow.” mo who.“ moo.m« m.o \md mo m4“.m mo mom.“ 0mm.md m‘¢ \N« do mfi:.m «o wmm.m .um.m” 9‘: \«« mo mow." no mum.: www.cw m.w \N« do wmm.m “o umm.n nmm.:fi m‘o \an «o mna.fi do Moo.m nmm.m~ m.o \N# no mm«.: Ho mom." mmo.n« m~¢ \na mo.umn.c mu uau.n "um.mfl n‘m \HH mo own.o mo m:m.n mom.afi M.O \a« mo max.“ mo m:a.o noaoafi m.o \mfi mu wafi.m mo mam.m mmo.ma m.: \m« “o waa.m mo m:m.n m::.m« m‘w \fifl mu mflfi.u do wom.n noméfl m.m \w« on wcm.n mo was.“ www.mu m.o \«n no mn¢.d no mxm.w "mo.mfi n.o \m" oo umd.: no “mo.“ www.mu r.: x“— mo mmn.¢ mn uhm.w mrnoma m.m \a« mo mmn.o mo mom.o 0. mom“ v.0 \“u mp mow.“ .mh “mm.w ooo.mfi m.o \m“ mo m¢fl.m mo u¢m.« :4momn m‘: \ma “o ma:.m mo moo." mnm.mfl w.¢ x", mo uflfi.“ Ho mmo.m «0 mn:." on m-.: mmn.mfl m.o \ma Ao mmfl.e go wow.“ omm.o« m.o \«u mo umn.o mo mam.m :mo.m« m.m \«m mu mwh.o mo u3u.w Hnm.fla m.o \ma 0 u:~.m o mem.m Domoaa m.o \«n mo mew.“ m0 mm«.o nao.ma a.: \mu 0 mfi:.m do mmm.m wom.m« m.: \a« mu mfia.« mo umm.n «o who.m www.ma «.0 \un 00 uma.¢ oo uco.o noo.o~ m.a \«a no mms.c mo usm.c am:.m« m~m \nu no wmn.o mo u“¢.n sca.nn m~o \N« no m:a.m mo omn.m moo-«u m.o \an no mew.“ :0 mmn.n mmoomu m.: \N« do ma:.~ do mom.o momovn m.: \ag mo mHH.« mo meg." «mm.c« m.m \m« «o mnm.m we was." o:m.m« m~o \HH wo mn:.u no mmw.o od:.m« m.o \md 00 umn.c oo mo:.n cmo.na m.o \«d no umu.o no uw~.. :un.a« m.m \«a no oa~.o mo mmm.m mam.m« m.o \ma mo m:".n mo umm.m sgn.~« m‘o \«u no mom." :0 wow.“ Ommovn m‘a \m— “0 u«a.~ do um«.o 00¢.m" m‘: \u« mo wag." «o u:a.m mmm.o« w.m \N« "a uwm.m mu mam.” mum.4« m.o \"a mo “5:.“ no mm«.m :4n.m~ msw \mu ‘oo mm“.. 00 man.— cam.ou m.¢ \«u no umhot mo woc.c mn:.mu m.m \«n no om~.o mo Mum.o nod.a~ m.o \N« no m¢«.m mo mam.m mno.«« mso \«a no mom.“ :0 “moon cmoown m.: \m« Ho ma:.m "o umo.n mmmcmn m.: \«a mo mfifi.fi mo wrm.« omm.o« m~m \ma «0 mom.m mo mam.“ onm.m~ m.o \ua mo mus.“ "o mw¢.n am:.mn m~c \md oo mmu.o 00 “50.6 mo«.n« as: \«u no umn.c no umaoo mou.cn n.m \u« no umn.o no man.» mmm.md n.o \N« no mcu.m No mnn.o mm:.- m~o \«a mo own.“ 4o woo." wmm.mu m.¢ \m« «o m«..~ no mac.o omm.m« m~s \fla mo uaa.n do un«.m oeu.o_ m~m \N« do wam.m mo own.“ :mm.:« 0.0 \«n mo out.” "o woo.m m:n.m« m.o \N« no mmfl.. oo mom.” 90 o: .c 00 on on on on «n :1222 :oo.~« Ms: \«u no man.“ :0 mm:.« mom.:« m.m \fin mo o¢~.m do mfl¢.m‘ mfl.«" m.o \«fi mo mm¢.m m0 moo.N m:m.m~ m~: \Na mo mum.“ no mmo.m o«:.m« m.a \fld mo mmn.¢ mo mom.: :mm.o« n‘m \flfi mo omn.o mo mmn.m ~o~.m« m.e \mfl mo u¢H.m mo mmu.m m:o.m« m.c \flfi mo mom.fi do mam.m memos" .m.: \m« mo who." mo won.“ cam.wu m.c \«u no mmo.n :o onn.m :m:.o« m.m \«u no m:h.m mo owfi.m mon.m« m~o \«a mo mmw.m mo mmn.s How.m« m.: \mu mo mum.“ mo mm“.m mkm.md. m.: \«n m0 ucn.¢ mo mum.¢ mom.o« ‘ m.m \a« mo omn.o mo mum.m :mx.mfl m.c \No no m4“.m mu won.: oom.m" m~o \«a mo mom.d mo omn.m mmaomu ms: \mfi m0 whmou mo Mme." «mnohu .m~c \«u no Mao.“ :o mmm.« nom.¢d m.m \«n no m:n.m mu wan.“ QMuoud m.o \«a mu mmm.m no omm.d Swima m.c \N« no mum.“ mo m4m.m omcomd m.: \«n c mmh.: mo mom. nom.od m‘m \«a mo own.o mo om0.m ooh.nu m.o \«a mo u:~.m mo umo.m :mo.n~ mso \u« no mom.“ «0 umm.m whm.nfl mg: \md ma ohm.“ mo who.“ Nwmowa m.: \u« no MOO-h :o mmn.m on:.on m.m \«u mo u:s.m mo omm.~ un~.mfl m.o \H" mo www.m no mam.u momofiu m.: \No no ohm." mo m««.m mmm.m~ m.: \an MC mmho4 mo m:m.4 M“ .0“ m‘m \dd mo mmn.o mo w«m.m nom.mu m‘o \m" "0 m:H.n mo “55.: mom.mfi m.o \a« mo mow." mo mow.m :Omoma m~c \ma mo mum." mo woo.“ omm.s« m.o \a«. mo mmo.n :o mm~.m mutoeu m.m \Ha mo m:n.n mo um4.n mo:.«a m~o \«u mo mmm.m mo mom.“ me:.ma m.: \N« no mum.“ mo mom.“ oomomn m~¢ \"u mo umn.e no umm.o m«m.cfl m.m \n« no mmn.o mo mm:.m m0 w3fi.m mo uma.m o:m.md msc \an no new.“ no mm:.~ :cmrhd m.: \m« m0 mun.“ no one." neu.nu n.¢ \un no mmo.s :o mfio.~ nsm.4a m~m \«n no msn.m mo mmm.m m:#oafi m.o \a« mo wmw.m no mm“.m «anomu m~: \N« no onm.« no umm.m mn~.m« m.: x"« no umu.¢ no mam.: oomocu m.m \«a no mmn.o no pam.m muw.Mu m.o \N« no “3n.m mo um:.m mmo.m~ m.o \«a mo woo.“ mo moa.m mmm.n~ m.: \N« no who.“ no mam.“ oom.o« m~c \«a no moo.s :0 wmm.o #:homu «.m \«H mo m:n.m :0 mmn.: Gomomu m.» \«a mo mmm.m mo “ouch osm.m« m~¢ \ma no ohm.“ no mmm.~ www.ma ms: \«fi mo uo~.e no moo-n mom.o« w~m \«a mo mmn.o mo mmm.~ oHo.¢« m.o \N« no m4a.m mo mmo.w ma:.m« m.o \«a no wow.“ 00 mnm.o omn.wa m.: \N« no who.“ no umo.~ m.s.n« n.o \u« no umOoh :o mmm.~ omm.au m.m \«« no u.~.m mo oam.n om:.na m.o \a« mo umw.m mo u¢«.~ mom.mn m.¢ \N« no who.“ mo wo~.m www.ma m.: \«u mo was.» no umm.o mom.o« mom \«u no uuh.o mo wwmom mdm.md m.o \N« no u4n.m no mam.~ mo«.m« m.o \«u no moo.“ mo mum.“ som.hu m.c \md mo who.“ no um..u ~5m.nn n~c \«u no mmo.n co umn.o “whom“ n~m \«u no o.n.m so mon.c mom-NH m~o \a« mo mmo.~ mo umm.u mnm.mn ms: \N« no who.“ no uon.m oom.m« ms: \u« no mmn.c no m:m.m nom.on m~m \«a no ww~.o no wmo.m maoocu m.o \mu mo m:«.n mo mmm.m :m:.n« m~o \«u no wow." 00 m-.n m:how« ms: \Nu no mun.” mo.mcoow on on on 0o 9c 9o 90 90 1223 :mo.m« m‘a \du 00 woo." co mum." www.ma m‘o \dfi eo mmm.m on omo.m mn:.~d m.: \fifi co mos.“ co mam.“ :mn.od m.c \flfi co mmx.m co ufim.m ohm.mfi m~: \m" mo mun.fi mo mom.m 3L0 I!) 0 0mm mm 3 0 \‘JQ‘ Cu 0! \H '4 LLHH “Ju.oa m~m \fln mo o¢c.fi mo um¢.m w~u.m~ m‘o \n«. :0 wnm.m :0 was." :mm.mn m.: \mfi mo omm.m so mom.“ omm.mn m.: \«a mo wo;." :o mmm.m :am.m" m.o \«fi 00 mmm.m co mon.a “on.m~ m‘: \on mo oo¢.H oo omfi.m mmm.mu m.o \«n 00 mmm.m mo uaa.o ada.ma . m.: \mn mo woo.“ mo omm.~ 0m .0H m.: \fl“ mu mom.“ Houumm.h mo oco.m :o mom.4 wmo.m« m~c \«d on mm¢.u co uflm.« Hom.m« m.o \Hfl on umw.m co mao.m Whiohfl m.a \«a co on:.« no mom.“ mmm.o m‘c \«a on mmm.m on mcm.: 29mfl m.: \m« on own.«. mu mom.m mmnéH m.a \fia mo omm.fi :v mn:.m u:n.¢« m~m \flfl rc wswoa m: mmw.m n.: \Mn mo mmw.m :0 who.“ omn.mu mg: \«u on woe.“ co mum.~ mom.m« m.c \«a on mmm.m wo awn.“ om~.m« m.a \«a we wmaou wo omfl.m oom.m~ m.o \«a mo mmm.m o0 wmo.m wa:.mn m.¢ \Na m0 moo.a Mo mmw.m uC mtcoa on m:m.a mo:.mfl m~c \aw 40 ammom :0 ur—.« .hn.om «.4 \m" no acvon :0 mm:.: mom.wa ms: \«u no um:.a co wmfi.« mn:.m~ m~o \u« 00 mmw.m no ooe.m :mn.hn m~¢ \«a no mo:.« co mom.“ omw.ofi m.o \«a on omm.m oo umm.m 000.0” m.a \md mo mon.u mo omm.fl nmm.afi as: \H« o mam.“ -o umm.« fill) oaa.efi m‘m \uu nu m:o.a mu mam.m nou.m« m.o \“n :u unm.m Jo mmm.« mmm.w« m.: \«n no mm..« we own.“ mm:.mn m.o \«n co “mm.m oo who.m nm«.na m.: \«d co woo.“ co m4n.« 5mm.o« m~o \«u no wmm.m co mmm.m moo.m« m.: \m« mo woo." we was." mam.mfl m.: \a« mo mam.a mo wmm.a mwn.o~ m~m \a. go o:o.« mo ohm.~ mmm.m« m~c \a« :o mum.m :0 m¢o.~ mom.m« m.c \ma M0 mooon :0 won." ~o«.mn m~c \«n on um:.u mo mom.m mafimfl m.o \«« on omm.m co o4“.m o4m.wa m.: \«fi co mm4.fl co mom.m 4mm.~« m.o \«o no omm.m no umo.o :nm.ofl m‘m \«n mo o’c." mo umm.~ www.mw wmm.mu m‘a \mu mo om¢.n :L wmmom mmm.o« m.: \«a oo.uo:.« co “Ho.“ mmc.m« m.o \na co mmm.n on who.~ Camoha m~4 \«a co ~03.“ co owe.“ mmw.oa m.o \«g no wmm.m «o uno.m non.md ms: \mu m0 wwOon 0 www.« mmm.m« m.a \a« mo “mm." mm wee.“ .mo.cfl. m.m \dfi mo mac." mo who.m «:m.~«_ m.m \"a :0 mum.m :0 mm".« ««m.m« m.: \w« mu umo.n eo mom." mo«.ma m.: x“— oo out.“ mo u«o.o, mah.m« mso \«u no mmm.m oo mmn.~ www.mfl m.: \«u cu mm:.« 0o mom.~ :ao.ma m~o \«n co mmm.m oo moo.m o~u.o~ m~a \Na mo moo." mo mam.“ mom.m« m~¢ \«u mu wmm." mo mmo.n mom.od m~m \«d mo m¢o.u mo umo.~ ~am.m« m~o \«a :o wom.m mo mmo.o «cm.m~ n.. \m« mu woo.n :o mco.m co 90 90 90 om on on om om 124 ofl«.m~ m.: \u« no mooom mo umo.m. omm.ofl m.c \fl" 00 wmm.w so omo.m ms: \fla mo mo:.m mo umm.m mfin.mu m~¢ \ad o0 mom.o no moo.m n”«.m« m~. \«u no uo¢.~ mo umoJN. omo.hfl m.; \«a co.mmm.o no mmm.¢ osmonn m.o \on no uoo.~ mo won.~ omn.mu m.: \H« on wow.» so mmo.m owm.m« m.: \u« no uoc.~ oo mod.~ moo.h« m.a \aa 00 mom.» no mum.n mnn.m« moo \«u mo wc¢.m mo moo.m nom.n« m~4 \«n oo umm.o so umo.m mon.md mo: \«u no moa.~ no own.“ manomn no: \«« cu umm.o mo woo.“ unnoma m.¢ \"H no uoa.~ mo om«.~ oom.n" m.o \«o co ummon no uom.n. o ouchuo mason“ ms: \«n no uoo.~ mo Mme.” “moon“ no: \«n co mmw.» oo moo.” on or 125 TABLE D.3.-- Column a Ca48-TDA K-K b Ca48-TDA K-K M.S. c Ca48-TDA Sussex d Ca48-TDA Sussex M.S. e Ca48-RPA K-K M.S. 65% Strength 126 a b c d e E? 3-8aE-c1 3-33£-01 6.295-01 4.59E-01 5.355-01 OOOE OO OCOE.CC OCOE 00 0005 00 30865 0C 11/ 7:2 11/ 7:2 11/ 7:? 11/ 7:2 7/ 4:1 120150 11o216 12-335 11.299 100066 1- 1.89E-C4 1093E-C3 1.935-33 #.35E-33 4.65E-Cl SoBZE-ci 5-37E-cl 5-37E-31 bo37E'01 ocOE CO 8/ 513 8/ 5:3 8/ 5:3 8/ 513‘ 11/ 712 70192 60293 70133 50974 100567 1- 3;aaE-c3 2.495-c3 4.975-34 1.155-04 4.53E-03 3.86E-c1 3086E-c1 3.855-01 3.85E-o1 5.37E-c1 8/ 4:3 8/ 4.3 8/ 4.3 8/ 4:3 8/ 5,3 7-548 6-539 7.971 5.652 6.827 1? 2.33E-c3 3.99E-cs 8.43E-03 3.2xE-oa 7.735-03 40295-02 4'295-02 “-295-32 u-esE-oa 4029E-02 8/ 613 5/ 6'3 8/ 6:3 8/ 6‘3 5/ 613 100341 90234 13.771 9.525 7.325 1- 3.27E-c2 1.695-0“ 2.225-02 3.075-03 1.335-02 2.685-01 10355 co 2.685-01 zoéaE-o1 2.58E-o1 13/ 5‘3 9/ 6'3 C/ 513 10/ 5'3 10/ 5:3 110171 00578 13.376 12.325 9.845 1‘ SOC7E.02 1059E'CZ 1094E DO 1043E'C2 loééE'CE 1.35E cc. aceBE-ci 3-86E'01 BobeE-ca 1-355 00 9/ 613 10/ 5:3 5/ 413 9/ 413 9/ 6;3 110642 110629 1&019? 170377 100358 1- 3.2“E-02 6o24E-02 1.335-02 1.33E-O? 1.29E-Cl 9.66E-oa 9.665-02 9-66E-32 3.43E-og 9.6oE-c2 9/ 4:3 9/ #13 9/ “:3 8/ 614 9/ #13 15.579 15-u9c 18.639 8-248 zuofice 1' 5076E‘CB 3°59E'03 BOCQF'CE 2032E'03 loCSE‘éE 30435'02 3'43E'02 30h3E-02 4029E'01 3°43E'02 8/ 6'4 8/ 614 8/ ban 8/ Ban 9/ 6:4 9.237 8.138 9.334 3-847 8.297 1- 1.08E-CB 5.28E-03 7.34E-02 3.535-01 5.13E-C3 4-29E-01 “-29E-31 4.295-01 1-725-01 4-295-31 8/ 5:4 8/ 5:4 a/ 5,4 10/ 6:4 9/ 5,4 13-171 90605 10-111 3.165 8.723 1- 1. 2023E'01 1-72E-o1 10/ 614 110384 8035E'C3 1072E'Cl 10/ 614 120825 2007E’C2 EoISE'Cl O/ 514 13'171 2016E'01 3-095-01 8/ #14 130913 2088E CC 3'O9E'C1 8/ 414 150328 9005E'Cl 7073E'CZ 9/ 414 17-741 50ClE-01 2048E OC 7/ 611 60bk9 20495 CO 30935 CO 7/ #11 100230 1012E CO S026E'C1 11/ 712 80547 7-11E-03 20155-01 10/ 504 90987 10855'01 10725'01 10/ 6:4 10.87“ 10915-C3 1072E'01 10/ 614 110882 2.575-01 3.095-01 8/ #04 12-736 2.97E CG 3°09E-01 8/ 4:4 14'111 9017E'Cl 7073t-02 9/ 404 16025“ 4055E'Cl 2048E cc 7/ 611 50667 2'66E cc 5026E'C1 11/ 712 7077? 108CE'02 8027E-05 8/ 613 80655 127 3066E-01 1'725'01 10/ 614 110186 1084E'22 E015F-01 13/ 50h 110768 303SE'C1 10CSE 00 9/ 614 120690 1054E'31 3'C95'01 8/ 4:4 13:594 9044E'01 30095-01 8/ #14 15'114 2-325-01 7073E-02 9/ 414 170502 7035E'Cl 2°48E 00 7/ 611 60570 2-795 cc 3093E 0C 7/ 411 100251 9036E‘C1 S026C'01 11/ 70? 80831 2045E'02 BOISE-01 10/ 504 100527 30915’01 10085 DC 9/ 6:4 11-635 1091E'01 3.095-01 8/ #04 12-555 1093E CC .1072E'01 10/ 610 130090 1014E OO 3-095-01 8/ 414 13-966 20555'01 70735.02 9/ 4:# 15'116 8013E'01 20#9E OS 7/ 6:1 80Q6C “093F OC 3093E CC 7/ #11 90797 20015'01 50265'01 11/ 7'2 70601 5093E'06 3043E-02 8/ 6)# 90167 1024E‘C3 1-725‘01 1C/ 61# 110459 7081E'33 BOISE-C1 lC/ 5:4 110674 904EE'C1 1‘085 00 9/ 614 120264 1087E CC 3'O9E'Ol 8/ 414 13-106 4-74E-01 7.73E-c2 9/ 414 15099 7011E-Cl 2048E CC 7/ 6:1 50h63 10585 CC 3093E CO 7/ 4:1 90101 3033E-CE 5026E‘C1 11/ 712 80166 2. 2o 2. 2o 2- 2‘ 50505.02 8027E'OS 8/ 613 80673 1075E'C1 1079E'C3 10K 6’3 100900 103OE'C1 701SE'CE 8/ 413 110893 3088E'C1 6014E'02 9/ 613 120105 1096E’01 0005 CO 9/ 513 120397 6013E'C2 'CCE CO 9/ 513 120b85 1.475 co 1-02E-CP 10/ “’3 140375 2089E'C1 4096E'O4 9/ 413 150985 10255 CO 1058E CC 8/ 514 90416 1044E 0C 6088E-02 8/ 513 90378 7'97E'Cl 1079E'C3 lC/ 613 10115 OR” 01M 0(flFW“ \Doo F*\C3h) H n)» muHDC) () 1087E'Cl 6014E’CB 9/ 613 120229 7.26E-Cl 70156.02 8/ 413 120707 10345 0C 1-02E-o2 10/ 413 130215 1041E-Cl 4096E-c4 9/ 413 140801 3096E'04 6.26E-02 8/ 614 70:15 7059E'01 1059E CC 8/ 514 3'C73 128 7-ccE-c4 8'27E-QS 8/ 613 80604 80C9E‘C1 10795-03 C/ 613 10-561 2086E 93 6-88E-02 8/ 513 130992 2047E'C1 6014E'C2 9/ 613 110171 1041E'01 oooE 00 9/ 513 120967 11315 CO 4096E-c4 9/ 413 150608 50985‘01 1-02E-02 10/ 413 160753 1.825 CO 10586 00 8/ 514 90211 1032E'02 boPéE'CE 3/ 614 90714 80565'01 80275'05 8/ 613 70213 3024E'C1 61885‘02 8/ 513 90123 6053E‘C3 1079E'O3 10/ 613 90481 40195.01 60145’02 9/ 613 100160 1.10E-01 cCCE OC 9/ 513 110770 5075F'Cl 1'025'02 10/ 413 130060 1027E'02 4096E'04 9/ 413 140480 7014E’C1 l'OZE'OB IC/ 413 150394 2.45E co 1059E CC 8/ 514 70741 1-675-03 8027E'05 8/ 613 7.557 60705.3? 1°79E'C3 1C/ 613 905C9 1.815-01 7-1SE-CE 5/ 413 10.739 7015E-CE oCOE Cc 9/ 513 110231 loC4E CC l'OEE'CE 18/ 413 120977 1077E'C1 #0965'C4 9/ 413 140543 30“8E CO 1055 CC 8/ 514 70535 10226.62 6'26E'C2 8/ 614 80709 30275 CC l'SRE CC 5/ 514 90560 2- 2o 2. 9097E‘C4 60265'02 8/ 614 90604 2.355 CO 1058E CO 8/ 514 11°CC2 10315 CD 0005 CC 9/ 514 110526 1057E‘C1 604OE'C2 9/ 614 130375 70905'01 60915‘01 8/ 414 130624 4.18E-c1 3076E'C1 9/ 414 150558 10“8€ CO 5023E'C1 10/ 414 160623 1.27E C3 40745 C2 7/ 511 30941 2'27E'C1 1042E C? 7/ 611 50618 1061E CC 604CE'O? 9/ 614 90776 4077E'C1 80345-03 10/ 614 90856 1o57E CC .005 CO 9/ 514 100330 5093E'O? 60915'01 8/ 414 100763 1-39E-ol 8034E-03 10/ 614 110627 80195.01 3076E'01 9/ 414 140182 103PE CC 50235'01 10/ 414 150454 1028E 33 4074C 02 7/ 511 30141 3013E CC 104?E “P 7/ 611 40787 129 3034E-cl ~ccE co 9/ 514 110674 3015E'C2 OCOE CC 9/ 514 1109C4 7o39E-62 8034E'03 13/ 614 120?32 9-87E-0? 604OE-C2 9/ 614 12'341 loooE oo 6091E'01 8/ 414 130875 6152E-31 5-23E-01 10/ 414 141384 1048E'Ol 3076E'31 9/ 414 150835 10235 33 40745 32 7/ 511 40633 7084E'O4 104PE C 7/ 611 50829 30365'02 6026E'02 8/ 6‘4 80597 30595.01 103E OS 9/ 514 13-546 4o4oE-c_ 000E OS 9/ 514 10-721 10015'01 80345'03 10/ 614 11.138 1009E'O6 60435'02 9/ 614 11‘229 1-14E 00 61915-01 8/ 414 120669 1052? 03 3076E'Ol 9/ 414 140265 1025E C,3 4074E 02 7/ 5‘1 30686 1037K 01 10425 03 7/ 611 41826 4084E'O1 60405'02 9/ 614 100287 3015E-Cl 000E CC 9/ 514 100866 3019E'C4 8'34E'C3 10/ 614 110413 1095E-Cl 604OE'CE 9/ 614 110353 6-20E'01 60915-01 8/ 414 12.507 4197E'31 3176E-c1 9/ 414 14.376 9.1eE-c1 5-236-31 lC/ 414 15-212 20165 C3 4074E CZ 7/ 511 30711 1'59? CI 10425 C? 7/ 611 40571 3. 3- 3. 3-° 20995 01 4074E 02 . 7/ 511 70493. 9064E'C2 10335 C2 81 613 8.358 5099E Cl 1023E CE 9/ 613 11'013 3.94s 01 8085E O1 8/ 413 110584 1-18E c1 1078E CE 9/ 513 120272 5060E C1 10115 CE 10/ 413 130974 3039E 01 80545 01 9/ 413 150247 60135 CO 1-066 02 8/ 614 90621 3022E CB 1°05E 02 8/ 614 10.157 e-ela 90055 CC 1'33E OP 8/ 613 70394 706“E 01 80856 01 8/ 413 1C052C 1045E C1 1128E 02 9/ 613 110?28 50C9E Cl 1011E C? 10/ 413 12.823 5.785 Cl 8054E 01 9/ 413 140C71 605“E'01 8054E 01 9/ 413 140431 10665 01 10C6E 02 8/ 614 80611 130 2023E 00 4127E 12 7/ 411 90435 9.51? ?0 -“CE vs 11/ 71? 8-3a9 80545 31 11336 32 8/ 613 70631 6031E DO 1178E 02 9/ 513 110664 1-PZE 31 1'28E 92 9/ 613 120393 60825 91 1011E 02 10/ “13 140371 8066E C 8054E C 9/ 413 160197 1 1 40415 01 000E OO 11/ 712 70431 3.43i 02 00;? CC 11/ 7'2 90151 6029E C1 1033E 32 3/ 6'3 60453 1063E DC 10785 02 9/ 5'3 100466 1.84E oc 1028E 02 9/ 613 11-511 3013? 01 808")F C1 8/ 413 120563 6061E C1 1-11€ o? 10/ 413 130026 8084E 01 80545 01 9/ 413 14-901 50575 03 1'06E O? 8/ 614 30471 2055E Cl 1178E CE 9/ 513 100312 5-73E 31 80855 01 8/ 413 100514 1077E 01 1023E CE 9/ 613 11019? 4029i 01 1011E CE 13/ 413 120730 9080E C1 6°54E Cl 9/ 413 130945 b.50E SC 10C6E CE 5/ 614 8 .672 3- 3. 3- 1+- 40315'01 10QEE 02 9/ 504 110452 8094i CI 10425 C? 9/.514 120373 90355 01 7008E Cl 8/ 414 13-125 1072E'C1 6083K C1 9/ #14 150715 3032E CE 8085E 01 10/ 414 160371 1-39E cc #054E CE 7/ 611 So#87 1084E C3 2058E C3 7/ 511 60287 3-76E c3 2065E C3 7/ #01 ' 90592 30615 C1 7056E C2 11/ 712 90385 1-o3E 02 10025 C2 9/ 614 90908 F-p \D o o 04\.#\0 MP* 0<fi|WH7 ’UC) (1)5 w470(j 5 O 7-44E c1 1°42E 02 9/ 514 110348 80145 Cl 7008E C1 8/ 404 110985 30165 02 8085E C1 10/ 404 150107 1042E C1 40545 CE 7/ 601 40617 1081E 03 20585 03 7/ 501 50557 3°61? 03 2065E 03 7/ 411 9.125 5.3QE CC 70565 02 11/ 712 8041C l3l 3098E 02 1006E 02 8/ 604 10'024 3.745 f1 l'CEE 32 9/ 604 110247 1-78E 32 7:385 01 8/ 4:4 120142 3.95E 30 1042E 32 9/ 50“ 120592 60645 01 6083E Cl 9/ 414 150585 1-#1F 31 40545 32 7/ 6:1 50574 20085 03 2058E 03 7/ 511 60319 3083E 03 2065i 33 7/ 411 90571 7063E-Ql 7-56E 02 11/ 7)? 80678 20848 01 IOOEE 02 9/ 604 100208 1076E C2 7008E C1 8/ 4:4 130964 20165 01 10425 08 9/ 514 110272 8010E CI 60835 Cl 9/ 4:4 140170 10285 02 8085f 01 10/ 4:4 15.28? 50839 01 4054E 02 7/ 611 40478 EaObE O3 2053E O3 7/ 501 50#9P 3069E O3 2065E O3 7/ 411 80785 300“? C1 7055E Q? 11/ 702 70957 1'325 02 I'OEE C2 9/ 604 90961 50C3E C1 1042E C2 9/ 50h 110314 9'69E C1 7.088 c1 8/ 404 120131 60765 CC 6083E Cl 9/ 414 14-344 205#E C2 8085E C1 13/ #04 140949 3'38E Cl QOFQE CE 7/ 6&1 #0733 1087E C3 2'58E C3 7/ 501 50458 3-235 C3 2065E £3 7/ #11 30327 5031E Cl 7'56F C2 11/ 702 304?5 4- a. 99 5- 50- 5- 10375 03 10025 02 8/ 413 120104 50365 01 2074E'C1 9/ 403 150429 3005E Cl 1038E 01 9/ 614, 110781 80695 01 1038E 01 9/ 604 12'880 2.08E 03 2034E C3 ’8/ 404 130926 40575 CZ 2007E c2 9/ 404 140940 2091E C5 2.24E 05 7/ 611 50037 6070E C“ 9061E C4 7/ 411 90398 10365 C1+ 00005 CO 11/ 712 80483 6077E 01 20965 CC . 9/ 613 110857 1083E C3 1002E CE 8/ 413 12082C 805?E CO E074E’C1 9/ 4:3 1"289 60185 01 103RE 01 9/ 614 100526 1068E CB 203“E 03 8/ 40“ 110c05 b036E CE 20076 02 9/ 404 130499 209?? CS 2024E CS 7/ 601 40157 6008E C“ 9061E ch ‘7/ 4:1 8.677 1095E C“ 000E CC 11/ 712 70764 132 4061E 32 2096E CO 9/ 603 120633 1076E C3 10an c2 8/ 413 130978 90765 31 20745-01 9/ 403 150094 1028E 32 1038E cl 9/ 604 110263 10165 33 2034E c3 8/ 404 110984 10925 32 20c7E 02 9/ 404 150485 2091E C5 20245 05 7/ 601 50429 8033K O“ 9061E 04 7/ 401 90472 90915 03 030E 30 11/ 7:? 80985 30175 08 2096E OO 9/ 603 110587 20ObE O3 lOOEE 02 8/ #03 120720 10295 02 2074E'01 9/ 403 140115 10635 02 1.325 01 9/ 604 100238 10075 O3 2.34E 03 8/ 404 100796 1074E O? 20O7E 02 9/ 414 130716 2092E OS 2024E 05 7/ 611 #0318 70145 C“ 9061E O4 7/ 411 80695 2025E C4 0035 00 11/ 712 3.246 1033E O3 l‘OEE 02 8/ 403 100861 4'66E Cl 2096E CO 9/ 6:3 11061C 40695 C1 2'74E'Cl 9/ 403 140220 30405 Cl 10385 01 9/ 614 100443 20005 C3 20345 03 8/ 414 120687 305“E C2 20076 oz 9/ 494 130677 3031E C5 20P4E Cb 7/ 601 404C9 6025E C“ 9061E 04 7/ 411 80633 30255 C“ 000E 0C 11/ 712 70969 6- 1+ 2; 2+ 8034E O4 1020E 05 9/ 403 140379 8013E C4 90615 C4 9/ 404 .150966 4064E C6 3077E 06 7/ 411 100031 8011i 05 1'68E C6 11/ 702 90202 0005 CO 000E 00 '11/ 702 80510 20165 09 2016E C9 11/ 70? 90450 40745 CO 4074E CO 9/ 702 110037 3040E'Q1 000E co 8/ 702 40519 7046E'01 000E C0 9/ 712 90469 8094E 04 1020E 05 9/ 403 130288 70525 C4 9061E c4 9/ 414 140481 4076E Cé 3077E 06 7/ 401 90266 6.93? 05 1068E 06 11/ 7:2 80545 000E OC 000E DC 11/ 702 80157 2016E 09 2016E 09 11/ 702 80797 1+07“E DC 4074i 00 9/ 7:2 100198 3066E'O1 '00E 00 8/.712 3.883 7068E'Cl 000E CC 9/ 712 80626 133 8034E 00 1020E CS 9/ 413 140857 6087E G“ 90615 Q4 9/ 4:4 150854 4031E 06 30775 36 7/ 401 90930 1015E 06 1068E 06 11/ 702 80902 000E 00 'OOE 00 11/ 7:? 90154 2015E 09 20166 09 11/ 702 90389 4074E C0 4074? DO 9/ 702 100742 1008E'01 0005 oo 8/.712 40887 5038E'Ol 000E 00 9/ 712 90828 8081E 04 10205 05, 9/ 403 130571 6023E C1+ 9061E C4 9/ 4’4 140040‘0 40385 05 30775 06 7/ 401 90119 10085 06 1065E 06 11/ 702 80225 0005 00 00CE 00 11/ 702 80478 20155 09 2016E 09 11/ 702 80713 4074E CC 4074E OO 9/ 702 90748 10195501 000E oc 8/ 702 40154 60215'01 0005 00 9/ 7'2 8'822 1.375 05 10205 05 9/ 403 130377 6060E C4 90615 C4 9/ 404 140395 4°31E 56 3077E C6 7/ 401 30344 8026E 05 10686 06 11/ 702 80496 0005 00 000E CC 11/ 702 30243 2007E‘C9 2'16E O9 11/ 702 30651 40345 CC 4074E CO 9/ 702 90512 2051E-31 0005 oo 8/ 702 40341 EOBEE'Ci 000E CO 9/ 702 80563 2+ 2+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ .3063E 1054E 01 2.93E 01 11/ 403 13094? ()() H00 2034E 11/ 404 190645 9078E Cl 4-07E C1 8/ 702 50376 1-03E ca 1-08E 02 10/ 702 70350 2090E C1 2032E C1 9/ 702 90268 2.54E c1 3-08E oo 11/ 603 13~bc1 4033E Cl 1026E C1 11/ 403 160327 4033E Cl 1'23E C2 11/ 604 150851 10““E 02 9029E 01 11/ 404 190196 1049E 01 2093E 01 11/ 403 120973 3067E E034E 11/ 404 180669 (‘)() ..A‘J 9°56E C1 4OC7E 01 8/ 702 40443 1-c?E 32 1-08E 02 10/ 702 60675 20955 CI 20325 01 9/ 702 3°43C 2065E Cl 3-ORE cc 11/ 603 12.040 “093E 01 1026f Cl 11/ 403 150271 “OE“E Cl 1-23E 02 11/ 604 140678 1039E CE 9-29E Cl YI/ 404 19-691 134 10215 01 20935 Cl 11/ 403 150169 “-21E :1 2-34E 71 11/ 404 19.5?0 10148 Ca 4007i C 8/ 702 5'021 1-18E 72 locRE CE 13/ 70? 70436 1072K 01 20325 Cl 9/ 702 90315 “003E 31 3-08E no 11/ 603 130791 6098E Cl lvséE :1 11/ 403 150849 90195 C0 3-csE so 11/ 603 160012 103CE CE 9029E 01 11/ 404 180873 10285 01 2093E 01 11/ 403 130917 3-92E 1 20345 U1 11/ 404 180584 4 I ) t) 10115 CE 4007K Cl 3/ 702 90289 101%E c? 1-08E o? 10/ 702 60609 1067F Cl 2032F 01 9/ 702 80315 3.66E 01 3-019 cm 11/ 6:3 180411 9095E'02 1026F 01 11/ 403 140726 80195 01 1023E CE 11/ 604 140565 1094E Cl 40C7E C1 R/ 70? 40434 9037i 01 1-C9E 32 1C/ 70? 60570 2031E Cl 2032C C1 9/ 70? 80391 2069E C1 30CSE CC 11/ 603 120231 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ S030E 02 0005 CO 9/ 702 80833 3.255 03 7046E C3 11/ 503 120338 5072E 03 2005E C3 11/ 603 120777 7052E C3 50285 C3 11/ 403 140680 4067E C3 5028E 03 11/ 403 160157 3038E C? 1064E C3 11/ 604 15ooo9 90525 03 4022E_C3 11/ 404 180681 '90185 01 'CCE CC 8/ 702 40059 19735 C? 'CCE CC 1C/ 702 6'133 508“? C? 000E CC 9/ 702 70979 302“E C3 7046E c3 11/ 503 110271 4019E O? E-OSE 03 11/ 603 110622 “-805 03 5029E 03 11/ 403 15'C96 5055E C3 1'64E c3 11/ 604 130786 2023? CE 5097E 03 11/ 504 130887 9051E C3 402?E c3 11/ 404 170561 135 1|45E 01 OCCE 0C 8/ 702 40913 3-55E r2 000E CC 9/ 70? 90C45 10195 03 7046E 03 11/ 503 120637 1014E Q3 2005E 03 11/ 603 130113 60035 02 2-05E 33 11/ 603 150147 303EE 03 5028K 03 11/ 403 160235 90795 C3 50975 C3 11/ 504 150276 10015 C“ 4-225 c3 11/ 404 130344 1-62E 01 000E 03 8/ 702 u-lSl D C) o o ()P‘ y; \C)\J : C)“ o \jr‘v‘n H.)~ NP)OO 0—4‘ 4015K C2 oOCE OC 9/ 712 30033 1-47E a? 7046E 03 11/ 503 110434 1.33E 03 20C5E 03 11/ 603 11-730 3.105 03 50295 C3 11/ 403 150039 17071E C? 1064E O3 11/ 604 130310 9025K O3 5097? 03 11/ 504 140177 10035 0“ 4.225 03 11/ 404 170731 1-o9E 02 .006 co 9/ 702 40171 4043B CE 'COE CC 9/ 702 80128 3015E C3 7046E C3 11/ 503 110355 5+ 5+ 5+ 5* 5+ 5+ 5+ 2046E‘C4 1.04E 05 8/ 70? 50292 1015E 9/ 70 803 3” I") F) (1 4'? (A) .‘n 2.65E 34 30].“E 02 11/ 603 12-o71 E'COE CS 6032E C3 11/ 503 130187 8082E C4 7081E O3 11/ 403 16°163 9073E 02 3.08E 04 11/ 604 140917 6.44E C4 1045E CS 11/ 504 15-6EC 1.31E C5 1008E‘C5 11/ 404 19.33 2.595 C5 0005 CC 9/ 702 80580 3ICRE C3 4 3068i C 11/ 5'“ 140936 1014E 35 locsE :5 11/ 404 180598 Bobs? d (‘f‘ f‘ .'\.’\. ‘ 9/ 702 80761 () U‘ 1.23E 05 10455 35 11/ 5'4 14-51fi loZCE C- 1~CKE CV 11/ 404 17o567 )‘ U‘ 390:3E 05 OO?E OS 9/ 703 7.734 {P01 ‘0‘ mm ()0 \0 {fl o~qn1m (0} \1.‘ \ () 3..) O 07 N) L) ."0 OKfl UT \1 6+ 6+ 6+ 6+ 7+ 7+ 5045E C6 3054E C6 11/ 604 140943 2095E 06 1-385 06 11/ 404 180543 60285 C7 90935 C6 11/ 403 16-243 1074E C8 2°27E c8 11/ 404 19.132 *ST8P0 0 90985 05 4042E 06 11/ 603 110399 1023E C6 10723 C6 11/ 403 14.733 5061E 06 30545 06 11/ 604 130792 2093E C6 1038E 06 11/ 404 170453 70119 07 2.275 08 11/ 404 15-170 1°66E 08 2027E c? 11/ 404 18.05C 137 50155 05 4042E 06 11/ 603 13'C93 10le $5 1072E 36 11/ 41? 16'C93 30395 C6 1072E c5 711/ 4.3 180857 5074E C6 3054E 06 11/ 604 150276 104SE 08 9093E 06 11/ 403' 19.119 9029E 77 2-975 08 11/ 404 160135 70005 05 4.425 06 _11/ 603 110677 6.445 c5 10753E. :6 11/ 403 14'91S COCQE C6 3-54E 06 11/ 604 130995 3041E 06 1'3RE 06 11/ 404 170706 1056E 08 9093K 06 111/ 403 170947 5.17E 37 2027i 08 11/ 404 15035“ 9086E 05 4-42E 06 11/ 603 11.459 1'71E C? 2°27E :8 11/ 404 170T17 138 TABLE D.4.-- Column a Sr88-TDA K—K c Sr88-RPA K-K M.S. 65% Strength d Sr88-TDA Sussex » 88 e Sr -TDA Sussex M.S. a b c d e 1' 1-745'03 1-675-03 2.29E-33 3.81E-05 2.82E-35 OCOE CC 0005 OC 0CCE 33 0OCF QC 0CCE :0 14/1013 14/1002 14/1002 14/1002 14/100? 70257 60733 6.864 7.321 6.477 1' 2.89E-C2 2.5?L-C3 1014EOTE 303;E‘33 10‘9E'ul 0035 CC oCCF CC .335 :3 .OiE CC .Fca c; 15/1C03 05/1312 13/1302 05/1302 1‘/ic:? 5.;55 7.335 7.835 €.22? 8.35~ 1' 2.:4E'33 loSEE-C‘ 2.735-32 5.335-39 ”.35.. a 1054i CO \'CCE CC 1054E :3 0033 QC 1054: CC 12/ 8:3 15/1002 12/ 803 13/1002 12/ &.3 .399 7.996 50978 ~~855 4.92; 1- 9.25E-C3 2.73E-C? 3.7cE-32 3.41F-CE 2.48E-34 6.29E-c1 1054E o: 6.39E-11 1.5uE CC 5.59E-3‘ 12/ 703 12/ 80: 12/ 703 l?/ 803 13/ 703 50782 n.949 5.333 3.538 5.382 1- 6.37E-03 7-999-33 lubGE-fa «.46E-c4 5'24E'35 3.14E-02 6-29E-c1 3.145-32 6.29E-01 3o14E-02 12/ 903 12/ 7:3 12/ 9.3 12/ 703 12/ 9:3 70962 5-265 7o387 60045 7-524 1- 5.21E-ce 3.55E~93 5.31E-33 2.535-01 1.7CE~Cl 4059E-c1 3014£vCP 4.89E-31 9.89F-c; 4-8SE~;1 14/ 803 12/ 903 14/ 803 14/ 803 14/ 803 80545 7.371 8.379 9-382 8-o61 1- 2.53E-c3 1074E-o4 9.22E-33 5.05E-01 4.81E-31 2.835 co 4.89E-01 2.83E CC 2.83E o: 2.535 to 13/ 903 14/ 803 13/ 9.? 13/ 903 13/ 9.3 80963 8.53S g.gg3 13.105 9..Q£ 1- 1.93E-04 3.97E-CA 1.335-23 5.97E-03 1.41E-CE 10715'01 2083E CC 107IE'T1 6029E'Cl 10715'31 15/ 803 13/ 903 15/ 803 12/ 703 15/ 803 100353 8-533 9.288 17-059 10.716 1- 2.548 L4 lolni-C? 2.39E-35 9.19E-02 1.37E-02 4.408-21 1-715-31 4.435-71 1-oSE-oi 6.29E-cl 15/ 03 15/ 803 15/ 903 13/ 703 12/ 7:3 13 deg 9.44; 9.5.5 1a-563 11-399 1. 1- 2025E'O3 10055-01 13/ 703 ‘ 120177 4011E'OE 1032E CC 127 304 80580 1.22E-02 20695'02 12/ 904 80936 70205'01 2043E CC 13/ 904 90766 1.165-03 4-19E-o1 '14/ 804 100480 1038E'01 10475'01 15/ 804 110228 6042E'Cl 50395'01 12/ 704 110576 8.7OE901 3.77E-o1 15/ 904 110644 50015 CO 30775'01 15/ 904 130127 4-89E-c3 404CE'01 15l'903 90881 60455'04 10055'01 13/ 703 110581 1.2?6-02 2'695‘02 13/ 904 80282 501CE-01 2-43E oo 13/ 904 9°O36 1.63E003 4019E-o1 14/ 804 90534 9027E'02 1047E-01 15/ 804 100407 1'415 co 5039E-o1 12/ 704 100896 3087E'01 3077E'Cl 15/ 904 100948 40785 CO 3077E'01 15/ 904 120439 140 9.375-02 10055-01 13/ 703 100922 2035E-Q4 10325 CO 12/ 804 70465' 40105-02 2069E-02 12/ 904 8.209 10865 00 10325 00 12/ 804 80670 10195-02 4019E-01 14/ 804 90543 2063E GO 2043E 00 13/ 904 10.128 4084E-01 1-47E-01 15/ 804 100430 1.80E-01 5039E-c1 12/ 704 100753 3.436 GO 30775'31 15/ 904 11.511 1088E'01 1032E 00 12/ 804 80070 1032E'01 2069E'02 12/ 904 90023 4041E'Ol 20435 00 13/ 904 90592 10695'01 4019E-01 14/ 804 130529 1057E'O3 4019E'01 14/ 804 100814 10935 CO 5039E'01 12/ 704 110005 8045E‘01 3077E'01 15/ 904 110218 2022E'O3 10476'01 15/ 804 110438 50245 03 30775'01 15/ 904 12-606 60875-02 1005E'01 13/ 703 130803 80465'C2 10325 CO 12/ 804 70474 6062E'02 2'69E'C? 12/ 904 80296 40715'01 20435 CO 13/ 904 80955 3°C3E-02 4'195'01 14/ 804 908GB 60875‘02 1'475'01 15/ 804 10038? 1.86E co 50395'01 12/ 704 100398 1.11E CC 3077E'01 15/ 904 100608 5021E CC 3077E'31 15/ 904 120025 2. 2. 2. 2. 2074E CO 80985'0? 13/ 704 140262 1.21E'C1 50C5E CO 11/_901 '50414 40COE CC 8078E CO 11/ 701 60671 2062E CO 1055K CC 12/1002 50763 6078E'C3 90705'03 15/1002 80264 10995'01 20855'01 12/ 803 7°ECC 5.215'03 1.61E-o4 12/ 903 70487 1055E'C3 0005 CO 13/ 803 8.312 30985‘02 3014E'01 13/ 903 9-150 30015 00 8098E-02 13/ 704 130405 80665-37 50056 CC 11/ 901 40920 3086E CC 8-78E 00 11/ 701 6.235 7029E CC 8078E 00 11/ 701 80085 2060E CC 1055E 0C 12/1002 5-243 7015E'C2 907OE-02 15/1C02 70824 “033E-Cl 2085E'01 12/ 803 60678 “059E003 10615-04 12/ 903 60865 30995-C2 °COE CC 13/ 803 70723 141 1045E 00 8098E'02 13/ 704 120373 EoOSE 00 11/ 901 40828 4029E 93 8078E 00 11/ 701 60369 3.14F 00 1055E 00 12/1002 S0178 1037E-Ol 90735.32 15/1002 70794 6094E'01 2085E'01 12/ 803 60567 20475-03 10615-04 12/ 903 6'821 1076E-OE 'COE CO 13/ 803 70619 4033E-Ol 3014E'C1 13/ 903 80353 30435'01 809QE‘02 13/ 704 130865 20985'02 50035 CO 11/ 901 50462 4006E 0C 8078E 0C 11/ 701 60400 30115 CO 1055E CC 12/1002 50764 60385-05 90705'02 15/1012 7-912 70128'01 907QE'02 15/1002 8.123 50“SE 00 SoocE'OI 16/11’2 80787 1037E'O1 2085E'01 12/ 803 60911 6017E'Oa 1061E'o4 12/ 903 70404 40C3E001 80985‘C2 13/ 704 13.091 7.04E-C‘P 5005E CO 11/ 901 40325 3080E CC 8078E DC 11/ 701 50891 3.25E OO 1055E CO 12/100? 50059 9090E'01 9I7OE'O? 15/1002 70872 3073E CC S0COE'C1 16/1109 8-225 3015E-Cl 2035E'31 13/ 803 60195 1.32E-C1 1061E-C4 12/ 903 60699 90235'3? 000E CC 13/ 803 70548 2- 2-. 1.02E co 1084E'Cl 12/ 703 90387 20065‘C1 oOOE co 1#/ 903 90513 10615'01 10845‘C1 12/ 703 90562 30525.01 3030E'CQ 15/ 803 90818 60u7E'02 20005’02 15/ 903 100433 20005.01 1001E'C3 13/ 703 _ 110280 3024E'01 1099E'02 15/ 703 120931 7037E'C1 2095E CO 12/ 800 80053 2063E'Cl 1031E'01 12/ 904 80585 5016E'C? 60275-02 1“/ 803 8061# 1029i CC 1-845-01 12/ 703 80963 40185'01 .008 0C 14/ 903 80946 5-58E-01 1-84E-oi 12/ 703 9-012 60985-01 303OE-04 15/ 803 90195 20995.01 1°01E-o3 13/ 703 10064C 2088E'01 1099E-02 15/ 703 '120305 5067E-O3 2095E OO_ 12/ 804 70Q13 20085-01 1-31E-ol 12/ 904 70935 142 ZOEBE 00 6027E'02 1“/ 803 80670 60955.33 OCOE CO 14/ 903 80862 70755-03 10845-91 12/ 70? 80996 _30185'31 3-3oE-ca 15/ 803 90129 1081E CO 20005-02 15/ 903 90687 “097E-Cl 1001E-03 13/ 703 100390 10885-01 1099E‘32 15/ 703 12°C“5 1088E'C3 2095F 00 12/ 804 70933 60375 CC 20955 CO 12/ 804 70829 7o65E-01 30145'01 13/ 903 80422 lolOE OD 1-84E-01 12/ 703 9-214 laSiE OD 6027E“02 1“/~8'3 90552 9o7aE-C? oocE oo 14/ 903 90611 3005E'01 30305'0“ 15/ 803 90850 3032E'O“ 20035'02 15/ 903 100355 #013E'01 1-01E'03 13/ 703 11'127 6013E‘01 1099E'02 15/ 703 130111 1.595-01 1031E'01 12/ 904 80323 1'2“E 00 3'1“E‘01 13/ 903 70762 10825 03 1084E'C1 12/ 703 80528 30345-03 0C9 .CC 14/ 903 80940 2038E’Cl 3'33E'Cb 15/ 803 90183 10585 30 EccOE'OE 15/ 903 90764 10CBE'02 IICIE'C3 13/ 703 100358 4082E'31 1099E'02 15/ 703 120318 1008E'Ol 2095E CC 12/ 804 70349 IICSE'CI 1031E'Cl 12/ 904 80029 2- 2. 2. 2. 2. 2. 2. 2. 70552 00' 20952 CO ‘12/,804 807h8 2031E'Ol 0002 CC 13] 804 90406 3054E'C2 80422'C2 13/ 900 10'335 50792'01 0002 00 10/ 904 100582 10195 CO 80422'02 13/ 904 100621 30982-04 20675'01 15/ 804 100868 30115 CO 1017E 00 12/ 704 11'022 10705 00 2-23E-02 15/ 904 110679 10582 00 8018E'01 13/ 704 120578 30605-01 (005 00 13/ 80# 80728 4053E-C? 1054E CC 14/ 804 90543 10262 CO 1054E oo 14/ 804 90761 S092E'01 ’OOE CC 14/ 904 90910 6033E-01 000E 00 14/ 904 10'010 10162'01 2-67E-o1 15/ 804 100092 2048E CC 1017E 00 12/ 700 10.328 10525 CO 2023E-02 15/ 900 110025 1069E'CQ. 8-18E-01 13/ 704 11.750 143 3098E-01 1031E-01 12/ 904 70979 70852-02 80025-02 13/ 904 90360 6042E-O1 1054E 00 14/ 804 90645 2063E-03 0COE 30 14/ 904 100005 20535'01 2067E-01 15/ 804 10'1““ 1072E 00 1017E 00 12/ 704 100322 6032E-01 20235-02 15/ 904 100833 1033E OO 8018E-01 13/ 70“ 1105#1 8006E'Ol 10315'01 12/ 904 8069# 50175'01 000E CC 13/ 80“ 90390 8065E'02 80#EE'OE 13/ 900 90947 10935 00 1054E OO 10/ 800 10'491 30675.01 0005 00 10/ 904 10'610 10012'01 2067E'01 15/ 800 100978 104QE 00 10172 00 12/ 704 11'063 2013E CO 20235'02 15/ 904 110447 2006E 00 8-18E-c1 13/ 704‘ 120607 1005E 00 0005 00 13/ 804 80669 10075 cc 'OCE CC 13/ 804 80507 50105-02 80426-02 13/ 904 90300 8-72E-o1 10542 00 10/ 804 90612 1099E-01 IOCE OO 1“/ 90“ 90998 80035'02 2067E'01 15/ 804 100209 10965 CO 10172 CO 12/ 704 10047“ 20O4E 0C 20235-02 15/ 904 10.840 2006E OO 8'185'01 13/ 704 110758 3. 3. 3. 30462 00 10092 00 15/ 704 140228 _ 40852 03 20102 03 11/0301 20290 40892 CO 20752 02 11/ 901 40511 40462 Cl 0002 00 12/1002 50333 90552 01 0002 00 12/1002 '50562 20162 02 0002 C0 13/1002 0 60542 80612 02 r0005 00 16/1102 80502 4016E 00 30952 02 12/ 803 6'502 80332 01 10442 02 12/ 903 70069 30342 00 10092 00 15/ 704‘ 0130566 40872 03 201CF C7 11/ 601 10863 10252 CO 20752 02 11/ 901 40047 50172 C1 0002 00 12/1002 40828 10112 02 '002 CC 12/1002 50406 10222 O? '002 OC 13/1002 60108 50302 02 0002 00 15/1102 7095f 20762 01 30952 02 12/ 803 60326 10115 02 1044E 02 12/ 903 60481 144 20212 00 1009E DO 15/ 704 130304 10252 O4 2-10E 03 11/ 801 20098 7079E 01 20752 02 11/ 901 40140 10342-01 OOOE 00 12/1002 40820 40832 C2 0082 00 12/1002 50431 10812 03 0002 00 13/1002 60136 10232 02 30952 02 12/ 803 9;? .373 5036E 01 10442 02 12/ 903 6-608 20212 01 20102 CZ 13/ 803 70439 20172 CO 10092 00 15/ 704 14°10? 4.75E 03 aolcE 03 11/ 801 2-787 20702 01 20752 02 11/ 901 40711 20712 02 10652 03 11/ 711 6-117 10772 01 0002 00 12/1002 50496 .30282 02 0002 00 13/1002 60635 207OE 01 .ooE 00 16/1102 70787 7038E 02 000E 00 16/1102 80439 10052 01 30952 02 12/ 803 60870 20302 00 1'092 00 15/ 704 130388 40792 33 20102 03 11/ 801 20872 30982 CO 20752 02 11/ 901 40133 30562 02 1'65E O3 11/ 701 50537 30672 C1 0002 CC 12/1002 40814 10472 02 0002 CC 13/1002 , 60160 70682 01 '002 00 13/100? 60266 80272 C2 0002 00 16/1102 70876 80892 Cl 1044E 02 12/ 903 60548 .3. 3. 3. 3. 3- 3. 3083E'O3 20105 02 13/ 803 80087 40845 C1 6006E C2 13/ 903 80333 2098E C1 50925 02 15/1803 90452 10235002 5092E CE 15/ 803 90560 S079E Cl 20155 C2 15/ 903 90943 .1'13E 0? 10655 02 13/‘703 100928 3017E 02 20805 02 14/ 703 110615 1014E C? 10205 02 15/ 703 120358 1031E 00 3038E 02 12/ 804 70833 9'065-01 2010E 02 13/ 803 70470 80645 01 60065 02 .13/ 903 70876 10005 O? 509?E 02 15/ 8:3 80873 2057E 02 aoICE 02 14/ 903 80949 20315 01 2016E 02 15/ 9:3 9-395 80375 01 1068i c2 13/ 703 100468 2008E 08 208OE CE 14/ 703 110010 2021E 01 1020E 02 15/ 703 110761 8091E 01 30385 02 12/ 804 7-152 145 6090E 00 6006f 02 13/ 903 70792 1042E 02 2-10E 02 14/ 903 80288 20255 02 509PE 02 15/ 803 80867 108CE 02 3060E 02 ‘12/ 703 8'910 2-32E 31 2016E-02 15/ 903 90377 1018E 02 1065E c2 13/ 703 10-145 605SE 01 E080E 02 14/ 703 100937 20135.01 1020E 02 15/ 703 110703 9010E 01 30385 02 12/ 804 7-2113 50145 01 10445 02 12/ 903 ‘70260 4080E'01 2-13E 02 13/ 803 80270 20545 CE 60065 02 13/ 903 80667 60005 01 2010E 02 14/ 903 9'052 1005E 02 50925 02 15/ 803 90713 8-86E 01 5092E 08 15/ 803 90988 2.44E 01 2016E 02 15/ 913 100172 7024{ 01 .10655 02 13/ 703 11.513 10955 03 2-80E 02 14/ 703 110930 60925 CI 20105 02 13/ 803 70599 10585 02 6006E 02 13/ 903 80071 7027E Cl 2010E 02 14/ 903 80394 10865 02 30605 02 12/ 703 80993 10725 02 5092E 02 15/ 803 90068 2063E Cl 2-16E 02 15/ 903 90534 70215 01 1065E 02 13/ 703 100757 20375 02 20805 C2 14/ 703 110195 1021E 01 3038E 02 12/ 804 70230 3- 3. 3. 3. 70535'01 10245 02 12/ 904 8'245 10225 Cl 10245 CE 12/.9’4 80799 10C15 C1 10805 02 13/ 804 90231 400“5 02 50195 C? 13/ 904 90907 6.18E 01 loBOE 02 14/ 904 10-608 10365 02 3009E 02 12/ 704 100841 20895 01 10855 02 15/ 904 11.182 9.745 ca 50085 02 15/ 804 11.255 30785 02 10425 02 13/ 704 120484 10895.01 10245 02 12/ 904 . 7.615; 80155.01 1.24E c? 12/ 904 8019C 10525 0C 10805 CB 13/ 804 80564 3011E 02 5'19E 02 13/ 904 90149 “09“5 01 10805 02 14/ 904 10-005 30275 01 5008E 02 15/ 804 100166 30815 02 30095 02 12/ 704 7100236 90205 02 10855 02 15/ 904 10.590 "5.765 02 10425 02 .13/ 704 110615 146 10635 02 30385 02 12/ 804 70611 50735 CR 1-24E 02 12/ 904 70944 20245 01 10805 02 13/ 804 8°602 30675 02 50195 02 13/ 904 .90C85 90575 01 10805 02 14/ 904 10'022 20135 02 30C9E 02 12/4704 100216 6.665 02 50085 02 15/ 804 100371 60345 02 10855 02 15/ 904 100585 50495 32 1042E 02 13/ 704 110447 1-60E 02 30385 02 12/ 804 80292 40315 CO 10805 02 13/ 804 90306 30345 02 50195 02 13/ 904 90648 10555 02 10805 02 14/ 904 100595 E0095‘01 30095 02 12/ 704 10-907 30145 02 50085 02 15/ 804 110100 90495 02 10855 02 15/ 904 110239 30265 02 10425 O? 13/ 704 120487 80955 01 10035 02 15/ 704 120893 40285 01 30385 02 12/ 804 70559 50405 00 10805 02 13/ 804 80637 10405 C? 50195 02 13/ 904 90346 10735 02 10805 02 14/ 904 100001 50805 01 50085 02 15/ 804 100200 40025 02 3.095 02 12/ 704 1004OC 70885 02 10855 02 15/ 904 100653 30435 C? 10435 C2 13/-704 110645 1'02E 01 10035 02 15/ 704 120137 3. 3. 4- 4064E 02 20405 02 14/ 704 120908 7018E 02 1-03E 02 15/ 704 130763 20955 C3 6-085 03 11/ 801- 40304 10875 03 20115 03 11/ 901 40543 4082EVC3 95195 03 11/ 701- 60988 10115 02 40635 01 13/1002 605610 1044E 03 1.195 03 16/1102 70922 6099C OO 4062E'01 12/ 903 70331 10555'02 4062L'O1 12/ 903 70383 3085E 02 20405.02 14/ 704 120300 60975 C? 1003E 02 15/ 704 13-133 20535 03 6008E 03 11/ 801 30905 2023E 03 20115 03 11/ 901 40337 “074E 03 90195 03 11/ 701 60556 103OE CE 4063E 01 13/1002 60179 20235 01 10195 03 16/1112 70547 1050E CE 4062E-c1 12/ 903 60723 .“068E 02 :4056: 02 12/ 803 60791 147 3071E 02 2'40E 02 14/ 704 120290 4035K 02 10035 02 15/ 704 120998 30345 03 60an 03 11/ 801 30914 1087K 03 20115 o3 11/ 901 4-319 50975 O3 90195‘03 11/ 701 6.564 80SCE 01 4063E 01 13/1002 60161 10925 01 ‘1'19E 03 16/1102 70505 2076E 01 4056K 02 12/ 803 60650 1024E 31 40625'31 12/ 903 60734 30455 03 20405 02 14/ 704 130082 14054E 03 1003E O? 15/ 704 130827 40095 O3 6’03E C3 11/ 801 40279 10445 O3 .2011E O3 11/ 901 40863 30275 03 90195 03 11/ 701 60746 1021E 03 40635 01 13/1002 60459 30245 03 1019E 03 16/11‘2 70819 3084E 01 4062E'01 12/ 9:3 70170 10495 O3 4056E 02 12/ 803 70459 3048E 02 204OE 02 14/ 704 120407 50095 CZ 10C3E CE 15/ 704 13'10‘ 3070K 03 60085 03 11/ 801 30833 10875 03 2011E 03 11/ 901 40197 20665 03 90196 03 11/ 701 60297 1057E'O3 4063E 01 13/1002 60032 1026E 02 1019E c3 16/1102 70437 1000E 02 4062E'01 1?/ 903 60463 20395 03 40565 02 12/ 803 60726 4. 4. 30495 C2 40205 00 13/ 803 80083 50685 C3 60335 01 13/ 903 80707 1065E CI 30595 02 12/ 703 90744 90105 01 50005 00 15/ 903 100278 90805 C2 10275 00 13/ 703 '100834 10025 03 10515 C2 14/ 703 110813 30575 02 60235 CO 15/ 703 120387 - 20115 02 30755 02 12/ 904 80416 10215 O“ 1012E c4 12/ 804 80598 40845 01 40205'00 13/ 803 70415 20595 03 60335 01 13/ 903 80222 70235 01 30596 02 12/ 703 90188 10165 C2 5.005 CO 15/ 903 90746 40095 02 10275 CO 13/ 703 100180 807OE C? 10515 02 14/ 703 110222 3082E 02 60235 CO 15/ 703 110760 1068E 03 30755 02 12/ 904 70756 10526 04 1.12E cu ' 12/ 804 70860 148 10265 01 40205 90 13/ 803 70410 1037E 33 60335 Cl 13/ 903 80641 2-87E 01 3059F :2 12/ 703 90123 50815 01 50005 CC 15/ 903 90615 3-87E 01 10275 00 13/ 703 100115 80535-02 10515 02 14/ 703 110143 20355 02 60235 00 15/ 703 11-711 10525 Q4 10125 04 12/ 804 70727 1055K 03 3075E 02 12/ 904 70861 60715 02 40235 00 13/ 803 80041 30515 03 60335 01 13/ 903 ‘80231 10185 C2 30595 02 12/ 703 90591 30605 C2 .50005 00 15/ 903 100298 90145 02 10275 00 13/ 703 100757 90435 02 10515 O2 14/ 703 110976 10105 03 60235 00 15/ 703 120439 90375 03 10125 O“ 12/ 804 80394 10795 03 30755 02 12/ 904 80548 1058E 02 40205 00 13/ 803 70267 10135 04 60335 C1 13/ 903 70597 30995 C3 60335 01 13/ 903 70750 10035 Cl 30595 02 12/ 703 80840 30295 02 50005 00 15/ 903 90662 30935 01 10275 CC 13/ 703 10.010 1.5?5 01‘ 10515 02 14/ 703 110240 80815 CE 60235 CO 15/ 703 110646 20205 C3 3075E CE 12/ 904 70913 4. 4. 1+- 0. 5- 5- 50715 02 10455 02 13/ 804 .90082 30925 02 10255 C2 13[ 9:4 90d#6 30505 C3 40905 C3 12/ 704 100551 40155 CE 20505 01 15/ 904 110413 10205 03 10035 03 13/ 714 110991 40225 C3 30715 03. 14/ 704 120887 40215 O3 1'15E O3 15/ 704 130499 20325 C6 706#5 05 11/ 8:1 30786 30775 05 50325 05 11/ 9:14 #0490 20765 02 10Q55 CE 13/ 804 80“22 3-e7& 02 1-25E 02 13/ 904 90059 “012E C3 “0905 C3 12/ 704 100211 “0975 C? 20505 01 15/ 914 100771 10285 03 10035 03 13/ 704 110169 30915 03 30715 03 14/‘704 ‘12-287 “0395 03 101SE 03 15/ 714 120851 20485 06 70645 05 11/ 801 30363 20385 CE 50325 05 i11/ 901 .40003 149 20075 02 10455 02 13/ 804 80500 10865 CE 1025E 32 13/ 904 90630 “0615 73 4093F 03 12/ 71k 100830 20395 CE 20505 01 15/ 90h 130736 10095 03 10C35 O3 13/ 70# 11°19“ “0395 03 30715 03 14/ 704 12'291 30715 C3 1015E 03 15/ 7:“ 120862 20455 96 706h5 05 11/ 801 30593 50385 05 50326 05 11/ 901 #0099 40105 02 10455 02 13/ 804 90138 10955 0? 10255 02 13/ 904 90481 40335 C3 “0935 O3 12/ 7:4 1308kl 10985 02 20535 01 15/ 904 11'220 10665 03 10035 03 13/ 704 12'115 30425 03 30715 03 14/ 714 120916 20775 C3 10155 03 15/ 70“ 130539 109uE 06 70645 05 11/ 801 30966 #0“85 05 50325 05 11/ 901 “0671 40095 02 10455 02 13/ 804 80473 30295 32 1'255 02 13/ 914 80920 50305 33 40905 03 12/ 704 100206 20425 C? 20505 01 15/ 904 100618 a-lSE 83 10035 C3 13/ 704 110279 30715 03 30715 03 1#/ 704 120?8? 30085 03 1'155 03 15/ 704 120832 20195 06 70645 05 11/ 801 30Q74 20135 05 50325 05 11/ 901 40049 5. 5-‘ 5. 7.75E 05 70985 05 11/‘711 60050 boEOE C3 cCOE 00 16/1112 70711 1.485 C4 50925 05 12/ 913 60934 SogOE C“ 70645 05 13/ 8:3 80012 70115 03 20#7E 05 13/ 913 80282 103“E C5 2.37E 05 12/ 7:3 90#80 1068E C5 20855 C5 13/ 713 100628 I 20325 C5 2085E 05 13/ 713 100714 3.105 O5 SDSEE C5 15/ 733‘ 130055 709OE 05 70985 CS 11/ 711 50556 1078E C“ 000E CC 16/1112 7-511 9'20E 02 5092E 05 12/ 913 60386 10535 03' 7-6uE 05 13/ 8:3 70216 9-63E 03 2047E 05 13/ 913 70783 10705 05 2037E'05 12/ 713 80992 20015 05 2°85E 05 13/ 7:3 10'082 50835 02 SDSZE 05 15/ 713 119513 6.80E 05 5.07E cs 12/ 914 80089 150 1-6#E 06 70985 05 11/ 711 50838 2.14E C4 OCOE CO 16/11:2 70492 1095E 03 5092E 35 12/ 913 60492 3016E 0“ 70645 05 13/ 8:3 70169 1092E 0“ 2047E OS 13/ 913 70769 901CE‘O“ 2'375 05 12/ 7’3 80970 “OBOE O4 2085E 35 13/ 703' 90980 2024E 04 SoSEE 05 15/ 713 110517 70276 35 5007K 05 12/ 9:4 80051 2035E 04 7098E 05 11/ 711 60877 2041E 02 000E 00 16/1112 7.745 1021E 06 5092E CS 12/ 913 60440 1094E O“ 7064E 05 13/ 813 80101 30755 05 2047E O5 13/ 9:3 30552 10965 05 20375 05 12/ 713 90953 SOOIF 0“ 20855 05 13/ 7:3 11'082 2'20E 02 50525 05 15/ 7:3 12.651 60295 05 5.07E 05 12/~914 80675 1057E 05 7'985 05 11/ 7:1 60335 30795 C? uCOE CC ‘16/11;2 70481 1'11E 06 5092E 05 12/ 913 5.777 10395 C4 7064E 05 13/ 813 70229 3079E 05 20475 05 13/ 913 80071 20055 05 20375 05 12/ 7:3 90265 IOSSE Cb 20855 05 13/ 703 100328 1065E O3 SOSEE OS 15/ 703 110849 50816 05 5-07E 05 12/ 9’“ 70982 5? 5- 6- 6- .6. 6. 7018E 05 5007E'C5 12/ 904 30732 10785 05 6055E OS 13/ 814 9'88? 6000E C5 2-12E 05 13/ 914 90635 1037E CS 2044E 05 *13/ 704 . 120204 10025 06 4073E C5 15/ 704 130721 9096E 06 20315 07 11/ 8:1 #0416 7080E 05 1042E 06 11/ 901 40694 10365 C7 1046E C7 11/ 711 ' 70158 1001E C7 6004E C6 16/1102 70956 4075E O4 6055E 05 13/ 804 80601 70465 05 2-12E 05 13/ 904 80792 1096E OE 2003E c5 12/ 714 90988 4081E 05 2'44E 35 13/ 704 110273 1001E 06 4073E 05 15/ 704 130059 5058E 06 20318 37 11/ 8:1 30982 1020E C7 1042E 06 '11/ 911 4.222 1039E O7 1046E 07 11/ 711 60724 90385 06 6004E>06 16/1102 70571 151 3042E 05 60SSE~05 13/ 804 80650 7022E 35 20125 C5 13/ 904 8.335 3044E 05 20035 QB 12/ 704 10.114 50445 05 2044E 05 13/ 704 110264 90175 05 40735 35 15/ 704 13'000 1010E Q7 2031E O7 11/ 801 30979 70445 06 1-02E 06 11/ 901 40210 10305 37 1-ueE 37 11/ 701 60653 7085E 06 6004E 06 16/1102 70536 10435 05 6055E OS 13/ 804 90343 4019E 05 2.12E 05 13/ 914 90511 2043E OS ZOOBE 65 12/ 704 100787 40295 05 2044E 05 13/ 704 1?'139 9001? 05 4.73F 05 15/ 704 130326 1023E O7 2031f O7 11/ 801 #0484 7.355 06 1042E 06 11/ 911 40690 1032E 07 1046E 07 11/ 7'1 60870 1014E O7 60OQE 06 16/1102 70752 2005E 05 6055E 05 13/ 804 80688 30105 05 2-12E cs 13/ 904 80387 20045 05 20C3E 05 12/ 704 10.148 40415 05 20h4E 05 13/ 704 110381 8093E 35 4073E 05 15/ 704 130119 1-70E Cb 1042E 06 11/ 901 30934 1079E C7 20315 C7 11/ 801 40128 10245 07 10465 07 11/ 701 6.410 10095 07 60005 c6 16/1102 70357 6. ‘6' 6. '6- 7. 20015 05 90235 03 13/ 903* 80751 20385 06 90215 C5 12/ 703 90904 10935 05 10255 03 13/ 703 100680 20315 05 40615 04 13/ 904 90953 20715 07 20265 07 12/ 704 110019 20185 06 10045 06 13/ 704 110779 2512a 09 10675 09 11/ 901 40361 30245 08 40945 08 ,11/ 701 ‘60687 50485 C7 0005 00 16/1102 70762 30646 05 90235 03 13/ 903 8.262 30475 06 90215 05 12/ 703 9-349 30045 05 10285 03 13/ 703 100016 70085 04 4061E ch 13/ 904 90159 2-63E 07 20265 07 12/ 704 100376 20365 06 loohE 06 13/ 704 100959 20125 09 1067E 09 11/ 901 30843 30355 03 40905 08 11/ 701 5.250 40525 07 .005 CC 16/1102 70377 152 2047E 05 90235 03 .13/ 903 80090 20685 06 90215 05 12/ 703 90217 2041E 05 1-28E 03 13/ 703 100017 60005 04 4061E 04 13/ 904 90106 20515 C7 aceeE c7 12/ 704 100330 '10628 06 10045 06 13/ 704 110063 20265 09 1'67E 09‘ 11/ 901 4'011 40575 08 4094E 08 11/ 701 60359 10025 C7 0005 00 16/1102 70390: 30365 02 90235 03 13/ 903 ‘ 30633 40345 06 99215 05 12/ 703 130015 60375 06 1.28E 33 13/ 703 130619 #021E 05 40615 04 13/ 904 90543 10825 07 20265 07 12/ 704 110015 10365 06 10045 06 13/ 704 11.955 20135 09 1°67E 09 11/ 901 #0570 40405 08 40945 08 11/ 7’1 60967 9°67E 06 .0OCE DC 16/11'2 70910 2092E 01 9023E 03 13/ 903 80360 30135 Cb 90215 05 12/ 703 9-314 40405 06 1'585 03 13/ 703' 90895 40235 C5 40615 04 13/ 904 80950 20165 07 2026E O7 12/ 704 100350 10315 06 1.045 06 13/ 704 110081 20135 09 10675 09 11/ 901 30897 40515 08 4094E 08 11/ 701 60503 5082E Ca .005 00 15/1102 70512 7. 1+ 1+ 2+ 20315 08 8065E 08 13/ 703 100196 1-045'09 70415 C8 13/ 70“ 120321 30“SE 10 4-56E 10 11/ 701 7-335 3051E 10 20405 10 16/1102 70996 0005 CC 0005 00 15/1112 70706 6093E113 60935 13 15/1102 -80140 20365.02 20475'02 10/ 801 40025 5081E'03 4077E'O3 13/110? 706#5 6-17E 01 2.84E 01 10/ 901 20756 1099E 08 8065F 08 13/ 703 90587 1007F Cq 7-41C c? 13/ 70h 11-45C 305“E 1C 4956E 10 11/ 701 60902 30425‘10 20405 10 16/1102 70618 0035 00 0005 00 16/1102 70329 60935 13 6093E 13 16/1102 '70763 2037E'0? 2047E'02 10/ 801 30391 b075E'C3 #077E-03 13/1102 70149 6032i 01 207QE C1 10/ 801 20259 153 30225 08 8065E 08 13/ 703 90666 1.29E 09‘ 7041L 38 13/ 704 110378 3076? 10 4056? 10 11/ 701 60775 2086E 10 2040E 10 16/1102 70563 000E CO 000E 00 16/1102 7038? 6069E 13 6093E 13 16/110? 70660' 20115-02 2-47E-02 10/ 801 3'229 “072E-O3 40775'03 13/110? 60539 8027E 91 2074E 31 10/ 801 20522 1028E 08 8065E 08 13/ 703 100519 1005E O9 7.41E ca 13/ 704 120283 4009E 10 4056E 1C 11/ 701 70315 2087E 10 20405 1C 16/11'2 70772 .OOE 00 0005 00 16/1102 70935 6093K 13 60935 13 16/1112 80110 2035E'02 2047E'02 10/ 801 40167 5098E'03 40775'03 13/1102 70387 507OE 01 208kE 01 10/ 9'1 20903 10CSE 08 80655 08 13/ 703 90777 10085 09 7041E CS 13/ 704 110396 4015E 10 #056E 10 11/ 701 60859 2081E 1O BOHOE 10 16/1102 70383 000E 00 000E 00 15/1103 70546 6093E'13 6093E 13 16/110? 70721 2036E'02 20475'0 IC/ 801 30375 5091E'03 #077E'C3 13/1102 60778 50975 01 2074E 01 C/ 801 20309 2+ 2+ 2+ 3+ 1'02E 00 2074E 01 10/ 801 - 30554 6013i CC .005 03 12/1102 40913 6022E'C4 000E 03 13/1102 6049? 4091E 01 70605 01 16/ 703 100432 7091L 01 60525 01 16/ 704 15.550 4.02E-02 1041E'Ol 10/ 901 30953 40525 01 6096E 01 10/0701 60298 30815 00 6002E Cl 12/1102 #0890 2.33E co 60035 01 13/1102 6015' 3069E-02 2084E 01 10/ 901 30C37 U" H. n) o o \C) (.0) #04?” m . 5.,» ‘T‘ 1115 I“) C.) L) I") W \J 3070E'C“ '09E CC 13/1102 50995 4087E Cl 70605 Cl 16/ 703 90948 7098E 01 6052E 01 16/ 709 140819 4ocPE’CE 10415-01 10/ 901 30559 “-635 01 60965 01 10/ 701 50999 30638 00 6009E 31 12/1102 #0543 408%5'01 6002E Cl 13/1102 50665 154 8051E 01 6052E 31 16/ 704 140831 30EQE‘C? 1041E'01 10/ 901 30498 40761.. 01 6096E Q1 0/ 701 50772 4023B 30 6'CEE 31 1P/1102 40598 \0. HJ‘\. 0).. () Mr*fiyp "1 ) H 2.04E oc 2074E C1 10/ 801 30779 6069E C: 000E 00 12/1102 50192 5025E‘03 003E 00 19/1102 60839 5010E 01 7-635 01 16/ 7’3 110343 80O4E 01 6058E 01 16/ 7:4 190255 5017E'01 1.41E-01 13/ 901 30391 4-83E 01 60965 Cl 12/ 701 60519 60325 00 600PE 01 12/1102 4085R 9013E 00 6002E 01 13/11'2 5’043 20365'02 2084E Cl C/ 901 30157 9";7E'O3 0C0. 00 13/110? 60832 5-12E C1 7060E 01 16/ 703 100661 80CIE Cl 6'525 Cl 16/ 704 140654 5038E'01 10415'01 1C/ 901 30462 SIClE 01 6096E C1 3/ 701 5-9h7 6026E 60025 12/1102 40451 C) C) H>O 5.795 60' 6'CEE 01 13/1102 50456 3+ 3+ 3+ 3+ 3+ 4+ 4+ 20905 CI 10975 C2 15/1102 70956 _1064E Cl 8057E CC 15/ 903 110Q76 10845'C1 #0QBC C1 16/ 703 120863 10645 C2 3.68E ca 16/ 904 12044# 5040E C? 20585 C2 16/ 704 140455 2-01E :4 2.03E ch 10/ 701 50573 80135 C3 0005 CO 12/11'2 40035 5059F O3 000? CC 13/1102 60193 70525 C? 0COE CO 14/1102 60743 2073E 01 10975 02 15/1102 70569 1085b Ci 8-57L CC 16/ 903 19.447 50635-01 QOQPE Cl 16/ 703 1P-34e 106?E CE 3068E CE 16/ 90h 11'733 50“3E 0? 20585 03 16/ 704 130744 9024E C3 -CDE 00 12/1102 #0067 10835 C“ 'COE CC 13/11'9 5-122 7009E 03 OCOE CC 13/1102 50731 4037? CE '0CCE CC 14/1102 60387 155 2056E 01 1097E 02 15/1102 7041C 1094E :1 5057? CC 15/ 90? 130227 70785'03 4042K "1 16/ 703 19'158 2034F CE 3068? CE 16/ 904 110525 4.375 32 20585 32 16/ 70h 13.517 6-29E :3 vcoF co 12/1102 40249 2.02E 3“ 080E 00 11/1102 90?67 8072E d3 000E PC 13/11'? 50679 208“E :1 ocoF 00 14/1102 6'4C2 2084E 01 1.97E 02 15/1102 70912 3087? 01 5057E CC 16/ 903 11.297 3098E Cl 4042E 01 16/ 703 12~561 10675 UP 30635 02 16/ 904 12°“39 #0735 CE 20SRE 02 16/ 704 14026: E026F OQ 20035 O“ 10/ 701 50909 2091E 03 003E QC 12/1112 4057# 3069L 03 003E 00 13/1102 60192 2.03E O3 .OOF 0C 14/1102 5-844 2081E C1 1097E 02 15/1102 70442 20ng Cl 8057E'CQ 16/ 903 100364 1085E 31 40425 C1 16/ 703 110648 4059E ca 20585 C? 16/ 704 1306#4 1097E C4 EOC3E 3“ C/ 701 50356 3-66E C3 tCOE CC 1P/1102 #0ESQ 6'92E C3 0305 CC 13/11.2 50611 1035E 33 0COE 0C 14/110? 60427 4+ Q+ 4+ 4+ 4+ 4+ 5+ 5+ SIOOE Cl .005 CC 15/1112 70494 3.48E C4 QISEE C4 16/ 8:3 9-235 3083E C3 SOESE O3 16/,913 100429 9.155 02 2062E C4 16/ 713 1203“? 1.675 C4 3-87E 04 16/ 814 110296 '2.#4L ca 40505 03 16/ 914 110817 40755 C“ 2°25E c4 16/ 714 14'191 2:52E C4 2062E CS 12/111? “0881 2072E C“ 6054E C4 13/1112 50927 1-11E 02 'OOOE OC 15/1112 7-104 # J 0. ‘w D)V fl“! MCDC) t-C‘ p; O \ )3 o m 1’)‘ \- 00 ’7‘ 30455 C3 5025E O3 16/ 9:3 90785 2097? ca 20625 on 16/ 713 11-813 '10375 C“ [30875 C“ 16/ 814 ' 1C0654 2.76E C“ “OBOE O3 16/ 9:4 110157 40885 O“ 2o25E ch 16/ 714 130473 2048E 04 2-62E 05 12/1112 4053C 2099E C‘,’+ 60545 C“ 13/11:a Soh32 156 2.47E ca .OCE 00 15/1132 7-113 3.77E 4958i 16/ 8: 808 01 u) C) C) J? 43‘ C) 3.10E 33 SoZSE 33 16/ 913 90763 4'81E 0. 2062E 04 16/ 713 110784 2053E C“ 3087E 04 16/ 81% 100684 3013E C“ “OBOE 03 16/ 994 110105 40“CE O“ 2-25E 04 16/ 7:“ 130366 1039E 05 2062E CS 12/1112 40518 3037? G“ 60545 C4 13/1112 50461 “OOBE 08 003E 00 15/11:2 70605 F‘J‘Ib.) 0.. \mo {UV 003Wifi ‘A. um. U‘tb) C) O c K!) :. 7036E C3 50255 03 16/ 9:3 10°723 1-7cE 02 aoéaE ca 16/ 713 12-602 1.32E 0* 3087B 0“ 16/ 814 11.421 30295 OQ “053E O3 16/ 914 110883 40655 C“ EIESE O# 16/ 7:4 140139 3.53E C# ZoéEE 65 12/1112 #0824 .6’26E O“ 6a54£ on '13/1112 50995 5091E CZ OCOE no 15/1112 7.13:; 3014E C“ 4-52E 04 16/ 8:3 80‘72 4957E C3 S'EEE 63 16/ 9-3 9.993 BOSCE C4 206?E 35 12/1112 40417 SICBE C4 éobhE C4 13/11:2 50387 |( 1 5+ 5+ 5+ 5+ 5+ 5+ 5+ 60025 05' 8045E C5 14/1102 60917 2069E C5 1061E C5 15/11)? 70557 50185 35 5012E CS 16/10:2 80573 1003E C5 20875 C“ 16/ 803 10.379 8022E C“ 10875 C3 16/ 903 10055# 3.#5E C4 “-37E 0“ 16/ 713 120801 2099E C5 4024E CS 16/ 814 110122 3009E CS 1097E CS 16/ 914 110689 7037E 05 4052E 05 16/ 7:4 140034 5083E 05 80#5E 05 14/1102 60569 rJF‘m O O \ O“ \l ... F‘ .f} ot’WHfi Uw J] r—b 'h \l R) D.) (J C) U". #0935 C5 501?? C? 16/10:2 80185 9081E C# 2’87E C4 16/ 8:3 90494 1007E 05 1087i 03 16/ 903 90923 606CE C“ 4037E C4 16/ 7:3 120279 20575 05 402QE 05 16/ 814 100504 3.3RE 05 1097F 05 16/ 914 100992 7'20E CS 40SPE 05 16/ 7:4 130340 157 6059E 35 SoaSE 05 14/1112 6-540 2o15E c5 ioélE :5 15/11:? 70125 P301? 0‘. 0 \H0‘ mHmm comm. L) (510‘- .005 t-n);) \l 90C1F 34 2087E c4 16/ 8:3 90457 601CE 3“ 1087E Q3 16/ 913 90834 2065K 54 H037E C4 16/ 713 12-159 3-53E :5 4.245 05 16/ 80h 1C0562 3-33E 05 1097E 95 16/ 9:a 100996 509QE 35 4052E 05 16/ 7:# 130303 601§E 05 BonfiE 05 1#/11;2 60964 205“E 10631.: 15/1112 70505 C) C) my? P’mifl [Po 0 \Hm 0;) 0C)fiHfl NNC) C) U10] 30 H DJ h) 1028? CS 20875 04 16/ 8:3 10'018 1015E 05 1087K O3 16/ 903 13'630 3067E Ob 4020K C5 16/ 8:4 11'12“ 2048? CS 1097E 35 16/ 91k 110734 1-50F 04 4-37E 04 16/ 703 120528 60295 05 4052E 05 16/ 7:4 130852 5'95E c? 8045E 05 1“/11!2 60557 10315 3“ 4037E 04 16/ 7'3 11.343 3049E 05 QIEQE CE 1‘/ 8:4 13.529 3-c3E 35 1'97E 35 16/ 90% 100950 603PE CE #0525 C5 16/ 704 13-24? 6+ 6+ 6+ 6+ '6* 6+ 1960E 05 000E CO 12/1112 #0668 8006E C5 0005 CC 13/1112 5.776 10275 C6 0005 00 15/1112 70300 1017E 06 000E 00 16/1002 803#3 1052E C 2005E Q; 16/ 813 9.740 5.205'0 1032E C; '16/ 903 100271 6056i 0 1075E C: 16/ 703 120439 1058E C7 10755 07 16/ 804 110053 2055E C7 1'13E C7 16/ 9:# 110670 / 1083E 05 0005 CC 12/1112 40316 8022E C: OCCL ~* WC 13/1112 5.281 1044E CA oooe 05 15/1112 60912 1039E Cé OOOE 00 16/1012 7095# 1047E 2005E g; 16/ 813 90170 #026E CF 1032E 0% 16/ 903 90635 4044i 0“ 1-755 05 16/ 713 110919 1047E O7 1-7SE c7 16/ 804 100438 20675 07 1.13E o7 16/ 904 100968 158 1-43E 05 000E CO 12/1102 40376 60565 C5 OCCE CO 13/1laP 5-369 80895 05 000E CO 15/1112 70013 10C8E 06 l'CCE 00 6/1012 70979 10#8F . 07 20055 07 16/ 803 90218 40‘6E Cb 10325 C7 16/ 913 90649 1084E 06 1975E O7 16/ 713 11°91o 10905 07 107SE 16/ 8027 100510 20555 07 1013E 07 16/ 904 100987 20505 O# 0005 00 12/1102 4-801 60515 05 0OQE'OC 13/11l2 50898 6053F - O 000E 03 15/1102 70471 4061E 05 000E 00 16/1012 80449~ 10095 O 2.05E o; 16/ 8:3 90912 7.9OE 06 1-BZE O7 16/ 913 100534- 1022E O6 1-7sE o5 *16/ 703 120768 10“8E O7 1-7SE 07 16/ 804 110122 3067E O7 1-13E c7 16/ 904 11-699 30:05 Ch 0 CE 00 1P/1112 40392 6089E 05 000E QC 13/1102 50291 7071E 05 0305 Cb 15/1102 60999 50495 CR 000E CE 16/1012 70992 10335 C ems: o; 16/ 803 90225 407OE O 1f32E O; 16/ 9’3 90716 10825 06 107SE 7 16/ 713 120086 1019E C7 1075E O7 16/ 8:# 100505 30015 C 10135 C; 16/ 9:a 100928 6+ 7+ 7+ 7+ 7+ 7+ 7+ 7+ 7+ 20925 07 10505 07 16/ 704 130844 #0275 C3 10465 C9 12/1112 ' 50023 10035 08 70205 C7 13/11)2 50820 3.97E 08 8.67E 07 16/ 803 100177 20175 08 70545 05 16/ 913 10'414 10215 08 60315 O7 16/ 703 120836 10155509 20135 09 16/ 804. 110232 10075 09 10665 08 16/ 914 110541 1064E C9 10045 C9 16/ 714 130986 30035 07 10505 07 16/ 704 13-141 40175 C 1.465 C 10155 08 7.205 07 13/1112 ' 50325 30115 C8 8-67E 07 16/ 803 90578 30485 08 7-5#E 05 16/ 913 90789 2-22E 08 6031E Q7 16/ 7:3 120304 ‘7-94E 08' 2013E 09 16/ 804 100591 1035E 09 1'66E 08 16/ 914 100867 10575 09 10045 09 15/ 7:4 130363 20825 07 10505 07 16/ 704 130182 l-eCE 1096E 12/11 40 my C) (U {7) C) \0m 07 80135 37 70205 37 13/1112 50389 40315 08 8067E 07 16/ 803 90530 10255 08 705#E 05 16/ 913 90739 1-01E c8 6031E C7 16/ 703 120186 1054E 09 2'13E O9 16/ 804 100645 80825 08 1-66E 08 16/ 914 10-891 1038E o9 1004E 09 16/ 714 130277 30185 07 10505 07 16/ 70# 13.903 U! ...A h).- ...) (2“ DJ F1 {'1 ".0 m \\¢HH UH»- . o»- (J * 0‘ m C.) 0 0‘ 90645 C7 7020E 07 13/1112 50849 30455 08 70545 05 16/ 903 100220 70525 08 70545 05 16/ 903 10'“87 7-21E 07 60315 07 16/ 7:3 120661 10365 09 20135 O9 16/ 804 110218 60605 08 10665 08 16/ 904 110612 1-33E o9 100k5 O9 16/ 7:4 130766 30125 07 10505 07 16/ 704 130288 50C9 I 1040 19/1 4 (J ‘0 ()1 .0 6 o H I“ U] 0" R) (3 9 40365 C7 7'205 07 13/1112 502#C 70465 07 70545 OS 16/ 903 90433 80525 08 80675 07 16/ 803 90762 5-S7E O7 60315 07 16/ 703 110982 10025 09 20135 09 16/ 80# 10.580 10175 09 1.665 08 16/ 914 100857 10355 09 1.045 09 16/ 704 13.150 8+ 8* 8+ 8+ 8+ 9+ 9+ OSTBP‘ 10755 09 0005 00 13/1102 50653 3023E 10 50235 10 16/ 913 90951 10265 C7 10435 10 16/ 703 120551 60385 10 “0&85 10 16/ 904 110790 20585 10 10225 10 16/ 700 130710 2002E 11 1078E 11. 16/ 713 120941. 4035E 12 #0375 12 16/ 704 100107 0 10855 09 000E 00 13/1102 50150 30095 10 50235 1C 16/ 9:3 90317 80955 07 10435 10 . 16/ 713 120017 604“E 10 4048E 10 16/ 90#0 110076 20645 10 10225 1C 16/ 7:4 13'022 40075 11 10785 11 16/ 713 120410 4014K 12 40375 12 16/ 704 130422 160 10625 09 10005 00 13/110? 50280 30065 10 5023E 10 16/ 903 90421 #052E 08 1943E 10 16/ 703 110993 70055 10 40085 10 16/ 904 110663 20435 10 10225 10 16/ 704 130106 20585 11 10785 11 16/ 713 120264 40195 12 #0375 12 16/ 704 13.368 20315 09 0005 00 13/1102 50748 20515 10 50235 10 16/ 903 100417 40235 07 10435 10 16/ 703 120870 60435 10 40485 10 16/ 900 1109#1 30175 10 10225 10 16/ 704 130324 10125 12 10735 11 16/ 703 130079 3.#4E 12 40375 12 16/ 7:0 1309#2 2'525 09 0005 00 13/1102 50130 20605 10 50235 10 16/ 913 ‘ 90566 40295 07 10435 10 16/ 703 120196 60#15 10 40485 10 16/ 904 110163 30085 10 10225 10 16/ 704 130199 90185 11 10785 11 16/ 703 120424 30645 12 40375 12 16/ 704 130305 APPENDIX E VECTOR AMPLITUDES 161 162 This appendix consists of four sections as Appendix. Summary of important vectors: spin, parity of state J: E= excitation energy of state E: dimension of vector Type - 1 pp“1 excitation 2' nn-l excitation 3 T=0 excitation 4 T=l excitation N¢Z 5 T=l excitation, N=Z Configuration: p/h see Appendix C. X amp. Y amp. BEJ(UP),.BEJ(DOWN) units of e2 fZJ 2 2J BMJ(UP), BMJ(DOWN) units of e f SINGLE PARTICLE Transition as of vector was composed solely to major componant and type. P-TO-H - Transition of single particle between orbits P,H. (PH)-TO-(G.S.). Transition of a single particle-hole configuration, ph-1,' to ground state. Ratio of BMJ or BEJ to above can be considered .a measure of the enhancement or dehancement due 'to configuration mixing. Dens ity Function 'to be ignored. 163 Blé'TDA KOK0 ISP1N= o ITDRP00 IA-lé 120 8 Hw-13.3o I‘PU0O J010 ' E3100624 N1'10 IYPE-B 4/ 2 5/ 3 5/ 2 6/ 3 6/ 2 00290 0859 0337 .0228 , 0040 TYPE-5 " 4/ 2 _ 5/ 3 5/ 2 6/ 3 6/ 2 0.009 0089 0007 000004 00002 BEJtuPh10047E-03 BEJ080271E-02 DENSITY FUNCTIBN csrang¢ 230-100285'01 C57695( 4) 0 50913E002 \ 00-. 53‘ j_—' 164 Bib-TDA K0K0 ISPIN(6080>= '0 ITDRP=C Mali: :20 8 0104013030 IPUIO . J3 10 «£81,30846 N310 TYPE-3 4/ 2 5/ 3 5/ 2 6/ 3 6/ 2 o021 -0059 --o7e . 0023 10.003 TYPE'S ' 4/ 2 5/ 3 5/ 2 6/ 3 6/ 2 I0118 0986 000043 .010 .0030 BEJ(UP)0906“8E-02 BEJ03.216E-oa mAJoR COMPGNENT P0 5 H0 3 TYPE-5 SINGLE PARTICLE BEJ Pare-H01.241E-o1 (PH)0Te-Q(G.s.)080271E-02 DENSITY FUNCTION CSTBRU 2:0-90618E-01 CSTOREc ‘4.)- 50576E-01 165 516-TDA K0K0 Ispnue.s.>- 0 ITDRPso IA-16 120 a HN'1303O IPU0o . ,J- 1- . {010.768 rum TYPE-3 4/ 2 5/ 3 5/ 2 6/ 3 6/ 2 0100 --390 0857 00308 .007 TYPE-5 " a/ 2 5/ 3 5/ 2 6/ 3 6/ 2 .0001 0051 0064 '0OE5 '0007 BEJ‘UP5040999E-04 BEJoTa-o:0.s.>04-1BSE-01 DENSITY FUNCTIBN CSTGRE( 2,0 106065001 CSTGRE! 4)- 30655002 167 elb'TDA K.K. Ispuue.5o>- c ITDRD=O 1A=16 12a 8 23:13.30 IPUIO , J! 1- ' E3180179 N310 p TYPE-3 i 4/ 2 5/ 3 5/ 2 6/ 3 e/ 2 -39o oo7o ..141 ..a99 5.150 a La TYPE-5 . 4/ 2 5/ 3 5/ 2 6/ 3 6/ 2 ..229 --039 --1sa .663 .180 "BEJ-1.031e-02 UAJBR CBMPBNENT PI 5 HI 3 TYPE!5 ‘SINGLE PARTICLE BEJ P-TB-H-3.102E-o1 (PH)-TB-o(G-S.>-4o135E-o1 DENSITY FUNCTIBN CSTORE( 2)‘ 207285.01 CSTORU 4)"101265'02 168 016'TDA KOKI ISPnuegs.)s O ITDRPsO IAalé 12- 8 HW=13o30 IPU=O . .h 1- . EIZO-Ell N810 IYPEIB a/ 2 5/ 3 5/ 2 6/ 3 6/ 2 .017 .018 ~o064 ~0009 .-o010 TYPE-5 “/ 2 5/ 3 5/ 2 ' 6/ 3 6/ 2 .casa oooa 5940 .047 .167 BEJ‘UP’C40449E'02 BEJ‘DOWN)31.“33EI02 NAJBR CBMPBNENT P- 5 H= 2 TYPE*5 SINGLE PARTICLE BEJ P-TB-H-EMBIE'OI (Pm-TB-om-So>-1o654E'01 DENSITY FUNCTIBN CSTBRE( 2,--1.39OE oo CSTBRE‘ 44- 6-735E-01 4'.“ . I I“ .'v_ 3:- ~ "fi 169 “640‘ K.K. ISPHHGOSO)‘ O ITDRDBC IA‘16 12' 8 HW313030 IPUIO J8 II ' £323.537 N310 IYPEOB . 6/ 2 5/ 3 5/ 2 6/ 3 6/ a o006 oooo --ooe -;oou .025, TYPE-S “I 2 5/ 3 5/ 2 6/ 3 5/ 2 0896 0119 0223 0322 0170 BEJ(UP)-3.3“6E oo BEJ-Te-oceoss>-7-44aE-01 DENSITY FUNCTIEN CSTORE< 2)-'uo516E-01 CSTBRE< 2,. 1.1995 00 V 1.1“ “-'_._A wr- w . 170 elb'TDA KOKO ISPHMG-s->= o ITERP=C IA=16 IZ= 8 23:13.30 IPu-o J: 1: ~E8240422 N313 TYPE-3 ' 4/ 2 5/ 3 5/ 2 6/ 3 e/ 2 .279 0052 --035 ..052 .956 TYPE-5 - 4/ 2 5/ 3 5/ 2 6/ 3 e/ 2 --025 --00# -ooo9 --017 .022 BEJ(UP)-5.713E-O3 3EJ380271E'02 DENSITY ruwcrxew Csrenec 2>- 1.739E-02 CSTBRE< not-«.9oaa-oe 171 616-TDA ! Km.- ISPUHGOSI)! C ITDRP'C IA'16 12' 8 IPUIo J11- ' E8260368 NalC TYPEO3 ' u/ 2 5/ 3 5/ 2 6/ 3 ~0008 --003 0005 0004 TYPEOS 4/ 2 5/ 3 5/ 2 6/ 3 --032 I ooa1 --161 -a300 BEJ(UP)!9oO76E-01 BEJs 0 17022-0 1A=16 12s 8 . IPu-o 3- 2- 2:12.250 Nalo TYPE-3 4/ 3 4/ 2 5/ 2 6/ 3 .957 .233 .049 .069 TYPEOS 4/ 3 #/ 2 5/ 2 6/ 3 '1‘“ 0033 0012 0001 BMJ(UP).2.074E-01 BMJ(DOWN)-4.149E-02 MAJBR COMPONENT P- a H- 3 TYPE~3 (PH)'TB'O(GOSO33109655'02 HW'13030 6/ 2 0004 6/ 2 0010 173 316'TDA K°Ki 'ISPHMG.S.)a o ITDRP-O IA-16 12- 8 Hw-13o30 IPUIO J: 2. . 5'130236 N‘lO TYPE-3 A 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 .0143 .0039 3 .0005 '001“ ~0°00 TYPE-5 . a, 3 4/ 2 5/ 2 6/ 3 6/ 2 0956 .233 .074 ..005 .076 BMJ(UPH10777E 00 BMJ(DBWNHSoSS‘I'E-Oi. @AJOR CBMPBNENT P8 4 H- 3 TYPEss SINGLEPARTICLE BMJ ngepH-1.o#9E OO (PH)-T8-O(GoS¢)u10259E 00 DENSITY FUNCTION CSTBRE¢ 2,.-2.u345-o1 csreas( 4).-4.7735-01 174 516-TDA K.K. H‘ .3030 ISPIMG.s.>= o ITDRPso ”:16 I2: 8 M‘l IPu-o _ .n 2- - 2-16-734 6:10 . / 2 TYPEGV 3 4/ 2 5/ 2 6/ 3 6 ' 36 ”162 0417 _T'055 0876 '01 l 6/ 2 TYPE 5‘v 3 4/ 2 5/ 2 6/ 3 2 . 1 oooo .031 --006 .097 .0 0 BMJ(UP>-u.316E-01 BMJ(DBNN)-8o632E-02 MAJGR CBMPBNENT P- 6 H- 3 TYPE'B Sl¢gkfi.:¢§gégtg3e (PH)-T5'O(GOSO)'3I‘O‘H#E 03 D NSITY FUNCTIBN CgTBRE( a): 20267E'02 CSTGREQ It): 207415'01 175 016O'TDA K.K'o ISpI~(G.s.)- o 17032.0 IAzlé 12: a st13o30 IPU-o . J: 2- ' E'17o988 N-1o IYPE03 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 ; I noes ~oo91 ~024 --063 .021 Li TYPEuS b/ 3 4/ 2 5/ 2 6/ 3 6/ 2 cooss . ,oaoo --o33 .933 ' ..109 BMJ(UP)-1.33~E-o1 BMJ(DowN)-2.767E-02 MAJOR COMPONENT P- 6 H- 3_ TYP2-s SINGLE PARTICLE BMJ P-Te-HF2.511£-oe . (PH>'70'0‘G°$"'3‘0°9E'°2 DENSITY FUNCTION CSTBRE( 2)- 1-073E-o1 CSToRE< ax- 1-1745-01 176 Bib-TDA K.K. ISP1N(GoSo)= 0 ITDRDaC 1As16 Iz= 8 Hw=13.3o IPUCO J: 2. E3180563 N810 TYPE-3 Q/ 3 4/ 2 5/ 2 6/ 3 6/ 2 90116 0707 05530 .0409 .0065 it I! TYPE-5 ' “/ 3 4/ 2 5/ 2 6/ 3 6/ 2 .0012 0111 00146 0017 00008 BMJ(DBWN)'1006OE'01 BMJ(UP) 950299E-01 NAJBR CBMPBNENT P= 4 H= 2 TYPE'3 SINGLE PARTICLE BMJ P-TfioH'1014BE'01 -T8-c(o.s.>-1-377E'01 DENSITY FUNCTIBN csrenaz 2). 5.0832-01 CSTBRU a). 1.1055-01 177 Bib-TDA K.K. ISPIN(G.S.>= c ITDRP=O IAs16 12a 8 Hw=13.3o IPU=O ' ' J: 2- ' 5319-351 N-io TYPE-3 4/ 3 4/ 2 5/ 2‘ 6/ 3 6/ 2 F0081 0315 0277 .0159 9.067 TYPE-5 ’ 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 0065 .0488 .710 0203 0007 8M3x o ITDRpuo IAalé Iz- 8 Hw=13o30 IPU=0 ‘ J- 2- . 2:19.698 N810 TYPE-3 , 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 "115 0361 0786 _ 03162 H.117 TYPE-5 4/ 3 4/ 2 S/.2 6/ 3 6/ 2 .0062 cauo --255 éo115 ..031 BMJ(UPIoso68OE-01 BMJ(DewNTa1.936E-01 'mAJeR CBMPBNENT P- 5 H- 2 TYPE-3 SINGLE PARTICLE BMJ .P-TO-H-5.3065-02 (PH)-Te-o(5.s.)32.1325.03 DENSITY FUNCTIBN CSTGRE( 2)! 70985E'01 CSTBRE( #)I 100475.01 179 V 516'TDA K.K. ISPUHGoSo)' 0 ITDszo IA-15 12. 8 st13.30 IPu-o . J- 2- ' 2-20.939 N-io' TYPE03 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 0017 --046 “0116_ .02“ .018 TYPEPS _ 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 -~197 '672 062» ..232 ..223 BMJ(UPIIInIESE o1 BMJ(DOWN)'2o258E oo ‘MAJBR CBMPBNENT P- 4 H- 2 . TYPE-5‘ . SINGLE PARTICLE BMJ P-TB-H-1.386E oo (pH)'T5f0(GOSo)‘10663E oo DENSITY-FUNCTIeN CSTBREI 2:--2.ouaE oo csreas: 4); 202685 00 180 b16-TDA KéKo ' ISPIN(G.S.)= C ITDRPIC IAa16 128 8 Hw=13030 'IPU'O ~ J! 2- . E=23.276 N810 p TYPEOB . ' 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 ..osa ' 5171 -o7o ~065 '976 § E TYPE-5 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 ..ooS 0013 .0006 0003 '073 BMJ(UP)09.962E-02 BMJ(DGWN)-1o992E-03 MAJOR COMPONENT P- 6 H- 2 TYPE'B SINGLE PARTICLE BMJ P-TenH-1.991E-ou ‘ (PHI-T6-0-1°593E'0“ DENSITY FUNCTIBN CsTeREt 2)"20340E~02 CSTBREI A). 1.454E-o1 181 elb'TDA K.K. ISPUHGuSo)= C ITDRPIC IA$16 123 8 Hw=13o30 IPU'O ' J' 2- ' [‘240057 N810 TYPE-3 . ' 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 0006 00014 .0011 00005 .0073 TYPE-5 ' 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 .0125 0187 0120 oO#9 0963 BMJ(UPIQ3o389E oo' BMJ(DBWNInéo778E-01 mAJeR CBMPBNENT Pa 5 H. 2 TYPEgs SINGLE PARTICLE BMJ P-TB-H-1.seuE-o1 (PHT-TB-OCGoS-"105075'01 DENSITY’FUNCTIBN CSTORE( 2)--3v9«SE'01 CSTBRE‘ lo" 905145-01 182 816—TDA K.K. ISPIMG.s->-i 0 ITDRP=C 1A=16 12a 8 Hw=13.3o IPU'O JI 3- ' E! 80464 N: 6 TYPE-3 - 4/ 3 «x 2 6/ 2 .917 0298 -o26u TYPE-5 «/ 3 4/ 2 6/ 2 - noes ~uoo1 --001' BEJ'TB~0(G°$°>'3°1655 01' DENSITY FUNCTIGN CSTBRE( 4).-3.876901 184 516'TDA K.K. ISPMMGASaIt C ITDRP-O IA=16 Iz- 8 Hw-13.30 IPu-o J- 3- ' E'16o368 N: 6 1 TYpan 4/ 3 4/ 2 _ 6/ 2 ..359 .905 ..224 E g TYPE-5. _ ' “I 3 “I 2 6/ 2 :023 .016 oooo BEJTUP):1.191E 02 BEJIDOwNIOIo7OEE 01 MAJBR COMPBNENT ’P- 4 H- 2 TYPEaa SINGLE PARTICLE BEJ P'TG'HIZQSSSE 01 (PH)'T5'O(GCSC)'20533E 01 DENSITY FUNCTIGN CSTORE( L’s-a-obbhE-Toi 185 Ulb'TDA K.K. ISPnueos.>s o ITDRPaC IAa16 12a 8 Hw=13.3o IPu-o J: 3- ' 53180829 N: 6 TYPE-3 u/ 3 4/ 2 6/ 2 #005 -:016 o01a TYPE-5 u/ 3 4/ 2 6/ 2 o165 .980 o106 BEJIUPIsIo798E 02 BEJ§a.uoaa 01 BEJIDBWNIIIoZOIE 01 MAJOR COMPGNENT Pa 6 HI 3 Typgaa I IC E BEJ ‘ . SingsnszISELo1 (PH)-T8-o(5.s.)s3.8ooE 01 DENSITY FUNCTIBN CSTORE< «I. 3.061E-01 187 316'TDA K.K. ISPNHG.S.>= O ITDRPac IA:16 IZ- 8 Hw213.30 IPu-o . . LP 3. ' E8250105 NI 6 TYPEIS U3 “/2 6/2 ..003 ..003 --016 TYPE.5 . 4/ 3 k/ 2 6/ 2 noo18 ~0104 '-994 B£J(uPT33o128E 02 ’ BEJ! 0 ITDRP=C IA=16 IPU'O . q: 4. E8180833 N: 2 TYPE-3 “/ 2 0997 TYPE-5'- “/ 3 0075 HW'13030 1. _- 'Jfi— BMJ(UP)!50147E 02 BMJ(DOWN)-5.719E 01 NAJBR CeMPeNENT Pt 6 H- 2 TYPEsa 'sINGLE PARTICLE BMJ P.T6.Hl“.388£ 01 (PH).T8-O(GOSO"2.925E 01 DENSITY FUNCTIBN CSTBRE(.4)--6o680E-01 516‘TDA_ KIKO ISPHMG.S.)' 0 ITDRP=O IA=16 IPUPO J- 4. ' E319-713 TYPE-3 “/ 2 00075 TYPE-5 “/ 2 0997 BMJ(QPIQ702825 03 fiAJGR COHPBNENT p. “ SINGLE PARTICLE BMJ P'TBIH81.256E O3 DENSITY FUNCTIBN CSTeREI 4).-2.5126 00 189' 12» a H2213.30 NI 2 BMJ(DOWN)-8.091E 02 H- 2 TYPE-s (pH).Ter(GOSO)§80374E 02 ‘3!"- elb’TDA K.K. ISPINIGOSO)' C IPU‘O . . J8 10 El 7031 TYPE¢3 “I 2 .0308 TYPE-5 “I 2 .0005 BEJ‘UPII30356EIO4 MAJBR‘CBHPGNENT slNGLE PARTICLE B P-TB-H'162#1E~01 - DENSITY FUNCTION 190 MGNBPBLE SHIFT ITDRPso .IA.;6 123 3 6 N310 5/ 3 5/ 2 6/ 3 '358 ~332 -.231 5/ 3 5/ 2 6/ 3 .049 .005 ..003_ BEJ‘DBWN)'1.119E-04 P' 5 3 TYPEQB EJ CSTBREI 2)"5'9765'02 CSTGREI AI- 3.u10E-02 HW31303D 6/ 2 0045 6/ 2 00001 (PH)-T5'O(Go$o)‘80271E'02 191 BIG'TDA K.K. MSNGDQLE SHIFT ISPHWGoSo)= C ITCRP=C IA=16 IZ‘ 8 Hw=l3o30 IPU=C #3 1' ' E3430169 N=1C TYPE-3 4/ 2 5/ 3 5/ 2 6/ 3 6/ 2 '000 .098 '0330 0087 9.011 t 3 TYPE-5 ‘ 4/‘2 5/ 3 5/ 2 6/ 3 6/ 2 .0115 0926 '0051 3015 .0028 BEJ(UP)I8.C7#L-CB I REJ(DBNN)8?6691E'02 MAJBR CeMPeNENT P8 5 H- 3 TYPE*5 SINGLE PARTICLE BEJ P'TG'H'1024IE'CI (pH1'TB'O(GOSo>380271E'02 DENSITY FUNCTIBN CSTBRE( 2)=-8o877E-01 CSTBRE< 4) I 5.132E-01 blé'TDA K.K. ISPIK(GoSo)= Q ITCRP: IPUBO J8 1' E=130597 TYPE.3 “I 2 5/ 3 .054 ~038“ TYPE.5 “I 2 5/ 3 P'O45 0350 BEJ(UP).1|361E'02 MAJSR CBMPBNENT P: 5 SINGLE PARTICLE BEJ P'TB'H'EOQBIE'OI DENSITY FUNCTIBN CSTBRE( 2)--3.933E-CI CSTBRE( “1' 2.222E-01 192 MBNBPBLE SHIFT C IA=16 IZ= 5 \=10 5/ 2 6/ 3 0816 ~0242 5/ 2 6/ 3 0020 .0009 8EJ(DGAN)=“o535E-03 Pa 2 TYPE=3 M43.30 l J 6/ 2 F .022 if I; 6/ 2 ..011 (PH)-T6-Q(Go8o)‘106545'01 193 RIG‘TDA K.K. MBNBPBLE SHIFT ISRINIS.S.)= o ITDRP=O IA§16 Iz- 8 Hwa13.30 IPU=O JP 1- ' E‘150131 N310 'TYPE.3 . b/ 2 5/ 3 , 5/ 2 6/ 3 6/ 2 .0576 '0096 0203 . 0748 I 0235 TYPE-5 . “I.2 5/ 3 5/ 2 6/ 3 6/ 2 ' .0021 0012 0005 00#7 0012 BEJIUPI-5.9985-04 ‘ BEJIDewN)-1.9995-OL , RAJeR CeMPeNENT P- 6 H- 3 TYPE-3 SINGLE PARTICLE BEJ ' P-TO-H-3o102E-01 (PH>-TB-o--1.933E-02 CSTBRE(’»)' 2.1565-02 194 Bib-TDA KoKo 1 MeNePaLE SHIFT 15PIN(G.s.>= o ITDRP=O 1A:15 12a 8 Hw-13.3o IPu-o J! 1' ' E8170156 N310 TYPE-3 4/ 2 5/ 3 5/ 2 6/ 3 e/ 2 .027 < .002 .006 ..oas ..011 TYPE.5 . ' u/ a 5/ 3 5/ a e/ 3 6/ 2 ' ...319 ..049 --160 .898 .248 BEJ=8.331E-O3 2 TYPE=5 P41A31303O 6/ P.) .0008 6/ h) 0165 (PH)-T6-Q(GoSo)‘106545'01 It:..‘l._ Z 196 e1e-TDA K.K. MONBPBLE SHIFT ISRIN- o xTcRRao IA=16 12s a Hw=13.3o IPU!O 'J8 1- - a-21-092 R.1o TYPE-3 ‘ ‘ 4/ 2 5/ 3 5/ 2 6/ 3 6/ 2 case 4 .052 --o38 ..051 .953 TYPE-5. 4/ 2 5/ 3 5/ 2 e/ 3 e/ a oo12 coco ooos .061 .015 ' BEJ-8.271Esoa DENSITY FUNCTIBN CSTGRE( 2): 262665-01 ' CSTORE( 4).-602395'01 199 e16-TDA K.K. MONBPGLE SHIFT ISPIN(G-Sa)s o ITDRPao IA-lé I23 3 Hw313o30 IPUto , * . J' 2' ' E' 80869 N310 .1 TYPE-3 E “/ 3 4/ 2 5/ 2 6/ 3 6/ 2 0971 0222 0050 , 0060 0006 I iv TYPE-5 #/ 3 4/ 2 5/ 2 6/ 3 5/ 2 '041 0008 '003' 0001 0002 BMJ(UP,'10089E'01 BMJ(DBWN)'20179E002 HAJGR CBMPBNENT P- 4 H- 3 TYPE!3 SINGLE PARTICLE BMJ PPTB-H'1ob37E'02 (PH>'T5'O(GoSo)'10965E'02 DENSITY FUNCTIGN CSTBRE( 2)I'1o248E-02 CSTBREI aI--1.373E-01. Blé-TDA 'ISPINIG.s.I= o IPU'O J: 2- TYPEQB 4/ 3 I”039 TYPE-5 4/ 3 0965 200 McNaPeLE SHIFT E=120312 ITDRP=C IA.16 12: a Rw-13.3o' Nalc u/ 2 5/ 2 6/ 3 6/ 2 ~0017 0002 '-§010 0002 «x 2 5/ 2 6/ 3 6/ 2 0236 9071 .0005 0070 ’BMJIUPI-1.911E oo BMJ(DOWN)-3.821E001 MAJeR-CeMPeNENT P- a H- 3 TYPETS SINGLE PARTICLE BMJ P-TB'HflioOHSE 00 DENSITY FUNCTIBN CSTBRE‘ E’s-203385'01 CSTBRE‘ #)0'50023E-01 (PHI-Te-o= O ITDRP-o 1Aa16 Iz= 8 Hw-13.30 IPu-o 3. 2. - E8130868 N210 E TYPE-3 ' 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 ..157 .476 6.075 .848 ..153 TYPE-5 ‘ ‘ 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 ooo9 0014' ~0003 5037 2 ..003 BMJTUP)340559E'01 . BMJ(DOWN)IS.119E302 MAJOR CBMPGNENT P- 6 H- 3 TYPE-3 SINGLE PARTICLE BMJ P-TB-H-4-306E-oa -Te-oIa.s.I-3.44uE-oa DENSITY FUNCTIBN CSTBRE( 2,. 1.384E-02 CSTBRE( «I. 2.8565-01 202 816-TDA K.K. ‘ MGNBPBLE SHIFT ISPINIG.3.)= O ITDRP=C 1A816 128 8 Hw'13.30 IPU'O J! 29 ‘ E‘lSOSOS NIlO TYPE-3 4/ 3 4/ 2 - ‘5/ 2 6/ 3 6/ 2 .0089 064‘!- 90615 .0441 .0048 J TYPE-5 ' 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 aces ~016 --043 --034 .003 'BHJ(UP)gaouh9E-01 BMJ(DOWN)-6oBSBEIOE MAJOR CeMPeNENT PI 4 WI 2 TYPEsa SINGLE PARTICLE BMJ P-TB-H-1.148E-01 (PH)-T8-o(G.So)a1o377E-01 DENSITY FUNCTIBN CSTGRE( 2)- 1.736E-01 CSTBRE( “Tu 1.837E-01 B16'TDA ISPIN(GoSo)' 0 IPU'O JI'2- TYPEw3 4/ 3 --142 TYPEUS “/ 3 '0001 203 MBNBPBLE SHIFT ITDszc 1A316 53160449 'u/ 2 .525 4/ 2 ~0017 BMJ(UP)I5.021E-01 MAJBR CeMPaNENT P- 5 SINGLE PARTICLE BMJ P-TfioH-5.306E-02 DENSITY FUNCTIBN CSTBREI 2)-~2o610E-01 CSTBREI 4)‘ 4.0935-01 ll 8 N310 5/ 2 6/ 3 I775 '0275 5/ 2 6/ 3 .067 oOOQ7 BMJ(DBNN)01.004E-01 H' 2 TYPE-3 Hw'13030 L 6/ 2 F '01#5 L 6/ 2 .000 (PH)'T0'0(GoSo)820122E'02 204 Big-TDA K.K. MBNBPBLE SHIFT ISPINIG.s.Is o ITDRPuc IA-16 12: 8 Hw-13.3o IPu-o . J: 2. ' 5917.033 N310 TYPE-3. , ‘ 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 .0004 0026 0027 00059 0000 TYPE-5 ‘ 4/ 3 k/ 2 5/ 2 6/3 6/ 2 ..059 .301 --028 .943 9-109 BMJ(UPI-2o6895~01 BMJ(DBNNI-5.378E-02 I MAJOR COMPGNENT P- 6 H- 3 TYP2.5 SINGLE PARTICLE BMJ P-TO-H'2.511E-02 (PHI-Te-OIGos.)n2.009E-oa DENSITY FUNCTION CSTeREI 2I- 9.077e-02 CSTeREI «I. 1.872E-01 205. BlvaDA KOK0 MBNBPBLE SHIFT ISPIN‘Goso)‘ 0 ITDRP=O IA'16 IZ‘ 8 HW‘13030 IPU=O ~ J: 20 . E1150642 0310 TYPE-3 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 '000 “.009 0066 0007 '0011 TYPE-5 . “/ 3 “I 2 . 5/ 2 6/ 3 6/ 2 .0109 0662 00696 .0234 '0038 BMJIUPI-u.3ISE-01 BNJIoewNI-8.6SOE-02 MAJBR COMPONENT P' 5 H! 2 TYPE95 SINGLE PARTICLE BMJ I P-TB-H010519E oo (PH)-TB-O(GoSo)I600765'01 DENSITY FUNCTION CSTBRE( 2). 2.2885 00 CSTSREI 4,9-60320E-01 O16'TDA ISPINIG.S.>= o IPU‘O JI 2. TYPE-3 4/ 3 P0055 TYPE-5 “/ 3 ‘-o010 BMJ(UP)01.301E-O1 206 MONOPOLE SHIFT E3190935 MAJOR_COMPONENT PI 6 ITDRPIO IAslé 12a 8 4/ 2 5/ 2 6/ 3 0181 0072 0070 4/ 2 5/ 2 6/ 3 0030 0024 -0011 BMJ(DOWN)-2.602E002 TYPE‘3 SINGLE PARTICLE BMJ P-TO-H-1o991E-04 DENSITY FUNCTION CSTSREI 2>--8.277E-02 CSTBRE< LI- 1.886e-01 (pH)-T5-o(G.S.)010593E'O“ Hw=13o30 6/ 2 0976 6/ 2 0009 207 e16-TDA K.K. ' MONOPOLE SHIFT ISPINIG.s.>= o. ITDRPsO IA=16 12a 8 HL=13.30 IPu-o J: 2: - E3200131 N810 ! TYPE-3 - 4/ 3 4/ 2 5/ 2 6/ 3 6/ 2 code --021 --oas .006 *-.031 TYPE-5 F” I 4/ 3 #/ 2 5/ 2. 6/ 3 6/ 2 00186 0615 0697 00211 00229 BMJ(UP)01.12IE 01 BMJ(DOWN)-2.2435 00 MAJOR COMPONENT P- 5 H- 2 TYPE05 SINGLE PARTICLE BMJ P-TB-H-IoSISE oo (PHI-TO-OIGoS.)n6.o765-o1 DENSITY FUNCTION CSTeREI 2I--2.292E oo CSTeREI 4). 2.361E oo 208 616-TDA K.K. MONOPaLE SHIFT ISPIN(GoSo)= C ITCRD=O IA=16 IPU=C J: 2' E=230145 TYPE-3 V 4/ 3 4/ 2 0002 ‘ .0004 TYPE-5 ' 4/ 3 4/ 2 .0125 0188 BMJ(UP)!3o523L 00 MAJOR CBMPeNENT P8 6 SINGLE PARTICLE BMJ P-Ta-H-1.884E-01 DENSITY FUNCTION CSTBRE( 2,2-u.204E-01 CSTBREI 4)- 907895-01 IZ= 8 \310 5/ 2 6/ 3 '0005 '0001 5/ 2 6/ 3 0129 0048 BMJ(DOWN)I7oC45EOOI H. 2 TYPE'S HWS1303O 6/ 2 .0017 6/ 2 0964 (PH)'TO-O(GoSo)8105075'01 209 616-TDA K.K. MSNOPOLE SHIFT ISPINI6.s.Ia o ITDRP=C IA=16 Iz= 8 RN=13.30 IPU'O JO 3- ‘ E3 50082 N: 6 TYPE-3 #/ 3 4/ 2 6/ 2 0921 0286 '0262 TYPE-5 “/ 3 4/ 2 6/ 2 0019' 0000 00001 BEJ(UP)'40881£ 02 BEJ‘DOWN)'60972E 01 NAJBR CSNPSNENT P- 4 H- 3 TYPE-3 SINGLE PARTICLE BEJ P’TB'H'BOésui 01 (PH).T6'O(GOSO)'3'166E 01. DENSITY FUNCTIGN CSTOREI 4).-7.37SE-01 210 816'TDA K.K. MeNePeLE SHIFT ISPIK(G.S.)= C ITDRp=3 IAsle IZ= 8 Hw=13.30 IPU'O J‘ 3' . 53130312 \= 6 TYPan #/ 3 4/ 2 6/ 2 0006 .0063 0024 TYPE-5 “I 3 4/ 2 6/ 2 0984 .0167 'OOC BEJ(UP)319273E 02 BEJ= c ITDRPac IA=16 12* 8 Hw=13530 IPUBO ' . J' 3' E8240191 - N: 6 TYpEua 4/ 3 4/ 2 6/ 2 ..001 ..001 --009 TYPE-5 . “I 3 4/ 2 6/ 2 .0018 -!104 0994 BEJp~m4mo ~o.u~sn.n...m.o.o.o»..xu. mo.mmmn.m.xuo».u wzo u4u~pa». o..x a .n Lzuzoazou mou

» on". mac. «do. awn. ago. «cu. . \n c \m m \m o \m . \o« o \o“ naun>k o~.2 .om.o .u .m .1 canon om.o~.3x o~.- o..<~ o.nmo»~ o ...m.u.znnm~ Luuxm anamzaz» .x.x (02.0.«u 218 000. ¢ \n mom. a \5 Mac. m \h Ame. m \n «on. o \h «on. o \h moo. J \& co". . \» «onm «com «0 mm«o.oo..m.u.ono»u.11. ago. 0 \@ non. o \» omoo«u31 flu n.ua>h c .1 n .a mo unmo.wu.zxno.5mm moo.- c \m omuoo c \m om-N~ soool moo. m \m 0 \m wmnol mmmo m \m o \m wnuz o oau<~ oonaoh~ »unxm wgoamzo: nmm.mo..o .maohmu mod.“ ..¢ .uaohmu zo~puzau >»~m4mo «o mflmn.m.x.m».a m UJU~Lmh m0«o| a \o~ - m.mu>» am.: nu .m an 0.30_ o ...m.u.z~am_ .xox <0k003~Hmzuo oo ummn.m.z.ok.a u4u~pah a.» .u um .1 coauu o ...m.o.zunm~ .xox <0k00¢h~mvmn «o umao.o...m.o.ouo»..1n. flo mdmu.m.xampun . wum m4u~pu» o .1 a .u hzmzoarou «01¢» 00 wshmom-azxoo.1wm «o unmh.m-.a3.fimm @000. MHOoI m«Ool ”No.0 0000' o \m a \m m \m o \m a \o« mama)» 5mm. omo. umo. amo.o mmooo o \w c \m m \m o \m : \oa Mqu>» mun? ooa.n .w om .1 OIDOH om.od.3x o~.~“ oa1<~ o.nmok~ o .1.m.u.zwumn Luuxm mgoamZOt .x.x «o».oe-mzmo mo.ua6o.n...m.o.o.op..:.. .o.omoo.a.z.op.6 axo moo.»a<. wool—m n.un»» 6 .x o .m Lzuzoaxoo «66¢: . no-mmmn.u..zzoo.vxm nonuuum.m..aaoorm moo. noo.. hoo. moo. omw. moo. coo. moo. noo. mac. 6 \n o \n . \o m \o o \o c \m m \m o \m . \o« o \o« m.m6>h mmo. one. coo. mmo. mom. ooo. «do. mac. ~40. moo. . \n o x. 6 \o m \o 6 \o . \m n \m o \m . \02 o \oa . nom6>h om.‘ n.».n..u .m .1 . o.oa~ om.oa.:x om.- o..<~ o.nao»~ o ...m.o.z.6m~ huaxm uooaozoxo. .1.! L~mzoo mo “~66.~.x.6».6 ouo wouopm<6 woozom n-mnrh o a: a an hzuzonrou aufih oauz 06m.6 .m .m .1 0.31" o6.<~ o.nmo»~ o ...m.o.z_nmu p.216 uooaozo: .x.x -mzmo mo.o6M6.....m.6.o.o»..166 mo.u66m.m.x.o».a ozm mounpm» 6 .1 6 .6 pzuzoazou «616» . monumon.mo.23oooozm «oouamo.6..aoooam mno. “no. m6o. o6m. 66o. omo. moo. one. mmo. . 6 \m 6 \6 m \6 6 \6 6 \m m \o 6 \o 6 \06 6 \oa T muuu>h moo.. Mao.l moo.0 mum... «.00.. moo.| moo... Noo.o ”No.6 6 \n 6 \6 m \6 6 \6 6 \m 6 \m 6 \m 6 \66 6 \66 - n.ma.» om.7 nmm.m .u om .1 . Diana om.o«.31 om.~_ 06.<_ o.amo»~ o ...m.o.z_nm~ .6616 6466626: .x.x «op-o66u 2130 moo. c \n mac. 6 \n onm.. m \h 66o. m \n «do. 6 \n odoot o \u ONOQO 6 \w «No.6 6 \n no wonm.a...w.o.ono»o.1ao Man. 0 \w on«.. o \& om.o«-31 Houucnm.«...6 .umohmu «onusmo.6 ... .uaopmu zompuzou >h~mzmo mo um66.m.x.o».u oum mJuHPar 600.. «mo. 660. m \m o \m 6 \0a numn>k 66.2 .66.m .6 .m .6 . 0.30” o:.<~ clamor" o u—.m.0.2~nm~ Charm moonozor .z.x pomamo mo uono.~.z.o».6 666 6466666. ”66666 n.66>» m .x a .6 .zuzoarou «616» «o w«on.cuazzooofiwm “000. t \m ”MOO. c \m omu- mo wum~.m-.a3.flmm woo.o noo.o moo.. m \m 6 \m 6 \ou T mono». «50.. mod. «mo. 6 x 6 \m 6 mo“ . m m.un>» z .66.. .u .m .6 on. 063nm o6.6~ o.6zo»~ o ...m.o.zoam~ 666:6 666.626: ..x.x .«.157: 01 BMJ(DBHN)-h.619fi oo EAJCR CEHPCNENT P- 7 H- 5 1YPE-3 SINGLE PARTICLE BMJ P-Te-proBBBE oz (PH>-TO-o(GoSo)-1o189E'02 DENSITY FUNCTION CSTen£( 6:3'709165'03 CSTBRE¢ 6): 301356-02 7/ § .0117 7/O -oo~1 2133 am".- ¢ \h m::. c \5 005. m \h 00”.. m \h «cammmm.~...o .uwopmn «o.uooo.n .ae .uaowmu zoapuzau >»~mzmn mo woom.mu..m.o.ono»o.1u. No wonm.aoxuohn. Gum wJunhak ««~.- soc. ono.. ~:o.u :co.o o¢~. 000. o \u t x» o \w . \m m \m o \m ¢ \Oa . m.ma>u nuoz omm.o«.u .n .w . 0.3a" om.o«.:x o~.- o..<~ o.aco»~ o ...m.o.z_am~ huaxm “4010201. .x.x <0».o.-Te-o(o.s.)-1.323£ oz 0:65:77 FUNCTION CSTBRE‘ 6,. 6.2005-01 CSTBREI 6)--56339E-02 CSTBREI 8)! 00005 00 246 oo mooo. agenvmaohmu «cuusnoomooan .mROFwU «OImNOu.n 6.0 .uwo»mu «ocun0homnoan «muchmu zoupuzau‘rhumzmo no m~0«.~...m.0.0.o»..16. no uduo.a.x.06.m 3mm u4u~rmh. a II «nun hzmzmntou x03p «mo. 56“.. om0.. nno. 000. mam. 66“.. 00“.. “a“. mom. mm“. . 0 \ma 0 \m0 5 \m« m \60 a x.“ 0 \na 0 \nd a \n« 0 \ma 0 \~« A \~0 , numa>» non. cum. mom. "axed .0m\n" oflxmn mummy» 6. mm". mflo. son. a \«0 0 \«u h \«a «sua>» 0~.z now.“ .u .n .6 I . . 0.3a” 00.0 .31 mn.- wo.<. o.aao»~ 6 ...m.0.z~am0 pu~1m 0406020: .x.x . (ohummam 2117 SRBB-TOA KoK: HONBPBLE SHIFT ISPIN‘G.S¢)I 6 XTDRPIO IAIBB 12938 HH' 9.00 IPU'O JI 29 E' 20259 N' 6 TYPE.: ' , 10/ 8 10/ 9 9720 '0556 TYPE-2 V 12/11 13/11 p .0376 0078 ‘ TYPE-3 I 16/ 7 , E ;165 IYPE-B 16/ 7 .0026 .BEJ‘UP’330158E 02 BEJ‘DUWN)'60316E O1 EAJOR COMPONENT PI1° H- 3 TYPE'1 SINGLE PARTICLE BEJ Pete-H-s.a~3£ o: (PH3-TO-O(GoS.)-20737E 01 DENSITY FUNCTXSN CSTBRE('3)I 109335 00 CST3RE( 5)I'10936E 0° CSTORE‘ 7): “06505“01 CSTSRE‘ 9)I 5.200E-03 248 SQQB-TDA KoK, MONOPOLE SHIFT I$P1N(GOSO)' 6 ITDRPIO 3"88 12.38 HH' 9000 1°U'C ' J' 2* E' 30037 N- 6 T¥PEO1 10/ 8 10/ 9 9669 0699 TYPE-2 12/11 13/11 0251 0028 TY?E03 ‘ 16/ 7 "013 TYPE.“ 16/ 7 .018 BEJ!UP)I1.3“~E-01 8EJ(DBNN)'306895-02 fiAqen CeHPeNENT P010 HI 9 TYPEn1 SINGLE PARTICLE BEJ P'Ta-HI7OO965 01 (PHy'TO'°(GoSo).20839E o1 DENSITY FUNCTION CSTSQE( 3,0 107965 00 CSTQRE‘ 5}'°90553E'01 CSTSRE( 7" 9oC79E'02 CSTORE( 9)- 10363E'Oh 2119 SR88-TDA ‘0‘] ”BNGPQLE stFT lSPXNcG.s.)- 6 ITCRD.o IA-ag 12.33 Hun 9.00 lpu'c J0 5- 5- 3.363 N-lb TYFEfI 11/ 7 11/ 8 11/ 9 .1a7 .323 .397 TYpE-a 16x11 018“ TYPE-3 ' 12/ 7 12/ 9 13/ 7 13/ a 13/ 9 15/ 7 ocsa -15~ --1os --215 .13“ '0066 TYPE.“ ' 12/ 7 12/ 9 13/ 7 13/ 8 13/ 9 15/ 7 '0009 '00“2 oce~ ' ooaa_ ~o029 ooot BEJtup)-a.73oa O7 BEJtDewxy-2.532£ 05 ”AJOR CeHPeNENT PI11 HI 3 TYPE-1 SINGLE PARTICLE BEJ P-To-H-a.uc1E oS (PH)'TB'O(GoSo’I70637E os Densztv pu~crle~ CST99E( e;--3o19~E-ox CSTBREK aa- tosses-01 CSTERE(10)' vocoe oo. 2550 SRSSOTCA K.Ka MfiNEPCLE SHIFT 1391\(Go$o)l 6 ITDRPIC IAIBS {2'38 HK' 9'00 ' ‘:°u-o ' JI 1+ [I 30391 N- 2 TYPE-1 IC/ 8 0999 TYPE.2 13/11 00““ B“J(UP)I701°25002 BMJ(DOWN)'20367E°°2 HAJUR CEH?5NENT Page H- 8 TYPE-1 SINGLE PARTICLE BMJ P'I°°H'3O7OOE’OE (PH)'T5'O(GOSO)lzoh67E'OZ szsxvv FUNCTISN CSTSQE( 3)- 1.6698 00 CSTe=:( 5)--1.335E 00 CSTBQE( 7)‘ 206713-01 CSTBRE( 9)--33285E-0k 2551. $988.73A KoK; HeNepsLE SHIFT ISPIN(GISO)I 6 XTDRPIO IAIBS 12.38 HR. 9000 :Pu-o - J- 30 El 30559 N- 9 TYRE-1 10/ 7 107 9 oocoz 1.000 TYPEOZ 12111 13x11 15/11 cox: oooe ..oos IYPE.3 16/ 7 16/ 9 ~c¢1c ~oooa TYPE.“ 16/ 7 16/ 9 00008 0001 994(up:-2.aiaE-c1 ethaew~>-a.oase.oa fllJBR CSfiPSNEkT PI1° HI 9 TYPE'I 'sx~eL: PARTICLE BMJ P-Ta-H-aosaza-c1 (PH)-T3-otG.s.)n1.~ogcoog oausxrv FUNCTISN CST9RE¢ 5)--5oC62£-oa CSTBQE( 7)- 109995-02 CSTDRE( 9:--7-3~uE-o~ \ 2552 5953.70; KoK, MONOPOLE SHIFT ISPIN‘GoSo). 6 ITDRPIO 1AI88 12.38 ”H. 9000 IPU' J. 72 E. 30843 N- 5 ' 11/ 7 11/ s 0090 0973 TYPE-2 16/11 '1“O TYPE-3 ' 13/ 7 .0163 TYPE.“ 13/ 7 0016 854(UP).3.17~E 10 a:4»~mz00 no u«00.0...m.0.0.0»..1n. no mm...m.x.n».a nzm 0400»m<0 040200 0.0..» m .1 “d.. .zuzonzou «ow» moo. .00.. .00.. mmo. 000.. "00.. 000. 000.. m00.. m \00 a ‘00 n x.“ m \00 0 \00 n \00 m \00 0 \NH n \00 0.0.». .00. ~00. “axe“ oflxmfi - m.ma>» . 0mm. . «mm. ~m0.. m \«n 0 \«d n \«a 0.0.». . mm.z mom.m .m .a .1 5 . o-DQH .00.m .31 mm.- mm.<~ 0.aa0»~ o ...m.u.z~am~ bunxw wqmamzmt ~v.y. (ahowwam 2554 SRBBoTOA K.K, MONOPOLE snxrr XSPIN(G.So)I 6 ITORP-o IA-88 12-38 HH. 9.00 IPUIO J- 6- E- 30982 N-io TYPE01 ' ' 11/ 7 11/ 8 11/ 9 .003“ 0719 .693 TYPE-2 16/11 OCEO TYPE-3 12/ 7 ‘ 13/ 7 13/ 9 0.009 .0009 0013 TVPE-h ' 12; 7 13/ 7 :31 9 ..c15 --001 0011 BMJ(UP)I70253E O7 BHJtoewu)-5.S7SE 06 flAJOR CBHPBNENT P-:: H- 8 TYPE-1 ‘SIKGLE PARTICLE BRJ P-Te-H-3.ooSE c7 (PH)-TB-o(5os.)-ao312E o7 DENSITY FUNCTICN CSTBRE( 6,8'809055'01 CSTOREC 8). 2.973E-O1 CSTBR£(10).-30859E-OQ 2555 $R33°T°A K.K. HowepaLz SHXFf 15918:G.s.)- 6 17089.0 IA-88 32-38 Hw- 9.00 IPb-O - d- 5- Eu hocofi \n15 TYPE-1 -. - 11/ 7 11/ 8 11/ 9 011“ .0508 0833 TYPE-2 16/11 0100 TYPE-3 ” .12/ 7 12/ 9 13/ 7 13/ 8 13/ 9 0022 0055 "0065 '0101 0082 TYPE.“ ' 12/ 7 12/ 9 13/ 7 13/ 8 13/ 9 oooo '001* --oo~ '0003 -0018 BEJ‘UP"206135 06 EAJeR CSHPeNEhT P-11 SiNGLE PARTICLE BEJ P-TS-H-s.850E oS CExSITY FUNCTIBN CSTSP£( 6). 60390E'02 CSTEQE( 8)I 202505'02 CST:RE(10)0 00005 00 BEJ(DOWN)I2.376E 05 HI 9 TYPE-1 (pH)'TU'0(GoSo"50319E 05 15/ 7 .0023 15/ 7 .0003 2556 oo uoou. ..oaoumokmu mo.m.wo.« ..w ouampmu mo.mmmn.m ..o .maohmu «0.000..0.... 0000000 200.040. >»00200 mo 0mm..~...m.o.o.o...zr. mo 0.~0.H...o... 100 0400.... 040.00 0.0..» 0 .1 na.. .zuzoaxoo «on.» 00 000~.0..z.oo.ouo oo 0....0...o.omo 000. «00.. «00.. .00. .00. 000. 000.. 000.. 000. . “00.. 000. 0 \m" o \m“ . a o \0. n \00 0 \00 0 \~« 5 \m . n \ma 0 \.fl 0 x.“ 0 \0 ..0a>» 000. .00.. Noooo 000. «00.. mod. NuOol 0:000 moo. ”Mao moo. 0 \00 0 “m“ x a 0 \00 0 \0H 0 \NH 0 \Na 5 m - 0 \00 0 x." a x.“ 0 0 0.0..» 000. .00.. .mm. . “axon oflxmo oH\~« - 0.0... . .00. 000.. 000. 0 x.“ o x". . x." «.0... 0m.z 0.0.. .u .0 .1 . 0.3a” 00.0 .xx 00.~_ 00.<~ 0.a00»~ o ...m.0.zunm_ hu_1w mJoaozo: ox.x <0».mmmm 257 saga-TDA K.K. MONOPOLE SHIFT ISPIN(G.s-)- 6 XTDRP-O lA-88 xz-38 Hw-_9.0o 198-0 4. a. E. b.667 N-i: Tvpaol ' 10/ 7 .0362 TYPEOZ _ ' 12111 13/11 1~/11 15x11 .908 00137 0091 0.058 TYPE-3 16/ 7 16/ 8 16/ 9 'OCSO '0138 ~0056 TYPE.“ ' 16/ 7 16/ 8 16/ 9 'OOC* '0003 0003 3:4(u9)-3.3155 O“ BEJtDOdN)'9.239E 03 8.488 CeHPONENT P-12 H-11 TYPE-2 SIKGLE PARTICLE BEJ PoTO-HI GOOOE 00 (PH7'TO'O(60507' 00005 00 oaxsxrv FUNCTION Csrenit 5).-2.069E-O1 CSTSRE‘ 7). 6.5555'02 CSTBRE( 9). SobOhE'Oa $888.70. K.K. nenepeg: snxrr XSP!N(G.S.)- 6 tTDRP-o 1A.33 {2038 Hu- 9.00 Ipb-o J' 6- EC #0222 N010 Typaoi 11/ 7 11/ 8 11/ 9 0135 I068“ .716 TYPE'E 16/11 00003 TYPan ' ' 12/ 7 13/ 7 13/ 9 .016 .000 ooze TYPE.“ ' 12/ 7 13/ 7 13/ 9 0026 0015 0007 BMJ(uP)-1.567E 08 ema¢oew~>-1.2osc 07 QAJBR canpoNENT P011 H- 9 TYPE'1 SINGLE PARTICLE BNJ p.13...;.3.9a 06 (PH)-To-otoos.:-1o~23£ 06 Oakszrv FUNCTION CSTSQE( 6)- 802005.01 csrea£( 8a--3.57oa-01 CSTORE¢10)- 702885.05. .2559 $888.70. K.K, weNcPeLE SHIFT 15918»0mzmo no us0o.«.z.o».o 5:0 u.u..a.. u.o..0 «.u..» 0 .z . «... oruzoazou oooh moo. 0 \~« n.ua>» ooo. onxmo . ~.uu>» no“. 0 \00 - n.ua>» .. .3 0.oa~ o I..m.o_zumm~ (abomuwm 261 SQSB-TDA K.K, MENSPSLE SHIFT XSPIN(G.S.)I 6 ITCR°oc IA-88 12-38 Hw- 9.00 IDL'C J: 2. EU 19056.7 =’\' 6 Tvain‘. 10/ 8 13/ 9 .«33 ...37 TYPE-2 12/11 13/11 0881 0125 TYPE.3 ' 16/ 7 000B“ TYPE-« 16/ 7 .0033 BEJ-TS-o