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ABSTRACT

QUANTUM OSCILLATIONS IN THE PELTIER

EFFECT IN ZINC

by Harry Joseph Trodahl

Peltier measurements have been employed to study quantum

oscillations in the thermoelectric power of zinc single

crystals. The three lowest frequencies, due to the a, a

and v orbits, were observed at temperatures ranging from

10K and 4.50K and in fields to 22 kilogauss. The amplitudes

found were between .01 and l uv/KO.

An attempt has been made to correlate the results of

these measurements with an expression derived by Horton.

As his calculation is valid only for the case of a free

electron sphere we have heuristically extended his results

to include metals with complex Fermi surfaces. The theory

and measurements agree only on the form of the temperature

dependence; neither the absolute amplitude nor the field

dependence is correctly predicted by the theory. It is

suggested that the primary source of the disagreement may

be found in the rather simplified scattering potential assum-

ed by Horton.
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I. Introduction
 

If one constructs a closed loop of two dissimilar

conductors and heats one of the Junctions a current is gen-

erated which can be detected with a compass. This was the

first experiment, performed by J. Seebeck in 1821, in which

the presence of thermoelectricity was indicated.1 His ex-

periments were followed in 1843 by Peltier's discovery

that a current flowing through a biconductor Junction could

produce or absorb heat.2 These effects are appropriately

known as the Seebeck and Peltier effects.

The Seebeck effect is more easily treated if one con-

siders the voltage causing the current to flow. This is

measured by breaking the circuit as shown in figure 1a or

b and measuring the potential difference across the break.

It is possible to define a function SAB(T) for which

rT2

v = - JTlSAB(T)dT (1)

SAB(T) = - BV/BT. (2)

Here V is the measured voltage when no current is flowing

through the loop and T1 and T2 are the Junction temperatures.

Furthermore, it is possible to define a coefficient S(T)

for each conductor if the coefficient used in equations

1 and 2 is defined to be

SAB(T) = SA(T) - SB(T) . (3)

S(T) is called the absolute Seebeck coefficient or the

thermoelectric power of the material.

At the Junction between two conductors the Peltier heat

is proportional to the current flowing through the Junction,

and the Peltier coefficient H is defined as the proportion—

ality constant,

(1)



(2)
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Thermocouple circuitsFigure 1.



a = HABI . (4)

The sign convention used is that the Peltier coefficient

is positive if the Peltier heat is evolved when the current

is in the positive direction, from conductor A to conductor

B in figure 2. As for the Seebeck coefficient, one may

define a Peltier coefficient for an individual material.

The coefficient in equation 4 is then given by

HAB(T)==HA(T)-HB(T) . (5)

There is a third thermoelectric effect, the Thompson

effect, first predicted by William Thompson in 1882. Along

the length of a conductor which is both supporting a tempera-

ture gradient dT/dx and carrying an electrical current I

a reversible heat is evolved per unit length given by

dQ/dx = u(T)I(dT/dx) . (6)

u is the Thompson coefficient of the metal. It is interest—

ing to note that this is the only thermoelectric effect

which can be observed in a single conductor.

That the three thermoelectric effects are closely re-

lated has been known for a long time and the derivation of

these relations has been one of the primary tests applied to

the various treatments of non-equilibrium statistical mechan-

ics.3’uCa11ed the Kelvin-Thompson relations after William

Thompson (Lord Kelvin) who was the first to suggest them,

these relations are

TS (7)

T(BS/8T) (8)

T
1
1
2
1 H

in which T is the absolute temperature. The most elegant

derivation of these equations is based on the Onsager re-

ciprocal relations which demonstrate that the Kelvin relat-

4 7
ions are a direct consequence of microscopic reversibility. 7
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II. General theory

The results we can obtain from transport effect cal-

culations are equations expressing currents as functions

of appropriate driving forces. In a conductor we are con-

cerned with both electrical and thermal currents.

3'= LEEFe + LETGT (9)

fi = LTEFa + LTTGT (10)

3 = electrical current density

U'= thermal current density

T = temperature field

@ = u - eV = electrochemical potential

u = chemical potential

V = electrical potential

The quantities Lii in general are nondiagonal tensors in

an anisotropic material. The use of'fim rather than -é§V

as a driving force permits uS to apply the Onsager reci—

procal relations, ’

-- TLET- <11)

However, due to the temperature dependent term in the elec-

trochemical potential, the identification of the various

measurable quantities is difficult. The only easy one to

identify is the electrical resistance, measured under the

condition that VT = 0,

p = LEE(-l/e),
(12)

The Seebeck and Peltier tensors are simply defined by

S = p ° LET (13)

n = LTE ~ 9 . (14)

(5)



(6)

The combination of equations 11, 13 and 14 results in the

first Kelvin relation,

n = TS . (15)

It remains to be shown that, at least in isotropic

materials, equations 13 and 14 lead to the quantities de-

fined in the introduction. Because of the terms LEE?“ and

LTfifin in equations 9 and 10 this is not a trivial problem,

but the proper identification can be made. In anisotropic

materials a measurement of the "Seebeck coefficient" involves

a rather complicated combination of the elements of the

Seebeck tensor as well as the elements of most of the other

tensors, Lii' However, we are here concerned only with

the Peltier effect, i.e. the reversible heat produced at a

Junction between two conductors.

We extract from the paper by Domenicali 4the following

four equations which represent the total of all heat pro—

duction per unit volume in a conducting region.

Joule qJ =ifjpiJJiJJ (16)

Thompson qT =i§JuiJJJaT/axi (18)

Bridgeman qB =i?3“135J3/5X1 (19)

The Thompson tensor, p, is given by

n = T 5(H/T)/5T . (20)

In Peltier measurements we are concerned only with revers-

ible heat production, i.e., the heat production that is

reversed by a reversal of the current direction, so that

we may neglect the Joule heat term. We shall also neglect

the Thompson heat term by requiring that temperature grad-



(7)

ients be small; more will be said about this later. Only

the Peltier and Bridgeman terms remain and it is quite simple

to show that

qB+qP=€- (n5) . (21)

The total reversible heat production from these two terms

inside a volume, V, bounded by the surface, s, is given by

Q =l £7" (Hj)d'r =l (r13) ° fids , (22)
P+B V s

by the divergence theorem.

The experimental arrangement is reasonably well approx-

imated by figure 5. The Junction between conductors A and

B is in general a complex structure consisting of solder,

crystallites of A and B, and impurities. We would like to

calculate the reversible heat in the region of the Junction,

inside the dotted surface in figure 3. If we assume that

this surface crosses the conductors sufficiently far from

the Junction that the currents are only along the lengths

of the samples, equation 22 results in

e =(j°n-i-i°n-?)I . (23>
P+B A A A B B B

Thus it is the difference in the appropriate diagonal terms

which is measured.

Perhaps the most common method used in transport calc—

ulations is through the Boltzmann equation, which can be

solved to obtain the electron distribution function f(k).

One may then apply the equations

elv‘(k)r(k)d3k (26)

- .[e(k)'\7(k)f(k)d3k (27)

3

C
“

I

and identify the tensors Lii by comparing equations 26 and

27 with 9 and 10. In equations 26 and 27
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k=wave vector

V(k)=velocity=3ke(k)

6(E)=electron energy

The combination of the Boltzmann equation with an assump-

tion that there exists a unique relaxation time T(k) at

each point in momentum Space leads to the familiar logarith-

mic derivative formula for the thermoelectric power.

s =<r2/3)<k2T/e>{atloe o(e)]/Be}€=€f. (28)

in which 0(a) is the electrical conductivity as a function

of energy 6, T the absolute temperature and k the Boltz—

mann constant.



*

III. Quantum Oscillations - general theory-

The state of a free noninteracting electron gas con-

tained in a three dimensional square well can be described

by a Sphere in single particle momentum (k) Space the in-

terior of which has an electron in every state while the

exterior is empty. The boundary between the filled and

empty regions, called the Fermi Surface, is not infinitely

sharp; there is a region that is a few (kT) of energy thick

in which the available electron states are only partly filled

or empty.

In the absence of a magnetic field these states are

distributed thngpghout k Space with a constant density.

The applicationAa field redistributes them, with the same

average density, onto the surfaces of cylinders aligned

parallel to the magnetic field (see figure 4). It should

be noted that an electron in an energy eigenstate does not

remain stationary on one of these cylinders. It will orbit

in a circle about the circumference with a frequency given

by

we = eH/mc . (29)

The radii of these cylinders increases with magnetic field

and as the outer one passes through the Fermi surface the

electrons in those states fall into lower levels. This

process repeats as each Landau cylinder passes through the

Fermi surface, giving rise to an oscillatory magnetic field

dependence of the internal energy and the density of states

at the Fermi level. Similar oscillatory dependence could

* The material in this entire section is covered more

completely in many solid state physics texts, for example

see Kittell. See also Pippard.

(10)
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Figure 4,(after Rosenbergg) Landau

levels in a free electron gas. ’
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in principle be found in any electron related measurement

and has been observed in the magnetization (de Haas-van

Alphen), the electronic free energy (magnetothermal oscilla-

tions), the resistivity (de Haas-Shubnikov) and in an im—

pressive list of more exotic effects including most of the

tranSport coefficients.

The exact solution of the problem of a free electron

gas in a magnetic field is not difficult. One finds that

the oscillations are periodic in the inverse of the magnetic

field with a period of

A(l/H) = eh/efmc (30)

where Sr is the electron energy at the Fermi level, m and e

the electronic mass and charge respectively.

Electronic states in real metals are affected to vary-

ing degrees by the periodic potential of the crystal lattice.

The free electron states of energy e and momentum k are mix-

ed with states of (nearly) the same energy and with mo-

mentum differing by one reciprocal lattice vector G, defined

by

‘- .5 .5 2

G - nibl + n2b2 + njb3 (,1)

n = integers

.31: 32x53/(2W(a2x 53) ‘ a1) and cyclic permutations

3i: the basis vectors for the periodic lattice.

In the free electron approximation the energy is proportion-

al to k2 so that mixing can occur only between states for

which

122 s (12 + 6F. (32)

The energy of states near the plane given by equation 32

is shifted in such a way that an energy gap appears between

adJacent states on opposite sides of the plane. More impor-



(13)

tant here is the fact that an electron executing an orbit

in the presence of a magnetic field will be reflected from

k to k +'G upon reaching the Bragg plane (given by equation

32). This can give rise to several orbits which may differ

significantly from the free electron orbit; several possibil-

ities in a two dimensional lattice are shown in figure 5.

Obviously if the various sections of'k space defined by

the Bragg planes are moved by the appropriate reciprocal

lattice vectors G, k.+ G is adJacent to'k and a diagram

representing the orbit in'k Space appears.

This method of obtaining the perturbed Fermi surface

is commonly called the one 0. P. W. (orthogonalized plane

wave) scheme. The logical extension would be the use of

some form of perturbation theory to calculate the energy

shifts near the zone boundary, which approach is the basis

of orthogonalized plane wave calculations.12 For sufficient—

ly small perturbations the effect of such a calculation is

a simple rounding of the Sharp edges of the Fermi surface.

In a magnetic field the orbits of electrons in k Space

are altered by the Bragg reflections; they are no longer

circular. However, the orbits are quantized and quantum

oscillations, periodic in the inverse of the magnetic field

strength, do occur with a period given by13

A(1/H) = 2e/ncAO . (33)

In this expression A0 is the extremal cross sectional area

of the Fermi surface in the plane perpendicular to the mag-

netic field. The periods given by equations 30 and 33 are

equivalent only for the case of a free electron gas.

Quantum oscillation amplitudes are affected by the

detailed form of the dispersion relation 6(k) near the

orbits involved as well as thermal and collision broadening

of the Landau levels. Brailsfordlugives the following

expression for the oscillatory term in the free energy.



(l4)

 

 

   
 

 

Two dimensional one O.P.W. Fermi surfaces for

a) square lattice, extended zone scheme

b) square lattice, reduced zone scheme

c) square lattice, repeated zone scheme
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d) rectangular lattice, extended zone scheme'

e) repeated zone scheme; note the open orbits
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2kT(eH/2th)3/€ cos[(vhc/eH)Ao-2wvv-w/4]

osc 2 Lztfa A/Bk: )kk0 v V3/2sinh(21r2va/hwc)

 

exp(fl' ) (34)

CDTCO

H = Hz= magnetic field strength

k = quantum momentum along the magnetic field

A = A(kz) = cross sectional area of the Fermi

surface in the plane perpendicular to H

k = kz at the point at which (BA/akz)=0

wb= cyclotron frequency = eH/m*c

m*= cyclotron effective mass = (h2/2f)[aA/5€Jk =const=k
_ z o

T = oscillation relaxation time

Y = phase factor depending upon the electron dis-

persion law

The Shift of the Landau energies due to impurity scattering

has been omitted from equation 34, although Brailsford

includes it. The collision broadening factor exp(-1rv/wc T O)

was first derived by Dingle 15 for a free electron gas. For

uncharged impurity scattering (6 function Scattering centers)

the relaxation time appearing here is Just that which appears

in the resistivity formula

To = TR .
(35)



(16)

If a sufficiently large magnetic field is applied to

a metal an electron may simply ignore a Bragg reflection

plane and continue along the free electron Fermi sphere.

This requires a discontinuous Jump in i at the plane, but

of course the energy remains the same. The probability

of such a process occurring is16

p: e‘Ho/H (36)

Hdwmceé/heef (37)

€g= the energy gap between adjacent points on

opposite sides of the Bragg plane

6 = free electron Fermi energy
f

m free electron mass

Magnetic breakdown, as this is called, can obviously give

rise to an incredible number of new orbits.



IV. Quantum Oscillations in the Thermoelectric Power

A. Introduction

Theoretical expressions for equilibrium properties

such as the magnetization or entropy of a free electron

gas are relatively easily obtained from the expression for

the free energy (equation 34) through the application of

appropriate thermodynamic derivatives. This is impossible

for the non-equilibrium tranSport phenomena. Another diff-

iculty is encountered if one attempts to use the Boltzmann

equation to calculate the transport tensors; the transverse

diagonal terms of the velocity matrix are zero in the Lan-

dau representation.

There have been a number of attempts to calculate the

oscillatory terms in the transport effectsl7"23

the density matrix formalism or a modified form of the

Boltzmann equation. These calculations have been made under

using either

a variety of assumptions about scattering mechanisms and

dispersion laws, though none are directly applicable to the

thermoelectric power oscillations in a complex metal.

The only results presented in a form which can be easily

extended are those obtained by Horton.23

B. The Horton Theory

The approach used by Horton is to solve the quantum

mechanical equation of motion for the density matrix p

b = «3; [m] (38)

in whichtK is the system hamiltonian and [ ] indicates the

commutator. Neglecting electron-electron interactions he

writes the hamiltonianIK as the sum of single particle hamil—

tonians, which in turn are written as the sum of a perturbed

(17)



(18)

and an unperturbed term. The former contains only the

electron scattering terms while the latter contains all

terms involving the magnetic and electric fields and can

be used to obtain eigenfunctions and energy eigenvalues

in the free electron approximation. Using these as the

basis, Horton calculates the matrix elements of the scatter-

ing hamiltonian assuming a Sparse and random distribution

of delta function scattering centers. The entire hamilton—

ian matrix is then used in equation 38 along with an assumed

initial density matrix and the resulting equation solved

for time infinity. The expectation values of the electri-

cal and thermal current densities are then obtained from

the equation

<Q> = Tr(Qo)- (39)

There are a number of further ingredients in the cal-

culation. Fermi—Dirac statistics are used, the energy

shifts and line broadening due to collisions are neglected,

and it is assumed that an electron is allowed many orbits

between collisions, i. e.,

0001’ >> 1 . (’40)

The calculation is made only for a free electron gas.

The results of this calculation are presented in terms

of the elements L of a 6 x 6 tensor which can be related

13

to the tensors of equations 9 and 10 as follows;

eLEE TLET

L = . (41)

eLTE TLTT

The magnetic field is restricted to the z direction and

with the help of symmetry arguments and the Onsager relations

the thirty-six elements are reduced to nine.



(19)

/L?2(H) L12(H) o L25(H) L15(H) o

-L12(H) L22(H) o -L15(H) L25(H) o

o o L33(H) o o L36(H)

L25(H) -L15(H) o L55(H) L45(H) o

L15(H) L25(H) o -L45(H) L55(H) o

o o L36(H) o o L66(H)

(42)

 

The only elements needed here areL22, L12, L25, and L15.

ce~r a) -l
1:412:11?— L 1- T2 [1 +nghfczZ( -—-)VA2(X)COS b

1‘ +00

7‘6 EEVE—Ez (—)A30.) sinb j} (43)

C

L — 5" 2291-1313 12£®Ff #733,” A30.) sin b

15 6-H6f(1“2+w2)1‘ 10w2

1424/?)lhwc . {—12" ‘1

+ 2 cf 6 M3" A4(*) °°s bl (44)

 

 L =fl2£§(fl)2._£_ r1_15€' WCfLiquufiinb

25 3 m e:f (I‘2+uo:2 L 81r2 kT VW

+3.57%? :5}: 5, %)VA4(X) cos b 1 (1+6)
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n = number of carriers in the (spherical) band

2
2w kT

X = Vt—EEE—) (47)

2W3

_ f w

b - «th ) - 1; (1+8)

A2(x) = 2x csch x (49)

A3(x) = —W csch(x)[ l — x ctnh x] (50)

W2 2

Au(x) =-§ csch(x)[2ctnh x - 2x ctnh x + x] (51)

r =-% = scattering probability per unit time (52)

Since the calculations are restricted to a free elec-

tron gas the results are not suitable for comparison to

experimental results. To illustrate this one may look at

the resistivity tensor Lgé/e. Neglecting the relatively

small oscillatory terms one obtains the classical result

p0 RHH O

P = -RHH pO 0 (53)

O O

951%.. =25. (54)

RH: J— . (55)

Thet;ransverse resistance (p11 or p22) is independent of



(21)

field in this model, dramatically untrue in real metals.

We cannot expect meaningful results by simply applying

equations 13 or 14 to equations 43 through 52.

However, it is instructive to look at the zero field

limits of the transport coefficients and compare them with

Boltzmann equation calculations for free electrons. This

limit for the resistivity (equation 55) is quite familiar.

In this limit equation 13 results in

1T2 2
_ k T

- Beef (56)

 

which is a standard result for impurity scattering in a

free electron gas.

C. Extension to a Complicated Fermi Surface

In the absence of a rigorous treatment of oscillatory

transport phenomena in complex metals an attempt has been

made to extend Horton's results. Although the methods

used in this extension are by no means rigorous they do

appear reasonable. By equations 13 and A-26,

(L
311= p11(LET)11 + p12 ET)21 + p13(LET)51 (57)

H) = TS H) . (58)
“11( 11(‘

The coefficients (LET)ll and (LET)21 are to be identified

with L25/T and LIB/T from equations #6 and 44. In doing

so we find that for a free electron gas the former is

larger than the latter by a factor of order wow for a free

electron gas and that the relative magnitudes of the oscill—

atory terms are almost the same. If p11 and p21 were equal,

then, the oscillatory contribution to Sll from the second

term would be much smaller than that from the first. Al-
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though for a free electron gas p12- wchll’ giving almost

equal contribution from the two terms, 'we may find a more

favorable situation in real metals. This must of course

be Justified in some way for any particular case (see sec-

tion IX). For the present, however, the last two terms

will be neglected.

If we restrict our attention to the oscillatory terms

in 811’ we may write

311: pllLQB/T (59)

in which the oscillatory terms in p11 are to be neglected,

a very good approximation in most cases, although again in

need of Justification under any given conditions. We shall

regard p11 as an experimentally determined function of mag—

netic field while an expression for‘E25 will be obtained

from an extension of equation #6.

In a real metal the electronic states from which a

given set of oscillations arise are those near the periphery

of an extremal cross section of the Fermi surface. With

these orbits is associated a cyclotron effective mass mf

and a de Haas-van Alphen frequency f given by the inverse

of equation 33. Here we shall assume that these are the

important parameters, and shall rewrite equation #6 in terms

of these. In so doing we have treated the small section

of the Fermi surface as a "free quasi-electron"sphere which

is uniquely determined by m*and f.

The cosine term in equation 46 can be neglected to

order kT/ef, an excellent approximation in metals. In the

high field limit (wCT>>l) the remaining oscillatory term is

125:2)??? n EL? 3: %)VA3(X) sin b . (60)

7w

O
R
)

In order to alter this as suggested in the preceeding para-

graph we require the following substitutions;
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m - m (61)

* 2/2

1 2m 5 /

n —e-— ( f) 62

672 h2 ( )

we —-> eH/m*c
(63)

hwcf

of H (64)

Upon performing these,

..._2_ .02 1/2k'1‘m"f
125- 611-2 (hj) $5726:%)VA3()\) sin b (65)

in which b is now defined by

b =(2wfv/H) - w/u . (66)

In fact, the oscillations do not come from a Spherical

surface, and an amplitude correction is required, We might

expect that the electrical current caused by a temperature

gradient is proportional to the number of effective carriers

involved. This is equivalent to assuming that the tensor

elements LiJ from different bands or parts of bands simply

add to produce the resultant L13. Applying this idea to

the oscillatory portions only suggests that the oscillation

amplitude should be proportional to that range of kz values,

dkz, for which the cross sectional area of the Fermi surface

is within some small limit, (AA )0, of the extremal area.

We therefore expand AA in a Taylors series,
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2
BA 1 a A 2

(AAf)O= (5E)k dkz+-§(5—E2 )k dkz + ...... (67)

z o z o

The first term is zero at an extremum.

f 2 2 1/2

dkzs L2(AA )O/ (o A /okz)k ] (68)

O

This is to be compared with the same parameter for the Sphere

used to derive equation 65, which must now be multiplied by

:(a2A/5k2z)fqefs 11/2

2 2
(a A/dkZ)k0

 

in which erfs = free quasi electron Fermi Sphere, for which

the appropriate derivative is easily Shown to be given by

2w.

An estimate of the value of the area derivative can

be obtained under the proper simplifying assumptions. The

most reliable method utilizes de Haas van Alphen frequency

data as a function of field angle. For a perfectly cylindri-

cal Fermi surface, the frequency as a function of angle 9

measured from the cylinder axis would be given by

fc(e) = fC(O)sec e . (69)

We define, for some real frequency f,

6f(9) = f(e) - f(O)sec e (70)

where e is measured from the field direction of minimum fre-

quency, and expand assuming circular symmetry,
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one) = .1924. 893+ ...... . (71)

The second derivative of the area is then given by

2

a A My

(———) _ s-—T97 (72)

from purely geometric arguments.

Another estimate can be obtained by assuming a one

O.P.W. Fermi surface. A small neck in such a structure is

drawn in figure 6. For sufficiently small pieces of the

Fermi surface the cross sectional figures bounded by abc

and a'b'c‘ will be approximately similar, allowing one to

write

A(kz) = A(ko) (E; )2 (73)

where

km: the minimum Fermi momentum measured from the

central axis as shown in figure 6

kmo= km at the point kz= k0.

The area derivative is then given by

0
/2A 2A(ko) (52km)

3133- mm) a: “o
(74)
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RF:

6’

Figure 6. Curvature of a one OPW Fermi

surface
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The last factor in equation 74 can be estimated by recall-

ing that the curvature of the Fermi surface is that of the

free electron sphere in the one O.P.W. approximation.

52

 

l( km ) l =1 (75)
52kz ko RFE

2 .

B A

2 _ o 0 FE
Bkz k0,e-O

in which RFE is the radius of the free electron Sphere and

is given by

RFE= (31T2no)1/3 . (77)

Approximating the area by

2
A g wkm , (78)

which is an underestimate, we obtain

lifll e- Efl , (79)

5k: RC, 9 =0 (371.2110) 1/3

no= total electron density.

Written in terms of the de Haas van Alphen frequency,

2 1/2

Lg. = ”EVE; f . (80)
dkz ko,e=o (3W2n0)1/3
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The factor [(52A /ok:)k ]-1/2 can be found in the

standard expression for the free energy (equation 34).

Another factor found there which will be used without Just-

ification is the Dingle factor inside the summation. In-

cluding both of these factors,

 
I: =%(2§)1/2 kTm’fl‘f x

25 6 n3 [(52A /ak:)k 31/2H3/2

. -1)V
6' (If? A3()() [sin b][exp(€)f,r)]

(81)

we must obtain an estimate of the relaxation time T;

two methods of doing so are immediately apparent. The first

is to use equation 54 and the zero field resistivity. Of

course, since we are here using the free electron approx—

imation and assuming that T is independent of‘k, this method

may be used only in one O.P.W. like metals and in the low

temperature impurity scattering regime. Furthermore m0 and

n must be the free electron mass and the total number of
o

electrons in the metal.

mo (82)
 

'We might also use the value of n,obtained from the

Dingle scattering factor. This method has the advantage of
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providingthe local relaxation time on the part of the Fermi

surface giving rise to the oscillations but has the dis—

advantage that TD is rather more difficult to extract from

the data.

If there are N identical sections per Brillouin zone

presenting a given cross sectional area 'we must multiply

equation 69 by N.

The transverse resistivity p11 in equation 59 can

take on a variety of forms. One of the most common and

the only form considered here is

A 2

911 = 90 + 02(3.J)H (83)

h = unit vector along H

J = unit vector along 3

It is generally true that, when this is the behavior of p11

the second term completely dominates the first, above about

ten kilogauss at liquid helium temperatures. Using only

the second term,

- 5¥§ ce 1/2 km*fN (8,3) 1/2
311—W (:13) 02 H X
 

[(52A /6k§)]l/2T

v

3): (ff—$7) A3(l)[exp(i—E¥D)] sin b

(84)

There is a very interesting variant of equation 84.

By applying Kohler's rule to equation 82 'We find that
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p2(h,3) depends upon residual resistivity in'a very special

way, namely that

92(h23) =m (85)

0o

where a(h,3) is not a function of the zero field resistivity.

Putting this into equation 84, coupled with the substitu—

tion for T given in equation 82,

1/2 2 A

> “keno (fibml/eamm x

[(aeA/ak§)kO]1/2 °

'
0 (
D

\
N

(g = 545

11 6%? (h

§%)VA3(X)[eXp(-£-:TD)] sin b (86)

in which T no longer appears.

The summation in equation 86 contains all of the os-

cillatory dependence. The relative harmonic content is

a rather complicated function of temperature and magnetic

field. The function A3(l) is plotted in figure 7. The

maximum value is very nearly unity.
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V. Nonoscillatory Magnetothermoelectricity

In view of the information concerning Fermi surface

topology which is contained in the high field magnetoresist—

ance of Single crystals we might ask what effect this top- -

ology has upon the thermoelectric power. Bychkov, Gure-

vich and Nedlineuhave made qualitative calculations; their

results indicate that the diagonal terms of the Seebeck

tensor should saturate at high fields except for the case

of a compensated metal with no open orbits. In this case,

the transverse diagonal elements Should be linear in mag-

netic field.

(32)



VI. Experimental Approach

A. Seebeck Measurements.a§ Low Temperatures
 

Typical Seebeck coefficients of metals in the liquid

helium temperature range are so small that the direct mea-

surement of a thermoelectric emf requires the measurement

11 volts. This would be diffi-

cult under any circumstances but the problems are compound—

of a voltage as small as 10'

ed in this case by the temperature gradients supported

by the measuring leads. These gradients can cause variable

thermal voltages on the order of a microvolt or more. A

number of devices built to cope with this problem have been

reported,25’31the most sensitive of which is capable of

measuring Seebeck coefficients of about 5 xlO-gv/Ko at about

20K.

B. Peltier Measurements, General

The sensitivity of carbon resistance thermometry at

liquid helium temperatures suggests that a measurement of

the Peltier effect may be more sensitive than a Seebeck

measurement. The simplest experimental arrangement would

be that shown in figure 8. The two samples A snd B are

suSpended from a heat sink at temperature TO and a current

I is passed through the Junction. The temperature difference

aT will consist of a Joule term proportional to 12 and

Peltier and Thompson terms proportional to I.

AT=-% [RI2 + n1] + g1 (87)

Here K is the thermal conductance from the Junction to the

bath, R is the Junction resistance plus some fraction of the

(55)



(24>

 

Figure 8. Experimental Peltier Junction
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sample resistances, and g is a constant involving the Thomp-

son coefficient. For the presentvwashall neglect this term,

requiring that it be small. To this order, the Junction

temperature change caused by a reversal of current direction

is

8T -—- AT+I - AT_I = 3%(2111) . (88)

The addition of a known amount of heat, Qt = r12, to the

Junction causes a temperature change of

- l 2
oTr = K(ri ) . (89)

Solving equations 88 and 89 for H,

2

(90)

c
fl
m

F
3
8

t
o
l
d

F
H
*

U = H - U =
A B r

Being a reversible effect, the Thompson heat also

contributes to ST. The difficulty in the treatment of this

effect is that it is distributed along the length of the

samples and its effect on the Junction temperature depends

upon the temperature distribution along the samples. We

will assume that a fraction n of this term is effective, i.e.

ATth = moth/K . (91)

By equation 6,

ATth = ”IKE—1T (HA‘ )J-B) : (92)

and using the Kelvin relations,
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d[SA- SB] I(QT)

th= NT d'I' K ° (93)
 

aT

Ifthe Seebeck coefficients are slowly varying functions of

temperature,

(n - H )

moths“ AK B 1%?) . (91+) 

This must be kept small in comparison with HI/K, result-

ing in the restriction that

al
ts

<< l/n . (95)

It is experimentally Justifiable to require that

(95a)el
‘f
a

I
A

0 .
t
‘

for measurements accurate to about one percent.

The aT referred to in equation 95, the total tempera-

ture difference across the samples, is in most cases domi-

nated by the Joule term,

AT- = RIe/K . (96)
J

Combining equations 88, 95 and 96, we obtain
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i2 2521.22... 5. ~04 (97)

T RK(6TH)2

which puts a lower limit on the measurable Peltier coeffici-

ent.

6T

n22. 173%) («72—0)2 x 25 (98)

Here 6T0 represents the smallest temperature change that

can be measured accurately. This is, of course, a function

of temperature, thermal stability, and thermometer circuitry.

It is an empirical fact that we are able to measure changes

of about 10"5 Kelvin degrees to a few percent accuracy at

20K, so that equation 98 becomes

)HL2 (2.5)(-B-¥)1/2 X lo"5 . (99)

The most favorable conditions for this measurement would

include a superconducting reference metal B, so that the

electrical resistivity and thermal conductivity of this

arm can. 'be neglected. If the Junction resistance is small,

we may write

R amoAL /a (100)

in which L, a are the length and cross sectional area of



(58)

the sample. If the thermal conductance is due only to the

thermal path through A,

K = kAa /L (101)

where RA is the thermal conductivity of the material.

Recalling that

pk = LOT (102)

L0 = Lorenz number,

we see that

HZ 2Lcl/2 x 10'5. (105)

The Lorenz number for impurity scattering is Just the class-

ical value, given by

8
Loa 2.4 x 10’ MKS units , (104)

n.3 5 x 10"9 v (105)

which is equivalent to a Seebeck coefficient of about 1.5

x lo‘3 nv/K° at 2°K.

It is obvious that the above calculation concerning

the Thompson heat correction is by no means rigorous although



it does provide useful guidelines. It is not difficult to

formulate the problem in more detail and in fact solutions

can be found under certain simplifying assumptions. Some

of this work has been done and is discussed in Appendix III-

Very little new and useful information can be obtained

beyond the fact that the Peltier coefficient measured corre-

sponds to that at some temperature between To and To+ aT;

the exact temperature depends very critically on the assump-

tions. However, even this fact is dependent upon smoothly

varying Peltier coefficients and small temperature differences.

The reference material must be chosen with some care.

One would expect that a superconductor would be ideal, as

it possesses no electrical resistivity, high thermal re-

sistivity and zero Peltier coefficient. In the zero field

measurements a superconductor was in fact used (see Appen-

dix II). Unfortunately in high magnetic fields one would

have to use hard superconductors, which have a number

of undesirable qualities. It is very difficult to obtain

a good electrical contact to these materials, as no known

solder will wet them. Furthermore they are all very stiff,

and using them in the confined volume inside a magnet dewar

presents technical difficulties. Nevertheless, these diff—

iculties could be overcome if necessary. In the measure-

ments made on zinc, however, the quantum oscillations were

of primary concern. These are, of course, unaffected by

thermoelectric heats generated by the reference. Further-

more the size of these effects are such as not to require

maximum sensitivity.

The use of normal metals still requires an optimization

of the measurements by adJusting the size of wire to be

used. One must chose this in such a way that the electrical

and thermal resistance are at least of the same order of

magnitude as that of the crystalline sample in high magnetic
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fields. It is also desirable that the Peltier or Seebeck

coefficient of the reference is known, although this does

not affect the amplitude of the Single crystal quantum

oscillations. Since a severely cold worked metal has a

more predictable low temperature behavior in its Seebeck

coefficient (see iron data in Appendix II), it may be ad-

vantageous to use such a reference material.

C. Thermal Contact Considerations

There are a number of requirements on relative thermal

paths which assure that the constants K appearing in equations

88 and 89 are identical. In particular, placing the ther-

mometer and the calibrating heater onto the same block which

in turn is in contact with the Junction may produce erroneous

results. This situation is Shown schematically in figure

9a. If the thermal resistance W1 is not much smaller than

W2, the measurements would be in error by the factor (W2

+ Wl)/W2. However, if the Situation can be represented by

figure 9b, the temperature differences measured at the car-

bon resistor are

 

 

W W1W5+ W

216 1.

M3 =qJ (W1+ W2 ){ W3(W1+W2) I (106)

Wl+fiw2+ W3 + W4+ W5+ W6

for heat qJ produced at the Junction, and

 

 

w”W W6 1

T"‘h qh(wl+lW2 ){w3(wl+ Wé) J (107)

w + w + w + “4+ “5+ w6
1 2 2
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for a heat qh produced by the heater. These differ only

to order W5/W6.

Figure 9c shows an experimental arrangement that can

be represented by 9b. In this case, W5 is the thermal re-

sistance through the thermal conductor between the Junction

and the heating resistor r, W6 consists of the high resist-

ance leads to the heater as well as any exchange gas in

the system; W5 can be much smaller than W6 with little

difficulty. In practice it is found that exchange gas

pressures up to 50 microns ch) not affect the measurements.

D. Double Junction Technique

There are a number of advantages to the double Junction

system shown in figure 10. The center of sample A is anchor~

ed at temperature To’ as are the lead wires B. The car-

bon resistors Cl and C2 constitute two arms of a Wheatstone

bridge, and if the response of this thermometry system

is linear (see Appendix IV), the bridge output v is given by

v = Gl(ATl - AT2) + C2 (108)

in which Gl represents the bridge sensitivity, G2 an adJust-

zible bridge offset, and ATl’ AT2 are defined as in figure

L10. Neglecting the Thompson heat,

{(R1 R2) 2 (l l ) rlii r213"

v = G -—— --— I + HI-— +-— +———— +-—-——'> + G ,
1 K1 K2 K1 K2 K1 K2 J 2
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Figure 10. Double Peltier Junction
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where 11 and 12 are the currents through the heating resist-

ors r1 and r2. All other symbols have meanings analogous

to those in equations 87 to 90. Reversing the,&Amp1e curr

rentresults in a change in v given by

1 1

5"" = G1{2"I(K’1 + 1(2)} (110)

For calibration we start with 11:10, 12= o and switch to

il= O, i2=io. The resulting change in bridge output is

r I"

5Vr = G1{1§(K%'+'K§)} ° (111)

Evidently if r1: r2= r,

O
N
)

1 r 6v"

“T2 57% . (112)

If the carbon resistors have differing sensitivities

one must replace equation 108 with

v = G11(AT1) - G12(AT2) + G2 (113)

but this has no effect on equation 112.

Besides the obvious doubling of sensitivity obtain-

able by this method it has the further advantage that the
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Joule temperature differences of the two arms tend to

cancel (see equation 109). This is particularly useful

for continuous measurements in a changing magnetic field,

in which the magnetoresistance causes large changes in

the individual Joule terms.
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VII. Experimental Apparatus

A. Cryostat

Figure 11 is a diagram of the lower portion of the

cryostat. The sample chamber was evacuated through stain-

less steel supporting tubes. The proJection at the

base of the sample holder was soldered through a hole at

the bottom of the enclosing can during the runs but other-

wise the sample holder was supported only by the twelve

pin electrical connector at the top. This arrangement allow—

ed the removal of this section when mounting new samples,

while still assuring rigidity in Operation.

The ten mil sample current leads were run directly

from the connector to the ends of the sample and were either

Pb of six-nines purity or four-nines silver, severely cold

worked. All other leads went through a secondary connector

at the terminal boards. Seven mil copper leads were run

from the connector through holes in these boards, and held

in place with G.E. 7031 varnish. In order to limit heat

conduction down these leads they were wrapped around the

supporting rods. The ends sticking out of the terminal

boards were then clipped to about 3/16 in. and the coating

stripped off to provide a soldering "post".

The carbon resistors were attached to the sample with

G.E. 7031 varnish using one layer of cigarette paper as

an insulator. Care was taken to place the two resistors

on the same side of the crystal in order to minimize inter-

ference from transverse effects. The leads from these to

the terminal boards were three mil manganin wire, twisted

together to minimize pickup noise.

The calibrating heaters were coils of manganin wire

(45)



 

 
 



Figure 11 . Cryostat
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on 1/2 in. lengthsof approximately 50 mil c0pper wire,

potted in G.E. 7031 varnish. The c0pper form was soldered

directly to the Junction. About two or three feet (70-

100 Q) of manganin wire was used, one inch (3%) of which

was used as leads to the terminal board.

As only the room temperature resistance of the heaters

was measured the resistance ratio and magnetoresistance of

manganin were needed. These measurements were made and

are discussed in Appendix V.

The samples were in the form of a rod about 1/2 in.

in length and 3/32 in. in diameter. They were soldered to

the support with Cerrolow 117 solder.

The dewar fit between the pole faces of the magnet as

shown in figure 11. The magnet could be rotated about the

axis of the dewar. Obviously the current in the sample

always flowed transverse to the magnetic field direction,

to the accuracy of the sample alignment (Appendix VII).

B. Pumping System
 

There was very little to this "system". It consisted

of a mechanical vacuum pump, a valve, and a thermocouple

gauge. Although a diffusion pump was available in the

system it was used only for purposes of'leak detection.

An exchange gas pressure of about ten microns, mea-

sured at 40K, was needed in the sample chamber to provide

a thermal path from the sample to the liquid helium bath.

After this was admitted the system was closed off and left

unpumped for the remainder of the run.
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C. Measuring Electronics

A block diagram of the measuring circuit is shown in

figure 12. The bridge-phase sensitive detector 1 (PSDl)

vuusthe basic thermometer circuit and the output from PSDl

was Just the v referred to in equation 108. In the simplest

mode PSD2 was omitted from the circuit and the output from

PSDl charted by the strip chart recorder. A standard switch-

ing sequence then produced a square wave-like trace on the

chart from which the ratio EVE/6vr was obtained. PSD2

was used for detection at the switching frequency. When

this was in use only the sample current was switched so

that the output from PSD2 was proportional to 2HIII/K.

A more extensive description of the Operation will be given

in the next section.

Only the control box and bridge were not commercially

made. Identification of the other units are as follows:

Sample current supply-~Princeton Applied Research

model Tc-602R constant

voltage supply, modified

as suggested in the manual

PSDl--PAR model .1134 with model CRll-A preamplifier

PSD2--PAR model HR-8 with type C preamplifier

Recorder—~Texas Instruments ServoRiter II

Figure 13 is a circuit diagram of the bridge used in

this work. It is a standard Wheatstone bridge with a number

of Special features which facilitate its use in low tempera-
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Figure 12. Measuring electronics



 

 

 



(51)

ture differential thermometry.

The carbon resistors were connected to J3 as shown in

figure 14a. The reason for using four leads becomes appar-

ent when considering figure 14b, which is a diagram of the

bridge in a calibrating mode. This lead arrangement added

the lead resistance to both arms (R01 and RS) so that at

balance RS=RCl.

The total resistance of the ratio arms of the bridge

could be selected as 2K, 6K, 20K,60K or 200K. For purposes

of standardization either the ratio arms or the cryostat arms

could be replaced by 5K, 1 per cent resistors. There was

also a provision for changing the resistance of one of the

bridge arms by .1, l, 10, or 1000, an input attenuating

network, and an out of phase balance network. The latter

was used to eliminate the out of phase signal arising from

interlead capacitance.

The control panel contained all of the switching cir-

cuitry as well as the current source for the calibrating

heaters. Figure 15 is a complete circuit diagram.

The power supply section of the control panel was a

standard type of regulated supply, capable of a 10 volt

output but set to about 6.5 volts. The heater current

control was a simple potential divider—current limiter cir-

cuit with full range currents of about .01, .l, l, or 3 ma.

R1 was a 1353 Q, .2 per cent resistor used to measure the

heater current. The potential across R1 was fed directly

to pins 5 and 6 of connector 01’ A schematic of this por-

tion of the circuit is shown in figure 17a.

The sample current was passed through the reversing

switch shown in 17b. The relays were arranged as shown so

that one was off for both current directions, thereby re-

ducing the load on the internal power supply. This current

was measured by measuring the potential across the 3.784 0
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resistor R2, appearing across pins 7, 8 of 01’ Either this

voltage or that across Rl (measuring heater current) could

be monitored at the front panel G.R. connector C4.

Control relays Rel--Re3 were all Magnecraft type W133—

MPCX2 mercury wetted reed relays with a response time of

about two milliseconds.

The switch control was made to operate in three modes.

The most complex, labeled mode 1, was a completely automated

mode in which the sample and heater currents were switched

in the sequence shown in figure 18a. Figure 18b is a block

diagram of the circuit used to accomplish this. The vari-

ous components of this network are identified in figure 15,

in which the ”logic" section includes the nand gates, the

or gate, and the relay drivers. The multivibrator period T

could be selected from the following: .02, .08, .2, .35,

1.0, 4.0, 10, and 20 seconds.

In mode 2 the sample current was switched automatically

in a square wave manner with a frequency of l/2T. The cir-

cuit used to accomplish this was Just a variation of that

used in mode 1 and is shown in figure 19. In this mode F.F.2

was removed from the circuit and Rel was under manual control.

The lead marked "to Cl, no. 2" was used as a reference sync.,

for it carried a 5 volt p.p. square wave of the same frequency

as the sample current. The control would not operate in

mode 1 if this lead was connected to an instrument. The

capacitance across the input terminals of most instruments

is enough to affect the triggering of F.F.2. This was re-

medied by placing a 10K or 100K resistor in series with

the instrument, as indicated in figure 19b.

In mode 3 both currents were under manual control. The

circuit used for this was the same in either case and is
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shown in figure l9c. Closing or opening the switch reversed

the states of the appropriate relays. When the switch was

closed the currents could still be switched by shorting the

lead marked ”to Cl" to ground, which provided a method of

external control.

D. Magnetic Field Electronics

The magnet used was a Harvey Wells 6 in. magnet cap-

able of providing up to 22 kilogauss with a homogeneity of

about .01 per cent in the central one inch cylinder. The

magnet current was controlled by an adjustable internal re-

ference voltage to which could be added an external refer-

ence signal.

The magnetic field sweep was a second generation model

of a system originally designed by James Le Page.32 The

output of a stationary pickup coil placed between the pole

faces was compared with a reference voltage, the difference

amplified and integrated and used as a reference for the

magnet power supply. By adjusting the amplifier gain it

was possible to keep the field sweep rate proportional to

the reference to within about one percent.

In the unregulated mode the pickup coil was not used;

the reference was simply integrated so that the magnet current,

rather than the field was controlled.

The reference for a constant sweep rate was a constant

voltage, supplied internally. For any other sweep form

one would have to supply a reference external to the sweep

control.

The primary difficulty encountered with this circuit

was that the system would oscillate unless the reference

voltage was increased slowly from zero. This necessitated



' (61)

 

 

 

 

   
   

  

 

     

 

   
  

       

VoLTAGE,

- Snakes” _v‘ \é-V,

‘r——-‘—’-

\é TB

.Pormr’“ ”“‘ R£CORDER
DIV/DER

$4055M£r:R//

MIMA/ET / MRGAIET

Pu. c ' (0N1- ROL

FAG: - c ,

/// ,\ SW55)»

\ / Rein/P \\ CoNTROL

/I (EHL . L

  A, _'|

Figure 21. Magnetic field

electronics



 

 

 
 

 

 

  
  

4
;
-
p
o
w
e
r

c
o
m
m
o
n
,

n
o
t

c
h
a
s
s
i
s

g
r
o
u
n
d
‘

 
 

 
/
M
/
/

 
 

5
:
;
w
a
s

[
a
w
/
5
:
7
7
4
”

R
2

g
a
n
g
e
d

t
o

R
3

d
1
&

d
-

1
N
7
6
4

T
-

E
N
1
3
0
3

2

4
:
»

J
/
a
f

/
0
f

2
2
%

Z
”

a

(62)

 

M
1

-
2
5
0
“
A

M
2
8
:
M
3

-
_
+
_
5
0
0
u
A

A
1
&

A
-

P
h
i
l
b
r
i
c
k

P
6
5
A
U

A
3

-
g
h
i
l
b
r
i
c
k

S
P
6
5
6

F
i
g
u
r
e

2
2
.

F
i
e
l
d

s
w
e
e
p

c
o
n
t
r
o
l



(63)

cranking the sweep rate potentiometer to zero and back

up whenever a new sweep was started. It could be correct—

ed with an appropriately designed, RC controlled transistor

switch at the input to the sweep rate potentiometer.

The magnetic field was measured with a Rawson rotating

coil gaussmeter which had been calibrated against an NMR

probe. The difference between the potential divided out-

put and a constant voltage source was plotted by the strip

chart recorder described in the preceding section. The

source could be changed in steps equivalent to 2.26 kilogauss.

Due to loading of the Rawson meter in the network the follow-

ing equation was used to calculate the magnetic field:

H = 2.26 Kilogauss [N + x(1.03)] (11h)

N = number of (100 mv) steps applied from the

constant voltage source,

x = position of the pen tracing, in fractions of

full scale (100 mv).

E. Temperature Control and Measurement

Temperatures below 4.2OK were obtained in the standard

manner by pumping on the liquid helium bath. The pressure

above the bath was controlled through the use of a "Walker

manostat" and measured with either a manometer or a McLeod

gauge. The temperature of the bath was then determined

using the 1958 scale of the liquid Helium vapor pressure.

After the carbon resistors had been calibrated against the

vapor pressure, they were used as the basic thermometers.



VIII. Operation, Data Reduction

A. Introduction
 

The data desired in this study were a set of values

for the Peltier (equivalent to the Seebeck) coefficient

as a function of magnetic field strength and direction.

Generally, the approach employed was to change the magnetic

field continuously while monitoring the Peltier heat.

B. Point by Point Methods

This method of measurement did not require the second

phase sensitive detector in figure 12; the output from PSDl

was fed directly to the recorder. If operated in switching

mode 1 the recorder trace was similar to the one shown in

figure 23, the amplitude of the square pulses represent-

ing (6TH) alternating with (bTr). By comparing a 6TH to the

two 6Tr's flanking it, a value of the Peltier coefficient

was obtained. One could carry out this operation while vary-

ing the field to obtain results but the calculations would

be overwhelming. An improvement was affected by doing all

of the computational work on a computer but as the charts

still had to be read by hand the work was still so great

as to make the method impractical. It was hoped that a

digital recording system would be completed in time to use

it in this application but it was not.

Since the thermal resistance of the system showed little

field dependence other than a monotonic increase it was

possible to use mode 2, switching the sample current only,

to obtain meaningful data. In this mode the system had to

be calibrated by obtaining fiTr as a function of field for

every temperature used, although the mesh of points used for

this measurement was much more coarse than that necessary for

(61+)
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the measurements of 6TH. The reduction of such data was

still quite tedious, but the oscillations could be seen

directly; see figure 24. With such data we obtained de Haas

van Alphen frequency measurements as well as a limited amount

of amplitude information by inspection of the envelope of

the square wave. However, in order to measure harmonic

content we still had to do a great deal of manual data

handling.

Since the phase sensitive detector used had a Q of

25 in the input amplifier, the frequency at which it was

Operated was kept higher than about 25/T, where T is the

switching period. Typically, T g 2 sec., f = 23 cps.

C. Continuous Detection

This method of data aquisition was basically quite simi-

lar to the second point by point method described above, the

only difference being that the square wave form was detect-

ed. This was accomplished with the second phase sensitive

detector. The output from this detector was, of course,

the amplified envelope of the square wave, and was directly

proportional to n/K, in the notation used in section VI, B.

The scale (l/K) still had to be determined as a function of

magnetic field strength or direction. Perhaps the best

approach to this problem would be to repeat the magnetic

field sweep while switching the heater current at the same

frequency, thus obtaining a trace representing the scale

factor. The primary reason that this was not done was that

the required switching mode was not provided in the control

box. The methodxyould assume that the thermal time constants

associated with the Peltier and calibrating heats were
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identical, or else very small.

The calibrating method used in this work consisted of

switching the heater current, either manually or via control

mode 1, while sweeping the magnetic field at a high rate.

This provided a rather coarse mesh of relative BTr values.

By then measuring the Peltier coefficient accurately at

one field, Ho’ the Peltier coefficient at any other field

can be calculated.

H(H) = VH(H°) 5Tr(H) ] x(H) (115)
Lx(HO) 5T (H )

 

where x(H) is the output from PSD2.

The highest switching frequency with which this method

has been successful is 2.5 cps. PSD2 must be tunable in

this frequency range. The detector used in this application

had a variable Q in the input amplifier, which was normally

set near 10, so that oscillatory signals of frequency great-

er than about .1 cps would not be passed through this stage.

PSDl must, of course, be able to pass 2.5 cps, which, with

a fixed Q of 25, required.a bridge frequency of greater

than 100 cps.



IX. Samples

Two zinc samples were used in this work. The prepar-

ation and characteristics are discussed in this section.

A. Zn 1
 

The first sample was cut from a slug supplied by Metals

Research Ltd. with a Servomet Spark cutter. The orientation

of the cylinder axis was within a few degrees of the [0001]

axis. The resistance ratio (DEOOOK/94.2°K) of this sample

was measured to be about 15,000.

E. Zn 2
 

The second sample was oriented with the [0001] axis

within a few degrees of perpendicular to the cylinder axis.

The resistance ratio was 3800. This sample was cut from

a rod grown in an optical zone refiner built and described

by J. C. Abele.33
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IX. Results

A. Zinc Fermi Surface

The Fermi surface of zinc has been studied with a deter-

mination applied to few metals. As a consequence the Fermi

surface dimensions, effective masses, and magnetic break—

down fields are known in some detail.34"40 Figure 25 is a

sketch of the results of this work. In Spite of an apparent

complexity the Fermi surface is very nearly a one O.P.W.

surface, although deviations are relatively large for some

of the very small sections. The oscillations observed in

this work were due to the a, B and y orbits indicated in

the figure.

B. Data Interpretation

The frequency of oscillatory terms in any measurement

is a function of the field direction‘h. Thus,

"3 = Sl(H,T) sinEié-m +15 . (116)
.1

One may observe this effect by monitoring the Seebeck coeffi-

cent while varying either the field strength or the direction.

Obviously either method will provide amplitude data. However,

the frequency information that can be obtained from the

two methods is quite different. Sweeping the field strength

in a fixed direction provides a frequency in that direction

(70)
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The Fermi surface of zinc
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while from rotational data one can extract |df/dh|, i.e.

the change of frequency with field direction. A combination

of the two methods can be used to provide a detailed picture

of the absolute frequency as a function of field direction.

C. Zn 1
 

In this crystal the current was along the (0001) axis,

the magnetic field restricted to the basal plane. Due to

the six fold axis along (0001) one need make measurements

over only sixty degrees of field angle.

The only oscillations that could be observed in this

crystal were those due to the monster neck (a) orbits, which

could be observed for all field angles. Some of the data

are shown in figure 26. A pronounced beating is evident

for the last two angles, which are near the (1000) axis.

An inspection of figure 25 will serve to assure one that

this can be expected, for near the (1000) there will be

two sets of B orbits of nearly the same cross sectional

area. The frequencies of these oscillations were measured

with sufficient accuracy to identify the (0110) axes of

the crystal. As we were most interested in the amplitude

of the oscillations we picked one of these as the field

direction for most of the study. Such a choice both max-

imized the amplitude and minimized the beating.

Figure 27 shows the measured amplitude at 21 kilogauss

as a function of temperature. Although the error bars on

the data at 4.20 are rather large, the oscillations are

clearly evident. It should be noted that we have plotted

the total amplitude here, rather than the amplitude of the
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fundamental component. That the two are quite different

is evident in figure 28, which shows the wave shapes at

two temperatures. A plot of the oscillation amplitudes as

a function of field strength is shown in figure 29. Such

data were collected at only one temperature.

Figure 30 shows the dependence of the background Seebeck

coefficient as a function of field direction at 1.32OK.

As this pattern was repeated every sixty degrees itlnusa

consequence of the crystalline structure rather than some

peculiarity in the physical arrangement. If one subtracts

the Seebeck coefficient of Pb, the value of S at <0110>

is O _-_l- .05 pv/KO.

The temperature dependence of the anisotropy of S is

shown in figure 31.

D. Zn2
 

In this crystal the current flowed along the (1000)

axis. The magnetic field could be applied along any vector

in the (1000) plane, i.e. the plane defined by the <0001>

and <0110> axes.

Figure 32 is a diagram of the measured Seebeck coeffi-

Cent as a function of field direction at 19.6 kilogauss. The

proper inversion symmetry is observed about the <0001> and

<0110> directions except for a ten per cent discrepancy

about twenty degrees from the <0001> axis. The oscillations

extending to 500 on either side of <0110> can be associated

with the B orbits while those centered 55° from the (0001)

arise from the monster arm (y) orbits. The background See-

beck coefficient is almost constant except near the <0110>

axis where we find a pronounced dip.
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The a, B and y oscillations were all observed in this

crystal. We shall discuss them in that order.

1. The Q Oscillations

The needle (0) oscillations had the lowest frequency

observed, about 1.6 x 10 gauss, as well as the largest

amplitude. A plot of typical data is shown in figure 33.

The oscillation amplitude wasa.sensitive function of field

angle as can be seen in figure 3#. Figure 35 shows the

amplitude as a function of temperature. The apparently

high values at the lowest temperature may well be due to

an error in recording the temperature.

The secondary peaks observed in the oscillatory See-

beck coefficient are due to Spin Splitting of the Landau

levels. This effect has been quite well documented35 and

will not be discussed here.

The needle oscillations have been observed in the

Seebeck coefficient by Grenier et. al.40

with ours where the two overlap.

Their results agree

2. Monster Neck (3) Oscillations

The B oscillations were observed over almost a 1000

range of field angles centered about the <0110> axis. A

single rather accurate frequency determination 330 from

<0110> coupled with the rotational data of figure 32 was

sufficient to obtain the frequency vs field direction plot

of figure 36. The amplitude at 19.6 kilogauss is plotted

vs the field direction in figure 37. Due to the obvious
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impossibility of measuring the amplitude of these oscillations

with the field directly along <0110> (see figure 37) all

further studies were carried out 330 away from the <0110>.

The observed amplitudes are plotted vs field strength in

figure 38 and vs temperature in figure 39. These results

include little harmonic interference, as the continuous

detection mode was used (see section VIII C) in which case

PSD2 acts as a low pass filter.

3. Monster Arm (x2 Oscillations
 

The frequency of the y oscillations is plotted against

field direction in figure 40. These results were obtained

from a field sweep at 155° and the rotational data. A

plot of the amplitude as a function of field direction follows

in figure 41.

Iwflwasrather difficult to find a field direction in

which the beating of several y oscillations was absent. We

picked field directions approximately 34° away from the

<0001> for our measurements of the amplitude. The results

are shown in figures 43, 44 and 45. As there was beating

for both field angles we have plotted the average amplitude

in figures 44 and 45.
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X. Conclusions

A. Modified Horton Theory.In Zinc

The result given by equation 86 is valid only if the

relaxation time T is constant over the Fermi surface. If,

however, the relaxation time is not constant, it is evident

from the discussion leading to equation 86 that that equation

must be multiplied by n = TR/Tl, where T1 is relaxation time

for the section of the Fermi surface reSponsible for the

oscillations and TR is given by equation 82. It must be

remembered, however, that the entire theory assumes that

the scattering potential can be approximated by a 6 function.

Subject to this assumption, the oscillations should still

follow the form

0V V T

a. v

S = S 241;) expfigy ] A3(l) Sin b . (117)

c D

The temperature dependence of the fundamental should then

be given by A3(1),where l is defined by equation 47. The

field dependence of the fundamental amplitude should be

proportional to

 expELTTD] A5(1) . (118)

c

Evidently the parameter TD can be derived from the measured

amplitude 1S(H)| through the use of the equation

(96)
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~

r S H F l Fm*c l
I = — —— —1n L %_{T%i J T ( e ) H + constant (119)

3 D

and the slope of a plot of ln fi%§{%%i 1 vs. =§ . The

exact harmonic content one obtaigs from equation 117 is

probably somewhat unreliable for the factor (-l)v/ v may

depend on the shape of the Fermi surface. Nonetheless the

relative harmonic content should include the factor

expfiing] A3(1) . (120)

c

In zinc equation 86 becomes

2 E J
3’: 2.9 x lo37 pv/Ko { N(“fl/mo) le/ea }

V2 2

(a A/akz)k0

(121)

All units used in the further evaluation of equation 121

must be gaussian. This equation must be multiplied by the

factor n defined above if the relaxation time is not con—

stant over the Fermi surface.

B. Auxiliary Data

The evaluation of the parameter_a requires a knowledge
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of the magnetoresistance [Ag/p0]. This may well be a func-

tion of both the current and field directions.

Stark25 has made measurements suitable for application

to the Zn 1 measurements. He reports a magnetoresistance of

-%2 = 12 + [lO8/(KG)2] H2 . (122)

0

Thus,

4 2
1 = [1.08 x 10‘ Jpo (125)

aZn

Unfortunately the exact value of po is not reported although

the residual resistance ratio (93000/900) is given as al—

most 50,000. The use of the resistivity at an elevated

temperature (eg. 30K) in the denominator of the resistance

ratio would of course reduce the ratio, i.e.

p 0

=3199 < 50,000 (124)

T

We shall assume that the resistance ratio for the po appear-

ing in equation 123 is given by 35,000. As this may be in

error by as much as 40 per cent, the value of.a obtained

may be in error by a factor of 2,

aZn 1 = [1.08 x 10’“](p300o)2/(35,000)2 . (125)
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The handbook value for the room temperature resistance of

zinc is 7.0 uQ-cm56, giving

a = 4 x 10-48 gaussian units . (126)

Stark has also reported magnetoresistance data on a

crystal of the same orientation as our Zn 2. Unfortunate-

ly the value of_a derived from his measurements suffensfrom

the same uncertainty that is discussed above. Assuming a

resistance ratio of 35,000 and a room temperature resistance

of 6.7 pQ-Cm, we can plot the value of_a as a function of

field direction (see figure 46). Of course_a is not defined

near the <0110> and <0001> axes where the magnetoresistance

saturates.

One of the assumptions made in the derivation of equation

86 was that the Hall field is small. In particular, we

must establish that

RHH

T << (DOT . (127)

Logan and Marcus39 have reported Hall effect measurements

on a zinc crystal with the current vector lying 8-% degrees

from the <0001> axis. For no field direction did they find

a Hall resistivity (RHH) larger than 1.5 x 10"9 n-cm in

fields to ten kilogauss. In such a field the resistivity

of our Zn 1 should be at least lo’YQ-cm, thus reducing

inequality 127 to

.015 << we, . (128)
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At higher fields inequality 127 should become even less

restrictive because the resistivity is proportional to H

and the Hall resistivity tends to decrease with increasing

fields39.

The evaluation of the right hand side of 127 requires

a knowledge of the relaxation time T about which there is

a significant uncertainty (see section X, D, 2). The use

of the resistivity relaxation time defined by equation 82

results in an wcT of about 1000 in Zn 1 for the B orbits

at 20 kilogauss. As even the smallest apparent Dingle

2

relaxation time (table 5) does not imply an wcT of less than

1, it would appear that we are Justified in neglecting the

Hall term in the expression for'S (equation 57) in refer-

ence to Zn 1.

Hall effect measurements in a crystal of the same

orientation as Zn 2 have been reported by Borovikul. He

reports the ratio of Hall field to resistivity field for

all field directions and in fields as large as 25 kilogauss.

This ratio remains below .1 except when the field is near

the <0001> axis or the basal plane. Thus for this crystal

inequality 128 becomes

0
.1 <( w T (129)

Since the effective mass of both the B and the y orbits

is the same (.13 mo), the values of wCT obtained using the

resistivity relaxation time are identical,
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in Zn 2. Inequality 129 is thus satisfied. If we again

use the smallest apparent Dingle relaxation time, wCT be-

comes slightly larger than unity, thus introducing the possi-

bility of a 10 per cent error in equation 86 when applied

to Zn 2 calculations.

The curvature of the Fermi surface (BQA/aki)k can

be obtained from equation 72 and values of a extra8ted

from the data represented in figures 36 and 40 or can be

calculated through the use of equation 80. The results of

these operations are listed in table 1.

Table l. Fermi surface curvature

eq.72 eq.80(N.F.E. Approx.)

(8211/8142)k ,a 1.1 .255

O

2 2

(5 A/akz)ko:Y 1'9 ~75

In all further calculations we shall use the results of

equation 72. In any event this factor has a relatively

small effect on the calculation (<50 per cent), as it enters

as a square root in equation 121.

C. The Q Oscillations

A calculation of the amplitude to be expected in the

a oscillations is all but impossible. Magnetic breakdown

occurs between the needles and the monster in fields greater
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35 36
than about one kilogauss ’ , invalidating Hortons treat-

ment. The probability of breakdown depends on the oscillat-

ing density of states on the surface of the needle provid-

ing a complex mechanism for obtaining oscillatory effects

and giving rise to very large (.c 80 per cent) Shubnikov-

de Haas oscillations35’36 Furthermore a very large Hall

effect has been measured with the field along the <0001>

ax1355.56;

derivation of equation 86 which are valid in this case.

in fact there are few assumptions made in the

D. The_§ And_x Oscillations
 

1. Absolute Amplitude
 

The cyclotron mass of the electron in a s orbit is

.12 m0 if the field is directly along the <0110> and scales

approximately as the frequency in other field directions38.

The y orbits have roughly the same cyclotron mass (.13 mo)

when the field is directed along the axis of the monster

arms.38 For our amplitude calculations we shall use an effec—

tive mass ratio of.l3 which should be accurate to about

20 percent. Table 2 gives the calculated amplitude factor

(i.e. everything outside the summation) obtained from equa-

tion 121 for the various oscillations observed, along with

the amplitudes measured at the maximum of the amplitude

vs. temperature curve. All amplitudes are calculated for

a magnetic field of 20 kilogauss. The last column is mean-

ing ful only if the Dingle factor exp[-wya%3; is near unity.

The use of the resistivity relaxation time defined by equa-

tion 82 results in a value larger than .9 for this factor.

Evidently the ratios in the last column of table 2 represent

a substantial disagreement between the theory and the measure-

ments.
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Table2. Comparison of theoretical and experimental amplitudes

J H 131th(fi§o)

3 osc. <0001> <0110>

B osc. (1000) <0110>

+330

y osc. <1000> <lOOO>

+350

.0016

.002

.020

(SI

.10

.20

S’

(010) -+g+exp

K th

.05

10

2. Field Dependence, Apparent Dingle Factor

The use of equation 119 to derive an effective Dingle

relaxation time from the data presented in figures 29, 38

and 43 results in the values listed in table 3.

Table 3. Apparent Dingle relaxation times

J H T(°K)

<0001> <0110> 1-35

8 <1ooo> <0110>+53° TIES

Y <1ooo> <0001>+53° 0:25

column lists the resistivity relaxation times.

TD(lO-lasec)

4.65:10

7.1.i10

2.5 _~1_-_50

5.35i30

4.5.130

The last

TR(lo-13sec)

2100

560

If the effec-

tive values of TD represent the real relaxation time of the
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orbits in question the Dingle factor becomes quite small,

approximately 0.1. This would reduce the calculated ampli-

tude estimates listed in table 2 by an order of magnitude.

It is interesting that if we also include the factor TR/TD

as suggested in section X.A.we calculate the amplitudes

listed in table 4, which are in much better agreement with

the data. The value of TD used in these calculations was

Table 4. Revised amplitude estimates

J H (31th(uv/K°) {S1exp(nv/K°)

a <0001> <0110> .072 .05

a <1000> <0110>+55O .02 .10

Y <1000> <0001>+35° .2 .20

5 x 10—13 sec., which is near the average of those listed

in table 3.

Unfortunately there is a very basic difficulty with

this argument. If we include the Dingle factor of .l in

the calculation we must consider the effect it has on the

harmonics, namely a very strong damping, (.1)n+1 for the

n th harmonic. This prediction is clearly at variance with

the high harmonic content observed in the a oscillations.

There is a mechanism, the B—H effectue, which can give

rise to nonsinusoidal wave shapes in the presence of complete

collision damping of the harmonics. This effect arises

because the field seen by an electron inside a material is

B = H + 4van (151)



(106)

where nm is the demagnetization factor. Since the magnetiz—

ation M is itself an oscillatory function of B, a nonlinear

equation must be solved. For relatively small changes in

B, this equation can be written

y = yosin(x + y) (132)

x = (32) H (155)

HO

y =33, (AmmM) . (1511)

The strength of the nonsinusoidal effects introduced in

this way depends upon the magnitude of yo; if yO is much

less than unity the effect becomes negligible.

An expression for the de Haas-van Alphen (magnetiza-

tion) oscillations can be obtained from the free energy

(equation 34) by the thermodynamic relation

M -- 13%)., . (155)

From this one can find the following expression for yo:

3203kT(e/2th)3/2f2nmexp(-F/wcf)

y° IV(02A/0k§); [sinh(2TkT/nwc)] H572

O

 (136)

For the B oscillations in zinc,
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yo = .003[exp(-1T/wc*r)l (137)

at 20 kilogauss and 20K. This is rather too small to give

rise to significant nonsinusoidal behavior.

The arguments concerning the relaxation damping of

harmonics are quite general.14 However, some theory is needed

- to extract values of the Dingle relaxation time TD from the

data. It is therefore more reasonable to put faith into

the harmonic argument, with the obvious conclusion that

the field dependence predicted by Horton's theory is not

nearly strong enough.

It might be noted that the possibility of extracting

an apparent TD does not necessarily imply an exponential“

field dependence. There was generally a rather large amount

of scatter in the data and another form of field dependence

might have appeared exponential over the rather restricted

field ranges used.

3. Temperature Dependence

In contrast to the field dependence and absolute ampli-

tude of the oscillations, the temperature dependence shows

at least qualitative agreement with Horton's theory. For

purposes of comparison the expected form of this dependence,

proportional to A3(1), has been drawn in figures 27, 39,

44, and 45. The vertical scale of A3 has been adjusted to

approximately agree with the data, while the horizontal

scale is of course defined by the cyclotron mass and the

magnetic field. All cyclotron masses usgg for this purpose

were those reported by Joseph and Gordon .
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E. General Conclusions

Evidently much more theoretical work must be done be-

fore the amplitude of these oscillations can be understood.

The difficulty with the theory presented here is probably

in the scattering potential, as the form of this potential

may affect the Seebeck coefficient quite strongly. Further-

more the theory cannot be easily modified to include any

field dependent scattering.

More detailed experimental data may also assist in

sorting out the field dependence due to collision broaden—

ing from the intrinsic field dependence. In particular,

a study of the amplitude and the field dependence in crystals

of varying purity would be very helpful.

F. Nonoscillatory Seebeck Coefficient

Although the exact form of the field dependence of the

average Seebeck coefficient 3 was not studied in detail,

we did note two pronounced dips in 3. Both of these occurred

for the field directly along the <0110> axis, although the

current direction differed in the two cases. The theoretical

results of Bychkov et. a1.24 would predict that's is propor-

tional to the field strength for all field directions out

of the basal plane, but that it should saturate for field

directions in the basal plane where significant bands of

open orbits occur.35’36 This clearly is not in complete agree-

ment with the experimental results.
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Appendix I

.§2 Measurements

A single run was made on a tin crystal supplied by

John A. Woollam, NASA, Cleveland. The crystal had a resist-

ance ratio of about 30,000 and was oriented such that the

cylinder axis was 79° from <001> and 86° from (110). All

fields were applied in the plane perpendicular to the sample

axis.

Figures 47 through 49 represent the data collected

during this run. It will be noticed that the amplitude of

the oscillations in tin are very large. The data obtained

in this work appears to be quite consistent witfljthe more

conventional measurements performed by Woollam.
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Appendix II

Measurements on Polycrystalline Metals

Equation 28 can be applied to a metal in the impurity

scattering region to obtain

2 2

Si =1}! '5'? ' (A’l)

H
.
1
0
3

If the same is done for high temperature phonon scattering,

s = 3LT . (A-2)

These terms define what is known as the diffusion thermo—

power of metals. At intermediate temperatures one finds

the so called phonon drag peaks in the thermoelectric power

of most materials. This effect has been studied in some

detail.45'50 There is also some evidence that a magnon drag

effect may be present in metals.51

The cryostat and measuring techniques used in this study

were essentially those used in the single crystal studies.

Since the samples were in the form of wires the carbon re-

sistors could not be attached directly; an intermediary

copper block was used. The best reference material was found

to be lead, which has a zero Peltier coefficient at liquid

helium temperatures in the absence of a magnetic field. The

electrical contacts were soldered.

The results of this study are shown in figures 50-55.
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The Pb data were taken in a field of one kilogauss against

a variety of reference materials. These data agree with

results published by Steele.52

The Peltier coefficient was measured in two samples

of nickel. The results for both samples can be fit by a

sum of two terms,

—s = (.0075 uv/K°)T + aT3 . (A-B)

This is Just the form one might expect if diffusion and

phonon drag contribute. The fact that the more strongly

annealed sample shows a larger T3 term is consistent with

this interpretation. Greig and Harrison53 have reported

measurements which fall between the two curves in figure 51.

One set of measurements was made in a magnetic field;

the results are shown in figure 52. We find a relatively

large change in the thermoelectric power at the highest

fields.

Figure 53 shows the results in iron. The cold worked

sample displays a Seebeck coefficient which is strictly

proportional to the temperature as would be predicted by

equation A—2, while the annealed sample shows significant

deviations at the higher temperatures. It has been suggest-

ed that this type of behavior may be related to magnon drag.

The tungsten data show two interesting features, the

linear temperature behavior which does not extrapolate to

zero at zero degrees Kelvin and the positive curvature at

higher temperatures. The former is difficult to understand;

the Seebeck effect must eventually go to zero.

51
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Schroeder and Davidson54 have measured the Seebeck

coefficient of tungsten down to 130K and these results are

shown in figure 55. It would appear that there is a peak

near 100K. Although this may be interpreted as a phonon

drag effect it has been suggested by Colquittand Fankhauser

that such behavior in the transition metals may be due to

electron—electron scattering.

55



Appendix III

Thompson Heat Correction

Consider the situation shown in figure 56. We wish

to calculate the effect that the Thompson heat has on the

Junction temperature Tl‘ This requires a knowledge of the

temperature distribution along the samples.

We define the quantity

k<x,T) =‘K1(T>A(x) (A-u)

where K is the thermal conductivity and A the cross section-

al area of the samples. In the absence of any thermal con—

duction other than that along the samples, it is easily

shown that

d

heme}.TEE—Hi)= (Ii-5)
dx

The heat inputgmu~unit length dq/dx includes terms due to

Joule, Thompson, and Peltier effects;

f(XaT) ='%%%:; 12 + P%% -'%}a;

+ 6(X)(nl(Tl) - II2(Tl)) I

+ 6(x)ROI2 (A-6)

(126)



 

 

    

Figure 56. Thompson heat correction
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where RO is the Junction resistance. In order to represent

the true situation somewhat more accurately we might make

provision for a heat loss -K ol(T )6(x) and a heater input

ri2o(x) at the Junction.

We now need only solve these equations to obtain a

Thompson heat correction to T1. Under the assumptions that

material 2 is a superconductor and that material 1 is in

the residual resistivity region and that the cross section-

al area of l is uniform it can be shown that the correction

to T1 due to the Thompson effect is approximately given by

T T

(6T ) l l-——;——— r g(T)P“kT)TdT dT (A-7)
1 th= 2 T [TP‘KT)]2 {JT }

O 0

where

W dT

P =.a§ (A-8)

dH H

s = -'% PET; - Tl] (A-9)

O

k0= kl/T = const. (A—lO)

The complete solution of this equation is extremely tedious

and cannot be given here. One must solve for P through

equation A-6 and the boundary conditions

T(Ll) = To = T(—L2) (A—l2)
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dT dT _ 2

(ki dx)xt>o - ( 2'52 xieo —HI(T1) + ROI

+ r12 — K(Tl) (A-15)

lim T = lim T (ll-11+)

X90 X90

The exact form of PM is strongly dependent upon such un-

known factors as the Junction resistance and exchange gas

conduction, and an exact solution is of doubtful value.

In the case that both of these effects are negligible, we

can approximate Pu’by the easily integrable form

a: (T-Tl)l/2

P = const x T . (A-15)
 

If we further approximate H(T) by a straight line between

T0 and T1’ 'we find that the apparent reversible heat at

the Junction correSponds to the Peltier coefficient at a

temperature given by

T = T — (TH 1 - Tom - 3- %) (we)
1 3

if (T — To) << T . (A—17)
1

Equation A-16 defines a temperature intermediate between

T1 and To' One can pick forms for P which include Junction

resistance and Junction to bath heat exchange but it is
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generally found that, if inequality A—l7 is followed, the

Peltier coefficient measured correSponds to a temperature

between T0 and T1'
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Appendix IV

Thermometer Linearity

The linearity of the thermometer system depends upon

the linearity of the bridge as well as that of the thermo-

meter itself. The output from a Wheatstone bridge (see

figure 57) is

TL“ ( 5 )n ( 8)v = z-———-— A-l
R3 + R4) n 33+ R4

if Rl to RA are such that the bridge is in balance when

6:0.

A typical plot of R vs. T for carbon resistors is shown

in figure 58. This can be fit rather well by

R = Roe-a/T . (A-l9)

Typically, a is a few degrees Kelvin in the Ohmite 1/8 w,

55 0 resistors used in this work. A change in temperature

from T to T + 6T results in a resistance change of

-% ) + ....]} (A—20)OR = Roe““/T%19g [l + 6T(-92—

T T

From equation A-20 we see that for bridge linearity we

must require that

(131)
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Figure 57. Wheatstone bridge
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Figure 58. Low temperature resistance

of a carbon resistor
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-%) <<l, (A-21)

or in the liquid helium range, where a/T is of order unity,
“B
IS
A A [
.
3

(A—22)

Assuming that inequality A—2l is obeyed we can substitute

6R from the first term of equation A-20 into A18,

in which we have

R3 m R4

For linearity of

that

(1551‘

ET

<<

 

We must take the

inequality A-22,

assumed that

_ -d/T
Roe

(A-23)

(A-24)

v vs. CT in equation A-25 we must require

more restrictive of the two conditions,

as the basic restriction.

(A—2Aa)
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Appendix V

Manganin Resistance

The resistance of a 56 Q coil of manganin was measured

at two temperatures and in fields to 20 kilogauss. The .

results are presented in figure 59 in which the vertical E!

axis has been normalized by dividing the measured resist—

 
ance by the room temperature resistance. For all tempera— r

 tures and fields in this range, b ‘_

~512L§%- = .877 i .5 per cent. (A-25)

R(300 ,0)
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Figure 59. Magnetoresistance of

Manganin
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Appendix VI

Kelvin-Onsager Relations 1 .a Magnetic Field
  

In the presence of a magnetic field the application

of the Onsager reciprocal relations results in

n(H) = TS(-H) . (A—26)

(137)
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Appendix VII

Effects of Sample Misalignment

The theoretical discussion of section IV assumed that

the sample current was transverse to the magnetic field

direction. In the measurements this was true within only

50 and we must establish that misalignment of this magnitude

does not significantly change the theoretical treatment.

The misalignment affects the theory through changes in the

magnetoresistance, the Hall coefficient and the factors

L15 and L25. Upon a rotation of the current direction to

an angle 9 from the plane perpendicular to H (see figure

60) the magnetoresistance changes by the factor cosge while

the Hall coefficient changes by the factor cos a. For a

50 misalignment both of these factors are less than 1 per

cent, a negligible effect. The effect of the misalignment

on the factors L15 and L25 is rather difficult to assess.

Although it appears doubtful that these would be significant—

ly affected, we must consider this as a basic uncertainty

in the interpretation of the results. This type of misalign-

ment may have caused the lack of symmetry mentioned in connec-

tion with figure 32.

The possible misalignment of the crystal axes with re-

spect to the magnet field direction is a more serious prob-

lem. The ability to rotate the magnet allows field align-

ment to within about 0.50 in the X—Y plane (see figure 60).

However, the misalignment perpendicular to this plane may

be as large as 5°.

If the amplitude of the oscillations is found to be

insensitive to a rotation of the magnetic field it is reason—

able to assume that a further rotation by a small angle

m (figure 60) to the desired crystalographic direction would

(138)  
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Figure 60. Sample alignment
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not significantly affect the measurements. This argument

cannot be used on the a oscillations in zinc, which are

strongly angle dependent, and is of doubtful validity in

the case of the y oscillations which show a relatively

strong angle dependence. Possible misalignment of this

type introduces an uncertainty (less than a factor of 2)

into the absolute amplitude measurements while the tempera-

ture and field dependences are essentially unaffected.
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