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ABSTRACT

ON THE NUMBERICAL ANALYSIS OF MAGNETIC

AMPLIFIER CIRCUITS

by Burton Howard Wayne

In the years 1948—52 a great deal of work was done. by many people

to qualitatively explain the operational principles of the magnetic ampli-

fiers. Many articles have been written on this subject, During this

period the empirical design of magnetic amplifiers was developed extenw

sively. However, in recent, most of the published papers have dealt

with the application of magnetic amplifiers to specific circuitry and the

analysis has been limited to a few people“

In this thesis. a new formulation technique is developed, by con—

sidering the core characteristic as a function of the ampere-turns vari-

ables. The core characteristic is considered to be the saturation curve,

with finite slope, of a ferromagnetic inductor» The formulation pro—

cedure in the example yields a pair of first order simultaneous differential

equations which are explicit in the derivatives. The coefficients of the

derivatives are functions of only the amperemturns variables"

A review of linear transformations of variables for two-winding

inductors and the extensions to inductors with k-windings is given in

Section II.

In Sections III and V theorems are developed to give a criterion for

the locations of the inductors in the network such that the ampere-turns

variable will appear explicitly in the system equations,

The arrangement of the elements of terminal and transformation

equations, such that they may be written systematically is the subject

of Section IV .
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The details of formulating the system equations such that they

are adaptable to a computer solution is given by an example, in addition

to the computer program used.
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I. INTRODUCTION

The term 'magnetic amplifier' was introduced by E. F. W.

Alexanderson in 1916.1 Today magnetic amplifiers are found in nearly

all branches of industry, especially in the control systems area.

Although the magnetic amplifier is relatively simple in its external

appearance, the nonlinearity and double-valuedness of the hysteresis

loop of the core material makes the analysis of the magnetic amplifier

very complex, unless gross approximations are used. Perhaps the

. most frequently used approximation is to represent the core character-

istic by a series of straight lines, one with infinite slope in the

”unsaturated region, ” and the others with zero slope in the "saturated

region. "2’ 3’ 4’ 5’ 6' 7 A serious difficulty of this approximation is that

the flux is independent of the current in the unsaturated region, while in

the saturated region it is independent of the voltage. Hence to obtain

a solution over the entire range of operation requires two different

variables which must be interrelated at the intersection of the straight

line segments.

Milnes and Law8 have analyzed the magnetic amplifier using

straight lines with infinite slope in the "unsaturated region" and zero

slope in the ”saturated region. " However, only the steady-state

component of the solution is discussed, and the analysis is based on

linear approximations in the two regions of the. saturation curve.

Ettinger9 assumes the core hysteresis loop to be rectangular with

infinite and zero slopes. Two distinct variables, one for each mode of

operation, are again used.

With the advent of the computer, many problems once considered

impractical, become practical. The objective of this thesis is to

 



 

 



 
formulate a set of equations describing the magnetic amplifier, such

that they are adaptable to computer solution. In following this objective

2. change of variables discussed in Section II has been introduced such

that the slope of the B-H curve may be conveniently incorporated into

the equations.

By applying a change of variable it is possible to establish a set

of terminal equations for the inductors in which all coefficients are

constant, with the exception of one. Furthermore this coefficient is a

function of one variable only, namely the ampere-turns of the core.

In formulating the mathematical model of systems containing

ferromagnetic inductors, it is desirable to have the ampere-turns of

 

each inductor appear explicitly in the system equations. The objectives

of this thesis is to present techniques for formulating the mathematical

model in this form and show an example of a numerical solution to a

typical magnetic amplifier circuit.

In this solution the saturation curve is approximated by segments

of straight lines with finite slope. To the author's knowledge the approxi-

mation of the saturation curve by more than three straight lines has not

been used. However the formulation techniques in this thesis permit the

use of a computer such that the saturation curve may now be approxi-

mated by any number of straight line segments.





 

II. BACKGROUND

2. 1. Terminal Equations for Two-Winding Inductors.
 

The problem of numerical accuracy for a two-winding ferromag-

netic inductor is discussed by Koenig. 1° To review the basic problem,

let the terminal equations of a two—winding inductor be written as

vl(t) R1. 0 ' i1(t) M11 M12 il(t)

= + — (2. 1.1)

g
m
.

V2“) 0 R2 ia“) M21 M22 izIt)

 

or symbolically,

‘U(t)= R. Slut) +°Wt§g J’ (t)

In the above equations, the coefficients in the matrix 6WD are found

from a series of open circuit tests. For high permeability cores such

tests are impractical in that acceptable numerical accuracy is difficult

to realize. That is, the' determinant of the coefficient matrix W is

nearly zero. In order to alleviate this difficulty, let a new set of vari-

ables be defined by the following non-singular linear transformations:

v?(t) -n.. 1 v.(t)

: (2. 1. 2)

v3“) 0 1 vat)

which may be written symbolically,

‘Unm an, W‘m

1%) -n.. 0 1m

= (2. 1. 3)

1%) n12 1 izlt)



 



 
which may also be written symbolically,

Q, “M

where n12 = Nl/Nz and n21 =

Q1 NI (0

Nz/NI: N1 is the number of turns on winding

the number one and N2 is the number of turns on winding number two.

The linear transformations on the current and voltage variables

have been chosen such that

'1

(IV = (On. 1’.

Substituting 2. l. 2 and Z. l. 3 into 2.1. 1, a new form of the

terminal equations results.

n _

v. (t) R2 + nit R,

v1:(t)J R2

 _(M22'n21Mzi)
Definition 2. 1. 1.

(nilMll 'nziMzi‘n21M12+Mzzl

_n

R2 11 (t)

.n 5

R2 12(13)

,n

(MZZ‘nZlMIZ) 11 (0

F1? (2., 1.4)

,n

M22 12 (t1

Leakage Inductance

The leakage inductance between the jth and the kth element of a

mutually coupled component is defined as ij = M

JJ ' “3k Mik'

Assuming Mjk = Mkj and applying Definition 2. 1. 1, 2. l. 4 may

be written as

n ..

V1“) R1 + 11.221 R2

v§(t)_

   

_ .n _

R2 11“)

_n

R2 12“)

_ .n _

L21 11“)

d

E? n (2.1.5)

M22 L 12“)
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The leakage inductance terms are usually very small compared to

M22. In addition one of the new variables is proportional to the total

ampere turns of the core, which is of equal importance to the study

presented in this thesis.

Specifically,

$0) = 12m + 111211“)-

Terminal Equations for Three—winding Inductors

Let the terminal equations of a three-winding inductor be written

V1“)

V2“)

V3“)

R1

= 0

0

o 0

R2 0

0 R3 i3(t)

i1(t)

izit)
+

M11

M21

M31

M12 M13 11“)

M.. M... 3—, 1m

M32 M33 is“)

(2.2.1)

In the study of systems containing inductors With high permeability

cores it is desirable to formulate the equations in such a way that the

total ampere turns appears as one of the variables. Let the transform-

ations on the current and voltage variables in the system equations be

defined as:

1‘3“) ‘

1%)

i?(t)_

-v§‘(t)1

vZ‘m

  _v§‘(t)_

i -n13 0

0 'nza

_ I113 “23

F ”‘31 0

0 -n3z

' o o l  

_ uni

izIt)

_ ialt)_

V1“)—

V2“)

  I v...)

(2.2.2)

(2.2.3)

Note that the voltage coefficient matrix is the transposed inverse

of the current coefficient matrix.

 



 
The form of the terminal equations

2. Z. 2 and 2.2. 3 into 2. 2.1 is

vim

v?(t)

vim

where, uSing the definition of leakage inductance given as Definition

2.1.1,

2

L31 +r1311413

I431 +n§2 (L23 ‘L21)

L31

R3

R3

R3+n§1R1 R3

R3+ Hg 2R2

R3

r esulting from sub stituting

L32+n§1(L13 ' L12)

2.

L32+ r132in

L12

.1?  

11 (t)—

i3“)

1%,) (2. 2. 4)

L3. _ ii‘m

L32 {i—t 121W

Mzzzlzj 51:13:"

 

z _ 2
L31 + n3.1 L13 - M33 ‘ n31 M31+ n31M11 ' n3, M13

2 _ 2
L32 + n32 L23 - M33 ' n32 M32 + 17132 M22 ' “32 M23

2 _
L31 + 1132 (L23 " L21) - M33 " n31 M31 + 11:3an M21 ' nasz

2 _
L32 + n31 (L13 ' L12) - M33 " n32M32 + n32n31 M12 " 1131 M13

For convenience let the (i,j) coefficient in 2. 2.4 be symbolized as

Li‘. and write 2. 2.4 as
ij’

vim-

v?(t)

vi‘(t)_

' n

L11

n

L21

n _L31

R3 + “$1 R1

R3

R3

n

L12

n

L22

n

L32

R3

R3+n§sz

R3

L13

L23

n

M33

R3

R3

R3

11%)-

i?(t)

 i?(t)_

1%)

12%)

13m

(2.2.5)



 



 
Since the mutually coupled component is a bilateral element, i. e.

n

Mij = Mji- the off-diagonal elements of 2. 2. 5 are equal, i. 6. LEE: Lji”

2. 3. Leakage Inductance Form of Terminal Equations for a k-Winding
 

Inductor.

The current and voltage transformation matrices for a k-winding

inductor are

 

      

ii‘m [-nlk o - - o o i1(t)

.11 .

12 (t) 0 —nzk - - 0 0 lg“)

ifi_1(t) 0 0 - - -nk-1. k1 ik—1(t)

DE“) nlk nzk ' ' nk-l,‘ k 1 ik(t) (2° 3° 1)

WW) I mm 0 - - o l I v,(t) I

11

V2 (t) 0 'sz ' - 0 1 Vz(t)

n

vk-,(t) 0 0 - - -nk, k4 1 Vk-1(t)

n

t o o - - o 1 t j

_Vk( ) _ L i ka() (2.3.2)

where ik(t), specifically, is proportional to the total ampere—turns of

the k-winding inductor.

The transformed terminal equations (leakage inductance form)

for a k-winding inductor, as determined by substituting 2. 3. l and 2. 3. 2

2“

into the coupled circuit form of the terminal equations, are

 

a):

The coupled circuit form of the terminal equations is when the

voltages are written as explicit function of the currents.



 



vim l

vim

v:_l(t)

 vim

where

and

 

 

(Rk+nI<1Ril Rk "

Rk - -

n n

L11 L12 ‘ '

n n

L21 L22 ' '

n

' ' ' Lk—l, k-1

n n

Lk, - - Lk, k-1

n _ 2

Lnn _ nkn I"Inky-5 + Lkn

n

Lnj = I-‘kn + nkn (Lnk ‘ Lnj)

n

Lnj = Lnk

n

Ljn = ij

n

vn(t) = -nknvn(t) + vk(t)

11

V1 (1:) = Vk(t)

.11 .

1n(t) = 'nnk 1n(t)

k- l
.n _ .
ik(t)— j=21 njkij(t)

(Rk+nlz(, k- le- 1)

Rk

 

n-le

na‘j 71k

nf’k,

”1....

nyfk

nafk

Rk

.n .

' 12(‘1

Rk i

  Rk_ L

—.n ..

11(t)

.n,

1zit)

112-40

 

-.n

11“)

1:,(t)

12m *

 ifim

 

 

(2.3.3)

 

(2.3.4)

(2. 3.5)

The self-and mutual-inductance coefficients‘ of any two windings,

j and k, can be related by an expression of the form



  
 



 
C-M C- M.. M
“J nn : Jn J] 2 nj (2 3 6)

Z 2
Nn . Nj Nan

where‘Fnj cjn = knj and is called the coupling coefficient. The coupling

coefficient is less than or equal to one. Hence, if knJ = 1, then Cni: cjn

= 1 and ifknj < l, an < 1 and Cjn<1'

From 2. 3. 6 and Definition 2. 1. 1 the leakage inductance coefficients

in 2. 3.4 can be expressed in the form

 

n Ckn

Lnn=Mkk(l+ E:— - ZCkn) nslk

nk

Lnj‘Mkk( + an ‘ kj' kn) n J (--)

n

n — 1
Lnk ‘ Mkk( ' an)

Since the k-winding inductor is a bilateral element, i. e. Mnj= M-

Jn’

the off diagonal elements are equal, i. e. L3, = L; for j 7! n. Under

these conditions we see that upon comparing Lin and Lgk that as the co—

n

efficient of coupling approaches unity, L:k__> 3:331

2

Furthermore, if the core has very high permeability, such as those

found in magnetic amplifiers and/or if'the coils are wound on a toroid

the coefficient of coupling approaches unity and as a very close approxi-

mation LEI}: L:j = 0. Under these conditions the inductance matrix of

2. 3. 3 contains zeros in every position except the Mkk position and the

value of the Mkk coefficient is proportional to the slope of the B-H

characteristics of the core material. Even when the coefficients of

coupling is appreciably less than unity all leakage inductance coefficients

can be taken as constants, leaving Mkk as the only nonlinear term.

The important advantage of the leakage inductance form is that Mkk is

a function of one variable, namely i;(t). The objective of the following
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section is to establish the requirements sufficient for formulating the

system equations to include this variable explicitly.

All coefficients in 2. 3. 3, except those in the kth row and column,

can be determined from steady- state impedance measurements.

The terminal equations in 2. 3. 3 is the more useful and will be

used throughout the analysis. Hence the measurement of the coefficients

of 2. 3. 3 is discussed briefly. r“

The transformed equation variables must be expressed in terms

of measurable voltages and currents, thus the transformed variables

should be expressed in terms of the original variables as given in 2. 3. 5.

Note that, in 2. 3. 5, except when the terminals n or k are shorted

 the voltage matrix contains terms of the form (Vk - nkn Vn) for n 91 k. i

The term (Vk - nkn Vn) is a very small number and usually cannot be

determined accurately by taking the difference between the measured

values of Vn and Vk- Also, ifi(t) represents the ampere turns of the ‘

core which can be made zero by Opening all of the windings. It is im-

possible to determine any of the coefficients under this condition.

However, it is usually sufficiently accurate to assume the exciting

current is zero under short-circuit conditions, provided that this term

is not multiplied by a large impedance. The short-circuit condition also

removes the small difference voltage for the determination of the

Zn , zflnm 7! k) and 231nm 7/ k) coefficients. Hence these coefficients
nn

may be evaluated by open- and short-circuit measurements.

The determination of 22km 7’ k) involves the small difference

terms of voltage hence cannot be measured with sufficient accuracy.

The determination of an (n 7! k) requires all but one winding be Opened

which is an impossible situation. However, these terms need not be

measured in view of the conditions established in this section, i. e.

n n n

znk — an ’3" Znn '

2



 

III. GRAPH EQUATIONS

3. 1. Circuit Matrix Formulation
 

In a later portion of this thesis, the following definition and

theorems are useful in establishing the requirements sufficient for

formulating the system equation with the ampere-turn variable appear—

ing explicitly.

If a graph G' is not connected and consists of parts p1, p2 .

Pk: then at least one vertex of Pm may be identified with a vertex of Pn

such that the new graph G is separable into parts p1, p2, . . . . pk and

is connected. The preceding identification of vertices does not alter

.the segregate or circuit equations associated with the graph G'.

Definition 3. 1. 1. An f-circuit is a fundamental circuit that is

defined by a chord and its unique path through the tree. 12

Definition 3.1. 2. A subtree Tj-i’ of a tree Tj, is a connected

subgraph of Tj, where j = l, 2, 3,

Definition 3. l. 3. The complement, Cj-l’ of a subtree Tj-l’

contains all of the elements of graph G in the complement of Tj having

both vertices in Tj-l'

Theorem 3.1.1. If there exists a subtree Tj-l’ of a tree Tj, in

the system graph G such that the complement of Tj-l is nonempty,

then the fundamental circuit matrix for the graph G can be written in

the form 8

11 0 QL 0

8y = (3.1.1)

821 822 0 Cu;

Proof: Let eC be any element of Cj-i’ 6C is a chord. There

exists one and only one path in Tj spanning ec. Both vertices of eC are

11



v

12

in Tj—i by definition 3.1. 3. Tj_1 is in T

T34 spanning eC .

 

j' Hence there: is a path in

The elements of 6 21 and 822 correspond to branches of the

tree Tj and the elements of 811 correspond to branches of Tj-v and

the first row corresponds to the f-circuits defined by Cj_,.

Theorem 3. l. 2. If there exists a set of subtrees, Tj-l: Tj-z:

. , To of a graph G with Tj—i in T-, Tj_2 in Tj_1, .a,Toin

Tl, then the f- circuit equations for the graph G can be written in the

form of 3. 1. 2.

811 6,, o o.........,.o

821 622 8 23 0

631 632 633 634

8-3-1, j-2 0

 

- 3mm)

 8j_1’ 1 ......... '..... Bj-1’j_1 6j-l,j

— 6a 0 . . . . . 0 i FalI‘GiI‘t') 1

o @L . (Una):

m 0 Cch-Jltl

o . . . .. o‘M._ fifcflt.) _    

‘UZM

olfj-l(t)

(wt)  

(3. 2. 2)

where Mjlt) correspond to the variables associated with the branches

of Tj and alrej‘t) correspond to the variables associated with the chords

Cjoij(j=l,2,3. . . .).

Proof: Partitioning the matrix j-l times and applying theorem

3. 2.1 j—l times, the theorem is proven.



 



 

IV. PROPERTIES OF SYSTEMS CONTAINING

MULTIWINDING INDUCTORS

4. 1. Terminal Equations of a System Containing Multi—terminal

Inductors .

In a preceding section the terminal equations and the transform-

ation equations for the currents and voltages are given for a k winding

inductor. In general a system may consist of many inductors each

having different numbers of windings. In anticipation of future develop-

ment, it is desirable to partition these equations into four groups.

 

The general form of the terminal equations for a system contain-

ing any arbitrary set of k-winding inductors can be arranged in the

following general form:

21TH“) (€11 0 0 0 \mtlh)

firm) 0 8.. o o 3,,m

Wei“) 0 0 £33 0 $’c1(t)

olfczft) 0 0 0 844 $3.“)
b 
6m“ “”712 ”77713 97]“ 3t1It)

577721 97722 97723 97723 \N’tzul

+ .5 (4. 1. 1)

W31 07732 W33 W34 ‘Q'mltl

W41 977742 W43 W44 ‘g'czm 
It is shown in the following that under certain topologies the sub-

scripts t and c designate tree and chord variables respectively.

The detailed form of the submatrices in equation 4. l. 1 are best

exemplified by an example.
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Example 4. 1. 1. Let the system graph contain two two-winding,

two three~winding, and two four-winding mutually-coupled components

as shown in Figure 4. 2. l.

1 7 2 8 3 9 1 4 10 14

V

two-winding three-winding

5 11 15 17 6 12 16 18

V 
four-winding

Figure 4.1.1

The resistance coefficient matrix is diagonal, hence for the

purpose of this illustration, only the inductance coefficient matrix is

considered. Let it be written as in 4.1. 2.

Comparing 4. 1. 1 and 4. l. 2, the entries in the voltage and current

matrices are ordered as follows:

1‘.

Each vector CU‘HU) and [gzfiti] contains one element of each

of the mutually coupled components with the elements ordered such

that the first entries are the variables associated with the components

with the least number of windings, the next entries are the variables

associated with the components with the next to the least number of

windings, etc.

The vector Mi“) consists of the variables associated with the

components with the least number of windings, except when the system

contains only components with the same number of windings, then at

least one but not all of the variables are placed in Wm“).
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The vector Whit) consists of the remainder of the variables

associated with the mutually coupled components. These variables are

ordered such that one variable of each component is placed in the first

group, then one additional variable from each component in the second

group, etc. , until all the variables have been included.

There are several important properties of the terminal equations.

Property 4. l. 1. The terminal equations form a symmetric matrix

1f Mnj = Mjn'

Property 4.1. 2. M43 = all)“ : 0, when the variables are ordered

as shown in 4.1. 2.

Property 4. 1. 3.. If the system contains only two-winding inductors

then Mag: 6“] 33, °m 13, Om 21, CW)“, (77“ 14' are all zero matrices and

all nonzero submatrices are diagonal.

Property 4. 1. 4. If the system contains no two—winding components

then in 4.1.1 0m“: OYYL_.,4= Oand “Tn“, 6m... en... are diagonal

matrices.

4. 2. The Current Transformations for Systems Containing Multiterminal
 

Inductors.

The detailed form of the current transformation for an arbitrary

collection of components can not be shown explicitly. However, the pro-

cedure can be established by an example. It is hoped the extension of

this procedure to other systems is evident. Referring to 2. 3.1 and

retaining the ordering used in example 4. 1. 1, the current transformation

equations are as shown in 4. 2. 1. For convenience, in general the

current transformation for an arbitrary system can be in the partitioned

matrix form.

33m - “Y1 .. o o o 4m)

49,32“) 0 ”In 0 0 41.20:)

402(k) on ,3 ma Ou, o &cl(t)

32.02) ‘11.. “It... 0 '11. sent)

(4.2.2)
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There are several important properties of the current transform-

ation matrix to be used.

Property 4.2.1. If the system contains only two-winding inductors

CY)”, and “123 are both zero and “1,3 and (Ill. have the same entries

as mm and mu: respectively.

Property 4. 2., 2. If the system contains at least one two-winding

inductor in addition to other multiwinding inductors, thencnn = 0.

As a solution to 4. 2. 2, we have

3mm =- 011 r11

4.“) 0 _

$c1“) : mis mill

31:2“) my; :11

Property 4. 2. 3.

- “1’15;

011.. on:

‘YI...
’ l

.22

o

0

Cu.

0

0

‘11.

4) EM

aIfZIt)

&' 21“)

3 2.0)

(4.2.3

If the system contains only two-winding components

then mm of): and m“ on; are negative unit matrices and ”infill-11

—1

and l) 23 :ll 22 are zero.

4.3.

Components .

The Voltage Transformations for Systems Containing Multiterminal

The coefficient matrix for voltage transformations is chosen as

the inverse transpose of the coefficient matrix in current transformation

equanons.

Mgufl 16TH: 0 “III. “III—.1

I“; ”\23 all;

OUJ

   

v. 0m

on. on

0

0U)

-17

ll

-l

22

  

_ 7

M1“)

Glitz“)

Wm“)

Guam

(4. 3.1)

 

 

 





4.

inductor are established. , Instead of pre and post multiplying the original

terminal equations by the voltage and current transformation matrices

reSpectively, which may be tedious, it is convenient to regard the

terminal equations written in terms of the ampere turns variables (the i

new variables) as the given terminal equations.

“U‘mtIi

Wu“)

Wei“)

  _ Wczuli

4. The Transformed Terminal Equations.

In Section 2. 3 the transformed terminal equations for a k—winding

 

O ‘11...

“61122 W123

0 CU.

O

19

”11..

”VI...

0

‘11,   

W311)

n

t2 (0

M21“)

_ M2203; 

 

(4.3.2;

 

The coefficients of these

equations can be determined directly in the laboratory by the methods

discussed in Section 2. 3.

It is next shown that it is possible to formulate the equations for

the system from the component terminal equations given in terms of

the ampere-turns variables .

. Let the ampere-turns form of the terminal equation for the com-

ponents be arranged in the following order.

Algal-1

 _6U22(tlj

“VIEW

OUEIIt)

 
r11

11

n

21

+ n

31

n

41 

I'n

RM

11

R21

n

31

n

1 
11

£12

n

22

:63.

n

at...

n

12

R22

n

32

n

2

n

13

56?.

n

5633

n

43

n

’le

n

R23

n

33

RE,

if.

n

2A:

n

34

n

44  

n 7

’814

n

‘24

n

34

n

44  

3314'

$112“)

3'31“)

 22“)
h-

- S 1:11“)—

$23“)

$21“)

  22“!

(4.4.1)
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Again it is to be emphasized that in any practical problem the

terminal equations for the high permeability, nonlinear transformers

would be given in this form. The detailed form of the coefficient

matrices in the above equations are best examplified by an example.

For comparison, the ampere-turns terminal equations are established

for Example 4.1.1, and given by 4.4. 2, where Rii = Rj + njiRi' The

subscripts i and j refer to the variables associated with the elements

classified as branches and chords, respectively, when the components

are included in a system.

There are several important properties of these ampere-turns

terminal equations.

Property 4. 3. 1. The terminal equations form a symmetric matrix

n. n . _’

1i i.nj _ LJ-n, 1.e. Mnj _ M3-n

Property 4. 3. 2. £2,“ 43, 5634, and ii; are zero when the

variables are ordered as in 4. 3. 2.

Property 4. 3. 3. If the system contains at least one two-winding

. . . . n n

inductor in addition to multiWinding inductors, then x 23: 32, I. 23:

n

and 6632 are zeros.

Property 4.. 5. 4. If all the inductors in the system contain only

, , n n n n

two—Windings, then 6623, 32, 12, 21, 65“,4, 4,, [923,

n n n n n . .
(€32, £12, 21, £14, and £41 are zero and the remaining sub-

matrices are diagonal.
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V. SUFFICIENCY CRITERIA

5. 1. The Original and Transformed Circuit Equations
 

Let the system graph be such that the fundamental circuit equa—

tions Can be partitioned in the form

where the indicated partitioning is the same as in 4. l. 1.

6..

24

Q
(
D
o

it

P 1

‘l/‘ne(t)

qrrt ('3)

0J1. (t)

Wtz It)

we. (r) ‘ °

WCZM

‘Ifrcm

iqrnhftl

(5.1.1)

  

Applying the transformation of variable in 4. 3. 2 to 5. 1. 1, the

transformed circuit equations become:

O11 012

621 622

631 832

841 642

Q 13 mm

_ 623 Oil” +

6.3

623

833

8.3

+ a 14 “Infra

°fb 11

“It, 11

m 11

m 11

3 24 ‘1123

833 abs + 6340(123

64.3 00-13 + 644 I)“ 23

6 14 m) 22

824 Orb 22

634 m 22

844 Orlzz

613 qlu.

23

Mme“)

okrrt (1:)

Wu (1')

Wtz (‘5)

+6.40%,

62307).“ + 8245732491 0

833 67214 + 83457224

6.39).. + 6.. ‘72...

(5.1.2)

0 0 c1“)

0 CHEM

9/6 0 GIrrCItI

o ‘M “13mm
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5. 2. The Original and Transformed Segregate Equations

Using the. same formulation tree as in 5. 1. 1 the fundamental

segregate equations may be. partitioned in the form12

PM, 0 O 0 .31, 2,, 4,3 .21, .Qnett;

o ‘11. 0 o 11,, 3,, .12., 1,, gm“)

0 0 GIL o .1.“ 4,, J33 4... Iii-mt)

.0 0 0 31.4,, 2%,, 2,, 214,, Mm“) : 0

( damn)

ngJCZItI

i‘g’rcIt)

I013 mg (52.1) 

 

where the indicated partitioning is the same as in 4.1, 1, Substituting

4.2. 3 into 5. 2. 1 and partitioning, the transformed segregate equations

become:

CU. 0 (44115111. I ngquIWII (42211 Cf)“ J7 412%.)“le \aneIt .

0 OIL {X21 (mi; I .122 GYII4IWIIII (2.2151123 + AzzoIIz/il I1221 \QrtItI

0 0 {Anion-1:1 " .2152 mM‘R-UCYIl-ll (422310“.23 + Jizmmlcflz'zl ~91t1 “ll

0 0 (4.410(113 J’ «”142 OII14I‘CIIIII (Among I A420II24+CLLII€II22 fltzftl

«84 11 48112 £13 £14» Q2 Icl'III-II

_ A! 21 12222 1122.3 £24 ‘9, :2 (t)

l

L A31 “3‘32 A33 134 c9, rCItI

4241 J42 £43 £44 CH (Q) (5.2.2.)

5. 3. The Location in the Network of the Inductor Elements.

A sufficient condition for the ampere—turns of each inductor to

appear explicitly in the system equations is
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(4431”).134'A4qui4 'OIA.) One-1i (431%; + 233%)%;;

(441mm. + 342 CYIMIOII 111 (A. 413123 + £4.qu24 ‘Mlmg

(5. 3.1)

710‘

Referring to 5. 2. 2, the coefficient matrix on the left is non-

singular, hence the variables on the left may be expressed in terms of

the variables on the right. Therefore the total ampere turns, variable

 
 

FF“—

of each inductor appear in the equations of the system graph eXplicitly. ’3

The location of the elements of these inductors must be investi-

gated in order to determine whether the determinant of 5. 3. 1 is non-

singular. E1

Definition 5. 3. 1. Let Sj be defined as the set of inductor elements E

in the system.

Definition 5. 3. 2. Let S- 1 be defined as a subset of S,_ = 1.2.
J’J 

Theorem 5. 3.1. If there exists a subtree T1 of a tree T, in the
 

system graph, G, which contains no elements of Si and if the complement

of T1 contains at least one element of each inductor, then the ampere-

turns variable for each inductor in Sj will appear explicitly in the system

equations .

Proof. Let the elements of o\f‘ne(t), o(frt(t), Wu“), andotrtzh)

be in tree T. Also let Wnelt) and MrtIt) be in T1. By Theorem

3.1.1 813, 614, 623, and 62,4 in 5.1.1 contain only zeros. If the same

tree is used to formulate the circuit and segregate equations, then

8ij = Jj'i 11 Then .331, J41, [32, and .842 in 5. 3. 1 contain only zeros,

hence the determinant 5. 3. l is non-singular, as “(II-11 and “T1,; are

non- singular by definition. The theorem follows.

The preceding theorem requires that at least one element of each

inductor is in a circuit which contains no other elements of any inductor.
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If the system contains only two-winding inductors the hypothesis of

Theorem 5. 3.1 can be relaxed.

Definition 5. 3. 3. The set of elements S is defined as a subset
cj—i’ 

of the elements of SJ-_l contained in the complement of the tree Tj-I of the

system graph G.

Theorem 5.3 . 2. If all inductors in the system contain only two-
 

windings and if there exists a set of subtrees Tj..,, Tj—z, . '. . T0 with F”

Tj_1 in Tj, Tj—z in TJ'_1, . . . , To in T1, such that the f-circuits defined I

by Scj-i’ Scj_2, . . . Sco can be arranged such that each contains one

less branch element of Sj’

variables appear explicitly in the system equations.

than the preceding, then the ampere-turns !

 
. Proof. Referring to 5. 1. l and considering the first two rows, by

theorem 3.1.2, 813 = 814 = 824 = 0. Hence .431: at“ = $42 = 0.

According to property 4. 2. 1, ”1.123 = W114 = 0. Thus, 5. 3.1 is non-

singular.



 



 

 

VI. EXAMPLE

6. 1. Equations to be Solved
 

The previous sections have been devoted to the development of

sufficient criteria. on the location of the elements of k-winding inductors

 

in the system graph, such that the ampere-turns variable of the I T.

inductors will appear explicitly in the system equations. The application .’

of these criteria in formulating the equations for a typical magnetic

amplifier is demonstrated in the first part of this section. The system

equations are then prepared for solution on the digital computer to E

obtain the output current of the magnetic amplifier, for various input

voltages. Many of the steps involved in the preparation of the equations,

such that they are adaptable to computer solution are omitted and left to

the reader to fill in.

The circuit diagram of the magnetic amplifier to be considered

is shown in Figure 6.1.1 and its linear graph in Figure 6.1. 2.
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Figure 6.1.2

The ”dots" on Figure 6. 1. 1 signify the winding orientation.

Choosing the elements 4, 1, and 2 as chords, the fundamental

circuit equations are

—- )-
- )- -I

I41 o 610“) o o -1 1 o 1 o o v5(t)

V6“)+1 0

89(tl

_0 +lj L‘1 0 0 O -l O 0 1 v7(t)

V8“)

V3“)

V4“)

V1“)

_V2(tIJ

I

O D
-
‘

O I
—
-

O O I
-
-
‘

O

    

  
The voltage transformation used is

_(

Fv3(t)7 in“ n34 o o _ F .31.)

v4(t) 0 l O O vil(t)

v,(t) o o 1 o v?(t)

_"'2(tl_J _0 O n21 'nzi j _ Villtld      

 

(6.1.1)

(6.1.2)
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Substituting 6. 1. 2 into 6. 1. 1, the transformed circuit equations

become:

f1 0 -1 1 o 1 o 0 fv5(t)1o- o

eioitl]

10 ..01010010 v6(t)

 -1 0 0 0 “34 'n34 I121 ““21 V7“)

V8“)

v3(t)

V4_(tI

V1“)

.vzm.  
(6.1.3)

 
The fundamental segregate equations are:

  

  

I 1 o o o o o o 1 1 to “I ’ 110(1)

0 1 o 0 o o o o 0 1 19(t)

o o 1 o o o o o 0‘ 1 i5(t)

o o 0 1 0 o o o -1 o i6(t)

0 0 o 0 1 o o 1 o 0 17(1) = o

o 0 o o o 1 o -1 -1 o i8(t) (6.1.4)

I o o o o 0 o o o o 1 J 4 i3(t)

i4(15)

il(t)

b i2(tl _

The current transformation used is

513(1) T in“ o o o I rifltfi

i4(t) : 1 1 o 0 111(1) (6. 1. 5)

i,(t) o o 1 1 1110:)

L12(t)_, LO 0 o -n12q 92(1)      
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Substituting 6. l. 5 into 6. 1. 4, the transformed segregate equations

  

  

become

' 1 0 o o o o 1 1 1 1 I f 1,0(117

o 1 o o o o o o o .n,,2 19(1)

0 o 1 o o o o o o -n,, 15(1)

0 o o 1 o o o o -1..1 i6(t) :0 (6.1.6)

o o o o 1 o 1 1 o o i7(t)

o o o o 0 1 -1 -1 -1 -1 i8(t) I“...

(0 o o o o o —n,,3 o o -n12 - 13m I

13m

1%)

L'i?(t)d l 
Removing the first two equations, which contain the voltage source

current, the reduced set of transformed segregate equations may be

written in the following form:

  

    

"15(t) " " o o n12 ‘

. I— ,n “I

i7(t) = ‘1 0 rJL121134 ill“) (6. l. 7)

is“) 1 1 (1-n12n34) g 121(th

,n

_13 “Id ,_, 0 0 'n12n34 _j

where the two variables, 12m = n34i3(t) + 14(1), film = n21i2(t) + i1(t), are

the ampere-turns variables, one associated with each inductor.

The leakage inductance form of the inductor component terminal

equations along with the terminal equations for the other components

in the system are

      

IVS“) ‘ "R5 0 o o o o o o ‘ f15(t)‘

v6(t) 0 R6 0 o o o o 0 16(1)

v7(t) o 0 R7 0 o o o o 1.,(t)

v8(t) _ o o 0 R8 0 o o 0 18m .

v31“) _ o o o o (R,+n.f3R3) R4 0 o 120;)

vf,‘(t) o o o 0 R4 R, o 0 12m

Vila) o o o o o o R, R1 53(1)

Iv?(tl. I0 0 o o o o R.(R.+n?.R.II.1’}(tIi (6.1-8)
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F o o o 0 o o o o

o o o o o o o o

o o o o o o o o

o o o o o o o o

+ 0 0 0 0 (L43+n~f:-IL34I L43 0 0

o o o o 1.,3 M44 0 o

o o o o 0 0 M11 L12

_ o 0' 0 o o 0 L12 (L,Z+anLZ,) 

d is“)

15(1))

is“)

i7It)

i?(t)

12m

1%)

11?“)-  
Substituting the transformed circuit and segregate equations into

6.1.8, the system equations result:

    

  

rii‘ItI'

iI‘ItI

I 12(1)

' 111W

ii‘ItI

  

reio(t)- —R.+ R7+Rs R8 - nlzna,(R,+R7)+R8(1- n,,n,,,))

eio(t) = R8 R1+R6+R3 R1+R6+R3(1-n,2n34)

_e9 (t)J I. O O -n12(RZ+R3+R5) _

F- M44 0 ' n12r134 L34—

0 -3411 1412 III.

L-n34(M44-L43) n21(Mll‘LIZ) -n12(L34+L21) _

,n

_12 (t1

(6.1.9)

In section 2. 3, it was indicated that the leakage inductance co-

efficients are small in magnetic amplifier circuits, and will hereafter

be assumed zero. It is also assumed that the two inductors are identical.

_ _ _ _ _ 2 -
Thus, n21 ‘- n34» n12— n43: n211143 - n12n34 - 1: n21n34 - n12: and R1 - R4,

R2 = R3.

~ Solving for the highest order derivatives reduces (6. 1. 9) to a

system of two differential and one algebraic equation.

 

5' d

D'M44'é't" if“) _ 13' K5 610“)

,n

LD'Mll-a-t 11(t) D. K6 69(t)

_ ,n

_ (RoK1+K1K3+R3K2I (R0R3+K2K4+R8K3I 14 (t)

.n

L(RoKIfi‘K2R8+K1K3I (R0K4+K2K4+R8K3I 11 (t)

.n .n

"nziegitl + K214 (t) “K311Itl
inm

’- R0 + Kz + K3

 

(6.1.10)

(6.1.10a)

  



 

 



 

32

 
 

Where: Kl : R1 'l' R7 + R8 K4 : R1 "l‘ R6 'l' R8

K. = n3. (R. + R._ K. = m... (R. + R?)

K. n3. (R. + R.) K. = n... (R. + R.)

D' 3 R0 'i‘ 1131 (R1 'l' R6 + R1 + R7)

R0 : 2R2 'l' R5

If elements R6 and R7 are equal, then 6. 1.10 and 6. 1. 10a become TL-“

(1 ,n
1

(R0+2K2)M44—? 14 (t) : Ro‘l’Kz " K5 810(t) _:

.n i

(Roi'ZKZIMiia‘E' 11 (tI_ R0+K2 K5 69“)

.n i

- T1 T2 1:1“) (6.1.11) E

T2 T1 11 (t) I;

n n e (t) + K (in(t) in(t) E. : " 21 9 2 4 - ' 1 1
12(t) R0 + mg (6. .11a)

Where Tl : ROKI + KIKZ + RBKZ

Tz RORB + K,K,2 + R,,1<Z

6. 2. The Computer Program.
 

The 'flow diagram' of the computer program of 6. 1. 11 is given

:in Figure 6. 2. 1. The complete program has been broken down into

smaller sections than is necessary to obtain a solution to the particular

problem in this thesis. With this added flexability it is possible to use

the same program for the solution of other problems by changing only

the data tape. Also, two additional sections have been included which

are not necessary for the solution of 6.1. 11. However, if the solution

of 6. 1. 10 is desired then these two sections are required. They are:

(1) Calculation of R6 and R, if they are nonlinear, and (2) Calculation of

1?“).

The Address routine permits the user to Specify the number of

points to be used to calculate the value of the nonlinear elements by the
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use of the linear interpolator routine (see Appendix A). It also permits

the user to set the transfer order at the end of each routine to the address

of the next routine to be entered.

The Input Routine permits the data tape to be prepared in three

sections. With this arrangement it is not necessary to alter the entire

tape in order to change a selected group of coefficients. The various

entries on the data tape are shown explicitly in Appendix B.

The routine for calculating the coefficients calculates the entries in

the coefficient matrix of 6. l. 10. This routine is written in two sections

for added flexibility.

The Scaled-Derivatives Routine solves for the derivatives of the

dependent variables as required by the MISTIC Library Routine FA-Z.

The MISTIC Library Routine FA-Z is named ' Floating Decimal

Solution of a System of Ordinary Differential Equations.‘ This routine

will handle a set of 'n' simultaneous first order differential equations

explicit in the derivatives. The Runge-Kutta method of solution is used.

The Routine TA-l is a regular subroutine in the MISTIC Library

which calculates the sin kt.

The calculation of i8(t) simply calculates i8(t) in 6. 1. 7.

The Output Routine in this case places on tape the variables t,

iii“), if“), i8(t), M“, M44, and sin wt. However, this routine can be

altered to read out any of the element variables desired.

The Inductance Routine calculates the value of the nonlinear ele-

ments M” and M44 from the curves showing Mn and M44 as a function of

the ampere-turns. This routine is a special case of the routine in

Appendix A.

The main routine directs the progress throughout the entire calcu-

lation, such as the number of iterations, number of iterations without

print, and the number of iterations between the dump of memory. The

user is at liberty to specify the above. The reason for the dump of the
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memory is due to the length of the calculation. Should a computer error

occur in the middle of the program, it is not necessary to start all over.

An additional program has been written which enables the calculation to

be started again prior to the point where the error occurred.

 





 

VII . CONCLUSIONS

The restrictions on the locations of inductors in a system as stated

in the sufficiency criteria of Theorems 5. 3. 1 and 5. 3. 2, such that the

system equations can be formulated with the ampere-turns variables of

the inductors appearing explicitly, are very restrictive. However, a

great many magnetic amplifier circuits will fulfill these requirements.

The restrictions that Theorem 5. 2. 2 places on the location of inductors

in the network could possibly be relaxed by further partitioning of the

segregate, circuit and terminal equations.

The saturation curves used in the example solution are shown in

Figure 7. 1. The curves showing the coefficients M as a function of the

ampere-turns are also given in the same figure.

The curve C represents the "ideal" saturation characteristic

usually used for a qualitative analysis. When this curve is used as a

basis of the steady— state analysis, it is assumed that during the ”exciting

interval" (the unsaturated region) the core has a very high "reactance"

(actually M 900) compared to the load resistance. During the "saturation

interval" the core is assumed to have low "reactance" (actually M = 0),

such that the current is limited by the resistances of the circuit. The

form of the curves resulting from this qualitative analysis are shown in

Figure 7. Z.
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Figure 7. 2

36  



 

  
 

 

 

  



 

 



 
38

However, if an approximation to the solution curve similar to

curve A of Figure 7. 1 is used, one would expect the general wave form

to be as shown in Figure 7. 3.
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Figure 7. 3

The oscillogram of the load current from a laboratory measure-

ment on a magnetic amplifier of this type is as sh0wn in Figure 7. 4.7‘
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Figure 7. 4.
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The steady-state solution of i8(t) obtained as a computer solution

in the example in this thesis is given in Figure 7. 5. These solutions

were obtained using the curve 'A' in Figure 7. 1 as the value of the co-

efficient M.

A typical hysteresis loop for the type of material used in magnetic

amplifier cores is shown in Figure 7. 6. A more accurate representation

of this curve is realized when the width of the loop is not neglected.

T

B

 

 

/ 14—»

. J

 
Figure 7. 6

An investigation was made concerning the possibility of incorporat-

ing this type of non-linear characteristic in a computer solution. One

of the problems encountered is the specification of the curve the flux

should follow at the point where the slope of the hysteresis loop changes

abruptly. The problem is further complicated by the fact that during

the transient period, the operation is on a minor hysteresis loop. This

requires that as the flux follow curve 1 from "a” to "b, " and back to

”a" over curve 2 in Figure 7. 6. However, the point "b" can not be pre-

determined by the programmer as it may lie anywhere on the c-d

portion of the hysteresis loop. A steady- state solution could possibly be
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realized for the magnetic amplifier with a hysteresis loop of finite width,

if the minor hysteresis loop on which the magnetic amplifier is operating

is known. In many of the qualitative analyses only the steady-state solu—

tion is considered.

Since the above seem insurmountable, the core characteristics

used in this thesis is shown in Figure 7.1.

The size of the increment of time required is a function of the slope

of the M coefficient curve. In particular of the M coefficient curve is

discontinuous, then the solutions of the equations developed in this thesis

do not exist. The "computer solutions" obtained when the M coefficient

curve B is used differs greatly for different values of increment. The

size of the increment that could be used in this program is limited by the

length of time required for a solution. This limitation is due to two

factors: (1) the program is written in interpretive language which requires

more time per operation than regular machine language, (2) the time re-

quired for the solution to reach a steady- state condition is long for the

solution of these equations (Figure 7. 7).

Also the possibility of computer failure increases greatly with

time especially after several hours of continuous operation. This problem

was alleviated by writing the program such that it could be restarted at

specific intervals. However, even then the time is a very serious

problem.

As a first correction to these difficulties, it is suggested that a

variable increment based on the rate of change of the ampere—turns

variable be incorporated into this program. If this still does not alle-

viate the difficulties the entire program should be written in regular

machine language. Faster computers are becoming available which will

help to alleviate this difficulty.

Figure 7. 8 shows the effect of the dc voltage of the control winding

on the ampere-turns variables of each inductor. Note that the axis of
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i111(t) is shifted in the negative direction where as the axis of i2(t) is

shifted in the positive direction. Neither inductor however, is driven

into saturation.

The effect of the load resistance on the steady- state linear solu-

tion resulting when the inductors are not driven into saturation is shown

in Figure 7. 9.

It is hoped that the techniques investigated in this thesis will pro-

vide a basis for future development.

 



 



 

APPENDIX A

The Linear Interpolator Routine

This routine is designed to interpolate a curve given by a table

which consists of a sequential set of function values, f(xi), for arguments

xi. Let x0 be the smallest argument, xp be the largest argument and Xa

any arbitrary argument. This routine is written such that if xa< x0, f(xa)=

f(xo) or if xa > xp, f(xa) = f(xp). The number of points and the spacing

between points is left to the programmer.

The mathematical formulation is:

 

[f(xn) - f(Xn - 1)] (Kn - Xa)
f(xa) = f(xn) - Xn _ Xn _ 1

The following routine is written in A-l (floating point) and requires

the following preset parameters:

SK — location of xa

SN - location of f(xi)

SJ — location of xi

In addition the addresses of the following orders must be set:

1. The right hand order of 4 to p-l +SN

. The right hand order of 5 to number of points

. The right hand order of 20 to the location of the next routine

. the left hand order of 18 to (p-l) +SN

U
e
r
-
W
N

. The right hand order of l to the number of times through the

routine

The individual orders of this program are included here for the

benefit of the reader who is not familiar with computer coding.
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Transfer to A-1

Loop 'q' times

Place x0 in the accumulator

Subtract xa

if x0 > xa, transfer to 16

waste

Place Xa in the accumulator

Subtract x.p

if xa > xp, transfer to 18

Loop p times, if necessary

 

Place xn in the accumulator

form xn - xa

if xn > xa, transfer to 8

if xn < xa, transfer to 6

Place xn in the accumulator

form xn - Xn—l

Store xn - xn.l in 21

Place xn in the accumulator

form xn - xa

Divide x1.1 - xa by xn - xn_l, let this be 'm'

Store ‘m' in 21

Place f(xn) in the accumulator

form f(xn) - f(xn_1)

multiply by 'm'

store m[f(xn) - f(xn_l)] in 21

Place f(xn) in the accumulator

subtract m[f(xn) - f(xn_1)]

store f(xn) - m[f(Xn) - f(xn_1)]



15.

18.

19.

20.

21.

8K

83

85

88

03

BJ

1F

19L
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transfer to 19

Place f(xo) in the accumulator (from 3)

store f(xo) in 21

Transfer to 19

Place f(xp) in the accumulator (from 5)

Store f(xp) in 21

Place f(xa) in the accumulator (from 15 or 17)

Store f(xa) in SK

loop to 2 'q' times

Transfer to 'b'

Temporary storage

 

  



 

APPENDIX B

DATA TAPE

Section 1

a. Three Sexadecimal Characters to specify:

1. The number of points on the curves showing R6 and R7 as a

function of i6 and i7.

2. The number of points on the curves showing Mn and M44 as a

function of the ampere turns.

 

b. Three Sexadecimal Characters to set the address of the transfer

order at the end of:

1. Input routine.

. Coefficient routine (Section 1).

. Coefficient routine (Section 2).

. Scaled-Derivative routine.

. Sine-Function routine (TA-1).

. Address routine.

. Routine for calculating R6 and R7.

m
u
o
m
e
w
w

. Routine for calculating i8(t).

9. Output routine.

10. Routine for calculating i?(t).

c. The points of the nonlinear elements, with each f(xi) followed by its

argument xi in sequence starting with the smallest argument, written

in floating decimal form (sign followed by nine significant figures

followed by a sign plus two figures, i. e. '+ l + 00) for:

l. The nonlinear elements R6 and R1.

2. The nonlinear elements M11 and M44.
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Section 2 '

In floating decimal form.

R1

R2

R5

R8

D21

1

- the turns ratio

to - angular velocity

Section 3

In floating decimal form.

h - increment

e9 (t)

em“)

t

.n . . .

11 (t) - the initial value

if“) — the initial value

i?(t) - Not needed in the problem solved in this thesis, hence 0

R6

R7

is used.

If considered nonlinear elements place 0 in each position, if

constant place the desired value in each position.

Three Sexadecimal characters, read in by the Main routine, to specify:

1.

r
P
-
w
N

Number of loops with memory dumps in between.

Number of iterations, with no output of memory.

. Number of loops through FA-Z between outputs.

. Number of times through the entire calculation, with a change

of data each time.

, The product of l and 2 above is the total number of iterations.

  





 

 

10.

11.

12.
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