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ABSTRACT

APPROXIMATIONS OF FUNCTIONS OF SEVERAL VARIABLES:

PRODUCT TCHEBYCHEFF APPROXIMATIONS

by Stanley Edwin Weinstein

In this thesis we define a Tchebycheff—like approx-

mation to a continuous function F of two or more variables,

which we call the Product Tchebycheff approximation, and

which possesses the desired property of uniqueness.

Let D be a compact set in E2 and let F be continuous

on D. Let Dx and Dy denote the projections of D onto the

) -_-x-axis and onto the y-axis respectively and let Dx(yl

[xer(x,yl)eD]. Let i il’ in be a Tchebycheff2)...)

system of continuous real-valued functions on Dx' For

each yeDy we define the continuous function F by

1

F (X) = F(x,y1)

5'1

Then F possesses a unique best uniform approximation in

1

i1, @2,..., in, namely

n

P = Z3 a,(y ) Q.

We define a restriction on the set D, which we call
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Stanley Edwin Weinstein

property K. This class of sets includes all compact con-

vex sets as well as all sets which are cross products of

compact sets.

If D possesses property K then the deviation function

p defined on Dy by

p(y) = Keg:?y) l Fy(x) - PA(y)(X)|

is continuous. Moreover if we further restrict the point

y1€Dy such that the set Dx(yl) contains n or more points

then the coeficients al(y),a2(y),...., an(y) are all con-

tinuous at yl.

We define the Product Tchebycheff approximation on

sets which possess property K and such that for each ysDy

DX(y) contains n or more pelnts. Let $1, $2,..., Wm be a

Tchebycheff system on Dy' Then each Function aj possesses

a unique best uniform approximation

m

. = Z) .. . , ' = 1 2,..., .Q3 i=1 alel J , n

The polynomial

:
3

n _ m

PT = Z) Qné. = Z3 L1 a..¢ e,

3:1 J J jzl i=1 13 1 J

/

is called the Product Tchebycheff approximation to F on D,

relative to the variable y.

Two algorithms for the computation of this approximation

are presented along with several examples.

It is also shown that by a suitable choice of base
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functions, the resulting Product Tchebycheff approximation

will approximate F arbitrarily close.

The Product Tchebycheff approximation is extended to

continuous functions of three or more variables.
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CHAPTER I

INTRODUCTION: THE PROBLEM OF THE LACK OF

UNIQUENESS OF A BEST APPROXIMATION

Section 1: The Best Approximation Problem
 

The central theme of this thesis is the problem of

finding a best approximation to an arbitrary element F in

  
a normed linear space:7,| I. This can be formulated as

follows:

  
Definition 1.1.1: Let ;?,l I be a normed linear space,
 

and let ¢1,¢2 ...,¢n be a set of n linearly independent
_ ,

elements of 5'. Given an arbitrary element F23, the

problem of finding an A* = (al*,a2*,...,an*)eEn, such

that

IIF - 31*Pill

"
h
a
s

[
A

n

IIF- >3 a¢||

11 i=1 11

for all A = (al,a2,...,an)eEn,

is called the best approximation (b.a.) problem. Both the

point A*eEn, and the corresponding polynomial



PA* =

"
M
S

*

3: ¢1
i l

  
are referred to as best I I approximations to F.

 

Definition 1.1.2: If ¢l,¢2,...,¢n are n linearly in-

dependent.e1ements of the linear space 57, then the set

of all linear combinations

n

PA = : ai¢i ; A = (al,a2,...,an)eEn

is a linear subspace of :7, of dimension n, called the

space spanned by ¢1,¢2,...,¢n, or the span of

¢1’¢2""’¢n’ which is denoted by

< ¢l,¢2’...,¢n > c

We now restate the b.a. problem with the use of

definition 1.1.2.

B. A. Problem (Restated) 1.1.3: Find the point(s) of the~

subspace < ¢l,¢2,...,¢n > which are closest to Fe:7, where

the distance between any two elements F F2e37 is defined
1,

by

d(Fl,F2) = ||Fl - F2||

In this thesis, we are primarily concerned with the

following case of the b. a. problem:



Let D be a compact set in euclidean k—dimensional

space Ek’ and let-71 = C(D), the linear space of all con-

  
tinuous, real-valued functions on D, with I I defined

on C(D) by

IIFII = sup IF(x)I for each FeC(D).

XED

This norm is called the uniform, Tchebycheff or

minimax norm. A corresponding solution to the b.a.

problem is called a best uniform, best Tchebycheff or

best minimax approximation to FeC(D) on D.

The existence of a solution to this b.a. problem is

a direct implication of the existence of a solution to 1.1u3;

see Davis (5).

We now consider the question of the uniqueness of the

solution to this b.a. problem.

Section 2: Tchebycheff Systems,

Haar's Theorem

 

 

Definition 1.2.1: The family of real-valued functions
 

¢l,¢2,...,¢n, is called a Tchebycheff system on D if and

only if for A = (al,a2,...,an)eEn the polynomial

PA =

I
I
M
D

ai¢i
i l



vanishes in at most n-l distinct points of D unless

Definition 1.2.1 is equivalent to saying that

¢1’¢2"'°’¢n is a Tchebycheff system on D, if and only

if the determinant

¢l(xl) ¢2(Xl) oo. ¢n(xl)

¢l(x2) ¢2<x2> ... ¢n<x,)

a o

¢l(xn) ¢2(xn) ... ¢n(xn)  
for every set of n distinct points xl,x2,...xn of D.

Remark 1.2.2: Let DlCLDZ; then if ¢l,¢2,...,¢n is a

Tchebycheff system on D2 it is also a Tchebycheff system

on D1.

Remark 1.2.3: The fact that ¢l,¢2,...,¢n is a Tchebycheff

system on D, implies that ¢l,¢2,...,¢n are linearly in-

dependent on D.

Example 1.2.4: Let D = [a,b], a :‘b and let

¢l(x) = l

¢2(x) = x

¢3(x) = x2

¢n(X) = xn-l



Then, for each A = (al,a2,...,an)eEn the polynomial PA

defined on [a,b] by

1-1
ax

2

“
M
E
S

"
M
S

PA(x) = ai¢i(x) = a1 + 1

i l i

has at most n-l distinct zeros on [a,b] unless

PA(x) E O

or equivalently, unless

a1 = a2 = ... = a = 0.

Therefore, ¢l’¢2"°°’¢n is a Tchebycheff system on

D.

Egample 1.2.5: Let D = the x-axis modulo 2n, or equi-
 

valently, let D = [0,2n] with the points 0 and 2N identi-

fied as one point, and let

¢1(x) = l

¢2(x) cos x

¢3(x) = sin x

¢2n(x) = cos nx



Then, for each A = (al,a2,...,a2n+l)eE2n+l the polynomial

PA defined on D by

2n+l

PA(x) = 1:1 ai¢i(x) = a1 + a2 cos x + a3 sin x + ...

+ a2n cos nx + a2n+l sin nx

has at most 2n distinct zeros on D, unless

PA(x) 5 O

or equivalently unless

— a2 = as. = 32n+l = 00

Therefore, ¢1’¢2"°"¢2n+l is a Tchebycheff system on D.

The next example illustrates that whether or not a

set of functions.¢l,¢2,...,¢n is a Tchebycheff system on

a-set D, may depend upon the set D.

Example 1.2.6: Let D1 = [0,1] and let

¢l(x) = l

¢2(x) = x2.

Then, for A = (al,a2)eE2

PA(x) = al¢l(x) + a2¢2(x) = a1 + a2x2



has at most one distinct zero in D1, unless a1 = a2

Thus, ¢1’¢2 is a Tchebycheff system on D1.

However, if D2 = [-l,l], then PA(x) = % - x2 vanishes

_ l _ 1
at both x1 - 5 and x2 - - 2. Thus, ¢1,¢2 is not a Tcheby-

cheff system on D2.

Now, let ¢l’¢2""’¢n be n real—valued continuous

functions on a compact set D, (which contains at least n

distinct points) in Ek'

Haar ( 8 ) proved the following theorem which helped

to answer the question of the uniqueness of a solution to

the b.a. problem in the above setting.

Theorem 1.2.7 (Haar):‘ A necessary and sufficient condition
 

that a unique solution exist to the b.a. problem for every

given FeC(D) is that the base functions,¢l,¢2,...,¢n form a

Tchebycheff system on D.

Thus if ¢1s¢2:...,¢nis not a Tchebycheff system on

D, then for some FeC(D), the corresponding b.a. problem

has a non-unique solution. However, as is seen in the

following example, some FeC(D) may have a unique best

approximation on D.

Example 1.2.8: Let D = [-1,1] and let

II

}
_
|

¢l(X)

I

>
4

¢2(x) -



Then, as in example 1.2.6, ¢1’¢2 is not a Tchebycheff

system on D. However the function FeC(D) defined by

F(x) = 1 + x2

has a unique best uniform approximation in ¢1’¢2’ namely

PA“ which is defined by

PA*(x) = l + x2'

We now state two corollaries to Haar's theorem.

Corollary 1.2.9: Let D = [a,b], a < b and let
 

¢l(x) = l

¢2(x) = x

¢n(x) = xn'l

Then as in example 1.2.“, ¢l’¢2’°°"¢n is a Tchebycheff system

onwD and-thus by Haar's theorem, for each FeC(D) there

exists a unique algebraic polynomial

P*=a*

A 1%"81
s a

2 ¢2 + C O O + a ¢

which minimizes the quantity

max IF(x) - PA(x)I .

Xe[0,1]



Corollagy 1.2.10: Let D = the x-axis modulo 2r and-let
 

¢l(x) " l

¢2(x) = cos x

¢3(x) = sin x

¢2n(x) = cos nx

¢2n+l(x) = sin nx

Then, if F is an arbitrary continuous function with period

2n, (that is, F(x + 2n) = F(x), for all real x), there

exists a unique trigonometric polynomial

P*=a*

A l¢l+a
+ 0.. +a*

*

2 ¢2 2n+1¢2n+1

which minimizes the quantity

max IF(x) - PA(X)I

xeD

The following example (see Buck 02) ) presents a

function which possesses a non-unique, best uniform approxi-

mation.

Example 1.2.11: Consider the Banach space of continuous,

real—valued function on the compact set

D . [0,1] x [0,1]: E2, with |
  

I, the uniform norm.
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¢2(X,Y) = X

¢3(X.y) = y

¢u(X,Y) "' X2

¢5(x,y) = Y2 ’

and let F be defined by

F(X.y) = xy.

Using results from functional analysis, Buck first shows

that

min llF—PAII 1%—
AeE5

where as usual for each A = (al,a2,a3,au,a5)eE5

PA = al¢l + a2¢2 + a3¢3 + au¢u + a5¢5

He then observes that

l 2 2 l l

IIXY - I§(x + y ) ' EIII = y

and

ley - (X + y - §<x2 + y2) - FIII

Therefore, P * and PA * defined by

A1 2



1 2 2 1
* =— —PAl (x) 2(x + y ) y

and

l 2 2 l
* = --— -PA2 (x) x + y 2(x + y ) F

are both solutions.to the b.a. problem. This in turn im-

plies that the b.a. problem has an infinite number of

solutions, since if 0 i a i 1, then

.. it _ itllxy (aPAl + (1 a)PA2 )||

: ||a(xy - PA1*)|| + ||(1_a)(xy - PA2*)||

*II
= _ * - -aIIxy PAl II + (l a)IIxy PA2

= a I + (l-a) I = I .

Hence, aPA * + (l-a)PA * is a solution to the b.a. pro-

1 2

blem for all a such that O i a i 1.

Hear has shown that if the domain D contains a.trioJ

set T (see Figure 1.2.1), then there does not exist a

non-trivial (n 1 2) Tchebycheff system on D1 (see Lorentz

( 9), p. 25).
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Figure 1.2.1

Thus for any non-trivial base system ¢l?¢2"°"¢n’ the

b.a. problem does not have a unique solution for some

FeC(D).

Mairhuber (1.0) established necessary and suffici-

ent conditions for a set D to serve as the domain of

definition of a Tchebycheff system.

Theorem 1.2.12 (Mairhuber): A compact subset D of Ek con-

taining at least n-points, n 1 2, may serve as the domain

of definition of,a non-trivial Tchebycheff system of real—

Valued continuous functions, if and only if D is homeoé

morphic to a closed subset of the circumference of a

circle.

Therefore, except for trivial Tchebycheff systems

(n = l) or D homeomorphic to a closed subset of the cir-

cumference of a circle, the b.a. problem has a non-unique

solution for some FeC(D).

It is desirable to have a unique best approximation

for all FeC(D). The primary virtue is one of communication.
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We can speak of "the" best uniform approximation or "the"

least squares approximation of degree n to FeC(D).

Secondly, it is often true that the property of unique-

ness will simplify the algorithm(s) used to solve the

b.a. problem.

The primary goal of this thesis is to define and

investigate a Tchebycheff—like approximation which

possesses the desired property of uniqueness for all

FeC(D). We-shall call this approximation the Product

Tchebycheff Approximation to F on D.



CHAPTER II

THE PRODUCT TCHEBYCHEFF APPROXIMATION

TO A CONTINUOUS FUNCTION

Section 1: Introduction

Let D be a compact set in E2. We define each of

the following compact sets in El:

D the projection of D onto the x-axis,
x,

D the projection of D onto the y-axis,
y’

Dx(yl), the projection of the intersection of the

set D and the line y = yl, onto the x-axis.

 

 

  

  

Figure 2.2.1

14
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Let FeC(D), and we define the following associated

family of functions:

Definition 2.1.1: For each yleDy define the function Fy
 

l

on Dx(y1)’ by

Fy1(X) = F(x,yl).

We also define a family of norms.

 

Definition 2.1.2: For each yleDy, and for each real--

valued function H defined on Dx(y1) we define

IIHIIy =sup |H(x)l

Now, let ¢1’¢2""’¢n be a Tchebycheff system of

continuous functions on Dx'

 

Definition 2.1.3: For each yleDy, such that Dx(yl) con—

tains at least n points, Haar's Theorem shows the exis-

tence of a unique polynomial

n

P =

“3%) 1 1

(where A(yl) = (al(yl),a2(yl),..L,an(y1))eEn)

which is the best I
  

approximation to the continuousII.

t

Ifunc ion Fyl on Dx(yl) As usual both PA(yl)

associated parameter A(yl) will be referred to as the best

and the

  Iyl approximation to F

yl'
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The basic idea of this thesis, is to obtain poly-

nomial approximations to the coefficient functions‘

al(y),a2(y),...,an(y), for yeDy.

We will consider the continuity of a1(y),a2(y),...,an(y)

on Dy under an additional restriction on the set D, which-

we shall call property K. If these functions are continuous

on Dy’ they themselves will have best uniform approxi-

mations by polynomials in wl,w2,...,wm, a family of m

real-valued continuous functions on the compact set Dy.

Section 2: Property K

Definition 2.2.1: A compact set D is said to possess
 

property K relative to the variable y, if given e>~0,

there exists a 6 = 6(6) > 0, such that y1,y22D , and-

y

Iyl - y2I < 6 implies that if (xl,yl)eD (xler(yl))

thenthere exists an XZer where Ix2 - xlI < e and

(x2,y2)eD (xzer(y2)).

Remark 2.2.2: The following definition is equivalent to
 

(2.2.2) A compact set D is said to possess property K

relative to the variable y if given 6 >0, there exists a

5 - 6(a) > 0, such that yl,y2eDy, and ly1 ; y2I < 5

implies that if (xl,yl)eD (xler(yl)) then there exists

an xZer where o[(xl,y1);(x2,y2)] < sand (x2,y2)eD
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Note that here and throughout the remainder of this

thesis the letter "a" will be used to denote the usual

Euclidean metric on the space under consideration at that~

time.

on, will denote the usual Euclidean metric on

Euclidean n space En’ for any positive integer n.

Proof: If_as in Definition 2.2.2

0[(xlsyl)3(x23y2)3 < 5

then Ix2 - xll 1 o[(xl,yl);(x2,y2)] < e which satisifies

2.2.1.

On the other hand if yl,y2eDy with Iy1 - y2I < 61(2/2)

as in Definition 2.2.1, we can choose

6 = mln(dl(e/2),s/2)

Hence yl,y2eDy and Iyl - y2I <‘6 implies that there exists

an xzer(y2) where

°[(xlsyl)3(x23y2)] : IX2 - xll + Iy2.' le

R
a
m

M
W
)

'
u m

which satisfies 2.2.2.

We may-similarly define property K relative to the

variable x. We shall see in Example 2.2.5 that property

K relative to x and property K relative to y-are not

equivalent.
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Example 2.2.3: Any rectangle D a'{(x,y): a i x.:‘b,

c :.y: d} has property K relative to the variable y

as well as property K relative to the variable x.

Example 2.2.4: Let D = the intersection of the hori-

zontal band

H .{(x,y): a i y i.b}
a,b

with a family of a finite number of non-horizontal lines.

 

 

Figure 2.2.1

Then D has property K relative to the variable y.

Note that as a special case of this any single

line segment (we need not exclude a horizontal line seg-

ment) has property K relative to both x and y.
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Example 2.2.5: Let D = {(x,y): x +-y = 1 and 0 :_x i l

or x = 0 and 0 :_y i 1}.

D

 
 

-
1

Figure 2.2.2

Then given a > 0, if (xl,yl)eD then

(1) (xl,yl) = (0,yl) for some 0 :_y1 i 1

or (2) (x,yl) = (1 - yl,yl) for some 0 :.yl i 1

In case (1) Let 6 = 6(6) = 1 then for any

y2eDy = [0,1],Iy2 - le < 6 = l and (0,y2)eD implies

I0 - OI -.O which satisfies 2.2.1.

In case (2) let 6 = 6(6) = a then for yZeDy = [0,1]

if Iy2 - le < 6 = c then for x2 = l - y2m

IX2 - xlI a I1 - y2 ’ (l ‘ yl)| = lyl ' y2I < 8

and definition 2.2.1 is satisfied.

Thus if we choose 6 = min(l,e), Definition 2.2.1

is satisfied relative to the variable y.
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However, if we choose 5 = and (xl,yl) = (0,0),

m
n
e
n
m
a

then xzer ande2 - xlI - x2 < implies that if x2 # 0,

then-there is one and only one.corresponding y2, such

that (x2,y2)eD, namely y2 = 1 - x2, and therefore,

. l

IY2,' yll = y2 = 1 - x2 > 5. Hence, D does not possess

property K, relative to the variable x.

Theorem 2.2.6: Let K1 and K2 be compact sets in E Then,1.

,D - K1 x K2 (LE2 has property K relative to both x and y.

Proof: Clearly D1 which is the cross-product of two com-

pact sets, is itself compact in E2.

Now given e > 0 and an arbitrary point (xl,y1)eD,

then xleKl and yleKz. For any yzeDy = K2 we have the

point (xl,y2)eD. Thuslxl - xll = 0 < e and 5 may be

chosen arbitrarily large. A similar argument shows that

D has property K with respect to the variable x.

The rectangle of Example 2.2.3 is a special case of

Theorem 2.2.6, where K1 - [a,b] and K2 a [c,d].

Theorem 2.2.7: Any compact convex set DCZE2 has property

K relative to both x and y.

£3322: We first show that property K relative to y holds

at a given point in D.

Since-Dy is the projection of the compact convex

set D, it.is a closed bounded interval, say

Dy ' [ymin’ymaxJ'





21

Now let a > 0 be given and let (xl,yl) be an arbi-

trary point of D. If yl #-ymin then by the convexity of

D the point-

(x2,y2) = (axl + (1—e)i, oyl +_(1-a)y )
min

also belongs to D for each fixed ae[0,l], (where f is

)).

Now, we can choose

some point ian(ymin

  

m I
\
)
|
m

OI‘

Then since

Iy2 - yll = (l-Q)Iyl ‘ yminl

and

(1-a)le - xI>
4

[
\
J

I

>
4

l
-
'

II

we have

(1) for y2e[ymin.yl]

E

ly2 ' yll < 62 “‘IX2 ‘ Xll < 2 '
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On the other hand, if y1 - ymin then the interval

[ymin,yl]reduces to the point yl and then (1) holds tri-

vially for any choice of 62 > 0.

Now, we.can similarly find a 63 = 63(e/2) such that

(2) For y2e[y1,ymax1

E

Iy2 ‘ le < 63 IX2 - xll < 5 °

We can choose 61 = min(62,63). Then

(3) For y2eDy = [ymin.ymaxl

— a
ly2 ' yll < 61 " Ix2 ‘ xll < 2

Hence property K holds relative to the variable y

at the point (xl,yl). We will now extend this to 31’ an

open neighborhood of (xl,yl).

' 6

,1
Let S1 = {(x,Y):|x-xl)|< % and Iy-yl|< -§—} and let

(fsy)fislnD0

Then ” If - xlI < 3

_ 51.

and ly - yll < 77

5

For y2€Dy and yeSIIIDy where Iy2 — §| < i; we have

6 6

l |<| ‘|+I‘ I—-l-'+—I- ay2 ' yl _ Y2 ' y a y - yl < 2 2 1

Thus by property K at (xl,yl) there exists a point (x2,y2)eD

whereiIx2 — xil < E .
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Hence Ix2 - fl 1 Ix2 - xll + le - xI

< 6/2 + 5/2.= e

We have shown that for arbitrary f,§)eslle, and arbitrary

' 1

(

6

e > 0 there exists a 6 = 6(8) = 77‘ such that for y2eDy

where Iy2 - yl < 5 there exists a point (x2,y2)eD where

Thus property K relative to the variable y holds in

all of 81.

This argument can be repeated for any point (xu,yu)eD

and its corresponding open neighborhood Su' By the com-

pactness of D a finite number of such neighborhoods

S S2”"’Sn is sufficient to cover D.
1,

We choose

6 6 6
1 2 k

5 = mint’2’2"“’"2_]

(where 61 corresponds to (xi,yi)eD and its associated neigh-

borhood S for i = 1,2,...,k) and Definition 2.2.1 is
i

satisfied.

Hence, D has property K, relative to the variable y.

By a similar argument we can show that D also possesses

property K, relative to the variable x.

Note that convexity is not a necessary condition for

a set to possess property K as is evidenced by examples

2.2.A and 2.2.5 and Theorem 2.2.6.
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Theorem 2.2.8: Let D be a compact set in E2, which possesses

property K, relative to the variable y. Let yl be a fixed

point of Dy’ and let xll,xl2,...,x be n distinct points
1n

of Dx(yl)’ where n is an arbitrary positive integer. Then,

there exists a 6 = 6(yl) > 0, such that y2eDy and

Iy2 - yll < 6

implies that there are n disjoint closed intervals

S S1’ 2,...,Sn such that

(1) xlieSi i = 1,2,...,n

and (2) There is a point X21€Dx(y2) where

X21581, i = 1,2,...,n.

Proof: Let a = min lei - xljl > 0.

i > j

i = 2,...,n

J: 1,2,...,n-l

Note that 6 depends on yl.

Then by property K, there exists a 6 = 6(e/3) > 0,

(depending on yl) such that if xlier(y1) then yzeDy and

Iy2 “le < 5

implies there exists an x2ier(y2) satisfying

|x2i - xlil < e/3, 1 = 1,2,...,n.

Hence S1 = {Xerzlx - x i e/3} satisfies the de-
11'

sired conditions (1) and (2).



25

Corollary 2.2.9: Let D be a compact set in E2, which
 

possesses property K, relative to the variable y. Let yl

be a fixed point of Dy such that Dx(yl) contains :_n

points for some arbitrary positive integer n. Then,

there exists a 5 = 5(y ) > 0 such that y 5D and
1 2 y

Iy2"le < 5

implies that-Dx(y2) contains :_n points."

The following example, illustrates a compact con-.

nected set which does not possess property K relative to

either x or y. This example will be frequently referred

to in later sections.

Example 2.2.10: Let D = {(x,y):x = 0 and 0 :_y 1’1 or
 

y = 1 and 0 i x i 1}.

(1

A

 

 

 
Figure 2.2.3
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Then, by a similar argument to that found in the

later part of Example 2.2.5 we can show that D does not

possess property K relative to x or y.

An alternative proof is to use Corollary 2.2.9.

If we choose y1 = leDy = [0,1] then Dx(yl) has 1 2

points. However, for all y2e[0,l), Dx(y2) has only 1

point. Therefore, D does not possess property K relative

to the variable y. A similar argument shows that D does

not possess property K relative to the variable x.

Section 3: Continuity of the Coefficients

al(y),a2(y),...,an(y)v

 

In the remainder of this chapter, for each yleD

let F and

yl I '31

spectively, and for each A = (al,a2,...,an)eEn let

y,

be as defined in 2.1.1 and 2.1.2 re-
  

P =

A a1¢l + a
2¢2 + as. + an¢no

Definition 2.3.1: For each yleDy let
 

= 1 f F - P
p(yl) AZE ll yl Allyl

n

We know that if FeC(D), then Fy eC(Dx(y1)). Also if

1

¢l’¢2’°"’¢n is a system of n real-valued, continuous

functions on Dx’ then they are likewise real-valued,

continuous functions on Dx(y1)’ and therefore we know

that there is some polynomial P which is a best

A

  

l

I ° Iy approximation to Fy . Consequently, we have the

l l

existence of a polynomial P such that
’

A1
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= F - P

Theorem 2.3.2: Let D be a compact set in E2, which possesses

property K, relative to the variable y, and let ¢l’¢2’°"’¢n

be a Tchebycheff system of real-valued, continuous functions

on Dx' Let FeC(D). Then p(y) is a continuous function for

D .YE y

Proof: Let yl be a fixed point in Dy and let e> 0 be

given. Then for all y2eDy

II :IIF -P II

y2 A2 y2 y2 A1 y2 ’

where P
  

is a best I I approximation to F , i =_l,2.

A1 yi yi

(Note that because Dx(yi) may contain less than n points,

PA might not be a unique best approximation.)

1

Now, let 51 = 51(e,yl) correspond to e in the

definition of the uniform continuity of the function G

defined on D, by

G(x,y) Fy(x) - PA (x) E F(x,y) - PA (x).

l 1

Also, by property K relative to the variable y for the set

VD, given 51(e,yl) 0, there exists a 52 = 52(5l(e,yl)) > 0'

such that for yzeDy

Iy2 - le < 62

implies that for each x2er(y2), there is a corresponding

xler(yl) Satisfying,
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o2[(xl,yl);(x2,y2)] < 51(e)

This in turn implies that

IFy2(x2) - PAl(x2)I < lel(xl) - PA1(x1)I + e

Combining these results we have,

(1) given e >0, and y1 fixed in Dy there exists a

52‘= 52(5l(e,y1)) > 0 such thaty2eDy and

ly2 - yll < 62

imply that for some x2er(y2) and a corresponding xler(yl)

p(y2) - o<yl) = lle2 - PA2||y2 - llel - PAlllyl

< IIFy2 - PAllly2 - HF,l - PAIN,l

= IFy2(x2) - PA1(X2)| - IIFyl - PAlllyl

< IFyl(xl) - PAl(xl)I + e — IIFyl PAlllyl

1 HFyl — PAlllyl + . - HFyl - PAIN,1

Now, we consider two cases:

Case 1: Dx(yl) contains gin points.

Then there exists a polynomial PA such that

l

IIF --P II 0
yl ' A1 y1

Therefore, p(yl) = 0.
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Now by (l)

Iy2 - le < 62

amp '- p<y1> = m2) < 5

Hence, Iy2 - le < 52

=2 Io(y2) — o(yl)I = Io(y2)| = 0(y2) < e ,

since p(y) is a non-negative function.

Case 2: Dx(yl) contains 1 n+1 points

Then by Theorem 2.2.8 and Corollary 2.2.9, there

exists a 53 = 53(y1) > 0, such that y2eDy and

Iy2 - le < 6

implies that (l) Dx(y2) contains 1 n+1 points and these

points x2 l,x ...,x ‘each belongs to a corresponding

9
2,2’ 2,n+l

closed internal 81’32""’Sn+1 where 81/333: 5, i f j.

Now, by Haar's Theorem, Fy and F each has a unique

1 5'2

best uniform approximation on their respective domains.

Denote these approximations by PA and PA respectively.

As before we have
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Then, since the zero polynomial is a possible

approximation toFy , we have

|| :IIF

y2 A2 y2 y2 y2

Therefore,

  

P < F -P . FII A lly2_l| ,2 A2||y2 || ,leyz

< 2 F_ ||y2||y2

1 2M

Now, consider the set 61: {A2:PA is the best I - |y

2 2

approximation to Fy2 for some y2€Dy where Iy2 - yl| < 53},

We first assert that dis a bounded set. We begin by

finding expressions for the coefficients a2l,a22,...,a2n,

where A2 = (a2l,a22,...,a2n)ed.

The function G defined on the compact set

S = SlXS2X...XSn, by

G(x1,x2,...,xn) = ¢1(xl) ¢2(xl) ... ¢n(xi)

¢1(x2) ¢2(x2) ... ¢n(x2)

¢l(xn) ¢2(xn) ... ¢n(xn)

  
is continuous there and therefore assumes its minimum

absolute value m at some point (fi,§',...,§h)es.

Since ¢l""’¢n is a Tchebycheff system on Dx’ if

m = 0 then for some i # J, E: = f3. However, £1881 and
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~

  

xJeSJ and SillsJ = t. Therefore, m > 0.

Now, for yzeDy and

ly2 - yll < 63

and the corresponding point A2251, we consider the determi-

nants

PA2(X21) ¢2(x2l) ¢n(x21)

D1 = . .

PA2(x2n) ¢2(x2n) ¢n(x2n)

¢1(x21) PA (x21) ¢3(x21) ¢n(x21)

D2 = I 5 5

¢1<x2n) P (x2n) ¢3(x2n) 4’n("2n)

¢l(x2l) . ¢n-1(x21) PA2(x21)

and Dn = I E

¢1(x2n) ' ¢n-1(x2n) PA2(x2n) "

 

  

where x21,x22,...,x2i are points of Dx(y2), such that

X2i
ES

1’
i = 1,2,...,n.
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Since, max IPA (x)I i IIPA2IIy2 :_2M

2x = x2l,x22,...,x2n

we note.that the determinants D1,D2,..., and.

bounded in absolute value. Let their bounds

respectively.

 

¢1(321) ¢2(x21) ‘°° ¢n(x21) a21

¢1(x22) ¢2(x22) '°° ¢nIx22) a22

I¢1(x2n) 4’2("2n) '°° ¢n(x2n), Ia2n,   

We have by Cramer's ruIe

IDlI B1
<—|a|= _ _

21 IG(x21,x22,...,x2n)I In

 
 

D B

I322I = IG(x “x2l x )I < 3%
21’ 22"°" 2n

n B

I32 I = G( I HI ) i
n I x21,x22,...,x2n I m

 

Dn are

be Bl,BZ,...,Bn

IPA2(X21)

P (x )
A2, 22

  

Hence, 4.13 a bounded set and its closured is compact.

The function H defined on DXZ2.by

H(x,y,A) = Fy(x) - PA(X)

is uniformly continuous there.
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Thus, given a > 0, there exists a 5“ 8.54(e) > 0

such that if (xl,yl,A2) and (x2,y2,A2)erazgthen

"n+2[("1’yi""‘2)5("2’5’2’,”‘2)J < 5A

implies that,

IFyl(xl) - PA2(xl)I < IFy2(x2) - PA2(x2)I + e.

Also by property K, relative to the variable y, for the set

D, given 6A(€) > 0, there exists a 55 a 65(6A(E)) > 0

such that for y2eDy

Iy2 ‘ le < 55

implies that for each x er(yl) there is a corresponding
1

xzer(y2) satisfying,

02[x1.y1);(x2.y2)] < au<e>

or equivalently,

°n+2[(x1,y1’A2)3(x2’y2éA2IJ < GAIE) ’

which in turn implies that

IFy (x1) - PA2(xl)I < IFy2(x2) - PA2(x2)I + e.
1

We_can choose 56 = min(53,55) > 0. Then combining

these results we have,

(2) given e'> 0 and y1 fixed in Dy such that Dx(yi) con-

tains-1_n$1 points, there exists a 56 - 56(e,y1) > 0

such that for y2eDy
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Iy2 - le < 56

implies that, for some x1 = xl(y2)er(yl) and a corre-

sponding x2 = x2(y2)€Dx(y2),

0(y1) - p<y2> = llel - PAlllyl - HF,2 - PA2IIyl

< IIFyl - PAZIIyl - Ile2 - PAZII,2

= IFyl(xl) - PA2(x1)I - IIFy2 - PA2IIy2

< IFy2(x2) - PA2(x2)| +e - ||Fy2 - PA2||y2

_ HF,2 - PA2I|y2 + . - HF,2 - PA2l|y2

Now we choose 5 = min(52,56) and we have for case 2,

by (1) and (2)

Iy2 - yll < 6

implies that

Io(y2) - o(yl)l < e .

We will use the continuity of p(y) to prove.the

continuity of A(y) under suitable conditions. With this

goal in mind we state the following theorem due to Remez (16)

Theorem 2.3.3 (Remez): Let D be a compact set in El’ which
 

contains 1 n+1 points. Let F€C(D) and let 51(x) a 1,

x,...,¢n(x) E xn_l. Let I
  

I be the uniform¢2(x)

* be the best I
  

norm on-C(D), and let P I approximation
A

to F on D. Then, given a > 0, there exists a 5 = 6(6) > 0

such that
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IIF-P _<_I|F-PA*II+<SAll

implies that

C(A;A*) < e

Essentially what this says is that if the deviation

of.a polynomial PA is close to the deviation of the best

approximation PA“ then the corresponding parameters A and

A* must be close.

The proof of the following more general theorem

closely parallels the Remez proof. This theorem is one

of a sequence of results from which the continuity of A(y)

will follow.

Theorem 2.3.A: Let D be a compact set in El’ which contains

n or more points. Let FeC(D) and let ¢l’¢2""’¢n be a

linearly independent system of continuous real-valued

  
functions on D. Let I I be the uniform norm on C(D) and

let

p = inf IIF - PAII

AeEn

Then given a > 0, there exists a 5 = 6(6) > 0, such

that

IIF-PAII<p+5

implies that there is a best I
  

I approximation PA*,

to F on D, such that
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0(A;A*) < e .

Essentially what this theorem says is that if the

deviation of a polynomial PA is close to the deviation of

  

  

a best I - I approximation to F, then the parameter A is

close to the parameter of some best I - I approximation

to F.

Proof: Let M = IIFII, and let

T= {AeEnzllP 12M} .All

Since ¢1’¢2""’¢n is a linearly independent system

on D, there exists a set of distinct points xl,x2,...,xn

in D, such that

¢1(xl) ¢2(xl) ... ¢n(xl)

51(x2) ¢2(x2) ... ¢n(x2)

. . = m # 0

¢l(xn) ¢2(xn) ... ¢n(xn)  
For arbitrary AeT the determinants

PA(xl) ¢2(xl) ... ¢n(xl)

PA<xn> ¢2<xn) ... ¢n<xn>
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¢l(x) PA(X1) ¢3(xl) ¢n(xl)

D2"= I 5

¢l(xn) PA<xn) ¢3(xn) ... ¢n(xn)

and-

¢l(xl) ... ¢n_l(xl) PA(xl)

D..‘ 5 .

51(xn) ... ¢n_l(xn) PA(xn)

  
are bounded respectively by Bl’B2"°°’Bn' Therefore, by

Cramer's rule

B

    
  

B B
1 2 n

la1|_<_ —m . Ia2| :. —m ,..., Ianl 1 -—m .

for each A = (al,a2,...,an)eT. Hence, T is bounded.

Now, if-A' is a fixed point of T', the complement

of T, then

IIPA.II >2M

By the continuity of IIPAII as a function of AeEn,

given a = IIPA,II - 2M we can find a 5 = 5(e,A') such that

AeEn and

o(A;A') < 5
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imply that

IIPAII > IIPA.|| - .

IIPAvII " (IIPAtII ‘2M)

2M.

This implies that

{AeEn:o(A;A') < 5}CT'.

Therefore, T' is open and T is compact.

For some M > M, we define the set

A

T = {AeEn:IIP 1 2M}. We can similarly show that T isAll

compact.

Let 4* = {A*eEn:P * is a best I
  A I

approximation to F on D}.

For each A*261*

||PA*|| 1 IIFII + IIF - PA*|| 1 2||F|| = 2M.

Therefore,

EDT: 4* 7‘ o.

The linear independence of ¢l’¢2""’¢n on D implies

2M ~
that llolll # o. If P = TTIITT 51, then IIPII = 2M.

Therefore, T - T is a non-empty subset of T - 613.

. Now, given e> 0, we define the set

Te = {AeT:o(A;A*) 1 e, for all A*eéz*}, and note that
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for a sufficiently small T6 is a non-empty compact subset

T

 rI

Figure 2.3.1

Since IIF - PAII is a continuous function of AeEn,

it assumes its minimum 98 > p on the compact set Te.

Choose 5 = min(oE - 9, 2M - M - 6). Then AeEn and

IIF — P < p + 5All

imply (l) IIF - PAII < 05

and (2) IIF - P < 2h - M.

Therefore AeITe by the definition of-pe.

Also 2h — M > IIF - PAII 1 IIPAII - M implies that

2M > IIPAI
 

This implies that let.
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Hence AeT - TE, and therefore

o(A;A*) < e, for some A*eél* .

If yl is a fixed point of Dy such that Dx(yl) con-

tains less than n points, then Fy does not possess a

1

Iyl approximation in 51,¢2,...,¢n.
  

unique best I

Therefore, A(y) is not well defined at yl. This problem

is considered at the end of this section. We-presently

restrict our attention to the case where Dx(yl) contains

n or more points.

In the remainder of this chapter the phrase "let D,

F, and ¢l’¢2"°"¢n be as usual" will be used to mean that

D is a compact set in E2, which possesses property K rela-

tive to the variable y, FeC(D) and ¢l’¢2""’¢n is a

Tchebycheff system on continuous real-valued functions

on Dx'

Lemma 2.3.5: Let D, F and ¢1’¢2"'°’¢n be as usual, and

let y1 be a fixed point of Dy, such that Dx(yl) contains n

or more points. Then given a > 0 there exists a

5 = 5(e,yl) > 0, such that y2eDy and

Iy2 - yll < 6

imply that

IIF - P II < 0(y ) + e.
yl A(y2) yl l
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Proof: By Corollary 2.2.9 there exists a 51 = 51(y1) > 0,

such that y2eDy and

Iy2 ‘ le < 51

imply that Dx(y2) contains n or more points, and there-

fore A(y) is well-defined at ya.

As in Theorem 2.3.2 we can show that the set

61 -‘{A(y2)eEn:y2eDy and Iy2 - le < 51} is bounded. Then

as before let 52 - 52(e/2) > 0 correspond to the definition

of the uniform continuity of the function G, defined on

DXZ by

G(x,y,A) = Fy(x) - PA(x).

Also, by property K, given 5 = 52(5/2) > 0 there
2

exists a 53 = 53(52) > 0 such that y2eDy and

Iy2 ' le < 63

imply that for each_xler(y1) there is a corresponding

xeer(y2) satisfying

°2[(x2’y2)3(xl’yl)] < 52’

or equivalently

°n+2[(x2’y2’A(y2))3(xl’yl’A(y2))] ‘ 62'

Choose 5“ = min(51,53). Then we have shown that

for each yZeDy

Iy2 - le < 64
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implies that there exists an xler(yl) and a correspond-

ing_xZer(y2) such that

llel _ PAIV2IIIyl e IFyl(xl) - PA(y2)(x1)I

1 p(y2) + 8/2.

Let 55 a 65(6/2) > 0 correspond to the definition

of the uniform continuity of p(y) on Dy.

Choose 5 = min(5u,55) > 0. Then ychy and

Iy2 - le < 6

imply that

ll < m ) + e/2,

y1 A(yz) Pl 2

< 9(y1) + C.

We can now prove that under a suitable hypotheses

A(y) is continuous at yleDy.

Theorem 2.3.6: Let D, F and o1,¢2,...,¢n be as usual and

let y1 be a fixed point of D , such that Dx(yl) contains

y

n or more points. Then the function A(y) as defined in

2.1.3 is continuous at yl.
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£3321: Dx(y1) is a compact set in El’ and FyleC(Dx(yl)).

¢1’¢2""’¢n a Tchebycheff system on Dx implies that it is

a Tchebycheff system on Dx(y1) which in turn implies that

it is a linearly independent system on Dx(y1). Therefore,

by Theorem 2.3.4 given a > 0, there exists a

51 = 51(5) > 0 such that

IIF -P II < p(y ) + 6
yl A yl 1 1

implies that

OEASA(yl)] < 6

Now by Lemma 2.3.5 there exists a 5 = 5(5l(e),yl) > 0

such that yZeDy and

Iy2 “le < 6

imply that

IIF -P + 5V1 A(y2)||yl < 9(yl) 1’

which in turn implies that

0[A(y2);A(yl)J < e

Corollary 2.3.7: Under the hypothesis of Theorem 2.3.6,
 

al(y),a2(y),...,an(y) as defined in 2.1.3, are all con-

tinuous at yl.



44

We have previously mentioned that A(y) is not well-

defined for yleDy, such that Dx(yl) contains less than n

points. Example 2.3.8 below illustrates such a situation.

Example 2.3.8: Let D = {(x,y):O : x i 1 and y 1 o and

y‘g l - x}.

—

I

 

Figure 2.3.2

Let F(x,y) = J? and let 51(x) = l, 52(x) = x.

Then for o 1 y1 < 1, Dx(yl) = [0.1 - yll and

/1-y
l l

¢1 +

P

A(yl) = ————-——

/l - y
1

For y1 = l, Dx(yl) = {0} and

P(O,a) = u¢2

is a best I
  

I- approximation to F , for each real a.

y1 y1
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Hence A(y) = (al(y),a2(y)) =
 

/1 -1y 1' )

8 3

/l - y

for 0 i y < l,

and is not well-defined at y = 1. Moreover, there is no

value we could assign to A(l) to make A(y) continuous at

y = 1.

Section 4: The Product Tchebycheff Approximation
 

Corollary 2.3.7 motivates our seeking a polynomial

approximation to each of the coefficient functions,

al(y),a2(y),.--.an(y).

Definition 2.4.1: We will say that D, F, ol,¢2,...,¢n,
 

 

and wl,w2,...,wm satisfy condition P.T., if (1) D, F and

¢l’¢2""’¢n are as usual, (2) For each yleDy, the set

Dx(y1) contains 1_n points and (3) wl,t2,...,wm is a

Tchebycheff system of continuous real-valued functions

on Dy which contains m or more points.

These are the necessary conditions to define the

Product Tchebycheff approximation.

Definition 2.4.2: Let D, F, ol,...,¢n, and tl,...,w
 m

satisfy condition P. T. Then by Haar's theorem for each

k = 1,2,...,n, the continuous function ak(y) has a unique

best uniform approximation on D . We will denote this

y

corresponding best approximation by
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QA= A
k i aikwi; k-= (alk,a2k’°"’amk)€Em°

I
I
M
B

1

The polynomial

n

PT = 2 Q ¢
A A

i=1 J 3

is called the Product Tchebycheff (P. T.) approximation to

F on D, relative to the variable y.

We can similarly define the P. T. approximation to

F on D, relative to the variable x. The following example

shows that these two approximations (in cases where both

are defined) need not be the same.

Example 2.4.3: Let D = [-l,l]x[-1,1].

2

 

Let F(x,y) = -2yx + y for -l 1 y i 0

' 2yx for O < y i l

and let ¢l(x) = l

PICY) - 1.

Then FeC(D).

I For -1 i yl 1'0

max F (x) = -y min F (X) = y

XEE-lal] yl l , XEE'lalj yl l

=a PA(yl)(X) = 0.

Therefore max P (x) = min P (x) = 0,

’ ye[—1,1] A(5’1) ye[-1,l] A(3’1)

=> PTA(x,y) = o.
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Now, we define F and P analagously to F

B<xl)
x1 y1

and P ), and we let PTB denote the product Tchebycheff
A(y1

approximation,
relative

to the variable
x.

For -1 i.xl 1 0

max Fx (y) = 0 , min Fx (y) 8 2x1 - l

ye[—l,1] l yeE-l,1] l

a» P (y) = x - I
B(xl) l 2'

For 0 < x1 1 I

max F (y) = 2x , min F (y) = 2x - l

ye[-1,l] X1 1 y§['lslj X1 1

-9 P (y) 2x - 1
B(xl) l 2'

For % < x1 1 1

max F (y) = 2xl , min Fx ( ) = 0

ye[-1,1] l ye[-1,1] l

q PB(xl)(y) = X1

Therefore

max P (y) = 1 , min P (y) a - 3'

xle[-1,l] B(x1) xle[-1,l]-B(xl) E

-> PTB(x,y) = - I .

Throughout the remainder of this chapter the P. T.

or product Tchebycheff approximation will refer to the

product Tchebycheff approximation, relative to the vari-

able y.
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In Chapter II, Section 9, the P. T. approximation

is extended to functions of three or more variables.

In Chapter II, Section 8, we define a similar

approximation on sets which do not possess property K.

We now consider a special case of product Tchebycheff

approximation:

Theorem 2.4.4: Let the compact set D(_’_E.2 have property K,

relative to the variable y and let FeC(D). Let

¢1(x) - 1, wl(y) - 1. '

Then the product Tchebycheff approximation to F on

D is defined by

PTA(x,y) = I- max max F(xl,yi)+ min F(xl’yl)

yleDy xler(y1) xler(y1)

+ min max F(xl,yl) + min F(Xley1)]

yleDy xler(yl) xler(yl)

‘Proof: For each yleDy

(1) PA(y1)(x) al(yl)¢l(x) = al(yl)

1 I

5 max F (x1) + min F (xl)]

y y
le‘Dx(yl) 1 x1er(yl) l

 
1 I= —’ max F(x y ) + min F(x y )
2 1’ l 1’ l
leer(yl) XIEDXUII)
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Also

(2) PTA(x,y) = I-max al(yl) + min Ial(yl)I ...

yleDy yleDy

We combine equations (1) and (2) to obtain the de-.

sired result.

If we just restrict D to be an arbitrary compact set

in E and F to be an arbitrary bounded function on D, then
2

with 51(x) E ¢l(y) E 1

PTA(x,y) = I[sup sup F(xl,yl) + inf F(xl,yl)

y xlEDx(yl) xleDX(y1)

+ inf sup F(xl,yl) + inf F(xl,yl)

yleDy xler(yl) xler(yl)

The following example illustrates some of the ideas

presented up to this point:

Example 2.4.5: Let D = [0,1]X[0,1] and let F(x,y) = x + y,
 

¢l<x> = 1. elm = 1.

For yleDy = [0,1]

max F (X) l + y , min F (X) = y

xe[0,l] yl 1‘ lXe[0,1] yl

=e PA(yl)(x) = a1(yl)¢l(x) = al(yl)
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Therefore,

max al(yO) = g- , min al(y) = %.

ye[0,1] YEIOJ-I

=> PTA(X,Y) = 10

Note that in this example the Product Tchebycheff

approximation to F is also the unique best uniform approxi-

mation to F by a constant. We will see that in general the

P. T. approximation is not a best uniform approximationt

However, in Chapter II, Section 7, we investigate the Pt T.

approximation using suitable sequences of base functions

{oj}, {ti}. We shall show that by choosing n and m prOperly

the P. T. approximation can be made arbitrarily close to a

best uniform approximation.

Now p(y = F - P ‘ ' ‘
1) II y]. A(y1)IIyl

= max I(X+y) - (-é-+ y)I
Xe[0,1]

_ l_ 2 ,

Hence, both p(y) and A(y) = (al(y)) are continuous on

Dy, as was asserted in Theorems 2.3.2 and 2.3.6.

We now consider an example in which the set D does

not possess prOperty K, relative to the variable y and in

which both pxy) and A(y) are discontinuous on Dy.
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Example 2.4.6: Let
 

D = {(x,y):x = 0 and 0 :}y i 1, or 0 :_x 1.1 and y = 1}.

It was shown in Example 2.2.10 that D does not

possess property K relative to either x or y.

Now, let F(x,y) = x + y, 51(x) = l, wl(y) = 1.

Then for 0 i yl < 1

Fyl(x) = 0 + y1 = y1 on Dx(yl) = {O} ,

and therefore,

PA(yl)(x) = al(yl)¢l(x)

For y1 - l, Dx(l) - [0,1]

Fl(x) = x + l

and therefore,

PA(1)(x) = al(l)¢l(x)

al(1)

%[max (x + 1) + min (x ‘I' 1)]

erO,l] Xe[0,1]

=3.
2

Therefore a1(y) is discontinuous on Dy - [0,1].
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Now, for 0 :.yl < 1

My ) = IIF - P II1 yl A(yl) yl

= IIyl ‘leIyl

= O.

For y1 = 1

9(1) = IIFl’PA(l)IIl

= .3.max I(x + l) - 2I

xe[0,1]

= 1

2

Therefore, 5(y) is discontinuous on D = [0,1].

y

Theorem 2.4.7: Let D, F and tl,¢2,...,¢n,wl,w2,...,wm,

satisfy condition P.T., and let PT be the Product
A

Tchebycheff approximation to F on D. Then for any real

constant A, the polynomial APTA is the Product Tchebycheff

approximation to the function AF on D.

Proof: For each yeD let

  

y

n

P = Z a

A(y) 3,1 J(y)¢i

be the best I - Iy approximation to Fy' Then the best

I - Iy approximation to AFy is
  

n

APi<y> ‘ JEIIaJIy)¢J .
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Thus the coefficients of ¢l’¢2"'°’¢n in APA(y)

are respectively lal(y),1a2(y),...,Aan(y).

Let QA be the best uniform approximation to the

continuous function aJ(y) on Dy, for j = 1,2,...,n. Then

AQA is the best uniform approximation to Aaj(y) on Dy’

for j = 1,2,...,n.

Hence the Product Tchebycheff approximation to

AF is

n

AQ ¢ =AzQ «I

AM J=1AJJ

M
3

J=l

APTA.

The following example illustrates that the Product

Tchebycheff approximation and the unique best uniform

approximation may be distinct from one another.

Example 2.4.8: Let D = [-l,l]x[-I,l] and let

F(x,y) 2X y

¢l(x) = l,wl(y) = l .

 

1
Then, Dx = [-l,l] and Dy = [-§,l].

PA(y)(x) = a1(y)¢1(X)

= al(y)

= 1 max xzy + min x2y

2 x [-1,1] x E-l,ll

_ 1 1
- 2E0 + y], for -2 1 y 1 0

IEy + 0], for o < y < l

= g for yeDy = [-%,l]



 
“
U
n
w
a
y
x
fl
a
u
d
i
i
e

.
I
.
-
.
a
“
n
i
g
h

'
1
‘
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Therefore,

PTA(x,y) = QAl(y)¢l(x)

  

= Q (y)

A1

= 1_max % + min %

2 1 1

yeE'E’sl] y€["'2"sl]

e + <-I—>

= l
8‘ o

The unique best uniform approximation to F on D is;

[max x2y + min x2yI

ng’y)ED (X,Y)€D_N
I
H

-1

I

l
\
.
)
|
l
—
’

1 + (-I)
h- -  

1
n- .

we also note that the best uniform approximation to

x2 on Dx = [-l,l], by a constant is %, and the best uniform

approximation to y on Dy = [-%,l], by a constant is I.

The product of these two constants is I, which is the

Product Tchebycheff approximation to x2y on D = Dxny by

a constant. This result is generalized in the following

theorem.

Theorem 2.4.9: Let D,F and ¢1’¢2’°°"¢n’ wl,w2,...,wm

satisfy condition P.T., and let
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F(x,y) = H(x)G(y), on D = DXXDy.

n

a u _Let PA* Jilaj ¢J and QB“ be the best uniform approxi

mations respectively to H on Dx in ¢l,¢2,...,¢n and to

G on Dy in wl,w2,...,wm.

Then, the Product Tchebycheff approximation to F on

D is

PTA = PA*QB*.

  
Proof: For each fixed yleDy, the best I y approximation

1

to F = G H isyl (yl)

PA(yl) = G(yl)PA*

n

"
c
a
n

aJ*G(yl)¢J

J l .

For each J - 1,2,...,n, the best uniform approximation

to the coefficient function aJ*G on Dy is

*aJ QB*'

Hence

n

PT - 2 a

A 3-1 3 QB*¢3

fl

|
C
_
.
I
.

“
9
1
5

.
.
.
:

m

L
I
.

3

L
3
0
-

L
_
_
_
_
J

£
3

[
fl *
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We now consider a special case for which there is a

finite algorithm to find the Product Tchebycheff approxi-

mation.

Corollary 2.4.10: Let D = [-l,l]x[-l,l] and let F(x,y) = xnym

¢l(x) = l, ¢2(x) - xJ..., ¢n(x) . x11"1

w1(y) - l. w2(y) - yd..., wm(y) = ym‘l.

Then, the Product Tchebycheff approximation to F on

D is

PTA(x,y)"(21-nTn(x) - xn)(21'me(y> - ym)

where Tn and Tm are the well-known Tchebycheff polynomials

defined by

Tk(x) - cos(k cos-1 x), k - 1,2,... .

Proof: The best uniform approximation to xn on Dx - [-l,l]

is Zl'nTn(x) - xn, and the best uniform approximation to

l-m m

y Tm<y) - y .

Hence, we apply Theorem 2.h.9 to achieve the desired

V” on D - [-1,1] is 2

result.

Theorem 2.“.11: Let D, F and ¢l,¢2,...,¢n, w1,w2,...,wm.

satisfy condition P.T. and let

F(x,y) - H(x) + G(y) on D - Dxny°

Let ¢1(x) - l and wl(y) - l (or equivalently any non-

zero constants), and let
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n n

and QB* be the best uniform approximations respectively to

H on Dx in ¢l -~l, ¢2""’¢n and to G on Dy in

$1 = l’w2,eee,wme

Then, the Product Tchebycheff approximation to F on

D is

  
Proof: For each fixed yleDy, the best I ly approximation

1

to the function Fy adefined;by

l

Fyl(x) H(x) + G(yl)

is

PA(yl) = PA* + G(yl)

n

2 a *¢ .

3:2: J
a

a1 + G(yl) +

For each J = 2,3,...,n the best uniform approximation

to the constant function ad“ on Dy is ad“ itself. Also,

the best uniform approximation to the coefficient function

aa1 + G(y) on Dy is

a
a1 + QB*°

Hence,

n

PTA = 31* + QB“ + 3:23J*¢J

3 PA* + QB*
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The following counter-example illustrates that it is

necessary to include both a non—zero constant as one of

the base functions ¢l’¢2”“’¢n and another non-zero con—

stant as one of the base functions wl,w2,...,wm, in the

hypothesis of Theorem 2.4.11.

Example 2.“.12: Let D = [1,2]x[l,2] and let

F(x,y)

¢l(X)

 

x + y

X

wl(y) = l.w2(y) = y.

Note that ¢l(x) = x is a trivial Tchebycheff system

on Dx = [1,2] since for each real a # 0, ex = O has no

solutions in [1,2].

Assertion: The best I
  

I approximation to F

y1 y1

defined by

Fy (x) = x + yl

l

is

= a

for each fixed yleDy = [1,2].

Proof: For each yle[l,2]

2 - 2.
Fyl(x) - (l + § yl)x — x + yl - (1 + 3 yl)x

2

yl(l - '3- X),

which is.a strictly decreasing function of x.
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/

 

y (l 9 a x) = ‘Z; > D for x = 1
1 3 3

y1
—-—-< O for x = 2 .

( 3

Therefore,

2 2

IIF - (l + —y )¢ II = max. IF (x) - (l + —y )xl

yl 3 1 l yl xe[l,2] yl 3 1

=11
3

To decrease the norm of the error we must find a

polynomial ax, which is negative at x l and positive at

x= 2. However, a-l < O=> a < 0

é§a°2 < 0. q.e.d. (assertion)

The best uniform approximation to the coefficient

function 1 + gy, on D by a polynomial of the form a + by

y

18.1 + gy itself. Therefore,

PTA(x,y) = (l + éy)x.

Now the best uniform approximation to x on Dx by a

polynomial of the form ax is

PA*(X) = x9

and the best uniform approximation to'y on Dy by a polynomial

of the form a + by is '

QB*(y) = y.

l/_H 
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Therefore,

PA*(X) + QB*(y) = x + y

at (1 + g-yhc = PTA(x,y).

Similarly if we let F and D be as above and let

¢l(X) l, ¢2(x) = x

wl(y) y .

then we can show that the Product Tchebycheff approxi-

mation to F on D is PT as defined by
A

_ 2

PTA(x,y) - (l + §x)y

# x + y

Section 5: The First Product

Tchebycheff Algorithm

Most best uniform approximation problems require an

infinite algorithm for their solutions. One of the more

frequently used procedures is the Remez exchange algorithm,

sometimes referred to as Remez' second algorithm.

We precede the description of this procedure with a

definition and theorem which form an integral part of the

underlying theory.

Definition 2.5.1: Let D be a compact set in E and let
1

FeC(D). Let ¢I,¢2,...,¢n be a Tchebycheff system of

  
continuous functions on D, and let I I be the uniform

norm on D. Then xleD is called a positive (negative)

n

extremal or an E + (E-) point for F - P = F - 2 81¢
A 1_11.

l
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if F(xl) - PA(xl) = IIF - PAII (F(xl) - PA(Xl) = -llF - PAII).

Theorem 2.5.2: PA is the best uniform approximation to F.

on D if and only if there are n+1 points

 

<x <...<x in D

X n+1

which are alternately E+ and E— points for F — PA'

Note that this characteristic point set need not be

unique.

The Remez exchange algorithm is an iterative pro-

cedure which seeks to find a set of n+1 alternating

extremals.

Remez Exchange Algorithm 2.5.3'

(1) Choose xl(°)<x2(°)<...x£:i in D as an initial

guess for a set of n+1 alternating extremals.

(2) For xl(k)<x;(k)<...<x(k) in D solve the linear
n+1

system

(R) J (k) _ (k) -
PA(k)(xJ ) + (-1) p - F(xJ ), J - l,2,...,n+1

for A(k) = (al(k),a2(k),...,an(k)) and p(k).

= (k) (k)
If IIF - P (k)|| p , then {xJ } is an extremal

A

point set for F - P (k), and therefore by Theorem 2.5.2

A

P (k) is the best uniform approximation to F on D.

A

If IIF - P (k)ll > p, then we choose

A

(k+l) (k+1) (k+1)
x1 < x2 < ... < xn+1 in D
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such that

(1) each xJ(k+l), J = 1,2,...,n+l is a relative

maxima or minima of F - PA(k)

(2) for some xmax {xJ(k+l)}

IF(XmaX) ‘ PA(k)(xmaX)| = IIF " PA(k)||

and (3) sgn[f(xJ(k+l)) - PA(k)(XJ(k+l))]

(-l)J+lsgn[F(xl(k+l)) - PA(k)(xl(k+l))] 9

J = l,2,...,n+l

Repeat step (2).

The convergence of this procedure is outlined in

Remez (l7), and proved in Novodvorskii and Pinsker (13).

Verdinger (26) shows that if F is differentiable then the

rate of convergence is quadratic.

In practice some a > O is prescribed and the

iterations are terminated when

(k)
< E eF - P -

ll A(k)|| 0

Fraser and Hart ( 6) suggest that it is often ad-

vantageous to choose the extrema of Tn’ (the Tchebycheff

polynomial of degree n) for the set {xJ(°)}, when D = [-1,1],

or equivalently let



  

when D = [a,b] .

The de la Vallee Poussin algorithm for finding the

best uniform approximation is described in Rice (18) as

follows:

Let X = {xi:i=l,2,...} be.a dense subset of the

compact set D, and let

Xm = {xizi = l,2,...,m}<ZX.

We define the density of XIn in D by

6 = max 0 [ng ]
m xeD 1 m

Let PA be the best Tchebycheff approximation to F

m

on Km, and let PA* be the best Tchebycheff approximation

to F on D.

One would hope that

Lim P = P * .

m+0° Am A

For a restricted class of functions, Rice establishes

the following stronger result.

Theorem 2.5.4: Let D be a compact set in E, and let

FeC(D). Let ¢1’¢2’°"’¢n be a Tchebycheff system of

continuous base functions on D, and let F and ol,¢2,...,¢
n

satiSfy a Holder Condition with exponent d. Then,





6h

IlP*-P 115mg,A Am

Where K is a constant which depends only on F and {¢i}y and

II.|| is the uniform norm on D.

Now if Y is any subset of D, we define the density of

Y in D to be the number

= max inf o(x;y)

Y XED er

6

Rivlin and Cheney (8» prove the following more general

theorem:

Theorem 2.5.5: Let M be a finite-dimensional subspace of
 

C(D) and let F be an element of C(D) which has a unique best

A* in M. For any YCD let PA denote a best

Y

approximation to F from M on the set Y. Then as 6Y+O, P +PA*

approximation P

AY

uniformly.

We can now define the first Product Tchebycheff algo-

rithm.

(1) Choose some finite point set YCDy.

(2) For each er, use the Remez exchange algorithm

to find PA(y) the best ||.||y approximation to

Fy on Dx(y).

(3) For each 3 = 1,2,...,n use the Remez exchange

algorithm to find 6A3 the best uniform approxi-

mation to aJ(y) on the set Y.
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Then PTA =J

"
>
1
3

léAJ ¢J is the Product Tchebycheff approxi-

mation to F on D = {(x,y) eD: er} .

Now given e>O, we see by Theorem 2.5.5 that we can

choose Y in Dy such that the density of Y in Dy is sufficiently

small ' to have

max |é (y)-A (y) | < a / max |¢ (x)I

yeDy A3 A3 xeDX J

For J = 1,2,...,n.

Hence,

max 'PTA(X,Y) ’ PTA(X9y)I

(X,Y)£D n

= max 2 [£2 (y) -Q mm (x)

(x,y)eD J=l A3 A3 J

E 2:

Therefore, if Y is chosen so that the density of Y

in Dy is sufficiently small then PTA provides a good estimate

for PTA.

A program utilizing this algorithm was written for

the Control Data Corporation 3600 digital computer, with the

following restrictions:

(1) Y = {yiz i = 0,1,...,100}

(2) For each yieY, the corresponding set Dx(yi) was

a closed bounded interval.

(3) ¢1(X)

W1(Y)

1, ¢2(X)

I

Nx,..., ¢n(x)

H

‘
<
'
,

1, ¢2(y) y,---, wm(y)

The norm of F - PTA was estimated by N* where,
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D = [a,b] , h = b-a

X 1 Too

D = [c,d] , h = d—c

y 2 166

* A

and N ‘= max IF(X,y) - PTA(X,Y)|

x=a,a+hl,...,b

y=c,c+h2,...,d

In all cases single-precision arithmetic was used.

Some of the results obtained are described below.

I. F(x,y) = __l__ D = [0,1] x [0,1]

x+y+l ’ ‘*- ‘

Y = {0.oo,o.01,o.02,...,1.00}

b = [0,1] x Y

n=3,m=3

PTA(x,y) = .03156u1979 x2y2 - .3075877279 x2y

+ .3102885292 x2

+ .3689560988 xy2 + .2346341978 xy

- .7160087106 x

+ .33u8278992 y2 - .8141539737 y

+ .9855581665 ,

N* = .09333756560.

II. F(x,y) = ___l__ D = [0,1] x [0,1]

x+y+10

Y = o.oo,o.01,o.02,...,1.oo

fi = [0,1] x Y.

(a) n = 2, m = 2
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PTA(x,y) = .00909090909u xy - .01283994207 x

- .009065006705 y + .09978401812 ,

N* = .00396501u850.

(b) n = 3, m = 3

RTA(x,y) = .0025u690u012 x2y2 + .0023138653u1 x2y

+ .0005u96653156 x2

2

+ .03203501519 xy - .02999156816 xy

- .005997745788 x

+ .0008660139u67 y2 — .009951005503 y

+ .09999485663 ,

*

N = .003938859616.

III. It was noted in example 2.3.8 that if

F(x,y) = /x

¢l(X) = 1, ¢2(X) = x

and D= {(x,y): Day 51 and 03x31 - y},

Then PA(y) is not well-defined at y = 1.

We will approximate F on D as follows:

Let D = DllJ D2 where

_ 1 - y}U

I!

I
A

>
4 A1 {(x,y): .99 s y s 1 and 0

U

I

I
A

- {(x,y): O s y 5 .99 and 0 x S 1 - y}

1.0 0 (see Figure 2.5.1).

Q1 I

Ch
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We approximate F on D by the constant
1

1 max /E + min /§

2 xe[O,.Ol] Xe[O,.Ol]

l

= 5 [.1 + 0] = .05 ,

and we approximate F on D2 by a product Tchebycheff approxi-

mation as follows:

Y = {0.00,0.0099,o.0198,o.o297,...,0.99}

D = {(x,y): er, 0.5x £1 - y}

n = 2, m = 2

PTA(x,y) = - 1.010101010 xy + u.539406039 x

- .1136363637 y + .13650u7380 ,

*

N = .1365047380

Section 6: The Revised Product Tchebycheff Algorithm
 

The Remez exchange algorithm described in 2.5.3 seeks

to find a set of n + l alternating extremals which charac-

terize the unique best uniform approximation. If we desire

to find the Product Tchebycheff approximate we must find

PA(y)’ the unique best uniform approximation to Fy on Dx(y),

for a number of distinct values of yeDy

In this section we shall show that for yl,y2eDy, a

set of characteristic extremals for F will often- P
yl A(yl)

be a good initial guess at a corresponding set for Fy -

2

PA(y2),‘whenever'%2:is sufficiently close to yl.

We shall assume throughout the remainder of this

section that D,F and o1, ¢2,..., ¢n,1pl, ¢2,...,wm satisfy

condition P.T.
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Definition 2.6.1: Let R be the continuous function defined

on D by

R(x,y) = Fy(x) - PA(y)(X)

Then p(y) = max |R(x,y)| .

Xer(y)

Definition 2.6.2: For each yeDy we define
 

E(y) = {xer(y): |R(x,y)| = o(y)} .

the set of all extremals for F - P

y A(y)

E(y) is a non-empty compact subset of Dx(y).

Definition 2.6.3: For each yeDy and each s > 0 we define
 

E(y)E

(whereo[x;Y] = inf 0[X;y])

er

{Xerz o[X;E(y)] < 8}

Theorem 2.6.4: Given 5 > 0 and yleDy, there exists a
 

6 = G(e,yl) > 0 such that y2eDy and

ly2-yll < 6

imply that

E(y2) CZE(yl)
6

Proof:

Case 1: E(yl)E I) Dx(yl)°

2

Then for each xleDX(yl)

o[x13E(yl)] > 5

By property K, there exists a 6 = 6(5/2) > 0, such

that y2€Dy and
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IY2 - yll < 5

imply that for each X2EDX(y2) there exists a corresponding

xler(yl) satisfying

<

E:

le - x2l 2 .

This implies that

o[x2;E(yl)] E |x2 - Xll + oEXl;E(yl)]

< E + g = 5

Therefore, Dx(y2)C: E(yl)E

Then since E(y2)<: Dx(y2)

we have D and
Y2 5 y

|y2 - yll < 5

imply that

E(y2) C E(yl)€

Case 2: E(yl)€‘i>Dx(yl)

2

or equivalently Dx(yl) - E(yl)E is a non—empty compact set.

2

Let M = M(e,yl) = '~max |R(x,yl)| < p(yl).

XEDX(Yl)-E(yl)_€_

2

Then by the uniform continuity of p(y) on Dy’ since

p(yl)-M > 0 there exists a 61 = 61 (9(yl)-M)'> 0 such that

'-—--- 2
2

D andy26 y

|Y2 _ yll < 61



71

imply that

”(yl) > 0(y1) -(p(yl)-M) = p(yl)+Ivl

2 2

Now by the uniform continuity of R on the compact

set D, there exists a 62 = 62 (E£X%llg) > 0 such that

(Xleyl):(X2:y2) 6D and °[(xl:yl)3 (X2ay2)]< 52

imply that

-M
|R<x2,y2>| < |R<xl.yl>| + p(Y1)

Also, if x2er(y2) - E(yl)€

>

then ol[x2,E(yl)] — 6. Then XleDX(yl)

and

ogt<xl,yl>; (x2,y2>1 < 3

imply that

le ' X2l < 2

Therefore,

o[x1;E(yl)] Z o[x2;E(yl)J - Ixl - X2|

> e —

n
fl
m

V

E

2

which implies that xler(yl) - E(yl)E

2 C

Now if we choose 53 = min (62,3) > 0

then by property K, there exists a

54 = 6u(63) > 0, such that yzeDy and

lye ' yll < 6“
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imply that for each x2er(y2) - E(yl)e

there is a corresponding x eDX(yl) such that
l

0[(xl,yl); (x2,y2)] < 63

Therefore, xler(yl) - E<yl)g which implies that

2

IR(xl,yl)| 5 M. Thus,

—M

IR(X2,y2)| E [E(Xleyl)l + pgyé)"

: M + G(yl)-M

2

= o(yl)+M

2 0

If Dx(y2) - E(yl)e = i, then

E(yl)€‘:)Dx(y2) IDEKyZ), and the proof is complete.

If DX(y2) - E(yl)€ + i, then we

choose 6= min (51,64) > 0. y2ch and

IY2 - yll < 6

imply

(l) 9(y2) > 9(yl)+M

2

and (2) For each xaer(y2) — E(yl)E

|R(X2ay2)l < 0(y1)+M< 0(y ) ’

———§——— 2

or equivalently

E(y2)(q [DX(y2) - E(yl)€] = i
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Then since E(y2)(::DX(y2) we have

E(y2) (:E(yl)e

We now consider the implications of theorem 2.6.4:

Example 2.6.5: Let D = [0,4] x [0,2]
 

and let F(x,y) = ysinnx, for 0 E y s 1

ysinwx, for 0 S x f 1 and 1 < y 5 2

sinnx, for l < x S 2 and 1 < y E 2.

Let ¢l(x) = 1.

Then for 0 E y E l

— 1- 3: .5_=_1
llelly — y, and Fy‘2} — - Fy}2) Fy(2) Fy‘2,

Therefore the best uniform approximation to

Fy by a constant is 0 and

E(y) = {2%, g: g" %} °

I
A

Also for 1'< y 2

IIF II
V y y, and Fy‘2}= - Fy(2)= y.

Therefore the best uniform approximation for

Fy by a constant is 0 and

E(y) = {%, %} See Figure 2.6.1.
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5 = _ l =Note that Fy(§) Fy 2 l < y,

which implies that g and % are not extremals for

Fy ' PA(y) = Fy

Now if we choose 6 = % and y1 = lEDy = [0,2],

then by theorem 2.6.3 there exists a 6 = 6[%,1)> 0

such that y2e[0,2] and

|y2 - 1| < 6

im lies that all extremals of F - P = F

p y2 A(yz) y2

l of E(l) = {i i Eare within 2 2, 2, 2,

l
\
)
|
\
]

.
H
4

Any choice of 6 > 0 will do. In particular we

can choose 6 = 1. Consider y2 = g .

1 1

Es) = awn = 9

Therefore, each point of E[%) lies within % of

some point of E[%}. However there is no point of E‘%)

which lies within % of g or g which belong to E[%).

This can be explained by the fact that while

_ 3 _ l _
|y2 - yll - I? - 1| < 5(59yl) ‘ 5(5) l) - l

we can not have

%.< 6(e,y2) = a(-1—, 52-)lyl - y2l

However y2e[0,2] and

l<-l-
2w

h
o

ly3 - y2| = ly3 -
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imply that

_ l 3 3 _

m
p
4

w
h
o

Therefore, we can choose 6(%, g) =

Corollary 2.6.6: Let ¢l(x) = 1, ¢2(x) = x,...,¢n(x) = xn-l,
 

and assume that

(i) d F (x) + o for all y eD

n+1 yl l y

 

and for all xer(yl).

Then there are n + 1 continuous functions

xl(y),x2(y),...,xn+l(y), such that

xl(y), <x2(y) <... < xn+l(y)

is the set of n+1 characteristic extremals for Fy - PA(y)

9

for each yeDy

Proof: (1) implies that Fy - P ) has exactly n + 1

A(y

extremals, for each yeDy. We apply theorem 2.6.4 to

complete the proof.

More generally if Fy - PA(y) has exactly n + 1

extremals for each y Dy, then the conclusion of Corollary

2.6.6 holds.

Theorem 2.6.4 and Corollary 2.6.6 suggest that for

y2 and y1 sufficiently close, a set of n + l alternating

extremals for Fy - P might be a good starting point

1 1)

for the Remez exchange algorithm to find P

A(y

A(y2).
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A program incorporating this modification was written

for the Control Data Corporation 3600 digital computer.

Some of the results obtained are described below.

I. F(x,y) = sinxy,D = [0,1] x [1,2]

{o.oo,o.01,o.o2,...,1.00}Y

6 [0,1] x Y

n = 2, m = 2

PTA(x,y) = - .841470984 xy + 2.135441294 X

+ .1655503163 y - .163795902

N* = .5030052628

Execution time for revised algorithm

1 minute 59.159 seconds.

This problem was also solved using the first algorithm as

described in section 5. The execution time for the first

algorithm was

2 minutes 8.249 seconds.

II. The following two examples were run using both the

first Product Tchebycheff algorithm and the revised Product

Tchebycheff algorithm.

1

F(x,y) = §I§¥T0 : D = [0,1] [0,1]

Y {0.oo,o.01,o.o2,...,1.00}

D [0,1] x Y.

See problems II(a) and II(b) at the end of section

5, for the corresponding PTA(X,Y) and N*.
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(a) n = 2, m = 2

Execution time for first algorithm

1 minute 43.629 seconds.

Execution time for revised algorithm

1 minute 12.82% seconds.

(b) n = 3, m = 3

Execution time for first algorithm

1 minute 12.587 seconds.

Execution time for revised algorithm

1 minute 5.956 seconds.

Section 7: The Degree of Product

Tchebycheff Approximation

 

 

Definition 2.7.1: Leti3-, H ° N be a normed linear Space
 

with base field R. Then a sequence {¢j} in E} is called

closed in E} if and only if for each Fe 3' and arbitrary

c > 0 there exists an integer n > 0 and a corresponding

polynomial

n

PA = Z a.¢.

3:1 J J

such that

”F - PA“ < e .

Remark 2.7.2: {03} is closed in E} if and only if the
 

set of all finite linear combinations of the Dj's is a

dense subset of 3’ .
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Remark 2.7.3: By Weierstrass' First Approximation Theorem
 

we know that

{1,x,x2,...}

is a closed sequence in C(D).

Remark 2.7.4: By Weierstrass' Second Approximation Theorem
 

we know that

{l,sinx,cosx,sin2x,cos2x,...}

is a closed sequnece in C the linear space of all real-
211’

valued continuous functions such that

F(x+2n) = F(x) for all er1

Theorem 2.7.5: For each n > 0 and m > 0 let D, F and
 

¢l’¢2’°"’¢n’wl’w2"°"wm satisfy condition P.T. and let

Q

{¢ } and {w } be closed sequences in C(D ) and C(D )

3 3:1 1 i=1 x y

C”

respectively.

Then given a > 0 and F eC(D) there exists an

N = N(e) and an M = M(e,n) for each n > N(e), such that

n > M and m > M imply that

IIF - PT < 8All

where PTA is the Product Tchebycheff approximation in

¢l,¢2,o-.,¢n,wl,w2,...,wm, and ||~|| is the uniform

norm on D.

Proof: max |F(x,y) - P (x)I

— <x.y>eD A(y)
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max max F (x) - P (X)
yeD [,8Dx(y) ' y. A(y) ']

V

max p(y)

Dy5 y

By the uniform continuity of p(y) on Dy, given

6 > 0, there exists a 6 = 6(5/4) > 0, such that yl,y2eDy and

lyl-y2| < 6

imply that

o(yl) < 0(y2) + 6/4 .

Since Dy is compact we can choose a finite set

Yk = {yl.y2.o--.YK}CDy

such that for each yeDy, there exists a corresponding

yieYk satisfying

ly - yil < MW“)-

This implies that

0(y) < p<yi> + e/u

Now since {¢J} is closed in C(DX), given 6 > 0,

there exists an Ni = Ni(e/4) such that for n > Ni

p(yi) < e/4, for i = 1,2,...,k.

Choose N = max (Nl’N2""’Nk)' Then n > N

implies that

p(yi) < e/4 for i = 1,2,...,k.
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Then for each yeDy there exists a corresponding

yieYk such that

p<y) < p<yi> + e/u

s e _ E

< F'*H" 2

Therefore n > N implies that

max |F(x,y) - P (x)I = max p(y) <5-

(x,y) A(y) yeDy 2 °

Now since ¢l’¢2’°'°’¢n is a Tchebycheff set on

Dx’ they are linearly independent there. Therefore

“‘23“ = max I¢J(X)I > 0: forJ = 1,2,...,n.

xer

By the closure of {w1}in C(Dy), given a > 0,

there exists an

M = M (e/2nII¢JII), such that m > M implies that

J J J

max la (y) — Q (y>| < e/2nll¢ II .y Dy J AJ J

where QA is the best uniform approximation in

J

wl,w2,...,¢m to aJ on D .

y

Choose M = max (Ml,M2,...,Mn).

Then m > M implies that

I | I n n Imax P (X)-PT (x,y) = max 2 a (y)¢ (X)- 26% (y)¢(X)

(X.y)eD A(y) A (x,y)eD J=l J J J=llh J

n

= max I Z a (y) - Q (Y) ¢ (X)

(x,y)eD i=1 3 A3 I J I
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n -

E 2 max |a(y)-Q (3') ¢ (X)

i=1 <x.y>eD I 3 A3 I J I

n

s 2 max laJ(y)--QA (y)| ° max |¢J(X)|

3:1 YED J xeD
y X

n</II II>II II E< 2 a 2n ¢ ¢ =._

3:1 J J 2

Hence n=>N and m > M imply that

IIF — PTAII = max |F(x,y) - PTA(x,y)I

(X,Y)€D

5 max |F(x,y)-P (x)I+ maxIP (X)-PT(X,Y)

(X.y)eD A(y) (xmweD A(y) A l

e E _
< -2- + '2' " E.

Corollary2.7.6: Under the hypothesis of theorem 2.7.5 given
 

e > 0 and FeC(D) there exists an N N(e) and an M M(e,n)

for each n > N(s), such that n > N and m > M imply that

IIPT - P* | < e
A

where PTA is the Product Tchebycheff approximation and P*

is a best uniform approximation Chi¢1,¢2,...,¢n,wl,w2,...,wm)

to F on D.

Proof: Let N = N (c/2) and M = M(e/2,n) correspond to the

N and M in theorem 2.7.5. Then n > N and m > M imply that

'3’ fl

IIPTA - P || < IIF - PTAII + ||F - P ll

<

2 IIF - PTAII

< 2
E

2 = E
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At the present time there is no known effective scheme

for computing best uniform approximation to a function of two

variables. Present research is being directed towards schemes

somewhat like the Remez algorithm. A good initial guess is

needed if such an iterative procedure is to converge, and if

the computation time is to be reasonably short. The previous

results (i.e. Theorem 2.7.5 + Corollary 2.7.6) suggest that

in certain cases the Product Tchebycheff approximation may

be a good initial guess to a best uniform approximation.

Section 8: Approximation on a Domain

Which does not Possess Property K

The Product Tchebycheff approximation as defined in

Chapter II, Section 4, applies only to sets which possess

prOperty K. We shall briefly discuss the problem of approxi-

mation of functions on certain sets which do not possess

property K.

Let D be a set which does not possess property K.

Suppose there is an invertible transformation T which maps

such that the set T(D) possesses property K.E into E

2 2’

If FeC(D) then FT-leC(T(D)). Suppose also that T(D), FT"1

and ol,¢2,...,¢n,wl,w2,...,wm satisfy condition P.T..

Then FT"l has a Product Tchebycheff approximation PTA

on T(D).

We can use PT to approximate F on D by defining
A

F(x,y) = PTA [T[(X,y)]] .
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Example 2.8.1: Let D be the shaded area in Figure 2.8.1.

I

 
 

8A "3

6' _;_ / ' D

III ,

Figure 2.8.1

Then D does not possess property K.

Let Tl: (x,y) + (xl,y}) be the rotation of the

x and y axifis counterclockwise through an angle of 45°.

Then Tl(D) possesses property K.

1 _ ,5 1 _ ,—
x — __ (x+y), y - _§ (y-x)

2 2

-1

Therefore Tl : (xl,yl) + (x,y) where

1 1 l l

x = /2 (x -y ) y = 12 (x +y ).

‘2 ’ 2

For this set D we shall consider the approximation of

F(x,y) = x + y.

Then FT;l(xl,yl) = F [E (xl-yl), [Z (xl+yl)

2 2

= [2 (Xi-5’1) + {Z (xl+yl)
2 2

= /2 x1 on Tl(D).
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l 1
Let ¢l(xl) 1: ¢2(X ) = X

wl(yl) 1.

Then we can easily see that the Product Tchebycheff

approximation for FT"l on T1(D) is

PTA (x1,yl) = /2 x1

1

Therefore we approximate F on D by

Pl(X.y) = PTAI (Tl[(X.y)l

PTA [Z (x+y), [Z (y-X)

l - 2 2

 

= x + y.«2 («2 (x+y)

7

 

Now let T2:(x,y)-+(x",y") be the rotation of the

x and y axis clockwise through an angle of 45°. Then T2(D)

possesses property K (see Figure 2.8.2).

\
V

 
Figure 2.8.2
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x" = 12 (x—y), y" = 12‘<x+y>
2 2

H

Therefore T : (x",y") + (x,y) where
2

x = /2 (x"+y"), y = {Z (y"-X")

2 2

-1
Then FT2 (x",y") = F K; (X"+y"), 1% (y"-x")

i: (x"+y") + 12 (y"-x")

2 2
N;

= /2 y" on T2(D).

Let ¢l(x") 1, ¢2(x") = x"

l.

"

wl(y )

Then the best uniform approximatioh to

-1 '

FT2yn(X") = /E Y" on T2(D)Xn(y") is

n = n

PA(y")(x ) 5 y °

Therefore the Product Tchebycheff approximation to

-l
FT2 on T2(D) is

N
I
H

PTA (x",y")
max /2 y" + min /2 y"]

2 y .. e(%/2,5/2I y"eI%-v/2-,g-/2I '

= 1 2 1 a2I3 . 3] 1

Therefore we can approximate F on D by

P2(x,y) PTA2(T2[(X.Y)J)

PT /2 (x—y), /2 (x+y)

“If? “2 I

= l .
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This example illustrates that this technique may

possess the undesirable property of lacking a unique solu-

tion. However we can specify the transformation used and

we can bridge the communication gap.

There are a few other difficulties which we may -

encounter. It may prove difficult to find a transforma-

tion T such that FT‘l will have a Product Tchebycheff ap-

proximation on T(D). Also, the resulting approximation

PT T is not in general a polynomial. However if T is a
A

linear transformation, then PT T is a polynomial and thus
A

possesses the desirable properties of a polynomial approxi-

mation.

Section 9: The Product Tchebycheff Approximation

to a Continuous Function of Three

or More Variables

 

 

 

We now extend the Product Tchebycheff approximation

to continuous functions of three or more variables. For

ease of notation we shall restrict our attention to the

three variable.case. The further extension is straight-

forward.

Let D be a compact set in B We define the follow-3.

ing compact sets.

Dx’D ,D the projections of D onto the x,y and z axtua

Y 2’

respectively.

Dz(x1’yl)’ the projection of the intersection of the set

D and the line x = x1, y = y1 onto the z - axis.
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D the projection of D onto the x,y plane.

x,y’

Definition 2.9.1: Let FeC(D). Then for each (xl,y1) 6 DK

3

 

y

we define the associated function F on D (x ,y ) by
Xl’yl z 1 l

Fxl’yl(Z) = F(xl,yl,z).

Let ¢l’¢2"°"¢n be a Tchebycheff system of con-

tinuous functions on Dz'

Definition 2.9.2: For each (x such that Dz(xl’yl)
 l’yl) 5 Dx,y

contains n or more points, Haar's theorem shows the existence

of a unique polynomial

"
M
S

PA(Xl,yl) ‘ J l 33(X1’y1)¢3 ’

where A(xl,yl) = (al(xl,yl),a2(xl,yl),...,an(xl,yl)I 6 En ,

which is the best uniform approximation to the continuous

function F on its domain of definition D (x ,y ).
xl,yl z 1 1

We now extend the definition of property K to DC3E3,

and we can show that with the addition of this prOperty A(x,y)

is continuous on D .

x,y

Definition 2.9.3: The compact set D in E is said to possess
 

3

property K, relative to the variables x,y if and only if

given a > 0, there exists a 6 = 6(e ) > 0 such that

(x1,yl), (x2,y2) a Dx,y and

02[(xl’yl); (X23y2)] < 5
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imply that for each zleDz(xl,yl) there is a corresponding

z2eDZ(x2,y2) satisfying

Iz - le < s
2

Definition 2.9.4: For each x
 

) in b let
x y’

l’yl

p(x ,y ) = inf Sup IF (2) - P (z)| -

l l AeEn zeDZ(xl,yl) Xl’yl A

The following two theorems are extensions of theorems

2.3.2 and 2.3.6. The proofs are omitted since they do not

incorporate any new concepts.

Theorem 2.9.5: Let D be a compact set in E3, which possesses
 

property K, relative to x,y and let ¢l’¢2""’¢n be a Tcheby-

cheff system of real-valued continuous functions on Dz. Let

FeC(D). Then 0 is a continuous function on Dx y’

3

Theorem 2.9.6: Let D, F and ¢l’¢2"'°’¢n satisfy the hy-
 

pothesis of theorem 2.9.5 and let (xl,yl) contains n or

more points. Then A(x,y) is continuous at (x1,yl).

Corollary 2.9.7: Under the hypothesis of theorem 2.9.6
 

al(x,y),a2(x,y),...,an(x,y)‘as defined in 2.9.1 are all

continuous at xl,yl).

Now as in Section 4 we are motivated to seek poly-

nomial approximations to each of the continuous functions

al,a2,...,an. In this case we will approximate each

aJ, j = 1,2,...,n by a corresponding Product Tchebycheff

approximation of degree two.
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Definition 2.9.8: We will say that the compact set
 

DCE3 and 61’62’°'°’ek’wl’w2’°°°’wm’¢l’¢2’°°°’¢n satisfy

condition P.T. relative to x,y if and only if

(1) D possesses property K relative to x,y,

(2) ¢l’¢2’°°°’¢n is a Tchebycheff system of

continuous real-valued functions on Dz,

(3) For each (x )eD , the set D (x,y) con-
x,y zl’yl

tains n or more points,

(4) The compact set Dx,yc;E2 and 61,62,...,6k,

wl,w2,...,wm satisfy condition P.T. relative

to x.

 

Definition 2.9.9: Let the compact set DCZE3 and 61,62,...,6k,

ml,w2,...,wm,¢l,¢2,...,¢n satisfy condition P.T. relative

to x,y. For each j = 1,2,...,n let QA be the Product

J

Tchebycheff approximation to the continuous function a on

J

Dx,y relative to x, (with base functionsel,e2,...,6k and

wl,w2,...,wm).

Then the polynomial

n

PT = X
A j=l

QAJ¢J

is called the Product Tchebycheff approximation to F on D

relative to x,y.

Note that this approximation depends on the order

in which the variables x,y,z are specified. As was illustrated
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in example 2.4.3 two distinct orders may produce two dis-

tinct Product Tchebycheff approximations.

We conclude this section with a simple example which

illustrates the ideas we have presented.

Example 2.9.10: Let D = [0,1] x [0,1] x [0,1], and let
 

F(x,y,z) = x + y + z

61(X) = 1, wl(y) = 1, ¢l(z) = 1.

Then for each (xl,yl)e[0,l] x [0,1], we approximate

F 2 = x + + z

xl,yl( ) l yl

on [0,1] by its best uniform approximation

P

A(X1.y1)(z) = 31(x1’y1)¢1(2)

= al(xl,yl)

- 1

‘ Xi + yl + 2

Next we approximate al(x,y) = x + y + % on

[0,1] x [0,1] by its Product Tchebycheff approximation

relative to x,

QAl(x,y) = % 61(X)wl(y)

_ 3
2

Therefore, the Product Tchebycheff approximation

to F on D relative to x,y is

PTA(x,y,z) = QAl(x,y)¢l(x)

I U
)
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Section 10: Conclusion
 

Let w(x,y) be a positive continuous weight function

on D. Then we define

p(y) = inf Sup Iw(x,y) F‘(x) - PA(x))I

AeEn xer(y) y

to be the deviation of a best weighted approximation to

Fy on Dx(y). We can show that extensions of theorems 2.3.2

and 2.3.6 hold for this more general problem. Therefore we

can extend the Product Tchebycheff approximation to a

weighted Product Tchebycheff approximation.

This thesis can also be extended to arbitrary norms

and to the approximation of a function and its partial

derivatives.
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