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ABSTRACT

APPROXIMATIONS O FUNCTIONS OF SEVERAL VARIABLZES:
PRODUCT TCHEBYCHEFF APPROXIMATIONS

by Stanley Zdwin Weinstein

In this thesis we define a Tchebycheff-like approx-
mation to a continuous function F of two or more variables,
which we call the Product Tchebycheff approximation, and
which possesses the desired property of uniqueness.

Let D be a compact set in E2 and let F be continuous
on D, Let Dx and Dy denote the projections of D onto the
x-axis and onto the y-axis respectively and let Dx(yl) =

[xer(x,yl)ED]. Let Ql’ QZ,..., @n be a Tchebycheff

system of continuous real-valued functions on Dx' For

each yeDy we define the continuous function F_ by

71
Fyl(X) = F(x,y;)
Then F possesses a unique best uniform approximation in
1
Ql’ @é,..., @n, namely
n
“alyy) T jill FRELRF

We define a restriction on the set D, which we call
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Stanley Edwin Weinstein

property K. This class of sets includes all compact con-
vex sets as well as all sets which are cross products of

compact sets,
If D possesses property K then the deviation function

p defined on Dy by

oly) = xegi%y) | Fo(x) - By oy (el

is continuous. Moreover if we further restrict the point

yleDy such that the set Dx(yl) contains n or more points
then the coeficients al(y),aa(y),...., an(y) are all con-
tinuous at MR

We define the Product Tchebycheff approximation on
sets which possess property K and such that for each yeDy
Dx(y) contains n or more points. Let *1’ ¢2,..., Wm be a
Tchebycheff system on Dy' Then each Function aj possesses

a unique best uniform approximation

m
= 2__1\ i =
Qj i:l aij‘bi ’ J 1) 2"") n.
The polynomial
n n m
PT = & 3, = L 4 a, . ¥,%,
j=1 %) j=1 =1 131

is called the Product Tchebycheff approximation to ¥ on D,
relative to the variable y.

Two algorithms for the computation of this approximation
are presented along with several examples,

It is also shown that by a suitable choice of base
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functions, the resulting Product Tchebycheff approximation
will approximate F arbitrarily close .
The Product Tchebycheff approximation is extended to

continuous functions of three or more variables,
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CHAPTER I

INTRODUCTION: THE PROBLEM OF THE LACK OF

UNIQUENESS OF A BEST APPROXIMATION

Section 1: The Best Approximation Problem

The central theme of thils thesls is the problem of
finding a best approximation to an arbitrary element F in
a normed linear space J,||*||. This can be formulated as

follows:

Definition 1.1.1: Let F,]|]|-

| be a normed linear space,

and let ¢l’¢2 ...,¢n be a set of n linearly independent
. y

elements of 5. Given an arbitrary element FeJ, the
problem of finding an A% = (al*,az*,...,an*)eEn, such

that

n n
||F - 151 ai*¢i|| ) IIF - iEl aid’ill

for all A = (al,az,...,an)zEn,

18 called the best approximation (b.a.) problem. Both the

point A*eEn, and the corresponding polynomial



= %*
Pow a;*ey

[ e}

i=1

are referred to as best | | approximations to F.

Definition 1.1.2: If °l’¢2""’¢n are n linearly in-

dependent elements of the linear space JF, then the set

of all linear combinations

n

P, = 151 a9y A = (al,a2,...,an)eEn

i1s a linear subspace of ;7, of dimension n, called the
space spanned by ¢1,¢2,...,¢n, or the span of

2T PYRERIPL which 1s denoted by

> .

< ¢1’¢2""’¢n

We now restate the b.a. problem with the use of

definition 1.1.2.

B. A. Problem (Restated) 1.1.3: Find the point(s) of the

subspace < $150550 0058, > which are closest to Fe 7, where

the distance between any two elements F F2e.17 1s defined

l’
by

d(F,F,) = ||Fl - F2|| .

In this thesis, we are primarily concerned with the

following case of the b. a. problem:



Let D be a compact set in euclidean k-dimensional

space E,, and let I = C(D), the 1linear space of all con-

tinuous, real-valued functions on D, with | | defined

on C(D) by

| |F|] = sup |F(x)]| for each FeC(D).
xeD

This norm 1s called the uniform, Tchebycheff or
minimax norm. A corresponding solution to the b.a.
problem 1is called a best uniform, best Tchebycheff or
best minimax approximation to FeC(D) on D.

The exlisteance of a solution to this b.a. problem is
a direct implication of the existence of a solution to 1.1.2)
see Davis (5).

We now consider the question of the unlqueness of the
solution to thils b.a. problem.

Section 2: Tchebycheff Systems,
Haar's Theorem

Definition 1.2.1: The family of real-valued functions

156550050, 1s called a Tchebycheff system on D if and

only if for A = (al,az,...,an)eEn the polynomial

P =

A aj by

s

i=1



vanlshes 1n at most n-1 distinct points of D unless

Definition 1.2.1 1s equivalent to saying that
¢l’¢2""’¢n is a Tchebycheff system on D, if and only

if the determinant

¢l(xl) ¢05(xq) ¢n(x1)
¢1(x2) ¢05(x5) ¢n(x2)

# 0
¢,(x,) ¢o5(x) ¢, (x,)

for every set of n distinct points X sX5s e 0o Xy of D.

Remark 1.2.2: Let D1C.D2; then 1f ¢1,¢2,...,¢n is a
Tchebycheff system on D2 it 1is also a Tchebycheff system

on Dl‘

Remark 1.2.3: The fact that ¢1,¢2,...,¢n is a Tchebycheff

system on D, implies that ¢l,¢2,...,¢n are linearly in-

dependent on D.

Example 1.2.4: Let D = [a,b], a < b and let

ol(x) =1
¢2(x) = X
¢3(x) = x°
o, (x) = x4



Then, for each A = (al,a2,...,an)eEn the polynomial PA

defined on [a,b] by

i-1

PA(x) = a,x

ai¢i(x) =a; + ,

i

[ e
e

i=1 1
has at most n-1 distinct zeros on [a,b] unless

PA(x) = 0

or equivalently, unless

Therefore, 01585500050, 1s a Tchebycheff system on
D.

Example 1.2.5: Let D = the x-axls modulo 27, or equi-

valently, let D = [0,2r] with the points 0 and 2 identi-

fled as one point, and let

|
[

ol(x) =

¢2(x) cos x

¢3(x) = sin x

¢2n(x) = cosS nx

¢2n+l(x) = sin nx



Then, for each A = (al,az,...,a2n+l)eE2n+1 the polynomial
PA defined on D by
2n+l
PA(x) = 121 ai¢i(x) = a; +a, cos x +ag sin x + ...

+ +
a2n COS nx a sin nx

2n+l

has at most 2n distinct zeros on D, unless
PA(x) =0
or equivalently unless

e o o = a2n+l =
Therefore, 015055000585 19 is a Tchebycheff system on D.

The next example 1llustrates that whether or not a

set of functions ¢l’°2”"’°n is a Tchebycheff system on

a set D, may depend upon the set D.

Example 1.2.6: Let D, = [(0,1] and 1let

1

¢l(x)
20

o,(x) =x
Then, for A = (al,a2)eE2

PA(x) = al¢l(x) + a2¢2(x) = a + a2x2



has at most one distinct zero in Dl’ unless a; = a,

=0.
Thus, ¢l’¢2 1s a Tchebycheff system on Dl’
However, 1f D, = [(-1,1], then PA(x) = % - x° vanishes
.1 -1
at both X, =5 and X, = = 3. Thus, ¢l’¢2 i1s not a Tcheby-

cheff system on D2.

Now, let ¢l’¢2”“’¢n be n real-valued continuous
functions on a compact set D, (which contains at least n
distinct points) 1n Ek'

Haar ( 8 ) proved the followling theorem which helped
to answer the question of the uniqueness of a solution to

the b.a. problem in the above setting.

Theorem 1.2.7 (Haar):‘ A necessary and sufficient condition

that a unique solution exist to the b.a. problem for every
given FeC(D) is that the base functions IEY CYRREL form a

Tchebycheff system on D.

Thus 1if ¢1,¢2,...,¢n is not a Tchebycheff system on
D, then for some FeC(D), the corresponding b.a. problem
has a non-unique solution. However, as 1s seen in the
following example, some FeC(D) may have a unique best

approximation on D.

Example 1.2.8: Let D = [-1,1] and let

]
[

¢1(x)

¢2(x) =

[
<



Then, as in example 1.2.6, ¢1s¢, is not a Tchebycheff
system on D. However the function FeC(D) defined by

F(x) = 1 + x2
has a unique best uniform approximation in ¢l’¢2’ namely

PA* which is defined by

Poe(x) =1+ x° .

We now state two corollaries to Haar's theorem.

Corollary 1.2.9: Let D = [a,b], a < b and let

¢l(x) =1
o,(x) = x
o, (x) = XL

Then as in example 1.2.4, 01385500 0sb, is a Tchebycheff system
on D and thus by Haar's theorem, for each FeC(D) there

exists a unique algebraic polynomial

* =
PA a

* * *
(%6 tas*e, + ..+ *n
which minimizes the quantity

max |F(x) = Py(x)] .
xe[0,1]
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Corollary 1.2.10: Let D = the x-axls modulo 2n and let

¢1(x) =1

¢2(x) = cos X

¢3(x) = sin x
¢2n(x) = coS nx

¢2n+l(x) = sin nx

Then, 1f F 1s an arbitrary continuous functlion with period
2r, (that 1is, F(x + 2r) = F(x), for all real x), there

exlists a unique trigonometric polynomial

P *® = g_#* + g %

*
A l¢l 2¢2+...+a

2n+1%2n+1
which minimizes the quantity

max |F(x) - PA(x)I
xeD

The following example (see Buck (2) ) presents a
function which possesses a non-unique, best uniform approxi-

mation.

Example 1.2.11l: Consider the Banach space of continuous

real-valued function on the compact set

D= [0,1] x [0,1] C E,, with |

|, the uniform norm.



10

Let ¢,(x,y) =1
¢2(x,y) = X
¢3(x,y) =y
¢ (x,y) = x
¢5(x,y) =y-

and let F be deflned by

F(x,y) = xy.

Using results from functional analysis, Buck first shows

that

1
min |[|[F - P,|| > 7
AeE5

where as usual for each A = (al,az,a3,au,a5)eE5

PA = al¢l + a2¢2 + a3¢3 + au¢u + a5¢5
He: then observes that

2 1

[xy - (3% + 3% - §)[] = ¢

and

lxy = (x + 3y - 3x® + y%) - P

Therefore, P, * and Py * defined by

Ay 2
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*(x) = 3(x° +y%) - F

S o

Pp
and

) 1,2, .2, 1
PA2*(x) =x +y - 2(x + y°) - T

are both solutlons. to the b.a. problem. This in turn im-
plies that the b.a. problem has an infinite number of

solutions, since 1f 0 < o < 1, then

| 1xy - (aBy * + (1-0)P, *) ||
2
< |lalxy - Py )+ [ (1-a)(xy - Py *)| |
1 2
= aflxy - PA1*|| + (l-a)||xy - PA2*||

o % + (l-a) % = % .

Hence, aPA * o+ (l-a)PA % is a solution to the b.a. pro-
1 2
blem for all o such that 0 < o < 1.
Haar has shown that if the domain D contalns a tried
set T (see Figure 1.2.1), then there does not exist a
non-trivial (n > 2) Tchebycheff system on D1 (see Lorentz

(9), p. 25).
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Figure 1.2.1

Thus for any non-trivial base system ¢i?¢2""’¢n’ the
b.a. problem does not have a unique solution for some
FeC(D).

Mairhuber (10 ) established necessary and suffici-
ent conditions for a set D to serve as the domailn of

definltion of a Tchebycheff system.

Theorem 1.2.12 (Mairhuber): A compact subset D of Ek con-
taining at least n-points, n > 2, may serve as the domaln
of definition of a non-trivial Tchebycheff system of real-
valued continuous functions, if and only if D is homeo-
morphic to a closed subset of the clrcumference of a

clrcle.

Therefore, éxcept for trivial Tchebycheff systems
(n = 1) or D homeomorphic to a closed subset of the cir-
cumference of a circle, the p.a. problem has a non-unique
solution for some FeC(D).

It 1s desirable to have a unique best approximation

for all FeC(D). The primary virtue is one of communication.
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We can speak of "the" best uniform approximation or "the"
least squares approximation of degree n to FeC(D).
Secondly, it 1s often true that the property of unique-
ness will simplify the algorithm(s) used to solve the
b.a. problem,

The primary goal of this thesis 1s to define and
investigate a Téhebycheff—like approximation which
possesses the desired property of uniqueness for all
FeC(D). We shall call this approximation the Product

Tchebycheff Approximation to F on D.



CHAPTER II

THE PRODUCT TCHEBYCHEFF APPROXIMATION

TO A CONTINUOUS FUNCTION

Section 1: Introduction

Let D be a compact set in E2. We define each of
the following compact sets in El:

D the projection of D onto the x-axis,

x’
Dy, the projection of D onto the y-axis,
Dx(yl), the projection of the intersection of the

set D and the line y = ¥q» onto the x-axils.

Flgure 2.2.1

14
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Let FeC(D), and we define the following associated

family of functions:

Definition 2.1.1: For each yleDy define the function Fy
1
on Dx(yl), by

Fyl(x) = F(x,yl).

We also define a family of norms.

Definitlon 2.1.2: For each yleDy, and for each real-

valued function H defined on Dx(yl) we define

IIHIIy = sup |H(x)| .
1 Xer(yl)

Now, let ¢1’¢2""’¢n be a Tchebycheff system of

continuous functions on Dx'

Definition 2.1.3: For each yleDy, such that Dx(yl) con-
tains at least n points, Haar's Theorem shows the exis-

tence of a unique polynomial

n
Pacy = E 2004
(where A(yl) = (al(yl),az(yl),..l,an(yl))eEn)

which is the best |

approximation to the continuous

"

function F, on D_(y,). As usual both P and the
¥, x'71 )

Ay

1

assoclated parameter A(y,) will be referred to as the best
1

Iyl approximation to F
yl‘
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The basic i1dea of thls thesis, 1s to obtain poly-
nomial approximations to the coefficlient functions
al(y),a2(y),...,an(y), for yeDy.

We will consider the continuity of al(y),az(y),...,an(y)
on Dy under an. additional restriction on the set D, which:
we shall call property K. If these functions are continuous
on Dy’ they themselves will have best uniform approxi-

mations by polynomials 1n Yysboseees¥ps @ family of m

real-valued centinuous functions on the compact set Dy.

Section 2: Property K

Definition 2.2.1: A compact set D 1s sald to possess

property K relative to the variable y, if given e¢> 0,

there exists a 6§ = §(e) > 0, such that ¥1,¥,eD,, and

y
Iyl - y2| < 6 implies that 1f (x,,y;)eD (xyeD (¥{))
then there exists an x,eD, where Ix2 - xll < ¢ and

(xzsyz}eD (xzer(yz))o

Remark 2.2.2: The following definition is equivaient.to

(2.2.2) A compact set D is saild to possess property K
relative to the variable y if given ¢ >0, there exlsts a
6§ = §(e) > 0, such that yl,yngy, and Iy1 - y2J < 6
implies that 1if (xl,yl)eD (xler(yl)) then there exists
an x2er where o[(xl,yl);(xz,yz)] < ¢ and (x2,y2)eD
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Note that here and throughout the remainder of this
thesis the letter "o" will be used to denote the usual
Euclidean metric on the space under consideration at that
time.

O wlill denote the usual Euclidean metric on

Euclidean n space En, for any positive integer n.

Proof: If as in Definition 2.2.2
ol(xy,¥7)3(%5,¥,)] < €

then Ix2 - xll < o[(xl,yl);(x2,y2)] < ¢ which satisifies
2.2.1.
On the other hand if yl,y2eDy with Iyl - y2| < 61(5/2)

as 1n Definition 2.2.1, we can choose

5§ = min(Gl(s/2),e/2)

Hence yl,yzeDy and |yl - y2| < 6 implies that there exists

an xzer(y2) where

U[(xlnyl)§(x2,y2)] < |X2 - xll + |y2 - yll

njm
njm
]
™

which satisfies 2.2.2.

We may similarly deflne property K relative to the
variable x. We shall see in Example 2.2.5 that property
K relative to x and property K relative to y are not

equivalent.



18

Example 2.2.3: Any rectangle D = {(x,y): a < x.< b,
¢ <y < d} has property K relative to the variable y

as well as property K relative to the variable x.

Example 2.2.4: Let D = the intersection of the hori-

zontal band

Ha,b = {(x,y): a <y <b}

with a family of a finite number of non-horizontal lines.

Figure 2.2.1

Then D has property K relative to the variable y.
Note that as a special case of this any silngle
line segment (we need not exclude a horizontal line seg-

ment) has property K relative to both x and y.
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Example 2.2.5: Let D= {(x,y): x +y=1and 0 <x <1

or x = 0 and 0 <y < 1}.

D

*r—

-

Figure 2.2.2

Then given ¢ > 0, 1f (x )eD then

1291

(1) (xl,yl) = (0,y,) for some 0 < vy, 21
or (2) (x,yl) = (1 - yl,yl) for some 0 <y, <1

In case (1) Let &

6(e) = 1 then for any
yzeDy = [0,1],|y2-- yll < § =1 and (0,y,)eD implies
|0 - 0| = 0 which satisfies 2.2.1.

In case (2) let 6§ = §(e) = ¢ then for yoeDy = [0,1]
if |y2 - yll < § = ¢ then for Xy = 1 - Vo
12y = xq| = |1 =y, = (@ =y = |y, = y,l <

and definition 2.2.1 is satisfled.
Thus if we choose § = min(l,e¢), Definition 2.2.1

i1s satisfied relative to the variable ¥.
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However, if we choose ¢ = 5 and (xl,yl) = (0,0),

(VTR N

then x,eD  and lx2 - xll = X, < 5 implies that if x, ¥ 0,
then there 1is one and only one. corresponding Yoo such
that (x2,y2)eD, namely vy, = l - X5 and therefore,

|y2:- yll =y, = 1-x5°> %. Hence, D does not possess

property K, relative to the variable x.

Then,

Theorem 2.2.6: Let Kl and K, be compact sets in El'

D= K1 x K2 C:Ef has property K relative to both x and y.
Proof: Clearly Dl which 1s the cross-product of two com-
pact sets, 1s itself compact in E2.

Now given ¢ > 0 and an arbitrary point (xl,yl)eD,
then xleKl and yleK2. For any y2eDy = K2 we have the
point (x,,y,)eD. Thuslxl - x1| = 0 < € and § may be
chosen arbitrarily large. A similar argument shows that

D has property K with respect to the variable x.

The rectangle of Example 2.2.3 1s a special case of

Theorem 2.2.6, where K, = (a,b] and K, = [c,d].

Theorem 2.2.7: Any compact convex set DCZE2 has property

K relative to both x and y.

Proof: We first show that property K relative to y holds
at a given point in D.

Since.Dy is the projection of the compact convex

set D, 1t 1s a closed bounded interval, say

Dy - l:ymin’ymax:| *
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Now let ¢ > 0 be given and let (xl,yl) be an arbi-

trary point of D. If ¥y £y then by the convexity of

min
D the point

(x2,y2) = (axl + (l-a)f) uyl + (l-a)y )

min

also belongs to D for each fixed ae[0,1], (where x is
).

Now, we can choose

some point in D _(y_ .,

or

Then since

and

lx, - xll = (l-a)lx1 - x|

we have

(1) for y,ely y4n,¥,]

lyy = yil < 865 = Ixy, = x| < 5.
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On the other hand, 1if y = v then the interval

min
[ymin’y1] reduces to the point y, and then (1) holds tri-
vially for any choice of 62 > 0.

Now, we can similarly find a 63 = 63(e/2) such that

(2) For y2€[y1’ymax]

€
|y2-yl| < 63 ng-xll <§' o

We can choose §

1= min(62,63). Then

(3) For yyeD ]

y = |:ymin’ymax
1y, = vyl <8 =1Ix, = x;] < 5

Hence property K holds relative to the variable y
at the point (xl,yl). We will now extend this to S;, an
open neighborhood of (xl,yl).
' 6

. 1
Let Sy = {(x,¥):|x-xq)] < % and |y-y,| < =} and let

(f,?’)eslhD.

Then - |x - x| < =
§

- 1.

and vy -yl <=5

é
For y,eDy and yeSlf\Dy where |y, - y| < 3% we have

§ [
| | < | Fl + 15 = y,| < =+ = =7
y2 = yl = y2 -Jy y _yl < 72 2 1

Thus by property K at (xl,yl) there exists a point (x2,y2)eD

where |x, - xil <5 .
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Hence |x, = x| < |x2 - x| + [xy - X]|

< €/2 + ¢/2 = ¢

-«

We have shown that for arbitrary éf,?)esl(\D, and arbitrary
€ > 0 there exists a § = §(g) = 7%‘ such that for y2eDy
where Iy2 - y| < & there exists a point (x2,y2)eD where

|x2 - ;l < €.

Thus property K relative to the variable y holds in
all of Sl.

This argument can be repeated for any poilnt (xu,yu)eD
and its corresponding open neighborhood Su‘ By the com-
pactness of D a finlte number of such neighborhoods
81,82,...,8n is sufficient to cover D.

We choose

§, & 8
1l "2 k
6 = min[_2—,-§', ) Q,T]

(where 61 corresponds to (xi,yi)eD and 1ts associated neigh-
borhood Si for 1 = 1,2,...,k) and Definition 2.2.1 1s
satisfied.

Hence, D has property K, relative to the variable y.

By a similar argument we can show that D also possesses

property K, relative to the variable x.

Note that convexity 1s not a necessary condition for
a set to possess property K as 1s evidenced by examples

2.2.4 and 2.2.5 and Theorem 2.2.6.
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Theorem 2.2.8: Let D be a compact set in E2, which possesses

property K, relative to the variable y. Let ¥y be a fixed

point of Dy’ and let x be n distinct points

11°%122*°*3*1n
of Dx(yl)’ where n 1s an arbitrary positive integer. Then,

there exists a § G(yl) > 0, such that y2eDy and
ly, = vyl <6

implies that there are n disjJoint closed intervals

Sl’S2""’Sn such that
(1) Xy4€84 1i=1,2,...,n
and (2) There 1s a point xzier(yz) where
Proof: Let ¢ = min |xq, = x,,] > O.
LRSS AP E R &
i = 2’.. ’n
J = 1,2,...,n-1

Note that ¢ depends on yq-
Then by property K, there exists a ¢ = 6(e/3) > 0,

(depending on yl) such that 1if xlier(yl) then y2eDy and
|y2 - y1| < 6

implies there exists an x2ier(y2) satisfying

Ix2i - xlil < €/3’ 1 = l,2,o-.,n'

Hence S, = {xeD,:|x - x < e¢/3} satisfiles the de-

111
sired conditions (1) and (2).
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Corollary 2.2.9: Let D be a compact set in E2, which

possesses property K, relative to the variable y. Let ‘A
be a fixed point of Dy such that Dx(yl) contains > n
points for some arbitrary positive integer n. Then,

there exists a § = G(yl) > 0 such that yzeDy and

|y2-yl| < $
implies that Dx(yz) contains > n points,
The following example, l1llustrates a compact con-
nected set which does not possess property K relative to

either x or y. This example will be frequently referred

to in later sectilons.

Example 2.2.10: Let D = {(x,y):x = 0 and 0 <y <1 or

y =1and 0 < x < 1}.

:1&

Figure 2.2.3
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Then, by a simllar argument to that found in the
later part of Example 2.2.5 we can show that D does not
possess property K relative to x or y.

An alternative proof is to use Corollary 2.2.9.

If we choose y; = leDy = [0,1] then Dx(yl) has > 2
points. However, for all y2e[0,l), Dx(yz) has only 1
point. Therefore, D does not possess property K relative
to the variable y. A simllar argument shows that D does

not possess property K relative to the variable x.

Section 3: Continulty of the Coefficlents
al(y),a2(y),...,an(y7*

In the remainder of this chapter, for each yleDy,

let Fy and | ly be as defined in 2.1.1 and 2.1.2 re-
1 1

spectively, and for each A = (al’a2""’an)€En let

L]

PA = al¢l + a2¢2 + ... + an¢n.

Definition 2.3.1: For each yleDy let

= Inf F - P
o(yp) = g 17, = Bylly
n

We know that if FeC(D), then Fy eC(Dx(yl)). Also 1if
1
¢l’¢2""’¢n is a system of n real-valued, continuous

functions on Dx’ then they are likewise real-valued,
continuous functions on Dx(yl), and therefore we know

that there 1s some polynomial PA which 1is a best
1
| -||y approximation to Fy . Consequently, we have the
1 1
existence of a polynomial PA s such that
1
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D(yl)= II - P

F
¥y Alllyl

Theorem 2.3.2: Let D be a compact set in E2, which possesses

property K, relative to the variable y, and let $1sb550 005,
be a Tchebycheff system of real-valued, continuous functions
on Dx' Let FeC(D). Then p(y) 1s a continuous function for

D_.
ye y

Proof: Let ¥q be a filxed point in Dy and let e€> 0 be

given. Then for all y2eDy

| |F - P

ll, < I|IF, -P
Yo o AV,

| | R
Yo ALY,

where P, 1s a best ||+||., approximation to F_, , 1 = 1,2.
Ay ¥y Yy
(Note that because Dx(yi) may contain less than n points,

P, might not be a unique best approximation.)

i
Now, let &, = Gl(e,yl) correspond to ¢ 1n the
definition of the uniform continuity of the function G

defined on D, by

G(x,y) Fy(X) - Py (x) = F(x,y) - PAl(x).

1

Also, by property K relatlive to the variable y for the set

v

D, given &,(e,y;) > 0, there exists a &, = §,(8,(e,y;)) > 0

such that for y2sDy
1y, = vyl < 6,
implies that for each x2er(y2), there 1s a corresponding

xler(yl) 3atisfying,
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o,0(x95¥9)5(x55¥5)] < 6,(e)
This in turn implies that

|F. (x,) = P, (x,)] < |F, (x4) = P, (x,)| + ¢ .
y, X2 A, %2 y, *1 A %1

Combining these results we have,
(1) given ¢ >0, and y, fixed in Dy there exists a

6, = cz(al(e,yl)) > 0 such that y2eDy and

ly, = y;1 < 6,

imply that for some x2er(y2) and a corresponding xler(yl)

() = oty = 1IEy =y Uy = 1Ry = By Il
SRy =By lly = 11y -y 11y
= |Fy2(x2) - PAl(x2)| - ||Fyl - PAlllyl
< |Fyl(xl) - PAl(xl)| + e - ||Fyl - PA1|
N IR LS N
= € .

Now, we consider two cases:

Case 1: Dx(yl) contains < n points.

Then there exists a polynomial PA such that
1
F - P 0

Therefore, p(yl) = 0.
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Now by (1)

|y2 - yll < 62

S0(y,) - o(yy) = oyy) < e .

Hence, |y2 - yll < 8,

> lelyy) = eyl = lo(y,)| = o(y,) < e,
since p(y) 1is a non-negative function.

Case 2: Dx(yl) contains > n+l points
Then by Theorem 2.2.8 and Corollary 2.2.9, there

exlists a 63 = 63(y1) > 0, such that y2€Dy and

ly2-yll <6

implies that (1) Dx(y2) contains > n+l points and these
points x2’1,x2,2,...,x2,n+l each belongs to a corresponding

closed internal Sl,S2,...,Sn+l

Now, by Haar's Theorem, Fy and Fy each has a unique
1 2
best uniform approximation on thelr respective domains.

where Si,‘sj = ¢, 1 #¥J.

Denote these approximations by P and P

A A respectively.

As before we have
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Then, since the zero polynomial is a possible

approximation to F‘y , we have

2
F - P < F .
1By, = Zally, < Ny 11y
Therefore,
12y |1, < IIF, =P, || [P, |
A2 Yo Yo A2 y2 Yo y2
< 2||F
<2llFy Iy
< 2M .
Now, consider the set &= {A,:P, 1is the best |]- |y
2 2
approximation to Fy for some yzeDy where |y2 - yll < 63}.

2
We first assert that & is a bounded set. We begin by

finding expressions for the coefficients 8513855500 0585
where A, = (a2l,a22,...,a2n)e .
The function G defined on the compact set

S = 5.xS,x...xS_, by
G(xlax2§°~':xn) = ¢l(xl) ¢2(x1) ‘o ¢n(xi)
01(x5)  o5(x5) oo o, (x5)

o1(x) ey (xy) vl o0 (x))

1s continuous there and therefore assumes its minimum
absolute value m at some point (fi,fé,...,fh)es.
Since L EEREFY N i1s a Tchebycheff system on Dx’ if

m =0 then for some 1 # J, fi = iﬁ. However, i&esi and



31

-

xJeS and 81118 = ¢, Therefore, m > 0.

J
Now, for y2eDy and

J

|y2 - yll < 53

and the corresponding point AzedZ, we consider the determi-

nants

PA2(x21) ¢2(x21) cen ¢n(x2l)

D, = : : :
PAZ(XZn) °2(x2n) v ¢n(x2n)
¢1(x21) PA2(x2l) ¢3(x21) “e ¢n(x21)

27 : : :
¢1(x2n) PA2(x2n) ¢3(x2n) st ¢n(x2n)
¢1(x2l) cos ¢n-l(x21) PAz(le)

and D = | s ;

010kn)  eee 0 (X)) By (Xpp) s

where X513%503++ 43Xy are points of Dx(yz), such that

x2iesi’ i=1,2,...,n.
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Since, max |P, (x)| < ||P, ||y, < 2M
X = X X X A2 A2 2
21°7222*° " 2n

l’

bounded in absolute value. Let thelr bounds be Bl’Bz"‘°’B

we note that the determinants D D2,..., and,Dn are

n
respectively.

01001 0p(xa1) e en(xpp)] fagy) [Py (xpp)
010xz0)  ep(xpp) e ep(xpp) | Jagpl 1By (%p))

. . )
. . .
. . .

(%1(an)  02(xpq)  eeeen(xpp) | (85]  [Fa (xan))

We have by Cramer's rule

Al
5[,

D B
'a | = | 2| < _3
22 lG(le,x22,...,x2n)] -m
la, | [P < :
2n |G(x21,x22,...,x2n)|~— m

Hence, A 1s a bounded set and its closure& is compact.

The function H defined on Dx by
H(x,y,8) = Fy(x) = P,(x)

is uniformly continuous there.
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Thus, given ¢ > 0, there exists a §, = Gu(e) >0

such that if (x Aa) and (x2,y2,A2)er¢ then

l’yl’

Tns2l (X15¥1585)5(%5555585)1 < 8,
implies that,
IFyl(xl) - PA2(x1)| < |Fy2(x2) - PAz(x2)| + €.

Also by property K, relative to the varlable y, for the set
D, given Gu(e) > 0, there exists a 65 = Gs(su(e)) >0

such that for y2eDy

|y2 = yll < 65

implies that for each xler(yl) thére 1s a corresponding

xaer(yz) satisfying,
02[xl’yl);(x2’y2)] < Gu(e)
or equivalently,
Sneol (X1 V108505 (%5.35,85)1 < 8(e)
which in turn implies that
lel(xl) - PA2(xl)| < ]Fy2(x2) - PA2(x2)| + €.

We can choose 66 = min(63,65) > 0., Then combining
these results we have,
(2) given € > 0 and y, fixed in Dy such that Dx(yl) con-
tains > n+l points, there exists a §g = 66(e,y1) >0

such that for y2eDy
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|y, = ¥q1 < 8¢

implies that, for some x, = xl(yz)er(yl) and a corre-

1
sponding x, = x,(y,)eD, (¥,),

p(yy) = oly,) = IIF'yl - PA1||yl - ||Fy2 - PA2||yl
< HFyl - PAzllyl - ||Fy2 - PA2||‘y2
= IFyl(xl) - PA2(x1)| - ||Fy2 - PA2||y2
< IRy (1) - By (x| 4e - IIFy2 - PA2||y2
< ||Fy2 - PA2Hy2 te- ||Fy2 - PA2||y2

= €

Now we choose § = min(62,66) and we have for case 2,

by (1) and (2)
|y, = vyl <8
implies that
lo(y,) = o(y)] < ¢

We will use the continuity of p(y) to prove. the
continuity of A(y) under sultable conditions. With this

goal in mind we state the followlng theorem due to Remez (16),

Theorem 2.3.3 (Remez): Let D be a compact set in E., which

1
contains > n+l points. Let FeC(D) and let ¢1(x) =1,
n-1

Let |

| be the uniform

02(x) x,...,Qn(x) = X
norm on C(D), and let P,* be the best ||:|| approximation
to F on D. Then, given ¢ > 0, there exists a § = §(e) > 0

such that
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||F - P

A< HF - B*] + 6

implies that
O(A;A*) < e .

Essentially what this says 1s that if the deviation
of .a polynomial PA 1s close to the deviation of the best
approximation PA* then the corresponding parameters A and
A* must be close.

The proof of the following more general theorem
closely parallels the Remez proof. This theorem is one
of a sequence of results from which the continuity of A(y)
will follow.

Theorem 2.3.4: Let D be a compact set in E,, which contains

n or more points. Let FeC(D) and let ¢15855++-5¢, be a

linearly independent system of continuous real-valued

functions on D. Let | | be the uniform norm on C(D) and

let
p = inf ||F - Ppll
AeEn
Then given ¢ > 0, there exists a 6§ = 6(e) > 0, such
that
117 = By ll <o+

implies that there is a best |

| approximation Pp*s

to F on D, such that
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c(A;A*) < ¢ ,

Essentially what this theorem says 1s that if the

deviation of a polynomial PA 1s close to the deviation of

a best | | approximation to F, then the parameter A is

close to the parameter of some best ||+|| approximation

to F.
Proof: Let M = ||F||, and let

T = {AcE :|[P < 2M} .

N

Since ¢1’¢2”"’¢n is a linearly independent system

on D, there exists a set of distinct polnts XqsXoseeesX

in D, such that

¢l(xl) ¢2(xl) .o ¢n(xl)
¢l(x2) ¢2(x2) oo ¢n(x2)

. . . = m # O
09 (x.) o5(x,) ‘oo o (x,)

For arbitrary AeT the determinants

P,(xq) 95(xy) o o, (x7)
Dy =] : : :

PA(xn) ¢2(xn) .o ¢n(xn)
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¢l(x) PA(xl) ¢3(x1) “e ¢n(xl)

¢l(xn) PA(xn) ¢3(xn) . ¢n(xn)

and

¢l(xl) “en ¢n_l(x1) PA(xl)

01 (x,) cen 001 (%) Py(x)

are bounded respectively by Bl’B2”"’Bn‘ Therefore, by

Cramer's rule

B,

m

By

m

Bn
90 Ia | < m

E! n

|A

9

1 > lasl <

for each A = (al,az,...,an)eT. Hence, T is bounded.
Now, if A' is a fixed point of T', the compl@ment

of T, then

B, 0] > 2n .

By the continuity of ||PA|| as a function of AeE ,
given e = IIPA,Il - 2M we can find a § = 6(e,A') such that

AeEn and

c(A;A') < &
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imply that

This implies that

{AeEn:c(A;A') < 8}CT'.

Therefore, T' is open and T 1s compact.

For some ﬁ > M, we define the set

~

T = {AeEn:||P < 2M}. We can similarly show that T 1is

ol
compact.

Let A* = {A%eE :P,* 1s a best |

A |
approximation to F on D}.

For each A¥%e CU*
(1B, %11 < [IFI] + [IF = B,*|| < 2||P|| = 2m,
Therefore,
TSTD A* # o.

The linear independence of ¢l,¢2,...,¢n on D implles

2M -
that ||¢1|| ¥ 0, If Pe= TTe7TT ¢, then [|P]] = 2M.

Therefore, T - T is a non-empty subset of T - AN,
Now, given € > 0, we define the set

T, = {AeT:0(A;A*) > e, for all A*c A*}, and note that
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for e sufficliently small Te 1s a non-empty compact subset

T

=
—>

Filgure 2.3.1

Since ||F - PAII 1s a continuous function of AeE ,
it assumes its minimum P > P On the compact set Te.

Choose ¢ = min(pE -9, 2& - M ~-9p). Then AeEn and

||F - P <p + 6

N

imply (1) ||F = P,l| < o

and (2) ||F - P,|| < 2M = M.

N

Therefore A&Te by the definition of o_.

Also 2M - M > ||F - P,|| > [|P,|| - M implies that

N
oM > | | P

L]

Al
This implies that AeT.



4o
Hence Ae% - Te, and therefore
c(A3;A*) < e, for some A#*cAw® |

If ¥q is a fixed point of Dy such that Dx(yl) con-
tains less than n polnts, then Fy does not possess a

1
|yl approximation in ¢y,é55. 056, .
Therefore, A(y) i1s not well defined at yq- This problem

unique best |

1s considered at the end of this section. We presently
restrict our attention to the case where Dx(yl) contains
n or more points.

In the remalnder of thils chapter the phrase "let D,
F, and 01505500050, be as usual" will be used to mean that
D 1s a compact set in E2, which possesses property K rela-
tive to the variable y, FeC(D) and 01505500050, is a
Tchebycheff system on continuous real-valued functions

on Dx‘

Lemma 2.3.5: Let D, F and ¢l’¢2""’¢n be as usual, and

let y, be a fixed point of Dy, such that Dx(yl) contains n
or more points. Then given € > 0 there exlsts a

§ = G(e,yl) > 0, such that y2eDy and
Iyz_yll < §

imply that
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Proof: By Corollary 2.2.9 there exists a §, = Gl(yl) > 0,

such that y2eDy and

ly, = vyl < 8y

imply that Dx(ya) contains n or more points, and there-
fore A(y) is well-defined at Voo
As in Theorem 2.3.2 we can show that the set

A = {A(yz)eEn:yaeD and Iy2 - yll < 61} is bounded. Then

y
as before let &, = 62(e/2) > 0 correspond to the definition

of the uniform continuity of the funection G, defined on
Dx4 by

G(x,y,A) = Fy(x) - PA(x).

Also, by property K, given §, = 62(e/2) > 0 there

exists a 63 = 63(62) > 0 such that erDy and

lyz - yll < 63

imply that for each»xler(yl) there 1s a corresponding

x2er(y2) satisfying
0pl(x5¥2)5(x15y1)1 < 65,
or equivalently
°n+2[(x2,y2sA(y2));(xlsylsA(yz))] < 62.

Choose 64 = min(61,63). Then we have shown that

for each D

|y2 = yll < 6“
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implies that there exists an xler(yl) and a correspond-

ing,xzer(y2) such that
'IFyl B PA(yz)']yl ) 'Fyl(xl) - PA(yz)("l)|

< |Fy2(x2) - PA(yz)(xz)l + e/2

< o(yz) + e/2.

Let 65 = 65(5/2) > 0 correspond to the definition

of the uniform continulty of p(y) on Dy.

Choose § = min(cu,és) > 0. Then yzeDy and
|y2 -yll < §
imply that

||F, =P [l < oly,) + e/2
1 Ay, Ty, °

< o(yl) + ¢,

We .can now prove that under a suitable hypotheses

A(y) 1is continuous at yleDy.

Theorem 2.3.6: Let D, F and $1s955+++5¢, be as usual and

let y, be a fixed point of Dy, such that Dx(yl) contains

n or more points. Then the function A(y) as defined in

2.1.3 1is continuous at Yy
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Proof: Dx(yl) is a compact set in E,, and FyleC(Dx(yl)).

¢l’¢2""’¢n a Tchebycheff system on Dx implies that it 1is
a Tchebycheff system on»Dx(yl) which in turn implies that
it 1s a linearly 1ndependent system on Dx(yl)‘ Therefore,
by Theorem 2.3.4 given ¢ > 0, there exists a

61 = Gl(e) > 0 such that

Ilel - PAllyl < plyy) + 6

implies that

o[A;A(y;)] < e .

Now by Lemma 2.3.5 there exists a & = 6(61(e),y1) > 0

such that y2eDy and
ly, =yl <8
imply that

Fyl - PA(y2)|lyl < °(y1) + 513

which in turn implies that
olA(y,)3A(y;)] < ¢

Corollary 2.3.7: Under the hypothesis of Theorem 2.3.6,

a,(y),a5(y),...,a,(y) as defined in 2.1.3, are all con-

tinuous at yq-
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We have previously mentioned that A(y) is not well-
defined for ychy, such that Dx(yl) contains less than n

points. Example 2.3.8 below illustrates such a situation.

Example 2.3.8: Let D = {(x,y):0 < x <1landy > 0 and
y 21 - x},

Figure 2.3.2

Let F(x,y) = /X and let ¢,(x) = 1, ¢,(x) = x.
Then for 0 <y, < 1, D, (y,) = [0,1 - y,] and
YL 1

P
Alyy) = —5— °1+¢1-y 9y
1

For y, =1, D, (y;) = {0} and
Flo,a) = %2

is a best ||-|[y approximation to Fy , for each real a.
1 hE
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Hence ACy) = (a;(y),a,(y)) = /1 5 L, 1 )

Yl -y

for 0 <y <1,

and 1s not well-defined at y = 1. Moreover, there 1s no
value we could assign to A(l) to make A(y) continuous at

y = 1.

Section U4: The Product Tchebycheff Approximation

Corollary 2.3.7 motlivates our seeklng a polynomial
approximation to each of the coefficlent functions,

al(Y),a2(y),...,an(y).

Definition 2.4.1: We will say that D, F, 0150550050,

and Yy,¥5s.ees¥p satisfy condition P.T., if (1) D, F and

$1s855...,0, are as usual, (2) For each y,eD,, the set

y,
Dx(yl) contains > n points and (3) Vis¥os oo ey is a
Tchebycheff system of contlnuous real-valued functions

on Dy which contains m or more points.

These are the necessary conditions to define the

Product Tchebycheff approximation.

Definition 2.4.2: Let D, F, $1sevesbs and TEERRA

satisfy condition P. T. Then by Haar's theorem for each
k =1,2,...,n, the continuous function ak(y) has a unique
best uniform approximation on D_. We will denote this

y
corresponding best approximation by
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A

R

QA =

)eEm.
k i

ay s B = (agy appseesagy

1
The polynomial

n

PT, = £
A

J=

Q, ¢
1 Ay

is called the Product Tchebycheff (P. T.) approximation to

F on D, relative to the variable y.

We can similarly define the P. T. approximation to
F on D, relative to the variable x. The following example
shows that these two approximations (in cases where both

are defined) need not be the same.

Example 2.4.3: Let D = [-1,1]x[-1,1].

Let F(x,y) = -2yx2 +y for -1 <y <O
‘ 2yx for 0 <y <1
and let ¢1(x) =1
v (y) = 1.
Then FeC(D).
 For -1 <y, 20
max F_ (x) = -y min F (x) =y
xe[-1,11 Y1 17 yef-1,11 N1 1
= PA(yl)(x) = 0.

Therefore max P (x) = min P (x) =0
* yel-1,11 A0) yel-1,1] A(¥p) ’

> PT,(x,y) = 0.
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Now, we define Fx and PB(xl) analagously to F

1 Y1
and PA(y ) and we let PTy denote the product Tchebycheff
1

approximation, relative to the variable x.

For -1 < X, < 0
max F. (y) =0 s min F, (y) = 2x, -1
yel-1,1] *1 yel-1,11 X1 1
- P (y) = x, = L
B(xl) 1 2°
For 0 < xl < %
max F_ (y) = 2x min F, (y) = 2x, - 1
yel-1,11 X1 7 yel-1,11 R 1
= P (y) = 2%, = l
B(xl) 1 2°
For%‘-<xl_<_l
max Fx (y) = 2xl s min Fx (y) =0
yel(=1,1] "1 yel-1,1] *1
= PB(xl)(y) = X
Therefore
max P (y) =1 min P (y) = - 3
x,e(-1,1] B(x1) " xpel-1,1] B(Xp) 2

é PTB(x’y) B - % [

Throughout the remainder of this chapter the P. T.
or product Tchebycheff approximation will refer to the
product Tchebycheff approximation, relative to the vari-

able y.
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In Chapter II, Section 9, the P. T. approximation
is extended to functions of three or more variables.

In Chapter II, Section 8, we define a similar
approximation on sets which do not possess property K.

We now consider a special case of product Tchebycheff

approximation:

Theorem 2.4.4: Let the compact set DCE, have property K,

relative to the variable y and let FeC(D). Let
¢,(x) =1, v;(y) = 1.

Then the product Tchebycheff approximation to F on
D 1s defined by

1
PT,(x,y) = max (max F(x,,y,) + min F(Xq5¥q)
AN I 1291 1°91
[;leDy[xler(yl) xler(yl)

+ min max F(xl,yl) + min F(xl,yl)]
yleDy xler(yl) xler(yl)

‘Proof: For each yleDy

(1) PA(yl)(x) = al(yl)¢l(x) = al(yl)

r

"
nj-

max Fy (xl) + min Fy (xl)
Lxler(yl) 1 xler(yl) 1

1
= max F(x,,y,) + min F(x,,¥,)
2 1°71 171
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Also

= 1 (v
(2) PT,(x,y) = 5 maxD a (yq) + minD (2, (y))p -
Y155y Y155y
We combine equations (1) and (2) to obtain the de-

sired result.

If we Just restrict D to be an arbltrary compact set

in E, and F to be an arbitrary bounded function on D, then

2
with ¢l(x) = wl(y) =1

PT,(x,y) = % sup [sup F(xy,y;) + inf F(xl,yl)1
yIEDyLXIEDx(yl) Xler(yl) J

)
) + inf F(xl,yl)
x,eD, (¥4) 1

(
+ inf sup F(x

1291
yIEDykxler(yl)

The following example illustrates some of the 1ldeas

presented up to this point:

Example 2.4.5: Let D = [0,1]x[0,1] and let F(x,y) = x + y,

0, (x) = 1, v,(y) = 1.
For yleDy = [0,1]

max F_ (x) =1 + Yo, min F (x) =y

xe[0,1] Y1 xel0,1] Y1 1

= PA(yl)(x) = a;(y))e(x) = a,(y;)

_ 1
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Therefore,
3 1
max a,(y.) = = s min a,(v) =5
1
ye[0,1]1 1707 2 ye [0,1] 1 2

= PTA(X,Y) =1,

Note that in thils example the Product Tchebycheff
approximation to F 1is also the unique best uniform approxi-
mation to F by a constant? We wlll see that in general the
P. T. approximation 1s not a best uniform approximation;
However, in Chapter II, Section 7, we investigate the P; T.
approximation using sultable sequences of base functlons
{¢J}’ {wi}. We shall show that by choosing n and m properly
the P; T. approximation can be made arbitrariiy close to a

best uniform approximation.

Now o(y.) = ||F. = P,/
= max | (x+y) - (3 + )|
xe [0,1]
= L
5 .

Hence, both p(y) and A(y) = (al(y)) are continuous on

Dy, as was asserted in Theorems 2.3.2 and 2.3.6.

We now conslider an example 1in which the set D does
not possess property K, relative to the variable y and in

which both p(y) and A(y) are discontinuous on Dy.
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Example 2.4.6: Let

D= {(x,y):x=0and 0 <y <1, or 0<x <1landy-=1}.
It was shown in Example 2;2.10 that D does not
possess property K relative to either x or y.
Now, let F(x,y) = x + ¥y, ¢l(x) =1, wl(y) = 1,
Then for 0 <y, <1

Fyl(x) =0 + ¥y, =y, on Dx(yl) = {0} ,

and therefore,

For y, = 1, D (1) = [0,1]

Fl(x) = x + 1

and therefore,

Py(qy(®) = a;(1)eg(x)

al(l)

%[:max (x + 1) + min (x + l)}
xe[0,1] xe[0,1]

=3
2

Therefore al(y) is discontinuous on Dy = [0,1].
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Now, for 0 <y, <1

p(y,) = ||F, - P N
= vy - vylly,
= 0.
For Yy, = 1
(1) = [[Fy = Pyeqylly
= 3
max |[(x +1) - 5|
xe[0,1]
= L
2 .
Therefore, p(y) 1s discontinuous on D_ = [0,1].

y

Theorem 2.4.7: Let D, F and SRXPYRRRFI L 20 PYRRENY

satisfy condition P.T., and let PT, be the Product

A
Tchebycheff approximation to F on D. Then for any real
constant A, the polynomial APTA is the Product Tchebycheff

approximation to the function AF on D.

Proof: For each yeD_ let

y
n
P = I a,(y)e
A(y) 5=1 J J
be the best | -||y approximation to Fy. Then the best
||°||y approximation to AFy is

n
Ma) T I8y
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Thus the coefficlents of ¢1’°2""’¢n in APA(y)

are respectively Aal(y),xaz(y),...,Aan(y).
Let QA be the best uniform approximation to the

continuous function aJ(y) on Dy, for J = 1,2,...,n. Then

AQA is the best uniform approximation to Aaj(y) on Dy,

for J = 1,2,...,n.
Hence the Product Tchebycheff approximation to

AF 1s

n
AQ, ¢, = X X Q, ¢
A Ty

ne s

J=1

APTA.

The following example 1llustrates that the Product
Tchebycheff approximation and the unique best uniform

approximation may be distinct from one another.

Example 2.4.8: Let D = [-1,1]x[-%,1] and let

F(x,y) = x2y
¢, (x) = Liv,(y) =1
1
Then, Dx = [-1,1] and Dy = [-5,1].
= a,(y)
= 1|max x2y + min x2y
2|x [-1,1] x [-1,1]
= %[0 + y], for -% <y <0
Hy + 01, for 0 <y <1



14..}\2}1%5 e J
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Therefore,

= Q, (y)
Ay
- 1|max % + min %
2 1 1
ye["?‘,l] yE['é‘s]-]
IS
- 1
'8‘ .

The unique best uniform approximation to F on D is;
P .(x.y) = 1l|max x2y + min x2y
AxtXsY 2| (x,y)eD (x,y)eD

(]

H |
-

=

We also note that the best uniform approximation to
x° on D# = [-1,1], by a constant 1is %, and the best uniform
approximation to y on Dy = [-%,1], by a constant is %.

The product of these two constants 1is %, which 1s the

Product Tchebycheff approximation to x2y on D = DxxD by

y
a constant. This result is generalized in the following

theorem.

Theorem 2.4.9: Let D,F and SELCYERRFL FYER T PYRIRES

satisfy condition P.T., and let
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F(x,y) = H(x)G(y), on D = Dxny’

n

An = z aj*¢J and QB* be the best uniform approxi-
J=1

mations respectively to H on Dx in 01505500050, and to

Let P

G on Dy in wl,w2,...,wm;

Then, the Product Tchebycheff approximation to F on
D 1is

PT) = P,4Qpy-

approximation
Y1

Proof: For each fixed yleDy, the best |

to F = G H is
o v (yl)

Fatyy) = 801 Fpe

n
ness

aJ*G(YINJ

J=1 .

For each J = 1,2,...,n, the best uniform approximation

to the coefficient function aJ*G on Dy is

*
a,*Qpy-
Hence

n
= *

n
" 1,530 | Qe

= PpuQps
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We now consider a special case for which there 1s a
finite algorithm to find the Product Tchebycheff approxi-

mation.

Corollary 2.4.10: Let D = [-1,1]x[-1,1] and let F(x,y) = x"y"
n-1

wl(y) =1, w2(y) = yJ°°'s wm(Y) = ym-l°
Then, the Product Tchebycheff approximation to F on

D 1is

PT,(x,y) = (21T (x) - M (2 (y) - y™)

where 'I'n and Tm are the well-known Tchebycheff polynomials

defined by
T, (x) = cos(k cos™* x), k= 1,2,...

Proof: The best uniform approximation to x? on Dx = [-1,1]
is 21'nTn(x) - xn, and the best uniform approximation to

y® on D = [-1,1] 18 2*™™1_(y) - y™.

y
Hence, we apply Theorem 2.4.9 to achieve the desired

result.

Theorem 2.4.11: Let D, F and IR Y RERFY PP PP PYRRRI o

satisfy condition P.T. and let

F(x,y) = H(x) + G(y) on D = Dxny

Let 01(x) = 1 and wl(y) = 1 (or equivalently any non-

zero constants), and let



n n
= * = #* *
e DAty et Taneg

and QB* be the best uniform approximations respectively to

H on Dx in ¢, = 1, $oseeesty and to G on Dy in

‘pl = lnggoo.,wmo
Then, the Product Tchebycheff approximation to F on
D 1s

PT) = Pyy + Qgu-

Proof: For each fixed yleDy, the best | ly approximation
1

to the function Fy defined by
1

Fyl(x)

H(x) + G(y;)

is
PA(yl) = Ppy *+ G(y,)

n
a.®* + G(y,) + T a,%¢,.
1 1 j=2 J 7

For each J = 2,3,...,n the best uniform approximation
to the constant function aJ* on Dy is aJ* itself. Also,
the best uniform approximation-to the coefficient function

»
a,* + G(y) on Dy is

Hence,
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The following counter-example illustrates that it is
necessary to include both a non-zero constant as one of
the base functions ¢1’¢2""’¢n and another non-zero con-
stant as one of the base functions Vis¥oseees¥ps in the

hypothesis of Theorem 2.4.11.

Example 2.4.12: Let D = [1,2]x[1,2] and let

F(x,y) = x +y
¢1(X) = X
v (¥) = L,u,(y) = vy.

Note that ¢l(x) = x 1s a trivial Tchebycheff system
on Dx = [1,2] since for each real a # 0, ax = 0 has no
solutions in [1,2].

Assertion: The best |

| approximation to F
Y1 Y1
defined by

F = +
yl(x) X yl

is

= e
PA(yl) (1+3yy)¢;

for each fixed yleDy = [1,2].

Proof: For each yle[1,2]

2 _ 2
Fyl(X) - (l + §yl)x = X + yl - (1 + B—yl)x

2
= yl(l - § X),

which 1s a strictly decreasing function of x.



2 =
yl(l - §'X) =

Therefore,

2 - - 2
||Fyl - (1 + 3yl)qslllyl max. IFy (x) = (1 + 3yl)x|

To decrease the norm of the error we must find a

polynomial axX, which 1s negative at x = 1 and positive at

x = 2. However, a*l < 0 = o < 0

= a2 < 0. q.e.d. (assertion)

The best uniform approximation to the coefficlent
function 1 + %y, on Dy by a polynomial of the form a + by
is 1 + %y itself. Therefore,

PT, (x,y) = (1 + %y)x.

Now the best uniform approximation to x on Dx by a

polynomial of the form agx 1s
Pyu(x) = x,

and the best uniform approximation to y on Dy by a polynomial

of the form a + by is '

QB'(y) =Y.

wy ¥
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Therefore,

Pre(x) + Qpu(y) = x +y

# (1 + %y)x = PT,(x,¥).

Similarly 1f we let F and D be as above and let

01(x) = 1, ¢5(x) = x
v =y
then we can show that the Product Tchebycheff approxi-

mation to F on D 1s PT, as deflned by

A
PT,(x,y) = (l+gx)y
AVTS 3

#x +y

Section 5: The First Product
Tchebycheff Algorithm

Most best uniform approximation problems require an
infinite algorithm for their solutions. One of the more
frequently used procedures 1s the Remez exchange algorithm,
sometimes referred to as Remez' second algorithm.

We precede the description of this procedure with a
definition and theorem which form an integral part of the

underlying theory.

Definition 2.5.1: Let D be a compact set in E, and let

1
FeC(D). Let 9130550 00s0y be a Tchebycheff system of

continuous functions on D, and let |

| be the uniform

norm on D. Then x,eD 1s called a positive (negative)
n

extremal or an E + (E-) point for F - PA = F - I ai¢i
i=1
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1f F(x) = Py(xq) = ||F - P, || (F(x1) = Py(xq) = = ||F = P, ||).

Theorem 2.5.2: PA 1s the best uniform approximation to F

on D if and only 1f there are n+l points

in D

<x <...<x

X1<%5 n+l

which are alternately E+ and E- points for F - PA‘

Note that this characteristic point set need not be
unique.

The Remez exchange algorithm 1s an iterative pro-
cedure which seeks to find a set of n+l alternating

extremals.

Remez Exchange Algorithm 2.5.3

(o) (o) (o)
(1) Choose X, <X, <eelXold in D as an initial

guess for a set of n+l alternating extremals.

(2) For xl(k)<xéxk)<...<x(k) in D solve the linear

n+l
system
(k) J (k) _ (k) =
PA(k)(xJ ) + (-l) o] - F(XJ ), J - l,2,..-,n+l
for A(k) = (al(k),az(k),...,an(k)) and p(k).
If ||F - P (k)ll = p(k), then {xj(k)} is an extremal
A

point set for F - P (k), and therefore by Theorem 2.5.2
A
P (k) i1s the best uniform approximation to F on D.
A

If ||F - P (k)|| > p, then we choose
A

X (k+1) < x (k+1)

(k+1)
1 > in D

< L I <
xn+l
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such that

(k+1)

(1) each x s J = 1,2,...,n+l 1is a relative
J

maxima or minima of F - P (k)
A

(?) for some x .. {xd(k+l)}
IF(xpay) = PA(k)(Xmax)| = lF - PA(k)l|
and  (3) senlr(x, (1)) - PA(k)(xJ(k+1))]
= 1 sgnlr(n ) e g BT

J = 1,2,...,n+1 .

Repeat step (2).

The convergence of this procedure 1s outlined in
Remez (17), and proved in Novodvorskii and Pinsker (13).
Verdinger (26) shows that if F is differentiable then the
rate of convergence is quafratic.

In practice some € > 0 1s prescribed and the

iterations are terminated when

(k)

< € .

F-P -
Il A(k)ll P

Fraser and Hart ( 6 ) suggest that it 1s often ad-
vantageous to choose the extrema of Tn’ (the Tchebycheff
polynomial of degree n) for the set {xJ(O)}, when D = [-1,1],

or equivalently let



when D = [a,b] .

The de la Vallée Poussin algorithm for finding the
best uniform approximation 1s described in Rice (18) as
follows:

Let X = {xi:i=l,2,...} be a dense subset of the

compact set D, and let

Xm = {xi:i =1,2,...,m}CX,

We defline the density of Xm in D by

§ = max o.[x;X ]
m xeD 1 m

Let PA be the best Tchebycheff approximation to F

m
on Xm, and let PA* be the best Tchebycheff approximation
to F on D.

One would hope that

Lim P, = P, .
mre P A

For a restricted class of functions, Rice establishes

the following stronger result.

Theorem 2.5.4: Let D be a compact set in E, and let

FeC(D). Let 01305500050, be a Tchebycheff system of

continuous base functions on D, and let F and ¢1’¢2""’°n

satisfy a Holder Condition with exponent a. Then,
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II PA* - PAm || = Ké; 3

Where K is a constant which depends only on F and {¢i}y and

||.|| is the uniform norm on D.

Now if Y 1s any subset of D, we define the density of

Y in D to be the number

- max inf o(x;y)
Y xeD yeY

Rivlin and Cheney (20) prove the following more general
theorem:

Theorem 2.5.5: Let M be a finite-dimensional subspace of

C(D) and let F be an element of C(D) which has a unique best
approximation P,s in M. For any YED let P, denote a best
Y

approximation to F from M on the set Y. Then as GY*O, PA +PA*
Y

uniformly.
We can now define the first Product Tchebycheff algo-
rithm.
(1) Choose some finite point set YCDy.
(2) For each yeY, use the Remez exchange algorithm
to find PA(y) the best ||.||y approximation to
Fy'on Dx(y).
(3) For each § = 1,2,...,n use the Remez exchange

algorithm to find QAJ the best uniform approxi-

mation to aj(y) on the set Y.
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M 3

Then PTA =J_1QAj ¢J is the Product Tchebycheff approxi-

mation to F on D = {(x,y) €D: yeY} .
Now given €>0, we see by Theorem 2.5.5 that we can

choose Y in Dy such that the density of Y in Dy is sufficiently

small " to have

max | Q, (y)-A, (y) | < e / max | ¢,(x)]|
yeDy AJ AJ xeDy J

For J = 1,2,...,n.
Hence,

max IPTA(X,y) - PTA(x,y)I
(x,y),eD

n
= max | & [Q, (¥) - Q, (y)] ¢,(x)
(x,)eD|J=1 Ry AJ J

>
Therefore, 1f Y 1s chosen so that the density of Y

in Dy is sufficiently small then PT provides a good estimate

A

for PTA.

A program utilizing this algorithm was written for
the Control Data Corporation 3600 digital computer, with the
following restrictions:

(1) Y = (yi: i=20,1,...,100}

(2) For each yyeY, the corresponding set Dx(yi) was

a closed bounded interval.

(3)  ¢1(x)

vy(y)

1, ¢2(X)

|
»4

Xyeoey ¢op(x) =

1, ‘b2(Y) Yaeoey wm(y) =Yy .

The norm of F - P&A was estimated by N* where,



66

D_. = [a,b] , h, = b-a
X 1 Too
D = [ec,d] , h, = d-c
y 2 100
* .
and N "= max |F(x,y) - PTA(x,y)l
x=a,a+hl,...,b
y=c,c+h2,...,d

In all cases single-precision arithmetic was used.
Some of the results obtalned are described below.

I. F(x,y) = 1 D =[0,1] x [0,1]
X+ty+1 ° e

Y

{0.00,0.01,0.02,...,1.00}

D=1[0,1]xY

n=3,m=3

PT,(x,y) = .0315641979 x°y° - .3075877279 x°y
+ .3102885292 x°
+ .3689560988 xy° + .2346341978 xy
- .7160087106 x
+ .3348278992 y° - .8141539737 y
+ .9855581665 ,
N* = .09333756560.
II. F(x,y) = __1 D= [0,1] x [0,1]
x+y+10
Y = 0.00,0.01,0.02,...,1.00

O»
\

= [0,1] x Y.

(a) n=2,m-=2



67

PT,(x,y) = .009090909094 xy - .01283994207 x
— .009065006705 y + .09978401812 ,
N* = .003965014850.

(b) n=3,m=3

.002546904012 x°y° + .002313865341 x°y

PT, (x,y)
+ .0005496653156 x°
+ .03203501519 xy° - .02999156816 xy
- .005997745788 x
+ .0008660139467 y° - .009951005503 y
+ .09999485663 ,
*

N = .003938859616.

III. It was noted in example 2.3.8 that if
F(x,y) = /x
¢1(x) =1, ¢2(x) = X
and D = {(x,y): Ogy <1 and O0¢x<l -yl ,
Then PA(y) is not well-defined at y = 1.
We will approximate F on D as follows:

Let D = Dl U D2 where

)
L}

1 {(x,y): .99 <y <1 and O <1l -y}

A
»
A

o
"

{(x,y): 0 sy £ .99 and O

A

x £1 -y}
"g‘[ O, (see Figure 2.5.1).

b,

L oo



i (g
:
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We approximate F on D, by the constant

1

max /X O+ min Yx
xe[0,.01] xe[0,.01]

1
>
5 [.1+0]=.05,

and we approximate F on D2 by a product Tchebycheff approxi-

mation as Follows:

Y {0.00,0.0099,0.0198,0.0297,...,0.99}

D

{(x,y): yeY, 0<sx 21 - y}
n=2,m-=2
PTA(x,y) = - 1.010101010 xy + 4.539406039 x
- .1136363637 y + .1365047380 ,

N* = .1365047380

Section 6: The Revised Product Tchebycheff Algorithm

The Remez exchange algorithm described in 2.5.3 seeks
to find a set of n + 1 alternating extremals which charac-
terize the unlque best uniform approximation. If we desire
to find the Product Tchebycheff approximate we must find
PA(y)’ the unique best uniform approximation to Fy on Dx(y),

for a number of distinct values of yeDy.

In this section we shall show that for yl,y2eDy, a
set of characteristic extremals for F - P will often
¥y, A(y,y)
be a good initial guess at a corresponding set for Fy -
2

PA(y2),whenever'&zis sufficiently close to yq-
We shall assume throughout the remainder of this
section that D,F and ¢1, ¢2,..., ¢n, wl, ¢2,...,wm satisfy

condition P.T.
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Definition 2.6.1: Let R be the continuous function defined

on D by
R(x,y) = Fy(x) - PA(y)(x)
Then p(y) = max |IR(x,y)]| .
xeD (y)

Definition 2.6.2: For each yeDy we define

E(y) = {xeD (y): [R(x,¥)| = p(y)} ,

the set of all extremals for F - P
y A(y)

E(y) 1is a non-empty compact subset of Dx(y).

Definition 2.6.3: For each yeDy and each € > 0 we define

E(y),

(whereo[x;Y] = inf o[x;y])
yeY

{xer: o[x;E(y)] < €}

Theorem 2.6.4: Given ¢ > 0 and yleDy, there exists a

§ = G(e,yl) > 0 such that y2eDy and
ly, = vyl <8
imply that

E(y,) CE(yy),

Proof:

Case 1: E(yl)e ) Dx(yl)-
2

Then for each xler(yl)
. £
olx;E(y ] > 5 .

By property K, there exists a 6§ = 6(e/2) > 0, such

that yzeDy and
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|y2 = yll <
imply that for each x2er(y2) there exists a corresponding
xler(yl) satisfying
€
le - x2| <3 .
This implies that
olx,53E(y)] = x5 = xq| + olx3E(y,)]

< E + =

£ -
2 2 € .
Therefore, D _(y,) C E(y;)_
Then since E(y2)<I Dx(yz)

we have Yo eDy and
|y2 - yl' <8
imply that

E(y,) CE(y),
Case 2: E(yl)e‘¢>Dx(yl)
2

or equivalently Dx(yl) - E(yl)e is a non-empty compact set.

2

Let M = M(e,y,) = max |R(x,yl)| < plyy).
xer(yl)—E(yl)

€

2

Then by the uniform continuity of p(y) on Dy, since
p(y1)-M > 0 there exists a 6, = 6, (°(y%)‘M)'> 0 such that
2

D. and
o€ y

|y2 - yll < 51
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imply that

p(yy) > olyq) -("(yl)'m) = oy )M

2 2
Now by the uniform continulty of R on the compact

set D, there exlists a 62 = 62 (Eil%l:ﬂ) > 0 such that

(x1,¥1)5(x5,¥2) €D and ol(xy,y7); (xp,¥5)] < 85
imply that

IRGguvp) | < RG]+ 2D

Also, 1if x,eD (y,) - E(yy)_

then °1[x2’E(y1)] 2 €. Then xler(yl)

and
€
o9pb(x15¥1)5 (xp,¥5)] < 3

imply that

r|m
.

|x) = x,] <

Therefore,
o > . - -

olx3E(yy)] 2 olx,3E(y;)] |xl x2|

€
> € - é_ =

r|m
-

which implies that x eD (y;) - E(y)
2

Now if we choose &5 = min (62,5) > 0

then by property K, there exists a

§) = Gu(63) > 0, such that yzeDy and

|y2 = yl' < Gq
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imply that for each xzer(y2) - E(yl)E

there is a corresponding xler(yl) such that
ol(xy,¥7)35 (x5,¥,5)] < 83

Therefore, xler(yl) - E(yl)g which implies that

2
|R(xl,yl)| £ M. Thus,
~-M
[ROxgsv) | < IR,y |+ 200
< M + p(yp)-M
2
- p(y,)+M
2

If D (y,) - E(y;)_ = &, then
E(y,), DD,(y,) DE(y,), and the proof is complete.
If D, (y,) - E(y), + §, then we
choose § = min (61’6M) > 0. y2eDy and
ly, = vyl <6

imply

(1) p(y,5) > oy )+M
2

and (2) For each x2er(y2) - E(yl)e

|R(X2:y2)l < p(yé)+M< D(y2) ’

or equivalently



‘““l!ﬂ._ - »..rh.p-?u«i!ﬁl”‘
. . .-
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Then since E(y2)c: Dx(y2) we have

E(y,) CE(y)),

We now consider the implications of theorem 2.6.4:

Example 2.6.5: Let D = [0,4] x [0,2]

and let F(x,y) = ysinmx, for 0 £y <1

ysinmrx, for 0 £ x £ 1 and 1 <y < 2
sinmx, for 1 < x £ 2 and 1 <y = 2.
Let ¢l(x) = 1.
Then for 0 Sy 21
Ilelly =y, and Fy(?) T Fy(2) Fy(Z) Fy'2) y.

Therefore the best uniform approximation to

Fy by a constant is 0 and

E(y) = (3, 3, 2, L} .

Also for 1 <y 2

F, [

y 'y

1A

y, and Fy‘%‘= - Fy(%)= ye

Therefore the best uniform approximation for

Fy by a constant 1s 0 and

E(y) = {%, %} See Figure 2.6.1.
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Figure 2.6.1
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5Y - 7] -
Note that Fy(E) - -7 (Z) = 1 < v,
which implies that g and % are not extremals for
F_-P F

y ACy) ~ Yy

Now if we choose ¢ = % and y, = leDy = [0,2],

then by theorem 2.6.3 there exists a 6§ = 6(%,1)> 0
such that y25[0,2] and
|y2 = ll < 8

implies that all extremals of F - P = F
P v, T ALy T Ty,

1 = (& 2
are within 5 of E(1) = {5, 5

rojlw

b 3

N
.-

Any choice of 6 > 0 will do. In particular we

rojw
L]

can choose 6 = 1. Consider Yo =

=
w

3) - (L 3 _ 5
B3] = G5 PCEW = 5o 50 50 3

ST

Therefore, each point of E(%) lies within % of
some point of E(%). However there 1s no point of E(%)

which lies within %

5 7 1
of 5 or > which belong to E(2).

This can be explalned by the fact that while
1
|y2 = yl' = |% = ll < G(S:yl) = 6(5, l) =1

we can not have

| .

rojw

1 1
lyl - y2| = Pl < 6(€,y2) = Gl—9
However y25[0,2] and

| <3
2

rojw

lys - vyl = lvg -
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imply that
= (1 3 3\ -
E(yy) = (5, 3ICE(3] =

| -

"]
- ojw

Therefore, we can choose 6(%, %)

Corollary 2.6.6: Let ¢l(x) =1, ¢2(x) = x,...,¢n(x) = x"
and assume that
(1) a™! P (x) % 0 for all y,eD

TR 1y

and for all anx(yl).
Then there are n + 1 continuous functilons

xl(y),x2(y),...,xn+l(y), such that
xl(y), <x2(y) <.l < xn+l(y)
is the set of n+l characteristic extremals for Fy - PA(y),

for each yeDy.

Proof: (1) implies that Fy - P ) has exactly n + 1

A(y
extremals, for each yeDy. We apply theorem 2.6.4 to

complete the proof.

More generally 1f Fu - Py(oy has exactly n + 1

extremals for each y Dy, then the conclusion of Corollary
2.6.6 holds.

Theorem 2.6.4 and Corollary 2.6.6 suggest that for
Yo and v sufficiently close, a set of n + 1 alternating

extremals for Fy - PA(y might be a good starting point

1 l)

for the Remez exchange algorithm to find PA(y )
2 L]

1

3
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A program incorporating this modification was written
for the Control Data Corporation 3600 digital computer.
Some of the results obtained are described below.
I. F(x,y) = sinxy,D = [0,1] x [1,2]

Y

{0.00,0.01,0.02,...,1.00}

b

[0,1] x Y
n=2,m=2
PTA(x,y) = - 841470984 xy + 2.135441294 X
+ .1655503163 y - .163795902
N* = .5030052628
Execution time for revised algorithm
1 minute 59.159 seconds.
This problem was also solved using the flrst algorithm as
described 1n sectlion 5. The execution time for the filrst
algorithm was
2 minutes 8.249 seconds.
II. The following two examples were run using both the
first Product Tchebycheff algorithm and the revised Product

Tchebycheff algorithm.

1

F(x,y) = m s D = [O,l] [0,1]

Y

{0.00,0.01,0.02,...,1.00}

D =1[0,1] x Y.
See problems II(a) and II(b) at the end of section

5, for the corresponding PTA(x,y) and N¥.
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(a) n=2,m=2
Ixecution time for first algorithm
1 minute 43.629 seconds.
Zxecution time for revised algorithm

1 minute 12.82% seconds.

(b) n=3,m=3
Execution time for first algorithm
1 minute 12.587 seconds.
Execution time for revised algorithm

1 minute 5.956 seconds.

Section 7: The Degree of Product
Tchebycheff Apprroximation

Definition 2.7.1: Let F, || « || be a normed linear space

with base field R. Then a sequence {Qj} in E} is called
closed in E} if and only if for each Fe'g- and arbitrary

€ > 0 there exists an Integer n > 0 and a corresponding

polynonial
n
Pa T B e
such that
IF - PA” < e .
Remark 2.7.2: (p5} 1is closed in J if and only if the

set of all finite linear combinations of the Oj's is a

dense subset of E} .
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Remark 2.7.3: By Welerstrass' First Approximation Theorem

we know that
{l,x,xz,...}

is a closed sequence in C(D).

Remark 2.7.4: By Welerstrass' Second Approximation Theorem

we know that
{l1,sinx,cosx,sin2x,c0s2x,...}

1s a closed sequnece in C the linear space of all real-

2n?
valued continuous functions such that
F(x+2m) = F(x) for all erl .

Theorem 2.7.5: For each n > 0 and m > 0 let D, F and

¢1,¢2,...,¢n,wl,w2,...,wm satisfy condition P.T. and let

{¢J};=l and {wi}z=l be closed sequences 1n C(Dx) and C(Dy)
respectively.

Then given € > 0 and F €C(D) there exists an
N = N(¢) and an M = M(e,n) for each n > N(e), such that

n>Mandm > M imply that

||F—PTA|| < e
where PTA is the Product Tchebycheff approximation in
91580500 sV Vs,V 5 and ||-]] is the uniform

norm on D.

Proof: max |F(x,y) - P (x) |
T (x,y)eD Ay)
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max max F. (x) - P (x)
yeD, [;er(y) | vy A(y)E I]

max p(y)
D
yeDy

By the uniform continuity of p(y) on Dy, given
e > 0, there exists a 6§ = §(e/4) > 0, such that yl,y2eDy and
ly, = y,l <6

imply that
p(yy) < o(y,) + e/h
Since Dy 1s compact we can choose a finite set
Y, = {yl,yz,...,yk}(: Dy
such that for each yeDy, there exists a corresponding
yieYk satisfying

ly - vyl < 8(e/8) .

Thils implies that

p(y) < olyy) + /4
Now since {¢J} is closed in C(Dx)’ given € > 0,
there exists an N, = Ni(e/u) such that for n > N,
p(yi) < e/4, for 1 = 1,2,...,k.

Choose N = max (Nl’N2’°"’Nk)’ Then n > N
implies that

p(yi) < e/l for 1 = 1,2,...,k.
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Then for each yeDy there exists a corresponding

yieYk such that

p(y) < p(yi) + e/4

E ,E _ E
gty T3
Therefore n > N 1Implies that
max |F(x,y) - P (x)] = max o(y) <=
(x,¥) Ay) yeDy e

Now since 915855+++50, 1s a Tchebycheff set on

Dx’ they are linearly independent there. Therefore

I|¢J|| max [o,(x)| > 0, for § = 1,2,...,n,

xer
By the closure of {wi}in C(Dy), given ¢ > 0,

there exlsts an

M, =M (e/2n||¢J||), such that m > M, implies that

J J J
max Ia (y) - Q, (y)| < €/2n||¢J||
y Dy J
where QA i1s the best uniform approximation in
J
wl,wz,...,wm to aJ on Dy.
Choose M = max (Ml’MZ""’Mn)'
Then m > M implies that
n
max |P (x)=-PT,(x,y)| = max | £ a,(y)e,(x)- ZQ (¥)o,(x)|
(x,y)eD ALY) AT I L A A AP Padae
= max (a (y) - QA (¥)) ¢4 (x) |

(x, y)eD Jj= l
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n )
< max a,(y) - Q, (y)] ¢,(x)
J=1 (x,y)eD {2 Ay IR
n
< I max |aj(y)-QA (y)| + max |¢J(X)|
J=1 yeD J xeD
y X
T (esanllo I [le,l] = &
< z € n ¢ ¢ = =
4 J st =z

Hence n>N and m > M imply that

| |F - PT =  max |F(x,y) - PTA(x,y)l

Wl

(x,y)eD
< max |F(x,y)-P (x)|+ max|P (x)=PT,(x,y)
(x,y)eD Aly) (x,y)eD AY) A |
€
< 5 + 5 = =,

Corollary 2.7.6: Under the hypothesis of theorem 2.7.5 given

e > 0 and FeC(D) there exists an N

N(e) and an M = M(e,n)
for each n > N(e), such that n > N and m > M imply that

PT, - P*|| < ¢
A
where PTA is the Product Tchebycheff approximation and P*

is a best uniform approximation (h1¢1,¢2,...,¢n,wl,¢2,...,wm)

to F on D.
Proof: Let N = N (e/2) and M = M(e/2,n) correspond to the
N and M in theorem 2.7.5. Then n > N and m > M imply that

*
||pT, - || < [IF - PT,|| + ||F - P*[|
<
2 ||F - PT, ||

< 2 % = ¢
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At the present time there 1s no known effective scheme
for computing best uniform approximation to a function of two
varliables. Present research 1s being directed towards schemes
somewhat like the Remez algorithm. A good 1nitial guess 1is
needed if such an iterative procedure is to converge, and if
the computation time 1s to be reasonably short. The previous
results (i.e. Theorem 2.7.5 + Corollary 2.7.6) suggest that
in certain cases the Product Tchebycheff approximation may
be a good 1nitial guess to a best uniform approximation.

Section 8: Approximation on a Domain
Which does not Possess Property K

The Product Tchebycheff approximation as defined 1in
Chapter II, Section 4, applies only to sets which possess
property K. We shall briefly discuss the problem of approxi-
mation of functlions on certain sets which do not possess
property K.

Let D be a set which does not possess property K.
Suppose there is an invertible transformation T which maps
E2 into E2, such that the set T(D) possesses property K.
If FeC(D) then FT-laC(T(D)). Suppose also that T(D), FT
and °1’¢2""’¢n’w1’w2"'”wm satisfy condition P.T..
Then FT'1 has a Product Tchebycheff approximatlion PTA
on T(D).

We can use PT, to approximate F on D by defining

A

P(x,y) = PT, [T[(x,y)]] .
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Example 2.8.1: Let D be the shaded area in Figure 2.8.1.

/

2 |
3

XYy

4
3

Figure 2.8.1

Then D does not possess property K.

Let T : (x,y) =~ (xl,y}) be the rotation of the

x and y ax&s counterclockwise through an angle of U45°,
Then Tl(D) possesses property K.

xt = V2 (x+y), yl = Y2 (y-x)
2 2

-1
Therefore 'I‘1 : (xl,yl) + (x,y) where

1 1 1,.1
x = Y2 (x7=y7), y = /2 (x7+y7).
-2 ’ 2
For this set D we shall consider the approximation of
F(x,y) = x +y.
Then FTIl(xl,yl) = F 1% (xt-y1), 1% (xt+yd)

= /2 (xt-yh) + /2 (Pl
2 2

/3 xi on Tl(D).
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Let ¢l(xl) =1, ¢2(xl) = x!

wl(yl) 1.

Then we can easily see that the Product Tchebycheff

approximation for FT~1 on Tl(D) is
PTAl(xl,yl) = /7 x1 .

Therefore we approximate F on D by

PTy  (Ta9))

Pl(x,y)

PT, (12 (x+y), /2 (y-x)
12 2

=X +Yy.

V2 (/§ (x+y)
)

Now let T2:(x,y)+(x",y") be the rotation of the
x and y axis clockwise through an angle of 45°., Then T2(D)

possesses property K (see Figure 2.8.2).

v

Figure 2.8.2
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x" = lz (x_y), y" = ﬁz (x+y)
2 2

1

Therefore T, : (x",y") » (x,y) where

2
x = /2 (x"+y"), y = /2 (y"-x")
2 2

Then FT;l(x",y") F ﬁg (x"+y"), ig (yn_xn)

lz (x"+y") + iz (y"_xn)
2 2

~

/2 y" on T,(D).
Let ¢, (x") = 1, o,(x") = x"
vo(y™) = 1.
Then the best uniform approximation to
FTL.(x") = /2 y" on Ty(D),u(y") is
PA(y")(x") = /2 y".
Therefore the Product Tchebycheff approximation to

-1

FT2

on T2(D) is

S

PTA (x"’y")

max Y2 y" + min V2 y"
2 y"e(

72,272 y"dp2,272)

=1 2 L -
=5 [ 3 + 3 ] 1

Therefore we can approximate F on D by

Po(x,y) = PTAZ(th(x,y)])

PTAz(fg x9), 12 (x+y))

1 .
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This example 1illustrates that this technique may
possess the undesirable property of lacking a unique solu-
tion. However we can specify the transformation used and
we can bridge the communication gap.

There are a few other difficulties which we may -
encounter. It may prove difficult to find a transforma-
tion T such that FT_1 will have a Product Tchebycheff ap-
proximation on T(D). Also, the resulting approximation
PT,T 1s not in general a polynomlial. However if T 1is a

A

linear trahsformation, then PT,T is a polynomial and thus

A
possesses the desirable properties of a polynomial approxi-

mation.
Section 9: The Product Tchebycheff Approximation

to a Contlnuous Function of Three
or More Varlables

We now extend the Product Tchebycheff approximation
to continuous functions of three or more variables. For
ease of notation we shall restrict our aPtention to the
three variable case. The further extension is straight-
forward.

Let D be a compact set 1in E We define the follow-

30
ing compact sets.

Dx’D »D the projJections of D onto the x,y and z axes

y’>z?

respectively.
Dz(xl,yl), the projectlion of the intersection of the set

D and the line x = X1, ¥ =¥, onto the z - axis.
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D the projectlon of D onto the x,y plane.

X,y
Definition 2.9.1: Let FeC(D). Then for each (xl,yl) e D y
L]
we define the associlated function Fxl’yl on Dz(xl,yl) by
Fxl’yl(Z) = F(xlsylsz)o

Let ¢1,¢2,...,¢n be a Tchebycheff system of con-
tinuous functlons on Dz.

Definition 2.9.2: For each (xl,yl) € Dx y

3

such that Dz(xl’yl)

contains n or more points, Haar's theorem shows the exlistence
of a unique polynomial

n
P = I
A(xl’yl) j=l

aj(xl,yl)¢3 ’
where A(xy,y,) = (al(xl,yl),a2(xl,yl),...,an(xl,yl)) e E ,
which 1s the best uniform approximation to the continuous

function F on its domain of definition D_(x,,y,).
X15¥7 z'71°71

We now extend the definition of property K to DC:E3,

and we can show that with the addition of this property A(x,y)

1s contlnuous on D .
X,y

Definition 2.9.3: The compact set D in E3 1s saild to possess

property K, relative to the variables x,y if and only 1if
given € > 0, there exists a 6§ = 6(e ) > 0 such that

(xl’yl), (X2,y2) € Dx’y and

°2[(x1’y1)5 (x2,y2)] < 8
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imply that for each zleDZ(xl,yl) there is a corresponding

z2eDz(x2,y2) satisfying

|z2 - le < €

Definition 2.9.4: For each X159,

) in b let
X,y

]

p(x,,y,) = inf Sup |F (z) = P,(2)] .
1°71 AcE_ zeD (xq,y;) *1°%1 A

The followlng two theorems are extensions of theorems
2.3.2 and 2.3.6. The proofs are omitted since they do not

incorporate any new concepts.

Theorem 2.9.5: Let D be a compact set in E3, which possesses
property K, relative to x,y and let °l’¢2”"’¢n be a Tcheby-
cheff system of real-valued continuous functions on Dz. Let

FeC(D). Then p 1s a continuous function on Dx v’
]

Theorem 2.9.6: Let D, F and ¢1s055++.,0 satisfy the hy-

pothesis of theorem 2.9.5 and let (x ) contains n or

1291
more points. Then A(x,y) is continuous at (xl,yl).

Corollary 2.9.7: Under the hypothesis of theorem 2.9.6

al(x,y),az(x,y),...,an(x,y)‘as defined in 2.9.1 are all

continuous at xl,yl).

Now as in Section 4 we are motivated to seek poly-
nomial approximations to each of the continuous functions

81585500458 In this case we will approximate each
aj, J=1,2,...,n by a corresponding Product Tchebycheff

approximation of degree two.
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Definition 2.9.8: We will say that the compact set

DCZE3 and 61,62,..,,ek,¢l,w2,°.Q,wm,¢l,¢2,...,¢n satisfy

condition P.T. relative to x,y if and only if
(1) D possesses property K relative to x,y,

(2) ¢l’¢2"°"¢n is a Tchebycheff system of

continuous real-valued functions on Dz,
(3) For each (xl,yl)er’y, the set Dz(x,y) con-
tains n or more points,

(4) The compact set D CE, and ¢

x’y 1,62,0l0’ek’

wl,w2,...,wm satisfy condition P.T. relative

to x.

Definltlon 2.9.9: Let the compact set DCZE3 and 81585500058,

YesVosroesVsbysdsseeesdy satlsfy condition P.T. relative

to x,y. For each J = 1,2,...,n let QA be the Product
J

Tchebycheff approximation to the continuous function a, on

J

Dx,y relative to x, (with base functionsel,GQ,...,ek and

wl,w2,...,wm).
Then the polynomial

n

PT, = I Q, ¢
A= Ay

i1s called the Product Tchebycheff approximation to F on D
relative to x,y.
Note that thls approximation depends on the order

in which the varilables x,y,z are specified. As was illustrated
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in example 2.4.3 two distinct orders may produce two dis-
tinct Product Tchebycheff approximations.

We conclude this section with a simple example which
i1llustrates the 1deas we have presented.

Example 2.9.10: Let D = [0,1] x [0,1] x [0,1], and let

F(x,y,2) = x +y + z
el(x) =1, wl(y) =1, ¢l(z) =1,
Then for each (xl,yl)e[o,l] x [0,1], we approximate

F zZ) = x, + + z
xl,yl( ) 17

on [0,1] by its best uniform approximation
P

a(xy,yp) (B T 2 xy e (2)

= a;(xy,y,)
= 1
RS BRSNS
Next we approximate al(x,y) =x +y + % on

(0,1] x [0,1] by its Product Tchebycheff approximation

relative to x,

Qu (x,y) =

6. (x)v,(y)
1 1 1

jw  Pjw

Therefore, the Product Tchebycheff approximation
to F on D relative to x,y 1is

PT,(x,y,2) = QAl(x,y)¢l(x)

|
w






92

Section 10: Conclusion

Let w(x,y) be a positive continuous weight function
on D. Then we defilne

p(y) = inf Sup |w(x,y) (F (x) - PA(X))I
AeEn xer(y) y

to be the deviation of a best welghted approximation to
Fy on Dx(y). We can show that extensions of theorems 2.3.2
and 2.3.6 hold for this more general problem. Therefore we
can extend the Product Tchebycheff approximation to a
weighted Product Tchebycheff approximation.

This thesis can also be extended to arbitrary norms
and to the approximation of a function and its partial

derivatives.
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