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ABSTRACT

THE APPLICATION OF SPECTRAL METHODS IN THE ANALYSIS

AND INTERPRETATION OF GRAVITY DATA: A CRITICAL STUDY

By

Robert David Regan

Gravity field data can be properly considered as probabalistic

data or one outcome of a stochastic process. An essential assumption

in the spectral analysis of such data is stationarity. Although

gravity data are shown to be nonstationary the objectives of spectral

analysis of these data obviate the requirement of stationarity.

The transformation of involved gravity anomaly expressions such

as those of the two-dimensional and three-dimensional prisms are easily

calculated by means of a general transformation formula. The mathe-

matical simplicity of the theoretical transforms of these and other

ideal gravity anomalies (deterministic data) has distinct interpretational

advantages over the more complex spatial domain equations. Despite

these advantages, the finite length of practical gravity data precludes

the direct application of the frequency domain equations. Calculation

of theoretical transforms of segments of ideal anomalies is not feasible

and a profile length of approximately six times the depth of the body

is required for the finite transform to approximate the theoretical

transform.

An alternative spectral interpretation method, that is not as

restricted by data length, is based on the convolution of the transform

of the two-dimensional prism gravity anomaly with the rectangular and

Bartlett spectral windows.
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INTRODUCTION

The use of spectral techniques in the analysis of gravity data

has greatly increased in the last few years. Transformations of

theoretical anomalies and raw field data have indicated distinct

advantages in the use of the frequency domain. The mathematical

simplicity of the frequency domain equations for theoretical anomalies

provides interpretational advantages over the more complex spatial

domain expressions. Determination of frequency content as an aid in

the design of filters, and ease of continuation calculations are among

the advantages gained in the transformation of gravity field data.

However, the transformation techniques employed in these types of

analyses are based on theoretical assumptions that impose limitations

on practical data analysis.

In general, two distinct limitations arise in practical spectral

analysis. First, in the case of deterministic data (e.g., isolated

gravity anomalies) the finite length of data necessitates the use of a

data window to meet the Fourier transform requirement of infinite data

length. Second, transformation of probabalistic data (e.g., gravity

field data) is based on the Wiener-Khintchine theorem that requires the

data be stationary, i.e., the statistical properties are time (space)

invariant. As is the case with deterministic data, a data window (lag

window) is usually employed in this transformation to satisfy the

requirement of infinite data length.

l
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Some attempts have been made to obviate these requirements,

such as the pseudo—power spectra suggested by Fraser, gt a1, (1966).

However, the usual methods are, in the case of deterministic data, to

assume infinite data length and, in the case of probabalistic data,

to assume stationarity. The excellent papers by Odegard and Berg

(1965) and Agarwal (1968) illustrate the use of these assumptions in

gravity data analysis. The Fourier transformation of theoretical

gravity anomalies (deterministic data) over idealized bodies by Odegard

and Berg is based on an assumption of infinite data length. Agarwal

considers gravity field data (probabalistic data) as stationary and

transforms the autocorrelation functions to analyse the data in the

frequency domain. However, the conclusions reached in these studies

are dependent upon the validity (or practicality) of these assumptions.

The main objective of this study is to examine the effect of these

assumptions in the analysis of theoretical gravity anomalies and gravity

field data.

The principal assumption in the frequency analysis of gravity

field data is stationarity. The highly correlated nature of gravity

data would imply that these data are not stationary and the transforma-

tion is suspect. To study the assumption, gravity field data are shown

to be a time series, then tested for stationarity by a computer test of

stationarity developed from several previously suggested methods. The

effect-of nonstationarity on the power spectral calculations is studied

by comparing direct and indirect spectral estimates.

An important consideration in the transformation of theoretical

anomalies is the requirement of infinite data length. The practical



application of spectral techniques is dependent upon the transforma-

tion obtained from data of finite length. The effect of finite data

length is studied by considering the equations for the convolution of

the transformed gravity anomalies with various spectral windows, and

by determining the length of data vs data window required to approximate

the ideal transform.

Another concern in the application of spectral techniques to the

interpretation of gravity data is the generality of the Fourier trans-

form technique in the analysis of theoretical anomalies. The idealized

bodies considered by Odegard and Berg (1965) had fairly uncomplicated

mathematical structure and were easily transformed. To study the

application of the transform technique, a general method for trans-

formation of theoretical gravity anomalies, modified from Battacharya

(1966, 1967), is presented and transformations of gravity anomalies

over several idealized bodies, not previously studied, are calculated

and methods of interpretation determined.



CHAPTER I

SPECTRAL ANALYSIS

The analysis of data in the frequency domain, i.e., where

frequency is the independent parameter, is termed spectral analysis.

Although several frequency functions, such as the phase spectrum and

power spectrum, are commonly employed in spectral methods, the funda-

mental calculation is the initial transformation of the data into the

‘frequency domain. The limitations imposed by this transformation

persist in any further spectral calculations.

The nature of the data determines the method of initial trans-

formation and subsequent frequency analysis techniques. In determin-

istic data the transformation of the original data is calculated whereas

with probabalistic data the frequency domain is usually accessed through

the covariance functions. Limitations on practical spectral analysis

are imposed by the theoretical assumptions necessary for the calculation

of these transforms. In both cases the Fourier transform requires

continuous data of infinite length and the probabalistic data are

further constrained to be stationary.

Because of the dual nature of the gravity data considered in this

study, i.e., the deterministic nature of theoretical anomalies and the

probabalistic nature of field data, it will be necessary to briefly

discuss the basis, and subsequent limitations in the applied case, for

the transformation to the frequency domain of both types of data.



Deterministic Data

Introduction

Deterministic data is defined as that which is capable of being

represented by a strict mathematical expression. Because of this mathe-

matical expression, the future values of these data are exactly

predictable, i.e., the data can be extrapolated and interpolated with

zero error. An example of deterministic data would be the gravity

attraction of a perfectly smooth, non-rotating, uniformly dense sphere.

The gravitational attraction at any point in the space surrounding

the sphere can be precisely calculated, and a measurement would only

confirm the previously calculated value.

The transformation of deterministic data to the frequency domain

is accomplished by the Fourier transform. This transform assumes con-

tinuous data of infinite length and the transform exists if the Dirichlet

conditions are satisfied, i.e., the function is piecewise continuous

and absolutely integrable. These conditions are usually satisfied if

the data are physically realizable, and are satisfied in the case of

individual theoretical gravity anomalies.

Because the value of the transform is generally complex, the

results are usually represented as some real function of the transform.

Such functions as the amplitude or power spectrum and the phase spectrum

are commonly used.

The relevant definitions and formulae are:

g(x): continuous function in the space domain, extending

from «n to +m and square integrable

G(w): Fourier transform of g(x),= %%_ f g(x)e'xw dx

G(w) = R(w) + iI(w)
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where w is the angular frequency (an),

R(m) is the real part of the transform,

I(w) is the imaginary part of the transform,

Amplitude Spectrum = (R(w)2 + 1(e)2)f/2

Power Spectrum = G(w) . G(w)* = |R(w)2 + I(w)2|,

Phase Spectrum = tan']-%gfi( , and

* represents the complex conjugate.

Some simplicity or ease of calculation is realized when g(x) is a

real even function for then the imaginary part of the transform is zero.

Applied Spectral Analysis

In the case of most theoretical calculations the transforms exist

and are readily determined through the Fourier integral and its many

properties. However, the discrete finite characteristics of applied

data analysis impose limitations on the transformation that must be

considered. These limitations are best detailed by considering each

one separately as it affects integral transforms and then detailing

the more relevant aspects of digital spectral analysis.

Finite length_
 

If only a finite segment, gf(x) = g(x) [-k,k], of the continuous

function g(x) is available for transformation, the requirement of

infinite length is usually met by multiplying the segment by a data

window.

Basically a data window can be defined as:

o x<-k

h(x) = f(x) -k5x5k

o x>k
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with a maximum value of l at x = o, and

k w

ng(x)f(x)dx= (g(x)h(x)dx.

Multiplication of two functions in the spatial domain is equivalent

to the convolution of their Fourier transforms in the frequency domain.

The transform T(w) of the finite segment of g(x) is so related to

the theoretical transform G(w).

T(w)=%—1-T- ( gf(x)f(x)e'wxdx =;—— ( g(x)h(x)e'mxdx

-k .00

T(w) = G(w) * H(w).

As the length of the segment tends to infinity, gf(x) approaches

g(x) and T(w) approaches G(w). At any particular segment length T(w)

is considered an approximation of G(w) and the effect of the data

window can be significant.

Discrete function_
 

The effect of discrete data on the Fourier transform calculation

can be illustrated by considering a sampled version of the theoretical

function g(x).

The sampling function can be defined as a Dirac comb

00

1(X) = :E:: 6(x-nA)

n=-w
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wichI a fixed sample interval, and the sampled theoretical function is

91(X) = 9M - i(X)

with transform

G.(w)1 G(w) * Hm)

(I)

; G(w-T) ;— Z 6(T- D—i-F-N

=-oo

":4”

which indicates that discrete sampling of an infinite function produces

a band limited spectrum, i.e., gi(x) has a transform that is uniquely

determinable only for lwl 5 %—(f 5 E3) (Nyquist frequency).

The digital sampling of a space-limited function, i.e., a signal

of finite length 2k, further constrains the calculations of the trans-

fbrm to frequency intervals of Am = E-(Middleton, 1960, p. 210).

Digital spectral analysis

The amount of calculation involved in the spectral analysis of

physical data usually requires the use of digital computer techniques.

In this case the digital Fourier transform, or the discrete represen-

tation of the Fourier integral, is evaluated. The application of these

methods requires that the signal is digital and of finite duration.

The signal can be considered as:

gn(x), n = o, l, ......... N,

i.e., N + 1 samples with constant sample interval Ax: length of signal

is NAx.



Then the digital transform is

 

fiznmn]

Gm(‘*’)= {if}: 9,, (X)e N“

where

m = -N/2, ..... -l, 0, l, ......... N/Z.

The calculation is limited by the discrete, finite nature of

the signal in that the spectrum is determined only at multiples of

2n/NAX for le 5 n/Ax and represents the digital representation of

G(w) * “(w)-

Further limitations imposed by numerical analysis arise in the

evaluation of the Fourier transform. The direct evaluation of the

digital transform, equivalent to the rectangular rule or Simpson's

method of numerical integration, produces inaccurate spectral estimates.

Hanning [1962] shows that this result occurs in numerical evaluation

of integrals of the type

b b

f f(x) coswx dx or { f(x) simx dx,

a a

and outlines Filon's method to be used in this case.

Another, and more popular, method of evaluating the digital

Fourier Transform is the Fast Fourier Transform suggested by Cooley and

Tukey (1965). The original Fast Fourier Transform is restricted to

N = 2n samples, routinely applied by adding zeros to the data set, and

provides the accuracy of Filon's method with an increase in speed of

computation. Recently the Fast Fourier Transform has come to mean a

class of Fast Fourier Transforms, some operating on any number of

data points [e.g., Cutler, 1970]. The main problem with a Fast Fourier
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Transform acting on any number of data points is that while maintaining

speed of computation, in general, the accuracy can suffer. Indeed

these transforms degenerate to the rectangular rule when the number of

samples is prime.

Probabalistic Data
 

Introduction

In marked contrast to deterministic data, probabalistic (or

random) data are not representable by a strict mathematical expression

and are not exactly predictable. Every observation is uniformly

singular and is the result of a probability law, that is any observation

will represent only one of many possible results. A series of observa-

tions is called a sample function (or time series) and the collection

of all possible sample functions is termed a random (or stochastic)

process. A geophysical example of a random process would be the

geomagnetic field (external and internal) with individual magnetograms

representing sample functions of the process.

The methods and objectives of analysis of probabalistic data

differ from those employed with deterministic data. Random data

analysis does not consider the sample function by itself but instead

considers it as one of the set of all possible sample functions, and

the goal is to determine the underlying process. However, it is

realized that the process can never be sampled with absolute certainty

and the functions calculated from the observations are considered

statistical estimates of the associated process functions. The various

theories of time series analysis are basically concerned with improving

these estimates, or providing bounds on the estimates so that the true

process function may be determined.
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Before spectral analysis of random data can be considered it is

essential to discuss some of the concepts and terms pertinent to

random data.

Time series, Stochastic process
 

A strict definition of a time series, or random function, is that

it is one realization (outcome) of a stochastic (random) process.

A more common definition is that it is a set of probabalistic observa-

tions arranged sequentially. The label "time series“ is perhaps a

misnomer, and is directly applicable only when the observations are

made chronologically. However, for the independent variable, time, there

may be substituted any other parameter, e.g., distance.

The basic idea of the statistical theory of time series analysis,

or random data analysis, is to regard the time series as a set of

observations made on a family of random variables, i.e., for each t in T,

x (t) is an observed value of a random variable. The set of observations

{x (t); t c T} is called a time series.

A time series is more properly identified as {x(t,s); teT, 535}

where S is a probability space.

Thus, the collection of all random functions, the random (or

stochastic) process can be considered as being composed of a family of

random variables, and viewed as a function of two variables t and s.

The sample space associated with this stochastic process is doubly

infinite and the set of time functions which can be defined on this

space is called an ensemble.
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Stochastic_process functions

The basic functions that describe the Stochastic process are:

a) mean of the_process
 

ux(t)g E{X(t)} = L ;’ x(t)f(x,t) dx

where

L j! is the Lebesgue Integral,

f(x,t) is the Probability density function, and

E is the Expectation operator.

In the general case the means are different at different times

and must be calculated for each t.

b) autocorrelation function of the prggess

Rx(t].t2)g E{x(t1). x(t2)*}

where

x(t2)* is the complex conjugate of x(tz).

c) autocovariance function g:_the_process

*

Cx(t],t2)c=l E{[x(t]) - ux(t])], [x(tz) - ux(t2)] }

In the general case these functions must be calculated for each

t1, t2 combination.

Stationarity

In general the properties of a stochastic process will be time

dependent. A simplifying assumption which is often made is that the

process has reached some form of steady state in the sense that the
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statistical properties of the process are independent of absolute

time. Stationarity can be pictured as the absence of any time-varying

change in the ensemble of member functions as a whole. The stationarity

of an individual time series, rather than the entire process, is

termed self-stationarity.

A sufficient degree of stationarity for most time series analysis

is wide-sense stationarity. A process has wide-sense stationarity if

its mean function is a constant and its autocorrelation depends only

on the time difference, t1 - t2 = T, and not on the absolute value of

the respective times, i.e.,

E{x(t)} = ux(t) = constant

and

E{x(t+T), x(t)*} = Rx(r).

Wide-sense stationarity is also termed stationarity of the

second order, i.e., the series is stationary through its second order

statistical moments. Stationarity of order n implies that all statis-

tical moments less than n depend only on the time differences.

Ergodicity

Ergodicity relates to the problem of determining the statistics

of the stochastic process from the statistics of one time series.

A stochastic process for which the statistics are thus determinable

is said to be ergodic, and the single time series is representative

of the ensemble. The ensemble moments can then be equated to the

time moments.
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For example the time average equals the ensemble average of an

ergodic process k

14x”) = k { mm = E{x(t)}

N
l
—
I

If a time series is ergodic we need only to measure the time

averages which are available rather than the postulated ensemble

averages. Because ergodicity is a subclass of stationarity, a time

series must be shown to be stationary before the question of ergodicity

can be considered.

Transformation of Random Data

In the use of spectral analysis with random data the Fourier

transform of the autocovariance function is routinely calculated

rather than that of the observed data. The reason for this approach

is that the principal objective of random data analysis is to obtain

information on the process and by transformation of the autocovariance

function the process power spectrum can be obtained.

While Fourier transformation of the observed data is possible,

what is obtained is an equivalent sample function in the frequency

domain. Although the power spectrum of this sample function can be

calculated, i.e., x(w)x(m)*, it is not possible to obtain the process

power spectrum, nor any other process functions, in this manner

[Middleton, 1960; Thomas, 1969].

In the case of stationary (wide-sense), ergodic random processes,

the Wiener-Khintchine Theorem [Middleton, 1960] relates the auto-

covariance function of the process to the process power spectrum

through the Fourier transform. This is the basis for spectral analysis

of random data.
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Applied Spectral Analysis

The limitations in the case of random data can be detailed by

considering the two theorems used in spectral analysis and then

considering the applied case of spectral estimation.

Fourier transform

The limitations on the Fourier transform discussed in the section

on deterministic data apply here. The theoretical assumptions of

the Fourier transform are independent of the nature of the data.

Wiener-Khintchine theorem
 

The assumptions involved in the Wiener-Khintchine theorem are

statistical process functions and unlike those of the Fourier transform

the error introduced by approximations to these assumptions cannot be

fully detailed theoretically. If the process is not wide-sense

stationary the process power spectrum cannot be calculated. In this

case it is not the introduction of error into the calculations that

must be of concern but the total inapplicability of the Wiener-

Khintchine theorem.

The fact that the process functions can never be determined with

probability one and that there is no universally applied test for the

property of stationarity has led to the employment of several altern-

ative approaches in the routine spectral analysis of random data.

1) The process is assumed stationary,

2) Any nonstationary aspects are assumed to be removed by

detrending the data,

3) The samples are segmented and each section considered as

piecewise stationary.
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In the event of known nonstationary data the process power

spectrum cannot be calculated and alternatively a generalized or

instantaneous spectrum is calculated [Bendat and Piersol, 1966,

chapter 9].

Spectral estimates

The field of spectral estimation, or mechanics of spectral

analysis, is properly considered as the statistical equivalent of

digital spectral analysis of deterministic data.

The methods of spectral estimation are primarily concerned with

the estimation of the process power spectrum from the estimate of the

autocovariance function of a discrete, finite sample from a stationary,

ergodic random process. In spectral estimation the limitations of

practical data analysis with the Fourier transform are coupled with

limitations of determining the autocovariance function from a finite

length sample. Studies of the effect of lag windows (data windows) on

the spectrum are the basis of several excellent texts, e.g., Jenkins

and Watts (1968), and the results are equally applicable to deterministic

data. The relation between statistical estimates in each domain is

detailed by confidence limits in spectral calculations.



Chapter II

GRAVITY FIELD DATA

The use of the frequency domain has been shown to haVe distinct

advantages in the filtering, continuation, and interpretation of

gravity data (e.g., Dean, 1958; Byerly, 1965; Mesko, 1965; and,

Kanasewich and Agarwal, 1970). In the application of these types of

analyses, field data are considered to be a sample of a stationary

random process (e.g., in gravity data; Goldstein, 1962; Agarwal, 1968;

and analagously for magnetic data; Horton gt_al,, 1966; Spector and

Grant, 1969) and the covariance function transformed. The central

assumption in this approach is that of stationarity.

The purpose of this chapter is to detail the validity and effect

of this assumption. Specifically, the probabalistic nature of gravity

field data is presented and its stationarity investigated from theor-

etical and empirical considerations. Thus, the effect of nonstationarity

in the transform to the frequency domain is studied. Most studies

on spectral analysis of probabalistic data are concerned with one-dimen-

sional (vector) discrete time series. To be consistent with this work,

and fer the sake of mathematical simplicity, one-dimensional gravity

field data (i.e., profiles) are considered in this study. Robinson

(1967) indicates that the results would be equally applicable to two-

dimensional data.

17
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Gravity Data as a Time Series

To consider a gravity profile as probabalistic data is to equate

it to one realization of a stochastic process, or a time series.

Toward this end, the probabalistic nature of the data is argued and

a probability density function postulated.

Probabalistic Nature of Gravity Data

The accurate classification of data as either deterministic or

probabalistic is a major problem. It may be argued that purely random

or purely deterministic data do not exist, and that all data having

some elements of randomness or determinism can be placed anywhere in

the spectrum between these two ideals. Actual classification is

usually determined by considering the attributes of the available

data and comparing these to the qualities of deterministic and random

data.

Robinson (1967) states that observed data can be classified as

deterministic provided it has no features of randomness, and classified

as random provided it has any features of randomness. The principal

intention here is to show that a probabalistic interpretation is not

inconsistent with the structure of gravity field data.

If gravity field data, or the results of an exploration type

survey, are perfectly obtained and reduCed, i.e., no errors in readings,

location, or reduction, then the results are representative of sub-

surface mass distribution. Certainly, the location of geologic bodies

of varying mass is not deterministic, i.e., there is not a general

mathematical expression relating their locations, size, and shapes,
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and from observations at one location these parameters are not

predictable. Ideal gravity field data then must also be considered

nondeterministic.

The relative sparsity of gravity stations and inaccuracies that

can arise in obtaining the reduced values can only add to the character-

ization of actual gravity field data as probabalistic. The fact that,

a priori, the value that will be obtained from a gravity field reading

is not known and that the data cannot be extrapolated with zero error

is further indication that a probabalistic approach would be applicable

in gravity data analysis.

With gravity field data the underlying process would be the

world wide, or geologically possible, distribution of subsurface bodies

of varying mass and dimensions. A suite of measurements would be the

representation of a sample drawn from this population according to

some probability law.

Probability density function
 

Although the exact nature of the probability law is not critical

to spectral calculations an assumption of a probability density

function, a mathematical representation of the probability law, should

be made. A probability density function describes the probability

that a random variable can assume certain values.

Spector (1968) assigned a uniform probability model to the

parameters of geological bodies causing aeromagnetic anomalies. Naidu

(1967) in considering the potential field and statistical properties

of mass density distribution over random media assumed a normal

(Gaussian) distribution for the density distribution. Because each of
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these is considered likely, and an exact probability density function

cannot be known, it is a moot point as to which is to be assumed

correct.

There are, however, two reasons for utilizing a normal probability

density function. The basis of correlation theory rests on the

assumption of a normal density function, and the lower order moments

of the normal distribution completely describe the process. In this

study a normal (or Gaussian) probability density distribution is

implicitly assumed for the parameter of geologic bodies causing

gravity anomalies.

Stationarity of Gravity Field Data
 

In time series analysis of gravity field data, or any body of

observational data, the fundamental assumption is that of stationarity.

The stationarity of gravity field data is investigated by considering

some of the properties of the data and by testing some model and

actual field profiles.

Theoretical Considerations

The primary reason for considering gravity data to be nonstationary

is that the underlying probability function is space dependent. In

certain geographical areas the gross characteristics of a gravity

profile will be known a priori because of previous knowledge of the

geology and the gravitational response to that geology. This is not

to say that the profile will be known exactly or even to a good

approximation, but, a certain range of anomalies can be anticipated.
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Other considerations also suggest that gravity data can be

considered nonstationary. This result is based on the observation

that gravity data possess two characteristics of nonstationary data.

These are highly correlated data and significant power in the low

frequency end of the spectrum (Jenkins and Watts, 1968).

The highly correlated nature of gravity data cannot be demon-

strated mathematically by the calculation of a general autocorrelation

function. It is rather an intuitive consideration based on the

potential nature of the data, where it is known that successive

observations are not independent of each other and are observed to be

highly correlated. Indeed this fact has led some workers (Kaula 1969)

to consider Markov theory in the analysis of gravity data.

Substantial power in the low frequency range of the spectrum

Dw. where D is some constantis indicated by a term of the form e'

related to the depth of the body, observed in the transform of gravity

anomalies (Odegard and Berg, 1965; this study, chapter III, and in

the analysis of magnetic anomalies by Battacharya, 1966). This term

assures power in the low frequency end of the spectrum and is in

agreement with the suspected high correlation. This can be seen

through the Fourier transform relationships of convolution in one

domain being equivalent to multiplication in the other. Thus, the

-Dw

component of the autocorrelation function related to the e term

-Dwe-Dw.
would be the transform of e This transform would be

2 2 2

4D|(4D +4n r ) (Erdelyi, 1954).
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Two objections may arise from the assumptions made in equating a

. gravity profile to a time series. Because a normal probability density

distribution has been assumed does this automatically make the process

stationary? If only a time (space) independent probability density

function had been considered, then the answer would be in the affirm-

ative. However, the choice of the normal probability distribution

does not imply a time (space) independence. It can be time (space)

dependent, that is it can have a variable mean value function and it

can have a space dependent variance. In reality this would correspond

to different parameters associated with various geologic provinces

which appears reasonable.

Another question is whether the capability to reoccupy a point

and repeat a reading implies stationarity of the profile. Because

distance has been made the independent parameter (equivalent to time in

the usual theory) the answer is no. Going back in space would be

equivalent to going back in time. Reoccupying a point in the gravity

profile would be equivalent to returning in time to the time a random

number was generated in a time series. In both instances going back

in either the time or space domain results in repeatability.

Examination of gravity profiles

The theoretical concept of stationarity as outlined in the first

chapter would indicate that it is almost impossible to determine

stationarity because of limited knowledge of the process. However, in

the transformation from theoretical to empirical concepts, theory must

be tempered with reasonable practical considerations. In most practical

applications the single observed time series is the only information
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available on the parent process. Hence, ergodicity must be hypothesized

and time domain statistics utilized. Also all analyses are performed

on the sample series and thus the stationarity of this series is of

prime interest. Bendat and Piersol (1966) have termed the concept

of stationarity of this one time series as self-stationarity. Thus we

speak of the series being stationary rather than the process being

stationary.

However, the concept of self-stationarity is not restrictive.

A necessary condition to extend this self—stationarity to stationarity

is that the process be ergodic, i.e., that the series is representative

of the process. Ergodicity is impossible to prove (except in special

instances) when the entire process is not known. Bendat and Piersol

(1966, p. 12) state that “in actual practice, random data representing

stationary physical phenomena are generally ergodic".

If the assumption of ergodicity is justified then self-stationarity

becomes equivalent to stationarity, since the single time series is

representative of the ensemble.

The concept of self-nonstationarity is no less restrictive,

although ergodicity cannot apply in this case, most observed non-

stationary processes are also self-nonstationary (Bendat and Piersol,

1966, p. 13).

Test of Self-Stationarity

To date no rapid, accurate, routine method has been available

to test the stationarity of a time series. Such a test is clearly

required so that the stationarity or nonstationarity of a series can

be readily determined and the validity of the application of time series
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analysis be established. The method outlined in this section is

designed to fulfill this requirement.

The test for self-stationarity is a computer programmed test,

based on the methods proposed by Bendat and Piersol (1966) and Bryan

(1967). The basis of these methods is that in a stationary series

certain statistical pr0perties of the time series are considered

invariant with time. The tests are for second order (wide-sense)

self-stationarity.

Bendat and Piersol (1966) suggest that the series be divided into

M equal time intervals (either contiguous or non-contiguous) and that

the mean and variance of these intervals be calculated. The two series

thus formed, composed of means and variances, are then tested for

underlying trends or variations by the Run test and the Trend test.

(Appendix A). If no trends or variations are suggested by the applica-

tion of these tests, the original series is assumed to be stationary.

Basically, Bryan's test (1967) is quite similar in that he

tests the invariance of the means and variances obtained from independ-

ent, equal length segments. Rather than using the sample mean and

sample variance he constructs two combinations of the data to serve

as estimates of the population mean and population variance. Those

two estimates are independent, and independently distributed. Using

these two variates, m-a linear function of the data and an unbiased

estimate of the population mean, and Q-a quadradic function of the

data, he develops a test for the hypothesis that the time series is

stationary, and two test variables, L1 for the Neyman-Pearson L test,

and F for the F-distribution test.
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Thus, with a combination of the two tests there exist four

independent test statistics for stationarity. A rigorous test of

stationarity is obtained by determining an acceptance criterion to be that

all test statistics must indicate stationarity. In the proposed test

both methods are combined and used with some restrictions.

The tables for the Run and Trend tests (Bendat and Piersol, 1966,

p. 170) were extrapolated to include the range M = l to M = 200. With

values of M less than 12 the results proved unreliable. Hence, a low

limit cut off at M = 12 is utilized. The acceptance region was

extended to include the lower bound. The Bryan test was extended to

include the 97.5 percent confidence interval.

Rationale

The logic followed in the test of stationarity in computer

program STEST as given in Appendix B is:

First the sampling interval for independent samples is determined.

If independent samples cannot be determined, i.e., the autocorrelation

function does not go to zero, the test is aborted and the series can

be considered nonstationary if a reasonable number of points has been

used.

Once the sampling interval has been determined, the series

is segmented into independent samples of length N. Initially the

series is tested with N = 5, then N is increased to 10, and the

final test, if there are enough data points, is for N = 15.

The minimum test is for M = N samples. If there are not enough

data points for this number of samples, the requirement for independent
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samples is relaxed slightly (i.e., the sample separation interval is

steadily decreased to a limiting value equal to the number of lags

necessary for the autocorrelation function to go to 0.1). If at this

sample interval there are not N samples, the test is aborted. If this

happens at N = 5, it may be an indication of non-stationarity.

If we have M independent samples of length N, the series is

tested for stationarity at three confidence intervals (95%, 97.5%, 99%)

in the following manner:

a) if M is greater than or equal to 12, the Bendat and Piersol

test statistics and the Bryan test statistics are both

utilized.

b) if M is less than 12 only the Bryan test statistics are

utilized.

The series is considered stationary if both the Run and Trend

tests show no trends or variations for the mean and variance series

and if the two test statistics in the Bryan test indicate stationarity.

In the case where only one method is utilized (i.e., M < 12) station-

arity is tested on the merits of the Bryan test statistics alone.

It should be noted that the 95 percent confidence interval is

the most restrictive (i.e., the smallest acceptance region) and the

other confidence intervals progressively less restrictive.

Also results at the largest N used are preferable since more

data points are used in each sample to determine the test statistic

and assumption of normality in the Bryan test statistics is more

closely approximated.
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Test cases
 

Seven series with known stationarity characteristics were used

as test cases. Box and Jenkins (1970, Appendix) detail six series

(labeled A through F) that are known to be stationary or nonstationary

and used as examples throughout their book. The seventh test series

is the sample of a second order autoregressive process as given in

Jenkins and Watts (1968). One of the nonstationary samples of

Box and Jenkins and the stationary sample of Jenkins and Watts are

shown in Figure l.

The results of the program STEST are shown in Table 1. In all

cases, except series A, the test accurately indicated the stationarity

or nonstationarity of the series. The discrepancy in series A may be

attributable to the fact that correlated (i.e., not independent)

samples were used.

It is interesting to note that the series generated from the

second order autoregressive process is stationary and the process

itself is stationary. Thus, in this case self-stationarity is

indicative of stationarity.

Profile Results

Four model and three actual field profiles were used to test

the hypothesis that gravity data is nonstationary.

Model profiles
 

The model profiles were constructed using spheres and two-

dimensional cylinders of arbitrary depth, radius, and density contrast

placed at various locations in a 30 kilofeet profile. Two profiles

had regional structures and two did not, and gravity stations were
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TABLE 1

STEST - TEST CASE RESULTS

Series A - Nonstationary (Box and Jenkins, 1970)
 

STEST Results
 

- Correlated samples used -

A) N = 5

95% confidence interval : nonstationary

97.5% confidence interval : stationary

99% confidence interval : stationary

B N = 10

Not enough data points for independent

or correlated samples.

Series B - Nonstationary (Box and Jenkins, 1970)
 

STEST Results
 

There are not enough data points for independent

or correlated samples. Since this occurred

for a sample of length 5 and the length of the

input series is 369, this may be indicative of

nonstationarity.

Series C - Nonstationary (Box and Jenkins, 1970)
 

STEST Results
 

A) N = 5

95% confidence interval : nonstationary

97.5% confidence interval : nonstationary

99% confidence interval : nonstationary

B N = 10

Not enough data points for independent or

correlated samples.
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TABLE 1 (cont'd)

Series D - Nonstationary (Box and Jenkins, 1919)

STESTyResult§_

A) N = 5

For N = 5 there are not enough data points

for independent or correlated samples.

Since this occurred for a sample of length

5 and the length of the input series is

310 this may be indicative of nonstationarity.

Series E - Stationary_(Box and Jenkins, 1970)

STEST_Results
 

A) N = 5

95% confidence interval : nonstationary

97.5% confidence interval : stationary

99% confidence interval : stationary

B N = 10

Not enough data points for independent or

correlated samples.

Series F - Stationary (Box and Jenkins, 1970)

STEST Results
 

A) N = 5

95% confidence interval : stationary

97.5% confidence interval : stationary

99% confidence interval : stationary

B) N = 10

Not enough data points for independent or

correlated samples.

_§gcond Order Autoregressive Process - Stationary_(Jenkins and Watts, 1968)
 

STEST Results

A) N = 5

95% confidence interval : stationary

97.5% confidence interval : stationary

99% confidence interval : stationary
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TABLE 1 (cont'd)

B) N = 10

95% confidence interval

97.5% confidence interval

99% confidence interval

C) N = 15

95% confidence interval

97.5% confidence interval

99% confidence interval

stationary

stationary

stationary

stationary

stationary

stationary
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assumed at 100 foot intervals. The gravity profiles are shown in

Figures 2 and 3, and the parameters used are detailed in Table 2.

All four profiles tested nonstationary and the computer output

detailing this is presented in Table 3.

Field data
 

Three field profiles were selected from available gravity data

obtained at Meteor Center, Arizona; Zuni Salt Lake, New Mexico; and

S. P. Crater Quadrangle, Arizona (Figure 4). The different character

of the subsurface structure of these areas, reflected in the gravity

profiles, offers a good field sample. In all three cases the reduced

field values were used.

All three profiles tested nonstationary before and after removal

of any trends.

Effect of Nonstationarity on Gravity Analysis
 

The effect of nonstationarity in the analysis of gravity data

was studied by comparing the power spectra calculated by both the

direct and indirect methods.

The direct method involves the calculation of the product of the

Fourier transform of the data with its complex conjugate (usually

employed with deterministic data). The indirect method is the standard

method for calculating the power spectrum of random data, i.e., the

Fourier transformation of the autocovariance function. For finite

length samples of stationary random processes, the mathematical

equivalence between the two methods can be demonstrated (Robinson, 1967;

Jenkins and Watts, 1968; Box and Jenkins, 1970).
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TABLE 2

PARAMETERS OF MODEL PROFILES

All units in Kilofeet--density contrast 0.5 gm/c.c.

Profile A (Figure 2)
 

 

 

a) Two-dimensional cylinder centered at x = 5

depth = 9.25

radius = 9.195

b) Sphere centered at x = 9

depth = 2.0

radius = 1.05

c) Two-dimensional cylinder centered at x = 10

depth = 0.85

radius = 0.662

d) Sphere centered at x = 15

depth = 10.0

radius = 8.6

e) Regional trend

X(I) = I/10 I = 1,300

Profile 8 (Figure 2)

a) Two-dimensional cylinder centered at x = 5

depth = 0.25

radius = 0.1

b) Two-dimensional cylinder centered at x = 9.4

depth = 0.15

radius = 0.06

Profile C (Figure 3)

a) Two-dimensional cylinder centered at x = 5

depth = 0.25

radius = 0.1
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TABLE 2 (cont'd)

b) Sphere centered at x = 9

depth = 0.25

radius = 1.05

c) Two-dimensional cylinder centered at x 10

depth = 0.85

radius = 0.662

d) Sphere centered at x = 15

depth = 1.0

radius = 0.6

e) Two-dimensional cylinder centered at x 18.3

depth = 0.25

radius = 0.195

f) Sphere centered at x = 26.4

depth = 1.0

radius = 0.6

Profile 0 (Figure 3)

a) Two-dimensional cylinder centered at x 7.5

depth = 0.05

radius = 0.041

b) Two-dimensional cylinder centered at x 10.5

depth = 0.75

radius = 0.5

c) Sphere centered at x 15

depth = 10

radius = 8

depth = 2 l

0

6

d) Sphere centered at x = 25

. 2

radius = 1.05
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TABLE 3

STEST RESULTS FOR MODEL PROFILES

Profile A (Figure 2)
 

There are not enough points for independent

or correlated samples. Because this occurred

for a sample length of 5, and the length of the

input series is 300, this may be indicative of

 

 

nonstationarity.

B) N = 10

C N = 15

Profile B (Figure2)

A N = 5

95% confidence interval : nonstationary

97.5% confidence interval : nonstationary

99% confidence interval : nonstationary

B) N =_y1
 

Profile C (Figure 3)
 

A) N

Not enough points for independent or

correlated samples

5

95% confidence interval : nonstationary

97.5% confidence interval : nonstationary

99% confidence interval : nonstationary

10
 

Profile 0 (Figure 3)

Not enough points for independent or

correlated samples

There are not enough points for independent

or correlated samples. Because this occurred

for a sample length of 5, and the length of the

input series is 300, this may be indicative of

nonstationarity.
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This approach was selected because the direct method permits

the calculation of the power spectrum without the assumption of

stationarity. And, it was anticipated that the two spectral estimates

of gravity data obtained from these methods would differ due to non-

stationarity. The effect of nonstationarity could then be determined

by a comparison of the two results, and its effect on other frequency

calculations detailed.

Calculations

Two model profiles (Figure 2A, Figure 30) and one field profile

(Profile B, Figure 4) were selected, assumed to be stationary and

their spectral estimates calculated by both methods.

In a calculation of this type with digital data of finite length,

smoothed spectral estimates must be calculated. This involves inter—

polation of the direct spectrum and use of both data and spectral

windows (Brumbach, 1968). The calculations were done in a computer

program using the rectangular rule form of the digital Fourier transform.

This form was chosen to assure mathematical equivalence, particularly

with the interpolation of the direct spectrum, and to obtain spectral

estimates at the same frequency interval in both methods. Several

combinations of data and spectral windows (as defined in Chapter III)

were utilized to study any possible effect on the results.

Although the direct method is not usually used in the analysis of

pure random data because of the inconsistency of the estimates (Jenkins

and Watts, 1968) this problem was not observed with the gravity data.

Consistent spectral estimates (i.e., a decrease in the variance of the

spectral estimate as the number of data points increases) were obtained

even with as few as 50 field points.
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Results

In all test cases the spectra calculated by both the direct and

indirect methods are virtually identical. There was no effect of the

various combinations of windows on the degree of similarity between

the spectral estimates. The results are shown in Figures 5, 6, and 7.

The difference between the two methods at the higher frequencies is

not considered significant and is perhaps related to the use of the

rectangular rule in the numerical integration.

An explanation can be offered, pgsteriori, that indicates why

these spectra do agree. In the analysis of a single profile (single

time series), under the assumption of stationarity, the autocorrelation

function calculated is the time averaged autocorrelation function which

is a function of T only, whether or not the process is stationary

(Middleton, 1960, p. 49-50, p. 125). The Fourier transform of this

function is mathematically equivalent to the direct method calculations.

In terms of time series analysis this means a sample power spectrum

(i.e., the power spectrum of one realization of a stochastic process)

has been calculated.

In spectral analysis of random data the sample power spectra

calculated by the indirect method converge to the process power spectrum

only if the process is wide-sense stationary and ergodic (Wiener-

Khintchine theorem). Because the aim of time series analysis is usually

to investigate the underlying process, the process power spectrum is of

prine:importance. But, the aim of time series analysis of gravity data

is the calculation of the sample power spectrum and not the process

power spectrum. In other words the mass density configuration that
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produced the individual gravity profile is under investigation and

not the world wide mass density distribution. In this situation

stationarity is not a necessary assumption.



CHAPTER III

THEORETICAL GRAVITY ANOMALIES

A simple geometric body is often postulated to be the causative

mass in the analysis of an isolated gravity anomaly. The parameters

of this body are then estimated from the structure of the anomaly

curve by equating it to the theoretical gravity attraction of the

body. However, the mathematical complexity of the equations for the

gravity attraction of even simple bodies makes parameter determination

difficult. Recently, Odegard and Berg (1965) indicated that the

Fourier transform of the theoretical gravity anomaly of several

idealized bodies offered a simplified interpretation method. This

was also shown to be true in the case of the magnetic field over

idealized bodies (Bhattacharayya, 1966). However, the applicability

of this technique to actual gravity data has never been determined.

One major limitation in the application of this technique is

the finite length of observed gravity data. Although field data

can be accurately collected and reduced, and an assumption of a simple

body as a causative mass justified, because the data are of finite

length only a portion of the theoretical gravity anomaly can be

considered. The entire effect of the postulated body is not observed

due to the finite data length, and in some cases due to the influence

of other geologic structures. To have practical usefulness a more

general transform method based on theoretical anomalies of finite

length must be studied.

45
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In this chapter the Fourier transform method, as it applies to

simple idealized bodies, is detailed. First, the frequency domain

method is extended to include bodies that have not been previously

studied. Then the interpretation of the transforms of theoretical

gravity anomalies of finite length is examined. And finally the length

of data required for the finite transform to approximate the ideal

transform is determined. As in the discussion of gravity field

data (Chapter II) the discussion is primarily concerned with one-

dimensional data (i.e., profiles).

Transformation of Theoretical Gravity Anomalies

In the case of theoretical gravity anomalies the exact mathe-

matical expression of the anomaly is known and the data is deterministic.

The frequency domain is thus accessed by the Fourier transform of the

original data and power spectra calculated by the direct method.

There are several acceptable forms of Fourier transform pairs

(e.g., Lee, 1960; Robinson, 1967). In this study all calculations

and equations are based on the transform pair:

N
—
u
l

=:
|F(w) ( f(x)e"°‘*”‘dx

f(x) F(w)eiwxdw ,I
I

‘
*
‘
\
x
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and for the two-dimensional case:

on

Hum-(21;: f [f(xwle’fiuxwfldxdy
11'

-00

(X) 00

I / F(u,v)ei(ux+vy)dudvf (x.y)

where

2nfxU

V any .

Review of Previous Work

Odegard and Berg (1965) calculated directly the Fourier transform

of theoretical gravity anomalies due to a sphere, fault, and a two-

dimensional cylinder. The simplicity of the frequency domain expression

is immediately apparent from a comparison of the equations in both

domains as given in Table 4. The transform of the gravity anomaly due

to a fault is not from Odegard and Berg because their calculation

was based on the assumption that the anomaly equation is an odd function.

However, it can be shown that the function is neither even nor odd. In

the case of the two-dimensional cylinder, the transform as plotted on

a log scale is a straight line with slope equal to the depth and

intercept equal to the Gaussian mass. Interpretation of the other

frequency domain expressions, although more complicated than that of

the two-dimensional cylinder, are more managable than with the spatial

domain formulas.
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TABLE 4

GRAVITY ATTRACTION OF THREE IDEALIZED BODIES: SPATIAL AND FREQUENCY

DOMAIN EQUATIONS

SPATIAL DOMAIN FREQUENCY DOMAIN
  

A)* Two-Dimensional Cylinder

 

 

2 DC 2 ‘DC/w/

9(XI = ZWYRC 0—-—-- G(w) = ”Y RC 06

0 +x2
c

B)* Sphere

_ 4 3 Ds 4 3

9(X) - gnv RS 0 (D 2+x2)3/2 G(w) - ngs owk1(st)

C) Fault

2+d2

g(x) = 2re13g- 10[ 1 + 1;- em = 2W0£nT6(w)
x2+(d2+T2 )

+ d tan“ (g) — (0+1) tan41d—é-TJ} + 11—;- e'(D"T)‘° - J; e'Dwn
(I) 00

where

Dc = Depth to center of cylinder 0 = Depth to top of fault

Rc = Radius of cylinder T = Throw

DS = Depth to center of sphere y = Gravity constant

R = Radius of sphere p = Density
S

* from Odegard and Berg (1965)
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General Transformation

The complexity of the mathematics involved in the transformation

of theoretical gravity anomalies can be greatly reduced by use of a

general transformation. The equation for a theoretical gravity anomaly

over an idealized body is developed by solving a volume integral

based on the summation of the attraction of all point masses in the

body. These volume integrals are the partial derivative of the

gravitational potential of the body. Bhattacharyya (1967) has shown

that the potential expression can be directly transformed and a general

transform for the volume integral obtained. The transformation of

the theoretical gravity anomaly is then calculated by carrying out the

integration in the frequency domain. When combined with another

suggestion of Bhattacharyya (1966), one-dimensional transforms can be

obtained over two- or three-dimensional bodies.

If we consider the coordinate system

 

 

where

P(x,y,z) is a field point, and

q(x1,y],21) is a body point.
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Then the gravitational potential is (Grant and West, 1965),

 

] ,

U 3 ’ ) = 1 d d d o

The two-dimensional Fourier transform of U(x,y,z) is

co

( . ) = 19;— 1}. .jj:{’ 2 1 2 2 1 d d d

U u v 4.. 1(x-x11 +(y-y11 +<z-z,11/2 x‘ y‘ z‘
'00

 

e-i(UX+vy)dxdy
3

which can be shown to be equal to (by equation #17, p. 9; #43, p. 56;

Erdelyi, 1954)

2w -2 w -i(ux +vy )
= x9e 1 1 1

u(u,v) 2m [If e e dxldy1d21

2 ZEQ

1» = (u + v ) .

where

And the expression for the Fourier transform of the gravity attraction is:

G(U,V) = 3U£U,V)

8z

Thus,

e2” -z]w -i(ux1+vy1)

G(u,v) = 1%?— e e dx1dy1dz1 . (l)
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This is the general transform, by substituting in the limits of

a particular body the two—dimensional Fourier transform of the

theoretical gravity anomaly can be obtained. This expression is made

more general in a later section by including the concept of data

windows. One of the attributes of a general transfbrm is that mathe-

matical ease can often be gained by selecting the proper order of

integration.

If the observations are constrained to a flat surface (i.e.,

z = 0) then general transformations of profiles across the idealized

bodies can be obtained. This is shown by using the Fourier transform

relations (Hsu, 1967)

f TU) 9U) dy = r F(v) G(-v) dv.

If we consider g(y) = 6(y-a),

then
00

f(a1= ( F(v) eivadv

-00

and for the two-dimensional transform case

F(u,a) = If F(u,v) e1vadv ,

which is equivalent to saying that the one-dimensional transform

equation is obtained by solving one integral of the inverse two-

dimensional transform.





52

In the case of gravity attraction of idealized bodies the general

formula for the transform of a profile in the x direction across

the body is

-z w -i(ux +vy ) iva

G(u,a) = 324% H“ e 1 e 1 1 e dxldy1dz1dv

And for the usual case of a profile through the origin, i.e.,

-2f0 -i(ux]+vy])

G(u,o) = %9_J]1)r e e dx1dy1dz1dv . (2)

In the next few sections it is shown that this equation provides

a simple solution in the case of two—dimensional bodies and is of

limited value in the evaluation of three-dimensional bodies.

Two-Dimensional Prism

If we consider a rectangular prismatic body of infinite extent

in the :y directions as shown in Figure 8,

 

.P‘XsOsQ) x

b/Z
 

d D

   
  11

2

Figure 8. Two-Dimensional Prism
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The gravity attraction at P(x,o,o) (modified from Heiland,

1963) is

 

2 2 2 2 '

g(x,o,o) = 2vp {(x+b/2) 1n ( 02+(X+b/2 2;? (x-b/Z) ln( D§+(x-b/2)2)43

d +(x+b/2) d +(x-b/2)

+ 0(tan'1 5%31 - tan" “”2 )

- d(tan'] 4559421-- tan-1 A1%9-42-11}. (3)

The complexity of this equation makes interpretation difficult.

The Fourier transform is calculated to show that the frequency

domain provides considerable reduction in mathematical complexity and

ease in subsequent interpretation.

Theoretical transform

Direct transformation

The transformation of g(x,o,o) is somewhat simplified by the

fact that it is an even function, i.e., g(-x,o,o) = g(x,o,o). To show

this, simply substitute -x into the expression for g(x,o,o) and note that

(-x+b/2)2 (x-b/212

(-x-b/2)2 (x+p/2)2

tan'] (beZZ) _ tan-1 (x-BZZ) = tan-1 (-bi/2) _ tan-1 (-bi/2) .
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Because g(x,o,o) is an even function, the transform becomes

f'. g(x) coswxdx,

o

g(x) = 2Y0 {2 (x+b/2) 1n (Q—iiiiélg): )- —‘(x-b/z) 1n (__:I§:91_):)

d2+(x+b/2) d+(xb/z)2

+ 0 tan_1 15%2121. - 0 tan-1 I§:%ZZ)

- d tan.1 455942) + d tan"1 x-b 2)} . (4)

The Fourier transform can be calculated using the relation

f‘(x) <=> in(w)

or 91(X) <=> le(w)

where f](x) = giggl—

Then

2 2

l _ (x+b/2) - (x+b[2) + l D22+(x+b/2)

( - 2 10(221

g X) yp {02+(x+b/2)2 d2+(x+b/2)2 2 d2+( x+b/2)2

_ (x-bm2 (x-b/2) _ 1.1n(0+(x-b/2))

02+(x-b/2) d+(x-11/2)2 2 d+(x-b/2)

 

1 1 1 1
+ - - +

Dz+(x+b/2)2 02+(x-b/2)2 d2+(x+b/2)2 d2+(x—b/2)2
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Now the expression is split up and the superposition principle

of Fourier transforms employed

f](x) + f2(x) + f3(x) = F1<w) + F2<w) + F3(w)

f (X) = { (X+b/2)2 _ (be/2)2} _ { (X-b12)2 _ (X-b/2)2}

1 02+(X+b/2)2 d2+(X+b/2)2 02+(X-b/2)2 d2+(X-b/2)2

  

  
 
 

f2(X) = P; -In (02+LX+b/2)_2) _ % «In (D2+(X-bL2)2)}

d2+(x+b/2)2 d2+(x-b/2)2

f3(x) = { 1 1 } - { 1 1— - }

Dz+(x+b/2)2 d2+(x+b/2)2 02+(x-b/2)2 d2+(x-b/2)2

The transformation of these terms can be obtained by integration

by parts and using Erdelyi, l954 (#12, p. 18, #11, p. 8) and the shift

property of Fourier transforms, i.e.,

f(x-c) <=> e'iwcF(w)

f(x+c) <=> eiwcF(m)

F (w) = l {eiwb/Z [E_e-dw _ E_e-Dw] _ e-imb/Z [E_e-dw _ E_e-Dw]}

l d D d D

iwg_ -im§_

1 2 n -dw n -Dw 2 n -dw £_ -Dw
F2(w)-§-T?{e (‘58 -a)'e ]-e 5e -me ]}



lw_l_)_ -l'u>p_

F300) _ %{e 2 g e"D(.U_ '3' e dw] e 2 [ID]; e"DU)_ Elie‘dMJ}

and

1w G(w) = 2Y0 (F](w) + F2(w) + F3(w) )

but, F](w) + F3(w) = 0

so

To) G(w) = :TYFB [(eiwb/Z _ e-lwb/Z) (% e-dw _ ge-Dw) ]

1w G(w) = $3 [2 i sin (”—2- (i:- e'dw - (lie-D”) ]

so») = 1119 (sin 93-) (e'dw - e'D“) . (5)
(A)

General transformation

Using the formula for the general transformation the mathe—

matical ease afforded by this equation is indicated and the equivalence

between the two methods demonstrated. Putting the limits of the two-

dimensional prism into the integral formula for a profile along the

x axis (Equation 2);

0° 0° 2 2

D b/2 -\/u+v z1 -i(ux]+vy])

G(u,o) = g1 I f f e e dxldzldyldv

... -.. -b/2

integrating over x1 ,

2 2

D - \lu +v z1 -ivy1

I e e dzldy1dv

d

G(u,o) = %%E sin 9%- f

j:
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integrating over 2],
 

 212. ub m m l -d u2+v2 -D u2+v2 -ivy1
G(u,o) = 21m $1" —-2— { JW [e - e ]e dy1dv

integrating over y],

2m 2 2 2

G(u,o) = g§§§3-sin 2%. I, 1 [e'd u +v - e'D u +V ] 6(v)dv 

Vu +v

and finally integrating over v.

G(u,o) = 232$ (sin 9%) [e’du - e‘Du]

U

which is the same result achieved in direct transformation of the

gravity anomaly.

Method of interpretation

The frequency domain expression for a profile at right angles

to a two-dimensional horizontal prism, i.e.,

G(w) = 3%2.51n Qg-[e-dw - e'Dw]

U)

is a less complicated expression than its spatial domain equivalent

and theoretically can provide unique solutions to the body parameters.

Zn
The transformation will have null positions at multiples w = E—-.

From these null positions the width of the body can be determined and

the term gig-sin gg-divided out of equation 5, leaving

0)

2 walwb = p[e-dw _ e-Dw] . (5a)

—-;Lsin-§-

(L)
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If the transform is examined at the high frequency end the curve

will be composed entirely of the term efd”, because D is always greater

than d and consequently e"Dw damps out more rapidly with frequency.

This method is the basis for the multiple decay spectra technique

discussed in Kaplan (l956) and illustrated in Odegard and Berg (l965)

for the case of a fault.

Basically, this technique involves fitting a straight line to the

high frequency end of the function given by equation 5a. This line,

representing pe'dw, is then extrapolated to the origin. Equation 5a

is then subtracted from this line and the result equals e'Dw. Thus,

the two depths are determined. Knowing these depths and the width

permits determination of the density from the value of the spectrum

at the origin where G(o) = 4nypg-[D-d]. An illustration of the

various stages of decomposition of the spectra by this method of

interpretation is shown in Figure 9.

Thus from fairly simple mathematical manipulations of the

theoretical transform the body parameters of the two-dimensional

horizontal prism can be uniquely determined.

Three-Dimensional Prism

The general transformation formula permits the calculation of

the transformation of the gravity anomaly due to a three-dimensional

prism. This method is the only method available to obtain this

expression because no general expression for the spatial domain is

readily available in the literature.
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A: ———§$91——- = p[e'dw - e'Dw] (equation 5a)

C: pe-dw _ {p[e‘dw _ e-DwJ} = pe-Dw

Figure 9: An Example of the Method of Multiple Decay Spectra
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Theoretical transf9:m_
 

The twoedimensional frequency transform provides a formula that

is suitable for interpretation. However, the one-dimensional transform,

although undoubtedly simpler in form than the spatial equivalent, is not

readily interpretable.

Substituting the body parameters into the general transformation

formula, for a flat surface (2 = o)

D b/Z a/2 1oz] -i(ux1+vy1)

G(u,v) = Efi- { I. I, e e dy1dx1dz1 (6)

d -b/2 -a/2

where

a = width in the y direction.

Integrating with respect to y].

D b/z -wZ 'X 1U

= 1.9— l ' E 1 1
G(u,v) n (v) Sln 2 f I, e e dx1dz1

d -b/2

similarly for x],

- z
= gxg_ 1_ . va __ ub w l

G(u,v) fl (v) Sln— (l ) sin 2 J’ e dz1

d

and integrating over 21, we obtain

G(u,v) = $19 (—) sin 2—3 (L—) sn—”U—) [e'dw- e‘D‘i’] (7)
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inhich is quite similar to the one-dimensional transform over a two-

dimensional prism and can be interpreted in an analagous fashion.

To calculate a one-dimensional transform for a profile along

the x axis

 

°° ( 2 2v; 2 2i/,_

G(u,o) = 219- 1- sin 99- {e'd‘ u +V l e'D (u +v)) l .' va
'rr 2 —S.1n TdV

2 2 '1; V

(u M

2 2 v

e( _ er . ub -d (u +v )‘
u,o) - nu Sln §—- { e

 (19 sin %9- dv

'°° (u2+v2)"" v

00 D ( 2 + 2 )1];

- u v .
- e 1 . va

‘[ -———————-— (V) Sln §—-dv }

2 Va

)
-oo

2

(u +v

The integrands are even functions, so;

00

 

2 ZIIL

= 419 . ‘ub_ I -d (u +v )
G(u,o) nu Sln 2 { e (19 sin %9-dv

0 2.2V; V

(u+v)

0° 2 2'];

-D (u +v )

' e (1) sin 29-dV}

0 2 2V; V 2

WW)

It is not possible to obtain a closed solution for these integrals.

However, Battacharayya (1966, p. l20, Equation 9A) gives a series

solution for this equation. Using this solution the transform is



 

 

. . 2

_ 4Y9 . up a. - 2mm 1 a u m ,

‘5‘“) ' 'fil’ 5‘" ‘2‘ { 2 E (,2m+i):(-4B )- ”(“31)-

m=o ‘l

a :E . a u m

m=o

where

2 2 I/

B1 = (d +a /‘*) a

W

II

2 2 .

2 (D+a/u)/l

m order modified Bessel function of the

second kind.

5
‘

Although appearing complex it does seem to be simpler in form than

the spatial domain equivalent. A hint of the complexity of the spatial

domain expression is afforded by considering the restricted expression

offered by Nagy (1966).

Vertical Line Element

Contrary to the previous bodies the simple expression of a

vertical linear mass element is not readily improved by transformation

and no advantage in interpretation is noted. If we have a vertical

line element along the z axis, as shown in Figure 10,

 

Figure l0. Vertical Line Element
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Then, the gravity attraction along a profile in the x axis is

l
  

g(x) = Yo{ }

(d1 +x {a ' (d22+x2ft

The transformation is readily obtained by calculating the transform

of this expression or using the general formula.

In the direct Fourier transform of this expression we obtain,

using

F( 1 ) = Ko(aw)

X2+a2

 

:
1
|
—
-

9(a)) = 9,91 [Ko(d1w) - Ko(dzwn (8)

where Ko(x) is the zero-order. modified Bessel function of the second

kind.

In this case the parameters are not readily interpreted and only

some approximation methods of G(w) offer any hope of interpretation.

Effect of Finite Data Length on Spectral Analysis Interpretation

To have practical application the interpretive value of the

frequency domain method must be investigated for the case of finite

length data. This can be accomplished by considering the transform of

a segment of the theoretical gravity anomaly. Ideally interpretation

methods similar to those for the transforms of the entire anomaly. as

discussed in the previous section, should be developed. However, a



64

study of the theoretical transforms of the segments of the two!

dimensional cylinder and prism anomalies suggests that solutions do

not exist in closed analytical form, and therefore no simplified

interpretation methods are possible. A practical alternative is

afforded by determining the length of data required for the empirical

transform of the segment to approximate the theoretical transform of

the entire anomaly.

For these investigations the anomalies due to the two-dimensional

horizontal prism and cylinder are considered in detail. These particular

bodies were chosen because of the simplicity of their theoretical

transforms and associated interpretation methods.

Calculation of Theoretical Anomalies

To calculate the Fourier transform of a segment of an ideal

anomaly either the transform of the signal composed of the theoretical

anomaly multiplied by a data window is calculated or the theoretical

transform is convolved with a spectral window (Chapter I). For ease

in calculation, and to utilize the theoretical transforms already

calculated, the latter approach is employed in this section.

Spectral windows
 

As discussed in Chapter I the data window plays an important

role in practical spectral analysis. In general the selection of data

windows based on some optimum criteria, valid for all spectral calcu-

lations, is not possible (Jenkins and Watts, 1968). The best data

window to be employed must be determined for each particular application.
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When choosing a data window both the space and frequency domain

characteristics must be considered. A good example of the tw0esided

nature of a data window is the rectangular window:

0 x<-k

h(x) = l -k$x‘k

o x>k

Although this window has ideal time domain characteristics, that is,

it does not distort the data to any degree, the large side lobes in

the Fourier transform of this window (spectral window);

H(w) = Slgkwk

=
l
|
7
¢

 

caused by the sharp truncation of the time function, generally produce

poor spectral results.

Four spectral windows, rectangular, Bartlett, Tukey, and Parzen,

will be considered to study their possible effect on the results

obtained in the calculation of the finite transformations.

Three of these windows are related to each other by (Jenkins and

Watts, l968).

 

single" ()

~]_ n 9

Hn(w) n .95

n

where n = l = rectangular

2 = Bartlett

3 = Parzen
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The effect of increasing n is to decrease the side lobes. However,

then the spectral window becomes flatter and wider because the first

zero occurs at w =,%_-. The Tukey window is described by

sings

”W = k wk n _—‘]I€'2—
—n- (14%) ) .

 

For convenience in identifying it in this study, and from the relation-

ship of its spectral characteristics, we will identify it by n = 3.

The four spectral windows are shown in Figure ll.

Two-dimensionalgylinder_
 

The finite transform for the two-dimensional cylinder is

calculated by convolving the various spectral windows with the theoretical

transform from Table 4.

Rectangular window

In the case of a rectangular data window

 

_E SW km

H](w) _ n kw

em) ..9 e‘Dlwl

where

D = Dc the depth to the center of the cylinder

8 = 2nyRc2p

y = gravity constant

p = density

R = radius of cylinder ,
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”(w)

2K

—- Rectangular

___.____.___. Tukey

Bartlett

.1\K _______ - Parzen

’1'

 

 
Figure ll: Four Spectral Windows
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and the transform of the finite length segment is

 

T1(w) = [g e-Dlal _Ii Sln'k(w3‘0.) d0.

n k w-a

oo

___ _g i e-DIOLI Sln k(m-a) dOL
 

 

2n w-a

multiplying by l = e'Dw+Dw

T](w) = g—- e'Dw {I e-Dlal+Dw sin k(w-g1_ d

" (w-a) a
-00

let u = -w+a

_ -D -D +u +D

T](w) - g;- e w r. e (w I w sin k(-u2 du

—m u

case #l) w+u>o case #2) m+u<o

U>"'w U<"(Ll

Iw+u| = “+w Iu+w| = -u-w
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con‘bining

on . ‘ "w

T](w) = ‘3"; e-Dw r e'Dw sin ku du + g}- e'Dw / e'D(-'u'2w)sin ku du

-0) U -00, u

= g— e'Dw / e'D‘” sin ku du + 3— e'D‘” I e-Dw sin ku du
2n --———- 2n -—~———-

-w u o u

'0)

+ %— eDw ‘ eDu Sln ku du

N u

00 00 w

in third integral let u = -u, invert limits, and I = I - f

w o o

o (I)

T1(w)-%r— {eDusinku du+§—T?eD‘”{eDusmku du

-w U 0 u

00
(A)

+ 9; e0“) / e'Du sin ku du - % ED“) / fi-Du sin k" d"

o u o u

o

T1(w) = % tan-1 k [e-Dw+e+Dw] + % e'D‘” I e"Du sin ku du

D u

'0)

(L)

- £23— eD‘” e'Du sin ku du . (10)

n u

This equation is the transform of a finite segment of the gravity

anomaly. The problem now is to put it in a more tractable form.
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The main problem is the two exponential integrals. In general a

closed analytical solution of these integrals is not possible. Even

with an upper limit of the Nyquist frequency, a general solutiOn is

not possible. These types of integrals have plagued electrical

engineers in antenna theory problems and a volume of numerical solutions

was published by Harvard University Computation Laboratory (1949).

There are, however, two frequencies where solutions do exist

1) w:

At w = o, the expression for T](w) becomes,

(X)

71(0) =53 { e'Dlo‘lsingsg da

-(X)

mowfi ( e'Dam do.
TT 0 0.

w ems—e .

That is at w = o the solution is the Laplace transform of the

B
spectral window multiplied by E-, or

-l
T](o) = %- tan (ll)

o
p
s
-



71

This is also derived by substituting u,= 0 into the general

expression. The result agrees with theory in the fact that as the

data window become infinite in length the value of the transform of

the segment equals the theoretical transform, that is,

Lim T](_o) =g— = 6(0) .

Using integrals 5.l.35 and 5.l.36 in Abramowitz and Stegun (l964)

a solution at w = 1 can be presented.

e-D D
T](l) =9 e‘D + L IE](-D+ik) - g7 e 151mm (12)

2n

where IE](x+iy) is the imaginary part of the exponential integral

for complex argument as tabulated in N. B. 5. Applied math series

No. 5l (1958).

The value at this frequency also agrees with theory in that as

the data window becomes infinite in length the transform of the segment

of the anomaly equals the theoretical transform

Lim 71(1) =-§— e'D = G(w) _
w-l

k—mo
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Higher order spectral windows

From the relationship of the spectral windows, problems would be

anticipated in the calculation of the finite transform using any

higher order windows.

The general transform solution would be

on (sink(w-a) )n

da
 

_ Bk -D . ..
Tn(w) - — I e la] “Way

411

-m n

The solution would still contain the troublesome exponential

integrals. To demonstrate this we can consider the finite transform

using the Bartlett window (n = 2). In this case;

  

-1 2

T2(w)=§—k-[%tan §-}oiog(i+fi,—)][e9w+e0w]

2 2

0 sin kw_ w sin Kg_

+ i e'D‘” e'Dw 2 do) - i em [ e'D‘” 2 do)
Trk 2 Wk 2

'w w 0 w

The fact that at w = o the solution is the Laplace transform

of the spectral window provides the solution at w = o for the Bartlett

window but not for the Parzen window (Erdelyi, 1954).

For the Bartlett window;

-1 2

T2<o)=§;[tan B'i'B‘MHE—z'” “3)
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and

Lin T2(o) = g- ? G(o) .

k—>oo

Two-dimensional_prism
 

With the difficulty encountered in an attempt to calculate a

general transformation for a finite segment of the two-dimensional

cylinder, a similar attempt for the two-dimensional prism is probably

futile. The mathematical structure of the two-dimensional prism.

although similar to that of the two-dimensional cylinder, is more

complex.

An idea of the complexity can be determined by considering the

convolution integral for the two-dimensional prism and the lowest

order spectral window - the rectangular window

G(w) = g)9-sin g2. (e-dw - e-Dw)

w

(0.)) = .219 Sin at) (l) (e'd|a|_ e'Dlal) Sin kéw-gl dd

w-

The same exponential integrals are encountered and furthermore no

simple solution at w = o is realized. Thus, as is the case with the

two-dimensional cylinder, no solution in closed analytical form for

the transform of a finite segment of the ideal gravity anomaly is possible.
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General considerations
Vfi‘vr v‘
 

To further investigate the problem of determining a general

solution two alternative approaches are considered.

General transformation formula

The general formula for the two-dimensional Fourier transform

can be expanded to include finite length data. If H(u,v) is the

transform of the two-dimensional data window that is applied to the

data, then the general transform for finite length data observed on

the plane (2 = o) is;

T(U.V) = G(u,v) * H(U.v)

-Z\(a2+82 'l'(onX1+B.Y1)

T(u,v) = %%- e e H((v-B), (u-a))dx]dy1dzldad6.

For the case of a profile along the x axis, the data window in the y

direction can be assumed to be a constant equal to one with a spectral

window equal to a delta function thus,

2 2

‘2] U0. +8 ”-i(GX'I'l'BY‘I)

T(u,o) = %%- e e H(u-a) dx1dy1d21dad8 .

This equation then represents the one-dimensional general

transform for a finite length segment of a theoretical gravity anomaly.

Substituting the equation for the spectral windows, yields;

2 2

-21 \/a +8 -1' (ax-I+By]) sin k w-a n

Tn(u,o) = (2)—TY; If e e n dx1dy1d21dod8.

k(m-a)

n
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The major value to a general expression such as this is that

usually by selecting the proper order of integration some mathematical

ease is attained. However, in this case, the most tractable results

occurred when the order of integration was x], y], z], B and then a

and the result is exactly equivalent to the previous equations for

G(w) * Hn(m).

Direct transformation

A second alternative is to compute the direct transformation of

the signal composed of the gravity anomaly multiplied by a data window.

To investigate this, the simplest case, that of the two-dimensional

cylinder multiplied by the rectangular data window was considered.

In this case,

 

k

D
T (w) = Q- I, coswxdx .

l n Dz+x2

0

Although appearing simple enough all attempts at obtaining a solution

in closed form proved futile.

Length of Data Required to Approximate

Theoretical Transform

An alternative approach to the problem of finite length data is

to determine the length of data required for the transform of a

segment of the anomaly to closely approximate the theoretical transform.

The term "close approximation" being defined by high correlation

between the two spectra and/or low resultant errors in interpretation.

In their discussion on the use of the theoretical transform in

gravity data analysis, Odegard and Berg (1965) indicated the excellent
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(agreement between the actual transform of a theoretical anomaly of

finite length and the theoretical transform of a two-dimensional “

cylinder. However, the gravity profile transformed was calculated to

a distance where the gravity attraction was 0.0l maximum value. From

a consideration of the formula for the gravityattraction of a two-

dimensional cylinder, this implies a profile that has a length equal

to 20 times the depth of the cylinder. In their specific example of

a 3 km deep cylinder, this would demand a 60 km profile free from

disturbing anomalies, an unlikely situation.

Spector (1968) considered finite length in his study of spectral

analysis of magnetic data by examining the individual factors in a

general spectral equation and comparing a numerical solution of the

convolution integral, using a Hanning window, with the ideal Spectrum.

However, by analyzing individual spectral factors it is not clear how

they effect one another and in this approach the effect of the numerical

integration approximation should be considered.

The method used in this section is to calculate the transforms

of segments of theoretical gravity anomalies and compare them with

the associated theoretical transforms. In this manner the results

are directly comparable to transformations of ideal field anomalies.

Also, no a_prigri_choice of data window is made and the four data

windows, previously discussed, are studied to determine the utility

of each window.
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The two transforms are compared by considering the method of

interpretation used with the theoretical transform. Statistical I

measures of the similarity between the two transforms are calculated

and errors in interpretation determined.

Twoédimensionalgyljnder_
 

In comparing the finite transform to the theoretical transform

the factor k/D, where k is half profile length (half—width of data

window) and D is the depth to the center of the cylinder, is critical.

The approximation of the finite transform to the theoretical transform

is independent of the actual depth and dependent only on the ratio k/D.

This is evident from an inspection of the finite length transform

calculated in the previous section and was verified empirically.

The two characteristics of the spectra that are used in

interpretation are the slope and d. c. value (intercept). When plotted

on semi-log paper the spectrum is a straight line with slope equal to

the depth and intercept equal to one half the Gaussian mass.

Slope

Transformations of various length segments of the calculated

gravity anomaly due to a two-dimensional cylinder, multiplied by the

four data windows, were calculated and compared to the associated

theoretical transforms.

The linear correlation coefficient between the calculated and

theoretical transforms, for the four data windows, as a function of

k/D is shown in Figure 12. This figure demonstrates the relative merits

of the four data windows and reveals for the rectangular data window a
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very high correlation (0.972) at k/D = 3. All data windows produce a

correlation coefficient greater than D.BD at k/D Z 5. The surprising

fact that the rectangular data window provided the best estimates was

further substantiated by considering other statistical measures such

as standard error of fit, deviation factor, and regression line

parameters.

To determine effect on interpretation, depths were calculated

from all calculated transforms by determining the slope of the natural

logarithm of the transform (the point w = 0 not considered). The

calculation for a normalized depth (i.e., calculated depth/true depth)

as a function of k/D is shown in Figure 13. This graph again shows the

relative merits of the data windows and indicates that less than 10%

error in depth is obtained with the rectangular window at k/D 3 3.

Less than 10% is obtained with the Tukey window at k/D 2 4. The Bartlett

and Parzen windows produced poor results for this particular application.

Intercept

The effect of profile length on the intercept can be determined

by using the equations for T1(o) and T2(o) (Equations ll,l3) determined

in the previous section.

= E. -l!sT](o) fl tan D (ll)

T2(o) = étan 1';— g—fl {2— ln (1 + (k/D)2) (13)
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OY‘

.. 2

T2(o) = g-. (g-tan I g-- %—%—ln (1 + (k/D) )

and if [(g-tan'] k/D)] in the case of the rectangular window and

[fitan’1 %-- %—E-ln (l + (k/D)2)] for the Bartlett window are plotted,

then as these functions approach unity the finite transforms approach

the theoretical transform. This approach is equivalent to dividing

the calculated value at (n: o by the theoretical value and this was

used to verify the determination of the equations for T1(o) and T2(o).

Because no analytical expression could be obtained for T3(o) or T4(o),

this method of dividing the calculated value by the theoretical value

was employed to graph the effect of profile length for these windows.

These functions are plotted in Figure 14. It is interesting to

note that once again the rectangular window appears to be the most

efficient.

To achieve an error of less than 10% with the rectangular window

a sample with a k/D ratio > 6 is required. Although this is twice

as long as the sample required for the depth determination there is an

alternative approach available. In the case of the rectangular window

the slope can be used in the T1(o) formula to calculate the Gaussian

mass. If the sample profile has a k/D ratio 3 3, then the 10% error

in determining the depth will result in less than a l0% error in

determining the Gaussian mass by

T1(0)n

tan"1 k/D
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At k/D 3 3, the arctangent fUnction is changing quite slowly

and an error of 10% in determining D will result in a less than 10%

error in detennining B. For example, a 10% error in D will result in

approximately a 10% error in k/D (actually 9 - 11%) so for k/D of 3,

the range would be 2.7 to 3.3 The resultant range in arctangent

function is 1.22 to 1.28 or about 3% error.

Profile length

The requirement that the profile length be equal to six times the

depth (an unknown, to be determined) can be expressed in a more

practical form. Setting x = 30C in the equation for the gravity

attraction due to a two-dimensional cylinder (Table 4, Formula A),

shows this to be the distance at which the anomaly has decreased to

ten percent of its maximum value.

Two-Dimensionaljrism

In the interpretation of the two-dimensional prism transform the

null positions are used to determine the width of the body and after

removal of this factor, the remaining spectrum is interpreted by the

method of multiple decay spectra.

Null positions

To study the effect of finite length on null determination a

number of theoretical anomalies over ideal prisms of various widths,

depths, and depth extent were transformed and compared to the theoretical

transform. In this phase of the analysis only the null positions were

considered to be of interest. The Bartlett and Parzen windows proved

to be quite ineffective in this study and only the results of the

rectangular and Tukey windows are detailed.
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Initially the width was determined from the first null of the

calculated spectra and compared to the true width. The results for

the two windows as a fUnction of 2k/b (profile length/width; equal to

k/b/2) are shown in Figure 15. This plot indicates that with either

window an error of less than 10% in determining the width from the

first null position is obtained for a 2k/b > 6.

However, it must be considered that the accurate determination of

the first null is affected by spectral resolution. Attempts at

spectral interpolation by adding zeros to the gravity profile (with

and without zero mean) did not improve the determination of this null

position. However, the resolution in determining the width is

enchanced by considering two (or more) null points. There was no error

in determining the width using the Tukey window at 2k/b Z 2 and with

the rectangular window 2k/b 2 3. Thus in this application the Tukey

window proved to be more effective and a relatively short profile, of

length equal to twice the width provides an accurate estimate of the

width .

Depth

In the analysis of the spectra for null positions there was no

consideration of the overall_goodness of fit of the calculated spectrum

to the true spectrum. However, the interpretive goal is not only to

determine the width but to then utilize that to factor out of the

spectrum the effect of width and determine the depths. To accomplish

this the entire spectrum must be considered.
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Figure 15: Percent Error in Width as a Function of

Zk/b and Spectral Window
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From a consideration of the remaining terms in the spectra, i.e.,

(e'dw-e'uw) it is anticipated that a result in terms of k/D similar

to that for the two-dimensional cylinder would be obtained.

If the terms could be considered independently, a profile with

k/d 3 3 would be required to determine d to a 10% accuracy and a

profile with k/D 2 3 required for the determination of D.

In making the comparison between the spectral estimate and the

true spectrum a linear correlation coefficient for the entire spectrum

was calculated. That is, the width term was not factored out of each

spectrum and the method of multiple decay spectra was not employed.

From a comparison of the correlation coefficient and normalized depth

of the two-dimensional cylinder the 10% error figure is comparable to

a correlation coefficient of approximately 0.95.

The correlation coefficient between spectral estimates calculated

from bodies of various widths and depths, and associated theoretical

spectra as a function of k/d is shown in Figure 16. A best fit line

was drawn through the data for each window. Again, as in the case of

the two-dimensional cylinder, the rectangular data window proved to

be superior and a correlation coefficient greater than 0.9 is obtained

at k/d > 3.

The scatter of data points observed on this plot was thought to

be due to bodies of varying depth extent. To examine this the

correlation coefficients obtained with the rectangular window were

plotted as a function of k/d for various d/D ratios (Figure 17).
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This shows the dependence on the depth extent of the body. Some additional

scatter was still observed that is attributable to various Zk/b ratios

but it was not significant. In general all these points were calculated

using profiles of 2k/b Z 1. Figure 17 shows that increasing length of

profiles are required for bodies of greater depth extent.

Basically by considering the correlation coefficient over the

entire spectrum we are requiring that both the d and D slopes be fit

accurately. To determine only the depth to the top accurately a

profile with k/d Z 3 would probably suffice. To determine the bottom

depth (and subsequently both depths) a profile with k/D Z 3 would be

required. This is demonstrated by Figure 18 showing the correlation

coefficient versus k/D.

Profile length

For determination of all the parameters of the two-dimensional

prism a profile of length (2k) six times b/2 or D, whichever is greater,

would be required. In the case of the two-dimensional cylinder the

length requirement was translated into terms of the maximum anomaly.

Although no such general figure for the two—dimensional prism is

obtainable, an idea of the range of values can be obtained by

substituting

x = Cb, D = Nb, d = Mb, (N>M)

where C is some constant into the gravity formula. The expression then

becomes



1uaiOLIgaog uoiseladdog

1
.
0

,  
F
i
g
u
r
e

1
8
:

k
/
D

T
w
o
-
D
i
m
e
n
s
i
o
n
a
l

P
r
i
s
m
:

C
o
r
r
e
l
a
t
i
o
n

C
o
e
f
f
i
c
i
e
n
t

B
e
t
w
e
e
n

C
a
l
c
u
l
a
t
e
d

(
R
e
c
t
a
n
g
u
l
a
r

W
i
n
d
o
w
)

a
n
d

T
h
e
o
r
e
t
i
c
a
l

T
r
a
n
s
f
o
r
m
s

a
s

a
F
u
n
c
t
i
o
n

o
f

k
/
D

90



91

 

2 2

G(Cb) =y2pb[(c+i/2)'niJGLiigiifillfl-
- -M2+c +C+1/4 .

 

2 2

N +C -C+1[fl_
— (C+l/2) 1n

-M2+C2-C+1/4

 

+ N (Tan'1 LEfilZZl_ - Tan-1 (C’T/2))

N

- M (tanu1 FC+1 2 - tan'1 C'] 2 )].

'Ihe profile length at which less than ten percent error in all parameters

can be expected was determined to be six times max (b/2,D). If C is

set equal to 3, then M<N51. By dividing this equation by the maximum

value (x = o), the dependence on b is removed, and the value as a

percentage of the maximum obtained. This is shown in Figure 19 for a

range of N, M (D,d).

Utility of rectangular window

One of the most surprising results is that for the case of finite

length gravity data, the rectangular data window proved to be the most

efficient. This appears contrary to the fact that most studies of

spectral analysis dismiss the rectangular window and consider only the

higher order windows.

By examining plots of the individual spectral estimates it was

noticed that although the higher order windows provided smoother

spectral estimates (less scatter), they were all positively biased

relative to the true spectrum. This is an indication of leakage
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Figure 19: Two-Dimensional Prism: Percentage of Maximum Anomaly

at x 3b as a Function of M = d/b and N = D/b



93

through the main lobe and is usually corrected by some form of pre-

whitening (Blackman and Tukey, 1958). The narrow bandwidth of the

main lobe of the rectangular spectral window reduces this leakage,

and the rapid decay of the spectrum, due to the exponential terms,

prevents any substantial leakage through the side lobes. Thus in this

application the good feature of the rectangular spectral window (narrow

main lobe) is not outweighed by the bad features (high side lobes).

The relative order of utility of the windows in this study is

directly related to the width of the main lobe. If we consider the

bandwidth to be the distance between the half power points, then the

standard bandwidths (k = l) are:

Rectangular (n = l) .5

Tukey n = 3) 1.333

Bartlett (n = 2) 1.5

Parzen (n = 4) 1.86

Alternative_§pectral Interpretation Method for

the Two-Dimensional Cylinder

In the case of a two-dimensional cylinder the solutions obtained

at w = 0 provide a method for the unique calculation of Gaussian mass

and depth. Although methods based on the formula for the theoretical

gravity anomaly (spatial domain) can be derived, for example

2 1

g(xl+1)xl+12 ' g(xl)xl l2

g(xil - g(xi+1)

 

they are greatly affected by errors in individual readings and have no

practical application. However, the effect of measurement errors

(noise) on the transform method can be calculated. With realistic
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profile lengths, noise is not a problem and the transform technique

should have practical application.

The method is based on the results obtained at)» = o from the

convolution of the theoretical transtrm with the rectangular and

Bartlett window (equations 11, 13);

11(0), = E- tan"1 16-

_ _ 2

12(0) = fi- tan 1 %- £25; E—in (1+(k/D) ).

Dividing T2(o) by T](o) yields

U

 
T2(O) = 1 _ E.) (1+(k1972)

T1“5 2 tan-1 k/D

which is tabulated for k/D ratios in Figure 20. Thus k, T2(o) and

T](o) are known and D can be determined from the graph. Once D is

known then B is determined from 11(0), i.e.,

nT](0)

 

8 =
-i.&

tan 0

Although the graphical approach is a slight drawback to this

method there are several advantages.
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1) Although based on transform theory, in actual application

no transformation is required. In the case ofiu = o the theoretical

transform becomes the integral of the profile. In practice all that

is required is that the gravity readings be multiplied by the data

window and summed. Thus the calculation of T](o) and T2(o) is quite

straightforward.

2) Noise is not a significant factor and its effect can be

detailed. From the linearity of Fourier transforms we have

F(T+N) = F(T) + F(N)

Thus the spectrum of the theoretical anomaly and any noise are additive

and it is unusual noise that will have any significant power at w = 0.

Some error figures can be calculated by considering the worst

case of noise (at u)= o) i.e., white noise.

In general the error will be

E _ T2(O)+N(O) T2(o) _ N(°)T](0)-T2(O)N(o)

T](O)+N(o) T](o) [T](o)2] + N(0)T](o)
 

If we consider the white noise to have arbitrary mean and assign

a standard deviation of .01 T1(o) milligals then the error term is

_ :91— [T] (0)'T2(0)

1.01 T1(o)

m

I

 

2

.01 [012k 1n Ll+k[0|]

1.01 -17
tan k/D
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and it is possible to calculate E as a function of k/D. This then is

the error in determining T2(o)/T](o). Thus the factor determined

would be

T(o)

To translate this into error in determining depth, the derivative of

T2(o)/T](o) was calculated and at k/D intervals of 0.1 assumed constant,

the resultant error in determining depth was then calculated by dividing

the error term E by this term. This would give the percentage of the

slope through that point which will directly affect depth determination.

The resultant error in determining depth is shown in Figure 21. The

error for this case of white noise is less than 5% for k/D greater

than one.
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CHAPTER IV

CONCLUSIONS

The principal objective of this study has been to determine

the effect of the nonstationarity and finite length of gravity data

on its transformation to the frequency domain. From this analysis

several conclusions can be drawn concerning the calculation and

application of spectral methods in gravity data analysis.

Spectral Analysis or Gravity'Field Dag
 

In the case of gravity field data the assumption of stationarity

is not necessary and should not be considered as a restriction or source

of error in the use of spectral techniques.

Although field observations can properly be considered as non-

stationary random data, the particular objectives of the time series

analysis of gravity data obviate the requirement of stationarity.

In spectral analysis of random data the requirement of stationarity

is imposed by the Wiener—Khintchine theorem which relates the spatial

and frequency domain process functions. If only the samplg_spectral

functions are to be determined, as in the analysis of gravity field

data, then the requirement of stationarity is not necessary. The

sample power spectrum is obtained by the transformation of the sample,

or time average, autocorrelation function which is independent of

stationarity.
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Under these conditions the equations relating the direct and

indirect methods of spectral calculation apply and for this application

the data can be effectively treated as deterministic. Thus, either

method of spectral calculation can be employed. Although the two

methods are mathematically equivalent, there are several advantages

in using the indirect method. First, spectral smoothing can be accomp-

lished in the time (space) domain by multiplication with a data (lag)

window. This is contrasted with the complexity of the convolution

in the frequency domain required in the direct method. Secondly, the

mechanics of spectral analysis by the indirect method is well documented,

and transformation of fewer points is necessary.

Although not necessary in the case of gravity data analysis,

the test of stationarity developed in this study provides a routine

method for determining the stationarity of any time series. This test

can be applied to any type of random data and should be of considerable

value in time series analysis.

Spectral Analysis of Ideal Gravity Anomalies

The mathematical structure of the Fourier transformations of

theoretical gravity anomalies over several ideal bodies appear to have

distinct advantages in the interpretation of isolated gravity anomalies

over the spatial domain formulas. By use of a generalized transform

equation, the frequency domain expressions for ideal bodies can be

determined without recourse to the more difficult transformation of

the spatial domain anomaly equations.
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However, aside from other problems encountered in isolating gravity

anomalies in the.spatial domain, the finite length of practical field

data precludes the general application of these formulas.

Two alternatives are then possible. Either the theoretical

transform of an anomaly segment must be calculated or the length of

data required for the finite transform to approximate the theoretical

transform must be determined. The mathematical complexity of the

convolution integrals encountered in the transform calculations of

theoretical anomaly segments indicate that no general, closed analytical

solution, useful for interpretation is available. Thus, in order to

have direct application the data must be of sufficient length for the

finite transform to closely approximate the theoretical transform.

In the case of the two ideal bodies studied in detail, the two-

dimensional cylinder and prism, an error of less than ten percent was

obtained when a rectangular data window was used with a profile length

of approximately six times the maximum depth. The fact that the

rectangular window proved to be the optimal window to use in this study

demonstrates that this function should be seriously considered in the

design of other types of spectral analysis. With a spectrum that is

decaying exponentially the narrow main lobe of the rectangular spectral

window provides minimal distortion. Because the lengths determined to

be adequate for accurate spectral interpretation may prove to be

unreasonable under certain geological conditions, methods of extra-

polation for obtaining profiles of this length (or longer) and their

effects on the spectrum should be studied.
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Although knowledge of the entire theoretical spectrum has been

considered as a basis for interpretation of the calculated spectrum,

other methods based on portions of the spectrum may offer an alternative

approach. One such method presented for the two-dimensional cylinder

was shown to be independent of noise and provide accurate results at

any data length.
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APPENDIX A

RUN AND TREND TESTS

The Run test and the Trend test are the two non-parametric

statistical tests employed by Bendat and Piersol (1968) in their

test of self-stationarity. The term non-parametric refers to the fact

that no specific probability distribution function is assumed for the

random variable being tested. The series of mean values and mean

square values calculated from the original data are examined for under-

lying trends by these tests. The main difference in the two tests is

that the Run test is sensitive to fluctuating trends and the Trend

test is primarily for the detection of monotonic trends.

Run Test

Assume a sequence composed of mutually exclusive elements A, B,

i.e., AABBABBAAB, then a run is defined as an unbroken sequence of

elements of the same type. In the application of the Run test in the

test for self-stationarity the two elements are defined (arbitrarily) as:

A: The value of the observation is less than the median value

of the series.

B: The value of the observation is greater than or equal to the

median value of the series.

The null hypothesis that there is no trend is made by assuming

that the sequence of observations represent independent observations
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of the same random variable. Then the probability of an A or a B

occuring next is not changing from one observation to the next. Under

this assumption the sampling distribution for the number of runs in

the sequence is calculated and used as the basis for the test.

Irend‘Test
 

The samples used in the Trend test are called reverse arrangements.

Specifically in a series of observations;

xi, 1 = 1,2,...N

a reverse arrangement is defined as:

xi > xj for i<j

Under the same assumptions employed in the Run test the sampling

distribution for the number of reverse arrangements in a sequence is

determined and used as the basis for the test.
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COMPUTER PROGRAM STEST
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