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ABSTRACT

MONOTONE NORMS AND SEMINORMS
ON AN ARCHIMEDEAN VECTOR IATTICE

By

Rosalind Reichard

Two distinct problems are considered in this paper.
However, both are concerned with a discussion of monotone norms
and monotone seminorms defined on an Archimedean vector lattice.

A norm (or seminorm) ||| on an Archimedean vector
lattice E 1is said to be monotone whenever |x| < |y| in E
implies that ||x|| < ||y]|. An Archimedean vector lattice with
a monotone norm defined on it (E, <, ||+||) 1is called a normed
vector lattice. If ||| is complete (E, <, ||-||) is a

Banach lattice. The Dedekind completion E of an Archimedean

vector lattice E 1is a Dedekind complete vector lattice (i.e.,
the supremum of every subset of E which is bounded above in

E must exist in ﬁ) in which E 1is isomorphically (preserving
algebraic and order relations) embedded and % = sup(y: y < %,

y €EE) = inf(z: z 2 &, z € E) for any % 1in E. Given a normed
vector lattice (E, <, ||-||) an extension of |-|| to E is a
monotone norm “.“1 on E such that |x|| = lx|}; for all x

in E.

Given any normed vector lattice (E, <, ||||) all norm

extensions of H-H to E are not necessarily equivalent.
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The question that Chapter One answers is: What are some con-
ditions under which all norm extensions of a Banach lattice
are equivalent?

Section one of Chapter One indicates some restrictions
under which norm extensions are unique. Whenever H*H is con-
tinuous (i.e., 0 < x, 4 0 implies that 1nf(“xa“: a €a) =0)
“-“ extends uniquely to E (Theorem 1.2). However, examples
of normed vector lattices are given where ||-|| is semi-con-
tinuous (0 <x t x implies that S“P(Hxa”: € =|x||) or
o-continuous (0 < X {} 0 implies that inf(“xnnz n € N) = 0)
and |-|| does not extend uniquely to E. One theorem in
Section one is:

Theorem 1.11. Let (E, <, ||‘||) be a normed vector

lattice such that whenever {xq: a € d} is any subset of et

€a) =|xl||. Also,

R

with sup(xa: o €@ =x then sup("xauz
if inf(w,e) ¢ E whenever w € E and e = sup(k € ﬁ+: Hiu* < 1)
(which exists in the universal completion of E) then |||
extends uniquely to E.

The boundedness property is the topic for Section two.
If a subset B of E 1is order bounded whenever {knxn} order
converges to zero for every sequence {xn} S B and every
sequence {xn} of positive real numbers decreasing to zero

then E 1is said to have the boundedness property. The main

result of this section is:

Theorem 2.10. Let (E, <, n-u) be a Banach lattice

such that E has the boundedness property. Then all extensions

of ||:|| to B are equivalent.
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Normed vector lattices having the Egoroff property is
the subject of Section three. An Archimedean vector lattice

E has the Egoroff property whenever given any double sequence

{xn K n,k € N} in E such that 0 < x for
]

n,k 1k \x|

n=1,2,..., there exists a sequence {um: m € N} = E+ such
that u t ‘x| and for every n,m € N there exists a positive

integer k(n,m) with u < x A discussion of the Egoroff

n,k’
property on normed vector lattices yields an example of a monotone
norm ||+|| such that o(x) = ||x|| - Hx“L = ||x|| - inf(lim “xn“:

n—o

0 < x 1 ‘x‘) is a functional on E which is neither subadditive

nor monotone. (This answers a question of W.A.J. Luxemburg.)

We also obtain several theorems one of which is:

Theorem 3.20. Suppose (E, <, ||*!|) is a normed vector
lattice such that E 1is order separable and has the Egoroff
property. If “ﬁ“M = inf(||¥||: w = |&|, v € E) is equivalent
to “i“ML = inf(lim nﬁnnM:O < in t‘ﬁl in E) on E, then all
norm extensions of ||| to E are equivalent.

In Chapter Two we consider the problem of determining
which universally complete vector lattices (i.e., Dedekind complete
and sup(x : o € Q) =x exists if inf(x ,x ) = 0 whenever

o 0'1 0'2
oy # a2) have a countable collection of continuous, monotone
seminorms defining a locally convex, Hausdorff topology. We

find that the space of all real sequences and all finite

dimensional spaces are the only such vector lattices.
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INTRODUCTION

The theory of vector lattices, real vector spaces with
compatible lattice structures, is one of the main cornerstones
for functional analytic theory. Historically, the foundations
for this theory were laid in the years from 1928 to 1936 by
F. Riesz, L.V. Kantorovitch, and H. Freudenthal. For an
excellent discussion of the development of the theory of vector
lattices, one should read a paper by A.C. Zaanen [25].

An Archimedean vector lattice E 1is one in which

n\xl <y for n=1,2,..., with x and y elements in E
implies that x = 0. 1If the supremum of a set B, written
sup (B), always exists in E whenever B 1is a subset of E

which is bounded above in E E 1is Dedekind complete. Every

Archimedean vector lattice E has a Dedekind completion E

=1

(E 1is Dedekind complete, E 1is isomorphically embedded in
with preservation of the algebraic and order relations, and
X = sup(y: y s ﬁ, y € E) = inf(z: z 2 ;, z € E) for every X
in ﬁ), and the Dedekind completion is unique up to isomorphism
(13, Theorems 30.1, 2, 37.

In the study of the classical normed function spaces,
such as the L_ spaces, the natural underlying structure is the

P

theory of normed vector lattices. A normed vector lattice

E, <, ||'l]) 1is a vector lattice with a norm ||| defined on



it such that |x| < |y| implies that |x|| < ||yl|. A norm defined
on a vector lattice and satisfying this property will be called
monotone. Whenever ||-| is a complete norm, (E, <, |-||) is

said to be a Banach lattice. A normed vector lattice is always

Archimedean [23, p. 174]. And in the present paper, unless
otherwise specified, we shall always be working with Archimedean
vector lattices and all norms shall be monotone norms. Defini-
tions for any of the terms used in this paper can be found in
(23] or [16].

The question of extending a monotone norm from an
Archimedean vector lattice E to its Dedekind completion E
has been considered by B.Z. Vulich [23], V.A. Solovev [19, 20],
and T. Nishiura [15]. An extension of a monotone norm ||.||
from E to E is defined to be a monotone norm n-ul on E
such that ||x|| = qul for all x in E. It is well known
(23, p. 179] that every monotone norm ||:|| on a vector lattice

E has an extension H-HM to E defined by:

Ixlly = infdiyll: vy = |x|, y € E).

And if ||-||; is any other extension of ||-|| to E, then
H§“1 < H&HM for all x € E. We shall refer to H-HM as the
maximal extension.

As the following two examples will illustrate it is not
true that norm extensions are unique nor is it true that all

norm extensions are equivalent.



Example 0.1. Let E = c (the real, convergent sequences)

and ||x|| = sup(|x(@)|: n € N) + lim |x()| where x = (x(1),x(2),...
n—+-xo
Then E = 4, (the bounded, real sequences) and “%HM =

sup(\§(n)|: n € N) + lim |§(n)|. However, other extensions of
N—o

Il teo E exist as “i"l = sup(|x(m)|: n € N) + L(|%|) is an

extension where L 1is any Banach limit.

8

Example 0.2. Let E =c and |x| = ; (‘x(n)l/Zn) +
=1
X

+ 1lim ‘x(n)‘. Then E = t, and “;HM =
N—o n

n

n
1(\ my| /72" +

+ lim ‘;(n)‘. We shall show that (E, <, H-n) is not norm
N~

dense in (E, <, H-HM) but is norm dense in (E, <, H.Hl)
where ||x||, = n§1(|§((m)|/2“) + L(|x|) and L 1is any Banach
limit. This not only indicates that H-HM and n-nl are not
equivalent, but also answers a question of Nishiura [15, Problem
1].

In order to prove that (E, <, |[-||) is norm dense in
(E, s, H-Hl) we note that for any X € E = t_ and any positive
number ¢ > 0, there exists a positive integer N such that

; 2M/2" < ¢ where M is a bound for the sequence x. Now

n=N+1
let x

x(1),x(2),...) € ¢ be the element such that x(n) = X(n)
for n=1,2,...,N and x(n) = L(\ﬁ‘) for n > N. Then
Ix - %I, = £ 2m/2" +0<e.
n=N+1
However, we can show that (E, <, H-H) is not norm
dense in (E, <, "-“M) by choosing & = (1,0,1,0,...) € 4_

and noting that L(X) =1/2. 1If x 1is any element in ¢, it is

easy to see that |x - ﬁnM 21/2.



As Example 0.2 illustrates, the norm extensions of a
normed vector lattice need not be equivalent. However, the
example given is not a Banach lattice. Therefore, we ask
whether all extensions of a complete, monotone norm on a vector
lattice E must be equivalent on E. Chapter One of this paper
is involved with an attempt at answering this question.

Nishiura [15, Theorem A] has shown that if (E, <, ||-|))
is a Banach lattice then “'HM is complete on E. Since all
monotone, complete norms on a vector lattice are equivalent
[14, Theorem 30.28] the above question asks whether every
extension of a complete norm on E must be complete on E.

In Section one we consider conditions under which norm
extensions of a normed vector lattice are unique and apply these
results to the question of equivalence of norm extensions for
Banach lattices. The boundedness property and some of its con-
sequences on normed vector lattices is the subject of Section
two since this property plays an important role in the equivalence
of norm extensions. In Section three we discuss the Egoroff
property on normed vector lattices and we obtain a Riesz-Fischer
Theorem as well as some results on norm extensions which aid
us in answering the above question.

We shall need the following definitions in our discussion:

Definitions 0.3. A subvector lattice M & E of a vector

lattice E 1is a linear subspace of E such that sup(x,y) is

in M whenever x,y € M. A linear subspace M of E 1is an



ideal in E 1if y is an element of M whenever |y| < x and

X € M. An ideal M in E is a band in E whenever sup(B) = X

in E and B S M implies that X, € M. A subvector lattice
M of E 1is said to be order dense in E whenever for all
0 < x € E there exists a directed system 0 <x t (given
o
any oy, 0y there exists an og such that x 2 x and
Y% N

x =2x_) of elements of M such that sup(x : o € @) = x.
03 0’2 o

Definitions 0.4. A vector lattice E is universally

complete if it is Dedekind complete and sup(xa: ad € = X
exists in E whenever {x : o € 7} € E and inf(x ,x ) =0
for all oy g 7% The vector lattice E# is said to be a
universal completion of E whenever E# is universally
complete and E can be isomorphically embedded as an order

dense subvector lattice of E#.

A vector lattice E has a universal completion if and
only if E 1is Archimedean and any two universal completions
are isomorphic [13, Theorem 34.47.

In Theorem 39.1 of Modern Spectral Theory [13], H. Nakano

characterizes a normed vector lattice (E, <, ||-||) having the
property that whenever {xa} is a set of elements in E which

is bounded above in E then sup("xa“: o €@ = inf(|ly|: v is

an upper bound for {xa]). Such a normed vector lattice must

be a norm dense subvector lattice of a space C(K) of continuous,
bounded functions, vanishing at infinity, and defined on a locally

compact, Hausdorff space K. The first part of the proof of



this theorem can be used to prove the following very useful

result.

Theorem 0.5. Let (E, <, ||-l|) be a normed vector lattice

such that whenever {xa} = E+ (E+ = the positive elements of E)

and sup(x : a € @ =x_ in E then SUp(HxaH: x €D = onu.
1f {xa} c E+ and nxan < M for all ¢, then sup(xa: o €d) =x

exists in E#.

o

The proof of this theorem involves decomposing each xa
into the supremum of a disjoint collection of elements in E#
and in this way forcing an element of E# to be above each of
the xa. We do not reproduce the proof here because it would
involve introducing several terms that we shall not need else-
where in this paper. However, for the convenience of the reader,
the proof of Theorem 0.8, below, can be found in the Appendix.

The importance of Theorems 0.5 and 0.8 will become
evident in Sections one and three when we apply these results

to the problem of norm extensions. Before stating Theorem 0.8,

we shall need the following definitions.

Definitions 0.6. A net {xa: a € ¢} in a vector lattice
E is said to decrease (increase) to X in E (notation:

, if = : = :
xa } xo xa t xo) xo inf(xa ad €EA) (xo Bup(xa a€d)

and x 2 X whenever Z o X <X whenever 2 o). A
SRR Ba (x, <x B> o

net {x : a € g} 1is said to order converge to x_ in E
- to
(notation: x 5 xo) if {x } is an order bounded subset of
o o

E and there exists a net f{y : o € d} in E that decreases



to 0 and |xd - xo| <Y, for all o € 4.

Definitions 0.7. Let (E, <, ||||) be a normed vector

lattice. ||-|| is semi-continuous (g-semi-continuous) whenever

0 < X, t X in E (0 < X t X in E) implies that

sup(“xa“: x €A = “xo“ (sup(“xn“: n €N) = “xon). A vector

lattice E 1is said to be order separable whenever given any

subset A € E such that sup(A) = x, exists in E, then there

exists a countable subset A' € A such that sup(A') =x, in E.

Remark. Whenever (E, s, ||+||) 1is o-semi-continuous
and E is order separable it follows that ||-|| is semi-con-
tinuous. Examples of semi-continuous norms are frequently found;

e.g., let E=c and |x|| = sup(x(n): n € N).

The norm property stated in Theorem 0.5 is used very
strongly at one point of the proof. However, we can obtain the

following theorem using a slight variation.

Theorem 0.8. Let (E, <, H-H) be a normed vector lattice
such that ||| is semi-continuous (o-semi-continuous). If
0 < xat © < X t) in E and Hxau <M for all o € @
(Hxn" <M for all n € N) then sup(xd: x €EQ) = X exists

in E# (Sup(xn: n € N) =x_ exists in E#).

As noted above, applications of Theorems 0.5 and 0.8 can
be found in Sections one and three. However, one immediate result
is the following theorem which was proved by W.A.J. Luxemburg

(7, Theorem 61.7] in a different manmer.



Definition 0.9. Let (E, <, ||*||) be a normed vector

lattice. ||| is said to be locally norm complete whenever

{xn} CE, |xn| <x €E for n= 1,2,..., and nxn - xm“ -0
as n,m - » implies there exists an element x in E such

that “xn -x| -0 as n-w,

Theorem 0.10. Let (E, <, ||¢||) be a normed vector

lattice such that E is Dedekind g-complete and ”-H is
o-semi-continuous. Then (E, <, ||:||) must be locally norm
complete.

Proof. Suppose {xn} € E is |.||-cauchy and
\xn| < x € E for all n € N. We can assume without loss of
generality that “xn - xn+1“ <1/2" for n=1,2,... . Con-

sider the sequence s = |x2 - x1| + |x3 - x2| oot |xn+1 - xnl
*
and note that by Theorem 0.8 s, t x in E# since

“sn“ = “‘xz - x1| oot |xn+1 - xn|“ <1 for all n and H.“

is g-semi-continuous. But then we must have

#

+ (x2 -x.) +.-4+ (x - xn) S x € E'. (Absolute convergence

*1 v
of a series implies convergence of the series in a Dedekind

g-complete vector lattice [23, p. 1017).

o = i .
Therefore, we have X, =X in E . However, since

\xn| sx €Ec< E and E is an ideal in E# we must have

x € E and x 9% in E (23, p. 64]. Now let

y = inf (sup (x,)) which exists in E since E is Dedekind
n k=n k

o-complete and {xk} is bounded above in E. We note that by

definition of y we must have X e y in E [1l6, p. 44].

~

However, since x_ 9 x in E we must also have x = inf (sup (x,))
n n k2n k



where the suprema and infima are taken in E. But suprema and
infima are preserved under the embedding E - E. Hence, we

2% in E, x € E.

must have x = y and x
To complete the proof of the theorem we need only show

that x, - X in norm. x = x; + (x, - xl) +... implies that

|§ - xn‘ = |(x1 + (x2 - xl) +- -+ (xn - xn-l) +-0) -

- xn_l))‘ < ; |xk+1 - xk‘. It now

- ® k= o n-1
follows that |x - x || < || T |x = x|l = T lxyy - x [l < 1/2777,
k=n k=n

- (x1 + (x2 - xl) +.. .4 (xn
with the second inequality holding because ||-| is g-semi-

continuous. Therefore, “; - xnu -0 as n - o,

The purpose of presenting the above theorem is to demon-
strate some of the techniques used in proving theorems in the
theory of vector lattices, and also to indicate the strength
of Nakano's result.

As one reads Chapter One, he or she should keep in mind
the main problem (i.e., when are norm extensions of a Banach
lattice complete) as it is the motivation for the material pre-
sented here.

Chapter Two discusses a problem of a different nature
and it is presented in this paper because it is an interesting
result. In this last chapter we prove that every universally
complete vector lattice with a countable collection of continuous,
monotone seminorms defining a locally convex, Hausdorff topology
must be the space of all real sequences or a finite dimensional

space.



CHAPTER ONE

ARE THE NORM EXTENSIONS OF A BANACH
LATTICE EQUIVALENT?

Section One. Uniqueness of Norm Extensions

Given a Banach lattice (E, <, ||-||), we know that the
maximal extension is always complete [15, Theorem A]. There-
fore, whenever norm extensions are unique, the question of the
completeness of all norm extensions can be easily answered.
For this reason, it becomes important to determine conditions

under which “'HM is the only extension of a monotone norm

|-l defined on E.

Definition 1.1. A norm ||-|| defined on a vector lattice

E 1is said to be continuous (o-continuous) whenever 0 < X, 1 0

0 < X, 1 0) in E 1implies that inf(“xaH: a¢cd =0

(inf(||x_||: n € N) = 0).

Remark. A og-continuous norm is continuous whenever E
is order separable. Also, a continuous norm is always semi-
continuous. However, if E ={_ and llx| = sup(‘x(n)‘: n € N)

then “-H is semi-continuous but not continuous.

We shall prove that whenever (E, <, ||:||) is a normed
vector lattice and ||-|| is continuous, “'HM is the only extension

of “'“ to E. This result was also proved by V.A. Solovev

10
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(19, Theorem 4], but he obtained the result as a corollary to
a combination of several theorems. We shall give a short direct
proof.

Once we have the fact that continuous norms extend uniquely,
it becomes a natural question to ask whether semi-continuous,
o-semi-continuous, or g-continuous norms extend uniquely. The
answer to all three questions is negative and several examples
will be given to illustrate these points. At all times, we shall
apply our results to the question concerning the equivalence of

norm extensions.

Theorem 1.2. If (E, <, ||||) 1is a normed vector lattice
and ||-|| is a continuous norm, then ||| extends uniquely to £,

Proof. Let (%) = sup(|ly||: 0 <y < |&]|, y € E) for all
% ¢ B. 1If u-nl is any extension of ||:|| to E we must have
pk) < “i“l < Hi“u for all % € E. Hence, to show that ||-||
extends uniquely to £ we need only prove that (k) = H%“M
for all & € E.

Choose % € E and let A ={w -y:wz=|k|, 0y s |§],
w,y € E}]. A 1is a directed set in E 8o we can let
A= {ua: a € g} where @ 1is a directed set. Then 0 < u, b 0
since s8up(y: 0 <y < |§\, y €E) = inf(w: w 2 |i‘, w E€E)= |ﬁ\.

Using the hypothesis that ||-|| is continuous we must
have inf(llull: @ € @ =0. Hence, given any ¢ >0 there
exists an element w > |%| and an element 0 <y s |%| with
w,y € E such that |w - y|| < e. However, |w|| - ||ly|| < |lv - yl|.
Therefore, |w|| - |ly]| < ¢ and it follows that ¢(k) = nﬁ“M.

This proves that ||.|| extends uniquely to E.
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Corollary 1.3. Let E be a vector lattice having any

cont inuous, monotone, complete norm ||-|| ~ defined on it. If
(E, <, ||||) 1is a Banach lattice, every extension of ||.|| to
E must be complete.

Proof. Since ||-||  and |[.|| are both complete they
must be equivalent [14, Theorem 30.28]. Therefore, there exist
real numbers a,b > 0 such that ||x|| < aflx||, = bljx|| for a1l
x in E. It easily follows that ||-|| 1s continuous because
|-l 1s continuous. By the theorem, ||:|| extends uniquely to

E and since H.“M is complete, every extension of ||-|| to E

is complete.

This corollary is also true if we assume that E is
any Archimedean vector lattice such that E has a continuous,
complete norm defined on it. For example, if E 1is any order
dense subvector lattice of L (the real sequences which converge
to zero) and E = c, then if |-l is any complete norm on E
every extension of ||| to E = c, must be complete. This
follows because “x“c = sup(|x(n)|: n € N) 1is a continuous,
complete norm on c_. Then since H-HM is a complete norm on
Cyo “'“M must be equivalent to H-Hc. This forces H.“M to
be continuous on E = c,- Then |-l must be continuous on E
and the result follows.

Although we shall see that, in general, a semi-continuous,
monotone norm on a vector lattice E need not extend uniquely
to ﬁ, for a very large class of semi-continuous norms we do get

unique extensions.
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+
Definition l.4. If E is a vector lattice, e € E

is said to be a strong unit for E if for every x € E there
exists a real number ) > 0 such that |x| < )e. As in [23]
we shall call a vector lattice with a strong unit a space of

bounded elements.

If E 1is a space of bounded elements with strong unit

e we can define a monotone seminorm on E by:
nxn = inf(\: \e = ‘x‘).

If E is Archimedean this seminorm is a norm and ||:|| is semi-
continuous. To see this latter fact we choose a net
{xa: a €d} SE such that 0 < x t x_in E. By definition
of “xaﬂ we have that x, < “xau.e for all o € ¢. This
implies that sup(nxauz @ €Ed)-e = sup(nxan-e: @ €d) =
sup(x,: @ € Q) =x_ . Then Hsup(ﬂxq“: o €@ -el|| = sup(“xaH: x €D =
“xo“. Since we always have that sup(“xa“: a €Q) < onn it
follows that ||:|| is semi-continuous.

| If E 1is an Archimedean space of bounded elements with
strong unit e then E is a space of bounded elements with
strong unit e and “i“s = inf(A: Ae 2 |&|) 1is a semi-con-
tinuous norm on ﬁ. Using a characterization of E as a space
of continuous, bounded functions defined on a compact set, V.A.
Solovev [19, Theorem 5] proved that ||| extends uniquely to
E. We shall give a direct proof of the fact that semi-continuous

norms of this type extend uniquely. However, first we need the

following lemma and remark.
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Lemma 1.5. Let (E, <, ||*||) be a normed vector lattice.
1f n“l and an are extensions of ||| to E and both
“-“1 and “-“2 are semi-continuous on E then “i“l = “i”z
for all % € E.

Proof. Choose any % € E and let {x,: o€ d} be a
net in E such that 0 <x 't |%] in E. Since H-Hl and
|||, are semi-continuous we must have ,sup(“xanlz a €Q) =
i, oo suplleylyr a € = &, Bue |-l snd |-,
agree on E. Therefore, HS‘(HZ = sup(“xauz: a €q) =

sup(nxanlz ad € = “f‘“1

Remark. It is known ([20, Lemma 1] and [6, Theorem 1.57)
that if (E, <, ||-||) is a normed vector lattice and ||| is
semi-continuous then “in* = sup(|lyll: 0 <y < |&]) is a semi-
continuous norm extension of ||| to E. As the example E = c
and ||x|| = sup(|x(n)|: n € N) + lim |x(n)| demonstrates, this
is not necessarily true when n.ﬁ—mis not semi-continuous. In
this case “i“* = sup(|%(n)|) + lim |x(n)|, which is not a norm
because it is not sub-additive. nZ?so whenever |-|| is semi-
continuous and we choose any X € £ and any two nets
{xd: a €d}, {yB: B €B} in E such that 0 < Xy 1 % and
0 < Vg t % then “in* = sup(“xauz a €A = sup(HyBH: B ERM.

We can prove this latter statement by fixing some Bo and
noting that x, A yBO ty X A yBO = Vg

(o]
means inf(x_, Vg )). The semi-continuity of ||| implies that

ati
(The notation Xy A yBO

o
Bon: ax€EqQ) = “yBo“. Then Xy 2%, A yB for all

(o]
« implies that sup(||x |[: @ € @ 2 sup(||lx, A Vg \: e =
(o]

sup(“xa AY

= “yﬁ || for all B . This shows that sup(uxaﬂz o €Q) =
0
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2 sup(“yB“: B € B). A similar argument proves the other inequality.

Theorem 1.6. Let E be an Archimedean vector lattice
with strong unit e. Define ||x|| = inf(A: Ae = |x|). Then
||-|| extends uniquely to E.

Proof. We note that ||:|| is semi-continuous on E so
that \\-\\* is a semi-continuous norm on E. Hence, using Lemma
1.5 we need only show that n-HM is semi-continuous on E.

We shall prove that HQHM = inf(A: e 2 |&|) for all
% in E because the right hand side is a semi-continuous norm
on E. Choose A > 0 such that e = ‘%\ Then by letting
w = )e € E and noting that ||xe]| = Alle|| = A we have that
{x: xe = |&|} € {|w||: w = |%|, w € E}. Furthermore, if we
choose w € E such that w = |%| it follows that
|lwli-e 2 |w| =w = |%|. And then {|w]|: w2 |&], w € E} <
€ {x: ne = |&|}. Therefore, |&l||, = inf(x: A& ~ |%|) and this

completes the proof of the theorcm.

Using Theorem 1.6 we know that whenever (B, =, ||-||)
is a Banach lattice of bounded elements every extension of
|-l to E must be complete (because H-HM is the only
extension). However, it is also true if E 1is a vector lattice
of bounded elements and ||-|| is any monotone norm which is
complete on E, then every extension of |-|| to E must be
complete. This result will follow from Corollary 1.12.

Having the results that a continuous norm on E must

extend uniquely to E and a special class of semi-continuous
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norms extend uniquely to E we ask whether all semi-continuous
norms extend uniquely to ﬁ. We shall give an example of a normed
vector lattice (E, <, ||:||) such that ||:|| satisfies the pro-
perty that if {xd: a € g} 1is any subset of et (not necessarily
directed upward) and sup(x i EAQ) = X then Sup(“xa“: 0 €EQ) =
= “xo“' But |:|| does not extend uniquely to E. This answers
our question negatively since the stated property is stronger

than semi-continuity. This example also shows that Theorem 3

in [20] is incorrect. Further, we shall prove that with an

A

added condition on E, ||-!l does extend uniquely to E.

Example 1.7. Let E =c and 2 = (1,2,1,2,...) €E =¢_.
é 1is a strong unit for 1_- Therefore, for any % € 1
nﬁns = inf(A: A& 2 |%|) defines a semi-continuous norm on -

It follows that ||| = “'HS‘E is a semi-continuous norm on E.

We note that “-“ also has the property that if [xa} c e’

and sup(x : @ €J) =x, then sup(“xa“: a € = x|
B = supdlyll: 0 <y < 121, y € B = Rl

since both “-H* and ||-||, are semi-continuous norms on E
which agree on E. (See Lemma 1.5). We shall show that

18], = tn€dwll: w = |&], v € B) # ||R]]" for some % € &. con-
sider & = (1,2,1,2,...). |&|" = 1. However, given any
WEE=c¢c such that w 2 & we must have limw(n) =2 2. It
follows that |w|| =2 2 since |w|| = inf(a: :ng w). Therefore,
&l =2 # 1 =]2]". This proves that 1" ana |||, are

~

two distinct extensions of ||:| to E.
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Our previous example is one in which there exists a non
semi-continuous extension, namely “-HM, to E of a semi-con-
%*
tinuous norm ||+|| on E. However, ||| is an extension of
I o : * :
Il* to E. Of course, it is not always true that ||| 1is

an extension of ||-|| to E. As noted in a previous remark,

if E=c and |x| = sup(‘x(n)\: n € N) + iim ‘x(n)‘ then

.. oo
HQH% = Sup(\x(n)|: n € N) + lim |x(n)\ is not a norm on
~ n—®
E =4 . But in this example ||:|| is not g-semi-continuous.

o]

Thereforc, we ask whether there exists a normed vector lattice
(E, <, H'H) such that H-H is g-semi-continuous but H-H* is
not an extension of ||-|| to E. Such an example would have

to be non order separable.

The following example answers the above-mentioned question
as well as shows that g-semi-continuous norms need not extend
uniquely.

Example 1.8. Let X be any uncountable set of points
and let E = {f: f 1is a real-valued, bounded function on X
and f 1is constant except possibly on a finite set of points
in X}. Then E = {(f: £ is a real-valued, bounded function on
X}. For every f € E 1let c(f) = that real number such that
{x: £(x) = c(f)} is uncountable. Also let “f“l = sup(|f(x)|:
x € X) and define ||f|| = l|£||; + 2|c(D)].

(i) (, <, ||'!|) is a normed vector lattice and ||-l|
is g-semi-continuous on E. It is easy to see that ||-|| is a
monotone norm on E. To show the g-semi-continuity of ||| we
choose any sequence {fn} in E such that O < f tf in E.

If c(f) = 0 then c(fn) =0 for n=1,2,... . And
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sup(“an: n € N) = sup(nfnulz n €N) = “fnl = ||f]| since H°H1
is g-semi-continuous. If c(f) # 0 and ¢ > 0 is any real
number, then there exists a positive integer N such that

c(f) - c(fy) < e. (It is crucial here that {fn} is a sequence
and not an arbitrary net.) Hence, 2c(fn) 2 2¢c(f) - 2¢ for

all n - N. Now, sup([[f ||: n € N) = sup(sup(f_ (x)) + 2c(f)) =
- sup(sup(f (x)) + 2c(f) - 2¢) = ||f||, : Zc?f) - 2¢ = ||f]| - 2e.
It 20112ws that sup(||f_||: n € N) = ||f||. Since the other in-
equality always holds we must have sup(||f_||: n € N) = ||f||

and ||-}| is o-semi-continuous.

A

*

(ii) |I®)|" = sup(y|l: 0 sy = |%|) does not define a
norm on E. Let X = Xl U x2 where Xl n x2 = ¢ and
card(xl) = card(xz) > xo. Let Ix, Ix R Ix denote the char-

1 2
acteristic functions of X, Xqy» and Xz, respectively. Then
- *

, are elements of E and ||X, | = 3. However
e Ty X, 3 X ’
HIX H = “IX H = 1 because both Ix and Ix are zero on

1 2 1 2
* *
an uncountable set. Hence, || + W =3>2=]x || +
* ’ le Ix2 le
+ HIX |I" which shows that ||:||* is not a norm.
2

(iii) |||y = inf(|w|: w = |&], w € E) is not g-semi-
continuous. Let {xn: n € N} be any countable set of points
in X and define f(x) = {il if x = X for n=1,2,...

0 otherwise,

~

Then f € E. For n =1,2,..., define

{} if x = Xy k=1,2,...,n

0 otherwise.

£ ()

Then O <f tf in E and sup(||f |,z n € N) = sup(|f ||: n € N)

However, “fHM = 3., Therefore, “f“M > sup(nanM: n € N). This
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proves that “-HM is not g-semi-continuous.

(iv) We now exhibit an extension of ||:|| distinct

"

grom “'“M. Define ||% = inf(lim “ﬁn"M: 0 < in t |i| in £).
)

l,

Given any norm H-H, H'HL is always a seminorm. (See Section

three for a thorough discussion of “’HL.) For our particular

example we shall show that “.“ML agrees with ||+|| on E.
This fact forces “.HML to be a norm extension of ||-|| to E.
Obviously, H.“ML cannot be equal to H-HM on E because
“.“M is not g-semi-continuous on E. Hence, “.HM and u'”ML

o

3

are two distinct extensions of n-H to

Choose any f in E+. If c(f) =0 and 0 < f; t £

in E then we must have f; €E for n=1,2,... . And we

=]

know that sup(||fll: n € N) = sup(||£7]|: n € N) = ||f|| since
||| is o-semi-continuous on E. Suppose c(f) # 0. Then if
¢ > 0 1is any real number there exists a positive integer N
such that {x: fﬁ(x) 2 f(x) - ¢} 1is an uncountable subset of
X. Hence, f&(x) 2 c(f) - ¢ for uncountably many x in X.
Then, HfﬁHM = sup(f&(x): X € X) + 2c(f) - 2¢. We now have
sup(||fplly: n € N) 2 sup(sup(f](x)) + 2c(f) - 2¢) = ||f]|; +
+ 2c(f) - 2¢ = ||f| - ;s- xIt follows that for any sequence
{2} in B with 0 < £ t f we mst have sup(||f],: n €N) =
= ||f|l. Hence, ||£fl,, = |If| for all £ in E.

We note that the norm defined in Example 1.8 is

o-continuous as well as g-semi-continuous and “.“M is not

g-continuous.
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The following example is one in which H-H is g-semi-
*
continuous, ||+|| 1is not a norm, but “'“M is g-semi-continuous.
We shall then indicate an interesting generalization of Examples

1.8 and 1.9.

Example 1.9. Let X be an uncountable set of points
and E = {f: f is a real-valued, bounded function on X and
f 1is constant except possibly on a countable set of points in
X}. Define |*|| as in Example 1.8 and note that E is also
as in Example 1.8. We merely remark that ||:|| is o-semi-con-
tinuous and H'n* is not a norm on E as the proofs are exactly

like those in the previous example. However, “- is g-semi-

continuous.

To show that “'HM is g-semi-continuous we first note
that E 18 Dedekind g-complete. Then we show that whenever
(E, <, ||*]) 1is a Dedekind o-complete normed vector lattice and
“-u is g-semi-continuous, “."M must be g-semi-continuous. The
proof is due to V.A. Solovev [20, Theorem 1]. Supposc
0 < %n t T in E and choose any real number ¢ > 0. By defini-
tion of ".“M’ there exists an element x € E such that
x 2 ?n and nxn“ < “f;“M +¢ for n=1,2,... . We also
choose an element x in E such that x = f and we can assume
without loss of generality that X <X for all n € N. Dcfine
the element Y, © inf(xk: k=2n) in E, n=1,2,... . Since
Y, S X for all n there exists an element y in E such that
0<y ty. By the g-semi-continuity of ||+l we know that

sup(“yn“: n € N) =|yl|. Also, y = f and y, s x, for n=1,2,...
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implies that “%“M <yl = sup(“ynn: n €N) < sup(HTnHM: n €N) +e.
Since ¢ > 0 was arbitrary we have “%HM < sup(uf;nM: n € N).

It follows that H-HM is g-semi-continuous.

The previous two examples can be generalized in the

following manner.

Example 1.10. Let Ny be any cardinal number such that

xl >» R . Choose a cardinal number X and a cardinal number

¢} 2

33 such that R3 > Rz > R Let X be a set such that

L

card (X) = R3 and let E = {f: f is a real-valued, bounded

function on X and f is constant except possibly'on a subset

of X having cardinality less than or equal to xl}. Then

E = {f: £ is real-valued and bounded on X}. For each f in

E, let c(f) = that real number such that {x: f(x) # c(f)]}

has cardinality at most ;. For f in E let Hf“l =

= sup(\f(x)\: x € X) and define |f|| = Hf“l + Z‘C(f)‘. Again,

it is easy to sec that (E, =, ||*||) is a normed vector lattice.
(i) |-\ is R,-semi-continuous on E. That is, if

{: @ € d} 1is any directed set such that its cardinality is

less than or equal to Rz and 0 < fd t £f in E then

Sup(“fan: o € @) = ||f]|. Suppose 0 < fcv t £f in E as just

described. If c(f) =0 then c(fa) = (0 for all o ¢ ¢ and

sup(“fa“: a € = “fn. If c(f) #0 and ¢ >0 is any real

number, there exists an index o such that c(f) - c(fa ) < ¢

o
(because card({o: a € @}) < R, < R3). Now, as in part (i) of

Example 1.8, it follows that sup(“fa“: x €@ =

sup(sup(f (x)) + 2c(f )) = sup(sup(f (x)) + 2c(f) - 2¢) =
o x o o o x o
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= “fnl + 2¢(f) - 2¢ = ||f]| - 2¢. Hence, sup(nfq“: o ¢y =|fll.

(ii) H-H* is not an extension of ||:|| to E. Choose
X;»> X, subsets of X such that X = Xy UX,, X, N X, =9
and card(xl) = card(xz) = 83. The fact that H~ﬂ* is not a
norm follows just as in Example 1.8.

(iii) “.“M is not R,-semi-continuous on E. Let
{xB: B € B} be a set of points in X having cardinality equal
to RZ and define f(x) = 4’1 if x = xB for any g €8

<0 otherwise.
Then f € E and we shall define a net {fA: A € A} in E
such that card({a: A € A}) = RZ and 0 < f) t f in E.
For each B € B define fB(x) = 1 if x = xB
to otherwise.

Then sup(fB(x): B € B} = f£(x) for every x € X. Consider
the collection {fB: B € B} of elements in E and define
{fr: X € A} = {collection of all finite suprema of the elements
of {fe}}. Then {f): \ € A} 1is a directed net in E and
0<fxt f in E. Also, card({\: \ € A}) = RZ. It now follows
that H~NM is not Rz-semi-continuous because 5up(foHM: A EN) =
= sup(ufxuz A €A =1 but “f“M = 3,

I1f we let E = {f: £ is a real-valued, bounded function
on X and f is constant except possibly on a subset of X
having cardinality at most Rz} we would have an example of a
normed vector lattice (E, <, ||:||) such that ||| is R,-semi-
cont inuous, H-H* is not a norm, and “.“M is R,-semi-continuous

(noting that E 1is Dedekind Rz-complete).
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Although Examples 1.8 and 1.9 are special cases of Example
1.10 we present them all here so that we can see how the generaliza-
tion in Example 1.10 can be motivated.

As we have seen by the previous examples, semi-continuity
or g-semi-continuity does not insure uniqueness of norm extensions.
As Example 1.7 indicates, even the stronger condition that
{xa} is any collection of elements in E+ (not necessarily
directed upward) and sup(xa: x €EQ) = X implies
sup(“xaH: x€Q = onn does not force norm extensions to be unique.
However, when we add the condition that e A w € E whenever
wWEE and e = sup(%k € it "ﬁn* < 1) (which exists in o by
applying Theorem 0.5) we shall have that ||:|| extends uniquely
to E. We note that this is precisely what fails to hold in
Example 1.7. However, this condition is not a heavy restriction
as several examples, including any space of bounded elements,
will clearly indicate. After proving the following theorem,
we shall apply it to the question of completencss of norm

extensions.

Theorem 1.11. Let (E, <, ||-||) be a normed vector lattice

such that {xa} < E+ and sup(xa: a€Ed = X in E implies
that sup(“xa“: a€EQD = “xo“' In addition, letting
e = sup(k € &t “i“* < 1) (which exists in E#), we shall
assume that € Aw € E whenever w € E. Then ||+|| extends
uniquely to E.

Proof. Since ||+|| is semi-continuous we can extend

Il to E by ||&]|" = supq|y||: 0 <y s |&], y € E). Also,
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~t
it is easy to see that for every {i‘cd: @ €} € E  such that
sup(?ca: € = i‘:o in E we must have sup(“i‘(a“*; x€EQD =
= ui'(o“*. Hence, applying Theorem 0.5 we know that
e = sup(k € ﬁ+: “R“* < 1) exists in E#.
* # *
We extend |¢|| to E  (allowing ||| to be infinite

#

on some elements) as follows: for x € E', define \\;EH* =

* - - *
= sup(“?” : 0y < |x|,§' € E). Since “H is semi-continuous
on E it follows that if {y;: @ € g} 1is any net in E and
0s y; t \i‘ in E# then “;"* = Sup(“y;“*: €.

-k . at *

(1) Jle]l =1. For, let A={x€E : || <1}. A
is a directed subset of E because given any &%,y € A we must
have |&v 9" = |&]|" v I5|" £ 1. Then v §ecA and
EVy2%, &8Vvy=29. Let A={éa:a€d}:§ where ¢ is

# *
a directed set. Then 0 <@ te in E and since ||| is
* -
semi-continuous, sup(ue;“ ta €@ =|e|| . Now since
"éa“* <1 for all o and some elements of A must have \\\\*
equal to one we have that \\E“* = xwp(“éau*: x€@ =1.
- + - - -

(ii) For any y € E", \y‘ < e 1if and only if Hyu < 1.

By the monotonicity of \\H* on E# we have that |y| s e
- %

implies that Hyn < 1.

On the other hand, suppose n;r“* <1 and let 0 < fca t |y,
{x;} € E. Then “x;“* $ 1 for all o so that %X € A for all
a. Therefore, e 2 x; and we have that |§| = sup(x;: a € <e.

Now let E = {x € E#: “;H* < +®}. Then (E, <, \\H*)
is a normed vector lattice with \\H* semi-continuous, E is

#

- -— - *
an ideal in E and e € E. Also, we can show that (E, <, ||-||)

is a space of bounded elements with strong unit e and
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“Q“* = inf(A: Ae = |x|). To prove this last statement we choose
XCE and let a =|x|". Then ||1/a |x||" =1 and (i1) implies
that 1/a |x| < &. Therefore, |x| < ae. This shows that &

i8 a strong unit for E. Also, Hi“* = inf(A: Ae 2 |x|) since
|%| = ||%||"-&,.which follows easily from (ii).

In order to show that ||:|| extends uniquely to E we
need only show that for every % € £ ||&|" = inf(r: 2é 2 |&]) =
2 inf(||w||: w 2 ||, w € E) = nﬁ\\M. Choose any % > 0 such that
Ae 2 |%|. By hypothesis, w A e € E whenever w € E. Hence, if
w2 |® and weEE then w'=wA)re €E and w' = |&]|.
since ||w'|| = |W'||" < ||Aé]|" = A it follows that for all »
such that )e 2 |&| there exists an element w' 2 |%| with
w' € E such that |w'|| < \. Hence, inf(||w'||: w' 2 |&]|, w' € E) =

< inf()\: Ae 2 ‘i‘). This completes the proof of the theorem.

Corollary 1.12. Let E be a vector lattice having any

monotone, complete norm H-H defined on it such that (E, -, ||-|
satisfies the hypotheses of the theorem. Then if |||:||| is
any monotone, complete norm on E every extension of |||-|

to ﬁ must be complete.

Proof. Let (E, s, ||:||) be any Banach lattice satisfying
the hypotheses of the theorem and |||‘||| any complete, monotone
norm on E. Then ||+|| and |||:||| are equivalent. Hence, therc
exist constants a,b > 0 such that |x|| < al|||x||| < b|jx|| for
all x in E. Let |||-|||; be any extension of |||-ll| to E.
mhen (& < all|8]l|, < bRl for all % € E. mur JRI* = 2,
so that “\-“\1 is equivalent to “'“u‘ This implies that

Hl'Hll 1s complete on E.
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Example 1.13. Let E =c and |x| = sup(|x(n)|: n € N).

Then (E, <, ||-||) satisfies the hypotheses of Theorem 1.11 and
||l 1is complete on E. Now defining |||x||| = sup(|x(n)|: n € N) +
+ lim |x(n)| we know that (E, <, |||:|||) is a Banach lattice
an:“:everal distinct extensions of |||-||| to E exist. (See

Example 0,1.) However, according to Corollary 1.12, every

extension of |||-||| to E must be complete.

Remark. Corollary 1.12 can be applied to any Archimedean
vector lattice with strong unit e and any complete, monotone
norm nl~n| defined on E. Let ||x|| = inf(A: Ae 2 |x|). Then
-l and ||-|| are equivalent on E. To prove this latter
fact we note that | -||-convergence always coincides with (r)-
convergence (xn L x if there exists a z in E and a sequence
of real numbers )\_‘ 4 0 such that \x - xn‘ < )\nz for n = 1,2,..
{23, Theorem VII.4.1]. And x - x in norm W - and 10l
complete implies every subsequence of {xn} has a subsequence
which (r)-converges to x [22, Theorem VII.2.1].

Therefore, (E, <, ||:||) satisfies the hypotheses of

Theorem 1.11. This forces every extension of |||°||| to E

to be complete.

As illustrated in the foregoing paragraphs, if (E, <, |!-!)
is a normed vector lattice various properties on (E, <, H-H)
force “-n to extend uniquely to E. As indicated, these pro-
perties have applications to the problem of when every extension

of a complete, monotone norm on E must be complete on E.

Therefore, we consider relationships among the following properties

-)
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in order to clarify the preceding results:

(P1). Every set of elements {xa} S E+ which is
bounded above in E has an upper bound X in E such that
sup(lx ||: o € @ = |x |-

(P2) . Every set of elements {xa} = E+' which is
bounded above in E has the property that sup(nxaH: a € =
= inf(|lyl|: y 1is an upper bound for {xa}).

(P3). 1I1f {xa} is any set of elements in E+ such
that sup(x @ a € @ =x_ in E, then aup(“xan: da €D = nxo“'

(P4). ||:|| is semi-continuous.

(®5). ||*|| is continuous.

Remarks.

(). (P1l) implies (P2). (P2) implies (P3). (P3)
implies (P4). Also, (P5) implies (P4). However, E = ¢ and
||x|| = sup(|x(n)|: n € N) demonstrates that (P4) does not imply

(P5).

(ii). 1f E 1is Dedekind complete all of (Pl), (P2),

and (P3) are equivalent.

(iii). As the example E = Ll (the real, summable
[- -}

sequences) and ||x|| = T |x(n)| demonstrates, (P4) does not
n‘

imply (P3) (and, therefore, does not imply (P2) or (Pl)). This

confirms the fact that (P3) is stronger than semi-continuity.

N *

(iv). If (E, s, ||'||) satisfies (P3), then (E, <, ||*||)
also satisfies (P3). This fact was actually used in the beginning
of the proof of Theorem 1.11, We shall now prove it for the

convenience of the reader. Let {ﬁa: o € d} be a collection
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of clements in E' such that sup(ia: x€cd = ﬁo in E.
Since E is a Dedekind completion of E, for each o < &
there exists a net {xk,a: A € A} € E such that x o tl.ia'
We know that “-H* is semi-continuous on E. Hence,
suP("xk,a“: AEN = HRGH* for all o € ¢. Also,
8:p (sup (xx,a)) = io in E. Now let {yB: BeB} =
= {the collection of all finite suprema of the elements
(%, of @ €@ N €A} Then Yg ! % in B and
Bup(“yB“: B € B) = sup(sup nxk,a“) since (B, <, ||-||) satisfies
(P3). Also, “-H* SZmi-continuous on E implies that
sup(ygll: 8 €8) = & 7. wow, | |* = sup(lygll: 8 € 8) =
= gup(sup “xx,au) = sup(nidu*: a €d). 1t follows that
(ﬁ,as, ﬁ-u*) satisfies (P3).
Since (P3), (P2) and (Pl) are all equivalent on a
Dedekind complete vector lattice it follows that whenever

&, <, ||'||) satisfies (P3), (£, <, ||-|*) satisfies (P1),

(P2) and (P3).

). If (E, s, ||'||) satisfies (P2) then ||-|| extends
uniquely to E. However, as the example in (iii) indicates,
(E, <, ||*||) such that ||-|| extends uniquely to E does not

necessarily imply (P2).

Most of the properties we have discussed up to this point
have been restrictions on the norm rather than on the vector
lattice. We shall now see that whenever E is '"close to" E
(in a sense that we shall define) and (E, <, ||-||) is a normed

vector lattice then ||| extends uniquely to E.
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Definitions 1.14. A band B in E 1is a projection

+
band whenever given any x € E sup(y: y € B and y < x)
exists in E. s8sup(y: y €B and y <x) 1is an element of B
and is called the projection of x onto B. A vector lattice

E 1is said to have the projection property whenever every band

in E 1is a projection band.

Whenever a vector lattice E has the projection pro-
perty, E 1is '"close to" E in the sense that many properties
which hold on E also hold on E. (See [22] for a discussion
of this.) We note that ¢ does not have the projection pro-
perty. The band B generated by the set {xn =
= (1,o0,1,0,...,1,0,0,0,...): n € N} and the element
x = (1,1,1,...) in c demonstrate this fact since the pro-
jection of x onto B does not exist in c. (sup(y € B: y < x) =

= (1,0,1,0,1,0,...) € c.)

Theorem 1.15. If (E, <, ||‘||) 1is & normed vector latticc

and E has the projection property, H-H extends uniquely to E.
Proof. A.I. Veksler has shown [22, Lemma 3] that when-

ever E has the projection property and & € ﬁ+ there exists

a monotone sequence {xn} c EY such that 0 < x 1 % in E

and x (r)-converges to % in E. (xn(g) & if and only if

there exists an element 2 ¢ §+ and a sequence of positive

real numbers N { 0 such that |xn - %| < kn? for n=1,2,..
Let “-“1 be any extension of ||*|| to E and choose

% € E. Using Veksler's result we know there exists a monotone

sequence ({x } < EY such that x |&] and xn(ﬁ) |%].
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s . ot
Hence, there exists an elcment 2 € E and a scquence xn 1 0

such that ‘ |§| - xn| < xni for n=1,2,... . Then

| 1%] - xn“l -0 as n - ». Hence, “ﬁnl - “xn“ -0 as n - .
But then sup(“xnuz n€N) = “i“l where “-"1 is any extension
of ||-|l to E. This implies that “ﬁ“l = ni“M for all % € £

A

and “'HM is the unique extension of ||.|| to E.

In (21, Theorem 3] Veksler proved that if E is an
Archimedean vector lattice of bounded elements not having the
projection property there exists a positive, order bounded (order
bounded = bounded on order intervals) linear functional ¢ on
E such that ¢ has at least two distinct, positive, order
bounded extensions ¢, and g, to E. Then |x| =
= inf()\: )e 2 |x|) + ¢(‘x‘) is a monotone norm on E and
]|, = infQ: re 2 [%]) + o, (|&]) and |jg||, = inf(A: re = |%]) +
+ ¢2(\i‘) are two distinct extensions of ||-|| to £. However,
as noted in the remark following Example 1.13, if ||.|| is complete
on E, both “'“1 and “'Hz are complete on E.

All of the previous results have aided us in determining
when every norm extension of a Banach lattice is complete. In
concluding this section we shall prove that under a specific
restriction on E, if (E, <, ||*||) is a Banach lattice, every

extension of |-|| to E must be locally norm complete.

Definitions 1.16. The principal ideal in E generated

by an element x in E 1is the ideal {y € E: |y| S o |x| for

some real o 2 0}. The principal band in E generated by an

element x in E is the smallest band in E containing x.
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In [25, Theorem 6.3], A.C. Zaanen considers an Archimedean
vector lattice E such that every principal band in E has a
strong unit, If we restrict E to satisfy this condition we

obtain the following theorem.

Theorem 1.17. Let (E, <, H'H) be a Banach lattice

and suppose that every principal band in E has a strong unit.

Then every extension of |+|| to E must be locally norm completc.
Proof. Suppose H-Hl is an extension of ||.|| to E,

{in} € E such that H&n - ﬁm“l -0 as n,m - » and

‘inl Sk € E for all n € N. Choose an element x in E
such that x 2 20. Let IX be the ideal in E generated by
x; i.e., I_ = {u € E: |u| = ox for some real number « 2 0}.
Let Bx be the order closure of Ix in E. Then BX is the
band in E generated by x. Since Bx is order closed in E,
B, 1is a norm closed subset of E [9, Theorem 35.5], and,
therefore, (B, <, |-}) is a Banach lattice. Also, since B
has a strong unit, every extension of ||-|| to B; must be
complete. (See the remark following Example 1.13))

A

B, an ideal in E implies that B® ¢ E and B, is
X

an ideal in E. Hence, ¥ € B" and & ¢ B" for n 325000 o
o X n X

Also, “-H1|B; is an extension of ||+|| from B to B;.

Therefore, (B;, <, H-“l) must be a Banach lattice. This implies

that there exists an element x € B’ such that % - % |, =0

as n - o, It follows that (ﬁ, <, n'nl) is a locally norm

complete vector lattice.
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Remark. If ||‘|| is semi-continuous, E, <, H-H*) is
a Dedekind complete normed vector lattice with “-n* semi-con-
tinuous. This implies that “-“* is locally norm complete
(Theorem 0.10). However, we do not necessarily have that every
extension of “-“ to E is locally norm complete. That is,
"x“l < nxnz for all x and H°H1 locally norm complete does
not necessarily imply that H-Hz is locally norm complete.
As a counterexample to the latter statement let E = Lm,

I, = ;3:1(|x(n)|/2n) and [x], = T (Jx@]/2" + Tim |x(m)|-

n=1 n—<o
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Section Two. The Boundedness Property.

In any normed space the norm boundedness of a set B
can be characterized by the property that for any sequence
{xn} € B and any sequence of positive real numbers A, 4O
we must have {xnxn} converging to zero in norm as n - .

The question of whether an analogous property in an Archimedean
vector lattice E can characterize the order boundedness of a
subset B was first considered by L.V. Kantovovich [5]; i.e.
given any Archimedean vector lattice E can we say that a sub-
set B in E 1is order bounded if and only if given any sequence
{xn} S B and any sequence of positive real numbers A b 0
then [xnxn} order converges to zero as n — ». Of course,

if B is order bounded, {x } € B and A, + 0 then {xnxn}
order converges to zero because E 1is Archimedean. However,
the subset B = {xn = (1,1,1,...,1,0,...): n € N} is not order
bounded in <, (the real sequences converging to zero) and
given any sequence of positive real numbers xn { 0, {xnxn} =

= {(xn,xn,...,xn,o,o,...)} does order converge to zero as

n -+ «. Therefore, in general, we cannot characterize the order
boundedness of a set in this manner.

As in [16, p. 51] we shall say that E has the bounded-
ness property if a subset B of E 1is order bounded whenever
ann 20 as n-o for every sequence {xn] S B and every
sequence {An} of positive real numbers such that A, ¢ 0.

The importance of the boundedness property in the present paper
centers around one of the main results of this section: 1If

E, <, ||-||) 1s a Banach lattice and E has the boundedness
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property, then all extensions of “‘H to E must be complete.

Definitions 2.1. A normed vector lattice (E, <, ||}

is said to be monotone complete (monotone bounded) whenever

<+

{(x,; *€d} in E° and 0<x t in E with \\xan <M for

a
all o implies SUp(xa: @ €4) =x_ exists in E ({xa} is
a bounded set in E). Replacing arbitrary nets by sequences

gives us the definitions for monotone g-complete and monotone

o-bounded.

Remark. A normed vector lattice (E, <, ||-|l) is
monotone bounded (monotone g-bounded) if and only if O < X, i
and {xa: a € @} an unbounded subset of E (0 < x and
{xn: n € N} an unbounded subset of E) implies that
Hxa“ t + (Hxnu t +®). Also, if ||| is monotone complete
(monotone g-complete), E must be Dedekind complete (Dedekind

o-complete).

I. Amemiya [1] has proved that whenever (E, =, |||
is a normed vector lattice and |*|| 1is monotone g-complete
then n°“ is norm complete. §S. Yamamuro [24, Theorem 1.1]
introduced a property similar to the boundedness property (i.e.,
property K: if O < x t and {xn} is unbounded in E, then
there exists a sequence of positive real numbers Ay } 0 such
that {xnxn} is unbounded in E) and proved that whenever
(E, <, ||*|l) 1is a Banach lattice and E has property K then
“'“ must be monotone g-bounded. It is not difficult to show

(19, Lemma 5] that if (E, <, ||||) 1is monotone o-bounded and
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E is order separable then every extension of ||| to E must
be monotone g-complete. Combining these three results we know
that whenever (E, <, ||*||) 1is a Banach lattice and E 1is order
separable and has property K then every extension of |||

to E must be complete.

We have indicated the importance of the boundedness
property and property K to the question of equivalence of
norm extensions of a Banach lattice. Before obtaining the
results mentioned above we shall discuss the relationships
among property K, the boundedness property and the following
two properties on an Archimedean vector lattice E:

(A): Given any unbounded set B < E B must have a
countable unbounded subset.

®B): If {An} is a countable collection of unbounded
subsets in E, there exist finite subsets A& CA n-= 1,2,...,
such that {Sup(A;): n=1,2,...}] is an unbounded set in E.
1f E satisfies this property we say that E 1is finitely

unbounded [17].

Remark. The following are some well-known results about
the above-mentioned properties:

(i). Any Archimedean vector lattice E with a countable
subset {h_: n €N} < E' such that for any x in E there
exists a positive integer N(x) and a real number )(x) > O
such that |x| < th must have the boundedness property [17,

Proposition 1.8].

(ii). Any perfect sequence space must have the bounded-

ness property [17, Proposition 1.7].
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(iii). Any Archimedean vector lattice which is finitely
unbounded has the boundedness property [12, Proposition 2.5].
(iv). Any Archimedean vector lattice with the boundedness

property satisfies property (A) [23, Theorem VI.6.3].

We shall now prove that the boundedness property implies
property K. However, property K does not imply the bounded-

ness property.

Theorem 2.2. If E has the boundedness property then
E must have property K.
Proof. Let {xn} ¢ EY such that x t +« (i.e.
x t and {xn} is unbounded in E). We shall show that there
exists a sequence of positive real numbers o, 0 such that
{ex,} 1is umbounded in E. E having the boundedness property
implies that there exists a subsequence {x_} & {x ] and a
sequence of positive numbers { 0 such ::at 540
quenc P nu r xk uc xkxnk—7éo .
% . .
let o = (xk) . Then a | 0 and {akgnk] is unbounded in
E because if o’kxnk <z € E for all k € N then )‘kxnk < o2
which implies that Me¥n 250 as k- o.

k

Now for n =1,2,... define a = ooy if no1 <n<n

(no = 1). Then a 0 and [anxn} is unbounded in E.

|3

Corollary 2.3. If (E, <, ||*||) is a Banach lattice and

E has the boundedness property then |*|| must be monotone
o-bounded.
Proof. This corollary follows directly from the thcorem

and Yamamuro's result [24, Theorem 1.1].
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Example 2.4. let E = {f: f is a real-valued, bounded
function on [0,1], £(0) = 0, and f£(0) # f(x) for at most
countably many x in [0,1]}. We shall show that (i) E does
not satisfy the boundedness property, but (ii) E does have

property K.

(i). Let B ={f €E: f (t) =x if t =x and
X X
£ () =0 if ¢t # x: x € [0,1]}. B 1is an unbounded subset
of E with no countable unbounded subset; i.e., E does not
satisfy property (A). But the boundedness property implies
property (A). (See Remark (iv)). Therefore, E does not have

the boundedness property.

(ii). 1In order to show that E has property K we
note that ||f|| = sup(|£(t)|: t € [0,1]) is a monotone g-complete,
monotone norm on E and we shall show that any normed vector
lattice (E, <, ||:||) which is monotone g-bounded must have
property K:

Let 0<x t+e in E. Since ||| is monotone o-

L
bounded we must have |x " t + . Let A, = 1/(Han)2 which

n

is a sequence of positive rcal numbers decreasing to 0. Then
% :

“lnxn“ = (“xn“) t + ». Hence, {xnxn} is unbounded in E.

This proves that E has property K.

We also note that E is Dedekind complete and order

separable, but (E, <, ||||) 1is not monotone bounded.

Since Example 2.4 does not satisfy property (A) we ask
whether property K and property (A) together imply the bounded-

ness property.
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Theorem 2.5. An Archimedean vector lattice E has the
boundedness property if and only if E has property K and
property (A).

Proof. We already know that property K and property
(A) are implied by the boundedness property. Therefore, we
need only prove that property K and property (A) together
imply the boundedness property.

Choose a set B € E such that B is unbounded in E.
E having property (A) implies there exists a countable un-
bounded subset {xn} c Bt Let {yk} = {xl VX, Veeev xk}
for k =1,2,... . Then OSykt+¢> in E. Therefore,
applying property K, there exists a sequence of positive real
numbers )\, 4 0 such that {xkyk} is unbounded in E. Then

{xkxk} is unbounded in E because if ) x <z € E for

k k
k =1,2,... then MY T kk*l v xkgz VeV kkxk <
< xlxl Vv 7‘2"2 Veeoy )\kxk <z for k=1,2,... . Now {)‘kxk}
unbounded in E implies that xkxk-géoo in E. Therefore,

E has the boundedness property.

Since we are interested in extending norms from E to
E we shall ask questions concerning the extension of the above-
ment ioned properties from E to E. In the following we shall
prove that E has the boundedness property if and only if £

has the boundedness property.

Lemma 2.6. If E 1is any Archimedean vector lattice

having the boundedness property, then E must have property K.
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Proof. Let O < %n t +o in E and for n = 1,2,...,
choose a net {xa,n: o €4} in E such that 0 < Xy To nr
Let {ye: B € B} = {collection of all finite suprema of the
elements {xa,n: a€d, n ¢N}} SE. Then O < yg t += in E.
E having the boundedness property and {yB: B ¢ B} being un-
bounded in E 1implies there exists a sequence {y8 } < {ys}

Sk
which is unbounded in E. Then, there exists a sequence of
positive numbers ), 4 O such that {xkyB } 1is unbounded in E.
k
For each k, choose x; 2y

kK Pk

bounded in ﬁ. I1f we let xn = kk for no1 <ng n (n0 = 1)

we shall have ) 4 0 and {)\ x]] is unbounded in E. This

« Then {xkg;k} is un-

completes the proof of the lemma.

Remark. If E has property K it easily follows that

E has property K.

Lemma 2.7. An Archimedean vector lattice E has pro-
perty (A) if and only if E has property (A).

Proof. Suppose B < E and B is unbounded in E.
Let A = {x € E: \i‘ <y for some § € B}. A is unbounded

in E. Let A=AN E. It then follows that A 1is unbounded

in E because every % € A is such that % = Sup(xa: X <X, xq € A)
Assuming that E has property (A), there exists a sequence

{x,} € A such that {x } is unbounded in E. For n =1,2,...,
choose Yo € B such that Yo Z X Then {yn} is a countable

subset of B which is unbounded in E. It follows that &

has property (A) whenever E does.
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The fact that E has property (A) implies that £ has

property (A) is a direct result of the definition.

Theorem 2.8. An Archimedean vector lattice E has
the boundedness property if and only if E has the boundedness
property.

Proof. Recall that if E has the boundedness property
then E has property K (Lemma 2.6). Also, property K and
property (A) together imply the boundedness property (Theorem
2.5). Assuming that E has the boundedness property, it must
have property (A) (Remark (iv)) and by the above lemma E has
property (A). Therefore, E has property K and property (A)
so it must have the boundedness property.

On the other hand, assume E has the boundedness pro-
perty and let B be an unbounded subset of E. Let
B = {% € E: ‘i‘ < \yl for some y € B} & E. Then B is un-
bounded in E. Therefore, there exists a sequence (.} B
and a sequence of positive numbers L) 0 such that
xnin_;£§0. For n =1,2,..., choose Y, € B such that
\yn‘ 2 ‘ﬁn‘. Then knyn-;A;O because if kn\yn‘ <z €EE
and z 4 0 then Xn‘*n‘ < xn‘yn\ sz, which would imply that
xnin s 0. Therefore, we have proved that E has the bounded-
ness property.

Given an Archimedean vector lattice E which is finitely
unbounded, it is easy to see that it also has property (A). How-
ever, S (the space of all real sequences) is not finitely un-

bounded [17, p. 324] but S does satisfy property (A). In
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fact, S has the boundedness property since S 1is a regular,
extended space. (See [22, p. 165-172]). Hence, although every
Archimedean vector lattice which is finitely unbounded must have
the boundedness property (Remark (iii)), the implication does
not reverse,

We now recall the example of a normed vector lattice
(E, <, ||*||) such that ||-|| was monotone g-bounded but not
monotone-bounded (Example 2.4). A natural question to ask at
this point is which property (or properties) on E will force
every monotone g-bounded, monotone norm to be monotone bounded.
We note that order separability of E will not do it since

Example 2.4 is order separable.

Theorem 2.9. It E has property (A) and (E, s, ||-|))
is a monotone g-bounded normed vector lattice, then ||.|| is
monotone bounded.
+
Proof. Suppose {xa} is anet in E and 0 < X t +
in E. E having property (A) implies there exists a sequence
{x :nm€N}e{x :acd} such that {x } is unbounded in
o o o,
E. 1If the set ({x } 1is directed upward we must have |x || t + =
o
n
because ||*|| is monotome g-bounded and it would then follow
that + .
el 1+
If {xa :n € N} is not directed upward we define

n
{y,: n€ N} as follows:
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Then 0 <y t +e in E which implies that |y || t + w.

n
For n=1,2,..., choose zo(rl € {xa} such that zan >y
z, exists because {xa} is directed upward. Now

n
{zan} c {xa} and sup(“zan“: n € N) =+ o. It follows that
“xa“ t +o» and (B, <, ||:||) is monotone bounded.

n’

V.A. Solovev proved [19, Theorem 5] that if (E, =, H-H)
is a normed vector lattice and ||-|| is monotone bounded then
every extension of ||| to E must be monotone complete.
Combining this result with the other theorems quoted or proved
in the preceding paragraphs we can state the main conclusions

of this section.

Theorem 2.10. If E has the boundedness property and

(E, <, ||:|]> is a Banach lattice then every extension of ||.||

to B must be complete.

Corollary 2.11. If E is finitely unbounded and

(E, s, n-“) is a Banach lattice then every extcension of H-H

to £ must be complete.

Theorem 2.12. If E is order separable and has pro-

perty K and (E, <, ||-||) is a Banach lattice, then every

extension of “’H to E must be complete.

Corollary 2,13, If E is order separable, E has pro-

perty K and (E, <, H-n) is a Banach lattice then every

extension of H-H to E must be complete.
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Example 2.14. let E =c and |x| = sup(‘x(n)‘) +

+ lim ‘x(n)\. E has the boundedness property because it has
N~

a strong unit. (See Remark (i)). Then since ||.|| is complete

on c, by Theorem 2.10 we have that every extension of “-U

to E must be complete. (We proved the same result in Example

1.13, but in a different manner.)

Remark. Let E be any Archimedean vector lattice with
a strong unit e. E having the boundedness property implies
that any complete, monotone norm on E has equivalent norm
extensions. (Again, this was noted in the remark following
Example 1.13;)

Also, ||x|| = inf(\: %e 2 |x|) 1is a monotone bounded
norm on E. To show this we choose any net {xa} € E such
that 0 < x, t and Hxa“ <M for all o € ¢. Then since
‘xa‘ < HxaH°e for all o we have that ‘xa‘ < M-e which
proves that ||-|| is monotone bounded. The fact that ||.|| is
monotone bounded shows that whencver E is Dedekind og-complete,

‘il 1is complete.

One example of an Archimedean vector lattice not having
property K (or the boundedness property) is Cyr As noted in
Section one, however, if E 1is any Archimedean vector lattice
such that E = c, then every extension of a complete norm on
E must be a complete norm on E.

Other examples of vector lattices not having the bounded-

ness property are c® c,, L,®c, or A® c, where ) is

any sequence space.
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Section Three. The Egoroff Property

In (9], W.A.J. Luxemburg and A.C. Zaanen discuss some
results concerning Banach function spaces. Given a set X, a
o-complete Boolean algebra B of subsets of X which is a sub-
algebra of the power set of X, and a countably additive, non-
negative measure . on B, let M(X,3,u) denote the space of
all extended, real-valued functions on X, measurable with
respect to B with identification of almost everywhere equal
functions. Let ||+|| be an extended, monotone seminorm defined
on M and let E = {x € M: ||x|| < +=}. If M is complete
with respect to n-n, then E is said to be a Banach function
space. Luxemburg and Zaanen show that whenever . 1is g-finite,
“x“L = inf {:i: Han: 0 < x 1 |x|} is a g-semi-continuous,
extended, monotone seminorm on M, “xHL < ||x|| for all x € M,
and “.“L is the maximal seminorm on M having these properties.
The condition on M that appears to be essential to their proofs
is the Egoroff property. Hence, we shall show that if (E, <, |-l
is any normed vector lattice and E has the Egoroff property
then “'“L as defined above satisfies the same properties and
“'“L is a norm. We shall study “.HL in detail because the
functional o(x) = ||x|| - “x“L will aid us in determining when
all extensions of n-“ to B are equivalent.

Combining Theorem 0.8 in the introduction with some
results we have about “°HL’ we shall prove that completeness
of (E, s, ||*||) 1s equivalent to a Riesz-Fischer property.

Although this Riesz-Fischer Theorem does not bear directly on
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the problem of equivalence of norm extensions of a Banach
lattice, we present it here as an interesting application of
Theorem 0.8.

The main results of this section are: (1). 1If
(E, <, ||*||) 1is a Banach lattice, E is order separable and

has the Egoroff property and (%) = “ﬁHM - “ﬁ“ML is a con-

A

tinuous functional at x = 0 with respect to “'HML on E,
then every extension of ||:!| to E must be complete.

(2). If (B, <, ||+||) 1is a Banach lattice which has the Egoroff
property and ¢(x) = ||x|| - “xHL is a continuous functional on

E at x =0 with respect to N-HL, then every cxtension of

I-ll to E 1s complete, provided that either H-HL is con-
tinuous on E or (E, <, “-“L) satisfies the hypotheses of

Theorem 1.11,

Definition 3.1. A vector lattice E has the Egoroff

property if for each x € E and for any double sequence

{xn K n,k € N} of elements of ET such that for n = 1,2,...,
b}

0s xn,k 1k|x| in E, there exists a sequence {xm} S E

such that 0 < X0 t ‘x\ and for every m,n € N there exists

a positive integer k(n,m) such that X < xn,k(n,m).

For a discussion of the Egoroff property and its rela-
tionship with the classical Egoroff theorem, we refer the reader

to [4].

Theorem 3.2. If (E, <, “-H) is a normed vector lattice
and E has the Egoroff property, then “xHL = inf{lim “an:
n—o

0<x 1t |x|}1is a g-semi-continuous norm on E, “an < ||xl|
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for all x € E and h-HL is the largest such norm on E.
Proof. One can easily show that “.HL is a scminorm
as the triangle inequality can be proved by the usual method.
(i) We shall show that “‘“L is a norm on E. Choose
x €E and for n =1,2,..., by definition of anL we can
find a sequence {Vn,k: k € N} such that 0 < Vak Tk |x|
and “vn,k“ < HxHL + 1/n for all k € N. E having the
Egoroff property implies there exists a sequence {xm} < E+
such that xt \xl and for every m,n € N there exists an

integer k(n,m) such that X < Hence,

v .
n,k(n,m)
el = v, k“ < HxHL +1/n for all n,m. Therefore,
’

meu < “an for all m and it follows that ::: “xm“ < HxHL.

We can now prove that “.HL is a norm on E because
if Han = 0 then there exists a sequence 0 = x_ t |x| with
lim “x H = 0. But since H-H is a norm we must have x =0
o m
for all m € N and then x = 0.

(ii) “'“L is g-semi-continuous. Let 0 <x_ t x in
E. We shall show that “xHL < lim HanL and this will imply

N—o

that “xHL = ii: “anL. As in (i), for n =1,2,..., choosc a
sequence {vn,k: k € N} such that 0 < Yo,k 'k *n and

“vn,k“ < “xn“L +1/n for all k € N. Let u

n,k vn,k + - Xn)

for all k,n € N. Then O < Uk 1k x for all n. E having
’

+
the Egoroff property implies there exists a sequence {zm} < E
such that 0 < z tx and for all n,m € N there exists a

positive integer k(n,m) such that z s Let

un,k'
Y = (zm + X, - x)+. Then O < Ym t X and for each n,m € N

there exists a k(n,m) such that Yo = (zm + X, - x)+ <
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Uk txp X TV Now, “ymn < nvn,kn < “anL + 1/n for
all n,m € N. Therefore, ;i: “yuM < ;i: uxn“L' It follows
that “x“L < ;:: “anL which proves that “'“L is g-semi-
continuous.

The fact that HxHL < ||x|| for all x € E and “.HL
is the maximal norm on E satisfying the above properties follows

easily, completing the proof of the theorem.

J.A.R. Holbrook has shown that if ||:|| is a monotone
seminorm on an Archimedean vector lattice E and “'“K is
the maximal g-semi-continuous seminorm below ||:||, then
i, = N:llg on E if and only if E has the Egoroff property
(4, Theorem 5.2]. The above theorem shows that H-HL is a
norm if and only if ||:|| is a norm.

We shall now apply Theorem 0.8.

Theorem 3.3. Let (E, <, H-u) be a normed vector
lattice such that E has the Egoroff property. If O < x 1
in E and “xnu <M< +o for all n € N, then sup(xn: n € N) =
= x exists in E#.
o
Proof. Using Theorem 3.2 we know there exists a g-semi-
continuous norm H'HL on E such that “qu < ||x|| for all
x € E. Therefore, 0 < “anL SM<+o for all n € N. Apply-
ing Theorem 0.8 to (E, <, “-“L) it follows that sup(xn: n €N) =
#

= x in E .
o}

We are now motivated to make the following definition.
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Definition 3.4. Let (E, <, ||*||) be a normed vector

lattice such that E has the Egoroff property. (E, <, ||-|))

is said to have the Riesz-Fischer property whenever

-] + i o .
Zlx|l<+e and {x }<E implies that £ x_ is an

n=1 ® n=1

element in E. (Note that N xn exists in E¥ whenever
@ n=1

T “xn“ < + o by applying Theorem 3.3.)

n=1

In [9, Theorem 4.8] Luxemburg and Zaanen have shown
that a normed function space E <« M(X,8,u.) 18 complete if and

only if 0 <x €E for n=1,2,..., and n:“..:l“xn" <+ o

@™
implies that || & xn“ < + ®. Of course, since E 1is a normed
n= @
function space, T X always exists in M. This is not
n=1

necessarily true for a general normed vector lattice (E, <, ||-iI).
However, whenever E has the Egoroff property and {xn} = E+
(-] - -]
with Z |jx | <+« we know that £ x_  exists in Bl (Apply
n=1 n=1

Theorem 3.3.) The proof of the following theorem is completely

analogous to that of Luxemburg and Zaanen.

Theorem 3.5. Let (E, <, ||*||) be a normed vector lattice
such that E has the Egoroff property. (E, <, ||¢||) is complete
if and only if (E, <, ||||) has the Riesz-Fischer property.

Proof. (1) If (, s, ||-|) 18 complete and (x } < E'

[}
such that n§1"x““ <+w, let 8 =x;+x,+-+x,0=1.2,...
Then “Sn - Smn -0 as n,m -» ., Hence, there exists an element
S, €E such that ||S -S| -0 as n-+w. But 0= st
and “sn - So“ - 0 implies that S_ = sup(S,: n € N); i.e.,

[ -]
So = an €E.
n=1
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(ii). We now assume that (E, <, ||*||) has the Riesz-

Fischer property. We shall first show that whenever

@

T ||x Nl <+« then | 2 x “ < 2 “x ||. Assume that for some

n=1 n=1

positive number ¢ > 0 we have “ Z x “ >e+ T nx . For
n=1

k =1,2,..., obtain a sequence [b W€ N} in E such that
Hzn bn,kn >k + znnbn,kn° Then for every positive integer p

| = bn’k“ >k+ g an’k\\ and for some p=p I |b k\\ < 1/%%.
nzp n2p n2p
Then by reindexing we obtain for every k =1,2,..., a sequence

{zn,k: n € N} in E such that zn“zn,k“ < 1/k* and
“znzn,k" >k. Let fu :n¢€ N} be the double sequence {zn,k}
arranged in single order. Then zn“un“ < Iy l/k2 < +o and
“Enun“ > “znzn,kn > k for all k € N. But znuunn < + o and
“znun“ = + o implies that L u is not in E which contradicts
the Riesz-Fischer property.

Using the above result we can prove that (E, <, ||*||)
is complete. Let ({x } be ||:||-Cauchy in E and assume without

n
loss of generality that “Xn-!-l - xnn < 1/2 for n=1,2,... .

Then x = E ‘xn+1 xnl is an element of E. Let Yo S X, T X
n-1 n=1
+ ? |xk+1 - xkl for n =1,2,..., and note that Yy < 0 and

Yn4l = Yn " ¥p41 ~ ¥ T \Xn+1 - xn\ 2 0. It follows that

0<y t. Since y -y, S 2|xn+1 - xn‘ we have

n+l
[+ <]
% “yn+l - yn“ <+ . Then sup(y : n €N) =y is an element

of BE. Let x = y - x +x,. Then x - x_ =y - x + Xp =X, =

n-1 " n-1
=y -x+ E\xk+1-xk|-yn=y-y - {x - z‘xk+1 x|} =
[} ©
= ﬁ O = Y - E |xk+1 - xkl. Hence, ‘x - x \ < z G yk) -

(-] @
-7 ‘xk+1 - xk‘ <3z |x - x
n n

K T Xl oW IR -]
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- -]
< 3|z ‘xk+1 - xk‘“ <3 ; “xk+1 - xkn the last inequality

n n
holding because of the result proved in the preceding paragraph.
Hence, ||x - xn“ -0 as n - o which proves that (E, <, ||-|)

is complete in norm.

As noted in Section two, the monotone completeness of
a normed vector lattice is a relatively strong property. For
this reason, we ask whether a normed vector lattice (E, <, H-H)
can be isomorphically and isometrically embedded in a monotone
complete normed vector lattice. Although this question does
not directly involve the problem of equivalence of norm extensions,
the proof of the theorem which answers this question is a nice
application of some of the results of this section as well as

Theorem 0.8.

Theorem 3.6. Let (E, <, “-n) be a normed vector lattice
such that E has the Egoroff property and E is order separable.
If 0 < xa ¢+ in E and Hxau <M for all ¢ € @, then
Sup(xd: ¥ € =x_ exists in g Furthermore, if ||.|| is
o-semi-continuous (E, <, ||||) can be isomorphically and
isometrically embedded in a monotone complete normed vector lattice.

Proof. As in Theorem 3.2, H-HL is a g-semi-continuous
norm on E such that “xHL < ||x|| for all x in E. However,
since E is order separable it follows that H-HL is semi-
continuous. We can now apply Theorem 0.8 to “'“L and we have
that whenever 0 < x, 1 and “xan <M for all o € ¢ then

#

sup(xd: a€d) = X, in E".
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1f ||*|| is o-semi-continuous, ||-|| = H'HL and we can
extend ||-|| to E#+.(allowing |-l to be infinite) by defining
%]l = sup(llyl|: 0 sy < %,y €E). Let E={x € E": ||x] < +=].
One can easily show that (E, s, ||+||) 1s a monotone complete
normed vector lattice and (E, <, ||+||) is isomorphically and

isometrically embedded in (E, <, H'H).

If (E, s, ||+||) is a normed vector lattice and E
has the Egoroff property, H-HML can be defined on E where

l-lly 1is the maximal extemsion of ||| to E and is

Ity
the maximal g-semi-continuous norm below H-HM on E. A
natural question to ask is whether “‘nML is equal to H-HL
when “'“ML is restricted to E. If E is order separable
then E has the Egoroff property if and only if E has the
Egoroff property [18, Chapter 1, Theorem 1.3]. Therefore, we
consider the above-mentioned question for (E, <, “-n) where
E 1is order separable and has the Egoroff property. The impact
of the following two theorems on the problem of equivalence of

norm extensions of a Banach lattice will become evident in the

corollary following them.

Theorem 3.7. Let (E, <, ||*||) be a normed vector latticc
such that E 1is order separable and has the Egoroff property.
Then ||x|[, = inf(;-i: lxnll: 0 s x tx, {x }<E is cqual to
||y, = inf(lim ||2 ||, 0 <2 1t x, {2} <E) forall x in
ET where “.ﬁ;w is any extemsion of ||:|| to E.

Proof. By the definition of ||-||; and ||-|,; we can

see that “x“KL < HxHL for all x in E. To show that



52

“anL 2 “XHL we prove that given any sequence {2n} € E such
that 0 < in t x in BT there exists a sequence {xn} € E such
that x <2 for n=1,2,..., and 0 <x ¢t x.
n n n
Let A = {y ¢E: 0sy s En}, n=1,2,..., and let

(-]
A= U A . Then A is a directed set in E and sup(A) = x.

n=1
Since E 1is order separable, there exists a sequence [yk} c A

such that Yi t X. ({yk] can be chosen directed upward beacuse

A 1is a directed set.) By definition of A there exists a sub-

~

sequence {ﬁnk} c {ﬁn} such that znk 2y, for k=1,2,... .

Choose X = Yi for n such that 0 <n< LT k=1,2,... .

For 1 <n<n let x =x where x €E and 0 <sx < 2_.
1 n o o o 1

Then for n =1,2,... we must have 0 < X < En. And since
Yie t x it follows that X t x. This completes the proof of

the theorem.

Theorem 3.8. Let (E, <, ||-||) be order separable and
an* a PO
have the Egoroff property. Then anL = “x“KL for all & in
E where ||| is any extension of ||+ to E.

Proof. Using the fact that E is order separable it
follows that “'"L is semi-continuous on E and then H.ni
is a semi-continuous extension of H-HL to E. Also, since
E 1is order separable whenever E is [19, Lemma 3] “°“KL is

also a semi-continuous norm on E. Now, n-n; and “'HKL are

- .
semi-continuous norms on E and by Theorem 3.7 H-\; and

u’“KL agree on E. By Lemma 1.5, we have that “-uz and

“.“KL agree on E.



53

Corollary 3.9. Let (E, <, ||+||) be a Banach lattice

such that E is order separable and has the Egoroff property.
1if H~HK is equivalent to “.“KL on E where “.“K is any
extension of ||:|| to E, every extension of ||:|| to E must

be complete.

Before examining conditions under which H.HK is equi-
valent to “.HKL we present the following examples. The first
example uses corollary 3.9 and the others illustrate what happens

when E does not have the Egoroff property.

Example 3.10. Let E =c and |jx|| = sup(‘x(n)\: n € N) +

+ lim ‘x(n)l. Then if H-HK is any extension of ||.|| to
n—o

E=4_ we mst have “inKL = sup(\x(n)‘: n € N) since

an® . 1. .
“xHL - sup(‘x(n)\: n € N). Furthermore, since M'JML is

equivalent to H-HM (I&lly = sup(J&@)|: n e n) + Tim |x()|)
nN-—0
on E we must have that every extension of I-ii to E is

complete. Note that we have now proved this fact in three

different ways. (Compare with Examples 1.13 and 2.14.)

Example 3.11. Theorems 3.7 and 3.8 were proved for

E order separable and having the Egoroff property. We shall
now give an example of a normed vector lattice (E, -, H-H)

such that E has the Egoroff property but E does not.

Let X = the set of all sequences x

(x(1),x(2),...)

with positive integer coordinates and let E = {f: f is a real-
valued, bounded function on X such that f is constant except

possibly on a finite number of points in X}. J.J. Masterson
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and G. Crofts have shown [12, Example 1] that E 1is diagonaliz-

able for any uncountable set X. (A vector lattice E is

diagonalizable if whenever {xn,k: n,k € N} 1is any double
sequence in E+, xn’k % X for each n and X Sx in E,
then there exists a strictly increasing sequence {kn: n=1,2,...}
of positive integers such that xn,k Sx as n - ®.) It is
easy to see that whenever E is diagonalizable it must have the
Egoroff property [10, p. 185]. Therefore, the vector lattice E
which we have defined above has the Egoroff property.

We shall now prove that E= {f: £ 1is a real-valued,

bounded function on X} does not have the Egoroff property.

The proof is due to J.A.R. Holbrook [4, Example 4.2]. Define

subsets Ah,k of X by letting An,k = {x € X: x(n) < k} and
let fn,k = IAn k, for n,k=1,2,... . Then 0 < fn,k tk f

- s
in E for n=1,2,..., where f = Ix. However, for no choice

of k(n) do we have sup(f :n €N) =f. To prove this

n,k(n)’

latter statement we note that if we choose any sequence
{k(n): n € N} of positive integers and let x = (x(1),x(2),...)
be the element in X such that E(n) = k(n) +1 for n=1,2,...,

then x does not belong to any of the sets An,k(n)' It now

follows that E does not have the Egoroff property for if we
assume there exists a sequence f{u } < £ such that for all

n,m € N there exists a positive integer k(n,m) with u < fn K

then there exists a k(m) for each m such that u < f .
m m, k(m)

m,k(m): m € N) ¥ f.

The element f = IX not having the Egoroff property implies

Hence, sup(um: m € N) < sup(f

there exists a monotone seminorm ||:]| on E such that
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Hf“L ¢ HfULL (4, Theorem 5.2]; i.e. ||*|| is not g-semi-con-

tinuous on E. Then llgl|" = sup(lg(t)|: t € X) + gl is a

monotone norm on E and |[£]|7 =[x ll} =1 + || # 1+l
= “fniL; i.e., ||*||' is not og-semi-continuous on E. However,
|I-Il"|& = ||-|; 1is a monotone norm on E such that Iy, ts
o-semi-continuous on E because E has the Egoroff property.
Although ||-||, need not be g-semi-continuous whenever

E does not have the Egoroff property, we can still consider

H-HL and “.HML and ask some questions about these seminorms.

Example 3.12. We shall give an example of a normed

vector lattice (E, <, ||+||) where H'HML is not equal to
Iy on B

Let X be an uncountable set of points and let
E ={f: £ is a real-valued, bounded function on X and f
is constant except possibly on a finite set of points in X]}.
Then E = {f: £ 1is real-valued and bounded on X}. Assuming
the continuum hypothesis, W.A.J. Luxemburg and A.C. Zaanen have
shown that ﬁ does not have the Egoroff property (10, Thcorem
43.3].

Let § € E be the element § = le + 21X2 where

1 U XZ’ X1 n XZ = ¢ and card(Xl) = card(XZ) > Ro. Then

~

g is a strong unit for E. Hence, we can introduce a semi-

X=X

continuous norm on E by defining Hfu = inf(\: A\g = \f‘)

for every f in E.

* '
(i). “’H is a semi-continuous extension of H-j to

A

\* = inf(\: \§ = ‘ﬁ‘) for all h in E.

E and “ﬁl
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~

Go. " £, on B because |[g)|" = 1, but if
w is any element of E such that w2 § then w(x) 2 2
except possibly for a finite number of points in X. This
implies that \\g\\M = inf(||lw|: w 2 8, w € E) = 2.

Gi)e [l # 1-1° on B. We know thar |g|" = 1.
However, we shall show that “gHML = 2., Let {f;} S E bea
sequence of elements such that 0 < %n t &. Then for some
positive integer N, f& must be greater than one on an un-
countable set in X (i.e., fﬁ ¢ E). Also, given any ¢ > 0
there exists a positive integer K > 0 such that
{x: |f20) - 8(x)| < ¢} is an uncountable set in X. This
implies that |[|f|l, > 2 - e. Hence, s::p(uf;“M) =2 and we
have that ngHML = 2.

(iv). H'HML # H.HIM on E. Since -l = “’HL on E
we must show that H'“ML ¥ H-HM on E; i.e., H-HM is not
g-semi-continuous on E. Define h € & by choosing
{x 2 k€ N} a countable subset of X, and letting
h(x) = {1 for x =x,, k=1,2,...

0 otherwise.
Then HEHM = HEHLM = 1. However, taking
f(x) = [1 for x =x, k=1,2,...,n
'\0 otherwise,
we have 0<f tfh in E, {f)}<E and |£|
Hence, |[f||, = inf(rll_i: furll: 0 < th in B) £1/2. This

= e = 172,

proves that [|hl| . # |If||,,,-

Note that the previous example is similar to Example 1.7

in Section one in the sense that it is an example of a normed
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vector lattice with a semi-continuous norm which does not
extend uniquely to E. Although our present example is not
order separable, Example 1.7 provides us with a normed vector
lattice which is order separable and has the Egoroff property
but “.ulM ¥ “.“ML on E. 1In Example 1.7, H'HML = u-n: on
E. However, in our present example “'"ML ¥ H~Hz on E.

In Example 3.12 if we had chosen E = {f: f 1is real-
valued and bounded on X and f is constant except possibly

on a countable set of points in X} with the norm defined in

the same way, (E, <, ||+||) would be a normed vector lattice
with ||+|| semi-continuous, n-n* a semi-continuous norm
extension, H-“* # H'“M’ but “'HM would be g-semi-continuous

on E. (See Example 1.9.) Hence, we would have HQHML =
= ||& % E.
%]l = &)l on E
For the case when E is order separable and has the
* A
Egoroff property we know that n'“ML = H'HL on E. However,
as the previous example illustrates, this is not neccssarily

true in other cases. We now ask whether “’HML is an extension

of “'HL (i.e., does “OHML = ”.HL on E) even though H.HML
may not be equal to H-H: on E.
*
Example 3.12 (continued)., We recall that H'HML # “.HL
on E. However, we shall show that “.”ML = H-HI on E.
By definition of H-HL and H.HML we always have

“gnML < “fHL for every f € E. Let {f;: n € N} be a sequence
in E such that 0 < f; t f in E. For n = 1,2,..., let

@
A = {y €E: 0 sy s fn} and let A= UA. Then A isa

n=1
directed set in E and sup(A) = f. Since A 1is directed we
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can let A = {yx: \ € A} S E where 0 <y\ t f. Since ||
is semi-continuous on E we have sup(|lyA|l: » € A) = ||f|.
But, by definition of A, sup(|[yall: X € A) < sup(|[£][j, : n € N).
Hence, ||f| < sup(||f ||,z n € N) which implies that |fj| =
= Yl = Nellyy-

Obviously, if E = {f: f is real-valued and bounded
on X and f is constant except possibly on a countable set

of points in X} then is an extension of H~HL since

-l

Nl = -l and 1ol = f1-l-

Example 3.13. We now consider Examples 1.8 and 1.9

in Section one. 1In both of those examples we proved that

* * ~ *
“'HL = ||.| was not a norm on E. Hence, “.“L # H.HML on
E. However, we also showed in both cases that H.HML agreed

with |- =[], on E.

As noted in Corollary 3.9, whenever (E, <, ||:||) is

order separable and has the Egoroff property and H-H is

complete, if we can show that HOHML is equivalent to H'FM
then every extension of H'H to E must be complete. We
note that ||| is not always equivalent to H-HL. (let
(-}
- n —

E = L, and let “xn = T (\x(n)\/Z ) + lim ‘x(n)‘. Then

[ n=1 n-—o
“x“L = T (|x(n)‘/2n) and “.HL is locally norm complete

n=1
while ||:|| is not. Therefore, “.“L cannot be equivalent to

||-l|-) However, in all of the examples that we presently have
at hand, whenever ||| is complete, n-nL is equivalent to
“'H. Proving that this is true in general depends on properties

of the functional o(x) = ||x|| - “x“L. W.A.J. Luxemburg and
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A.C. Zaanen considered this functional (defined on normed
function spaces) in [9, Note IV, p. 262]. They noted that in
all of their examples ¢ 1is a monotone seminorm. However,
they could not prove that ¢ is even monotone, nor did they
have a counterexample. We can use Example 1.7 from Section one
and Theorem 3.8 of the present section to answer Luxemburg and

Zaanen's question.

Example 3.14. Let E = Lm and for each x in L[ let

llx|| = inf(||w|,: w2 |x|, we& o) where \M\o = inf(A: A& = |w])
and & = (1,2,1,2,...) € t_. Note that (¢, <, Nl is a
Banach function space. Recalling the form in which we stated
Example 1.7 and applying Theorem 3.8 to this example it follows
that HxHL = inf(\: A& = |x]).

We can now easily show that o(x) = [|x|| - |||, is not

monotone on E. Let y = (2,2,...) € ¢ < L.° Then

y=ze&=(,2,1,2,...) and o) = || - uyHL =0 since ||-||
is equal to H“L on c. However, (&) = “'é\\ - “'éHL =2-1=1.
(Recall that \\'én = 2 and “éHL = “'é“* = 1 as noted in

Example 1.7.) Therefore, (&) > ¢(y). Also, ¢ is not sub-
additive on E. Let x = (1,1,1,...) and y = (0,1,0,1,...).
Then x +y =@ and o(x +y) = 1. But ¢(x) =0 while

9@ = lylly - " =1 -5 =5

We are motivated by Example 3.14 to prove the following

theorem.
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Theorem 3.15. Let (E, <, ||*||) be a normed vector
lattice such that E has the Egoroff property. Then if
o) = ||x|| - “an is monotone on E, D = {x € E: ||x| = HxHL}
is a solid subset of E. (D 1is said to be a solid subset
of E whenever 0 <y < |x| and x € D implies that y € D).
Proof. Suppose D is not solid in E and choose x
in D and y € E such that 0 <y < |x| but y ¢ D. Then
e(x) = o(|x|) =0 but @) =|y|| - |lyll, > 0 which shows

that ¢ 1is not monotone.

In [4, Section 6, Comment b}, J.A.R. Holbrook asks if
E having the almost Egoroff property (almost Egoroff = Egoroff
whenever E 1is Archimedean) implies that “-H is equal to
H-HL on some super order dense ideal in E. (A subset A € E

is said to be super order dense in E vhenever given any

element x in E there exists a sequence {xn} € A such that

sup(xn: n € A) = x). Example 3.14 gives us an Egoroff vector

"

lattice E and a monotone norm ||:|| such that D

{x: ||x|| = nx"L} is not a super order dense idcal in E bccause

D 1is not solid in E. (An ideal is always a solid subset.)

However, c is a super order dense ideal in E and <, < D.
Holbrook notes [4, p. 77] that if ||| = “-“L on a

super order dense ideal in E then “'“L = “'HLL; i.e., H-HL

must be g-semi-continuous. This, of course, implies that E

has the Egoroff property (provided that E 1is Archimedean)

(4, Theorem 5.2]. Using Example 3.14 as motivation we can

prove the following generalization of this latter statement.
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Theorem 3.,16. let E be an order separable, Archimedean

vector lattice. If H-HL =||'|] on E where |:|| is a monotone
seminorm on ﬁ, then H'HLL = “.HL on ﬁ.
Proof. |||l , = inf(t];_i: \\an\\L: 0<t 1 |&]) <
“ﬁHL = inf(;im “ﬁnuz 0 < ﬁn t |%]). Let {ﬁn} be any sequence
|—Q0

in E such that 0 < ﬁn t ‘i‘. As in the proof of Theorem 3.7
we can find a sequence {z } S E such that 0 <z <@ for

n n n
n=12,..., and z t \ﬁ‘. Now, lim “znn = lim “anL <

n—o n—o

< lim “ﬁn“L' Therefore, nﬁnLL 2 “ﬁ“L which completes the proof

N—00
of the theorem.

Corollary 3.17. Let E be an order separable, Archimedean

vector lattice and E 1its Dedekind completion. Then if for
every monotone seminorm ||-|| on E, either ||| = H«HL on a
super order dense ideal in R or |1 = H-HL on E, then £

must have the Egoroff property.

Although o(x) = |-|| - “'HL need not be monotone or
subadditive, if we place a different kind of restriction on

¢ we can prove that ||.|| is equivalent to H'“L

Theorem 3.18. Let (E, <, ||:||) be a normed vector lat-

tice having the Egoroff property. Then H-“ is equivalent
to “.“L if and only if ¢(x) = ||x|| - “XHL is continuous at
x = 0 with respect to “.HL'

Proof. Suppose first that ||+|| is equivalent to
“'HL and let {x } be a sequence in E such that nxn“L -0

as n — o». Then “xn“ -0 as n - o so that
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oC) = x|l - llx i, -0 as n-w.
On the other hand, assuming that ¢ is continuous at
x = 0 with respect to “'HL and choosing a sequence {xn]
in E such that “xn“L -0 as n -, we mst have o(x ) ~ 0
as n - . Hence, |x || =0 as n - Since |x|| = |[x||,
for all x € E we have that ||:|| and u-HL are equivalent.
Example 3.19. let E =t and |x|| = £ (|xm)|/2") +
+ Tim |x()|. o(x) = Tim |x(n)| is not contin\r:;];s at x =0

n—w nN—oco

with respect to “'HL' To show this let x

= €0,0,...,0,1,1,...).
k
Then “"k“x,"o as k- = but o(x) =1 for all k€N.

However, ||| is not a complete norm.

In all of the examples which we presently have at hand,
whenever ||-|| 1is complete ¢ is continuous at x = 0 with
respect to H'“L' Note that even in Example 3.14, although
¢ 1is not monotone or subadditive ¢ 18 continuous with respect
to H-HL at x = 0. In this example “°HL .is a complete norm
on ¢ - (See the remark following Example 2.14 where we show
that if E 1is Dedekind g-complete and “x“L = inf(\: \& = ‘x‘)
and & is a strong unit for E then “'HL is complete.)

Also, HXHL < ||| for all x in E forces |-|| to be completc
(14, Theorem 30.28] as well. Hence, by our previous theorem ¢

is continuous at x = 0 with respect to H-HL.
We can now state the main results of this section.

Theorem 3.20. Let (E, =, ||+||) be a Banach lattice

such that E 1is order separable and has the Egoroff property.



63

If k) = “ﬁnM - “*“ML is a continuous functional at x = 0

with respect to |||, on E then every extension of ||-||

to £ must be complete.

Theorem 3.21. Let (E, <, ||*||) be a Banach lattice

such that E has the Egoroff property. Also, suppose
px) = ||x|| - HXHL is a continuous functional at x = 0 with

respect to “.HL' Then if either H.HL is continuous or

'

E, =, ||

lL) satisfies the hypotheses of Theorem 1.11, every

extension of |-|| to E must be complete.

In order to apply the results of this section to specific
examples it would be nice to have several Archimedean vector
lattices having the Egoroff property. We note that if ) is
any Archimedean vector lattice which is also a sequence space
(i.e., €S and )\ 2 ¢ where S is the space of all real
sequences and ¢ 1is the space of all eventually zero sequences)
then ) must have the Egoroff property. 1In order to see this
we first note that x# =S since S 18 universally complete
and ) is order dense in S. (The fact that ) is order
dense in S follows because )\ 2 ¢.) Obviously, S has the
Egoroff property because it is the space of all measurable
functions on the countable discrete space RO. Also, whenever
E# has the Egoroff property and is order separable it follows
that E must be order separable and have the Egoroff property.

To prove this latter statement recall that whenever E has

the Egoroff property and is order separable E also has these
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two properties [18, Chapter 1, Theorem 1.3]. Therefore, we
need only show that E has the Egoroff property and is order
separable. Obviously, if E# is order separable then E
must be order separable. Choose a double sequence

x in ﬁ for

at
{xn,k' n,k € N} in E such that 0 < X0,k T
n=1,2,,.. . Since E is an ideal in E# we have
. #
0 <x t, x in E . Hence, there exists a sequence
n,k 'k

- - 3
{xm: m €N} S E# such that 0 < x, 1 x in E# and for each
n,m € N there exists a positive integer k(n,m) such that

X < xn’k. Using a construction similar to the one used in the
proof of Theorem 3.7 we can find a sequence {ym} (= ﬁ+ such
that Yo 1 X in E and Yo < ;m for all m € N. Therefore,
given any n,m € N there exists a k(n,m) s8uch that Yy xn,k'
It now follows that ) has the Egoroff property.

In concluding this section we shall prove the following
theorem which relates some of the properties of Section two with

the present section.

Theorem 3.22. Let (E, <, ||*||) be any Dedekind o-

complete Banach lattice which has the Egoroff property. 1If
E also has property K, o(x) = ||x| - “an is continuous at
x = 0 with respect to “-HL.

Proof. By Yamamuro's result [24, Theorem 1.1],
(E, <, ||||) must be monotone g-complete. Amemiya [1, Theorem
1] has shown that whenever ||:|| is monotone o-complete, there
exists a real number k > 0 such that for every x 1in E

and for every sequence 0 < x_ ¢ |x| we must have
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||| <k Sup(“an: n € N). Therefore, it follows that
qu Sknx“L for all x in E. Hence, “'H and H-HL arc

equivalent. The conclusion follows by applying Theorem 3.18.

Corollary 3.23. Llet (E, <, ||*||) be any order

separable Banach lattice which has the Egoroff property. 1If
E also has property K, ¢(x) = |x|| - “x“L is continuous at
x = 0 with respect to H.HL.
Proof. Note that (E, <, “-HM) satisfies the hypotheses
of the theorem. Therefore, H'“M is equivalent to H.“ML'
Also, since H'HML is an extension of “.HL (i.e.,
H.HML = n-“:) it follows that H-HL is equivalent to ||-||

on E.



CHAPTER TWO

A CHARACTERIZATION OF THE SPACE OF
ALL REAL SEQUENCES

While the subject of this chapter is not directly
related to the problems discussed in the preceeding chapter,
it is interesting in its own right and does involve the pro-
perties of monotone seminorms on an Archimedean vector lattice.
We shall characterize a universally complete vector lattice
E having a countable collection of continuous, monotone semi-
norms defining a locally convex, Hausdorff topology as either a
finite dimensional space or the space S of all real sequences.

Every vector lattice E always has a collection
{xd: a € d} of mutually disjoint (i.e., xal A xa2 =0 for
o, # az) elements in E such that x, Ay = 0 for all
o € @ implies that y = 0. ({xa} is said to be complete
system in E.) [13, Theorem 4.6]. If E is also universally
complete and {xa} has at least countably many elements then
E cannot have a monotone norm defined on it. For, if ||-||
is a norm on E and {xa } 1is a countable subset of {xd}

n

then “xanu >0 for all n €N. Letting y = (n/“xanu).xan
we must have sup(yn: n €N) =y in E because E Iis
universally complete. But “yn“ =n for n=1,2,..., implies

that ||y|| = + =, which is impossible if y € E. Hence, no

such monotone norm exists. Of course, if E is any Archimedean

66
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vector lattice such that any system of mutually disjoint non=-
zero elements is finite, then E 1is of finite dimension [25,
Theorem 4.3]. Hence, a universally complete vector lattice
which is not a finite dimensional space cannot have a monotone
norm defined on it.

Also, many universally complete spaces do not even have
monotone seminorms defined on them. (All of our norms and semi-
norms are assumed to be real-valued, i.e., they do not take on
+ » at any points.) For example, the space of all equivalence
classes of Lebesgue measurable functions defined on [0,1)
has no non-trivial monotone seminorm defined on it [2,
Corollary 1, p. 119]. However, pn(x) = x(n) for n=1,2,...,
and x = (x(1),x(2),...) defines a continuous, monotone semi-
norm on S and {pn: n € N} also defines a locally convex,
Hausdorff topology on S. Therefore, we ask whether S and
the finite dimensional spaces are the only universally complete
vector lattices having such a topology.

We shall need the following preliminary results.

Lemma 1.1. Let E be an Archimedean vector lattice
with a countable collection of monotone seminorms {H°Hn: n € N}
defining a locally convex, Hausdorff topology on E. 1f
{fn: n € N} € E, fn t and there exists an element g in E
such that ||f - gl|, -0 (k=1,2,...) as n ~w, then
sup(fn: n €N) =g.

Proof. For n > m we have |fm - inf(g,fm)\ =

= |inf(f ,f ) - inf(g,f )| < |f - g|. Therefore,
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“fm - inf(g,fm)“k =0 for k=1,2,... . But the collection
{H'“k: k € N} defining a Hausdorff topology on E implies
that fm = inf(g,fm) < g for all m € N. Hence, g 1is an
upper bound for {fn}.

Let h be another upper bound for {fn}. Then
|£, - inf(g,h)| = |inf(f ,h) - inf(g,h)| < |f - g| and we
must have “fn - inf(g,h)\\k—o 0 (k=1,2,...) as n - .
But since we also know that “fn - gnk -0 (k=1,2,...) as
n - o, it follows that g = inf(g,h) < h. Hence,

g = sup(fn: n € N).

Theorem 1.2. Let E be an Archimedean vector lattice
with {H-Hk: k € N} a countable collection of monotone, con-
tinuous seminorms defining a locally convex, Hausdorff topology

on E. Then if {ﬁ } 1is any net in E such that 0 <x t x,
o o

e

there exists a sequence {x } < [xa] such that 0 : x t x
n n

in E (i.e., E 1is order scparable).
Proof. If {x } is any net in E such that 0 = x t
—_— o

in E, then |x - xaHk 410 for k=1,2,... . For n=1,2,...

choose x € {x_} such that 0 <x_ t and x -x | <1/n
oy o @, n oy k

for k=1,2,...,n. Then for any k € N and any ¢ > 0 we

can choose N > 0 such that 1/N < ¢ and N = k. Then

- ! 1 x -
|| x xandk <1/N< e for all n = N. Hence, |x xan”k
for k=1,2,... . Then, by the above lemma, 0 = xa t x.

n

We shall need the following definition concerning

linear functionals on an Archimedean vector lattice E.
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Definition 1.3. A linear functional f defined on

E is said to be order continuous if 1nf(f(xa): a€d) =0

whenever {xa} is & net in E such that x 2o.

Letting (J(E) = the set of all order continuous linear
functionals on E, it is known that ((E) is a Dedekind complete
vector lattice [23, p. 247]. We shall denote the topological
dual space of a locally convex space (E, <, {H-Ha: @ €4d})

by E!

Theorem 1.4. Let E be an Archimedean vector lattice
with a collection {H.Ha: @ € g} of monotone seminorms defining
a locally convex, Hausdorff topology on E. Then “'“a is
continuous for all « € ¢ if and only if E' c Q(E).

Proof. Assume every “'Hd is continuous and let
f ¢E', f 20. Suppose 0 < Xg 5 0. Then “xsna B 0 for each
o € d. Therefore f(xB) - 0 and we have f ¢ ﬁ(E).

On the other hand, if 5(E):D E' and we choose any
net {xB: B €L} in E such that 0 < x 20 and any

B

f € B' CQQ(B) we must have f(xa) - 0. Applying proposition
3.4 in [16, p. 91] we have that “xB“a g0 for all aca.

Therefore, “.“a is continuous for each « € @.

John J. Masterson [ll, Corollary 2] has proved that an
Archimedean vector lattice E is isomorphic (algebraically
and lattice) to a space M(X,B,u) of equivalence classes of
p-measurable, almost everywhere finite-valued functions on

the completely additive, o-finite measure space (X,5,u) if
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and only if E 1is order separable and universally complete
and T (E) 1is separating on E, where T (E) 1s an extended
dual space for E. For our purposes, all we need know about
IF'(E) 1is that 5(E) separating on E implies that T (E) is
separating on E. (For a discussion of T (E), see [8].)
Therefore, if E is a universally complete vector lattice
with a countable collection of continuous, monotone seminorms
defining a locally convex, Hausdorff topology on E we know
that E =z M(X,5,u) where M(X,B,u) 1is described as above.
(This result follows from Theorems 1.2 and 1.4 and Masterson's
result.)

In order to show that under our assumptions on E,
M(X,B,u) 1is either a finite-dimensional space or the space
of all real sequences we need some results of C. Goffman [2].
We shall refer the reader to Goffman's paper for the definitions
of carriers of a lattice and the space of Caratheodory functions
generated by a lattice. We note that if (X,B,u) is any
localizable measure space (i.e., the lattice of equivalence
classes of p-measurable subsets is complete) having the finite
subset property (i.e., any set of p-positive measure has a
subset of pu-finite measure) and Eﬁ is the Boolean algebra of
equivalence classes of measurable subsets of X then 6# is
the lattice of carriers of M®X,B,u) and MEX,B,u) is the

*
space of Caratheodory functions generated by /3 .

* *
Coffman's Criterion 2. Suppose x € /B may be split

as follows:
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* * U * " * * 0*
X x1 x2, where x1 N x2 =
* * * b * * 0* 1
X;g = %5y U xyp, Where x,, 01 x,, = (=12
x* = x* U x*
11i2...in_1 1112...in_11 1112...1n_12
h * nxr = 0" (i.,i i
where x s = ceeyl
111 "'in-ll 1112...1n_12 12722 n-1

and so that for every subsequence 11,12,...,1(1,... =1,2

* * *
we have that X n X4 N...N Xq 4
* 1 172 172
X is said to satisfy criterion 2.

*
i Ne.. =0 . Then
o o0 n

*
Goffman's Theorem. If x* [ is the carrier of

*
x € MX,B,n) and x satisfies criterion 2, then there exists

no monotone seminorm p on M(X,Z,un) such that p(x) > 0.

*
We shall show that if x does not contain an atom
%*
(an atom e in a Boolean algebra is a non-zero element such
* * *x

* * * *
that whenever e 2y 20 then ¢ =y or y =0) and

%
(X,B,u) 1is g-finite then we can split x as in critcerion 2.

Lemma 1.5. If (X,B,u) is a g-finite measure space,
* * *
x €8 such that x contains no atom, and 0 < o 1is any
*
extended real number with 0 < o < u(x ) then there exists
* * * * *
an element X, € B such that 0 & x; S x and pu(x;) = o.
Proof. See [3], p. 174, exercise 2.

Theorem 1.6. If (X,B,u.) is a g-finite measure space

* * * * *
and x is an element of A such that x # 0 then x

*
does not contain an atom if and only if x satisfies criterion

2.

=1,2)
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*
Proof. The fact that x satisfying criterion 2 implies

*
that x does not contain an atom follows directly from some of

Goffman's results. (See criterion 1 and some of the following

discussion.)

*
Therefore, we need only show that if x  does not con-

*
tain an atom then x satisfies criterion 2. We consider two

cases.

*
Case 1: u(x ) < + . Choose X

* *

* * * * * * *
x =% U Xy, X, N Xy =0 and p(x;) = plx,) = 1/2u(x).

* % *
X, € B such that

(We can do this using the previous lemma.) Continue splitting

* *

X g8o that for n =1,2,..., we choose x, .

1112...1 -1

* ) * * D

¥{do...1 2 VIR Xy X 1U x4
172

* *

S §

1

) (.yee.,i =1
1 'in-l 1 n-1

1112...in_1 170 i

= o) ) =12 uex]

* *
iv..i o2°0 and u(x,
*
1"'in-1 .o
Now for every sequence il,iz,...,in,... (in

* *

*
n=1,2,...) we get a chain Xj 4 =Xy 22 x,

) 12 1%y
*
lim 1/2" p(x ) = 0.

® % *
Therefore, p( N Xy i ) = lim p.(xi

L) o=
n=1 11°°°1i, o 1001

n—o

Hence, for any sequence 11,...,in,... (in =1,2, n
® * *

we get that N X; g { =0 and this proves that
n=1 12 n

satisfies criterion 2.

* *

®
= UX

*
Case 2: p(x ) = +o. Let X
n

n=1

1>

% ST P 1o

X

*
whenever j ¥ i and suppose WX ) <+= for n-= 1,2,...

Let {nk: k =1,2,...} be the subsequence of positive integers

* * * *
such that x N X #0 for k=1,2,..., and x n X, =

k

*

*
if m¢#n, for each k. We split x as follows: Let

.1
n

=1,2,.

ee)

*
where Xi n X

*

3

*
0

0

*
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* * * * * *
X =Xy J X, where x, =x N J X , x, =

2 1 n 2 1
. k#l Tk

* * *
as in case 1 and we split X, into X) =Xq U

*
nx

. Then

L]

* *
Xy n x, = 0* and u(x;) < + ®», We continue by splitting x

*
*12

2

where

* * * * * *
X1, =x N U X and x =x, n Xn . As m=1,2,..., we

Kkfl,2 "k 12 2

th * *
have at the m  step: X111 1

(m-1) times m times
* * U X* g
X =x N and x
1...1 k#1,2,...,m "k
%*
and x . is split as in case 1 for any
i i ...1
12 m-1
which are not all ones.

*
11...12

Now we consider any sequence il,iz,...,
*
(in =1o0r 2, n=1,2,...). We note that X4

1
* *

i1 1.1 _eeel

123 12 n

*
chain. If for any n we have that p(x, .
1112...

— X

i

i,
n

*

- X

.

= *11...1 Y *11,.,12 Where

o

1

172

Deeed x, . ., De++ forms a strictly decreasing

) < + ®» then

n

as in case 1 N x, . . =0 . Hence, we need only consider

o, ) -1 * - * 5 *
the case 11,12,...,1n,... = 1. xl z x11 x111

*
pNese=n (x N (UX

Th * * n *
en X, N X cee X
1o 1 m=1 k>m

=x A LA (UK )] =0",
m=1 k>m nk

Dees

*
0

We are ready to prove the following thcorem.

B *
~ X111...1

Theorem 1.7. If (X,B,u) 1is a og-finite measure space

and x € M(X,B,u) then there exists a monotone seminorm p on

*
M(X,B,p) with p(x) > 0 if and only if x contains an atom.

*
Proof. Again, the proof that x contains an atom

implies that there exists a monotone seminorm p

on

M(X,3,u)

such that p(x) > 0 follows directly from criterion 1 in

Goffman's paper.

Je e ®
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*
To prove the other direction we note that if x  does
*
not contain an atom then x must satisfy criterion 2 by the
previous theorem. But then Goffman's Theorem shows that there

exists no monotone seminorm p on M such that p(x) > 0.

Before proving the characterization theorem we give

the following definitions.

Definitions 1.8. Let E be an Archimedean vector

lattice. An element x in E 1is said to be discrete whenever
there do not exist mutually disjoint elements y > 0 and
z >0 such that y,z < |x|. Let x be any element in E' and

Bx the band in E generated by x. Then if y is any element

of EV the projection of y onto B 1s defined to be
sup(y A (nx): n € N) whenever this supremum exists. (Notation:

[x]y = sup(y A (nx): n € N).)

A discrete element x always satisfies the property
that whenever 0 < z < \xl then z = )x for some real number
» >0 [23, p. 73]. Also, note that whenever E 1is Dedekind

o-complete all projections onto principal bands must exist.

Theorem 1.8. E is a universally complete vector
lattice having a countable collection {“-Hn: n € N} of monotone,
continuous seminorms defining a locally convex, Hausdorff
topology on E 1if and only if E 1is a finite dimensional space
or E 1is the space of all real sequences.

Proof. We have already shown that E must bec order

separable and E = M(X,B,u) where (X,B,u) is o-finite.
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Since [H-nn: n € N} defines a Hausdorff topology on E,
given any 0 # x € E there exists a positive integer n(x)
such that qun > 0. Hence, by the previous theorem, every
*
0 #x € E is such that x (the carrier of x) contains an
*
atom. (X,8,u) o-finite implies that B can have at most
*
countably many atoms. Let {en} be the collection (possibly
*
finite) of distinct, and, therefore, disjoint atoms in £5 .
For each n let e = X ., (the characteristic function of
e
*
en) and note that e € MRX,B,u) = E. Then {en} forms a
complete system of pairwise disjoint, discrete eclements in E.
* * *
Obviously, e. A e =0 for n # m because e Ne =0,
n m n m
To show that e, is discrete for each n, choose any elements
x,y € E such that 0 < x,y < e, and show that either one of
*
x and y must be zero or x Ay 1is not zero. Since e
* *  * * * *
is an atomand 0 < x ,y < e either one of x and vy
* * *
must be zero or both x and y are equal to e . 1f one of
* * * * *
Xx or y 1is zero we are done, so we assume x =y = e
But then x Ay cannot be zero. Also, the collection {en}
is complete in E because if f A e, = 0 for all n where

* * *
f €E = MX,8,u) then f Ne =0 for all n. But this

n

is possible only if £ =0 because if £ #0 then £

must contain an atom; i.e., one of the e:. Hence, f = 0.
Now, E is a universally complete vector lattice and

{en} is a complete, countable (possibly finite) system of

pairwise disjoint, discrete elements. We define a mapping

F: E = RR, a 1-1, onto, lattice and algebraic isomorphism
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where R = &o or R = N0 (some finite integer) as follows:

For every x in E note that [en]x =ae for each n

since e is a discrete element which forces Be to be a

one dimensional universally complete vector lattiZe (23,
Theorem IV.12.1]. Define F(x) = fx € RR where fx(n) = a -
One can easily see that this is a lattice and algebraic
isomorphism. Also, the mapping is onto since E 1is universally
complete.

Hence, we have proved that every universally complete
vector lattice satisfying the hypotheses of the theorem must
be S or a finite dimensional space. The other direction of
the theorem follows easily because pn(x) = x(n) for
x = x(,x(2)y...) in S (or x = x@M),x(2),...,x(N))
for the case of N-dimensional space) defines a continuous,

monotone seminorm for n =1,2,... (n =1,2,...,N) and

{pn} defines a locally convex, Hausdorff topology on E.
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Before proving Theorem 0.8 of the introduction we shall
introduce some terms and state some results. The following
discussion comes directly from [13, Sections 7 and 8].

let E be a Dedekind g-complete vector lattice. For
any two elements a and p in E+ define [pla = sup(a A (np):
n € N). For arbitrary elements a and p in E define
[pla = [\p\]a+ - [\p\]a-. [p] is an operator on E and is
called the projector of p. Following are some results con-

cerning the projector operator. Any of the proofs can be found

in [137.

(). [pl(x + 8y) =oalplx + 8[ply for all x,y,p
in E and ,8 real numbers.

(2). \[p]x\ < |x\ for all x and p in E.

(3). [p)Jx =0 if and only if p A x = 0.

). [p)] =0 if and only if p = 0.

Definition. An element e # 0 of a vector lattice

E 1is said to be a complete element in E 1if for any x in

E e Ax =0 1implies x = 0.

A universally complete vector lattice always has a

complete element [13, Theorem 32.47.
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(5). [p] =1 if and only if p is a complete element
of E.

(6). [p] = [ap] for all real o # O.

(7). Given any a in E, [a']a =a".

8. ([p)la] = [LpJa] = C|p} A lal].

For any two projectors [p] and [q] we shall write

+
[p] 2 [q] 1if and only if [p)x 2 [q]x for every x in E .

(9). [p) 2 [q] 1is equivalent to each of
Lplla] = [q] and [plq = q.

10). ‘p\ 2 \q\ implies [p] = (q].

Since [p] = [q] as defined above defines an order re-
lation on the set of projectors in a vector lattice we can de-
fine such terms as upper bound and least upper bound of a set

of projectors just as in a vector lattice.

(11). 1f ‘p‘ = sup(‘px‘: A € A) then

[pla = sup([pr]: A € MNa.

Theorem 0.8. Let (E, <, ||*||) be a normed vector
lattice such that ||:|| is semi-continuous. If {xa: o €}
is any increasing net in E+ such that Hxan < M for all o € @, then
sup xa =%, exists in E .

Proof. Let e be a complete element in E#. For

n=20,1,2,..., define E; = 8up([(xa - né)+jé: o €d in E#.
Then 0 < E: {. And by (10) it follows that O < [E;j '

We shall show that 0 < [E;j } 0.
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Suppose there exists an element a in E such that
[5]5 2 a >0 where [5] = inf([;;j: n € N). We shall show
that a = 0. Since [(x_ - né)+](xa -ne) 20 for all ¢«
in ¢ and all n (see (7)) we must have [(xa - né)+]xa >
= [(xa - né)+j(né). But, using (2), we then have X, 2z
= [(xa - né)+j(né). Since (2) also implies that e = [S]E
we also have ne 2 n[B]; 2 na. Combining these last two
statements we obtain x 2 [(xa - nE)+j(na) and it now follows
that Sup(xa AMma):a €D 2 sup([(xa - né)+j(na): ax €
for n=20,1,2,... .

On the other hand, using (11), (8), and (5), we have
sup(L(x,, - ne)(ma): v € @) = (p1(a). Also, [p_)(na) 2
2 [B](na). Applying (9) to the inequality [B] 2 [na] which
holds because [p] = [[B];] 2 [a] we obtain [p](na) = na.
Combining these inequalities we have sup([(xa - né)+j(na):
o € @) =z [p](na) = (na) 2 sup(x A (na): o € @) . It now follows
that (na) = SUP(xa AMma): oy €) for n=20,1,2,... .
Applying the semi-continuity of ||*|| to the net x, A (na) 10 (na)
we have ||na|| = Sup(“xa A (ma)||: « € @ <M. But |nal| s M
for all n implies a = 0. Hence, [B]E = 0 because
e = sup(a): A € A) for some set {ax} S E. We now apply (4),

(3) and the fact that e 1is a complete element to obtain
[p] = 0.
, #
Since E is universally complete the supremum of any

#
collection of mutually disjoint elements in E  must exist in

E'. Hence, &, = T () - (D)% = suptnli, ) - [,
exists in E#. Also, since [;;] 4 0 and [50] 2 [Xa][é] = [Xa]
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for all g € @, we must have X, = n=§[pn_1] - [;;])xa. Note
that ((p,_,] - [P, Dx - ne) =[p ;1 - [p 1) (x, - ne)
since [p__,1(p,) = [p,)- (See (9)). 4nd, [p ;1@ - [p,])(x, - n&) =
= [f’n_l](l - [f’n] + [l-’n][(xa - né)+] - [(xa - né)+])(xa - ne) =
= (5,1 - (D - [ - 08) 1) x, * n8) because
- -+
[pn] 2 [(xa - ne) ]. This last expression for
([Bn] - [Bn-l])(xot - né) is less than or equal to zero. Hence,
for all o in ¢ and for n = 0,1,2,..., ([;-)n_l] - [Bn])xa <
< n(lp,_;] - [p )e. It follows that x < e for all a € .

Hence, sup(xa: x €A = X in E#.



uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

i

78 3768




