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ABSTRACT

AUTOMORPHISMS OF FINITE p-GROUPS

By

Clive M. Reis

In the second chapter certain subgroups of the automorphism
group of a finite p-group are investigated with a view to determining
upper bounds for the derived length and exponent of the subgroups.

In the third chapter, the full automorphism group of a finite
p-group of maximal class is investigated and bounds for the derived
length and order of the group are obtained.

Many of the subgroups of the automorphism group that have
been studied are associated in some way with subgroups of G. 1In
chapter II of this thesis, we first investigate those subgroups of
the automorphism group of G inducing the identity on certain
abelian subgroups of G. The final result is the following
Theorem If A 1is maximal subject to being abelian and of exponent
pt, then k[Aut(G|A)] < log2 % + ¢ and eprut(GIA) < p(c+1)s-t
where expG = ps and clG = c.

The proof of this result can be divided into 5 distinct steps;
each succeeding step is dependent for its proof on the preceding one.
lst Step We obtain information about Aut(Gth) for regular p-groups,
p odd and for 2-groups of class not greater than 2.
2nd Step We investigate Aut(G|A) where A is maximal subject to
being normal, abelian and of exponent pt. Again we assume G is

regular if p 1is odd and of class at most 2 if G 1is a 2-group.
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3rd Step Aut(G|Qt) is investigated, no restriction on the group G.
4th Step We investigate Aut(GlA), A still maximal subject to being
normal, abelian and of exponent pt.

Sth Step We no longer require A to be normal and obtain the quoted
theorem.

Finally, as a generalization of the preceding, we obtain in-
formation about those automorphism subgroups inducing power auto-
morphisms on certain abelian subgroups of G.

In chapter III we prove the following

Theorem If G 1is a p-group of maximal class, |G| = pm, m > 3, then
(i) AAut(@©@)] = log, 8(n-1)

(ii) Aut(G) = P,C where P 1is the p-sylow subgroup of

Aut (G) . Furthermore

2 2
p" < |p| £ p™° and |c||(p-1)°.

Intermediate steps in proving this theorem are as follows:
; >...> > i
lst Step Aut(G,FZ) < Aut (G > FZ Fm-l 1) where Fi is the
th
i term of the lower central series of G, G any nilpotent group.

2
2nd Step If E is an elementary abelian group of order p ,

generated by P and Q, then the group A of automorphisms given by

P-P i

L...,(p-1)

0s~~'s(p'1)

Q- qt ¢
is of order p(p-1) and of derived length 2.

3rd Step The quoted theorem follows easily from steps 1 and 2.
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INTRODUCTION

The automorphisms of a group may be studied from two distinct
points of view. On the one hand we may postulate the existence of
an automorphism or a group of automorphisms having certain properties
and we may ask if we can determine to some extent the structure of
a group G possessing such automorphisms. On the other hand, we may
impose restrictions on the group G and we may then investigate the
structure of Aut(G) or of some of its subgroups. Knowledge of the
structure of Aut(G) may then be used to obtain further information
of the structure of G.

It is from this latter point of view that we shall investigate
certain subgroups of the automorphism group of a finite p-group in
Chapter II. In Chapter III, information about the full automorphism
group of a p-group of maximal class will be obtained.

Most of the subgroups of Aut(G) that have been studied are
those related in some way to a subgroup or chain of subgroups in G.
Thus, for example, P. Hall has proved that the group of automorphisms
stabilizing a chain of subgroups in G, ending in the identity, is
nilpotent. Another example is a result of N. Blackburn which states
that the automorphisms of a finite p-group, fixing elementwise a
subgroup which is maximal subject to being abelian and of exponent
pt, is a p-group.

In this investigation, we shall be primarily concerned with

those subgroups of Aut(G) inducing the identity, or more generally,
1



inducing a power automorphism on certain subgroups of G. We shall
obtain an upper bound for the derived length and for the exponent of
the automorphism groups under investigation. In some cases, we shall

even be able to obtain bounds for the order of the automorphism group.



CHAPTER 1

Preliminary Results

In this chapter we introduce some of the concepts to be used
in subsequent chapters. We shall also prove a number of theorems
which form part of the folk-lore of the subject of automorphisms of

groups.

Section 1

Definition I.1.1 Let G be a group and let X, be elements
of G. We write the expression x; X, xx, as [xl,xz] and call
it a simple commutator of weight 2. Define a simple commutator of

weight n inductively by
[xl,...,xn_l,xn] = [[xl,...,xn_lj,xn].

= > = . i

Let Tk(G) <[x1,...,xk]|xi € G>, k= 2. The series

G= FZ(G) =,..2 Fk(G) Z,... 1is called the lower central series of
G. Clearly each Fi is fully invariant and it may be proved that
[Fi(G),G] = <[x y]lx € Ti(G) and y € G> = Fi+1(G) for i=1,...

provided Fl(G) is interpreted as G.

Definition I.1.2 1If Fc+1(G) =1 and FC(G) #1, G is
said to be nilpotent of class c.

Theorem I.1.1 (P. Hall)[12] If G is a nilpotent group,

[ri,Fj] s ri+j for i,j = 2,3,...

The following commutator relations will be used:

Lemma I.1.2 If a,b,c € G, G any group, then
3
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(i) [a,bc] = [a,c][a,b][a,b,c]
(ii) [ab,c] = [a,c](a,c,b]{b,c].
Proofs of these relations will be found in M. Hall [11].
The following theorem lists the elementary results we shall
need about p-groups.

Theorem I1.1.3 Let G be a finite p-group. Then

(i) G 1is nilpotent
(ii) 1f H#$G, NG(H) F H.

(iii) ¢(G), the Frattini subgroup of G is the inter-
section of all maximal subgroup of G. & 1is characterized by the
property that it is the smallest subgroup H for which G/H is
elementary abelian.

As a general reference for the theory of finite p-groups we
give P. Hall's paper [12].

Section 2 In this section we list and prove some of the

simpler theorems on automorphisms.

Notation (i) Aut(G) denotes the full group of automorphisms
of G.

(ii) expG 1is the least common multiple of the orders

of the elements of G.

Definition I.1.3 Let H = G. Then if o € Aut(G) and

1xa €H for all x € G, ¢ is said to be an H-automorphism. The

o
set of all such automorphisms is denoted by Aut(G;H). This set is
actually a group, and when H < G, it is just the group of auto-
morphisms of G inducing the identity automorphism on G/H. We
sometimes say that o stabilizes G/H.

(b) Let G = G0 > G1 >...> Gm be a chain of subgroups.

Then the set of automorphisms o« having the property that for all



1
xa € G,

i+1° will be denoted by

x € Gi’ (i=0,...,m-1), x_
Aut (G > G, >...> Gm). This set again forms a group and we shall call
this group the group of automorphisms stabilizing the chain
G>G, >...>G .
1 m
(¢c) Let H = G. Then Aut(GIH) will denote the group
of automorphisms fixing H elementwise. We note that if Gm =1 in
=
(b) above, Aut(G > G, >...>G_, > 1) =Aut@Gle__
Lemma I1.2.1 Let G be a finite p-group and let

1)'

= > e > i .
G Go G1 > Gm.1 1 be a chain of subgroups Then

Aut(G > G, >...> G

1 -1 > 1) 1is a p-group.

Proof By induction on the length of the chain. If m = 2,

and o € Aut(G > Gl > 1), then xa = X818, € Gl. Therefore
n n
xa = xg?. Hence, if n = expG, xa = x for all x € G. We note

that we have incidentally shown that expAut(G > G1 >1) = expGl.

Assume inductively that the result is true if the length of the chain

is less than m and let «o € Aut(G > G, >...> G > 1). Thus the

1 m-1
restriction of a to G1 is in Aut(G1 >...> 1) and by induction
k k
of  fixes G, elementwise for some k. Therefore oF € Aut(G > G, > 1)

1 1

and by what we have shown above, @ 1is of p-power order. By induction,
we are done.

Lemma I.2.2 Let G be a p-group, H<d G and suppose
CG(H) S H. Then Aut(GIH) = Aut(G > H > 1) and is an abelian p-group
of exponent not greater than expH.

Proof Let g€ G and h € H. Then since H d G, [g,h'1] € H.
Let o € Aut(GlH). Then [g,h-ljCv = [g,h-l] = [éa,h-l]. Therefore
g-lh g h“1 = g-dh gah-l. Hence gagnlh = hgag-l for all h € H.

Thus éug-l € CG(H) = H for all g € G and the result follows.



By the previous lemma Aut(GlH)
proved as follows:
Let o,B € Aut(G|H).
Then x

and h
ne Mg

We shall have occasion to use a

we proved above, ha € Z2(H).

Theorem I1.2.3 Let G > G >...>

subgroups. Then clAut(G > G >...> 1)

be found in [13].

is a p-group.

af _ B _ _ -
= (xh )" = (th)hd = xh hg

That it is abelian is

Ba

X since, from what

generalization of the above.
=1 be a series of normal

G

m-1. A proof of this will



CHAPTER II

Section 1 In this section we prove some theorems about
certain subgroups of the automorphism group of two specific classes
of p-groups. In the case p 1is odd, the results will be proved for
regular p-groups and in the case p even for groups of nilpotent
class at most 2.

When p is odd, the regular groups form a more comprehensive
class of groups than that formed by the groups of nilpotent class at
most 2. When p = 2, however, the latter class is bigger since
regular 2-groups are abelian [14]. Later on, when we extend these
results to arbitrary p-groups, we shall need the theorems to hold
for groups of nilpotent class at most 2. Thus in order to obtain
the maximum degree of generality, we are led to consider the 2 cases
separately.

Definition II.1.1 A p-group is said to be regular if, given

any positive integer n and any pair of elements a and b of G,

it is always possible to find elements CpoveeaCy all belonging to
n n n n n
<a,b>' and satisfying the equation (ab)p = aP bP ci ""CE .

P. Hall [12] proves the following

Theorem 11.1.1 If a and b are any two elements of the

n n

. pt _ . p" -lp _
regular p-group G and if a =b" , then (ab ") = 1, and con-

versely.



In the same paper, P. Hall proves that the order of the product
of two elements of a regular p-group is no greater than the maximum
of the orders of the factors. This means that Qt = <Qt> in a
regular p-group.

It is on theorem 1.1 that the basic lemma for the case p odd
will depend.

For the case p = 2, we shall depend on the following

Lemma II.1.2 [11] If G is a group of class not greater than

2, then for all a,b € G and for all integers n,

n

)
(@ab)™ = a"b" [b,a)] 2

) ey
= a""[b 2 ,a] = a"b"[b,a 2 ].

The following lemma is the cornerstone of many of the proofs:

Lemma II.1.3 (a) Let G be a regular p-group (p odd) and

let exp G = ps. Then Aut(Gth) stabilizes G/Qs_t

(b) Let G be a 2-group generated by LS ERRERTN

where |xi| s 2° for all i. Let G be of class at most 2. Then

Aut (G|Qt) S Aut (G;<Q >)

s-t+1

Proof (a) Let « € Aut(GIQt) and let x € G. Then

s-t s-t s-t s-t
|xp | - Pt. Therefore xP € Qt and thus (P )% = P

X
s-t s-t _1 oS-t
Therefore (xa)p = xP . By theorem II.1l.1, (xax l)p =1 and
o -1
hence x x = € Qs-t'

(b) Let a € Aut(G|Q) and let x € {x;,....x }.

2s-t+1 t-1 s-t+
Then |xi | =2 and X, € Qt as above. Therefore
2s-t+1
( 1o 2s-t+1 B _Zs-t+1 s-t+1[ o -1 ( 9 )
x; Xy) =% Xy Xio%; )
2s-t -1 (Zs-t+1_

] Do

[x, ,x

i i



Therefore x-lxz €N

i s-t+1°

r
Now let x € G. Then x = My, where y, € {x.,...,x }. When
j=1 1 i 1 n

-lo <
= s >
r 1, x x € Qs-t+1 <ns-t+1 as we have just seen.

Assume inductively that when x is the product of at most

-1a r+l
r factors, x x € <ns-t+1>' Suppose now x = iglyi
-la _ -1 -1 -loa o o
Then x "X = x Yy == Y1 Y12 YV
-1 -laa where - E
= V41 Y Yenl r y . Yi
i=1
. -l o
By induction, y "y € <ns-t+1>' Therefore
-1l . -1 «a - -l o
- . .. >,
X Yesl Ypa1 Ops1 ¥ Y Ypyp) which is in < o,

Remark (b) cannot be improved to give the same result as in

“(a) as can be seen by considering the quaternion group. In this case

Ql is the center of the group and expG = 22. But

Aut(GIQl) = Aut(G) = S,, the symmetric group on four letters. However,

4
Aut:(G|01) cannot stabilize G/Q, , = 6/Q), for if it did, Aut(G)
would stabilize G > Ql > 1 and hence would be abelian by lemma 2.2
in chapter I.

Theorem 11.1.4 (a) Let G be a regular p-group (p odd) and

let expG = ps. Then

s > >. .. > = (8-t
Aut(G|Qt) Aut(G >Q _ >..>Q  >1) where k= {=

and {x} denotes the first integer greater than or equal to x.
Hence, by the theorem of P. Hall 1.2.3, cl[aut(c|a)] & {s—;t )
Furthermore Aut(G|Qt) is a p-group.

(b) Let G be a 2-group of class at most 2.

Let G = <x ...,xn> where |xi| s 2%, Then if t > 1,

1)

Aut (clot) S Aut(G > < >> 1)

>>,..>
t+l <ns-k(t-1)



10

where k = %f%}. Again, as in (a)

cl[Aut(Gth)] s %f%} and Aut(GIQt) is a.2-group.

Proof (a) We have shown in lemma II.1.3(a) that if

a € Aut(Gth), a stabilizes G/Qs_t. By restricting « to Qs-rt

where r 1is any positive integer, we see that @ must stabilize

s-rt
Qs-(r+1)t
Now let k be the first integer for which Qs-kt = Qt. Then
o stabilizes G > Qs-t >...> Qs-kt > 1. But k is the first integer

for which s-kt £ t or, solving the inequality for k, the first

integer for which k 2 gig. Therefore k = {§§£

(b) Since <Qs is generated by those elements

—r(e-1)"
s-r(t-1)

of G of order not greater than 2 , lemma II.1.3(b) is

applicable and shows that Aut(GIQt) stabilizes

/<

<0 s - (c+1) (t-1)"

s-r(t-l)>

Therefore Aut(clot) S Aut (G > < >...><Q >> 1)

s-(t-_l)> U s-k(t-1)

where this time k = {%:% .
Remark Again the quaternion group shows that a similar theorem

for t = 1 cannot be prqved.

)

Definition II.1.2 Let G be a group and let G = G.

Define inductively ¢&) = eb, ¢ D1 16 6™ 21 and
G(n-l) # 1, G is said to be solvable of derived length n.
(1)

Symbolically, A(G) = n. G is called the i‘® derived group of G.
P. Hall [12] shows that if the class of G is less than Kk,

the derived length of G 1is no greater than logzk. Hence we have

the following
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Corollary II.1.5 (a) If G 1is a regular p-group (p odd)

expG = ps, then k[Aut(G‘Qt)] E logzs/t.
(b) If G 1is a 2-group of class at most 2

and G 1is generated by elements of order at most 2° and t =z 2,
then k[Aut(G|Qt)] s logzs;l/t-l-

Proof (a) «cl Aut(G|Qt) < §§£ + 1. Therefore
AAaue(6|Q)] = log,s/t

() <l Aut(Glay) < i%'ls + 1. Therefore

k[Aut(GIQt)] ] logzs-l/t-l.

Corollary II1.1.5 with a slightly coarser bound can be proved
by using lemma II.1.3 and we shall give the proof in the following.
The method of prood has the merit of making the structure of

Aut(G|Qt) more transparent.

Theorem I1.1.6 (a) Let G be a regular p-group, (p odd),

s
= = = - = i
expG = p . Then Aut(G|Ot) = Aut(G|02t) z,..2 Aut(G|szt) 21 is a
normal series with abelian factor groups. k 1is the first integer

for which 25t 2 % Thus AlAut (Glﬂt)] é'{logzs/c}
(b) Let G be a 2-group of class not

greater than two. Then if t > 1,

= . >
Aut (G|<Qt>) = Aut (c;|<02t_1

Z...Z Aut (G| > =1
) ue @l iy
is @ normal series with abelian factor groups. k 1is the first

integer for which Zkt - 2k + 1= E%l. Thus

X[Aut(G|<ﬂt>)] s {1ogzs-l/t-1}.
Proof (a) Consider u: Aut(Glert) - Aut(02r+1t) where

is the restriction mapping. Then ker p = Aut(G|Q2 and

)
r+1t

Im b = Aut @ But Aut(02r+1t|02rt) stabilizes

2r+1t|02rt)'
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Q21'"'1t g ert > L
Therefore Aut(GlQ2r )/Aut(G|02r+1 ) 1is abelian and (a) is
t t
proved.

(b) is proved similarly, except that the restriction

map must be taken from Aut:(G|<02r >) to Aut (<02r+1 T+l >)
t-

t-2T+1 1

Theorem II.1l.7 (a) Let G be a regular p-group (p odd),

expG = ps. Then eprut(G|Qt) = ps-t.

(b) Let G be a 2-group of class at most 2,
3(s-t)

s
G = <x1,...,xn> where |xi| = 2. Then eprut(G|Qt) s 2 for
t > 1.
Proof (a) We shall show that if o € Aut(Gth),
k

o € aut (Gl for all k Z 1.

t+k)

Let w: Aut:(GlQ ) - Aut(Qt+k) be the restriction mapping.

t+k-1

Then ker p. = Aut(GIQ and Im u = Aut(Q |Q ). But by lemma

t+k) t+k' t+k-1

ekl Qi) stabilizes QL /0 gy = QB

s = 1. bil
kBut 01 Qt+k-1 for k Z 1. Therefore Aut(0t+k|0 ) stabilizes

t+k t+k-1
Hence if o € Aut (Glﬂt), of € Aut(Gth_'_k) and expAut (Glﬂt) Sp

t
(b) (i) We show first that exp<ﬂt> =2 +1. Let

I1.1.3(a), Aut(@Q

t+k-1

)/AUt(G|Qt+k) is elementary abelian.

Q > Ql >1 and Aut(GlO

s-t

r
: t

x € <Qt>. Then x = I X5 Ixil =2 1f r= 1, |x| = 2. Assume
1 :

i=
. . t+1
inductively that if x is the product of at most r xi's, |x| &2 .
r+l
Let x= 1I X,
i=1
t+1 2t+1
Then x = (x X »X )
127’ T+l 2t+1
2t+1 2t+1 (2 )
= (xl,...,xr) X 41 [xr+l’ xl,...,xr]
t t+1_
= [xf__ﬂ, xl,...,xr] (2 D by induction

=1
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. . - S
(ii) Let p: Aut(Gth) Aut(<ﬂt+1 ) where

is the restriction. ker g = Aut(G|<Qt+1>

> > ili i
By lemma II.1.3(b) Aut(<ﬂt_'_1 |<Qt) stabilizes <ﬂt+1>/<22>. Since

=
) and Im p = Aut (<)t+1>|<)t>? .

Z s I I
t =2, <02> s <Qt>. Hence Aut(<nt+1>|<ﬂt>) stabilizes

<nt:+1> > <nz> > 1. But exp<n2> = 23 by (i) and hence

Aut (G|<q>) 3
< . . .
ex Aut(G]<ﬂt+1>) = 2. A simple induction then shows that

exphut (G| >) = 2

3(s-t)

We next ask: Under what circumstances does Aut(Gth) strictly

contain Aut(GlQ )? We can only answer this when t is '"big

t+l

enough" for purely non-abelian groups.

Definition II.1.3 A non-abelian p-group G is said to be
purely non-abelian if it has no abelian direct factor.

Theorem 1I1.1.8 (a) Let G be a regular purely non-abelian

p-group (p odd), expG = ps. Let expG' = pn and expZ(G) = pz where
n < s. Then Aut(G|0t+1) ¥ Aut(G|Qt) if t Z max(n,s-z) and ¢t < s.

(b) Let G be a purely non-abelian 2-group,

S

clG £ 2 and G = <x .,xm>, |xi| = 27, Llet expG' S 2" and let

10
expz(G) = p°. Then Aut(G|< ;> F Aut(6|<Q>) if t Z max(n,s-z)
and Q> # G.

Proof (a) ExpG/Qt = p° "% = p%. There is therefore a homo-
morphism W: G/Qt - Z(G) which is a monomorphism when restricted
to a cyclic factor of G/Qt. There is therefore an element
xﬂt € G/Qt, Ixﬂt| = p, such that u(xﬂt) # 1.

Let B: G - G/Qt be the natural homomorphism and let P = uB.

Then P is a homomorphism from G to Z(G) which annihilates Ot

but does not annihilate Qt+1'
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Consider the mapping «@: G — G given by a: x = xP(x). This
is clearly always a homomorphism. Moreover, it has been shown [1]
that when G 1is purely non-abelian, @ is an automorphism. Clearly

@ € Aut(G|Q) but o ¢ Aut(sla ).

(b) The proof is similar to that given in (a) except
t+1
that in this case exp<ﬂt> s 2 and the element x whose order

mod<nt> is 2 and which is not in the kernel of u: G/<Qt> - 2(),

t+2 .
has order not greater than 2 . (We cannot say it has order

s ot

Corollary II.1.9 (a) If G 1is a purely non-abelian regular

p-group (p odd) such that expG' < expG and Qt # G, then
Aut(G|Qt) # 1.
(b) If G is a purely non-abelian 2-group
of class 2 such that expG' < expG and <ﬂt> # G, then
Aut (6|1 >) # 1.
Proof Apply preceding theorem.

Corollary II.1.10 Let G be a regular purely non-abelian

p-group (p odd) with expZ(G) =2 ps.1 and expG' = p. Then
Aut(G|Qt) 3 Aut(G|Qt+1) for all s >t = 1.

Proof max(n,s-z) = 1. Hence result.

Finally we obtain a rough lower bound for |Aut(G|<Qt>)| when
t is big enough. We first prove the following

Lemma II.1.11 Let A be an abelian p-group,

o1 o4 .
A=C(p ) ®.@®C(p ) and let B = C(pk) where k Za, for all i.

Let o = zai. Then there are at least pa distinct homomorphisms of

A into B [8].
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o o
Proof Clearly there are p t homomorphisms of C(p 1) into

(o )
B. There are therefore at least 1[I p e pd distinct homomorphisms
i

of A into B.

Theorem I1I1.1.12 (a) Let G be a regular purely non-abelian

p-group (p odd), expG = ps, expG' = pn and expZ(G) = pz. Then if
t 2 max(n,s-z), IAut(Gth)| = lG: Qtl
(b) Let G be a purely non-abelian 2-group

of class 2, G = <x1,...,xm>, |xi| = ZS, expG' = 2". Then if
t = max(n,s-2), |Aut(G| )| = |c: < >

Proof (a) ExpG/Qt S expZ2(G). Thus by the previous lemma
there are at least |G: Qtl different homomorphisms of G/Ot into
Z(G), say yse ek where k = IG: Qt|. Then @ ox = xuiB(x)
(where B is the natural homomorphism from G to G/Qt) are distinct
automorphisms in Aut(Gth).

(b) is proved similarly.
We shall now obtain bounds for the derived length of Aut(GlA)

where A 1is maximal subject to being normal, abelian and of exponent

t
P .

Theorem I1I1.1.13 (a) Let G be a regular p-group, (p odd),

expG = ps. Let A be maximal subject to being normal abelian and

t
of exponent p . Then

1"

MAut(G|A)] = log,2s/t and

s
P

11}

exphut (G|A)

(b) Let G be a 2-group of class at most 2.

Let G =<x .,xn> where |xiJ s 2° for all i. Then if A is

1’

maximal subject to being normal abelian and of exponent pt, t>1,
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A[Aut (G|A)] = logy2(s-1/t-1) and

243-3t+1

1"}

eprut(GlA)

Proof (a) Let u: Aut(G|A) - Aut(Qt) be the restriction
mapping. Then kerp = Aut(GlOt), Imy = Aut(Qt|A). But by Alperin
(2], ¢, () = A, and hence by lemma 1.2.2, Aut(Qt|A) is abelian.

By Coroilary II1.1.5(a), k[Aut(G|Qt) -] 1ogzs/t. Therefore
AAut(Gl|a)] = log,s/t + 1.

Furthermore, by theorem I1I.1.7(a), eprut(Gth) s ps-t and
by lemma I.2.2, eprut(ﬂtlA) = pt. Therefore eprut(GlA) = ps.

(b) Let u: Aut(G|a) — Aut(C (A)[A) be the re-
striction map. Since CG(A) Z A, CG(CG(A)) s CGQA). Therefore
kery = Aut(G|CGGA)) is abelian by lemma I1.2.2 and Imy = Aut(CG(A)IA).
But by a result of Alperin [2], CQtQA) = A. Therefore Qt[CG(A)] = A.

Therefore A[Imu] S logz(s-llt-l) and hence
X[Aut(GlA)] E logz(s-l/t-l) + 1. Furthermore, since

3(s-
s 2 (s-t) by theorem II.1.7(b) and

248-3t+1‘

I S Aut(CG(A)|A), explms
expkery = Zs+1. Therefore exﬁAut(GlA) s

In a regular p-group (p odd) there is an interesting connection
between the exponent of A, (where A 1is maximal subject to being
normal, abelian of exponent p) the exponent of G and the class of
CG(A) as can be seen in the following: A = Z(CG(A)). Thus
CG(A)/Z(CG(A)) GAut(CG(A)IA). But as we saw earlier,
clAut(CG(A)lA) < s/t, since A =Q _(C,(4)).

Therefore chG(A) < s+t/t. Thus for example, if t = s/2,
CG(A) is of class at most 2.

For the next few theorems we shall restrict our considerations

to regular p-groups, p odd or even. Of course,'when p 1is even we
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are merely dealing with abelian groups.

Similar results cannot be proved by the same methods for 2-
groups of class 2 because in general in such groups exp(<ﬂt>) = pt+1
whereas we need exp(<ﬂt>) s pt as will be seen.

Notation Ut will denote the set of elements which are pt-th
powers of elements of G. P. Hall [12] has shown that in a regular

p-group this set actually forms a group.

Theorem II.1.14 If G 1is a regular p-group, p-odd or even,

then Aut(G;Q) = Aut (6|0 .
’ t t t
Proof Let o € Aut(G‘UE). Then xp = (xp )a = (xa)p for
-1 o pt
all x € G. Therefore, by theorem II.1.1, (x "x ) = 1. Hence

o € Aut(G;Qt). Conversely, suppose « € Aut(G;Qt). By the converse

- t t t t
of the same theorem, since (x lxa)p =1, xP = (xa)p = (xp )a

and hence o € Aut(G|(%). Therefore Aut(G;Ot) = Aut(GlUt).

Corollary I1I.1.15 Let G be an abelian p-group, p odd or even,

which has no direct factor which is cyclic of prime order. Then

Aut(G;Q,) = Aut(G|01) = Aut(G >Q, > 1) i.e. Aut(GiQ,) is elemen-

1

tary abelian.

Proof Since G does not have a cyclic group of prime order
o %n
as direct factor, G =C(p ) ®...8C(p ) where a, > 1. Therefore
p o1 a1
Ul =G = C(p ) ®...8 C(p ). Hence 01 2 Ol. By the pre-

ceding theorem, Aut(G;Ql) = Aut(G|Ul) = Aut(GlQl). Therefore

Aut(G;Ql) = Aut(G >Q, > 1) and the theorem is proved.

1

Corollary II.1.16 Let G be a p-group with Q. = Z(G) and

1

such that 2Z(G) has no direct factor which is a cyclic group of

2
order p. Then X[Aut(G;Ql)] = 2 and expAut(G;Q,)  p°.
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Proof Let u: Aut(G;Ql) - Aut(Z) where p is the restriction
map. Then Imy = Aut(z;ﬂl(z)) and by corollary II.1.16, the latter
group is elementary abelian. Furthermore,

kerp = Aut (6;Q)) N Aut (G|2) = Aut(G > Q, > 1) since Q =z

1A

Therefore x[Aut(G;Ql)] 2 and

eprut(G;Ql) Sp.

Section 2 1In this section we extend many of the results
of section 1 to arbitrary groups. In general the bounds obtained in
this section will be coarser.

The transition from the special classes of groups we have
been considering so far is effected by the use of the Feit-Thompson
[7] "critical subgroup" of a p-group. This subgroup, which we shall
henceforth denote by K, has the following properties:

(i) K 1is characteristic of class at most 2.

(ii) CG(K) = K and K/Z(K) is elementary abelian.

(ii1) [6,K] = z(K).

Theorem II.2.1 (a) Let G be a p-group (p odd), expG = ps.

Then x[Aur.(clnt)] = log,2s/t and eprut(GIQt) s pzs-c_

(b) Let G be a 2-group, expG = 2°. Then

X[Aut(Gth)] s 10322(3-1/t-1) and eprut(G'Qt) = 248-3t

where
t>1.
Proof (a) Let K be the Feit-Thompson critical subgroup of
G and consider w: Aut(G|Qt) - Aut (K) where J 1is the restriction
map. kerp = Aut(G|<ﬂt>°K) = Aut(G > <1 >k > 1) by lemma I.2.2
since CG(<Ot>.K) = K. Therefore kery is abelian. Imu = Aut(KlOt(K))

and since K 1is of class 2 it is regular. Hence corollary II.1l.5(a)



19

is applicable and A[Imu] S 1ogzs/t. Therefore X[Aut(G|Qt)] £ 1og225/t.

Furthermore, Aut(G|Q ) /Aut (G > K< >> 1) GAut(KIQt (K)) .

But eprut(Kth(K)) s ps-t by theorem 1I.1.7(a). By lemma I.2.2

expAut (G > K.<> > 1) $ p°. Therefore expAut (G|Q,) = p2e-t

(b) We have again that
Aut (G|<Qt>) /Aut G > <ﬂt> ‘K =1 @Aut:(ld()t (K)). By theorem II.1.7(b),

3(s-t) 4g -3t

eprut(KIQt(K)) 52 Therefore eprut(G|<Qt>) s 2

Corollary II.2.2 (a) If G 1is a p-group (p odd) and if

1A

Qt < 2(G), then A\(G) logzhs/c
(b) If G 1is a 2-group and if Qt s 20,

t > 1, then A(G) = 1og24(s-1)/(t-1).

Proof (a) and (b) Since Q_ ¥ 2(G), G/Z C Aut(G|Q.). We note
that if A is maximal subject to being normal, abelian of exponent
pt in G, then by Alperin [2] Qt[CG(A)] =A S Z(CG(A)). We may then,
using the corollary above, set a bound on the derived length of
CGQA). In fact X(CG(A)) s 10324s/t in the case p 1is odd and
X(CG(A)) = log 4(s-1/t-1) if p=2, t > 1.

Corollary 11.2.3 (a) If G 1is a p-group (p odd), expG = ps

and if A 1is maximal subject to being normal, abelian of exponent
pt, then k[Aut(G'A)] s logZAS/t and eprut(GlA) s p38-t
(b) If G 1is a 2-group, expG = 2° and A

is as above, then k[Aut(GIA)] s log24(s-1/t-1) t >1 and
expAut (G|A) = 2283t L5,

Proof (a) Let u: Aut(G|A) — Aut(C (A)) where W is the
restriction. kerp is abelian since CG(CGCA)) s CG(A)
Imy S Aut(cG(A)IA). But Q. [C,(A)] =A by Alperin [2]. Thus, by

the previous theorem MIm] = 10g228/t. Hence K[Aut(GlA)] s logzhs/t.
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Furthermore Aut(G|A)/Aut(G > C () > 1) C Aut(C,(A)|A). Therefore
eprut(GlA) s p3s-t
(b) is proved similarly using (b) of the previous
theorem.
When A 1is maximal subject to being normal, abelian of
exponent pt, we may obtain a finer bound on Aut(G‘A) if we know
that the exponent of G' 1is no greater than the exponent of A.

We then have the following

Theorem II.2.4 (a) Let G be a p-group of odd order. Let

expG = ps and expG"f pn where pn < ps. Let A be maximal sub-
ject to being normal abelian of exponent pt. Then
Aaut(G|a)] = log,2s/t if t = n.

(b) Let G be a 2-group and A as in (a).
Let expG' = 2" where 2" < 2°. Then A Aut(c|a)] = log,2(s-1/t-1)
if t = max(n,2).

Proof (a) Let u: Aut(GlA) - Aut(CGGA)|A) where | is the
restriction mapping. By a result of Alperin [2] Qt(CG(A)) =A. On
the other hand, exp[CG(A)]' sp's pt. Hence [CG(A)]' S A. But
clearly A = Z(CGQA)) and therefore CGQA) is of class 2. Thus by
corollary I11.1.5(a), the derived length of Aut(CGQA)IA) is no
greater than logzs/t. Hence, since kery is abelian,

A[Aut (G|A)] = log,2s/t.
(b) The proof is similar and we appeal to corollary
II.1.5(b) to obtain x[Auc(cG(A)|A)] S log,(s-1/t-1). Thus
A[Aut (G|a)] = log,2(s-1/t-1).
We pause to give two simple examples which will illustrate

the foregoing theory.
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Example 1 Consider the group generated by P and Q with
defining relations P9 =1, Q9 =1, Q-lPQ = Pa. This is a group of
order 81 of class 2. Hence it is regular. A simple calculation

shows that Z(G) = <P3>®<Q3>. It is easy to show that Q. = Z(G).

1
We may then apply theorem II.1.4(a) to obtain clA&t(Glﬂl) 8 2.1 =1,
Furthefmore CG(Ql) = G and we know that cl[CG(Ql)] 2 2 by one of
our results. Since clG = 2, we see that our bound is actually
attained in this case.

Example 2 Consider the group G generated by P,Q and R

with the following relations:

p’=1,¢°=1, & =1, [p,q) = 1, [P,r] = q and [R,q] = P°.

This is a group of order 81 and each element of group is

expressible uniquely in the form PIQij.

It is easily shown that L[P",R] = [P,R]™ for all n and
hence [P3,R] = [P,R]3 = 1. Therefore <P3> s 2(G) and in fact
<> - 2(0).

The class of the group is 3 and an easy calculation shows

R 9(m-L) 3 (m-L) R3

that (PLQmR)3 = Q =1 for all 4 and m. Thus

PRR =P, |PR| =3 and |R?]

= 3, but order of P 1is 9. Hence
the group is not regular and we must use the results of section 2.

Consider now the subgroup <P3,Q>. This is clearly abelian and

normal of exponent 3. Suppose Piquk € CG(<?3,Q>). Then

Q-lPleRkQ = PlQ Rk. Hence Q-leQ = Rk. But from the relatioms,

Q-IRQ = RPB. Therefore Q-leQ = RkP3k = Rk. Therefore P3k =1,
and k = 0 mod3. Thus the only elements in CGC<P3,Q>) are of the
form Pin and thus <P3,Q> is maximal subject to being normal,

abelian of exponent 3.
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It may be shown that the mappings P ™ Pi, i=1,4,7; Q* Q;
R~ PLQmR for arbitrary 1 and m are automorphisms which fix
elementwise <P3,Q> and furthermore these are the only such auto-
morphisms. Thus |Aut(G|<P3,Q>)| = 81. This is a non-abelian group
of derived length 2. Applying corollary I11.2.3(a), since expG = 32,
we get x[Aut(G|<P3,Q>)] £ log28 = 3. Furthermore, CG(<P3,Q>0 = <P,Q”

which is abelian. Again the bound obtained from our results for the

derived length is 3.

Section 3 In this section we obtain bounds for the de-
rived length and exponent of Aut(GIA) where A is now maximal
subject to being abelian and of exponent pt. We thus drop the
hypothesis that A is normal. The bounds we shall obtain will
depend not only on the exponent of A and of G, but also on the
class of G. We note that because of Alperin's result [2], if A
is maximal subject to being normal, abelian and of exponent pt,
it is maximal subject to being abelian and of exponent pt. In
this section we are therefore extending the results of section 2
to cover a larger class of subgroups.

We start by proving the following:

Lemma I1.3.1 Let G be a group and let H be a subgroup of

G such that C,(H) 2 H, Define H_ = H and inductively H =N.(H _).

0 i-1
If Hk = G, then X[Aut(G|H)] = k. Furthermore if G 1is a p-group
and expH = pt, then exp[Aut(GIH)] & pkt!

Proof If H, =G, i.e. H< G, then Aut(G|H) = Aut(G> H> 1)

1
t
by lemma I.2.2, Aut(G > H > 1) is abelian and eprut(GlH) 2 p,
Assume inductively the result is true if Hn is the whole group where

n < k and suppose G is a group with Hk = G. Then by induction
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X[Aut(H |H)] 2 k-1 and eprut(Hk IH) 2 p(k-l)t. Consider
k-1 -1
W: Aut (G| H) = Aut (H,_,). Then Im: & Auc(d, ,[H) and

ket = Aut(6lH,_,). But H ;<G and C (i ) SHE There-

Hk-l'

fore by lemma I.2.2 Aut(GlHk_l) is abelian and eprut(GlHk_l) s pt

s
because CG(Hk-l) H.

[}

Therefore x[Aut(GIH)] k and expAut(G|H) pkt.

Lemma II1.3.2 Let clG

c and let HE G. Let Hi be as

in the previous lemma. Then H, = Z,, the 1 th center of G for all

i. Thus H_ = G.
c

Proof Clearly H,; = Z,. Assume inductively H, = z,- Then

& H and by induction we are done.

= <
Z Hi ’Zi+1 i+l

since [Hi’zi+1]

Since Z2 =G, H = G.
c c

We note that in the above lemma, if CG(H) S H, Z1 8§ and

we may start the induction with HO g Zl' We may therefore show

that H G.

c-1 =

Corollary 11.3.3 Let G be a p-group and let A be maximal

subject to being abelian. Suppose clG = c. Then

K[Aut(GlA)] S ¢c-1 and eprut(GlA) = p(c-l)t where expA = pt.
Proof Since A is maximal abelian, CG(A) = A and the

preceding two lemmas are applicable.

Theorem II1.3.4 (a) Let G be a p-group of odd order. Let

expG = pB and let class G = c. Let A be maximal subject to being

abelian and of exponent pt. Then l[Aut(G|A)] s logzs/t + ¢ and

eprut(GIA) s p(c+l)s-t

s
(b) Let G be a 2-group, expG = p and
class G =c. Let A be as in (a) with t > 1. Then

MAut(6|a)] = log,(s-1/t-1) + c and expaut (| o) 5 2(3Fe)s-3¢,
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Proof (a) Let W: Aut(GlA) - Aut(CG(A)IA) be the restriction
mapping. Then kert = Aut (G| C,4)) and Im = Aut(CG(A)|A). But
Qt(CG(A)) = A (this time we do not have to appeal to Alperin's result
as in the case A normal) and hence x[Aut(CG(A)|A)] & 103223/t and
eprut(cG(A)lA) s pzs-t by theorem 11.2.1(a). By lemmas II.3.1 and
11.3.2, AlAut(G|c (4)] % c-1 and exphut(c|c,(a)) = p D hence
k[Aut(G'A)] = 10g228/t + c-1 and eprut(GIA) S p(c+1)s-t

(b) is proved similarly except that use of theorem
I1.2.1(b) is made.

We note that we could have obtained finer bounds for the
exponents of the above automorphism groups if we had information
about the exponent of CG(A).

If more is known about the group G, the bounds can be improved.
For example, if G 1is a regular p-group of odd order and A is
maximal subject to being abelian of exponent pt,

X[Aut(GlA)] E 1og28/2t + c¢. This is only an improvement of 1 over
the general case. For the bound of the exponent of Aut(GIA) we
do however obtain p<c_2)t+s which is a substantial improvement.
To prove this last result we use a slightly different approach from
the proof of theorem 11.3.4(a). (In fact the proof given below can
be carried through with minor alterations in any group in which
<Q£> =S7t, and not only in regular p-groups.)

We begin by considering M: Aut(GlA) - Aut67t) instead of

CGQA). Thus A 1is maximal subject to being abelian in Qt. Hence

(c-Dt t

by corollary I1.3.3 and eprut(GIQt) s p°”
c-2) t+s
p( Itis

expaut @ |A) & p

by theorem 1I.1.7(a). Thus expAut (G| A) =
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We note that theorem II.3.4 proves a theorem by N. Blackburn

[4J which states that Aut(GIA) is a p-group.

Section 4 In the previous sections we have been con-
cerned with those subgroups of the automorphism group which fix
elementwise certain subgroups .of the group G. 1In this section we
shall extend these results to include those subgroups of the auto-
morphism group of G which do not move around "too much' the elements
of certain subgroups of G. More specifically, we shall examine auto-
morphism groups which induce power automorphisms on certain subgroups
of G.

‘Definition IT1.4.1 Let « € Aut(G). Then « 1is said to be a

power automorphism of G if for every H ¥ G, i = H, @ is said to
induce a power automorphism on a subgroup K of G if @ re-
stricted to K 1is a power automorphism of K.

To illustrate the subsequent theory we shall work out an
example in detail.

Notation Let H 2 G. Then Aut(GInH) denotes the group of
those automorphisms inducing power automorphisms on H.

Example Let G be the group generated by P and Q with

relations P9 = Q3 = 1; Q-IPQ*= Pa. This is a group of order 27.

- - 3
since Q p°Q = QP> = p? =3, «»> - 2(6) and clc = 2.
We shall consider those automorphisms of G inducing power auto-
morphisms on <P>. Let @ be any automorphism of G inducing a

power automorphism on <P>. Then o: P - Pl, i=1,2,4,5,7,8 and

suppose o: Q ~ PLQm, where m 1is either 1 or 2. Since @ 1is an

m
- i 1 41
automorphism Q mPiQm = Pl.'1 . Therefore P4 = P'" and hence

41 = 41 mod9. Thus m = 1. Furthermore |PLQ| =3 and
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PL = fLQQ-l. Therefore |PL| =3 and{ =0 mod3. Thus P = Pi,
i=1,2,4,5,7,8 Q- FLQ, 4 =0,3,6 give rise to all the auto-
morphisms inducing power automorphisms on <P>, Thus
|Aut(G|n<P>)| = 18. It is easily shown that Aut(G|ﬁ<P>) is non-
abelian. Furthermore, |Aut(G|<P>)| =3 and

(Aut (G|, <P>)]' = Aut(G|<P>). Thus Aut (6| _<P>) /aut (6] <p>) = Cy»
the cyclic group of order 6. We shall show in the theorems below

that this example is typical of the general case.

We first prove some lemmas of a general nature.

Lemma I1.4.1 Let H 2G. Then [Aut(c| H)]' = Aut(c|m).

o .
Proof Let «,B € Aut(G H). Then if x € H, let x = xl,

B i a-l i B-l

X =x". Clearly x = x and x

x[a,B] AN 1 5 I

j'
=X where
ii' = ji' = lmodlxl. Thus

Corollary I1.4.2 (a) Let G be a p-group of odd order and

let expG = ps. Then k[Aut(Gant)] = log243/t.
(b) Let G be a 2-group, expG = 28. Then
x[Aut(Gant)] % log,4(s-1/t-1) where t> 1.
Proof Lemma II.4.1 and theorem II.2.1(a) and (b).

Lemma I1.4.3 (a) Let G be a p-group of odd order and let

t-1,,
HEG and exp = p-. Then if @ € Aut(G|yH), @P (P-D ¢ put(e|n).

(b) Let G be a 2-group, expH = Zt. Then if

ot-1

@ € Aut (G| H), @ € Aut (G|H).

Proof (a) Let « € Aut(G|ﬂH) and let B = G-<o™> the semi-
direct product of G with <¥>, Let x € H. Then

NB <x>) /CB (x) ®Aut(<x>) ¥ C But & € NB (<x>). Hence

Pt (p-1)

ptl(p-1)
o € CB(x). This is true for all x € H and therefore

t-1
o P ¢ avelu.
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(b) is proved similarly except that if le = 2r,
Aut (<x>) = Czr-l if r=1 or r=2 and Aut&Kx>) = C2® C2r‘2
if r z 3.
Corollary I1.4.4 (a) Let G be a p-group of odd order,
expG = ps. Then eprut(Gl#nt) = p(zs'l).(p-l).
(b) Let G be a 2-group, expG = ZS. Then

eprut(G|n§9t>) S 248'2t'1,

Proof Lemma II.4.1 and theorem 1I.2.1(a) and (b).

Lemma II.4.5 Let G be a p-group, H a non-abelian subgroup

of G. Then Aut(GlnH)/Aut(Glﬂ) is an abelian p-group.
Proof Let W: Aut(GlnH) = Aut(H) be the restriction map.
Then by a result of Cooper [6], Imt is an abelian p-group.

Corollary I1.4.6 Let G be a p-group of odd order. Then if

t
2s-1
P

0 is non-abelian, Aut(GIﬁQt) is a p-group of exponent at most
where expG = ps. Furthermore, whether p 1is odd or even,
if Ql is non-abelian Aut(GlﬂQI) = Aut(GIQI).

Proof The first statement is proved using corollary II.4.4(a)
and lemma II.4.5. To prove the second statement we use a result of
Cooper's, namely, that a power automorphism is central [6]. Thus,
suppose Aut(G|ﬂnl) F Aut(GlQI) and let o € AUt(GanI) - Aut(GlQl).
Then there must be an element of order p, say x, such that
x-lfx # 1. But x-lfy € 26)1) by Cooper's result quoted above and
x-1£y € <x>. Hence x € 2671). Thus any element of order p which
is moved lies in the center of 01. Suppose if possible that y is
an element of order p and y ¢ 2671). Then xy ¢ ZG]I). Thus

o o
(xy)a = xy =x y and hence x = x, a contradiction. Therefore

Ql = Zé71). By contraposition, the statement in the corollary follows.
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We now quote a theorem due to Gaschutz [9].

Theorem II.4.7 If G is a finite abelian group and o is a

power automorphism of G, then there exists a fixed positive integer
m such that éy = gm for all g € G.

Lemma II.4.8 (a) Let G be a p-group of odd order and H

an abelian subgroup of G, expH = pt. Then

Aut (6| _H) /aut 6| B) = Cpt'l(p-l)

(b) Let G be a 2-group and H as in (a).

Then Aut(GlﬂH)/Aut(GlH) ®c,®cC,, if tZ3 and
2

Aut(GlﬂH)/Aut(GIH) ®™C if t=1or 2.

2t:--l
Proof (a) Let o ¢ Aut(GInH). Then by theorem II.4.7, there

exists a positive integer m such that ¥ = h™ for all h € H.

Consider therefore the mapping M: Aut(GlﬂH) -J e where J t‘is the ring
P
t
of integers modp , given by W:g » m modpt. This is clearly a homo-

morphism into the multiplicative group of units of J . But the
P

multiplicative group of units of J t is cyclic of order pt-l(p-l).

P

Furthermore, kery = Aut(GIH) and hence Aut(GInH)/Aut«ﬂID & C

t-1 :
P™ "(p-1)
(b) is proved similarly except that the multiplicative
group of units of J ¢ is cyclic of order 2t-1 if t=1or 2 and
2
. i 2
is of the form C2 ® Czt_2 if t 3.

Example This will illustrate that in general we cannot con-
clude that Aut(GIﬂH)/Aut(GlH) is a cyclic group if G 1is a 2-group.

Let G = <P,Q/P8 =1, Q2 = 1>4 and Q’IPQ = P7>. G 1is the
generalized quaternion group of order 32. We compute Aut(G|n<P>)
first. If P~ Pi, Q- PLQ is an automorphism, then i = 1,3,5,7.
Furthermore, it is easily shown that [?LQ]Z = Q2 and that the

i 2
remaining relations are satisfied. Thus P - Pl, Q- PqQ,
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i=1,3,57,4=0,1,2,3,4,5,6,7 constitute Aut(G| <P>). Hence
IAut(G|ﬁ<P>)| = 32. Also P-P, Q- fLQ, L =0,...,7 give rise to
Aut(Gl<P>) and so IAut(GI<P>)l = 8. Therefore
Aut(GIﬁ<P>)/Aut(G|<P>) is of order 4. But if o[P - Pi, Q- PLQ] is
an automorphism of Aut(G|ﬁ<P>), dz € Aut(G|<P>) since 12 = 1 mod 8
for i =1,3,5,7. Hence Aut(G| _<P>)/Aut(G|<P>) = C, ® C,.

Corollary II.4.9 (a) Let G be a p-group of odd order,

expG = ps and let clG = c. Let A be maximal subject to being
abelian and of exponent pt. Then P, the p-sylow subgroup of
Aut(GlnA) is normal in Aut(d{nA), Aut(GlﬂA) = P.C where C is
cyclic, ICII(p-l) and k[Aut(GlﬂA)] = 10g223/t + c.

(b) Let G be a 2-group, expG = ps and
let c¢lG = c. Let A be as above with t > 1. Then Aut(GlnA) is
a 2-group and MAut (G|ﬂA)] $ log,2(s-1/t-1) + c.

Proof (a) Aut(GIﬂA)/Aut(GIA) sc,

1 by lemma II.4.8(a).
pt-

But Aut(GIA) is a p-group containing [Aut(ér;i;]'. Hence p-sylow
subgroup P of Aut(GlﬂA) is normal and therefore it possesses a
p-complement C. Therefore Aut(G|ﬂA) = P.C. Furthermore,
)\[Aut(GlnA)] S log,2s/t + c by theorem II.3.4.

(b) is proved similarly using (b) of lemma II.4.8(b)

and theorem II.3.4.

Section 5 1In this section we investigate Aut(GIH)
where G 1is a p-group and H is a maximal subgroup. We shall find
application of these results in the next chapter.

Lemma II.5.1 Let G be a p-group (p-odd or even), H a

maximal subgroup. Then A[Aut(G|H)] = 2 and

Aut (G|H) = Aut(G > H > 1)-C where C is cyclic, |c|| (p-1).
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*
Proof Let : Aut(GlH) - Aut (G/H) be the mapping W: @ = «

where (ngy: gaH. Clearly yu 1is a homomorphism and

kerth = Aut(G > H > 1) while Iod = Aut(G/H) = cp_l. Thus

Aut(G|H)/Aut(G >H>1) G?Cp_l. The lemma then follows easily.
We note that if G is a 2-group, Aut (G|H) = Aut(G > H > 1)

and therefore Aut(GlH) is an abelian 2-group.

Corollary I1.5.2 Let G be a 2-group and let G = G, >...> G
be a chain of subgroups such that lGi:Gi+1| =2 for i=0,1,...,(m-1)
= & = i = =
Let A ={a€ Auc(c)lc;i G» i=1,...,k} and B, Aut:(G|G£).

Then Akﬂ B, is a 2-group, k = l,...,m and )\[Ak n Bk] S k.

Proof A; N B, = Aut:(G|G1) = Aut(G > G, > 1) by the lemma and

1

hence for k = 1, the corollary is true. Assume inductively that the

result is true for k. Consider W: Ak+ —’Aut(Gk) where

1M By
is the restriction map. Then kerp = Ak+1 n Bk+1 N Aut (Gle)

=Ak

+ N B

=
k_Akn Bk

and Imy = Aut (Gk/G ). By induction Ak n Bk is a 2-group and

k+1
)\[Ak n Bk] S k. Furthermore, Imd is an abelian 2-group by the
previous lemma. Therefore Ak+1 n B/Ak n Bk is an abelian 2-group

and the result is proved for k + 1 and by induction we are done.

Theorem I1.5.3 Let H be a maximal subgroup of a regular

p-group G (p odd). Then either Aut(G|H) is an abelian p-group
-1

or G =H®<x> in which case if « € Aut (G|H) either ap =1

or a 1is of p-power order.

Proof There are two possibilities: either

(@) Col(H) = H

or (b) Cn (H) # H.
1
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Suppose (a) holds. Then Ql n CG(H) 2 H. let g€ Ql and

a € Aut(GlH). Then by Lemma I.2.2, g-1

g €c,)NQ $a NH
Consider therefore the mapping : Aut(GlH) - AutG)l) where
is the restriction. Imy & Aut(nllﬂl N H) = Aut (Ql > Ol NH>1)
since g-lga € 01 N H for all g € Ql. Furthermore,
kerp = Aut(GIQl) which is a p-group by 1I1.3.4. Hence Aut(G|H)
is a p-group and by lemma II.5.1 we have Aut(GlH) =Aut(G>H>1)
which is abelian.

Suppose (b) holds. Then there is an element x € q]I(H) - H.
Therefore G = H ® <x>. Now let « € Aut(G|H). Then xa = xiha,

say, with ha € H. We then get

P 1 Pl 2y P72
X =x h
a
. .p-2
+it.. .+ -
= xh; * t since iP 1 = 1 mod p.

Now if i =1, o € Aut(G>H>1) and «a is of p-power order. On
a-iPh

p-1 -
the other hand, if i # 1, el = x h(1 1

= x since |ha‘ =p
and p divides (l-ip-l)/(l-i). Hence in case (b) each element of

Aut(GIH) is either a power of a prime or has order dividing (p-1).



CHAPTER III

In this chapter we investigate Aut(G) where G 1is a p-group
of maximal class. This class of groups was investigated by N. Black-
burn and we quote a number of results which will be found in his
paper [5].

Definition III.1.1 Let G be a p-group. Then G 1is of

maximal class if the nilpotence class of G 1is the greatest compatible
with its order.

It is proved in [5] that if |G| = pm and G 1is of maximal
class, then clG = m-1. Furthermore, it can be shown that G/T'2 = pz
and G/r2 is elementary abelian. This implies that |Fi:Fi+1| =p

for i =2,...,m-1.

Definition I11.1.2 Let G be a p-group of maximal class,

1

Clearly Fl is a characteristic subgroup and it can be shown

= m : =
lc| =p, m> 3. Define I'. by Fl/r4 CG/TA(FZ/FA)'

that |G:F1| = p. We thus have a chain of characteristic subgroups

G = FO > >,..>T >T =1, each Fi maximal in T, Further-
m

1 m-1 i-1
more, it is easy to show that any normal subgroup of G of index p2
or greater is one of the Fi.

We first prove a few general lemmas which will be used in the
sequel.
1,...,xn and

@ € AutG such that xllxz €H, H4 G for i =1,...,n, then

Lemma III.1.1 If G 1is generated by x

32
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x-lxd € H for all x € G.
k
Proof let x = TNy, where y, € {x ,...,x }. Then if k =1,
I j=1 1 i 1 n
x-lfa € H by hypothesis. Assume the result is true if k< r and
r
let x = Iy ,. Then
A |
i=1
-1l o -1 o
X X = (YY) G-y

-1 -1 oo
Yy (yl"'yr-l) (yl"°yr-1) Ye *
-1 )a

By induction (yl...Yr_l) (yl"'yr-l = h € H. Therefore

-la -lo o
x x =y, yrh[h,yr] €H since Hd G. Hence by induction, we are
done.

Lemma III.1.2 Let G be a nilpotent group. Then if

o
o € Aut(G.rz), [xl,...,xng [xl,...,xm] modFm+1.
Proof When m = 1, the result is true by hypothesis. Assume
inductively that for simple commutators of weight less than m, the
o _ a o
result is true. Now [xl,...,xm_l,xng = [[xl,...,xm_lj ’qu' But
o
e = . 3 d
[xl, ,xm_l] [xl, ,xm_l]cm, where e € Fm by induction an
= T .
I where c, € 9 by hypothesis. Thus
[Xyseoo X ]a = [[x,5..25%x .Jc ,x c.]
1’ m 1’ "m-1" "'m’"m 2

= [[xl,...,xm_l]cm,czl([xl,...,xm_l]cm,xm][[xl,...,xm_I]cm,xm,cz]

by lemma I.1.2. We now use the fact that [Fi,Fj] < Fi+j for all

i,j = 2,3,... (Theorem I.1.1). Then
r .
[[xl,...,xm_l]pm,cz] € Tm+1 and [[xl,...,xm_l]cm,xm,czj € 2

o
Therefore [xl,...,xm] = [[xl"'.’xm-ljcm’xmjcm+1’cm+1 € Fm+1
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= [xl, ce ,xm][xl, ce ,xm,cm][cm,xx]cm+1

= ] 1
E EERERL N CANPPLANIL R VS

Hence by induction the result follows.
We recall that Fk is generated by simple commutators of
weight k. Using this fact and lemma III.l.1 we obtain the following:

Theorem III.1l.3 Let G be a finite p-group. Then

Aut (G:l"z) = Aut (G > I"2 >...> 1.
We prove a final lemma before considering Aut(G), G of
maximal class.

Lemma III.l.4 Let E be an elementary abelian group of

2
order p generated by P and Q. The group A of automorphisms

given by

P- P i=1,...,(p-1)

Oa"°;(p'l)

I
Q QP ¢
is of order p(p-1) and of derived length 2.

Proof The group A of automorphisms is clearly of order

p(p-1). Furthermore, it is isomorphic to the group of non-singular
matrices of the form (2 ({) with entries from a Galois field of

. -1
p elements. Now it is easily checked that (t 2) = (i%!, (]))

where ii' = 1 mod p. Then (—i:L (]) ('}:m (]))(2 (]i)(i (])) = G; 2)
Now (1( (1)) has order p and therefore lies in the unique sylow
p-subgroup which is cyclic of order p. Hence A' 1is abelian and A
is metabelian.

We are now in a position to prove that if G 1is a p-group of

maximal class, |G| = pm, m > 3, then Aut(G) 1is solvable and we may
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obtain a bound on the derived length together with some information
about the order of Aut(G).

We note that if m = 3, Aut(G) is not necessarily solvable
as can be seen from the following example:

P=1;(pq) =(p,R] = 1;

Let G =<P,Q,R/PP =qQP =R
[Q,R] = P > Aut(G) is not solvable as can be seen as follows: If

Aut (G) were solvable, so would Aut(G|Z). Consider the mapping

P-P
@; B
Q ~Q 1 R 1

a, B
R-°Q2R2

Under what circumstances can this be extended to an automorphism of
@ By @, 8,
G? It can be extended if and only if [Q "R *, Q “R ] = P. Since

clG = 2, the above hold if and only if

o8 ,-0,B
[Q,R] 172 7 2%1 =p

i.e. if and only if 0182 - dzﬁl = 1 mod p. Consider now the homo-
morphism Aut(G|Z) — Aut (G/2). Now G/Z is elementary abelian
of order p2 and hence Aut(G/Z) = GLz(k) where k 1is a Galois
field of p elements. Further, by what we showed above, Imyp = SLz(k)
and SLZ(k)/Z(SLz(k)) is the projective unimodular group which is
simple if p >3 [3]. Hence Aut(G) cannot be solvable.

Before proving the next theorem, we calculate |Aut(G)| where
|G| = p3 and G is non-abelian. When p = 2, it is well-known that
IAut(G)‘ = 24 or 8. We therefore perform the calculations for p odd.

3
There are two non-abelian groups of order p , viz.



36

(i) The one of exponent p generated by P, Q and R with
the following generating relations:

1

PP=qP=”P =1, " IR =qp, R"!PR = 7, Q'R = P and

(ii) The one of exponent p generated by P and Q with

generating relations PP = Qp =1, Q-IEQ =p We calculate (i)

first.

Z(G) =<P> and thus any automorphism must be of the form

P-P, i=1,...,)p-1)
Q- FQ™R*, 4 =0,...,p - 1

R-P Q R , £=0,...,p - 1. We also require
4 m s 2' m' g’ i , . .
[PQR, P Q R ] =P . Since G is of class 2, this condition is
equivalent to

[Q,R]ms'[R,Q]sm' = pl

] ] :
msS =Sm 1
P and hence

Therefore P
1 =

ms' - sm' = i mod p.

Now if neither m nor s is zero, we have p choices for the pair
m',s'). If m =0 and s#0 or if m#0 and s =0 we get

p choices for (m',s') 1in each case and thus we have
33 23 23 23
(p-1)"p + 2(p-1) p = (p-1) p (p-1+2) = (p-1) p (ptl)

choices and each of these gives rise to an automorphism provided

<QmRs, Qm'Rs', Pi> Z <Q,R>. Now calculating modulo Z(G)
(QmRs))\(Qm'Rs')u - ka-mm'R)\s-m.s'

and to obtain Q(modulo Z(G)) we must solve the equations
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Am +pum' =1
As +us' =0 in GF(p).
1
But det (: :.) # 0 and the equations have a solution. Thus

1 ]
Q = (ans))\(qm R® )”' mod Z(G) for some A and W. Similarly for
3
R. Hence Aut(G) = (p-1)2p (ptl). Now we calculate (ii).
Let P - Pin
i' jl
Q- P Q give rise to an automorphism

(Pin)p = Pinjp[Qj,Pi]<g) = PP # 1. Hence 1 #0 mod p. Similarly

i' =0 mod p. The following relation must also hold.

telod,pt'od '] = (ldyP = #'P

1_q1
Therefore [P,Q]ij 173 2 pip

|} ! :
Hence Pp(ij i), PP which implies that

ij' = i'j = 1 mod p.

Therefore since i' = 0 mod p,

ij' =i mod p and j' =1 mod p.

Therefore P - PiQJ

(i,p) =1, j =0,...,p-1
|}
Q -~ Pi Q i' = 0 mod p gives rise to all the automorphisms

3
of G. Hence |Aut(G)| =p (p-1). We may now prove the following

Theorem III.1.5 (a) Let G be a p-group of maximal calss,

p odd, and |G| = pm, m > 3. Then

(i) P =Aut(G > Fl >0 Fm_ > 1) is the p-sylow subgroup

1
of Aut(G). Hence P < Aut(G) and clP = m-1.

(i1) Aut(G) is solvable and AfAut(c)] 2 log,8(m-1)

(iii) Aut(G) = PL where |L||(p-1)2 and pm s |P| ] p2m~3
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(b) Let G be a 2-group of maximal class,

|G| = 2m, m > 3. Then Aut(G) = Aut(G > Fl >...> Fm_ > 1) and hence

1
Aut (G) 1is a 2-group of class not greater than m-1. Furthermore

™ s |aut@)| = 2273,

Proof (a) (i) Let P be a p-sylow subgroup of Aut(G).

Clearly P induces the identity automorphism on I .. Assume

m-1
inductively that P stabilizes Fm_k >0 Fm-l > 1. Consider
. - [_~] -

B: P Aut(rm-k-l/rm-k) Cp_1 where B 1is the obvious homo

morphism. Then ImB =1 and P stabilizes

> > 1. ; .
Fm—k-l Fm-k >..> Fm-l 1. Hence by induction, P stabilizes

G>T,>.>T > 1. Therefore P =Aut(G>T_  >...>T
1 m-1 1 m-

and by P. Hall [13], clP & m-1.

>
17D

(ii) and (iii). Let B: Aut(G) - Aut(G/Fl) be the mapping
*
*
defined by B: o = a where (grl)d = gaFI'B is a homomorphism

and Imf & C kerp = Aut (G;I'l).

p-1’
Consider now O: Aut(G;Fl) - Aut(G/Tz). G/l"2 is elementary

abelian of order p2. Thus G/l"2 = I"l/l"2 ® M/l"2 for some M = G.

Since fq = Fl for all o € Aut(G), Imo0 1is a subgroup of Aut(G/TZ),

each element of which induces a power automorphism on FI/FZ. Thus

if G/F2 = <aF2>'®'<bF2>, a € Fl’ the automorphisms of Imo are of

the form
i -
aF% - a F2 i=1,...,p-1
br, - aal*'b"‘r2 L=0,...,p-1; m = 1,...,p-1.
1 -1 m-1 .
But we further have that a b™ € Fl. Therefore b € Fl which

implies m = 1. Hence the automorphisms of Imo are of the form



aly = alll“z

. i
bFZ a br2 4 =0,...,p-1

Therefore lemma I1I.l.4 is applicable and we have |Iuﬂl|p(p-1) and
AlImo] S 2. Furthermore, kerc = Aut(G;FZ) which by theorem III.1l.5
is a p-group of class at most m-2 (actually, the class is exactly
m-2 since G/Z G?Aut(G;Fz)).

Now |Aut(G)| = |Aut(G;F1)|-t where tl(p-l) and
|Aut(G;F1)| = |Aut(G;T2)|-kt* where k =1 or p and t*|(p-1).
Therefore |Aut(G)| = pns where sl(p-l)z.

To prove that m & n & 2m - 3 we observe first that since
G/z @ p, |P| z pm as every p-group has an outer automorphism of p-
power order [10]. To obtain the upper bound we argue by induction.

When m = 3, from the discussion preceding the theorem,

|P| S 2.3 - 3. Thus assume inductively that |P| - pzm-3 if

|G| m+1.

B: P —» Aut(G/Z) where P 1is the p-sylow subgroup of Aut(G). By

induction |B(P)| = pzm-3 and kerBf = Aut(G >Z > 1). Now since

p, m>3. Let |c| =p Then |G/z| = p". Consider

G 1is of maximal class, it is clearly purely non-abelian. By a

result of J. Adney and T. Yen [1], |Aut(G;Z)| = |Hom(G/F2,Z)| = p2.

Therefore |P| & pz(m-ﬂ)-3

and the result follows by induction.
Finally, consider Aut (G) EAut(G;I"l) EAut(G;FZ).

Aut (G) /Aut (G;T is abelian and k[Aut(G;Fl)/Aut(G;Fz)] = 2.

1
Furthermore, k[Aut(G;Fz)] s log,(m-1) and therefore

AAut (G)] = logZS(m-l). Now let L be a p-complement of Aut(G).
We have Aut(G) = P.L.

(b) To prove Aut(G) is a 2-group, we proceed in exactly

the same way as above.
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Corollary I1I1.1.6 If G is a 3-group of maximal class,

G = 3m, m > 3, Aut(G) 1is a split extension of 3-group by an abelian

2-group of order 2 or 4, or a 3-group.



NOTATION

Qt(G) set of elements of G of order not greater
t
than »p
<ﬂt(G)> group generated by Ot(G)
l)t(G) set of elements which are pt-th powers of

elements in G

Aut(GlH) group of automorphisms of G fixing element-
wise H
Aut (G;H) group of H-automorphisms of G (cf. Definition
I.1.3(a))
Aut (G > G1 >...> Gm) group of automorphisms stabilizing G > G1 >...> Gm
(cf. Definition I.1.3(b))
cl(G) nilpotent class of G
A (G) derived length of G
exp (G) lowest common multiple of the orders of elements
of G
k . k
c(p),C K cyclic group of order p
P
CG(H) centralizer of H in G
NG(H) normalizer of H in G
Aut(Gl H) the group of automorphisms inducing a power
o

automorphism on H

* *
G®™G G contains a subgroup isomorphic to G

41
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