
i 
 

 

 

 

A HARDWARE-EFFICIENT VLSI NEURAL SIGNAL PROCESSOR FOR IMPLANTABLE 
HIGH-CHANNEL-COUNT BRAIN MACHINE INTERFACES 

By 

Yuning Yang 

A DISSERTATION 

Submitted to 
Michigan State University 

in partial fulfillment of the requirements 
for the degree of 

Electrical Engineering — Doctor of Philosophy 

2016 
 
  



ii 
 

ABSTRACT 

A HARDWARE-EFFICIENT VLSI NEURAL SIGNAL PROCESSOR FOR IMPLANTABLE 
HIGH-CHANNEL-COUNT BRAIN MACHINE INTERFACES 

By 

Yuning Yang 

Many brain machine interfaces (BMIs) aim to assist paralyzed subjects to control real-time 

man-made devices by translating human neural activities into machine commands. Neural 

activities can be recorded through implantable microelectrode arrays (MEAs) that provide the 

highest spatial and temporal resolutions compared to other recording techniques. In order to 

provide neural control of advanced prosthetic limbs with many degrees of freedom, next-

generation BMIs will demand simultaneous recording of thousands of neurons from high-

channel-count MEAs., Furthermore, next-generation BMIs must be fully implantable wireless 

neural microsystems to eliminate infection risks and reduce the mechanical vulnerabilities. Such 

a system would generate and transmit a vast amount of neural data within an environment where 

power and heat dissipation are tightly constrained. To prevent tissue damage, the neural 

microsystem must incorporate a neural signal processor (NSP) to reduce neural data streams by 

preserving only sequences of spikes fired by each active neuron and discarding noise when 

neurons are inactive. However, this data reduction method is challenged by the fact that each 

microelectrode can observe activities of multiple neurons which must be individually processed 

to accurately translate neuron activities into machine commands. Thus, the NSP should be able to 

map each recorded spike to its source neuron. The goal of this research is to develop an 

implantable hardware-efficient NSP that is capable of preserving and identifying useful spike 

information from raw neural signals. In this work, three successive processing steps were 

developed for reducing neural data rate: A new spike detection method was developed that can 



iii 
 

automatically and adaptively observe as many true spikes as possible from noisy neural signals. 

Automatic spike detection eliminates the need for manually parameter setting and enables real-

time high-channel-count neural recording. To identify the source neuron for each detected spike 

without compromising the power or area budget of the NSP, a new feature set was created to 

reserve spike information. Based on an analysis of the neural signal energy spectrum, the new 

feature set enables accurate neural recording with high tolerance to noise variance. Furthermore, 

a new method was designed to classify spikes, providing high performance while reducing 

hardware resources for a 50% area reduction. Finally, these design concepts were integrated into 

a compact energy-efficient hardware NSP platform. The new NSP platform is scalable to high-

channel-count and preserves useful information over a wide range of signal to noise ratio while 

achieving 15% higher accuracy on average than the current existing NSP with only consuming 

0.75 W power and 0.023 mm2 area per channel. The innovations of this research contribute to 

overcoming the challenges of developing next-generation fully implantable wireless neural 

microsystems. 

  



iv 
 

ACKNOWLEDGEMENTS 

Looking back at my seven-year life as a PhD student, I have been through good times and 

tough times. Exploring and investigating several research areas in the first four years led to my 

thesis work in the last three years. This work would not be possible without the support of 

professors, fellow graduate students and my family. At this moment, I would like to express my 

gratitude and appreciation to them all.  

Prof. Andrew J. Mason, my advisor, has been a great help to me through the long journey of 

my PhD research. Not only has he provided me with insightful and valuable suggestions to 

improve the quality of my work, but he has spent a considerable amount of time on enhancing 

my writing and presentation skills. He was very patient and amenable when I detoured in my 

research path. I am thankful to have pursued my PhD degree under his guidance. I believe what I 

learned from him will give me lifelong benefit. 

I would like to thank Prof. Subir Biswas, Prof. Rama Mukkamala and Prof. Juyang Weng for 

serving on my committee. They gave me support all the time and provided me with useful 

feedback for my research work. 

I am very grateful to former and current colleagues in AMSaC lab: Dr. Yue Huang, Dr. Awais 

Kamboh, Dr. Xiaowen Liu, Dr. Xiaoyi Mu, Dr. Lin Li, Dr. Haitao Li, Sam Boling, Heyu Yin, 

Sina Parsnejad, Ehsan Ashoori and Sylmarie Montero. I would like to give special thanks to 

Haitao for the tough times we have been through when we got lost in PhD life but figured out a 

way together. I also appreciate Sam for his generous help on experimental setup to validate my 

research work. 

My utmost thanks go to my family. My parents consistently support and encourage me in this 

long journey. My wife and her parents have given me courage and confidence when I was 



v 
 

depressed. This thesis dissertation is dedicated to them. 

  



vi 
 

TABLE OF CONTENTS 

LIST OF TABLES ....................................................................................................................... ix 

LIST OF FIGURES ...................................................................................................................... x 

Chapter 1 Introduction................................................................................................................. 1 
1.1 Brain Machine Interface for Neurological Paralysis ............................................................. 1 
1.2 Future BMI requirements ...................................................................................................... 2 
1.3 Challenges ............................................................................................................................. 4 
1.4 Goals...................................................................................................................................... 6 
1.5 Outline ................................................................................................................................... 7 

Chapter 2 Background ................................................................................................................. 8 
2.1 Neurophysiology and Electrophysiology .............................................................................. 8 

2.1.1 Neurons and Action Potentials ....................................................................................... 8 
2.1.2 Neural Recording Techniques .......................................................................................... 10 

2.1.3 Characteristics of Intracortical Recording .................................................................... 12 
2.2 Intracortical Neural Recording Systems ............................................................................. 14 
2.3 Neural Data Reduction Techniques ..................................................................................... 17 

2.3.1 Spike Timestamps and Spike Waveforms .................................................................... 17 
2.3.2 Transform Compression ............................................................................................... 18 
2.3.3 Spike Sorting ................................................................................................................ 21 

2.3.3.1 Template Matching based Spike Sorting ................................................................ 21 
2.3.3.2 Feature based Spike Sorting ................................................................................... 22 

2.4 Computationally Efficient Real-time Spike Sorting Methods ............................................ 23 
2.4.1 Spike Detection............................................................................................................. 23 
2.4.2 Alignment ..................................................................................................................... 26 
2.4.3 Feature Extraction......................................................................................................... 26 
2.4.4 Clustering & Classification .......................................................................................... 29 

2.4.4.1 Offline Clustering ................................................................................................... 29 
2.4.4.2 Online Clustering & Classification ........................................................................ 30 

2.5 Spike Sorting Processors ..................................................................................................... 31 

Chapter 3 Hardware Efficient Automatic Thresholding for NEO-Based Neural Spike 
Detection ...................................................................................................................................... 33 

3.1 Advantages and Challenges of NEO based Spike Detection .............................................. 33 
3.2 Analysis of NEO Threshold Estimation .............................................................................. 34 

3.2.1. Statistical Analysis of NEO Coefficients .................................................................... 34 
3.2.2. Parameters Settings for NEO Thresholding ................................................................ 37 

3.3 Hardware Design for Automatic NEO Thresholding .......................................................... 40 
3.3.1 Hardware Implementation of ܧሾߖ൫ݔሺ݊ሻ൯ሿ ................................................................... 40 
3.3.2 Estimate of ߗ௥௠௦ .......................................................................................................... 42 
3.2.3 Estimate of ߪ௡ ............................................................................................................... 43 
3.3.4 Automatic NEO Thresholding for Spike Detection ..................................................... 48 



vii 
 

3.4 Simulation Results............................................................................................................... 49 
3.4.1 Datasets ......................................................................................................................... 49 
3.4.2 Detection Performance ................................................................................................. 51 
3.4.3 Hardware Resource of the ANT Method ...................................................................... 55 

3.5 Conclusion ........................................................................................................................... 56 

Chapter 4 Hardware Efficient Frequency Band Separability based Neural Spike Feature 
Extraction .................................................................................................................................... 57 

4.1 Training Datasets................................................................................................................. 58 
4.2 Spike Features ..................................................................................................................... 59 
4.3 Frequency Band Separability Analysis ............................................................................... 60 
4.4 Frequency Band Separability Features ................................................................................ 63 
4.5 Hardware Efficient Implementation of FBS Features with Haar DWT .............................. 64 

4.5.1 Filter Design Complexity Analysis .............................................................................. 64 
4.5.2 Hardware Design for FBSHT Feature Extraction .......................................................... 66 

4.6 Feature Scaling for Haar DWT based FBS Features ........................................................... 68 
4.7 Comparison to Haar DWT Features based on Lilliefors Test ............................................. 69 
4.8 Results and Discussion ........................................................................................................ 70 

4.8.1 Testing Datasets ............................................................................................................ 70 
4.8.2 Clustering Performance ................................................................................................ 70 
4.8.3 Analysis of Hardware resource ..................................................................................... 77 

4.9 Conclusion ........................................................................................................................... 78 

Chapter 5 Hardware Efficient Decision Tree based Neural Spike Classification ................ 80 
5.1 Introduction ......................................................................................................................... 80 
5.2 Hardware Resource Analysis on Decision tree based Spike Classification ........................ 81 
5.3 Development of Decision Tree Model ................................................................................ 83 

5.3.1 Tree Model ................................................................................................................... 83 
5.3.2 Quantization of Decision Tree Models ......................................................................... 84 

5.4 Hardware Architecture ........................................................................................................ 87 
5.5 Simulation Results............................................................................................................... 90 
5.6 Conclusion ........................................................................................................................... 92 

Chapter 6 Spike Sorting based Neural Signal Processor ........................................................ 94 
6.1 Introduction ......................................................................................................................... 94 
6.2 Single-channel Design of Spike Sorting ............................................................................. 94 

6.2.1 Offline Training for Automatic Spike Clustering ......................................................... 95 
6.2.2 Single-channel Implementation .................................................................................... 97 

6.3 Multichannel Design of Spike Sorting .............................................................................. 100 
6.3.1 Scalability Analysis .................................................................................................... 100 
6.3.2 Multichannel Implementation..................................................................................... 105 

6.4 Results ............................................................................................................................... 106 
6.4.1 Hardware Performance ............................................................................................... 106 
6.4.2 Spike Sorting Performance ......................................................................................... 109 
6.4.3 Comparison to other work .......................................................................................... 111 

6.5 Conclusion ......................................................................................................................... 113 



viii 
 

Chapter 7 Summary and Future Work .................................................................................. 114 
7.1 Summary ........................................................................................................................... 114 
7.2 Contributions ..................................................................................................................... 114 
7.3 Future work ....................................................................................................................... 116 

BIBLIOGRAPHY ..................................................................................................................... 119 
  



ix 
 

LIST OF TABLES 

Table 2-1 Comparison of performance metrics for intracortical neural recording systems .......... 16 

Table 2-2 Comparison of on-chip spike sorting processors .......................................................... 32 

Table 6-1 Power and area performance of hardware cells from post-synthesis simulation ........ 108 

Table 6-2 Performance summary of reported spike sorting NSPs .............................................. 113 

 

  



x 
 

LIST OF FIGURES 

Figure 1.1. An illustration of different applications of BMI. .......................................................... 2 

Figure 2.1. The structure of a neuron adapted from [17]. ............................................................... 8 

Figure 2.2. A typical waveform of an action potential adapted from [17]. ..................................... 9 

Figure 2.3. Intracellular and extracellular signals from [44]. Top: wideband extracellular signals 
from 1 Hz to 3 kHz. Middle: highpass filtered extracellular signals from 0.3 to 3 kHz. Bottom: 
intracellular signals. ...................................................................................................................... 14 

Figure 2.4. The functional block diagram of a wireless intracortical neural recording system. ... 17 

Figure 2.5. Diagram of the procedure for the transform compression method. ............................ 19 

Figure 2.6. Frequency domain illustration of a three-level DWT decomposition. ....................... 19 

Figure 2.7. Basic steps of feature-based spike sorting algorithms and the output signals at each 
step. ............................................................................................................................................... 22 

Figure 2.8. Illustration of IT (left) [93] and ZCF (right) [94] feature extraction methods. .......... 28 

Figure 3.1. An example of the NEO method for enhancing spike events. The arrows indicate 
when true spikes occur in the raw signal. ..................................................................................... 33 

Figure 3.2. pdf of Znoise and ߯ଶሺܰሻ for N equal to 10. .................................................................. 37 

Figure 3.3. The hit-to-false-alarm rate as a function of ܥ଴. .......................................................... 38 

Figure 3.4. Normalized smoothing quality as a function of moving average filter with a length of 
N. ................................................................................................................................................... 39 

Figure 3.5. The approximation error between the IIR exponential filter and the FIR moving 
average filter at different values of 42 ........................................................................................... .ߙ 

Figure 3.6. Estimation of the RMS frequency using the conventional method and the zero-
crossing method at different firing rates with SNR = 4. ............................................................... 43 

Figure 3.7. Block diagram of zero-crossing ߗ௥௠௦ calculator. ....................................................... 43 

Figure 3.8. The ߪ௡ estimation error using the MAD method with different numbers of neural 
background noise samples. Noise was randomly generated one hundred times from a noise 
model. Thus, MAD estimates ߪ௡ one hundred times for each fixed number of noise samples. ... 44 

Figure 3.9. Block diagram of the noise Std calculator. ................................................................. 45 



xi 
 

Figure 3.10. The ߪ௡ estimation error and time for the Std calculator design parameters (a) Gain, 
(b) zero, (c) M and (d) M and MS. ............................................................................................... 46 

Figure 3.11. ߪ௡ estimation error for different firing rates using MAD and the Std calculator. .... 48 

Figure 3.12. Block diagram of NEO-based automatic thresholding spike detector. ..................... 49 

Figure 3.13. Real neural signals from a public database. Top: extracellular signal. Middle: 
Bandpass filtered extracellular signal from 300Hz to ݂8/ݏ. Bottom: intracellular signal showing 
spike locations. .............................................................................................................................. 51 

Figure 3.14. Spike detection accuracy against SNR using ANT, MT, CT and ANTMAD methods 
averaged across the firing rate from 10 to 100 Hz. ....................................................................... 53 

Figure 3.15. Spike detection accuracy of the ANT, CT and ANTMAD methods at different firing 
rates when the SNR is 4. ............................................................................................................... 54 

Figure 3.16. Spike detection accuracy of the ANT method for synthetic neural signals with 
different sampling rates at (a) different SNRs and (b) different firing rates. ................................ 55 

Figure 4.1. Spike templates extracted from six different neural recording channels. Left column 
contains two spike classes, middle three, right four. These spike templates are used as training 
datasets to analyze parameters for feature extraction. The title of each subplot describes the 
source file from which spike templates are extracted. For example, ec013.844 (ch_21) means the 
data file name is ec013.844 and the channel number is 21. .......................................................... 59 

Figure 4.2. The relationship between the filtered spike peak and the filtered spike energy. Spikes 
are filtered using either highpass or lowpass filters with the cutoff frequency between 300 and 
3000 Hz. The errorbar reflects the variance of all the spike templates in Figure 4.2. .................. 60 

Figure 4.3. An example of Separability analysis vs. cutoff frequency (Fc) for two spike pairs. 
Results illustrate spikes can be better separated in (a) the high frequency band using either a 
highpass or a comb filter or (b) the low frequency band using a lowpass filter. The comb filter 
represents the DD|2-Extrema method. ........................................................................................... 62 

Figure 4.4. (a) Cutoff frequency of maximum Separability for each spike template pair. (b) The 
averaged normalized Separability calculated based on the training datasets to determine the best 
cutoff frequency for highpass and lowpass filters. ....................................................................... 63 

Figure 4.5. An illustration of FBS features for the Fig. 3 spike pairs after applying lowpass and 
highpass filters. The solid lines represent highpass filtered spikes and the dashed lines represent 
lowpass filtered spikes. The dots are the extracted FBS features. ................................................ 64 

Figure 4.6. (a) The normalized Separability and (b) K-means clustering error with SNR = 5 at 
different filter orders for highpass and lowpass and comb filters. ................................................ 65 

Figure 4.7. (a) Structure of haar DWT. (b) Structure of peak detector. ........................................ 67 



xii 
 

Figure 4.8. Computation cycles of haar DWT coefficients at each decomposition level. ............ 67 

Figure 4.9. Averaged spike spectrum and the frequency response of the 1st level detail and the 4th 
level approximation haar DWT. .................................................................................................... 68 

Figure 4.10. Spike templates extracted from 36 different neural recording channels used as 
testing datasets. The first two rows contain two spike classes, the middle two rows three spike 
classes, the last two rows four spike classes. ................................................................................ 71 

Figure 4.11. (a) Clustering errors at different SNRs with two spike classes for W-FBSHT, FSDE, 
DD|2-Extrema and PCA methods. (b) An example of spikes that can be better separated using the 
approximation features. (c) An example of spikes that can be better separated using the detail 
features. ......................................................................................................................................... 72 

Figure 4.12. (a) Clustering errors at different SNRs with three spike classes for W-FBSHT, FSDE, 
DD|2-Extrema and PCA methods. (b) An example of three spike classes projected in the W-
FBSHT feature space. ..................................................................................................................... 74 

Figure 4.13. (a) Clustering errors at different SNRs with four spike classes for  W-FBSHT, FSDE, 
DD|2-Extrema and PCA methods. (b) An example of four spike classes projected in the W-FBSHT 
feature space. ................................................................................................................................. 75 

Figure 4.14. . (a) Clustering errors for weighted and non-weighted FBSHT. (b) An example of two 
spike classes projected in the weighted FBSHT and non-weighted FBSHT feature space using one 
approximation feature and one detail feature. The ‘x’ symbol represents the cluster centroid. The 
yellow solid line represents the decision boundary for weighted features. The yellow dashed line 
represents the decision boundary for non-weighted features. ....................................................... 76 

Figure 4.15. (a) Normalized separability for the lowpass filter at 20 kHz, 25 kHz and 30 kHz. (b) 
Clustering errors for datasets with sampling rate of 20 kHz, 25 kHz and 30 kHz. ...................... 77 

Figure 5.1. Illustration of the input and output signals for spike clustering & classification block.
....................................................................................................................................................... 81 

Figure 5.2. An example 2D projection of three classes of spikes using PCA feature extraction. . 83 

Figure 5.3. An example decision tree for five classes. The circles represent nodes (corresponding 
to comparisons between hyperplanes and feature vectors) while the squares represent leaves 
(corresponding to spike classes). .................................................................................................. 84 

Figure 5.4. Description of the modified OC1 algorithm for quantization of coefficients at a single 
node. .............................................................................................................................................. 85 

Figure 5.5. Comparison of spike classification error across different resolutions of a(n) using (a) 
PCA and (b) FBS feature extraction. ............................................................................................ 87 

Figure 5.6. Block diagram of DT based spike classification circuit. ............................................ 88 



xiii 
 

Figure 5.7. The data fields comprising a node in the decision tree, listed with their resolutions. 89 

Figure 5.8. Comparison of memory size per channel between the ℓ1 norm and DT classification 
methods as a function of the number of features. ......................................................................... 89 

Figure 5.9. Structures of the computation core and the spike class decoder. ............................... 90 

Figure 5.10. The operation phases for a complete node computation. ......................................... 90 

Figure 5.11. Comparison of spike classification error between ℓ1 norm and DT methods using 
PCA and (b) FBS features. ............................................................................................................ 91 

Figure 6.1. Illustration of sequential procedures for single-channel training phase. .................... 95 

Figure 6.2. The data processing flow for the gap statistic technique. .......................................... 97 

Figure 6.3. Reference dataset generated by uniformly sampling either (a) the dataset bounding 
box or (b) a box aligned with the principle components of the dataset. ....................................... 97 

Figure 6.4. (a) The decision metric as a function of number of cluster. (b) Automatic spike 
clustering result using gap statistic Kmeans clustering. ............................................................... 97 

Figure 6.5. The classification error with different buffer sizes compared to the classification error 
using whole spike waveforms. ...................................................................................................... 99 

Figure 6.6. (a) Block diagram for single-channel spike sorting. (b) Control signals from the 
controller to manage the activities of the feature extractor and the spike classifier. .................. 100 

Figure 6.7. The scheme of NEO preprocessor unit for one channel. .......................................... 101 

Figure 6.8. Power and area tradeoff over the number of channels interleaved........................... 101 

Figure 6.9. The relationship between Nmax and Nch. The scalability defined as 
ே೎೓

ே೘ೌೣ
 describes the 

number of channels can be shared by the same feature extractor and spike classifier blocks when 
Nch-channel neural data are processed. ....................................................................................... 104 

Figure 6.10. Illustration of connection between Nch-channel data buffers and the ܰ௠௔௫  feature 
extractor & spike classifier blocks. ............................................................................................. 104 

Figure 6.11. The area per channel of FESC blocks and the MIMO multiplexer when Nch-channel 
neural data are processed by Nmax FESC blocks. ........................................................................ 104 

Figure 6.12. Architecture of 32-channel spike sorting NSP module. ......................................... 106 

Figure 6.13. FPGA based test setup for NSP verification. .......................................................... 107 

Figure 6.14. Spike detection accuracy against SNR using the automatic thresholding spike 
detector and the manual thresholding method. ........................................................................... 110 



xiv 
 

Figure 6.15. Spike detection accuracy of the automatic thresholding spike detector against the 
firing rate. .................................................................................................................................... 110 

Figure 6.16. Spike sorting performance of our NSP module and the one using PCA features. .. 111 

Figure 6.17. Classification accuracy of this work and Osort at different SNRs. ........................ 113 

 

 



1 
 

Chapter 1 Introduction 

1.1 Brain Machine Interface for Neurological Paralysis 

More than five million Americans suffer from neurological paralysis and have 

difficulty speaking and/or moving their arms or legs [1]. Neurological paralysis is caused 

by damage to the central nervous system (CNS), often resulting from stroke or spinal 

cord injury (SCI). It has been reported that stroke leads to 550,000 hospitalizations each 

year [2], and more than 200,000 individuals in the United States alone live with SCI, 

mainly due to motor vehicle accidents[3]. 

Because the CNS cannot recover by itself, neurosurgeons have made considerable 

efforts to achieve biological restoration. Stem cell transplantation is considered a 

promising technology for stroke, SCI and other CNS damage. Despite encouraging 

preliminary clinical results, several key issues need to be resolved before such treatments 

may be clinically available for CNS disorders [4]. On the other hand, neurophysiology 

researchers in the early 1960s demonstrated that brain activities can be read and 

interpreted. Walter showed that brain signals recorded from the scalp can be used to 

control a slide projector in 1964 [5]. Evarts found a relationship between the force of arm 

movement and neuron activity in the motor cortex in 1964 [6]. These discoveries of the 

neurophysiology indicate that a direct functional interface can be built between a brain 

and artificial devices to bypass the spinal cord lesions and to help paralyzed patients 

interact with their surroundings. An interface that can read brain signals and convert them 

into control and communication signals has become popularly known as a brain machine 

interface (BMI).  

Fig. 1.1 illustrates the concept of a BMI to assist paralyzed people. Brain signals are 



2 
 

recorded by a neural recording system. The recording system consists of an electrode 

array to collect neural signals from the brain and a signal conditioning circuitry to process 

neural signals. The neural signals are then transmitted wirelessly to a device where they 

are decoded and translated into commands. Commands can be used to control different 

devices and to realize thoughts from patients. The applications of BMIs include simple 

two-dimensional control, such as selecting letters on a screen to type messages for 

communication or directing an automated wheelchair for navigation. More promising 

applications involve controlling a robot to move an object from one location to another or 

controlling a prosthetic arm to behave as a natural arm in a three-dimensional space. The 

applications of BMIs can be also extended beyond the medical field in the future, such as 

remotely piloting an aircraft in military or enhancing the control abilities for astronauts in 

space flight. 

 
Figure 1.1. An illustration of different applications of BMI. 

1.2 Future BMI requirements 

As shown in Fig. 1.1, BMIs place electrodes near the brain to monitor neural activities. 

Electrodes can be placed either extracranially or intracranially. Extracranial electrodes are 

placed on the scalp and intracranial electrodes are placed on the cortical surface or inside 

the cortex. BMIs with electrodes placed on the scalp or on the cortical surface can be 



3 
 

used to control devices in a two dimensional space [7, 8]. Because brain activities 

originate within the underlying cortical tissue, there is a significant distance between 

recording electrodes placed on the scalp or the cortical surface and the underlying cortical 

tissue. Electrodes in these two cases record averaged brain activities over time and space. 

Thus, with electrodes placed on the scalp or the cortical surface, it is difficult to achieve 

sufficient temporal and spatial resolution to control advanced devices in a three 

dimensional space such as neural prostheses.  

In order to control devices like neural prostheses, electrodes need to be place inside the 

cortex where brain activities within the underlying cortical tissue can be recorded [9, 10]. 

BMIs with electrodes placed inside the cortex are referred to as intracortical BMIs. 

Intracortical BMIs insert electrodes inside the cortex, with each electrode sized to the 

order of tenths of micrometers. These electrodes form an array structure referred to as 

microelectrode array (MEA). Each electrode of the MEA collects one channel of neural 

signal from brain activities. Recent research has shown that intracortial BMIs in both 

non-human primates and human patients can effectively control prostheses: [11] 

demonstrated that people with tetraplegia implanted with a 96-channel MEA can 

manipulate a robotic arm to take reach-and-grasp actions and to drink coffee from a 

bottle; [12] further showed that people with tetraplegia implanted with two 96-channel 

MEAs can control a prosthetic limb with seven degrees of freedom (DOFs). Current 

intracortical BMIs mount a connector on a patient’s head. Cables are connected 

percutaneously from the connector to a commercial neural recording system. 

To make prostheses feel like natural human limbs, future BMIs demand higher DOFs. 

To achieve high DOFs, recent studies have shown that intracortical BMIs with a large 



4 
 

number of recording channels (more than one thousand) are needed [13]. Furthermore, 

future BMIs need to fully implant the neural recording system with a small area on the 

brain to minimize the risk of infection. Thus, the neural recording system must wirelessly 

transmits data outside to an external decoder as shown in Fig. 1.1. Implantation avoids 

heavy cables connecting high channel count electrode channels to a neural recording 

system. Wireless transmission avoids cables connecting the recording system to an 

external decoder and reduces risk of infection. 

For future implementation of practical BMI implants consisting of an MEA and neural 

recording electronics, BMI implants need to provide both high channel-count and 

wireless interface. The neural recording system must be capable of processing neural data 

online for real-time decoding. Because the neural recording system would be surgically 

implanted in the brain, the size of the system needs to be small. To prevent tissue damage 

due to temperature increases, the system must consume low power. Low power 

consumption also enables long term operation of the system. 

1.3 Challenges 

To date, several research groups have developed wireless intracortical neural recording 

systems and tested them in animals [14-16]. These systems can record tens of channels 

simultaneously and consume around 100mW power. Due to the high power consumption, 

they can only operate a few hours continuously. For example, [16] first presented a fully 

implantable device with 90.6mW power consumption for one hundred channels in 

moving primates. Because of the high power consumption, it can only operate for 6.6 

hours and has to apply active cooling to mitigate the heat generation. The main reason for 

the high power consumption is the wireless transmission of raw signals for all one 



5 
 

hundred channels. In this system, the total data rate is 24Mbps, and wireless transmission 

of this amount of data consumes 80% of the total power. If the amount of data for 

wireless transmission can be greatly reduced, significant power consumption can be 

saved significantly. 

Future BMIs with hundreds of intracortical neural recording channels will generate a 

data rate of hundreds of Mbps. Wireless transmission of such tremendous data without 

any reduction will further increase the heat dissipation and decrease the operation time, 

thus prohibiting the clinical application of BMIs. To ease the heat dissipation and extend 

the operation time, wireless power consumption must be minimized. Thus, a data 

reduction technique needs to be incorporated into the recording system to perform online 

and real-time data reduction. The reduction ratio must be over two hundred to reduce the 

data rate to around 1Mbps, thus reducing power for wireless transmission to less than 

10mW. From the system point of view, several challenges remain in order to achieve such 

a high data rate reduction ratio. 

The first challenge for data reduction in a high-channel-count BMI lies in maintaining 

high information quality for decoding in the presence of variable background noise 

levels. Maximization of information quality provides accurate decoding performance. 

Existing methods are sensitive to noise which results in information loss. Robust 

algorithms need to be developed to minimize the noise effect on information quality.  

The second challenge for data reduction in a high-channel-count BMI lies in the fact 

that the data reduction technique needs to be automatic and capable of real time 

implementation. Current data reduction techniques require several parameters to be 

experimentally determined, channel by channel, in order to preserve information quality. 



6 
 

As background noise varies, these parameters need to be updated in real time, which is 

almost impossible when the number of recording channels is scaled up to one thousand. 

Thus, it is necessary to develop automatic parameter estimation methods that are 

insensitive to the variability of noise. 

The third challenge for data reduction in a high-channel-count BMI lies in the 

hardware-efficient implementation of the data reduction technique in terms of low 

power and area consumption. Because the neural recording system is implanted, 

hardware implementation must be low power for low heat dissipation without tissue 

damage, and it must be low area for surgical implantability.  

1.4 Goals 

The primary goal of this research overcome challenges to next-generation BMIs 

through the development of hardware-efficient data reduction algorithms that enhance the 

quality of information while achieving high data rate reduction ratio for a high-channel-

count BMI. As explained in Chapter 2, the data reduction method with the highest data 

rate reduction ratio is referred to as spike sorting which consists of three steps. Thus, this 

thesis specially seeks to: 

 Develop algorithms in each step of spike sorting that can maintain high quality 

information even when the noise level of neural signals degrades. 

 Develop hardware-efficient design methods for each step of the spike sorting 

algorithms and scalability to a high-channel-count BMI. 

 Efficiently integrate hardware designs in each step of spike sorting together as a data 

reduction scheme for processing high-channel-count neural signals.  



7 
 

1.5 Outline 

Chapter 2 describes backgrounds of this research. Neurophysiology and neural 

recording techniques are discussed. Different data reduction techniques are discussed and 

hardware-efficient methods for the best data reduction technique, spike sorting, are 

reviewed. Chapter 3 designs the first step of spike sorting to preserve useful information 

by analyzing the statistic of neural background noise. For the second step of spike 

sorting, Chapter 4 introduces a new method to extract key points from useful information 

obtained in the first step. Chapter 5 designs the third step of spike sorting by introducing 

a quantized oblique decision tree model. Chapter 6 integrates all of the three steps 

together and implements a neural signal processing system for high-channel-count 

application. Finally, Chapter 7 summarizes the thesis work and contributions, and it 

outlines future work related to this research. 

  



8 
 

Chapter 2 Background 

2.1 Neurophysiology and Electrophysiology 

2.1.1 Neurons and Action Potentials 

When a person tries to move their body, their brain sends messages to certain muscles. 

How does the brain send these messages to the rest of the body? The messages are 

transmitted from the brain to the body by nerve cells, or neurons. It is estimated that the 

adult human brain contains 1010 neurons [17]. Communications between neurons 

construct a massive network that extends throughout the human body. The brain sends 

messages across this network, which enables people to think, move and feel. 

The structure of a typical neuron is shown in Figure 2.1 [17]. The cell body contains 

genetic materials and makes proteins. Dendrites are the regions where a neuron receives 

information from other neurons. The received information is converted into an electrical 

impulse which begins at the axon hillock and propagates along the axon. The myelin 

sheath insulates the axon and helps the electrical impulse to transmit more quickly. When 

the electrical impulse travels down to the axon terminals, neurotransmitters are released 

and the neuron activates the receptors of other neurons in a process known as synaptic 

transmission.  

 

Figure 2.1. The structure of a neuron adapted from [17]. 



9 
 

The electrical impulse carrying neural information is called an action potential (AP), 

which is the difference in voltage between the inside and outside of a neuron. Neurons 

use sodium (Na+) and potassium (K+) ions to create the voltage difference across the 

neuronal membrane. A typical waveform of an AP is shown in Figure 2.2 [17]. According 

to ion flow through ion channel proteins in the neuronal membrane, an AP can be 

described in four phases: 1) resting state where ions around the membrane are in an 

equilibrium condition, 2) depolarization where sodium ions flow into the neuron through 

sodium channels and an AP is initiated and reaches to its peak, 3) repolarization where 

potassium ions flow out of the neuron through potassium channels and the AP goes back 

towards to the resting potential and 4) hyperpolarization where potassium channels 

remain open and allow potassium for efflux after the AP reaches the resting potential, 

which results the potential of the AP keeps decreasing and becomes more negative than 

the resting potential.  

 

Figure 2.2. A typical waveform of an action potential adapted from [17]. 

Early studies on the electrophysiology of brain unveiled the relationship between the 

APs of neurons and the kinematic limb movements in the motor cortex of monkeys [18-

20]. Since then, there has been enormous interest in research to link brain activities to 



10 
 

man-made devices to enable communication and control among severely disabled 

patients. The devices that can read brain signals and convert them into control and 

communication signals are called brain machine interface (BMI) [5]. 

2.1.2 Neural Recording Techniques 

Current BMI electrical recording techniques range from noninvasive to invasive 

modalities. Electroencephalography (EEG) is a non-invasive method that places 

electrodes on the scalp. This approach has proved its capability of helping paralyzed 

patients to control a computer screen cursor [7] or a communication device [21]. One 

study further demonstrated that human subjects are capable of controlling a robotic 

quadcopter in a 3D physical space [22]. The primary advantage of EEG based BMIs is its 

noninvasive nature. However, because each EEG electrode samples average activities of 

neurons on the order of 105-108 [23], EEG signals provide poor spatial and temporal (less 

than 70 Hz [24]) resolutions. As a result, the information that EEG conveys is non-

specific and thus EEG based BMI requires intensive training of weeks and suffer high 

error rates [25]. The information transfer rate (ITR) measuring the time required for 

conveying commands for EEG based BMIs is less than 0.5 bits/sec [26]. This limits the 

number of degrees of freedom (DOFs) that can be controlled using EEG. 

To have better spatial and temporal resolutions, a minimally invasive method using 

electrocorticography (ECoG) was developed. ECoG records the electrical activities from 

the surface of the brain, beneath the skull, by integrating signals from 102-103 neurons 

[23]. ECoG can record higher frequency (up to 200 Hz [24]) neural signals than EEG. 

The higher frequency contents in signals provide additional cognitive and motional 

information for BMI control that is not accessible with EEG [27]. Experiments have 



11 
 

shown that subjects can learn to control a computer cursor less than half an hour by 

modulating the ECoG signals [8, 28]. Another experiment even showed that a paralyzed 

individual can operate ECoG based BMI to control a robot arm to hit targets and touch 

hands in a 3D space [29]. However, the ITR for ECoG based BMIs are limited to only 1.5 

bits/sec [30]. The quality of ECoG control appears to be still considerably poor and 

unreliable [31]. 

The highest spatial and temporal (up to 5-10 kHz [24]) resolutions of electrical activity 

can be acquired by inserting microelectrodes into the cortex, the outer 2-4mm of the brain 

where most thoughts are believed to take place, to record the electrical activities from 

individual neurons. The method of recording signals from the cortex is called 

intracortical recording. Several research studies have used this method for 

communication and control in non-human primates [9, 32-34]. One research reported 

control of intracortical BMI device by monkeys with ITR up to 6.5 bits/sec [32]. One 

group showed its application on a human with tetraplegia who is capable of controlling a 

prosthetic limb to reach and grasp objects with seven DOFs (3D translation, 3D 

orientation, 1D grasping) [12]. The same group recently demonstrated that this person 

with tetraplegia can control the prosthetic limb with ten DOFs (3D translation, 3D 

orientation, 4D hand shaping) [35]. Another group showed that a paralyzed individual 

was able to use their neural prosthetic system to type words at a speed of approximately 6 

words/min [36]. It has been shown that the BMI performance increases with the size of 

the neuronal recording ensemble [37]. In contrast to the EEG and ECoG methods, 

intracortical recording is the only method that provides the neuronal recordings scale that 

will enable future BMIs with the high DOF necessary for prostheses with natural 



12 
 

movement dexterity. 

2.1.3 Characteristics of Intracortical Recording 

The goal of intracortical recording is to obtain the sequences of APs that represent 

threads of information referred to as neural codes [38, 39]. For example, in controlling 

the movement of a prosthetic limb, the sequences of APs can be used to estimate the 

coordinates and orientation in the three-dimensional space [12]. Two main principles 

schemes for encoding APs are used by the neuroscience community. One is called rate 

coding , and it estimates the average firing rate of neurons by counting the number of APs 

in a time interval. The other is called temporal coding, which stems from the 

neuroscience theory that precise relative timing of individual APs carries the information. 

In order to decode and interpret neural codes using either of these coding schemes, the 

first and critical step is to record AP events. 

The occurrence of APs can be recorded within neurons, which is referred to as 

intracellular recording, or outside of neurons, which is referred to as extracellular 

recording. Intracellular recording is achieved by inserting an electrode into a neuron, 

allowing morphological identification of the recorded neurons. This form of recording 

can only be done on a few neurons simultaneously and the neurons must remain 

physically unmoving. Thus, to obtain high signal quality in animal studies, intracellular 

recordings can only be done on anesthetized animals. When recording in freely moving 

animals, the recording is often lost due to movements and thus the recording duration is 

limited to only one hour [40]. Extracellular recording places electrodes in close proximity 

(<60µm) of neurons and permits long term recording in freely moving animals. Because 

recent technological advances in the extracellular electrodes have made it possible to 



13 
 

record simultaneously large number of neurons, extracellular recording has become the 

main technique for neuroscientists to study complex brain functions. 

Figure 2.3 shows the signals of intracellular and extracellular recording. Intracellular 

recording provides higher amplitude, on the order of 100mV. However, due to the low-

pass filtering property of the extracellular space, the amplitude of extracellular recording 

is quite small, on the order of 100V [41]. Extracellular recordings typically contain two 

types of signals: local field potential (LFP) and neural spikes. The LFP arises from the 

sum of activity of neurons distant to the electrode and present as low frequency 

oscillations below 250 Hz [42]. The neural spikes indicate an AP fired by neurons in 

close proximity to the electrode. Spikes have energy concentrated in the high frequency 

range (typically from 400 to 3000 Hz [42]). In many applications, it is desirable to 

separate LPF and spikes using signal processing filters of different frequency bands. The 

middle waveform in Figure 2.3 shows a filtered signal in which LPF is removed. It 

consists of background noise and spikes. The main source of background noise is 

biological noise which reflects the activities of neurons far away from the electrode. 

Another source of noise is the thermal noise which is attributed to the recording 

instruments. Spikes recorded by an electrode can include indications of APs from 

multiple neurons. Identification of source neurons that are firing spikes recorded by an 

electrode is thus necessary before decoding. It is widely believed that spikes observed by 

an electrode from different neurons exhibit different shapes because of their relative 

positions to the electrode and the distributions of conductive ion channels [43]. Source 

identification thus can be performed based on the shapes of spikes.  



14 
 

 

Figure 2.3. Intracellular and extracellular signals from [44]. Top: wideband extracellular 
signals from 1 Hz to 3 kHz. Middle: highpass filtered extracellular signals from 0.3 to 3 
kHz. Bottom: intracellular signals. 

2.2 Intracortical Neural Recording Systems 

In order to record activities of individual neurons using extracellular methods, an 

intracortical neural recording system must be capable of obtaining spikes with small 

amplitude. In the early days of neural recording, from the 1970s to the middle of 1980s, 

extracellular signals recorded from microelectrodes were amplified and filtered using 

discrete electronic components [20, 45-47]. The conditioned signals were either displayed 

on an oscilloscope or connected to a device capable of indicating the firing rate of APs. 

From the 1980s to the 1990s, continuous improvements of CMOS fabrication technology 

enabled the minimization and implantation of recording systems. Different monolithic 

systems were designed to integrate the amplifier and the filter into a single chip [48-51]. 

Some of these systems could process up to ten channels simultaneously. During this 

period, data transfer between the front-end recording amplifiers and an external spike 

analysis device was still achieved by interconnect wires. For chronic recording, these 

wires significantly limited mobility and impeded the study of freely moving subjects and 

the development of BMIs for human use. Thus, efforts to integrate biotelemetry into the 

system for data transfer became central to neural interface research. From the late 1990s 



15 
 

to the middle of 2000s, early implementations of wireless recording systems consumed a 

significant amount of power and were only able to manage around four signals channels 

[52-55]. In the past decade, research in wireless neural recording has focused on head-

mounted multichannel designs that can be tested in the free living animals while 

recording up to 100 channels. Table 2-1 lists performance metrics of recent wireless 

intracortical neural recording systems. It can be seen that power consumption is a critical 

issue when transmitting raw data with enormous data rate [15, 16]. Some of these 

systems perform data reduction techniques to ease power consumption [56, 57]. 

these early data reduction techniques compromised the data integrity necessary to 

separate activities of individual neurons. In contrast, future BMIs will require large-scale 

recording neuronal populations [58] that will yield an aggregate data rate in the order of 

tens of Mbps. The ultimate goal of future high performance intracortical BMIs is to 

develop a fully implantable wireless recording system. Such a system would benefit from 

eliminating the infection risk and reducing mechanical vulnerability. However, wireless 

transmission of a vast amount of neural data would consume considerable power and 

dissipate significant heat. To prevent tissue damage, new neural signal processing 

techniques are needed that can simultaneously minimize the data rate and power 

consumption in real time while preserving high data integrity. 



16 
 

Table 2-1 Comparison of performance metrics for intracortical neural recording systems 

Reference [14] [56] [57] [15] [16] 

No. of 

channels 
96 100 64 32 100 

Data (Mbps) 1 0.35 2 24 24 

Power (mW) 100 10 14.4 142 90.6 

Year 2007 2009 2009 2010 2013 

The components of a complete wireless intracortical neural recording system are 

shown in Figure 2.4. Extracellular signals are usually recorded by a microelectrode array 

(MEA) that is implanted in the cortex. Weak (low amplitude) neural signals recorded by 

the MEA are first conditioned using amplifiers and filters to eliminate the background 

LFP and any electrode offset between electrodes. The conditioned signals are then 

converted into digital signals by analog-to-digital converters (ADC). The ADC sampling 

rate of signals is usually between 20 kHz and 40 kHz to cover the energy spectrum of 

APs and minimize distortion of spikes. A neural signal processor (NSP) analyzes and 

compresses the digitized signals to retain the meaningful neurological information within 

a minimized data set. The relevant information is then transmitted out to an external data 

processing system by a wireless transceiver. Because the power consumption of the 

neural recording system is dominated by the wireless data transmission [59], the NSP 

block plays a critical role in high-channel-count recording by performing data reduction. 

The schemes of neural data reduction feasible for implantable hardware implementation 

are reviewed in the following section. 



17 
 

 

Figure 2.4. The functional block diagram of a wireless intracortical neural recording 
system. 

2.3 Neural Data Reduction Techniques  

2.3.1 Spike Timestamps and Spike Waveforms 

The firing rate of a neuron in the cortex may be up to 100 spikes/sec [60]. Because the 

information needed to decode neural codes is contained within the occurrence rate of 

spikes, data reduction can be achieved by capturing timestamps of each spike occurrence 

while ignoring the data between spikes. Spikes can be separated from the background by 

comparing the amplitude of filtered signals with a predetermined threshold. If the signal 

amplitude crosses the threshold, a spike event is located. Spikes have been captured in the 

analog domain, where the output of each channel is a binary stream with ‘one’ 

representing that a threshold has been crossed [61]. The address of the electrode channel 

has been transmitted when a spike is found in the analog [62] or digital [63] domains 

within a specific channel.  

The timestamp method provides very conservative use of hardware resources that 

minimize power consumption within the front-end implanted device. It provides a high 

data reduction rate with binary outputs. However, because all spikes at a given electrode 

are reduced to binary events, it is impossible to discriminate spikes originating from 

different sources. As mentioned in Section 2.1.3, spikes recorded by an extracellular 

electrode can originate from multiple neurons. Thus, it is impossible to discriminate 

spikes fired by different neurons using timestamps, which limits the performance of this 

method in neural decoding.  



18 
 

Given that each neuron fires spikes of a particular shape [64], an alternative method is 

to capture the entire spike waveform and transmitted out waveform information for 

further signal processing. This method requires a larger amount of memory cells than 

timestamp method because spike samples before the threshold is crossed need to be 

stored. One implementation utilizes 16 byte first-in first-out buffers to store spike 

samples before the threshold is crossed and outputs totally 64 samples per spike [65]. The 

data reduction rate of the spike waveform method varies from 3.5 to 48 and decreases 

dramatically as the neuronal firing rate increases [65]. For a typical firing rate of 60 

spikes/sec, it shows that the data reduction ratio of eight can be achieved [65].  

2.3.2 Transform Compression 

Transformation compression is another method used for neural data reduction. Figure 

2.5 shows the procedure of this method. Neural signals are transformed into a new space 

by convolving or multiplying with an orthogonal basis. The orthogonal basis can be 

considered as fundamental vectors that represent the new space. Neural data are 

transformed into new values referred to as transform coefficients in the new space. If the 

basis is properly selected, neural spikes will have transform coefficients with large values 

while neural noises between spikes will have transform coefficients with small values. In 

the thresholding step of the compression procedure, transform coefficients are compared 

with a threshold value such that coefficients less than the threshold are set to zero. If an 

appropriate threshold value is chosen, most insignificant transform coefficients related to 

neural noises will become zero. The final run-length encoding (RLE) step passes values 

above the threshold while compressing the sequences of zero coefficients and storing 

them as coded data values representing the zero count in each sequence. 



19 
 

 

Figure 2.5. Diagram of the procedure for the transform compression method. 

One transform algorithm that has been utilized with neural signals is the discrete 

wavelet transform (DWT). DWT decomposes a signal into different levels that are related 

to binary-scaled frequency bands while preserving temporal structure of the original 

signal. Figure 2.6 shows the frequency domain representation of the DWT. In the jth level 

of decomposition, the approximation coefficients aj are convolved with a half-band 

lowpass filter h0 generating the approximation coefficients aj+1, and aj are convolved with 

a half-band highpass filter g0 generating detail coefficients dj+1 for the next level. The 

DWT decomposition process can be described as  

 













f

f

n
DWTjfDWTj

n
DWTjfDWTj

kakngkd

kaknhka

)()2()(

)()2()(

01

01  (2-1) 

where nf is the index of half-band filter coefficients and kDWT is the index of transform 

coefficients. The approximation coefficients aj+1 and detail coefficients dj+1 are 

downsampled, or in other words, every other wavelet coefficient is discarded to eliminate 

information redundant with the previous decomposition level.  

 

Figure 2.6. Frequency domain illustration of a three-level DWT decomposition. 

After DWT transformation, a threshold value is applied to the detail coefficients at 



20 
 

each level. Because the energy of neural signals are concentrated in the low frequency 

bands, most detail coefficients in the lower levels are related to high frequency noise and 

will become zero after thresholding. 

Different wavelet bases have been used for DWT-based transformation compression 

such as a simple ‘haar’ wavelet [66] and a ‘symmlet4’ wavelet [67, 68]. The data 

reduction ratio of DWT is reported to be 61 and 62 for ‘haar’ and ‘symmlet4’, 

respectively [69, 70]. Because the ‘symmlet4’ wavelet basis is more similar to the shape 

of spikes than ‘haar’ wavelet, it provides less distortion of neural spikes than ‘haar’ 

wavelet. 

Another transform algorithm called Walsh–Hadamard Transform (WHT) projects signals 

into a new space by multiplying a signal with matrix Hm, such that 

 ܻ ൌ ௠ܪ ∗ ܺ (2-2) 

where m is an integer, Hm is a 2m2m matrix, X is a 2m1 input vector and Y is a 2m1 

output vector. The Hm matrix can be recursively defined as  

௠ܪ  ൌ ൤
௠ିଵܪ ௠ିଵܪ

௠ିଵܪ െܪ௠ିଵ
൨ , ଴ܪ ൌ 1 (2-3) 

It can be seen from (2-3) that the elements of WHT matrix only consists of 1 and -1, 

which indicates low computation complexity of WHT.  

A WHT-based transformation compression was implemented with m equal to 3 [70]. 

WHT provides the data reduction ratio of 63 when the firing rate is low and the data 

reduction ratio decreases to around 5 when the firing rate is as high as 100 spikes/sec 

Because WHT requires no multiplication operations, its computation complexity is less 



21 
 

than DWT.  

2.3.3 Spike Sorting 

As mentioned in section 2.1.3, the spikes observed at an electrode originating from 

different neurons exhibit different shapes. Spike sorting is a process that groups the 

recorded spikes based on the similarity of their shapes and thereby provides the 

information about individual neuron firing needed for neural decoding. Because the goal 

of spike sorting is to assign a source-label to each spike, a spike can be represented by a 

single spike-label data value. As such, spike sorting provides higher data reduction ratio 

than spike timestamps, spike waveforms or transform compression methods. Thus, spike 

sorting based NSP has become the main technique for high-channel-count neural 

recording system. The strategies for spike sorting can be divided into template matching 

and feature-space based methods.  

2.3.3.1 Template Matching based Spike Sorting 

Template matching methods first derive spike templates from all detected spike 

waveforms during a training phase. Using these spike templates, different spike sorting 

discriminators can be constructed. One discriminator was constructed using matched 

template filters (MTFs) that compare a neural signal with spike templates [71]. If the 

difference between the neural signal and an MTF is less than a threshold, a spike is 

simultaneously detected and classified. Alternatively, optimal linear filters [72] and 

neural networks [71] have been constructed based on spike templates such that only one 

linear filter or one neural network output provides the largest response to spikes fired by a 

specific neuron and severely attenuates others. One recent work has integrated template 

matching based spike sorting into a head-mounted wireless recording system which can 



22 
 

record up to 512 channels in monkeys [73]. However, the system consumes 

approximately 2mW power per channel and only allows continuous operation for 30 

hours. 

2.3.3.2 Feature based Spike Sorting 

Figure 2.7 shows the basic steps of feature-based spike sorting. Spikes are detected 

from the noisy input signal and aligned to a common temporal point of the spike 

waveform. This step is similar to the spike timestamp method. In the feature extraction 

step, the aligned spikes are projected into a lower dimensional space where each spike is 

represented by significantly fewer data points than the original spike waveform. The last 

step uses the extracted features to classify spikes into different neuron source groups. 

Notice that the feature extraction step inherently provides data reduction. As a result, 

some neural recording systems transmit spike features to ease the communication 

bandwidth [74, 75].  

 

 

Figure 2.7. Basic steps of feature-based spike sorting algorithms and the output signals at 
each step. 

Template matching methods require intervention from a human operator to form 

templates [76], and they demand a large amount of memory to store the templates. These 

properties make these methods impractical for high-channel-count applications. 

Compared to template matching methods, feature-based methods provide 



23 
 

computationally efficient and memory efficient characteristics for multichannel spike 

sorting. The algorithmic complexity of feature-based spike sorting determines its 

accuracy and the hardware cost. For the implantable application, a feature-based spike 

sorting NSP needs to meet both low power-area and high reliability requirements. In the 

following section, computationally efficient methods for each step of feature-based real-

time spike sorting procedure will be reviewed. 

2.4 Computationally Efficient Real-time Spike Sorting Methods 

2.4.1 Spike Detection 

Early spike detection techniques developed for the spike timestamps method applied 

thresholds to raw neural recording signals. Thresholding of raw signals is easy to 

implement in hardware, but detection performance is sensitive to the background noise. 

Experiments have shown that up to 40% of recording sites generate signal with high 

background noise, and this can increase to nearly 60% during recording sessions [77]. 

Therefore, some preprocessing methods have been proposed to enhance the signal-to-

noise ratio (SNR) of neural signals, allowing detection performance to be improved by 

applying a thresholding technique to the preprocessed signal.  

The most popular preprocessing method for spike detection is the nonlinear energy 

operator (NEO). The NEO algorithm was first proposed to track the instantaneous energy 

of signals composed of several different frequency components [78]. It was applied to the 

neural spike detection because a spike can be considered as the instantaneous increment 

of the energy level of a neural signal [79]. The NEO operator in continuous time, (t), 

can be expressed  



24 
 

 Ψሺݐሻ ൌ ሺ
ௗ௫ሺ௧ሻ

ௗ௧
ሻଶ ൅ ሻሺݐሺݔ

ௗమ௫ሺ௧ሻ

ௗ௧మ
ሻ (2-4) 

where x(t) is the input signal. In discrete time, the NEO can be defined as  

 Ψሺ݊ሻ ൌ ሺݔሺ݊ሻሻଶ ൅ ሺ݊ݔ െ 1ሻݔሺ݊ ൅ 1ሻ (2-5) 

One extension of the NEO reported to exhibit less sensitivity to high noisy peaks when 

the SNR is low is described by [80]  

 Ψ୩ሺ݊ሻ ൌ ሺݔሺ݊ሻሻଶ ൅ ሺ݊ݔ െ ݇ሻݔሺ݊ ൅ ݇ሻ,  (6-2) ݎ݁݃݁ݐ݊݅ ݊ܽ ݏ݅ ݇

where k is a tuning parameter.  

Once the NEO operators have been determined, thresholding can be applied to 

separate spikes from noise. The threshold value can be set as a scaled value of the local 

average of NEO values, as given by 

ݎ݄ܶ  ൌ ܥ
ଵ

ே
∑ ሺ݊ሻேߖ
௡ୀଵ  (2-7) 

where N is the number of samples in the signal, and C is a scaling factor that needs to be 

determined experimentally [81]. It can be seen from (2-5) that the NEO operation only 

requires two multiplications and one addition, thus making it suitable for implantable 

hardware realization. NEO-based spike detectors have been implemented in both analog 

[82, 83] and digital domains [75].   

Another well-known method is matched filter based spike detection where the neural 

signal is convolved with a predefined spike template. Because the spike template is 

unknown a priori, it requires users to select spikes from the test data and average those 

spikes to form a template. Matched filter based spike detection has been shown to be 

difficult for real-time implementation because of its relatively large computational 



25 
 

requirements [84]. 

Wavelet methods have also been applied for spike detection. The stationary wavelet 

transform (SWT) is more commonly used for detection than DWT because it provides 

better overall performance. SWT decomposes signals into different levels corresponding 

to different frequency bands of signals, which is similar to DWT, but SWT does not 

decimate coefficients at each level. Selected levels of detail coefficients are utilized for 

spike detection by applying different threshold values at each level. The threshold value 

is usually calculated as a scaled version of the standard deviation j of the detail 

coefficients at each level j. j can be estimated by the median absolute deviation of 

detailed coefficients, as given by:  

௝ߪ  ൌ ݉݁݀݅ܽ݊ห݀௦௝ห/0.6745 (2-8) 

where ݀௦௝ is the SWT detail coefficients at jth level and 0.6745 is a constant of median 

absolute deviation [85]. The non-decimation property allows the SWT to be insensitive to 

the sampling phase and thus provides more reliable detection performance than the DWT 

[85, 86]. Different wavelet bases have been selected for SWT-based spike detection, such 

as ‘coiflet’ basis [87], ‘symmlet7 ’basis [85] and ‘symmlet4’ basis [88]. A recent study 

shows that ‘symmlet2’ basis provides a better balance between hardware resources and 

detection accuracy [86]. 

A new method to detect spikes in Hilbert space has recently been proposed [89]. It 

shows that the probability density function (PDF) of neural signals after Hilbert transform 

can be decomposed into two components: one is the exponential component (EC) and the 

other is the power-law component (PC). The PDF of the background noise follows EC 

distribution while the PDF of spikes follows the PC distribution. Thus a spiking 



26 
 

probability map can be generated based on the PDFs of the noise and spikes. Spikes are 

detected by thresholding the spiking probability map. This method has been shown to be 

robust for spike detection and feasible for hardware implementation [90]. 

2.4.2 Alignment 

Following spike detection, spikes are often aligned to a common temporal point to 

minimize variation between spikes from the same neuron caused by sampling jitter. When 

a spike is detected, it is automatically aligned to the threshold crossing point, which is 

sensitive to noise. For a more precise alignment, the most common method is to align 

spikes to their maximum amplitude [91, 92], where spikes are usually upsampled by 

interpolation and then downsampled to the original rate to avoid sampling jitter 

misalignment. Another alignment method that uses maximum slope as a reference point 

[71] and has been realized in hardware [75] because the maximum slope is considered to 

have more biological significance than the maximum amplitude. Although the alignment 

to the maximum amplitude or slope provides better sorting performance, they both 

require significantly more computation and hardware, particularly memory, than simple 

alignment to the threshold crossing. 

2.4.3 Feature Extraction 

When a spike is detected and aligned, it is represented by a few dozens of samples. 

The goal of the feature extraction step is twofold: extracting the most informative 

features to separate different types of spikes and using as less number of features as 

possible to minimize the computation complexity.  

Conventional features such as the spike maximum and minimum amplitudes and spike 

width [92] are sensitive to noise and provide poor discrimination among spikes. To 



27 
 

enhance the feature robustness to noise, a method called principle component analysis 

(PCA) is used to project spike waveforms into another space using principle component 

(PC) vectors [92]. The PCs are obtained by calculating the eigenvectors of the covariance 

matrix of spike waveforms in a training set. Then the projection coefficient Ci of each 

spike on the ith PC vector can be computed as 

௜ܥ  ൌ ∑ ௜ሺ݊ሻܵሺ݊ሻܥܲ
ே
௡ୀଵ  (2-9) 

where S represents a spike and N is the number of samples in a spike. Usually, the first 

two or three PC vectors are used because these features provide the most informative 

information to separate spikes. Another sophisticated method robust to noise performs 

DWT on the spike waveforms and selects the DWT coefficients as features based on 

Lilliefors test [91]. Both PCA and DWT methods request a huge amount of hardware 

resources, but they can be considered as gold standards for comparison when other 

features developed for the implantable application are evaluated. 

Computationally efficient feature extraction methods can be divided into two 

categories. One performs the integral and the other performs the discrete derivative (DD) 

on spike waveforms. The integral methods, such as integral transform (IT) [93] and zero 

crossing features (ZCF) [94], rely on the area under positive and negative lobes. Figure 

2.8 illustrates two methods. The IT method can be described as  

஺ܫ  ൌ
ଵ

ேಲ
∑ ܵሺ݊ሻ
௡ಲାேಲషభ
௡ୀ௡ಲ

, ஻ܫ ൌ
ଵ

ேಳ
∑ ܵሺ݊ሻ
௡ಳାேಳషభ
௡ୀ௡ಳ

 (2-10) 

where nA is the first sample of the first lobe, NA is the number of samples in the first lobe, 

nB is the first sample of the second lobe, NB is the number of samples in the second lobe. 

The ZCF method can be expressed as  



28 
 

1ܥܼ  ൌ ∑ ܵሺ݊ሻ௓ିଵ
௡ୀ଴ , 2ܥܼ ൌ ∑ ܵሺ݊ሻே

௡ୀ௓  (2-11) 

where Z is the index of the first zero after a spike is detected. The parameters of the IT 

method requires the offline training while the ZCF method only depends on the zero-

crossing point which can be adaptively obtained online. 

 

Figure 2.8. Illustration of IT (left) [93] and ZCF (right) [94] feature extraction methods. 

The DD methods compute the slope of each spike sample over a number of different 

time scales. It can be described as  

ఋܦܦ  ൌ ܵሺ݊ሻ െ ܵሺ݊ െ  ሻ (2-12)ߜ

where ߜ is the scaling factor and is chosen as 1, 3 and 7. This yields three times more 

expansion coefficients than the original spike. Different tests such as Lilliefors test, 

Hartigan’s dip test and the maximum-difference test are operated to select a subset of 

coefficients as features [95]. It shows that 10 DD coefficients provide the acceptable 

classification accuracy based on the maximum-difference test. A recent study tested the 

permutations of DD extremas at all the time scales and shows that using the extremas for 

 equal to 3 and 7 provides the best separation [96]. Another similar approach uses the ߜ

first derivative (FD) and second derivative (SD) extrema (FDSE) of spike waveforms as 

features [97]. The FD and SD can be computed as   

ሺ݊ሻܦܨ  ൌ ሺ݊ሻݏ െ ሺ݊ݏ െ 1ሻ, ሺ݊ሻܦܵ ൌ ሺ݊ሻܦܨ െ ሺ݊ܦܨ െ 1ሻ (2-13) 



29 
 

It shows that the positive peak of the FD together with the positive and negative peaks of 

the SD achieves the best classification accuracy [97].  

All the recent efforts for feature extractions like ZCF, DD extrema and FDSE target at 

the online processing of spike waveforms and reduce the number of features for each 

spike to less than four. These recent methods enable the on-chip implementation of high-

channel-count spike sorting for the future BMI application. 

2.4.4 Clustering & Classification 

The purpose of clustering & classification is to divide all the detected spikes recorded 

from an electrode into different number of spike classes because one electrode can record 

activities of multiple neurons. The clustering & classification method can be 

implemented either offline or online. The offline implementation provides better sorting 

performance than online but it cannot process data in real time. The online 

implementation allows real-time operation but at the cost of significant hardware usages. 

2.4.4.1 Offline Clustering 

For offline processing, clustering algorithms are used for both identification of number 

of spike clusters and classification of spikes. One benchmark method for offline 

clustering is called k-means which iteratively updates cluster centroids based on the data 

points closest to each centroid [98]. Another offline method considers the distribution of 

spikes as the mixture Gaussian model [99, 100] or t-distribution model [101] of which the 

model parameters are derived by the expectation-maximization algorithm. Different 

penalty functions are used for these methods to discourage a large number of clusters and 

determine the correct cluster number. Superparamagnetic clustering (SPC) is also one 

common offline method which is based on the interaction between each data point and its 



30 
 

k-nearest neighbors [91]. SPC introduces a parameter called temperature. By scanning 

the temperature from low to high, new clusters will be created with different cluster sizes. 

The number of clusters can be determined when the cluster size of a new cluster is less 

than a threshold. The drawbacks of all above clustering algorithms are high computation 

complexity, high memory storage and off-line processing.  

2.4.4.2 Online Clustering & Classification 

For online processing, a clustering algorithm is used to determine the number of spike 

clusters and a classification algorithm is used to assign each detected spike a label. One 

computationally efficient clustering algorithm suitable for online application is Osort 

clustering & classification [102]. For each coming spike pattern, this method computes 

the distances between this spike and current cluster centroids. If the maximum distance is 

greater than a sorting threshold, a new cluster will be created. Otherwise, assign the input 

spike to the nearest cluster and updates this cluster centroid. Then this new updated 

centroid is compared with other centroids. If the minimum distance is less than a merging 

threshold, two clusters will be merged. The Osort method is the only one clustering 

method that has been realized for on-chip implementation at this time [103]. The 

hardware implementation divides this method into two phases. The clustering phase is 

first trained to determine the number of clusters and their centroids channel by channel. 

The classification phase assigns each detected spike into a class based on the metric of ℓଵ 

norm distance in real time. Although OSort has been implemented on chip, the clustering 

phase still requires a huge amount of memory. As a result, it only supports clustering one 

channel at a time. For multichannel application, the clustering phase has to be trained 

channel by channel in sequence.  



31 
 

2.5 Spike Sorting Processors 

A comparison of on-chip implementations of spike sorting processors is given in Table 

2-2. Some of the designs output spike features while others output spike labels for data 

compression. One design extracts features directly from raw spike waveforms, and these 

features are sensitive to the noise level [104]. One design chose the DD method to trade 

off between sorting accuracy and computational complexity [75]. Another design uses 

peaks of raw spike waveforms and the extrema of the first derivative as features [74]. 

However, its implementation is too power hungry for multi-channel applications. The 

only designs that perform classification functions at this time are in [103, 105]. One work 

implemented the training phase of the spike clustering on-chip [103] while the other work 

trained classification parameters offline [105]. They both perform classification directly 

on raw spike waveforms without using feature extraction to reduce the data 

dimensionality. This approach is area-inefficient when scaled for high-channel-count 

applications. Only two studies reported the overall spike sorting performance for neural 

signals with different SNRs [75, 103]. None of current spike sorting processors provide 

detailed analysis on the effect of each spike sorting step on the spike sorting performance. 

The review of current work concludes that, to date, no spike sorting processor has been 

implemented achieving both power-area efficiency and high sorting accuracy targeting 

high-channel-count applications. For future BMI applications requiring a fully 

implantable wireless neural recording system, it is promising to develop such a power-

area efficient and highly accurate spike sorting processor. 



32 
 

Table 2-2 Comparison of on-chip spike sorting processors 

Reference [104] [74] [75] [103] [105] 

Process (nm) 90 350 90 65 FPGA 

Voltage (V) 1.08 3.3 0.55 0.55 - 

Power 

(W/channel) 
14.6 100 2.03 4.68 - 

Area 

(mm2/channel) 
0.01 1.58 0.06 0.07 - 

Template/Feature  Feature Feature Feature Template Template 

Clustering No No No Yes Yes 

Year 2009 2009 2011 2013 2014 

 
  



33 
 

Chapter 3 Hardware Efficient Automatic Thresholding for NEO-Based Neural 

Spike Detection 

3.1 Advantages and Challenges of NEO based Spike Detection 

In Chapter 2, several sophisticated algorithms to enhance the SNR of neural signals for 

spike detection were reviewed. These signal processing algorithms help to identify spike 

events when the noise level is high. Among these algorithms, NEO based spike detection 

has been commonly implemented in hardware designs [74, 75, 82, 104, 105] due to its 

favorable balance between detection performance and hardware implementation 

complexity. Figure 3.1 illustrates use of the NEO algorithm to enhance the SNR of a 

neural signal and shows that the amplitudes of NEO coefficients are much larger where 

spikes occur than where only noise exists in the raw signal. If a threshold can be set 

appropriately on the NEO coefficients as shown in Figure 3.1, all spikes in the figure are 

detected and no noise is identified as a spike.  

 

Figure 3.1. An example of the NEO method for enhancing spike events. The arrows 
indicate when true spikes occur in the raw signal. 

Typically, the NEO threshold value ݄ܶఅ is set to a scaled mean of NEO coefficients  

R
a

w
 s

ig
n

a
l

Time

N
E

O
 c

o
e

ffc
ie

n
ts

Threshold



34 
 

 ݄ܶఅ ൌ ܥ
ଵ

ே೎
∑ ሺ݊ሻߖ
ே೎
௡ୀଵ  (3-1) 

where Nc is the number of samples of ߖሺ݊ሻ, ߖሺ݊ሻ is a NEO coefficient, and C is a scalar 

and determined experimentally. The threshold value using (3-1) is sensitive to the spike 

firing rate, which varies between 10 and 100 spikes per second [60]. Thus, this method 

prevents adjustment of the threshold in real time as the firing rate changes. One approach 

in the literature utilized a Qn estimator for unbiased threshold estimation [106], but this 

method requires extensive computational resources that challenge hardware realization. 

In this chapter, a new method is presented to automatically estimate the NEO threshold 

value in a manner that is robust to changes in the spike firing rate. The automatic and 

robust NEO thresholding method enables on-chip threshold estimation for a high-

channel-count spike sorting system. This method eliminates the need to periodically 

transmit neural data for offline manual threshold updates and hence reduces the wireless 

power consumption. 

3.2 Analysis of NEO Threshold Estimation 

3.2.1. Statistical Analysis of NEO Coefficients 

The neural signal x(n) can usually be considered as a spike train s(n) corrupted by the 

background noise v(n) such that: 

ሺ݊ሻݔ  ൌ ሺ݊ሻݏ ൅  ሺ݊ሻ (3-2)ݒ

Assuming the spike train and the noise are uncorrelated, it has been shown that the 

expectation of NEO coefficients ߖሺ݊ሻ can be expressed as [81] 

ሺ݊ሻ൯ሿݔ൫ߖሾܧ  ൎ ሺ݊ሻ൯ሿݏ൫ߖሾܧ ൅  ሺ݊ሻሻሿ (3-3)ݒሺߖሾܧ

Because NEO is an instantaneous estimation of signal energy and spikes can be 



35 
 

considered as instantaneous increments of signal energy, the NEO coefficients of spikes 

are larger than those of noise [79]. Spike detection requires minimizing the number of 

missed true spikes while keeping the number of false detections to a reasonable limit 

[81]. (4) indicates that, when ܧሾߖ൫ݔሺ݊ሻ൯ሿ is compared to a threshold value ݄ܶఅ, the 

threshold can be set such that the probability that ܧሾߖሺݒሺ݊ሻሻሿ is greater than the 

threshold is within a reasonable limit of false detections. Setting an appropriate threshold 

requires studying the probability density distribution (pdf) of ܧሾߖሺݒሺ݊ሻሻሿ. 

If we assume the background noise can be represented by a sum of signals with different 

frequency components, noise can be given by  

ሺ݊ሻݒ  ൌ ∑ ௞݊ߗݏ݋௞ܿܤ
௄
௞ୀଵ ௞ߗ ; ൌ ߨ2

௙ೖ

௙ೞ
 (3-4) 

where K is the number of frequency components, ܤ௞ is the amplitude of the kth frequency 

component ௞݂, and ௦݂ is the sampling rate. It has been shown that ߖൣܧ൫ݒሺ݊ሻ൯൧ under the 

form of (3-4) can be approximated as [107] 

ሺ݊ሻ൯൧ݒ൫ߖൣܧ  ൎ ∑ ௞ܤ
ଶߗ௞

ଶ௄
௞ୀଵ ൌ ∑ ௞ܤ

ଶ௄
௞ୀଵ ൈ

∑ ஻ೖ
మఆೖ

మ಼
ೖసభ

∑ ஻ೖ
మ಼

ೖసభ
 (3-5) 

The first term ∑ ௞ܤ
ଶ௄

௞ୀଵ  in (3-5) is related to the energy of the signal computed in the 

frequency domain, and, using Parsevel’s theorem, it can be expressed as the energy 

computed in the time domain 

 ∑ ሾݒሺ݊ሻሿଶேିଵ
௡ୀ଴ ൌ

ଵ

ே
∑ ሾܸሺ݈ሻሿଶேିଵ
௟ୀ଴ ൌ

ே

ଶ
∑ ௞ܤ

ଶ௄
௞ୀଵ  (3-6) 

where N is the number of samples of ݒሺ݊ሻ and ܸሺ݈ሻ is the discrete Fourier transform 

(DFT) of ݒሺ݊ሻ. The derivation of (3-6) is described as follows:  



36 
 

 ܸሺ݈ሻ ൌ ሺ݊ሻ൯ݒ൫ܶܨܦ ൌ ∑ ሺ݊ሻ݁ି௝ݒ
మഏ೗

ಿ
௡

௡ ൌ ∑ ∑ ௞݊ሻ௞ߗሺݏ݋௞ܿܤ ݁ି௝
మഏ೗

ಿ
௡

௡  

 ൌ ∑ ௞ܤ ∑ ௞݊ሻ௡ߗሺݏ݋ܿ ݁ି௝
మഏ೗

ಿ
௡

௞ ൌ ∑
஻ೖ

ଶ
∑ ൤݁ି௝ቀ

మഏ೗

ಿ
ିఆೖቁ௡ ൅ ݁ି௝ቀ

మഏ೗

ಿ
ାఆೖቁ௡൨௡௞  

 
௔௦௦௨௠௜௡௚ 

ಿ೾ೖ 
మഏ

 ௜௦ ௜௡௧௘௚௘௥

ሳልልልልልልልልልልልልልልልልልልሰ ∑
ே஻ೖ

ଶ
ሾߜ ቀ

ଶగ௟

ே
െ ௞ቁߗ ൅ ߜ ቀ

ଶగ௟

ே
൅ ௞ቁሿ௞ߗ   

 ∑ ሾݒሺ݊ሻሿଶ௡ ൌ
ଵ

ே
∑ ሾܸሺ݈ሻሿଶ௟ ൌ

ଵ

ே
∑ ሺ

ேమ஻ೖ
మ

ସ
൅

ேమ஻ೖ
మ

ସ
ሻ௞ ൌ

ே

ଶ
∑ ௞ܤ

ଶ
௞  (3-7) 

The second term 
∑ ஻ೖ

మఆೖ
మ಼

ೖసభ

∑ ஻ೖ
మ಼

ೖసభ
 in (3-5) is a weighted sum of the square of radial frequencies 

and is referred to as the RMS frequency. If this second term is denoted as ߗ௥௠௦
ଶ , then 

can be expressed as  

ሺ݊ሻ൯൧ݒ൫ߖൣܧ  ൌ
ଶ

ே
∑ ሾݒሺ݊ሻሿଶߗ௥௠௦

ଶே
௡ୀଵ  (3-8) 

Because ݒሺ݊ሻ is assumed to have a zero mean and a Gaussian distribution [92], 

∑ ሾ௩ሺ௡ሻሿమಿ
೙సభ

ఙ೙
మ  follows the chi-square distribution ߯ଶሺܰሻ with N degrees of freedom:  

 
∑ ሾ௩ሺ௡ሻሿమಿ
೙సభ

ఙ೙
మ ~߯ଶሺܰሻ (3-9) 

where ߪ௡ is the Std of the background noise ݒሺ݊ሻ. Thus ߖൣܧ൫ݒሺ݊ሻ൯൧ can be translated 

into a chi-square distribution by substituting (3-8) into (3-9)  

 ܼ௡௢௜௦௘ ≡
ே

ଶఙ೙
మఆೝ೘ೞ

మ  ሺ݊ሻ൯൧~߯ଶሺܰሻ (3-10)ݒ൫ߖൣܧ

Figure 3.2 shows the pdf of ܼ௡௢௜௦௘ and compares it with ߯ଶሺܰሻ for N equal to 10. It can 

be seen that the pdf of ܼ௡௢௜௦௘ provides a good approximation of ߯ଶሺܰሻ. Because NEO is 

a measure of instantaneous energy that is equal to the product of the square of the signal’s 



37 
 

amplitude and the square of the signal’s frequency [78], ݄ܶఅ can be expressed by 

 ݄ܶఅ ൌ ௡ߪ଴ܥ
ଶߗ௥௠௦

ଶ  (3-11) 

where ܥ଴ is a scalar. In this case, ݄ܶఅ reflects the level of noise energy. Thus, we obtain 

ሺ݊ሻ൯൧ݒ൫ߖൣܧ൛ܾ݋ݎܲ ൐ ݄ܶఅൟ ൌ ሺ݊ሻ൯൧ݒ൫ߖൣܧ൛ܾ݋ݎܲ ൐ ௡ߪ଴ܥ
ଶߗ௥௠௦

ଶ ൟ 

 ൌ ܾ݋ݎܲ ቄ
ே

ଶఙ೙
మఆೝ೘ೞ

మ ሺ݊ሻ൯൧ݒ൫ߖൣܧ ൐
ே஼బ

ଶ
ቅ ൌ 1 െ ఞమሺܨ

ே஼బ

ଶ
, ܰሻ (3-12) 

where ܨఞమ is the cumulative distribution function for the chi-square distribution. (3-12) 

shows that, when the threshold value is chosen to be proportional to the neural noise 

level, setting ܾܲ݋ݎሼߖൣܧ൫ݒሺ݊ሻ൯൧ ൐ ݄ܶఅሽ within a reasonable limit of false detections 

depends only on parameters of C0 and N and is independent of the neural background 

noise. 

 

Figure 3.2. pdf of Znoise and ߯ଶሺܰሻ for N equal to 10. 

3.2.2. Parameters Settings for NEO Thresholding 

The parameter ܥ଴ determines the ratio of the threshold value to the background noise 

level. If ܥ଴ is too small, NEO coefficients associated with noise will be detected as false 

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

P
ro

b
a

b
ili

ty
 d

e
n

si
ty

2(N)

Z
noise

)(22  Ermsn2
N



38 
 

spikes. If ܥ଴ is too large, NEO coefficients associated with spikes will be missed. To 

determine the best value of ܥ଴, a hit-to-false-alarm rate (HFR) metric is used, defined as 

ܴܨܪ  ൌ
ிೞ೛೔ೖ೐ሺ்௛೽ሻൈி௜௥௜௡௚_௥௔௧௘

ி௜௥௜௡௚_௥௔௧௘ାி೙೚೔ೞ೐ሺ்௛೽ሻൈ௙ೞ
 (3-13) 

where ܨ௦௣௜௞௘ሺ݄ܶఅሻ and ܨ௡௢௜௦௘ሺ݄ܶఅሻ are the probability of noisy spike NEO samples and 

noise NEO samples exceeding the threshold value ݄ܶఅ, respectively. The numerator 

represents the number of hits and ܨ௡௢௜௦௘ሺ݄ܶఅሻ ൈ ௦݂ in the denominator represents the 

number of false alarms. To maximize the detection performance, the number of hit needs 

to be maximized and the number of false alarms needs to be minimized. As defined in 

(3-11), because ݄ܶఅ is a function of ܥ଴, ܥ଴ needs to be set to maximize the HFR. Figure 

3.3 shows the averaged HFR at different SNRs as a function of ܥ଴ by studying the 

statistics of synthetic neural signals with sampling frequency of 20 kHz based on real 

extracellular recordings. The construction of datasets will be described later in the result 

section. It can be seen that ܥ଴ can be set to 9.5 to maximize the HFR. 

 

Figure 3.3. The hit-to-false-alarm rate as a function of ܥ଴. 

The estimate of ߖൣܧ൫ݔሺ݊ሻ൯൧ can be calculated using a moving average filter with a 

length of N as indicated by (8). The parameter N determines the degree of smoothing 

within NEO coefficients. A factor called “Smoothing effect” (SE) for a NEO signal 

7 8 9 10 11 12 13 14
0.88

0.9

0.92

0.94

0.96

0.98

C
0

H
it-

to
-f

a
ls

e
-a

la
rm

 r
a

te



39 
 

 ሺ݊ሻ൯ is defined asݔ൫ߖ

ሺ݊ሻ൯ሿݔ൫ߖሾܧܵ  ൌ
ெ௘௔௡ሺ௣௘௔௞௦ ௢௙   ாൣఅ൫௫ሺ௡ሻ൯൧ሻ

ெ௘௔௡ሺ௣௘௔௞௦ ௢௙ అ൫௫ሺ௡ሻ൯ሻ
 (3-14) 

A large value of SE provides good approximation of (3-3) and (3-5) and requires a large 

value of N. However, if N is too large, the NEO coefficients related to neural spikes will 

be severely smoothed and become too small to be detected. To provide a balance between 

the approximation accuracy and the smoothing of spikes, we defined another factor called 

“Smoothing quality” that describes the ratio between the SE of NEO spikes and the SE of 

NEO noise, given by 

ݕݐ݈݅ܽݑݍ ݄݃݊݅ݐ݋݋݉ܵ  ൌ
ௌாሺఅ൫௦ሺ௡ሻ൯ሻ

ௌாሺఅ൫௩ሺ௡ሻ൯ሻ
 (3-15) 

The Smoothing quality can be used as a criterion to select N. Figure 3.4 shows the 

normalized Smoothing quality as a function of a moving average filter of length N. It can 

be seen that the Smoothing quality degenerates as N is greater than 15, which means NEO 

spikes are smoothed more than NEO noise. Thus, the best choice of N is 15 from Figure 

3.4. 

 

Figure 3.4. Normalized smoothing quality as a function of moving average filter with a 
length of N. 

10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Moving average filter length N

S
m

o
o
th

in
g
 q

u
a
lit

y



40 
 

3.3 Hardware Design for Automatic NEO Thresholding 

The analysis in section II suggests that an automatic NEO thresholding method could 

be implemented by first computing smoothed NEO coefficients, ܧሾߖሺݒሺ݊ሻሻሿ, and then 

comparing it to the NEO threshold, ݄ܶఅ. From (3-11), it can be observed that the 

calculation of ݄ܶఅ requires an estimate of RMS frequency, ߗ௥௠௦, and the Std of the 

neural background noise ߪ௡. Because the neural signal consists of spikes and background 

noise, any estimation of ߗ௥௠௦ and ߪ௡will be affected by the firing rate of spikes. Thus, 

robust methodologies need to be developed to minimize the impact of the firing rate on 

the estimate of ߗ௥௠௦ and ߪ௡. Furthermore, the power and area efficiency of the hardware 

realization of ܧሾߖሺݒሺ݊ሻሻሿ and of ߗ௥௠௦ and ߪ௡ estimation must be carefully considered so 

that this threshold estimation function can be implemented in a real-time and fully 

implantable neural recording microsystem. 

3.3.1 Hardware Implementation of ࢸൣࡱ൫࢞ሺ࢔ሻ൯൧ 

Hardware implementation of ߖൣܧ൫ݔሺ݊ሻ൯൧ can be achieved by a moving average filter 

comprised of several memory registers, each with twice the word length of a neural data 

sample. Some studies used a Barlett window [81] or Hamming window [106] with five or 

six registers to approximate the moving average filter estimation of ߖൣܧ൫ݔሺ݊ሻ൯൧. To 

minimize the circuit area, we proposed to estimate ߖൣܧ൫ݔሺ݊ሻ൯൧ using an infinite impulse 

response (IIR) exponential filter, which needs only one register. The IIR response, yIIR, to 

NEO coefficients ߖ൫ݔሺ݊ሻ൯ can be expressed by 

ூூோሺ݊ሻݕ  ൌ ሺ݊ݔΨሺߙ െ 1ሻሻ ൅ ሺ1 െ ሺ݊ݕሻߙ െ 1ሻ (3-16) 

where ߙ is the IIR coefficient ranging from zero to one that determines the smoothing 



41 
 

strength of NEO coefficients. To provide the best approximation of a moving average 

filter, (3-16) can be expanded as 

ூூோሺ݊ሻݕ  ൌ ∑ ሺ1ߙ െ ሻ௠ஶߙ
௠ୀ଴ Ψሺ݊ െ݉ሻ (3-17) 

Because a finite impulse response (FIR) moving average filter can be expressed as 

ிூோሺ݊ሻݕ  ൌ ሺ݊ሻ൯൧ݔ൫ߖൣܧ ൌ ∑
ଵ

ே
ேିଵ
௠ୀ଴ Ψሺ݊ െ݉ሻ (3-18) 

the error in approximating the FIR filter with the IIR expansion can be determined by the 

mean-square difference, J(), between (3-17) and (3-18)  

ሻߙሺܬ  ൌ ∑ ሺߙሺ1 െ ሻ௠ேିଵߙ
௠ୀ଴ െ

ଵ

୒
ሻଶ ൅ ∑ ሺ1ߙ െ ሻ௠ஶߙ

௠ୀே  (3-19) 

To minimize the approximation error J() for a value of N, ߙ can be swept between zero 

and one. The value of ߙ resulting in the minimum J() is selected to approximate the FIR 

filter with the length of N. 

Figure 3.5 shows that ߙ equal to 3/32 provides the best approximation of a moving 

average filter with N = 15while also enabling an efficient hardware realization for 

coefficient multiplications. 



42 
 

 

Figure 3.5. The approximation error between the IIR exponential filter and the FIR 
moving average filter at different values of ߙ.  

3.3.2 Estimate of ࢙࢓࢘ࢹ 

Conventionally, ߗ௥௠௦ can be expressed as: 

௥௠௦ߗ 
ଶ ൌ

׬ ఆమ௑మሺఆሻௗఆ
ഏ
బ

׬ ௑మሺఆሻௗఆ
ഏ
బ

 (3-20) 

where ܺሺߗሻ is the Fourier transform (FT) of neural signal x(n). This method of 

estimating ߗ௥௠௦ will be greatly affected by the spike firing rate. Moreover, on-chip 

implementation of (3-20) requires prohibitively expensive computation and memory for 

the FT and the square operation. For an alternative method, we observe that ߗ௥௠௦ has 

been shown to be a kind of average measure of the zero-crossing frequency for a zero-

mean Gaussian process [108]. The zero-crossing frequency is the number of zero 

crossings in a neural signal divided by twice the length of the neural signal. Figure 3.6 

plots relative ߗ௥௠௦ estimation error vs. firing rate using the conventional method (3-20) 

and the zero-crossing method and shows that zero-crossing reduces the interference by at 

least 5% when the firing rate is greater than 50. 

0

0.02

0.04

0.06

0.08

0.1

0.12

IIR coefficient 

J(


)














32

2

32

4

32

6

32

8

32

10



43 
 

 

Figure 3.6. Estimation of the RMS frequency using the conventional method and the 
zero-crossing method at different firing rates with SNR = 4. 

Figure 3.7 shows a hardware efficient block diagram for calculating ߗ௥௠௦ using the 

zero-crossing method. The XOR gate compares sign bits of two consecutive neural 

samples such that it outputs logic 1 when a zero crossing occurs. The XOR output is 

accumulated in a register for 2ே೥ clock cycles. For a final output of the ߗ௥௠௦ calculator of 

nz, ߗ௥௠௦ can be determined by ߨ
௡೥

ଶಿ೥
. 

 

Figure 3.7. Block diagram of zero-crossing ߗ௥௠௦ calculator. 

3.2.3 Estimate of ࢔࣌ 

The conventional way of estimating σ୬ (the Std of background noise) is by calculating 

the Std of a neural signal (spikes and background noise). It has been shown that the 

conventional estimate is sensitive to the spike firing rate [91]. One study has shown that 

an estimate for ߪ௡ can be obtained from the median absolute deviation (MAD) [91]:  

20 40 60 80 100
0

0.05

0.1

0.15

0.2

Firing rate (Hz)


rm

s e
st

im
a

tio
n

 e
rr

o
r

Zero crossing frequency

Conventional estimation frequency
(rms

 of neural signal)

Sign bit of 
neural samples

R
eg
is
te
r

XOR

R
eg
is
te
r

Counter

nz



44 
 

௡ߪ 
ெ஺஽ ൌ

௠௘ௗ௜௔௡ሺ|௫ሺ௡ሻ|ሻ

଴.଺଻ସହ
 (3-21) 

The MAD method was demonstrated to be much more weakly affected by spike firing 

rate than the conventional estimate. However, hardware realization of the median 

operator requires sorting a large array of neural samples. Figure 3.8 shows the relative 

estimation error for MAD vs. number of neural samples with the absence of spikes. It can 

be observed that at least one hundred samples are required for the average of accurate 

estimation and even more for small variance of estimation error. When the spikes in a real 

neural signal are included, many more samples need to be stored for robust estimation. 

Thus, the MAD method demands a large memory size and would be area-inefficient for 

on-chip implementation. 

 

Figure 3.8. The ߪ௡ estimation error using the MAD method with different numbers of 
neural background noise samples. Noise was randomly generated one hundred times from 
a noise model. Thus, MAD estimates ߪ௡ one hundred times for each fixed number of 
noise samples. 

To estimate ߪ௡ in real time with efficient use of hardware resources, we introduce a 

noise Std calculator that consumes a small amount of power and area at the cost of speed, 

since speed is not a critical limitation in neural signal processing [86]. In this work, the 

noise Std calculator was optimized in terms of estimation error and time first, and was 

50 100 150 200 250 300
-0.1

0

0.1

0.2

0.3

0.4

Number of samples

E
rr

o
r



45 
 

proven to be tolerant to the firing rate later. 

The noise Std calculator is based on the statistical theory that the probability of 

Gaussian noise exceeding its σn is known to be precisely 0.159. It outputs an estimated 

denoted as ߪ௡
௘௦௧. Thus, if a neural signal is compared with ߪ௡

௘௦௧, a 1-bit digital waveform 

can be generated with 1 representing each neural sample amplitude that is greater than 

௡ߪ
௘௦௧. The duty cycle of the digital waveform is 0.159 if ߪ௡

௘௦௧ is equal to ߪ௡. Otherwise, 

the difference between the duty cycle and the value of 0.159 can be used to update ߪ௡
௘௦௧. 

A block diagram of the noise Std calculator to realize this approach is shown in Figure 

3.9. A 1-bit digital comparator first compares each neural sample to ߪ௡
௘௦௧ and generates a 

‘1’ if the amplitude of neural signal is greater than ߪ௡
௘௦௧ or a ‘0’ if otherwise. A counter 

then records the number of ‘1’ values in the comparator output bit steam for M clock 

cycles. The output of the counter is then compared with the value of 0.159 M, and the 

difference from the subtractor is fed into a digital integrator to update ߪ௡
௘௦௧ every M clock 

cycles. The loop keeps updating ߪ௡
௘௦௧ every M clock cycles until the estimate has 

converged. The convergence detector is used to judge the convergence. 

 

Figure 3.9. Block diagram of the noise Std calculator. 

To design the digital integrator, a first-order filter was used to achieve high loop 

stability with low circuit complexity. The z-domain transfer function of this filter can be 

expressed as  

Neural samples

Comparator Counter

Subtractor
Digital 

integrator

σn
est

Convergence 
detector



46 
 

ሻݖሺܩ  ൌ ܭ
ଵିఠ೥௭

షభ

ଵି௭షభ
 (3-22) 

where K is the gain and ߱௭ is the zero of the integrator. For a time domain circuit 

implementation, if the filter coefficients K and ߱௭ could be realized as binary values, it 

would greatly reduce circuit complexity. To test the impact of using binary coefficients on 

the estimation error and time, different binary values for filter coefficients were studied. 

Figure 3.10(a) shows the error and the convergence time for different binary values of K. 

A large value of K converges quickly but at the expense of high error. To provide a 

balance between the error and the convergence time, K was chosen to be 1/64Figure 

3.10(b) plots the error-time product for different binary values of ߱௭. It can be seen that 

߱௭ beyond 1/64 contributes little improvement in performance. To determine the window 

size M for the counter, Figure 3.10(c) shows the error-time product for different sizes of 

M. The optimal value of M was set as 256 from Figure 3.10(c), which also provides the 

best convergence time. 

 

 (a) (b) 

Figure 3.10. The ߪ௡ estimation error and time for the Std calculator design parameters (a) 
Gain, (b) zero, (c) M and (d) M and MS. 

 

8

1

16

1

32

1

64

1

128

1

256

1
0

0.05

0.1

0.15

0.2

E
rr

o
r

Gain, K

0

10

20

30

40

T
im

e
 (

se
c)

0.28

0.29

0.3

0.31

0.32

0.33

0.34

Zero, z

E
rr

o
r 

T
im

e

8

1

16

1

32

1

64

1

128

1

256

1

4

1



47 
 

Figure 3.10 (cont’d) 

    

 (c) (d) 

The convergence detector determines when the estimate converges. It performs the 

following functions step by step: 

1) Compare the current estimate ߪ௡
௘௦௧ሺ݉ሻ with the estimate produced in the previous 

cycle ߪ௡
௘௦௧ሺ݉ െ 1ሻ. Assign a comparison result (m) of +1 when ߪ௡

௘௦௧ሺ݉ሻ>ߪ௡
௘௦௧ሺ݉ െ

1ሻ, -1 when ߪ௡
௘௦௧ሺ݉ሻ< ߪ௡

௘௦௧ሺ݉ െ 1ሻ, and 0 for ߪ௡
௘௦௧ሺ݉ሻ= ߪ௡

௘௦௧ሺ݉ െ 1ሻ. 

2) Accumulate M samples of successive comparison results, denoted as ܵఋ ൌ

∑ ሺ݉ሻߜ
ெഃ
௠ୀଵ . 

3) Check MS successive samples of S. If all |S|≤1, ߪ௡ has converged. 

Figure 3.10(d) shows the error-time product for M and MS. From Figure 3.10(d), M 

shows best performance when it is equal to 16. Because the performance of MS is little 

affected by different values, it was set as 4 to provide the smallest convergence time. 

To validate these design choices, the ߪ௡ estimation error of the noise Std calculator 

was analyzed for different firing rates of spikes. The results plotted in Figure 3.11 show 

the relative error of the noise Std calculator is proportional to the firing rate. For 

comparison, Figure 3.11 also shows the estimation error using the MAD method, which 

32 64 128 256 512
0.1

0.15

0.2

0.25

Window Size M

E
rr

o
r 

T
im

e

0.1

0.2

0.3

0.4

E
rr

o
r 

T
im

e

 

 

M


M
S

4 8 16 32 64
M

S

4 8 16 32 64M




48 
 

is reported to be robust to the spike firing rate [91]. Because the noise Std calculator 

counts the number of neural samples greater than ߪ௡
௘௦௧ instead of using the amplitude of 

neural samples for ߪ௡ estimation like MAD does, the noise Std calculator provides less 

error than MAD. Thus, we can see that the spike firing rate has less effect on the 

estimated ߪ௡ for the noise Std calculator. 

 

Figure 3.11. ߪ௡ estimation error for different firing rates using MAD and the Std 
calculator. 

3.3.4 Automatic NEO Thresholding for Spike Detection 

Bringing all of the functional components described above together allows us to form 

the complete NEO-based automatic thresholding spike detector shown in Figure 3.12. To 

mitigate the sensitivity of NEO algorithm to high frequency noise, neural signals are first 

smoothed with an Exponential filter in (3-16) with ߙ equal to 1/4. The NEO calculator 

and the second Exponential filter are used to compute ߖൣܧ൫ݔሺ݊ሻ൯൧. In the automatic 

NEO thresholding (ANT) block, the Noise Std calculator and the Zero-crossing ߗ௥௠௦ 

calculator evaluate σn and ߗ௥௠௦, respectively, and these outputs feed the Threshold 

calculator to estimate the threshold value using (3-11). The threshold value ݄ܶఅ is stored 

in a Threshold register where it is compared with ܧሾߖ൫ݔሺ݊ሻ൯ሿ to provide thresholding for 

20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

Firing rate (Hz)

E
rr

o
r

Noise Std calculator

MAD



49 
 

spike event detection. For the multichannel application, the ANT block can sequentially 

estimate threshold values for multiple channels. Thus, the threshold value for each 

channel can be updated every few seconds. 

 

Figure 3.12. Block diagram of NEO-based automatic thresholding spike detector. 

3.4 Simulation Results  

3.4.1 Datasets 

To evaluate the performance of the ANT method for the NEO-based spike detection, 

synthetic neural signals constructed from the real recordings were used. Synthetic neural 

signals are used rather than experimentally recorded neural signals because the synthetic 

signals provide spikes with ground truth, and the SNR and the firing rate of synthetic 

signals can be varied. Real neural signals recorded from the hippocampus of anesthetized 

rats were obtained from a public database (crcns.org/data-sets/hc/hc-1/) [44] that has been 

used to evaluate spike detection and spike sorting performance in several studies [109-

111]. The datasets consist of simultaneous intracellular and extracellular recordings. The 

intracellular spikes fired by the same neuron have high SNR and can be used as 

indicators of extracellular spikes. Three real datasets (d533101.dat, d14521.001.dat and 

d12821.001.dat) were selected for the construction of synthetic datasets. One of the 

Threshold 
register

Neural 
signal

NEO 
calculator

Exponential 
filter 2

Comp

Spike 
event

Th
Std 

calculator

Zero‐crossing 
rms calculator

Threshold 
calculator

n
est

rms

Automatic  NEO threshing block

E[(x(n))]

Exponential 
filter 1



50 
 

datasets was used as a training dataset to determine the parameters of C0 and N as 

discussed in Section 3.2. Because real datasets were acquired at different sampling rates, 

the extracellular signals were first resampled at 20kHz shown in Figure 3.13 (top). To 

remove the local field potential, the extracellular signal was bandpass filtered by a sixth 

order elliptical filter with the low cutoff frequency set to 300 Hz. Because the sampling 

rate ௦݂ is suggested to be eight times greater than the signal for NEO algorithm [78], the 

high cutoff frequency was set as ௦݂/8. The bandpass filtered extracellular signal is shown 

in Figure 3.13 (middle). To obtain the spike template from each dataset, the extracellular 

spikes indicated from the intracellular spikes shown in Figure 3.13 (bottom) were 

extracted and aligned. The spike template was obtained by averaging the extracted spikes. 

The spike template was allocated 64 samples representing an approximately 3 ms spike 

length. The background noise was modeled as a colored Gaussian random process by an 

autoregressive model [106] with coefficients based on the spike free noise segments in 

each real dataset. Finally, the spike template was distributed into background noise using 

a Poisson firing model with firing rates ranging from 10 to 100 Hz and a refractory period 

of 3ms. Synthetic neural signals were tested at different SNRs. The SNR was varied from 

3 to 6. The SNR in this thesis work is defined as [77] 

 SNR = 
peak to peak amplitude of spike
2×standard deviation of noise   (3-23) 



51 
 

 

Figure 3.13. Real neural signals from a public database. Top: extracellular signal. Middle: 
Bandpass filtered extracellular signal from 300Hz to ௦݂/8. Bottom: intracellular signal 
showing spike locations. 

3.4.2 Detection Performance 

The spike detection performance was evaluated by measuring detection accuracy 

defined as 

ݕܿܽݎݑܿܿܣ  ൌ
்௉

்௉ାிேାி௉ 
 (3-24) 

where TP is true positive representing the number of correctly detected spikes, FN is 

false negative representing the number of missed spikes and FP is false positive 

representing the number of false spikes due to detecting noise as spikes. 

The performance of the ANT-based spike detector was compared with the 

performance of three different methods: The conventional thresholding (CT) method sets 

the threshold to a scaling factor C of the mean of ܧሾߖ൫ݔሺ݊ሻ൯ሿ. The scalar values of C 

were chosen to be 3.5, 4, 4.5 and 5 because these values were found to provide the best 

detection performance. The manual thresholding (MT) method chooses a threshold 

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-1000

-500

0

500

1000

A
m

p
lit

u
d

e

0 1 2 3 4 5 6 7 8 9 10

x 10
4

-200

0

200

400

A
m

p
lit

d
u

e

0 1 2 3 4 5 6 7 8 9 10

x 10
4

1000

1500

2000

Time (samples)

A
m

p
lit

u
d

e

Extracellular signal

Bandpass filtered signal

Intracellular signal



52 
 

manually, so the threshold value resulting in the best detection accuracy was chosen. To 

further compare the performance of ߪ௡ estimation between the MAD and the Noise Std 

calculator, the MAD based ANT method (ANTMAD) was also evaluated. 

Figure 3.14 shows the detection accuracy of these methods at different SNRs averaged 

across the firing rate from 10 to 100 Hz. The accuracy of the ANT-based spike detector is 

above 90% on average and its variance is within 3.2% when the SNR is greater than 4. 

The ANT-based spike detector is within 2.5% of the MT method when the SNR is greater 

than 4 and its performance decreases compared to the MT method when the SNR is 

below 4. The performance of the ANT-based spike detector is slightly (1%) less than the 

ANTMAD method when the SNR is greater than 4.5, but its performance becomes 5% 

better compared to the ANTMAD method at low SNR. The reason for this is that the MAD 

method estimates ߪ௡ with higher value than the Noise Std calculator, and thus the ANT 

threshold is less than the ANTMAD threshold. When the SNR is high, the ANT method 

detects some noise as spikes, but, when the SNR is low, the ANTMAD method missed 

more spikes than the ANT method. The CT method does not provide better performance 

than the ANT method no matter which scalar value C was chosen. The CT method with 

C equal to 4 shows the best performance on average across different SNRs compared to 

other scalar values. On average, the best CT performance is up to 5% worse than the 

ANT method. In its worst case, the ANT method is still comparable to the best CT 

performance when the SNR is greater than 3.5. 

 



53 
 

 

Figure 3.14. Spike detection accuracy against SNR using ANT, MT, CT and ANTMAD 
methods averaged across the firing rate from 10 to 100 Hz. 

To show the robustness of the ANT-based spike detector against the firing rate, Figure 

3.15 compares the ANT method to the ANTMAD method and the CT method with 

different scalar values, all when the SNR is four. The ANT method provides the best 

performance against the firing rate compared to other methods. The detection accuracy of 

ANT is almost constant for the firing rate between 30 to 100. It decreases slightly when 

the firing rate is below 20 because the number of TP is reduced but the number of FP is 

still the same when the firing rate is low. The variance of ANT performance is within 3% 

when the firing rate is below 70 and increases slightly to 4% when it is above 70. The 

performance of ANTMAD method decreases at high firing rates where it is up to 5% worse 

than the ANT method. The CT method cannot provide robust performance for different 

values of C. When C was set for good performance at high firing rate, the accuracy is at 

least 10% less than ANT when the firing rate is below 20, and when C was set for good 

performance at low firing rate, the accuracy is at least 10% less than ANT when the firing 

rate is above 60. Overall, these results show that the ANT method can determine the 

threshold in a manner that is more robust to the firing rate than any other known method. 

3 3.5 4 4.5 5 5.5 6
0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

A
cc

u
ra

cy

 

MT
CT: C = 3.5
CT: C = 4
CT: C = 4.5
CT: C = 5
ANT

MAD

ANT



54 
 

 

Figure 3.15. Spike detection accuracy of the ANT, CT and ANTMAD methods at different 
firing rates when the SNR is 4. 

Because neural recording systems can sample at higher frequency than 20 kHz, 

synthetic neural signals with sampling frequencies of 25 kHz and 30 kHz were 

constructed and tested. The parameter ܥ଴ was determined to be 10 and 10.5 for 25 kHz 

and 30 kHz, respectively. The parameter N and its corresponding parameter ߙ remain the 

same as 20 kHz. Figure 3.16 shows the performance of the ANT method for different 

sampling rates vs. SNR and firing rate. The ANT method performance only decreases 

slightly when the sampling rate increases. This occurs because, when the sampling rate 

increases, the high cutoff frequency ௦݂/8 of the bandpass filter also increases. Thus, the 

threshold value becomes larger to reflect the raise of background noise level, which 

results in missing more spikes. 

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

Firing rate (Hz)

A
cc

u
ra

cy

 

 

CT: C = 3.5
CT: C = 4
CT: C = 4.5
CT: C = 5
ANT

MAD

ANT



55 
 

 

(a) (b) 

Figure 3.16. Spike detection accuracy of the ANT method for synthetic neural signals 
with different sampling rates at (a) different SNRs and (b) different firing rates. 

3.4.3 Hardware Resource of the ANT Method 

The ANT thresholding block shown in Figure 3.12 was designed in Verilog HDL. The 

data width for this implementation was chosen as 10 bit and the clock frequency was set 

to 20 kHz. The design of Verilog codes were then mapped to a 130nm CMOS technology 

using Synopsis software. Its power and area were estimated by Synopsys (post synthesis) 

to be 50 nW and 0.021 mm2. Although the CT method consumes negligible power and 

area, its detection performance is intolerant to the firing rate as shown in Figure 3.15. To 

provide robust performance against the firing rate, the scalar C has to be recalibrated 

periodically. To the best of our knowledge, an automatic recalibration process for the 

high channel count has not been developed. Compared to the ANTMAD method, the ANT 

method provides more accurate estimation of background noise level and lower hardware 

resource. The Noise Std calculator only occupies around 6300 m2 while the median 

operator needed for the ANTMAD method would occupy 0.21 mm2 in the same technology 

assuming sorting 100 neural data [112]. 

3 4 5 6
0.5

0.6

0.7

0.8

0.9

1

SNR

A
cc

u
ra

cy

 
3.6 3.8 4

0.8

0.85

0.9

 

 

20 kHz
25 kHz
30 kHz

20 40 60 80 100
0.8

0.85

0.9

0.95

1

Firing rate (Hz)

A
cc

u
ra

cy

 

 

20 kHz
25 kHz
30 kHz



56 
 

For a multichannel system, the ANT-based spike detector can be used with multiple 

channels sequentially by scaling the clock frequency, which would also scale power 

consumption proportionally. The ANT method estimates a threshold value in 

approximately five second. Thus, assuming the neural background noise will vary every 

five minutes [113], the ANT block can support up to 64 channels to sequentially update 

threshold values for each channel roughly every five minutes. In this manner, the power 

and area consumption for 1000 channels would be less than 1 W and 0.4 mm2, 

respectively. Overall, the ANT method provides the best trade-off between detection 

performance and hardware cost. In addition, its power and area consumption makes it 

scalable for high-channel-count application. 

3.5 Conclusion 

In this chapter, we presented a new method to automatically estimate the threshold 

value for NEO-based spike detection in real time. The threshold value is demonstrated to 

be associated with the standard deviation and the RMS frequency of neural background 

noise. Hardware efficient methodologies were designed to calculate these signal 

parameters such that the threshold value is adaptive to the noise level and robust to the 

firing rate. The automatic and robust NEO thresholding method allows for high spike 

detection performance online without user interventions. The low hardware cost of the 

new method demonstrates its feasibility for use in high-channel-count implantable neural 

recording microsystems for future BMI applications.  



57 
 

Chapter 4 Hardware Efficient Frequency Band Separability based Neural Spike 

Feature Extraction 

When a spike is detected as described in Chapter 3, the next step is extracting useful 

information from the spike in a process called feature extraction. The results of feature 

extraction are spike features that represent a spike with significantly fewer data points than 

the raw recorded neural signal. The similarity of spike features is measured by the distance 

in the feature space. To improve the performance of spike sorting, the distance of spikes 

fired by the same neuron should be as small as possible in the spike feature space. 

Thus, feature extraction has a significant impact on both the sorting accuracy and the 

hardware complexity. Recent methods such as Integral transform (IT) [114], zero crossing 

features (ZCF) [94], first and second derivative extrema (FSDE) [97] and discrete 

derivative extrema (DD|2-Extrema) [96] represent each spike with no more than four 

features that can be extracted with simple computation . However, because the 

background noise of neural signals varies significantly every few minutes [113], the effect 

of this noise variation on features extracted using these methods, and hence spike sorting 

performance, has not been well explored. In this chapter, a frequency band separability 

method is introduced for spike feature extraction to analyze the spike and noise 

information within different frequency bands. Based on this method, and taking into 

account the hardware design complexity, a weighted haar DWT implementation is 

described to extract features that maximize the separability between spike classes. The 

new feature extraction method was tested at different signal-to-noise ratios using 

synthesized datasets consisting of considerable and various spike shapes extracted from 

the real neural recordings. The results show that the new method has 3-10% better spike 



58 
 

sorting performance than other hardware-efficient methods while consuming comparable 

hardware resources. 

4.1 Training Datasets 

In order to evaluate spike sorting performance of any feature extraction method, neural 

data with true spike times and classes are needed. The common approach is to use 

synthetic datasets constructed from real neural recordings [95, 106]. The datasets used in 

chapter 3 only provides limited spike shapes. To analyze various spike shapes, real neural 

signals recorded from the hippocampus of rats were used to construct synthetic neural 

datasets (crcns.org/data-sets/hc/hc-2/) [115]. The real datasets include the broadband raw 

data from simultaneous multichannel recordings along with the spike times and classes 

determined by the authors’ offline spike sorting method. The recording duration was over 

17 minutes at a sampling rate of 20 kHz. A sixth order elliptical filter with bandwidth 

from 300 to 3000 Hz was used to remove the local field potential from the raw data of 

each recording channel. Using the provided spike times and classes, spike templates were 

generated from the bandpass filtered data for spike classes with firing rates greater than 

0.5 Hz. Figure 4.1 shows the spike template waveforms obtained from six different 

channels. Channels including two, three, and four spike classes were selected to study the 

sorting accuracy among different number of spike classes. In each channel, data segments 

with amplitude less than a certain value were extracted to create noise models. These spike 

templates and noise models were used as training datasets to analyze spike feature 

extraction statistics, as described in the next section. To synthesize neural signals, the 

background noise was modeled as a colored Gaussian random process by an 

autoregressive-moving-average model [87, 106]. To ensure the relationship between 



59 
 

spikes and noise match real recording conditions, spike templates and the noise model 

from the same channel were used to construct each dataset. Finally, a Poisson firing model 

with a firing rate of 50 Hz was used in each dataset with SNR varying from 3 to 6, where 

SNR is defined the same as in chapter 3. 

 

Figure 4.1. Spike templates extracted from six different neural recording channels. Left 
column contains two spike classes, middle three, right four. These spike templates are 
used as training datasets to analyze parameters for feature extraction. The title of each 
subplot describes the source file from which spike templates are extracted. For example, 
ec013.844 (ch_21) means the data file name is ec013.844 and the channel number is 21. 

4.2 Spike Features 

Studies have shown that neural spikes decay as the recording distance from a neuron 

increases and that high frequency components attenuate with distance more than low 

frequency components [116, 117]. Thus, spikes recorded from different neurons exhibit 

different frequency component magnitudes because of their relative position to the 

recording electrode [43]. As a result, the energy and amplitude of spikes are sensitive to 

their relative positions to the electrode and can be used to discriminate spikes recorded on 

a single channel. As shown in Figure 4.1, spikes obviously exhibit different negative and 

positive peaks. Consequently, early research used spike peaks as features [92]. However, 

0 1

-100

-50

0

50

ec013.844 (ch_21)
A

m
p
lit

u
d
e
 ( 

V
)

0 1

-100

-50

0

50

ec013.528 (ch_15)

Time (ms)

A
m

p
lit

u
d
e
 ( 

V
)

0 1
-200

-100

0

100

ec013.527 (ch_15)

0 1

-200

-100

0

100

ec013.527 (ch_27)

Time (ms)

0 1

-200

-100

0

100

200
ec013.529 (ch_27)

0 1
-150

-100

-50

0

50

ec013.755 (ch_17)

Time (ms)



60 
 

the peaks extracted from raw spikes are vulnerable to noise. To mitigate this noise effect, 

raw spikes can be filtered into a frequency band where spike energy dominates over noise 

energy. It has been shown that the spike spectrum has small magnitudes at low 

frequencies and falls off monotonically at high frequencies [118]. Therefore, highpass 

and lowpass filters can be deployed to de-emphasize neural signal energy in low and high 

frequency bands, respectively, where noise can dominate spikes. Figure 4.2 shows the 

relationship between the filtered spike peak and the filtered spike energy extracted from 

high and low frequency bands with different cutoff frequencies. It can be observed that 

the filtered spike peak is highly correlated to the spike energy. Thus, the peaks of filtered 

spike extracted from a given frequency band can be used as features to reflect the spikes’ 

energy in that frequency band. In recent research, IT and ZCF extracted low frequency 

spike peaks while FSDE and DD|2-Extrema extracted high frequency spike peaks. 

 

Figure 4.2. The relationship between the filtered spike peak and the filtered spike energy. 
Spikes are filtered using either highpass or lowpass filters with the cutoff frequency 
between 300 and 3000 Hz. The errorbar reflects the variance of all the spike templates in 
Figure 4.2. 

4.3 Frequency Band Separability Analysis 

In order to achieve high sorting accuracy, spike features should have two properties: 1) 

they must be informative such that they maximize the Euclidean between-class distance 

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.4

0.6

0.8

1

Normalized spike energy

N
o

rm
a

liz
e

d
 s

p
ik

e
 p

e
a

k

 

High pass
Low pass



61 
 

in the feature space; 2) they must be immune to noise such that they minimize the within-

class variance in the feature space. The between-class distance represents how well noise-

free spikes fired by different neurons can be separated from each other, while the within-

class variance can represent how well spikes fired by the same neuron cluster together in 

the feature space. It has been shown that classes are well separated when the ratio of 

between-class distance to within-class variance is maximized for linear discriminant 

analysis [119]. Thus, the feature extraction method should take both properties into 

consideration. 

As presented above, filtered spike peaks extracted from a frequency band are 

informative. For features to be insensitive to noise, they need to be extracted from a 

specific frequency band such that the ratio of between-class distance (BCD) to within-

class variance (WCV) is maximized compared to the same ratio for raw spike peaks. 

Thus, we propose a Separability metric defined as  

 

))((

))(),((
)(

)(

),(
)(

)/()(

21

21

nhnoiseStd

nhSnhSPeak

WCV

BCD

noiseStd

SSPeak

WCV

BCD
WCV

BCD

WCV

BCD
tySeparabili

filtered

filterednon

filterednonfiltered












  (4-1) 

where S1 and S2 represent two spike templates, h(n) is the finite impulse response of 

lowpass or highpass filter to emphasize either low or high frequency band information, 

Std means standard deviation,  is convolution and Peak(S1, S2) calculates peak 

difference between two spikes. 
஻஼஽

ௐ஼௏
 can be considered as in analogy to the SNR used to 

describe the quality of signals. To improve the quality of a signal, the output SNR should 

be larger than its input SNR after signal processing. Similarly, the Separability metric can 

be used to quantify the improvement of a feature extraction method compared to a naïve 



62 
 

method of extracting features directly from raw spikes without any signal processing. 

By virtue of the Separability metric, one can determine whether any two spikes can be 

better separated from the low frequency or high frequency band. A lowpass filter can be 

used to separate spikes in the low frequency band while a highpass, or a comb filter 

generated from the highpass filter [-1 1], can be used to separate spikes in the high 

frequency band. The DD|2-Extrema method is based on this comb filter with specific 

multiple passbands. Figure 4.3 shows an example of the Separability metric for two spikes 

pairs. It can be observed that spike pair 1 is better separated using a highpass filter or a 

comb filter while spike pair 2 is better separated using a lowpass filter. 

 Spike pair 1  Spike pair 2  

   

 (a. Spike pair 1) (b. Spike pair 2) 

Figure 4.3. An example of Separability analysis vs. cutoff frequency (Fc) for two spike 
pairs. Results illustrate spikes can be better separated in (a) the high frequency band 
using either a highpass or a comb filter or (b) the low frequency band using a lowpass 
filter. The comb filter represents the DD|2-Extrema method. 

The Separability performance of the highpass and lowpass filters is associated with the 

filter’s cutoff frequency (Fc). To determine the best cutoff frequency for lowpass and 

highpass filters, the Separability vs. cutoff frequency was calculated for both filters using 

every possible spike template pair from the channels shown in Figure 4.1. Figure 4.4(a) 

shows the cutoff frequency of maximum Separability using the filter (highpass or 

1000 2000 3000
0

1

2

3

Fc (Hz)

S
e

p
a

ra
b

ili
ty

 

 

High pass
Comb
Low pass

1000 2000 3000
0.5

1

1.5

2

Fc (Hz)

S
e

p
a

ra
b

ili
ty

 

 
High pass
Comb
Low pass



63 
 

that best discriminates each spike template pair. 25% of spike pairs were found to be better 

separated using lowpass filter while 75% were better separated using highpass filter. 

Separability greater than 1 represents an improvement of feature extraction compared to 

the naïve method of extracting features directly from raw spikes. Thus, Figure 4.4(a) 

indicates that nearly 80% of spike pairs can be better discriminated by selecting the best 

cutoff frequency of the appropriate filter for each spike pair. The normalized Separability 

average and variation across possible pairings is plotted in Figure 4.4(b), where the 

Separability of each spike pair was normalized to its maximum value (across Fc) to 

eliminate the bias contributed by different maximum Separability values. We can see that 

the choice of Fc for the highpass filter has small effect on the Separability but is critical 

for the lowpass filter. The Separability is maximum around 700 Hz for the lowpass filter 

and 1000 Hz for the highpass filter. 

 

 (a) (b) 

Figure 4.4. (a) Cutoff frequency of maximum Separability for each spike template pair. 
(b) The averaged normalized Separability calculated based on the training datasets to 
determine the best cutoff frequency for highpass and lowpass filters. 

4.4 Frequency Band Separability Features 

As presented in section 4.3, the relative position of a neuron to a recording electrode 

affects spike energy and is reflected in the peaks of frequency-filtered spikes. The 

500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

8.5

9

Fc (Hz)

S
e
p
a
ra

b
ili

ty

 

 

High pass
Low pass

500 1000 1500 2000 2500 3000
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Fc (Hz)

N
o
rm

a
liz

e
d
 s

e
p
a
ra

b
ili

ty

 

 

High pass
Low pass



64 
 

frequency band analysis shown in Figure 4.4(a) validates the design decision to select 

both low and high frequency bands for feature extraction. The analysis shown in Figure 

4.4(b) permits identifying the frequency bands in which the differences between filtered 

spike peaks are best distinguished. Thus, the positive (max) and negative (min) filtered 

spike peaks from low and high frequency bands provide a new feature set that we will 

define as frequency band separability (FBS) features. Specifically, FBS features are 

defined as peaks from the low frequency band (denoted as ܵܤܨ௠௔௫
௅  and ܵܤܨ௠௜௡

௅ ) and 

peaks from the high frequency band (denoted as ܵܤܨ௠௔௫
ு  and ܵܤܨ௠௜௡

ு ). Figure 4.5 

illustrates FBS features for two spike pairs shown in Figure 4.3 after highpass and 

lowpass filtering. Spike pair 1 is best separated using the ܵܤܨ௠௜௡
ு  feature while the spike 

pair 2 is best separated using the ܵܤܨ௠௔௫
௅  feature. This observation is consistent with the 

analysis shown in Figure 4.3.  

 

 (a. Spike pair 1) (b. Spike pair 2) 

Figure 4.5. An illustration of FBS features for the Fig. 3 spike pairs after applying 
lowpass and highpass filters. The solid lines represent highpass filtered spikes and the 
dashed lines represent lowpass filtered spikes. The dots are the extracted FBS features. 

4.5 Hardware Efficient Implementation of FBS Features with Haar DWT 

4.5.1 Filter Design Complexity Analysis 

Filter order is an important factor in filter design, and the impact of this choice on 

FBSH
max

FBSL
max

FBSH
min

FBSL
min

FBSL
min

FBSH
min

FBSL
max

FBSH
max

High pass

Low pass



65 
 

Separability was studied. Because filter order can also impact sorting performance 

through clustering error, this relationship was analyzed for K-means clustering with 

neural signal SNR set to five. The results in Figure 4.6 show both lowpass and highpass 

filters provide better performance as the filter order increases. The comb filter 

performance decreases for filter order greater than 10. Thus, to extract FBS features from 

the high frequency band, the comb filter is preferred over a highpass filter due to 

hardware-efficient design. To extract FBS features from the low frequency band, the 

order of the lowpass filter should be larger than 20, but this would require an amount of 

memory that is unacceptable for a neural implant. Thus, a hardware efficient alternative 

implementation must be explored. 

 

 (a) (b) 

Figure 4.6. (a) The normalized Separability and (b) K-means clustering error with SNR = 
5 at different filter orders for highpass and lowpass and comb filters. 

The Separability analysis suggests that the lowpass filter cutoff frequency should be 

around 700 Hz. To extract features from such a low frequency band without excessive 

memory usage, the DWT method can be utilized to provide fine frequency resolution in 

the low frequency band. At each level, DWT convolves the signal from the previous level 

with a half-band lowpass filter. By downsampling every other sample after convolution, 

5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

0.9

1

Filter order

N
o
rm

a
liz

e
d
 s

e
p
a
ra

b
ili

ty

 

 

High pass: odd order
High pass: even order

 

 

Low pass

 

 

Comb

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

Filter order

C
lu

st
e

rin
g

 e
rr

o
r

 

High pass: odd order
High pass: even order
Low pass
Comb



66 
 

the same half-band lowpass filter can be used iteratively to scale down the low frequency 

bandwidth by two at each level. Because the desired cutoff frequency (700 Hz) is less 

than 
ଵ

ଶయ
 of the 10 kHz sampling rate, the 4th level DWT approximation coefficients can be 

used to extract low frequency band FBS features. This feature extraction procedure meets 

the lowpass filtering goals with hardware efficiency. 

It is shown that the first order comb filter is well suited to extract FBS features from the 

high frequency band with low memory usage. Because the 1st level detail coefficients of 

the haar DWT method provide filtering results consistent with a first order comb filter, 

haar DWT can be leveraged to extract FBS features from both high and low frequency 

bands (denoted as FBSHT): positive and negative peaks from the 1st level detail 

coefficients and from the 4th level approximation coefficients. At each level, only one 

register is required to calculate both approximation and detail coefficients. Thus, only 

four registers in total are needed for four level decompositions compared to more than 20 

registers for a direct filter implementation. Therefore, FBSHT enables a hardware-efficient 

design for spike feature extraction. 

4.5.2 Hardware Design for FBSHT Feature Extraction 

To extract the four FBSHT features (ܵܤܨ௠௔௫
ு ௠௜௡ܵܤܨ ,

ு ௠௔௫ܵܤܨ ,
௅ ௠௜௡ܵܤܨ ,

௅ ) in hardware, 

two blocks are demanded: 1) a haar DWT block that magnifies spike information both in 

high and low frequency bands, 2) and a peak detector block that determines the feature. 

Figure 4.7(a) shows the structure of the haar DWT block, where Ai represents the ith level 

lowpass filtered approximation coefficient output and Df
1 represents the 1st level highpass 

filtered detail coefficient output without decimation. The output Df
1 is not decimated 

while having little effect on the ܵܤܨ௠௔௫
ு  and ܵܤܨ௠௜௡

ு . The control signal Li downsamples 



67 
 

Ai by two at the ith level as illustrated in Figure 4.8. Figure 4.7(b) shows the structure of 

peak detector. This block is connected to either A4 or Df
1 output and can be configured to 

extract either positive or negative peaks. When it is used to extract positive peaks, the 

peak register is initially loaded with a minimum value and its value is updated when d1 > 

d2 at the comparator input. When the peak detector is used to extract negative peak, the 

register is initially loaded with a maximum value and its value is updated when d1 < d2. 

Totally, four peak detectors are required to extract all the FBSHT features.  

  

 (a) (b) 

Figure 4.7. (a) Structure of haar DWT. (b) Structure of peak detector. 

 

Figure 4.8. Computation cycles of haar DWT coefficients at each decomposition level. 

Df
1

+ + +

+

A1 A2

A3
A4

L1 L2

L3 L4

—

= register

Spike

CompD1
f /A4

FBSLmax /
FBSLmin /
FBSHmax /
FBSHmin

d1

d2

Comp. Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D1
f D1

f D1
f D1

f D1
f D1

f D1
f D1

f D1
f D1

f D1
f D1

f D1
f D1

f D1
f D1

f

A1 A1 A1 A1 A1 A1 A1 A1

L1

A2 A2 A2 A2

L2

A3 A3

L3

A4

L4



68 
 

4.6 Feature Scaling for Haar DWT based FBS Features 

The FBSHT features can be categorized into two feature sets, namely approximation 

(low frequency) and detail (high frequency) features. Figure 4.9 shows the normalized 

spectrum of a neural spike along with the frequency response for the haar DWT 1st level 

detail and the 4th level approximation. The spike spectrum dominates at the low frequency 

band, around 1000 Hz. It can be seen that the approximation level lowpass filter captures 

most of the spike energy in its passband while the detail level highpass filter preserves the 

high frequency band energy where the spike energy attenuates significantly. 

the dynamic range for these two feature sets will not be in the same scale; the 

approximation (low frequency) features exhibit larger range than the detail (high 

frequency) features. It has been shown that, for a Euclidean distance based clustering 

method such as K-means, results can be greatly affected by the differences in scale among 

features [120]. To utilize all of these features for clustering, it is important to scale both 

feature sets into the same dynamic range. 

 

Figure 4.9. Averaged spike spectrum and the frequency response of the 1st level detail and 
the 4th level approximation haar DWT. 

To estimate the variability of both features, the spike Euclidean distance between any 

two spike templates in each dataset were calculated in the approximation (ݐݏ݅ܦ஺) and the 

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

N
o

rm
a

liz
e

d
 m

a
ga

n
itu

d
e

 

 

1st level detail

4th level approximation

Spike spectrum



69 
 

detail (ݐݏ݅ܦ஽) feature spaces as:Equation  

 
)(||)()(||)(

)(||)()(||)(

21

21

Hfet
H
HT

H
HTD

Lfet
L
HT

L
HTA

noiseStdNSFBSSFBSDist

noiseStdNSFBSSFBSDist



  (4-2) 

where ܵܤܨு்
௅  and ܵܤܨு்

ு are features extracted from the approximation and detail levels, 

respectively, and ܵ݀ݐሺ݊݁ݏ݅݋௅ሻ and ܵ݀ݐሺ݊݁ݏ݅݋ுሻ are standard deviations of noise in the 

the approximation and detail levels, respectively, and ௙ܰ௘௧ is the number of features in 

each feature set. Because the detail level contain less spike energy than the approximation 

level, ܵܤܨு்
ு  needs to be weighted more than ܵܤܨு்

௅ . The weighting factor for ܵܤܨு்
ு can 

be calculated asEquation  

 
D

A

Dist

Dist
Weight 

 (4-3) 

where Weight  represents the average weight among different datasets. From experimental 

analysis, Weight  was set to be seven based on the training datasets at 20 kHz sampling 

rate.  

4.7 Comparison to Haar DWT Features based on Lilliefors Test 

The haar DWT method described in [91] selects ten wavelet coefficients as features 

based on Lilliefors test. The Lilliefors test selects coefficients based on the discrepancy 

between the cumulative distribution function of a coefficient and a normal distribution 

with the same mean and variance of that coefficient. Lilliefors test is suitable for offline 

training and has been shown to require a huge amount of computation and memory [95]. 

Lilliefors-based haar DWT feature extraction requires spikes to be aligned to a reference 

point before feature extraction. Thus, the spike alignment has a critical impact on the 

wavelet coefficients selected as features and hence the sorting performance.  



70 
 

The presented weighted FBSHT method based on Separability analysis only extracts 

peaks from wavelet coefficients at specific decomposition levels and therefore does not 

demand any offline training. Furthermore, the extraction of peaks has no preceding 

requirement for spikes aligned to a reference point. As a result, the FBSHT features are 

insensitive to spike misalignment. Additionally, the weighted FBSHT method weights 

wavelet coefficients from different decomposition levels by analyzing the spike energy at 

different frequency bands. As will be shown in Section IV, this weighting step 

significantly influences the spike clustering performance.  

In comparison, the computation complexity of FBSHT features is much smaller than the 

Lilliefors test based DWT features. The number of FBSHT features is six less than the 

Lilliefors test based DWT features, which reduces hardware resources for spike 

classification in the next step. 

4.8 Results and Discussion 

4.8.1 Testing Datasets 

To evaluate the performance of the weighted FBSHT (W-FBSHT) method on various 

spike shapes, neural recordings from multiple channels were processed to extract spike 

templates as shown in Figure 4.10. The spike extraction procedures were the same as 

described in Section 4.1. 36 datasets were generated, out of which 12 contained two spike 

classes, 12 contained three and 12 contained four. Finally, the six training datasets in 

Figure 4.1 and the 36 testing datasets were all used to generate synthesized neural signals 

with the firing rate of 50 Hz and SNR from 3 to 6. 

4.8.2 Clustering Performance 

K-means clustering was used to separate spike features and demonstrate the 



71 
 

effectiveness of the W-FBSHT features. Other feature extraction methods were also 

evaluated on the same datasets for comparison including principal component analysis 

(PCA), FSDE and DD|2-Extrema. The first four principal components were utilized such 

that the number of features was consistent in all methods.  

Figure 4.11(a) shows the clustering performance on spikes with two classes. On 

average, W-FBSHT shows 3% to 5% better performance than DD|2-Extrema and around 

better performance than FSDE. The variance of the clustering error over difference 

datasets for W-FBSHT is also shown. The variance increases from 2% to 5% as SNR 

decreases. It can be seen that, even in the worst case, W-FBSHT is still comparable to DD|2-

Extrema and is much better than FSDE. Figure 4.11(b) and Figure 4.11(c) show examples 

of spike classes are better separated in low frequency and high frequency bands, 

respectively. Spikes were projected into two dimensional approximation and detail feature  

 
Figure 4.10. Spike templates extracted from 36 different neural recording channels used 
as testing datasets. The first two rows contain two spike classes, the middle two rows 
three spike classes, the last two rows four spike classes. 

 
 
 
 
 
 

0 1

-100

-50

0

50

ec014.277 (ch_27)

A
m

p
lit

u
d

e
 ( 

V
)

0 1

-100

0

100

ec014.277 (ch_28)

0 1
-150

-100

-50

0

50

100
ec014.277 (ch_30)

0 1
-150

-100

-50

0

50

100
ec014.793 (ch_25)

0 1

-100

-50

0

50

ec014.793 (ch_31)

0 1
-100

-50

0

50

ec015.041 (ch_10)

0 1

-200

-100

0

100

ec015.041 (ch_12)

Time (ms)

A
m

p
lit

ud
e

 ( 
V

)

0 1

-300

-200

-100

0

100

200

ec015.041 (ch_14)

Time (ms)
0 1

-150

-100

-50

0

50

100

ec015.041 (ch_15)

Time (ms)
0 1

-200

-100

0

100

200

ec015.047 (ch_34)

Time (ms)
0 1

-150

-100

-50

0

50

100

ec015.047 (ch_36)

Time (ms)
0 1

-80

-60

-40

-20

0

20

40

ec015.047 (ch_38)

Time (ms)



72 
 

Figure 4.10 (cont’d) 

 

 

 
(a) 

Figure 4.11. (a) Clustering errors at different SNRs with two spike classes for W-FBSHT, 
FSDE, DD|2-Extrema and PCA methods. (b) An example of spikes that can be better 
separated using the approximation features. (c) An example of spikes that can be better 
separated using the detail features. 

 

0 1

-300

-200

-100

0

100

200

ec013.528 (ch_26)
A

m
pl

itu
d
e 

( 
V

)

0 1

-200

-100

0

100

ec013.528 (ch_27)

0 1

-100

-50

0

50

ec013.528 (ch_28)

0 1

-200

-100

0

100

ec014.800 (ch_37)

0 1

-200

-100

0

100

ec015.047 (ch_4)

0 1

-300

-200

-100

0

100

ec015.047 (ch_6)

0 1

-100

0

100

ec015.047 (ch_25)

Time (ms)

A
m

p
lit

ud
e
 ( 

V
)

0 1

-150

-100

-50

0

50

100

ec015.047 (ch_26)

Time (ms)
0 1

-200

-100

0

100
ec015.047 (ch_27)

Time (ms)
0 1

-200

-100

0

100

ec016.448 (ch_46)

Time (ms)
0 1

-300

-200

-100

0

100

200

ec016.448 (ch_47)

Time (ms)
0 1

-200

-100

0

100

ec016.448 (ch_48)

Time (ms)

0 1

-150

-100

-50

0

50

100

ec013.756 (ch_15)

A
m

pl
itu

de
 ( 

V
)

0 1

-150

-100

-50

0

50

100

ec013.756 (ch_16)

0 1

-100

-50

0

50

100
ec013.756 (ch_20)

0 1

-100

-50

0

50

ec013.808 (ch_19)

0 1

-300

-200

-100

0

100

200

ec013.808 (ch_23)

0 1
-200

-100

0

100

ec013.808 (ch_24)

0 1
-300

-200

-100

0

100

ec014.277 (ch_34)

Time (ms)

A
m

p
lit

ud
e
 ( 

V
)

0 1

-300

-200

-100

0

100

200

ec014.277 (ch_35)

Time (ms)
0 1

-200

-100

0

100

ec014.277 (ch_38)

Time (ms)
0 1

-150

-100

-50

0

50

ec016.582 (ch_36)

Time (ms)
0 1

-150

-100

-50

0

50

100

ec016.582 (ch_37)

Time (ms)
0 1

-150

-100

-50

0

50

100

ec016.582 (ch_38)

Time (ms)

3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

SNR

C
lu

st
e

rin
g

 e
rr

o
r

 

 

W-FBS
HT

FSDE
DD

2
-Extrema

PCA
4



73 
 

 
Figure 4.11 (cont’d) 

 

(b) 

 

(c) 

spaces separately. It is apparent that W-FBSHT can better distinguish spikes by using both 

high and low frequency bands. 

Figure 4.12(a) evaluates the clustering performance in the case of three spike classes. 

W-FBSHT provides 5% and 10% better performance than DD|2-Extrema and FSDE, 

respectively. W-FBSHT also shows worst case performance comparable to the DD|2-

Extrema average. Figure 4.12(b) plots an example of the distribution of three spike 

classes in the feature space. Intuitively, the red spike class can be distinguished in the 

approximation feature space while the blue and green spikes can be separated in the detail 

feature space. In fact, these three spikes are well separated in the entire four-dimensional 

space. This examples shows that, when three spikes are presented for clustering, features 

from low and high frequency bands can both be used for distinction. Thus, W-FBSHT 

0 1 2
-2

-1.5

-1

-0.5

0

0.5
Approximation (low)

FBSL
max

F
B

S
L m

in
0 1 2

-3

-2

-1

0
Detail (high)

FBSH
max

F
B

S
H m

in

0 1 2
-2

-1.5

-1

-0.5

0

0.5
Approximation (low)

FBSL
max

F
B

S
L m

in

0 1 2
-3

-2

-1

0
Detail (high)

FBSH
max

F
B

S
H m

in



74 
 

features provide better separabiltiy than DD|2-Extrema and FSDE features that emphasize 

high frequency information. 

 
(a) 

 
(b) 

Figure 4.12. (a) Clustering errors at different SNRs with three spike classes for W-FBSHT, 
FSDE, DD|2-Extrema and PCA methods. (b) An example of three spike classes projected 
in the W-FBSHT feature space.  

Figure 4.13(a) shows the clustering performance when four spike classes are presented. 

Again, W-FBSHT significantly outperforms DD|2-Extrema and FSDE except for low SNR 

where W-FBSHT degrades to the level of DD|2-Extrema and even the gold standard PCA 

method exhibits a similar poor performance. As shown in Figure 4.13(b), W-FBSHT 

cannot contribute to enough allow accurate separation among spikes in the feature space.  

3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SNR

C
lu

st
e

rin
g

 e
rr

o
r

 

W-FBS
HT

FSDE
DD

2
-Extrema

PCA
4

0 1 2
-2

-1.5

-1

-0.5

0

0.5
Approximation (low)

FBSL
max

F
B

S
L m

in

0 1 2
-2.5

-2

-1.5

-1

-0.5

0
Detail (high)

FBSH
max

F
B

S
H m

in



75 
 

 

(a) 

 

(b) 

Figure 4.13. (a) Clustering errors at different SNRs with four spike classes for  W-FBSHT, 
FSDE, DD|2-Extrema and PCA methods. (b) An example of four spike classes projected 
in the W-FBSHT feature space. 

To illustrate the performance difference between weighted features and non-weighted 

features, Figure 4.14(a) plots the clustering performance for these two techniques. On 

average, weighted features shows 10% performance improvement compared to non-

weighted. Figure 4.14(b) illustrates the advantage of W-FBSHT graphically by projecting 

the two spike classes from Figure 4.11(c) into a feature space represented by one 

approximation and one detail features. Without scaling the dynamic range of the detail 

feature to match the approximation feature, the decision boundary is primarily determined 

by the approximation FBSHT feature with its large dynamic range. Thus, scaling both 

feature sets to the same dynamic range provides significant performance improvement. 

3 4 5 6
0.1

0.15

0.2

0.25

0.3

0.35

0.4

SNR

C
lu

st
e

rin
g

 e
rr

o
r

 

W-FBS
HT

FSDE
DD

2
-Extrema

PCA
4

0 1 2
-2

-1.5

-1

-0.5

0 Approximation (low)

FBSL
max

F
B

S
L m

in

0 1 2
-2

-1.5

-1

-0.5

0 Detail (high)

FBSH
max

F
B

S
H m

in



76 
 

 

 (a) (b) 

Figure 4.14. . (a) Clustering errors for weighted and non-weighted FBSHT. (b) An 
example of two spike classes projected in the weighted FBSHT and non-weighted FBSHT 
feature space using one approximation feature and one detail feature. The ‘x’ symbol 
represents the cluster centroid. The yellow solid line represents the decision boundary for 
weighted features. The yellow dashed line represents the decision boundary for non-
weighted features. 

Because neural recording systems can sample at a frequency higher than 20 kHz, 

synthetic neural signals with the sampling rate of 25 kHz and 30 kHz were constructed 

and analyzed. As the sampling rate increases, the decomposition level to extract 

approximation features must be changed accordingly. Figure 4.15(a) shows the 

Separability analysis for low cutoff frequency at different sampling rates. The maximum 

separability is around 400Hz and 300Hz for 25 kHz and 30 kHz, respectively. 

Correspondingly, the decomposition level should be five and six, respectively. However, 

because DWT downsamples spikes by two at each level, it is impossible to decompose 

spikes into the 6th level. As a result, spikes were decomposed into the 5th level at 30 kHz. 

Figure 4.15(b) shows the clustering performance at different sampling rates. At 25 kHz, 

W-FBSHT’s performance is close to the one at 20 kHz at high SNR and decreases by 2% 

at most as SNR decreases. At 30 kHz, its performance is 2% worse than the one at 20 

kHz on average because one more decomposition level is preferred to reach the ideal 

cutoff frequency.  

0 1 2 3
-3

-2

-1

0

FBSL
max

F
B

S
H m

in

3 4 5 6

0.1

0.2

0.3

0.4

SNR
C

lu
st

e
rin

g
 e

rr
o

r

 

 

Weighted
Non-weighted

Non-weighted

Weighted



77 
 

 

 (a) (b) 

Figure 4.15. (a) Normalized separability for the lowpass filter at 20 kHz, 25 kHz and 30 
kHz. (b) Clustering errors for datasets with sampling rate of 20 kHz, 25 kHz and 30 kHz. 

4.8.3 Analysis of Hardware resource 

Implantable application demands limit computation and memory resources. 

Computation complexity is usually expressed by the number of additions required to 

process each spike. Assuming each spike consists of ௦ܰ௣௞ samples, FBSHT requires 
ேೞ೛ೖ

ଶ
 

computations for the 1st level detail features and 
ேೞ೛ೖ

ଶ
൅

ேೞ೛ೖ

ସ
൅

ேೞ೛ೖ

଼
൅

ேೞ೛ೖ

ଵ଺
 computations 

for the 4th level approximation features. Totally, the computation complexity of FBSHT is 

slightly less than 
ଷ

ଶ ௦ܰ௣௞. The computation complexity of FSDE and DD|2-Extrema are 

2 ௦ܰ௣௞ െ 3 and 2 ௦ܰ௣௞ െ 10, respectively. Thus, all of these feature extraction methods 

are comparable to each other and computationally efficient for hardware implementation. 

Because feature extraction operates at the spike firing rate, its computation load is often 

not as important as that of processes operated at the sampling rate, like spike detection. 

Memory usage is very important and can have a major impact of the size of a neural 

recording implant. FBSHT requires five memory elements for each channel, one each 

decomposition level and additional one for input data. FSDE only requires two memory 

elements and DD|2-Extrema demands seven memory elements. Although FSDE needs the 

1000 2000 3000

0.6

0.7

0.8

0.9

1

Fc (Hz)
N

o
rm

a
liz

e
d

 s
e

p
a

ra
b

ili
ty

 

 

20 kHz
25 kHz
30 kHz

3 4 5 6
0.05

0.1

0.15

0.2

0.25

0.3

SNR

C
lu

st
e

ri
n

g
 e

rr
o

r



78 
 

least memory, its clustering performance is the worst, as shown in Figure 4.11-Figure 

4.13. DD|2-Extrema requires the largest amount of memory and its performance is worse 

than FBSHT. In summary, compared to the best known hardware-efficient feature 

extraction methods, FBSHT shows the best spike clustering performance while 

maintaining a similar level of hardware resources suitable implantable applications. 

4.9 Conclusion 

In this chapter, a new feature extraction method called frequency band separability was 

presented. A Separability metric was created to investigate information content of low 

and high frequency bands of spikes and noise. Based on an analysis of Separability, and 

considering the need for resource-efficient hardware implementation, the weighted haar 

DWT method was derived to extract features from the desired frequency bands, namely 

positive and negative peaks from the 1st level detail and the 4th level approximation 

transform coefficients. To provide robust clustering performance, detail features were 

weighted to scale them the same dynamic range as the approximation features. The 

clustering performance of the presented features was tested using synthesized datasets 

consisting of various spike shapes based on real neural recordings from multiple 

channels. The results show that W-FBSHT features perform better than other hardware-

efficient feature extraction methods while consuming a comparable level of hardware 

resources.  

W-FBSHT features provide high spike sorting accuracy while only consuming a small 

amount of hardware resources. Because each spike is only represented by four feature 

samples, the hardware requirement for the spike classification block in the next chapter 



79 
 

will be significantly reduced. As a result, W-FBSHT features provide the capability of 

designing a hardware-efficient neural signal processor for high-channel-count application.  

  



80 
 

Chapter 5 Hardware Efficient Decision Tree based Neural Spike Classification 

5.1 Introduction 

In the previous chapter, a new spike feature set was developed with better sorting 

performance than other computationally efficient feature extraction while consuming 

comparable hardware resources. The new feature set (frequency separability features 

(FBS)) will be used as input for spike classification in this chapter. Spike clustering & 

classification is the last step in spike sorting to reduce the data rate of neural signals. 

Figure 5.1 illustrates the function of this step. Clustering determines the number of spiking 

neurons in each channel and the boundaries delineating different spike clusters. 

Classification assigns each spike feature vector a class label representing a spiking neuron. 

The clustering procedure can be implemented on-chip at the cost of significant memory 

cost to store transient parameters [103]. To save the power and area, clustering was 

implemented sequentially for each channel [103]. Alternatively, a hybrid strategy was 

proposed where clustering is processed off-chip and relevant parameters are sent back to 

the implant for real time classification [105, 121]. In this chapter, we adopt this hybrid 

approach and focus on the work to minimize the number of parameters required for spike 

classification. A new spike classification method is introduced, which outperforms the 

existing gold standard spike classification method in terms of both power and area 

consumption while maintaining comparable classification accuracy. 



81 
 

 

Figure 5.1. Illustration of the input and output signals for spike clustering & classification 
block. 

5.2 Hardware Resource Analysis on Decision tree based Spike Classification 

Spike classification usually compares the distance between an input spike feature 

vector and spike cluster means. Different metrics have been used to measure the distance, 

such as ℓଶ norm (Euclidean) distance [102], ℓଵ norm distance [103, 105] and Mahalanobis 

distance [94]. The only metric that has been applied for on-chip/implantable 

implementations is the ℓଵ norm distance dj between the input spike features s(n) and the 

cluster means cj(n): 

 ௝݀ ൌ ∑ ሺ݊ሻݏ| െ ௝ܿሺ݊ሻ|
ே೑
௡ୀଵ  (5-1) 

where Nf is the number of features representing a spike. The spike will be classified to the 

cluster j that minimizes this distance. The number of additions required to compute (1) 

can be calculated as 

௅భܥ  ൌ ሺ2 ௙ܰ െ 1ሻ ௖ܰ (5-2) 

and the memory size in bits per channel is 

௅భܯ  ൌ ௖ܰ ௙ܰܤௌ௔ (5-3) 

Spike Clustering & 
Classification

Features Spike IDs



82 
 

where Nc is the number of clusters and BSa is the number of bits used to represent a spike 

feature. ℓଵ norm based spike classification satisfies the power and area requirements for a 

low channel count system. However, (5-2) and (5-3) reveal that all features of a spike is 

employed for computation Nc times to classify the spike. For high-channel-count systems, 

this method requires a large amount of memory to store the mean of each spike class for 

every channel. Additionally, accessing the memory multiple times for each calculation of 

the ℓଵ distance increases the system power consumption. 

It has been suggested that spike features with multimodality of distribution provide 

better separation than those with large variance [91]. Some statistical methods such as 

Lilliefors Test, Hartigan’s Dip Test are used for analysis to select features that have 

multimodal distribution across spikes [122]. This indicates that spike classification can be 

estimated based on individual features or a subset of features instead of using all features 

for each detected spike. Figure 5.2 shows a 2-D projection of three spike classes using 

PCA and their cluster means. Each spike is represented with two features in this case. 

Supposing (5-1) is used for classification, each input spike will be measured against all 

three cluster centers at the cost of 12 additions. However, it can be observed that spike 

classes can be easily distinguished by using two axis-parallel lines. The first principal 

component can be compared with a constant value, and the outcome determines whether 

the second component is needed or not for comparison with another constant value. 

Therefore, at most two additions would be required for computation, which would reduce 

the computation complexity to less than 20% of (5-1).  



83 
 

 

Figure 5.2. An example 2D projection of three classes of spikes using PCA feature 
extraction. 

5.3 Development of Decision Tree Model 

5.3.1 Tree Model 

The classification model illustrated above can be implemented by a sequence of 

queries based on the features of a spike. The sequence of queries can be organized in a 

binary decision tree (DT) as shown in Figure 5.3. Each spike begins to be classified at the 

root node and terminates at a leaf node, where a class label is produced as output. 

Generally, each node can be considered as a hyperplane in Nf dimensional space. The 

output from a node is a binary value identifying if a feature vector lies above or below the 

hyperplane and determining which child node will be visited. The node or hyperplane 

function can be expressed as 

 ݂ ൌ ∑ ܽሺ݊ሻݏሺ݊ሻ
ே೑
௡ୀଵ ൅ܹ (5-4) 

where a(n) is the normal vector and W is the weight bias for the hyperplane. The DT 

structure based on (5-4) is called an oblique DT [123]. Figure 5.1 is a special situation 

where only one of a(n) is equal to one and the rest are zero, which is called axis-parallel 

DT. Usually, for spikes with Nc classes, Nc1 hyperplanes are needed to separate all the 

classes. In this case, the depth of the tree is log2(Nc), which determines the maximum 

PC1

P
C

2



84 
 

number of nodes an input will visit. The hyperplane coefficients at each node are trained 

offline and coefficients of the hyperplane are sent back for spike classification. The 

algorithm to build a decision tree is described in the next section. 

 

Figure 5.3. An example decision tree for five classes. The circles represent nodes 
(corresponding to comparisons between hyperplanes and feature vectors) while the 
squares represent leaves (corresponding to spike classes). 

5.3.2 Quantization of Decision Tree Models 

The coefficients of the hyperplane at each node are obtained by training spike features 

based on the most common algorithm defined as OC1 [123]. At each node, OC1 splits the 

training dataset into two subsets, one above the hyperplane and the other below it. The 

criterion to determine a hyperplane at a node is to minimize the total impurities of both 

subsets. Different types of impurity measures have been proposed for DT. A common 

used metric is the information gain which is defined as 

ܫ  ൌ െ
ேಽ

ே೟
∑ ܲ൫ ௝߱หܺ௧௅൯݈2݃݋ሺܲሺ ௝߱|ܺ௧௅ሻሻ
ே೎
௝ୀଵ െ

ேೃ

ே೟
∑ ܲ൫ ௝߱หܺ௧ோ൯݈2݃݋ሺܲሺ ௝߱|ܺ௧ோሻሻ
ே೎
௝ୀଵ (5-5) 

where Nt, NL, NR are the number of total samples, samples split into left and samples split 

into right respectively, and ܲ൫ ௝߱หܺ௧௅൯ and ܲ൫ ௝߱หܺ௧ோ൯ represent the probability of jth class 

௝߱ in the left ܺ௧௅and right ܺ௧ோ splitting subset of samples. The splitting criterion defines 

the tree structure such that an input will be assigned a class label either at the last or the 



85 
 

last but one depth. 

The hardware realization complexity of the hyperplane function (5-4) is data 

dependent. If spike classes are well separated in the space as shown in Figure 5.1, (5-4) 

will be reduced to only one addition at each node. Otherwise, (5-4) demands 

multiplication if more than one of the coefficients a(n) is nonzero. To ease the 

computation complexity, a(n) can be quantized into fewer number of bits, much less than 

the word length of s(n).  

The traditional OC1 algorithm generates coefficients with any real number values. To 

quantize the coefficients, two additional steps were added into the OC1 algorithm. The 

first step quantizes coefficients with real number value into given Ba bits. After 

quantization, only one coefficient a(n) is exactly equal to 1, and all the coefficients are 

represented by Ba bits. The second step re-estimates the weight bias based on quantized 

coefficients. Figure 5.4 illustrates the steps of the modified OC1 algorithm for 

quantization of coefficients.  

1. Input: spike feature set D and its class labels. 

2. Output: a hyperplane H = [a(1), a(2), , a(Nf), W]. 

3. Find the best axis-parallel hyperplane Ha and its impurity Ia. 

4. Initialize H = Ha. 

5. Perturb each coefficient of H in sequence and then calculate its impurity I after 

perturbation. 

6. Repeat M times: 

7.   Choose a random vector R = [r(1), r(2), , r(Nf), Wr] and let H1 = H + R. 

Figure 5.4. Description of the modified OC1 algorithm for quantization of coefficients at 
a single node. 



86 
 

Figure 5.4 (cont’d) 

8.   Find the optimal  by perturbation and calculate the impurity I1. 

9. If I1 < I, then replace H by H1, perturb each coefficient of H in sequence and calculate 

its impurity I. 

10. Normalize each coefficient of H by the a(n) with the maximum absolute value and 

quantize a(n) into Ba bits including a sign bit. 

11. Perturb the weight bias W in H and calculate its impurity I. 

12. If Ia < I, then H = Ha. 

 

where perturb or perturbation function is defined as follows: 

1) Calculate ௜ܷ ൌ ܽሺ݊ሻ െ
∑ ௔ሺ௡ሻ௦ሺ௡ሻ
ಿ೑
೙సభ ାௐ

௦೔ሺ௡ሻ
 for the ith spike feature.  

2) Sort all the values Ui. 

3) For each ai(n) in the middle point between Ui and Ui+1, calculate the impurity of 

splitting all Ui. 

4) The ai(n) that provides the minimum impurity is chosen as a(n). 

13. To ensure the perturbation, input features need to be normalized such that each 

feature is greater than zero. 

 

To determine the best number of bits for quantization of coefficients, simulated 

datasets described in Chapter 4 were used for analysis. Because (5-4) is data dependent, 

different feature extraction methods may result in different tree complexity. Both 

traditional PCA with four PC components and FBS spike features were used to determine 

quantization resolution. Classification performance across different quantization 



87 
 

resolutions is shown in Figure 5.5, where the DT classification error (ݎ݋ݎݎܧ஽்) is 

compared to the ℓଶ norm distance based classification error (ݎ݋ݎݎܧℓమ). Ba equal to one 

represents the simplest axis-parallel DT. On average, the improvement of quantization 

from two to four bits is negligible. The average improvement from one bit to two bits is 

around 2%. The error variation for one bit resolution is around 3% and 1% for more than 

two bits. Quantization of three and four bits provides little improvement as shown in 

Figure 5.5. Hence, the best quantization was selected to be two bits.  

 

 (a) (b) 

Figure 5.5. Comparison of spike classification error across different resolutions of a(n) 
using (a) PCA and (b) FBS feature extraction.  

5.4 Hardware Architecture 

Hardware implementation of (5-4) consists of a memory block, a computation core 

(CC), a controller and a class decoder as shown in Figure 5.6. The CC performs 

calculation of (5-4) at each node based on the input spike feature pattern and the node 

coefficients loaded from the memory block. The controller takes the binary output value 

from the CC and determines the address of the memory to access the coefficients for the 

child node. It also manipulates the data flow in the CC and informs the class decoder to 

compute the spike ID when the computation terminates. The class decoder stores the 

output of each node visited until the computation terminates at the leaf node. The 

1 2 3 4
-0.02

0

0.02

0.04

0.06

Resolution (bits)

E
rr

o
r D

T
-E

rr
or

L
2

1 2 3 4
-0.02

0

0.02

0.04

0.06

Resolution (bits)

E
rr

o
r D

T
-E

rr
or

L
2



88 
 

sequence of the node output from the root to leaf is unique and can be used as a spike ID. 

Usually, the number of neurons that can be recorded in each channel is less than six [103, 

124]. Thus, the spike ID includes three bits.  

 

Figure 5.6. Block diagram of DT based spike classification circuit. 

Each cell in the memory block stores two data fields representing the computation 

coefficients for each node, as shown in Figure 5.7. The weight bias W is represented by 

BSa bits, same as the number of bits to represent a spike feature. Because a(n) is quantized 

into Ba bits, Nf×Ba number of bits are required to store all a(n) coefficients. In this design, 

because a(n) is quantized into two bits, ‘00’, ‘01’, ‘10’, ‘11’ are used to represent the 

value of 0, 0.5, -0.5 and 1, respectively. Thus, the total number of bits for each channel is 

஽்ܯ  ൌ ൫ܤ௦௔ ൅ ௔ܤ ൈ ௙ܰ൯ሺ ௖ܰ െ 1ሻ (5-6) 

Memory is the most area dominant component in a spike sorting DSP. Figure 5.8 

compares the memory size between (5-3) and (5-6) with Bsa set to ten and Nc set to six. 

The amount of coefficient memory is proportional to the number of features. 

Computationally efficient feature extraction methods use three or four features to 

represent a spike [96, 97]. In these cases, this DT based method can reduce the memory 

usage at least by 55% as shown in Figure 5.8. 

Memory
Computation 

core

Controller
Spike class 
decoder  Spike ID

3b

1b



89 
 

 

Figure 5.7. The data fields comprising a node in the decision tree, listed with their 
resolutions. 

 

Figure 5.8. Comparison of memory size per channel between the ℓଵ norm and DT 
classification methods as a function of the number of features. 

Figure 5.9 shows the circuit implementation of the CC block and the spike class 

decoder. The weight bias is loaded into the CC in the first computation cycle. Then, each 

a(n) will be fed in sequentially on each clock cycle. If a(n) is zero, the CC takes no action 

and remains at the current state. If a(n) is one, the input feature s(n) will be directly 

connected to the accumulator by the multiplexer. Otherwise, s(n) will be multiplied by 

a(n) and the result will be forwarded to the accumulator. Because a(n) is quantized into 

one magnitude bit and one sign bit, the multiplication can be simplified to a shift 

operation. Completing one node computation takes a total of Nf+2 clock cycles as shown 

in Figure 5.10. The coefficients for comparing a feature vector with a single hyperplane 

are loaded from memory in the first clock cycle. Then a computation occurs on each of 

the next Nf clock cycles. During the computation cycles, each spike feature s(n) and its 

corresponding coefficient a(n) at current node are selected in sequence into the CC block 

for computation. In the last cycle the result is used to decide which memory will be 

Types W a(n)

# of bits Bsa Nf×Ba

2 3 4 5 6
0

100

200

300

400

Number of features

M
e

m
o

ry
 s

iz
e

 (
b

its
)

 

 

DT
L1 norm

2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

Number of features

M
e

m
o

ry
 s

a
vi

n
g1



90 
 

selected for computation of next node. The spike class decoder stores the binary output 

from the CC block in this last cycle for each node computation in sequence. All the 

binary outputs are concatenated together to form the spike ID at the end of the tree 

computation. The computation complexity is given by 

஽்ܥ  ൌ ௙ܰ݃݋݈ڿଶ ௖ܰ(7-5) ۀ 

The computation complexity of ℓଵ norm method increases linearly as Nc increase as shown 

in (5-2) while the DT method does not change the complexity as long as Nc varies between 

2m+1 and 2m. In the case of four features used for spike classification in this design, the 

computation complexity of the DT method can save around 65% of computation 

compared to the ℓଵ norm method.  

 

Figure 5.9. Structures of the computation core and the spike class decoder. 

 

Figure 5.10. The operation phases for a complete node computation. 

5.5 Simulation Results 

Using the simulated datasets described in Chapter 4, DT based spike classification 

>>1

M
U
X

Sel

+

Load W

Sign bit

Computation core

M
U
X

s(1)

s(2)
s(3)

s(4)
×(‐1) M

U
X

M
U
X

a(1)

a(2)
a(3)

a(4)

R
e
g

R
e
g

R
e
g

Spike ID

Spike class decoder

‘0’



91 
 

performance was compared against ℓଵ norm classification using both PCA with Nf = 4 

and FBS for feature extraction shown in Figure 5.11. The Kmeans clustering method was 

first performed on spike features to obtain the centroids of spike classes for ℓଵ norm 

classification. The Kmeans method also generates spike labels for each spike which were 

used for the DT method to train two-bit quantized hyperplanes. Results show that DT 

classification performance decreases when SNR decreases because spike features are less 

separable at low SNRs. The DT classification performance for PCA features are 3% on 

average better than FBS features. It shows the similar results to the Kmeans clustering 

results shown in Chapter 4 and it can be concluded that DT classification performance are 

mainly dependent on the goodness of spike features if hyperplanes are properly trained. 

Compared to ℓଵ norm, classification errors for DT is within 1% on average over all SNRs 

no matter using PCA or FBS features. Thus, DT provides the comparable classification 

performance to ℓଵ norm while consuming less computation and memory resources than 

ℓଵ norm. 

 

 (a) (b) 

Figure 5.11. Comparison of spike classification error between ℓଵ norm and DT methods 
using (a) PCA and (b) FBS features. 

3 4 5 6

0

0.1

0.2

0.3

0.4

SNR

C
la

ss
ifi

ca
tio

n
 e

rr
o

r

 

 

DT
L1 norm

3 4 5 6

0

0.1

0.2

0.3

0.4

SNR

C
la

ss
ifi

ca
tio

n
 e

rr
o

r

 

DT
L1 norm



92 
 

Hardware implementation of the DT method as described in Section 5.4 was realized 

in Verilog hardware description language (HDL) with Nc = 6. The design was synthesized 

and mapped into a 130nm standard cell library. Because spike classification occurs at the 

spike firing rate, its power consumption is negligible compared to the one of spike 

detector which is operated at the sampling rate. The area consumption is about 10400 

m2 out of which the memory occupies around 45%. For multichannel application, [103] 

chose interleaved architecture as a trade-off between area and power consumption per 

channel. However, because the power consumption of spike classification is negligible, 

area minimization is more important than power. In the next chapter, system integration 

of all spike sorting blocks, including spike detector, feature extractor and spike classifier 

and their scalabilities toward multichannel application will be analyzed  

5.6 Conclusion 

This chapter presented a DT based spike classification method and hardware design 

for neural recording implants that achieves spike classification accuracy comparable to ℓଵ 

distance classification. This new method stores fewer coefficients than needed for ℓଵ 

norm, which reduces memory size and hence the spike classification block area. The 

computation complexity was also minimized by quantization of hyperplane coefficients 

without appreciable loss of performance. A DT based spike classification architecture was 

implemented in Verilog HDL and mapped into 130nm standard library. It consumes 

10400 m2 area per channel. The memory-friendly property makes the DT based spike 

classification suitable for high-channel-count spike classification. 

Having automatic thresholding spike detector developed in Chapter 3, noisy 

insensitive feature extractor developed in Chapter 4 and memory-efficient spike classifier 



93 
 

developed in this chapter, a neural signal processor (NSP) will be designed to integrate all 

individual hardware blocks together in the next chapter. A single channel NSP will be 

first designed to cooperate each block to process a neural signal in real time. Then the 

scalability towards high-channel-count applications for the NSP will be analyzed in terms 

of power and area tradeoff to specify the scalability of each block. Finally, the 

multichannel NSP will be implemented and its function will be validated to demonstrate 

its capability for high-channel-count application.  

  



94 
 

Chapter 6 Spike Sorting based Neural Signal Processor 

6.1 Introduction 

In Chapter 3 to 5, hardware blocks for each spike sorting step have been developed. To 

implement a power-area efficient neural signal processor for high-channel-count BMI 

applications, scalable integration of all spike sorting blocks needs to be analyzed. This 

chapter presents a single-channel architecture to combine each block together first. Then 

design methodologies are developed to extend the single-channel architecture to a 

multichannel architecture based on the scalability analysis of each block. Finally, a 32-

channel NSP module that is highly scalable is implemented in Verilog HDL and its 

function is tested on FPGA to validate its real-time capability. 

6.2 Single-channel Design of Spike Sorting 

Real-time spike sorting requires two phases: 1) a training phase to determine the 

threshold value for spike detection and coefficients for spike classification model and 2) a 

real-time sorting phase to assign a spike ID to each detected spike. To provide hardware 

efficiency, it has been commonly adopted that coefficients for spike classification model 

are trained offline [105, 121, 125]. Figure 6.1 describes sequential procedures for the 

single-channel training phase. During the training phase, the threshold value is estimated 

first online. After that, spike detection and feature extraction are performed online to 

obtain spike features. Spike features are then transmitted out for offline training where 

spike clustering is executed first and coefficients of the classification model are trained 

after clustering. When the offline training is finished, relevant parameters are sent back to 

a neural signal processor for real-time spike sorting. In this section, we first introduce an 

automatic spike clustering algorithm to determine the number of clusters. A block 



95 
 

diagram of a single-channel implementation is presented for real-time spike sorting later. 

 

Figure 6.1. Illustration of sequential procedures for single-channel training phase. 

6.2.1 Offline Training for Automatic Spike Clustering 

The main role of spike clustering is to automatically estimate the number of clusters 

and their centroids from spike features. The centroids and all the spike features are then 

used as input to obtain coefficients of a spike classification model.  

The gold standard Kmeans clustering method requires the prior knowledge of the 

cluster number and is not suitable for automatic spike clustering. Superparamagnetic 

clustering introduced in [91] sweeps a parameter called temperature from low to high. As 

the temperature increases, more clusters will be created with different cluster sizes. This 

method needs to set a threshold such that the number of clusters is determined when a 

new cluster is less than the threshold. Osort clustering has been used to automatically 

determine the number of clusters [102]. However, it is only suitable for spike template 

based clustering where a threshold is estimated from the standard deviation of neural 

signals. For spike feature based clustering, the threshold for Osort still needs to be set 

manually. Thus, an automatic spike clustering method without any parameter settings is 

required to estimate the number of clusters. 

The gap statistic technique was developed to estimate the number of clusters in a set 

of data [126] and is deployed in this thesis for automatic spike clustering. Figure 6.2 

illustrates the general idea of the gap statistic technique. A spike feature set is first 

Spk. Det. + F.E.Thr. Est. Spk. Clustering Clas. model

Online Offline

Time



96 
 

clustered into k clusters using Kmeans cluster algorithm. The cluster number k is swept 

from 1 to K. For each Kmeans clustering with k clusters, denoting rth cluster dataset as Cr, 

a within-cluster dispersion Wk is calculated by  

 ௞ܹ ൌ ∑
ଵ

ଶ௡ೝ
௥ܦ

௞
௥ୀଵ  (6-1) 

where Dr is the pairwise distance in Cr contacting nr points and is calculated as  

௥ܦ  ൌ ∑ ∑ ௜ݔ| െ |௝ݔ
ଶ

௫ೕ∈஼ೝ௫೔∈஼ೝ
 (6-2) 

From the spike feature set, a reference dataset is generated by uniformly and randomly 

sampling either the dataset bounding box as shown in Figure 6.3(a) or a box aligned with 

the principle components of the dataset as shown in Figure 6.3(b). The within-cluster 

dispersion of the reference dataset is then calculated and denoted as W*
k. The reference 

dataset is usually generated multiple times and W*
k is calculated each time. Hence, W*

k 

can be considered as a random variable. The gap statistic is defined as  

௞݌ܽܩ  ൌ ሾlogሺܧ ௞ܹ
∗ሻሿ െ log ሺ ௞ܹሻ (6-3) 

Finally, a decision metric Mk defined as  

௞ܯ  ൌ ௞݌ܽܩ െ ሺ݌ܽܩ௞ାଵ െ  ௞ሻ (6-4)ݏ

is used to select the optimal cluster number Kopt which is the smallest k such that Mk is 

greater than zero. Figure 6.4 shows Mk as the cluster number k varies and the result of 

automatic spike clustering for the dataset shown in Figure 6.3. The gap statistic 

determines the optimal number of clusters is three which is the same as intuitive 

observation. 



97 
 

 

Figure 6.2. The data processing flow for the gap statistic technique. 

    

 (a) (b) 

Figure 6.3. Reference dataset generated by uniformly sampling either (a) the dataset 
bounding box or (b) a box aligned with the principle components of the dataset. 

 

 (a) (b) 

Figure 6.4. (a) The decision metric as a function of number of cluster. (b) Automatic 
spike clustering result using gap statistic Kmeans clustering. 

6.2.2 Single-channel Implementation 

Having spike detector, feature extractor and spike classifier developed in Chapter 3 to 

Within‐cluster 
dispersion (Wk)

Spike feature set

Kmeans
(k clusters)

Within‐cluster 
dispersion (W*k)

Gap statistic 
(Gap(k))

Decision 
(Mk)

KoptKmeans
(k clusters)

Reference 
data set

Feature 1

F
e

a
tu

re
 2

Feature 1

F
e
a

tu
re

 2

1 2 3 4 5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Number of cluster k

D
e

ci
si

o
n
 m

e
tr

ic
 M

k

Feature 1

F
e
a
tu

re
 2



98 
 

5, additional hardware resources are required to provide high performance of spike 

sorting in real time. Traditionally, a spike alignment block is needed to provide a whole 

spike waveform to a feature extractor, because the traditional feature extraction methods 

request point wise operations on spikes. The whole spike waveform is stored and aligned 

to a common reference point in this alignment block. The reference point for alignment 

plays a critical role in spike sorting performance. However, the spike alignment block 

increases the computational load and the memory demand of the neural signal processor. 

In our filtering based feature extraction method, point wise operations on spikes are not 

required and therefore the alignment block is not necessary. Because a spike is detected 

when it crosses a threshold, several spike samples are missed before threshold crossing. 

Therefore, to extract useful features from missing spike samples, a pre-threshold crossing 

buffer is required. To study the effect of the buffer size on spike classification 

performance, the dataset described in Figure 4.1 were used and the result is shown in 

Figure 6.5. It can be seen that the classification performance provides little improvement 

(less than 0.5%) for the buffer size beyond six. Considering the fact that the NEO pre-

processor delays the neural data by two samples, the best buffer size was chosen to be 

eight in this design. 



99 
 

 

Figure 6.5. The classification error with different buffer sizes compared to the 
classification error using whole spike waveforms. 

Because the feature extractor and the spike classifier are only activated when a spike is 

detected, a controller is needed to generate control signals for both of them. Figure 6.6(a) 

shows the block diagram for single-channel spike sorting and Figure 6.6(b) illustrates the 

control signals to manage different blocks. When a NEO coefficient is above a threshold 

value, the controller generates a enable signal (Enfet) to activate the feature extractor for a 

period equal to the length of a spike window (Nspk). After features are extracted, the 

controller triggers the spike classifier by setting an enable signal (Enclas) high for Nclas 

clock cycles.  

To process multichannel neural signals, single-channel architecture can be linearly 

scaled at the expense of a huge amount of hardware consumption. Implantable 

applications desire efficiently sharing blocks including NEO preprocessor, threshold 

estimator, feature extractor and spike classifier for multichannel signal processing. These 

blocks contribute nearly 90% of area to the signal-channel design. Thus, it is imperative 

to provide a scalability analysis for each block in terms of tradeoffs among power, area 

and speed. 

3 4 5 6 7 8 9
0

0.01

0.02

0.03

0.04

0.05

0.06

Pre-threshold crossing buffer size

C
la

ss
ifi

ca
tio

n
 e

rr
o

r 
d

iff
e

re
n

ce



100 
 

 

(a) 

 

(b) 

Figure 6.6. (a) Block diagram for single-channel spike sorting. (b) Control signals from 
the controller to manage the activities of the feature extractor and the spike classifier. 

6.3 Multichannel Design of Spike Sorting 

6.3.1 Scalability Analysis 

A. NEO Preprocessor 

The scheme of NEO preprocessor is shown in Figure 6.7. The computational cells 

including multipliers and adders occupy around 85% of the NEO preprocessor area. 

Interleaving is an effective technique to save area by reusing the computational cells 

across channels with increased clock frequency. When the NEO preprocessor is 

interleaved to support Nintlv channels, each delay element Z-1 in Figure 6.7 is replaced 

with Nintlv cascaded delay elements. As a result, the computational resources for each 

channel are reduced by a factor of Nintlv. In the meantime, the data rate of input data is 

Spike 
ID

NEO Pre‐
processor

Pre‐threshold 
Crossing Buffer

Automatic 
Threshold 
Estimator

Threshold 
Register

Comp

Controller

Feature 
Extractor

Spike 
Classifier

Clas. 
MemoryNeural 

Data

Enfet

Enclas

Spike 
Detector

CLK. Cycle 1 2 3 … … … … … … Nspk … … Nspk+Nclas

Comp output

Enfet

Enclas



101 
 

raised by Nintlv, which increases the power consumption of the NEO preprocessor. To 

determine the best value of Nintlv, the power-area product per channel were studied for 

different values of Nintlv as shown in Figure 6.8. It can be seen that area per channel 

reduces as Nintlv is increased and eventually saturates to the area of single-channel delay 

elements. Power consumption is proportional to Nintlv because of faster clock frequency. 

The four and eight interleaved designs provide similar power-area product performance. 

In our design, Nintlv was chosen to be eight in favor of 35% area reduction compared to 

Nintlv equal to four. In this case, the area consumption was reduced by 75% compared to 

the one without interleaving. 

 

Figure 6.7. The scheme of NEO preprocessor unit for one channel. 

 

Figure 6.8. Power and area tradeoff over the number of channels interleaved. 

B. Threshold Estimator 

Z‐1

Z‐1Z‐1

Z‐1

1

1‐1

2

1‐2

Exponential Filter 1

Exponential Filter 2

NEO Calculator

1 2 4 8 16 32 64
0

312.5

625

937.5

1250

P
o

w
e

r 
(n

W
)

Number of channels interleaved

0

0.625

1.25

1.875

2.5
x 10

4

A
re

a
 (

u
m

2 )

Power-area product



102 
 

The strategy to scale the threshold estimator depends on the noise variation. The 

threshold estimator should be able to keep track of the noise variation in time such that 

spike detection performance is not seriously affected. It has been shown that the noise 

level can vary at timescale of minutes (five minutes) [113] while the threshold estimator 

in our design cost around five seconds for computation. Thus, for multichannel 

application, the threshold estimator is determined to cycle through 32 channels and 

sequentially update threshold values for each channel roughly every three minutes. As a 

result, both power and area consumptions are reduced by around 95% compared to the 

choice without scaling. 

C. Feature Extractor & Spike Classifier 

Because the feature extractor and the spike classifier are only active when a spike is 

detected, both of them operate at the frequency of the spike firing rate instead of the 

sampling rate such as the NEO preprocessor. Thus, they can be scaled in the same way 

together for multichannel signal processing. It is obvious that both blocks are idle most of 

time in the single-channel application. The idle time can be utilized to process detected 

spikes from other channels as long as spikes from different channels are not detected at 

the same time. This concludes that the scalability of the feature extractor and the spike 

classifier is determined by the maximum number of channels (Nmax) in which spikes are 

fired simultaneously when processing Nch-channel data. To study the relationship 

between Nmax and Nch, we synthesized Nch-channel spike trains using Poisson firing 

model with the firing rate equal to 100 Hz and analyzed the statistic of Nmax. Here, we 

consider spikes are fired simultaneously if the difference of spike occurrence time among 

channels is less than spike duration time (assuming 2 ms). Figure 6.9 shows the 



103 
 

relationship between Nmax and Nch, where Nmax is calculated under the condition that the 

probability of simultaneously fired spikes across Nch channels greater than Nmax is less 

than 0.1%. It can be seen that the scalability defined as 
ே೎೓

ே೘ೌೣ
 increases if more channels 

are processed at the same time. This seems to imply that more channels need to be 

involved for hardware-efficient multichannel processing. However, in practical 

implementation, there must be a multi-input-multi-output (MIMO) multiplexer between 

the Nch-channel data buffers and the ܰ௠௔௫ feature extractor & spike classifier (FESC) 

blocks to connect channels where spikes are detected to those idle FESC blocks as shown 

in Figure 6.10. Thus, the scaling effect on the area cost of this MIMO multiplexer should 

also be considered. Figure 6.11 shows the area per channel of the FESC block and the 

MIMO multiplexer when Nch-channel neural data are processed by Nmax FESC blocks. It 

can be seen that the area of the FESC block decreases while the MIMO multiplexer 

increases as Nch becomes larger. The best choice for Nch is 32 where the total area of these 

two blocks is the smallest and only 13 FESC blocks are needed from Figure 6.9. This 

design choice reduces the area by almost 35% compared to using one FESC block for 

each channel. 

 



104 
 

 

Figure 6.9. The relationship between Nmax and Nch. The scalability defined as 
ே೎೓

ே೘ೌೣ
 

describes the number of channels can be shared by the same feature extractor and spike 
classifier blocks when Nch-channel neural data are processed. 

 

Figure 6.10. Illustration of connection between Nch-channel data buffers and the ܰ௠௔௫ 
feature extractor & spike classifier blocks. 

 

Figure 6.11. The area per channel of FESC blocks and the MIMO multiplexer when Nch-
channel neural data are processed by Nmax FESC blocks. 

2 4 8 16 32 64 128 256 512
0

2

4

6

N
ch

/N
m

ax

Number of channels (N
ch

)

0

50

100

150

N
m

ax

M
IM

O
 M

U
X

Nmax
Nch

Pre‐threshold 
crossing buffer

Pre‐threshold 
crossing buffer

Feature Extractor 
& Spike Classifier

Feature Extractor 
& Spike Classifier

1 2 4 8 16 32 64 128 256
0

0.5

1

1.5

2

2.5
x 10

4

Number of channels

A
re

a
 p

e
r 

ch
a

n
n

e
l (

u
m2 )

 

 

Feature Extractor & Spike Classifier
MIMO Multiplexer
Total



105 
 

6.3.2 Multichannel Implementation 

The scalability analysis induces the design of a spike sorting NSP module that can 

process 32 neural channels simultaneously. This module includes four NEO 

preprocessors each processing 8-channel interleaved data, one threshold estimator 

calculating threshold values sequentially for all channels and 13 FESC blocks classifying 

detected spikes from 32 channels. Other blocks like the pre-threshold crossing buffer, the 

threshold register and the classification memory are linearly extended. A global controller 

is required to organize system operations and manipulate data flows among different 

blocks. Figure 6.12 shows the architecture of the 32-channel NSP module. Assuming 

neural data sampling rate is 20 kHz, the NSP module operates at the clock frequency of 

160 kHz. When a spike is detected and classified, this NSP module outputs a channel 

index from the global controller and a spike ID from the spike classifier. 

The global controller plays an important role in functioning multichannel signal 

processing. It initiates the training phase to evaluate threshold values sequentially for 

each channel and then enable spike detection and feature extraction for all the channels. 

When coefficients of all spike classification models are received from the offline training, 

the global controller activates spike classifiers for real-time multichannel spike sorting. 

The global controller routes threshold values from threshold registers through the MUX 

in the spike detector for spike detection. When spikes are detected, it determines channel 

indexes and FESC blocks that are in idle state at the same time. Thus, pre-threshold 

crossing buffers from those spike-detected channels are connected to idle feature 

extractors through the MIMO multiplexer. After features are extracted and fed into spike 

classifiers, the global controller directs coefficients from classification memory blocks to 



106 
 

spike classifiers through the same MIMO multiplexer. Notice that the feature extractor is 

synchronized at the data sampling rate (20 kHz) while the spike classifier is operated at 

the clock frequency (160 kHz). Thus, the spike classifier almost immediately outputs a 

spike ID after features are extracted.  

 

 

Figure 6.12. Architecture of 32-channel spike sorting NSP module. 

6.4 Results 

6.4.1 Hardware Performance 

The 32-channel spike sorting NSP was implemented in Verilog HDL, and the spike 

sorting function was verified in an Altera Cyclone III FPGA to demonstrate the real-time 

performance of the new spike sorting scheme and enable future integration with a 

complete neuroprocessing platform. Figure 6.13 depicts the FPGA test setup used to 

verify the function of our NSP module. First, the soft processor receives input data from 

the PC through a UART interface and stores it into the SDRAM. Then the soft processor 

sends input data one by one into the NSP coprocessor through the input first-input-first-

NEO Pre‐
processor

M
U
X

Threshold 
Register

Comp

Threshold 
Estimator

Global 
Controller

D
ch
7

…
…

D
ch
1

D
ch
0

In
te
rl
ea
ve
d
 D
at
a

8Ch

Pre‐threshold 
crossing buffer

Clas. 
Memory

M
U
X

32Ch

M
IM

O
M
U
X

Feature 
Extractor

Spike 
Classifier

13Ch

Spike 
ID

Channel No.

Spike Detector

4 blocks



107 
 

output (FIFO) buffer. The NSP sends back output data one by one through the output 

FIFO to the soft processor which stores the output data into the SDRAM. Finally, the soft 

processor transmits all output data back to the PC for verification. 

 

Figure 6.13. FPGA based test setup for NSP verification. 

To estimate power and area performance, the design was synthesized and mapped on a 

0.13μm CMOS process. For accurate estimation of the module’s power consumption, a 

simulated four 8-channel interleaved signals were fed into the post-synthesis gate-level 

NSP module using Synopsys Verilog Compiler Simulator (VCS). VCS verifies the 

function of the gate-level design and calculates the switching activity of each internal 

node. The switching activity information was then provided to the power estimation tool 

using Synopsys PrimeTime PX. Table 6-1 lists the power and area consumption for each 

block based on post synthesis simulation. Our 32-channel spike sorting NSP 

implementation approximately occupies 0.73mm2 area and consumes 24.0μW with clock 

frequency of 160 kHz for a 20 kHz sampling rate and 10 bit data width. The NEO 

preprocessor dominates almost 70% of power consumption because it operates at the 

clock frequency for every data sample over all channels. The pre-threshold crossing 

buffer consumes the second most significant power because it updates all buffer values at 

data sampling rate. The FESC block only consumes less than 7% of power as it is only 

active when spikes are detected. The classification memory dominates nearly 30% of area 

PC
Soft 

Processor

SDRAM

Input FIFO

Design Core

FPGA

Output FIFO



108 
 

consumption while the FESC block and the MIMO multiplexer together occupy around 

33% of area. Without using quantized decision tree based spike classification and 

analyzing scalability for the FESC block, the total area would increase roughly by 20% 

and 10%, respectively. On average, the spike sorting NSP module consumes only around 

0.75 µW power and 0.023 mm2 area per channel. 

Table 6-1 Power and area performance of hardware cells from post-synthesis simulation 

Cells 
Power Area 

µW % µm2 % 

NEO Preprocessor 16.6 69.1% 99320 13.6% 

Feature Extractor & 

Spike Classifier 
1.6 6.7% 130738 17.9% 

Threshold Estimator 0.1 0.4% 23060 3.2% 

Global Controller 0.6 2.5% 28109 3.8% 

MIMO Multiplexer 0.3 1.3% 114961 15.7% 

Pre-threshold Crossing 

Buffer 
3 12.5% 84603 11.6% 

Threshold Register 0.1 0.4% 16753 2.3% 

Classification Memory 0.9 3.8% 214226 29.3% 

Others 

(MUX, Comparator) 
0.8 3.3% 18380 2.5% 

Total 24.0  730150  

 



109 
 

6.4.2 Spike Sorting Performance 

To evaluate spike sorting performance, simulated datasets including various spike 

shapes described in Chapter 4 were generated and fed into our NSP module. Specifically, 

40-second 10-bit neural signals with SNR from 3 to 7 and the firing rate from 10 to 100 

were synthesized from each dataset. Figure 6.14 shows the overall spike detection 

performance of the spike detector. The spike detection performance similarly to Chapter 3 

is defined as 

௔௖௖ݐ݁ܦ  ൌ
்௉

்௉ାிேାி௉ 
 (6-5) 

where TP is true positive representing the number of correctly detected spikes, FN is 

false negative representing the number of missed spikes and FP is false positive 

representing the number of false spikes due to detecting noise as spikes. The NEO based 

automatic thresholding spike detector achieves nearly 90% accuracy for SNR greater than 

6. Because NEO amplifies spikes of high frequency energy, the spike detector still misses 

some of spikes dominated in low frequency spectrum at high SNR. It provides detection 

accuracy on average within 5% of the manual thresholding method for SNR greater than 

5. When the SNR is low, the performance degrades up to within 12% of manual 

thresholding. Figure 6.15 plots the detection performance as a function of the firing rate 

at different SNRs to show the robustness of the automatic thresholding spike detector 

against the firing rate. When the firing rate is above 30, the variance of the detection 

performance is within 2% for SNR greater than 6 and the variance increases up to 7% for 

SNR below 4. The performance decreases when the firing rate is below 30 even at high 

SNRs because the number of TP is reduced but the number of FP is still the same. 



110 
 

 

Figure 6.14. Spike detection accuracy against SNR using the automatic thresholding 
spike detector and the manual thresholding method. 

 

Figure 6.15. Spike detection accuracy of the automatic thresholding spike detector 
against the firing rate. 

Figure 6.16 shows the spike sorting performance of the NSP module which is defined 

as  

௔௖௖݃݊݅ݐݎ݋ܵ  ൌ
்௉೎೗ೌೞ

்௉ାிேାி௉ 
 (6-6) 

where TPclas is the number of correctly detected and classified spikes. The variance of 

spike sorting performance is higher at high SNRs than at low SNRs, because the NSP 

module provides dynamic performances for different datasets when SNR is high and 

3 4 5 6 7

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

D
e

te
ct

io
n

 a
cc

u
ra

cy

 

 

Automatic thresholding
Manual thresholding

20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

FR

D
e

te
ct

io
n

 a
cc

u
ra

cy

 

 

SNR = 7 SNR = 6

 

 

SNR = 5 SNR = 4.4 SNR = 4



111 
 

consistently poor performances for all datasets when SNR is low. The performance of our 

NSP module is compared to the PCA based spike sorting method where the feature 

extraction method in our module is replaced by PCA with first four PC components 

(PCA4). Our spike sorting performance is within 4% less than the PCA based spike 

sorting method. However, PCA requires the storage of the whole spike waveforms and 

extensive computations to obtain PCA features. Thus, our NSP module provides 

comparable spike sorting performance while consuming negligible hardware resources 

compared to PCA. 

 

Figure 6.16. Spike sorting performance of our NSP module and the one using PCA 
features. 

6.4.3 Comparison to other work 

At the moment of this thesis dissertation, according to our best knowledge, only one 

work has implemented multichannel on-chip spike sorting NSP [103] which is based on 

an unsupervised spike clustering algorithm called Osort [102]. Figure 6.17 shows the 

classification accuracy of our spike sorting method and Osort. To eliminate the impact of 

spike detection, all spikes are assumed to be detected and aligned to the same reference 

3 4 5 6 7
0.2

0.4

0.6

0.8

1

SNR

S
p

ik
e

 s
o

rt
in

g
 a

cc
u

ra
cy

 

 

This work
PCA

4



112 
 

point. Our work provides on average 15% higher classification accuracy than Osort and 

the performance of our work is comparable to Osort even in the worst case. Osort shows 

more variability in performance because it needs to estimate a clustering threshold 

parameter from neural signals and the parameter estimation method is sensitive to the 

spike firing rate. Table 6-2 lists the specifications of our work and the Osort based spike 

sorting NSP. This work provides 6X power reduction and 3X area reduction compared to 

the Osort NSP. The main reason for our superior hardware performance is that Osort is a 

spike-template based spike sorting method which has to store cluster means each with 

dimensionality equal to the spike length. As a result, it is reported that the Osort based 

NSP requires the memory size of 50 kb for 16-channel (3125 b/channel) implementation 

and the memory consumes 66% of power even with power optimization. In our work, we 

only extract four features from each spike waveform. Furthermore, by using quantized 

decision tree based spike classification, each channel only demands the memory size of 

140 b. For implantable applications, the size of the electronic system is limited by the 

size of the microelectrode array. Current microelectrode technologies have demonstrated 

the implantable feasibility with the size of 4 mm × 4 mm. Under this area constraint, our 

NSP module can be extended to process the number of channels as high as 690 while the 

Osort based NSP can only process 225 channels. If considering the CMOS process 

difference, our NSP module is scalable to process 2760 channels under the 65-nm CMOS 

process. Thus, the spike sorting NSP developed in our work is more suitable for high-

channel-count BMI applications. 



113 
 

 

Figure 6.17. Classification accuracy of this work and Osort at different SNRs. 

Table 6-2 Performance summary of reported spike sorting NSPs 

 
Process 

(nm) 

Voltage 

(V) 

Power 

(µW/channel)

Area 

(mm2/channel) 

[103] 65 0.27 4.68 0.070 

This work 130 1.2 0.75 0.023 

6.5 Conclusion  

This chapter presented an integration method to combine each block developed from 

Chapter 3 to 5 together as a spike sorting NSP module. The scalability of each block was 

analyzed to share them efficiently for multichannel application. The multichannel spike 

sorting NSP was designed in Verilog HDL and tested in an FPGA for real-time 

implementation. The performance of our NSP module achieves 15% higher spike sorting 

accuracy on average, 6X power and 3X area reduction compared to the current existing 

work. Results of this work demonstrate that our NSP module is suitable for high-channel-

count neural recording microsystems in next-generation BMI applications. 

  

3 4 5 6 7
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

C
la

ss
ifi

ca
tio

n
 a

cc
u
ra

cy

 

 

This Work
Osort



114 
 

Chapter 7 Summary and Future Work 

7.1 Summary 

This thesis research developed a spike sorting based neural signal processor (NSP) that 

overcomes the challenges of preserving useful neural spike information in a compact 

energy-efficient hardware platform for next-generation high-channel-count BMI 

applications. Thorough analysis of neural spike and background noise properties was 

conducted to develop spike sorting algorithms that can maintain high quality neural spike 

information. Specifically, this work performed statistical analysis on background noise, 

and spectral analysis of the relationship between neural spikes and background noise. 

Based on the statistical analysis, an automatic spike detection method was invented to 

enable highly accurate spike detection across various spike firing rates and noise levels. 

Based on this spectral analysis, a new noise-insensitive feature set was created allowing 

distinctive separation among diverse spike shapes. Utilizing the new feature set, a 

decision tree based method was designed to classify spikes with low area consumption. 

All algorithms were designed to be computationally efficient and scalable to high-

channel-count applications. Finally, by integrating spike sorting algorithms in a power-

area efficient manner, a new NSP hardware architecture was designed to process neural 

signals with scalability to high-channel-count recording systems. The NSP was 

successfully implemented in Verilog HDL and tested on an FPGA to verify real-time 

processing capability. 

7.2 Contributions 

The work in this thesis provides the following significant contributions: 

a. Developed the first-known hardware-efficient and adaptive signal detection 

thresholding method for an automatic non-linear energy operator (NEO) based spike 



115 
 

detector that enables highly accurate spike detection over a wide range of SNRs and 

spike firing rates.  

To set the threshold value adaptively to the noise level, statistical analysis was 

performed to study the probability density (pdf) function of neural background noise, 

According to the pdf, the threshold value is demonstrated to be correlated with the 

standard deviation (Std) and the root mean square (RMS) frequency of background noise. 

Hardware efficient methodologies were designed to estimate the Std and the RMS 

frequency such that the threshold value is robust to the firing rate from 10 to 100 Hz. This 

work implemented the first hardware-efficient spike detector with both noise-adaptive 

and spike-firing-rate insensitive threshold estimation.  

b. Developed a hardware-efficient noise-insensitive feature set that provides highest 

sorting accuracy compared with other existing computationally-efficient feature 

extraction methods. 

A Separability metric was created to analyze frequency spectrum information of neural 

spikes and background noise. The spectral analysis allows extracting noise-insensitive 

spike features from best frequency bands. Considering the need for resource-efficient 

hardware implementation, the weighted haar discrete wavelet transform method was 

derived to extract features from the desired frequency bands. The new feature extraction 

method was tested at different signal-to-noise ratios using synthesized datasets consisting 

of considerable and various spike shapes. The new feature set provides 3-10% better 

spike sorting performance than other hardware-efficient feature sets while consuming 

comparable hardware resources. 

c. Developed the first-known area-efficient quantized oblique decision tree based spike 



116 
 

classifier that provides 50% memory usage reduction while achieving the same 

classification accuracy compared to the traditional classification method. 

A quantized oblique decision tree (DT) classification method was developed to 

classify spikes where the coefficients of the DT model were quantized into only two bits 

to reduce both power and area consumption. The new spike classifier stores 50% fewer 

coefficients than the traditional ℓଵ norm based classifier, which reduces memory size and 

hence the area. The DT method achieves classification accuracy within 1% on average 

compared to the ℓଵ norm method. The architecture of the spike classifier was 

implemented in Verilog and found to consume only 10400 m2 area per channel. 

d. Developed the most power-area efficient spike sorting based neural signal processor 

for high-channel-count application that achieves 15% higher spike sorting accuracy on 

average, 6X power and 3X area reduction than the current existing work. 

First, a single channel neural signal processor was implemented in Verilog HDL to 

manage communications among spike sorting blocks. The scalability analysis was then 

performed on each spike sorting block in terms of power and area tradeoffs to efficiently 

share hardware resources for multichannel processing. A global controller block was 

designed to manipulate data flows for multichannel blocks. Finally, a multichannel neural 

signal processor was implemented and achieves 15% higher accuracy, 6X power and 3X 

area reduction than the current existing work. 

7.3 Future work 

This research has developed high accuracy hardware-efficient spike sorting algorithms 

and implemented a compact energy-efficient spike sorting based neural signal processor 

for high-channel-count applications. Future work on spike sorting algorithm optimization 

and decoding analysis would further improve the spike sorting accuracy and hardware 



117 
 

efficiency. 

a. Analyze the relationship between the spike detection and feature extraction in neural 

signal spectrum and develop an algorithm to unify two steps together. 

The NEO based spike detection considers neural spikes as instantaneous increase in 

energy and thus emphasizes the high frequency energy of neural spikes. From the spectral 

analysis for spike features, some spike types are more noise-insensitive in low frequency 

band than high frequency band. This indicates that spike detection can also be performed 

in low frequency band to achieve higher detection accuracy. Thus, one future work will 

study the optimal low and high frequency bands in terms of overall performance of 

detection and feature extraction. A hardware-efficient architecture will be designed to 

combine these two steps together, which would further reduce the hardware complexity 

of the neural signal processor. 

b. Adding new functions to spike sorting algorithms for eliminating interference from 

artifacts and multi-unit spikes. 

Real extracellular recordings include both large amplitude artifacts and small 

amplitude multi-unit spikes. The artifacts usually originate from some other sources 

rather than the brain of interest, such as body movements, momentary electrode 

impedance change and so on. The multi-unit spikes are produced by distant neurons 

which can be detected but cannot be separated into different clusters due to their 

relatively small amplitudes. Without artifact removal and multi-unit spikes separation, it 

is impossible to process real neural signals. Thus, it is critical for spike sorting algorithms 

to be capable of eliminating these two types of interference for robust performance. 

c. Designs optimal spike sorting algorithms in terms of decoding performance. 



118 
 

In real extracellular recordings, there is no ground truth about timestamps of spikes 

and source neurons that fire spikes. The ultimate goal of spike sorting is to provide high 

quality information of neuron activities such that neural signals can be accurately 

decoded into machine commands. Thus, the best way to quantify spike sorting 

performance for real neural signals is to study the effect of spike sorting results on the 

decoding performance. In spike detection, it is important to study the impacts of the 

correctly and falsely detected spikes on decoding performance. This will help to 

determine the best threshold value. In spike clustering and classification, it is useful to 

analyze the impact of the number of spike clusters on the decoding performance. The 

analysis will help to determine the number of spike clusters necessary for decoding and 

hence improve the hardware efficiency of spike classification. 

  



119 
 

 

 

 

 

 

 

 

 

 

 

 

 

BIBLIOGRAPHY 

  



120 
 

BIBLIOGRAPHY 

[1] "http://www.medicalnewstoday.com/articles/146819.php." 

[2] T. N. Taylor, et al., "Lifetime Cost of Stroke in the United States," Stroke, vol. 27, 
pp. 1459-1466, Sep. 1 1996. 

[3] K. D. Anderson, "Targeting Recovery: Priorities of the Spinal Cord-Injured 
Population," Journal of Neurotrauma, vol. 21, pp. 1371-1383, Oct. 01 2004. 

[4] A. Farin, C. Y. Liu, I. A. Langmoen, and M. L. J. Apuzzo, "Biological 
Restoration Of Central Nervous System Architecture And Function: Part 3—Stem 
Cell‐ And Cell‐Based Applications And Realities In The Biological 
Management Of Central Nervous System Disorders: Traumatic, Vascular, And 
Epilepsy Disorders," Neurosurgery, vol. 65, pp. 831-859, 2009. 

[5] B. Graimann, B. Allison, and G. Pfurtscheller, "Brain–Computer Interfaces: A 
Gentle Introduction," in Brain-Computer Interfaces, B. Graimann, G. 
Pfurtscheller, and B. Allison, Eds., ed: Springer Berlin Heidelberg, 2010, pp. 1-
27. 

[6] E. V. Evarts, Relation of pyramidal tract activity to force exerted during 
voluntary movement vol. 31, 1968. 

[7] J. R. Wolpaw and D. J. McFarland, "Control of a two-dimensional movement 
signal by a noninvasive brain-computer interface in humans," Proceedings of the 
National Academy of Sciences of the United States of America, vol. 101, pp. 
17849-17854, December 21 2004. 

[8] G. Schalk, et al., "Two-dimensional movement control using 
electrocorticographic signals in humans," Journal of neural engineering, vol. 5, p. 
75, 2008. 

[9] J. M. Carmena, et al., "Learning to Control a Brain–Machine Interface for 
Reaching and Grasping by Primates," PLoS Biol, vol. 1, p. e42, 2003. 

[10] J. Wessberg, et al., "Real-time prediction of hand trajectory by ensembles of 
cortical neurons in primates," Nature, vol. 408, pp. 361-365, 2000. 

[11] L. R. Hochberg, et al., "Reach and grasp by people with tetraplegia using a 
neurally controlled robotic arm," Nature, vol. 485, pp. 372-375, 2012. 

[12] J. L. Collinger, et al., "High-performance neuroprosthetic control by an individual 
with tetraplegia," The Lancet, vol. 381, pp. 557-564, 2013. 

[13] T. A. Lebedev MA, Hanson TL, Li Z, O’Doherty JE, Winans JA, Ifft PJ, Zhuang 
KZ, Fitzsimmons NA, Schwarz DA, Fuller AM, An JH, Nicolelis MA, "Future 



121 
 

developments in brain-machine interface research," Clinics, 2011. 

[14] R. Michael, O. Iyad, H. C. Stephen, and D. W. Patrick, "A single-chip signal 
processing and telemetry engine for an implantable 96-channel neural data 
acquisition system," J. Neural Eng., vol. 4, p. 309, 2007. 

[15] H. Miranda, et al., "HermesD: A High-Rate Long-Range Wireless Transmission 
System for Simultaneous Multichannel Neural Recording Applications," IEEE 
Trans. Biomed. Circuits Syst., vol. 4, pp. 181-191, 2010. 

[16] A. B. David, Y. Ming, A. Juan, and N. Arto, "An implantable wireless neural 
interface for recording cortical circuit dynamics in moving primates," J. Neural 
Eng., vol. 10, p. 026010, 2013. 

[17] H. Bin, "Neural Engineering," Springer; 2nd ed, 2013. 

[18] E. V. Evarts, "Relation of pyramidal tract activity to force exerted during 
voluntary movement," J. Neurophysiol., vol. 31, pp. 14-27, 1968-01-01 00:00:00 
1968. 

[19] D. R. Humphrey, E. M. Schmidt, and W. D. Thompson, "Predicting Measures of 
Motor Performance from Multiple Cortical Spike Trains," Science, vol. 170, pp. 
758-762, Nov. 1970. 

[20] A. Georgopoulos, J. Kalaska, R. Caminiti, and J. Massey, "On the relations 
between the direction of two-dimensional arm movements and cell discharge in 
primate motor cortex," The Journal of Neuroscience, vol. 2, pp. 1527-1537, 
November 1 1982. 

[21] B. S. Oken, et al., "Brain–Computer Interface With Language Model–
Electroencephalography Fusion for Locked-In Syndrome," Neurorehabilitation 
and Neural Repair, vol. 28, pp. 387-394, May 1 2014. 

[22] L. Karl, et al., "Quadcopter control in three-dimensional space using a 
noninvasive motor imagery-based brain–computer interface," Journal of neural 
engineering, vol. 10, p. 046003, 2013. 

[23] N. Rowland, J. Breshears, and E. Chang, "Neurosurgery and the dawning age of 
Brain-Machine Interfaces," Surgical Neurology International, vol. 4, pp. 11-14, 
2013. 

[24] A. B. Schwartz, X. T. Cui, Douglas J. Weber, and D. W. Moran, "Brain-
Controlled Interfaces: Movement Restoration with Neural Prosthetics," Neuron, 
vol. 52, pp. 205-220, 2006. 

[25] N. Birbaumer, "Brain–computer-interface research: Coming of age," Clinical 
Neurophysiology, vol. 117, pp. 479-483, 2006. 



122 
 

[26] G. Baranauskas, "What limits the performance of current invasive Brain Machine 
Interfaces?," Frontiers in Systems Neuroscience, vol. 8, Apr. 29 2014. 

[27] G. Schalk and E. C. Leuthardt, "Brain-Computer Interfaces Using 
Electrocorticographic Signals," Biomedical Engineering, IEEE Reviews in, vol. 4, 
pp. 140-154, 2011. 

[28] C. L. Eric, et al., "A brain–computer interface using electrocorticographic signals 
in humans," Journal of neural engineering, vol. 1, p. 63, 2004. 

[29] W. Wang, et al., "An Electrocorticographic Brain Interface in an Individual with 
Tetraplegia," PLoS ONE, vol. 8, p. e55344, 2013. 

[30] S. I. Ryu and K. V. Shenoy, "Human cortical prostheses: lost in translation?," 
Neurosurgical FOCUS, vol. 27, p. E5, July 01 2009. 

[31] J. D. Simeral, et al., "Neural control of cursor trajectory and click by a human 
with tetraplegia 1000 days after implant of an intracortical microelectrode array," 
Journal of neural engineering, vol. 8, p. 025027, 2011. 

[32] G. Santhanam, et al., "A high-performance brain–computer interface," Nature, 
vol. 442, pp. 195-198, 2006. 

[33] M. Velliste, et al., "Cortical control of a prosthetic arm for self-feeding," Nature, 
vol. 453, pp. 1098-1101, 2008. 

[34] C. T. Moritz, S. I. Perlmutter, and E. E. Fetz, "Direct control of paralysed muscles 
by cortical neurons," Nature, vol. 456, pp. 639-642, 2008. 

[35] B. Wodlinger, et al., "Ten-dimensional anthropomorphic arm control in a human 
brain−machine interface: difficulties, solutions, and limitations," J. Neural Eng., 
vol. 12, p. 016011, 2015. 

[36] V. Gilja, et al., "Clinical translation of a high-performance neural prosthesis," Nat 
Med, vol. 21, pp. 1142-1145, 2015. 

[37] M. A. Lebedev, et al., "Future developments in brain-machine interface research," 
Clinics, vol. 66, pp. 25-32, 2011. 

[38] M. N. Shadlen and W. T. Newsome, "Noise, neural codes and cortical 
organization," Current Opinion in Neurobiology, vol. 4, pp. 569-579, 1994. 

[39] B. Cessac, H. Paugam-Moisy, and T. Viéville, "Overview of facts and issues 
about neural coding by spikes," Journal of Physiology-Paris, vol. 104, pp. 5-18, 
2010. 

[40] E. Chorev, et al., "Electrophysiological recordings from behaving animals—going 
beyond spikes," Current Opinion in Neurobiology, vol. 19, pp. 513-519, 2009. 



123 
 

[41] J. Csicsvari, M. Penttonen, J. Hetke, and K. Wise, Extracellular recording and 
analysis of neuronal activity: from single cells to ensembles, 1998. 

[42] A. Belitski, et al., "Low-Frequency Local Field Potentials and Spikes in Primary 
Visual Cortex Convey Independent Visual Information," The Journal of 
Neuroscience, vol. 28, pp. 5696-5709, May 28 2008. 

[43] C. Gold, D. A. Henze, C. Koch, and G. Buzsáki, On the Origin of the 
Extracellular Action Potential Waveform: A Modeling Study vol. 95, 2006. 

[44] D. A. Henze, et al., Intracellular Features Predicted by Extracellular Recordings 
in the Hippocampus In Vivo vol. 84, 2000. 

[45] E. E. Fetz, "Operant Conditioning of Cortical Unit Activity," Science, vol. 163, 
pp. 955-958, Feb. 28 1969. 

[46] E. Schmidt, "Single neuron recording from motor cortex as a possible source of 
signals for control of external devices," Annals of Biomedical Engineering, vol. 8, 
pp. 339-349, July 01 1980. 

[47] A. Schwartz, R. Kettner, and A. Georgopoulos, "Primate motor cortex and free 
arm movements to visual targets in three- dimensional space. I. Relations between 
single cell discharge and direction of movement," The Journal of Neuroscience, 
vol. 8, pp. 2913-2927, Aug. 01 1988. 

[48] K. Najafi and K. D. Wise, "An implantable multielectrode array with on-chip 
signal processing," Solid-State Circuits, IEEE Journal of, vol. 21, pp. 1035-1044, 
1986. 

[49] M. S. J. Steyaert and W. M. C. Sansen, "A micropower low-noise monolithic 
instrumentation amplifier for medical purposes," Solid-State Circuits, IEEE 
Journal of, vol. 22, pp. 1163-1168, 1987. 

[50] M. G. Dorman, M. A. Prisbe, and J. D. Meindl, "A monolithic signal processor 
for a neurophysiological telemetry system," Solid-State Circuits, IEEE Journal of, 
vol. 20, pp. 1185-1193, 1985. 

[51] J. Ji and K. D. Wise, "An implantable CMOS circuit interface for multiplexed 
microelectrode recording arrays," Solid-State Circuits, IEEE Journal of, vol. 27, 
pp. 433-443, 1992. 

[52] H. J. Song, D. R. Allee, and K. T. Speed, "Single chip system for bio-data 
acquisition, digitization and telemetry," in Circuits and Systems, 1997. ISCAS 
'97., Proceedings of 1997 IEEE International Symposium on, 1997, pp. 1848-
1851 vol.3. 

[53] T. Akin, K. Najafi, and R. M. Bradley, "A wireless implantable multichannel 
digital neural recording system for a micromachined sieve electrode," Solid-State 



124 
 

Circuits, IEEE Journal of, vol. 33, pp. 109-118, 1998. 

[54] R. H. O. H.Yu, K. D.Wise, and K. Najafi, "A wireless microsystem for 
multichannel neural recording microprobes," Proc. Solid-State Sensor Actuator 
Microsystems Workshop, pp. 107-110, 2004. 

[55] P. Mohseni, K. Najafi, S. J. Eliades, and W. Xiaoqin, "Wireless multichannel 
biopotential recording using an integrated FM telemetry circuit," Neural Systems 
and Rehabilitation Engineering, IEEE Transactions on, vol. 13, pp. 263-271, 
2005. 

[56] R. R. Harrison, et al., "Wireless Neural Recording With Single Low-Power 
Integrated Circuit," Neural Systems and Rehabilitation Engineering, IEEE 
Transactions on, vol. 17, pp. 322-329, 2009. 

[57] A. M. Sodagar, et al., "An Implantable 64-Channel Wireless Microsystem for 
Single-Unit Neural Recording," Solid-State Circuits, IEEE Journal of, vol. 44, pp. 
2591-2604, 2009. 

[58] G. Buzsaki, "Large-scale recording of neuronal ensembles," Nat Neurosci, vol. 7, 
pp. 446-451, 2004. 

[59] R. J. Chandler, et al., "A system-level view of optimizing high-channel-count 
wireless biosignal telemetry," in Engineering in Medicine and Biology Society, 
2009. EMBC 2009. Annual International Conference of the IEEE, 2009, pp. 5525-
5530. 

[60] R. R. Harrison, "The Design of Integrated Circuits to Observe Brain Activity," 
Proceedings of the IEEE, vol. 96, pp. 1203-1216, 2008. 

[61] R. R. Harrison, et al., "A Low-Power Integrated Circuit for a Wireless 100-
Electrode Neural Recording System," IEEE J. Solid-State Circuits, vol. 42, pp. 
123-133, 2007. 

[62] A. M. Sodagar, K. D. Wise, and K. Najafi, "A fully-integrated mixed-signal 
neural processing module for implantable multi-channel cortical recording," in 
Biomedical Circuits and Systems Conference, 2006, pp. 37-40. 

[63] R. H. Olsson, III and K. D. Wise, "A three-dimensional neural recording 
microsystem with implantable data compression circuitry," IEEE J. Solid-State, 
vol. 40, pp. 2796-2804, 2005. 

[64] Q. R. Quiroga, "spike sorting," Scholarpedia, 2007. 

[65] B. Gosselin, et al., "A Mixed-Signal Multichip Neural Recording Interface With 
Bandwidth Reduction," IEEE Trans. Biomed. Circuits Syst., vol. 3, pp. 129-141, 
2009. 



125 
 

[66] M. A. Shaeri, A. M. Sodagar, and H. Abrishami-Moghaddam, "A 64-channel 
neural signal processor/ compressor based on Haar wavelet transform," in Annu. 
Int. Conf. IEEE Eng. Med. Biol. Soc., 2011, pp. 6409-6412. 

[67] K. G. Oweiss, et al., "A Scalable Wavelet Transform VLSI Architecture for Real-
Time Signal Processing in High-Density Intra-Cortical Implants," Circuits and 
Systems I: Regular Papers, IEEE Transactions on, vol. 54, pp. 1266-1278, 2007. 

[68] A. M. Kamboh, M. Raetz, K. G. Oweiss, and A. Mason, "Area-Power Efficient 
VLSI Implementation of Multichannel DWT for Data Compression in 
Implantable Neuroprosthetics," IEEE Trans. Biomed. Circuits Syst., vol. 1, pp. 
128-135, 2007. 

[69] A. M. Kamboh, K. G. Oweiss, and A. J. Mason, "Resource constrained VLSI 
architecture for implantable neural data compression systems," in IEEE 
International Symposium on Circuits and Systems, 2009, pp. 1481-1484. 

[70] H. Hosseini-Nejad, A. Jannesari, and A. M. Sodagar, "Data Compression in 
Brain-Machine/Computer Interfaces Based on the Walsh-Hadamard Transform," 
IEEE Trans. Biomed. Circuits Syst., vol. 8, pp. 129-137, 2014. 

[71] R. Chandra and L. M. Optican, "Detection, classification, and superposition 
resolution of action potentials in multiunit single-channel recordings by an on-line 
real-time neural network," IEEE Trans. Biomed. Eng., vol. 44, pp. 403-412, 1997. 

[72] S. N. Gozani and J. P. Miller, "Optimal discrimination and classification of 
neuronal action potential waveforms from multiunit, multichannel recordings 
using software-based linear filters," IEEE Trans. Biomed. Eng., vol. 41, pp. 358-
372, 1994. 

[73] D. A. Schwarz, et al., "Chronic, wireless recordings of large-scale brain activity 
in freely moving rhesus monkeys," Nat Meth, vol. 11, pp. 670-676, 2014. 

[74] M. S. Chae, et al., "A 128-Channel 6 mW Wireless Neural Recording IC With 
Spike Feature Extraction and UWB Transmitter," IEEE Trans. Neural Syst. and 
Rehab. Eng., vol. 17, pp. 312-321, 2009. 

[75] V. Karkare, S. Gibson, and D. Markovic, "A 130uW, 64-Channel Neural Spike-
Sorting DSP Chip," IEEE J. Solid-State, vol. 46, pp. 1214-1222, 2011. 

[76] R. Q. Quiroga, "Spike sorting," Scholarpedia, 2007. 

[77] K. A. Ludwig, et al., "Chronic neural recordings using silicon microelectrode 
arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) 
(PEDOT) film," J. Neural Eng., vol. 3, pp. 59-70, Mar 2006. 

[78] J. F. Kaiser, "On a simple algorithm to calculate the `energy' of a signal," in Proc. 
IEEE Int. Conf. Acoust. Speech Signal Process, 1990, pp. 381-384. 



126 
 

[79] K. K. Kim and S. J. Kim, "Neural spike sorting under nearly 0-dB signal-to-noise 
ratio using nonlinear energy operator and artificial neural-network classifier," 
IEEE Trans. Biomed. Eng., vol. 47, pp. 1406-1411, 2000. 

[80] J. H. Choi, H. K. Jung, and T. Kim, "A new action potential detector using the 
MTEO and its effects on spike sorting systems at low signal-to-noise ratios," 
IEEE Trans. Biomed. Eng., vol. 53, pp. 738-746, 2006. 

[81] S. Mukhopadhyay and G. C. Ray, "A new interpretation of nonlinear energy 
operator and its efficacy in spike detection," IEEE Trans. Biomed. Eng., vol. 45, 
pp. 180-187, 1998. 

[82] B. Gosselin and M. Sawan, "An Ultra Low-Power CMOS Automatic Action 
Potential Detector," IEEE Trans. Neural Syst. and Rehab. Eng., vol. 17, pp. 346-
353, 2009. 

[83] E. Koutsos, S. E. Paraskevopoulou, and T. G. Constandinou, "A 1.5 uW NEO-
based spike detector with adaptive-threshold for calibration-free multichannel 
neural interfaces," in IEEE Int. Symp. Circuits and Systems, 2013, pp. 1922-1925. 

[84] I. Obeid and P. D. Wolf, "Evaluation of spike-detection algorithms for a brain-
machine interface application," IEEE Trans. Biomed. Eng., vol. 51, pp. 905-911, 
2004. 

[85] R. J. Brychta, et al., "Wavelet Methods for Spike Detection in Mouse Renal 
Sympathetic Nerve Activity," IEEE Trans. Biomed. Eng., vol. 54, pp. 82-93, 
2007. 

[86] Y. Yang, C. S. Boling, A. M. Kamboh, and A. J. Mason, "Adaptive Threshold 
Neural Spike Detector Using Stationary Wavelet Transform in CMOS," IEEE 
Trans. Neural Syst. and Rehab. Eng., vol. 23, pp. 946-955, 2015. 

[87] K. H. Kim and S. J. Kim, "A wavelet-based method for action potential detection 
from extracellular neural signal recording with low signal-to-noise ratio," IEEE 
Trans. Biomed. Eng., vol. 50, pp. 999-1011, 2003. 

[88] Y. Yang, A. Kamboh, and A. J. Mason, "Adaptive threshold spike detection using 
stationary wavelet transform for neural recording implants," in IEEE Biomed. 
Circuits and Syst. Conf. ,  , 2010, pp. 9-12. 

[89] Y. Zhi, et al., "A new EC–PC threshold estimation method for in vivo neural 
spike detection," J. Neural Eng., vol. 9, p. 046017, 2012. 

[90] Y. Zhou, et al., "On the robustness of EC–PC spike detection method for online 
neural recording," J. Neuroscience Methods, vol. 235, pp. 316-330, 2014. 

[91] R. Q. Quiroga, Z. Nadasdy, and Y. Ben-Shaul, "Unsupervised spike detection and 
sorting with wavelets and superparamagnetic clustering," Neural Computation, 



127 
 

vol. 16, pp. 1661-1687, Aug 2004. 

[92] M. S. Lewicki, "A review of methods for spike sorting: the detection and 
classification of neural action potentials," Network-Computation in Neural 
Systems, vol. 9, pp. 53-78, Nov 1998. 

[93] A. Zviagintsev, Y. Perelman, and R. Ginosar, "Algorithms and architectures for 
low power spike detection and alignment," J. Neural Eng., vol. 3, p. 35, 2006. 

[94] A. M. Kamboh and A. J. Mason, "Computationally Efficient Neural Feature 
Extraction for Spike Sorting in Implantable High-Density Recording Systems," 
IEEE Trans. Neural Syst. and Rehab. Eng., vol. 21, pp. 1-9, 2013. 

[95] S. Gibson, J. W. Judy, and D. Markovic, "Technology-Aware Algorithm Design 
for Neural Spike Detection, Feature Extraction, and Dimensionality Reduction," 
IEEE Trans. Neural Syst. and Rehab. Eng., vol. 18, pp. 469-478, 2010. 

[96] M. Zamani and A. Demosthenous, "Feature Extraction Using Extrema Sampling 
of Discrete Derivatives for Spike Sorting in Implantable Upper-Limb Neural 
Prostheses," IEEE Trans. Neural Syst. and Rehab. Eng., vol. PP, pp. 1-1, 2014. 

[97] S. E. Paraskevopoulou, et al., "Feature extraction using first and second derivative 
extrema (FSDE) for real-time and hardware-efficient spike sorting," J. 
Neuroscience Methods, vol. 215, pp. 29-37, 2013. 

[98] M. Salganicoff, M. Sarna, L. Sax, and G. L. Gerstein, "Unsupervised waveform 
classification for multi-neuron recordings: a real-time, software-based system. I. 
Algorithms and implementation," J. Neuroscience Methods, vol. 25, pp. 181-187, 
1988. 

[99] M. Sahani, "Latent Variable Models for Neural Data Analysis," Ph.D. 
Dissertation, 1999. 

[100] D. G. S. Kadir, and K. Harri, "High-dimensional cluster analysis with the Masked 
EM Algorithm," arXiv.org, 2013. 

[101] S. Shoham, M. R. Fellows, and R. A. Normann, "Robust, automatic spike sorting 
using mixtures of multivariate t-distributions," J. Neuroscience Methods, vol. 127, 
pp. 111-122, 2003. 

[102] U. Rutishauser, E. M. Schuman, and A. N. Mamelak, "Online detection and 
sorting of extracellularly recorded action potentials in human medial temporal 
lobe recordings, in vivo," J. Neuroscience Methods, vol. 154, pp. 204-224, 2006. 

[103] V. Karkare, S. Gibson, and D. Markovic, "A 75uW, 16-Channel Neural Spike-
Sorting Processor With Unsupervised Clustering," IEEE J. Solid-State, vol. 48, 
pp. 2230-2238, 2013. 



128 
 

[104] C. Tung-Chien, L. Wentai, and C. Liang-Gee, "128-channel spike sorting 
processor with a parallel-folding structure in 90nm process," in Circuits and 
Systems, 2009. ISCAS 2009. IEEE International Symposium on, 2009, pp. 1253-
1256. 

[105] A. Mendez, A. Belghith, and M. Sawan, "A DSP for Sensing the Bladder Volume 
Through Afferent Neural Pathways," IEEE Trans. Biomed. Circuits Syst., vol. 8, 
pp. 552-564, 2014. 

[106] H. Semmaoui, J. Drolet, A. Lakhssassi, and M. Sawan, "Setting Adaptive Spike 
Detection Threshold for Smoothed TEO Based on Robust Statistics Theory," 
IEEE Trans. Biomed. Eng., vol. 59, pp. 474-482, 2012. 

[107] D. Dimitriadis, A. Potamianos, and P. Maragos, "A Comparison of the Squared 
Energy and Teager-Kaiser Operators for Short-Term Energy Estimation in 
Additive Noise," IEEE Trans. Signal Process., vol. 57, pp. 2569-2581, 2009. 

[108] A. E. Barnes, "Instantaneous spectral bandwidth and dominant frequency with 
applications to seismic reflection data," Geophysics, vol. 58, pp. 419-428, 1993. 

[109] J. Gasthaus, F. Wood, D. Gorur, and Y. W. Teh, "Dependent Dirichlet Process 
Spike Sorting," in Advances in Neural Information Processing Systems 21, 2008, 
pp. 497-504. 

[110] S. Shahid, J. Walker, and L. S. Smith, "A New Spike Detection Algorithm for 
Extracellular Neural Recordings," IEEE Trans. Biomed. Eng., vol. 57, pp. 853-
866, 2010. 

[111] A. Calabrese and L. Paninski, "Kalman filter mixture model for spike sorting of 
non-stationary data," J. Neuroscience Methods, vol. 196, pp. 159-169, 2011. 

[112] H. Yamasaki and T. Shibata, "A high-speed median filter VLSI using floating-
gate-MOS-based low-power majority voting circuits," in Proc. 31st European 
Solid-State Circuits Conf., 2005, pp. 125-128. 

[113] M. D. Linderman, et al., "Neural Recording Stability of Chronic Electrode Arrays 
in Freely Behaving Primates," in Proc. 28th Annu. Int. Conf. IEEE Eng. Med. 
Biol. Soc., 2006, pp. 4387-4391. 

[114] A. Zviagintsev, Y. Perelman, and R. Ginosar, "Low-Power Architectures for 
Spike Sorting," in 2nd International IEEE EMBS Conference on, 2005, pp. 162-
165. 

[115] K. Mizuseki, A. Sirota, E. Pastalkova, and G. Buzsáki, "Theta Oscillations 
Provide Temporal Windows for Local Circuit Computation in the Entorhinal-
Hippocampal Loop," Neuron, vol. 64, pp. 267-280, 2009. 

[116] C. Bédard, H. Kröger, and A. Destexhe, "Modeling Extracellular Field Potentials 



129 
 

and the Frequency-Filtering Properties of Extracellular Space," Biophysical 
Journal, vol. 86, pp. 1829-1842, 2004. 

[117] K. H. Pettersen and G. T. Einevoll, "Amplitude Variability and Extracellular 
Low-Pass Filtering of Neuronal Spikes," Biophysical Journal, vol. 94, pp. 784-
802, 2008. 

[118] M. S. Fee, P. P. Mitra, and D. Kleinfeld, "Variability of extracellular spike 
waveforms of cortical neurons," J. Neurophysiol, vol. 76, pp. 3823-3833, 1996. 

[119] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd Edition): 
Wiley-Interscience, 2000. 

[120] M. C. P. de Souto, et al., "Comparative study on normalization procedures for 
cluster analysis of gene expression datasets," in Proceedings of the IEEE 
International Joint Conference on Neural Networks, 2008, pp. 2792-2798. 

[121] J. Navajas, et al., "Minimum requirements for accurate and efficient real-time on-
chip spike sorting," J. Neuroscience Methods, vol. 230, pp. 51-64, 2014. 

[122] S. Gibson, J. W. Judy, and D. Markovic, "Technology-Aware Algorithm Design 
for Neural Spike Detection, Feature Extraction, and Dimensionality Reduction," 
Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 18, 
pp. 469-478, 2010. 

[123] S. K. Murthy, S. Kasif, and S. Salzberg, "A system for induction of oblique 
decision trees," J. Artif. Int. Res., vol. 2, pp. 1-32, 1994. 

[124] C. Pedreira, J. Martinez, M. J. Ison, and R. Quian Quiroga, "How many neurons 
can we see with current spike sorting algorithms?," J. Neuroscience Methods, vol. 
211, pp. 58-65, 2012. 

[125] J. Dragas, D. Jäckel, A. Hierlemann, and F. Franke, "Complexity Optimization 
and High-Throughput Low-Latency Hardware Implementation of a Multi-
Electrode Spike-Sorting Algorithm," IEEE Trans. Neural Syst. and Rehab. Eng., 
vol. 23, pp. 149-158, 2015. 

[126] R. Tibshirani, G. Walther, and T. Hastie, "Estimating the number of clusters in a 
data set via the gap statistic," Journal of the Royal Statistical Society: Series B 
(Statistical Methodology), vol. 63, pp. 411-423, 2001. 

 

 


