
A TECHNIQUE FGR 1W WECEFECATEON

QF VAREAELH RELATENG 7’0

ELECTMC; E‘QWER NETWORKS

must: for ”to Degree cf pl). D.

WCEEGAN SHTE WHY '

Maurice rWoIIa

1966

 



Tunas;

 W7’1 It!

LIBRARY

Michigan State

University

f‘

This is to certify that the

thesis entitled

A TECHNIQUE FOR THE SPECIFICATION OF

VARIABLES RELATING TO ELECTRIC

POWER NETWORKS

presented In;

Maurice Wolla

has been accepted towards fulfillment

of the requirements for

Ph. D. Electrical Engineering
degree in

A»). \IM’RLVLO

Major professor

 

Date May 2: 1966

0-169



A TECHNIQUE FOR THE SPECIFICATION OF VARIABLES

RELATING TO ELECTRIC POWER NETWORKS

by

.
.'_ .

l‘ I , f

r‘ C‘ I

Maurice Wolla

AN ABSTRACT

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

1966



ABSTRACT

A TECHNIQUE FOR THE SPECIFICATION OF VARIABLES

RELATING TO ELECTRIC POWER NETWORKS

by Maurice Wolla

To effectively plan the current operation as well as the

future expansion of electric power systems requires a knowledge

of the operating characteristics of the existing and/or proposed

systems. Analysis of a class of power system studies utilized

in determining the electrical characteristics of a. power system

indicates that these studies are essentially problems in the

analysis of electric networks. These studies differ from

problems in "conventional" network analysis primarily in two

aspects: (1) the size and complexity of the network under

consideration, and (Z) the type of initial problem specifications.

The availability of digital computers has alleviated, but not

eliminated, difficulties associated with the size of the network.

Problems associated with the initial specification of variables

are more fundamental in nature and must be considered within

the framework of the network equations since it is mandatory

that inconsistencies are avoided. It is logical that a re-examination

of the variable specification aspect of these network studies should

originate at the level of the correlating graph and associated

primary system of equations since they constitute the foundation

for electric network theory.
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The w-domain graph correlates of the networks under

consideration are comprised of two general types of elements:

relation elements (F-elements) and no-relation elements (N-

elements); the latter type is characterized by a lack of any

fixed interrelation between the associated V and I variables

and furthermore neither of these variables is specified initially.

The resulting primary system of equations is homogeneous in

form and certainly consistent. Properties of subgraphs of F-

elements are subsequently utilized to define classifications of

the N-elements such that either, neither, or both of their

associated variables can be assigned arbitrary values with no

danger of introducing inconsistencies. The investigation clearly

indicates that a multiplicity of N-element classification patterns

exist for a given graph and provides the basis for new and more

general approaches to the analysis of electric networks—-

particularly those problems in which it is desired to maintain

prescribed operating conditions .
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Chapter 1

INTRODUCTION

l. 1. Background

Planning the current Operation and future expansion

of a modern-day electric power system is a complex task

and one of ever-increasing importance. These systems

have grown from small, independent, local units at the turn

of the century to the vast, interconnected ”pools" Of today -

with still larger interconnections prOposed for the future1'4.

It soon became apparent that the ability to Operate the small

utilities successfully based primarily upon past experience

was not adequate to COpe with the problems associated with

these rapidly expanding systems. Advances in analysis and

control techniques coupled with the availability of digital and

analog computers have provided the system planners of today

with the Opportunity to study and plan the Operation of these

large-scale power systems. Considerable effort has been

directed toward the complete automation of system planning

and Operations-9.

The components of an electric power system can be

divided into three general categories: (1) the generating
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stations, (2) the transmission and distribution network, and

(3) the loads. The basic Operating problem is to schedule the

generating stations so as to supply the total load demand,

plus losses within the transmission and distribution network,

in a manner consistent with dependable and economical

performance Of the power system. The planning phase is

necessary to insure that the power system has adequate

generating capacity and transmitting capability to meet the

constantly growing load demands.

The effective planning Of the current Operation and

future expansion Of a power system requires a knowledge of

the performance characteristics of the existing and/or prOposed

systems. The very nature of a power system precludes any

possibility of "laboratory testing" the actual system as is

commonly done with many types of physical systems. Thus

the system planners must devise an adequate model for the

system and subsequently determine the performance

characteristics of this model. The validity of the models used

in such system studies is tested by correlating the performance

characteristics determined from the model with those obtained

from observations made on the actual system.

The investigations of this paper relate to those phases

of power system studies which are primarily concerned with



the steady-state electrical characteristics of the power system.

These studies utilize a single-phase network representation of

the power system and in general they require a complete steady-

state solution for the network, 1. e. voltages, currents, real

and reactive powers, power factor, etc. at various points

within the network. Thus, these studies are essentially

problems in network analysis. However they differ from the

"conventional" problems in network analysis in a number of

respects. The network to be analyzed is considerably larger

and more complex than one might encounter in other areas.

In addition, it has generally been the case in the past that

the entire network must be considered as a unit for the

purposes of analysis. In contrast many communication and

control systems are often analyzed on a "piece-meal" basis

since signals are channeled along desired paths by the use

of uni-lateral devices and/or filtering. Thus as the size

of a power system increases due to expansion and inter-

connection the additional complexity itself presents a

formidable problem and it magnifies the need for a better

understanding of the fundamental concepts involved in the

analysis of the associated network. Perhaps the most

significant difference in this type of study is related to the

manner in which the initial problem specifications are given.
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In power system studies of the type under consideration the

specifications are stated in terms of real and reactive

powers and voltage magnitudes, whereas the foundations of

network theory have been deveIOped with voltages and currents

104 1. Quantitiesas fundamental or primary variables

such as real and reactive power are consequently considered

as derived or secondary variables since they are defined in

terms of the primary variables. Thus for any particular

network element the inter-relation (complex number form)

between. the voltage V, current I, real power P, and reactive

power Q, is given by the following relation:

P+jQ,=v1* (1.1.1)

or

P = Re {v1*} (1.1.2)

O = Im {v1*} (1.1.3)

Here one notes that on the one hand if V, I are known, then

P and Q are determined; on the other hand, however, if P, Q

are known, then neither V nor I is determined. This change

in the specification of variables causes considerable difficulty

in the attempt to determine a complete network solution. A

specific example of this type of problem is considered in a

later section.

Originally it was felt that the performance of a power

system could be best predicted through the use of a miniaturized



system commonly referred to as a network analyzer. How-

ever, in recent years the digital computer has replaced the

network analyzer as the primary tool for large-scale power

system studies. By its very nature the digital computer is

a more versatile and flexible device. Moreover, it is

capable of handling not only all Of the problems which can

be solved on the network analyzer, but an almost endless

variety of different problems as well.

1. 2. Load or Power-Flow Studies

The load or power-flow study exemplifies the general

type of problem under consideration in this investigation. A

study of this type requires a complete steady-state solution

for a single-phase network representation of the power

system. The network is made up of generator elements,

load elements, and elements corresponding to the inter-

connecting transmission and distribution network. The general

configuration of this type of network is given in Figure 1. 2. l

where the details Of the transmission and distribution network

are not shown. For simplicity it is also assumed that each

non-reference node is incident to exactly one generator or

load element.



th
gene rator or load

element
 

 

   

transmis sion

and distribution

nehnork

reference node

(ground or neutral bus)

Figure 1. 2. 1. General Representation of a (M+l)-node

Power Network Diagram.

The general nature Of a load or power-flow study

can be described as follows?" 12'14:

l. The complex number form of the node system

of equations for the network of Figure l. 2. 1

can be written as

M

1k = - 21 Yann , k=1,2,...,M (1.2.1)
11:

where

.9k

1k = IIkIeJ (1.2.2)

. j¢n

vn — anIe (1.2.3)

~0'

Ykn- IYknleJ 1‘“ (1.2.4)
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In the usual load study, three types Of load and

generator specifications are considered:

A. For all load elements the real and reactive

power

P+jQ = VI’i‘ (1.2.5)

is specified.

B. For all generator elements except one, the

real power and voltage magnitude

P = Re{VI*} and |v| (1.2.6)

are specified.

C. For the remaining generator element, i. e.

the ”slack" generator, the phasor voltage

v = |v(eJ'¢ (1.2.7)

is specified.

The problem then, is to determine a set Of Vk

and I k=1, 2, . . . . M, such that the node systemk'

of equations, (1. 2. l), is satisfied subject to the

specifications,(l. 2. 5) through (1. 2. 7), for the

appropriate generator and load elements. Once

this has been done, then all voltages, currents,

real and reactive powers, etc. within the

transmission and distribution network can be

calculated and the complete solution will have

been determined.



8

Unfortunately the load and generator specifications

cannot be used directly to obtain a solution to the node system

of equations. Rather some form of iteration is used to

determine a solution. One such approach proceeds in the

following mannerlz'.

1. Initial estimates are made for the Vk'

2. The corresponding Ik’s are found from (1. 2. l),

3. The apprOpriate quantities, (1. 2. 5) through

(1. 2. 7) are calculated, compared to the

specified values, and the errors are determined,

4. Suitable correction relations are used to determine

new estimates for the Vk'

Steps 2 through 4 are repeated until (hOpefully) the errors

calculated in 3 are less than some prescribed precision

index.

2,13,14’ is to

Another commonly used technique

modify the node equations so as to obtain a system of

simultaneous nonlinear equations expressing the real and

reactive power for each generator and load element in

terms of the generator and load voltages and the node

admittance parameters of the transmission system. Since

for k=1,2,...,M:

Pk+ij = Vka* (1.2.8)



then, from (1.2.1)

M
. _ 9: *

Pk+JQk — - nzzlkakn' vn (1.2.9)

Also, using (1. 2. 2) through (1.2. 4)

Pk +ij = bzglwI II IV Iej(¢k44'6an

(1.2.10)

or

Pk = - 112—1|ka IYknI IVnI cos(<I>k-¢n-trkn)

(1. 2.11)

)
Qk = 1%: IVkl lYknl IVnl sin (¢k;¢n-¢kn

The initial problem specifications can now be inserted

directly into any one Of these last three sets of nonlinear

"power equations, " (l. 2. 9), (1. 2.10), or (1. 2.11). Each

generator element and each load element has four

associated variables in this final formulation: . Pk, Qk,

I Vkl , (bk ; for each element two of these variables are

specified and the remaining two must be determined. Once

again an ‘iterative technique is used to determine a solution.

In the past the sheer size of the network and the

accompanying large number of equations to be solved has

been a major-Obstacle in load studies. However, the

introduction of the digital computer, as well as specialized

programsls' 16, has reduced considerably -- although

certainly not eliminated -- this problem. The major

difficulties in this type of study are those associated with
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the iterative methods employed to determine a solution. The

key considerations are those relating to existence and

multiplicity Of solutions, convergence, rate of convergence,

the effect of initial estimates on covergence, etc. In many

respects the original problem has been transtrmed from

one in network analysis to one in numerical analysis in

order to accommodate the initial problem specifications in

the form given. Investigations into the problems assoéiated

with load studies, as well as other studies of this general

type, have been primarily concerned with improving the

iterative techniques used to Obtain a solutionlz' 13’ 17-20.

As a result Of these efforts computer programs, which are

capable of handling large-scale power systems, are avail-

able and in use today5'8’ 21.

l. 3. Another Viewpoint

Studies of the type considered in the preceding section

play a major role in predicting the current performance and

analyzing the future expansion of a power system. Thus'it

is essential that one be able to obtain an accurate numerical

solution for a particular study. Moreover, it would be of.

considerable benefit to a system planner if the problem

formulation and associated solution processes could also be
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utilized as a basis for a theoretical study of the system

characteristics. Unfortunately the present problem

formulation does not readily lend itself to a theoretical

study of system characteristics. Rather, the resulting

nonlinear equations tend to shift the emphasis to

characteristics of the iterative techniques which are used

to obtain a numerical solution for a particular study.

A re-examination of the basic structure of a load

study, for example, indicates that this study is essentially

a problem in the analysis of an electric network and that

the major source of difficulty is the form in which the

variables for certain elements are specified. In order to

avoid nonlinearities at the outset Of the problem it is

necessary to reconsider the form in which the variables

are specified. Since these are essentially problems in

network analysis, it would seem natural to return to the

basic structure of network theory and tO give consideration

to choosing a form for the variable specifications which is

more compatible with the existing theory. Perhaps the

most logical choice to consider would be that of the voltage

and current variables for an element. This choice can be

given initial support by noting that specifying the voltage

and current variables for a network element determines the
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real and reactive power variables for that element - see

equations (1. l. 1) through (1. l. 3). Thus this choice would

be closely related to the original specifications. Further-

more, an extensive body of network theory already exists,

in which voltages and currents are considered as fundamental

or primary variables, and elements having either their

voltage or current variables specified have been considered

within this theory. Therefore, consideration of elements

having both voltage and current variables specified would

be a logical extension of this theory. Also of importance

is the fact that this approach provides an orderly and precise

formulation technique and thus is well-suited for use in

conjunction with the digital computer.

Within the area of network analysis little consideration

has been given to elements having both voltage and current

variables Specified. Undoubtedly this is due to the unlikelihood

of finding a correlating physical device in the laboratory.

However some consideration has been given to the possibility

of synthesizing ”pathological" elements of this type using

components such as ideal transformers, ideal gyrators, and

22' 23. IrreSpective of whether or notnegative resistances

such devices are physically realizable, the fact remains

that elements of this type can be useful in theoretical studies.
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The investigations of this paper are concerned with extending

the class Of network elements to include those for which both

voltage and current variables are specified and then utilizing

these elements in the analysis of electric networks.

1. 4. A Variable Specification Problem in Network Analysis

Any investigation into allowable patterns Of element

variable specifications must be based upon a study Of the

apprOpriate systems of network equations since it is

imperative that inconsistencies be avoided. The primary

system of network equations“). 16
provides a logical

starting point for such a study. This system of equations

contains all of the information relative to the element

voltage and current variables and ultimately it is the

solution of this system of equations which is sought.

Chapter II is devoted to summarizing prOperties

of systems of homogeneous, linear, algebraic equations

with constant coefficients. These equations play a

fundamental role in this investigation -- in particular those

rank prOperties of the coefficient matrix which define

partitions of the variables into dependent and independent

sets. Following chapters return to a study of the electric

network via the correlating oriented linear graph and
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associated systems of network equations. Interrelations

between subgraphs and the coefficient matrix in the network

equations are exploited to interpret rank properties of the

coefficient matrix in terms of interconnection patterns of

the linear graph and element parameters. In this manner

it is possible to determine conditions on the structure of

the linear graph and the element parameters such that the

graph may contain elements for which both the voltage and

current variables can be arbitrarily specified. In addition

one finds that still another type of element is required --

one for which neither the voltage nor the current variable

is specified and further, the voltage and current variables

are not interrrelated in any fixed manner, as is the case

for the graph elements correlating with resistors, inductors,

and capacitors. Finally, consideration is given to the

effect of extending the class of graph elements to include .

these new elements. A new approach is suggested for the

analysis of large-scale electric networks by utilizing

these elements in conjunction with zoning techniques.



Chapter 2

SYSTEMS OF HOMOGENEOUS, LINEAR, ALGEBRAIC,

CONSTANT-COEFFICIENT EQUATIONS

2. 1. DefinitiOns and Fundamental Properties

For reference purposes and to define terminology it

is convenient, at this point, to collect certain definitions and

fundamental prOperties of homogeneous, linear, algebraic

equations with constant coefficients. The proofs of the basic

theorems may be found in most texts on matrix theory or

linear algebraz‘l.2 , and are not repeated here.

In the interest of brevity, and at the same time to be

complete, the following abbreviation is us ed:

Definition 2. l. l. Holac Equations.
 

The abbreviation holac is us ed to denote
 

homogeneous, linear, algebraic, constant-coefficient.

Consider a system of m holac equations in n variables

n _

j§l aij xj = 0 , 1=1,2,...,m (2.1-1)

or, in matrix form

£1: 0 (2.1.2)

Definition 2. 1. 2. Rank of a System Of Holac Equations
 

Let the rank of coefficient matrix. a. in (2. 1. 2)

be r, then r is said to be the rank of the system (2. l. 2).

15
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Definition 2. 1. 3. Characteristic Of a System Of
 

Holac Equations

Let the rank of the system (2. 1. 2) be r, then

the ordered triplet of integers, (m, n, r} is said to be the

characteristic of the system (2. 1. 2) and is written

wt: 0, {m, n, r,}

Definition 2. 1. 4. Linearly Dependent (Independent)
 

Equations

The holac equations, QIC= 0, are said to be

linearly dependent (independent) if and only if the rows of

the coefficient matrix, w, are linearly dependent (independent).

Definition 2. 1. 5. Equivalent Systems of Equations
 

Two systems of equations are said to be

equivalent systems of equations if every solution of either

system is also a solution of the other.

Consider a system of holac equations with characteristic

{m, n, r} i. e.

d1: 0, {m,n, 1'} (2.1.3)

Theorem 2. 1. l. A necessary and sufficient
 

condition that (2. 1. 3) have non-trivial solutions is that

r <no
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flieorem 2. 1i The equations of the system (2. l. 3)

are linearly dependent if and only if r < m.

Theorem 2. l. 3. Every system of holac equations

equivalent under elementary row Operations to the system

(2. l. 3) may be represented in the form

(Cd)}[=0
(2.1.4)

where a is a non-singular matrix of order m. Conversely,

if a is any non-singular matrix of order m, then (2.1. 4) is

equivalent to (2. l. 3) under elementary row Operations.

Theorem 2. l. 4. Any subset of r linearly

independent equations from (2. l. 3) forms an equivalent system

of equations.

It should be noted that the characteristic Of a system

Of holac equations is, in essence, a description of the

coefficient matrix, i. e. , a is of order mxn and has rank r.

Thus the previously stated properties of a system of holac

equations are in fact properties of the coefficient matrix--

the variables in the system play a rather minor role. In

general the variables have little, if any, significance with

regard to the mathematical properties of a system of equations;

they serve as little more than "labels" associated with the

columns of the coefficient matrix.
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2. 2. The Complete Solution for a System of Holac Equations

Theorem 2. 1. 1 states a necessary and sufficient

condition on the coefficient matrix such that (2. l. 3) possesses

non-trivial solutions. Although the theorem itself gives no

indication of what these solutions might be, the proofs of

this theorem generally exhibit acomplete solution of (2. 1. 3).

It is a well-known prOperty of a system of holac equations

with characteristic {m, n, r } that the complete solution can

be obtained by solving the system of equations for some set

of r variables in terms of the remaining n-r variables. A

necessary and sufficient condition is that the r columns of

the coefficient matrix corresponding to the first set of

variables be linearly independent. Before stating this result

formally it is convenient to introduce the following notation

for a sub-matrix. Let a: [ a-ij] be a matrix Of order

mxn. The sub-matrix of order pxq formed from the array of

entries located at the intersections of rows i1, i2, . . . , ip

and columns jl’ jz, ..., Jq,where lfiil<iz<...<i <m

and l _<_j1 < jz < < jqin is denoted by the symbol

a) i1, 12, ..., ip

jl' jZ, coo, j
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1. e. ,

aizil eaiziz aizjq

i ,i , . . . ,i

(2;. 1 2 P = . . . . (2.2.1)

J19J2,0"!‘Jq
a. . a. .

a. e

Ile ‘592 "' ngj

In some instances the set of row indices and the set of

column indices are each denoted by a single symbol, say R

and C respectively, then the above notation may be shortened

to 4%).

 

Theorem 2. 2. 1. Given a system of holac equations

(2§)Zs=0 {rn.n.r} (2.2.2)

Let le, sz, ., Xjr , (l: jl < jZ < < Jr: n),

be any subset of r variables from X. If and only if the

rank of a .1 ’ .2, ' ' ' ,m is r, then the complete solution

Jl’J2"°"Jr'

for the system (2. 2. 2) can be obtained by solving the equations

for X' , x- , . . . , x. in terms of the remaining n-r variables.

J1 J2 Jr

Consider the system of holac equations (2. 2. 2). By

Theorem 2. l. 4, any subset of r linearly independent equations

from (2. 2. 2) form an equivalent system of equations. Let any

such subset of equations be

62% 16’: (L {r,n,r} . (2.2.3)
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If r = n, then £1 is non-singular and the trivial solution is

the only solution. If r < n, then by Theorem 2. l. l, the

system (2. 2. 3) possesses non-trivial solutions and thus the

original system (2. 2. 2) has non-trivial solutions. Since @1

has rank r, then there exists at least one set of column

1! 2: ooosr

_<_n such thata1( )indicesl<'<’<...<' .. .

—J1 J2 JlsJZs oooerJr

has rank r. With no loss in generality suppose that

al (1’ 2’ ' ‘ ‘ ' r) has rank r. Then (2. 2. 3) can be written

9 9-0., 1'

in the form

Z1

[all Q12] 12 = 0 (2.2.4)

where all is rxr and non-singular. Solving for 2:1

l1: - QII’IQIZZ’Z . (2.2. 5)

Therefore a complete solution for (2. 2. 3) and hence (2. 2. 2) is

given by

_I

I'll idli-lalz 12 1 1411-4412-1

2'/:I—/Z2 = 12 = Z( [2

     

where ”is the unit matrix Of order n-r.

Since (2. 2. 6) represents a trivial extension of (2. 2. 5),

it is common to refer to either as representing a complete
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solution for (2. 2. 2). A complete solution (2. 2. 6) of the

system (2. 2. 2) defines an infinity of particular solutions --

one particular solution of (2. 2. 2) for each distinct choice

for £2-

The relation (2. 2. 5) indicates that the r variables in

11 are dependent upon the n-r variables in 12. It is

common practice to designate the variables in [I as

dependent variables and those in 12 as independent variables.

Although this is a convenient description to use, it can at

times be misleading since it may lead one to view this

description as a prOperty of the variables rather than as a

prOperty of the coefficient matrix. With the apprOpriate

interpretation it does, however, provide a useful notation.

The following sequence of definitions relate to the subsequent

use of this terminology in conjunction with a system of holac

equations such as (2. 2. 2).

Definition 2. 2. 1. p-set of L
 

A subset of the variables in ,6: xj , xj ,

. 1 2

.,xjp.wh~erel:jl<j2<...<jpin. issaidtobe

a p-set of Z.
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Definition 2. 2. 2. p-set of Dependent Variables,
 

Complete Set of Dependent Variables

A p—set of [K is said to be a p-set of dependent

' 1, 2, . . . , m

variables for (2.2.2) if and only if the rank of d. J. jz J.
19 s 0 ° - s p

is p. If p = r (the rank of the system), the designation of a

complete set of dependent variables for (2. 2. 2) is also used.

Definition 2. 2. 3. p-set of Independent Variables,
 

Complete Set of Independent Variables

A p-set of l is said to be a p-set of independent

variables for (2. 2. 2) if and only if its complement in 1

contains a complete set of dependent variables for (2. 2. 2. )

The complement in I of a complete set Of dependent variables

is also designated as the corresponding complete set of

independent variables for (2. 2. 2).

Thus each set of r linearly independent columns of the

coefficient matrix in (2. 2. 2) defines a partition of the n

variables in I into two mutually exclusive, all inclusive sets

-- an r-set of dependent variables and the corresponding

(n-r)-set of independent variables. Since the coefficient

matrix has rank r, then there exists at least one such

partition, although in general there may be more. Except

for the trivial case when ais the zero matrix (r = 0), a
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complete set of dependent variables always contains at least

one variable; a complete set of independent variables is

empty if and only if n = r.

Consider

axl=0.{m.n.r}, O<rf_n. (2.2.7)

the n variables in 1 can be partitioned into an r-set and

n!

m distinct ways.the corresponding (n-r)-set in (:1) 2

Any given r-set of I may or may not be acomplete set of

dependent variables for (2. 2. 7). This fact results in the

following designation:

Definition 2. 2. 4. Pr0per Partition
 

A partition of the n variables in (2. 2. 7) into

an r-set{X.i , X'i , . . . 'Xi } and the corresponding (n-r)-set

1 r

{ x- . x.. , . . . , x. } is said to be a prOper partition of

J1 32 Jn-r

h _ 'f 'f f l, 2, . . . , m

t e variables 1 and only 1 the rank 0 a ilviZ: . . . , ir

is r; i. e. , if and only if {xil’ X12, . . ., Xir} is a complete

set of dependent variables for (2. 2. 7).

Each proper partition of the variables in a given system

of holac equations can be used to determine a complete solution.

Since any one complete solution is sufficient to generate all of

the particular solutions for a system of equations, it is not

necessary to determine more than one prOper partition of the
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variables. Nevertheless, the form of the complete solution

varies with the choice of prOper partition and for a particular

system of equations one choice may be more desirable than

another.

Given a system of holac equations, such as (2. 2. 7),

and one or more partitions of the variables into an r-set and

the corresponding (n-r)-set the question of whether or not

any particular partition is a prOper partition of the variables

can be answered by checking the rank of the apprOpriate

sub-matrix of the coefficient matrix. All of the possible

prOper partitions could be determined by locating all mxr

sub-matrices which have rank r. Unfortunately the number

of sub-matrices to be tested can become large for moderate

sized systems of equations. For example, to determine all

of the proper partitions of the variables fora system having

a characteristic of {10, 20, 10} requires checking the rank

of fig) = 184, 756 sub-matrices of order 10x10. This is a

formidable task and would: require considerable time, even

on a high-speed digital computer.

It is possible, however, to use the complete solution

derived from one proper partition of the variables to readily

Obtain information concerning other partitions. Consider

Q1: 0, {r,n,r} . (2.2.8)
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l, 2, . . . , r
Suppose that det Q“, 2, . . . , r) # 0. then {x1, x2, . . . , Xr}

is a complete set of dependent variables for (2. 2. 8). Solving

for the r dependent variables in terms of the n-r independent

variables to obtain a complete solution:

 

       

I'- % I— "" r—

Xl All ... Arl al,r+l

x2 . A12 Ar2 a2,r+1

o = -1

' detw(1,2,...,r)

xr_I Alr Arr Lar, r+1

(2.2.9)

- - 1,2,...,r
where Aij is the cofactor of aij 1n detafi’ 2’ . . . , r), or

r- ” ‘r' r T ‘1

X1 , b11 b12 bl,n-r Xr+1

x2 b21 b22 ban-i- xr+2

' = ° (2.2.10)

x1 br1 br2 ' ° ' br, n-r xn      

 

where

r

23 . .
b - k=1 ak9r+JAk1 (i=1, 2, 'r ) (2 Z 11)

ij — 1,2,...,r ’ j=1,2,...,n-r- ° '

'det¢(1,2,...,r)

The numerator of bij in (2. 2. 11) is the determinant of a

sub-matrix similar to that appearing in the denominator
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except that column r+j of fl, has replaced column i. Thus

bij )9 0 (=0) if and only if the altered sub-matrix has rank

- r (<r). Therefore, the r-set {X1, x2, . . . ,xi_1.

xi+1, . . . , xr, xr+j } is a complete set of dependent variables

for (2. 2. 8) if and only if bij )9 0. This result can be

generalized to the following:

Theorem 2. 2. 2. Given

QIZ=O, {m,n,r}

Let {Xi-1w x12, . . . , Xir} be any complete set of dependent

variables for this system of equations, {le, ij. . . . . xjn-r }

be the correSponding complete set of independent variables,

and the corresponding complete solution be

   

I-xu DD11 ID12 b1,n-r I—le I

xi2 b21 b22 . . . b2, n-r sz

: (2.2.12)

x b b b x.

Iii-I r1 r2 r, n-r—I Jn—r-I   
The partition of the variables which results from the inter-

change of Xis and xjt' (s=1,2,...,r; t=1,2,...,n-r), is

a prOper partition if and only if bSt )5 O.
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Consequently, a single complete solution such as

(2. 2. 12) can be utilized to determine, by inspection, whether

or not an additional r(n-r) partitions are prOper partitions of

the variables of a system of holac equations. Although

Theorem 2. 2. 2 considers only a "singular" interchange of

variables, i. e. , one variable from each set, it can be used

in an iterative manner to test any partition. Once a prOper

interchange has been found then the complete solution

corresponding to the new prOper partition is readily

determined from the original complete solution by inter-

changing the two appr0priate columns (with due regard to

the signs of the entries) and then performing a sequence

of at most r elementary row operations. A second proper

interchange can be determined and the above process

repeated. In this manner it is possible to determine all

possible prOper partitions of the variables, if desired.

2. 3. The Complete Solution -- Another Viewpoint

In the discussion of Section 2. 2 certain rank prOperties

of the coefficient, matrix in a system of holac equations with

characteristic (m, n, r } are used to define a proper

partition of the variables. A complete solution is then

obtained by solving the system for the r dependent variables

in terms of the n-r independent variables. Other approaches
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to the problem of determining a complete solution are

possible and the following discussion considers one such

approach which occurs frequently in certain types of

applied problems.

First, consider the sequence of steps used in

Section 2. 2 for determining a complete solution for the

following system of holac equations:

al=0, {m,n,r} (2.3.1)

1. An equivalent system of equations consisting

of any subset of r linearly independent

equations is extracted from (2. 3. 1):

alz=0, {r,n,r} . (2.3.2)

2. Let the first r column of 41 be linearly

independent, then 111 = 41%: g: : :) is

non-singular and a complete solution for (2. 3. 2)

and (2. 3. 1) is given by

Fill F'dll-l a12

f=r.= a f2
— — — A

_ a!

    

(2. 3. 3)

Since the n-r variables in [2 can be arbitrarily chosen

let the following n-r sets of values be successively assigned

.. l2.
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I_1— I'o _ I-o—I

      (-03 _.° 1 ..‘J

and the corresponding particular solutions determined

from (2. 2. 3). Thus each of the n-r columns of

- £11-] Q12 is a particular solution of (2. 3. 1);

V

furthermore, these n-r solutions are linearly independent.

The complete solution as given in (2. 3. 3) may then be

interpreted as any linear combination of these n-r linearly

independent solutions. In general:

Theorem 2. 3. 1. If a system of holac equations

has characteristic { m, n, r} , then every solution may be

eXpressed as a linear combination of any n-r linearly

independent solutions.

Definition 2. 3. 1. Fundamental System of Solutions,

Fundamental Matrix of Solutions

Let Agrgz, ..., lid, be any n-r linearly

independent solutions of (2. 3. 1),then i 1. 4. . . . ,5”. }

is called a fundamental system of solutions for (2. 3. l) and

the n x (n-r) matrix g=[g,5, . . . ’4-r] determined by
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these solutions is called a fundamental matrix of solutions.

Consequently, if gs any fundamental matrix of

solutions for the system 4%: 0, then the columns of

flare linearly independent and ev_er_y linear combination

of the columns of gis also a solution. From Theorem

2. 3. 1 it follows that a complete solution for (2. 3. 1) can

be written in the form

2: =5? (2.3.4)

where gis any fundamental matrix of solutions and % is

a column matrix consisting of n-r arbitrary entries.

Frequently the entries in% are considered as a new set

of variables and (2. 3. 4) is subsequently considered as defining

a transformation of variables. The use of the transformation

of variables (2. 3. 4) in conjunction with the system (2. 3. 1)

results in replacing the n variables in/Z by the n-r

variables infand also reduces (2. 3. l) to the matrix

identity 0:0.

The interrelationship between the coefficient matrix

in a system of holac equations and a fundamental matrix of

solutions for that system is a characteristic of a larger Class

Of matrices defined according to;
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Definition 2. 3. 2. Apolar Pair 28
 

Let 4,ghave orders mxn and nxp ,

respectively. An ordered pair ((,g) of matrices is said

to be an apolar pair if and only if (1)45: 0, and (2) rank

of 4 plus rank of 1: 1f .

Using this concept the following result can be stated:

Theorem 2. 3. 2. Given 4% = 0, {m,n, r} and
 

let gbe a matrix of order nx(n-r). Then Zia a

fundamental matrix of solutions for the given system if

and only if (4,5) is an apolar pair.

The existence of a suitable gis assured by the following28:

'_1‘_heorem 2. 3. 3. Given any matrix 4 there
 

exists another matrix flsuch that (4,g) is an apolar pair.

For a given coefficient matrix 4 the process of

constructing a matrix g such that (4,5) is an apolar

pair closely parallels the process of the solving the system

of equations themselves and hence is not considered here.

However, for certain systems of holac equations, some of

which will be considered in later sections, it is possible

0 \

to determine the matrix gindependently of the matrix a,
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2. 4. Interrelating the Two Viewpoints

Two approaches for obtaining a complete solution to

a system of holac equations were considered in Sections 2. 2

and 2. 3. Since both techniques produce a complete solution

for the same system of holac equations then they must be

interrelated.

Consider the system of holac equations (2. 3. 1) and

a complete solution given by (2. 3. 3). The particular

solution, )4), correSponding to any arbitrary choice, £20,

for 12 is, from (2. 3. 3):

F - r- _1 -I

Z10 ' Q11 Q12

lo : £20 : a ([20

_. ... L. .1    
(2.4.1)

Also, let jbe any fundamental matrix of solutions for

(2. 3. 1). Since a complete solution is given by (2. 3. 4),

then there must be at least one set of valu08%o, such that

20 . 5% (2....)

01'

 
=

(2.4.3)

1.. 5. 0   
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From (2. 4.1) and (2. 4. 3):

[20: 5% (2.4.4)

2

where i2 is a square matrix of order n-r. If 20 = 0,

then from (2. 4. 1) it follows that [0 = O, and (2. 4. 2) yields

g% = 0' consequently ya: 0 Since the columns of g

are linearly independent. Therefore:

2/ :0 implies %=0 (2.4.5)
20

On the other hand, from (2. 4. 4) with 20 = 0, one Obtains

a system of holac equations

(15% = 0, {n-r, n-r, p} (2. 4. 6)

where p is the rank of g.
2

Suppose p < n-r. Then the system (2. 4. 6) has an

infinity of non-trivial solutions for %, which contradicts

(2. 4. 5). Since p cannot exceed n-r, it follows that ,

p = n-r and thus 5 is non-singular. Hence for the same

particular solution, Z0,

if), = .124 X40 (2.4.7)

and there exists a one-to-one correspondence between 120

and f0.
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The preceeding argument also establishes a relationship

between certain sub-matrices of Qand g.

Theorem 2. 4. 1. Given the system of holac equations

£16: 0, {m,n,r}

and any associated fundamental matrix of solutions, A? Let

 

i1, i2, . . . , ir and j1,j2, . . . , jn-r be sets of indices

complementary with respect to the set of column indices

1,2,...,n; i. e., il,i2,...,ir and j1,j2,...,jn_r taken

together form a complete set of indices 1, 2, . . . , n. Then

a (_1’ 2' ' ‘ ° ’ mo.) has rank r if and only ifflql’ jz’ ' ' ' ’ jn--I‘)

113i23000,1r ,2,...,n-r

has rank n-r.

Theorem 2. 4. 1 can be extended to the more general case of

an apolar pair since if (4,5) form an apolar pair, then g

of order nxp is rank equivalent to [31, O ] where 51 is of

order nx (n-r), has rank n-r, and by Theorem 2. 3. 2 is a

fundamental matrix of solutions for the system of holac

equations having 4 as a coefficient matrix. Thus:

Theorem 2. 4. 2. Let (1,5) be an apolar pair where
 

Q. is of order mxn and rank r; gis a matrix of order nxp.

Let i1, i2, . . . , ir and j1,j2, . . . , jn-r be sets of indices

complementary with respect to the column indices 1, 2, . . . , n.
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Then:

i19i-2’ooe’1r

jl’j2""’jn-r'

has rank n-r.

1.2 .....p

1 ,2 ,...,

Q/ .m) has rank r if and only if



Chapter 3

GENERAL PROPERTIES OF SYSTEMS

OF NETWORK EQUATIONS

3. 1. Introduction

Network equations are formulated in a number of

different forms depending upon the type of solution that is

sought. Formulation in the time-domain is most general

and results in a system of ordinary differential and algebraic

equations. However, for a large class of network problems,

experience has shown that it is possible, and in fact, more

convenient, to by-pass time-domain formulation in favor of

frequency—domain or to -domain formulation. With this

approach the network equations are wholly algebraic in form

and involve complex numbers. The solutions, in terms of

complex numbers, are correlated with time-domain solutions

as well as observations on the physical systems. The complex

number form of the network equations, resulting from

formulation in the w-domain, is used as the basis for the

investigation of this paper. Thus prOperties of a system of

linear equations over the complex field play a:fundamental

role in this study.

36
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It is possible to approach the general problem of

assigning specific values to variables within a system of

linear equations from two points of view. In one approach

the equations are considered in a homogeneous form and

rank prOperties of the coefficient matrix are used to define

a partition of the variables into a dependent set and an

independent set, i. e. , a prOper partition. Once a prOper

partition has been determined, then the variables within the

independent set are assigned arbitrary values with no danger

of introducing inconsistencies. As noted in the preceding

chapter, the variables themselves do not enter into the

partitioning process; in fact, it is possible to obtain a complete

solution from the coefficient matrix alone.

The other approach is, in some respects, the reverse

of the above process. As an initial step one can assign values

to a subset of the variables and subsequently examine a. system

of non-homogeneous equations to determine whether or not it

is consistent. If it is, then it is possible to determine a

complete solution; it not, then the Specification pattern is

altered and the process repeated. With this approach, the

number of variables assigned Specific values is, to a certain

extent, flexible; however, great care must be exercised in the

choice of both the variables which are specified and the specific
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values which are assigned. The consistency conditions depend

not only upon prOperties of the coefficient matrix, but also upon

the Specific values assigned to the variables. Insofar as this

investigation is concerned, the first approach possesses a

definite advantage over the second in that the nature of the

process is such that it removes any doubt about consistency --

one is always assured of a solution. Because of this, it is

possible to make definite decisions with regard to the question

of which variables can be specified, based solely upon properties

of the coefficient matrix. These decisions are not influenced

or affected by any Specific set of values which might have been

assigned to a particular subset of the variables.

While systems of holac equations play a fundamental

role in electric networktheory, the theory Of graph329' 30

also occupies a positiOn of equal importance. The approach

to network theory based upon a study of the correlating oriented

linear graphlo’ 11’ 16’ 31'35 has done much to add insight and

precision into the formulation and solution of problems within

this area. The mapping of significant subgraphs into matrices,

which subsequently appear within the. coefficient matrices of

the network equations, allows one to interrelate prOperties of

these subgraphs with associated prOperties of the equations and

their solutions. In the present chapter consideration is given
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to a fundamental system of network equations and some of

its general prOperties; the following chapter is devoted to

examining, in more detail, the relationships between certain

subgraphs and rank prOperties of the coefficient matrix.

Given a particular network for analysis, it is assumed

that a correlating oriented linear graph (herafter referred to

as a graph) has been established. In addition, two complex

variables are associated with each element of the graph- -a

voltage variable, V, and a current variable, I. An extensive

background of foundation material is assumedlo’ 11; the

terminology and notation used here is essentially that found

in these references.

3. 2. Characterization of the Graph Elements

In general the graph elements used in electric network

theory are classified as either relation elements (F-elements),

or no-relation elements (N-elements), depending upon the

presence or absence, respectively, of certain fixed mathe-

matical equations relating the primary variables, V and I,

16.
associated with each element. Formally

Definition 3. 2. 1. F-element
 

An F-element is a graph element characterized

by some fixed mathematical relation which relates V or I for
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that element to V or I of the same element or any other

element of the graph. The mathematical relations are

characteristics of the elements themselves and are independent

of the manner in which the F-elements are imbedded in the

graph. The correSponding equations are called F-equations.

Commonly encountered examples of F-elements are

the graph element correlates of resistors, inductors, capacitors,

transformers, and the like.

Definition 3. 2. 2. N-element
 

An N-element is a graph element characterized

by: (1) either, neither, or both V and I for the element are

arbitrarily specified; and (2) V and I for that element are not

related in any fixed manner by an equation which is characteristic

Of the element iself.

N-elements are further classified into four different

types depending upon the pattern of element variable

Specifications. Thus:

Definition 3. 2. 3. Ne-element10
 

An N-element for which the element variable

V is arbitrarily Specified is designated as an Ne-element. The
 

specified variable V is designated by E, and the unspecified
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variable I is determined by the graph incident to this Ne'

element.

Definition 3. 2. 4. Nh-elementlo
 

An N-element for which the element variable

I is arbitrarily specified is designated as Nh-element. The
 

specified variable I is designated by H, and the unspecified

variable V is determined by the graph incident to this

Nh' element.

Definition 3. 2. 5. Neh-element
 

An N-element for which both of the element

variables, V and I, are arbitrarily specified is designated as
 

an Neh-element. The specified variables V and I are

designated by E and H, respectively.

Definition 3. 2. 6. No-element
 

An N-element for which neither of the element

variables is arbitrarily specified is designated as an No-element.
 

Both of the element variables, V and I, are determined by the

graph 1nc1dent to this No-element.

Of these four types of N-elements, the Ne- and Nh-

elements are "familiar" since they are the graph element

correlates of regulated voltage and current sources, respectively.
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Applications of Nah-elements were considered briefly in

Section 1. 3. In spite of its apparent lack of any distinguishing

characteristics (other than this very lack itself), the No-

element has considerable utility in network analysis. The

complete dependence of both of its variables upon the incident

graph makes the No-element useful for determining certain

characteristics of the incident graph per se. For example,

in the following pages these elements are used as "test

elements" to determine allowable locations, within a graph,

for the other types of N-elements.

The form in which the F equations appear is Often a

deciding factor in choosing a solution technique for the

network equations. For a set of nF F-elements, the

F-equations can appear in three basic form in the ‘wwdomain:

(1) the non-explicit F-equations:

n

F .
131 (flik 1k + fZik vk) = o, 1=1,Z,...,nF (3.2.1)

or, in matrix form

.212. + .9, 2.

where 31 and n42 are complex matrices of

order nF x nF, and F' 71“ are column matrices

of the I . and ’Vk reSpectively.
k,
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(2) the I-explicit F-equations:

CQF-%420
(3.2.3)

where %F is a complex matrix of order annF

and is called the F-element admittance matrix;

(3) the V—explicit F-equations:

magi, .. 0 (3.2.4)

h . .w ere f}? 18 a complex matrix of order “III-“XIII?

and is called the F-element impedance matrix.

Although the non-explicit form in (3. 2. 2) is most general,

the latter two (if they exist!) are generally more desirable

forms. No matter which of the three forms is considered,

the F-equations are a system of nF holac equations in ZnF

variables.

3. 3. Circuit and Seg Equations

The coefficient matrices for two fundamental systems

of network equations -- Kirchhoff’s voltage and current

equations -- are established by mapping certain classes of

subgraphs into matrices. As a result of mapping illcircuits

of a graph G into a matrix one obtains a complete circuit

matrix for G; the associated system of holac equations is

called a complete system of circuit equations for G:
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E. 7 . (...,.

where 4 is a complete circuit matrix for G, and

7; is a column matrix of the element V's.

Mapping a3 segs of G into a matrix results in a complete

seg matrix for G; the associated system of holac equations

-- a generalization of Kirchhoff's current equations -- is

called a complete system of seg equations:

a e = O
(3. 3.2)

where /a is a complete seg matrix for G, and

‘O/e is a column matrix of the element I's.

The rank of gis e-v+l, and that of ,Zis v-l,

for an e-element, v-vertex connected graph G. Thus,

from Theorem 2. 1. 4: any subset of e-v+l linearly

independent equations from a complete system of circuit

equations constitutes an equivalent system of equations;

_a_n_y subset of v-l linearly independent equations from a

complete system of seg equations constitutes an equivalent

system of equations. Hence it is neither necessary nor

desirable to consider a complete system of circuit or seg

equations in order to study their properties. Rather, one

need consider only a basis system of circuit equations:
—

(£7 = 0, {e-v+1, e, e-v+1} (3.3.3)

e
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and, a basis system of seg equations:

.IL ‘= o, {v-l, e, v—l} (3.3.4)
e

where

Definition 3. 3. 1. Basis circuit matrix 5
 

Any (e~v+l)-row, e-column, (e-v+1)-rank

sub-matrix of a complete circuit matrix 5 is designated

as a basis circuit matrix ;

Definition 3. 3. 2. Basis seg matrix ,/
 

Any (v:-bl)-row, e-column, (v-1)-rank

sub-matrix of a complete seg matrix 1Z3. is designated as

a basis seg matrix

In Section 2. 2 rank prOperties of the coefficient

matrix in a system of holac equations are used to define a

prOper partition of the variables. This prOper partition is

subsequently used to determine a complete solution for the

system. The following Theorems provide a foundation on

which to interrelate certain interconnection patterns of the

elements'of a graph and certain rank prOperties of the

coefficient matrices which appear in basis systems- of'circuit

and seg equations:

Theorem 3. 3. 1. Let G3 be an m-element
 

subgraph of a connected graph G, 1 _<_ m 5 e-v+1; and
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let 5: [ £1 4 ] be any basis circuit matrix for G,

where the columns of 1 correspond to the elements of

Gs‘ Then the columns of 4 are linearly independent if

and only if G8 contains no seg of G.

Theorem 3. 3. 2. A subgraph 63' of a connected
 

graph G, is a subgraph of some cotree if and only if G8

contains no seg of G.

Theorem 3. 3. 3. Let Gs be an m-element
 

subgraph of a connected graph G, 1 _<_ m 5 v-1; and let

J = [ 1 Z ] be any basis seg matrix for G, where

the columns of l corre8pond to the elements of Ga.

Then the columns of 1 are linearly independent if and

only if Gs contains no circuits.

Theorem 3. 3. 4. A subgraph GB, of a connected
 

graph G, is a subgraph of some tree of G if and only if

G8 contains no circuits.

Theorem 3. 3. 5. Let G be a connected graph.
 

If G1 and G2 are any two subgraphs of G such that:

i) GI and 02 have no elements in common, ii) G1 contains

no circuits, and iii) G2 contains no seg of G; then there
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exists some tree T Of G such that Cl is a subgraph of T

and G2 is a subgraph of the complement, in G, of T.

G

Another approach to determining a complete solution

for a system of holac equations is considered in Section 2. 3.

The approach there is based upon the concept of a fundamental

matrix of solutions. Again the graph and certain of its

associated matrices provide an effective means to obtain a

fundamental matrix of solutions. The following theorem

provides the needed relationships:

Theorem 3. 3. 6. Let G be a connected graph, and

let g3 and [a be, respectively, a complete circuit matrix

and a complete seg matrix for G. If the columns of a and

)[a are ordered the same with reSpect to the elements of G,

1311': o and flaw/Q: 0. (3.3.5)

rank of g + rank )[a = (e-v+1)+(v-1)=
a

then

Since

(3.3. 6)

then, from definition 2.3.2, one concludes that (A, 5a )

and (1;, 1a) are apolar pairs. Furthermore, if /a

and/or ga are replaced by any basis seg matrix [and

any basis circuit matrix g respectively, then similar
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conclusion follow. Thus: the transpose of any basis circuit

matrix K is a fundamental matrix of solutions for both a

transpose of any basis seg matrix is a fundamental matrix

complete system and any basis sst of seg equations; the

Of solutions for both a complete system and any basis system

of circuit equations. Therefore, from Theorem 2. 3. 2,

78.7. 771 , (3.3...

where is any basis seg matrix for G, and

?fl is an arbitrary (v-l)-rowed column matrix,

is a complete solution for (3. 3.1) and (3. 3. 3);

J... 5 2;, (3....

where g is any basis circuit matrix for G, and

71/2 is an arbitrary (e-v+l)-rowed column

matrix,

is a complete solution for (3. 3. 2) and (3. 3. 4).

3. 4. Primary Systems of Equations

Collectively, the circuit, seg, and F-equations

contain all the information relative to the primary variables,

V and 1, associated with the elements of a graph. Due to the

fundamental nature of these equations it is useful to have a

single designation for this collection of equations. Accordingly:
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Definition 3. 4. 1. Primary system of equations

The combination of a_n_y basis system of seg

equations, a_ny basis system of circuit equations, and the

F-equations associated with a graph is designated as a

primary system of equations for the graph.

A primary system of equations is also classified as non-

explicit, I-explicit, or V-explicit depending upon the form

of the F-equations which appear within the system.

Ultimately, it is a solution for a primary system of

equations that is sought, although this does not imply that

one must solve these equations as they stand. It is more

often the case that certain secondary or derived systems

of equations, such as the mesh, branch, and node equations,

are utilized to Obtain numerical solutions since they generally

involve fewer Simultaneous equations to solve. However,

these secondary systems are established from the primary

system as a base.

Consider a non-explicit primary system of equations

for a connected graph G containing e elements, v vertices,

and n N-elements:



v-l ’- 0j ,1 o 7 1Q ‘-

e-v+1 oN oF A g ~93 *3 0

e-nO flon-I VN

:1
1

0:
1

  

  
(3. 4. 1)

where the N and F subscripts refer to the

N-elements and the F-elements, reSpectively.

If, at the outset, the N-elements are all No-elements, then

there are no Specified variables in (3. 4. 1), and this is a

system of 2e-nM equations in 2e variables. Suppose

that the rank of this system is also 2e-n, as is the case with

the w-domain graph correlates of many classes of electric

networks. If n > 0, then (3. 4. 1) possesses non-trivial

solutions and complete sets of independent variables consist

of some subsets of n of the element variables. Thus, the

number of variables which can be assigned arbitrary values

is equal to the number Of N-elements in the graph. Consider-

ation of the various combinations of the element variables

which could occur within a complete set of independent

variables indicates that if V, I, or V and I for an No-element

appear within this set then it is possible to replace the
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No-element by an Ne" Nh" or Nah-element, respectively,

with no danger of introducing inconsistencies.
In this sense

the No-element is used as a "test element" to check whether

or not certain patterns of N-elements can be present within

a given graph. Furthermore, the number of independent

variables is fixed at n regardless of the type of N-elements

present; thus, if both variables for one N-element occur in

an independnet set then both variables for some other N-

element must occur in the dependent set. In a similar

manner, if an F-element variable occurs in an independent

set then both variables for some N-element must occur

within the dependent set.

3. 5. I-Explicit Primary Systems Associated with Power

Networks

The present section is devoted to a consideration

of the w-domain graph correlates of electric power networks

of the type discussed in Sections 1. 1 and l. 2. These graphs

contain three general types of elements; namely: elements

correlating with generators, loads, and the components

which comprise the transmission and distribution network.

The elements associated with the generators are N-elements,

while those associated with the transmission and distribution

network are F-elements. Unfortunately the elements
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corresponding to the loads cannot, in general, be categorized

in a clear-cut manner. One is inclined to consider these

elements as F-elements and characterize them, in the

to -domain, by a complex admittance or impedance. However,

more often than not, the load admittance or impedance is

either not known or, at best, only partially specified at the

outset of a problem. Consequently, these elements do not

readily fit into the F-element classification. The specifications

for the load elements are Often stated in terms of specified

variables such as real and reactive powers; thus they do not

immediately fit into the N-element classification, which

involves V and/or I specifications. However, based upon

the discussion of Section 1. 3, the N-element classification

seems more apprOpriate as a general rule. If the load

admittance is given, then, as shown next, it is possible to

use either classification -- F-element or N-element.

Consider an I-explicit primary system for a connected

graph Of e elements and v vertices. Let the graph contain

n No-elements, and further, suppose that the system of

equations has characteristic {Ze-n, 2e, 2e-n} :



  
  

n e-n n e-n

v-l ’- N 1F 0 0 C.) ”"iNT

e-v+l 0 0 N 6F 5Q}?

e-n o {(F o -%J flN

._ YE

L. .J

where .

complex entries.

This system of equations is presented in more do

a

(3.5.1)

F is a non-singular diagonal matrix with

tail below in

order to cqnsider the most general distribution of element

variables within the dependent and independent as

 

ts of a proper

 

  

partition:

”is?

Jim

”am

4N4

“I:1;I_l{l§Z_l§B_N£_F_l_£2_F3J_O_°_° _oI_o_ o- _0_ ran

...1._ EL 3 3 1°_ 1.0.: 344.41.; 44142.3 44.
nFlooooFé.looIooooil-Floo ’le

anooooIofionIooooIo-fizo 7N2

nF3 o o o 0 I0 0 74.3Io ~o 0 0:0 o—%.3 'flm

“ _. £14

VF;

frz

Lyra

where n1+nz+n3+n4 = n, and

nFli-an+r1F3 = -n
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Rearranging the columns to indicate the desired distribution

of element variables

ream“
t" I/ '-

/N1XN2 0 2 Fl 0 I F21? "Q/NZ

O 0 N1 N3 0 Fl. 0 F3 71:11

0 o o o ”Flfi‘l: o 0 Wm

0000 OOIFZO F1

  
I

0 0 0 0 0 0 I 0 -%F3_I W171

» .

  

  
   

(3. 5. 3)

If and only if the coefficient matrix on the left-hand side of

(3. 5. 3) is non-singular, then the above partition of the variables

is a proper partition into a complete dependent set
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{‘fl’Nl' ”nil . 7N2 N3'
I 7.4

F1’ F1’ F2’%3'} (3'5”!)

and the corresponding complete independent set

{7N2 flN3’ 'Q/N4’ 7144’ 7F? £53} - (3.5.5)

Suppose that this is the case. Then it is necessary that

That is, the number of N-elements having both variables in

the dependent set is equal to the number of N-elements

having both variables in the independent set plus the number

of F-elements having one variable, either V or I, in the

independent set. It is noted that it is not possible to have

an F-element of the type considered here with both variables

in the independent set. However, Specification of either

variable for this type of F-element immediately determines

the other variable. Thus specifying one variable for an

,,F-element has the same effect as Specifying both variables

-- only one of which is arbitrarily chosen. In fact an

F-element having one variable in the independent set can

also be handled as an N-element with both variables in the

independent set -- provided that one assigns values to these

variables in a prescribed manner. Consider the coefficient

matrix on the left-hand Side of (3. 5. 3.):



  

  
= 07/722=Jflz

L.
(3. 5. 7)

Since, by hypothesis, the matrix ”A is non—singular then

M 11 and 2%22 are non-singular. In fact, due to the nature

of ”Z 22, one has thatflb is non-singular if and only if 773“

is non-Singular. Suppose that the last two sets of an + nF3

F-equations in (3. 5. 2) or (3. 5. 3) are deleted; however, the

corresponding graph elements are _n_cg deleted -- so the seg

and circuit matrices remain unaltered. The only change is

that these elements are now classified as N-elements. Thus

both the number of equations in the system and the rank of

the system are diminished by an + nF3, but the number of

variables remains unchanged. Consequently the number of

variables in a complete dependent (independent) set is

decreased (increased) by “F2 + nF3. If this altered system

of equations is now rearranged to include the nFZ variables
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in oQ’FZ and the “F3 variables in 73:3 in a new set of

(potential) independent variables then one obtains (retaining

the notation of (3. 5. 2) ): 2
F-

N

  

 

  

  
(3. 5. 8)

The coefficient matrix on the left-hand Side of (3. 5. 8) is

precisely 27111 from (3. 5. 7) and thus has the prOper order

and rank if and only if the coefficient matrix fl on the

left-hand Side of (3. 5. 3) has the prOper order and rank.
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Since, by hypothesis, 2h; has the proper order and rank then

~QNl' 7N1, ‘0‘sz N3’ ”aEl'E (3' 5° 9)

is a complete set of dependent variables for (3. 5. 8) and

{W79 797
N2” iN4’ 7N? F2’ F2’ bQFB’ 711B}

.. (3. 5. 10)

is the corresponding complete set of independent variables.

Although the systems of equations (3. 5. 2) and (3. 5. 8)

are neither ichntical nor equivalent systems of equations they

are closely related. Every solution of (3. 5. 2) is also a

solution of (3. 5. 8) but the converse is not true. However,

every solution of (3. 5. 8) for which the variables £172,

”Fa. “0/33. 753 are chosen so that

F2 7172 and ”an = %“3 71:3

(3. 5. 11)

is also a solution of (3. 5. 2).

The transition from (3. 5. 2) to (3. 5. 8) was accomplished

by deleting certain F-equations from the primary system of

equations; in effect changing the character of the elements

involved from F-elements to N-elements, but otherwise leaving

the graph unaltered. It is then possible to assign values to

the variables associated with these N-elements so as to maintain
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any desired relationship between them. The admittance

coefficients for the ”transformed" F-elements no longer

appear within the system of equations; thus it is possible

to effectively handle Situations where these coefficients are

not completely known, or are variable, without introducing

unknown or changing quantitiesinto the coefficient matrix.

A distinctive feature of a "per-phase" representation

of a power network is the presence of a common node or

"ground bus". In particular, within the graph correlate, the

N- and F-elements corresponding to the generators and loads

are incident to a common vertex--the “reference" vertex.

With no loss in generality it is assumed that each non-

reference vertex of the graph is incident to exactly one N-

element and that all N-elements are also incident to the

reference vertex. For the case of a non-generator, non-

load vertex, or a load vertex for which the admittance

coefficient of the incident load element is known, then the

incident N-element can be specified as an Nh-element for

which H E 0, i.e., an open-circuit, or possibly an

Neh-element for which H "=' 0 and E is an arbitrarily

specified complex number. With this assumption the graphs

under consideration consist of the union of a v-vertex

connected graph of F-elements and a Lagrangian tree of

v-l N-elements---see figure 3. 5.1.
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N-element v-vertex

connected

graph of

elements

 

 

reference vertex

Figure 3. 5.1. Graph Correlate of a Power Network.

In the formulation of a primary system Of equations

for the graph correlate of a network one has, in general, a

variety of basis seg matrices from which to chooselo; in

the following sections an incidence—seg matrix a, is used

exclusively. There is no loss in generality in this choice,

and one has an advantage in that a basis incidence-seg matrix

is formed with relative ease from data which is readily

available. Furthermore, this matrix is well-suited for

formation by a digital computer. 15’ 16

Consider an J-explicit primary system of equations

for the v-vertex graph Of Figure 3. 5. l --where n=v-l is the

number of N-elements, n is the number of F-elements, the
F

F-element admittance matrix y} is a complex diagonal

matrix, and the subscripts N, F refer to the N-element and

F -e1ement subgraphs re Spectively:



    

  

n nF n nF _ I—°'aNI

n I—VF 4F 0 0 'Q/F

nF 0 O 5N ”F fN = O, {2nF+n, 2(nF+n), 2nF+n} .

nF ° Z{E 0 '%E 7F
_. _I _J

- (3. 5.12)

From (3. 3. 5)

£504 N54.][1{N€F1'=.gN+flI. = 0 (3.5.13)

or

5N = - a? . (3.5.14)

Using the above relation to eliminate KN from (3. 5.12):

.. a s 5.91.7

5(N F o 0 .0.

F

0 0 ‘4‘F QF «N : 0, { 2nF+n, 2(nF+n), 2nF+n}

o ”F o - %. [F (3. 5.15)

b "' I. ..l  

Upon premultiplying the coefficient matrix in (3. 5. l 5) by the following

non-singular matrix

0 7E ZCE

: 0 WF 0

LQN ‘ 4E yr ‘ 41?

(3.5.16)

  

one obtains, after a slight rearrangement Of the variables, the

following equivalent system of equations:



    

—- ' hI F

Q}. 0 0 ' FaF 7f}.

0 [(F 0 - F ‘QN = 0, {'ZnFi-n, 2(nF+n), 2nF+n} .

L0 0 {{N 4F fr 415‘ {N

" (3. 5.17)

Thus every solution of (3. 5.17) is a solution of (3. 5.12) and conversely.

Consider now the last set of n equations in (3. 5.17):

[”N 7’] 7N = 0, {n, 2n, n} (3.5.18)

N

where 7 = a]? % 41:. .

First, one notes that each solution of (3. 5.17) certainly determines

exactly one corresponding solution of (3. 5.18); second, each solution

of (3. 5.18) determines exactly one corresponding solution of (3. 5.17):

r— "I r-

I

£1“ 0 yr 4 F

y}; 0 fig" JN

j e . (3. 5.19)

N {(N 0 %\I

q

    
The systems of equations (3. 5.17) and (3. 5.18) are, in a sense,

equivalent systems of equations Since each solution of either

determines exactly one corresponding solution of the other. Since

one of the primary concerns in this investigation is to study the
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properties of solutions of (3. 5. 12) in terms of the variables associated

with the N-elements, then it is appropriate to examine the solutions

of (3. 5.18).

In order to consider the most general partition of the

variables in (3. 5.18) it is necessary to subdivide the set of N-

elements into four subsets. Since each N-element is incident to

exactly one non-reference vertex then the vertices of the graph are

subdivided into five subsets--the reference vertex alone and four

additional subsets, each corresponding to a distinct N-element

subset

incidence - 8 eg matrix:

I N1
0

a: o a...

 I—

O

0

0

0

o 0 an"

0 0 an

”N3 0 an

 i(N4 QF4

and the corresponding changes in (3. 5.18):

 

2 N2

n3 0 0 ”N3 0 %2

n4 0 O 0 Z(N4 %2

n3 n4

‘-

713 %4 N3

 

  

This necessitates a more detailed partitioning for the

(3. 5. 20)

= 0 (3.5.21)
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11

3
"

ll
M
4
"
:

p
—
I

and n _>_o.

' o o

: 4F17F4Fj s 19.]:19 2: 3: 4

Rearranging (3. 5. 21) to indicate the most general partition of the

variables:

_n1 n2 n1 n3 __

n1 Z{Nl 0 %l %3

n2 0 Z(N2 $1 $3

n3 0 0 31 $3

114 0 O yin %3

  

E9 1‘

  

I13

I"
0

0

7..

 — 0 OyN4 fi24

”2

i
2H ,

b
.

1
9
$

w
e
”

72

w

,
p

 
(3. 5. 22)

I—flN;

.9

7N

4Z

N

2 ,
1
;

  fiLW

From Definition 2. 2. 4 it follows that the above partition is a proper

partition of the variables in (3. 5.18) if and only if

and

7.. 7..
det 741 743 )5 0.

If this is the case, then a complete set of dependent variables

consists of the n variables:

M4 7..7..}

(3.5.23)

(3. 5. 24)

(3. 5. 25)
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and the corresponding complete set of independent variables consists

of the n variables:

(firm, 9N4, 74m, /} . (3.5.26)
N4

At this point the characterization of the N-elements can be Specified

with no danger of introducing inconsistencies; i. e. , the graph can

be considered to contain nl No-elements, n2 Ne-elements,

n3 Nh-elements, and n4 Nah-elements.

AS noted earlier, the condition 111 = n4 requires that for

each Neh-element in the graph there must also be a distinct No-

element. Moreover, there is a stronger and more useful inter-

relation between the Neh-elements and the NO-elements in a

graph. Since yin (3. 5.18) is a symmetric matrix, then in (3. 5. 21):

_ t . . _

y”. _ %i 1,, _ l,2,3,4. (3.5.27)

731 733 9'13 %4

det - det (3. 5.28)

Hence,

74173 73 7

However the necessary and sufficient conditions for

{‘Q’Nz' “QN4’ 7N? Z94} (3' 5° 29)

to be a complete set of dependent variables for (3. 5. 21) are that

r11 = r14 and that the second determinant in (3. 5. 28) be non-zero.

Therefore, the set of variables in (3. 2. 25) is a complete set of
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dependent variables for (3. 5. 21) if and only if the set of-variables

in (3. 5. 29) is also. Consequently, within a given allowable

classification of the N-elements of a graph into the No-, Ne-s

Nb" and Neh-classes, it is possible to interchange the NO-

and Neh-classifications.

It is worthwhile to note once again that although the preceding

discussion is concerned with the variables within a system of equations,

it is the cofficient matrix which actually contains the necessary

information and properties. In the next chapter these properties of

the coefficient matrix are "reflected" back into corresponding

properties of the graph.



Chapter 4

MAXIMUM TERM RANK SUBMATRICES OF AND

CORRESPONDING F-ELEMENT SUBGR HS

4. 1. Introduction

In the preceding chapters rank properties of the coefficient

matrix are used to define a prOper partition of the variables with-

in a system of holac equations. In Section 3. 5 this definition is

applied to a general partition of the variables within a system of

holac equations associated with the graph correlate of an

electric network:

I— _

[(6.1% VO/N =0. {n.Zn.n} (4.1.1)

7..
_. _I

y, : 4F %F 41; (4.1.2)

Of the resulting necessary and sufficient conditions for the

  

where

partition of (3. 5. 22) to be a proper partition, the first, (3. 5. 23),

insures that the appropriate submatrices have the proper orders,

while the second condition, (3. 5. 24), requires that a certain

minor from det7/ does not vanish. In a particular case this

minor can be evaluated and the corresponding partition checked.

Although this procedure provides a definite test, it gives little

insight into the reasons why a particular partition either passed

or failed the test.

67
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Now , and hence all properties of yfare dependent solely

upon the subgraph of F-elements and the associated F-element

admittance coefficients; in (4. 1. 2), £1, can be construed as a

basis incidence-seg matrix of order (v-l) by nF for the

connected v-vertex, nF-element subgraph of F-elements, and

%F is 'the ' diagonal matrix of the F-element admittance

coefficients. The partitioning of the N-element variables, as in

(3. 5. 22), identifies the corresponding minor from day which

must be tested, but this is the extent of the effect of the N-elements

in the partitioning and testing process. The following sections of

this chapter are devoted to examining the composition of the

matrix ?’ in (4.1. 2) in order to establish interrelations between

subgraphs of F-elements and non-vanishing minors of det%.

In general the expansion of a minor involves a summation of

terms; thus a minor can vanish for one of two reasons-~each term

in the summation is zero, or the non-zero terms are such that

their summation is zero. If the minor does not vanish then the

summation of necessity contains non-vanishing terms. As shown

later, the presence or absence of non-vanishing terms in the

expansion of a minor of det7’ is directly related to the existence

or non-existence, respectively, of certain subgraphs of F-elements.

In anticipation of this result the following terminology is introduced:30

Definition 4. 1. 1. Term Rank of a Matrix
 

The term rank of a matrix is the order of the greatest

minor containing a non-vanishing term in its expansion.
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The following theorems can be utilized to check the term rank of a

matrix:

Theorem 4.1. l. The expansion of the determinant of a

square matrix m of order r contains non-vanishing terms if and

only if any k rows of ”Z include non-vanishing entries mij from

at least k columns, k: 1, 2, ..., r.

Theorem 4.1. 2. The term rank of a square matrix of
 

order r is less than r if and only if there exists a zero Sub-

matrix of order m by n with m+n> r.

If a square matrix of order r has term rank r then its determinant

may be non-zero for some sets of values for the entries or possibly

for all sets of non-zero values for the entries. If the term rank

is less than r, then the determinant vanishes for all sets of values

for the entries.

Consider a minor of order r from det . In either case--

direct evaluation of the minor, or determination of the rank of the

corresponding submatrix using Theorem 4.1. l or Theorem 4. 1. 2

it is necessary to form the matrix % or at least the appropriate

submatrix, in order to test it; as the size and complexity of the graph

increases the formation of the matrix itself becomes a Significant

problem. Furthermore this process provides no explicit information

about the properties of the graph itself in relation to the partitioning

problem although the graph of F-elements determines the properties

«7
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4. 2. The Binet-C auchy Formula

A generalization of the Binet-C auchy formula25 provides a

technique to establish an interrelation between subgraphs of

F-elements and non-vanishing minors of det :

Let fl,g be matrices of order r by n and n by q

respectively, and let 8 =Qi. Consider an arbitrary minor

of order m from dete:

2' m (4.2.1)

where

1<i <i<...<i <r

t
—
|

<

Then, if 1: m: n:

i,i.ooo,i
i’i1999’i

dete l 2 m : Z detfl/ 1 2 m

l_<_k <1. <...<km:n kl,k ..,k
J1'32"'°'Jm l 2 27- m

,k ,...,k

deth1 2 m

j1,j2,...,Jm

i,i,...,i

detd<1 2 m) = 0. (4.2.3)

(4. 2. 2)

or, if m > n:

J13J2,000,Jm
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Now, let

a0 = FfiF (4.2.4)

and consider any minor of order m, l _<_ m E v-l, from det?

where is given in (4.1. 2). Applying the Binet-Cauchey

formula, (4. 2. 2), twice:

igigooo,i 1,5. ,...,i

det .11.; . = 2 detZ 1.11:2 km

Jl’J2"'°’Jm lgkl<k2<m kmgn 1' 2...... m
F

k,k,eeo,k

det/O/ 1 2 m

jl’j2,...’jm

(4.2.5)

and

k,k,ooo,k k’k99993k

det 1 2 m = z det y}. l 2 m

- - ' < < < < <

J1'32"'°'Jm 1—’21 I2 lm—nF11'12"°"!m

f ,f ,...,!

det a} 1 2 m

jl,j2,...,jm 0

(4.2.6)

Since 7’17. is a nonsingular, diagonal matrix then the only non-

vanishing minors are principal minors; thus the summation in

(4. 2. 6) contains at most one non-vanishing term--corresponding

tothecasewhenl =k,1 =k,...,1 =k . Further
I l 2 2 m m

k . k

1' 2'” ' m
det = Y Y ... Y

l’ 2’”" m

(4. 2. 7)
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and

k,k,ooo,k j’j99999j

detd' 1 2 m = detd 1 2 In

F . . . F k

Jl’J2"°"Jm kl’k2""' m '

(4.2.8)

Combining the last four relations:

i,i,...,i i,i,...,i
det l 2 m : Z Ykl Ykz o o . Ykm det 4F 1 2 m

J1,J2,...,Jm l<k<k<...<k <n k1,k2,...,km

—l 2 m— F

j’j,eoogj

detaF 1 2 m

k1k2,...,km .

(4.2.9)

Examination of (4. 2. 9) indicates that the Summation contains

a total of

F " nFl

: m' (n _ m)‘ (4. 2.10)

m ° F '

 

terms, and that each term is composed of two types of factors. The

first factor is a product of n of the F-element admittance coefficients;

for the type of F-elements considered, each admittance coefficient

is finite and non-zero, hence this factor is always finite and non-zero.

In addition, this factor involves a distinct set of m F-elements,

i. e. , no two terms in the summation involve the same set of m

F-elements. It is also noted that this factor depends solely upon

the admittance coefficients and is independent of the manner in which

the F-elements are interconnected. The second factor in each term
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is the product of two minors from the incidence-seg matrix and

has a value of +1, -1, or zero since the value of any minor of an

incidence-seg matrix is +1, -31, or 0. 11 This factor, in contrast

with the first type, depends solely upon the manner in which the

F-elements are interconnected and is independent of the F-element

admittance coefficients. Thus connection patterns of F-elements

determine whether or not the summation in (4. 2. 9) contains non-l

vanishing terms:

Theorem 4. 2.1. The m by m submatrix, lfimfiv-l,
 

11,12,eeo,1m

. . . (4. 2.11)
Jl,J2,...,Jm

in (4. 2. 9) has term rank m if and only if there exists at least one

m-element subgraph of F-elements such that

i,i,...,i j.j.....j
d1? 1 2 m and 4F l 2 m

k1,k2,...,km k1,k2,...,km

(4. 2.12)

are both nonsingular.

4. 3. Nonsingular Submatrices of the Complete Incidence-seg

Matrix and Corresponding Subgraphs

Consider a graph G0 which is connected, i. e. a part, and

consists of e elements and v0 vertices. An inc1dence-seg

0

matrix for G is formed by mapping the element-vertex incidence

0

pattern of the graph into a matrix. The complete incidence-seg
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matrix fla for G is a matrix of order v by e where theo
o o

typical entry aij is defined as follows:10

+1, if element e. is incident to vertex vi and oriented

away from his vertex;

-1, if element e. is incident to vertex v. and orienteda.. . 113 toward this i/ertex;

0, if element ej is not incident to vertex vi.

Under this mapping each row of da corresponds to a distinct

vertex of Go and each column of 4a corresponds to a distinct

element of Go' Since the vertex and element numbers are

arbitrary it is assumed that the vertex and element numbers

correspond to the row and column indices, respectively of fla'

Let:

Vo denote the set of all vertices of Go’

0 denote the set of all elements of Go,

V denote a proper subset of V consisting of
m . . . o

m dlstlnct vertices,

E denote a proper subset of E consisting of
m o

m distinct elements, and

V(E ) denote the set of vertices incident to the

m elements in Em.

Corresponding to any m by m submatrix of da is a set of m

distinct vertices and a set of no distinct elements of GO. This

correspondence is denoted by the following notation:

' a

' i,...,i V

4.. 11'2 ... - d m (4.3.1)

jl’j2"°"jm' m
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where

Vm : {vil’ v12"°°’vim}

Em = {ejl’ ej2,...,ejm} .

Also associated with this submatrix is a second vertex set; namely,

V(Em).

The following two theorems characterize sets of linearly

independent rows and columns of 4a:

Theorem 4. 3.1. If Vm is any subset of m distinct

vertices of Go’ lSmEVO-l, then the mby eo submatrix

v

Q < 9) (4.3.2)
a E0

, Theorem 4. 3. 2.

has rank m.

Let Em be any m-element subgraph

of Go’ limfivo-l. The V0 bym submatrix

V

0

Q < > (4.3.3)

3‘ E
m

has rank m if and only if Em contains no circuits.

Consider an arbitrary m by m submatrix of 4a, limfivo-l:

. . 0 V

11,12,00031m m

a 2 a (4.3.4)

a . . . a E

Jl’JZ’...,Jm m
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where

Vrn = {vil'vi2"'°’vim} (4.3.5)

E = {e.l,e } . (4.3.6)
m j j2"'°’ejm

Theorems 4. 3.1 and 4. 3. 2 provide necessary conditions for the

submatrix (4. 3. 4) to be nonsingular. Theorem 4. 3. l is certainly

satisfied; if the subgraph Em contains no circuits then the Sub-

matrix, (4.3.3), of order vo bym has rank m. Therefore

there exists at least one mxm submatrix of (4. 3. 3) which is

nonsingular. However this nonsingular submatrix may or may not

be the one in (4. 3. 4). The following theorem gives necessary and

sufficient conditions, in terms of the subgraph Em and the vertex

set Vm’ such that the submatrix (4. 3. 4) is nonsingular:

Theorem 4. 3. 3. If and only if: (1) Em contains no
 

circuits, and (2) each part of Ern contains exactly one vertex

v*€ V(Em) such v*)é Vm, then the submatrix (4. 3. 4) is non-

singular.

Proof: Let Em and Vm be given, where the subgraph

Em consists of m elements, p parts, and the vertex set V(Em)

contains x vertices. Let the i-th part of Em contain mi elements

and x1 vertices, where

m1+m2+...+mp : In (4.3.7)

xl-t-x2+...+xp = x (4.3.8)
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since a part and its complement have no elements or no vertices

in common. (a) Sufficient. Let Em contain no circuits and each

part of Em contain exactly one vertex v* 6 V(Em) such that

v* f Vm' Because Em contains no circuits, then each part of

Em contains no circuits and:

mi-Xi+l : 0 i=l,zgooo,p (40309)

01'

xi = mi+l i=1,2,...,p. (4.3.10)

Each part of Em contains exactly one vertex v* f Vm' thus each

part contains exactly mi vertices from Vm. From (4. 3. 7) it

follows that Vm is a proper subset of V(Em). Construct an

incidence-seg matrix 4i of order mi by mi for the i-th part

of Em; the omitted row corresponding to that vertex of part i which

is not a member of Vm. Since each part is a tree then the rank of

ai is mi. By proper ordering of the elements and vertices, an

incidence-seg matrix, a *, for Em can be written as a block

diagonal matrix:

. (4.3.11)

  
*

Hence, a is an mxm matrix and has rank m. The no rows of

* a5:

a correspond to the vertices in Vm, the m columns of a
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correspond to the m-elements in Em, and

aa<:m) = 744*76 (4.3.12)

where W , )6 are conformable permutation matrices and thus

nonsingular. Therefore, 4a (Em) is nonsingular. (b) Necessary.

V m

Let aa (Em ) be nonsingular. Since a nonsingular matrix contains

m

no zero rows or columns, then every vertex in Vm is incident to at

least one element of Em and each element of Em is incident to

at least one vertex from V . Thus V is a subset of V(E ).
m m m

Further, the columns of this submatrix are linearly independent,

thus Em contains no circuits and

x = m+p. (4.3.13)

Therefore Vm is a proper subset of V(Em), and V(Em) must

contain exactly p distinct vertices which are not members of Vm.

There exist permutation matrices fl and 7&4 such that

- _

O. 0

“413741404 33
L P.  

(4. 3. 14)

where the mi columns of “1 correspond to the elements of Em

in part i and the rows of 41 correspond to the vertices of Vm

in part i -- note that at this time the number of rows in 41 is not
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known to be mi. Suppose that all of the mi+l vertices of part i

are members of Vm' Then 41 is a complete incidence-seg

matrix for part i and thus the rows of ai are linearly dependent.

Therefore the rows of da (Vm are linearly dependent and the

Em V

matrix is singular. As aa (ELI-11) is nonsingular then

gag}; part of Em must contain at least one vertex which is not a

member of Vm. But V(Em) contains exactly p vertices which

are not members of Vm; since each of the p parts must contain

at least one, then each part of Em must contain exactly one

vertex which is not a member of Vm' q. 8. d.

Subgraphs which contain no circuits, such as Em in

Theorem 4. 3. 3, are closely related to another class of subgraphs

which are defined as follows:32

Definition 4. 3. l. k-tree

A k-tree, Tk’ of a vo-vertex part Go is a subgraph

of Go which contains k parts, all v0 vertices of Go , and no

circuits. (Note: in this definition one must allow the possibility

that a part may consist of an isolated vertex.)

Theorem 4. 3. 4. 32 Let Go be a part with vo vertices,
 

then:

(1) A k-tree of (30 contains vo-k elements, 15k: v0;

(2) A subgraph of Go which contains vo vertices,

vO-k elements, and no circuits is a k-tree of Go.

Thus, if V(Em) = Vo then Em is a (vo-m)-tree of Go; if V(Em)
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is a proper subset of V0, then Em differs from a (vo-m)-tree

by a set of isolated vertices--namely those vertices of V0 which

are not contained in V(Em).

Definition 4. 3. 2. Basis for a k-tree
 

The subgraph of a k-tree T consisting of the vo-k

k

elements is designated as the basis for that k-tree and denoted by

T Ev _k).
k( 0

Theorem 4. 3. 5. Let G() be a part containing vo vertices
 

then any subgraph of Go containing vo-k elements, 1_<_ k: v() ,

and no circuits is the basis for some k-tree of GO.

In order to characterize the subgraphs of Theorem 4.3. 3, which

correspond to nonsingular submatrices of the complete incidence-

seg matrix, one additional concept is required:

Definition 4. 3. 3. k-tree pair

Let G be a part containing v vertices, and V
0 O ”VG-k

and E be any subset of v -k distinct vertices and v -k
vo-k o .. 0

distinct elements of Go’ respectively. {Vvo-k’ Eve-k} is said

to be a k-tree pair if and only if Evo-k is the basis for some

k-tree Tk’ and each part of T (EV _k) contains exactly one

ok

vertex v* such that v* is not a member of VV -k .

0

Therefore Theorem 4. 3. 3 can be restated as follows:
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Theorem 4. 3. 6.

&a (Vin) is nonsingular if and only if { V , E }
E m m

m

is a (vo-m)-tree pair.

For a given eo -element, vo-vertex part Go it is of

interest to determine the number of (vo-m)-tree pairs that exist

for either a fixed set of m vertices of Go or a fixed set of m

elements of 60' where 1 _<_ m: vo-l .

Theorem 4. 3. 7. Let Vm be any fixed set of m distinct

vertices of Go’ 1 j m: vo-l, and let nE be the number of

distinct sets of m elements of GO, Emi , for which {Vm, Emi}

is a (vo-m)-tree pair, then

v E

nE: det{ da( m> fi;< °> }. (4.3.15)

E0 vm

Proof: Using the Binet-C auchy formula:

V V Em-
m I

det { a m Q' 0 } = Z? detd detd 1

a a V E a E a v
o m mi mi m

(4. 3.16)

V

= z {det4a< m) }‘2

(4. 3.17)

where Em ranges over all distinct m-element combinations of the

1
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e0 elements of Go' The determinant in (4. 3.17) has the value

+1, or -1, if. and only if { Vm, Emi} 18 a (vo-m)-tree pair and

hence the result follows. The following theorem is proved in a

similar manner:

Theorem 4. 3. 8. Let Em be any fixed set of m elements
 

of Go, 1 S m : vo-l, and let nV be the number of distinct sets

of m distinct vertices of Go’ Vmi, for which {Vmi' Em} is

a (vo-m)-tree pair, then

E v

nvzdet{d’;< m) aa( °> } . (4.3.18)

vo E
m

As a direct consequence of theorem 4. 3. 2:

Corollar_y 4. 3. 9. The number nV in Theorem 4. 3. 8
 

if zero if and only if Em contains a circuit.

4. 4. Maximum Term Rank Submatrices of yand

Corresponding Subgraphs

Necessary and sufficient conditions for an arbitrary m by m

submatrix of 7’ to have term rank m are stated in Theorem 4. 2.1

in terms of nonsingular submatrices of an incidence-seg matrix.

If this theorem is combined with Theorem 4. 3. 6 these conditions

can be stated in terms of properties of subgraphs.

Let Go be a part containing nF F-elements and v0 vertices;

consider an arbitrary m by m submatrix,, 1 _<_ m : vo-l, from

the matrix yin (4.1. 2):
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i1, 12, o o o 3 1m

. . . (4. 4.1)

J1, J2, o o o ,J

The relation (4.2. 9) establishes a correspondence between the row

and column indices in (4. 4.1) and two sets of row indices from the

incidence-seg matrix; thus one can associate two sets of m distinct

vertices from Go with the submatrix in (4. 4.1):

Vmi : {Vil’ vi2’ "" vim} (4°4°2)

and

ij = {vjl, vjz, vjm} . (4.4.3)

Theorem 4. 4.1. The mbym submatrix
 

v

< mi) (4. 4. 4)

Vm.

J

in (4. 4. 1) has term rank m if and only if there exists at least one

m-element subgraph E of G such that {V E } and
m o mm.’

1

{Vm_.: Em} are both (vO-m)-tree pairs for CO.

V

Corollary 4. 4. 2. The m by m submatrix V(Vmi) has

m.
V

term rank m if and only if 7(ij has term rank m. J

mi

Although Theorem 4. 4. 1 relates term rank to properties

of subgraphs it is instructive to examine the stated conditions in

more detail in order to extract additional information characterizing

the type of subgraph Em meeting these requirements.
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The basis incidence-seg matrix a]? in (4.1. 2) is derived

from the complete incidence-seg matrix 4a by deleting the row

corresponding to the reference vertex r0; thus r0 is never

contained in either Vm or Vm, . Therefore, for a given Vm

i J i

and ij , the vertex set of G0:

VO = {v1. v2. .... VVo'l' r0} . (4.4.5)

is partitioned into these proper subsets: an Vm- , and the subset

1 J

consisting of all vertices of V0 which are not contained in either

V or V The latter subset always contains at least one
mo'

mi J

member--the reference vertex r0. Although Vm. contains m

distinct vertices, as does ij , it is possible for the composition

of these two sets to vary from that of identical sets to that of disjoint

sets.

If the vertex sets VIni and Vm. are identical, then it is

necessary and sufficient that there existls an m—element subgraph

Em such that {Vmi’ Em} is a (vo-m)-tree pair: Em must

contain no circuits and each part of Em must contain exactly one

vertex which is not contained in V For a given graph Go’ and
m.°

1

a given vertex set V these conditions can be applied and it can
m-'

1

be determined whether or not one or more allowable subgraphs

exist. Alternately, one could utilize (4. 3.15) to determine nE,

the number of m-element subgraphs such that { VmJ E } isa

v 1 m
(vb-m)-tree pair. Hence the term rank of 7(Vmi) is m if

m.

1

and only if nE )4 0.
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If the vertex sets Vm and Vm~ are not identical, then

i J

Go must be searched for allowable m-element subgraphs such that

both {Vmi, Em} and {V Em} are (vo-m)-tree pairs.
m.'

J

Unfortunately no formula has been found from which to calculate

the number of distinct m-element subgraphs that satisfy both of

these conditions. A determinant:

det{ 4a (V311) a; (E0) }, (4.4.6)

ijE
0

similar to that used in (4. 3. 15), can be formed and evaluated.

Application of the Binet-Cauchy formula indicates that the non-zero

terms in the expansion, +1 or -1, do correspond to allowable sub-

graphs; however, the heterogeneous pattern of signs which may occur

allow one to conclude in general that if there are t non-vanishing

terms in the expansion, then the value of the determinant might

range from +t to -t and including zero. If the value of the

determinant in (4. 4. 6) is n, then there are at least I 11' distinct

m-element subgraphs Emk such that { Vmi, Emk} and

{Vm.' Em } are both (vO-m)-tree pairs. Therefore nfiO 13

J V

sufficient for the term rank of V(Vmi) to be m, but it is not

m-
J

necessary.

Consider the type of subgraph EIn for which both { Vmi’ Em}

and { ij, Em} are (vO-m)-tree pairs when Vmi and ij

are not identical. In addition to containing no circuits, each part of

E must contain exactly one vertex which is not contained in Vm.

1

. If Vm. and
and exactly one vertex which is not contained in ij

-
1
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Vm. are disjoint then, since each part of Em contains at least

two vertices, each part must contain exactly two vertices--one from

Vmi and one from ij. The m-element subgraph Em must

consist of m parts; each part is a single element incident to one

vertex from V and one vertex from Vm_. Thus, if Vm- and
m-

1 J 1

ij are disjoint, the m-element, m-part subgraph can be viewed

as matching the vertices of Vmi onto the vertices of ij in a

one-to-one manner? Therefore, when Vm. and Vm. are disjoint,

1

(3:1) has term rank m if and only if at least one such

matching] subgraph exists in Go'

Suppose the vertex sets Vmi and Vm. are neither identical

nor disjoint. Then the vertex set V0 in (4.4]. 5) is partitioned into

four mutually exclusive, all inclusive, non-empty subsets: SI,

82' S3, and S4--see Figure 4. 4. 1.

 

 

 

      
 

 

V

V ~ 0 '

. r0

S4 S3 S1 S2

m V _

Vm‘

Figure 4. 4.1. Vertex Partition.



87

Consider a subgraph Em which contains no circuits; let

Pi be any part of Em and V(Pi) be the set of vertices in Pi'

If { Vmi’ Em} is a (vo-m)-tree pair then there is exactly one

vertex a 6 V(Pi) such that a 6 Vmi; therefore

aES1 or aeS2 , (4.4.7)

and for any vertex c 6 V( Pi)’ c fi a, then c 6 Vm. :

1

C68 or C654. (4.4.8)
3

If { ij , Em} is a (yo-m)-tree pair then there is exactly one

vertex b 6 V(Pi) such that b 6 ij; therefore

b6 S2 or b6 S4, (4.4.9)

and for any vertex c 6 V(Pi)’ c )5 b , then c 6 ij:

ceS1 or C653. (4.4.10)

These conditions must all be satisfied if Em is to be an allowable

subgraph. Note that a and b are particular vertices from V(Pi)

and that c is any vertex of V(Pi)’ c )4 a, c )14 b; therefore: if

a=b, then

' . .4. .
aeS2 and C683, (411)

ifafib, then

a6S1 and b6S4 and C653. (4.4.12)

In the case where Vmi and ij are neither identical nor

disjoint and both {Vmi’ Em} , {ij, Em} are (vo-m)-tree

pairs then Ern must contain m elements and no circuits; V(Em)
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must contain all of the vertices of Vmi' iju-and perhaps other

vertices; each part P1 of Em must also satisfy either one of

the following criteria:

Criterion A: Pi must contain exactly one vertex which

is not contained in either Vm. or Vm. , and all remaining vertices

1 J

of Pi must be contalned 1n both Vmi and ij ;

Criterion B: Pi must contain exactly one vertex which is

contained in Vm. but not contained in Vm. and exactly one vertex

1

which is contained in ij but not contained in Vmi; all remaining

vertices of P. must be contained in both Vm and Vm. .

1 “" i J

Further, if the number of vertices in S4, and hence 51’ is x1,

then Em must contain at least x1 parts.

The subgraphs of Figure 4. 4. 2 illustrate, for the case

m = Z, all possible types of two element subgraphs Ezk such that

both { VZi' EZk} and { sz, EZk} are (vo-Z)-tree pairs. The

unlabeled vertices in the Figure can be any other vertices of the

graph. For subgraphs (a) - (d): V2i = sz = { v1, v2} ; (e) - (h):

V21: {v1, v2} , V21: {v2, v3}; (1) and (j): V2.1:{v1’ v2} ,

sz = { v3, v4} . Consequently, for a connected graph G0

containing at least four vertices: 7(i’ 3 has term rank two

if and only if Go contains at least one ,of the subgraphs (e) - (h)

of Figure 4. 4. 2.



(a)

<
< <
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(b) (C) (d)

Figure 4. 4. 2. Allowable Subgraphs, m = 2.
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Assuming that at least one allowable Em has been found

for a given Vmi and ij then, using criterion A and B in

conjunction with an examination of the allocation of the vertices

from Vmi, ij within the parts of Em , it is possible to

determine whether or not certain vertices can be interchanged

between Vmi, ij and still maintain the (vo-m)-tree pair

property for Em. If, for example, in determining the term rank

of :’ i) one finds at least subgraph (e) of Figure 4. 4. 2 within

60’ then all of the following submatrices also have term rank two:

76:3). 76:1) . 76:2).

7C: :) , fl :), 74: Z) . (4.4.13)

11', on the other hand, examination of Go indicates that the gag

allowable subgraph contained in G0 has the form (h) of Figure

4. 4. 2, then only the first two submatrices in (4. 4.13) have term

rank two; the term rank of the last four submatrices is less than

We.

The existence or non-existence of at least one allowable

subgraph Em for a given pair of vertex sets Vmi and ij can

be checked by direct inspection of the graph. If the graph contains

a large number of vertices and elements then this can become a

time consuming process. Various algorithms have been devised
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and prOgrammed to utilize a digital computer to search for

numerous types of subgraphs-strees, k-Atrees, circuits, paths,

etc. ----.within a given graph. 36-40 Programs of this type could

be modified, or new programs devised, to implement a testing

process. Consequently, this aspect is not considered further

in this investigation.

In the event that all allowable subgraphs have been found--

as might well be the case when a computer search program is

used--then (4. 2. 9) can be used to evaluate the minor of without

the necessity of actually forming the matrix . On the assumption

that (V:2) has term rank m, then two cases arise: (1) if

Vm- and ij . are identical; 1. e. aprincipal minor of 7, then

1 mJ

the non-vanishing minors of the incidence-seg matrix in (4. Z. 9)

have the same sign within each term and (4. 2. 9) becomes:

Vm

det? i = z Y(Em ) (4. 4.14)

Vm. E k
1 mk

where Y(Emk) is the product of the F-element admittance

coefficients for the elements of Emk and the summation ranges

over all Emk such that { Vmi, Emk} is a (vo-m)-tree pair;

(2) If Vrni and ij are not identical then the evaluation of the

minor is complicated by the fact that the non-vanishing minors of

the incidence-seg matrix in (4. 2. 9) can have either sign within a

given term. A formula for the signs of the non-vanishing terms has

been derived and the result is given below.
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Let

Vmi = {Viv viz, vim} (4.4.15)

and

ij - {vj1, v52, ..., vjm} (4.4.16)

where

‘ < ° < < ' < -1:11 12 ... lm-vol

< ‘ < ' < < ' < -1_J1 12 ... Jm-vol

Since Vm. and Vm. are not identical, then the subsets S1 and

1 J

S4 in Figure 4. 4.1 are not empty. Let the number of vertices in

51’ and hence in S4, be x, and

s4 = {vial’ vioZ’ Viax} (4.4.17)

51 = {vflw vjpz, vax} (4.4.13)

where oi and Bi are the positional indices of these vertices within

Vm. and Vm. respectively and

1 J

pl< pz< ...< (3x.

Criterion B implies that any allowable Em must contain at least

x parts and further, each part containing a single vertex from S4

must also contain a single vertex from 51' Thus this part matches

a vertex from S4 to a correSponding vertex from 51' If “k
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is the number of inversions needed to rearrange the vertices in S1

so that they appear in the same order as their corresponding matched

vertices in S4, then for an allowable Em

x+2a.1+2431 )1.

dataF<E:iHdetdz<mi=k>(1) (-1) 1‘ (4.4.19)

Since only pk depends upon EInk , then (4. 2. 9) becomes

Vm. x+Z 0.1+}: [ii p. k

V E

where the summation ranges over all Emk such that {Vm., Emk}

1

and {an Emk} are both (vo-m)-tree pairs.

4. 5. From Subgraphs to Maximum Term Rank Submatrices

The preceeding discussion has assumed that the vertex sets

Vm. and Vm. were specified initially and thus it became necessary

to elxamine th: graph Go to determine whether or not it contained

at least one subgraph Emk which satisfied both (vo-m)-tree pair

conditions. However, if any subgraph Em, containing no circuits,

is selected from Co then it is a simple matter to list all the vertex

sets Vmi such that { Vmi, Em} is a (vo-m)-tree pair.

Associated with any two of these vertex sets is an m by m

73 = 4a % a; (4.5.1)

and this submatrix must have term rank m. Note that the complete

submatrix from
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incidence-seg matrix is used in (4. 5.1) to allow for the possibility

that the subgraph contains the reference vertex r0. These results

are applicable to the matrix in (4.1. 2) if the vertex sets

containing the reference vertex are deleted from the list.

First, consider another approach to calculating the number

nv defined in Theorem 4. 3. 8:

Theorem 4. 5.1. Let Go be a part of V0 vertices and

Em any m-element subgraph which contains no circuits. If Em

contains p parts and the k-th part contains xk elements; then the

vertex set V(Em) can be decomposed into

nv : E (xk +1) (4. 5. 2)

distinct subsets Vmi of m distinct vertices such that {Vmi’ Em}

is a (vo-m)-tree pair, i = l, 2, .. ., nv.

Proof: Since Em contains no circuits, then V(Em) contains

m+p vertices and each part of Em contains xk+l vertices. Let

Vmi be any m vertex subset formed by deleting p vertices from

V(Em), one vertex from each part. This can be donein any one of

P

n = TT (x +1) different ways. Now, E contains no circuits
v k=1 k m

and each part of Em contains exactly one vertex which is not a

member of Vmi . Therefore {Vmi' Em} is a (vo-m)-tree

pair for Go'
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Consequently, if Go is a graph of F-elements such that

the F-element admittance matrix, F’ is diagonal and nonsingular,

and Vmi, ij are any two of the vertex sets of Theorem 4. 5.1

( Vm.)

% 1

a
ij

has term rank m. Furthermore, noting that

7421:?)
J

then

has term rank m if and only if

7 (vmj)

a
Vm.

1

has term rank m, and accounting for the fact that Vm and Vm

i J

can be identical, there are a total of

nv _ 2
2(2)+nv — nV (4.5.3)

different In by m submatrices of a associated with a single

circuitless subgraph Em, and each of these submatrices has

term rank m.



Chapter 5

COMPLETE SOLUTIONS FOR THE PRIMARY

SYSTEM OF EQUATIONS

5.1. Subgraphs and Feasible Proper Partitions

The preceeding chapter provides a basis for interrelating

proper partitions of the variables within a system of holac equations

associated with the graph correlate of an electric network and

classes of subgraphs of that graph. A given partition of the

variables is a proper partition if and only if a related submatrix

has the proper dimensions and rank; this submatrix, in turn, has

the properm rank if and only if there exists within the graph at

least one member of a particular class of subgraphs. An m by m

submatrix has rank m only if its term rank is m; consequently

the existence of a particular subgraph constitutes a necessary

condition for the corresponding partition to be a proper partition

of the variables. It is not in general a sufficient condition as

certain subsets of values for the F-element admittance coefficients,

in conjunction with certain interconnection patterns of the F-elements,

can result in the rank of the submatrix being less than its term rank.

In certain types of problems this characteristic is desirable-~for

example: balanced bridges and resonant networks, while in other

types it may or may not be desirable. In recognition of these two

possibilities a partition of the variables is said to be a feasible

proper partition if and only if the related submatrix has the proper

dimensions and term rank.

96
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As previously noted a complete solution for a system of

holac equations can be determined in many forms--for example,

any proper partition of the variables determines a corresponding

complete solution. Although any complete solution implies all

particular solutions it is often the case that certain forms of a

complete solution are more desirable than others. The approach

considered here allows one to investigate the feasibility of a

variety of forms of a complete solution without the necessity of

actually formulating the primary system of equations. The only

complete solutions which are considered explicitly here are those

obtained directly from proper partitions of the variables.

The key issue in such an investigation is to determine

whether or not a given partition of the variables is a feasible proper

partition. If it is, then a continuation of the investigation indicates

whether or not it is also a prOper partition. The vertex subsets,

51’ 52’ $3, and S4 introduced in the preceeding chapter play a

central role in these investigations. Each non-reference vertex

of the graph is incident to exactly one N-element, thus a one -to-

one correspondence is established between the vo-l N-elements

and the vO-l non-reference vertices of the graph. Recall that

4 3 I
I

(
n

C
‘
.

0
1

(5.1.1)

II U
)

C
'
.

U
)

Vm (5.1. 2)
j 1 3'

and that the set 82 contains all other vertices of the graph--
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including the reference vertex r0. Permitting S1 and S4, or

S3, to be empty allows one to consider within the same framework

the possibilities of Vmi and ij being identical, disjoint, or

neither. Consider the system of holac equations in (3. 5. 21); the

set

{J2 J Kn. 7N3} (5.1.3)
N1 ’ N2'

is a complete set of dependent variables and

19ml... 71., 7N4} (51-4)

is the corresponding complete set of independent variables for

this system of holac equations if and only if

(5.1.5)

det?(vmi) = det 31 733 /£ 0. (5.1.6)

vmj 41 7’43

Examination of the relationships among the allocation of the

N-element variables within (5.1. 3) and (5.1. 4), the row and

column indices of the submatrix whose determinant appears in

(5.1. 6), and the vertex sets S1 through S4 yields the following

conclusions:

(1) Each of the n N-elements incident to the 111 vertices
l

of S1 has both associated element variables within the

dependent set (5.1. 3). These N-elements are classified

as NO-elements;
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(2) Each of the n N-elements incident to the n2
2

vertices of 82 (other than r0) has its associated voltage

variable within the independent set (5. 1. 4) and current

variables within the dependent set (5. l. 3). These

N-elements are classified as Ne-elements;

(3) Each of the n N-elements incident to the n3

3

vertices of S3 has its associated current variable

within the independent set (5. l. 4) and voltage variable

within the dependent set (5.1. 3). These N-elements

are classified as Nh-elements;

(4) Each of the 114 N-elements incident to the n4

vertices of S4 has both of its associated variables

within the independent set (5.1. 4). These N-elements

are classified as Neh-elements.

Thus a partition of the variables, such that n 2 n4, identifies the

l

vertex sets Sl through S4 and conversely. This information, in

conjunction with the developments of the preceeding chapter, allows

one to investigate certain properties of a complete solution for the

primary system of equations in terms of properties of the graph

without the need for explicit formulations of the equations.

The classification of the N-elements as No" Ne-, Nh-,

or Neh-elements is determined by properties of the system of

holac equations and the graph--not by consideration of the

correlating electric network. This allows one considerable freedom

in the classification of the N-elements since there are often many
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different proper partitions of the variables for a given system of

holac equations. This represents a departure from the usual

practice in electric network theory where the inclusion of Ne- and

Nh-elements has been generally based upon the presence of

regulated voltage and current sources within the correlating

electric network. Furthermore, this classification was seldom

altered. The general absence of any device in the physical

network having terminal characteristics which correlate with

the characteristics of No- and Neh-elements has undoubtedly

been a major reason for the general lack of consideration

given to these classes of N-elements.

5. 2. Particular Solutions and Specification of Variables

Once a desired proper partition of the variables has been

determined and the corresponding complete solution for a system

of holac equations has been obtained then the variables within the

independent set can be assigned arbitrary values with no danger

of introducing inconsistencies. Each such set of values determines

a particular solution and all particular solutions can be generated

in this manner. Often it is desired to select from the multiplicity

of particular solutions that solution, or solutions, which best

satisfy some prescribed criteria. These criteria may be stated

directly in terms of the variables within the system of holac

equations and/or in terms of other secondary or derived quantities

related to these variables. The form in which these criteria are

stated is often a deciding factor in the choice of partitions to be

checked.
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The primary variables in the systems of holac equations

considered in this investigation are the voltage and current

variables associated with each element in the graph correlate

of an electric network:

V =lVk e =V +jVkl (5.2.1)
kZ’

and

I-IIIjek-I +'I (522)
k‘ ke ‘k11k2 "

for element k. The real power and reactive power variables for

certain elements comprise one set of secondary variables

conunonly encountered in electric power network problems.

Again for element k:

. W -J'9
Pk'i'JQk - Vka* = lele 1‘ llkle k (5.2.3)

_ jO-k_ IVkI llkl e (5.2.4)

where

Pk is the real power,

Qk is the reactive power, and

k is the power factor angle.

Earlier developments have shown that a complete solution for a

primary system of equations can be obtained in terms of certain

subsets of the voltage and current variables associated with the

N-elements in the graph. Thus particular solutions are obtained

by assigning specific values to these variables in terms of

magnitudes and angles, or in terms of real parts and imaginary
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parts. If one or more of the variables within the independent set

is not assigned a specific value or is only specified in part--for

example, the magnitude is specified but not the angle-~then a

family of particular solutions is obtained. These particular

solutions contain one or more parameters which can be varied

in an attempt to satisfy additional conditions which might have

been placed upon the particular solution. Consequently, for a

particular proper partition, the N-element falling into the Ne"

or Nh-element classification can have at most two parameters,

while those in the Neh-element classification can have at most

four parameters. By the appropriate specification of the

voltage and current variables for an Neh-element it is possible

to maintain any desired interrelation between these variables--

for example, specifying the magnitudes of the voltage and

current variables and the power factor angle fixes both the

real and reactive power for that element yet neither the element

voltage nor the element current is completely specified.

One further property of a system of holac equations is

examined at this point. Consider a fixed system of holac equations;

assume that at least two proper partitions of the variables exist

and that the corresponding complete solution for the system has

been determined for each proper partition. If the variables within

the independent set of one of these proper partitions are assigned

specific values than a particular solution is obtained. Now if the

variables within the independent set of any other proper partition

are subsequently assigned the values that they assumed in this



103

first solution then the resulting particular solution is identical

with the first one obtained. In terms of the N-element classification

defined earlier this means that if a desired particular solution is

obtained with a certain pattern of No" Ne-, Nh-, and Nah-elements

then this pattern can be altered into any other allowable pattern

and it is possible to maintain the same particular solution. For

example, established criteria for the consistent location of

regulated voltage and current sources within a physical network

coincide with the conditions such that the correlating N-elements

in the graph can be classified as Ne- and Nh-elements

10’ 11’ 41 However, within the framework 0f therespectively.

correlating graph and primary system of equations, one is not

in general restricted to this particular N-element classification.

Thus if the appropriate conditions are satisfied these particular

N-elements can be considered as either Ne- or Nh-elements,

as well as No- and Neh-elements. Consequently the use of the

NO- and Neh-element classifications in an analysis problem need

not be based upon the existence of any correlating physical device.

5. 3. Applications in the Analysis of Electric Power Networks

Although the results of the preceeding investigation are

applicable to a larger class of network problems they are

particularly well—suited for use in the analysis of electric power

networks. As discussed in Chapter 1, specifying variables plays

an important role in many phases of electric power network

analysis. The techniques developed in this investigation permit
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one to exercise considerably more freedom in the choice of specified

variables than was possible before. At the same time one is assured

that the chosen variables can be assigned arbitrary values with no

danger of introducing inconsistencies into the system of network

equations. These techniques are based upon properties of the

primary system of equations yet the investigation can be completed

without the necessity of actually formulating'the equations. The

required properties are stated directly in terms of the graph and

thus allow one to interrelate properties of the graph and properties

of solutions to the primary system of equations.

Theoretically the results of this investigation can be applied

to any finite graph of the type considered; however there are practical

limitations on the number of vertices and elements that can be

accommodated in an effective manner. Certainly the use of a digital

computer with a large storage capacity permits one to consider

problems associated with larger and larger networks. However

this capability, in itself, it not a panacea for all the problems in

the analysis of electric networks. There are situations when it is

desirable to ”localize" the problem and yet not completely dissociate

it from its relative place within a larger problem. The results of

this investigation, coupled with a zoning concept described in the

15. 16 provide the means for a new approach to the analysisliterature

of large-scale electric networks.

In the zoning approach16 a large graph is decomposed into a

number of subgraphs or zones such that (a) each subgraph is connected

and (b) any two subgraphs are element disjoint but have certain vertices
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called U-vertices, in common. For the class of graphs considered

in this discussion it is assumed that the reference vertex is a

U-vertex for each zone and that each zone contains at least one

other U-vertex distinct from the reference vertex. Once the

original graph has been zoned in this manner the zones are then

separated and an "external" set of N-elements is added to each

zone; these N-elements are incident to the U-vertices only and each

non-reference U-vertex in a zone is incident to exactly one of these

added N-elements. In addition all external N-elements in a given

zone are incident to the reference vertex (which is also a U-vertex

for that zone). Figures 5. 3.1 illustrates this for the case of two

zones.

U-vertices: v1, v2, v3, ro

(a) Identification of zone and U—vertices.

 
(b) Graph after zoning and adding external N-elements.

Figure 5. 3. 1. Illustration of Zoning Technique.
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It can be shown16 that if the primary system of equations for the

zoned graph, Figure 5. 3.1(b), is augmented with the following

sets of auxiliary equations:

        

r 1 PV _ — .1 _
N1 N4 N1 N4

VNZ VNS and N2 INS , (5. 3. l)

VN3 VN6 N3 LIN6

then each solution of this augmented primary system of equations

determines exactly one solution for the primary system of

equations for the original graph, Figure 5. 3. 1(a), and conversely.

Thus the augmented primary system of equations for the zoned

graph and the primary system for the original graph are essentially

equivalent systems of equations.

The zoned graph consists of a number of separate graphs,

or zones, and for each zone a primary system of equations can

be formulated and solved. If, in addition, the auxiliary equations,

such as (5. 3.1), are satisfied then a solution of the primary system

of equations for the original graph is obtained. This suggests a

new approach to the analysis of large complex networks. If zones

are so chosen that each of the external N-elements can be classified

as Neh-elements then, since both V and I for these N-elements

can be arbitrarily specified, one is assured that the auxiliary

equations can be satisfied. Once this has been established each

zone can be analyzed independently--yet the composite of the zone
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solutions determines a corresponding solution for the original

un-zoned graph.

This technique provides considerable flexibility in the

analysis of electric networks. For the purpose of illustration

consider the two zone case of Figure 5. 3.1 and assume that

the original graph has been zoned so that elements N1, N2, and

N3 can be classified as Neh-elements for zone 1 and that elements

N4, N5, and N6 can be classified as Neh-elements for zone 2.

Suppose that one has a particular solution for the primary

system of equations associated with the original unzoned graph.

Using standard techniques34 the V and I variables associated

with the external N-elements are calculated so that the corre-

sponding solution is maintained in the zoned graph. Actually the

entire solution for the original graph is not needed--only that

portion of the solution required to calculate the V, I variables

for these N-elements is necessary. Note that this data could

be obtained from measurements made in the actual network.

Now consider zone 1 and its associated primary system of

equations. Any solution of this primary system for which the

V and 1 variables associated with elements N1, N2, and N3

remain invariant can be combined with the existing solution for

zone 2 to obtain a new solution for the primary system for the

original graph. One is assured that the V and I variables

for N N1, 2’ and N3 can be maintained at the desired values

since they can be classified as Neh-elements. In this manner the
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solution for zone 1 can be varied and yet the solution for zone 2

remains invariant. Changes in the solution have been localized

or confined to zone 1. When this is applied to a multiZ-‘zone

problem the concept represents not only a reduction in the

complexity of the problem to be analyzed but also permits one

to investigate the possibilities of localizing, within prescribed

zones, changes in the operating characteristics.

One further application is considered at this time. Again

consider a zoned graph. The fact that the external N-elements

for a zone can be classified as Nah-elements implies that there

exists within the zone an equal number of No-elements; furthermore

the No- and Neh-element classifications can always be interchanged.

Thus it is possible to obtain a particular solution for the primary

system associated with this zone utilizing the maximum number

of specified conditions within the zone. This solution determines

the V, I variables associated with the No-elements incident to

the U-vertices of that zone. Then the auxiliary equations, such

as (5. 3.1), are used to transfer this condition to the Neh-elements

in the adjacent zones; in this process the effects of the first zone

upon the adjacent zones is completely determined in terms of the

V and 1 variables associated with the external N-elements.

Depending upon the F-element subgraph with a particular zone it

is also possible to interchange the No" Neh-element classifications

for subsets of the N-elements and thus it is possible to reflect

changes in the solution into selected zones.
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5. 4. Example

A portion of an actual electric power system--the Denver

area of the Public Service Company of Colorado--is examined in

this section to illustrate the preceding developments and at the

same time to establish the feasibility of the zoning techniques

discussed in Section 5. 3. A network representation of this

system contains 33 nodes plus the ground bus, 39 transmission

line sections-~each represented by the conventional pi equivalent,

6 generators, and 24 loads. A simplified interconnection diagram

representing the transmission network is shown in Figure 5. 4. 1

and detailed nodal diagrams of the individual zones are shown in

Figures 5. 4. 3 through 5. 4. 7.

The zones in this example were chosen in a somewhat

arbitrary manner to illustrate the technique; in general the

initial choice of zones would depend upon particular characteristics

of the system under investigation. Factors which would influence

the choice include geographical distribution of the system, service

or load areas, locations of interconnections with adjacent systems,

etc. Once the zones have been defined it is necessary to determine

whether or not the external N-elements can be classified as

Neh-elements. For each zone in this example the external

N-elements can be classified as Neh-elements, i. e. both of the

V and I variables associated with each of these N-elements can

be allocated to the independent set of some prOper partition of the

variables within the primary system of equations for that zone.
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0—0 TRANSFORMER

O D BUS OR NODE

O LOAD

g GENERATION

W LINE SECTION

X

¢ CRCUND

Uij U-VER TEX: ZONE i AND ZONEj

Figure 5. 4. 2. Key to Symbols.
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This fact establishes the feasibility of the zoning approach

discussed in Section 5. 3.

Consider the subgraph corresponding to any zone and

the set of external N-elements for that zone. The graph elements

corresponding to the transmission network are considered as

F-elements and the graph elements corresponding to the generators

are considered as N-elements. If the load admittance coefficients

are not known then the corresponding graph elements are considered

as N-elements; if a load admittance coefficient is known then the

graph element can be handled as an F-element or as an N-element

as discussed in Section 3. 5. In this example it is assumed that

all graph elements corresponding to loads are treated as N-elements.

In addition any non-reference vertex which is not a U-vertex, or

is not incident to a generator or load element, is considered to be

incident to an N-element--see Section 3. 5. When these steps have

been completed it is possible that certain non-reference vertices

are incident to more than one N-element; this is the case when

a given node is incident to both a generator and a load, or when a

U-vertex is incident to a generator and/ or load. Any such parallel

connection of N-elements is now replaced by a single N-element.

There is no loss in generality in doing this since V for the

equivalent N-element is the same as V for each of the parallel

N-elements and I for the equivalent N-element is the sum of the

1's for each of the parallel N-elements. Once this equivalent 1

has been determined then any choice of values for the 113 of the
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parallel N-elements which yields this sum is satisfactory. (Note

that if one of the external N-elements parallels another N-element

and is subsequently replaced by a single N-element then it is

necessary to determine the I associated with the external

N-element before the auxiliary equations discussed in Section

5. 3 are used). At this point a vo-vertex zone contains a total of

Vo-l N-elements; each non-reference vertex is incident to

exactly one N-element and all N-elements are incident to the

reference vertex.

As discussed in Section 5.1 any partition of the 2(vo-l)

variables associated with this set of N-elements into two disjoint

sets of vO-l variables each, i. e. a trial classification of the

N-elements, defines the distribution of the vertices of the zone

into the sets 51’ 52’ S3, and S4 which, in turn, define the two

vertex sets Vmi and ij. If the graph contains at least one

m-element subgraph of F-elements Em such that both { Vmi,

Em} and { ij, Em} are (vo-m)-tree pairs then this

partition is a feasible proper partition and the corresponding

N-element classification is called a feasible classification. For

any feasible proper partition the investigation is continued until

all such subgraphs have been determined, then (4. 4. 20) can be

utilized to determine whether or not this feasible proper partition

is also a proper partition of the variables.

To illustrate this technique consider zone 2 as shown in

Figure 5.4. 4. The graph for this zone contains 10 vertices in
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addition to the reference vertex. The F-element subgraph

consists of the elements corresponding to the line sections since

the generator and all loads are represented by N-elements. Note

that the single N-element incident to vertex 10 in the zone graph

represents the parallel connection of an N-element corresponding

to the load and the external N-element added to this zone by virtue

of the fact that this vertex is also a U-vertex. Let the N-elements

be identified by referring to the vertex to which the element is

incident. . The zone graph is now investigated to determine whether

or not N5, N10, N11, and N12 can be classified as Nah-elements.

Since a complete set of independent variables for this zone contains

10 variables this choice does not completely determine a trial

classification pattern. To complete the trial classification of the

N-elements let N5, N9, N10, N11, and N12 be considered as

potential Neh-elements; thus N13, N14, N15, N1 6’ and N17 must

be considered as potential No-elements. The corresponding

vertex sets are

{5, 9,10,11, 12} (5.4.1)<
1 II (
I
)

ll

Si

and

V. = s {13,14,15, 16,17} (5.4.2)
SJ 1

The vertex sets V and V5j are disjoint hence any subgraph of
Si

F-elements which satisfies the 6-tree pair condition for both

vertex sets must consist of 5 elements which match V51 onto

V5j in a one-to-one manner. Any such set of 5 F-elements must
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be included in the subgraph shown in Figure 5. 4. 8. Inspection of

this subgraph indicates the existence of exactly two 5-element

subgraphs having the desired characteristic. These subgraphs

are shown in Figure 5. 4. 9.

The existence of either subgraph insures that the

partition of variables under consideration is a feasible proper

partition. Further it is known that the expansion of det? G?)

for this zone graph contains exactly two non-zero terms.

Using (4. 4. 20) to evaluate this determinant:

V

det 51

V

-{-YYYYY +YYYY
1 3 7 8 10 1 5 Y9} (5°4°3)

= Y1Y7Y85Y(Y9- Y3 Y1 o). (5. 4. 4)

For the particular system under investigation

Y3 = Y and Y = Y (5. 4. 5)
5 9 10’

V

and although fi<V5i) has term rank 5, the actual rank is less

51'

than 5. Therefore this particular partition of the variables is not

a proper partition of the variables and the trial classification of

the N-elements is not acceptable.

Since the original requirement was only that elements N5,

N10, N11, and N12 be classified as Neh-elements it is possible

that another classification of the N-elements will work. Consider

the following trial classification-u-Neh: N5, N N
N10’ 11' 12‘

Ne: N9, N17;NO: N13, N14, N15, N16' The corresponding vertex
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a Y. m 

 

0Q e

®/Y8 Y9 ‘ Y5 @

Figure 5. 4. 8. F-Element Subgraph

 
(a) (b)

Figure 5. 4. 9. Subgraphs which Satisfy the 6-Tree

Pair Criteria.
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sets are:

V4j = 51 = {13,14,15, 16}, (5.4.6)

52 = {9, 17, r0} . (5.4.7)

V41 = 54 = {5,10,11,12} . (5.4.8)

Again, since V4i and V4]. are disjoint, any 4-e1ement subgraph

E such that {V4i’ E4k} and {V4j’ E4k} are both 7-tree
4k

pairs must match V4i onto V4j in a one-to-one manner and thus

be contained in the F-element subgraph of Figure 5. 4. 8. Exactly

one such subgraph exists and is shown in Figure 5.4.10. The

V41)

V4j

contains only one non-vanishing term in its expansion- -therefore

F-element admittance coefficients are non-zero and detfl)

both the term rank and the rank are 4 and the partition under

consideration is a proper partition of the variables for this zone.

9 Y8 9

9 Y 9

Figure 5. 4. 10. Subgraph which Satisfies the 7-tree Pair

Criteria.
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This result establishes that it is possible to classify

elements N , N N and N for zone 2 as N -e1ements.

5 12 eh10’ 11'

Other proper partitions for this zone also yield the same

conclusion. In general the type of problem under consideration

dictates which proper partition or partitions are apt to be more

useful in a particular situation.

The preceding example illustrates the approach which

proceeds from a given partition of the variables to a search for

suitable subgraphs. As indicated in Section 4. 5 this process can

be revised in the sense that starting from a given circuitless

subgraph it is possible to determine a considerable number of

feasible proper partitions. This method is more direct than the

first and at the same time gives a better indication of the inter-

relation between the interconnection patterns of the F-elements

and corresponding feasible proper partitions. Of course for

certain sets of values for the F-element admittance coefficients

it is possible for a feasible proper partition to fail to qualify as

a prOper partition. To verify whether or not this is the case it

becomes necessary to examine the graph and search for additional

allowable subgraphs.

To illustrate this second approach consider zone 4--see

Figure 5. 4. 6. The zone graph contains 6 N—elements and a

complete solution for the primary system of equations is obtained

in terms of certain subsets of 6 N-element variables. The fact

that 6 variables can be selected from a set of 12 variables in
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any one of 924 different combinations gives at least some indication

that there is potentially considerable flexibility in the choice of a

set of independent variables for the primary system of equations

for this zone. Consider the simple 3-element subgraph of

F-elements from zone 4 as shown in Figure 5. 4.11.

69 28 @
 

9
0
9

Figure 5. 4. ll. F-Element Subgraph from Zone 4.

There are eight distinct sets of three vertices for which the given

subgraph satisfies the 3-tree pair criteria:

{10, 25, 26} , {10, 25, 27}, {10.26, 29}, {10, 27. 29}.

{25, 26, 28} , {25, 27, 28}, {26,28,29} , {27, 28, 29} .

(5. 4. 9)

The reference vertex is not contained in any of those vertex sets so

there are then 64 different ways of choosing V and V . from
3i 33

this list of vertex sets and corresponding to each choice one obtains

a feasible proper partition of the variables! These results are

given in Tabulation 5. 4.1 in terms of feasible N-element classifications.
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TABULATION 5. 4. 1.

A PARTIAL LISTING OF

FEASIBLE N-ELEMENT CLASSIFICATIONS FOR ZONE FOUR

 

VERTEX SETS N-ELEMENT CLASSIFICATION

 

 

       

V31 Va No Ne Nh Neh

1 10.25.26 10.25.26 -- 27.28.29 10.25.26 --

2 10.25.27 27 28.29 10.25 26

3 10.26.29 29 27,28 10,26 25

4 10, 27. 29 27. 29 28 10 25. 26

5 25.26.28 28 27.29 25.26 10

6 25.27.28 27.28 29 25 10.26

7 26.28.29 28,29 27 26 10.25

8 27.28.29 27.28.29 -- -- 10.25.26

9 10.25.27 10.25.27 -- 26.28.29 10.25.27 -—

10 10.26.29 26.29 28 10 25,27

11 10.27.29 29 26.28 10.27 25

12 25.26.28 26,28 29 25 10.27

13 25.27.28 28 26.29 25.27 10

14 26.28.29 26.28.29 -- -- 10.25.27

15 27.28.29 28,29 26 27 10.25

16 10.26.29 10.26.29 —- 25.27.28 10.26.29 --

17 10.27.29 27 25.28 10.29 26

18 25.26.28 25.28 27 26 10.29

19 25.27.28 25.27.28 -- -- 10.26.29

20 26.28.29 28 25.27 26.29 10

21 27. 28, 29 27. 28 25 29 10. 26

22 10.27.29 10.27.29 —- 25.26.28 10.27.29 --

23 25.26.28 25.26.28 -- -- 10.27.29

24 25.27.28 25.28 26 27 10.29

25 26. 28, 29 26. 28 25 29 10, 27

26 27.28.29 28 25,26 27,29 10

27 25.26.28 w 25.26.28 —- 10.27.29 25.26.28 --

28 25.27.28 27 10.29 25.28 26

29 26.28.29 29 10.27 26.28 25

30 27.28.29 27.29 10 28 25.26

31 25.27.28 25.27.28 -- 10.26.29 25.27.28 --

32 26.28.29 26.29 10 28 25.27

33 27.28.29 29 10.26 27.28 25

34 26.28.29 26.28.29 -- 10.25.27 26.28.29 --

35 27.28.29 27 10,25 28,29 26

36 27.28.29 27.28.29 -- 10.25.26 27.28.29 -- 
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h-element classifications are always inter-

changeable only 36 different classifications are shown.

Since the N - and N

o e

It should be noted that once it is established that a given

partition of the variables is a feasible proper partition then only

specific interrelations among the admittance coefficients of the

F-elements contained in the allowable subgraphs can result in

this partition failing to qualify as a prOper partition. Consequently

there is a good possibility that most feasible partitions are also

proper partitions. For example, within the partial listing of

Tabulation 5. 4.1 there are 16 feasible proper partitions in

which N10 (the external N-element for this zone) is classified

as an Neh-element. In each case the partition is also a proper

partition of the variables. Furthermore each of these proper

partitions determines an additional proper partition by inter-

changing the No- and Neh-element classifications. Hence of the

64 feasible proper partitions determined by the simple subgraph

of Figure 5. 4.10 at least 32 are also proper partitions of the

variables. Consequently it is possible to select from a

multiplicity of proper partitions those which are best suited

for the particular study under consideration.



Chapter 6

SUMMARY AND SUGGESTIONS FOR FURTHER

RESEARCH

6. 1. Summary

To effectively plan the current operation as well as the

future expansion of electric power systems requires a knowledge

of the operating characteristics of the existing and/or proposed

systems. Analysis of a class of power system studies utilized

in determining the electrical characteristics of a power system

indicates that these studies are essentially problems in the

analysis of electric networks. These studies differ from

problems in ”conventional“ network analysis primarily in two

aspects: (1) the size and complexity of the network under consider-

ation, and (2) the type of initial problem specification. The avail-

ability of digital computers has alleviated, but not eliminated,

difficulties associated with the size of the network. Problems

associated with the initial specification of variables are more

fundamental in nature and must be considered within the frame-

work of the network equations since it is mandatory that

inconsistencies are avoided. It is logical that a re-examination

of the variable specification aspect of these network studies should

originate at the level of the correlating graph and associated primary

system of equations since they constitute the foundation for electric

network theory.
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The (1)-domain graph correlates of the network under

consideration are comprised of two general types of elements:

relation elements (F-elements) and no-relation elements (N-

elements); the latter type is characterized by a lack of any fixed

interrelation between the associated V and I variables and

furthermore neither of these variables is specified initially. The

resulting primary system of equations is homogeneous in form

and certainly consistent. Properties of subgraphs of F-elements

are subsequently utilized to define classifications of the N-elements

such that either, neither, or both of their associated variables can

be assigned arbitrary values with no danger of introducing

inconsistencies. The investigation clearly indicates that a

multiplicity of N-element classification patterns exist for a given

graph and provides the basis for new and more general approaches

to the analysis of electric networks-~particularly those problems

in which it is desired to maintain prescribed operating conditions.

6. 2. Suggestions for Further Research

The most apparent area for futher study, and the one in

which current work is directed, is the application of these techniques

to problems associated with specific power systems. As noted in

the examples of Chapter 5 there exist a multiplicity of proper

partitions, or N-element classification patterns, even in simple

examples and in general the criteria for the selection of one or

more of these allowable patterns is dictated by the system under

consideration. A similar argument holds for the choice of zones
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within a particular system. Another important concept is implicit

in these studies and this regards instrumentation. It is conceivable

that studies of this nature will indicate a need for new concepts

and/ or techniques in instrumentation if optimal operating conditions

are to be maintained as the system size increases.

Other areas of suggested research include consideration

of graphs containing more general configurations of N-elements

and extension of the class of N-elements to include, for example,

”coupling” between N-elements. Last, but not least, is the need

for continuing investigations into the general properties of the

primary system of network equations.
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