Low ENERGY RESONANT ELECTRON surname FROM HOMONUCLEARf ' DIATOMIC MOLECULES wnn PARTIAL BORN—OFFENHEIHER BREAKDOWN Thesis for the Degree of Ph. D. MICHIGAN‘STATE UNIVERSITY KENNETH PENFIELDV WINTERS 1972 LIBRARY Michigan State Lhfivcnfiq; . ' in , “fag“ ‘ it ' I. '. 7 . ' ' ‘ thesis enutled ( r This is to certify that the LoiiBnergy Resonant Electron Scattering from " Homonuclear Diatomic Molecules with Partial Born-Oppenheimer Breakdown presented by Kenneth Penfield Winters has been accepted towards fulfillment of the requirements for Ph.D. Jegree in Jhxsinal Chemistry vl.ue '. noon amnm mc * , LIBRARY smozns F3 L0 In SOPC and N,. t} in the 10\ Scatterin Casable Q treating :0“ View the Undi “iYSt {‘dngt‘lOr Cefibina1 eleCtro: f“netio h3%.le BSyEPtC ahaSe E‘Cita. ABSTRACT LOW ENERGY RESONANT ELECTRON SCATTERING FROM HOMONUCLEAR DIATOMIC MOLECULES WITH PARTIAL BORN-OPPENHEIMER BREAKDOWN By Kenneth Penfield Winters In some homonuclear diatomic molecules, such as H; and N,, there appears to be a single-particle resonance in the low energy (1-10 ev) elastic and inelastic electron scattering, although there is no stable negative ion capable of being formed. I have developed a method of treating these resonances with a one-determinant Hartree- Fock wave function, with the molecular part frozen in the undistorted ground state. First, I use potential scaling to find a bound state function for the negative ion. Then, considering the combination of the bound orbital for the scattering electron and a plane wave to be a zeroth-order wave- function, I obtain the asymptotic form of the first-order wave-function. This is a first-order estimate of the asymptotic form of the scattering function, from which I obtain estimates of the scattering amplitudes and phase shifts for elastic scattering and for vibrational excitation. Verv s: the result shows a de amplitudes io not ref Kenneth Penfield Winters Very simple trial calculations were done for H2, but the results were inconclusive. The elastic scattering shows a definite resonance, but the calculated scattering amplitudes,for both the elastic and inelastic scattering. do not reflect eXperimental results. LOW ENERGY RESONANT ELECTRON SCATTERING FROM HOMONUCLEAR DIATOMIC MOLECULES WITH PARTIAL BORNvOPPENHEIMER BREAKDOWN BY Kenneth Penfield Winters A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 1972 To (and in spite of) Morgan de Mara ap Ries He hit -.- war-nan“ g; mama rat—riffwj I uist. Nazarcff, assistanc Censidere I owe have Hive “i h'hich Patient. Vanv o 5‘11}? 3 f8“ Wider; Yr “ith the COEnUtEr D ACKNOWLEDGMENTS I wish to acknowledge a special debt to George V. Nazaroff, my major professor, who has provided great assistance in many discussions on the various points considered in this dissertation. I owe a different kind of debt to my parents, who have given various sorts of assistance, not the least of which is the IBM Selectric which I am using at this moment. Many other people should be thanked, but I can name only a few: Dr. Harrison, who consented to be second reader; Yndvrei Hibaru and Caellyn y'Vearn, who helped with the typing; the MSU Chemistry Department and Computer Center; and all those who, for their own reasons, preferred to use the CDC 6500 while I was using the CDC 3600. iii h ‘. puns-In E-‘L‘ LIST OF P INIRODUC. Chapter I th Chapter Y A Chapter 1 Sta Chapter I Chapter " Chapter \' Phal of 0v 8 TWO TABLE OF CONTENTS LIST OF TABLES . . . . . . . v LIST OF FIGURES . . . . . . vi INTRODUCTION . . . . . . . . 1 Chapter I. A One Determinant Wave Function for the System . . . . . . . 4 Chapter II. The Variational Integral, I? . 10 Chapter III. The Variational Equation for the Scattering Function . . . . 46 Chapter IV. The form of the Scattering Function 52 Chapter V. The Bound State Wave-Function . 62 Chapter VI. The Scattering Amplitudes and Phase Shifts . . . . . 82 BIBLIOGRAPHY . . . . . . . 110 APPENDIX A Determinant and Minors of the Matrix of Overlap Integrals . . . . 112 APPENDIX B A One Determinant Approximation to a Two Determinant Function . . . 125 APPENDIX c Evaluation of PJMji w . . . 129 APPENDIX D Listing of Computer Programs . 138 iv TABLE 1: TABLE 2: TABLE 1: TABLE 2: LIST OF TABLES FIRST ORDER MINORS . . . SECOND ORDER MINORS . . FIGURE 1 Ex- FIEURE 2 LIST OF FIGURES FIGURE 1: SCATTERING AMPLITUDE AS A FUNCTION OF ENERGY . . . . . . . . . . 107 FIGURE 2: PHASE SHIFT AS A FUNCTION OF ENERGY 108 vi .. . _ v2.29 Fur—.5 In th from sma involvin be quite Tezion. there 15 Neither State of In th and the icn. F0 interaCt be Stron a b0Und INTRODUCTION In the scattering of low energy (l-lOev.) electrons from small diatomic molecules, the inelastic scattering involving vibrational excitation would be expected to be quite small unless there is a resonance in this energy region. In several such molecules, H, and N, for instance, there is an apparent resonance structure at low energies.‘ Neither the ground state nor any reasonable excited state of these molecules form a bound negative-ion state. In the case of 02. the attraction between the molecule and the electron is strong enough to form a stable 0; ion. For the similar but less electronegative N2, the interaction potential of the molecule and electron should be strongly attractive, but not strong enough to form a bound NZ ion. If this ion were fairly long-lived, the inelastic scattering would be closely related to the vibrational states of the ion. The process would be divided into three parts: First, the electron is captured. Then, the negative ion exists for a period of time in a particular vibrational state. Finally, the electron escapes and the molecule is left in some vibrational state. For this description to be good, the ion must exist long enough that the Born-Oppenheimer coBrdinate separation for the nuclear and electronic 1 coErdina vitratic In .‘\3 long enc exists f sciecule are not Which thl tion. T Scatteri; State, ID dc] other Si! in which Shay-3th the CODY: w‘lti‘lin I. VaVe fun: thOUQh dl “Enron. To deSCI‘i I will Us icn fu“ct consideri State COr n1 To tes 2 coordinates can be applied, leading to well defined vibrational states. In N; the resonant state does not appear to exist long enough for this to be the case. The negative ion exists for about the period of one vibration of the molecule.2 Thus, the capture and escape of the electron are not separate events, and there is no period during which the Born-Oppenheimer separation is a safe assump- tion. The breadth of the resonant structure in H2 scattering suggests that this is also a very short-lived state. To describe the inelastic scattering from H2,N2, and other similar molecules, I will deveIOpe a formalism in which I do not make the Born-Oppenheimer coBrdinate separation between the coBrdinates of the nuclei and the cobrdinates of the scattered electron. I will work within the structure of a one-determinant Hartree-Fock wave function. This is possible because the molecule, though distorted by the presence of the scattered electron, remains electronically in the ground state. To describe the resonant part of the scattering function, I will use potential scaling to obtain a bound negative ion function. I will then obtain the scattering by considering it to be a perturbation of a zeroth-order state consisting of the bound resonant function and a plane wave. To test the formalism, I have made highly simplified calculat at the e ‘ C.J.S ’ A.Her 4a( 3 calculations for H2. The results of these are presented at the end of Chapter VI. ' G.J.Schulz,Physical Review 135,A988 (1964). 2 A.Herzenberg and F.Mandl,Proc.Roy.Soc.(London)A270, 48 (1962). _s l ,-'_ Chapter I de the tota z-conpons which ar: angular r scatterei Y'I Each C05rdinat SRatial C reSPGCt t SITuCted l RDieCule is a {UTIC electron Chapter I. A One Determinant Wave Function for the SyStem. I define V§(1,2...N,N+1,R) as the wave function of the total system with total angular momentum J and z-component MJ=M. I? is a sum over j and B of functions which are also eigenfunctions of molecular rotation angular momentum,j, and orbital angular momentum of the scattered e1ectron,£. PM J=z j ng£(l,2...N+l,R) (1.1) It Each ngt is a function of the spatial and spin coordinates of the N+l electrons and of the relative Spatial coBrdinates of the nuclei, anti-symmetrized with reSpect to the electronic coBrdinates. They are con- structed by writing, first, a product of the target molecule electronic functions and a spin-orbital which is a function of the coBrdinates of the scattering electron and of the nuclear coardinates: Jth Product JMjn w = xl(1)x2(2).-oxN(N)xN.1 (N+1.fi) (1.2) I now operate on the product function with the anti- symmetrizer,vQI, to give the desired function: Jth M ij£(1,z...N+1,fi) = 'kaProduct (1.3) ‘35-?“ ' Note J,. 34.1 and obser \I R. In sol to be USe notation: \l Jth N+1 Jz, j”, and I” operators. Define also Note that x (N+1,R) is an eigenfunction of the J2, xfiTltN+1.§) = .22 xfiT{”(N+1.R) (1.4) Jo and observe that L43 = I J4‘xl(1)-.-XN(N)X§T{£(N+1,R) Jo;Q = efilxlcl)...xN(~) ,Zg x§T{“(N+1.fi) J. - 54 xlcl)...xN(N)x§T1(N+1.i) . (1.5) In some cases I will find a uniform notation for orbitals to be useful, therefor I will define the following alternate notation: X‘iJM32(k.B)E ng(k.R)E xifk),i§N,all.IMLL£. (1.6) I can now write: N+l . M , JMJB . V ' .;4 ll - (1.R) (1.7) J jge 1-1 x, N+1 , $4 11} xg”(i,§) . (1.8) 1: Writ: I that BOT? for the nuclei. hm . X311 (1" fu.ction C1ebsch-( 1 am 6 Writing the wave-function as I have, I am assuming that Born-Oppenheimer separation is a good approximation for the relative motions of the target electrons and the nuclei. It is for this reason that I do not write X§T{£(1,R) as the product of an electronic and a nuclear function. I eXpand it as a sum of such products utilizing Clebsch-Gordon coefficients:1 JM‘I . elec + xN.i - v% m C(JlemjmnM) ¢k£m£(rN+l)a(N+l) 2 j I‘IUC evjmj (R) . (1.9) where v is the vibrational quantum number. I am using two systems of codrdinates in this problem. One is the molecular coSrdinate system with the origin at the center of mass of the molecule and the z-axis fixed to the molecular axis. This is not an inertial frame of reference, and a rigorous treatment of a problem in such a cobrdinate system would require the inclusion of centrifugal and coriolus "forces". The other coBrdinate system is the external system with the same origin as the molecular system, but with the z-axis fixed in some arbitrary direction. The 32, 32, I“, 22, 32, and 32 Operators are defined in the external coBrdinate system. The expansion in (1.9) requires that ¥N+1 and R be eXpressed in the external coordinate system. Electronic angle cofirdinates in this non-rotating frame of reference will be marlea Note which his C0152}. The I. demands c eigenfunc {(1%) an eigenfun: IIJ’I) ap I e °k and there the undistuTt. that a CI} for each , an nOt initial 51 Can be marked with a prime. Note also that all Clebsch-Cordon coefficients for which m£+mj#M vanish. In some cases I will write C(jszj. mlmz) for C(jijzj. mxmz m1+m2). elec The k subscript on ¢ is an energy variable and depends on v and j. The electronic function is an eigenfunction of the 1’ and 22 operators with eigenvalues 2(2+1) and m, respectively. The nuclear function is an eigenfunction of the j2 and jz operators with eigenvalues j(j+1) and mj respectively. I define them by JM.Vojom. elec + J. + . - 8 + ¢ (r) ' f (r) Y (9 ) = f (r)Y (9') ktm, vjmj,2m2 2m, 2m, (1.10) and ¢3§§ (I) - XM(R) ij. (QR) , (1.11) J J where the Xv(R) are the vibrational functions of the undisturbed diatomic molecule and the f8 are unknown. Note that a different set of solutions, fB(r), will be obtained for each initial state, Specified by Vo.jo.mjo.J. and M. I am not assuming a given initial to but will take the initial state to be an incoming plane wave. I can now write the total wave function as I car. Share If; «i t . I? = Q4‘xl(l)...xN(N+l) Z C(jiJ,mjm2M) JLlemj f8(rN+1)Xv(R)“(N+1)Y2m£(“'N+1)ijj(9R) ' (1.12) I can also write 13“- e‘lecl)...xN(N) I f8(rN.1)xv(R)a(N+1) 31v 1 (Q. Q ) (1 13) JMje N+1' R ' ' q' 0 = . . where fijJMj (Q N+1’QR) X C(JBJ,mjm£M)Y£m (Q N+1) m m. 2 i J I A This angle function is an eigenfunction of J2,Jz,j2, and 22 with eigenvalues of J(J+1),M,j(j+1). and 1(1+1). respectively, but is not an eigenfunction of jz or £1 . M J terms of functions all of which are known except for the Whether I use (1.12) or (1.13) I can express V in f8 . To determine the f8 , I will derive an expression for the integral M M A M IJ (1.15) and then arbitrar original states I the re Ev internuc Electron eNation rOtation 1 M,E p. Chap) and then for the variation in I? corresponding to an arbitrary variation in the fa. If the molecule is originally in the v0 and jo vibrational and rotational states then 2 E = E + E + E].o + 1/2ko , (1.16) where EM01 is the electronic energy at equilibrium internuclear distance, R0, as given by the molecular electronic wave function actually used in the above equations, and BW and Ejo are the vibrational and rotational energies of the v0 and jo states, respec- tively. ‘ M.E.Rose,E1ementary Theory of Angular Momentum, ChapterIII,John WileyESons, Neinork, 1957} Charter as Chapter II. The Variational Integral, 1g. To find I? I must know/% . In this case it is A N+1 N+l N+1 H: -1/2 2 V121 - [ rz + r2 ] + I: .1?!— u=l u=l uo uB u>v uv 1 2 +V(R)- ‘Z'JfivR , (2.1) where a and B designate the na>nuclei, “N is the reduced mass of the nuclei, and Z is the nuclear charge. The electronic function and the nuclear-electronic attrac- tion (except for the scattered electron) are evaluated at R=Ro. The actual variation in molecular electronic energy with R is combined with coulombic repulsion in V(R). The kinetic energy operator, -7%V2 , can be written as 1 2 -1 i 2 d ] £2 - v = r + e (2.2) Ti Zur2 g?» d? Zurz Using atomic units, for an electron, u=1. This formulation of V2 is not entirely correct for the molecular electrons, since their angular coBrdinates are not expressed in an inertial frame of reference. The neglected coriolus and centrifugal forces, however, are very small near the center of the coBrdinate system, becoming significant only for the scattered electron when it is far from the molecule (I have already tacitly assumed this by writing the vibrational functions as XV(R) rather than va(R)') ; and the angular 10 i- 1.".- Tim“ {1:} ~“.. ~ coordina an inert Defi ) '43 we» 11 co3rdinates of the scattered electron are eXpressed in an inertial frame of reference. Define the operators “ . B _ z _ Z _ Z f(u,R) 1/2 vu 7.. .17... (2.3) no uB “ -1 d ad NR) = [ R ] + V(R) (2.4) 2U R2 ER HR N I can now expresst -E in the form A N+1 A N+1 1 A 1‘2 fl-E- Z f(u;R)+ 2-17—— +f(R)+ I -E . u=l u>v uv ZuNR2 (2.5) Note that the V2 parts of the ‘f(u;R) and the 1/ruv (unless u = N+1 ) depend only on electronic codrdinates, and that f(R) and 32 depend only on nuclear coardinates. In addition, when f(u;R) acts on a molec- ular spin-orbital, it is taken to be f(u) = f(u;Ro), which is independent of R. Thus, the Z/rN+1.a, erN+1,B’ and l/rN+l,v terms are the only ones depend- ing on both. Using (2.5) I obtain the following eXpression for J1 Any Where 8 new inVe inteill‘al “111 Fro- 12 M N+l x N+l I = M M J Z 2 + jj'tl' u=l J32 ’ JJ'R' ugv 1 WlelT VIij'£‘> + (WM j2|f(R)IYM j'l'> ?2 M I M . R. IJj'2'> * ‘ijel I . ZUN Jj 2 (2.6) Any of the above integrals may be represented by the expression M _ IJjj'oe'a = < jlloa (" V FIIij 1' electronic >§ coordinates (2.7) where Oa(u,v;R) is the appropriate Operator. I will now investigate the properties of the electronic integral above. Here the notation in (1.6) and (1.7) will prove useful: N+1 . 13'“ = 94 E1 xg’MJ’Lcifi) (2.8) so that M 1(R)Jjj'£t' ‘Vszlo'VJj'e"e1ec. _- .1: V- .- Wf‘a‘ who re [I “.1pr 13 N+1 . A NT]. 1 9 a (.54 IT; ngJ£(i,R)I0I.7Q IT; ngj I (10§)>elec I 1' ”+1 . A "*1 I O . (.zITl X‘iJMMCipFIIOI #1. g 11.1 X?” l (i'ipelec N+1 . A I ' " " ‘IT1 ximomrlol u xJ’” " II (in... (2.10) where " XJMj'l'“ (R) is the determinant function: i O O C 0 £0 x‘IMI'WzJ) eaves) . . . as: (2.70 Ilr””"'n(fi>ss , - ° 2 x‘IMj'utuoij) iniju'wufii) . . . xg’fi'VmAJ) I (2.11) I also define the electronic overlap integrals: Jij'tz' = Jth JMj'z' Du,v (i) - v)P(p>q)I]DJMJJ 1‘ (§)" a§qu (2.17) i x N 'u ”IQ"! U 3‘2“ .‘-..n~a-;u~': .' -, The matrice column DJij': equals is fals 0nd ord Minors are def Pet when 0 Expand; 16 The unsigned minors are the determinants of the matrices obtained by deleting the indicated row and column (or rows and columns) from the overlap matrix DJij'zl'(§). P(statement) is a parity Operator which equals +1 if "statement" is true and -1 if "statement" is false. Explicit eXpressions for the first and sec- ond order minors will be developed in an: appendix. Minors of the determinant wave function leJMj'z'“ (i) are defined analogously to those of the overlap matrix. Returning to eQuation (2.10), consider the case A when 0 = D.. Then N+1 a Jth . JMj'l' I(§)Jij'£2' < 51 Xi (10§)| H X H (i) >elec (2.18) Expanding IijMj'L'”(§) along row 1 gives N+1 N+l JM 2 JM l 1(R)Jij.,,. = < TT' x J (i. fi)lx J (1.fi)l p21 ngj'2'(1.§)lli“j'“'H 1P(fi) > (2.19) N+1N+ .., , - < ”IT2 xJMj2(i.§)l NZ DJMJJ 22 (ii) 17 n xJMj'£"II ”(m > (2.20) JM"'££' JM"'£2' D1.iJ (fi) D1,§11 (fl) xgw'z'czm mm.) = < TT xiMJ£(§)l . . i=2 . . xiMj'£'(N+1,§) . . . xfifi'“'(~+1,fi) (2.21) Expanding this determinant successively along the 2ndthrough N+1St rows gives M M I(§)Jij'2£' (ijklej'£'>elec = H DJij'““'(fi)l . (2.22) I will next consider the case where O =1/ruv. Then N+1 Jsz . 1 1(fi) .. = (IT x. (1 (bl...— JMJJ'££. 1‘1 1 . ruv JMj'l' llx Il(fi)>elec (2.23) th Expand the determinant wave-function along the u and Vth (OHS Where SUbstit 18 Vth TOWS: N+1 . JM 2 . 1 1m)...“ TT x.3(1fi)— JMJJ'zz i_, 1 . ‘ruv| N+1 .' g '1' Z ngJ 2 (u.fi)ijJ 2 (v.§) p.q ‘0 1 leJM3 1 lluv'pq(fi)>elec (2.24) N NTI v v = < TT J”3‘(1 fi)l Z 33%)) 1“ (i) i#u9v qu pq JMj'i' uv pq ||x II ' (§))e1ec (2.25) where Jij'li' fi V,pq ( ) 1‘ i2 D (2.26) elec I can change the sum over p and q to a sum over p>q by substituting Jij'zz' i uv,pq ( ) r12 2 g (2.27) p elec P where . EXpandi eaCh rot coérdin So that. I 19 where P exchanges the coordinates of electrons 1 and 12 2. Thus N*1 -°c v = < .IT' fo5‘(1.fi)I Z gJM’J 2‘ (i) V I i .. ( )JMJJ'iz' p>q uv,pq JMj't' uv pq llx n ' (10>elec (2.28) Expanding the second order determinant successively along each row and integrating over the appropriate electronic coordinates I find that N+1 < TT JMjl . JMj'i' uv pq a ifu,v Xi (1.fi)| llx H ’ (§)>elec ."'9.9.' H DJMJ’ (2)” "V'pq . . (2.29) So that, M fll I(§)Jij'££' ‘ ”th'% Jj £'>e1ec a Z gJij'R2'(§)H DJij'££'(§)H uv,pq . p>q uvaq (2.30) Next consider the integral for which 0—- f(u;§): Expand ‘ JEfinin; s. nOt 20 N+1 . x = < 1T ng3£(i.§)lf(u;§)l 1(E) .. JMJJ'zz' i=1 IIXJMj'£'||(fi)> (2.31) elec Expand the determinant function along the uth row: N+1 . . JM 2 . I(§)Jij!2£' 3 < Eu Xi J (lbfi) . A N*1 -v v |u p=1 JMj'z' up 'IX ll (§)>other electrons (2.32) Defining fJij'22.(§) E (X3Mj2(1.§)|E(1;§)IXgMj'£'(1'§)>elec Up (2.33) and noting that 8 elec N+1 . -c v < I}; rim-”(1.2): n W” 1 ll "Mb 1 LI. 00' ' II'DJMJJ 2‘ mu“p . I I obtai Next, q ExFan TOVS in £11 12’: 21 I obtain ' _ M a , M 1(R)J\’jj'9£' -’ (ij9‘|f(u,-‘§)IWJJ..2'> N1 ~-' . "0 I = E {3:33 22 (fi)“DJMJJ £2 (§)HUP . (2.34) p=1 _ Next,'eva1uate the integral when O-l/R’: 1(fi)Jij'£l' ”*1 M‘ _ 1 JM"£' < 1T x‘i’"”(1.fi)I-§—;I le ‘3 "(fibelec . i=1 (2.35) Expanding the determinant function successively along rows 1 through N+1, I find that In?)J = 1 Jij'gg' ij'u' 'R—z-UD (FUN . (2.36) The remaining integral from equation (2.7) is N+1 . I R . . = J”) 0 - A Jh1' 0 £0 .( )JMJJ0£2v < Elxi (1,r{)|f(R)l ”X J |l(fi)>elec (2.37) By the procedure used in (2.10) I can show that I sepa: ““9 Sec 22 M M 5 - (ijilf(R)lej'g'>elec 1(fi)Jij'££' Ntl - l. A Jh! '1' . = clcc (2.38) I separate (2.38) into two separate integrals I(mJij'fil' . N+l . _ M '2' - e1ec zuNR2 dR dR i=1 1 . N+1 . M 2 ' J” '1' ° . (“XJ J u(§)!V(R)|TT1x, J (I-E)>elec 1: (2.39) The second integral can be evaluated immediately: JMiz fi ”*1 JMi'l' . fl <|x ' fl( )IVCR)|1:1xi - (1. )>elec "' i = V(R)HDJ“33 1“ (fi)n. (2-40) To evaluate the first integral I note that x+1 ,., , N . d JM.,£, i—‘TT xi“) 1 (1.2) = TTixi(1) 3E xN.i (H+1.fi) . 1: dR i=1 (2.41) I def: N in ( Thus. 23 This is a consequence of the fact that the molecular electronic wave functions are derived with the assumption of Born-Oppenheimer separation. Thus the first integral (which I will call 11) can be written N+1 JM 2 N+1 J 11 = < 2 ”X J n 'P(fi)x M11<~+1. a): 2 p: ZuNR 1212‘ ngj' £'(i.§) 9—[R2L XJMj‘£.(N+1,§)] > 1 dR dfi (2.42) I define “32:1”? “'00 Xp zuNR2 dR an JM" ' . xN.{ z (1.15»elec (2.43) Integrating over the cobrdinates of electrons 1 through N in (2.42) and substituting from (2.43), I obtain ”*1 °" ' N M 22' 11 - z n DJMJJ “3 (3)" P' *ln‘f;1133'(n) . n=1 (2.44) Thus, M * M 1(fi)Jij,,,, = e1ec 24 ... . N+1 ... . . = wmllnrm'JJ ‘2 (§)H + 21 "DJ”J’ ‘1 (§)IP'N 1 p8 Défiiijj'““'cfi) . (2-45) Substituting eXpressions from (2.34), (2.30), (2.45), (2.36), and (2.22) for the integrals in equation (2.6), I obtain an expression for lg: N+1 N+1 .., , .., , I 1 21 Idfi fJMJJ ll (§)”DJMJJ £1 (§)Iup u: p: N*1 N+1 I + Z Z u>v p>q dfi gjfifg;““'(fi)HDJij'“"(fi)u"V'Pq * 2 Jdfi ”gfifijj'll'(§)nDJij'“"(fi)Pp'“*1 + [dfi V(R)ImJ”jj'“"(fi)H + Jdfi ['(j’12] _l ”DJij'22'(§)” ZuN R2 .., , + Jdfi (~E)IIDJ”JJ ‘1 (§)H . (2 .46) I can combine the last three terms to give N+1 . .. M JM '22' “P JM '22' I . dfi Jj i f 3’ (i) J jg'zz' [ pin I Im ( )u up N+l N+1 JM'°'££' b°"2£' * 2 I Jdfi "D 3’ (fi)n“v'pq gflJ’gq (fl) U>V p>q 0 (‘01.. and it indivi below, SUpers terms GXpres is R i 25 N"). ~-. 3 t 0 . 2 Jan IIDJMJJ ‘2 (ibllp'N’1 Dé2§f¥33 “2 (i) p + JdfiuDJij'“£'(fi)u [V(R) + iLilll.-E]] . ZuNR2 (2.47) The determinant of the matrix of overlap integrals and its minors can be expressed explicitly in terms of individual overlap integrals as in tables (1) and (2) below,which are derived in an appendix. I can delete superscripts which apply only to the N+1St orbital from terms not involving the N+1St orbital, with i where the expression depends only on R, and R where the expression is R independent. Equation (2.47) then becomes: M IJ 622' N 0 JM 2 jj'zt' [ “£1 Jdfi {DN+i.N+1(§)6W N DJM 2 JM '2' gun 3 (fi)0 3 (3)} fuu i N+l ,i i ,N+l N dfi DJsz (§)DJMj'£'(§)f ugp DN+l,u p,N+l Up _§ dfi DJsz (§)fJMj'£'(§) u_1DN+l,u u,N+1 g dfi “JMj‘£'(§)fJMj£ (a) n.1Du,N+1 N*l,u a _D .,. 19‘ - {1‘4 26 TABLH 1: FIRST ORDER MINORS Jsz v,p>q V N M11 2 1“ j ”9 1 ' ';U V DN+i’ i(fi)ni, N+1 (L)) guv,uv N . .Jkij Q ilfij' 9- +u§v q Jdfi DN+1.V(§)DQ. N*1 (F) guv uq O ‘ g din J““ i DJ”5'£' K u>v>q ‘ DN+1,u( ) q,N+1 ( ) guv,vq _ g Jdfi DJMjP (§)DJMj'£'(fi) p>u>v N+1,v p,N+1 guv,pu + g dfi DJsz K DJMj'n K N+1,u( ) p,N+1 ( ) guv ,pv N ., , _ Z Jdfi DJ.1j9 (fl) pJMJ R (a) N+1,u ’uv,N+1 v N ., , + 2 jar nJMil (a) gJMJ z (i) u>v N+1,v uv,N+l u + g dfi DJMj 2'(§) JMjn F v>q ,N+1 QN+1 v,vq (‘3 _ § dfi n JMj (fi) JMja (fl p>v p N+1 8N+1 v,pv ) N J\1jj' 112' +v§1 fdfi? gN+1 v ,N+1 v (fi) (Z)JM j99 ‘ Jdfi DN+1,N£1 (EJGfi 99' In an ast summat 29 N . ' p21 Ia vilifpcméfada g cm JM' JM 2 * Jdfi {DN+ifN+l(fi)6jj 522' Z DN+i,( i JM°'£' +1 Di,&+1 (§)} [V(R) * is: R2) ' E] ] . N (2.48) In the above equation the four terms labeled with an asterisk can be combined after rearranging indices of summation, as can those labeled with a dagger. Thus: 622' N M ' JMjn IJ jg'li' [ ugl Jdfi {DN+1,N+1(§)5fi. u DN+l,i ,N+l N . DJM 1 JM 'l' . '1; 3 (fi30 3 (fi)} fuu d3 DJsz (§)DJMj'£'(§) fup u ép N+1,u p,N+1 N . JM 2 JM '2' - “£1 Idfi {DN+i.u(§)fu.&*1 (i) O I J ’ ‘ O l. Maximum; am + [cm £16.33an m + § Jdfi {DJM5 5‘ 1(§)5jj u,v No1, N+ 522' N JM 1 JM '2' ' 1;” v DN+i ,i(§)Di §.1 (3)} guv,uv 30 N .IHj 0, I'fij' S’.‘ + Z Jdfi DN+1’V(I\)DQ’ N+1 (K) gUV,uq UVQ (311%) N - c I + ; INN {n M"" (K) ’“5 9 (i) + D39§+§ (i) U V . IM+1 v Juv, N+l u gm j 9. (T5) } N+1 u,uv 9n+1 v,h+1 v 4. “~42 Id dfi «JHjj'lflr' (ii) 1 V 4. Id}? D(2)J51jj22('jJ]5)6 N+1,N+1612' N a , . - {1 dez’ D'ng’ p(R),,(2)J1j 1 (R) _ N+l, ,N+1 p... - N J31” + -DJ.\1j2 mj + Idfi {DN*1.N+1(R)655'622' jgvnN+1,i(fi)Di,N+lv(fi)} [van + j'(j'+12) _ 1:) ] . ZuNR (2.49) I now expand the scattering spin-orbital so as to explic- itly express its dependence on nuclear angles, where . _ . JMjl . convenient. The integral DN+1,N+1(§) can be written as follows: JMj L DN+1 N+l(§) ' X. . ' C*(j£J,mjm£M) vv mjmj mgmz 31 C(jEJ,mj'mz'M)lL;(R)Y3mj(nR) KV'(R)ijj.(QR) a z |C(j2J m.m M)|’6 r x3(R)KM.(R)Y3mj(QR)ijj(QR) (2.50) JM,voj¢m. Jo 'm.'m ' J where f5 2 v'jm.',£m J z. . Note that if mz-ml' then mj-mj'. The subscripts 1 and r on the integrals indicate integration over all coordinates of electron ] and over only the radical coordinate of.electron 1, re- spectively. Integrating over 9 the nuclear angle coordinate: RD JMjl a . 2 Jana DN+1.N+1(§) vé'm [C(JlJ,m M-m M)| <£8(r)lrzlffi.(r)> szgmuwm (2.51) The characteristics of the Clebsch-Gordon coéfficients allow me to simplify this equation, producing 32 JM 2 8 B JdQR DN+i N+1(fi) ‘ ”é. R2X;(R)lv.(R) . (2.52) . JMjl JMj' Now consider the product DN+1 i(§)Di N+l (fi) . It can be expanded as DJMjl fi JMj' 2' fl 8 DN+1 i( )Di N+1 ( ) vé'm.m£m.'m£' C* (le, ,mjm J J 2”) C(j'R'J,mj'mz'M) yang,“ ijR)‘ x (1)If§.j..g m£.(r)Y£.m£.(n')a(1)> 21v. (R)Yj.mj.(nR) . (2.53) But (9') must be eXpressed in terms of the molecule- 2 centered angle 9, and the molecular orientation QR . It Yzm then becomes . 2. ng2(nl ) a g Dmm2(-¢R'-eR'¢R)Ylm(Ql) (2054) Thus the electronic integrals in (2.53) which are functions of “R can be written in more convenient form as (xi (1)|f5' ‘j '2' m2'(r)Y2 mvaQ')a(1)> = "a v nt‘flx . v . - ll rr Subsf m05t integ 33 c 5' Dfi'm£'(-¢R'-eR’¢R) (2055) Substituting this expression into (2.53) gives DJMj‘ (§)DJ"5'“'(§) - Z C‘(j2J, m. ”n+1 ,i i ,N+1 . . . . VV mjmnmmj ml m j “2”) | C(j'z'J,mj'm£'M) Dém;(-¢R'-eR'¢R) Dé'm£'(-¢R'-6R’¢R) Y3mj(fln)Yjvmjv<9R)x£(R)X»'(R) . (2.56) If I now integrate both sides of this equation over 9R , most of the terms on the right can be written outside the integral. I obtain Jan DJMjl. (in)JMj z (fi) - I R N+1,i 1 ,N+l . , . . vv mjmzmmj m1 m C‘(j£J,m mnM) C(j'2'J,mj'mL'M) 5 xgcn)xv.(R) 2 v Idaknmm"'¢n"°R-¢n) ”fixmL'(-¢R.-6R.¢R) Y. 3m. J(9R)Yj'mj0(nk) o (2.57) In orde above e can mak 34 In order to evaluate the nuclear angle integral in the above eXpression, I must rearrange it considerably. I can make use of the following relationships:’ 1/2 . Yimj 9R'¢R) ' [£}%l] ij0(¢R'eR"¢R) (2.58) and _. , . ‘. Dg.m(aex) - e 1“ ° d;.m(e) e ‘m* -. . O. ' - e 1my dinv('8) e 1m a = Dim.(x-Ba) (2.59) Now I can rewrite the spherical harmonics in (2.57) as 1/2 . ngj(eRp¢R) ' [£%%l} ngjg('¢R,-6R,¢R) and -. 1/2 . The angle integral can now be written as H III a 20 n [an Dam (-¢R.-6R.¢R)Dm.m£.(-¢R.-eR.¢R)ngjcnR) Yj.mj.(nR) Jan {iv—1- {are} 1/2 I can no Di. HIE allOVing 1an This an; ¢R and e lamediat 35 L. Dm'ml'('¢R"6R'¢R)ngj('¢R"9R'¢R) z a j! a Dmm (-¢R’-6R'¢R)D0mj'(-¢R'-6R’¢R) (2061) I can now use the identity:” J1 jz . . . .. Dugm, DU2m2 g C(J13239Ul U2 UI+U2) C(j.jzj;ml m2 mnmzmalwhmm2 , (2.62) allowing me to write (2.61) as: i 2 Jan Dm;;(‘¢Rs'eRo¢R) Dm'm£'(-¢R'-eR’¢R) ngjcnR)Yj.mj.cnR) l/Z C(2'jj1,m'0m') = (ii-:11” [#1 _2 ijz C(z'jj1,m£'mjm£'+mj)C(£j'jz,mOm) C(lj'jZszmj'mg+mj') Jan Di: m2! m£'+mj('¢R"eR’ ¢R)Di2;;+mj'(-¢R'-eR'¢R) (2063) This angle integral can be written as two integrals over oR and 6R respectively. The first can be evaluated immediately To evalu dj. turn I_ 36 Zn w R2 I doeim'¢ e'i(m£'+mj)¢ e'im¢ ei(m2+mj')¢ I sinede 0 0 j: . J: _ dm' m£'+mj( e)dm m£+m.'( 6) - R26 m 2 sinede dj1 -6 ',m+mj-mj'-m£+m£' m' m '+mj( ) jz - dm m +m.'( 6) (2.64) 1 J To evaluate the remaining integral, I expand the dim.(6). dg:m -m '-m +m ' j j - jz - 2 2 om£'+m.( 9) dm.m£*mj'( 6) - {(j,+m+mj-mj'-m£+m£')! (jl-m-mj+mj'+m£-m2')! (j,+m£'+mj)! (j‘-m£'-mj)! (j,+m)! (jz'M)! (j2+m2+mj')l (jg-mi-mj')!}1/2 X (-l)k‘+k2/{(ja-m-mj+mj'+ml-m2'-kx)I kxkz (j.+m£v+mj-k.)z (k1+m-mj'-m2) k1! (jg-m-kz)! (j2+m£+mj'-kz)l (k2+m-m£-mj')! kzl} 2(j,+j.-k.-k.-m+m.'+m ) [COS %] J 2' 2(k1+kz+m-mj'-m£) [sin ;] (2.65) 37 This integral can be evaluated by making the substitution a = 6/2 and integrating by parts. i [ 9]2(j1+j2’k1‘kz-mfimj'+m2) C05 7 0 [sin 2 sine d0 w/Z = 4 I (cosa)2(j1‘32-k1-k2-m+mj.+m£)+l 0 6)2(k;+k2+m-mj'+m ) 2(k1+k2+m-mj'-m2)+1 (sina) da (J1*j2-k1'k2-m+mj'+m2)l (k1+k2+m-mj'-m l 2) (JI‘J2‘1JJ (2.66) I now define j 2 mj mg gm = In “ 26m' m+m -m '-m +m ' j' 2' mj' m2. m! p j j 2 2 . l/Z [2%%l] Z C(2'jj1,m'0) C(l'jj1,m2' m°) jsz J C(£5'52.m°) C(lj'jzm2 mj') {(J1*m+mj'mj'-m£+m2')! (jx-m-mj+mj'+m£-m£')! (jx+m£'+mj)l (jg-m2'-mj)! (j2+m)! (jg-m)! 38 (52+m2+mj')t (Jz-mzrijI 1’2 Z (-l)k”k2 / {(j;~m-mj+mj'+m£-mt'-k1)l klkz (jl+m£'+mj-k;)! (k1+m-mj'-m2)! k1! (jzrm-ka)l (j2+m£+mj'-kz)! (k2+m-m‘-mj')l k2! } (J1‘J2'k1'kzrm*mj'*mz)! (jx*52*1)1 (k;*kz+m-mj'+ml)l (2.67) The angle integral in the right side of (2.57) can now be written as dn Dz '(-¢ -6 ¢ )D" (-¢ -6 ¢ )Y* (a ) R mm’v R' R‘ R m'mz' R' R’ R jmj R j 1 m. m2 m Yj,m ,(QR) - R2 1‘2 3 (2.68) j j! 20 mj! m2" m! I now define 2 m 13” [j mj 2 m l E C*(j2.J,mj mi M) j! z! mj. mg! m! j 2 m. mL m ‘ C(j'n'J.m3' “2' M) 1‘2 3 (2.69) 1' £0 mj' mg, m so that I can now write equation (2.57) as 39 JM 2 JM°'£' Jan DN+{’1(§)D1,§+1 (K) - vé'mjl mm vm 'm' X$(R) j 2 m. m m xv.(R) R2 1%” .. ' 3' 2' . (2.70) J 2 mj m, m The nuclear angle dependence of the other terms in equation (2.49) is similar to that of the second term evaluated above, and can be integrated similarly. I can therefore write equation (2.49) in the form: I? - jzév'm m [IC(j2J,mjm,M)|2 JR’dR j 2 ‘ N N ,1 2.(R)x..(n) [ E fun + ugv guv,uv +ch) + léé—g} - E] N 1 B 2 8 d d - ——— dR <£ r r If .(r)> * R ——R’——» .(R) ZuN J ( )| v ‘Xv( )dR dRX” ] IJM j 9. mj mg! m ] n + E ' v t I t t I j 22 vv mjmj mzml mm 3" 2' mj' mg! ml N B [ - 1;“ Ida x3(R)xv.(R) (xicx)125.,.,.m£.v,.m.(n)a(1)>fuu R’ N B 4- ugp JdR 13(RJXVoCR) . B £up R“ 40 N - E I dRX:(R)xv,(R)[(XU(1)I u l I?(1;R)If3.j.,.m£.v,.m.(a)a(1)> + ] Ra Z 4. r1a(R) rIB(R) + [ang3(p)gv.(R) R2 N N B - ”Ev I de3(R)xv.(R) igu V (xi(1)lfg'j'fl'ml'(r)Y£'m'(Q)a(1)> guv,uv R2 . N B * X J dR13(R)xv.(R) fluv’uq k s + “3v Jan [ + ] x;(R)xv.(R) R2 41 N v21 JdR.x;(R)x,.(R) R2 N l 8 [§RR*§Ex,.cn)] N 121 IdR‘L:(R)x~v(R)- [ vcn) + 1'15'*11-- E ]R* ] ZuNRz + j; JdR vv' x3(R)xv.(R) R2 (2.71) The last term of the above equation and the term containing 2 Z . . Jij'tt' FIZTRT.+ FIETRT are a decomp051tion of the fN+l,N+l (fl) term. The vibrational functions are defined as an ortho- normal set of solutions of the equation [ ' 21%.} $15231! ” Vm " Ev ] 260*) - 0. (2.72) I can use this identity to eliminate the derivatives with respect to R from equation (2.71). I will assume that the j(j+l) terms can be neglected, since the rotational .._,..,....III.II..r .! 1 v 50 42 energy is very small compared to the vibrational energy. I can now perform the integration over R in most of the integrals in equation (2.71). Also observe that HMO]. 3 <94 X‘(1)X2(2)oooXN(N)| fiMOl I flXICl) X2(2)o--XN(N)> ' uEl fuu + “Ev guv,uv (2.73) so that N N Ev ' E + g fuu + “Ev guv,uv = Ev' E + EMol . Ev- 5V0 - 1/2 kgo (2.74) Equation (2.71) can now be rearranged an simplified to the following: . 1 d d I = Z |C(32J m.m M)|2 ' 2 m. m m + Z IJFI [J J 2 ] jj'vv'mjmj'm m 'mm' 9 j' 2' m.' m ' m' 2 2 j 2 [ é, JR.K;(R)xvv(R) [ N z 2 - I; ] dR + $1 [“8” )Y (‘7 )a(1) (HI 1 (1 P (6 U=1 1 2m 1 xu $1; - 12)! julum2.(r1) anmc(91)a(1)xu(2)> - (Ev-IE) - -<£B(r)Ym(Q)a(1)lxu(1)> N B B + vgu [ <£ (r)Y£m(Q)a(1)lxu(1)> fuv 44 -<£B(r)Y£m(Q)a(1)lxu(1)> fvv + + N * a p;V,u guv,Up N - pin aup’up ] ] ] . (2.75) Equation (2.75) will serve as an expression for the . H A : M . . . integral . This W111 be used in chapter '2' (III) to develop a variational equation for the scattering functions f8, which are assumed to be the only unknown factors in the equation. 1 Rose.op.cit. p.60. 2 12059.0 .95. p.58. 45 Chapter III. The Variational Equation for the Scattering Function. I will now determine the equation which the scattering functions f8 must satisfy in order that the variation of the integral 1’} . <‘PI7?-E|‘P> , minus the surface term, will be zero with respect to an arbitrary small variation in the £8. The functions which satisfy this equation will be taken to be the solutions which I am seeking. Ignoring second order terms, the variation is given by the sum of the variation from the left and the variation from the right. The variation from the left is as follows: I“ = X <6f8(rx)l ‘ ijj'i'v'mijmj'mg' 1 d 1 + «(2+1) + _ _ , ,. [ - 7 U7TT1'&?T' “—3 [8v 5&0 1/~ RSOJTI} 6..,6 J) Ql'évv'émjmj'énzmg' free space part + interaction 2 Z ,2 jn x;(R)xv.(R){ QI ' Z (qu(91)fl(1) vibrational ”=1 coupling through I > z 2 nuclear. Xu (Xulriaiu) + rzrlhi attraction 46 47 IYP'ITI' (531)fl(])>] JR + 2 6vv' [ (Y2m(91)a(l)xu(2)I?%Z(I'P‘2)|ngmt(91) coulomb and a(1)xu(2)> exchange integral - (£;-E) exchange - _ _ 1 d 2d £'(2'f1) (Y2m(n‘)a(1)lxu> one-electron Operator with exchange + Vgu [ ruv - rvv I * exchange integral ' ‘ u with second exchange 48 + (Xv|Y£omv(nl)a(1)> N 3 N - pin gup.up ] {v 1 ] Ifg'j'l'm£'(rl)>rl (3.1) I will make a convenient abbreviation by taking the entire quantity within the outermost parentheses in equation (3.1) and deleting it, writing only the paren- theses enclosing the parameters on which it depends. Equation (3.1) can then be written M 8 I g i (éf (TIJI left J . . 32VJ'2'v'mjmfimj'm2' j 2 v mj m2 ' t I I i 3' 2 v mj m, 6 B 'fv'j'2'm£'(r‘)>r, (3.2) The variation from the right will be IN Gright J a éleft * If8(r)>,] + [ |6f8(r)>r ] I can now write the total variation as 'M M 61d Gleft IJ 5 IM left J B . t i la (r)>r I do not want, equal to zero, but term. In place of M M J a 6left 61 IJ K When I set 613 O + + 6 6 49 M * 1 d d IJ [ jzv <6f8(r)| - 7 Errzd? jév r] (3.4) however, to set the complete variation rather the variation minus the surface 61 + 'M J 6 I define: left I M a J (3.5) equal to zero, I obtain the equation which the radial scattering functions f8(r) must satisfy. 61M = 0 50 j 2 v m. m . z <6f5(r,)| [ . J 1 jj'22'vv'mjmj'm2m2' j' 2' v' mj'ml' le'j'2'(rl)>rl + <6f8(rl)l ! 2m2 j 2 v m. m [ ., 2, , J. 2"] |f\8)'j'2'(r!)>;l J v m. m j 2 ' '22'vv'm.m.'m JJ J J (3.6) But this equation is equivalent to I? - 2 Re [ <6fB(r)| O I t 0 O jj 22 vv mjmj mam2 . 2 . J v mJ ml lfBo'v .(l‘)> j! 2! V'm'm' V32 . j 2 (3.7) where Re(x+iy) = x. Since the f8(r) are arbitrary complex functions, the above equation implies that j 2 v m m 3'2 -8 , J'2'v'mj'mg' 5' 2' av m.'m,' 'fv'j'n'(r)’ 0 J (3.8) for all v, j, 2, mj, and mi. 51 To use this equation, I need some explicit form for the f8(r) containing variational parameters. These can then be evaluated by requiring them to satisfy (3.8). A very important factor which is pertinent to the form of these scattering functions is that I am using a one determinant wave function for a system in which resonant scattering is dominant. Such systems must normally be described by a two or more determinant system, but since this is a single-particle resonance where the molecule is not electronically excited, I can use a one-determinant function. I must then compromise between the goals of having the correct asymptotic form for the wave function and having the polarization of the target well described. This difficulty will be further discussed in Chapter IV and Appendix B. Chapter IV. The form of the Scattering Function. In scattering of an electron by a molecule, the complete electronic wave function can be written in the form M . W(N+l) a Z 154 violecule(N)w§catter1ng(1) (4.1) i=1 Molecule where the W (N) are the wave-functions of the 1 various states of the molecule and 64 is the antic symmetrizing operator. If correlation within the molecule is neglected, the V¥OIBCUIC (N) are the one determinant Hartree-Fock wave functions. The wgcattering(1) are scat- tering spin orbitals which I will assume to have a-spin. This method is generally impractical because of the need for a large number of molecular excited state functions which are not in general known. If there are no molecular excited states near or below the energy of the scattered electron, a reasonable approximation of the above Function can be made by wow) = 24 211300410) (4.2) where V?(N) is a distorted ground state function. To obtain the correct assymptotic form I will split this function into two parts mm = a‘lcmewSm + cvpminm ) (4.3) 52 53 i . . where 24(N) is the undistorted ground state function, WP(N) is a distorted ground state function, 65(1) is a scattering function, and wB(l) is a bound state function. The asymptotic form is now correct: v(N+1) +-.f§WM(N)wS(l) as rscat +~ . (4.4) I choose the incoming electron beam to be travelling along the z-axis of a non-rotating spherical coardinate system centered at the center of mass of the molecule, so that I can write 68 as w = (e1kz + e1kr f(r.6.¢) ) = ( 220 izczn+1)j,(kr) p,(cose) + eikr f(r,e,¢) ) (4.5) where f(r,6,¢) + %f(8.¢) as r+~. I can write the Legendre polynomials in terms of spherical harmonics. l/2 (22+l)P£(cose) = (4a(22+l)) Y£0(6,¢) (4.6) I can also expand f(r,6,¢) in terms of radial functions and spherical harmonics as 00 +2 f( ,6,¢ 8 f Y 6, 4.7 r ) 220 m§_2 2m(r) ,m( 4) ( ) 'where f£m(r) + %f2m as r+m. Equation (4.5) now can be S4 expressed as on x5 - £20 (ii/2mm j,(kr)Y,’o(9.¢) ikr *2 . e g 1 f,m(r)y,m(e.¢) (4-3) m-- For a spherically symmetrical interaction f2m = O for m f 0, but for scattering from molecules this is not generally the case. The complete electronic wave function is now of the form: mu) - 64(2”(N)ws(1) + cipmwBun (4.9) . .ein(N) {o (ii/TFTZITIT'j,(kr)Y£o(9.¢) 2'8 eikr +2 + r mz-2 f,m(6,¢)) as r + m. (4.10) I also wish to consider vibrational and rotational excitation. If the diatomic molecule is initially in the state specified by vo,jo,mjo, then the asymptotic form of the function will be mum) + 342M(N) E0 Mm 3-20. r) r+ 2- v°j° 2,003.40),W (12in .m, . (6R'¢R) 55 f . 2m,vojomjo,vjmj Ymcemmcmjmj(9R.¢R)) (4.11) where xv(R) and ij.(eR’¢R) are the nuclear vibrational and rotational functions, respectively. Let kg 5 kvojo° So that the complete function is compatible with this asymptotic form, I replace 68(1) with I115(1,ii) - {0(12/1—17'2-171. + j£(kv°jor)Y£0(e,¢) 2: on ,k 1' +2, +j (my. (6 ¢ ) +2 2 e1 v) I xvo Jomjo R. R v j-O mz-2 mj--j fm2,vojomjovjmj(r)Y2m(e’¢)xM(R)ijj(6R’¢Rx’ (4.12) I now have a scattering function consisting of a plane wave with the molecule in the initial state and outgoing waves with the molecule in all the accessible vibrational and rotational states. This can be written in the form S S w (1.2) = vgmj xVOjomjo,,jmj(1)x,(R)ijj(0R.¢R) (4.13) where the electronic functions are 56 S .2 . XV°5°m5,-ijj(1) £20 (1 “12(21+15 32(kVojoT)Y£0(9.¢) . 2 k .r + 6 6.. 6 + e1 v; 2 f . . (r) vvo Jjo mjmjo m--2 m2,vojomjo,Vij Y£m(6,¢))a(l) . (4.14) Since I expect Born-Oppenheimer breakdown to be important in the resonant scattering process, I will also include molecular vibrational and rotational functions in the bound state orbital: B B Cv(1)= C. x- (1) (MY (6 4) vjmj vjmj Vij 29v jmj R’ R ’ where B rxvjmj(1) + 0 as r + m . (4.15) The Cvjm. are unknown constants giving the weighting factors for the different molecular states. It would be possible to obtain vibrational functions for the bound state function YP(N)wB(l) and use them for the .l~(R) in this expression. The regular molecular vibra- tional functions are a complete set and may also be used. 'The vibrational functions and their coEfficients will ‘be discussec more fully in the following chapter. The total wave function can now be written 57 M . mini) -- z (m (foojom Vij jo vjm. vjm.(1) I C J J 24 ‘f’p(N)x5jmj(1))xv(R)ijj(0R.¢R)- (4.16) I now wish to determine a reasonable one-determinant approximation to the above two-determinant electronic function which will be easier to work with. I have shown in Appendix B that the best function which can be obtained without doing most of the work required for the two-determinant function is obtained by neglecting the polarization and replacing WP(N) by WM(N). The effects of the polarization are approximated by potential scaling when the bound state Spin-orbital is calculated in Chapter V. The wave function I am now using is 2(~+1.2) -- 24va z (xiojom, m.m )2ij Jo' J B + Cvjmjxvjmj(1))gv(R)ijj(6R,¢R) (4.17) By writing a set of different bound state functions xgjm , I am assuming some breakdown of the Born-Oppen- j heimer separation between the nuclear motion and the motion of the scattered electron. This is reasonable for molecules such as N2 where the N; resonance is believed 58 to exist about the same length of time as the vibrational period of the szolecule.l The rotational motion, however, is much slower and I cannot justify Born-Oppenheimer breakdown with respect to rotational motion.2 Equation (4.17) now becomes «6w am i Vij J0 J +c vxB , (1))xv(n)vjmj(ek.6R) (4.18) Using equation (4.14) this is equivalent to v(N+1,2) = 642M(N) I ( Z (in/TFTZITTT vjmi 2‘0 32(k0 T)Y20(99¢)5vv06jj06mjmio . +2 + lkv r . . Y o a 1 J m§-£ m,’voJomjo.,ij(r) 2m( .6)) ( ) n *C Vx v (1))gv(R)ijj(0R.¢R) (4.19) This function still represents scattering of a plane wave. To conveniently handle the rotational functions I need to express V as a combination of states which are eigenfunctions of total angular momentum, J, z-component, M, electronic angular momentum, 2, and rotational angular momentum, j. 59 That is, electrons in a particular Spherical wave scattering from a molecule in a particular rotational state, with the system in a particular total angular momentum 5 ate. These can be obtained as vJMji JMj2 (N+1,i) . P IW(N+1,2)> (4.20) JHj2 where P is a projection operator for the JHj2 state. Then wJMj2(N+1'E) = pJMj2‘gwa(N) Z (1) (X3 ° m va ijj 0J0 jo. Jj + c vxB v(l))gM(R)ngj(0R.¢R) JMj2 M a r r S B .. J4!) w (a) 2 (x . a (1) + C x (1)} vth ‘Vojomj°,VJHB v V X6(R)Yfmj(°R'¢R) (4.21) The angle function for state 5Mj2 can be written JH’2 . . 23 J (0.6.0R.¢R) = mg. chnJ.mij)Y,m(o.6)vjmi(0R.6R) J . (4.22) JMj2 So P can be written 6O pJMJ‘ = I IccjnJ.mjm”)" ‘Y2m(e'¢)Yij(eR.¢R)> mm. J - E and then vary the function xN+1 to obtain the minimum energy, with the constraint that XN+l remains normalized and orthogonal to the other orbitals. In many cases this is not a good method. First, I am using an unpolarizable molecular function, frozen in its unperturbed form. Thus, the N+lSt electron "sees" a much weaker potential than the actual one. Second, the actual potential is not strong enough to have a bound state in many molecules. ”2 and N2, two of the molecules I am most interested in, do not have bound negative ion states. Thus, if Xg+1 is varied without restriction, it will approach the wave function of a free electron at zero energy. 62 63 One solution to this problem is to restrict the variation. The orbital is not allowed to approximate a free electron wave-function, and a bound state function results. The form of the function depends on the exact restriction on the variation. A similar method, also commonly used, is to vary the function only until the energy becomes relatively stable with reSpect to further variation, not to a rigorous minimum. This method is open to the same criticisms as the first. Another method is to alter the interaction between the scattered electron and the molecule so that there is an actual bound state solution. The function may then be varied without restriction to get the function for this bound state. Increasing the apparent nuclear charge or decreasing the electronic repulsion will make the potential of the molecule more attractive, but either of these destroysthe electrical neutralitv of the molecule. Thus any finite change in either will add a l/r coulombic tail to the molecular potential and create an infinite number of bound states. I can avoid this bv increasing the nuclear and electronic parts of the interaction bv the same amount. I have assumed that the scattered electron "sees" an attractive potential of the same order of magnitude as that necessary for the existence of a bound state. If this assumption is justified, multiplying the potential by a reasonably 64 sized number should produce an equation with a bound state solution. This is the function which I will use for x£+1 . Part of this potential scaling amounts to a replacement for the polarization potential which I lost by freezing the core. The rest converts the resonant state, which has an energy above zero, to a bound state which can be obtained more easily. First, I need the original Hartree-Fock equation for x§+1 , with the unscaled potential. I must evaluate a . (5.2) wt:‘ :01‘ ~~o-o‘ : - ‘L- g» a -‘ ‘..- '- .r. 1 . -u.0-..- .. aux.) aucvgaui a.) but; sum; as aJ . UA'ITUDJCL All utiuuuauu (2.46), with two changes. First, this integral involves ;( instead of ILE so the last term in (2.46) is absent. Second, I need not consider the various angular momentum states designated by the J,M,j',j,2',and 2 superscripts. Here the minors of the overlap matrix are much simpler since the bound state function is normalized and orthogonal to the other orbitals. The N+lSt orbital is xfi.1(1;2) - é Cvxg.1.v(l)gv(R)ijj(flR) (5.3) B N+l,v unknown electronic functions, and the Eu and ij are . J known nuclear Vibrational and rotational functions. where the Cv are unknown constants, the x are 65 The normalization condition is B B * Ev. Cucv' ‘ elec 16(R) ijj(nR)Xv'(R)ijj(nR)>nuclear E 1 (5'4) but the vibrational and rotational functions are ortho- normal so this is equivalent to 2 B B 2 g lcvl (XN+l,v(1)'XN+l,v(1)>elee ‘ 1 (5.5) I also require that B B : ~ (5.8) 1TH: overlap integral for the resonance function with itself is thus: 66 _ . vv' DN+1 N+1(§) 2. cvcv'DN+l Nflxv(R)ij.(nR) ' vv ’ J ch(R)ijj (QR) o (5.9) The other overlap integrals are Duv(§) 5 6UV’ unless u=v=N+l . (5,10) The determinant of overlap integrals is ln(i)n = DN+1,~+1(§) . (5.11) Its minors are l 1 qu+1 . -r UV: ID(kNI éuvx DN+1'N+1(2) u-N+1 (5.12) k and f 1 qu+1 u>v,p>q + uv m ,. HD(R)N ' éupévqx u=N+l U>V.P>q 3 . DN+1,N+1(L) (5.13) I define the nuclear kinetic energy term, 67 (2) : vv' DN+1,N+1(§) “ vé. CSCv'”N+1,N+1Kv(R)Y§mj(QR) -1 d 2d ——R ——. (R)Y. (a ) (5.14) ZuNR2 dR dR XV' ij R the electronic kinetic energy and nuclear attraction term, fn+1,N+1(fi) 5 Ev, Cscv'fer,Ntl(R)lv(R)ij.(9R) J xv.(R)ijj(9R) (5.15) and the coulombic and exchange term, . . a E Y .*. . V”. 21“}: Ugm‘rl "(15) (H). rVrV' gl‘i’l U.N*l U * XV(R)ijj(nR)XV'(R)ijj(QR) (5016) In these expressions, the one-electron integral is vv' B ‘ + B {N*1,N*1(R) (5.17) - B - 2 a B (XN*I.V(1)I l/ZV IXN*I.V'(1)> ' (XN*I,V(])I 68 Z 2 B —— + --—-|x~.1 ,.(1)> (5.18) rla(R) r18(R) . . 1‘va - Vvv.(R) (5.19) where Tvv' is the kinetic energy and Vvv'(R) is the nuclear attraction as a function of internuclear distance; and the coulombic and exchange integral is vv' = B 1 -) 3N§1 U.N*1 U ' (XN+1.V(1)XU(2)I?T:(1 I12)| XN*1,V'(1)XU(Z)> - (5.20) The energy is now given by N E . I Jdk fun DN+1'N+1(R) + M Id“ guv,uv DN+1,N+1(R) u>v 62 0(31 N+1(ii) ZpNR2 i + I62 [111111 + V(R)] DN+1’N+1(B) Id“ fn+1, N+l(fi) + ha u=l J62 gN,1 u,N+l u(ii) (5.21) 69 From the normalization condition, equation (5.5), and the definition of DN+1,N+1(§)' equation (5.9): J62 DN,1.N,1(2) - 1 (5.22) I can combine the third :nulfourthintegrals as I ' I . Cscvcnxri'N+1 Jdfi Xv(R)ij (QR) vv J 1(i+1) . V(R) - 1 9.4229. ,(R)Y. (a ) [szRz ZuNR2 dR dR] Xv ij R (5.23) Deleting the rotational energy term, as in Chapter II, c . vv' I Ev. Cucv'DN+l,N*lévv'Ev . 2 1' I ICvl L, (5.24) V th where Ev is the energy of the v vibrational state. Recall that the xg+1 V(1) are normalized, although not 9 orthogonal: equation (5.6). The fifth term is [an rN+1.N,l(fi) . 66' 636v. jai f§3l.N+1(R) 70 MR“)... (9 ) IRJY- (9 l J R xv jmj R . z CGCv' IR’dRXv(R)(T vu' vuv'(R)) xWU” vv'- ' I lcvl2 Tvv - 66. Cscv' JRZdRXv(R)Vvv'(R)Xv'(R) v (5.25) The last integral is 6 vv' 1 cvcv' gN+l u,N+l u Jdfi gN+1 u,N+l u(§) ” vv. Idfi XV(R)Y3mj(nR)XV'(R)ijj(nR) VV 2 g 'Cv' “n+1 u,N+l u . (5.26) Equation (5.21) now becomes N N r=zf+Ig +2ICI2E+ZICI2 “=1 UU U>V UV.UV V V V V V TW - Ev. CCCv. Jdeva(R)Vvv,(R)xv,(R) . j I |c |=gVV (5 27) uul v V 'N+l u,N+1 u I can now make an arbitrary variation of x8 N+l . The resulting variation in energy will be 71 I 2 2 6E é Bvdlcvl + E rvv élcvi 1 B * I [CV '2 6 - g“. [(6c;)cv. JR’dev(R)V.6e(R>x.v(R) . c;(6cv.) IR’dRXv(R)VVV,(R)Xv,(R) Z 2 B v v v N+1,v “(R) r18(R) lxg,1,v.(1)>xv.(R)] . I l élc I’ ”V “:1 v gN+1 u ,N+1 u N . 2 B l _ + i I Icvl 5 (5 28) XN+l,v xu ‘° This can be written as GE = { (6C*)C (E + T + g VV ) v v v v VV Usl gN+l u,N+l u B 1 B + g JCVIZ <6XN+1.v(l)1'2V2IXN+1.v(1)> + 2 (GXN+1'V(1)XU(2)l*l”(]“P12)'X\+]N (1) 72 xu(2)>] - I [ (6C;)Cvc JRZdeV(R)vVV'(R)xV'(R) vv' 2 2 B ____. 2 + C3Cv' JR deV(R)<6XN+1.V(1)Ir1 (R) + r18(R) a Ix:,1.v(1)>xv.(R)} + Complex conjugate (5.29) The variation must be constrained so that x£+l remains normalized. This can be done by using Lagrange multipliers. The variation of the normalization condition is ‘ B B I [ (5C3)Cv 2 B B 4' lcvl <6XN+1.V(1)|XN+1'V(1)>] + Complex conjugate = 0 (5~30) There is an additional normalization restriction: B B B 1 (5.6) This gives the conditions 73 B . <6X:+1,v(1)'xN+l,v(l)> + Complex conjugate . 0 for all u. (5.31) Substituting (5.6) and (5.31) into (5.30), I find * a. g (6c3cv + Cv6Cv) o (5.32) I can combine (5.29),(5.32), and (5.31) using Lagrange multipliers: N VV é 6C3Cv(Ev + Tvu + “£1 gN+1 u,N+1 u) N ' B l B + g Icvlz [ <6xN.1.v(1)l-IV’IXN.1’v(1)> + “£1 <6x§,1.v(1)xu(2)l;%;Il-sz)Ix:,1.v(1)xu(2)> ] Z 2 B + C‘C IRZdR (R)<6x (1)|~——___ + ._____ v v' 2.(-v N+l,v rla(R) r18(R) |XN*1,V(1))x-V' (R) ] t + Ac g GCVCV 74 B B * 2 AV2 (5045) 78 Fortunately, V(l) is a Hermitian operator and equation (5.44) can be replaced by 1 i . B (s 46) [-7V. + A + V(1))xN,1(1) - o . As I mentioned at the beginning of the chapter, in many cases equation (5.46) does not have a bound state solution. I will write instead (-§vi + x + 79(1))x:,1(1) = o (5.47) For some minimum value of 1, this equation will have a bound state solution at zero energy. I have calculated an approximate Hz function and an approximate H; function using single center orbitals with non-integral principle quantum number.2 The programs used to optimize the functions will be described in Appendix D. The H; function which I used was ?(1,2) =‘J4¢1(1)a(1)¢,(2)8(2) (5.43) Using one single-center orbital, I obtained the lowest energy for 79 ¢1(1) = 2.8684 r°23 e'l'22 r Yoo(e,¢) (5.49) at R=1.ZS (all quantities in atomic units.) Using the HE function W(1.2.3) = e1¢1(1)a(1)¢1(2)6(2)¢2(3)a(3) (5.50) I obtained a bound state function 682 8-.607 r 1.852 ¢2(1) = ( .3803 r' + 5.2957 r e'“52 r ) Y10(9.¢) (5.51) When 7 is set at 1.824, this function gives the lowest energy, -.0000554 Hartree, or -.00151 av. The actual energy is .289 Hartree, or 7.85 ev. I can interpret this relation- ship as follows: The expectation value of the orbital energy is E - <¢2|T + V|¢2> a 7.85 e.v. (5.52) When I increase 7, I increase the (negative) expectation value of the potential energy. If the virial theorem holds for relative changes in potential and kinetic energy, then increasing 6 by the factor y will produce zui adjustment in the orbital leading to an increase in kinetic energy which will cancel half of the potential energy change. That is the potential energy is 80 increased by VY - (7-1) <¢zl§l¢z> = (Y'l) v (5.53) and the kinetic energy increases by T = -1V = 1’7 <¢ |G|¢ > (5.54) Y IY T 2 2 so that the change in total energy is TY + vY = I § -.§ - 1 + y J v = Igl.v (5.55) but this change in energy is the energy of the original resonance, since I am changing the energy to zero, and I can now infer that the energy of the resonance is approximately E 3 1'* v (5 56) _T_ ‘ I know that <¢2|T + yv|¢2> = 0. (5.57) Subtracting (5.52) from (5.57) 81 (y-1)v = <¢2|(y-1)§|¢2> = -7.85 e.v. (5.58) and Er: 3.9 e.v. Within experimental error, this is a perfectly reasonable energy.3 ‘ Schulz,G.J.,Phys Rev,125,229,(1962). 2 Joy,H.W. and Parr,Robert G.,J Chem Phys,£§,448,(1958). 3 Schulz,G.J.,Phys Rev,135,A988,(1964). Chapter VI. The Scattering Amplitudes and Phase Shifts The radial scattering function corresponding to a given partial wave, final state, and initial state has been designated fB(r), where 8 refers to all the.appropriate quantum numbers. Comparing equations (1.9), (1.10), (1.11), and (5.42) with (4.52), I find that the form ?) of this function is JM,Vojom. f8(r) - f J°(r) - C(ju,M0) i‘flm vymj,£m£ ‘r j£(kor)6Mm. 6 6 Jo ”V0 110 + C(JlJ’mjmiM) ik .r e v3 (r) + C(le,misz) £m2,vojomjo,vjmj 1 iEO 6i,(£-£o)/2 Cifi(r)C(v-vm)1(imjzm,m.) (6.1) Note that Ev-EVO- 1/2k3 - - l/Zk: (ignoring, as before, the rotational energy term). From Chapter III, these functions must satisfy 1 d 2d 2 2+1 1 2 z] vjlmimg [ [ 7 3r) 3" 7 V ‘ 33 ”V 6 ,6 ,6 . 82 83 j l m. m m * 2 13M[ J in mi ] [ IRZX;'(R)XV(R) O ' O I 0 mm 3 1 mi m, [ N Z Z - < “21 yl'm'(n‘)°(1)lxu) ] dR N + 821 svv. [ ' (Ygtmu(91)0(1)lXu>‘Xu1Y£m(91)0(1)>(5v’5) - 1 d d - (Y2,m,(0.)a(l)lxu> l N + vgu [ fvv + (XV|Y£m(Q')a(1)> N + p;V.u 8uv’up N - Z gup,up J pQldR N 1 * “El va' If (r)> = o vjm.,lm 3 l for all j',v', and mj' and for 2'220,2o+2,...m,'-mo (6.3) Note that the mixing of vibrational states occurs entirely in the nuclear attraction term. I can use the usual expression for -l— in the last T12 integral: n °° +n r 1 Z 2 41! < * .._.... I z—I-———I- Y (91)Y (92) r12 n-O mna-n n+ r>n+ nmn nmn (6.4) 86 Similar derivations yield expressions for l/rla and 1/r18 . These expressions are simpler because the coBrdinate system is fixed to the molecular axis. a 4" 1/2 R<“ W18 " {0 [m fair Ynom‘) (6'5) n. > and on 1/2 R“ > where R< and R> are the lesser and greater of rland R/Z, respectively. Multiplying by Z and adding (6.6) to (6.5); n r2 * r2 a 22 E [ZégT]1/2 -E:7T Y 0(9‘) la 18 n-O R)n n even (6.7) Substituting these expressions into equation (6.3), I obtain 6 6 6 ij'avv' zz' mjmj' m m ' l l * JM j 1 mj m, m J [ w i In [ 5' 2' mj' m ' m' 22 Z even 87 4 1/2 2 R Y2m(n))>n dR on +31 N + 2 8W, 2 z g_3 5° °(r)> - o vjmj , 2mz (6.8) The angle integral in the nuclear attraction terms can now be evaluated, 1/2 (anl Z£+1 J n + (ylvmu(nl)'Yno(QI)Y2m(Ql)> : [ C(nlz',0mm') C(nlz',000) (6.9) Substituting this expression into equation (6.8), and separating the integral into two parts for 2r °(r)> a 0 vj m. J, 8m2 (6.10) Since I am interested in the vibrational excitation only and not the rotational , I shall set f8(r)=0 for jfjo and mjfmjo and replace kVj with kv‘ For convenience, I shall define the following operator [ 1 d 2d + £(l+l) __2___ Hvtm,,wnm,v(rx) 3 ' 2 air a? - 1 k’r’ 6 6 6 2 v vv' 22' mzml' 89 J“ jo 1 mi m, m g * 2 IQ [ '0 22 2 6mm' mm' j' 1' m.' mg' m' n-O J Zr even ‘ Rn+2 C(nlfi',0m)C(n£9.',00) I WT x3.(R) 0 2 T; 21141). n l lV(R)dR + I _EETT_—lx;'(R)lv(R)dR 2r: N m +n 4n + z 6vv. z z 731T Xu”)> ] J (6.11) I can now write equation (6.10) in the form A . ik r v§m£Hv£m£.vo£vmnn(r)' C(Jogj,mjosz) e V B lm90V0jom' 8Vj0m°(r) + C(Jon’MO1) 1 Jo Jo JZHIZITTT J£(er)6Mmj06VVo + C(JolJ,mjom£M) Cifi(r)C(v-vm)1(jomjozm mo)> 6i,(2-t.)/2 n =0 (6.12) To obtain the scattering amplitude and phase shift, 90 I will consider the scattering to be a perturbation. First, I will construct a zero order wave function, 6°, consisting of the incoming wave and the bound state function, and a zeroth order Hamiltonian, (1°. of which 6° is an eigenfunction. Then, I will consider the difference between2Q, defined in equation (6.11), and7(° to be a perturbation, write the resulting equation for the first order wave function, and salve it by means of a Green's function. This proceedure will not, however, produce the correct inelastic scattering since the Green's function will not produce an outgoing wave at the correct energy. To resolve this difficulty, I will include an arbitrarily small, well behaved, term, eC(jo£J,mjomlM) eiva/(1+kvr), c>0, representing an outgoing wave at the correct energy. Since the bound state function falls off exponentiall) at large r, the Green's function at infinity will have the correct form in the limit as 6+0, and the first order inelastic scattering will be correct. The complete zeroth order wave function is o . . .9. . wvlm£(r) C(JoiJ,MOM) 1 l3n(ZI+I) 38(kvr)6Mm Jo VVo 1 10mm”) igo Gil(£-£0)/2 * C(jon,m Cifi(r) C(v-vm)l(jomjonm mo) 9. 91 ik r + eC(j.1J,mjom,M) 13TH (6.13) Equation (6.12) now becomes A . ik r vém HV£m£.V'£'m£'(r) |C(JolJ.mj°m£M)e V l o c o (f£m£.vojomjoevjomjo(r) Evr+1 ) + wv2m2(r)> . 0 (6.14) The zeroth-order Hamiltonian is ,. 11" '(r) 11° ' (r) (“62%”) E - %%?rzg? * 5: $3231”) + 332:”) (6.15) so that 173,,m£(r)wg,m£(r) -= o . (6.16) Let 7(v2m£,v'£'m£'(r) - 7(v8m2, v'l'ml ,(r) ;(v2,m2( (6.17) 92 be assumed to be a perturbation. Then vim (“MM“) * AHVLM£,V'2'm£'(r) )Whmlh) + 11;,m (r) + A w (r) + ... > - o z vlm, giving (6.18) 2 7a,”, (rwgmlm - 0 . (6.19) Emf vim, (r)wv£m£ (r) ' ' v§m£7(vlm£,v'l'm£'(r) v3£m£(r) , (6.20) and so forth. The outgoing wave in the scattering function can be represented as . ik r C(joiJ,mj°m2M) e v f ,vjom. (r) £m2,v.j.m. Jo Jo - vazm£(r) + lzwszm£(r) + ... (6.21) eikvr r+1 e to be arbYtrarily small, although not zero. The term ck is not included since I am considering To obtain an approximate expression for the first- order scattering, I will separate the set of coupled equations represented by equation (6.20). I am assuming 93 vim £(T)Wv2m£m 291§2m2 v Hg m £'(T)Wv£m£(r) for all vim£,v'i'm£' . (6.22) Let the potential energy term in the zeroth order Hamil- tonian be represented by 2 W0 (T) W0 (T) v (r) - 1— ”% + r-:-’-£!‘+—-— (6.23) “*”z 2 1° (r) (r) vimz wvim, then . 1 d 2d 7(3i1n£( 3 ‘ z ‘8?" a? * V626,”) . ‘6'“) The Green's function for if“ will satisfy vim2 ' [’ %§?r’g— vvim (’)]G(T|r' ) ' 6(r- r ) . (6.25) The solution to equation (6.22) can be written in terms of the Green's function: “0 I ‘_ 0 13,, (r) (C(rlr')Hvim£,v'i'm£'(r')wvim£(r')dr' 0 (6.26) I need an expression for G(r|r') so that I can perform the necessary integration. From (6.25), (6.27) I can represent the Dirac delta function by the following integral 8(?-¥') . 1 I eik°(r"') dk . (6.28) (2")3 Integrating both sides of the equation over angles . ++, relative to r-r , 2 ikIr-r'l 4n6(r-r') - r 13 d: (6.29) 4n2iIr-r'l k Integrating over angles relative to k, +00 2 o 6(r-r') = r I kelklr'r'| dk . (6.30) 8n2iIr—r'l .00 I am interested only in the assymptotic behavior of the scattering function. I will find directly the Green's function in the limit as r+~ which will give the assymp- totic form of the scattering function directly. 8°(rlr') - lim C(rlr') (6.31) r-ree 95 Consider the limit of Vvim,(r) as r+~: 'krfl * r2 . e1 v Vvim,(r) [ T’[Ji(k°r)6vv, * E Evr ] ik r ' * r[ji(k°r)6vvo * ESE‘¥' )“(jz(k°r)dvvo V 9' -E——r— (6.32) eivaJ'l V rk . + [ - 12"!!- went”.(1+1)u/2)8Wo - e7?- elkvr ] 1kvr -l [E-:-?cos(kor-(i+l)n/2)6W0 + 62E:?— (6.33) -> - 1 r’k’ (6 34) I v ' I also need the following expression O» l d 2d r2 J ikIr-r'l - r ke dk 213? a? 8nziIr-r'l _m +m . rzk2 - Hrik r2 I kcikIr-r'ldk 2 8n2ilr-r'l -m (6.35) So that 96 4’” . w | r2 k elkIT-r'I dk - G (T T') ' 2 2 3"“ . (“Ti "3"?" 12L‘r'm (6.36) - 1 I“ k efl‘lr‘i'I dk 4n2i _m(k:-k2+4ik/r)|r-r'| ik Iror'l ik r . a _ e v + - e v e-ikvr' (6.37) 4nlr-r'l 4nr Note that, while this becomes the usual Green's function in the limit at large r, there is a difference at small r which in fact automatically selects the outgoing Green's function without requiring or allowing an arbitrary choice from several possible integration contours, leading to either incoming or outgoing waves. The assymptotic form of the first-order scattering O O O m function can now be given in terms of G (rlr'): la a - m I A. o l”vimlh‘) (If (rlr )Hvimzfi'i'mg'(r.)wvimz(r')dr' AI ik r a . e V -ik r' = I e v 7’Ivim ,v U9 m .(r )wvlmz (r')dr' 4nr 0 i i (6.38) Writing out this integral explicitly: ik r m . - k r' i(i+1) (r) a e V e 1 v I-————— -‘V (r') wviml 4wr 2 vimg 97 1 2 2] - —k r' 6 ,6 ,6 , 2 v vv 2% mam, jo l m. m m w + Z IJM 3° i 22 Z 6 , v Q 'I t I c c mm mm 3 2 mj m, m n80 Zr' +2 even 0 v Rn a R C(nU. ,Om)C(n29. .00) W lV'( ) fi 0 ii 2 2n+lr.n . § gv(R)dR + W xv,(R)XV(R) dR , f 2r' ’ , N on +n .; a r + 2 6vv' Z W (YP'm'(Q')a(1) , usl n80 mn--n 2n+l ' L, n r (92)(1‘P12)|Y£m(nl) < a r) n a(1)xu(2)> I J [ C(j.2J,M0M)i‘/TFTIITT) j£(kor')6Mm. GvVo + C(jonJ,mjom,M) E J0 61.(1‘lo)/2 Cifi(r')c(v'vm)1(jomjozmgmo) dr' (6.39) In general, the scattering function would be evaluated by a numerical integration of the right side of equation (6.39). As a specific example, I will use the H; bound state function obtained in Chapter V and find the scattering functions for the p-wave scattering with vo-O and v80,l,2. For H}, 20-1 and mo-O. I will choose the following more 98 or less arbitrary values for as yet undetermined quantum numbers: v' - v. - 0 j' ' i0 3 0 m.' - m. . 0 J J0 J I 2' I i I 1 and M - ml' - m2 - 0 . (6.40) I find that 10 0 1 0 0 m In - O , mfm' . (6.41) 0 l 0 0 m' Equation (6.39) now becomes ik r a . . ¢v10(r) = e v A e 1kvr I (l-Vv10(r') ~1/2 kSr")6vo 4nr 10 o 1 o o m + i In 2 X C(nll,0m) m o 1 o o m n-0,2 Zr' n+2 C(nll,00) I I 3%:TETT X:(R)xv(R)dR ” Zn+1r .n + J '—_'T—-‘X *(R)KM(R)dR 2’2 RD m +n 4n xu(2)> ] ] C(Oll,00) [i/T2?jl(kor')6v0 99 + C(v-vm) Cofo(r') 1(00100) ] dr' (6.42) Numerically evaluating the following eXpressionsqaccording to equations (2.67) and (2.69( for 13” and (4.49) and (4.50) for 1(00100): 10 0 l 0 0 m ' IQ - l/6w m-O,tl (6.43) 0 1 O 0 m 1(00100) a .1424 (6.44) Evaluating the various Clebsch-Gordon coefficients,l C(Oll,00) . 1 C(le,00) - - /77§ C(Oll,0m)C(Oll,00) . 1 m=0,11 C(le,0m)C(le,00) - -1/5 m-tl C(le,0m)C(le,00) = 2/5 m-o (6.45) I can evaluate the integrals over R by substituting harmonic oscillator functions for va(R), producing integrals expressible as incomplete gamma functions. The only m dependance in the nuclear attaction terms is in the Clebsch-Gordon coefficients. Summing them over m gives 100 +1 X 1 C(011,0m)C(011,00) . 3 m.- 2 1 C(le,0m)C(le,0m) - o (6.46) ml- Thus only the n=0 term is non-zero and the eXpression becomes 2!" m lln [ET-I R21;(R)XV(R)dR + 2 IRX:(R)KV(R)dR ] r 0 2r 5 Nuclear Attraction (6.47) Making the substitution of harmonic oscillator functions: 1/2 1/2 szgmmwk) - [“57" [fr-37" V .! H,(MR-R«))H,.(¢H(R-Ro)) e'B‘R'MV #5. (6.48) R. is the equilibrium internuclear distance, 1.40 Bohr. The constant B-liE/h where m is the reduced mass for the nuclear motion and k is the force constant for the vibrational motion. In atomic units, 8-18.38512. The nuclear attraction term is now 101 1/2 “(2r"R°) Nuclear Attraction - l ’ 5 1 [ l7! Hv(Y) ‘II 2 V! 1' 'fERo .y2 m 1 -y e dy + ZJE —————— H (y) e dy v’ER * " fE(Zr'-Ro) ° " (6.49) where y-/F(R-Ro). The first integral can be written in terms of incomplete gamma functions since b Jy“ e‘dey - 11, ( r(£‘.§l,a ) - r(fl§l,b )) (6.50) a In the second integral, I must first use the binomial exnansion on l/lFRo-y : __1___.__1_[1-_X_._Xi_- ...] (6.51) /FR0*Y JERo /ER0 3R02 At Y='/ER6 this sum diverges, representing a singularity in the original expression. This singularity, however, is non-physical, deriving from the use of a symmetric potential. If I keep the first eight terms in the expansion, the error is negligible between R-Ro/Z and R-SRo/Z, which is the region where the vibrational functions have Significant amplitude, and the resulting expression is well behaved at y--/FRo . 102 The resulting expressions for the nuclear attraction term are different for 2fRo since the incomplete gamma function r(a,x) is only defined for x30. To be able to write the scattering integrals, I need the value of vm and the corresponding value of C. I have chosen vm to be 3 since no appreciable excitation of the third vibrational level is found at the resonance peak for v-l excitation.’ I now refer to equation (5.40) and find that Call/T4 . The inelastic scattering integrals can now be Written as w ik)r m .. W110(r) ' e I e 1k,r' (Nuclear Attraction) 4ur 0 2x,1424 ( .3808 r,.682 6-.607r' (I? . 5.2957 r'1°352 8-2.752r' ) dr' (6.52) and m ikzr m .- ' $210(r) a e e 1k2r (Nuclear Attraction) 4nr .1424 .3808 r..682 e-.607r' + 5.2957 r.1.352 e’2‘752" ) dr‘ (6.53) 103 For the elastic scattering expression 1 must also evaluate the coulombic and exchange integral. 2 an +n I e g 6% 2 z 4" u-l n-O mn--n 2n+l > (zilzij,(kr) + iialili Cof0(r)) (6.54) where x‘(2) - 41(r.)Y00(a.)a(2) x2(2) - ¢l(r2)Y00(92)3(2) (6.55) Separating the coulombic and exchange parts and summing over molecular orbitals; a: +11 2 4n 2 I :- m 66 n-O mn--n Zn+l 1m nmn 1m 11 r < (Y00(fl)Ynmn(Q)7Y00(Q)><¢)(r2) ;—fi:r > l¢l(rz)>¢°(rx) 104 1 co +11 4“ - X— Z 2 m '0 mn8-n 2n+1 1m mun 00 T <¢‘(r.)|;—%:T > lw°(rz)>9,(r.) (6.56) Performing the summations and angle integrals indicated above, 1 1 I - F<¢l(rz)I?:I¢!(T2)>W°(T1) r< ' -l <¢1(r2)| 2 6n r> |W°(T2)>¢!(r1) (6.57) The integral for the elastic scattering can now be written: m ikor m -- . ,2 W010(T) - e I e lkor [ 1 ° (£—-¢°(T')" 4nr 0 2 + rw°(r')')/w°(r') - l kzr'2 + Nuclear 2 Attraction + %‘¢1(r2)7?§|¢1(r2)> r 9 (r') - —l<¢ (rz)|-—i|w°(rz)>—l———— ) v°(r') 6w ‘ r)2 w°(r') (6.58) 105 The coulombic integral and the part of the exchange integral coming from the bound state function can be evaluated using incomplete gamma functions, but the part of the exchange integral involving the Bessel function was integrated numerically. The numerical integration of the scattering integrals was carried out on the CDC 3600 computer at the Michigan State University Computer Center. The programs and original output are reproduced in Appendix D. The value of the scattering integral is a complex number which I will call A. The asymptotic form of 6‘ is therefor: w” - Ak/4n eikr /kr (6.59) The asymptotic form for the complete function is thus e-i(kr+n/2) e+i(kr-n/2) o 1 , Wr+m wr+m /; kr . kr 6v0 eikr * Ak/4n (6.60) kr e-i(kr+n/2) e+i(kr-n/2+6) I f1? 6V0 + 8&- (6.60) kr kr It follows that the scattering amplitude, a”, and the phase shift, 6, are given by 106 Aki z (6.61) V0 46/? and 6 - ~i ln{6 + Aki v0 4 l?) + i 1n(a) . (6.62) n The amplitudes and phase shifts have been calculated for fifteen energies from k-.20 to k-.90 (in atomic units), that is,from .57 to 12.0 e.v. The results of these calculations are presented in graph form in Figures 1 and 2, following. The results show a definite but very broad resonance in the elastic scattering. They also indicate a degree of coupling of vibrational states, in spite of the making of a series of rather drastic approximations. I can state, based on my results, that there is vibrational excitation of hydrogen at low energies due to the breakdown of the Born-Oppenheimer separation between the nuclear and electronic motions. There is ample opportunity to make higher quality calculations using the formalism which I have deve10ped here. Whether such calculations will produce better results is a question that cannot be answered until such calculations are done. I believe that the method is capable of producing good results. 107 .10 flu ‘.IO 1; .n 1.. ';4.—‘"‘.1~o‘".u"‘.. " 5:" ' 7 emmm m Ufll+n_L(..( "1.7.01.0. k ('+l~;¢ ““1113 SCATTERING AMPLITUDE AS A FUNCTION OF ENERGY FIGURE 1: : 0 4 1 I I 0.000 .040 001000! 0.000 0 .0 000AY. 000 .004 00.0 *--004 00000.0 000 ...-03100000 00 I 0 000 a . 7 0 u 0 0.. . 0 a 000 000 1.1.0 00 0.0 0.0.? 0 0 00 0 0 4 o . .0 00.0.4 I 10 e 000: 0 0 00 0 0 a“ 0 «I I 0 0 0 00000 - 0 .0000 .04 fl!- 0 00.. 0- 00 .I Iv 0 0 0 0.. 00000‘0'00 0 0 000 00 0 0 .000 o L 0.0Tv040' 0 00m 0.. 0.000 0 0‘ 0 u -0 0 I 0 0' 0 00 I 000 W00 00 0 ..00.. 0 H a. > .. P . 4 . a . _ — 0000. .0000! .10 000 A. 0.70.000. 04.4 I0 I 0 0-. 0| IJ 000 .0 I 0 0 0000 00-. e 0 0 0 A 0 0 4 0 I 000 00 000000 01 0.00 w 0 0000001 . . 100-0. 00 1 000 0 -n 1.60. 0.00014 00 00 0.00:0 . 0- . I 0 v0 00; 0 . 0.00000 0-0-... 00 00- c 0.000 _ _ . -00; 000-1..0010. T0- ...-v-1- 0 -..- -0 - . .. - - 0 . -- t .03-- - g1-.. . _ . 0000|l 000 000r0r0ro .0000 0000 0 a 00w 00 0 vi 0 . 00 000 000 000 * 0- 4000.0‘0 , o - .9 0. ” Av r b r _ ... < . . | 0 0| .- 9 . . . . 0 _ 0 00 0 0 Hh—t—o-o-—-b~~'- 0 00 : '1 , " 4 .g., ‘- u—od-O—c—r-n 7 0 '0 If ‘r 0 i 0 .1, 0 . r. 0 l 0 0 0 I 0 . ‘ . ‘ . -aasiuiflus_-s ...’;; . 0 I i 0 0 I 108 . . . 0.1 0000000 0 0 00 I II 0| 0000:0000! 0 F . . 1 V A VIII. 0000 0!-e0+ '0 0 0.0 0 04 0| 00 I 0 00000 0- .000 w I 0 0-001 1 . 1+1..- 00-0.0.0.-- . «1. . .00-.-. ....... 0--- -.r .-.. ..-L ..-- 0-0.. . utfl-O 00.0000! 0| I00 I Q. .600 00000 00. ..0 ..00Y0-1000 T000 ...I0.0I*0.0.. 00.00- . . 000-0 .000-0 000 .00000. '00 .00 000 0000 0 000v00lls'fi00.l.0. 0000 . 0..- q .0000; V 1 4 .1 VIOILIr 00.000000. 06 000 000000.00 00W-40 0000. . I e I. Y.0 .00 JV . 0 0 I 0 .00 c .-. 04,. -.0 0.0 . . . , . ..w 0.004140 000%01 0+4-I 00000 0 a v-.0l00.LYo 0000L .0000 0-. I. -0000 . , . 60- 0.00. 0000006 0.0.0.]- 0 0.. 0- f00.0l00 001040 v0 000 u 0.0 0 000A , . . . . s 0. .F '1 01ft 005-00.. ‘00.!- TT4000J .0 0 .0000. .0.0.0. ..A 0.0. c.- n 0.. c 000... I . . , 0 ~ ’ b 1 0 00.00 000000 Awr001 .001nl*0 f1A000. I0 000 0 I 000 0. 0 l I 00001 0.0000-0I 0000000 -'0|v. ”0 o I -0|.Q-4 0 V00 0 0. .0- 0.00. I 0 0 0 000-0001 1 «.0. _ + . F (704.003.1000 - 00 L, 01.4 TL 0 .0 00 o 0W 0000 0 000VIILY0 0 0 I 0.. 0010- . . ~ . g .000 1000+ 0-1.?! iti+v . 0v . 0 01.070 60.0. ..I 00000. 0 . 00 u n . 00 0 0.0 r 0 0 H r. . y ._ pir— A 100.0 00 0000000000790 .1420000' 0000 .400 fiul000 a 00-040 0 a 00 0.00 00. 0-001 .000 0000; 0000.. 0 0000. 00001 ..0 0 Y 0 - 000T dlf 0 .0000. .0000 0.00.0.00?00I0I. 000....f10000lL _ . . Vl0+l|g00007 0- . - 0 ..0.0.4 00 0..- 00 I -0 0.00000. .0 r0000. ..06 -00. .....gv.0.000 0 v.00 . . . a .000.4. N 0000.. Y.» 00-.- 0 0 It 00 000 1 '10 0000 . . - 00- 0-00 0..- 0001. 0 00-000 00 r 1.0 0* 1 . 0 04 o . . err010000. 0..u-o 0 o .000- 0000.0- 0.0. ., 0.0.0; o .000 0.0 .20, 00.0000 0-000I T000.- 0000 01.0.0070. ..-. r -00.. - 0 077.700 0-. . . . . 000004 . A 0 0 0 .0 n 00.. .0 . 0 0A - fiv0 I 0 ..00. 00 . 000000 100 I - I 0 . ..000.0 .0 .0010.T000000 4.000010 0(0 «00 j. . .. r 0.10. 0 ..0 0 0-. 0-0 00 0 l . | #000000 0.00 00 0 00000 0000' 000 I0 0 0000- 0 .00 0 00000 70.00 0 0 0 0 v o 0 ,1000U t '0 00 0 0 I00 0 0 0.0 I 0 0000- 0- #00000 000.0 0 000 fi0r00| 0.000 v 00-0. 00 v 00 00 I 0000- r P 00 . 0.0.000 0 0 00 00 0'0 0 0 0 00000. 0 0000.. 000 0 0. 0| 0 00- n- .00 00-10 0 V {Ii . l T0 010 #00 I I 00 0Pfi0’000 0000 ‘0..0 I0 0 0001 #10 0 I L o 00 0 n. 0 I00 00 0 00.00.00 00 0 01000000 I. 0- 0- 04 0 00. 0 F0]. 0 0 0000001 000 0 0 0.0 00 0 | .0 7 .00- 00 l 00- ?000000. 0| 0 r0 0-. I 00.0 1 0|. 0 fi0.0.0 A 0 00-01 0H0- A 0.0 0.0 0 0110,00 0 0 0 0- %II 0 | L 0.000 0- 0 000 0 0.. fi 00 000.0 I 0 0| 0 0 0 0|. 00L - . M . +0000 II 0.0 0 f 000 .0 000.... .0k'00 fi0 0.7 0 l 00 .- 0 II . . 04 0| 070 0 0 100 0 T0 0 . 00000.L . 0 0000 Y 0 00. I 0 000000 . .0000 0 0 A 00 00 W I .0 0| 0. 0 .f 0 A . A.I g 0 0000. (0-00? .. 4.0000 0 ..0 0 It . . 0000 #0 o 00 1 00L 00.06-.. .0100! 7. 0. 0. 000.0 0. 0 0| 0 .000 t 0 .0 - 0 .04 0.00 00.010000 01 0|I00J0-000000 I .- #00 000: I0 000001 I 0 0 O 0 0 0.00000 +0.00 1 0 l 0 00. 00 I l * 000 I0- 0 I; . . 00 -0 V 10.0 0.001. 0- .000 ..4 000000.01. 0 0.00 00+ 7100.. 0000 WI .0-00001L . , al.0-0 0.0.-. .0. .0-J-tl-IPILI: 0 0000. . 06.0.00.0.0H.-.0000. .|.0|v0|00 I fi.0000|. +0700 02—.00 L00 .(Y00I0II..LYIu-.00lv0¢- 0... 0 .....01 0.00.0 0000* 00.00 I 00 A - ..‘IL‘ .700 uu|0s) .5‘7' ((100 M‘oc k 7“ PHASE SHIFT AS A FUNCTION OF ENERGY FIGURE 2 : I . I «00.00 I00 0000 000II.I. 0- .0000 000000 00.00 0000' ..0 00000101010000th . . 0.0.0 0 000.00 4* 000-0. 0-00I0.-.Il 0 0.01.40-.. . 0|0-lI-0l. LL10 - 0 0000A . 00004 .001 .. H I u -0 ~00 .00 .0 , .9070 0.? r b p > 0 w ..-. . .0 _ 10.0 -0 -0 000 00 040000. .6000 fili n _ .1 . . . o . c ... .. h v0.4 ,6. . , . .. L 01 VIL+| . . I . e M l p . . \H...€.m. vhUVnK .7‘” 109 ‘ Rbse,gn.cit.,p.39. 2 G.Herzberg,Molecular S ectra and Molecular Structure, pp. 98 E 532, VanNostrand, New Ybrk,TT95[0. ’ Schulz,gE.cit. BIBLIOGRAPHY BIBLIOGRAPHY A.S.Davydov,0uantum Mechanics,Addison-Wesley,Reading, Massachuse s, 9 G.Herzberg, Molecular S ectra and Molecular Structure, VanNostrand ,New‘YorEETTyfif). A. Herzenberg and F. Mandl, Proc. Roy. Soc. (London)AZ70, 48 ,(1962). H.W.Joy and R.G.Parr,J.Chem.Phys.£§,448,(1958). M. E. Rose ,Elementary Theor of Angular Momentum, John Wiley E’Sons, New YorE,El§37). C.J.Schulz,Phys.Rev.125,229,(1962). G.J.Schulz,Phys.Rev.135,A988,(1964). General References M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions ,Dover,New York ,IIUESI. A. M. Arthurs and A. Dalgarno, Proc. Roy. Soc. (London)AZS6, S40 ,(1960). M.J.W.Boness and J.B.Hasted,Phys.Letters £l,526,(1966). T.R.Carson,Proc.Phys.Soc.(London)A67,909,(1954). J.T.Dowell and T.E.Sharp,Phys.Rev.167,124,(1968). I. Bliezer H. S .Taylor, and J. K. Williams J. Chem. Phys. 47, 2165 ,(1967). H. Evring, J. Walter, and G.E. Kimball,Quantum Chemistr , John Wiley 6 Sons ,New York,(1944). D.E.Golden,Phys.Rev.Letters l7,847,(1966). H. G. M. Heideman, C. E. Kuyatt, and G. E. Chamberlain ,J. Chem. Phys. 44,355 ,(1966). 110 111 M.Krauss and F.H.Mies,Phys.Rev.A l,1592,(1970). L.D.Landau and E.M.Lifshitz,guantum Mechanics Non— Relativistic Theor ,Addison- es ey,Réading,Hassa« chusetts,(1965). H.S.W.Massey and R.O.Rid1ey,Proc.Phys.Soc.(London)A69, 659,(1956). A.Me$siah,anntum Mechanics,John Wiley 6 Sons,New York, (1964). S.Nagahara,J.Phys.Soc.(Japan)§,165,(1953). S.Nagahara,J.Phys.Soc.(Japan)2,52,(1954). Yu.D.Oksyuk,Soviet Physics JETP £1,873,(1966). K.0midvar,"Theory of the 25 and 2p Excitation of the Hydrogen Atom Induced by Electron Impact" (NASA TN D-Zl4S),0ffice of Technical Services,Department of Commerce,Washington,D.C.,(1964). R.G.Parr and H.W.Joy,J.Chem.Phys.£§,424,(1957). G.J.Schulz,Phys.Rev.116,1141,(1959). H.S.Taylor,G.V.Nazaroff, and A.Golebiewski,J.Chem.Phys.i§, 2872,(1966). H.S.Taylor and J.K.Wi11iams,J.Chem.Phys.i§,4063,(1965). APPENDICES APPENDIX A Determinant and Minors of the Matrix of Overlap Integrals I. Expansion of determinants. Let u be an NxN matrix. The (Nth order) determinant of this matrix is designated by "U“ . I can write "0| lSt order determinants by expanding along th in terms of N- a row or column of the matrix. Expanding along the i row will give N IUII - X 0111‘” u jffinull . (M) 3'1 “U";j is a first order unsigned minor of "U", and is the (N-lSt order) determinant of the matrix obtained by th th column from U. The minor deleting the i row and j with the sign term included is the signed minor,flUfllJ. Minors are henceforth assumed to be signed minors unless stated otherwise. IIUIIij - (-1L)1°”5IIUII,’},3i (M) N . IIUII = .21 ":5 nunILj . (M) J‘ The first order minor can itself be expanded: 112 113 . + j . . nunlj - on1 3 [ 2 (~1>““Ukrl lulh’lfi‘ 2‘1 Nvl . k+2 kt . 225 (-1) Uk..+1I uUlfijflM if ki. (A.4) These eXpressions can be simplified by substituting the second order unsigned minors for the first order minors of the first order minors. The second order minors are defined analogously to the first order minors but with two rows and two columns removed. The distinction is that k and L in equation (A.4), where used as superscripts on the minors, refer to the row and column numbers in the first order minors, not the original determinant. ‘ .. . J . . Ilulll-1 = (~1)i*’ [ i (-1)k"uk.IUI‘k"” l-l MM N . . k+£-1 1k )2 + Z t-l) U IUH ' if i>k or 114 k-1+£ ik,j2 . . - . '-1 1 J a . 14‘] J - HUM ' ( 1) £21 ( 1) ukznuuMM k-1+£-1 ik,j£ + ('1) URLHUHMM ) if ik)P(J>2) URZHUHMM' J (A.6) But the signed second order minor is "Unik.jn . (,1)i+j+k+2 p(i>k)P(j>£) “U|;;,jt 50 i i N ik jt "UH ’~ - 2;. Uklflun ' . (A.7) J and 115 N N ik 52 ”U“ = ,2 1;, u..uk2uun ' (A.e) J J=1 13 II. The determinant of the matrix of overlap integrals. The matrix of overlap integrals is F‘ T 1 0 0 . . . n1,N+l 0 1 0 O O O O D g 0 0 1 o e o DS’N+1 D 0 D . . . L N+1,1 N+1,3 0N”.N+1 j (A.9) Expanding along row 1, N+l l l 1 ”DH = "D" ' + 01.N+1HDH ' (A.10) 1,N+l EXpanding "DH along column 1, l N+l 1 N+1°N+l 1 1 N+l;l N+1 "on ' = nNe1.1unu ' ' ' = —DN+1.1uvu - . 116 but ”Dnl'N+1;1’N+1 = 1 so 1 1 IIDI = llnll ’ ° D I N+1,1’1,N+1 Expanding IIDIII’1 along row 3 1 1 1 3;1 3 1 3;1 N+1 IIDII ' - IIDI ' ' + DLNHIIDII ' ' 1 3;1 N+1 l 3 N+l-1 N+1 3 and ”D" n D . DN*1,3"D" e o o s O . -D ' 3 so unu -nnn1'3'1' - 0 Continuing this process, I eventually obtain , _ N-1 ”D” . "D|l1.3.oeN’1,l.3.oeN 1 z D 181 odd where leeeN°1.leeeN°1 IIDII ’ (A.11) (A.12) N+1,3 N+1,1“1,N+1 ' DN+1,SDS,N+1 (A.13) N+131D1,N+1 (A.14) ,N+l 117 - DN+1’N+1 (A.15) and N “D“ ' DN+1,N+1 ‘ E DN+1,i Di,N+1 (A'lb) The terms in the above summation with i even are all zero, so that the restriction can be dropped without affecting the result. III. The first order minors. The first order minors can be divided into three classes. In the first, both indices are less than N01; in the second,one is N+1; and in the 1ast,both are N+l. Class 1: unli'j i,jv and k>£. In the evaluation of these I will sometimes need to use minors not obeying this convention, but will always end up with expressions using only minors which do obey it. A. Suppose that the four indices represent three distinct numbers. Case I: all indices are less than N+l. nun“k2 - "qu”z unn"“'k" . IDIIW'“2 . or IIDIIW’kv (A.Z4) To evaluate "DI”V'ul, I expand it along the 2th row. h The only non-zero element in the it row is D, N+1 so . D IIDIIW'” - D I“"‘“‘"‘”“1 (A.25) 2,N+1"D' th Next, eXpand the third order minor along the v column, which has DN+l,v as its only non-zero element: 121 ”Unuv2,nzN+1 _ D IDlnv£N+1,u£N+lv (A.26) N+l,v and "DI”va’l'"”N’1” - 1 (A.27) so that HDI"“'”‘ - n (A.28) N+l,v D£,N+l To evaluate "Dfluv'ku, expand successively along the kth row and vth column giving: k vk k N+l "nu”“- ” - Dk.~+1flDl“ - " uka+l kuN+1v ' Dk,N+1 DN+1,v"D" ' (A°29) I - D (A030) N+l,v Dk,N+l SimilarlY. f0r "Dfluv’vzz uv vi a uv2N+1 v2N+lp non ' m.’“.l DN.1.uunu - a - DN+1,u D£,N+l (A.3l) And for "nfluv,kv; nv kv _ uka+l ka+lu " D" . Dk ’N+IDN+1 ' u" D" . 122 . DN+l,u Dk,N+l (A.32) Case II: one index is N+l. ”DHuV'ki- “D"N+lv,kv . "D"N+lv,v£ . ”Duuv,N+1V . or IlDIIW’N+1u . (A.33) To evaluate flDflN+1V'kV, expand along the kth row, which has Dk,N+1 as its only non-zero element: N+lv kv N+lvk ka+l "DH ' - Dk,N+1"D| ' (A.34) but ||D|N+1Vk'RVN+1 - - ||D||N+IVk'N+1vk - -l,since ka+l is an odd permutation of N+lvk, and N+lv kv HDH . - -Dk,~+1 . (A.35) The other three cases can be evaluated similarly: N+lv v2 N+lv£ V£N+l ”D” . . D2,N+l"u| . . Dt,N+1 (A.36) 123 IlDHuv,N+lv - D lqu+1,N+1vu . -D (A.37) N+l,u“DI N+l,u "DHHV,N+IU . D IDHUVN*I,N*IHV I D (A.38) N+l,vl N+l,v Case III: two indices are N+l. N+1v.N+12(V,,). The N+l,N+l minor, however, is the determinant of the The only example of case III is "D" NXN unit matrix so unuN*1”'N*1£ - 5 - o (A.39) v,2 B. Suppose the four indices represent only two distinct numbers. Case I: qu+l. IIDIIW'k2 = IIDII‘N'”v (A.40) u u a _ - Now "D“ a DN+1,N+1 1;” DN+l,i Di,N+l . Deleting the vth row and column from this minor removes the DN+l,v Dv,N+l term leaving “V “V a - ”D' ' DN+l,N+l 1;” v DN+l,i Di,N+l (A'41) D Case 11: u-N+1. Then ”Duuv,k£ g "D”N*1V,N+1V ‘ 6 ‘ 1 (A.42) v,v 124 C. The remaining case which must be considered is that uv,kt may all be different. th th rows from the matrix leaves th Deleting the u and v DN+1 u as the only non-zero element in the u column 0 (which is not deleted) and DN+1 v as the only non-zero 0 th column (which also is not deleted). th element in the v EXpanding along the u column, kl vN+l kl HDH”“' ' ”n.1,aflDl” ' ” . (A.43) The minor "DH”VN‘I’kL“ still contains the vth column, but the N+lSt row has been deleted, including DN+1 v . D and the vth column now has no non-zero elements. Thus and Inuuvtk“ - o (u,v,k,£ all different) (A.44) The results of the above derivations are compiled in Table I and Table II on pages 23 and 24. APPENDIX B A One Determinant Approximation to a Two Determinant Function The two determinant function I wish to approximate is w(N+1.fi) = § ( V”(N)xS (1) Vlllj vnjomjgwjmj +C vjmj YP(N)xgjmj(l)) Xv(R)ijj(eR'¢R)’ (8.1) The undistorted ground state function is written v“(N) = 64xi(1)X2(2)... xN(N) (3.2) where the Xi are the various normalized Hartree-Fock orbitals. The distorted function can be written WP(N) = e4x;(1)x;(2)... x((~) (8.3) 125 126 where the xi are the distorted orbitals. Let 6xi 5 xi - X, (3.4) represent the distortion. Then vpcu) - s4(x,(1)+ax,(1))(x2(2)+6x,(2))... (xN(N)+6xN(N)) N a SAT-1' (Xi(i)+5Xi(i)J (805) 1-1 I ¢I¥T ( ) at? 11' g ‘ . + 6 e . o . 1.1 x1 1 =1 XJ(JJ i“(xlhl 3 J *Gxi(i)) (3.6) The first term is the same as VM(N), so that ij VoJomj°,VJm. W(N+1,§) - X [ $4W”(N)(xs (1) j J N N + c (1)) + cvjmj 54321 ijIJ) TI vjm. xvjm. i j J J (xi(i)+6xi(i))x3jmj(1)] xv(n)vjmj(ek.¢n) (B.7) 127 Let V‘(N) 2 $4M II (x (i)+eax (1)) (8.8) i-l where 05:51, and N: is the necessary renormalization constant. Then v1(N) - YP(N) and YO(N) - v”(N). If I write oVij(l) c e S x (mm!) ‘5'") e4? (mewmj. . Cvjmjx 35m (1))XV(R)ijj(eR’¢R) (3.9) the error which I have introduced is the difference between the original two-determinant function and the new one-determinant function. This difference is V(N+l,§) - v‘(N+1,§) - {[54 I (l-N )v” (N) Vij N - eNc jgl 6x (j) TTj (xi(i)+€6xi(i)) ] s (XVojomjo.vjm.(1) + cvjm. xvjmj (1)) + c jm J J J N N . . . B .ai jg] 5xj(3) {$3 (xi(1)+5xi(1))x,,mj(1) ] ;,(R)Y m (6R.¢R) (8.10) J This can also be written: 128 ‘1’(N+l,§) - wemuj) - Z I .94[ (l-NeHMm) vjmj N N . . ' EN ejzl 5Xj(j) {I1 (xi(1)+c6xi(1)) ] S ngjgmj.'vjmj(1) ’0 CVjfllj fl[ (1- N a)?” (N) + N N . 2 (1.6515) jg]. 5Xj(J) gj Xi(1) ‘* (l-E NE) 1 N ()6 (k) 11" ( ] 6 . ° . + o e a 5-1 ij x, j xk ifj,k x, 1) ngij) ] KV(R)ijJ-(6R'¢R) (Boll) For an optimal one-determinant approximation epsilon could be included as a variational parameter. This, however, still requires obtaining the distortions éxi and once these are obtained we might as well use the two-determinant function, since finding the dxi is the major part of that problem. Thus, I will set 5-0 and obtain “m.m - V°(N+1.§) - Z J24)?” (N)(xs vaj (1) vojgmjo, ,vjmj * Cvjmjx vjmj (1))XM(R)ijj (eRu¢RJ (8.12) (1)) vjm. xvjm. F4?"(N) g S . (1) + c 3' J' v mj (XVUJOmjooVij XV(R)ij.(eR'¢R) (8-13) 3 APPENDIX C Evaluation of PJMJI V I wish to obtain WJMjl(N*l,N) - PJ"3” v"(N) (1) S v§vmj (XVOJOmj.pvJ.mj + cvx5(l))xv(k)yj'mj(9R'¢R) _ Jth M s p v (N) v§'m (Xv.j.mj..vj'm.(1) j J + Cexg(1))X»(R)thnj(°a»¢nl (6.1) where C £J M 2 Y 6 Y 8 .¢ > m.m, I (5 .mjm, )l l lm.‘ .t) ,mjc R R) (Y2m£(e'¢)yjmj(eR'¢R)l o (C~2) To do so I must evaluate the integral F... - M I : J 132 ' 1 Ceif v1(r)a(1)a ij'mj‘m' fl? 6‘ ‘°’Zi (ijj(eR'¢R)inapo('ek’¢R’GR)Yj'mj'(6R'¢R)> (C.8) ' mjij. E 6i.(z-z.)/2 Cvi 1vi(r)5(1) I £%%1 )1/2 [ Z%%:1 )1/2 [Djjo(¢n'° R’O)Damo(’¢R’GR'¢R) Di;.;(¢R,6R,0)d¢RsineRd6R . (c.9) Since Dg0(a,e,0) - D;o(o,8,y) (c.10) and 93.;(a,e,y) a D;1m(-a,8,ey) , (c.11) I can rewrite the right side of equation (C.9) as C f ‘+ - 1/2 r a 2 l (2 '+1 m. 'm' J JD;:.O(-¢R1BR.¢R)DWFO ( ¢R'e R’¢R)DJ. o(‘ ¢Rse R’¢R) J J d¢Rsin6RdeR (C.12) - 1/2 = a ((21+1)(ZJ'+1)) mjij' £6 1a (1 loJ/ZC vi fvi“) (1-J 133 Z C(j'lj1,m.'mzm.'+m)C(j'£j1,moOmo) Jl J J O JDj;'+ .m.( ¢R’9R'¢R)ngo(’¢Ro9R.¢R)d¢RsineRdeR ,2 '1 (C.13) This integral can be written, 3 2w - J: J 'imo¢ JdGRSIDBR d o(6R) ldok e R O mj”'1»"‘o(eR)dmj ei(mj'+m2¢R e-imjoR " j I 2fl6( Mg+qp(m +m0 ) ldBR Sinekd m h.*g'm (6R) dgjo(°R) - (c.14) Now, dj’, mj +qcmo (9R)d;.0(ok) ‘ J {(51+mo)!(ji'mOJ!(j1*mj'+QJ!(jx'mj'QJ!(j*ij1 (5°mj)!j!j!11/2 z. (_1)k1+k2 k1k¢ {(j‘.m5..qfk’)!(j’*m°’li!(k1+mj'+quo)!ki! (j-mj-kz)!(j-kz)!(kz+mj)gk2!}‘l [sin(eR/2)]Zkl*2k= 134 [cos(6R/2))Zj 1+mo-mj' -ni-2k1+2j ~mg+mj 0+m‘i2k1 3 (Cols) So that w - j 5 . laen SlneR am;.,q2m.(ek)dmjocea) {(5!)2(jt*mo)l(jn’mo)!(51*mj*mo)l(jn'mj'mo)! - 1/2 _ k +k (j+mj)!(j mj)'} k: ( 1) ‘ 2 I 2 {(jl'mj'mo'k1)l(j1*mo'k1)l(k1*m;)!k1! (5-mj-kz)!(5-kz)!(kz+mj)!kz!}’1 H de sine '(cose ,2)2(Jl+J-kl'k2)(sine /2)2(kl*k2) R R R R O (C.16) Integrating by parts 2(k1*k2) u ldeRsineR(coseR/2)2(J‘+J'k"k’)(sinBR/Z) .(j:+j-kn-k2)!(kx+kz+2)! I Z (CO17) (jn+j*2)!(kx+kz+1) 135 Equation (c.16) becomes I [den ’inekdg;'+qtm.(°n)d%jo(°n) ' {(5:*mo)! (5"m°)!(51*mj*m0)!(jn‘mj°mo)!(5*mj)l(j-mj)!}1/2 j! Z (~1)k“k=2(j,+j-k.-k.)z(k,+k,+z)s k}k1 {(jx'mj'mo'kx)’(jt‘mo'kl)!(kx*mj)!k11(j'mj'k2)! (j-kz)!(kz+mj)!kzl(j;+j+2)!(k;+k;+1)}'1 (qus) I can now replace (C.8) with g 2 cv‘ifvitrwumn (e.¢)vjmj(ok.¢R)l j mj' im' "& Dlo*2i m.m. ('¢R'6R'¢R)Yz.+21.m'(6’°)Yj'mj'(°R’¢R)> ' jimj. g 51.(2-2.)/2 Cvi‘v1(’)°(1) . .1/2 1/2 2 1 2 ' 1 0 ° 0 O I j‘ ) gj * ) 2‘ C(j LJ;,mj mzmj +qg C(j.£jlgm00m0)6(m.c.m)(m.+m°) {(jx‘mo)! J 2 J 136 (jg-mg)!(j;+mj*mo)!(jn-mj-mo)l(j+mj)! (j'”5)'}1/2 51/(j‘+j+2)' RX 2(-1)"“k2 (5t’5'kn'kz)!(kn‘kz*2)! {(jl'mj‘mo'kx)! (j;+m.+k1)!(k;¢mj)!k;!(j-mj-kz)!(j.k;)! (k;+mj)!kz!(kx+kz+l)}’l (c.19) E E Gi,(£-£o)/Z Cvifvi(r)a(1)l(jmj£m£mo) (C.20) So that - Wm) 2 [ 1 V1fllZI+Is j£(k°r)6mjmj06m£06vv06jjo + ik .r f . . . r + 6. e VJ £m£.VOJOmJ-ogv3mj ( ) E 19(£'£O)/2 .(r)I(jmj2m£mo) ] a(1)xv(R) (C.21) cvifvx Thus the desired wave function is 137 WJMj£(N+1,§) - 2 C(sz,mjm£M)2Yzm£(9.¢) mzmj yjmjceR.¢R)w“(~) é [ i2/TfiTYTTTT j£(k.r) “k .r a a 6 5.. +e1v3 f . (r) mjmj. mgo vvo JJo Em£,VoJoijijj + E 6i.(2-z.)/2 Cvifvi(’)l(jmj””t”°) J (1(1)de = v”(N) { C(sz,mjsz)2 [ izltiTZITTT' vmzmj j£(kor)6 5 + eikvj’ 6 6.. mjmjo mzo vv. 3]. .f f2m£,vojomj.,vjmj(r) + E 61,(2-£.)/2 CV1 vi(r) 1(jmjzm2m0) ] nglwmfljmj(6R.¢R)a(1)xv(R) - (C.23) ‘ Rose,gg,cit..p.60. 2 ibid.,p.58. 3 ibid.,p.sz. I. 10 20 40 APPENDIX D Listing of Computer Programs The program used to find the H1 wave function was: FROGRAM ENHAPZ EN! I 1.23 I Z! I [022 n-I.zs DO IOOKI|02 ALPHA-IoBQOOoOOIDK PRINT 3009 DO tOolIIOS EN?I|.84+!I¢O| PfltNT 40 DO lOoJcto? 22-J.I°l 0'0? EIEOEL(FNIOEN?QZIOZPODQALPHA! PRINT ?OoEoZ?oFN20ALDHA FORMAT‘30XOF?OQHOGFIK03) FORMAT‘CI'PI X'ENFQGY‘IJX'Z?‘13X9FN7’.I ‘x‘ALW‘.IOX.RI”BOJ’ FORMAT ( X) END FUNCTION EOEL(EN10FN2021OZZORQALPHA) TYPE REAL INBETA ENSIEN!+EN2 3 25-21422 I RHOIOZl'D s 9H02-2909 I Al-zoenl A2-2GEN2 I 82=A2+l s C2-AZ-? s DZIA2+2 3 63-4263 sBl-AIOI GEMS-GAMthENs-loOo)SGHPIGAMINCBPOOo)185"'N$‘lS'ENS'CEVS-3!.GENS EONE I 2202?6(EN?+a)/cA?O(A?-l)3 ETUOA I GAMINCAZORH02i/GH2 ETwoa - (l-GAMthn?onH0?I/Gn2)/RH02 ETUOC - 9H02-DH07IGAMthC?09H02)/(pofiocn?) ETUOO I od'(O?On?-GAMIN‘F309H02)/Gn?)/RHOP'.3 ETHREE I 2'2!‘lNfl€TA(Z?/ZSOD20AI)IFNI EFOUR I 2.2?IINRETA(Zl/ZSOB!oA?)/EN? EFIVE-¢?OZI)Iinli¢?!2?)OGH?*GENS'BSOINHFTACofioENS+zoENS-|)ltcnnth caxoo.).on?n259o(20r~s+1a-1.s: ETHO I 4‘22.(ETWOA+ETWOB+ETHOC+ETWOD) S CPEP . ETHPFEOEFOUQ EDEL I FONS OALPHAGCEPEP-ETUO-EFIVE) END PE‘L FUNCTION INFETI (XOPOO’ BIO S NIO PNIp+N I CNIN lF‘O-NOFOQOo) GO TO ? Bast-1)IoNIXG.DN/¢0N.GAM:N (O-NOOQ)IGAM1N (CN+1.0.)) 8.6+8A s N-N+1 8 s-na':o.~.a/n s IF (Sisocfnlol 102 lNBETA-B'GAMIN ¢P+OoOo)/GAMIN (9.0.) END 138 II. IO 00 IS 20 29 139 The program used to find the R} wave FDOGGAM FNFINO TYDF DOUflLF 7 COMMON ll/C(?0I)0FN(?00I COMMON I 2 I FDFLAOFOFLRFALOALPHAQQ COMMON I J / FINTOFKINETICOM COMMON I I I loJoMJ COMMON I FIX I 2(?04) ENNIloJoKILIIFN(IoJ)+FN(KoLL IZ¢IOJOK0LIIZIIoJIOZCKoL) “OIOZS I “-0 [3-0 M330 00 I00 II-IOO DO IOoJJIIOZ EN‘JJOIII-C‘JJOIIIOZIJJOIII.O CONTINUF ENIIOIIIIOZJ I ZIIOII‘IO?Z D C(IoIIIIo EN(20IIIIOS7? I 2(POIIIOO“?7 ENC2021I20960 I 2(?02)I206‘5 EN‘ZOJIIIOOOIOQ ZI?OBIIBQ?68 ClzolI-Q7IQI7Q $ C(ZOPIIOAJQZ76 D C‘ZOBII'OOSBZOI ALPHAIIOBIB JIZ JI3 II? IJI! FFIFACTOPIII CIIO])-FFIC(IOII I C(IOPIIFFCCII0?I C‘IOJIIFF0CII031 I C(IOII-FF'CCIoIl CALL ENERGYJ D?IEDELA M2.” MSIMJ JIJ-l IFtJoEOoO) JCS FP-FACTOP‘II CIIOIIIFF.C(IOII 8 C¢I0?I-FFOC(I02I C(IOSIIFFOC(IOJI I C(IoIIIFFICCIoII CALL ENFQGYJ OIEDELA PDINT 500 function was: ST? 57' IO I0 I' ‘ISoLTo?I pnINT IOOOFOFLQFALOFDFLAOALPHAOROI‘CIKOLIOLIIOOIOKIIO IOO 2?).(CENIKOL).L.1enjoK-IQPIQC(ZIK9L30L-1o‘IOK-loz) ISII IIIO NED! IF (4.50.1) ~E-2 "I." Hanna CALL ENERGYJ IIIO DIIEOELA EN(I¢JI I ENC!0J)O.!OINE ZIIOJIIZ¢I0J3+0100NE CALL COPY I1III+I IF (EDELAoLToDII GO TO I! CDELAIOI E~IIOJIIENIIOJI‘OI..NE Z‘IOJIIZCIOJI‘OI"NE IF (IIOFOOII GO TO 20 GO TO 20 DIIEDELA ENIIOJIIENIIOJI-019.NF ZIIOJIIZIIOJI-OIC'NF CALL COFT IF (FOELAOLTQDII GO TO 20 EOFLAIOI ENIIOJI I EN‘IOJIOOI..NE zcloqgnz¢lo4)+.:oouc I200 20 29 20 3O 50 60 I00 200 300 ADO 500 I0 140 Dl-EOELA ENlloJ) I ENIIOJI¢.1IONE ZIIOJIIZCIoJI-ozIINE CALL COpT I?II?¢I IF IFDFLAOLToDII GO TO 30 3O EOFLAIOI ENIIOJIIFNIIOJI'oIIINE ZIIOJIIZIIOJI+II"NF u: ”2.50.” 60 TO so 5° co TO 60 6° DIITDCLA r~(|.4)¢rn(loJ)-ol"NF ZtIoJI-7(I0J)+ol¢INF CALL (DDT Ir (FDCLAOLToDII no To 50 9° . FNIIOJI I rNIIoJIOII"NE ZIIOJII/IIOJI-ol"'f CALL COPT mum wommmmrunola 30° M'IM-MI MQIMJ-MA IFIIMQoGToIIIORoIIPOGTOIIIORQIIIoOToIII GO TO GO NEINFII IF INEOLTIO‘ GO TO GO ID MpaM-M? MfiIM3-MR DOINT POOONOM90M30M5 QOO INN? qoo ‘ goo CALL PSIGQAPH I3II3+| PRINT IOOOIS IIIIIQOO IFID?.GT.EOFLAI I3IO IFIDZOGTQEDFLAI 02IEOFLA PRINT IOOOIJ IIIIIAOO IFIIJOLTOEI GO TO 9 5 PRINT QOOOIJ IIIIIQOO FORMATI/O TRUF ENFOGY I O'IHIOOIOXOADJUSTED ENEPGY I QFlzoB OIOX ?IALPHA I OF7voIOXCP I .F601/l. C(IOJI I ‘HFISOOI. ENIIOJI 3- IRFISQOIO ZIIOJ’ I 'RFISOOIII 'OPMAT I. FNEDGY3 CALLED .Iq. TIMFS ITOTALICI. FNFQGYS CALLED CI! 2. TIMFS (THIS TIMF)./. COPT CALLFO .Iq' TIMES (TOTAL)./. COPT 3 CALLED .III TIMES (THIS TIMEIII FORMAT (I MIOIRQ7XOM1IGIRO10X9NEIOIQOIOXGIBIOISQTXOIAICIEIOIOI FORMAT IIISI IIIIIIII FORMAT (01¢) CONTINUE IIIIIIII END SUBROUTINE COD? TYPE OOUBL! 2 COMMON II/C(204)0FN¢2043 COMMON I 2 I FDFLAOFDFLREALQALDHAQD COMMON I I I IoJoM3 COMMON I Fix I 2(20A) DIMENSION cpxcn) MJIM3+I FF-FAcTonct) C(IOIIIFFICIIOII I C(IOZIIFFOCIIOZI CIIOJIIFFICIIOJI I C(loA)IFFICIIoA) CALL ENCRGYS DIIEDELA - IIIO I2IO NCIZ ‘ ' - CQIIIIIIQ CRI‘ZIICIIO?)/Ctlol) CRICJIICIIOJIIC(IOII ' 1 "" r CQIIOI'CIIo‘I/CIIOII OIDI CRIISI-CRIIJI IF IIZOEOOOI CPICJ)ICPIIJ)+0100NC IF (IZOEOOII CRICJIICPIIJI°II.'NC CIIOIIICRIIII I C(lo?)-CRII?I I C(IOJIICRIIJI I CIIOAIICRIIAI '- " 'FIFACTORIII C(IotIIFFOCIIotI I C(IOZIIPFOCIIoz) C(loJIIFFOClIoai I CIIoIIIFFIC(IOII CALL ENFRGYJ DIIEDELA 141 IIIII+I "”‘” IPIDIILTODI GO TO IO II DIID CRIIJIICRIISI ' ” tail! I'IIIOEOIII GO TO IO IO C(IOIIICRIIII I C(IOZIICQII?I I C(IoJI-CR|(3I I CIIQQIICfijIAI FFIFACTORIII C(ICIIIFFOCIIOII I C(IO?)IFF'CIIO?I CtloaburFICIIoEI I C(IoII-FFGC‘IOAI CALL ENFRGYJ NCINC+I IIIO I l?-0 IFINCILToGI GO TO IO IO POINT IOOOCDELREALQEDFLAOALPHAon.I(C(KoLIoLIloAIoKIIozIOCIENIKoLIo ?L'I"I‘KII0?IOI(ZIKOLIOLIIOIIOK=|Q?) I00 FORMATI/G TQUC ENERGY I IFI5ODOIOX§ADJU$7ED ENERGY I G'IZI9 OIOX QIALPHA - ~r7.4oloxon - «75.3/Io C(loJ) I '8Fl506l' EN(IOJI 3n IOFI506/I 2¢IOJI I ‘0F1506l/I END SURROUTINF PSIGDADH TYDF oounLr 2 OIMFNSION OLOC73lonOLDI71) COMMON II/CCPoanrNIPOAI COMMON I fix I Z!P.4) A(noC)-CII¢.I~n+.n)InAMIN(n+1.0o)oo.fi 51! AIIA(?'rN(?0130907(POIII azuntporntrorsorl7t?o?)! A1.A(;otNtno3)o?.zt?oJ)) SUMIISUnyuhUMupnfluMauo. SUMIR-SUM?3-uuua.a. DO IOoII|o7\ IO 93-II-IIIOo? DELTA-o? IFIIoLTo??I n1III-II.OI IPCIoLTo?2| DELTA-o! lPIloGFoJR) "acct-23.0.4 lPIloGFoS?) OFLTAIoI PSIIIAIOQROOtFN(?OII-IIOEXDt-n302€?oli) PS!?-A?On300¢FN¢20?)-IIOEXPt-nanz¢7opgg PSIJIASORIOOIFNttofli-|IIEXPI-RJOZI?03II RPIIPSIIIQJ n92-PSI?lR3 RPS-9513093 SUMIISUMIIDELTACDDI'DDI SUMZISUMZIDFLTA‘DP?I992 SUM3ISUM3+O€LTACPP1¢PP1 SUMI?ISUMI?+OFLTAInPgCOP? SUMISISUM13+OFLTAIIPI0993 SUM?3ISUM?3+DELTAI9920993 PSIAIC(?0IIIPSII¢C(?0?IIDSI2IC(ZofiI’DSIJ RPo-DSIIIRJ SUMO-SUMAODELTAGGPAIDDA DIIV-PSII-OLOIII fiOIFF-PPA-POLDIII OLDCIIIPSIA ROLotlI-ppo IO POINT |OO¢93095I1099!OPS!#oDP?oPSljonfiaoPSlaoRflqooIF'QODIFF ODINT ?DOOD1OSUM1oSUM?oSUM30$UM4 PRINT JOOoSUM12.SUM13oSUM?3 IOO FOQMAT (F7.3¢S(FI?¢I¢FIOQSII ZOO FORMATI/F70304(I2XQF1OQIII 300 FORMAT I/I SUMIQI'FIOQSIO SUMIJI‘FIOoSII SUM23-.'I°OSI END SUBROUTINE ENEPGVI TYPE DOUBLE 2 COMMON It/Ct?o¢)oFN(aoAI COMMON I 2 I EDELAoEOELnEALoALPHAon COMMON I 3 I EINToFKlNETICoM COMMON I PIX / 2(z.4) ZZCIoJOKoLIIZIIOJI+ZCK0LI 57' RHOCIOJOKOLIIQI'DUZZIIOJOKOLI 57' ENNIIOJQKOLIIFN(IoJI+FN¢KoLI “ ‘ 37' AIBQCIICIIIosIH+05IlGAMINIB+I00-).905 ‘ 57' MIM+I EINTIO DO IOOKIIOI I00 I00 200 300 20 IO 30 142 IF I C(20KIOEOoOoI GO TO 10 "DO IOoLIIoA ’ ‘—' ' "' “" ‘“"—__"‘”” IF I C(20LI0EOoOoI GO TO IO REPSUM IO 00 ZOoIIIoa I“ A».. -Wr__v IF (CIIOIIoEOoOoI GO TO 20 DO 200JI104 IF IC‘IOJIQEOoOoI GO TO 20 - - -- REPSUN IREPSUM +C([OIIOCIIQJICAIENNIIOIotoIIoZZIIOIOIOIII 2'AIENNII0J010JI02211oJoIoJII*PEp(IoJoKoLI CONTINUF ‘- EINTIEINT+CI?0K)Ic(20L)IA(ENNIZoxofioKIOZZIZQKOZOKII'AIENNIZOLOZOLI ZOZZIZOLOZOLIIGIPEPSUM-ATTQIKOLII CONTINUE - ' ‘ ‘ EKINETICIO DO JOQKIIIQI IF ICI20KIIIEOOOOI GO TO 30 V _ T. 00 BOOLIIIIQ IF ICI?OLIIOEOIOOI GO TO 30 PANT] I ZIPOLII‘ZIPOLII‘ENI?OKIICIENI?0KII'II‘2‘ZI20LII'ZI20KII J zisnczoLx)lENcaoK:)+Z(poK1302(2oK1)¢EN(2oL1)9(EN¢poL|)-lI-?922(2.K1 PART| JoZoLITIOz PART: PART? - AIENN(2.K1o2oLx)ozz¢2.K1ozoLlI’loaozicunczoxa.2.L1)I¢ENNC2 PART: zoKIoaoLns-n) PAnrz Pants - CIZoKiI'CIZOLII'AIENN(?0K|¢20K|)oZZ(?oK1020K|))9A(ENN(20LI PART; 2020L1I022(?0L!o?oL1)) PART: {KINETIC I EKINFTIC-PARTalpARTZIPARTI CONTINUF EOFLPEAL IFKINFTIC+EINT ' ’ EOELA I CKINETIC+ALPHAIEINT END FUNCTION QFPCIOJOKOLI TYPE DOUHLF 2 COMMON II/CtzoIIoFN(?oII COMMON / FIX I thoA) TVPF DEAL IMHFTA zzca.n.c.n)-/¢A.n)+7¢c.0T 57' OHO‘AORQCODII.G'D'7ZIA000CODI STF FNNIAOHQCODIIFN‘AONIIFNICIDI STF FNCIIOJQVOLI I FNfi-VNHIIOJOVOL) ST? an‘IIOJOKoLI I INNVTOI27IIIJOVILI/ZCQCNNIIoJoRoLI‘IorNCIIoIQKOLIIDTF "FTSIIOJ~VIL)olrrrTAI?z¢toJoxoL1IznorNNtIoJ.r.L).flornc¢IoJor.L)-1)nrr AcnoC)-(II(.q-n¢.q)InAM|M(uoxoo.loo.a 51; [NS I CNIIOIIOCNIIOJIOFNIPGKIOFH(?QLI . 25 I Z!:.I)¢7¢1oJ)¢z¢nov’+th.L) arm - poananopoL) Human-InoJT-uzznuuuno I" aAlENNI?oKo?oLI027(?0K0,0LIII..? REP: I zouETAttoIoch) IIACENNCPQKQZOLI-I022(29K920LII. 5 ?A¢ENN(IoIoloJIoZZ(IolotoJIII003 9:93 - Ito/1IBET3190KOIOJI Itacruutuolo?oL)-7022(IotozoL)IO ,AIFNNI?OKOIOJI+IOZ7IPOK0IOJIII'O? “FPO I Ila/1ODFT1IIOI0?OLI IIAIFNNI?QK9IoJI¢chZI2oKoIoJII. ?A¢FNNIIOI070LI+1022(10I0?0LIII.'2 DEPIREP|+RE92+9693¢QEPI END FUNCTION ATTPIKOLI TYPE DOUBLF 2 COMMON l!/C(?odIoFN(?oII COMMON I 2 I EDCLAOEOFLREALOALPHAoR COMMON I FIX I 2(20‘) 22 I 2C?0KI+Z(20L) RHO I 05.9.12 CNN I EN¢2¢KI+FN(POLI N"N-‘Uhl nfi’I Hell “6’! REF? HE’S REFI “6" REHO ATTR I ?I22"FNNOIGAMINIENNQQHOIOIIQHOG(CANIN(ENN+IoOoI‘GAMINIENN+ ATTfl I 21ODHO!)¢.IOQHOOOPIGAMINCENN-zoRHO)+oIIPHO..JI:GAMINtENN+JoOoI-GAMI ATTR z 3~¢z-+3.nn0333 AT?“ 3 END FUNCTION FACTODIII ' " “ TYPE DOUBLE 2 COMMON IIIC¢?ooIoEN(2oII COMMON / FIX I 2(2oai ENN‘IOJOKOLIIFNIIOJIIFNIKOLI STF ZZIIOJOKOLIIZIIOJIOZIKOLI ST? AIBOCIIC.‘¢ISIFOOII/GAMINIF¢IoOoI.’05 STF CCIJOKIOCIIOJI.CIIOKI STF IFICCIIOZIOEOOOI GO TO 2 2 rll..I I (III-II. I] 143 FACT|ICCIQIIICIIoPIIA|PNNII0I9I0lIoZZIloIoloIIIOAIINNCIODQIOIIQZII QIOEOIOPIIIIACINNUlu|oI0II022CIo|oloDIIIIP| IPCCCIIODIoEOIOT an TO 3 3 FACTZICIIOII'ClIo‘)IA(fNN(IOIOIOIIOZZIIoiolo|$IIathNCI030I933922( zloaoIOJII/IA(FNN(I01OIOJIOZZIIOIOIOJII..2I |F(CC(104I.EOoO) GO TO A I FACT3-c(to:)oc(10¢)ca¢FNN(toxotoggoZZtl.‘o|ogg)IA(ENN([o‘cloaonZI ztooolo4)3I(A(FNN(xo1o1c4)022(loIOIOIIIOOZ) IF!CC(203).EO¢O) GO TO 5 5 FACTa-CCIoZIOct103)§A(ENN([020102)oZZ‘IchIoszGACENNIIoaoIOJIOZZI 2I03‘I03II/‘AIFNNIIO?OI03IOZZII020I03II..2I IFICC(2.4).EO¢OI GO TO 6 6 FACTSICIIO?)ICII0A39AIFNNIIO?QIO?IoZZIIo?oI02II’AIFNNIIOAOIOIIOZZI ZIvoloA))/(A(ENN([020I04)022(loZoloAIIII?) IFICCIBOQIIEOOOI GO TO 7 7 'ACTOICIIOJIICIIOAIIAIFNNIIOJOIOGIoZZIIofloIojIIOAIENNIIvoIoAIoZZI 2IvoloAIIIIAIFNNIIoaoloAIQZZIIODQIOAII..?I FACTTICIIOIIIO?+C(I0?I.OP+C(I03I'O?‘CCloIIIoz FACTQIzOIFACTI+FACTZ+FACTJOFACTIIFACTSOFACTOI FACTORI(FACT74FACTOICCI-ISI END 144 III.The program used to find the scattering amplitudes and phase shifts was: DROGQAM NUI TYDE COMFLEX SUHOPARTZQINCQXQDSIIoDSIzoDSIJQVPvoEXCNoCOUL RHIHIR‘R STF HUI? NUII NUIO PQIIOI BIIfloSRfiI BSOIA028778 DIOR-60002flo BSOQ7I36003IH HIOQJI21603I3 D?I09641806 P?2I03QR°4?3 BSOQIIHSOQ?O.? DSOQHIBSOQP.B§093 HSOQOIBSOQSI'? DSOQTIBSORJ'BSORA DO acct-10:5 RIO. UNIII5¢0059I SUMIO. CI. 0038080380 C?I 5020563707 CAI 0.076IIOOO C7II0772‘539.I073?OWOB IO CONTINUF IFIROLTIIOI FPSIQOI IF (RoLTooOOOII EPSIOOOI RIR+EDS RKIUNIR SRISINIDKI CRICOSIRKI TIISR/PK-CR JIITIIPK JEISD-JI'? J3I(?-°KO’?I'JI'?°J? IF (NUoFOoO) GO TO 60 IFINUOEOQIII 60 TO A0 IF (NUoEOozoI GO TO 50 GO IPIOoGTo 07) GO TO 61 rgpn.aso.pao(g/(poQ).aztncn)+|/Pno(pocl13-6!(aoPI-tlasonicl‘209!¢l 2/85092O(?OG(3)-Glt3o93I-I/HSORJ'GI(I.R)+l/RSOPAO(?IG(5I-Gl(5099I-I JIBSOQSIGII609I+IIBSOR6.(P'G(7I-GI(TORII-I’95097.GI‘O‘PIII GO TO 80 61 IFIRIGTOIO‘I GO TO 62 TERMIBSOI920(1/(QO?I'(?'G(II-GIIIoRIIOI/QQ*IGIIIQRI-I/RSOQ'GI‘ZOQI 2+1/950Q2IGI(309)-1/85093IGI(don)¢|/RSOQQIGI(IoRI-I/OSORSGGI(609I+I 3/85096IGI(TORI-I/BSORTOGI(Hon)II GO TO 80 62 CONTINUE TERMIBSOIP2OGIII/Z GO TO 80 I0 IFIRoGTo O7I GO TO A! TERM-BSOIP22II-Gl(2.9)IP+9IRRI(GI(IoR)-1InSOR0(;¢c(3)-Gl(3.9)aol/n zsonzicx(A.9)-1Inso93-(2Oatsy-ot(Ion,)+:/asonaost(gong-gI850P50(zOG 3(7)-GI¢7.R)Tot/nsonoocl(noPI-xIaSOn70(ZOG(9)-Gl(009!!!) GO TO 70 A: [PIPIGToIoAI GO TO 42 TERM-950.9?PI(-GII?QDI/D+2/DQO(GII?oP)-I/RSOQ.GI(309)01/99097’5I(C PoRI-I/nSOQSOGI(Son)+1/n509406l(609)-1/RSOWIIGI(709)41/RSOQ6'6I(aoR SI-I/HSORTGGIlOoRIII GO TO 70 on CONTINUE TERM-O " GO TO 70 9 s a... I. “ « rO-ulw. ‘3 SO 51 52 80 70 .0 .0 OOO 30 IO 20 145 IPIQoGTo 07) GO TO SI TERM-.HODSOOP??CIIla-(2'6!(noRI-GIIIoRI3+?IROOI406IJI-?°CIIaoflIOOI ?(|oR)-?¢G¢II-I/nSOOOI7CGI(sons-6|(pow)3+I/R5092-(4OGISI-206I(Gonoo 36l¢3¢9)-?¢GI‘)I-I/RQON1GI?OGII6oQ)-Gl(Con))0l/HSODO’IO'GC7)-?'Gli7 aoPI+GII:oO)-?¢GIKII-I/nQODROI?OGIInoOI-GIIAoD))sa/nsonaocguccq)—7o SGI(°QQI+GI(799)-?.G(7)I-I/nSOQTGI296!(:OoRI-GIIHQRIIII GO To 70 IFIn.GToIaAI no To 5? TF9M-.R‘HSO¢P?P'II/RII4‘G(1)-?.GII1oRI+GI¢1901-?OGIIII42/DROIZOGII ?aoRI-GIIIoPI-IinsonitrsnI(A.9)-GIIrow))oI/nsonyee7onltfion)-GI(3.n) 3)-I/nSOO1'(?OfiI(ficQI-GIIQOD)IeI/flSODaII7'filI7onj-GIIQQD))-]/RSOQSO QIpnfilInonI—GII600))+I/n50fl6.‘?061(QQRI-Gl‘Tofl)I-l/050n7.‘?‘6l‘1009 5)-GIIAoDIIII GO To 70 CONTINUF TFQM-O 00 To 70 CONTINUF XI‘OeOIQI’DK PSII-IoocP.)5C7'JI#1066.(CI‘RO'oflnfiirxpt-.607|PI+C?'N"I.387’FXPI- 27.7%?09)I PsI?-Io.or.IOCTOJ?¢1ece0ICI09'0ohflfi'FXpI-oAOT'QIOI.682-o6070DI*C?0 poo-I.nnpOFXFI-?oTQ?ODIOIIoFNP-?07%7ODII PfiIa-IogoI.)or70J1o10reoIClino-can70rpr-onovingoI-.An7¢o1In/?-.oo 9?O.68?OR¢I.OOTOflIOO?I¢CPOCIIBS?OoAR?/'-?07%?OIolfla;§ot?0782'fli.070 3D ' VHeIPSISoflSIzI EIC?I1OCOOI|/D .020ICI9IoP?T.|I-?o0I?IOIGAMINI?.n]?sOoi-GAHINI?.O| ??olofl?7OQ)I+C‘O1oflTfiiOI-Ooon?)0(GAMINIc.0a900oI-GAMINIO.OR?.3.07?O ‘n$"+9 C¢C|.Ioflfl700¢oOHflI'GANIN(.0030!ofl?7.n)‘C?O1007?OOI¢I0082,96 OANINIIOOR?01007?OQIII AQCXCHIDQUN’ COUL-I/DO(7.40OOI-I.06)O(GAMINIIoOfiOOQI-GAMINI1.460?.QOOR)I¢?.OOOO pI-o06396ANINI.4607oeaOnIIODSII-A/a-tXC?/6 INc-ICOUL+II/InoIaIQOP6R1RGI.77?4R15)0Trnu+1.-.qenx.O2)OPs|1-vngoc 2FXPI-XIOEDS Go To an CONTINUF XI‘OOOO-'C’.'N.Q Ffl-CIOPOOoenr0FXOI-o607.DI¢C?0R0¢Ioafl79£xp(-7.7q?09: INC - Coornocrxpcx:ap2p¢759uza.Iagqq;65.¢rps 'F‘NUOEOOI’ INC'491NC CONTINUE SUM-SUMolNC IFIOoLToSoOII GO TO IO CONTINUE DARTZISUMOUNOIoooIo)/IA030I4I%926HQOI07724538) Ir INUoEOoo.I paaTa-pAnTaog AMP-cABSIDAnTa) PAnfz-‘OooIoIOCLOGIAMfi/PAOT2I/JoI4I592654 AMP-AMPOOz POINT aOOoNUoUNoAMPoPAOTz FORMAT (OH NUIOl2.IOXOJHUNIoFSQQOIOXsOHAMPuoEtSOTOIOXOCPHASE SH] ZFTIDoCIFIOoSoFIOoSIoIOH TIMES PI/II CONTINUE END FUNCTION GIN) GIGAMINIoSUNoOo) END FUNCTION GIINoxI Gl-GAMINIoS'NcleoSGSI "IoO-ZOXIOOPI END COMOLEX FUNCTION EXCH (QPQUN) TYPE REAL LARGE R-eOOOI EXCH-IOooOo) _ _ CONTINUE QKODOHN 59-SINIQKIIRK-cOSIBKI CIQCIoTTZOGJGOIOTSZOSOO Ex-ExOI-I02209I IF InoLEoflfli SMALL: 900.23’SROC/99902 IF (9.67099! SMALL. Root-ZoTTIosn.COQP LARGE-EXOSMALLGoOOI/HN IF (PoGTooII LARGEIIOOLARGE IF ‘RoLTooOSILADGEIoI.LAPGE EXCHIEXCH+LAQGFGIOoOIoI IF (RQLT0003)GO TO ?0 IF ‘POGTOOOQOO°) PI90001 IF (RoLTeoI) DIQ+OOOI IF InoLTo9I Go TO IO CONTINUE If CQ.LT0.0J’PIR+QOOOI IF IRoLTeeOSOOI) GO 10 IO END IV. GAMIN(ALPHA,X): of the form GAMIN(ALPHA,X) are in fact calls to a library 146 In the above programs variables subroutine which calculates and returns the value of r(a,x), the incomplete gamma function. The same subroutine can be, and is, used with x-O to calculate the gamma function wherever it is needed. V. Data: amplitudes ‘1. OH. ‘J' hfi' ‘0' ok- UU' In. \UI bu- HUI wu- nu- a“. ‘9. .1 10' U”. ‘U' UNI ‘9' bk. VUI_ Lu. ‘0' un- _ HUI. the ‘0' an. The original output, listing the scattering and phase shifts, is here reproduced: 0-30 c,2! 0.20 6.3, 00‘. 00‘, c.90 :.*o .06, 0.70 0", 0.90 3.05 Al'- ‘n" An!- 1". 1.004;:o:-..; 0.099300‘...; 9.‘3649’4°°°3 ‘o‘737’oo-oui Sol!!2051°n31 3-:oz°no?'nos 2.3“:352-ooi ?.‘393052-001 2.7.3377‘000‘ 3.6490923'001 ’.167Oo¢J-co: 7.4003882-001 I.o400051oooo 1.421115:oooo 10"9’..7.... Paola IIIIII rugs: .ulf'. runsi salty. '"*si 3‘1'1- '“I‘g SHIIT' Pupsi 8H]!!- v”ési s""1- ruas: ‘ul'T. Pw0§§ IwIIYO PNQSk Sulfi- r"figi gfllrve ruas§_1ulrt. puOsi sultr- rHIIE untri- rwal BuIrII '|og7860 -|,22102 O..27,!O .0.5J099 of.cov;7 -l.¢97;3 ...sgaos ...?zilt .‘.I)O.g '00’6’0: ..93072 -Jflfl” 0,7973. e.v4277 : Cubic!) tints PI t'u‘: r' vans: r: t'u's p' runs: at tint: on I'n‘t P' tunes PI TIN!‘ PI TIMES Pl I'N‘I " VIHCI 'l TInEI rI IIHII pl VIII. Pl \J' VU' Vu- VUI NUI \Ul \J' VUI VU‘ ‘0' \UI \UI VIII VUI NUl NUI VUI Nd- NUI NU. VUI VUI VUI \UI \Ul ‘0' \UI UNI Hu- UN! UNI UNI UNI UNI UNI UNI INI UNI HNI UNI SNI UNI UNI UNI UNI UNI In. UNI UNI In. UVI uNl UII 0.23 0.?5 0.3. 0.35 0.‘0 0.‘5 0.50 0.55 0.60 0.70 0.75 0.05 0.90 0.25 0.30 0.45 0.00 0.55 0.60 0.69 0.70 0.75 0.00 0.05 °.°0 IMP. AHPI InPn AnPI AIPI \HPI .nIo AnPI An!- AnPI AnPe AnPo IHPI tnPn ArPI AHPI Aura AnPe AnPe In!- An!- AHPI AnPe AMP. AnPI IHPI AnPI An!- AIPI AnPI 147 Io’I!!I!!°!!! 7.12‘7944-00’ 1.0251240000. 1.3989499-00I 3.0l86231-000 9.2907630-000 ?.e339384-ouo 8.4236690'000 6.0674250-00I 4.7040309-000 2.914050I-000 6.3100870'000 7.17044930000 (.0747209-00! 9.0200I730000 4.1600703001! 6.023052l'018 9.7490i01'013 1.3010289001! 1.02070200012 9.30773100012 3.0‘05792'012 3.0232271'012 ‘o72‘7315-012 Z.7673024¢012 (.900Q706'0l2 0033050090012 9.9009050-012 Io1I72904-01I 1.8072650'031' Degas Pufilt pagan PIASR PIIS: PEAS: PIGS: PHASE ruAsE PHASE PHASE PI590 PHQII 'NISI PIAQI '"900 m' as '"PSE PIISE PNlSE PNOSE PNISE PIISE PIAIE PIAIE wuasc PHASE Pwaee Pwawi PHONE IIIP'I yuIFTu SNIIVI SHIP!- SHIP!- salt:- SHIV!- SHIP:- SNI'II INIITe SHIP!- SII'VI IHIPYI l SNITV. ,NI'VI IIIPVI ’NI'YI IIIFT. III'VI SHIV!- !H|'Ve IHI'VI )NI'VI IHI'VI unlit. SHIFII: ,NI'VI fiNlPVI bulfVI INI'VI 'UIIIIII oo.sssil -I.94213 -I.50vis 00.55017 -o,soaio -l.srozi -d.57724 -I.setzs -l.5912| -o.svo:1 ..0I0,33 ....‘23‘ ....t". 00.02041 0.53!!! 0.93076 0.54003 0.50953 0.55400 0.55571 0.56264 0.90014 0.9091? 0.57I7I 0.9749. 0.!7’6! I.!7eei 0.9777: 9.000... VIII! VIII! VIIE! VIIII VIII! IInEI TIME! IInIl IIuEI VIII! VIII! VIII! IInII VIII! VIII! VII!! VII!! VIII! VII!! VIII! VINE! VIII! VIIE! VIII! IIuEs VIII! VIII! VIII! VIII! VIII! PI PI PI PI PI PI PI PI n PI PI