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ABSTRACT

THE USE OF EMPIRICAL

BAYES ESTIMATION IN AUDIT TESTING

BY

David William Wright

The objectives of this study are to propose and

investigate empirical Bayes estimation as a tool useful in

efficiently integrating the results of certain audit

procedures. Empirical Bayes integration of audit evidence

is analyzed across two domains -~ interprocedural

integration of evidence gathered from statistical sampling

and analytical review procedures and interitem integration

of statistical sampling evidence from several similar

accounting populations. The use of empirical Bayes

procedures is considered for both major phases of the audit

-- internal control compliance testing and account balance

substantive testing.

The parametric empirical Bayes (PEB) estimator requires

the auditor's estimation problem to be routine. Thus, an

unknown parameter is to be estimated for each of several

similar accounting populations. These parameters are

modeled in the Bayesian fashion as realizations from an

underlying prior probability distribution. The objective of

PEB estimation is to partially exploit the efficiency of
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pure Bayesian procedures while avoiding the risks from the

misspecification of parameters in the prior probability

distribution. PEB estimators are essentially Bayesian in

style, substituting estimates for the parameters of the

prior probability distribution obtained from the sample data

itself in lieu of subjective prior specifications.

The PEB estimator for population error rates during

internal control compliance testing has a frequentist

interpretation as the James-Stein (JS) estimator. The use

of the estimator in these circumstances was considered from

both the frequentist and Bayesian perspectives.

The efficiency, bias and reliability characteristics of

the estimator were examined over numerous realistic audit

scenarios using both exact numerical computations and Monte

Carlo simulation methods. In general, the results showed

the PEB/JS estimator was universally efficient relative to

classical sampling procedures currently employed by

auditors. Confidence interval procedures for the PEB/JS

estimators were shown to produce reliability levels of the

same relative magnitude as classical procedures with

narrower confidence intervals. Finally, relative to pure

Bayesian estimation, PEB procedures were shown to avoid the

inefficiency and unreliability induced by subjective

misspecification of the prior probability distribution

parameters in pure Bayesian estimation through the objective

estimation of these prior parameters from the sample data

itself.
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CHAPTER I

INTRODUCTION

The objective of an audit is the expression of an

opinion by an independent auditor regarding the fair

presentation of a set of financial statements. The

formulation of this single opinion requires the auditor to

integrate the results from a series of subsidiary tests and

analyses of the reported account balances and underlying

accounting system. This integration is performed across at

least two domains -- the various account balances and

control procedures which must be tested and the various

audit tests employed for each item.

Among the ten generally accepted auditing standards

enumerated by the Statements on Auditing Standards (SAS),

the fourth standard of reporting specifies that the

auditor's "report shall either contain an expression of

opinion regarding the financial statements, taken as a

whole, or an assertion to the affect that an opinion cannot

be expressed." [AICPA, 1985, Section 150.02] This standard

requires the auditor to integrate the results of his

compliance tests of the client's relevant internal control

procedures and his substantive tests of each of the account

balances comprising the financial statements into a single

1



opinion regarding their fair presentation when "taken as a

whole." This form of integration will be referred to as

interitem integration.

The third standard of field work states that

"sufficient competent evidential matter is to be obtained

through inspection, observation, inquiries, and

confirmations to afford a reasonable basis for an opinion

regarding the financial statements under examination."

[AICPA, 1985, Section 150.02] This wide variety of

potential audit procedures (any number of which may apply to

even a single account balance) creates a second domain over

which results and opinions must be integrated. This form of

integration will be referred to as intraitem or

interprocedural integration.

The major purpose of this study is to propose the

technique of empirical Bayesian estimation as an audit tool

which is useful in efficiently integrating the results of

certain audit procedures over either of these domains.

These techniques are relevant to both major phases of the

auditor's examination -- compliance and substantive testing.

Specifically, the study will showrhow empirical Bayes

estimation can be used to reduce the auditor's expected

error when simultaneously estimating the company's

compliance with a set of internal control procedures.

Additionally, empirical Bayes estimation is proposed as a

method for both interitem and interprocedural integration by

efficiently combining the results of analytical review



procedures and the direct tests of balances during the

substantive testing of several related account balances.

The behavior of empirical Bayes estimators in both of these

circumstances will be examined by exact numerical

computations and Monte Carlo simulations.

The remainder of this introduction discusses the

general motivation behind the study of empirical Bayes

estimation, and the specific research objectives of this

dissertation.

1.1 Motivation
 

The need for the integration of audit evidence across

items and across procedures is widely recognized in both the

academic and professional literature.

SAS No. 1 indicates that auditing requires techiniques

which can effectively pool the auditor's judgment and

experience together with.collateral and direct evidence to

form a single informed opinion [AICPA, 1985, Section

330.09]:

The amount and kinds of evidential matter required

to support an informed opinion are matters for the

auditor to determine in the exercise of his

professional judgement after a careful study of

the circumstances in the particular case. In

making such decisions, he should consider the

nature of the item under examination; the

materiality of possible errors and irregularities;

the degree of risk involved, which is dependent on

the adequacy of internal control and

susceptibility of the general item to conversion,

manipulation, or misstatement; and the kinds and

competence of evidential matter available.



As early as 1961 Mautz and Sharaf in their landmark

treatise, The Philosophy of Auditing, recognized both forms

of evidence integration [Mautz and Sharaf, 1961, pp. 29-30]:

Having accepted the composite problem of a request

for his opinion on financial statements ... he

proceeds to divide the composite problem into a

host of individual problems, each of which is

related to the major issue ... Financial

statements consist of a large number of individual

assertions each of which becomes a problem or

proposition to be tested by the auditor ...

With his 'hypotheses' developed, the auditor sets

out to put them to the test. This he does by

selecting the audit teChniques that apply to the

given proposition and then determining the

puccedures by which the techniques will actually

be applied ...

Performance of the audit tests supplies the

evidence ... Once the evidence is all in, he then

evaluates it in respect to the financial statement

propositions. With these judgments in hand, he

proceeds to consider them all together and to

arrive at a judgment on the composite problem of

the reliability of the financial statements

themselves. This last step is an important one,

of course, and must be understood. In many

processes of judgment, the preliminary judgments

ferm.something of a Chain. A failure of any one

of these negates the final conclusion. This is

not so with an audit judgment. The final audit

judgment is not so much like a chain as like a

bundle of sticks. If one of them is weak or

broken, it weakens the strength of the entire

bundle, but it does not necessarily mean the

bundle has no strength. Thus the auditor weighs

the negative judgments he has made on individual

propositions against the positive judgments,

considering the relative importance of each one.

This leads him to a final all-inclusive judgment.

While Mautz and Sharaf are lucid in their description

of the decomposition of the overall audit objective and the

subsequent integration of the results of the subsidiary

tests, they fail to recognize the inherent complexity of



these tasks and provide little guidance beyond the excercise

of professional judgment for accomplishing this feat.

The Committee on Basic Auditing Concepts [1973, pp. 38-39]

described these operational complexities:

Auditors have long recognized that independent (or

corroborative) sources of evidences gathered on a

proposition tend to increase its credibility.

What generally has been overlooked is the

incredible complexity of the statistical

measurements involved ...

Measuring (even roughly) the degree of credibility

of the more general amditing assertions presents

the auditor with a seemingly insurmountable

obstacle ... The mental leap necessary to go from

simple evidential propositions to these broad

generalities is supported only by the vaguest

‘system of inference', so vague in fact that our

use of the term in this context may be totally

unwarranted given the state of auditing art.

We present these problems not to answer them but

to illustrate what the Committee considers to be

the desirable direction of evolution in auditing

and therefore major topics for research.

The design of a comprehensive and operational audit

‘model which recognizes the need for the integration of

evidence across each of the two domains is beyond the scope

of this study. Two complex and highly conceptual attempts

at such a model have been made by Park [1977] and Grimlund

[1977]. The intent of this study is to present the

technique of empirical Bayes estimation as an audit tool

which is both practical given the current state of the

auditing art as well as a step in the evolutionary process

toward a more integrated audit model.

Theoretically, pure Bayesian estimation procedures

could be used as a technique for either interitem or



interprocedural integration. Over twenty years ago Birnberg

[1964] proposed using Bayesian methods to integrate the

results of classical audit procedures with the auditor's ex

ante subjective evaluations. However, in reviewing some of

the operational difficulties surrounding its use he noted:

"The auditor has not yet reached the point of an expressed

willingness to perform the full Bayesian analysis. Perhaps

this is something for the future." [Birnberg, 1964, p. 114]

Apparently, the time has not yet arrived for the practical

implementation of Bayesian analysis since Bailey

[1981, p. 241] reflects "to the author's knowledge, Bayesian

models have yet to be applied in field settings."

The major operational difficulty impeding the adoption

of Bayesian methods is the requirement that auditors be able

to accurately specify their ex ante beliefs in the form of a

subjectively determined prior probability distribution.

Section 2.2.4 reviews the literature chronicling the

auditor's inability to make these subjective prior

puobability specifications. However, as shown in Section

2.3, empirical Bayes estimation avoids this major

operational drawback by not requiring the auditor to

formally specify these prior beliefs. A major purpose of

this dissertation is to show that empirical Bayes methods

perform nearly as well as Bayesian methods in a wide variety

of circumstances and in fact outperform them when the prior

beliefs are sufficiently misspecified. Accordingly,

empirical Bayes estimation is proposed as a more palatable



audit tool than the methods of pure Bayesian estimation

which have been considered in the past.

1.2 Specific Research Objectives

There are two major research objectives of this

dissertation. The first is to introduce empirical Bayes

estimation to the auditing literature as an objective and

efficient method of integrating auditor judgments and direct

evidence both within and across the items at interest to the

auditor. Chapter II reviews classical statistical

estimation and Bayesian estimation, contrasting them both

with empirical Bayes estimation. The manner in which Bayes

or empirical Bayes procedures can assist in the integration

of audit tests is explained.

The second major objective is to examine the behavior

of various empirical Bayes estimators in the specific

contexts of audit sampling and estimation with analytical

review procedures. Chapters III and IV present a series of

investigations comparing the behavior of empirical Bayes

estimators with that of various traditional classical

statistical sampling and analytical review estimators, pure

Bayesian estimators and other multivariate estimators which

have been proposed in the literature. Investigations are

made of the mean squared error, bias and reliability of

each of the estimators. Chapter III investigates

applications of these estimators during the internal control



compliance testing phase of the auditor's examination.

Chapter IV investigates applications during the auditor's

substantive testing of the reported general ledger account

balances.



CHAPTER II

CLASSICAL, BAYESIAN AND EMPIRICAL BAYESIAN ESTIMATION

An essential component of auditing is the estimation of

unknown quantities. The items at interest range from the

rate of compliance (or its complement, the error rate) with

the prescribed system of internal accounting controls to the

total dollar amount of errors in a reported general ledger

balance. The following three sections review and compare

three alternative methods for obtaining these estimates.

These are classical, Bayesian and empirical Bayesian

estimation procedures, respectively.

2.1 Classical Estimation Procedures

Two classical estimation methods currently used by

auditors are traditional statistical sampling techniques and

certain analytical review procedures.

SAS tn). 39, Audit Sampling [AICPA 1985], together with
 

the AICPA audit guide, Audit Sampling [AICPA 1983] , govern
 

the use of audit procedures designed to estimate an unknown

population parameter from a sample of less than 100% of the

,population. While both SAS No. 39 and the audit guide

discuss both statistical and nonstatistical sampling, only'

9



10

the former is considered in this dissertation. The audit

guide [AICPA, 1983, p. 130] defines statistical sampling as

"audit sampling that uses the laws of probability for

selecting and evaluating a sample from a population for the

purpose of reaching a conclusion about the population."

Cochrane [1977] provides a good reference for the

general theory of classical statistical sampling techniques.

Several texts have been written on the specific techniques

of classical statistical sampling as they apply to auditing.

Examples include Roberts [1978], Arens and Loebbecke [1981],

and Bailey [1981]. In each of these texts as well as in the

authoritative literature a distinction is made between

attributes and variables sampling.

Attributes sampling is defined as "statistical sampling

that reaches a conclusion about a population in terms of a

rate of occurrence." [AICPA, 1983, p. 127] The most common

example is sampling to determine the rate of noncompliance

(error rate) with a prescribed internal accounting control.

Typically a random sample is selected from the population of

all transactions for which the internal control procedure is

applicable. The estimated error rate for the pOpulation is

simply the proportion of sample items for which

noncompliance was established by the auditor. Confidence

intervals for the population error rate can be constructed

using exact binomial distribution theory or asymptotic

normal distribution theory.
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Variables sampling is used by the auditor during the

direct substantive testing of account balances. It is

defined as "statistical sampling that reaches a conclusion

<3n ttie thoriet:a1:y an10i1ntzs 02f a p<)pllliit21011."

[AICPA, 1983, p. 130] Three major classical variables

sampling estimators are typically mentioned in the

literature. These are the mean-per-unit, difference and

ratio estimators.

For notational purposes define:

Recorded book value of the population

True but unknown balance of the population

Number of items in the population

Number of items in the random sample

Recorded book value for the sample items

True or audited value for the sample itemsX
K
D
Z
X
K

Using the above notation the three major classical

variables sampling estimators can be written as:

 

Mean-per-unit estimator = N.%—

Difference estimator = Y + N x ' y

Ratio estimator = y-%—

Theoreticallyy all of the above estimators can be used

with either simple random sampling or stratified random

sampling. Simple random sampling implies that every item in

the population has an equal probability, rune, of being

included in the sample. Under stratified random sampling

the population is divided into a set of relatively

homogenous groups or strata. Within each stratum simple

random samples of various sizes are selected and the within

strata estimator is calculated. The results are combined
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across the strata to arrive at the single point estimate for

the population.

Confidence intervals around the point estimate for any

of the classical variables sampling estimators are

constructed using normal distribution theory. An estimation

technique which calculates an upper bound on the true

account balance without first constructing a point estimate

accompanied by a confidence interval based on normal

distribution theory is the combined attributes-variables

(CAV) or dollar—unit sampling (DUS) method. Under CAV the

probability of a population item being included in the

sample is directly proportional to its size. The upper

bound on the true account balance (often referred to as the

Stringer bound) is calculated in a two step procedure. The

first step involves determining an upper bound on the number

of errors in the account based upon the number of errors

observed in the sample using classical attributes sampling

techniques. A conservative estimate for the dollar amount

associated with this upper bound on the number of errors is

then made.

CAV sampling has been shown to be a useful technique in

certain limited situations where the expected error rate is

low and nearly all of the errors are overstatements.

However, it is not a classical sampling technique in the

sense of providing a point and interval estimate useful for

making audit adjustments [Arens and Loebbecke, 1981,

p. 353]. Since CAV sampling does not produce point and
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interval estimates based on normal probability distribution

theory, it is not comparable with the Bayes and empirical

Bayes estimation techniques discussed in the subsequent

sections. immeremainder of this study will apply only to

classical statistical sampling techniques.

In addition to classical statistical sampling methods

auditors may use a second set of’cflassical estimation

techniques known as analytical review procedures. The use

of these techniques is governed by SAS No. 23, Analytical

Review Procedures. SAS No. 23 identifies three potential

uses of analytical review'procedures [AICPA, 1985, Section

318.05]:

a. In the initial planning stages to assist in

determining the nature, extent, and timing of

other auditing procedures by identifying,

among other things, significant matters that

require consideration during the exam.

b. During the conduct of the examination in

conjunction with other procedures applied by

the auditor to individual elements of

financial information.

c. At or near the conclusion of the examination

as an overall review of the financial

information.

It is the second of these three applications which is

most relevant to this study. Both regression and ARIMA time

series models have been proposed in various levels of detail

in the academic literature as techniques for estimating the

correct balance of general ledger accounts during

substantive audit testing. Examples include Stringer

[1975] , Albrecht and McKeown [1977], Kaplan [1978], Kinney
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[1978], Akresh and Wallace [1980], Neter [1980] and Lev

[1980] . These models use past and present observations of

variables for the company, its industry or the general

economy to estimate the correct balance in an account.

Normal distribution theory is used to represent the model's

error term(s) so that both confidence intervals and point

estimates can be obtained. Bailey [1981, Chapter 10] is a

good introduction to these models.

Despite their many differences, each of the classical

statistical sampling and analytical review estimation

procedures have one characteristic in common. These

classical methods result in an estimate which depends only

on the sample observations used in the construction of the

estimator. In particular, the estimate is not affected by

the auditor's prior beliefs about the value for the unknown

parameter. These beliefs may naturally arise as a result of

the auditor's experience with similar estimation problems on

prior engagements or from the results of collateral tests

performed during the current engagement.

This is not to say that an application of classical

estimation procedures can be done entirely without the use

of the auditor's judgment. Subjective evaluations are

necessary, for example, to select the estimation procedure

which is most likely to provide an efficient and reliable

estimate for the parameter at interest. Judgment is

required in the selection of the variables to be included in

ARIMA and regression models and the selection of the model's
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functional form. However, once these preliminary judgments

have been made the resulting estimate will depend only on

the sample observations. Mixing of the auditor's

subjectively determined prior beliefs, the results of

collateral tests and the results of the various classical

estimation procedures into a single estimate of the unknown

parameter must be done informally, if at all. One of the

objectives of Bayesian estimation procedures is to provide a

formal mechanism for the integration of these subjective and

objective evaluations into a single estimate.

2.2 Bayesian Estimation Procedures
 

Tracy [1969, p. 41] stated rather precisely the

fundamental difference between Bayesian and classical

estimation procedures:

The classical approach looks at the sample results

-- and only the sample results -- to draw an

inference about the population test area. Any

other audit evidence that may have a bearing on

the test area is ignored.

In many cases the auditor may have already

gathered evidence by other audit procedures that

is relevant to the test area. The Bayesian method

incorporates such "collateral" evidence into the

statistical evaluation of the sample results.

Compared to the classical method, the Bayesian

method can yield significantly different

interpretations that in many cases would allow

optimal allocation of audit effort. The auditor

could have the same degree of confidence with a

smaller sample size or a greater degree of

confidence with the same sample size.
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At the core of the Bayesian technique is the assumption

that the auditor can assemble his experience together with

the results of all relevant collateral tests to form a

single subjective evaluation regarding the unknown parameter

at interest. This subjective evaluation is in the form of a

probability distribution which assigns a prior probability

to every possible value for the parameter. As an example,

suppose the auditor's experience and the results of his

collateral tests are such that he believes an account with a

reported balance of $100,000 contains errors which when

accumulated may range from a $5,000 net understatement to a

$10,000 net overstatement with all possibilities equally

likely. In the Bayesian formulation this belief would be

stated in the form of a "prior distribution", 9, on the

unknown correct balance,€3, of the following form:

9(6) 1/ 15000 for 8 E ( 90000, 105000)

0 otherwise

Given the actual value for the parameter,8,.the

classical estimator, 8, follows some conditional probability

distribution, f(g|e). This is, of course, the same

distribution which would be used for establishing confidence

intervals for the unknown parameter using the classical

estimation techniques.

'Bayes theorem can be used to construct the conditional

posterior distribution, g(e|e), for the parameter at
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interest given the results of the classical estimation

procedure. Bayes rule is:

g(e|5) = 9(9) §(916) = 9(6) £919)

f 9(9) f(e|e) d6 f(e)

A second major assumption in Bayesian estimation is

that the estimator should be constructed in order to

minimize the conditional expected value of the user's loss

function, L. The loss function measures the penalty to the

user of estimating the true a by some 6. A standard

assumption of a quadratic loss function is often made so

that

L(8,8) = c( e..6)2 for c a constant.

Scott [1975] provides some evidence that a quadratic loss

functirni is a reasonable choice in the context of the audit

attest function. Section 3.3.2 considers a more general

asymmetric loss function.

A

The Bayes estimate, GB, is that estimate which

minimizes the conditional expected loss. Thus, 83 is chosen

in order to minimize f L(8,8) g(8|8) d8 .

For a quadratic loss function it is easy to show that

the Bayes estimate is the mean of the conditional posterior

distribution of 6. The first order condition for the

minimization of the expected loss is

~2 A

Lie (e-e) 9(e|e>de =0
36

or

2c f (e - g) 9(ele) as = o.
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This condition is satisfied for SB = E {BIO}, the mean of

the conditional posterior distribution. Notice that the

Bayes estimate is independent of the constant, c, in the

loss function.

The following three sections illustrate three potential

uses of Bayesian estimation. These are, respectively, the

integration of a classical estimate of an unknown parameter

with the auditor's subjective judgment about its value, with

other classical estimation procedures (interprocedural

integration), and with estimates of other related parameters

(interitem integration).

2.2J. Bayesian Techniques for Integrating Classical
 

Estimates with Subjective Evaluations
 

The traditional use of pure Bayesian estimation assumes

the auditor can subjectively consolidate his prior beliefs

together with any collateral evidence to form a prior

probability distribution on the unknown parameter. As an

example, suppose the auditor specifies his prior beliefs as

e " 9(a) = Normal (upr)

Under pure Bayesian estimation values for u and 1: must be

specified by the auditor. A classical estimation procedure

(such as a regression model or a classical statistical

sampling routine) is then employed to yield an estimate, 8,

whose conditional distribution follows some known form,

typically:
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A

e|e " £(ele) = Normal (8,02)

Generally, the variance of the classical estimatorq, 02, is

not known. However, a consistent estimate is available ex

post based upon classical sampling or regression theory.

Under these circumstances the posterior distribution

for 8 conditional on the classical estimate 8 is:

A . 2 A 2

BIG " g(8|8) = Normal ( BE__:§1 , _IE__ )

T + 02 T + 02

If the auditor's loss function is quadratic, then the

Bayes estimate, BB, is the expectation of the conditional

posterior distribution:

A A 2 A

93 = E { ele } = O u + T e

T + o2 r + o2

  

Since u and T are specified in the auditor's subjective

prior and since 02 is either known or consistently estimated

from the data, the realization of the classical estimator

results in a specific value for the Bayes estimate.

Figures 1 and 2 (modifications of Godfrey and Andrews

[1982, p. 307, Figure 1] ) give a schematic view of the

difference between the Bayesian and classical viewpoints.

Figure 1 presents the sampling problem from the classical or

frequentist perspective. The population at interest is

viewed as fixed. The only source of variation or risk in the

estimation procedure arises from variability in the samples

which could be selected from the population.

From the Bayesian perspective (Figure 2) two sources of

variation are present. The population at interest is

generated from some underlying process. The actual
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population which the auditor must test is but one of many

possible populations which could have been generated by the

underlying process. Thus, Ramage, Krieger and Spero

[1979, p. 73] argue that "each audit 'population' is

actually a point sample from a stochastic process which

produces a set of book values potentially observable at any

instant ix) time." The auditor uses his experience and

collateral evidence to specify his prior belief regarding

the probability distribution generating the various possible

populations. Given the realization of any one population,

the second source of variation from the sampling scheme is,

of course, still present.

Define the risk, r, of an estimator as the expected

value of the loss function. The risk of the classical

estimator, r(6), under a quadratic loss function is, of

course, simply the variance of the conditional sampling

distribution,o2 , as shown below:

A A2 A A

13(8) ff(9- 9) f(6|9) 9(9) de <39

f OZGHB) d8

The risk of the Bayes estimator, r(8B), is

A 2 A A

If ( 63 -9) male) 9(9) d8 d8

A 2 A A A

If ( 63 -e) g(e|e) f(e) d8 d8

r(8B)

 

2 A A

f I“ f(e) de

T + 02

T02
 

T + 02
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Thus, the Bayes estimator, by exploiting the

information contained in the prior distribution, results in

smaller risk than the classical estimator since

T02 2

r(BB) = -——-' S 0 = 1(9).

1 + o2

It is in this sense of smaller risk or expected loss

that Bayesian estimation is efficient relative to classical

estimation.

This efficiency, however, depends upon the ability of

the auditor to specify a prior'belief which is an accurate

representation of the underlying process generating the

parameter at interest. Inaccuracies in the specification of

the parameters of the underlying distribution can lead to

Bayes estimates which are inefficient relative to classical

estimates. Suppose, for example, the auditor's belief

about the underlying process is such that he specifies a

normal distribution with mean u and variance‘r. If this

subjective specification is accurate with the single

exception that the actual mean of the prior distribution is

u' and not u, then the actual risk of the Bayes estimator is

r(6 ) -ff (9 -9) new as) de de

  

 
   

=ff (u + 6 - e) 9(ele) He) 66 <36

r + o2 r + 02

2 2 2 A

o o o r 2

=ff (u r 2- u' 2+ u' 2+ 9 2- 9) '

T-l-O T+O T-l-O T+O

9(ele) f(e) 66 d6

2 2 2

= l ('u- u') ] + To  

T + 02 T + o2
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In this example, the cost of mispecification is an

0.2

 

addition of [ (u - u') 12 to the risk of the perfectly

I + 02

specified Bayes estimate. If the prior belief is

sufficiently mispecified (i.e., h1- U'l > r + 02), then

the benefits from Bayesian estimation are eroded to the

extent that it is inefficient relative to classical

estimation. For a more complete analysis of the additional

risks posed by inaccurate»prior probability specifications

in audit sampling see Beck, et.al. [1985].

The ability of the auditor to accurately specify the

parameters of the underlying distribution is a critical

element and a potential weakness in the application of

Bayesian methods to audit testing. Empirical Bayes methods

avoid this potential difficulty by estimating the parameters

of the underlying distribution ex post from the sample data

itself instead of requiring their ex ante specification by

the auditor. Empirical Bayes estimation is discussed in

detail in Section 2.3

2.2.2 Bayesian Techniques for Interprocedural Integration
 

Bayesian estimation can be used as a technique for

formally combining the results of an analytical review

procedure and direct classical variables sampling procedures

on a single account balance. As an example, suppose a

multiple regression model is constructed in order to
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preliminarily estimate the correct balance, Yo' of an

account. This regression model would take the form:

Yt = B xt + 8t

Where : Yt = Audited balance for accounts in the sample

B = Regression coefficients

Xt = Set of explanatory variables such as other

account balances, industry indices, etc.

gt = error term distributed i.i.d. Normal (0,1)

t = 1“”.flr= index for crossectional or

intertemporal observations

The regression coefficients are estimated in the usual

manner by

8 = (x'xf'1 x'y.

The analytical review estimate, 22R, for the current correct

balance would be Obtained by inserting the current values

for the explanatory variables, :0, in the regression

equation:

“AR _ *

Yo - B xb

The regression estimate is distributed as:

“AR - “AR _ . ‘1 .
Yo g(Yo ) Normal (Yo, Tll + xb(x x) xO ])

Let Y: be a second independent estimate of the correct

account balance obtained from classical statistical sampling

procedures. Under classical sampling theory we take the

distribution of Y: to be:

“S - S _ 2
Yo f(Yo) - Normal (YO' O )

Interprocedural integration requires the auditor to

obtain a single estimate, Yg, of the account balance based
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upon the analytical review estimate, YSR, and the classical

A

statistical sampling estimate, Y2. An obvious choice would

be a linear weighting of the two:

Y: = B YSR + (1 - B) Y:

for some B a (0,1).

Ideally, the linear weighting factor, B, would be

chosen in order to minimize the expected loss function for

the integrated estimator. Thus, under a quadratic loss

function the objective function is:

min ff [ B YAR + (1 - B) YS - Y ) g(Y2R) f(Y: ) dYoAR dYs
B O 0 O 0

A
2

min ff [ B (YAR - Yo) + (1 - B) (YS - Y )1
B O O

-g(Yf;R)f(Y§ ) dYngY:

By independence of the two estimators this is equivalent to:

2 “ 2 2 T 2

min ff [ B (YAR - Y ) + (1 - B) (YS - Y ) 1
B O O 0

9w;R) f(1(g)dYoAR chS)

A

AR) + (1 - B)2 Variance (Y3) ]= min [ 32 Variance (Y

B

The first order condition for the minimization of the,

above expression is:

“AR
2 B Variance (Yo ) - 2 (1 - B) Variance (Y3) = o

O]:

Variance (Y3)

Variance (Yo ) + Variance (Yo)

02

-1

2 I I

o + r (1 +xo(x x) x0]

 

While neither 02 nor 1 are known, consistent estimates

of them are available from the results of the regression and
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sampling procedures. These could be used to estimate the

weighting factor, B, to form the single integrated

estimator, F3, which has smaller expected squared error than

either of the initial estimators.

The relationship of this integrated estimator to a

Bayes estimator is easily seen. Suppose the auditor uses

the results of the analytical review'procedure to form his

prior belief on the correct level of the account balance. A

logical choice for this prior belief would be

AR
—1

o, r[1+xo(xm :01).Yo ” Normal ( Y

Combining this prior distribution on Yo with the classical

sampling estimator, Ii, using Bayesian estimation procedures

yields a Bayes estimator which is indentical to the

integrated estimator, ;g, as derived above. Thus, by using

analytical review procedures to form prior beliefs, Bayesian

estimation can be viewed as an efficient mechanism for

integrating the results of analytical review and classical

statistical sampling procedures.

2.2.3 Bayesian Techniques for Interitem Integration
 

Suppose the auditor wishes to simultaneously estimate

an unknown parameter, Oi, for each of i==]q...,k similar

populations. As an example 6i may represent the error rate

for each of k attributes pertaining to a particular internal

control system. Alternatively, 8 may represent the error
1

rate for the ith division of a company with k divisions each
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of which is being tested with respect to the same attribute.

As a third example, 81 may represent the correct balance in

each of k similar accounts or subaccounts each of which is

to be simultaneously estimated.

In simultaneously estimating k parameters the auditor

faces an apparent dilemma. On the one hand he is forced to

estimate each of the parameters individually. ‘For example,

if the auditor is testing compliance with internal controls,

he must establish which controls or which divisions are not

operating as prescribed in order to tailor his substantive

audit procedures accordingly. On the other hand, classical

estimation procedures ignore any commonality which may exist

between the populations. Since each of the populations is

generated within the same underlying internal control

environment, it would appear that some characteristics

should be shared by the populations. Furthermore, while the

individual estimation of account balances and error rates

must be made, the final audit opinion is with respect to the

financial statements taken as a whole. This implies that

the auditor's estimates require accuracy both individually

as well as when consolidated across the various items

estimated.

Bayesian estimation is a method by which individual

estimates of each of the k parameters can be made while at

the same time exploiting any underlying commonality between

the populations in order to achieve greater consolidated or

ensemble accuracy. Suppose the auditor believes the k
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parameters at interest are independently generated from the

same normal distribution:

The classical estimation procedures will yield k independent

estimates, 81,...,ek, each with its own conditional

distribution:

fl

~ 2

Rilei Normal (8i, oi)

Figure 3 presents a schematic representation of this

Bayesian view of the simulataneous estimation problem.

The conditional posterior distributions on the unknown

parameters are of the form:

 

. . no: + air to:

8o|8. " 9(8.|8.) = Normal ( , ______ )

1 1 1 1 2 2
r + 01 r + Oi

Let the auditor's composite or ensemble loss function

be represented by a general sum of squared errors:

L(0.6) = (0 - 6)‘ C (0 - 0)

Where: 0, 8 k x 1 vectors composed of 81,...,8k and

el'ooo'ek

c k x k symmetric matrix

C represents an arbitrary k x k matrix of weighting

factors representing the relative importance to the auditor

of estimation errors in each of the k populations both when

taken individually and in interaction with each of the other

k-l populations.

A

The simultaneous Bayes estimates, 8?,...,8Bk' are those

which minimize the expected ensemble loss function
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conditional on the observed results of the classical

estimation procedure, 61,...,6k. Thus 68 minimizes

.. .. k .

ff --- f (0 - 6)‘ C (0 - 0) H 91(ei|ei) del-o-dek.

i=1

The first order conditions for the minimization of the

expected ensemble loss are

[
“
1
7
“

(e. —5.)N '
5

'
5 o o o

8

"
M
W

0

i l

for all 1.

These conditions are satisfied by the estimator

AB A

}.e. = B {ei|e.1 1 Thus, the multivariate Bayes estimate which

serves to minimize the expected loss integrated over the k

populations is the expectation of each of the conditional

posterior distributions, or

A u T

69 = 1 u + 2

+ . T + 0'.‘1' 0'1 1

6..
1

 
 

Notice that the risk minimizing Bayes estimates are the

same regardless of the weighting matrix,c, which assigns a

measure for each population's relative importance to the

auditor. That is to say, the auditor need not make these

subjective "relative importance" evaluations since the

resulting optimal estimator is independent of the

weightings.

2.2.4 Review of the Relevant Literature
 

The purpose of this section is to review the literature

surrounding the use of Bayesian analysis by auditors.
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Crosby [1985] also provides a good introduction to this

literature.

Birnberg [1964] first proposed the use of Bayesian

statistics as an audit tool. Birnberg suggested in a

general setting that auditors could use prior probability

assessments and Bayesian analysis to reduce required sample

sizes and to incorporate prior experience and qualitative

judgments into the sampling plan. However, even in this

initial work two operational problems in the use of Bayesian

analysis were recognized which still remain as significant

impediments for its practical application (Birnberg [1964] ,

p.115]):

The Bayesian approach is not free of

operational problems. For the accountant, the

following seem paramount:

1. The difficulty in assessing a prior

personal probability distribution.

2. The measurement of utility in those

decisions where the sums involved are

large.

It is the first of these two operational difficulties

‘which can be avoided by the use of the parametric empirical

Bayes estimation procedures proposed by this dissertation.

Kraft [1968], Tracy [1969a] and Sorenson [1969]

considered the use of Bayesian analysis in attributes

sampling. They proposed that the auditor subjectively

specify prior probabilities to a discrete set of possible

error rates. The sample results and this discrete prior

probability distribution are combined using Bayes rule to
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formulate Bayesian hypothesis tests of population error

rates. Their results show that Bayesian analysis uses

smaller sample sizes than classical sampling to obtain a

given confidence level. Tracy [1969b] addresses the same

issue frxnn the perspective of constructing upper confidence

limits for the unknown error rate rather than the equivalent

hypothesis testing view.

Each of the Bayesian models in the aforementioned

papers used a discrete subjective prior probability

distribution over a finite set of potential population error

rates. Felix and Grimlund [1977] generalize these models to

a continuous prior distribution. Their model was developed

for substantive testing of account balances resulting from

the aggregation of a large number of subsidiary components.

The model incorporated a beta distribution as the auditor's

prior belief about the percentage of subsidiary components

in error. Godfrey and Andrews [1982] revise the model to

recognize that the auditor is selecting his sample from a

finite population. Blocher [1981] investigates the

sensitivity of the required sample size in statistical

attributes sampling with Bayesian revision to changes in the

parameters of the beta prior probability distribution and

the auditor's desired reliability and precision levels.

The literature on the use of Bayesian analysis during

substantive testing is somewhat more limited than that for

compliance tests applications. As noted above, Felix and

Grimlund [1977] propose one such model. They use a beta
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distribution as a prior for the percentage of account

components in error and a normal distribution for the size

of the error given that one exists. Scott [1973] uses a

different sampling model in his application of Bayesian

analysis to substantive testing. He models the auditor's

sampling scheme as the selection of a set of days from

throughout the year. For each sample day one hundred

percent of the transactions are audited. He proposes a

prior distribution on the true value of the day's change in

net assets as:

a = v f

Where a = change in net assets

v = change in true gross book value in

net assets

f==adjustment factor or valuation'

coefficient for such items as the

collectibility of accounts

receivable

Scott models both 5 and f as random variables. The

true gross book value, 3, (as oppossed to the recorded book

value) is random due the possibility of errors or fraud in

the accounts. The valuation coefficient, f, is a random

realization of the underlying stochastic process generating

the various contingencies a business enterprise faces

(collectibility of accounts, value of inventory, etc.).

Scott assumes the prior underlying distributions for these

two random variables each to be normal. This implies that

their product, a, is not normal. However, Scott assumes
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that a can be approximated by a normal distribution with

mean

3(3) = 3(5) 2(2)

and variance

Var(a) = Var(v) [l=.:(‘f)]2 + Var(f) [E(‘:I)]2 + Var(v) Var(f).

Scott then proceeds to establish Bayesian estimates for

the true net book values based upon the auditor's prior

beliefs and the sampling results.

In addition to the statistical difficulties involved in

Scott's assumption that the product of two normal random

variables can be approximated as a normal random variable,

there is also a significant operational weakness in his

model. His sampling scheme assumes that auditors select a

random sample of business days from the year and audit each

transaction recorded during the sample days. Generally

auditors do not sample in this manner. The typical audit

sampling scheme defines the population at interest to be all

transactions for the year or all subcomponents of a balance

sheet account on a specific date. As Felix and Grimlund

[1977] argue:

For those enterprises with sufficient transaction

volume to validate the multivariate central limit

theorem assumption, it would probably be

economically impossible to analyze more than a few

days of accounting work. The sample evidence of

such a small sample size usually would not

significally alter the auditor's prior judgment.

Despite their various strengths and weaknesses all of

the previous studies into the application of Bayesian

techniques for audit testing rely on a critical assumption
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of the auditor's ability to make accurate prior probability

judgments about the underlying parameter at interest. A

large body of behavioral research has investigated the

ability of individuals to make such prior probability

assessments. The following reviews this literature within

the context of prior probability assessments by auditors.

Winkler [1967] first proposed a set of techniques by

which an individual's prior probability assessments can be

elicited. These techniques can be categorized as:

Direct Methods

1. Cumulative distribution function (C.D.F.)

or fractile method.

2. Probability density function (P.D.F.)

method.

Indirect Methods
 

1. Equivalent prior Sample (E.P.S.)

information method.

2. Hypothetical future samples (H.F.S.)

method.

The ability of auditors to make accurate prior

probability assessments using one of these elicitation

techniques has been studied using two alternative

methodologies. Convergent validity studies investigate

either the similarity of assessments among a group of

auditors using the same elicitation technique or the

consistency of auditor assessments from two or more

techniques. A second methodology attempts to assess the

accuracy of auditor assessments against an objective

criteria. These "calibration" studies compare observed
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frequencies of an event with auditors subjective prior

probability assessments. A review of the relevant research

into the auditor's ability to make prior probability

assessments follows. For a more complete review of prior

probability elicitation techniques outside the auditing

context see Chesley [1975].

Corless [1972] first studied the use of these

elicitation techniques in applying Bayesian statistical

methods in auditing. Corless examined the use of the C.D.F.

and P.D.F. methods in eliciting prior probabilities about

population error rates. His results showed that while the

88 auditors used as experimental subjects were willing to

make prior probability assessments their beliefs were both

widely divergent between the subjects and inconsistent

across the two techniques. Felix [1976] performed a similar

study comparing the E.P.S. and C.D.F. techniques using

auditors who had undergone limited training. His results

showed a smaller divergence between the E.P.S. and C.D.F.

methods then Corless had found between the P.D.F. and C.D.F.

techniques. However, it is hazardous to draw many

inferences from the Felix study due to the small number of

subjects (ten) used in his study.

Crosby [1980] investigated the relationship between two

prior probability elicitation techniques (C.D.F. and E.P.S.)

and the implied sample sizes required to obtain specified

reliability and precision levels. 'The results showed that

the differences between implied sample sizes for the two
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methods were statistically significant. Additionally, the

hmplied sample sizes under the two elicitation techniques

were significantly different from judgmental sample sizes

which the subjects indicated they would use to achieve the

desired reliability and precision levels. The implications

of these results are:

l. The assessed prior probability distributions

revealed by the elicitation techniques did not

accurately reflect the auditors' true beliefs,

or

2. The judgmentally determined sample sizes were

inconsistent with the auditors' prior beliefs

and the Bayesian probability revision model.

Crosby [1981] performed direct tests on the prior

probability distributions elicited under the C.D.F. and

E.P.S. techniques. The two distributions were tested for

statistically significant differences among various measures

of central tendency and dispersion. His results are

summarized in the following table.

Results of Tests

  

Distribution for Statistically

Characteristic Significant Difference

Median No significant difference

Mean No significant difference

Range of 25th to 75th

percentile Significant difference

Range of 5th to 95th

percentile No significant difference

Variance No significant difference

Each of the above studies investigates auditors'

abilities in making prior probability assessments regarding

error rates. Soloman, et.al. [1982] studied the use of the

C.D.F. elicitation technique in the auditor's assessment of
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account balances. Their results showed some evidence of

consistency among auditors in the assessments of the inner

fractiles of the prior distribution with much less

consistency in elicited beliefs about the tails of the

distribution. Soloman, et.al. [1984] investigated the use

of the E.P.S. elicitation technique in circumstances similar

to those in Soloman, et.al. [1982]. The results showed a

much higher rate of inconsistency between the auditor

subjects. Evidence of inconsistencies between E.P.S.

elicitations and pure professional audit judgment was also

noted.

The combined results of the previous studies are

inconclusive with regard to auditors' abilities in making

consistent and accurate prior probability assessments. The

convergent validity methodology results in a joint test of

auditors' abilities to make consistent subjective prior

probability assessments and the ability of the elicitation

techniques to capture these subjective beliefs. To the

extent that these studies reveal a lack of consistency

either across auditors or across elicitation techniques, the

results should be troubling for those who wouldpropose the

use of pure Bayesian estimation in audit testing.

Furthermore, even to the extent that the convergent validity

of the methods is supported, without an objective criteria

against which the accuracy of the assessments can be

evaluated the ability of auditors to make both consistent
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and accurate assessments for Bayesian analysis remains in

doubt.

The purpose of calibration studies is to provide such

an objective standard for evaluating prior probability

beliefs. Newman and Tomassini [1983] review the use of the

calibration methodology in the context of investigating

auditors' abilities in forming accurate prior probability

distributions. Tomassini, et.a1. [1982] examined the

accuracy of auditor judgments about distributions of account

balances. The results of their stwdy showed "a mixture of

well-calibrated and miscalibrated auditor judgments“

(p. 398). Vflfile in general the study revealed a tendency

for auditors to be less overconfident than typically

observed in prior studies with nonauditor subjects, evidence

was presented of prior probability distributions which were

both underconfident (too diffuse) and overconfident (too

tight). Beck, et.al. [1985] analyze the impact of

miscalibrated prior probability distributions on audit risk

and audit effectiveness.

The combined results of these calibration studies

reveal that no single elicitation technique appears to

produce consistent and accurate auditor prior probability

assessments. It is not clear from the results whether

auditors are unable to form consistent and accurate prior

beliefs or whether the elicitation methods are inadequate

techniques for revealing auditor beliefs. Without a

technique for eliciting consistent and accurate prior
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beliefs, the practical implementation of pure Bayesian

estimation for audit testing is impaired.

2.3 Empirical Bayes Estimation Procedures
 

As noted in the prior section, one of the major

operational difficulties in the practical application of

Bayesian estimation procedures for audit testing is the

requirement that auditors subjectively specify ex ante their

prior beliefs about the distribution of the parameter at

interest. Specifically, auditors must assemble their

experience and subjective evaluations together with

collateral evidence from alternative tests and observations

into a single probability distribution for the parameter to

be estimated. Both a particular form for the distribution

(e.g., normal) as well as the required identifying

parameters of the distribution (e.g., the mean and variance)

must be specified. The technique of empirical Bayes

estimation provides the auditor relief from these tasks.

Empirical Bayes estimation procedures were first

puoposed by Robbins [1956, 1964]. A good intrOduction to

this literature is given by Krutchkoff [1969] and Rutherford

and Krutchkoff [1969]. A basic outline of the techniques of

empirical Bayes estimation follows.

Consider the standard objective of estimating an

unknown parameter, 8, with small equared error. Suppose a

classical estimate, 8, is available which is distributed as
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f(8|8).. .Suppose further that in the Bayesian framework 8

itself follows some probability distribution. Unlike pure

Bayesian estimation, under empirical Bayes estimation the

distribution of 8, call it 9(8), is assumed to be entirely

unknown. Note in particular that a diffuse or so-called

"non-informative" prior is gg;_used. Indeed, no

distribution for 8 is ever specified in the nonparametric

empirical Bayes estimation process.

For empirical Bayes techniques to be applicable the

estimation problem must be routine. That is, 81, is

observed from f(81|81) and 8 is to be estimated.
1

Subsequently (or concurrently) a second estimation problem

of the same type presents itself so that 82 is observed from

f(82|82) and 8 is to be estimated. This problem is
2

repeated k times resulting in k classical estimates

81,...,ak for the k unknown parameters 81,...,8k. The

classical approach of estimating 81 by 81 ignores both the

underlying structure on the unknown parameters given by 9(8)

and any information in the other k-l observations of the

classical estimator. The pure Bayesian approach requires

the complete specification of the form and parameters of

9(6) and results in the mean of the posterior distribution

of 8 as the risk minimizing estimator:

“B
8.1 = E {ailei} = J 9i g(ei|ei) 661

The objective of empirical Bayes estimation is the

generation of an estimate 8§B which depends only on the

A A

observed values 81,...,8k and not on any prior specification
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of g(8) and yet nonetheless approaches the Bayes estimate as

the number of estimation problems, k, increases. Under

empirical Bayes estimation one can do as well

(asymptotically) in reducing expected loss as the pure

Bayesian, knowing nothing of the underlying marginal

distribution of 8.

To illustrate the methods of empirical Bayes estimation

it is useful to consider a specific yet widely applicable

example. Suppose the classical estimates, 6i, are normally'

. . . . 2

distributed with unknown mean 81 and variance oi. For

notational convenience the subscript i is dropped. Thus,

A A A 2

8 ” f(8|8) = /?%0 exp { -l/2 ngfirgL- }. 

Then,

3f(6|6) . 2 2

88 - 8/0 + 8/0
+

Hale)

or, solving for 8,

2 8f(8|8)

8 = 8 + 0 ga .

f(8|8)

Consider the Bayes estimate if 9(6) and hence g(8|8)

D

were known:

63 = E {eIB} = f e g(8|8) d8

. 3f(6|6) .

=Ile+o" _a_9__]g(e|e)d6

male)

af(e e) .

e + 02 IZEQJ: g(ele) 69

male)
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However

g(8|8) = f<ele)“g<e)

f(6)

SO

,. . 3f(8|8) “

E {ale} = e + or2 f as “9"” 9‘9) d8

f(e|e) f(6)

. 02 x

= e + . f 8f(8|8) g(e) d8

MB) 39

so that

8B = E {8|8} = 8 + 02 Ellgl .

f (6)

Written in this form the Bayes estimate can be viewed

as the classical estimate plus a "correction factor." The

correction factor is the variance of the classical estimator

times the ratio of the derivative of the classical

estimator's marginal density and the marginal density

itself. The pure Bayesian specifies a belief for 9(8)

and computes the marginal density accordingly (that is

f(8) = f f(8|8) g(8) d8 ).

The marginal density f(6) remains unknown to the

empirical Bayesian since the prior distribution on 8, namely

9(8), remains completely unspecified. However, the k

Observations on 8 can be used to empirically estimate their

own marginal distribution and its derivative. Quite simply,

the results of the k sinwfltaneous or sequential estimation

problems are used to infer via empirical methods the

A

marginal distribution of 8 (and hence the underlying prior
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distribution on 8). Parzen [1962] gives methods for

estimatjxu; the density function for a random variable given

a finite number of observations on the variable. Clemmer

and Krutchkoff [1968] is an early example of the use of

these methods to generate empirical Bayes estimates of

normally distributed coefficients in a linear regression

model.

Theoretically, empirical Bayes estimation could be

employed in a variety of auditing problems. Four examples

are given in Table l. The classical estimation procedures

currently employed by auditors ignore the information

contained in estimates obtained for prior years, other

client divisions, or for similar accounts or internal

control procedures. Empirical Bayes estimation objectively

uses these prior or concurrent estimates to produce an

estimator which empirically mimics a pure Bayes estimate

vdth the prior distribution properly specified. However,

empirical Bayes techniques do not require the auditor to

subjectively specify any prior beliefs in the form of a

prior probability distribution.

A major practical difficulty in the application of the

empirical Bayes estimation procedures as described above

results from the fact that much of their development is

based on asymptotic theory. Hence, most of the properties

of these "nonparametric" empirical Bayes procedures rely on

a large number of prior or concurrent estimation problems of

the same type. Such applications in auditing would be rare.
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Indeed it is not surprising that the number of

estimation problems, k, must be large in order to infer

from their results both the form and the identifying

parameters of the prior distribution. However, of more

practical interest to auditors is a class of empirical Bayes

procedures designed specifically for instances where k is

small”. These are known as parametric empirical Bayes (PEB)

estimation techniques. Morris [1983a] provides a good

introduction to these methods.

PEB estimation is similar to pure Bayesian estimation

in that a form for the prior distribution of the unknown

parameters is specified. In the Bayesian manner the PEB

point estimate is the expectation of the posterior

distribution conditional on the observed classical estimate.

PEB estimation differs from pure Bayesian estimation since

only the form and not the identifying parameter values of

the prior distribution is specified. Instead of

prespecifying the values for the prior distribution

parameters, they are estimated from the observed data

itself. Table 2 summarizes the relationships between

classical, pure Bayesian, nonparametric empirical Bayes and

parametric empirical Bayes estimation.

As an example of PEB estimation assume the following

prior and conditional sampling distributions:

6. " Normal (u,T)

1

eilei ~ Normal (81,02) 1 = l,...,k independently

As shown in Section 2.2.1 the Bayes estimate for Si is
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AB A

T

Where B =

T + 02

Under pure Bayesian estimation C”, if not known, is

easily estimated from the data while the values for u and T

are prespecified so that the Bayes estimate results. Under

PEB estimation values for u and T are not prespecified but

must be estimated from the sample data as well.

Define

8 is an unbiased estimate of 1.: derived strictly from

the observed estimates 91,..., 9k.

Define

k x x 2

S = Z ( 81- 8) .

i=1

. . o 2 2 2 .

S is distributed as (o + 1)x (k-l) , where x (k-l) is

a chi-square random variable with k-l degrees of freedom.

Since E { l/)(2 = l/(k-3), it follows that an unbiased

(k-1)}

estimate of l/(a2 + T) is (k-3)/S.

Substituting these unbiased estimates for the

unspecified parameters in the formula for the Bayes estimate

yields the parametric empirical Bayes estimator:

BEBE = BPEB 9 + (1 ’ BPEB) 61

Where BPEB = (k-3) 02/ s

If ozis not known, it is easily estimated in the usual

manner by within group sums of squares.
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Efron and Morris [1972, 1973] show that the risk or

expected squared error of the PEB estimator is given by

A 2 2 2

I(8EEB) = TO + 3/k (o )

T + 02 T + 02

 

PEB estimation is efficient relative to classical estimation

since

A 2 2 2 A

{(GEEB) =.LO__+ 3/k_(.g_.)__ £02 =r(ei).

T + 02 T + 02

The price for estimating the parameters of the prior

distribution by the data is an increase in risk over the

Bayes risk when the parameters are specified correctly. The

2 2

increase is 3/k-1g—l—— which tends to zero as the number of

o + T

populations, k, increases.

In Section 2.2.1 it was demonstrated that

misspecification of the identifying parameters of the prior

distribution (iiand T) adds risk to the pure Bayes

estimator, perhaps to the extent of inefficiency relative to

classical estimation. PEB estimates avoid this hazard by

objectively estimating these parameters from the data

itself. However, as Table 2 shows, PEB estimation still

requires the user to subjectively specify the form of the

prior distribution. The question arises as to whether

particular forms for the prior distribution are more robust

than others to protect the user against a cost for

functional form misspecification. The answer appears to lie

in the use of natural conjugate priors.
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The natural conjugate prior is the distribution which,

given the conditional sampling distribution, f (gle), will

result in the prior, 9(8), and posterior, g(e|g),

distributions having the same functional form. In the

example above the use of Normal (11,1) for the prior is an

illustration of a natural conjugate prior since the

2
2 A

. . . . O 8 T TO

posterior distribution (Normal (u + ,

T -+ 02 T + o

  

2 )) is of

the same functional form. Jackson, et. al. [1970] and

Morris [1983b] prove the following important robustness

property of natural conjugate priors for sampling

distributions which are members of the natural exponential

familyrivith quadratic variance function (NEF-QVF). NEF-QVF

is a family of probability distributions. There are six

basic NEF-QVF distributions. These include the normal,

binomial and Poisson distributions as special cases.

Let H be the class of all possible priors on the

unknown parameter 8 with mean u and variance T. For any

estimator t and prior distribution1rs H define the

quadratic risk function as r(n,t) = E { (t-u)2 }. This is a

double expectation over both the sampling distribution given

ejflELfidistributed according to H. Denote the Bayes

estimator for a specified prior 17 a II as t1: and denote the

natural conjugate prior as "o' If the sampling distribution

is a member of NEF-QVF, then r(TT,t1T ) = r(1r°,t1T ) S [(flo,t)

o o

for all possible priors n e H and any estimator t.
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As Morris [1983b, p. 525] concludes, the theorem

"justifies using the conjugate prior in Bayes and empirical

Bayes practice when one has little knowledge of the

distribution of 8 beyond its first two moments. In that

case choosing 11 3! "0 can be risky because the statistician

thinks his risk is r(n,t") < r(1T, tTr ) but it may actually

0

* * *

be r(Tr ,t") > r(Tr ,tTr ) = r(1ro,t1T ) if some other 1T 8 ll

0 O

obtains. Only the conjugate prior avoids this hazard."

Clearly, if the auditor knew the form of the prior

distribution, he would be wise to use that information in

constructing (empirical) Bayes estimates. However, in all

practical circumstances the proper form will not be known.

Guessing at any form other than the conjugate prior is

dangerous since the resulting estimator may have

unanticipated and unobservable additional risk if the form

is misspecified. Only by using the conjugate prior is the

auditor assured that his actual risk is as anticipated

regardless of the actual form of the prior.

As a final remark it should be noted that the PEB

estimator can be improved by placing an upper bound of one

PEB

on the weighting factor B . Since I and 02 are variances

of probability distributions, they are both nonnegative.

This implies B = T 5 1. Since it is known a priori

I + (I2

that B 5 1, it follows that the PEB estimate is improved

“PEB
by estimating B by B equal to the minimum of l and
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(k-3)02/S. Unless otherwise noted subsequent references to

the PEB estimator will refer to this bounded coefficient

estimator.

Chapter III considers the specific uses and behavior of

empirical Bayes estimates in the context of auditing tests

of internal control compliance. Chapter IV considers their

use in the context of substantive audit testing of account

balances.

2.3fil A Frequentist Interpretation of Empirical Bayes

Estimators
 

The preceding formulation of the PEB estimator was made

using the Bayesian view of the estimation of a set of

parameters 81,...,8k which are themselves realizations of

some fundamental random process. However, there exists a

frequentist interpretation of the PEB estimator when the

underlying parameters are taken to be unknown but fixed.

The frequentist interpretation arises from the fact that the

PEB estimator developed in Section 2.3 is the same as the

James-Stein estimator for the means of k normal

distributions.

Ijiri and Leitch [1980] introduced James-Stein (JS)

estimators to the accounting literature. Efron and Morris

[1977] give a good nontechnical introduction to these

estimators. Stein [1956] considered the following

estimation problem. Suppose one observes k independent
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A

normally distributed random variables 81,...,8 In thek.

auditing context these might represent the results of any of

the classical estimation procedures discussed in Section 2.1

for k different populations. Denote the means of these k

random variables by 81,..., 8k and the variance of each by

2

0 . The maximum likelihood estimators (MLE) of these fixed

but unknown means are, of course, simply the observed values

A A

91,...,9k themselves.

However, Stein [1956] proved the rather surprising

result that these normally distributed MLE's are

inadmissable as estimates of the vector of means under a

quadratic loss function when the number of populations

exceeds two. Inadmissibility means that there exist some

A A A A*

alternative estimators to 8 ,...,8k, call them 81,...,8k,

l

which have smaller expected ensemble error. Thus,

k .* 2 k x 2

i=1 i=1

The above inequality is a frequentist assertion in the sense

that the expectation is taken only over the sampling

A* A

distributions of the estimators (ei or 9i) with the unknown

parameters 81,...,8 fixed. Furthermore, the inequality

k

holds for any fixed set of parameters 81,...,8k.

James and Stein [1961], Lindley [1962], .and Efron and

Morris [1973] showed that the following James-Stein

estimator, 838, although itself inadmissible (i.e.,

dominated by some other estimator) nonetheless dominates the

MLE estimator:
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A

J5) e+ (l - B

Where: BJS = min {1, (k-3)oz/S}

: k A

8 = l/k Z 8.

. 1

i=1

k x x 2

i=1

This implies that for any set of fixed underlying

parameters to be estimated, the expected ensemble squared

error of 8JS = (8i3,...,8is)' is no greater than that for

A

8 = (61""”%J" Defining the frequentist risk, R, of an

estimator to be its expected ensemble squared error we have:

. k .

R(er,e) = E { 2 (egg - ei)2 }

i=1

k A 2 A

5“ 2 (9i - 91’ }= R(0,0)

i=1

for 32y fixed set of unknown parameters 8.

The above expression of the ensemble efficiency of the

JS estimator can be viewed as a frequentist interpretation

of the PEB estimator since 8:8 is equivalent to BEEB of the

prior section. There is, however, one important difference

between the two interpretations. The frequentist property

of the JS estimator holds only for ensemble risk and not for

each population individually. Thus, among the k populations

there may be a set of fixed parameters 8i,...,9," such that

for at least one population, j, the James-Stein estimate has

higher expected squared error or

A

}>E{(8j-8:'j) }.
‘JS 2

E . - 1{ (83 8])
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The empirical Bayes interpretation of smaller expected

squared error holds both for the ensemble and for each of

the populations individually. Thus,

k . k .

E { z (BPEB - e.)2 } < E { z (e. - e.)2 }
. 1 1 - 1 1

1=1 i=1

and

“PEB 2 “ 2 .

E { (ei - 91) } 5 E { (ei - 91) } for all 1.

This is since under the PEB view the expected value is taken

over both the distribution of the estimator conditional on

6i Egg the distribution of 8i while under the frequentist

view the expectation is taken only over the distribution of

the estimator with 6i fixed.

Ijiri and Leitch [1980] consider using JS estimates as

a method for an auditor to limit ensemble risk over "(1) a

client's set of accounts which comprise a set of financial

statements, (2) similar accounts for all clients in his

practice, and (3) similar accounts over time" [p. 93]. They

consider applications for both attributes and variables

sampling problems including "(1) estimates of error rates,

(2) population estimates, (3) difference estimates, and (4)

regression estimates" [p. 106].

Chapter III considers the use of PEB/JS estimators in

the context of compliance testing for internal control error

rates. The behavior of the estimator is examined both from

the frequentist and the empirical Bayes view. Chapter IV

considers the use of PEB estimators during substantive

testing.
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2.3.2 Review of the Relevant Literature
 

The prior two sections outlined the general development

of the James-Stein or parametric empirical Bayes estimator.

Subsequent chapters will examine the estimator's behavior in

the specific context of statistical sampling for audit

testing. The purpose»of this section is to review the

literature documenting the practical applications of the

estimator in other fields.

Carter and Rolph [1974] used PEB procedures iJl the

estimation of the probability that alarms from New York City

fire alarm street boxes signaled serious structural fires.

These probability estimates were employed as a component of

a logistical model allocating additional equipment in an

efficient manner toward those alarms which had the highest

likelihood of signaling a serious fire. Fire alarm data

from 1967—1969 were used to develop empirical Bayes

estimates of underlying signal rates for certain fire alarm

street boxes. The performance of the empirical Bayes and

maximum likelihood estimators was evaluated by comparing the

results of the equipment dispatch policy whiCh would have

arisen in 1970 under each of the two estimators. It is

interesting to note that the loss function employed is not

quadratic on the estimates of the probabilities themselves,

but rather a function of the way these probability estimates

would be used -- i.e., the results of the dispatch policy.

Their results showed that using the empirical Bayes
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estimates in the dispatch policy model for 1970 could have

produced a statistically significant reduction in serious

structural fire underresponses while reducing the total

number of alarm responses and holding the number of

overresponses constant.

Morris and Van Slyke [1978] studied the use of PEB

methods for the estimation of automobile insurance claim

costs for 27 geographical underwriting territories over the

period 1974-1976. Data from the first two years were used

to estimate regional differences in claim costs for 1976

using both MLE and PEB methods. The results showed the PEB

estimator reduced the 1976 ensemble squared error by 1.5%

for property damage claims and 12.5% for bodily injury

claims.

Fay and Herriott [1979] considered the estimation of

per capita income for small cities. The objective was to

provide more accurate estimates since federal revenue

sharing allocations under the State and Local Fiscal

Assistance Act of 1972 were based, in part, upon estimated

per capita income.

Their sampling estimator was based upon the 1970 census

sample results for each of the small communities. A second

estimate was obtained using Internal Revenue Service and

census bureau county data. This estimate was based on a

regression of community per capita income on county per

capita income, community and county housing values, and IRS

adjusted gross income per exemption for the community and
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the county. PEB methods were used to construct a single

estimate comprised of a linear weighting of the census

sample and regression equation estimates. The goal was to

construct a single PEB estimator which outperformed txrth of

the existing estimators.

A test of their PEB estimator was provided by comparing

the 1972 per capita income estimates for 24 communities

subjected to a special 100% census in 1973. Their results,

summarized below, confirm that the PEB estimator is

efficient relative to both of the alternative estimators

upon which it is based.

  

Mean Mean

Squared Absolute

Estimate of Per Capita Income Error Error

Census sampling estimator $550,055 $589

Regression estimator 567,437 611

PEB estimator 299,654 430

Rubin [1980] employed PEB techniques in his law school

admission standards validity study. Two factors which law

schools use in admissions decisions are the applicant's

score on the Law School Aptitude Test (LSAT) and the

applicant's undergraduate grade point average (UGPA) . The

objective of the study was to develop a linear model

predicting first year law school grade point average (FYGPA)

based upon LSAT and UGPA in order to assist schools in their

admissions decision.

Data from 82 law schools for LSAT, UGPA and FYGPA were

obtained for the three years 1974-1976. For each school an

ordinary least squares model of FYGPA on LSAT and UGPA was
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fit for both 1974 and 1975. Predictions for 1975 and 1976

FYGPA were made based upon the prior year's ordinary least

squares MM£U regression estimates. The PEB estimates of

FYGPA were linear combinations of the OLS regression

estimate and the grand mean of FYGPA for the 82 schools.

Rubin concludes that the PEB estimates were superior since

57 of the 1975 and 49 of the 1974 FYGPA predictions had

smaller mean squared prediction error than under the pure

ordinary least squares model.

Hoadley [1981] was interested in constructing estimates

of the percentage of production units which are defective

for quality assurance purposes. In his model the production

failure rate for the current period is estimated by an

emnpirical Bayes combination of the current period's sample

results and the average of the sample results for the past

five years. The PEB estimates are incorporated into an

overall model for reporting quality assurance and production

system control measures to Bell System management by the

Bell Laboratories Quality Assurance Center.

Maier, et.a1. [1982] construct an empirical Bayes

technique for estimating an individual security's market

risk. They use the traditional market model:

Rit = “i + Bi Rmt + 6it

t = 1,...,T indexes intertemporal observations

Rit = Rate of return of security i in period t

a. = Rate of return component on security i which

is independent of movements in the market

index
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Rmt = Rate of return on a market index in period t

Bi: Measure of market risk of security i

reflecting the responSiveness of the

security's return to changes in the market

index

sit = Normal (0, 0:) disturbance term

In numerous capital markets studies in the finance and

accounting literature ffi is estimated using ordinary least

squares regression over some observation period. A crucial

element in most of these studies is an accurate estimate of

E%f Maier, et.al. construct an empirical Bayes model for

more efficient estimation of Bi than OLS estimation at the

individual security level.

Maier, et.al. model the parameters of the market model

for each security as random occurrences from a trivariate

normal distribution:

(ai , Bi , 0:) “ Normal (u,2)

Clearly if u and 2 were known they could be used to

provide Bayesian revised estimates of EELS. Maier, et.al.

assume that II and I are neither known nor prespecified but

do provide formulas for their unbiased estimation based upon

the results of individual OLS market model regressions for

leach of N securities in a portfolio assumed to be

representative of the market. Thus, for example:

A N A

He = 1/N X 8

i=1

These underlying parameter estimates are used to

OLS

1

construct empirical Bayes estimates of 81 for each of the

securities as a function of both the OLS estimates agLé BgL§
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and 6: and the estimates of the underlying parameters a and

i. Presumably these empirical Bayes estimates are efficient

relative to the individual market model OLS estimates.

However, Maier, et.al. present no empirical evidence to

support this claim.



CHAPTER III

THE BEHAVIOR OF PARAMETRIC EMPIRICAL BAYES ESTIMATORS IN

COMPLIANCE TESTING

The purpose of Chapters III and IV is to consider

specific applications of empirical Bayes estimators within

the context of audit testing. Chapter III investigates

applications during the internal control compliance testing

phase of the auditor's examination. Chapter IV investigates

applications during the auditor's substantive testing of the

reported general ledger account balances.

3.1 The General Compliance Testing Setting
 

The purpose of compliance testing is to provide the

auditor with evidence that the internal controls upon which

he intends to rely are operating as prescribed. Attributes

sampling procedures are often employed to estimate the rate

of noncompliance or error rate, p, for the population of all

transactions during the year for which the internal control

procedure was applicable.

Suppose the auditor wishes to simultaneously estimate

the unknown error rate, pi, for each of i = 1,...,k similar

attributes populations. For example, i may index k

63
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different attributes pertaining to a particular internal

control system or k divisions within a company each of which

is being tested for the same attribute.

In an error rate attributes application of statistical

sampling procedures the auditor might draw a random sample

of n transactions from each of the k populations. For

example, when testing the cash disbursements system a random

sample of n disbursements might be selected by reference to

check numbers. Each disbursement would then be examined for

compliance with k control points (e.g., vendor's invoice

stamped "paid", receiving report and purchase order attached

to the voucher, review and approval by a supervisor, etc.).

If £1 represents the number of observed errors in the sample

for the ith attribute population, then pi = xi/n is, of

course, the traditional MLE estimate for pi, and the one

which is nearly universally used by auditors. The AICPA

audit guide, Audit Sampling [AICPA, 1983] refers to 51 as

the sample deviation rate.

The sampling distribution for the observed number of

errors, xi, is binomial if the sample items are selected

with replacement and hypergeometric if they are selected

without replacement. However, in most realistic audit

sampling situations the populations are large enough

relative to the sample sizes so that the differences between

these two distributions are negligible. For simplicity all

results in this study are obtained from a model which
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assumes a large population relative to the sample sizes so

that the use of the binomial distribution is appropriate.

3.2 Comparing Normal and Poisson Based Stein-type

Estimators

The MLE sample deviation rate can be viewed as the

sample mean of a random variable whose value is one if the

item is not in compliance with the internal control and zero

otherwise. Thus, the central limit theorem guarantees that

the MLB estimates are asymptotically distributed as normal

random variables, or

. P-(l - P.)
- i 1

pi Normal (pi,

n )°

If each pi is indeed an independent normally

distributed random variable, then the risk limiting

properties of the PEB/JS estimator apply. For the error

rates sampling model the JS estimator may be written as:

 

(1) pis = BJS p + ( 1 _ BJS) pi

-A- - k A

Where: p - l/k 2 pi

i=1

BJS = min { (k-3;§(l-p) ' 1 }

a :2

S = 1:? (pi-p)

i=1

The»above formulation of the JS estimator for use in

attributes sampling was first proposed by Ijiri and Leitch

[1980] as their equation (3). The formula assumes that the

variances of each of the sampling distributions,
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oi = 811%:811 , are close so that-P---(-I—.‘:—“-ED a: Eiljégilz serves

as an adequate estimate for each 0i' As an alternative

Efron and Morris [1975] suggest a variance stablizing

transformation of the form §i = g: arcsine (2pi - l) and

apply the James—Stein procedure to the resulting yi's. This

study examined the performance characteristics of both the

transformed and untransformed esthmator. The results were

not materially different and further references to the JS

estimator for attributes sampling will be to the simpler

equation (1) as originally proposed by Ijiri and Leitch

[1980].

Matsumura and Tsui [1982] observed, however, that the

assumption of normality for the sampling distribution of the

A

pi's is suspect in view of the small sample sizes and low

error rates often present in attributes sampling. If the

observed sample error rates are not normally distributed,

then the risk dominance of the James-Stein estimator is no

longer guaranteed. Thus, there may be some set of

population error rates, p*, such that R(sz,p*) > R(p,p*).

They suggest modeling the observed number of errors,

xi, under a Poisson distribution since it is a closer

approximation to the binomial distribution when error rates

and sample sizes are small. Under the assumption that.

§1,...,§k are independent observations from Poisson

distributions they present three estimators (Peng, Hudson-

Tsui, and Tsui) each of which risk dominates MLE in the
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frequentist sense of smaller expected ensemble error for any

given fixed set of underlying population error rates. A

more complete discussion of Stein-type Poisson based

estimators is given in Ghosh, et. al. [1983].

The forms of these three estimators are:

Peng

AP - A A . A

pi - l/n [xi -(k—No-2)+ h(xi)/(Sh+No)] if xi) 0

= min{(k-Noa2)+/(Sh+No) , [l-(k-No-2)+/(Sh+No)]} if xi= 0

Where: Nj = the number of xi equal to j

x

h(X) = Z l/j if x 3 1

i=1

=
If X = O

k 2 A

S = 2 h (x.)
h j=l j

(k-No—Z)+ = max {0 , (k-No-2)}

Hudson-Tsui

pi - l/n [xi - r(I) H<xi)/SH]

Where: I = any prespecified integer

I

r(I) = max {0, k - 2 N. - 3}

i=0 3

H(Xi) = h(xi) - h(I)

k 2 x

S = 2 H (x.)
H j=1 3

h(x) = as defined for the Peng estimator
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Tsui

(2) pf = l/n [xi - In K(xi)/SM]

Where: M = median of the xi's

rM = max {(number of xi's greater than M) - 2, 0}

x-M

K(x) = 1 + z 1/(j+M) if x 3 n+2

i=2

= 1 if x = M+1

= 0 if x = M

= ~b, any positive constant if x < M

k 2 x

S = 2 K (x.)

M j=1 3

These Poisson based estimators represent a potentially

valuable tool in the efforts to apply multivariate risk

limiting estimators to audit sampling. However, there are

several reasons why the auditor might not wish to abandon

the JS/PEB normal based estimator in favor of one of the

Poisson based procedures. Five such reasons are given here.

First, each of the three Poisson based estimators

suffer from operational difficulties in the specific context

of audit attributes sampling. The Peng estimator adjusts or

"shrinks" all non-zero sample observations down toward zero.

This inherent downward bias in error rate estimation is most

likely unacceptable to the auditor. The auditor will

generally be more concerned with the additional audit risk

created by an overreliance on internal accounting controls

when the estimated error rates are understated (SAS 39, par.

14, AICPA [1985]) than with the inefficiency generated by

underreliance when they are overstated (SAS 39, par. 13,
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AICPA [1985]). This makes the consistent underestimation of

the Peng estimator an unacceptable feature for the auditor.

The second Poisson based estimator, Hudson-Tsui, shrinks the

MLE point estimates toward the auditor's specified prior

belief, I/n, for the error rate. As Matsumura and Tsui

admit, the subjective element of the estimator makes it less

attractive than the James-Stein estimator which adjusts

toward a point determined by the data itself, i.e. the grand

mean, p. Finally, the Tsui estimator is the most similar of

the three to the James—Stein estimator given in (l) as it

adjusts the MLE point estimates toward their median

observation instead of their common mean. However, it

requires the number of populations sampled to be at least

six while the James-Stein procedure requires only four

attribute populations. This is a rather minor operational

drawback and the actual behavior of the Tsui estimator will

be compared with that of the James-Stein estimator in

Section 3.3.

Secondly, the requirement that the estimator guarantees

risk dominance over the entire parameter space may be so

severe as to rule out estimators which perform quite well in

all relevant and realistic circumstances. Matsumura and

Tsui [1982, p. 163] comment on the development of James-

Stein estimators by stating that "a critical assumption in

the exposition is that the sampling distributions follow (at

least approximately) a multivariate normal distributLMiJ'
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While this assumption may be critical in the proof of

guaranteed universal risk dominance, it does not necessarily

follow that the estimator performs poorly under other

circumstances. In fact, as Judge and Bock [1978, p. 310]

conclude: "Since the operating characteristics of the

Stein-rules depend on the means and variances of the

observations and the unknown coefficients, the estimators

are robust relative to the normality assumption."

Indeed, the risk performance of the James-Stein

estimator in the specific circumstances of error rate

estimation is as much an observable item as a debatable one.

When Ghosh, et. a1. [1983] simulate the behavior of various

Poisson based estimators they also investigate a near normal

based estimator which is n__o_t_ proven to be universally risk

dominant and which adjusts the MLE estimates toward their

geometric mean much in the manner of the JS estimator (1).

It is interesting to note that this near normal based

estimator resulted in risk savings which were approximately

three times larger than those obtained by the best

guaranteed risk dominant estimator tested. As the results

of Section 3.3 show, the James-Stein estimator consistently

dominates both the MLE and the Poisson based Tsui estimator

over a wide range of low error rate patterns even with

sample sizes as low as 50. The concerns of Matsumura and

Tsui about the efficiency of the James-Stein estimator when

sample sizes and error rates are low appear to be without

merit. Furthermore, the analogous Poisson based estimator
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which they propose is shown to be grossly inefficient

relative to the James-Stein estimator.

The third reason that an auditor might wish to use

James—Stein estimation in spite of the non-normal sampling

distribution is its natural link to Bayesian estimation. As

Berger [1983, p. 368] notes:

The impetus for constructing improved simultaneous

estimators has generally come from two directions:

(1) the decision-theoretic approach involving

production of estimators dominating (in terms of

risk) "usual" estimators which are inadmissible in

higher dimensions, and (ii) the Bayesian or

empirical Bayesian approach of taking advantage of

prior information about the unknown parameters

(often information concerning a plausible

structure or "model" for these parameters) to

produce substantially better estimators tailored

to the supposed prior information. It is

generally the case that the Bayesian or empirical

Bayesian approach is of more practical interest,

especially when the unknown parameters...are

thought to have some common structure, in that

very substantial improvement over standard

estimators is usually possible only in such

situations.

The development of the Poisson based estimators given

in Matsumura and Tsui [1982] arises out of the frequentist

decision-theoretic approach of strict risk dominance.

However, as Section 2.3.1 established, the James-Stein

estimator is a reasonable estimator in its own right as a

parametric empirical Bayes (PEB) estimator —- apart from its

frequentist risk dominance characteristics.

The derivation in Section 2.3.1 linking the PEB and JS

estimators assumed that the sampling distribution was

normal. Matusura and Tsui reject the normality assumption

A

and model the xi's as Poisson random variables. In the
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attributes sampling application the sampling distribution

is, in fact, neither normal nor Poisson but rather binomial.

Morris [1983b] generalizes the PEB estimator to all sampling

distributions in the NEF-QVF family. NEF-QVF includes as

special cases the normal, Poisson, and binomial

distributions. buuris shows that with a binomial sampling

distribution using the natural conjugate prior (the beta

distributnnn for the underlying error rates produces the

following PEB estimator:

  

A A X A A

EB
E { pilpi} = BPEB p + (1 - BP ) pi

“PEB _ n “33 k - 1

Thus, the PEB estimator for population error rates

asymptotically approaches the traditional James-Stein

estimator of equation (1) as the sample size increases.

With any reasonable sample size the difference is negligible

and the simpler unadjusted James-Stein estimator as

initially proposed by Ijiri and Leitch [1980] is used in the

following sections.

Interestingly enough, if the auditor chooses to model

the xi's under a Poisson distribution as Matsumura and Tsui

suggest, then the natural conjugate prior is the gamma

distribution and the resulting PEB estimator is identical to

the James-Stein estimator of (l).

A.fourth drawback to the Poisson based estimators is

their dependence on the weighting coefficients of the loss
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function. The loss function implicit in the formulatjrni of

the Poisson based estimator is

k 1

L(p.§>) = .2 (pi - p92 = (p - B)‘ I (p - 5)
i=1

Where I = k x k identity matrix.

The frequentist risk dominance claim of these

estimators is that the expected loss fOr any fixed set of

error rates is no greater than the expected loss for the MLE

estimator. However, the claim holds only for the unweighted

loss function and would not be true for a more general

weighted loss function, say

L'(p.§) = (p - B)‘ c (p - I»

Where C = arbitrary k x k symmetric

weighting matrix

As demonstrated in Chapter II, the Bayes (and hence

PEB) estimator is independent of the weighting matrix, C, in

the loss function. Thus the JS estimator has a Bayesian

interpretation (i.e., both pi and pi random) as the

estimator which mininizes the expected loss of any

generalized quadratic loss function. The auditor need not

assign specific values for these weightings since the

resulting estimates are independent of them. This is not

true of the frequentist Poisson based estimators which have

no interpretation in the Bayesian view. Their risk limiting

jproperties are limited to the frequentist view with a loss

function that has equal population weighting and no

interaction effects.
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The final drawback to the Poisson based estimators is

the lack of any method for establishing confidence intervals

about the resulting point estimates. Despite their

potential risk dominance over MLE the inability to make

inferential statements about the population error rates

greatly reduces the number of applications for which an

auditor would be willing to use them. However, recent

results in PEB estimation procedures provide a method for

establishing confidence intervals for the James-Stein

estimator. These methods are discussed in Section 3.3.3.

3.3 Performance Characteristics of Stein-type Estimators in

Attributes Sampling
 

The purpose of this section is to present the results

of a series of tests examining the performance

characteristics of the classical MLE estimator, the pure

Bayesian estimator, the JS/PEB estimator of equation (1) and

the Tsui estimator of equation (2). The behavior of the

estimators is first compared under the frequentist view of

fixed population error rates. The behavior of’the PEB/J8

estimator is also examined under the Bayesian view of random

population error rates.

Three different operational characteristics are

examined in the following three subsections. These are the

efficiency, the bias and the reliability of the estimators.

These characteristics were identified by Loebbecke and Neter
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[1975] as relevant considerations in the choice between

competing estimators for audit testing. Efficiency is

defined as the ratio of the estimator's expected loss to the

expected loss of MLE. Bias is the difference between an

estimator's expected value and the true value of the item

being estimated. The reliability of an estimator's

confidence interval measures the probability that a

confidence interval with a stated level of assurance

actually contains the true value being estimated.

3.3.1 Tests of Efficiency

The frequentist behavior of the JS/PEB estimator when

used to estimate the underlying error rates of four

independent attributes populations was examined under a wide

range of error rate patterns. Thirty-five cases

representing all possible combinations of 2%, 4%, 6% and 8%

error rates for the four populations were evaluated for

sample sizes of 50 and 100.

An upper bound of 8% on the error rates was chosen for

two reasons. First, it is in low error rate situations that

Matsumura and Tsui [1982] question the behavior of the

James-Stein estimator. Higher error rates imply a sampling

distribution which is more nearly normal and hence satisfy

the sufficiency conditions for the efficiency of the James-

Stein estimator. Secondly, the AICPA audit guide, Audit

Sampling [AICPA, 1983] indicates that the range of tolerable
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error rates within which the auditor may generally place

substantial reliance on the internal accounting control is

from 2% to 7%. Error rates in excess of this range imply

that the auditor may only place moderate or limited reliance

on the control.

An upper bound of 100 on the sample size was chosen for

two reasons. First, it is only with low sample sizes that

the normality of the sampling distribution is questioned.

Secondly, these lower sample sizes are a reasonable

representation of actual sample sizes used in practice.

Sample sizes much in excess of 100 make it unlikely that

sampling to determine compliance with an internal control

procedure is a cost effective audit procedure.

The actual individual population frequentist mean

squared error or risk, R, of the James-Stein estimate with

sample sizes of n and conditional on the actual error rates

of the four populations, p = (p1,...,p4)' is given by:

 

 

A n n A 2 4

(3) R(pqs,p,n) = Z --- 2 (pqS - p.) H Prob(J = j )
i . _ . _ 1 i h h

j -0 J -0 h=1
1 4

n ' J
. _ . n! h h

Where. Prob(Jh - 3h) 3 . (n - J )1 pb (1 - ph)

h h

pig = BJS p + (1 - BJS) Jh/n

‘JS ’ . p (l - p)
B — min{ n S I 1}

a 4

p = 1/4 2 jh/n

h=1

4 z 2

S = Z (jh/n "' p)

h=1
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The actual MLE risk can be evaluated in a similar

8

A

manner by substituting pi for fr: in (3) or by noting that

R(§i.p.n> = 91(1 - pi)/n.

The ensemble risk is defined as the sum over the four

populations of the individual component risks from (3). The

efficiency of the James-Stein estimator can be evaluated by

computing the ratio of the James-Stein risk to the MLE risk.

Thus the efficiency for any individual population, i, is

computed as

Eff(pgs,p,n) = R(;gs,p,n)/R(gi,9,n).

The ensemble or composite efficiency for all populations

combined is computed as

“Js 4 ‘
R(pi .p.n)/ .21 R(pi,prn).

1:

srprn) =

4

1:

Eff(pJ

The actual values for these efficiency measures for

each of the 35 population error rate patterns were

calculated by direct evaluation of (3). The results are

given in Tables 3 and 4 for sample sizes of 50 and 100,

respectively. As previously noted, despite the lack of

normality for the sampling distribution the James-Stein

estimator is frequentist ensemble risk efficient relative to

MLE in every instance.

James-Stein estimation is most beneficial when the

population error rates are close (e.g., case 1 with ensemble

efficiency of .638 representing a 36.2% risk reductJJNi over

MLE with a sample of 50). The risk savings diminish as the

error rates become more disperse (e.g., case 10) or if one
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TABLE 3

James-Stein Frequentist Efficiency, n = 50

Population

Error Rates Efficiency

Case 1 2 3 4 l 2 3 4 Ensemble

1 .02 .02 .02 .02 .638 .638 .638 .638 .638

2 .02 .02 .02 .04 .662 .662 .662 .765 .702

3 .02 .02 .02 .06 .721 .721 .721 .896 .806

4 .02 .02 .02 .08 .783 .783 .783 .981 .893

5 .02 .02 .04 .04 .696 .696 .724 .724 .715

6 .02 .02 .04 .06 .759 .759 .726 .846 .786

7 .02 .02 .04 .08 .820 .820 .753 .942 .862

8 .02 .02 .06 .06 .818 .818 .816 .816 .817

9 .02 .02 .06 .08 .872 .872 .809 .904 .865

10 .02 .02 .08 .08 .918 .918 .878 .878 .887

ll .02 .04 .04 .04 .759 .685 .685 .685 .695

12 .02 .04 .04 .06 .839 .691 .691 .792 .748

13 .02 .04 .04 .08 .903 .724 .724 .900 .821

14 .02 .04 .06 .06 .927 .700 .764 .764 .768

15 .02 .04 .06 .08 .992 .732 .762 .862 .819

16 .02 .04 .08 .08 1.055 .760 .837 .837 .844

17 .02 .06 .06 .06 1.037 .739 .739 .739 .770

18 .02 .06 .06 .08 1.111 .740 .740 .825 .806

19 .02 .06 .08 .08 1.192 .742 .804 .804 .822

20 .02 .08 .08 .08 1.287 .787 .787 .787 .827

21 .04 .04 .04 .04 .646 .646 .646 .646 .646

22 .04 .04 .04 .06 .661 .661 .661 .729 .683

23 .04 .04 .04 .08 .703 .703 .703 .849 .760

24 .04 .04 .06 .06 .681 .681 .700 .700 .692

25 .04 .04 .06 .08 .726 .726 .703 .805 .748

26 .04 .04 .08 .08 .769 .769 .780 .780 .777

27 .04 .06 .06 .06 .711 .673 .673 .673 .680

28 .04 .06 .06 .08 .765 .680 .680 .760 .721

29 .04 .06 .08 .08 .822 .687 .737 .737 .739

30 .04 .08 .08 .08 .890 .717 .717 .717 .743

31 .06 .06 .06 .06 .648 .648 .648 .648 .648

32 .06 .06 .06 .08 .659 .659 .659 .711 .675

33 .06 .06 .08 .08 .674 .674 .689 .689 .682

34 .06 .08 .08 .08 .695 .668 .668 .668 .673

35 .08 .08 .08 .08 .649 .649 .649 .649 .649
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TABLE 4

James-Stein Frequentist Efficiency, n = 100

 

 
 
 

Population

Error Bares Efficiency

Case 1 2 3 4 1 2 3 4 Ensemble

1 .02 .02 .02 .02 .646 .646 .646 .646 .646

2 .02 .02 .02 .04 .701 .701 .701 .845 .758

3 .02 .02 .02 .06 .798 .798 .798 1.006 .900

4 .02 .02 .02 .08 .871 .871 .871 1.059 .975

5 .02 .02 .04 .04 .766 .766 .778 .778 .774

6 .02 .02 .04 .06 .854 .854 .782 .941 .870

7 .02 .02 .04 .08 .913 .913 .822 1.027 .945

8 .02 .02 .06 .06 .922 .922 .890 .890 .898

9 .02 .02 .06 .08 .962 .962 .874 .974 .938

10 .02 .02 .08 .08 .992 .992 .936 .936 .948

ll .02 .04 .04 .04 .885 .715 .715 .715 .740

12 .02 .04 .04 .06 .989 .733 .733 .875 .818

13 .02 .04 .04 .08 1.028 .788 .788 .997 .906

14 .02 .04 .06 .06 1.097 .751 .830 .830 .843

15 .02 .04 .06 .08 1.126 .801 .824 .944 .898

16 .02 .04 .08 .08 1.158 .837 .905 .905 .916

17 .02 .06 .06 .06 1.238 .796 .796 .796 .842

18 .02 .06 .06 .08 1.272 .799 .799 .899 .880

19 .02 _.06 .08 .08 1.322 .805 .870 .870 .893

20 .02 .08 .08 .08 1.396 .849 .849 .849 .894

21 .04 .04 .04 .04 .648 .648 .648 .648 .648

22 .04 .04 .04 .06 .684 .684 .684 .788 .718

23 .04 .04 .04 .08 .760 .760 .760 .961 .839

24 .04 .04 .06 .06 .725 .725 .738 .738 .733

25 .04 .04 .06 .08 .800 .800 .746 .897 .819

26 .04 .04 .08 .08 .861 .861 .852 .852 .855

27. .04 .06 .06 .06 .789 .694 .694 .694 .711

28 .04 .06 .06 .08 .874 .710 .710 .833 .778

29 .04 .06 .08 .08 .959 .727 .794 .794 .805

30 .04 .08 .08 .08 1.062 .764 .764 .764 .808

31 .06 .06 .06 .06 .649 .649 .649 .649 .649

32 .06 .06 .06 .08 .676 .676 .676 .758 .701

33 .06 .06 .08 .08 .707 .707 .718 .718 .713

34 .06 .08 .08 .08 .751 .683 .683 .683 .697

35 .08 .08 .08 .08 .650 .650 .650 .650 .650
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error rate is significantly different from the others (e.g.,

case 4). The efficiency appears to be closely related to

the relative variance (the variance divided by the mean) of

the underlying population error rates. For example, cases

12 and 25 represent two differing population error rate

patterns both of which have a relative variance of .005.

The ensemble efficiencies for these two cases are virtually

identical. In general, the James-Stein estimator increases

in efficiency relative to MLE as the relative variance of

the underlying population error rates decreases.

.An alternative interpretation of these efficiency

measures can be made in terms of sample sizes. The sample

size, n*, which would be required to generate the same

ensemble risk using MLE as with James-Stein estimation using

a sample size of n is given by n* = n / Eff(SJs,p,n). Thus,

for example, in case 1 sample sizes of 78 = 50/.638 would be

required for the auditor using traditional MLE techniques in

order to achieve the same ensembLe risk provided by James-

Stein estimation using samples of 50.

Tables 3 and 4 give the frequentist efficiency measures

for the simultaneous estimation of the error rates in four

populations -- the minimum number required by the James-

Stein estimator. The estimator increases in efficiency,

ceteris paribus, as the number of populations, k, increases.

As the number of populations increases much beyond four, the

direct evaluation of exact mean squared errors and

efficiencies by equation (3) becomes intractable due to the
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extremely large number of terms in the k summations.

However, Table 5 presents the results of a series of Monte

Carlo experiments demonstrating the increased efficiency of

the James-Stein estimator as the number of populations

increases. The Monte Carlo methodology has been employed

extensively in research of the behavior and characteristics

of statistical auditing techniques when exact results by

analytical methods are intractable. Examples include Neter

and Loebbecke [1975], Reneau [1978], Duke, Neter and Leitch

[1982], Frost and Tamura [1982], and Dworin and Grimlund

[1984]. A description of each specific Monte Carlo

experiment used in this study accompanies the presentation

of the results. For a description of the Monte Carlo

methodology in a general setting see Shreider [1966], Smith

[1973], or Chambers [1977, pp. 186-191].

Within each comparison group the mean and variance (and

hence the relative variance) of the error rates were held

constant in order to control for their effect on the

efficiency of the estimator. The behavior of the estimator

over k = 4, 6, and 8 populations was examined. For each of

the 1,000 trials in the Monte Carlo experiment independent

random samples were simulated from the error rate

populations. These samples were used to construct both the

MLE and James-Stein estimates of the population error rates.

The ensemble efficiency represents the ratio of the average

ensemble squared errors for the two estimates over the 1,000

Monte Carlo trials. The reliability of the Monte Carlo
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TABLE 5

31130]: Rates
 

.02

.02

.02

.02

.02

.02

.02

.02

.02

.02

.02

.02

.04

.04

.04

.04

.04

.04

.04

.04

.04

.06

.06

.06

.06

.06

.06

.08

.08

.02

.02

.02

.02

.02

.02

.02

.02

.02

.02

.02

.02

.04

.04

.04

.04

.04

.04

.04

.04

.04

.06

.06

.06

.06

.06

.06

.08

.08

.08

.02

.02

.02

.04

.02

.02

.06

.02

.02

.08

.02

.02

.04

.04

.04

.06

.04

.04

.08

.04

.04

.06

.06

.06

.08

.06

.06

.08

.08

.08

.02

.02

.02

.04

.04

.02

.06

.06

.02

.08

.08

.02

.04

.04

.04

.06

.06

.04

.08

.08

.04

.06

.06

.06

.08

.08

.06

.08

.08

.08

.02

.02

.04

.04

.06

.06

.08

.08

.04

.04

.06

.06

.08

.08

.06

.06

.08

.08

.08

.08

.02

.02

.04

.04

.06

.06

.08

.08

.04

.04

.06

.06

.08

.08

.06

.06

.08

.08

.08

.08

Relative

Variance

.0000

.0000

.0000

.0033

.0033

.0033

.0100

.0100

.0100

.0180

.0180

.0180

.0000

.0000

.0000

.0020

.0020

.0020

.0067

.0067

.0067

.0000

.0000

.0000

.0014

.0014

.0014

.0000

.0000

.0000

 

Frequentist

Ensemble

Efficiency

n=50 n=100

.635 .647

.368 .394

.283 .292

.717 .769

.494 .595

.406 .520

.819 .895

.664 .792

.587 .732

.883 .945

.775 .869

.708 .826

.639 .654

.392 .388

.283 .291

.694 .731

.468 .531

.374 .440

.781 .862

.590 .722

.520 .647

.649 .655

’.408 .402

.288 .258

.677 .721

.451 .491

.342 .400

.657 .657

.405 .397

.278 .287
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technique is shown by the accuracy of the efficiency

measures when the number of populations is four. For these

cases the efficiency measures in Table 5 should be

comparable to the exact values in Tables 3 and 4. The

results show the exact and Monte Carlo estimated

efficiencies to be consistently close, differing by at most

.007.

The results given in Table 5 confirm the fact that the

James-Stein estimator increases in efficiency as the number

of populations increase. Reductions of mean squared error of

up to 70% were obtained with k = 8 populations.

Table 6 presents the results of a series of Monte Carlo

experiments comparing the frequentist efficiency of the

James-Stein estimator (equation (1)) to the Poisson based

Tsui estimator (equation (2)) proposed by Matsumura and Tsui

[1982]. 'NmeJames-Stein estimator shrinks the MLE sample

rates toward their common mean while the Tsui estimator

shrinks them toward their common median. The results of the

Monte Carlo experiments show that although the Tsui

estimator is indeed efficient relative to MLE it is grossly

inefficient relative to the James-Stein estimator.

In summary, the results presented in Tables 3 through 6

indicate that the concerns of Matsumura and Tsui [1982]

regarding the use of the James-Stein estimator in attributes

sampling are unwarranted. Not only is the James-Stein

estimator consistently frequentist efficient relative to MLE

despite low sample sizes and error rates, but the only
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TABLE 6

Comparison of James-Stein and Tsui

Ensemble Frequentist Efficiencies

Population Error Rates
 

.02

.02

.02

.02

.02

.02

.02

.02

.04

.04

.04

.04

.06

.02

.02

.02

.02

.02

.02

.02

.02

.04

.04

.04

.04

.06

.02

.02

.02

.02

.02

.04

.04

.06

.04

.04

.04

.06

.06

.02

.02

.02

.04

.06

.04

.04

.06

.04

.04

.06

.06

.06

.02

.04

.06

.04

.06

.04

.06

.06

.04

.06

.06

.06

.06

.02

.04

.06

.04

.06

.04

.06

.06

.04

.06

.06

.06

.06

 

  

n=50

James-

Stein Tsui

.368 .919

.496 .925

.611 .939

.494 .929

.664 .933

.483 .920

.591 .929

.613 .933

.392 .916

.466 .922

.457 .922

.456 .920

.382 .915

 

  

n=100

James-

Stein Tsui

.394 .919

.584 .934

.809 .959

.595 .940

.792 .961

.562 .933

.709 .949

.740 .954

.391 .927

.520 .939

.526 .938

.511 .939

.408 .933
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operationally feasible Poisson estimator they propose is

grossly inefficient relative to the JS estimator.

All of the results in Tables 3 through 6 are given in

the frequentist setting of fixed population error rates. As

previously shown the JS estimator has a second intepretation

as a PEB estimator under the Bayesian perspective of random

population error rates. Tables 7 and 8 gives the results of

a series of Monte Carlo experiments investigating the

efficiency of the JS/PEB estimator from this Bayesian

viewpoint.

Twelve underlying distributions for the true but

unknown error rates were examined. For each of the twelve

underlying distributions sampling from k = 4, 6, and 8

populations with sample sizes of n = 50 and 100 was

examined. This resulted in a total of 72 Monte Carlo

experiments.

For each of the 1,000 Monte Carlo trials in an

experiment a set of k population error rates,

P = (p1,...,pk)' was "drawn" in accordance with the

underlying distribution. For each of the k populations

independent samples of n items were "drawn" with each item

having the probability of being an observed error based on

p. The MLE sample error rates obtained in this manner were

then used to construct the PEB/J8 estimates of the

population error rates using equation (1). For each trial

the MLE and PEB/JS squared errors were calculated. This

‘process was repeated 1,000 times. The PEB/JS efficiency
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relative to MLE as shown in column 1 represents the ratio of

the PEB/JS and MLE squared errors averaged over the 1,000

trials. The results show the PEB/J8 estimator to be

efficient relative to MLE for each of the 72 Monte Carlo

experiments.

The first six underlyingldistributions are normal

(truncated at zero) so that the use of the natural conjugate

prior in the construction of the PEB estimator is ixi:fact a

relatively accurate representation of reality. The last

two distributions are uniform and exponential, respectively.

The uniform distribution implies that every possible outcome

within some fixed interval has equal probability. Thus,

Uniform (a,b) “ g(e) l/(b-a) for 6 6 [a,b]

= 0 otherwise

(a+b)/2 , Variance(6) = (b—a)2/12Mean(6)

The exponential distribution is highly skewed to the right

with functional form:

Exponential (3) ~ 9(6) = %- -6/a for 6 Z_O

= 0 otherwise

Mean (6) = a , Variance (6) = a2

Illustrative graphs of these two distributions are given in

Figures 4 and 5.

(As can be seen from the graphs, the shapes of both the

uniform and the exponential distributions are quite

different from the "bell-shaped" curve of the normal

distribution. Each is included in the Monte Carlo

experiment to demonstrate that the PEB estimator is robust
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against the actual functional form of the underlying

distribution. Recall that the PEB estimator used the normal

distribution as the natural conjugate prior. However, the

results show the estimator is still efficient relative to

MLE even when the actual underlying distribution is quite~

different from the normal curve.

The last twelve columns of Tables 7 and 8 show the

efficiencies of various pure Bayesian estimators relative to

MLE. For each of the 1,000 Monte Carlo trials a set of pure

Bayesian estimators was calculated using the prior

assumptions indicated at the top of each column. The

entries represent the efficiencies of the Bayes estimate

relative to MLE determined by the ratio of the Bayes mean

squared error to the MLE mean squared error when averaged

over the 1,000 trials.

These results show that when the prior distribution is

properly specified the pure Bayesian estimator is preferred

to both MLE and PEB. However, the costs of misspecification

can be great, rendering the pure Bayes estimator inefficient

relative to the MLE estimator. These costs of

misspecification are avoided by the PEB estimator since it

estimates the~prior parameters using the sample data itself

rather than relying on subjective prior specifications. In

every instance the PEB estimator was efficient relative to

MLE .
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3.3.2 Tests of Bias
 

The preceding results addressed only one characteristic

<3f the estimators, namely their expected mean squared error

or loss. A second characteristic which should be analyzed

is their bias (Loebbecke and Neter [1975]). One desirable

property for an estimator is that it be unbiased or have

expected value equal to the unknown parameter being

estimated.

Although not explicitly mentioned by either Ijiri and

Leitch [1980] or Matsumura and Tsui [1982], one disadvantage

of Stein-type estimators the auditor should consider is the

fact that estimators of this type may be biased under the

frequentist view. Since»the James-Stein estimator shrinks

the unbiased MLE estimates toward their common mean, it

tends to under- (over-) estimate in the populations with

higher (lower) error rates. The magnitude of this bias can

be evaluated using equation (3) by replacing (piS - pi)z

with (figs - pi). The actual frequentist biaslof the James-

Stein estimator for each of the 35 error rate patterns is

given in Tables 9 and 10 for sample sizes of 50 and 100,

respectively.

The PEB/JS estimator is biased only under the

frequentist view of fixed population error rates. Under the

Bayesian view of random error rates the PEB/J8 estimator is

unbiased. Tables 11 and 12 show the average bias for the

PEB/JS and pure Bayesian estimators for the 72 Monte Carlo
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TABLE 9

James-Stein Frequentist Bias, n = 50

Population Error Rates Bias

_1__ _Z_ __3_ _4_ 1 2 3 4

.02 .02 .02 .02 .0000 .0000 .0000 .0000

.02 .02 .02 .04 .0013 .0013 .0013 «.0039

.02 .02 .02 .06 .0021 .0021 .0021 «.0062

.02 .02 .02 .08 .0024 .0024 .0024 «.0073

.02 .02 .04 .04 .0028 .0028 «.0028 «.0028

.02 .02 .04 .06 .0036 .0036 «.0036 «.0036

.02 .02 .04 .08 .0039 .0039 «.0006 «.0072

.02 .02 .06 .06 .0044 .0044 «.0044 «.0044

.02 .02 .06 .08 .0048 .0048 «.0032 «.0063

.02 .02 .08 .08 .0052 .0052 «.0052 «.0052

.02 .04 .04 .04 .0046 .0015 «.0015 «.0015

.02 .04 .04 .06 .0056 .0003 «.0003 «.0049

.02 .04 .04 .08 .0058 .0006 .0006 «.0071

.02 .04 .06 .06 .0067 .0008 «.0038 «.0038

.02 .04 .06 .08 .0071 .0017 «.0026 «.0062

.02 .04 .08 .08 .0076 .0025 «.0051 «.0051

.02 .06 .06 .06 .0081 .0027 «.0027 «.0027

.02 .06 .06 .08 .0086 .0016 «.0016 «.0055

.02 .06 .08 .08 .0093 .0006 «.0044 «.0044

.02 .08 .08 .08 .0102 .0034 «.0034 «.0034

.04 .04 .04 .04 .0000 .0000 .0000 .0000

.04 .04 .04 .06 .0014 .0014 .0014 «.0041

.04 .04 .04 .08 .0023 .0023 .0023 .0070

.04 .04 .06 .06 .0029 .0029 «.0029 «.0029

.04 .04 .06 .08 .0038 .0038 «.0016 «.0061

.04 .04 .08 .08 .0049 .0049 «.0049 «.0049

.04 .06 .06 .06 .0046 .0015 «.0015 «.0015

.04 .06 .06 .08 .0057 .0002 «.0002 «.0052

.04 .06 .08 .08 .0069 .0010 «.0040 «.0040

.04 .08 .08 .08 .0083 .0028 «.0028 «.0028

.06 .06 .06 .06 .0000 .0000 .0000 .0000

.06 .06 .06 .08 .0014 .0014 .0014 «.0042

.06 .06 .08 .08 .0029 .0029 «.0029 .0029

.06 .08 .08 .08 .0045 «.0015 «.0015 .0015

.08 .08 .08 .08 .0000 .0000 .0000 .0000
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TABLE 10

Population Error Rates
 

  

1 2 3 4

.02 .02 .02 .02

.02 .02 .02 .04

.02 .02 .02 .06

.02 .02 .02 .08

.02 .02 .04 .04

.02 .02 .04 .06

.02 .02 .04 .08

.02 .02 .06 .06

.02 .02 .06 .08

.02 .02 .08 .08

.02 .04 .04 .04

.02 .04 .04 .06

.02 .04 .04 .08

.02 .04 .06 .06

.02 .04 .06 .08

.02 .04 .08 .08

.02 .06 .06 .06

.02 .06 .06 .08

.02 .06 .08 .08

.02 .08 .08 .08

.04 .04 .04 .04

.04 .04 .04 .06

.04 .04 .04 .08

.04 .04 .06 .06

.04 .04 .06 .08

.04 .04 .08 .08

.04 .06 .06 .06

.04 .06 .06 .08

.04 .06 .08 .08

.04 .08 .08 .08

.06 .06 .06 .06

.06 .06 .06 .08

.06 .06 .08 .08

.06 .08 .08 .08

.08 .08 .08 .08

 

 

Bias

1 2 _3 4

.0000 .0000 .0000 .0000

.0012 .0012 .0012 «.0035

.0016 .0016 .0016 «.0048

.0016 .0016 .0016 «.0049

.0025 .0025 «.0025 «.0025

.0028 .0028 «.0012 «.0044

.0027 .0027 «.0003 «.0050

.0033 .0033 «.0033 «.0033

.0032 .0032 «.0021 «.0043

.0033 .0033 «.0033 «.0033

.0042 «.0014 «.0014 «.0014

.0047 «.0003 «.0003 «.0042

.0043 .0005 .0005 «.0053

.0053 .0007 -.0030 -.0030

.0051 .0013 «.0018 «.0046

.0052 .0018 «.0035 «.0035

.0064 «.0021 «.0021 «.0021

.0063 «.0011 «.0011 «.0041

.0065 «.0003 «.0031 «.0031

.0070 «.0023 «.0023 «.0023

.0000 .0000 .0000 .0000

.0013 .0013 .0013 «.0039

.0020 .0020 .0020 «.0059

.0027 .0027 «.0027 «.0027

.0033 .0033 «.0013 «.0052

.0039 .0039 «.0039 «.0039

.0043 «.0014 «.0014 «.0014

.0050 «.0002 «.0002 «.0047

.0059 .0009 «.0034 «.0034

.0070 «.0023 «.0023 «.0023

.0000 .0000 .0000 .0000

.0014 .0014 .0014 «.0041

.0027 .0027 «.0027 «.0027

.0044 «.0015 .0015 .0015

.0000 .0000 .0000 .0000
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experiments described earlier. Notice that the pure

Bayesian estimator is unbiased only when the mean of the

prior distribution has been properly specified. When the

prior mean has been misspecified the Bayes estimator

"shrinks" the MLE toward the false prior value, resulting in

a biased estimate. The empirical Bayesian avoids this

potential error by refusing to specify any value for the

prior mean, choosing instead to use an unbiased estimate for

the mean derived from the data itself.

Whether or not the user is willing to accept an

estimator which is frequentist biased but produces smaller

expected squared error is, of course, a matter of personal

taste. If the auditor insists on frequentist unbiased

estimators, then he has little choice but to continue with

the use of the unbiased MLE estimator since it is the

estimator with minimum expected squared error among the

class of all unbiased estimators. However, there is no

reason to suppose a priori that auditors would insist upon

unbiasedness as a required characteristic of an estimator.

In fact, there is good reason to assume the contrary since

auditors have for years used the classical ratio estimator

described in Section 2.1 which is a frequentist biased

estimator [Cochran, 1977, pp. 160-162]. Although Frost and

Tamura [1982] investigated methods for reducing the bias of

the ratio estimator, their primary objective was to improve

the estimator's efficiency and reliability, not to seek an

unbiased estimator for its own sake. This lends support to



102

the notion that auditors may be willing to adopt estimators

*which are frequentist bdased in exchange for substantially

reduced expected squared error. The results of this study'

give measures for the benefits from risk reduction (Tables 3

and 4) versus the cost of increased bias (Tables 9 and 10)

to assist the auditor inlhis decision of whether or not to

adopt James-Stein estimation procedures.

There is, however, a specific concern about the nature

of the PEB/JS estimator‘s potential for bias which is unique

to audit sampling as contemplated by SAS 39, Audit Sampling

[AICPA, 1985]. This concern centers around SAS 39's view of

sampling risk as it pertains to compliance testing. As

deomonstrated by the frequentist bias measures in Tables 8

and 9, since the JS estimate shrinks the unbiased MLE values

toward their common mean, it tends to overestimate

populations with relatively low error rates. Overstating

the error rate in a population increases the risk of the

auditor's underreliance on internal accounting controls.

The result may be an unnecessary expansion in the scope of

substantive audit procedures. SAS 39 minimizes the concern

for this form of increased risk since the result is an

equally effective but inefficient audit (SAS 39, par. 13,

AICPA [1985]).

Conversely, by shrinking high MLE values downward the

JS estimator increases the likelihood of underestimation in

high error rate populations. This increases the risk of the

auditor's overreliance on internal accounting controls for
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high error rate populations. This increased risk of

overreliance in high error rate populations and the

resultant diminished audit effectiveness (SAS 39, par. 14,

AICPA [1985]) may cause auditors to reject James-Stein

estimation despite its superior ensemble risk performance.

To address this somewhat disconcerting characteristic

of the James-Stein estimator an ad hoc "positive adjustment"

estimator is proposed. The estimator is defined as

pis+ = max {515, pi} for all i.

The positive adjustment estimator adjusts MLE to the JS

estimate only if the adjustment is in the upward direction.

The estimator is neither PEB nor known to be guaranteed

frequentist risk dominant over MLE but is considered as a

.compromise between these features of JS estimation and the

auditor's apparent concerns about overreliance on individual

internal controls.

The estimator is, of course, biased toward

overstatement in every population and over the entire

parameter space (including situations where the pure JS

estimator is unbiased or biased toward understatement).

This is shown by Tables 13 and 14 which give the results of

exact bias computations for the positive adjustment

estimator over 35 error rate patterns and sample sizes of

n = 50 and 100, respectively. The surprising feature of the

estimator is that despite its guaranteed overstatement in

every population, it nonetheless continues to dominate the

unbiased MLE in ensemble mean squared error. This is
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exhibited in Tables 13 and 14 which show the positive

adjustment estimator as ensemble risk efficient relative to

MLE for all error rate patterns and for both sample sizes.

Auditors may be surprised to learn that an estimator exists

which is everywhere greater than or equal to their

traditional point estimator and yet appears to produce

smaller mean squared errors, at least for the representative

35 error rate patterns examined.

As an alternative to the "positive adjustment"

estimator, 515*, the auditor could choose to use a Stein

estimator which adjusts the MLE estimates toward some

arbitrarily high value, M. Such an estimator is given by

James and Stein [1961] and Efron and Morris [1975]:

“M _ (k-2)o2 (k-2)o2 ‘

pi’M—s——+(1'_’§_)pi

k . 2

Where S = 2 (pi « M)

i=1

This estimator is guaranteed to be frequentist ensemble

risk dominant over the MLE estimator since

k .M k

R(p )< k02 = Z 

2 A

. i'P) = k°2(1 ' (k'Z) R(pi.p)
1=1 k - 2 - 2(pi«M)2 i 1

This estimator shrinks the MLE estimates toward the

prespecified value M. If the auditor chooses a value of M

large enough, for example M = 1, the estimator will always

revise the MLE estimates upward toward M. However, since

the error rates to be estimated are low, it follows that S

will be quite large. This results in only a minor

adjustment to the MLE estimates and negligible risk savings.
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Of course, the auditor could subjectively select any M

toward which the MLE estimates would be adjusted. Iflowever,

the subjective element of arbitrarily'selecting M and the

resulting uncertainty surrounding the ultimate risk savings

are elements to be avoided in the design of estimators for

audit testing.

More central to the issue of the auditor's apparent

greater concern for overstatements than for understatements

in error rate estimation is the central assumption of the

symmetric quadratic form for the loss function. Scott

[1975] investigates the form of the auditor's loss function

using a consumption«investment model. In discussing his

results he made the following observations about the shape

of the loss function [p. 109]. "The general appearance is

that of a quadratic. ‘A closer look reveals, however, that

the loss functions are not symmetric." He found a

pronounced tendency for the loss to be greater for

overstatements of net assets than for understatements of the

same magnitude. His tests relate only to the loss from

errors in estimation of final account balances. However,

the differing levels of concern expressed in SAS no. 39 for

overestimation and underestimation of error rates would seem

to imply an asymmetric loss function for compliance testing

as well.

The following is a summary of Scott's findings about

the general shape of the loss functions when estimating net

assets:
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l. The general appearance is that of a quadratic.

2. The loss is zero when the correct amount is

equal to the estimated amount.

3. The loss function tends to be negative when the

correct amount is slightly less than the

estimated amount.

4. The loss function is not symmetric. In

particular it tends to rise faster when the

actual amount is less than the estimated amount

and slower when the actual amount is higher

than the estimated amount.

The general shape of a loss function satisfying these

four characteristics is given in Figure 6 (see also Scott

[1975, Figure 5, p. 114]).

The loss function in Figure 6 relates to errors in the

estimation of net assets during substantive testing. During

compliance testing the direction of asymmetry would be

reversed since the understatement of an error rate is viewed

as more costly to the auditor than an overstatement of the

same amount. Thus, an asymmetric loss function for

compliance testing can be represented by the mirror image of

Figure 6. Such an asymmetric compliance test loss function

is shown in Figure 7.

Asymmetric loss functions can be incorporated into PEB

estimation quite easily. A loss function which has the

general shape of the curve given in Figure 6 is

L<6,5) = 6(6- 0H6 — 6 + A) ewe-8)

for6,A,0L )0.

The constant A shifts the loss function down and to the

left. The results of Scott [1975] show the effects of A to
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be minimal. Thus, to simplify the analysis and to avoid the

somewhat disconcerting notion of a negative loss function it

will be assumed that A = O. The constant 0 controls the

asymmetry of the loss function. In general, the larger the

value of a the higher the penalty for understatements

relative to overstatements with a = 0 representing a

symmetric loss function.

This asymmetric loss function may be generalized to the

multivariate situation of simultaneous estimation of k

population parameters by

~ ~ 2 a-(6-- 0-)

(4) L(8.8) = 2 61 (91' Si) e 1 «1 1 .

To find the Bayes estimate for this asymmetric loss

function assume, as before

Pi
g(pi) = Normal (u.T)

* 2

f(pi|pi) = Normal (pi. o )

so that

uoz pit T02

2 + 2 '
T + 0 T + o r + 02

 

pllpi g(pilpi) = Normal ( ).
 

 

The Bayes estimates are chosen to minimize the expected

loss function conditional on the sample results:

  
  

. k “’ 2 al(p1- p1) k .

m1n f -- f 2 61(Pi- pi) e H g(pil pi) dpi.. dpk

i=1 i=1

The resulting Bayes estimator is

2 . 2 2 2

u 0 2 + pi T 2 + 01 TO 2 +—%—'(1-(1' ai TO 2)15 )'
T + 0 T + 0 T + o i T + 0
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The asymmetric loss function adds a "conservatism

factor" of

To2
 

 

a.
1 2 102 a

1 + a. (1- <1- “i ) )

T + 02 1 T + 02

to the traditional Bayes estimate. Clearly, the first two

terms of the above expression can be evaluated using the

same PEB techniques as under a symmetric loss function. The

"conservation factor", can be estimated using PEB procedures

by noting:

 
 

 

2 2
T0 = (1 - O ) 02

T + 02 T + 02

. “PEB . . . . .

Since B is used in PEB estimation as a substitute

02

for 2, a reasonable choice for a PEB esthnator with an

T + 0

asymmetric loss function is

iEB = BPEB p + (1 _ B
A

PEB ‘2

p ) pi + 01 (l-B ) 0

1 2 “PEB ‘2 k
+ ET (1- (1-ai (l-B )0 ).

1

PEB

From the frequentist perspective an estimator is sought

which minimizes the expected value of the asymmetric loss

function conditional on the underlying population error

rates and independent of the sampling results from other

populations:

k - 2 aicpi- 5.) k
. 1 "

min f fiil 51(91' Pi) e igl f(pj|pi) dpi dpk

The resulting frequentist estimator under the

asymmetric loss function is
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AF - as A2 2 452%

pi - pi + oi 0 + (1« (l-ai o ) ).

R
I
P

1

It remains to investigate whether the asymmetric loss

PEB estimator constructed under the assumption of random

error rates is nonetheless ensemble loss efficient with

respect to the frequentist asymmetric estimator even under

the frequentist persepctive of fixed population error rates.

Such is the case, of course, for the JS/PEB estimator under

a symmetric quadratic loss function (see Tables 3 and 4).

Toward this end 210 Monte Carlo experiments were conducted

computing the average ensemble efficiencies over 1,000

trials under 35 patterns of fixed population error rates,

two sample sizes (n=50 and 100) and three sets of asymmetry

parameters (01 = l, 3 and 5 for all i). Since both the

frequentist and PEB estimators are independent of the loss

function parameters 6i, all Monte Carlo experiments were

conducted with 5i: l for all i without loss of generality.

Figure 8 displays a graph of the three asymmetric loss

functions tested. For each of the three asymmetry

parameters loss is graphed as a function of the magnitude of

over-(under«) estimation. All three loss functions are

asymmetric with the penalty for underestimation relatively'

higher than that for overestimation. The larger the value

of a, the larger the degree of asymmetry.

The results of these Monte Carlo experiments are given

in Table 15. The results confirm the efficiency of the PEB
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TABLE 15

PEB Frequentist Efficiency, Asymmetric Loss Function

Population Error Rates

1 2 3 4
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.08
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Ensemble EfficiengL

n = 50
 

01:3

 

.623

.675

.781

.861

.685

.732

.831

.787

.851

.871

.670

.718

.793

.741

.784

.815

.740

.770

.794

.795

.611

.650

.739

.661

.728

.647

.697

.716

.718

.623

.646

.657

.646

.616

.596

.629

.740

.820

.638
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.789

.741

.811

.832

.624

.673

.752

.694

.742

.773

.696

.724

.753

.750

.567

.608

.697

.615

.682

.707

.603

.650

.671

.673

.580

.605

.613

.606

.573

n = 100

C1 i=3

.595

.714

.859

.951

.732

.819

.916

.855

.888

.924

.703

.781

O 860

.798

.864

.881

.793

.841

.858

.854

.607

.679

.805

.686

.780

.821

.668

.737

.763

.762

.622

.661

.679

.663

.616
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estimator over the frequentist estimator in each of the 210

cases.

Clearly, the resulting PEB estimator is biased from

both the frequentist and Bayesian perspectives. This

overstatement has been intentionally built in as a mechanism

to minimize the expected value of an asymmetric loss

function. Note that under a symmetric quadratic loss

function (01:0) the PEB estimator is unbiased from the

Bayesian perspective (see Tables 11 and 12).

One drawback of the estimator is its dependence on the

parameters of the loss function, oi. More research into the

specific nature of the auditor's loss function (along the

lines of Scott [1975]) and the auditor's ability to specify

parameters of an asymmetric loss function is needed before

the estimator could be successfully implemented in practice.

3.3.3 Tests of Reliability
 

While not explicitly recognized by either Ijiri and

Leitch [1980] or Matsumura and Tsui [1982], one major

disadvantage of Stein«type estimators has been that until

very recently no method existed for establishing confidence

intervals about the estimates. Without such a procedure for

comparing the estimate against the auditor‘s "tolerable

error rate" as discussed in SAS 39, it is doubtful that any

Stein«type estimator would receive wide acceptance by the

profession.
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Morris [1983a] considers the PEB/J8 estimator in an

«mnpirical Bayes framework and proposes a technique for

establishing empirical Bayes confidence intervals. Morris

proposes equation (5) as a 100 x (l « a)% confidence

interval on the true but unknown error rate, pi.

PEB “PEB
- i}i zasi 5 pi < pi + zas

A

(5) Probability { p Z l«a

A x . A A 2

Where: 5: =-E—%1121 (1 --3§l BPEB) + v (pi - p)

_ 2 “PEB 2
v - k:3 (B )

20 = 100 x (l « a/Z)t_:£ percentile of the

standard normal distribution

Morris [19833, 1983c] provide some evidence that the

probability coverage is as claimed. In general, the actual

probability coverage of (5) is

n

- “ “PEB
(6) ff.'.f g(pl'ooo'pk). Z .... Z I(pi ljl'...'jk).

jl=0 jk=0

k

H Prob(Jh=jh) dpl-udpk.

h=1

Where: g(p1,m,pk) = Actual joint distribution from

which the underlying error rates

arise, e.g., iid Normal (u,T)

. “PEB “PEB
1 1f pi « zasi g pigpi + zasi

“PEB . .

1(p1 I317'°°Ijk)

= 0 otherwise

_. “PEB
PrOb(Jh-Jh)l pi As defined in (3)

z ,s. = As defined in (5)
a 1

Direct evaluation of (6) for various distributions on

the underlying population error rates is intractable.

However, Tables 16 and 17 give the results of a series of 72
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Monte Carlo experiments which simulated the behavior of the

suggested confidence interval within the context of the low

error rate attributes sampling problem faced by auditors

during compliance testing. For each of the 1,000 Monte

Carlo trials the classical 95% one-sided upper confidence

limits were obtained in accordance with the table given in

the AICPA audit guide, Audit Sampliqg [AICPA, 1983, p. 108].
 

A195% one-sided confidence interval was calculated for the

PEB/JS estimate using the obvious one-sided analogue to (5).

This process was repeated 1,000 times for each of the nine

underlying distributions and for sampling from k = 4, 6, and

8 populations with sample sizes of n = 50 and 100 to produce

the results given in Tables 16 and 17.

The results of the Monte Carlo simulations show that

the proposed confidence interval does appear to produce the

desired coverage within the context of low error rate

attributes sampling. It is significant to note that the

method is able to exploit the efficiency of the PEB/JS

estimator by providing the desired reliability with

confidence intervals which are 30% to 40% narrower than

those currently used by auditors using MLE, as shown in

Tables 18 and 19.

Caution should be used in interpreting these confidence

intervals. They should not be interpreted as frequentist

confidence intervals in the senSe of providing

100 x (l«-a)% coverage for each population under a fixed

set of underlying population error rates. Indeed, they may
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perform very badly for certain fixed error rate patterns.

Tables 20 and 21 show the results of exact reliability

computations over a variety of fixed error rate patterns for

sample sizes of SO and 100, respectively. These exact

reliability computations were made using equation (6) by

recognizing that the underlying distribution on the error

rates, g(p1,...,pk), degenerates to one when evaluated at

the fixed error rates and zero elsewhere. The results given

in Tables 20 and 21 simply reflect the fact that the

probability statement given in (5) can not be interpreted in

a frequentist manner since the probability is taken over

both the conditional sampling distribution of pi and the

prior underlying distribution on pi.

Since the PEB/JS estimator does have a frequentist

interpretation as a James-Stein estimator (see Section

2.3.1), it would be useful to have confidence intervals with

frequentist interpretations. Of course, the traditional

maximum likelihood upper confidence limits given in the

audit guide [AICPA, 1983, pp. 108-109] could be used.

However, these would not exploit the efficiency of the JS

estimator. Accordingly, lower upper confidence limits which

still provide the desired frequentist reliability are

sought.

Since the exact conditional distribution of the JS

estimator is not known, construction of confidence intervals

based upon the traditional theory of mathematical statistics

is impossible (Judge and Bock [1978, p. 310], Morris
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TABLE 20

Frequentist Reliability of PEB 95% Upper Confidence Limit

Case

\
o
o
o
x
l
m
m
w
a
r
—
I

 

  

n = 50

Population Error Rates

1 2 3 4

.02 .02 .02 .02

.02 .02 .02 .02

.02 .02 .02 .06

.02 .02 .02 .08

.02 .02 .04 .04

.02 .02 .04 .06

.02 .02 .04 .08

.02 .02 .06 .06

.02 .02 .06 .08

.02 .02 .08 .08

.02 .04 .04 .04

.02 .04 .04 .06

.02 .04 .04 .08

.02 .04 .06 .06

.02 .04 .06 .08

.02 .04 .08 .08

.02 .06 .06 .06

.02 .06 .06 .08

.02 .06 .08 .08

.02 .08 .08 .08

.04 .04 .04 .04

.04 .04 .04 .06

.04 .04 .04 .08

.04 .04 .06 .06

.04 .04 .06 .08

.04 .04 .08 .08

.04 .06 .06 .06

.04 .06 .06 .08

.04 .06 .08 .08

.04 .08 .08 .08

.06 .06 .06 .06

.06 .06 .06 .08

.06 .06 .08 .08

.06 .08 .08 .08

.08 .08 .08 .08

 

Reliability

1 2 3 4

.929 .929 .929 .929

.968 .968 .968 .798

.986 .986 .986 .808

.994 .994 .994 .779

.986 .986 .865 .865

.994 .994 .911 .834

.998 .998 .942 .793

.998 .998 .863 .863

.999 .999 .890 .817

1.000 1.000 .846 .846

.994 .913 .913 .913

.998 .945 .945 .862

.999 .966 .966 .812

.999 .968 .891 .891

1.000 .980 .915 .839

1.000 .989 .867 .867

1.000 .916 .916 .916

1.000 .935 .935 .865

1.000 .950 .890 .890

1.000 .911 .911 .911

.949 .949 .949 .949

.970 .970 .970 .892

.982 .982 .982 .836

.983 .983 .918 .918

.990 .990 .938 .865

.995 .995 .891 .891

.991 .940 .940 .940

.995 .955 .955 .891

.998 .967 .914 .914

.999 .933 .933 .933

.958 .958, .958 .958

.970 .970 .970 .916

.979 .979 .935 .935

.986 .951 .951 .951

.963 .963 .963 .963

 



Frequentist Reliability of PEB 95%

Case
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TABLE 21

12 9

 

  

n = 100

Population Error Rates

1 2 3 4

.02 .02 .02 .02

.02 .02 .02 .04

.02 .02 .02 .06

.02 .02 .02 .08

.02 .02 .04 .04

.02 .02 .04 .06

.02 .02 .04 .08

.02 .02 .06 .06

.02 .02 .06 .08

.02 .02 .08 .08

.02 .04 .04 .04

.02 .04 .04 .06

.02 .04 .04 .08

.02 .04 .06 .06

.02 .04 .06 .08

.02 .04 .08 .08

.02 .06 .06 .06

.02 .06 .06 .08

.02 .06 .08 .08

.02 .08 .08 .08

.04 .04 .04 .04

.04 .04 .04 .06

.04 .04 .04 .08

.04 .04 .06 .06

.04 .04 .06 .08

.04 .04 .08 .08

.04 .06 .06 .06

.04 .06 .06 .08

.04 .06 .08 .08

.04 .08 .08 .08

.06 .06 .06 .06

.06 .06 .06 .08

.06 .06 .08 .08

.06 .08 .08 .08

.08 .08 .08 .08

 

 

Upper Confidence Limit

Reliability

l 2 3 4

.953 .953 .953 .953

.984 .984 .984 .836

.995 .995 .995 .767

.998 .998 .998 .818

.996 .996 .891 .891

.999 .999 .928 .809

1.000 1.000 .950 .823

1.000 1.000 .858 .858

1.000 1.000 .896 .838

1.000 1.000 .863 .863

.999 .932 .932 .932

1.000 .956 .956 .841

1.000 .969 .969 .827

1.000 .971 .885 .885

1.000 .980 .918 .846

1.000 .985 .874 .874

1.000 .917 .917 .917

1.000 .940 .940 .866

1.000 .954 .890 .892

1.000 .914 .914 .914

.961 .961 .961 .961

.975 .975 .975 .874

.982 .982 .982 .827

.984 .984 .915 .915

.989 .989 .941 .847

.992 .992 .881 .881

.991 .944 .944 .944

.994 .960 .960 .870

.996 .971 .902 .902

.998 .927 .927 .927

.964 .964 .964 .964

.974 .974» .974 .894

.981 .981 .924 .924

.986 .946 .946 .946

.963 .963 .963 .963
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[1983a, p. 51]).. It is in such circumstances that the

bootstrap methods of Efron [1979, 1982] may be useful. For

a non—technical introduction to the topic of bootstrap

statistical methods see Diaconis and Efron [1983]. Marais,

et.a1. [1984] and Marais [1984] represent the first

applications of the bootstrap method in accounting research.

The general problem which the bootstrapping method

seeks to address is as follows. Given a random sample

X = (X1,...,Xn) from some unknown probability distribution,

P5 estimate the sampling distribution of some prespecified

random variable R(X) on the basis of one realization of the

random sampling procedure 1 = (x1,...xn).

The bootstrap method consists of the following set of

procedures (outlined by Efron [1979, p. 3]):

1. Construct a hypothetical population of size n

consisting of the realized sample values x

(xi,...xn).“ Construct a probability

distribution, F, for the population with each

item in the population assigned equal

probability, l/n.

2. Draw a random sample with replacement from the

hypothetical population under F. Call this

* t

the bootstrap sample, 3* = (xi,...xn).

3. Compute the variable at interest for the

*

bootstrap sample, R (x.)-



131

4. Approximate the sampling distribution of R(x)

under F (or some attribute of the

distribution, e.g., the mean or variance).

Typically this is accomplished by replicating

steps two and three a large number of times.

The results of these Monte Carlo bootstrapping

iterations are used to approximate the

underlying distribution.

Efron [1982] proposes the "bootstrap t" method of

constructing confidence intervals about statistics with

unknown distributions. The following develops its use in

constructing upper confidence limits for the JS estimator of

population error rates.

Consider the normal based formula for the upper

confidence limit for population proportions (Cochran,

equation (3.19), [1977, pp. 57-581):

1 - a upper confidence limit = p + 22a(p(l-p)/(n-1))l5 + l/2n

A naive extension of this formula to the James-Stein

estimator would be:

AJS
1 - 0 upper confidence limit = pi + 2 V15 + l/2n

2a

9 (1 - p)/nWhere V

A maintained assumption behind this formulation is that

AJS
p.1 is distributed as a normal random variable with mean pi

and variance V. It is easily shown that this is not the

case. As noted in Section 3.3.2, pgs is in most

circumstances a biased estimator of pH. In addition, the

JS
distribution of pi is not symmetric as shown by Figures 9

and 10 which display the approximate probability density
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function for pis and pig under one particular set of

underlying population error rates. Note that in this

example the distribution of pJS is skewed to the right.

Since Ti = (pgS - pi) / V8 is not distributed as a

standard normal random variable, it is not true that

Prob [ pi g pig + 22a V15 + 1/2n } = 1 - a. In lieu of 2m!

the bootstrap t method seeks the appropriate value ti(a)

such that Prob { pi 3 pgs + ti(0) V5 + l/2n } = l - a. In

general the true distribution of Ti remains unknown but can

be estimated using the bootstrapping methods. In particular

the 100 x ugh percentile of Ti can be estimated by

bootstrapping. Let t:(a) be determined from a large number

. * JS* “ *8
of bootstrap computations of Ti‘= (pi - pi) / (V ) such

 

that

* *

Number of bootstrap Ti's 5 ti(a)

Total number of bootstrap iterations = a-

Thus,

_ “Js 8 * ~
Prob {Ti — (pi - pi) / V 5 ti(a) } - a

or

A *

Prob { pi i pis - ti(a) VJ5 } = 1 - a.

Incorporating the standard continuity correction tenn

yields the following formula for the bootstrap t upper

confidence limit:

“ *

(7) 1 - a upper confidence limit = pgs - ti(a) V15 + 1/2n
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Three operational difficulties arise when attempting to

use (7) for the determination of small error rate upper

confidence limits.

1. In the event that no errors are observed in

the initial sample, that is pi = 0, it is

unlikely that bootstapping will provide any

meaningful information about the distribution

of pig or T1 under the true underlying error

rate pi > 0. Since the bootstrap population

degenerates to n elements, all zero, when

“‘k

p. 0, no variation in pi and very little
1 = . *

variation in pgs will be observed among the

repeated bootstrap iterations. Hence, little

to no information about the distribution of

pgs can be expected to be extracted from

bootstrapping procedures. Thus, when pi = O

the traditional upper confidence limits should

be used instead of equation (7).

2. It is possible that V* = O on some bootstrap

trials so that some Tg's and hence t: (a) may

be unbounded. In such instances, equation (7)

should again be abandoned in favor of the

classical upper confidence limits.

3. It is possible that the upper confidence limit

obtained from equation (7) exceeds the

classical upper confidence limit. In such

instances the lower classical limit can be

used to improve efficiency without risking

actual reliability levels less than the

desired confidence levels.
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Finally, the results of a series of Monte Carlo pilot

studies showed that defining

T: = (pi - max {91 . 5}) / (V')

results in more reliable upper confidence limits. This

definition of T: was used in developing the following

results.

A series of 70 Monte Carlo experiments was performed to

examine the frequentist behavior of the bootstrap t 95%

upper confidence limits. For each of 35 error rate patterns

simple random samples of 50 and 100 were simulated 500 times

from each of the four populations. Traditional MLE 95%

upper confidence limits were obtained using the tables in

the AICPA audit guide, Audit Sampling [AICPA,

1983, p. 108]. Bootstrap t 95% upper confidence limits for

the James-Stein estimator were constructed using the

procedures outlined above with a total of 300 bootstrap

iterations used to approximate the bootstrap distribution of

*

T..

1

The observed frequentist reliabilities given iJi'Tables

22 and 23 represent the percentage of trials out of the 500

Monte Carlo iterations that the computed 95% upper

confidence limit exceeded the true population error rate

using simulated sample sizes of n=50 and 100, respectively.

Both the MLE and bootstrap t James-Stein upper confidence

limits achieve the desired nominal level of 95% confidence.

Table 24 gives the ratio of the average bootstrap t upper
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confidence limits to the average MLE confidence limit for

the 500 Monte Carlo trials. The results show that the

bootstrap t method is able to partially exploit the

efficiency of the James-Stein estimator by providing upper

confidence limits which are consistently lower than the MLE

limits while still providing the desired frequentist

reliability.



CHAPTER IV

THE BEHAVIOR OF PARAMETRIC EMPIRICAL BAYES ESTIMATORS

IN SUBSTANTIVE TESTING

The purpose of this chapter is to consider the

application of parametric empirical Bayes estimators within

the context of substantive audit testing. Section 4.1

considers the use of parametric empirical Bayes estimators

for interitem integration of statistical sampling

substantive test results. Section 4.2 considers the use of

parametric empirical Bayes estimators for interprocedural

integrathnicm'analytical review and statistical sampling

substantive test procedures.

4.1 Interitem Integration of Variables Sampling Results
 

As discussed in Section 2.1, classical variables

sampling procedures are often used by auditors during

substantive testing to estimate the correct or "audited"

account balance for comparison with the client's reported

book balance. Typically a separate sampling plan is

developed for each account balance or company division to be

tested. Integration of the results across these account

141
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populations is done only subjectively through the auditor's

judgmental evaluation of the results. However, as was the

case for compliance test applications discussed in Chapter

III, pure Bayesian or parametric empirical Bayesian

procedures could be used to combine the results of several

classical variables sampling estimators for k different

account populations.

Define 91 as the ratio of the true account balance to

the client's reported balance for the ith account. The

auditor estimates 6i by 81 using some»classical variables

sampling procedure. This estimate is either made directly

by use of a ratio estimator or indirectly by estimating the

true account balance using a difference or mean-per-unit

estimator so that 6i represents the ratio of the auditor's

estimate of the true account balance to the client's

reported balance.

Pure Bayesian estimation of 91 for each of k different

populations can be accomplished in the following manner (see

also Section 2.2.3):

(8) Auditor's prior belief: 6 Normal (u,T )
i iid

Sampling distribution: 6i " Normal (91' 0:)

Loss function: L (6. 9) = (6 ~ 0)‘ C (0 - 6)

. A B Ci T A

Pure Bayes estimator: 6i = _____7.u + _____? 6i

T + oi r + Oi
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The Bayesian estimator is developed to minimize the

expected loss, E{L(0, 8)}. The resulting estimator is

independent of the loss function's k x k weighting matrix,

C. Thus, Bayesian estimation behaves as if the loss

function was composed of the squared estimation errors of

the ratios of true to reported balances. In truth the

auditor's loss function may be more properly represented by

ratio estimation errors weighted by the size of the

accounts, jade. the dollar amount of the estimation errors.

However, since the Bayes estimator is independent of the

weighting matrix,(!, the Bayesian auditor can proceed "as

if" his loss function was based on squared errors in the

estimates of the ratios themselves rather than on estimation

errors of account balances.

As demonstrated in Chapter III, auditor

misspecifications in the parameters of the prior

distribution,'u and T, can be quite costly in terms of

reduced efficiency and reliability and increased bias.

Parametric empirical Bayes estimation procedures avoid these

misspecification costs by substituting estimates for the

prior distribution parameters which are based on the

sampling results.

In developing the PEB estimator for attribute sampling

applications a simplifying assumption was utilized. This

assumption was that the variances of the sampling

2

distributions, Oi, were nearly equal. This assumption is
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not unreasonable when performing attributes sampling in

populations whose error rates are close. The reasonableness

of the assumption is born out by the success of the PEB

estimator in the results of the simulation analyses

discussed in Chapter III.

However, the assumption of equal sampling variances in

variables sampling applications is less reasonable. The

distribution of the variables sampling estimator is much

more complex than the binomial sampling distribution found

in error rate estimation. In particular the distribution

[depends upon both the proportion of items in the population

in error and the shape of the distribution of the dollar

size of the error given one exists. For example, Neter and

Loebbecke [1975, p. 45] in their landmark study into the

behavior of variables sampling estimators found that the

popular ratio estimator had sampling variances which

differed by up to a factor of 64 for two accounting

populations with the same overall error rate. This dramatic

difference in variances was attributable to the different

shapes of the distributions of dollar errors for those

population items whose book and audit values differed.

Morris [1983a] generalizes the PEB estimator discussed

in Chapter III to the case of unequal sampling variances.

This estimator is given by:
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“PEB _ “PEB ‘ “PEB ‘
(9) 9i - 1 6i + (1 Bi ) 9i

1 k . k

Where: 9 = (.2 Wi 61) / .2 W1

1=1 l=1

. k x x 2 -2 k

r = .2 wi {(k/(k-1))(ei - e) - oi}/ 2 W1
l=1 1=l

1+ = max {0, r}

BEBE ((k-3>/(k-1)) oi / (oi + 1+).

Since the values of r and W1 are dependent upon each

other, they must be determined by "guessing" at r, computing

the weights, Wi' using these weights to improve the estimate

A

of T, and iterating the process to convergence. Convergence

to a relative change in “F of less than .001 generally took

less than a dozen iterations in the numerous simulations

performed in this study.

Morris goes on to propose the following as a

100 x (1 - a)% parametric empirical Bayes confidence

interval:

. . “PEB “PEB
(10) Probability {6i - 2a si 3 6i 5,91 + za Si} > 1 - a

. 2 _ ‘2 “PEB ‘ x 2
Where. si - 01 [(W1 / 2 W1) Bi ] + vi (6i - 9 )

A 2 32 A+ A2 45+

vi = (2/(k-3))<B§EB) (o + T ) / (oi + T )

*2 *2
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The generalized PEB estimator and confidence interval,

equations (9) and (10), reduce to equations (1) and (5) of

Chapter III in the case of equal sampling variances.

In order to test the behavior of the PEB variables

sampling estimator and its confidence interval a series of

Pmmte Carlo experiments was performed. These Monte Carlo

experiments compared the efficiency and reliability of the

PEB estimator to a set of pure Bayes estimators and to a

classical variables sampling estimator. A description of

these Monte Carlo experiments and their results follows.

The classical variables sampling estimator chosen for

study in these Monte Carlo experiments was the probability

proportional to size mean-per-unit estimator (Neter and

Loebbecke [1975, p. 117], Cochran [1977, p. 252], Roberts

[1978, p. 116], Arens and Loebbecke [1981, p. 298] and

Bailey [1981, p. 184]). The estimator is defined in the

following manner. A sample of n items is drawn from the

population with the probability of selection proportional to

the recorded value of the item. Define yj as the recorded

value of the jth sample item and xj as its audited value.

The probability proportional to size mean-per-unit (PPS-MPU)

estimator is then defined as

x n

6 = l/n 2 x. / y..

j=l J J

This differs slightly from the traditional ratio estimator

where the sample items are drawn using sample random

sampling and the estimator is defined as
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A n n

6 = Z x. / 2 y..

j=l J jzl J

The behavior of the PPS-MPU estimator has received only

limited study in the auditing literature. Two exceptions

are Neter and Loebbecke [1975] and Garstka and Ohlson

[1979]. Nonetheless, the estimator was used in this study

for several reasons. First, it is an unbiased estimator

while the more traditional and widely studied ratio

estimator is not. Secondly, the results of Neter and

Loebbecke [1975] showed the PPS-MPU estimator to have

standard errors which were never substantially greater than

those for the traditional ratio estimator and which were

less than one half of the ratio estimator's standard error

in certain applications. Additionally, the PPS procedure is

in itself an attractive sample selection method for the

auditor. The procedure is an alternative to stratifying the

population by recorded amounts to give greater weight to

items with large book values. In fact, Neter, Leitch and

Feinberg [1978, p. 78] note that PPS sampling "can be

thought of as employing the ultimate stratification by book

value." Finally, because of the form of the estimator and

its sample selection procedure, it is particularly tractable

for Monte Carlo study. This is because only the error rate

and error tainting distributions need to be specified and

not the distribution of the book values themselves.

As noted, a study into the behavior of a variables

sampling estimator requires the specification of the error
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rate and error tainting distributions. These error

characteristics of accounting populations have been studied

by Ramage, Krieger and Spero [1979] and Johnson, Leitch and

Neter [1981] using substantially the same data base. A

summaryr<of their relevant findings and their application to

this work follows.

Johnson, Leitch and Neter [1981] studied the

distribution of error rates for 55 audits of accounts

receivable populations and 26 audits of inventory

populations. Table 25 presents the distribution of error

rates observed for these two types of populations. An

obvious difference between the two distributions is the

tendency for inventory populations to have higher error

rates than accounts receivable populations. The median

inventory error rate is greater than .14 while the median

accounts receivable error rate is less than .024. The low

error rates observed in accounts receivable populations

severly impair the performance of classical statistical

estimators without exceedingly large sample sizes. For this

reason the behavior of the PPS—MPU estimator and its pure

Bayes and PEB revised estimators will only be studied within

the context of inventory audits.

Table 26 presents the distribution of the proportion of

emrors in the inventory populations which were observed to

be overstatement errors in the Johnson, Leitch and Neter

sample of inventory audits. This split of errors between
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TABLE 25

Johnson, Leitch and Neter [1981] Observed

Distribution of Error Rates for

Accounts Receivable and Inventory Audits

 

 

 

Error Percent of

Rate Audits

Accounts Receivable

.000 .005 29.1%

.005 .024 21.9

.025 .088 23.6

.089 .120 10.9

.121 .163 10.9

.164 .266 1.8

.267 .861 1.8

Inventory

.000 .074 26.9%

.074 .139 19.3

.140 .296 23.1

.297 .416 11.5

.417 .645 7.7

.646 .758 11.5
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TABLE 26

Johnson, Leitch and Neter [1981] Observed

Distribution of Overstatement/Understatement

Errors in Inventory Audits

Proportion of

 
 

Errors Which Were Percent of

Overstatements Audits

.10 - .19 3.8%

.20 - .29 3.8

.30 - .39 7.7

.40 - .49 7.7

.50 - .59 26.9

.60 ~ .69 19.2

.70 ~ .79 11.5

.80 ~ .89 7.7

.90 ~ .90 3.8

1.0 7.7
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overstatements and understatements partially defines the

tainting pattern of the errors. The remaining

characteristic defining the error tainting pattern is the

distribution of the size of the understatements and

overstatements. Johnson, Leitch and Neter analyze the

range, mean, standard deviation and skewness of the observed

error amounts to provide evidence about the shape of the

error tainting distribution. In general, their results show

the distributions "are frequently highly positively skewed,

and have heavy concentrations in a comparatively small

portion of the entire range" [Johnson, Leitch and Neter

1981, p. 28]. In subsequent Monte Carlo simulation studies

of a dollar unit sampling estimator Leitch, et.a1. [1982]

chose to model the error tainting pattern using chi-square

probability distributions based on the general patterns

uncovered by Ramage, Krieger and Spero [1979] and Johnson,

Leitch and Neter [1981]. Dworin and Grimlund [1984]

recently used these same distributions in their dollar unit

sampling simulation studies. In particular, Dworin and

Grimlund [1984] modeled the distribution of overstatement

percentage errors as .1 times a chi—square random variable

with either 1, 2 or 3 degrees of freedom and understatement

percentage errors as .1 times a chi-square random variable

with either 1 or 2 degrees of freedom. These same tainting

patterns (six possible combinations in total) are used in

this study.
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Within this framework the following parameters

completely define the characteristics of the accounting

population.

rt = total error rate

r0 = pearczeritaigee ()f e1:r<3r s wlii<3h arre

overstatements

ru = pear<2etitaagea <>f ex:r<>r:3 ivhzicri aire

understatements = 1 - ro

df0= degrees of freedom for chi-square

overstatement distribution (1, 2 or 3)

dfu==degrees of freedom for chi-square

understatement distribution (1 or 2)

Figure 11 shows one example of an error tainting

distribution under this framework (see also Dworin and

Grimlund [1984, Figure 1, p. 228]).

Given the identifying parameters of the error tainting

distribution, the ratio of the true to reported balance is

6 = l — .1r (r dfo - r
t O

The Monte Carlo experiments were conducted in the

u dfu).

following manner. For each of k populations total error

rates, rt, and proportions of overstatement errors, r0, were

"drawn" using the underlying distributions given in Tables

25 and 26, respectively. The distribution of these items

within the various ranges given in the Tables (e.g., .000 to

.074, .074 to .139, etc.) was assumed to be uniform.

Separate Monte Carlo experiments were run for each of the

six possible combinations of dfu and dfo' From each of the

k populations formed in this manner a sample of n dollar
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units was "drawn". Separate Monte Carlo experiments were

performed for sample sizes of n = 50 and n = 100. These

samples were constructed in the following manner. Each

sample item had probability r of being a population error
t

item and probability ro of being an overstatement if it was

an error. The sizes of the overstatement and understatement

2 2

errors were distributed as .l de and °1X<ns random

0 u

variables. With a set of n errors, e1, ... en, "drawn" from

A

a population in this manner the PPS-MPU estimator 6, is

defined as

8 = 1 - 5

n

Where: 5 = l/n 2 e.

. jgl 3

42
n -2

o = l/(n-l) 2 (e. - e)

i=1 3

Note that ej is defined to be zero if the jth sample item is

not in error.

The PEB estimators, GPEB , were calculated in accordance

with equation (9) and a set of nine pure Bayes estimators

were calculated using equation (8) for each Monte Carlo

trial. The sensitivity of the Bayes estimator to

misspecifications in the parameters of the prior probability

distribution was examined. The values for the true

expectation and variance of the ratio,(3, of the true

account balance to the recorded book balance are:
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E{6} = E{1 - .1 rt (rO dfo - ru dfu)}

= 1 - .1 E{rt} [E{ro} dfo - E{ru] dfu]

= 1 - .0243211 [.61435 dfo - .38565 dfu]

Var{6} = E{92} - [E{9}]2

= E{r:] (.01) [(dfu + dfo)2 E{r:]

- 2(dfu + dfo) dfu E[ro] + dfu]

- [E{rt}]2 (.01) [(dfu + dfo) E{ro} - dfi]

= .00107583652 [(dfu + dfo)2 (.423131667)

2

- 2(dfu + dfo) dfu (.61435) + dfu]

- (.243211)2 (.01) [(dfu + dfo) .61435 - d£u12

Thus, for each Monte Carlo experiment the true values

of E{6} and Var{e} depend only on the degrees of freedom in

the distributions of the size of overstatement and

understatement errors, dfo and dfu. Table 27 gives the

values of the expectation and variance of 6 for the six

combinations of dfo and dfu tested.

In each Monte Carlo experiment nine pure Bayes

estimators were tested. These nine estimators result from

all possible combinations of three prior specifications on

both the mean and variance of the prior distribution. The

prior specifications for E{9}, represented by u in equation

(8), were:

Perfect specification: u = E{6}

Underestimation of prior: u = E{9} - .02

Overestimation of prior: u = E{6] + .02
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The prior specifications for Var{6}, represented by T in

equation (8). were:

Perfect specification: 1 = Var{6}

Overly tight specification: T = % Var{9}

Overly diffuse specification: 1 = 4 Var{6}

Thus, the nine prior distributions used in each Monte

Carlo experiment were:

(1) Normal (E{6} + .02 }

(2) Normal (E{6} .02 Var{6})

(3) Normal (E{6} + .02 4 Var{6}

(4) Normal (E{e} k Var{6}

}

}

}

I 313 Var{e )

(5) Normal (E{6} : Var{6})

+

(6) Normal (E{6} 4 Var{6

(7) Normal (E{6} - .02 k Var{9

(8) Normal (E{6} - .02 Var{6})

(9) Normal (E{6} - .02 4 Var{6 )

)

)

)

)

Tables 28 and 29 give the average efficiencies of the

PEB estimator and the nine pure Bayes estimators for the 36

Monte Carlo experiments. The efficiency of an estimator is

the ratio of its average mean squared error to the averager

mean squared error of the classical PPS—MPU estimator. Each

Monte Carlo experiment consisted of 2,000 iterations of the

population formation, sample selection and estimator

calculation process. Table 28 presents the efficiency

results for sample sizes of n = 50 and Table 29 gives the

results for sample sizes of n = 100.

The results show the PEB estimator is always efficient

relative to the classical PPS-MPU estimator. Reductions in

mean squared error by as much as 40% were obtained.
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The use of a pure Bayesian estimator results in

additional efficiency gains with a correct prior

specification of the mean of the underlying distribution.

As was the case in the attributes sampling model,

misspecifications in the mean or variance of the prior

distribution can be costly during pure Bayesian estimation.

The penalties are most acute with any misspecification of

the mean (priors l, 2, 3, 7, 8 and 9) or an overly tight

variance specification (priors l, 4 and 7). In these

circumstances the gains from Bayesian estimation can be

eroded to such an extent that the estimator is inefficient

(at times grossly inefficient) relative to traditional non-

Bayesian estimation. These costs of incorrect specification

of the prior distribution parameters are avoided in the PEB

estimator by estimating these parameters from the sample

data itself. In each of the 36 Monte Carlo trials reported

in Tables 28 and 29 the PEB estimator was efficient relative

to the classical PPS-MPU estimator.

However, three anomalous results were obtained. First,

there was a persistent tendency for the PEB estimator to

have greater efficiency when sampling from 6 populations

than when sampling from 8 populations. One would expect,

ceteris paribus, greater efficiency when sampling from a

larger number of populations since more precise estimates of

the underlying parameters EM} and Var{6} can be obtained

from the sampling results.
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A second anomaly arose in the behavior of the pure

Bayes estimators. The efficiency for the Bayes estimator

with proper mean specification but overly diffuse variance

specification (prior 6) was consistently superior to that

for the Bayes estimator with perfect mean and variance

specifications (prior 5). Under ideal conditions one would

expect perfectly specified Bayesian priors to outperform any

misspecified prior.

Finally, the observed reliability of the confidence

intervals was substantially lower than the desired 95%

probability coverage. This is shown in Tables 30 and 31

which present the Monte Carlo results for PPS-MPU, PEB and

pure Bayesian 95% confidence interval observed reliability

levels. In all instances the observed reliability is

substantially less than the desired 95% probability

coverage.

The unreliability of classical sampling techniques when

testing accounting populations has long been known and is

well documented in the literature. See, for example, Neter

and Loebbecke [1975] . The major reason for this result is

the lack of normality exhibited by the sampling estimator

principally due to the large proportion of population items

'which are not in error as well as the skewed distribution of

population errors.

One method of increasing the reliability of the

estimator is, of course, to sufficiently increase the sample

size to insure the selection of a larger number of
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population error items. However, the sample sizes required

to obtain the desired reliability are often too high for

auditors to be able to employ the procedure in many

practical circumstances. A second alternative is to abandon

classical variables sampling for populations suspected to

have a low rate of errors in favor of the combined

attributesovariables or dollar unit sampling method which

does not rely on the normality of a sampling estimator. For

populations with higher expected error rates the classical

sampling techniques can be retained.

Tables 32 through 35 present the results of a series of

Monte Carlo experiments analyzing the behavior of the

classical PPS-MPU, the PEB and pure Bayesian estimators in

populations whose total error rates are 10% or more. With

the single exception of this lower bound on the total error

rate all other aspects of these Monte Carlo experiments are

identical to the previously described trials whose results

are given in Tables 28 through 31.

Limiting the use of classical estimators to populations

with error rates greater than 10% is consistent with two

recent studies which employed the same error tainting

patterns used here. Leitch, et.al [1982] limit their

analysis to populations with error rates of 6% or more.

Similarly, Dworin and Grimlund [1984] limit their study to

populations with error rates of 10% or more. The results of

Johnson, Leitch and Neter [1981] given in Table 25 indicate

that somewhere between 50 to 75% of all inventory
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populations can be expected to have total error rates in

excess of 10%. Thus, the implication of limiting the study

to these accounts is that the auditor will use the results

of interim attribute tests of the internal control system

and knowledge obtained from previous audits to form an

assessment about the total error rate of the population

prior to selecting a sampling plan. For those populations

whose total error rate is determined to be less than 10% an

alternative estimation procedure would be employed.

The results given in Tables 32 to 35 show that limiting

the use of the sampling procedures to populations with

errors in excess of 10% successfully avoids the three

anomalies previously noted.

First, PEB estimation was in every instance efficient

relative to classical PPS-MPU estimation. The efficiency

improves when increasing the number of populations, k, used

in the construction of the PEB estimator. Reductions of

mean squared error by as much as 40% were obtained using PEB

estimation in lieu of the classical PPS-MPU estimator.

Secondly, the best pure Bayesian estimator results when

the parametric specifications are accurate for both the mean

and variance of the prior distribution. Misspecifications

of either of these parameters can be costly, resulting in

inefficient estimation relative to both PEB and classical

PPS-MPU estimation.

It is significant to note that PEB efficiency levels

approach those of optimal Bayesian estimation with perfect
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prior parameter specification (prior 5) with as few as eight

populations used in the construction of the PEB estimator.

Finally, as expected, the reliability of the estimators

is greatly enhanced by limiting their use to populations

‘with error rates of 10% or more. The observed reliability

levels of 95% nominal confidence intervals were similar for

the PPS-MPU and the PEB estimators. In general they fell

within the range of 90 to 93% with a sample size of n = 50

and 92.5 to 94% for the larger sample size of n = 100.

Misspecifications in the parameters of the prior

distribution can be extremely costly in pure Bayesian

estimation with observed reliability levels of as low as 51%

for 95% desired confidence intervals being noted.

Table 36 displays the ratios of the average widths of

the PEB 95% confidence intervals to those for classical PPS—

MPU confidence intervals. The results show that the PEB

intervals are able to exploit the efficiency of the

estimator by establishing confidence intervals which are

from 2 to 12% shorter than the classical intervals.

The results of Tables 32 through 36 demonstrate the

effectiveness of PEB estimation in substantive audit testing

when population error rates are 10% or more. In these

<3ircumstances PEB estimation produces confidence intervals

with observed reliability only slightly less than the

desired level and with confidence intervals somewhat

narrower than those yielded by classical procedures.

Additionally, the PEB point estimator was shown to have
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TABLE 36

Ratio of PEB to Classical 95% Confidence Interval Widths

Total Error Rates Greater Than 10%

Ratio of Average PEB

to PPS-MPU Confidence

Interval Widths

Degrees of Freedom

in Understatement/

Overstatement Distributions

dfu dfo k n = 50 n = 100

.947 .963

.873 .918

.829 .891

.961 .976

.906 .944

.876 .928

.969 .981

.925 .955

.901 .947

.953 .970

.888 .930

.854 .913

.956 .972

.900 .938

.872 .922

.964 .977

.916 .950

.891 .937
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significantly smaller mean squared error than the classical

estimator with risk reductions of 6 to 40% obtained.

Reduction of mean squared error toward the optimal level of

pure Bayesian estimation with perfect prior parameter

estimation was rapid. Only k = 8 populations are required

to reduce the PEB mean squared error sufficiently to

approach optimal Bayesian estimation. This fact combined

with the considerable risk additions which arise from

imperfect prior parameter specifications in pure Bayesian

estimation make PEB techniques an attractive option for

auditors.

Finally, the anomalous behavior noted in Tables 28

through 31 when populations with error rates of less than

10% are admitted does not appear to be a result of PEB

techniques per se, but rather an indirect effect from the

reliance on a nonnormally distributed classical estimator.

The PEB estimator was consistently efficient relative to

classical estimation in these circumstances as well. In

fact the mean squared error reduction is greater when low

error rate populations are admitted into the analysis.

Thus, if the auditor is committed to using a classical

variables sampling approach rather than a combined

attributes-variables technique even in the face of low error

rates, then the benefits in terms of risk reduction from PEB

estimation are still present. However, reliance on PEB

confidence intervals in these circumstances is unwise, as it

would be for classical estimation as well.
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4.2 Interprocedural Integration of Variables Sampling and

Analytical Review Procedures
 

The purpose of this section is to illustrate the use of

PEB estimation techniques for the integration of classical

variables sampling estimators with auxiliary analytical

review information. The purpose of this integration is to

obtain a single estimate of the true balance of an

accounting population which is more efficient than either

the sampling information or the auxiliary analytical review

information used in isolation could provide.

Morris [1983a] generalizes the PEB estimator given by

equation (9) in Section 4.1 to allow for the integration of

auxiliary information in the estimation process. This

auxiliary information PEB estimator is developed in the'

following manner.

As before let 8? be a classical sampling estimate of

the ratio, 6i, of the true account balance to the client's

reported balance for the ith account. Thus,

5? “ Normal (91' 0:).

Emmfloying the notation of Section 2.1 by representing

the true and recorded balances of the ith_population as xi

and Yi' respectively, yields the classical sampling estimate

of the true account balance:

“S “S .. 2 2

Imn:zi be an r-dimensional column vector of

observations for a set of auxiliary information variables.
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These concomitant information variables could include any of

the numerous items typically employed by auditors in formal

or informal analytical review models. Examples might

include prior year's balances, balances in other related

accounts, or general economic and industry indexes.

If it was known that the true balance, X in each
ii

population was perfectly correlated with these auxiliary

variables through some regression equation

X. = z! B

then the ideal estimator would be obtained through a

weighted least squares process:

A A

X?R = zi 8

Where: g = (z'Dz)-1 Z'Dfis

z = k x r matrix with rows 2;

D = k x k diagonal matrix with

l/Yio: diagonal elements

£5 = (xi,...,x:)'

In general we know that the regression equation

xi = 2i 8

does not hold exactly. However, numerous studies using

actual accounting and economic data have shown the validity

of such an analytical review regression model as a potential

audit tool. Examples include Stringer [1975], Albrecht and

McKeown [1977], Kaplan [1978], Kinney [1978], Akresh and

Wallace [1980], Neter [1980], and Lev [1980]. The general
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analytical review regression model with an error term is

= I

Xi 21 3 + 81

Normal (0, T).Where 8i

Typically, the noise in an analytical review regression

model as represented by the variance of the disturbance

term, T, is of such a magnitude as to make analytical review

procedures inefficient relative to classical sampling when

each procedure is used in isolation. However, Bayesian

estimation provides a compromise estimator formed by’a

linear combination of the sampling and analytical review

estimators. If B and T were known, then the pure Bayes

estimator

2 2 2 2

Bi - YiOi/(Yioi + T)

would serve to minimize the expected mean squared error.

Since 8 and T are not known, in order to operationalize

pure Bayesian estimation these parameters would have to be

subjectively prespecified by the auditor. Misspecification

of one or both of these parameters will prove to be costly,

of course, perhaps to the extent of making pure Bayesian

estimation inefficient relative to classical sampling.

However, estimates of both 8 and T are available from

the sample data. This leads to a generalized parametric

empirical Bayes estimator (Morris [1983a], p. 53):
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“PEB _ “PEB .‘ “PEB “s
(11) Xi - Bi zig + (l - Bi ) Xi

Where: 8 = (2'nz)'1 Z'Dfis

D = k x k diagonal matrix of weights, Wi

22 “.1.

W1 - l/(Yioi + T )

Q - 2w [(k/(k r )(xS '3 2 Y2A2]/XW
‘ i ' ’ i ‘ 21 ’ ' ioi i

T+ = max{0, T}

“PEB _ 2‘2 2‘2 ‘+

Bi - [(k-r—2)/(k-r)] Yioi /(Yi°i + T )

When r ==21 and each 21 = 1 represents a constant term,

then equation (11) reduces to equation (9), the PEB

estimator analyzed in the previous section, 4.1.

The PEB estimator can be interpreted as a compromise

between a pure sampling estimator, 2?, and an estimate

obtained from a noisy analytical review regression model,

2,1 8. The goal of this compromise estimator is to obtain

one estimate of the true account balance which will

outperform either extreme choice of total reliance on

analytical review or pure sampling procedures. Thus, the

PEB estimator can be viewed as a mechanism for integrating

across two types of substantive audit procedures to obtain

one single efficient estimator.

The PEB coefficient, BEEB, can be viewed as a shrinkage

coefficient. If the analytical review model is particularly

noisy, yielding little information about the true account

balance, then T is large and relatively little shrinkage

from the sampling estimator results.

Finally, it should be noted that no prior information

about the analytical review regression model is assumed to
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be known by the auditor. The estimates 8 and T+ are derived

strictly from the current year's sampling information and

observations on the regression variables, 21. This differs

from the usual analytical review estimator which requires

intertemporal or crossectional estimation outside the

current audit engagement. Typically the auditor must assume

that the regression equation for the current audit client is

unchanged from the model which generated the estimation

observations. Thus, one major advantage of this form of PEB

estimation is the fact that auditors may exploit the

information contained in concomitant variables without prior

observations on those variables. This is particularly'

valuable for newly obtained clients or circumstances in

which the auditor believes past relationships may no longer

be reflective of the current economic circumstances.

The advantages of PEB integration of analytical review

evidence with classical sampling results are brought sharply

into focus by the following comments of Kinney

[1979, 1?. 460] regarding traditional analytical review

regression techniques:

To justify a precise account balance

probability statement based on the regression

results, two conditions must be met. First, the

auditor must be able to show that the base period

model seems to be valid for the audit period.

Second, if the model appears valid, the regression

results must be sufficiently precise to allow

adequate confidence that the maximum accounting

error is less than a material amount.
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Both of these disadvantages of pure analytical review'

regression analysis are ndtigated through PEB integration.

Since the regression model parameters are estimated using

current sampling results and not through the use of prior

observations, the stability of the analytical review model

from the base observations to the audit period is not a

required assumption. Secondly, since the analytical review

model is integrated with the sampling estimator to obtain a

single more efficient estimator, the analytical review

estimator in isolation need not be sufficiently precise for

the auditor's substantive test. Even a relatively noisy

analytical review model can be exploited to improve the

efficiency or precision of a sampling estimator.

In order to evaluate the performance of the PEB

estimator given in equation (11), a particular regression

model must be posited. To maintain consistency with the

prior literature, a model similar to ones employed by Kinney

and Salamon [1978, 1982] and Kinney [1979] is used in this

study:

X

ll1 4 + 2 21 + ei

Where: 2. " Normal (48, 0:)

e. “ Normal (0, 0:)

Four combinations of o: and 0: were analyzed. These

four combinations represent varying degrees of

informativeness of the analytical review regression model.

The four combinations are given in Table 37. In general,

the higher the variance of the disturbance terms and the
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lower the correlation between the true account balances and

the auxiliary explanatory variable, the less informative is

the analytical review model. Stringer [1975] reports that

the correlation coefficient in Deloitte, Haskins and Sells'

applications of analytical review regression models is less

than .85 in about one-third of the applications and above

.95 in about one-third. Thus, the range chosen for this

study reflects a large portion of practical applications.

A series of Monte Carlo experiments was performed

investigating the efficiency of the equation (11) PEB

estimator. For each Monte Carlo trial values for the true

account balance and the auxiliary variable were generated in

accordance with the underlying analytical review regression

model. Simulated samples of n = 50 and 100 were drawn using

the same error rate and error size distributions of Section

4.1. The PEB estimator was computed in accordance with

equaticni (11) based upon the simulated sampling results and

auxiliary variable values. Each Monte Carlo experiment

consisted of 2,000 of such trials.

The results of these Monte Carlo experiments are given

in Table 38 and 39. In each of the 144 Monte Carlo

experiments the PEB estimator was efficient relative to the

<:lassical sampling estimator. This efficiency was obtained

despite the fact that the pure analytical review estimator,

2i 6, is inefficient relative to pure sampling. Thus, PEB

techniques were successful in integrating a relatively noisy

concomitant variable with a classical sampling estimator to
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obtain a single estimate which was more efficient than

either of the two used in isolation.

In general the efficiency of the PEB estimator improves

'with the informativeness of the analytical review model and

the number of populations used to compute the estimator.

Morris [1983a, p. 53] proposes a confidence interval

for the generalized PEB estimator of equation (11):

. . “PEB “PEB
(12) Probablility {xi - zasi 5 xi 5 xi + zasi} 2,1 - 0

Where. 1 - Yioi [l-(l-ri)Bi ] + vi(Xi - 218)

A = I -1 3

r1 Wi [ 2(2 DZ) 2 Iii

- APEB 2 2:2 “+ 2‘2 ‘+

vi - (2/(k-r—2))(Bi ) (Yioi + T )/(Yi°i + T )

Y202 - w YZAZ / w
i i " Z 1 101 2 1

When r = l and each zi = 1 represents a constant term,

then equation (12) reduces to equation (10), the PEB

confidence interval analyzed in the previous section, 4.1.

Tables 40 and 41 present the results of a series of

Monte Carlo experiments investigating the reliability of the

PEB confidence interval for each of the analytical review

models discussed above. The results show that that the 95%

nominal PEB confidence intervals provide actual reliability

levels of 90 to 93% for samples sizes of n = 50 and 92.5 to

94.5% for n=100. While the PEB reliability is slightly less

than the desired amount, it is never significantly less than

the classical reliability level shown in the PPS-MPU columns

of Tables 40 and 41.

Table 42 exhibits the average ratio of the width of the

PEB confidence intervals to the width of the classical
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confidence intervals observed during the Monte Carlo

experiments. The PEB confidence intervals are able to

exploit the efficiency of the estimator, generating narrower

intervals than under classical sampling procedures without

sacrificing reliability.



CHAPTER V

SUMMARY AND CONCLUSIONS

The purpose of this dissertation was to examine the use

of empirical Bayes estimation techniques as an audit tool.

Applications of parametric empirical Bayes estimation

procedures were considered for both the intenal control

compliance testing and account balance substantive testing

phases of the audit. The following two sections summarize

the results of this study for each of these applications.

Section 5.3 considers issues raised by this study which

indicate a need for future research.

5.1 Compliance Test Applications
 

The behavior of the PEB estimator of population error

rates for internal control compliance testing was examined

from both the frequentist perspective of fixed population

error rates and the Bayesian perspective of random

underlying population error rates. The results for each of

these two perspectives are summarized separately in the

following discussion.

The PEB error rate estimator proposed in this study has

an interpretation from the frequentist perspective as the

188
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James-Stein estimator of a set of fixed population error

rates. Under ideal conditions, for any set of fixed

population error rates the James-Stein estimator has smaller

expected ensemble squared error than the classical maximum

likelihood estimator currently used by auditors. However,

with the small error rates encountered by auditors these

ideal conditions may not be met in practice. Thus, the

actual behavior of the JS/PEB error rate estimator was

examined for various sample sizes, error rate patterns and

numbers of populations likely to be encountered by auditors.

In total 113 exact numerical computations or Monte Carlo

simulations were performed computing the PEB/JS frequentist

mean squared error under these various sample size and

population error rate specifications. In each instance the

PEB/JS estimator was ensemble risk efficient relative to MLE

estimation.

Matsumura and Tsui [1982] are critical of the use of

the PEB/JS error rate estimator in the presence of low error

rates and low sampde sizes often present in attributes

sampling. They propose using a Stein-type estimator based

on the Poisson distribution in lieu of the PEB/JS estimator

which is based on the normal distribution. However, this

study presented five reasons why the auditor might not wish

to abandon the PEB/JS estimator in favor of a Poisson based

Stein-type estimator. Additionally, the results of this

study show that their criticism of the PEB/JS estimator is

substantially without merit since under the wide variety of
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scenarios examined the PEB/JS estimator was consistently

efficient relative to MLE, even in the face of relatively

small sample sizes and low population error rates. Finally,

in a series of 26 Monte Carlo simulations over various low

error rate patterns and two sample sizes the most

operationally feasible Poisson based Stein-type estimator

proposed by Matsumura and Tsui was found to be grossly'

inefficient relative to the PEB/JS estimator.

In general, the results of this study confirm that the

PEB/JS estimator is consistently ensemble risk efficient

relative to classical MLE procedures. This efficiency tends

to increase with the number of populations used to construct

the estimators and the closer the population error rates are

to each other.

The results also confirm that the PEB/JS' estimator is

frequentist biased. This bias is in the direction of

overstatements in low error rate populations and

understatements in high error rate populations. The

authoritative auditing literature indicates the auditor is

more concerned with the audit risks of overreliance on

internal controls which may be induced by underestimating

error rates than with the inefficiency of underreliance on

internal controls induced by overrestimating error rates.

This study proposed a "positive adjustment" estimator equal

to the greater of the PEB/JS and MLE estimators. This

estimator is everywhere biased toward error rate

overestimation and is never less than the classical MLE
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estimator used by auditors. Nevertheless, computations of

the expected ensemble squared errors for the two estimators

demonstrated that the positive adjustment estimator was

efficient relative to MLE over each of the 70 error rate

pattern and sample size combinations considered.

An examination into the efficiency of the PEB/JS error

rate estimator was also made from the Bayesian perspective

of random error rates. A series of 72 Monte Carlo

experiments over various underlying prior distributions for

the population error rates and two sample sizes were

perfornmui. These investigated the efficiency of the PEB/JS

and pure Bayes estimators relative to classical estimation.

The results showed that in every instance the PEB/JS

estimator was efficient relative to MLE. Additionally, the

pure Bayes estimator was found to be preferred to both MLE

and PEB/JS when the parameters of the prior distribution

were accurately specified ex ante by the auditor. However,

it was shown that the costs of parameter misspecification

can be great, rendering the pure Bayes estimator inefficient

relative to both PEB/JS and MLE estimation. One of the

major benefits of PEB estimation demonstrated repeatedly in

this study is the avoidance of these misspecification costs

by estimating the parameters of the prior distribution from

the sample data itself.

The PEB estimator was constructed using the normal

distribution as the assumed functional form for the prior

distribution on the error rates. However, the behavior of



192

the estimator appears to be robust against this functional

form specification as it was found to be efficient relative

to MLE when the prior error rates were generated under both

the uniform and the exponential distributions as well as the

normal distribution.

Finally, the construction of upper confidence limits

for the true population error rates based on the PEB/J8

estimator was examined. Upper confidence limits from the

frequentist perspective were proposed using bootstrapping

methods. PEB confidence intervals proposed by Morris

[1983a, 1983c] were examined from the Bayesian perspective

of random error rates. The results of a series of Monte

Carlo experiments showed that the proposed confidence limits

provide actual reliability which is only slightly less than

the desired nominal level. This reliability was

obtainedwith confidence intervals which were consistently

narrower than under classical estimation.

In addition to being inefficient, the pure Bayes

estimator also generated confidence intervals which were

grossly unreliable when the prior distribution parameters

were misspecified. This cost of missspecification is

avoided by PEB estimation by estimating these parameters

using the sample data itself.

The implications of these results to the auditor are

that more precise estimates of population error rates are

obtainable without increasing sample sizes or engaging in

risky subjective Bayesian prior probability parameter
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specifications. These more efficient estimates are obtained

through parametric empirical Bayes estimation procedures.

This increased efficiency can be exploited to provide

confidence intervals for the true error rates which are

narrower than under classical estimation. These results

hold for both the frequentist and Bayesian perspective of

the auditor's sampling problem.

5.2 Substantive Test Applications

The behavior of PEB techniques when estimating the true

account balance during the auditor's substantive testing was

also examined in this study. PEB estimators were proposed

for the integration of classical sampling results across

populations as well as with auxiliary analytical review

model information. The results for each of these two uses

of PEB procedures are summarized separately in the following

discussion.

A PEB variables sampling estimator was proposed as a

technique for combining the results of classical statistical

sampling procedures across several account balance

populations. The behavior of the PEB estimator was examined

in the context of sampling for the true balances of

inventory accounts. The error rate and error size

distributions used in the Monte Carlo simulations of the

estimator's behavior were based on published results of

studies into these error characteristics for actual
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inventory populations. These distributions are consistent

with those used by several recent studies of other

statistical sampling estimators.

In total 72 Monte Carlo experiments were performed

using various sample sizes, numbers of populations, and

error rate and error size distributions. In every instance

the PEB estimator was efficient relative to the classical

probability proportional to size mean-per-unit estimator

upon which it was based.

The efficiency of various pure Bayesian estimators

combining the results of classical sampling with the

auditor's subjective prior beliefs was also examined. As

expected, the Bayes estimator was efficient relative to both

classical and PEB estimation when the subjective ex ante

specification of the parameters of the underlying error

distribution was accurate. However, the costs of

misspecification were shown to be potentially great,

rendering the Bayes estimator inefficient relative to both

the PEB and classical techniques. These misspecification

costs are avoided by the PEB estimator which estimates the

parameters of the prior distribution from the sample data

itself rather than relying on risky ex ante auditor beliefs

about the parameters. With as few as eight populations used

in the construction of the estimator, PEB techniques

approach the optimal efficiency of pure Bayesian estimation

with proper prior parameter specification.
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The reliability of PEB confidence intervals for the

true population balance was also examined. These confidence

intervals were shown to be somewhat unreliable, providing

less than the desired level of probability coverage, when

populations with error rates of less than 10% were admitted

into the analysis. This result stems from the fact that the

PEB estimator is based on a classical estimator which is

itself unreliable in these circumstances.

When estimation was limited to populations with error

rates in excess of 10%, the reliability of the PEB

confidence intervals increased dramatically to just slightly

less than the desired nominal level. These confidence

intervals were consistently narrower than those provided by

classical procedures and yielded the same level of

rediability. Pure Bayesian confidence intervals provided

the desired reliability when the ex ante subjective

specifications were accurate. However, they were grossly

unreliable when the subjective specifications were

inaccurate. This unreliability due to prior

misspecification is avoided by PEB techniques which estimate

the prior parameters from the sample data itself.

The implications of these results for the auditor are

that more precise estimates of the true account balance are

obtainable without increasing sample sizes or engaging in

risky subjective Bayesian prior specifications. These more

efficient estimates are obtained through parametric

empirical Bayes estimation procedures. This increased
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efficiency holds regardless of the total error rates present

in the populations. However, the reliability of the

estimator using realistic sample sizes is reasonable only

when the procedures are applied to populations with error

rates greater than 10%. The auditor should use the results

of alternative audit procedures and knowledge from prior

years' examinations in order to apply the techniques only

when error rates are expected to exceed 10% if he intends to

obtain reliable confidence intervals. However, it is also

true that classical estimation should not be used in

situations where the’error rate is expected to be low.

Nonetheless, if the auditor chooses to employ classical

procedures even in the face of low error rates, then PEB

techniques can still be used to obtain more precise

estimates. However, reliance on PEB confidence intervals in

these circumstances is unwise, but no worse than reliance on

classical confidence intervals.

PEB techniques which integrated the results of

classical sampling estimators with auxiliary analytical

review information were also examined. There are two

advantages to this technique over the current practice.

First, the PEB integration provides a single estimate which

is more efficient than either the sampling or analytical

review estimate used in isolation. Currently any

integration of the two procedures into one estimate must be

done subjectively, if at all. Secondly, the analytical

review auxiliary information can be for the current awdit
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period only. Typically, when employing analytical review

estimation procedures, the auditor obtains a set of

observations on audited account balances and auxiliary

analytical review information variables from outside the

period or client under audit. He then establishes a model

linking the true account balance to the auxiliary

information using the estimation period observations. The

auditor must assume that the model is also valid for the

audit observations. This assumption is not required under

the PEB technque which can be constructed using observations

from the audit period only. The sample information) is used

both as a direct estimate of the true account balance and in

estimating the parameters of the analytical review model.

In total 144 Monte Carlo simulations examined the

behavior of this type of PEB estimator. The performance of

the estimator was analyzed over various population error

distributions, underlying auxiliary information models,

sample sizes, and numbers of populations used in the

construction of the estimator. For the reasons discussed

above this analysis was limited to populations with error

rates in excess of 10%.

In every instance the PEB estimator was efficient

relative to classical estimation. This efficiency was

obtained despite the fact that the pure analytical review

estimator was inefficient relative to classical sampling.

PEB techniques were successful in integrating a relatively

noisy auxiliary analytical review variable to Obtain a more
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efficient estimate of the true account balance. In general,

these efficiency gains were greater with the more

informative auxiliary information models. A more

informative auxiliary information analytical review model is

one with lower total variance and/or higher correlation

between the true account balance and the auxiliary

information variables.

The reliability of PEB confidence intervals about these

estimates was also examined. The observed reliability was

the same as under classical estimation and just slightly

less than the desired nominal level. Additionally, the PEB

confidence interval widths were somewhat narrower than under

classical estimation.

5.3 Implications for Future Research

Several issues were raised by this study which indicate

the need for future research. Three of the most important

topics are discussed in the following.

The efficiency investigations made in this study were,

for the most part, made with respect to a quadratic loss

function. However, some evidence was cited in the

authoritative literature (SAS No. 39) and prior academic

research (Scott [1975]) which indicates that the auditor's

loss function may be asymmetric. While squared error

appears to be a close approximation to the auditor's loss,

additional research into the exact form and parameters of
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the auditor's loss function could lead to the development of

improved PEB estimators which reduce the auditor's actual

expected loss.

Secondly, this dissertation.investigated the behavior

of parametric empirical Bayes estimators in audit testing.

PEB procedures assume a given functional form for the

underlying distribution of the item at interest. However,

the identifying parameters of this prior distribution are

left unspecified and are estimated from the data itself.

The‘results of this dissertation show that the behavior of

the PEB estimator in auditing applications is robust against

the normal functional form specification. Nonetheless, an

interesting extension of this line of research would

investigate the behavior of nonparametric empirical Bayes

procedures which estimate both the functional form and the

identifying parameters of the underlying distribution from

the sample data.

Finally, the results of this dissertation show that PEB

confidence intervals for the true account balance are

unreliable in the presence of low error rate populations.

This stems from the PEB estimator‘s reliance on-a classical

estimator which is itself unreliable in these circumstances.

For this reason a series of dollar—unit sampling procedures

have been developed which construct conservative upper

confidence bounds for the true account balance in the

presence of low error rates. These dollar-unit sampling or

combined attributes-variables sampling techniques do not
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rely ruxni a classical statistical sampling point estimator.

Recent attempts have been made to introduce Bayesian methods

to these techniques (e.g., McCray'[l984], Godfrey and

Neter [1984], and Dworin and Grimlund [1986]). Future

research might examine the potential of introducing

empirical Bayes procedures to the dollaruwnnit-sampling

methods.
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