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ABSTRACT

MOLECULAR MOTION IN CONDENSED PHASES.
NUCLEAR MAGNETIC RELAXATION AND RAMAN LINESHAPE
STUDIES OF SEVERAL SMALL MOLECULES

By
David Allen Wright

Raman lineshape measurements were used to augment NMR relaxation
data in order to investigate molecular motion in liquids and solids.
The Raman experiments were done only at room temperature while pulsed
NMR measurements of T], T, and the self-diffusion coefficient Dg
were carried out over as wide a range of temperature as possible.

A general method has been developed by which two-pulse experi-
ments may be largely automated by interfacing a minicomputer to an
NMR pulse spectrometer. The necessary pulses and time delays are
supplied by the computer and the interface converts these to the levels
necessary for the rf oscillator and power amplifier of the spectrom-
eter. Values of the relaxation times (T], Ty, T]p) are extracted
from the collected data by data analysis subroutines which perform a
least-squares fit of the data to an exponential decay. Deviations
of the data points from the least-squares slope are displayed to permit
an immediaté visual check for experimental errors. The advantages
of the simple pulse sequences are retained while their disadvantages,

particularly inefficient data collection for very long or very short
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David Allen Wright

relaxation times, are greatly reduced. The lower limit of relaxation
times which may be measured by this method is about 100 psec.

A simpler interface was constructed which allowed Raman spectra
to be digitized and punched onto IBM cards for analysis on the CDC
6500 computer. A FORTRAN computer program was written which calculated
the reorientational broadening of Raman A] lines, from which the rota-
tional correlation time was calculated.

Deuterium quadrupole coupling constants have been obtained for
two symmetric-top molecules in the liquid phase by combining NMR relaxa-
tion data with Raman line-shape analysis of bands of A] symmetry.
The Raman lines have been corrected for vibrational and instrumental
broadening by comparing the polarized and depolarized components of a
single 1ine. More than one A; line has been studied for each molecule.
The previously uncertain deuterium quadrupole coupling constant for
CDBr3 has been determined in this work to be 170:5 kHz and deuterium
coupling constants in CDX3 molecules are discussed. The procedure
described here provides a different method for obtaining nuclear

quadrupole coupling constants in the liquid phase. The temperature

2

dependence of the "D spin-lattice relaxation rate was used to analyze

published ]3cArelaxation data for CHBr3, and limits were placed on
the anisotropy of rotational motion, which at 20° C were 1.5<D||/lel.0.
Motion in liquid CDBr3 was compared to motion in the much more inten-
sively studied liquid CDC13 system.

Spin-lattice and spin-spin relaxation rates at 56 MHz were mea-
sured in CF3CC13 from 141° K to 432° K. More limited measurements
were made of T] at 15.87 MHz and the self-diffusion coefficient in

the liquid phase. A phase transition was observed in the solid at
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147° K from a discontinuity in the T1 data.

By means of linewidth, Tz, and variable-field T1 measurements,
spin-lattice relaxation in plastic crystalline CF3CC13 was found to
have contributions from intramolecular dipole-dipole interactions,
translational diffusion, and spin-rotation. The activation energies
for these processes were determined to be 1.8 kcal/mole, 12.9 kcal/
mole, and 1.8 kcal/mole, respectively.

At 56 MHz, spin-rotation was found to be more important in the
solid than translational diffusion. The value of the translational
diffusion coefficient at the melting point was determined to be 2.1

-8

x10 ~ or 1.3-10'8, depending on whether the crystal structure is fcc

or bcc.

The separation of the liquid phase 19

F relaxation in CF3CC13

was made on the basis of self-diffusion measurements and a single room

temperatureRaman measurement coupled with the temperature dependence

of the rotational correlation time determined from the solid phase

data. The rotational motion was discussed in terms of Gordon's extended

diffusion model, and it was found that the Hubbard relation for isotropic

reorientation predicted angular momentum correlation times which were

in approximate agreement with the diffusion models, indicating that

off-diagonal elements of the spin-rotation tensor are small in CF3CCI3.
Spin-lattice relaxation rates were measured from the melting point

to the critical point for CF3Br and CFZBrz; also the self-diffusion

coefficient was measured in liquid CF3Br from room temperature to the

melting point. The separation of R],tota] into the contributions

from various mechanisms was discussed but was not quantitatively suc-

cess ful due to difficulties in obtaining satisfactory values for the
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David Allen Wright

intermolecular dipole-dipole relaxation rate.

Spin-lattice and spin-spin relaxation rates were measured over
a limited temperature range for CF2C1CCI3, CFC12CFC12, CF3CF3, and
CF3I. The use of the difference RZ'R] to obtain the scalar coupling
constant JFX’ where X is the other halogen, was discussed, but it was
not, in general, possible to obtain reliable values. These substi-
tuted ethanes were found to behave very similarly to CF3CC13 in that
spin-rotation dominated the 1iquid range, with translational diffusion
only a minor contribution to the total spin-lattice relaxation rate
(R1) both in the liquid and solid, at 56 MHz. Also the presence of a
minimum in R] in the solid indicated the probable presence of a spin-
rotational relaxation mechanism.

"Effective” spin-rotation interaction constants were calculated
from the relaxation rate at the critical point, and were compared with
chemical shielding derived values. The agreement was found generally
to be good, indicating that off-diagonal elements of the spin-rotation
tensor were small for these compounds and that the motion was roughly

isotropic.
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INTRODUCTION

Nuclear magnetic relaxation studies have been extremely useful
in understanding the details of molecular motion in fluids. This
is especially true for nuclei which have large spin-rotational
contributions to the relaxation rate, as information about the cor-
relation of angular momentum is important in terms of testing a
molecular model but difficult to obtain by other methods. To date,
studies which rigorously test a model of molecular reorientation
have been performed solely on molecules of rather special nature.
Since the predictions of the extended diffusion model have been
borne out very well for those molecules, it would be of interest to
attempt such a rigorous study on molecules of a more common nature.
To this end, ]9F spin-lattice relaxation measurements have been per-
formed on molecules of C3 symmetry containing -CF5 groups (CF4CC154,
CF3CF3,CF3C1, CF4Br, and CF3I) to varying degrees of thoroughness.

In addition, less symmetric molecules containing other -CF, and -CF-
groups were investigated to aid in understanding the results in the
-CF3 containing molecules.

A major problem in NMR relaxation studies is that there are often
too many unknowns for precise values of the correlation times to be
determined. To alleviate this difficulty, the NMR data may be aug-
mented with Raman 1ine-shape data, which can reduce by one the number
of NMR unknowns by supplying the rotational correlation time. Although
variable-temperature Raman data would be most useful, even a single

room-temperature measurement would be helpful. In this investigation,



emg e et
Lot v weww w-

.
b
Wes
t"'3'-3!"'
Tin,
Ve
Svalg oyl
g 'J:
£ I




a single Raman measurement in conjunction with NMR temperature-dependent
relaxation data, has been used to separate the spin-rofationa] contribu-
tion to the relaxation rate from the dipole-dipole contribution in
CF3CC13, and also to determine the coupling constants (JFC1 in CF3CC13
and the 2D quadrupole coupling constant in CDC13 and CDBr3) which are
not observable in the high-resolution spectrum due to the rapid
relaxation of the quadrupolar nucleus.

Any experimental measurement which is sensitive to the details
of molecular motion may be divided into two parts; the determination
of the microscopic parameter(s) of interest (correlation times, in
this case) from the measured macroscopic property (namely, the relaxa-
tion time), and the interpretation of the microscopic parameter(s)
in terms of a specific model for molecular motion.

The Theoretical section of this dissertation will consider only
the latter part of this problem by discussing the role of time cor-
relation functions in spectroscopy. The result of this section will
be to show how a correlation function is calculated from a given
model of molecular motion. This approach is taken in order that it
be clear how this correlation function may then be applied to explain
motional effects in many seemingly diverse experiments. The two
experiments which will be discussed explicitly in terms of this cor-
relation function are NMR relaxation through molecular motion and
the broadening of Raman lines.

The Historical section will address itself to current methods
of extracting the microscopic parameters of interest from the ex-

perimental measurements. The experiments most pertinent to the






present work will be those which transcend the boundaries of the
NMR experiment for a better understanding of the motions responsible
for spin-lattice relaxation.

Accurate and rapid measurements of relaxation times are generally
more conveniently performed when a computer handles a major portion
of the experimental details. A considerable section of this work
is devoted to describing a computer-controlled two-pulse NMR spectrom-
eter which, within its design specifications, is extremely versatile

and was used to acquire nearly all of the NMR data discussed herein.






THEORETICAL

I. Correlation Functions in Spectroscopy

Although the early development of NMR relaxation theory was in
terms of time correlation functions, in learning this theory one
rather rapidly discards correlation functions for correlation times
and consequently misses much of the significance of the correlation
function approach. Recently many diverse non-equilibrium phenomena
have been discussed in terms of time correlation functions. There
exist a large number of excellent reviews on the use of time correla-
tion functions]'s; the best introductory articles in this field are
those of Zwanzig] and Gordonz. Of particular concern to this investi-
gation is the time correlation function describing the rotational
motion of molecules in fluids, which must be governed by the aniso-
tropic part of the intermolecular potential. While classical methods
of investigating fluids, such as measurements of viscosity or heat
capacity, are insensitive to angle-dependent intermolecular forces,
spectroscopic methods such as NMR relaxation times and Raman and IR
lineshapes are affected by these types of forces. The time correla-
tion function approach provides that the broadening of spectral lines
and the change in NMR relaxation times with temperature (and other
effects) be treated on a common basis.

The classical definition of a time correlation function for two

dynamical properties A and B may be stated as

Cag = <A(0)-B(t)> (1)

4
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where the brackets indicate an equilibrium ensemble average. When A
and B are different properties Cpp is termed a cross-correlation
function, when they are identical CAA is termed an auto-correlation
function.

A correlation function tells concisely how a given dynamical
property at time t correlates with its value at time t=0. One could
calculate the time correlation functions by this method: Imagine
that it is possible to follow the motion of a single molecule and
the dynamical property p(t) is the orientation of the molecular dipole
moment. One measures its orientation at time t=0 and at time t; the
correlation is the projection of p(t) on p(0). To get an average
value for the function one repeats this experiment a large number
of times choosing various reference times t=0, and averages over the
starting times. If the usual assumption is made that the system is
ergodic, that is, ensemble averages are the same as time averages,
then this procedure will give a time correlation as defined by Equa-
tion (1).

A time correlation function can be calculated no matter what
type of motion is occurring, however, usually the motion is random
and the knowledge of its time dependence is in the form of a condi-
tional probability function P(yz,ylltz,t]) which gives the probability
of observing the dynamical variable with value yp at time t, if it
had a value y; at time t;. The time correlation function may then
be calculated from P as follows: If y is a random function of time
and f(y) is a function of y then the average value of f at time t,
will be found to be



Ve s -
fim g o

P T

..

~t*
P




TIET = [Plyy.ty)f(yy)dy, (2)
and the average value at time t2 will similarly be
TTE) = [Plypaty)f(vp)dy,. (3)

If we form the product f(t1)-f(t2) and then perform the averaging,

the result is clearly a time correlation function,
= [P (3,1t )Pyt vy d. (4)

The product P(y],t])-P(yz,tz) is a joint probability function and is
related to the conditional probability function P by the obvious

relation
P(yy:t1)-P(¥p,to) = P(yq,t1)P(yqs¥pitysts), (5)

therefore
6(ty-ty) = ffPlyy )Py ypity t)E ) F v My dyy.  (6)

Some common assumptions made in the theory of random processes6

are that the random functions are Gaussian and are stationary; that
is, they are invariant to a shift of the time axis, and the process is a

Markoff process. In a Markoff process the function P does not depend on






times prior to t]. If,and only if, these assumptions hold, then the
time correlation functions are exponentia17.

Time correlation functions appear in spectroscopy in two ways:
in the Heisenberg description of the frequency spectrum as the
Fourier transform of the appropriate time correlation function and
also in an equation for the transition rate. The difference between
these two appearances is that a spectrum is the complete Fourier
transform of the time correlation function (the “spectral density")
limited only by the resolution and sensitivity of the instrument,
whereas a transition rate constant measures only a single frequency
component of the spectral density. Obviously then,a spectrum gives
much more information than a transition rate (relaxation time) about
its time correlation function. While in principle the frequency
dependence of transition rates would provide additional information,
in practice the frequencies at which they are measured are orders
of magnitude too low for any frequency dependence to be observed.

The Heisenberg expression for the shape of an absorption band
may be obtained2 from the correqunding Schradinger expression,

where for example the infrared absorption is given by
I(w) = 3 21?, §p1|<f|€"ﬁ|i>|26(mfi-w) (7)

and the various terms have their usual meaning. In the Schrodinger
picture the spectrum is viewed as the set of transitions between the
time-dependent states |i> and |f>.

To obtain the Heisenberg expression from this we introduce the

Fourier expansion of the §-function
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©0

§(w) = 2‘;] elwtqe (8)

and, expressing the dipole moment operator in the interaction repre-

sentation,
a(t) = eiJCt/Mﬁe-iJCt/M; (9)
thus,
3 -juot
I(w) = EJ dte <g-0(0)e-qa(t)>, (10)

=00

and for an isotropic system
I(w) = 5 / dte”"“t<q(0)-(t)>. (1)

The Heisenberg picture views the spectrum as the Fourier transform
of the time correlation function for the dipole moment operator of
the absorbing molecules.

An equivalent transformation can be done to the Schrédinger

expression for the transition rate5
t 2
=1 -iwfit
We s 'Wf“lx](t)lbe wfitye| , (12)
o

where "f+i is the average over some time interval t and wey = (Ef-Ei)M.

If we let






Key(t) = <Flagq(t)|i>,

Equation (12) becomes5

-]

M > = ;lz'f deGy (r)e 1FiT, (13)

This same type of expression was obtained by Callen and Nelton8

in an extension of the Nyquist relation for electrical circuits and

is known as the fluctuation-dissipation theorem since it relates the
power dissipated by the system, I(w), to the function <u(0)-u(t)>
which describes the way spontaneous fluctuations return to equilibrium.
The advantages of the Heisenberg picture have been thoroughly discussed
by Gordonz’g.

A. Calculation of Correlation Functions from Molecular Models

Two simple models of rotational motion exist and the time cor-
relation functions calculated from these models may be considered
as limiting cases for possible time correlation functions of real
liquids. The parameters which emerge from any of these models which
are pertinent to NMR relaxation theory are the correlation time for
angular orientation, Tgs and the correlation time for angular
momentum, 13-

An excellent physical picture which explains the relationship

10 and bears

between T) and Tq has been given by Green and Powles
repeating here. Consider a molecule undergoing rotational diffu-

sion in a 1iquid. Since the rotational step size is very small,



ap A°
a0 I

PRIl SF 2
ool I

PR e By
N TR

M | iy

)i usE
W VE

AR T I
LIRS+

T e
Seeanay -

S e :y 2

TR e, o
E_e wiidte




10

a large number of diffusive steps will be required before an arbitrary
vector with orientation @, reaches orientation Q, + 62, where 6Q = 1
radian. Consequently many diffusive steps will be necessary before
the orientation becomes uncorrelated. But since the molecular
angular momentum undoubtedly changes with each diffusive step, T
may be associated with the time between collisions and Ty << Ty
Now suppose the collisions occur less frequently and the step sizes
begin to increase. The angular momentum correlation time increases
while, since the path traversed by the orientation vector is shorter,
Tg decreases. This trend continues until the step size is such that
the orientation is uncorrelated after a single step, hence T = T
The first model is the perturbed free-rotor model]] in which
the molecule is depicted as undergoing essentially free rotation,
governed by the molecular inertia tensor, but is occasionally
interrupted by a collision. The resulting time correlation function
may be calculated from Equation (1). For example, for a linear
molecule Gn(t) = Pn(cosmt). where n indicates which spherical harmonic
the dynamical variable transforms as, and w is the rotational fre-
quency. Averaging over an ensemble of such molecules is accomplished

by integrating over a Boltzmann distribution, so

<P,(coswt)> = f P, (coswt Jwexp(- %-wz)dw. (14)

This integral has been obtained numerically by Gordon9

problem has been examined more generally‘z. The relationship be-

y also, the

tween Ty and T for this model is Ty = 1J/(2J+l). One would not

expect this description of rotational motion to be too good for
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n

the liquid state, except perhaps as the critical point is approached.

A more 1iquid-l1ike theory is the rotational diffusion theory
originally formulated by Deb,ye]3 to explain the anamolous dispersion
of radiofrequency waves in liquids. In this model the molecular
reorientation occurs through a large number of angular steps of
vanishingly small size. The molecule is treated as a sphere embedded
in a viscous fluid where the retarding force is given by Stokes'

3

Law,f = 8ma“n,where a is the molecular radius and n is the macro-

scopic viscosity. By analogy
5% P(Q,,25t) = -szP(no.n;t), (15)

in the isotropic case with no external forces; here P(Q,t) is the
conditional probability function for the coordinates and time interval

2

t, D is the rotational diffusion coefficient, and V- is the Laplacian

operator. We examine the motion of a vector over the surface of a
sphere by subjecting the Laplacian to the condition g%-= . The co-
ordinates Q now become the polar angles 6 and ¢.

The solution can be written in terms of the eigenfunctions of

V2 (the spherical harmonics),
m _ m
v¥0(0) = -2(2+1)¥00, (16)
as

(17)

P(a_,2st) = D YT (a )¥p(a)e B2t
£,m
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where E = 2(2+1)D. Then, from Equation (6)

6(t-t,) = /P2 ) Y™ (a )Y™(n)e E2ts(q, ) f(n)da, da. 18
(t-t,) = [fpc D RARIACER I IOT S

If the dynamical variable can be written in terms of a spherical
harmonic Pn(cosﬂ) then, from the orthonormal properties of P, a
single term in the sum in Equation (18) will be picked out, the
integral will become trivial, and the time correlation function may
be expressed in terms of a single exponential with time constant
2(2+1)D = .

The difficulties with the Debye treatment are:

(1) The particle is treated as a sphere.

(2) Rotation is described as a sphere turning in a viscous
fluid, i.e., a "stick" boundary condition. (However,
recently friction coefficients have beeé calculated]4
for a "slip" boundary condition, namely, zero friction
for rotation about a symmetry axis.)

(3) The short time behavior of the time correlation function
is not correct. The requirement that a classical time

correlation function be symmetric with respect to time

inversion 1mp11e55 that
n
45 =0 for n odd, (19)
dt

t=0

which is clearly at variance with the non-zero deriva-
tives of an exponential function.
The failure of the Debye model is in not considering inertial

effects, as was done in the perturbed free-rotor model, since even
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13

models which allow large-step reorientation result in exponential
15,16

time correlation functions
The relation between Tg and Ty for these two simple models is
shown in Figure 1. In terms of the time between collisions (tbc)
the Debye model applies when tbc < 14 and the perturbed free rotor
model holds when tyc >> Tg- In a later section a model will be
considered which bridges the intermediate region between these two
cases by considering the rotational time correlation function to

be a function both of time and of the time between collisions

(equivalently, the length of a diffusive step).

B. The Correlation Function for Anisotropic Rotational Diffusion

The well-known equation for isotropic translational diffusion

2 P(F,t) = -DVPR(F,1), (20)
which describes the probability P that a molecule will be at location
T at time t, may be derived by a conservation of mass argument or,
more significantly, by a random walk mechanism originally due to
Einstein in which the particle completely loses the memory of the
previous step]7. In his monograph on polar molecules, Debye]3
considered the analogous case of isotropic rotational diffusion and
obtained an exponential time correlation function as discussed in

the previous section. This treatment was later generalized by Per'rin]8
to describe the rotational diffusion of an ellipsoid and then re-

derived in terms of the eigenfunctions and eigenvalues of a
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Figure 1. The relationship between 1y and t; for the perturbed free

rotor model and the Debye model.
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quantum-mechanical rigid rotor by Favrolg. The correlation functions

appropriate for NMR of a particle undergoing anisotropic rotational
diffusion have been calculated by lvloessner20 using the notation of

Perrin, and Huntressm has recently reviewed the relevant sections

of Favro's paper.

Favro's result for a completely random process 152]
& P(a,t) = -L-D-L P(a,t), (21)

where L is the dimensionless angular momentum operator. In a sym-
metric top molecule the coordinate system which diagonalizes the

inertia tensor also diagonalizes the diffusion tensor, so Equation
(21) becomes

3
2 p(at) = -; 0,404 2P (2st). (22)

In order to calculate a time correlation function from Equation
(22) it is convenient to introduce the Wigner rotation matrices22
D;](M(n) which are a complete orthonormal set spanning the space of
Euler angles Q = a,B,y. Consequently,the probability function P in

terms of a linear combination of rotation matrices becomes

® J
Pa,t) = 3 D ay y(t) Dy yia), (23)
J=0 K,M=-J

with the expansion coefficient

M(t) = daP(a,t)D} M(Q)[Z:H] i (28)
v
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Since all the time dependence is now in the expansion coefficient

"i M(t), we place Equation (23) in (22) to obtain

N P M(t) NS
Z E Dy m(®) ZDHL'I Z °K M(t)DK u(). (25)
J=0 K, Fe-d =1 J=0 M,K=-J

From the quantum-mechanical rigid-rotor problem we know that the D
matrices are eigenfunctions of the total angular momentum operator

[2, and of one component, which we may choose to be Ez;

“20" u(@) = K J(J+])DK u(2) L DK u(@) = -MMDK u(a). (26)

Rearranging the first summation on the right-hand side of Equation

(25) we have

3

2 2 2
204l = o)t + (o) -0piZ, (27)
i1

where D]] = 022 = QL, D33 D|| and L3 = Lz.

Thus, substituting Equation (26) and (27) into Equation (25),
multiplying through by Dﬂ M(Q), and employing the orthogonal properties

of the rotation matrices we obtain<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>