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ABSTRACT

\

SUBBARRIER FUSION IN LIGHT AND MEDIUM HEAVY SYSTEMS

BY

Jian-qun Wu

The effects of nuclear structure on subbarrier fusion in some light

and medium heavy systems are studied in a two-dimensional barrier

penetration model. The low-lying intrinsic excitations are represented

by surface harmonic vibrations whose parameters are determined to

reproduce low-lying collective excitations. The intrinsic degrees of

freedom are coupled to the relative motion of two nuclei through a

proximity nuclear-nuclear potential which is a function of the closest

distance between two surfaces of the nuclei. We find that this model is

able to explain the enhancements in subbarrier fusion observed in a

variety of systems. Fusion in “O+“O is enhanced relative to “O+“O,

and this behavior is well described by the theory. In medium heavy

systems, the higher overtones of the low-lying vibrations are important.

We reproduce the fusion cross section in “‘Ti+’°Zr, 93Nb, s°Ti+’°Zr,

93Nb with vibrational parameters close to those that describe transition

strengths. We also studied the subbarrier fusion in the heavy systems

°‘Br+’°Zr, ’“Zr with only partial success. Without treating the effects

due to "extra push" or "extra-extra push", the relative subbarrier

 



Jian-qun WLJ

fusion of “Br+’°Zr and "Br+’“Zr are reproduced in the two-dimensional

barrier penetration model. This two-dimensional model, however, fails

to reproduce the absolute fusion cross section in these systems. In

some systems, two-neutron transfer may play a significant role. We

calculated the fusion cross section for the ‘“Ni+"Ni system including

particle transfer channels. The form factors were obtained using a

realistic microscopic model. However, the magnitude of the enhancement

in this case can hardly be accounted for without a more drastic

treatment of the combined effects of deformation and transfer than is

conventionally assumed.
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Chapter 1 Introduction

1.1 Quantum Tunnelling

One of most striking features of quantum physics, the description

of nature at the microscopic level, is that classically forbidden

processes can occur, though generally with a small probability. Such

processes are usually referred to as "tunneling" or "penetration".

Since tunneling is a classically forbidden process, it must take

place with a small probability because otherwise classical physics would

be of no use at all. It is indeed true that the probabilities are

small. In the one-dimensional WKB approximation, the penetrability is

given by (Sch.68)

 

P -= 1/{1+ exp(—2f:=/§M/h’TV(r)—s)dr)l. (1.1)

l

where V(r) is the potential energy, M is the reduced mass, E is the

total energy and r1 and r2 are classical turning points. One can see

from eq.(1.1) that P is very small unless the "action" (the integral in

the exponent) is small.

An analytic formula can be derived from eq.(1.1) for a parabolic

potential, i.e V(r)=V - l Mm2(r-Rb)2, where V is the barrier height and

b 2 D

RD is the barrier location. The penetrability is then given by (Hil.53)

l

1+exp[2n(Vb4E7/hm]'

 P v (1.2)



This procedure is also useful for the three-dimensional problem with

spherical symmetry (three dimensional kinematics, but one-dimensional

dynamics). Because of the relative large masses involved, it is a

reasonable approximation for reactions involving heavy ions to assume

that the effective centrifugal potential only changes the height of the

potential barrier, and does not alter the position and the shape of the

barrier. Thus, the penetrability for each partial wave can be

calculated as

1

P22 1+exp[2n(vb£-E)/hw] . (1.3)

 

2

where V . V +-£££:LB1-.2
b1 0 ZMRb

The total cross section (Won.73) is then

o-—E—r2 (22H) P

i=0 a

. E3;— I; 21m. P - szhm/ZE in{1+exp[2n(E-vb)/nu]}. (1.“)
2

Eq.(1.2) and therefore eq.(1.“) is valid for both E>Vb and Esvb.

In the case E>Vb, eq.(1.“) reduces to the well-known formula:

s 2 "
°

0 an (l Vb/E). (l 5)

While for E<<Vb, we have

0 a szhw/ZE exp[2n(E*Vb)/hm]. (1.6)
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Eq.(1.“)-(1.6) are very useful in computing the compound nuclear

formation (fusion) cross section. As we will see, eq.(1.6), however,

underestimates the fusion cross section in many cases. But it is the

starting point.

1.2 Subbarrier Fusion

Potential energies between two nuclei are usually approximated as

functions dependent only on the separation between the centers of mass

for each nucleus. They consist of a long range Coulomb interaction and

a short range nuclear interaction. A typical potential is shown in

Fig.1.1. The exact potential curve depends on the system, but roughly

speaking, the dip inside the barrier, called a pocket, becomes smaller

as the system gets heavier. This is because the nuclear interaction is

proportional to A, the number of nucleons, while the Coulomb part is a

22 a A2. For a superheavy system (e. g. U + U ), nuclear attraction is

not strong enough to overcome Coulomb repulsion, and a potential pocket

is not formed. For light and medium heavy systems, which are the

subject of this thesis, however, the dip occurs and a barrier in between

the inner and outer regions is formed. Fusion is usually assumed to

happen when the system passes the Coulomb barrier. With this

definition, one can use eq.(1.“) to compute the fusion cross section.

For E >>Vb, experiments appear to agree with the law of linear inverse

energy dependence given by eq.(1.5). For E < Vb, eq.(1.6) does not work

well in general. Observed fusion excitation functions (probability or

cross section as a function of bombarding energy) are much greater than

those given by eq.(1.6) for energies far below coulomb barrier. This is



not because the derivation of eq.(1.6) from eq.(1.“) is wrong, but the

one-dimensional approximation is insufficient. In the one-dimensional

barrier penetration model (BPM), both projectile and target are assumed

to be point (structureless) particles. However, nuclei may be excited

during the collision. Therefore, they can not be treated as point

particles.

Above-barrier fusion is a classically allowed process (in fact, it

is the only final state allowed in the one-dimensional model), and

intrinsic excitations of the projectile and/or the target does not

change the order of magnitude of the above-barrier fusion cross section.

Thus, eq.(1.5) can be used. Intrinsic excitations, however, may alter

other observations, such as elastic and inelastic angular distributions.

As far as above-barrier fusion is concerned, the one-dimensional model

is a good approximation.

How intrinsic excitations effect subbarrier fusion is an entirely

different story. It will be seen in chapter 2 that intrinsic

excitations can change the order of magnitude and the shape of

subbarrier fusion excitation function. There are some systems for which

eq.(1.5) works for energies just below the Coulomb barrier. In general,

however, heavy-ion subbarrier fusion is a multidimensional tunnelling

process (Lec.8“).

One motivation for studying heavy-ion subbarrier fusion is to

search for superheavy elements. These superheavy elements decay very

rapidly into smaller components, even in their ground state. So they

have to be made with energies as low as possible in order to make them

live longer to make experimental study feasible. This leads to the

study of subbarrier fusion. At the moment, the heaviest elements are



all very shortly lived, and can not be made as targets in experiments in

seeking heavier elements. Thus, heavy-ions (usually referred to any ion

heavier than a-particle) as both targets and bombarding particles are

required.

1.3 Multidimensional Tunneling

An appreciation of the underlying physics is crucial in deriving

the results of WKD approximation (eq.(1.1)). From a practitioner's

point of view, however, the approximation is not that crucial in the

sense that with modern computers one can perform a straightforward one-

dimensional integral to obtain the penetrability. The numerical

calculation of multidimensional tunnelling, on the other hand, is very

difficult. Therefore, although one can not obtain an analytical

formula, as in the WKB in one-dimensional case, approximations based on

the underlying physics are absolutely necessary.

0n the theoretical side, in addition to reproducing experimental

data, the study of multidimensional tunnelling is a interesting subject

in itself and subbarrier fusion provides a test on our understanding of

the subject.

1.“ Methods of Studying Subbarrier Fusion

For light and medium heavy systems, meaSurements of subbarrier

fusion can be made directly by measuring the evaporation residue because

particle emmision dominates fission in the compound decay. In such

experiments, one measures the charge or the mass or both of the reaction



products, directly or indirectly (e. g. Gut.73, PUh.75, Nat.70, Bro.75,

Sto.81). For heavy systems, fission is the dominant channel for

compound system decay. In this case, there is no evaporation residue,

so the fusion yield is measured by measuring fragment coincidences. In

such experiments, one must know beforehand the properties of the

fragmentation of the compound systems. In general, fusion experiments

of heavy systems consist of more sophisticated measurements than direct

measurements in lighter systems.

Theoretically, as mentioned in the previous section, exact

calculations are very difficult. Almost all subbarrier fusion

excitation functions fall off exponentially as bombarding energy

decreases except in very few systems where resonances exist. The key

parameter is the energy in the center of mass (c.m.) frame. This

enables one to make very useful approximations. As an example, we will

see in Chapter 3, that one can make approximations about angular

momentum algebra based on energy considerations.

The principle reason why eq.(1.6) fails is that nuclei may be

excited during the collision. Therefore one has to go beyond the one-

dimensional barrier penetration model (BPM). The two-dimensional zero‘

point motion models (ZPM) which take into account the barrier

fluctuations due to intrinsic excitations have been very successful in

describing subbarrier fusion for some systems. In next chapter, ZPM

will be described. Following that in chapter 3, we will discuss the

more general two-dimensional model, namely, coupled-channel formulations

and approximations used to solve the coupled equations. In chapter “,

the validity of ZPM will be tested, and approximations for reducing

three- or more-dimensional problems to two-dimensional ones will be



studied. Chapter 5 and chapter 6 contain the results of calculations

and discussions of subbarrier fusion in some light and medium heavy

systems. Effects due to particle transfer on subbarrier fusion will be

studied for system of Ni+Ni in chapter 7. Finally, we conclude in

chapter 8.

 



Chapter 2 Models of Zero-Point Motions

The simplest two-dimensional models are zero-point motion models.

In these models, the intrinsic excitation energy is assumed to be zero.

The idea is that only low-lying collective excitations are important, so

the excitation energies are small, and can be neglected completely.

There are two kinds of models associated with two different modes of

collective excitations, namely vibrations and rotations. In sec.2.1, we

will first discuss why collective excitations play an important role in

subbarrier fusion. Sec.2.2 contains a description of the rotational

averaging model which takes into account the rotational excitation in a

well-deformed nucleus. In sec.2.3, the vibrational zero-point motion

model will be discussed.

2.1 Importance of Collective Excitation.

There are two reasons why collective excitations are an important

degree of freedom in subbarrier fusion. One is that low-lying

collective states have smaller excitation energies than other kinds of

excitations, say single-particle excitations. If the excitation energy

is large, then the energy of the relative motion of the two nuclei is

much smaller than that in the entrance channel. Therefore, the

excitation gives little contribution to the process of subbarrier

fusion. One can see this more clearly in following way: if the internal

excitation happens during the collision of two nuclei, the potential is

no longer a local one-dimensional one, rather a multidimensional matrix.

When it is diagonalized, a number of eigenvalues will be smaller than
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Nucleus 1 Nucleus 2

Fig.2.l. A possible deformation configuration of a system

of two nuclei which are spherical in their ground states.
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the potential in the entrance channel. It is this effect which can

enhance subbarrier fusion reactions. On the other hand, if the

internal excitation energy is large (the difference between two neighbor

diagonal elements in the potential matrix is large), the lowest

eigenvalue of the potential matrix would be essentially same as that in

the entrance channel. Thus, it is not possible for excitations to

contribute significantly.

The second reason is that collective excitations are more strongly

coupled to the relative motion than other intrinsic excitations. Many

particles move coherently in a collective excitation, which changes the

internuclear potential substantially. If the off-diagonal elements

(couplings) in the potential matrix are large, the lowest eigenvalue of

the potential matrix is much lower than the potential in the entrance

channel, and subbarrier fusion can be enhanced substantially.

There is a physical picture which explains why low-lying collective

excitations are important in subbarrier fusion.

Suppose two nuclei are deformed as shown in Fig.2.1. Though the

deformation take some energy away from the relative motion, if r is

within the range of nuclear force, the attractive nuclear potential is

much stronger than if there is no deformation. This "extra" attraction

makes the barrier lower than if the two nuclei were in their ground

states, and leads to enhancement in subbarrier fusion. In order to make

this mechanism work, the excitation energy must be small and the "extra"

nuclear attraction must over-compensate the loss of the energy for the

relative motion. Only low-lying collective excitation can fulfill these

two requirements. Note, however, that the Coulomb force works against

this 0
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Nucleus 1 Nucleus 2

Fig.2.2 System of a spherical nucleus and a deformed

nucleus separated by a distance of r.



13

2.2 Effects of Rotational Excitations.

Now we consider a subbarrier fusion reaction between two heavy

ions. Here we take one nucleus to have a well-deformed ground state,

while the other possesses spherical symmetry. The lowest possible

internal excitation for this system is a rotational excitation of the

deformed nucleus. In this case, the potential is no longer one-

dimensional, but at least a function of two dimensions. As shown in

Fig.2.2, the potential is a function of the relative coordinate r and

the angle 9 between the symmetric axis of the deformed nucleus and the

relative coordinate.

Wong (Won.73) has calculated the fusion cross-section for such

systems. Instead of following the details of his work, we give a rough

estimate to show what effect averaging over the angle 9 has on

subbarrier fusion.

The Coulomb barrier height V can be written as

b

Vb = Vb + f(6)o

where 7b is the averaged barrier height and f(e) is some function with

Jf(6) d6 = o.

The subbarrier fusion cross section ofus , in the WKB

approximation, is an exponential function of Vb and Ecm (the energy of

the relative motion in the c. m. frame), namely



1n

‘(Vb(e)-Ecm)c, (2.1)

Ofuswb’ 6) a: e

where c is some positive number. The averaged cross section is then

-r(e) c

e . (2.2)
- ‘(V-E)cjd6

afus = I de Ofus(vb’e) « e b cm
 

Tde

where the uniform distribution over 9 is assumed and the reaction is

incoherent in e, that is, 9 does not change during a collision, which,

we will see later, corresponds to the zero excitation energy limit. If

 

J de e-f(6)c

is greater than one (it turns out that it is the case if

fde

Ecm< Vb), then afus > afus(vb)’ that is, the subbarrier fusion cross

section is enhanced.

In general the rotational excitation energy is not zero, but small,

and therefore can be approximated as zero for some heavy systems.

2.3 Vibrational Excitations.

For spherical nuclei, the lowest excitations are surface

vibrations. Thus subbarrier fusion of two spherical nuclei is enhanced

mainly due to vibrational excitations in the nuclei. In general, the

vibrational excitations are not purely harmonic, however, we will assume

that this is the case for the purpose of simplicity.

The picture here is the same as that in sec.2.2 : The potential is

a two variable function. The first variable is the distance between the

centers of the two nuclei r, while the second is the vibrational

surface-collective variable 3.
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Nucleus 1 Nucleus 2

Fig.2.3. Surface vibrations of a system consisting

of a "stiff" (nucleus 1) and a "soft" (nucleus 2)

Nuclei.
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The nucleus deforms around the equilibrium spherical shape.

Because of the isotopy of the space, on the average the nuclear surface

vibrates as shown by dashed circle in Fig.2.3. For a positive 3 there

is more nuclear attraction than if s-O, and there is even less nuclear,

attraction for negative 3. If the intrinsic excitation energy is small,

and can be approximated as zero, the fusion cross section-is that

averaged over 3 with some weight determined by the asymptotic boundary

condition. Again due to the exponential fall-off of subbarrier fusion

cross section (eq.(2.1), the subbarrier fusion is usually enhanced.

Esbensen (Esb.81) used this model to calculate subbarrier fusion

cross sections of ‘°O+Sm and Ar+Sm. This model was very successful in

explaining the experimental data, which were much larger than the

results given by conventional penetration model. In these systems, the

targets (Sm isotopes) have low-lying vibrational excitations, and the

intrinsic excitations were assumed to be only in the targets.

The Schrddinger equation in ZPM can be written as

2

.- P

l2m

 + V(r.3)] w(r.8) = Ecm w(r.s). (2.3)

Since there is no differential operator in s, this equation can be

solved by treating s as a parameter and solving the one-dimensional

equation for r. There is no correlation in s, so nuclei bombarding with

a different s scatter incoherently, i. e., s does not change during the

collision. This is sometimes called the frozen approximation. In this

approximation the penetrability is

P(Ecm) 8 I ds F(Ecm’ 5) 8(3), (2.“)
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Fig.2.“. Calculated and measured fusion cross sections for the

reactions 160+Sm. The abcissa is the c.m. energy E . The

samarium isotopes used are indicated, and experimegtgl results

agree with the calculations at smaller energies. There are no

experimental results for H"Sm. The standard deviations that have

been used for the quadrupole and octupole ZPM or static deformations

and the values of AR in eq. (2.6) are given in table 1 and in

table 2 in ref. (Esb.81), respectively.
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where P(Ecm,s) is the penetration factor for the potential V(r,s), which

can be calculated by eq.(1.“), B(s) is determined by the asymtotic

boundary condition. Usually the target is in its ground state,

therefore 8(a) is a gaussian, i. e.

82

202

B(S)‘72—11;;—e o (2.5)

 

where o is the r. m. s. amplitude of the surface vibrational ground

state of the target. For subbarrier fusion, P(Ecm) is usually much

greater than that if there is no coupling of the surface motion to the

relative motion.

In Fig.2.“, the calculated fusion cross sections of 16O+Sm in this

model are compared with the data (Sto.80). The nuclear potential used

was

s RLRz l

U(r,s) V° R,+R2 1+expEIr-R1-R2~AR-s)/a] ° (2'6)

 

The parameters V0 and a were extracted from elastic scattering

data (Chr.76), and AR was adjusted to fit the fusion data. In the

calculation, the monopole, quadrupole, and octopole Coulomb interaction

were included in the potential. The a's were extracted from the low-

lying state data through (Esb.81)

R B(EA) 1/2

0A " m((2l+1)'B-Sm) (2.7)
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where A denotes the multipolarity, B(EA)/B&EA) is the electric

transition strength in terms of Weisskopf unit and R and Z are the

radius and charge number of the Sm-isotOpe, respectively. In this case,

angular momentum transfer was ignored. As can be seen in the figure,

the agreement is very good in the subbarrier region.



Chapter 3 Coupled Channel Method

There is one thing in common in Wong (Won.73) and Esbensen

(Esb.83)'s work: the intrinsic excitation energy is assumed to be zero.

This is a good approximation for some heavy systems, but questionable in

general. In these models, the two dimensional equation is essentially

one-dimensional, so it is easy to do numerical calculations.

Intuitively, the ZPM can only be an approximation. The more general

formulation of the two-dimensional model with finite intrinsic

excitation energy, namely the coupled channel formulation will be given

in sec.3.1. In sec.3.2 various numerical methods and approximations for

solving coupled-channel equations are presented. The Coulomb excitation

and angular momentum transfer will be discussed in sec.3.3.

3.1 Coupled Channel Treatment

We know from the previous chapter that collective excitations

enhance the subbarrier fusion. The simplest realistic Hamiltonian is at

least two-dimensional. In this section, we present the coupled-channel

formulation for a system in which the surface vibrational degree of

freedom is important.

The two-dimensional Hamiltonian can be written as

“2

H(r,s) = (- 25 V2 + Hin(8) + V(r.s) ). (3.1)

20
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where m is the reduced mass, H1n(s) is the surface vibrational

Hamiltonian in nucleus 1. V(r.s) is composed of Coulomb and nuclear

interactions, 1. e.

2 2

V(r,s) . 21:26 + 3z,z,e Rls Rle5r: + V erf(P‘RL‘Rz‘AR‘S)

°R,+ R2 a ' (3'2)

where the second term is the quadrupole Coulomb excitation. The

complementary error functional form was used for convenience in

numerical computation. The parameters V0, a, R1 and AR are taken as

Vo - -31.61 MeV, a = 1.“2 fm,

i _ ~43 (3.3)
AR=0.29 fm, and R1: 1.233 A 0.98 A ,

and were extracted from elastic scattering data (Chr.76).

To solve the two-dimensional Schrbdinger equation

H(r,s) w(r,s) - (E+§hw) w(r,s), (3.“)

where E is the total energy of both the relative motion in the c. m.

frame and the intrinsic excitation, we expand the wave function on a set

of oscillator eigenfunctions ¢n(s) of Hin(s)

Mme») = r11 wn(r') ¢n(s) (3.5)

and obtain the coupled equations

H2 82
{‘-EH— 5;? + <n|V|n> ‘ E + Ohm} Wn(r)‘ "min<mlvln> vm(P)- (3'6)
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The matrix elements <n|V|m> are given by

<n|V|m> . Ids ¢n(s) V(r.s) ¢m(s). (3.7)

The boundary conditions are incoming waves at a certain c. m.

distance rmin near the minimum of the total interaction or decaying

states, when E-nhm is less than the total interaction energy at rmin and

Coulomb wave functions at r=rmax outside the barrier, where the nuclear

fields vanishes, i. e.

e-ikn(m1n) r

 

Pn rs rm1

w (r) > I _ (3.8)

n 6 w( )(r) + R w(+)(r) r; r
n0 0 n n c n ma

. . th

Here hkn(min) is the radial momentum at rmin in the n channel and

Wé:;(r) represents outgoing and incoming Coulomb wave function in

different channels with an energy of E-nhm in the relative motion.

There is only an incoming Coulomb wave function in the elastic channel.

The fusion probability P is the sum over all channels of the relative

fus

flux at rmin in each channel, that is

B 2 . .Pfus E |Pn| hkn(m1n)//2Em. (3 9)

In principle, the coupled-channel formulation is equivalent to

eq.(3.1) if a complete set of oscillator eigenfunctions ¢n(s) is used in

the expansion. In practice, however, a finite set is used in order that

the calculation is feasible.



23

In next section, we will discuss several methods and approximations

for solving the coupled equations in eq.(3.6).

3.2 Numerical Methods and Approximations

We first start with the method of iteration. This method has been

used by Rhoades-Brown et al. (Rho.8“) in subbarrier fusion calculations.

It works like this: first, the solution satisfying the outer boundary

condition (at r-rma) in eq.(3.8) is guessed. The solution is used for

the right-hand side (RHS) of eq.(3.6). By calculating the LHS of

eq.(3.6). a new solution is obtained. Then, the new solution is used

for the RHS to obtain a newer solution. One repeats this process until

a pre-set convergence test is achieved. In the calculation, an

additional short range imaginary potential is added to the Hamiltonian

(eq.(3.1)) to replace the inner boundary condition. Unfortunately, the

method of iteration does not guarantee a converged solution. Various

tricks have been invented to improve this procedure. The method

described above is the simplest, called sequential iteration, in which

the RHS is kept fixed while solutions in all channels are obtained. An

improved method is called block iteration, in which a solution in a

channel is immediately substituted into the RHS with some modifications

when they are necessary to satisfy the boundary condition. In addition,

Pade approximments have also been used by RhoadesfiBrown et al. (Rho.80).

This method works for some problems which can not be solved by either

the simple sequential or block iteration techniques. But, again, there

is no guarantee. For subbarrier fusions, calculations are often time
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consuming, and a converged solution can not be obtained when the fusion

cross section is down below the 0.1 mb level (Rho.8“).

The direct matrix inversion method has been used by Ring et

al. (Rin.78) in calculating subbarrier fission penetrability. It has

also been used by Esbensen et al. (Esb.83) in subbarrier fusion

calculation. Instead of using an additional imaginary potential, an

incoming wave boundary condition is imposed at a distance inside the

Coulomb barrier. This represents the same physics as that represented

by the short range imaginary potential used in iteration method: Once

the system passes the Coulomb barrier, fusion take place with a 100%

probability. By solving eq.(3.6), one obtains a matrix connecting the

inner boundary condition and outer boundary condition. By inverting the

matrix, the fusion probability is obtained. Mathematically, it works as

follows. Suppose the total number of channels is N. So there are N

independent solutions to eq.(3.6) satisfying the inner boundary

conditions given in eq.(3.8). But only one solution satisfies both

inner and outer boundary conditions given in eq.(3.8) which can be

obtained in the following way:

One solves eq.(3.6) with

wi,n(r) = 6 exp(-ik£min) r) at rsrmi i-1,2,-oo- N, (3.10)
in

where i denotes the channel number and n denotes the specific boundary

condition. At rsrma, one obtains

(r) 3:1, 2,----N (3.11)
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where n denotes the specific boundary condition in eq.(3.10) and j

denotes the channel number. n assumes values 1,2,----N, giving N

independent solutions. The general solution satisfying the inner

boundary condition given in eq.(3.8) is a linear combination of these

solutions

N

WJ(P)‘Z P

n=1

nvjmw). (3.12)

where the Pn's are coefficients. To achieve a solution that satisfies

the outer boundary condition, one finds coefficients P“, such that

      

r— -‘ - -

81,1 81,200.00... B1’N 1 P11 1}

J 82,182,200000000 82,N P2 0

OOOOOOOOOOOOOOOOO... O - o ' (3.13)

_BN,1 BN, 2. O O O O I O O BN’N PN-J 1b0-

and, therefore, we have

_P1 '17
1

P2 _1 0

. - B 0 . (3.1“)

P 0

L N. I. l    

The fusion probability is then determined with eq.(3.9)-
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With this procedure there is no convergence problem. However,

numerical precision can quickly become a limiting factor when the number

of channels increases.

Below the barrier the matrix to be inverted has elements which

differ by several orders of magnitude. This is because wave functions

in various channels are exponential functions with different decay

lengths. Therefore, elements of B differ by orders of magnitude for

energy far below the barrier. The transmission factor (penetrability)

can be written as

P = p + c (3.15)

where little p is the true value of the transmission factor and e is the

numerical error that comes out of a numerical calculation. A simple

estimate of the error can be made for a simplified model:

Suppose the potential barrier is a square potential characterized

by its height Vb and its width a. The error in the transmission factor

obtained by the direct matrix-inversion method described above is of the

order of

5 ~ exp((d'-a)a)’
(3.16)

10m

 

where a' and a are wave numbers under the barrier in channels with the

least and the largest energies for relative motion, respectively. And m

is the number of effective digits that can be handled by the computer

used. Substituting eq.(3.16) into eq.(3.15). one obtains



27

exp((a'-d)a))
T . t (1+

t 10m

 (3.17)

As the energy goes down, the relative error becomes larger. At some

point, one can not use the direct matrix inversion method any more.

The precision limitation may be overcome by a step-wise inversion

method. That is, one divides the barrier into several intervals and

constructs transmission matrices for each segment. The total

transmission factor is

eXP((a'-o)a/n)) , 3 p [1, exp((a1-a)a/n))
m , i p m

i=1 10 i=1 i 10

 

(n-1)/n exp((a'-a)a))

P 1om

exp(-(a'-a)fl:la). P (1 + n P
n

. (3.18)

where n is the number of segments and little pi is the transmission

factor for 1th segment. In obtaining eq.(3.18), the barrier has been

sliced into equal parts and the transmission factor has been assumed to

be the same for each segment and P (- p?) is the true total transmission

(n71)/nexp(-(a'-a)fl%la) is less than one andfactor. The factor n P

decreases as n increases. Compare eq.(3.17) with eq.(3.18), one finds

that the error can be reduced by the step-wise matrix inversion method.

The adiabatic representation is also very efficient, and has been

used in subbarrier fusion calculations (Tan.85). To illustrate, let us

first rewrite eq.(3.6) in a more compact form:

n2 32
I 2M 5;? + V(r)-E) 1(r)=o. (3.19) 
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where w(r) is an N-dimensional vector (N is the total number of channels

explicitly treated in the calculation). Each component wi(r) is the

wave function in channel 1 and V(r) is a NxN potential matrix with off-

diagonal elements given by eq.(3.7). The diagonal elements are given by

eq.(3.7) plus the intrinsic excitation energies. The coupled channel

basis is transformed to diagonalize V(r) at each point. Then eq.(3.19)

becomes

(lg—M: D(r) 3;, Wm + D(r)V(r)D“1(r)-E) D(r)‘i‘(r) - o, (3.20)

where D(r) is the transformation matrix and D(r)V(r)D(r)--1 is diagonal.

In this representation, only the first few channels are needed to

accurately calculate the subbarrier fusion cross section. Therefore,

the basis is usually truncated to a few states with the lowest energies.

If the space is truncated to a single state and the derivatives of D.-1

are dropped in the kinetic energy operator, we obtain the well-known

adiabatic approximation. This limit is employed in the subbarrier

fusion calculations of Tanimura et al. (Tan.85). The advantage of using

the adiabatic representation can be seen in a numerical example

demonstrated in Table 3.1, comparing the S-wave fusion cross sections-

for s°Ti + 9°Zr under various truncations. The first 5 states in the

entrance channel representation define the space. One would expect the

results to be independent of the representation if the full space is

used. From the last row of the Table, we see that this is not quite the

case; the definition of an incoming-wave boundary condition depends

somewhat on the representation. The adiabatic representation shows that

a 2-state truncation has converged, although a 1-state truncation is



Table 3.1. Calculated s°Ti+9°Zr S-wave fusion cross sections at a c. m.

energy of 100 MeV as a function of number of channels in the model space

in different representations with parameters given in chapter 6

 

 

Representation Adiabatic

No. of cnannels Entrance Adiabatic Approximation

1 0.03 ub 18.“ ub “6.7 ub

2 0.98 ub 6.65 ub

3 3.115 ub 6.“5 pl)

5 5.61 1.10 6.51 ub
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quite poor. The adiabatic approximation, which is a 1 state truncation

with the entrance channel kinetic operator, works poorly in this case.

In the entrance channel representation, several states are needed. If a

factor of two is tolerable in the accuracy, the space can be truncated

to three channels. This is consistent with the findings of Takigawa, et

a1. (Tak.85)

Sec.3.3 Technical Points

In this section, we discuss the effects of the Coulomb excitation

and angular momentum transfer between intrinsic degree of freedom and

the relative motion. The reason we discuss these effects is that the

amount of computation can be reduced a great deal if one can make some

approximations about these. We start first by studying Coulomb

excitation.

Let us begin with a qualitative discussion. First, the Coulomb

field reduces the enhancement due to nuclear multipole forces. The

reason is that the nuclear force is attractive, while the coulomb

interaction between positive charges (protons) is repulsive. In a

subbarrier reaction, the nuclear force tends to change the shapes of the

nuclei to have a stronger attraction. The Coulomb force, on the other

hand, changes the shapes to reduce the repulsion. In other words, two

fields prefer different shapes. Due to the saturation of nuclear

interaction, the Coulomb force becomes more important as system becomes

heavier. Roughly speaking, the strength of the nuclear interaction is

proportional to A, the number of nucleons involved. While the Coulomb
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strength goes as «A’. As a matter of fact, the effects of the extra-

push to be discussed in chapter 6 is mainly due to relative importance

of the Coulomb force in heavy systems.

Multipole components of the Coulomb force introduce some

complications in numerical calculations. Unless one uses the adiabatic

approximation (Rho.80). one has to integrate the coupled equations to a

large separation because of the long-range of the Coulomb interaction.

And if there were no Coulomb multipole force, the subbarrier fusion

would be easily estimated in a multichannel WKB approximation.

Landowne (Lan.81) showed numerically that Coulomb multipole

interactions work against nuclear attractions in subbarrier fusion

reactions. In his model, in classically allowed region he assumed a

classical trajectory in the two-dimensional space (r,s) for the system.

The zero-point fluctuations of s were assumed to be the same as without

multipole Coulomb forces, but the center of s was determined by the

trajectory. Under the barrier, the frozen approximation was used to

calculate the penetrability. Essentially the fusion cross section is

given by eq.(2.“) with s in the integrand replaced by s-so, so being the

value of the variable of the intrinsic degree of freedom at the

classical turning point. so is nonzero due to the Coulomb excitation.

In Fig.3.1, the results in different models are compared. The ZPM

without the inclusion of the Coulomb excitation (dash-dotted curve)

enhances the subbarrier fusion substantially. The ZPM with the Coulomb

excitation included (solid line) reduces the enhancement. The net

enhancement is almost negligible. Therefore in heavy systems, Coulomb

excitation is very important. However, in lighter systems, e.g. 0+0
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Fig.3.l. Effect of both target and projetile zero-point motion

and average dynamical deformation (Coulomb excitation) on the

fusion cross section for $8Ni+5°Ni+llsBa. The solid circles give

the experimental data of Becherman et al.(Bec.80), the dashed

curve gives the result for a one-dimensional barrier corresponding

to spherical nuclei, and the solid curv gives final result for a

two-dimensional potential-energy surface, and the dot-dashed curve

gives the result of ZPM without dynamical deformation.
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systems which will be studied in chapter 5 one can ignore Coulomb

excitation.

Now we discuss the effect due to angular momentum transfer. In

general, there is an angular momentum transfer between intrinsic degrees

of freedom and the relative motion when one of or both of the nuclei are

excited during the collision in a fusion reaction. For a total angular

momentum J, there are several different orbital angular momenta

possible. The radial wave function of the relative motion in a channel

therefore can be labeled as Rn(r)J 2 s , where n denotes the nTH excited

I U 0

fl

intrinsic state(s), t the orbital angular momentum, 3n the intrinsic

spin coupled with A to J. For a fixed n and J, R(r) are different for

2 +1

different 2's. The differences come from the term gfi£££;;- in the

Hamiltonian which governs the radial motion. However, in heavy ion

2

reactions, the %M is a small number. For example, for s°Ti+°°Zr, the

2

53:1 at the Coulomb barrier is only about 6 KeV. So the differences in

h2i(2+1)

2 M r1

Hamiltonians for a definite J and n are approximately same. In

for 2's coupled with s to J are negligible. Thus the

subbarrier fusion reactions, the different 2's coupled with s to J don't

have any significance as far as the final product (compound nucleus) is

concerned. One would like to reduce the number of channels by not

distinguishing different 2's and the orientations of intrinsic spin for

same n and J, i.e., label a channel by n and J only. If this is

possible, the number of channels will be greatly reduced. For instance,

for s-2 and J22, the original 25 channels is reduced to a single

channel.
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We follow Takigawa (Tak.85) to show that it is possible. We

consider a system of two even-even nuclei, where either the projectile

or the target has one- and two-phonon states of a vibrational mode of

excitation with multipolarity A. We denote the wave function of the

relative motion in the entrance channel as x3(r), J being the initial

angular momentum. We distinguish the one-phonon channels by the angular

momentum A of the relative motion, and the two-phonon channels by the

total intrinsic angular momentum A in addition. Accordingly, we denote

the wave function of the relative motion in a one-phonon channel and in

two-phonon channel by xi(r) and XEA(r), respectively. The coupled

channel equations become

 

 

1112a2 112.1 1
(‘2M EFT + U(r) + ~2fi£%;-l ‘ E) x3(r) + f(r) i N£x£(r) s 0 (3.21)

a: d2 112.1 J1
(~54— (Tr—2 + U(r) + "2'M‘(‘F'+=")‘ - 13-11...) Xi”) + f(r) N2x3(r)

- 9.
+ ./2 f(r) XMLAXCAW) :- o (3.22)

L,A

and

112 (12 112.1 .11 - 11.
(~37 3;, + um + Wig—’— - E — 2m.) XII“ + /2 f(1")31'MI.IIXII.(r)

‘0 9 (3023)

where N1: /(2A+1)/“n /(22+1)/(2J+1) (3.2“)

and

MEA = (-1)J“L‘*/722+1>(2A+1)(2i+1)/un <AlOO|LO> {ifii}. (3.25)
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Here, ho is the phonon energy and f(r) is the coupling form factor. The

couplings are assumed to be linear in the coordinate of the vibrational

mode of excitation. Also, the change in the centrifugal potential has

been ignored .

Now let

.. 1 ‘

x‘(r) = R % Nixi(r) _ (3.26)

'2 (r) = 1— z N MI 2 (r) (3 27)
x N2 1 LA XLA '

and use the sum rule for three-j and ClebschsGorden coefficients. Then

we have

0 1 o E o 0 7°

{D(r) + F(r) 1 o «5 - o E‘Hw o } 11 - o. (3.28)

o «2 o o o E-2Mm i2

_ h’ d2 h’J(J+1)
where D(r) - 2M EF7 + U(r) + ZM—F7———

and F(r) s /(2A+1)/“n f(r)

We now see that the number of channels has been reduced to 3, from

13 for i=2 and J22, for example.



Chapter “ Validity of ZPM and Simple Approximations

In ZPM the intrinsic excitation energy is assumed to be zero. The

two-dimensional equation in ZPM can easily be solved numerically. But

in general, ZPM tends to overestimate the subbarrier fusion cross

section. Because the barrier penetrability is very sensitive to the

energy, one would expect ZPM to overestimates subbarrier fusion cross

section considerably. In sec.“.1, we will study the validity of ZPM

through a numerical example using the coupled-channel method described

in chapter 3. Approximations used to combine two independent intrinsic

excitation modes into a single one are discussed in sec.“.2.

Factorization of the subbarrier fusion enhancement factors due to each

individual intrinsic excitation mode is studied in sec.“.3.

“.1 Validity of ZPM

We take the reaction 160+“’°Sm for head on collisions (i=0) as an

example to see the effects of finite excitations.

The fusion probability is shown in Fig.“.1 as function of the c. m.

energy. The calculations are carried out using the direct matrix

inversion method described in the previous chapter. The hm-O and hm-w

limits are shown together with the results for Mw=1 MeV and 10 MeV. The

value of a was o.27fm, which is close to the value obtained both for the

low-lying quadruploe and octupole states in 1”Sin. Since the excitation

energy hm for these states are 0.55 MeV and 1.16 Mev, respectively, we

can conclude that the dynamical effect due to the finite value of hm

will not lead to a major reduction of the subbarrier fusion cross

36
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Fig.4.l. Fusion probabilities for the reaction150+“”Sm are

shown as function of the c.m. energy. The results are obtained

from coupled-channel calculations, for various values of the

one-phonon excitation energy hm. The standard deviation of the

zero-point motion amplitude is 0 = 0.27 fm.
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sections shown in sec.2.3. We see that ZPM is a good approximation when

hm - 1 MeV in this example.

“.2 Two Independent Degenerate Harmonic Oscillators

In some fusion reactions, more than one intrinsic mode may be

coupled to the relative motion. In such cases, the collective

coordinates r and s will not be enough to describe the system. Thus the

Schrddinger equation has more than two variables, and is numerically

very difficult to solve. If one expands the wave function in all

intrinsic eigenfunctions, one would find a multidimensional matrix

differential equation.

In Ref. (Wu.86) two independent degenerate harmonic vibrations have

been combined into one to calculate the fusion cross section. For two

modes with same hm, the o for the combined mode is given by

0 = J of + 0:. (“-1)

where 01 and 02 are the r. m. s. amplitudes for each mode,

respectively. We discuss this approximation in this section.

The energy spectrum of the combined mode is identical to the

original two. But transitions between states are different. First, we

show that transition matrix elements from the ground state to excited

states are same. The probability of the transition from the ground-

state to the nth excited state is pr0portional to
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n n

 

I |<0.01<s.+s.>”|1,n-1>|
= .2 (c‘?)2 it (mg) 03.1 022(n-j)23 2...,-

1'0

J'O J 23 2h J

' 2% (201+ 20%)n ' 2% (202)“,
(“ 2)

and is the same as that in a single mode with a given by eq.(“.1). If

one neglect the contributions from higher multipoles in (s,+ 8,), the

combined mode gives same transition rate for the ground state as that

given by the two independent modes. However, the transitions between

excited states are different. For example, l<1|s|2>|2 in the combined

mode is 202 . 2(o§+o§), while the original two independent modes gives

-;—{[<0,1|(S,+82)IO.2>)2 + (<0,1|(s,+sz)|1.1>]2 +

(<1,0|(s,+s2)|2,0>)2 + (<1,0|(s,+s2)|1,1>)2 - 731' 2(af + oi), (“.3)

where the factor of % represents an averaging over the initial states.

In Fig.“.2, we show the numerical results for s°Ti+’°Zr, the

coupling parameters given in Table “.1 are arbitrary, and for the

Table “.1. Parameters used in obtaining Fig.“.2 and Fig.“.3.

 

System Vo a AR a1 02 o Mm, 111112 Mu)

 

s°Ti+9°2r -31.7Mev 0.63fm 0.35fm 0.2fm 0.2fm o.28rm 1.5MeV 1.5Mev 1.5Mev
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Fig.4.2. S-wave fusion excitation function is shown as function

of c.m. energy. The dashed curve is the result obtained by com-

bining two vibrational modes into single one through eq.(4.1).

The solid line is the result obtained by solving exactly a three-

dimensional coupled equation. Due to numerical restrictions, the

exact result can not be obtained for enrgies lower than 98 MeV.

The parameters used are given in Table 4.1.
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purpose of comparison only. The combined mode gives the same results as

that given by a three-dimensional calculation. The three-dimensional

calculation in which two independent vibrations are simultaneously

coupled to the relative motion is very difficult and time consuming, and

can not be calculated for even lower energies.

“.3 Factorization of The Enhancement Factors

When several modes of intrinsic excitations are coupled to the

relative motion in a fusion reaction, the subbarrier fusion enhancement

over the conventional one-dimensional barrier penetration can be quite

large. In general, the calculation is very difficult, and it would be

nice if the total enhancement factor could be given by the product of

the enhancement factors obtained by coupling only one mode at a time.

If this were true, instead of doing a multidimensional penetration

calculation, one would only have to solve a number of two-dimensional

problems. Certainly this is not true for energies just below the

barrier, because the transmission probability can not exceed 1, while

the product of the enhancement factors may give a transmission

probability greater than 1. The same argument does not have to be true

for energies far below the barrier.

In Fig.“.3, we show the enhancement factors as functions of energy

in the center of mass frame. The total enhancement factors (solid

curve) is obtained by using eq.(“.1) to combine two identical vibrations

into a single one. The parameters used in the calculations are also

given in Table “.1. The 0's and hm's are arbitrary, but close to the
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Fig.4.3. Fusion enhancement factors are shown as functions of

c.m. energy.fThe solid line is the result obtained by combining

two vibrational modes into one through eq.(4.1). The dashed curve

is the result obtained by virtue of factorization rule. The para;

meters used are listed in Table “.1.
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actual values. They were assigned for the purpose of discussion only.

The product of the two enhancement factors (taken to be same here) is

persistently larger than the calculated total enhancement factor.

Therefore one can use the factorization rule only to estimate the upper

limit of the enhancement.



Chapter 5 Subbarrier Fusion in Light Nuclei

In this and next two chapters, we study subbarrier fusion in

various systems. The systems treated in this chapter are 160+”,"0.

Since, in general, a realistic coupled channel calculation is

numerically difficult, it is important to find simpler cases which are

more amenable to a complete theoretical treatment. The study comparing

fusion cross sections of 180 and 160 on 160 targets provides a nice case

that can be treated without much ambiguity in a model. Therefore, it

provides a nice test for the model.

For “O+“0 system, the internal degrees of freedom are relatively

unimportant because of the high excitation energies of the inelastic

channels and particle transfer channels. The nucleus 1"0 on the other

hand has a 2+ state at 1.98 Mev excitation with a transition strength

16.6 of Weisskopf units from the ground state.

The experiment findings (Tho.85) is that the 180 fusion cross

section is enhanced over 160 in the subbarrier region. We show this in

Fig.5.2 with the cross section ratio plotted as a function of the c. m.

energy. The enhancement is small compared to that found in heavier

systems, but there is certainly an effect present. In ref. (Tho.85), it

is suggested that the difference is mainly due to the changes in the

potential barrier going from one system to another. Therefore, as a

first step in the analysis, we will examine the expected effect on the

potential by adding two neutrons to 160. We also expect a significant

effect from the low-lying 2+ state, which may be roughly estimated with

the frozen approximation mentioned in chapter 2. According to eq.(2“)

4“
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Fig.5.1 The measured fusion cross section for 180+160 and

160+‘50, from ref. (Tho.85) is shown by the experimental points.

The potential model fit to the l60+160 is shown as the solid

line, and the coupled-channel model with rescaled potential is

shown by the dashed line.
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Fig. 5.2. Enhancement factors extracted by log-linear

interpolation of the data from ref. (Tho.85). The.dashéd.

line is the prediction of the rescaled potential, eq.(3-2)--

The dotted line is the prediction of the potential eq.(5.3)-

The solid line is the prediction of the coupled-channel

model with the rescaled potential.
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in ref. (Esb.83), the enhancement in the subbarrier fusion may be

estimated as

“l 2nZ Z e2 )2]

P’Iztji"L—LT" OwoRb (5.1)

where R is the position of the Coulomb barrier and hmo - The

2:!

b Mr2 r-Rb'

constants in the above expression may be estimated as follows for the

‘°0+“0 system. The deformation length associated with the 0+- 2+

transition is determined from the transition strength by eq.(2.7). This

yields a value a . 0.33 fm. From the potential model fit to the barrier

described below, we find a barrier height of 9.7 MeV at a radius Rb- 8.9

fm. The thickness of the barrier at an energy of 6.75 Mev is 6 fm,

which corresponds a parabolic barrier having an oscillator frequency of

hm - 1.8 MeV. The predicted enhancement with these parameters is 2.5.

indicating that the excited state in 180 may significantly effect

subbarrier fusion.

The detailed calculations employ the coupled channel technique

described in chapter 3 to calculate the fusion cross section. The

potential in each channel is purely real, and an incoming wave boundary

condition is imposed at a small radius, which we take to be “.1 fm. The

coupled channel equations are solved by the direct matrix-inversion

method, which is much more reliable than iterative techniques for

energies below the barrier. As in chapter 3 we use the internuclear

potential of eq.(3.2). dropping the quadrupole Coulomb field. The two

nuclear radii R1 and R2 are determined by eq.(3.3). We found that the
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potential fits the fusion data of 160+“0 quite well with the parameter

set

Vo - -39.8 Mev/fm, AR - 0.“5 fm, and a - 1.65 fm. Since the potential

is of the proximity form, we can extrapolate to an 1"0+“50 potential

changing one of the radii according to eq.(3.3). The rescaled potential

is wider and deeper than the original 160 potential, giving more

subbarrier fusion. However, the enhancement is rather small, as may

seen by the dashed line in Fig.5.2. Of course, the proximity scaling

may not be a reliable way to extrapolate the influence of the valence

neutrons on the potential, so we also examined their effect in a folding

model. Namely, we determined the ‘°0+“0 potential according to

V(‘°0+"0) = V(“O+“O) + f p(r') U(r-r') d3r'. (5.2)

Here U(r) is a Woods-Saxon potential with parameters given in

ref. (Boh.69), and p is the valence neutron density determined from the

d—wave bound state in that Woods-Saxon potential. This method also

gives a small enhancement, which is shown by the dotted line in Fig.5.2.

Thus, we are inclined to reject the potential barrier variation as the

main mechanism for producing the 180 enhancement.

The potential matrix for the coupled channel calculation is

constructed by a macroscopic model of the excitation. We assume the

2+state to be a harmonic vibration of the surface deformation coordinate

s, and evaluate the matrix elements according to eq.(3.8), which yields,

<0|Vn(r-s)|0> + vC <0|Vn(r-s)|1>

(5.3)
<0|Vn(r-s)|1> <1|Vn(r-s)|1> + vc + 1.98
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In this equation, we have neglected the angular momentum transfer, an

effect treating the combined system in a rotating frame approximation.

The integral over 3 is easily performed for the error function, giving

<0|Vn(r-s)|0> - vn(r)|a 1/2
!‘(32+202)

(5.“)

a
<1|Vn(r-s)|0> - a afi<°IVn(r‘3)I°>°

The wave function for each entrance channel angular momentum is found by

integrating the coupled equations out from the inner boundary. For the

energies we study here, the sum over angular momentum can be truncated

at 2:12, with an accuracy of 1%. The predicted enhancement including

the potential and coupled channel effects is shown as the solid curve in

Fig.5.2. As expected from the frozen approximation, the inclusion of

channel coupling substantially enhances the cross section in the

subbarrier region. However at energies above the barrier, the theory

predicts the enhancement to persist, while experimentally equal cross

section are found. We will return to this later.

The coupled-channel model of eq.(5.3) is oversimplified in several

aspects, and the assumptions need to be examined and justified. First

the higher excitations in ‘°0 might increase the cross section even

more. In fact, such couplings are implicit in the harmonic model used

to derive the sudden approximation, eq.(5.1). However, the B(E2) from

the first 2+ state to the triplet states near “ MeV is lower than that

from the ground-state to the first 2+ state, while the harmonic model

require a larger B(E2). We find that including these channels in a

five-dimensional matrix has a negligible effect on the fusion cross
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section. Another oversimplification in the model is the neglect of the

Coulomb excitation of the 2+ state. It is shown in chapter 3 that for

medium heavy systems the Coulomb part of the Coupling interferes

destructively with the nuclear part and reduces the subbarrier

enhancement. Indeed, we find that by including Coulomb excitation

according to eq.(3.2). the cross section is reduced by as much as 7% at

the lowest energy, becoming less important as the energy goes up. As

mentioned above, the coupled-channel model treats the system in a

rotating-frame approximation. The physical justification for this is

that we expect axially symmetric deformations to provide the dominant

path for fusion. The angular momentum transfer assumption was tested

with the code PTOLEMY, used to compare the cross sections treating the

excited state as L=2 or L-O. The cross section at subbarrier energies

comes out larger with angular momentum transfer, by an amount comparable

to the Coulomb correction. Since both effects are small and opposite in

sign, we are justified in neglecting them in this context. Nucleon

transfer effects are also not included in the formalism. One might

expect that the two neutron transfer, which has a zero Q-value, plays a

dominant role. However, for such processes, contributions in the even

and odd partial waves have opposite signs and cancel in the Q - 0 limit.

Above the barrier, the cross section is reduced by the angular

momentum transfer, but not enough to equalize the cross sections of the

two reactions. The experimental observation of equal cross sections is

inexplicable. A channel coupling under the barrier will always enhance

the cross section. For the low-partial waves that go over the barrier,

it is hard to see how the extra couplings in the ”0+“0 system could

reduce the transmission factor. It appears to be a general phenomenon
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found also for other systems that the fusion cross sections above the

barrier come out too large when the model is fit to subbarrier fusion

data. We will see some of examples of this later.



Chapter 6 Subbarrier Fusion in Medium Heavy Nuclei

For heavy systems, one has to go beyond the potential barrier model

to reproduce the data. This was convincingly demonstrated in work by

Balantekin et al. (Bal.83), in which an effective one-dimensional

potential was extracted directly from the fusion data. Fig.6.1 shows

the extracted potential for various systems, from light to medium heavy.

For the ’“Ge+‘“Ni system one finds a barrier whose inner edge has an

unphysical negative slope. ‘Thus, one cannot fit with the data by

manipulating the parameters or forms of one-dimensional potentials. In

this chapter, a quantitative treatment of subbarrier fusion extending to

heavy nuclei is presented. The systems studied are Ti, Br + Zr, Nb and

Zr+Zr. In the following section we discuss the parameters of the

calculations, and the results are presented in sec.6.2.

6.1 Details of The Calculations

The formulation of the surface-coupling model follows that given in

sec.3.1. The internal degrees of freedom are described by a harmonic-

oscillator Hamiltonian with an internal coordinate s. The coupling to

the radial coordinate is through the ion-ion potential, and is given by

eq.(3.2). The parameters V0, R1, and a are given by eq.(3.3). For

the systems Ti+Zr and Ti+Nb, AR was adjusted to reproduce the

experimental fusion cross sections in the barrier region for s°Ti+9°Zr

and “‘Ti+’3Nb using the one-dimensional model, respectively. For Br+Zr

systems, we fit the subbarrier fusion data of °‘Br+9°Zr to determine AR

and o in "Br for this isotopic system. The parameter AR is found to be

52
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Fig.6.l. Effective one-dimensional potential barriers for 13C+13C,

1"Ni-”N, 1304-160, “°Ca+9°Ca, °“Ni+5“Ni, and 6“Ni+7“Ge. The outer

turning point is idetermined from the KNS potential readjusted as

described in ref. (Ba1.83) to fit the peak positions. The thickness

is inverted from fusion cross sections and the shaded region indicates

the error. The short dashed line denotes the point Coulomb potential,

the long dashed curves in the upper figures denote the unmodified KNS

potential, and for ease of presentation the energy is plotted relative

to the barrier height.
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0.35 fm for Ti+Zr systems and 0.140 fm for all other systems. It should

be mentioned that these parameters are far from unique as far as fusion

is concerned. At most two parameters are determined by the above-

barrier cross section, namely the barrier height and the barrier

position. Other sets of V., a and AR give the same fit and the same

coupled channel results below the barrier.

The intrinsic oscillator Hamiltonian H1n(s) is specified by the

frequency hm and by a, the r.m.s. amplitude of the coordinate in the

ground state. The coupled-channel equation for the system is therefore

given by eq.(3.6). The internal Hamiltonian H1n(s) should be chosen to

reproduce the energy and transition strength of the lowest excitations

of the nuclei. For a single nucleus, the relation of o to the B(EL) of

a transition is given by eq.(2.7):

R‘ B(EA))%

A Z(A+3)

._.... , (2.7)
Bw(EA)

a [(2i+1)

The excitation of both nuclei may be treated with a single coordinate 3,

if the energies are degenerate; in that case the effective amplitude of

the deformation is related to the individual amplitudes by

o= Jc¥+og (”.1)

Eq.(u.1) will also be applied in cases where the excitation

energies are not degenerate and both excitations are important. The

lower of two energies will be used if the difference is small.

Otherwise we take the average of two energies as oscillator energy. As
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Table 6.1. Parameters of surface vibrations deduced from the measurement

of low lying state. For odd nuclei they are averages of those of two

neighboring even-even nuclei. The a's (standard deviations) are

calculated according to eq.(2.7).

 

 

Nucleus Energy of the First Excited State (MeV) s(fm)

9°Zr 2.18 0.16

’“Zr 0.91 0.16

saTi 1.55 0.25

“‘Ti 0.889 0.u9

81Br 0.7 0.36

93Nb 0.9 0.22

 

Table 6.2. Parameters of surface vibrations used in the fusion cross-

section calculations of Figs.6.2,3,h,5,6. The parameters in parenthesis

were obtained by fitting to the data. The rest were taken or calculated

from Table 6.1

 

 

 

 

 

Reaction hm (Mev) 0(fm)

5°Ti+9°Zr 1.55 o.3-/o.25’+0.162

“‘Ti+’°Zr 0.918 (0.39)

“‘Ti+°3Nb 0.9 o.u5-/o.222+(o.39)2

s°T1+°3Nb 1.2: % (o.9+1.5) o.32-=/o.222+o.252

°‘Br+’°Zr . (0.9) (0.32)

 

°‘Br+’“Zr 0.9 0.36-/(0.32)2+0.16I
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we shall see this procedure gives the parameters for H1n that describe

the reaction s°Ti+°°Zr very well below the barrier. For the softer

system “‘Ti+’°Zr, the method gives too much subbarrier fusion and we

treat a as an adjustable parameter.

For an odd nuclei the hm and a of the collective excitation are

hard to extract from the data on low-lying states. They are chosen to

fit the fusion data for one system and kept same for other systems. We

expect the values of these parameters lie between those of two

neighboring even-even nuclei. For 93Nb, the averaged parameters a and

hm describe subbarrier fusion excitations of s°T1+”Nb and “‘Ti+’3Nb

very well.

The coupled-channel calculations were carried out using the direct

matrix-inversion method. The inner boundary was chosen at the point

where the potential in the entrance channel is the minimum. The results

do not sensitively depend on where the boundary is. The internal

excitation parameters extracted from experimental data are listed in

Table 6.1. Table 6.2 shows the coupling parameters used in the

calculations.

6.2 Results and Discussions

The fusion excitation function for 5°Ti+°°Zr calculated from the

model is compared with experiment (Ste.85) in Fig.6.2. As one can see,

the fusion is underestimated by the conventional barrier penetration

model (bold continuous curve), a factor of 60 too low at Ec m-100.6 MeV,

although they were fit in the barrier region. The fusion is enhanced by
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Fig.6.2. Fusion cross sections for 5°Ti+9°Zr. The bold continuous

curve is the results of the one—dimensional barrier penetration cal—

culations. The two-channel coupling result is shown by dash-dotted

curve. The thin continuous curve is the result obtained by solving

6 channel coupled equation. The 6 channels correspond to the first 6

excited vibrational states assumed in 5°Ti with a energy spacing of

1.55 MeV. The dashed curve is the prediction from ZPM. All calculations

include the quadrupole Coulomb excitation and ignore the angular mo-

mentum transfer.
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coupling the excitation of the first excited state to the relative

motion (dash-dotted curve). But the fusion is still underestimated by a

factor of 3 at the lowest energy. One is naturally led to expect that

the contributions from higher intrinsic excitations would account for

the difference. But the parameters of couplings of the higher

excitations to the relative motion is very hard to extract from the

spectrum. However, if one approximate these excitations as pure

harmonic vibrations, one would get the full-channel coupling results

shown by the thin continuous curve in Fig.6.2. The agreement below the

barrier is very good in this approximation. The above-barrier fusion is

slightly overpredicted by our model, though the (Z/A)eff of the system

does not exceed the extra-push threshold (Nix.77). The prediction from

ZPM is also shown. Although the orders of magnitude are right, the ZPM

overpredicts the fusion of the s°Ti+9°Zr for energies far below the

Coulomb barrier. Alternatively if the ZPM is fit to the subbarrier

data, then the potential barrier is too low at higher energies (Ste.85).

Rhoades-Brown et al. (Rho.8fl) calculated subbarrier fusion cross

sections for various medium heavy systems, using the coupled channel

version of the PTOLEMY code, which treats angular momentum algebra

exactly. A few low-lying states were coupled to the relative motion

with parameters extracted from the low-lying excitation measurements.

It was found that the subbarrier fusion was greatly enhanced compared to

the one-dimensional penetration approximation, but was still

underestimated for energies far below the Coulomb barrier, by orders of

magnitude in some systems. From our results for s°Ti+9°Zr, we feel that

if higher intrinsic couplings are treated correctly, one can reproduce
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B(E2) measurement.
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the data in the coupled-channel model.

In Fig.6.3 we compare the calculation for “‘Ti+°°Zr with the

data (Ste.85). Here a was reduced to achieve agreement with the data.

In other words, the subbarrier fusion would be over predicted if we take

the experimental value for a. This suggests that the excitations in

“‘Ti can not be approximated as pure harmonic vibrations. The ZPM is

more successful (closer to the coupled-channel result) for “‘Ti+’°Zr

because the excitation energy is lower, only 0.88 MeV. In Fig.6.“ and

Fig.6.5 we show the results for “‘Ti+”Nb and s°Ti+°3Nb. The hm and 0

for 93Nb were taken as the average of those for 92Zr and ’“Kr. Again

the agreement is good.

For heavier systems, fusion is inhibited at the configuration just

inside the Coulomb barrier (Nix.77, Swi.81). The threshold projectile-

target parameters for inhibition is given by (Bir.83)

K - (Zz/A)
thr- eff Chi": 35 {1‘1.78[(N,"Z,+N2-Z

z)/(A1+A2)J2}.35.

The Ti+Zr, Nb systems have K ~25, well below the threshold value.

critical

The next fusion reactions we consider have values of K around the

threshold value in s-wave channel. The systems we consider are

°‘Br+’°,’“Zr, and 9°Zr+9° 9"Zr, measured by Beckerman et al. (Bec.8u).

In Fig.6.6 we plot the fusion cross section ratio of the alBr+"'Zr to

the alBr+’°Zr. The effects of 9°Zr excitation is assumed small compared

to that of 9"Zr, and we ignore it completely in the calculation. The 0

and hm for °‘Br is obtained by a subbarrier-fusion fit for °‘Br+9°Zr.

Then we investigate the isotopic effects of Zr. As can be seen, the
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6N

coupled-channel calculations which include the excitation in 9"Zr (solid

line, reproduce the data reasonably well. While the results obtained by

treating both 9°Zr, ’“Zr as point particles with the rescaled potential

for the °‘Br+’“Zr system according to eq.(3.2) and eq.(3.3) are far away

from being in agreement with the data in the subbarrier region. The

above-barrier fusion is overpredicted by our coupled-channel

calculation.

In these heavy systems the extra-push energies are zero for s- I

waves, but not for higher partial waves. The maximum i-value with zero

extra-push energy is about 26 (Bir.83), and one should take this into

account in coupled-channel calculations. This was not done in our

calculation, because only first few partial waves contribute for

subbarrier fusion reactions.

Inside the Coulomb barrier, instead of fusing together, the system

may transfer a few nucleons and then fall apart. In this case a so-

called an "extra-extra-push" energy is needed for compound nucleus

formation (Bir.83). In the systems °‘Br+’°,’“Zr, the extra-extra-push

energies are not zero. This should affect the above-barrier fusion as

well as subbarrier fusion. In the following, we explain why we believe

that the relative subbarrier fusion can be investigated in our simple-

two~dimensional model, without treating these extra-push or extra-extra-

push energies explicitly. In the calculation, we impose an incoming

wave boundary condition at internuclear distance ro where the potential

is the minimum in the entrance channel. For subbarrier fusion this is a

reasonable approximation because as the system reaches ro it is unlikely

to "bounce" back, and go through another penetration. The situation is

quite different when the energy in the relative motion is greater than
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the barrier height. The system energetically prefers to go to other

channels rather than to complete fusion, if the energy is greater than

the barrier height but not enough to overcome the extra-push (or extra-

extra-push) barrier. However, the isotopic difference in extra-push I

energies in Zr should be small. When we fit subbarrier fusion for

°‘Br+’°Zr, the extra-push effects are accounted for by adjusting the 0

and hm for alBr in subbarrier region. With such a a and hm for uBr the

subbarrier fusion difference between °‘Br+’°Zr and alBr+"‘Zr should

mainly be due to the isotopic difference in Zr. Because of the

complexity, the extra-push effects explicitly show up in above-barrier

energy region. These are qualitative arguments. In order to get a

better agreement with the data, one has to perform much more complicated

calculations in which many channels has to be included explicitly. This

is beyond the scope of this thesis.

We also calculated the fusion cross sections for the systems

9°Zr+9°Zr and 9"Zr+’°Zr. The parameters V0, a, and AR are fixed by

fitting the subbarrier fusion of 9°Zr+9°Zr. With these potential

parameters, however, the coupled channel calculations for ’“Zr+’°Zr

underestimate the subbarrier fusion by about two orders of magnitude at

the lowest energy measured. We believe that the particle transfers in

°“Zr+’°Zr reactions may contribute to the subbarrier fusion

significantly, and account for the differences between the coupled

channel calculations and the data (Bro.83).

We see that subbarrier fusion for systems below the extra-push

threshold can be quantitatively understood by a two-dimensional model.

For heavier systems that require an extra-push for fusion, the simple

two-dimensional model can reproduce the relative fusion cross section
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for different isotopes. The absolute fusion cross section, however,

cannot be predicted by the model.



Chapter 7 Particle Transfers in Subbarrier Fusion

In this chapter, we study the effects of particle transfer on

subbarrier fusion. The systems considered here are soNi+5°Ni and

"Ni+‘“Ni. In general, a complete calculation is numerically very

difficult. But we make a simplified estimate, aiming to obtain results

which give the right order of magnitude for subbarrier fusion.

7.1 Introduction

When two nuclei approach each other in a collision, a few nucleons

may be transferred from one nucleus to another. This in general does

not contribute very much to subbarrier fusion because of the small

coupling amplitude. This is especially true for medium heavy or light

systems where a small neck is enough to guarantee complete fusion.

Particle transfers, however, may be important for systems which have

positive Q-values (Bro.83). Although the coupling strength for transfer

is small, the subbarrier fusion cross section may be enhanced because

the effective barrier in the transferred channel is lower than that in

the entrance channel. For energies well below the Coulomb barrier, the

small portion of the incoming flux in the transferred channel has a much

larger penetration probability, leading to an enhancement in the fusion

cross section. For some systems, there may be a large number of

transfer channels coupled to the relative motion, and although the

contribution due to each channel coupling is small, the enhancement due

to all channel couplings may be significant (Rho.85).

67
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Fig.7.1. Calculated fusion cross sections for 5°Ni+‘“Ni compared

to the data of ref.(Bec.80). This plot is the copy of Fig.2(b) in

ref.(Bro.83). The dotted curve shows the limit of no-coupling, i.e.

one-dimensional barrier penetration. The dash-dotted curve is the

result obtained by including intrinsic excitations. The dashed

curve includes additional (1 MeV) strength at Q = +5 Mev, which was

attributed to transfer reaction channels.
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In comparing soNi+5°Ni fusion data with that of °“Ni+"Ni, Broglia

et al. (Bro.83) found that in addition to the known low-lying intrinsic

excitations, an extra channel coupling with a positive Q-value was

needed to reproduce the ‘“Ni+’°Ni data. They found that a

phenomenological constant coupling of 1 MeV strength and a Q-value of 5

MeV was required. With this additional channel coupling, the relative

enhancement in the ‘“Ni+’°Ni fusion cross section was explained, and is

shown in Fig.7. 1 .

From Fig.7.1, one see that with all known low-lying excitations

coupled (dashed curve), the fusion is still underestimated at energies

far below the Coulomb barrier. But good agreement is obtained with the

additional coupling (continuous curve). This additional channel

coupling was interpreted as being due to two-neutron transfer (from ‘“Ni

to 58N1) for which the Q-value is positive.

It would be nice if the additional channel coupling can be

understood microscopically. In the following sections, we will study a

microscopic model for the two-neutron transfer form factor in the

58Ni+“’Ni system and its effects on subbarrier fusion.

7.2 Form Factors for Neutron Transfer

In our microscopic treatment, the neutron-transfer form factor is

calculated as

. . Ari A'+i A‘i+1 A'+i‘l

I I '9 '3 " , , .1f1(JlJZJl J2 r) < “’1‘ WJZIVI $11 $32) (7 )
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where lAmj> is the many-particle wave function for a Ni-isotope with a

spin J, and V is the single-particle potential field in the nucleus to

which the neutron is transferred. Also, i-1 and 1-2 label first- and

second-neutron transfer, respectively. The ground states of "Ni, ‘°Ni,

““Ni and ‘2 Ni have Jfl-O+ and the trivial indices indicating these

nuclei will be suppressed. Since V is a one-body operator, the form

factor can be written in second quantization form as

. 63 6'0 59 1. so

f1(j,,J,;r) ‘2;k <k|v|2> < wjilail w) < wjz|ak| w>

O (702)

f ( ) Z I I 62 I 63 so I 59

' ,’ ;r - < V > < a . > < a . >2 J: J. p,q q p I pl le wl ql v32

where lk), ISL), |q> and |p> represent single-particle states in "Ni,

““Ni, 59Ni and 63Ni, respectively.

For 59Ni+"3Ni, there are 3 low-lying levels in each nucleus, j-(%-.

3‘, g-) for a total of 12 states (including m-degeneracy), and,

therefore, there are 1AA different internal states for the 59Ni+‘3Ni

system. Conservation of the angular momentum along the axis connecting

the two nuclei reduces this quantity to 28. However, this is still too

large because of the numerical difficulties in carrying out the

calculation. We shall make the approximation that these internal states

are degenerate, and can be treated as one state. From secondrorder

perturbation theory, the form-factor for one-neutron transfer is

gi ven by

  

F(r)=/ z <f|VII><IIVIi> s “d z

I

1in: f1 (J10323r)f2(~j1hj2;r) (7'3)



71

for both first- and second-neutron transfer. This is a good

approximation only when the Q-value for the first-neutron transfer is

large and negative (that is, first-order perturbation gives little

contribution). This, however, is not the case. Therefore, the form

factor F,(r) for first‘neutron transfer is the square root of the sum of

the squares of each individual form factors, that is,

  

Fl(r‘)’v/ 2 (II—Vl—ijz ‘ /J. 2:] f1(jl’J2;r)f (70“)

I 1’ 2

as one would expect from the first-order perturbation theory. While the

form factor for second-neutron transfer is

F,(r)=F2(r)/F,(r). (7.5)

The Q-values for one- and two-neutron transfer are taken from

binding energy data (Bro.83) and are -0.6 MeV and 3.9 MeV, respectively.

We assume that the neutrons are transferred one by one, i.e., no

simultaneous two neutron transfer. We will see later that this is

indeed a reasonable approximation.

7.3 Details of the Calculation

Both 58Ni and ‘“Ni are open-shell nuclei, and intrinsic collective

motions are important in subbarrier fusion. In order to reproduce the

fusion data, these couplings are needed along with the neutron transfer

coupling. However, since we are primarily interested in the effects due
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to neutron transfer, we parameterize the intrinsic collective

excitations by fitting the fusion excitation function data in saNi+5°Ni.

The potential is again that of eq.(3.2). The strength V,, the barrier

shift AR, and the diffuseness a are parameters to be determined.

The intrinsic excitations are characterized by a harmonic-

oscillator spectrum in the variable 3, with a r. m. s. amplitude o and

excitation energy hm. We first fit the soNi+5°Ni fusion data by

adjusting these parameters. This is done using the coupled-channel

technique, where the number of channels is also a parameter in the fit.

The resulting parameters are shown in Table 7.1. This two-dimensional

Table 7.1 Parameters of the two-dimensional potential (eq.(3.2)) and the

surface harmonic-vibrational mode obtained by fitting the 56Ni+5°Ni

fusion data.

 

 

V° a No. of surface 0 (The r. m. s. amplitude hm

vibrational states of s in the ground state)

-36 Mev 0.7 fm 3 0.“ fm 3 MeV

 

potential is then used for the 58Ni+“'Ni system, where corrections due

to the larger size of ‘“Ni are applied. In doing this, we actually

assume that the intrinsic couplings are the same for both the 58Ni+5°Ni
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and soNi+"’Ni systems. We justify this assumption by comparing our

results with those obtained with the more detailed treatment of Broglia

et al. (Bro.83) (without neutron transfer). We find generally good

agreement between the two procedures for energies far below the Coulomb

barrier.

In our calculation, the potential fields which generate the single

particle orbits and cause the neutron transfers are assumed to have a

Woods-Saxon form. The parameters used are those given by Bohr and

Mottelson (Boh.69). The spectroscopic factors, used in eq.(7.2), were

calculated with the Oxford-Buenos Aires-MSU Shell-Model Code (Rae.85)

using the fp-shell interaction of van Hees (Van.81) and Koops (Koo.77).

The shell-model configuration space consisted of the 0f

7/2’ 193/2'

0f5/2 and the 1p”2 orbits. Due to computational restrictions, no

particle-hole excitations of the closed 0f,”2 orbit were allowed. In

addition, corrections to eq.(7.2) due to the non-orthogonality of single

particle states in different nuclei have been neglected since the

overlaps are small. The form factors are shown in Fig.7.2.

When particle transfer and internal excitation are coupled with the

relative motion, the subbarrier fusion cross-section is greatly

enhanced. This can be seen in Fig.7.3. The dot-dashed curve is the

result obtained by including both intrinsic excitation and the neutron-

transfer couplings (three-dimensional calculations), and is greater than

the result obtained with only the intrinsic-excitation couplings (dashed

line), which is, in turn, much greater than the result given by the one-

dimensional barrier penetration model (dotted line). There is, however,

still a gap between this calculation and the experimental data for

energies far below the Coulomb barrier.
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is the result with both transfer and intrinsic excitation included.

The F.(r-s(r))'s are the form factors used in obtaining the reSult
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7.“ The Interplay of Intrinsic Excitations and the Particle Transfers on

Subbarri er Fusi on

The particle-transfer form factor was evaluated using eq.(7.2) for

nuclei in their ground states. However, the nuclei may be deformed

during the collision, with a preferred deformation such that the long

axis coincides with the axis connecting the two nuclei. This effect

enhances the neutronrtransfer form factor because the nuclei are

effectively closer than they are in their ground state. We take this

into account by evaluating eq.(7.2) along a semiclassical trajectory.

First, turning off the neutron transfer, we perform a two-dimensional

penetration calculation using the potential defined in eq.(3.2) and the

parameters in Table 7.1. The semiclassical trajectory is defined as

that in which the incoming flux is maximized in the direction of the

surface-vibrational degree of freedom, parameterized by s, and is shown

in Fig.7.”. In a semiclassical approximation, we assume that the system

only goes through this trajectory, and therefore, the form factor F1(r)

is replaced by F1(r-s(r)), s(r) being evaluated on the trajectory. With

this enhanced form factor, we find general good agreement between

theory (solid curve in Fig.7.3) and experiment. We note, however, that

the experimental data are underestimated somewhat for low energies.

7.5 Simultaneous Two Neutron Transfer

So far, we have neglected the simultaneous two-neutron transfer

mediated by the residual interaction. We estimate this contribution by
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assuming the residual interaction to have a 6-function dependence, whose

strength is determined from the pairing energy in soNi. This residual

interaction coupled with shell-model two-particle parentage coefficients

yields two-neutron transfer form factors which change the fusion cross

section by only a few percent.

The residual interaction in 58Ni may be much more complicated in

form than the 6-function pairing described above. However, we believe

that the above pairing is the leading part of the residual interaction.

The above procedure should, at least, give the correct order of

magnitude of the effects due to simultaneous two-neutron transfer.

7.6 Discussions

We find that the relative enhancement of the saNi+“‘Ni fusion cross

section over that of 5°Ni+5°Ni is explained in our simple model (see

Fig.7.3). However, the calculation should only be taken seriously to

within a factor of two or so, as there are a few uncertainties in the

model. First, the intrinsic excitations in ‘“Ni are not identical to.

those of 5°Ni, although at energies far below the Coulomb barrier, our

results (with intrinsic coupling only) agree with those obtained with

the more detailed analysis of Broglia et al. Second, the 28 one-neutron

transferred states were treated as one intermediate state. Third, the

replacement F(r) with F(r-s(r)) is a semiclassical approximation.

Finally, the neutron-transfer form factors were evaluated using eg.(7.2)

with shell-model spetroscopic factors. There is evidence (Bay.82),

however, that this procedure may in fact underestimate contributions due

to step-by-step two-neutron transfer. Since two-neutron transfer is
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very important at low energy, this may explain the discrepancy between

theory and experiment at low energy (see Fig.7.3).

It should be remarked that the system “Ni+°"Ni is nearly

symmetric, with only a few transfer channels contributing towards

fusion. However, in order to get more comprehensive appreciation of the

effects due to particle transfer on subbarrier fusion, a systematic

study of asymmetric systems where many particle-transfer channels are

open is necessary.

After extensive experimental and theoretical studies over past a

few years, the effects due to intrinsic excitations on heavy-ion

subbarrier fusion are well understood qualitatively. Quantitative

agreements can now be achieved in many cases. For light and medium

systems, coupled channel methods give a satisfactory description of

subbarrier fusion. However, there are some ambiguities associated with

choice of the parameters. As is discussed by Rhoades~Brown et al.

(Rho.8u), these uncertainties maybe reduced by constraining the

parameters to reproduce other data, such as inelastic and elastic

scattering, etc. There are no free parameters for neutron-transfer form

factor in our calculation. The parameters that come from a shell model

give the neutron-transfer form factors which describe subbarrier fusion.

It is also important to verify that the transfer form factors in this

work are consistent with data on the particle transfer reactions. This

has been measured in the Ni+Ni system (Van.86) and the analysis is under

way (Lan.86).



Chapter 8 Conclusions

The structure effect on subbarrier fusion was first described by

ZPM. ZPM provides a simple picture of the interplay between intrinsic

degree of freedom and internuclear motion. Also, calculations in ZPM

are easy. We found that ZPM is a good approximation for describing low-

lying intrinsic excitation effects on subbarrier fusion in medium heavy

systems (Fig.u.l). In general, ZPM gives the right order of magnitude

of the effects due to low-lying collective excitations. To describe

subbarrier fusion more accurately, however, finite energy excitation

formulation (coupled channel method) is needed in some systems

(Fig.6.2).

In light systems, only the first few intrinsic excitations need to

be included in the two-dimensional model to describe subbarrier fusion

because of the relatively large excitation energies. Structure effects

on subbarrier fusion in light systems can therefore be described well

without ambiguities in the theory (Fig.5.1,2). In the case of ‘°O+“0,

only the transition from the ground state to the first excited state in

the 18O is treated in the theory. In medium heavy systems, more

intrinsic excitations are needed in the model space in order to describe

subbarrier fusion (Fig.6.2). Subbarrier fusion in medium systems can

also be well understood in the two-dimensional model with vibrational

parameters close to those that describe low-lying collective

excitations.

Particle transfers were found to be important in the subbarrier

fusion of ‘“Ni+‘°Ni in a macroscopic model (Bro.83), and is also well

explained using the microscopic model of this work.

80



Bal.83

Bay.82

Bec.81

Bec.8u

Bir.83

Blo.71

Boh.69

Bro.75

Bro.83

Chr.76

Esb.81

Esb.83

Gut.73

Hil.53

Koo.77

Lan.81

Lec.8fl

Lan.86

Nat.70

Nix.77

References
 

A. B. Balantekin, S. E. Koonin, J. W. Negele, Phys. Rev. C28

(1983) 1565

B. F. Bayman and Jongsheng Chen, Phys. Rev. 626 (1982) 1509

M. Beckerman, M. Salomaa, A. Sperduto, H. Enge, J. Ball,

A. DiRienzo, S. Gazes, Ian Chen, J. D. Molitoris and

Mao Nai-feng, Phys. Rev. Lett. IS (1980) 1H72

M. Beckerman, J. Wiggins, H. Aljuwair, and M. K. Salomaa, Phys.

Rev. 022 (198“) 1938

J. R. Birkelund and J. R. Huizenga, Ann. Rev. Nucl. Part. Sci.

33 (I983) 265

R. Blocki, Randrup, W. H. Swiatecki and C. F. Tsang, Ann. of

Phys. 105 (1977) 427

A. Bohr and B. Mottelson, Nuclear Structure Vol.

. A. Benjamin, Inc. 1969

I.

Broda, M. Ishihara, B. Herskind, H. Oeschler, S. Ogaza and

H. Ryde, Nucl. Phys. A2u8 (1975) 356

R. A. Broglia, C. H. Dasso, S. Landowne, G. Pollarolo, Phys.

Lett. 1333 (1983) 3“

P. R. Christensen and A. Winther, Phys. Lett. 61B (1976) 113

H. Esbensen, Nucl. Phys. A352 (1981) 1H7

H. Esbensen, J. Q. Wu and G. F. Bertsch, Nucl. Phys.

Au11 (1983) 275

H. H. Gutbrod, W. C. Winn, and M. Blann, Nucl. Phys.

A213 (1973) 267

D. L. Hill and J. A. Wheeler, Phys. Rev. 89(1953)1102

J. E. KOOps and P. W. M. Glaudemans, Zeits. f. Physik

A280 (1977) 181

S. Landowne and H. H. Wolter, Nucl. Phys. A351 (1981) 171

Lecture Notes in Physics 219 (198“)

S. Landowne, private communication.

J. B. Natowitz, Phys. Rev. C 1 (1970) 623

J. R. Nix and A. J. Sierk, Phys. Rev. 615 (1977) 2072

81



82

PUh.75 F. Pfihlhofer, W. Pfeffer, B. Kohlmeyer and W. F. W. Schneider,

Nucl. Phys. AZHM (1975) 329

Rae.85 W. D. M. Rae, A. Etchegoyen, N. S. Godwin, and B. A. Brown,

OXBASH, The Oxford~Buenos Aires MSU Shell-Model Code,

Michigan State University Cyclotron Laboratory report #szu

Rho.80 M. Rhoades-Brown, M. H. Macfarlane and Steven C. Pieper, Phys.

Rev. 621 (1980) 2u17.

Rho.8u M. J. Rhoades-Brown, P. Braun-Munzinger, M. Prakash and S. Sen in

Lecture notes in physics, vol. 219 (198u) p. 162

Rho.85 M. A. Rhoades-Brown, private communication

Rin.78 P. Ring, H. Massmann and J. 0. Rasmussen, Nucl. Phys.

A296 (1978) 50

Sch.68 Leonard I. Schiff, Quantum Mechanics, p278, 1968, MacGraw—Hill,

Inc.

Ste.85 P. Stelson, private communication

Sto.78 R. G. Stokstad et al., Phys. Rev. Lett. II (1978) U65

Swi.81 W. J. Swiatecki, Physica Scripta 2M (1981) 113, and Nucl. Phys.

A376 (1981) 275

Tak.85 N. Takigawa and K. Ikeda, Tohoku Univ., preprint, 1985

Tan.85 0. Tanimura, J. Makowka and U. Mosel, Phys. Lett. 1638 (1985) 317-

Tho.85 J. Thomas et al., Phys. Rev. 631 (1985) 1980

Van.81 A. G. M. Van hees and P. W. M. Glaudemans, Zeits. f. Physk

A303 (1981) 267

Van.86 A. M. van den Berg, et al., Phys. Rev. Lett. 56 (1986)572

Won.73 C. Y. Wong Phys. Rev. Lett., 31 (1973) 766

Wu.86 J. Q. Wu and G. F. Bertsch, Michigan State Univ., preprint 1986



      

SSSSSSSSSS

”IllIIIIll;(IIlllllflllllllllll
31

 


