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ABSTRACT

DYNAMIC PROCESS MIGRATION FOR LOAD BALANCING

IN DISTRIBUTED SYSTEMS

By

Chong-wei Xu

A distributed system is an integrated system consisting of a set of intercon-

nected peer processors coordinated through distributed control algorithms. In

distributed systems, a mechanism which moves a process from one processor to

another is called process migration. A diflicult problem in designing a distri-

buted system is finding an efficient scheduling method to evenly utilize distri-

buted resources. We have proposed a distributed control algorithm, called the

distributed drafting algorithm, to balance the load of various processors in a

homogeneous distributed system. Processes are migrated from heavily loaded

processors to lightly loaded processors to improve system performance. The

drafting algorithm is network topology independent and accommodates dynam-

ically changing system behavior. It attempts to compromise between two con-

tradictory goals : maximizing the processor utilization and minimizing the com-

munication overhead. Simulation results Show that the drafting algorithm

efficiently achieves load balancing and outperforms the conventional bidding

algorithm. The dynamic processor pairing concept comes from the drafting

algorithm. Various dynamic pairing strategies are discussed and two major

algorithms are implemented in a token ring environment by using the writable

message format, a convenient vehicle for carrying negotiation information.
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CHAPTER 1

INTRODUCTION

The rapidly decreasing cost of processors has created an economic incen-

tive for distributed processing. The remarkable benefits of distributed process-

ing have given a technical incentive for distributed processing itself. The trend

toward development of distributed systems is becoming more and more obvious.

A distributed system makes all data and information resources easily and uni-

formly accessible, provides high performance and increases reliable operations.

The goal of distributed systems is to provide a unified service environment.

In other words, an ideal distributed system should be able to provide a location

independent service to the users. Various services are provided in a fair, reli-

able, and efficient manner. To achieve this goal, a variety of features are

required by the system. Among them, a desirable feature in designing a distri-

buted system is to find an efficient scheduling method so that distributed

resources may be evenly utilized, which is the topic of this study.

1.1. Distributed Computer Systems

A distributed system is an integrated system consisting Of a set of peer pro-

cessors interconnected by an underlying communication network and coordi-

nated through distributed control algorithms. The physically distributed hosts

and underlying network provide a spatially distributed architecture. The distri-

buted control algorithms take advantage of the distributed architecture, hide

the architecture from users, and construct a logically integrated and temporally

distributed system.

There are three types of distributed architectures which depend on the

physical configurations [MeBo76]. One is the loosely-coupled multiprocessor, in



which the operating system is partitioned into utilities distributed around the

system, such as Medusa for Cm* [OuSS80]. A process may also be partitioned

into many subprocesses and executed concurrently on difl'erent processors.

Another is the long-haul network where many processors are interconnected

over low bandwidth communication links. The third one is the local area net-

work, in which processors are Spread in a limited geographical area. The local

network has a high transmission rate and a low error rate. There is no shared

memory among the processors in the local network, and the exchange of infor-

mation between processors takes a non-negligible amount of time.

There are two types of communication subnets : point-to-point channels

and broadcast channels [Tane80]. In the first one, a pair of processors may be

connected by a dedicated communication link. Several communication links and

processors may be interconnected to form various network topologies. A mes-

sage may have to go through many intermediate processors to reach the desti—

nation processor. Such a subnet allows simultaneous transmission of messages

over different channels. In a broadcast subnet, a single communication channel

is shared by all processors. Messages sent by one processor are able to be

received by all others. A proper channel allocation mechanism, such as Ether-

net, must be adopted to allow mutually exclusive access to the communication

channel.

From the characteristics possessed by processors, a distributed computer

system may be classified into one of two categories: the homogeneous distri-

buted system in which various processors have compatible instruction sets and

employ the same operating system, or the heterogeneous distributed system in

which processors may not be compatible and run different operating systems.

A distributed system may be viewed as a hierarchy of levels of abstraction

[Lann79]. Each level of abstraction comprises a number of processes responsible

‘u.



for the management of resources existing at each level. The processes in distri-

buted systems must interact with each other by message passing for the pur-

pose Of performing activities in utilizing resources, such as data, peripherals,

wires, memory, and processors. Processes may be grouped according to the

functions performed. Processes may initiate operations which must be atomic to

maintain the consistency state of the system. The state of a system at time t is

defined as the set of system parameter values of interest at t. Any variation in

these values should be viewed as a transition to another state. Consistency

means that the system is kept in a state such that the set of values of the sys-

tem parameter of interest is meaningful to the processes or the external world.

At some initial time, if the state of the system is consistent, only the indivisibil-

ity Of Operations keeps the system consistent as those activities are being per-

formed.

The distributed control algorithms may reside at any level Of abstraction.

There is no unique process enforcing the consistent view Of the global state.

The processes spreading over diflerent processors in the system do not share

similar physical space and lack a common time reference. The absence of

uniqueness, both in time and space, makes it possible at any time, for several

processes or control algorithms to observe difierent or inconsistent views Of the

global system state and decide simultaneously to initiate activities. This may

cause conflicts. In addition, unpredictable interprocess message transit delays

force some control algorithms to work on an approximation Of the global sys-

tem state. These properties of distributed systems provide the difficult task of

designing protocols and algorithms that do not lead to inconsistencies and

deadlocks in the systems.

It is likely that some processors in a distributed system are idle while oth-

ers not only have a process being served but also have some processes waiting.



This phenomenon implies that the system’s workload is not balanced in that

some processing resources are not fully utilized while others lack enough pro-

cessing power to serve the processes. The average process response time

increases nonlinearly when the processor becomes saturated. Both idle proces-

sors and saturated processors will reduce the utilization of system resources and

degrade the system’s performance.

1.2. Problem Statement

Some waiting processes may be migrated from busy processors to idle pro-

cessors, which is known as load balancing, in order to improve overall system

performance. Load balancing is used to balance the workload over the entire

system and to adjust resource allocation, thereby improving overall perfor-

mance and increasing the system’s reliability.

In order to do so, a control algorithm is needed to make the decisions, such

as when a waiting process may be migrated, which waiting process should be

migrated, from where and to where the migration will take place, and how

much global or local status of the system will be needed to make the decision.

The solution should be the best one in terms of obtaining the highest benefits

by paying the lowest overhead with respect to a given network environment. It

is this research’s goal to analyze properties of the distributed system, to investi-

gate the design considerations of a control algorithm, and to provide eflicient

and effective answers to the above questions.

The existing algorithms for load balancing are classified into two general

categories: deterministic and stochastic. A deterministic approach assumes

prior knowledge of process execution time. Further, it is assumed that a process

submitted to a distributed system is first split into pieces, called modules, by a

software mechanism. The cost of processing each module in each processor, the



cost of transferring modules to difi'erent processors and the number of data

transfers among them are known in advance. The problem becomes one of

assigning a fixed number Of modules to the processors. This problem would be

best called a task allocation problem.

Different approaches for solving task allocation problems have been sur-

veyed by [CHLESO] and fall into three groups : graph theoretic [Ston78,

StBO78], mathematical programming [LeMu77, ChAb82], and heuristic

[GyEd76, BaMM76, Efek82]. These approaches are not mutually exclusive, as

each uses techniques from other areas. Among these researchers, Stone [Ston78]

defined a critical load factor which was determined for each module in a proces-

sor. Optimal assignment in a two-processor distributed system may be made by

calculating all critical load factors ahead of time and comparing the computed

load factors against actual load factors experienced. Efe [Efek82] developed a

heuristic load balancing algorithm called the module clustering and reassign-

ment algorithm for an arbitrary number of processors. Chou and Abraham

[ChAb82] went further, taking processor reliability issues such as failure proba-

bility, checkpoint time, and restart time, into consideration.

All of the above approaches for deterministic process migration depend on

the assumption that when a process is submitted to, or created in, a distributed

network environment, it is dynamically partitioned into modules with the cost

of processing each module known. In some applications, such as a query pro-

cessing system, this assumption does not present serious difiiculty [Efek82].

However, for most applications, these values may be difficult to obtain and are

not user friendly, forcing the user or compiler to supply these estimates. They

assume too much prior knowledge, take too much computation time, and do

not react to dynamic changes in the system. They are of theoretical interest

because they point the way to potential benefits of process migration.



The stochastic approach is more practical and deserves further study. The

stochastic approach may fall into static (probabilistic) and dynamic (adaptive)

balancing [NiL82b]. If the processing power of each processor and the capacity

of each communication channel in the network are known with the average new

process arrival rate estimated in advance for various classes of processes, a

static balancing may be achieved by calculating the optimal process assignment

probability for each class of processes to every executable processor [NiAb81].

Once the assignment probabilities are calculated, the scheduling overhead is

small. Upon new process arrival, the destination processor is determined by

picking a random number weighted by assignment probabilities. Once a pro—

cess is assigned to a processor, it cannot be further migrated to another proces-

sor. Unless the process arrival rate is measurable and the system workload is

stable, static balancing is only theoretically interesting. Its optimality is defined

on a probabilistic basis and is not an absolute optimum. It does not cope with

the change due to system workload fluctuations.

In dynamic load balancing, the destination processor is determined by the

current status Of processors and channels. If the transmission overhead is not

considered and each process has a global view of the system, an optimal

dynamic balancing essentially results in an M/M/N queue [Klei75]. In other

words, the average process response time of an M/M/N queue provides the

lower-bound a computer network with N processors can achieve. Dynamic

balancing is definitely better than static balancing if scheduling overhead is not

very Significant. The detailed dynamic process migration strategy will be dis-

cussed in Chapter 2.

1.3. Review of Past Work

A few research efforts were conducted in the area of dynamic load balanc-



ing. Chow and Kohler [ChKo77] developed six queueing models for a distri-

buted system consisting of two identical processors, where each processor was

modeled as an M/M/l queue. One of them, which was most relevant to the

study, assumed that each processor had its own input source and that interpro—

cessor communication was allowed for the purpose Of process migration. The

communication channel initiated a process migration from one waiting queue to

another whenever the number of processes in one queue was two or more

greater than the number of processes in the other queue. Unfortunately, the

authors showed that there was no efiicient technique to analyze the perfor-

mance of this kind of system.

Stankovic [Stan81] formulated the distributed processes scheduling prob-

lem in Bayesian decision theory terms. The process scheduling problem was for-

mulated such that each decision was made on the basis of imperfect knowledge;

yet, taken together, the cooperation of the decision makers led to some global

optimum. A utility function was defined for each state (number of processes in

each processor) and each possible action (process movement). Using Bayesian

decision theory for off-line calculation of maximizing actions, the system

adapted with respect to varying processor loads. However, off-line calculation

was not practical for an eflicient and eflective migration efiort.

Bryant and Finkel [BrFi81] suggested a distributed and stable process

migration algorithm for homogeneous point-to—point networks. Employing a

time-Sharing discipline, the estimated response time was based on the execution

time that a process has received in the past. A pairing algorithm was used to

provide a pair for two adjacent unbalanced processors. Once a pair was formed,

each process in the heavy-load processor was evaluated according to its

estimated response time in both processors including the one-way transfer time.

The process migration procedure was repeated after each process movement



until the pair was balanced. The pair was then broken and each processor

formed another pair with its other neighbors. This is a dynamic preemptive

algorithm. Although the algorithm is stable, too much computation overhead is

involved.

A practical approach, the bidding algorithm, was originally designed for a

ring-structure distributed computing system (DCS) [Farb73]. It contributed a

rudimentary dynamic load balancing algorithm. In a bidding algorithm, when-

ever a new process arrived at a processor, a request for bids is broadcast to all

other processors in the system. The bid could be estimated execution time, cost,

etc. Processors returned bids to the requesting processor. When all bids were

received, the processor chose the best bid as the winning bid and a message

sent to the owner of that bid. At the point the bidder chose to accept or reject

that notification due to the changes of the state between the time the bid was

made and the time it was notified that it won the bid. If the bid was rejected,

the bidding algorithm started over.

A simple version of a bidding algorithm was implemented in the Engineer-

ing Computer Network (ECN) at Purdue University [Hwan82]. In the ECN

network, an estimated “load average” was maintained in each processor’s ker-

nel. The system provided a status report of the network in which the load aver-

age and utilization of each processor was updated periodically. Before a com-

mand was processed, the load average from every available processor was

obtained and the one with the minimum load average was chosen. The process

migration protocol did not consider the overhead of message transmission from

the source processor to the destination processor and the return path. The algo-

rithm was similar to the bidding algorithm mentioned above except that the

selected processor was forced to accept the migration regardless of the current

state of the processor. The communication overhead was thus reduced. But it



was possible that a processor won many bids from many other processors and

suddenly became overloaded. Obviously, both of the above process migration

protocols should be classified as dynamic migration in which the migrant pro-

cess could not be further remigrated.

Smith [Smit80] developed a contract net protocol based on the bidding

principle. Task distribution among the processors in a distributed system was

affected by a negotiation process which was an agreement between a processor

with a task to be performed and a processor capable of performing that task. A

processor, namely a manager, generating a task normally initiated contract

negotiation by advertising existence of that task to the other processors. When-

ever a processor was available, it checked the eligibility Specifications of all task

announcements that it received if it was eligible to bid on a task, and selected a

task on which to submit a bid. The successful bidder was informed that it was

a contractor for a task through an announced award message. Then, the

manager and contractor communicated with each other via information mes-

sage, report and termination message to cooperate in executing the task. Other

related works on bidding algorithm can be found in [StSi84].

1.4. Summary of Research Contributions

As can be seen, in the dynamic process migration field, the bidding algo-

rithm is the representative algorithm in the past. Its disadvantages, which will

become clear later in our study, challenge us to look for a better control algo-

rithm. The solution is the drafting algorithm, which is network topology

independent and accommodates dynamically changing system behavior. It

attempts to compromise between two contradictory goals : maximize the pro—

cessor utilization and minimize the communication overhead. Simulation

results show that the drafting algorithm efl'iciently achieves load balancing and
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outperforms the conventional bidding algorithm. From the analysis shown in

Chapter 3, the drafting algorithm achieves the optimal solution M/M/N queue—

ing model to certain extents. The internal load state aspect (predetermined

threshold value or dynamically determined threshold value) exposes the essence

of the load balancing control algorithm and overcomes the major deficiencies of

the bidding algorithm. The variation of the drafting algorithm described in

Chapters 6 and 8 combines some concepts of the bidding algorithm with the

drafting algorithm to give the best solution for specific environments, such as

token ring and CSMA/CD network environments.

1.5. Organization of the Dissertation

The remainder of the dissertation is organized in the following manner.

Chapter 2 describes the process migration mechanism, which is able to move a

process from one processor to another in a distributed system, addresses the

classification of processes, and results in what kind of processes can be

migrated. Chapter 3 analyzes the unbalancing phenomenon existing in distri-

buted systems and explores the necessities of load balancing and its implemen-

tation considerations. Chapter 4 deals with performance evaluation methods,

emphasizes there is no tractable way for the performance analysis of dynamic

load balancing except the simulation method, and presents the major points of

the simulation program used in data gathering for the algorithm analysis.

Based on the fundamentals of the process migration mechanism and load

balancing considerations described in Chapters 2 and 3, the drafting algorithm

is explained in Chapter 5. Simulation results support our qualitative analysis of

the algorithms and point out the difierences between static balancing and

dynamic balancing. In Chapter 6, the dynamic pairing concept coming from

the drafting algorithm is implemented within a specific network environment to

further exploit the characteristics of the drafting algorithm and the properties
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of the network. Based on features possessed by the token ring network, a writ-

able message format is designed as a convenient vehicle to carry negotiation

information when studying dynamic pairing algorithms. Chapter 7 demon-

strates the performance of dynamic pairing algorithms and further discusses the

difierences between two major dynamic load balancing strategies, the bidding

algorithm and the drafting algorithm, on the performance issues. Chapter 8

attempts to extend the dynamic pairing concepts into token passing bus net-

work and shows the implementation considerations on the CSMA/CD environ-

ment. Finally, in Chapter 9, conclusions about major improvements of the

drafting algorithm over the weaknesses of the bidding algorithm are summar-

ized. These conclusions give rise to some open questions, and suggest several

possibilities for further extension.



CHAPTER 2

PROCESS MIGRATION

In a distributed system, a mechanism which is able to move a process from

one processor, namely the originating processor, to another, namely the remote

processor, is called process migration. The process which is migrated is known

as a migrant process. It is process migration that attempts to improve the sys-

tem performance, to allow the sharing of resources, and to increase the system

reliability. With process migration, a process may be migrated from a busy pro-

cessor to a less busy processor to reduce response time of the migrant process.

Consequently, the system performance is improved. A process requiring a spe-

cial resource may be migrated to another processor with the desired resources.

Processes may also be migrated from a failed processor to other active proces—

sors to continue the service. Process migration is completed either explicitly by

the user or implicitly by the system in a user-transparent manner.

2.1. Classification of Processes

The unit migrated by the mechanism of process migration is a process,

which is different from a procedure or a program. A procedure is a portion of a

program. A procedure call does not return to the caller until the called pro-

cedure is completed. But a process may spawn a new process and return to the

caller immediately. For example, the fork() system call in the UNDC operating

system returns to the caller after starting the child process and allows the exe-

cution of both the calling program and its child processes to proceed con-

currently. Conversely, a program consists of a code executed by a single pro-

cess. But processes are not uniquely associated with a piece of code; multiple

processes may execute the same code simultaneously.

12
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A process should be viewed as a sequential machine, namely a sequential

program augmented by a named set of state information which allows the pro-

gram to be restarted at any point. Processes have their own address spaces and

do not interfere with each other due to the fact that each process has its own

local variables, formal parameters and procedure calls. Memory for local vari-

ables and formal parameters is associated with the process executing the pro-

cedure, not with the code in which they appear. In virtual memory manage

ment systems, a process consists of the program being executed, along with the

program’s data, stack and state. The state consists of the execution status,

dispatch information, incoming message queue, memory tables and the process’s

link table. Links are important paths by which a process communicates with

the environment. A link is a kind of capacity which provides the only connec-

tions for a process to the operating system, system resources and other

processes [PoMi83]. Thus, from the structure point of view, a process is an

abstraction most operating systems use to provide the execution environment

for running a program.

Processes are classified as system processes and user processes according to

the functions they perform. A system process frequently becomes a server pro-

cess, that is, most other processes can ask it to perform some functions. Those

processes, for example, include process manager, memory scheduler, file system,

command interpreter and packet reception processes, etc. User processes are

those processes issued by users. They gain access resources under the support

and control of system processes. According to the relationship between user

processes, they can be grouped into two categories : independent processes and

cooperative processes. An independent process is a process which is independent

from every other process in the sense that it does not mention any variable

occuring as a target variable in any other process. The independent processes
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may be executed asynchronously.

Cooperative processes require cooperation, of all related processes, involv-

ing either time or space domain. When cooperation refers to time domain, it

indicates there is precedence between the cooperative processes. The pre-

cedence of any given pair of processes reflects the logical execution sequence

with respect to time. There are potentially three basic relations [Huan85]

between a pair of processes A and B: (l) A precedes B, (2) A succeeds B, and

(3) A parallels B. A fourth precedence also exists : A and B precede as well as

succeed each other; i.e., there is a two—way process communication or coopera-

tion requirement between A and B. If A precedes B, A must be executed before

B; if A succeeds B, A must be executed after B; if A parallels B, A and B may

be executed independently. If A precedes as well as succeeds B, A and B must

be executed concurrently.

When cooperation refers to space domain, the processes share a set of glo-

bal memory space or data structures, and have a producer-consumer kind of

relationship. A producer process creates output to be utilized by a consumer

process. For example, a producer may accumulate a buffer of data from an

input device to be processed by a consumer process. Some cooperation is

required between the two processes, such as the transfer of full buflers, the

return of empty ones, or insurance of data integrity, etc. The classification is

summarized in Figure 2-1. In order to solve problems dealing with mutual

exclusion, synchronization, deadlock, and determinancy associated with the

cooperative processes, rapid communication between these processes is required.

2.2. Migratable Processes

It is natural that some processes are more suitable for migration than oth-

ers in order to improve system performance. “Suitable” means easier migration
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and lower overhead. Thus, migratable processes must be distinguished from

ordinary processes in order to identify which process will be migrated at a

specific moment.

Processes are discriminated as task and job by referring to diflerent granu-

larity [Klei85]. Task migration takes a single job composed of multiple tasks

and assigns them to diflerent processors. Job migration assigns the entire job

to a single processor. When a job arrives at a processor, the processor deter-

mines whether a job must be processed locally or scheduled for remote process-

ing. In the latter case, not only is a delay incurred as a result of sending the job

and its results over the network, but communications between processes (tasks

or jobs) is increased due to the separation of processes over physical space. The

higher the granularity employed, the more interprocess communication over the

network is involved. This type of overhead caused by migration of cooperative

processes must be reduced as much as possible. Therefore, the job is selected

as the migrating unit whenever the process migration is referred to throughout

this dissertation.

System processes in distributed systems reside in the local processor (it

may not be true in the MIMD systems where a system process may belong to

the whole rather than a local system). In homogeneous distributed systems,

every processor has a similar operating system. It is not necessary to migrate

system processes from one processor to another under normal conditions. Sys-

tem processes are often linked with other processes which make migration com-

plicated and increase channel traflic due to communication between the linked

processes. Similarly, the relationships of cooperative processes require clustering

of the processes in one place for convenience. If they are separated over

difl'erent physical spaces, not only are the migrations themselves diflicult but

the communication between them increases the burden of the channel and
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slows down execution speed of the processes. Consequently, only independent

processes not sharing any variables with other processes are suitable for migra-

tion under certain conditions. The criteria for specifying these conditions may

be classified as static and dynamic. Dynamic criteria are associated with the

current states of the system in question while static criteria are predetermined.

Static criteria include:

(1) Processor discipline. Processes whose memories are allocated are usually

not migratable processes because allocation implies the processor has the capa-

city to serve allocated processes. De-allocation increases migration overhead.

For example, for a FCFS discipline, the process being served is not migratable

while for a round robin discipline, the processes receiving a certain amount of

CPU service are not migratable processes.

(2) Load state definition. By using threshold values, the load states of a

processor are statically predefined. Some non-allocated processes in a heavy-

load processor are considered migratable processes. Details are discussed in

Chapter 3.

(3) Process priority. If processes are assigned priorities, the processes with

lower priority are not migrated whenever there are migratable processes with

higher priorities.

(4) Migration strategy. Migration strategy is described in Chapter 3. For

instance, if a single migration strategy is employed, then the migrant process

can not be migrated further. Conversely, in the repetitive strategy, the

migrant process can be migrated repeatedly. Under the strategy of preemptive

migration, the processes being served may be migrated, but under the strategy

Of nonpreemptive migration the processes being served are not allowed to

migrate.
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Figure 2-2 summarizes these Specifications. Users may also Specify whether

processes are migratable or not. Some Special resource requirements also affect

the definition of the migratable processes.

Dynamic criteria can dynamically determine the threshold values, the

estimated processor load, and the status of the channel traflic etc. We will not

discuss these criteria further in this study.

Based on the discussions mentioned above, a migrant process is an

independent and non-allocated process which satisfies applied criteria at the

instant when the migration decision is being made.

2.3. Migration Procedure

Once the decision is made to migrate a process, the following steps are per-

formed:

(1) Removal of the migrant process. The migrant process is marked “in

migration” and removed from the process table.

(2) The destination kernel is asked to accept the process. A message is

sent to the kernel on the destination processor, asking it to accept the migrant

process. The message contains information about the size and location of the

process’s resident state, swappable state, and code.

(3) Process state allocation on the destination processor. An empty process

state is created on the destination processor. The newly allocated process state

has the same process identifier as the migrant process. Resources such as virtual

memory swap space are reserved at this time.

(4) Process state transfer. Using the send data facility, the destination

kernel copies the migrant process’s state into the empty process state.

(5) Program transfer. Using the send data facility, the destination kernel

copies the memory (code, data, and stack) of the migrant process into the
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destination processor.

(6) Forward pending messages. Upon being notified that the migrant pro—

cess is settled down on the new processor, the source kernel resends all mes-

sages in the queue when the migration started, or that have arrived since the

migration began. The source kernel also changes the location part of the

migrant process addressed to reflect the new location of the migrant process.

(7) Clean-up of the migrant process’s state. On the source processor, all

states for the migrant process are removed, and memory for tables is reclaimed.

A forwarding address is left on the source processor to forward messages to the

process at its new location. The forwarding address is a degenerate process

state whose only contents are the (last known) machine to which the process

was migrated. A normal message delivery system tries to find the migrant pro-

cess when a message for it arrives. The source kernel has completed its work

and control is returned to the destination kernel.

(8) Restarting the migrant process. The process is restarted in whatever

state it was in before being migrated. Messages may now arrive for the process,

although the only part of the system that knows the new location of the pro-

cess is the source processor kernel.

The process migration considerations based on the CSMA/CD nerwork and

the token—passing environment will be discussed in Chapter 8.



CHAPTER 3

LOAD BALANCING CONSIDERATIONS

In a distributed system, every processor has its own job entry point. New

jobs arriving from this entry point are referred to as local arrivals or external

arrivals. Jobs also arrive from other processors in the system. These jobs are

migrant processes and are referred to as remote arrivals or internal arrivals to

that processor. Each processor has a difl'erent local arrival rate with the flow of

local arrivals fluctuating dynamically. These make load unbalancing a common

phenomenon in distributed systems. In this chapter, we first give the theoreti-

cal foundation of load balancing consideration. Then we will explore the

dynamic behavior of distributed systems and analyze the advantages and disad-

vantages of various load balancing approaches.

3.1. Theoretical Foundation

In this section, a theoretical upper bound of the system performance (or

the lower bound of the average process response time) is attempted which can

be achieved by employing load balancing algorithms. Then we try to show the

reason why we would like to investigate dynamic load balancing approachs

rather than the probabilistic ones. In order to analytically demonstrate these

points, several assumptions must be made.

It is assumed that each processor in the distributed system is modeled as

an M/M/1 queueing system [Klei75]. A distributed system with N processors

is then modeled as N M/M/l queues. For simplicity, the communication delay

among these processors is ignored. For a homogeneous distributed system, all

processors have the same service rate with a mean service rate ,1. Also, let X,-

be the local arrival rate to the processor i for i=l,2,...,N . Thus, the total

21
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arrival rate to the system is

N

12 = 2M (3-1)

i=1

In the ideal case, a well balanced system implies each processor has a glo-

bal view of all processors in the system. Thus, if the communication delay is

ignored, a process waiting for execution implies that all processors must be busy

executing other processes. If a processor is idle, then there must be no process

waiting for execution. This well-balanced behavior can then be modeled as an

M/M/N queue with N processors sharing a single waiting queue. The average

process response time of an M/M/N queue with total arrival rate R and total

mean service rate pN provides the lower bound on the mean process response

time we can achieve as shown below.

T = Po(R/#)N R/#N+_1_

N! (1-12 /pN)2R R

 

(32)

where

l

_ ”-1 (R1 2" (Ii/u)” 1
go up + N! 1—(R/pN)

 

Note that Eq.(3—2) is well-known and can be found in many queueing

books (e.g., [Klei75]). Also note that if we do consider the communication delay,

the lower bound will increase.

Now we discuss why we want to study dynamic load balancing rather than

probabilistic load balancing. If the total job arrival is uniformly distributed to

all processors, the system is said to be probabilistic balancing. In this case, the

local arrival rate to each processor is

x, = x = R /N. (3-3)

The system can then be modeled as N identical M/M/l queues. The mean

process response time in this case is
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 T,-=——= 3-4

u-x. u—x ( )

Again Eq.(3-4) can be found in most queueing books.

Figure 3-1 compares mean process response time of the theoretical well-

balanced to the case of probabilistic balancing. It can be seen that probabilistic

load balancing is not good enough or not well balanced because it is measured

on a probabilistic basis and does not cope with the instantaneously changing

behavior of the system.

A distributed system is said to be unbalanced if some processors have some

processes waiting in the queue for service while some other processors are idle.

This implies system resources are not fully utilized. A probabilistically balanced

system exists where all processors have the same mean process arrival rate.

Formally, we define the degree of load imbalance (DLI) as the probability that

there is at least one processor idle while there are one or more processes ready

for execution. An M/M/N queue is well-balanced. In other words, the DLI of

an M/M/N queue, can be denoted by DLI(l-M/M/N) is zero.

For an M/M/l queue, the probabilities of having an idle processor or at

least one process in the waiting queue, with no idle processor and no waiting

process, are denoted by a , b , and c , respectively. The degree of load imbal-

ance for an N-M/M/l system is

 

N—l N—i N! i . _'._.

DLI(N_M/M/1)=;§1 J.§,i!j!(N-i—j)! a chN J (3-5)

where

a = p(0), b = 1-p(0)—p (1), c = p(1) (3-6)

and

12(0) = 1-(Vu) (3-7)

11(1) = (Vqu-Vu) (3-8)
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Note that p (i) is the probability of having i processes in an M/M/l queue and

its derivation can be found in many queueing books.

Let p=1-p (0)=>./p denote the processor utilization or the load of a pro-

cessor. Figure 3-2 shows the value of DLI versus the processor load with

respect to diflerent number of processors (N). It can be observed that as N

increases, the system performance decreases due to the greater degree of load

imbalance. The more processors a distributed system has, the more likely the

system is unbalanced.

The performance degradation due to load imbalance becomes small when

the system is very lightly or very heavily loaded. With the lightly loaded situa-

tion, most processors are idle with a few waiting processes when the system is

probabilistically balanced. In the heavily loaded situation, most processors

have processes waiting for service. It is unlikely that some processor is idle.

Note that if the total arrival rate is greater than the total system capacity (i.e.

R >[1N ), the system is unstable and even load balancing cannot help. In other

words, pN is the upper bound of the system capacity that it can serve.

A dynamic load balancing strategy tries to balance the system load at any

instant, depending on the system’s current status. In the above discussion,

communications overhead is ignored and each processor has a global view of the

whole system. This is unrealistic in a distributed system. First, the communi-

cation delay is non-negligible. Second, in order to have a global view of the sys-

tem, each processor must periodically report its current status to all other pro-

cessors. Thus, more communication overhead is involved. Due to the communi-

cation delay the current status may be outdated when it reaches other proces-

sors. Design of dynamic load balancing algorithms should always consider the

trade-ofl between maximizing system utilization and minimizing communication

overhead.
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3.2. Classification of Load Balancing Strategies

A dynamic process migration algorithm is a high level protocol which con-

siders the semantics of the information being passed. It oflers a structure that

assists the system designer in deciding what processors should say to each

other, rather than how to say it [Smit80]. According to the ISO reference

model [Zimm80], a process migration protocol should be implemented in the

application layer. Algorithms of load balancing may be classified into deter-

ministic and stochastic categories. The stochastic approach falls into static

(probabilistic) and dynamic (adaptive) balancing as described in Chapter 1. We

are only interested in dynamic load balancing.

In dynamic load balancing, the destination processor is determined by the

current status of processors and channels. A dynamic balancing algorithm may

allow a process to be migrated more than once, called repetitive migration, or

only once, called single migration. In a time-sharing system, a processor

preempts the execution of a process due to time quantum expiration or other

events. In a homogeneous system, a preempted process is migrated to another

processor along with its process control block to continue its execution. This

strategy is called preemptive balancing. With nonpreemptive balancing, once a

process begins its execution, it can not be migrated even if it is preempted. The

classification of load balancing strategies is summarized in Figure 3-3. Other

works emphasizing the modeling and analysis of the process migration for load

balancing can be found in [ChKo77, Stan81, GaLR84].

The priority of load balancing over other traflic on the network channels is

an undetermined issue, because load balancing is what is called “making perfec-

tion still more perfect.” No doubt, it is suitable for the case in which the traflic

of the network channels is not very heavy. In the other case, it will generate

more traflic but cannot guarantee to reduce the response time of the migrant

 



p
r
o
c
e
s
s

m
i
g
r
a
t
i
o
n

\
.

d
e
t
e
r
m
i
n
i
s
t
i
c

s
t
o
c
h
a
s
t
i
c

g
r
a
p
h

h
e
u
r
i
s
t
i
c

m
a
t
h
e
m
a
t
i
c
a
l

d
y
n
a
m
i
c

s
t
a
t
i
c

t
h
e
o
r
e
t
i
c

p
r
o
g
r
a
m
m
i
n
g

s
i
n
g
l
e

m
i
g
r
a
t
i
o
n

r
e
p
e
t
i
t
i
v
e

m
i
g
r
a
t
i
o
n

p
r
e
e
m
p
t
1
V
0

"
O
H
D
P
B
Q
M
D
t
1
V
0

F
i
g
u
r
e
3
-
3

C
l
a
s
s
i
fi
c
a
t
i
o
n
o
f
l
o
a
d
b
a
l
a
n
c
i
n
g
s
t
r
a
t
e
g
i
e
s

 

 

28



29

processes because the already heavily loaded channel traflic may unpredictablly

postpone load balancing actions. What quantity could be used to distinguish

the states of the channel traflic is unknown. Unfortunately, we ignore this issue

in the first stage of study.

3.3. Algorithm Design Considerations

Load balancing can improve the performance of distributed systems. How-

ever, it will increase network traflic caused by the control information

exchanges and process migration. Therefore, a good load balancing protocol

design should consider the following trade-ofls:

(1) maximize improvement of the system performance;

(2) minimize additional traflic caused by process migration;

(3) achieve fairness at the system level; i.e., maintain a FCFS discipline in

the global sense.

The characteristics of a distributed system depend on the nondeterministic

nature of concurrently running processors and the unpredictability of communi-

cation network traflic. These characteristics dynamically change network condi-

tions and processor’s loads.

In order to design a good algorithm, the trade-offs mentioned above must

be considered, and the features of dynamic load balancing explored. Normal

conditions of the system must be considered with special attention paid to the

anomalies of the system as important design principles. We start by analyzing

the bidding algorithm, described in Chapter 1 and briefly depicted in Figure 3-

4, to investigate considerations of a good design. The bidding algorithm is

briefly described as follows:

Suppose that there are N processors in a distributed system. A new process

arrives at processor i. Processor i broadcasts a bid request message to all other
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all processors in system

   

 

request for bid

A

. , winner notification .

1 J
\ /

accept or reject

 

 

migration if accepted

Figure 3-4 A brief illustration of bidding algorithm
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N—l processors. Every processor responds with a bid message to processor i.

After receiving all the bids, processor i selects processor j as the winning bidder

(because it is the least heavy processor) and then sends winner notification to

processor j. At the moment processor j receives winner notification, it checks its

current state. If it can accept a migrant process, it sends an accept message to

processor i with processor i migrating the new arrival to processor j. Otherwise,

processor j sends a reject message to processor i. The bidding algorithm, then,

bins again.

Avoidance of wait-while-idle

A distributed system is unbalanced if some processes wait for service in

some processors while some other processors are idle. This behavior is referred

to as wait-while-idle. A good process migration strategy minimizes the wait-

while—idle occurrence. One way of achieving this goal is to assign arrival

processes to other active processors. The bidding algorithm migrates new

arrivals to the least busy processor. However, it cannot avoid the occurrence of

wait-while—idle because process migrations are triggered only by the new

arrivals, i.e., the external arrivals. The fluctuation of the external arrivals

influences the behavior of the system. As shown in Figure 3-5(a)(b), originally

both queue 1 and queue 2 are idle with 20 new arrivals entering queue 1. The

bidding algorithm causes 10 of them to migrate to queue 2. As a result, there

are 10 processes in each of queue 1 and queue 2. Note the same length does not

imply to the same load because the processes sizes are different. Suppose that

no new arrival comes for a while and the 10 processes are all served by queue 2

but 2 processes are left in queue 1. The lengths of queue 1 and queue 2 become

2 and 0, respectively (Figure 3-5(c)) and wait-while-idle occurs. The only way

to avoid wait-while-idle is to trigger process migration by the processes’s inter-

nal states.
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Avoidance of unfairness

Suppose that the discipline of all queues is FCFS. The migration algo-

rithm would not only pay attention to load balancing but also keep FCFS dis-

cipline in the global sense of the system level in order to make services fair and

to achieve the requirements of the M/M/N multiple processor FCFS queueing

model. If an algorithm for load balancing arbitrarily chooses a process from a

longer queue and migrates it to a shorter queue, then later arriving processes

will be served earlier than earlier arriving processes. In Figure 3-5(c), 3 new

arrivals come into queue l. The bidding algorithm migrates 2 processes of the

new arrivals to queue 2. These later arrivals may be served by queue 2 earlier

than the earlier arriving processes in queue 1. The FCFS discipline is destroyed

in the global sense. Thus the proper process must be selected from the waiting

queue before migration in order to maintain FCFS discipline as much as possi-

ble. Proper process specification depends on the definition of the internal states

of the processor.

M 00- ncht nnv huvv (0) One heavy many light

Figure 3-6 Problems with heavy-load processor initiating migration
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Avoidance of unnecessary process migration

One way to balance the load is to evenly balance the number of processes

in queues. Whenever a diflerence of 2 is reached between two queues, a process

in the longer queue is migrated to the shorter queue. Later on, however, the ori-

ginal shorter queue may have more processes in its queue than the original

longer queue; then some processes will be migrated back. From Figure 3-5(d)(e)

we see that if 5 new arrivals enter queue 2, some will be migrated to queue l,

the original longer queue. This is called processor thrashing [BrFi81].

The goal of load balancing is to keep all processors busy rather than to

keep them loaded evenly. The process migration algorithm is invoked only

when migration is necessary. This means a process is migrated only when some

processors have extra resource capacity while others lack resource capacity.

Thus, by avoiding unnecessary process migration, process migration has to be

triggered by the processor’s internal load state.

Initiation of process migration

A bidding algorithm only migrates new arrivals from a given processor to a

more lightly loaded processor. It is also possible to migrate processes from a

heavily loaded processor to a less heavily loaded processor or from a lightly

loaded processor to a more lightly loaded processor. There are three problems

with the heavy-load processor initiating process migration. First, it is possible

that several heavy-load processors each send one process to a light-load proces-

sor. As a result, the light-load processor immediately becomes overloaded.

Second, executing the algorithm will further increase the burden of the already

heavily loaded processor as shown in Figure 3-6. Third, it is much more difficult

to achieve fairness by migrating the new arrival to a light-load processor

because the new arrival process which has migrated to a light-load processor
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may be completed sooner than those processes entering the system earlier but

remaining in some heavy-load processors. Allowing the light-load processor to

initiate migration, permitting only one process migration at a time from a

heavy-load processor to a light-load processor with proper definition of the

migratable process, will alleviate these problems.

3.4. Internal Load States of Processors

So far, we have concluded that the internal load state of a processor must

be defined. The processor’s internal state is mainly reflected by the processor

load. A processor is in the light load state if it has “extra capacity available” -

namely, it can accept some migrant processes. If the processor lacks capacity,

then it is in a heavy load state. Process migration is necessary only when there

exists some light load processor(s) and some heavy load processor(s). Defining

only the two states is not suflicient, however, because of processor thrashing

and state woggling. State woggling means that the state swings between the

adjacent states. It is necessary to define a third state, the normal load state

between the light state and the heavy state. A processor in the normal state

implies that it requires no migration. Two quantities must be defined which

may be used as thresholds to specify three load states of a processor.

Load measurement

A dynamic load balancing algorithm concerns the dynamic changing of the

processor load. The processor load indicates the utilization of the capacity of a

processor (degree of ”busyness” ), which is usually determined by three major

factors : operating system strategy, workload distribution and processor charac-

teristics. The response time which a process experiences on a processor is an

ideal measurement of the processor load. One approach to defining the load is

to measure the increase in response time of a given process when it is run on
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the current processor over the response time needed if it is run on a completely

idle base processor. However, this definition is not practical because many

unmeasurable and time-varying parameters are involved, such as process execu-

tion time and memory requirement. Consequently, the response time is process

dependent and is unknown information until the process is served. Thus, a load

estimation method to measure the load based on the current status of the pro-

cessor is needed. The method should be eflicient and eflective.

The operating system may estimate the current load based on certain

measurable parameters, such as the number of processes in the system, mean

execution time, etc. Therefore, the estimated load of a processor at any instant

is process independent. The measurement of the estimated load for a single

server queue with FCFS discipline is derived as follows [NiLi82]: Once a new

process arrives, the number of processes in the processor, say N, can be meas-

ured. If N is equal to zero, the estimated response time for the new arrival is

simply its own actual execution time. However, before the completion of the

new arrival, the service time is unknown. The estimated response time is its

mean service time, E[S]. If N is greater than zero, there is one process in service

with other N—l processes waiting. The estimated response time for the new

arrival, in addition to its own mean service time, must include remaining ser-

vice time of the process in progress and the service times of all other N-l

processes. Formally, we have the estimated processor load (EL) for the new

arrival process

EL(N)=E[S] ifN=0

EL(N)=N*E[S]+E[82]/2E[S] ifN >0

where E[S] and E[S2] are mean and variance of service time distribution,

respectively. The second term of the second equation is the remaining service

time of the process being served. AS the above equations show, the estimated
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load is proportional to the number of processes in the processor. For diflerent

disciplines, the equations of the estimated load are diflerent. However, they are

functions of the number of processes in the processor.

The number of waiting processes of a processor is a measurable parameter,

while a processor can be modeled as a single server queue. The length of the

queue may easily be partitioned into several parts by applying predefined thres-

hold values. These parts are used to represent diflerent load states. Even

though the queue length does not take the size of the processes into account, it

is an applicable parameter for load estimation.

A load estimation program may also be written which runs forever in a

time-sharing system. Each time the program receives its CPU turn, it calcu-

lates the time interval between the last visit and the current visit to the CPU.

The time diflerence is recorded and the program waits for its next visit. Based

on the value of time diflerence, the processor load may be estimated. The

greater the time diflerence is, the heavier the processor load is.

Estimation of processors’ internal states

In looking at the conventional multiprogramming operating system, we can

figure out some necessary modifications in order to facilitate dynamic process

migration in a network environment. Multiprogramming is an operational tech-

nique allowing several processes to share the computer resources. In such a sys-

tem, the processor, CPU, divides its time between a variety of processes. These

processes are arranged for convenience in a number of queues, some containing

processes that are free to run and some containing processes that are halted for

one reason or another because they are waiting for some peripheral actions to

be completed. A new process becomes a unit of work to the operating system

when submitted to the system. Usually, an initial program structure is created
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for the process and a control block built to hold control information, such as

registers, program counter, pointers to other control blocks, etc., which are

dynamically maintained for that process. The operating system is responsible

for maintaining a list of processes in various stages of passage through the sys-

tem. The waiting queue contains processes that were already presented to the

system, but were not allocated space in the main memory. The ready queue

contains processes actually loaded, which are either subsequently given control

of the CPU by a scheduler routine or removed to the waiting queue to leave

space for a high priority process. There are many event queues for diflerent

events. It is possible that the memory of a process in the event queue is de-

allocated. After the event is satisfied, the process is transferred to the ready

queue if it is still allocated memory or is transferred to a waiting queue if the

memory is de-allocated. Figure 3-7 shows the queueing model of a conventional

multiprogramming system.

The model can be simplified by considering only the factor of memory allo-

cation and eliminating event queues as depicted in Figure 3-8.

In a network environment, the queueing model of each processor has to be

changed slightly to accommodate the connection of incoming and outgoing

channels.

As mentioned above, the number of processes in the processor is selected

as the measurement of the processor load. In order to reduce on-line calculation

time, the three load states are statically predefined by dividing the waiting

queue into three queues, resident queue, threshold queue, and schedule queue.

For those processes which are allocated physical memory space or scheduled or

partially executed, and are unlikely to be migrated, the resident queue is set up.

The light-load state is defined as the state in which the number of waiting

processes is less than or equal to the length limitation of the resident queue.
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The processes in the schedule queue are the migratable processes. If the

schedule queue is not empty, the processor is in the heavy-load state. The

threshold queue is located between the resident queue and the schedule queue.

The length limitation of the threshold queue affects the definition of both nor-

mal and heavy states, and therefore afl'ects the migration control algorithm.

Thus, it is an important parameter of the algorithm. The choice of the length

limitation of the threshold queue will be discussed later. Figure 3-9 shows the

completed model which corresponds to the definition of the processor’s internal

states described above for the processors working in the network environment.

Since the load is defined as the number of processes in the processor, the

load evaluation time is the instant of a process departure event or a process

arrival event. If the load evaluation procedure is invoked only at fixed intervals,

the state change from H-load to L-load or from L-load to H-load is possible if

the time period is too long. A long load evaluation period is undesirable because

it does not reflect its current processor load. In this study, the state transition

is assumed such that a processor can capture its load change from H—load (or

L-load) to N-load before the state changes to L-load (or H—load) as show in Fig-

ure 3-10. Detailed explanation of * will be presented in Section 5.2.

NORMA LIGHT

ON. IL.

*: load-change message may be sent

 
 

 
 

 

Figure 3-10 The state transition diagram of the processor’s load



CHAPTER 4

PERFORMANCE EVALUATION

Performance influences all aspects of computer systems or protocols, from

their design to management. Hence, it is important to study in detail a system’s

or protocol’s performance characteristics at every stage of design. It is especially

important to be able to analyze and predict the performance of a newly

designed system or protocol since its actual performance is unknown.

4.1. Methods of Performance Evaluation

Queueing network models are frequently used methods for analyzing distri-

buted systems or computer networks. Various analytical, numerical, and simu-

lation techniques are devloped to obtain exact or approximate solutions of

queueing models. Notable among them are the power iteration method

[WaR066], generating function approach [Klei75], product form solution

[GoNe67, BCMP75], and recursive solution technique [HeWC75]. A queueing

model with adaptive or dynamic scheduling methods can not be analyzed

exactly [LaWoSl]. [ChKo77] studied various load balancing strategies for a dis-

tributed system with two processors. The only load balancing strategy they

could not analyze was the dynamic one. AS a result, an approximation method

was used. In their approach, the communication delay was not considered.

The analysis became even more complicated if the communication delay was

considered.

The main reason for being unable to exactly analyze such a queueing net-

work was due to the loss of the Markovian property. For a dynamic scheduling

discipline, the arrival to a processor became state dependent and was no longer

a Poisson process. Each processor then was modeled as a G/M/l queue, where

42
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G indicated a general distribution and could not be obtained.

Recently, Timed Petri Nets have been considered to be powerful tools for

modeling and performance Specifications of communication protocols. Timed

Petri Nets were first introduced by Ramchandani [Ramc73] by associating firing

times with the transitions of ordinary Petri Nets, in order to study their

steady-state behavior. Garg and Ozsu [Garg85, Ozsu85] successfully used it in

the field of performance specification of distributed protocols. However, they

also experienced limitations of the method. It was hard to express an explosion

of states for complex protocols. The model worked under the assumption that

the data transfer time was constant. However, this assumption was not suitable

for our situation in which both the control message exchanges and the process

migrations were nondeterministic.

The last solution to measure the performance of distributed systems with

dynamic scheduling methods was to conduct simulation experiments. For net-

works, the important aspects were the topology of networks, the bandwidth of

channels, the conflicts in access to channels, the unpredictable nature of mes-

sage passing , and piggyback technique, etc.. Simulation experiments were time

consuming, but they accommodated the characteristics of a real distributed sys-

tem. Section 4.2 details the structure of the simulator used.

4.2. Simulator

A simulation program was implemented in the Pascal and C languages

based on the queueing network [SaCh81]. The simulation program was driven

by events, using the regenerative method. The major points of the simulator

are described as below.
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Mapping concurrent events into sequential behaviors

Dynamic process migration in a distributed computing system deals with

several concurrent processes which include not only the local external arrival

processes in every processor but also the communication processes as well as the

processes migrated by internal process migration. Computer systems are usu-

ally seen as discrete state systems. The discontinuous state transitions are

called events. The mapping of concurrent behaviors into the sequential

language is based on the assumption that there is no more than one event hap-

pening at exactly the same time over the system. Therefore, even though con-

current processes act in diflerent processors of the system, the time order maps

them into a sequential event chain. Thus, a sequential language may be used to

mimic concurrent behaviors. An event list arranged by the time at which the

event occurs is used to keep track of the events over the system. The event list

is a doubly linked list. Process arrival and process completion are the two

major events. Other events mainly depend on the algorithm to be simulated.

Data structure for constructing the topologies of networks

There are a variety of topologies of computer networks and a variety of

models of the computer processors. A simple linked list is selected to unify the

presentation of networks. The simple linked list consists of a set of processor

records associated with a neighbor list. The neighbor list in each processor

record expresses the connection between processors. For example, if processor 1

has connections to processor 2 and processor 5, then there are two neighbor

records in the neighbor list of processor 1. Each processor is modeled as an open

queueing network. Users easily specify the global parameters and system model

by a data file without modifying the program. These data structures make the

simulation program flexible for any kind of network topology and any kind of
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connection of queueing models within a Simulated processor.

Data gathering

The Simulation should gather those data generated in the steady-state con-

dition of the real-world system. A statistical approach, called the regenerative

method, which satisfies this requirement, is employed. The basic concept under-

lying this approach is that a simulation run can be divided into a series of

cycles such that the behaviors of the system during diflerent cycles are both

statistically independent and identically distributed. The statistics within each

cycle comprise a series of independent and identically distributed observations

analyzed by standard statistical procedures [HiLi80].

The regenerative method is based on the properties of Markov processes.

The future behavior of a Markov process is dependent only on the process’s

current state. Each time a Markov process enters a specific state, called a

regeneration state, the process has the same expected future behavior, and the

Markov process is regenerated. The periods between successive entrances to the

state are known as the regeneration cycles. If there is an ability to observe

enough regeneration cycles, then the central limit theorem is applied to find the

mean value of the observations. The theorem says that if random variables are

independent and identically distributed, their sum tends toward a normal dis-

tribution as the number of random variables becomes large.

A principal advantage of the regenerative method is that if the simulation

is initiated in a regenerative state, then it is assumed that simulation is initial-

ized in an equilibrium condition. The principal difliculty with the regenerative

method is in finding a frequently occurring regeneration state. Usually the

regeneration state is selected to be the occurrence of a new arrival with no cus-

tomers left. At this point, future arrivals are completely independent of any
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previous history, and the state occurs very frequently.

Confidence interval and statistical formulas

The confidence interval and the statistical formulas are the important

design bases of the simulator. The confidence interval of a parameter is a

range of value 2c within which the sample data of the parameter being

estimated is almost sure to lie [Lind76]. The confidence interval is used for indi-

cating the reliability or precision of an estimate process. Correspondingly, a

confidence coefl‘icient a is chosen to indicate a percent of the samples lying in

the confidence interval, which afl'ects the width of the interval.

The notations declared below are used for the statistical formulas.

2c —- confidence interval of the parameter

a -- confidence coeflicient of the parameter

a -- mean of the parameter

0.2
-- variance of the parameter

a - standard deviation of the parameter

Ti -- sample mean which is the estimate of the parameter

52 -- sample variance of the parameter

n -- number of samples

By the central limit theorem, the sample mean H tends to be normally dis-

2
. O C a O .

tributed With mean u and variance — as n grows larger. The minimum

n

number of samples to be taken so that the error between the u and its estimate

It is tolerable may be expressed by the means of probability terms as

PHH-u|<ClZa (+U

The central limit theorem also tells us that

PHfi—pl <c]=P[u—c <fi<p+c]

=¢((#+;l-fl)_¢((M-:)‘fl)

77' '77
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Let a be chosen so that the probability of a random variable With the

standard normal distribution falls within (fig/7;, of) is a. In other

words, let the following equation be true.
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reveals that the confidence interval c may be estimated by giving the confidence

coeflicient a. However, the value a in (4—5) is unknown so that it must be

replaced by the estimate of the sample variance of the normal distribution

[Lind76]
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i=1
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where s,- is the value of the sample data.

If a parameter X estimated is obtained by calculating a statistic Y for a

time period of regeneration cycle T, then

=M (4-7)

M“
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When n complete cycles are generated during the simulation run, the data

gathered are Y1, Y2,..., Y” and T1, T2,..., Tn for the respective cycles, and
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Finally, the confidence interval of the parameter of interest is

¢-1(_1‘i2'a)fiE

x/FT

given the confidence coeflicient of the parameter.

C:

Response time estimation

(4-8)

(4'9)

(4-10)

(4-11)

(4-12)

Mean response time t- is obtained from the response time values of each

individual process. The response time of a process is computed as the difference

between its departure and arrival times. Instead of storing all response time

values, the simulation keeps a running estimate of T, which at any instant is

the value of t— up to that instant [Ferr78].
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Let t:- denote the response time averaged over the first i processes com-

pletely processed by the simulator and let tj be the response time of the jth

process executed. we have

_ 1 8'

i=1

and

- 1

ti+l = 7:01 + ‘2 + "' +t.‘ +ti+1l

1 . -

= T+—1(z * t. +ti+1l

i - 1
. . — t.

Thus, to compute t-,-+l, the values of t1, t2, t,- were not needed. It is

(4-14)

suflicient to know i;- , i and t,-+l for given t-l = t1.

Similarly, the variance of successive observations about current mean t:-

may be kept and updated during simulation without storing all the individual

response times.

Structure of simulator

The entire simulator consists mainly of two parts. One deals with the gen-

eral aspects, such as the structure of the event list, the initialization of the

parameters, the description of the topology of the network, the definition of the

queueing model of a processor, and common procedures for manipulating these

data structures. The other part concerns the algorithm to be simulated. The

program is separated into two parts so that the first part is suitable for

diflerent algorithms, and the second part is modified. The first part is affected

by the second part.

For example, the simulation model is determined by the algorithm simu-

lated while the first part must build up the model. A more flexible method of
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accomplishing a different data structure in one program is to use a separated

data file. Two data files are available for this purpose. One is called datagloba,

the other is called datastatn. The “datagloba” file contains global parameters,

such as the number of processors in the system, the arrival rate at each proces-

sor, etc. The “datastatn” file describes the parameters of each queue and the

structure of the queueing network in each processor. Any queueing network

must be defined by specifying the predecessor and the successor of each queue.

If the number of predecessors is more than one, then a priority is assigned to

each predecessor. The various classes of processes go to diflerent successors of a

queue via diflerent paths. The simulation model is described by the file and the

file is the input of the first part. The second part is dedicated to the algorithm

itself. This separation makes the simulator flexible. For different algorithms, the

general part is not necessarily modified.

The whole program consists of 12 separate files organized to perform four

functions: input/output, job manipulation, common subroutines (including a

debugger), and algorithm simulation. Input/output includes initstatn.c,

initpara.c, presult.c; job manipulation includes newjob.c, arrive.c, complete.c;

common subroutines include event.c, pack.c, common.c, show.c; and

algorithm.c is the part to be modified for diflerent purposes.

The main program contains a while loop shown as follows.

initialize data structures and parameters;

while (stopping criterion is not satisfied) {

remove the first event;

switch (event kind) {

case JOBARRI :

switch (queue kind) {

case S NK :

statistic procedure;

break;

default :

put job into the queue;

break;
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break;

case JOBDEPA :

complete a job;

send the job to the successor queue;

break;

default :

special events;

break;

Figure 4-1 The main() of the simulator

It controls arrival and departure to and from each queue as well as other special

events, such as the token arrival in the token ring network, and the minus

quantum for the round robin discipline.

4.3. Simulation Model

A distributed computer system consists of N independent processors con-

nected in an arbitrary fashion by a communication network. The topology of

the communication network is varied in different studies. In Chapter 5, a

point-to-point topology is adopted; in Chapter 6, a token-ring network is

chosen; in Chapter 7, a CSMA/CD-based environment is considered. Processors

in the system have the same processing capabilities; that is, a process may be

processed from start to finish with any processor in the system. Processors

employ the same kind of operating system, so they comprise a homogeneous

distributed system.

Processes arrive at processor i, i = 1, 2, ..., N, according to a time-

invariant Poisson process with rate X,- . The total process arrival rate is denoted

by R. A process arriving at processor i may be either processed at processor i or

migrated through the communication network to another processor j. A

migrant process from processor i to processor j receives its service at processor j
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and is not migrated to other processors again. After the process is processed at

processor j, a result is returned to the original processor, where no more pro-

cessing is required. A decision of migrating a process depends on the state of

the system as determined by the drafting algorithm to be described in the next

chapter.

The processor model used for simulation is shown in Figure 4-2. The open

queueing network of the processor has 6 queues and a sink. The schedule queue

is the port communicating outside the computer system. All new processes

entering the processor come into the queue in question. The incoming queue is

the port which communicates with other processors within the system, and is

used to bufler migrant processes. The migrated processes may either be the

migratable processes or the result migrated back. The former is sent to the

threshold queue, the latter is sent to the sink. The outgoing queue is the port

that accumulates all messages and migrant processes before they are sent out to

other processors. The schedule queue is for queueing processes waiting for

scheduling. The processes in the schedule queue may be scheduled to be pro-

cessed either on the local processor or on the remote processor. Both the thres-

hold queue and the resident queue are finite queues and the length limitations

are parameters of the drafting algorithm, which determines the load state of

the processor as described in Chapter 3.



CHAPTER 5

A DISTRIBUTED DRAFTING ALGORITHM

Based on the study of design considerations and the processor state, a

drafting algorithm with respect to dynamic process migration has been

developed. The drafting algorithm has appropriately answered questions raised

by the distributed control algorithms mentioned in section 1.2. and gives

eflicient and eflective control of process migration as proved by the results of

the simulation of a point-to—point local network.

5.1. Drafting Algorithm Concept

The drafting algorithm is divided into two phases. In the coupling phase, a

light-load processor attempts to find a partner (called a couple) from one or

more heavy-load processor(s) by mutual selection. In the drafting phase, the

heavy-load processor either migrates a most appropriate migratable process to

the light-load processor or sends a too-late message to indicate there is no

longer any migratable process when it tries to migrate a process to the light-

load processor.

The drafting algorithm is defined based on the following assumptions:

(1) it is executed in a homogeneous distributed system; it allows a process

to be migrated only once, and does not allow preemption;

(2) there is no user specified process migration in the system;

(3) lower level communication is reliable;

Coupling phase

Whenever a light-load processor invokes the drafting algorithm, it looks

first at the load table (section 5.2) which contains the most recent information

54
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of the load of all other processors in the distributed system to check if there is

any eligible processor to participate in the action of load balancing. If such a

processor exists, it is called a candidate processor. There may be zero, one or

many candidate heavy-load processor(s).

(1) l-to—O case (one light-load processor, no heavy-load processor)

Since there is no heavy-load processor, the drafting processor goes to Sleep

to prevent useless information exchange with respect to migration. When a

processor’s state becomes heavy, it broadcasts a heavy-load state to other

light-load candidate processors. This message wakes up any sleeping light-load

processor(s).

(2) l-to—l case (one light-load processor, one heavy-load processor)

The light-load processor knows there is only one heavy-load candidate pro-

cessor. A couple is found between these two processors already. However, it is

possible the same heavy-load processor also is the candidate processor of other

light-load processors. Therefore, the same heavy-load processor couples with

many light-load processors. A N-to-l (many light-load processors, one heavy-

load processor) case results over the whole network. From the light-load

processor’s point of view, however, the coupling phase has been done.

(3) l-to-N case (one light-load processor, many heavy-load processors)

A light-load processor may find that there are many heavy-load candidate

processors when examining its load table. It must select only one as its couple.

It sends out a draft request message to all heavy-load candidate processors,

requiring them to reply their draft age. The light—load processor selects the

heavy-load processor with the oldest draft age (heaviest load or process in

scheduling queue waiting the logest) as its migrating couple. From the light-

load processor point of view, the situation becomes a 1-to-1 case. Its coupling
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phase is completed. A two-step control message is needed for every algorithm

invoked in this case. Of course, from the whole distributed system point of

view, the Situation may be the more complicated N-to-N case (many light-load

processors, many heavy-load processors).

Migrating phase

The drafting algorithm begins its migrating phase immediately following

its coupling phase. The light-load processor sends a draft standard to its couple

processor. This represents a range of acceptable draft ages for migratable

processes from the heavy-load processor. The heavy-load processor migrates a

migratable process to the light-load processor if it finds a migratable process

which satisfies the draft standard.

As mentioned above, the l-to-l case may represent a N-to-l situation over

the whole distributed system. The selected migratable process in the heavy-load

processor may have been served by the local processor or may have been

migrated to another light-load processor when the heavy-load processor receives

the draft standard message from a light-load couple processor. Then, it either

migrates another migratable process which still satisfies the draft standard or

sends a too—late message to those light-load processors sending the draft stan-

dard message. The algorithm is briefly illustrated in Figure 5—1.

5.2. Design Parameters

Many design parameters should be determined for the drafting algorithm.

The major parameters are discussed as follows.

The length of the resident queue

The length limitation of the resident queue determines the light load state

of the processor, which is an important parameter for triggering the drafting
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algorithm. In single processor computers, the value of l with the FCFS discip-

line, or the degree of multiprogramming with a round-robin discipline, is the

measurement of the processing capacity of the computer (processor or memory).

This measurement is expressed by symbol L. Therefore, the load situation is

called light if the number of waiting processes in the processor is less than or

equal to the value of L. The value of L is a parameter which depends on the

arrival rate, the departure rate, the discipline of the processor, the size of the

physical memory, and the size of the processes as well as the attributes of other

resources.

The Q value

The length of the threshold queue is a subtle parameter, as mentioned pre-

viously. We select it based on two basic principles. The migration must have

some benefit; that is, the migrant process must expect a shorter response time

than if it were not migrated. This is called the time equality principle. Suppose

the migrated process requires more time before completion in the remote pro-

cessor than if served by the local processor. This migration is not only worthless

for the migrant process but also increases channel traflic.

Another principle is that when the migrant process reaches the light-load

processor, it must not make the processor become heavily loaded. It is called

the state equality principle. The value of Q is examined based on the

definition of the time equality principle as follows.

The time taken by a typical migration from processor i to processor j

includes:

(1) the time spent in making a decision which migratable process would be

migrated.
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It is assumed to be ignored because it is very short.

(2) the time period for seizing the communication channel and for the time

that the migrant process is queued in the migrant buffer of the remote proces-

801‘.

For a point-to—point network, the time to seize a channel may be assumed

short enough to be ignored. For a broadcast network, however, the length of

the time period is the unpredictable length w .

(3) the time spent in the channel.

Under the assumption the channel is not saturated, the time required by

the transmission is

T3 = —’— (5.1)
c

where 5',- is the average Size of the migrant process from station i; c is the rate

at which the channel transmits messages. Thus, the migration requires time

Tmig = W+T3 (5'2)

(4) the service time of the migrant process in the remote processor j.

The processorj was in light load at the beginning of the migration; assume

that the queue length is LJ- . However, during the time period of Tmig , the pro-

cessor j’s queue length is changed due to local arrivals and departures. If A is

the random variable of the new arrivals, and D is the random variable of the

departures, the probability that k processes will arrive in the time length Tm,-g

is

_ (NT - )"
P, = e w... 1 k7" (5-3)

The average number of processes entering the processor j during the time

 

period T,,,,-g is

k=oo k=oo )va5 k

E(A)= gm -._— glee-NM ( J 9) =>\.Tm (5'4)

k= k=0 I“! J

 

ig
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Similarly, the average number of processes departing from processor j during

the time period Tmig is

E (D) = ”j Tmig (5'5)

When the migrant process reaches the queue of processor j, the queue

length of processorj will be

Lj+E(A)—E(D)+l (5—6)

where L, is the length of resident queue of processor j and 1 represents the

migrant process. Its response time, therefore, is

T4: Lj+E(A:;E(D)+1 (W)
 

(5) the time for sending the result back to the originating processor i from

the remote processor j depends on the unpredictable time period w and the

time T5. The time period w includes the time period for seizing the communi-

cation channel and the time period the result is queued in the migrating bufler

of the originating processor. The time period T5 is the time required by the

result transmission which can be expressed as

where R,- is average size of the result produced in processor j and being sent

back to the originating processor i; c is the rate at which the channel transmits

the result.

Therefore, the total time spent in migrating a process to a remote proces-

sor from an originating processor is

Tm = O+w +T3+T4+w +T5

Lj +>‘j Tmig —[1j ngg +1

”1'

Now, if the migrant process were instead left in the queue in the originat—

=2w +T3+T5+
 

(5-9)
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ing processor, then it would have to spend the response time (include the ser-

vice time) before it was completed. The average response time is

L-+Q- +1

in. = -‘—'—— (510)
I“

where L,- is the length of the resident queue, Q; is the length of the threshold

queue of processor i and 1 represents the migrant process itself.

According to the time equality principle definition, the following equation

exists.

Trm S Tro (5'11)

Substituting the T,,,, of (5-9) and T", of (5-10) into (5—11), we have

  

)._ - )\~— - L-+l L-+ -+1

(2+—’”’ )w + (1+—’—”’—)T3+ T5 + ’ 5 ’ Q’

Ilj flj flj I‘.‘

Q.‘ 2 (Lt—1W“; + (4)55— +Rj—L'l' '—"(—J——)'-L.' ‘1

#1 n.- c c #1
1

Qi = I (w! :aSg'ijyl‘iv )‘jvpj) (5'12)

where l/c is contributed by the process migrating along the channel and w is

contributed by the process waiting time in the migrant buffer and in entering

the channel. Thus, Q is dependent on local arrival rate, local departure rate of

the processors, average size of the migrant process, the average Size of the

result after completing the migrant process, the channel capacity and the chan-

nel traflic. Obviously, in the case that the migrant process cannot reach its

remote processor until it passes 11 intermediate processors, the Q value is also a

function of n. The unpredictable value of w makes the value of Q intractable.

But, the equation (5-12) may be used to estimate an approximate value of Q

under some assumptions. For example, if the value of w is assumed constant,

the value of Q gives the bottom line of the benefit at which migration is worth

carrying out. Only a properly selected value of Q guarantees that the migrant

process gains a better response time than if it is executed locally. In the
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simulation, we consider Q as a parameter to study the eflect of the value of Q.

The value of Q also may be found based on the definition of the state equality

principle.

Draft age

Intuitively, the draft age means, for example, the arrival time of processes.

In fact, the age could be any kind of parameters for negotiation purpose, such

as waiting time, priority, precedence relationship, special resource requirements,

memory requested, etc. Based on these parameters, a light-load processor selects

one of the heavy-load processors as its expected couple.

Draft standard

According to parameters specified by draft age and its own capacity, the

light-load processor selects an age among all the received ages as the draft stan-

dand and sends out it as a response of the negotiation. A draft standard is

required to:

(1) ensure that the eflort of the information exchanges would not be

wasted;

(2) secure FCFS fairness over the whole system

due to dynamically changed system conditions. Otherwise, if a light-load pro-

cessor only sends a message to inform the originating processor that it has been

selected as the couple, the originating processor might not migrate any process

because the selected migratable process either has been served by the local pro-

cessor itself or has been migrated to another processor. It is smart to send an

age-range, i.e., a draft standard, to the originating processor, upon which it

may migrate another migratable process whose age falls into the draft standard.

The wider the draft standard is, the higher probability that another satisfied

7
—

.
1
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migratable process is able to be found. However, the wider draft standard does

not ensure fairness because the originating processor may migrate a very new

arrival still within the age-range and eventually serve it before other processes

with earlier arrival times than the “very new arrival”. Thus, the FCFS is des-

troyed.

The draft standard is an important parameter for the drafting algorithm.

A simple example is illustrated in Figure 5-1. The example indicates two

queues. One of them is in processor j, another is in processor k. In the queue of

the processor j, there are three migratable processes. The first migratable pro-

cess has a waiting time of 30, the second migratable process has a waiting time

of 25 and the third has a waiting time of 18. In processor k’s queue, there are

two migratable processes. They have the waiting times of 22 and 20, respec-

tively. Processor j is the couple of the processor i. If the drafting standard is

selected as the second oldest age among the received ages, say 22, then the

second migratable process of the processor j could be migrated in case the first

migratable process has been served. The global FCFS discipline is preserved. If

the drafting standard is picked wider, say 14, thus the third migratable process

of the processor j might be migrated. Consequently, the global FCFS is des-

troyed because the third migratable process of the processor j is younger than

the two migratable processes in the processor k. Therefore, the selection of the

draft standard is important and it may only partially preserve the global FCFS

discipline if its range is wide.

Load table and its updating strategies

When a processor is in the light-load state, it invokes the process migra-

tion algorithm. Without having current load information of other processors,

the light-load processor would have to send a migration request message to all
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candidate processors. All candidate processors would reply with their current

load states. The light-load processor could select the one with the heaviest load

state as the migration source processor.

However, this approach will cause some problems. First, it creates too

much traffic (one-to-all communication every time). Second, after sending mes-

sages out, the light-load processor must wait for the replies from the heavy-load

processors. However, it does not know how many heavily loaded processors

exist and how long it must wait, especially, if all candidate processors are in

light-load. The only way to end the waiting is to rely on a specified time inter-

val. To Specify a time-out period delays the migration.

To alleviate this problem, every processor has an associated load table.

Every entry in the load table records the load state and other parameters of a

candidate processor. What parameters should be designed into the load table

depends on the implementation of the process migration algorithm and the

configuration of the distributed system. An example of a load table is shown in

Figure 5-2.

However, updating the load table creates more traflic. Communication

along channels may fall into two diflerent types. One is called a single message,

such as the state broadcast messages. The processor sending a single message

out can immediately execute any other instructions without waiting for reply

messages from the receiving processors. The second is called a chain message in

which the sending processor expects the reply messages to return before it exe-

cutes other related instructions. The single message obviously takes less time

and produces less traflic than the chain messages because a chain message may

be postponed by other unrelated actions using the channel.

Even though the broadcast messages belong to the single message category,

the broadcast of load state messages must be organized in a well-defined
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PROCESSOR LOAD ATTRIBUTES

’1 a O O 0

P2 N . . .

P3 L O O 0

'P4 l-l . . .

(b) A sample load table of P5

PROCESSOR LOAD ATTRIBUTES

P2 1. . . .

’3 L O O O

.. . 1

(c) A sample load table of P1

Figure 5—2 An example of load table
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manner, instead of broadcasting every state change, in order to reduce channel

traflic. After a processor changes its load state from light to normal states, its

state may be further changed to light again or to heavy, or may remain normal.

Similarly the state changes from heavy to normal. To avoid state woggling, the

normal state is not broadcasted immediately. It may cause load table incon-

sistency. The inconsistency means that the state recorded in the load table is

diflerent from the current state of the corresponding processor. For example,

when a processor is heavily loaded, it broadcasts ’H’ to all its candidate proces-

sors. When it becomes normally loaded, it does not broadcast the normal state.

The state in the load table of other processors is still ’H’. A lightly loaded pro-

cessor may send a draft request message to it. Even all the state transitions are

broadcasted, due to communication delay, the inconsistency may still exist.

Thus, the problem becomes how to reduce the effect of inconsistency.

The main purpose of the load table is to provide information for a L-load

processor to find H-load candidate processors. To avoid state woggling between

N—load and L—load, a load-change message carrying L-load is broadcast to all

candidate processors only if there is a N-L load-change and the processor’s pre—

vious state before N-load was H-load. Thus, a L state in a load table indicates

the corresponding remote processor’s load is either light or normal. In either

case, the remote processor will not be drafted. In other words, the broadcast

rule does not cause any trouble for the L-load processors.

To deal with state woggling between H-load and N-load, a load-change

message carrying “H-load” is broadcast to all candidate processors if there is a

N-H load-change and the processor’s previous load before N-load was L-load.

However, this may inhibit H-load processors from being drafted. Imagine that

if all the H-load candidate processors change their load from H-load to N-load,

the drafting processor will fall sleep until any candidate processor becomes
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heavy again. If the algorithm does not broadcast the N—H load change, the

drafting processor will wait forever. Thus, whenever there is a N-H load-change,

the candidate processor must inform the drafting processor regardless of what

the candidate processor’s previous load state before N-load could be. Three

approaches are considered below to handle the N-load carefully.

(1) Always Broadcast. In this approach, a processor always broadcasts N-H

load-change and H-N load-change to all its candidate processors. In this

approach, all load tables are consistent in ignoring the case caused by the com-

munication delay as mentioned above.

(2) Piggybacking. A N-H load-change is broadcast to all candidate proces-

sors if the processor’s load before N-load was L-load. A H—N load-change will be

piggybacked with the draft age message to the drafting processor. In the mean-

time, a one bit PG-field is needed in the load table. 1 in the PG-field of the

load table indicates the corresponding candidate processor has a N-load state;

otherwise, it is 0. Whenever there is a N-H load-change, a load-change message

which carries H-load information is sent to those candidate processors with the

corresponding PG-field being 1.

By piggybacking with the draft age message, an extra load-change message

is eliminated. Since the draft age message is sent in a one—to-one fashion, an

inconsistency among difl'erent load tables may occur. However, this incon-

sistency is not important as far as drafting is concerned. One may argue that

the PG-field in other load tablne is redundant because only an L-load processor

may ask for draft age. Thus, whenever there is a N-H load-change, a load-

change message is sent to those candidate processors with L-load in the load

table. However, this may cause a serious load table inconsistency. For example,

a processor P1 in the L-load is informed via piggybacking that processor P2 is

in the N-load. Pl then changes its load to N-load and then to H-load. Through
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broadcasting, P2 records that PI is in H-load. When P2 has N-H load-change,

it does not inform P1. When P1 changes its load to L-load again, it thinks that

P2 is still in N-load and excludes P2 from the drafting list.

To compare always-broadcast and piggybacking approaches, we assume a

particular processor has c candidate processors. Among these c candidate pro-

cessors, m of them are in L-load. For a certain time interval between two con-

secutive appearances of the L-load, an original heavy-load processor has alter-

nately k H—N load-changes and (k-l) N—H load-changes. For always broadcast,

the processor must transmit (2k—1)c load-change messages. For piggybacking,

without broadcasting the H-N load-change, the processor receives a draft-

request message from a L-load processor and replies with a draft age message

piggybacked with its current N-load. Assuming that, during a N-load period,

the processor receives, on the average, m draft-request messages from those L-

load processors, k(2m) messages will be generated. Also assume there are m 1’s

in the PG-field. Thus another (k-1)m N—H load-change messages will be gen-

erated. Consequently, the always broadcast strategy is better if the following

inequality is satisfied.

(2k-1)c

2km +(k -1)m

(2k—l)c < 1

(3k -1)m

 

<1

Ignoring both the 1 in the numerator and the denominator, the approximate

calculation shows that always broadcast strategy is better if m/c is greater than

2/3; otherwise, piggybacking is better. As a result, a csombination of both stra-

tegies is suggested.

(3) Mixed Updating. When a processor has a L-N followed by a N-H load-

change, use an always broadcast approach if its current value of m/c is greater
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than 2/3; otherwise, adopt the piggybacking approach. The processor must

keep that approach until the next L-N followed by a N—H load-change.

In a broadcast network, such as Ethernet, a one-to—many transmission

takes only one message and all processors in the network are neighbors to each

other. In this situation, the always broadcast strategy should be adopted.

The mechanism used to implement the updating of the load table includes

a last-broadcast-load (LBL) field in the load table. When piggybacking to the

normal state information ’N’ to the light-load processor to change the state

recorded in the light-load processor’s load table, the last-broadcast-load (LBL)

field of the corresponding light-load processor in the load table of the normal-

load processor also changes to ’N’. If the state of the current normal-load pro—

cessor is changed back to heavy again, the normal-load processor needs only to

send ’H’ messages to those processors whose LBL is ’N’ in the load table. Pig-

gybacking can both ’broadcast’ state message and save trafiic. Thus, the pro-

bability of the state woggling is not only reduced but also load table incon-

sistency is prevented. Whenever a processor broadcasts its current state, it also

records the broadcasting state in the LBL of its load table. If the load state

changes from normal to light (or heavy), the processor checks the LBL field. If

the LBL is different from the current load state, then the current load state is

broadcasted to all candidate processors and the LBL is changed to the current

load state. Otherwise nothing is done.

5.3. Simulation Results on Point-to-Point Networks

There are many parameters considered in the selection of design parame-

ters (section 5.2.). We selected them in the simulation as follows.

length of the resident queue 1

length of the threshold queue a parameter to study

draft age oldest age

draft standard second oldest age
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arrival rate A, the argument of the simulation

service rate a,- normalized as 1

The results of simulation provide a comparison of different parameters

with and without load balancing.

The efi'ect of different arrival rate A,-

Two different arrival rate configurations were examined. One is

X1 = ).4 = ).5 = R/3 and ).2 = ).3 = 0 which is known as non—probabilistic

balancing. The other is A; = R/5, i = l,2,3,4,5 which is known as probabilis-

tic balancing. For two configurations different values of A,- were studied. The

results shown in Figure 5-3 and Figure 5—5 reveal that the improvement is

greater in the former case than in the latter.

The effect of channel bandwidth c

The influence of the channel bandwidth lies beneath the surface. The pro-

cess migration for load balancing is a time critical action. The transmission

rate is usually a bottleneck. The ratios of c/u; and c/k, are important. The

values of the ratios not only influence the time delay of the process migration

but also complicate the state transitions. This is why some output of the

response time corresponding to some values of A, looks strange.

Increasing the channel bandwidth will decrease the average process

response time as shown in Figure 5-4. In the figure, for each channel transmis-

sion rate, c, the corresponding optimum value of Q is used for providing a fair

comparison. When c is large enough, the drafting processor is likely to stay in

the light load state upon the arrival of the migrant process. If c is small, the

drafting processor may be no longer in the light load state due to its local

arrivals. Theoretically, if c approaches infinity, then the optimum value of Q

will be zero and the system performance will be very close to the result of an
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M/M/N queueing system. Also, the number of too-late messages will be

significantly decreased and the number of control messages will become smaller

as c increases. This is due to the fact that the message or state information is

more current. Consequently, the lower channel bandwidth produces worse per-

formance. Therefore, dynamic process migration is suitable for local area net-

works rather than wide area networks.

The effect of Q values

The value of Q determines the point at which process migration starts.

The bigger the value of Q, the longer the queue length at which process migra-

tion starts. When Q is sufliciently large, the system behavior will approach the

case of no load balancing effort. When Q is small, the processor will have a

higher probability to reach heavy-load state and generate more migrant

processes. However, there may be many unnecessary migrant processes. As Fig-

ure 5-5 shows, the simulation result reveals that as long as Q is not too far

from its optimum value, the performance diflerence is not significant. In Figure

5—5, the optimum value is Q=1. But the performance of Q=2 and Q=3 are

very close to that of Q=1. With Q=6, the performance grows worse. Since the

value of Q is closely related to the processor load, this implies that the

definition or measurement of processor load will affect the system performance,

but does not require much accuracy. It is, therefore unnecessary to find a very

accurate method of measuring processor load.

The difi’erence between static balancing and dynamic balancing

With the same network topology, it is assumed that all processors have the

same arrival rate (A,- = R /5 for all i). In this case, the system is statically (or

statistically) balanced. From this point of view, there is little migration. How-

ever, in the dynamic balancing, process migration is still possible because the
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number of processes in each processor is not dynamically the same. In the case

of c=3, Q=2 provides the best performance, as shown in Figure 5-5. When

Q=1, there are too many unnecessary migrant processes. Furthermore, these

migrant processes are further delayed due to local arrivals at the remote proces-

sor. When R is large, even Q=6 has a better performance than that of Q=1.

When R is even greater, all processors are likely to reach the heavy-load state

and the number of migrant processes decreases. The number of control mes-

sages generated is also less than the previous workload pattern.

5.4. Formal Description of the Drafting Algorithm

Three major concurrent processes are described in a Pascal-like notation.

Other concurrent processes, such as updating the load table and load measure-

ment, are detailed in section 5.2. and not included here. While most of the

statements are standard constructs we do need a couple of additional constructs

in order to describe the algorithm. These constructs are the event variables and

multicasting.

An event variable (EV) is a variable which is used to notify a process of a

state change or is interrogated by a process to determine if a state is in eflect.

Each EV variable takes one of two values, CURRENT or NOTCURRENT. An

EV variable is manipulated by the following procedures:

wait(EV); (* If EV is NOTCURRENT, then the process is blocked until

EV becomes CURRENT. This operation does not change the value of EV

*)

signal(EV); (* Set EV to CURRENT *)

clear(EV); (* Set EV to NOTCURRENT *)

current(EV); (* A function which returns TRUE if EV is CURRENT, oth-

erwise FALSE is returned *)
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Multicasting provides a way of indicating l-to-many communication.

Three multicasting primitives are used.

multi_cast_and_wait(proc_list, message, reply_list, status); (It All processes

whose IDs are listed in the ProcList are sent the message. The sending pro-

cess is blocked until all processes reply or until a timeout occurs *)

receive_any(source, message); (* The process which executes this statement

is blocked until a message is received. Source is a variable which receives

the ID value of the message-sending process *)

multi_cast(proc_list, message); (* All processes whose ID’S are listed in the

ProcList are sent the message. The sending process is not blocked *)

In the following description, the purpose of some procedures are apparent

from their names. Some event variables, such as L_load, H_load, N_load,

load_change, heavy_msg_arrive, and load_measure_event, may be signaled or

cleared by other concurrent processes, such as load measurement and load table

updating. These event variables as well as the load_table are accessed by all

processes.

Each processor waits until the load state becomes light, then the processor

executes the process send_draft_request to couple with a heavy-load processor.

process send_draft_request;

var

num_heavy : integer;

process_id : process_id_type;

standard : draft_standard_type;

status : (fail, ok, timeout);

proc_list : ptr_of_process_list;

age_list : ptr_of_age_list;

mig_reply : migration_reply_record;

begin

loop

wait(light_load);

repeat

any_heavy(num_heavy, proc_list);

if num_heavy = 0 then

wait(normal_load or heavy_msg_arrive);
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clear(heavy_msg_arrive);

if current(N_load) then goto L1

else goto L2;

endif;

endif;

if num_heavy > 1 then

multi_cast_and_wait(proc_list, “draft_request”,

age_list, status);

if status < > fail then

calc_draft_standard proc_list, age_list, standard, process_id,

foun _heavy, status);

if not found_heavy then (* load changed *)

wait(N_load or heavy_msg_arrive);

clear(heavy_msg_arrive);

if current(N_load) then goto L1

else goto L2;

endif;

endif

else (* fail *)

exception_handling;

endif

else (* num_heavy = 1 *)

standard := 0;

process_id := first(proc_list);

endif

if NOT current(L_load) then goto L1;

endif;

(* send draft_standard message *)

send_and_wait(process_id, standard, mig_reply, status);

if status = ok then

if mig_reply.kind = process then (* receive a process *)

load_migrate_queue(mig_reply.pcb);

else (* receive a too_late message *)

update_load_table(process_id, mig_reply.load);

endif;

else (* status is fail or timeout *)

exception_handling;

endif;

L2 : until (NOT current(L_load));

L1 : forever;

end_process;

The processors in the heavy load state execute the following two processes

to respond to the drafting request and the drafting standard.

process respond_draft_request;

var

source : process_id_type;

age : draft_standard_type;

begin

loop
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receive_any(source, “draft_request”);

calc_draft_age(age);

send(source, age);

forever

end_process;

process respond_draft_standard;

var

source : process_id_type;

pcb : process_control_block;

mig_reply : migration_reply_record;

standard : draft_standard_type;

found : boolean;

begin

loop

receive_any(source, standard);

select_process(standard, found);

if found then

mig_reply.kind := process;

mig_reply.pcb := pcb;

else

mig_reply.kind := too_late;

mig_reply.load := get_current_load;

endif;

send(source, mig_reply);

forever

end_process;

5.5. A Comparison between Bidding and Drafting Algorithms

Both the drafting algorithm and the bidding algorithm are distributed con-

trol algorithms. As mentioned in chapter 1, a load balancing algorithm should

consider : (1) when a waiting process can be migrated; (2) which waiting process

should be migrated; (3) from where to where the migration will take place; (4)

and how to gather the global status information. Table 5-1 summarizes the

differences between the bidding algorithm and the drafting algorithm.

As illustrated, the bidding algorithm triggers a migration when a new

arrival enters a processor in the system, regardless of how busy the processor is.

Suppose there are N processors in the system. When a processor, processor i,

receives a new arrival, it issues an (N-l) bid request messages to all other pro-
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Table 5—1 A comparison of bidding and drafting algorithms

 

 

 

 

 

    

bidding drafting

when a new arrival light load

which the new arrival a selected migratable process

where from the tail of a waiting queue from the first in schedule queue

to the tail of another queue to the tail of the threshold queue

how gathering information instantaneously by the load table
 

cessors in the system. Each of the (N-l) processors must respond one bid mes-

sage back to processor i. After processor i selects winning processor j, processor

i sends one winner notification message to processor j. Then processor j issues

one accept or reject message to processor i. Consequently, every new arrival

causes 2(N-1)+2 information exchanges.

On the other hand, the drafting algorithm triggers a migration when a pro-

cessor is in the light-load state. Suppose there is an H heavy-load processor in

the system at the moment when a light-load processor, say processor i,

attempts to issue the drafting request. It then must issue an H drafting request

message, and each of the H heavy-load processors must respond one draft_age

message back to processor i. Processor i sends one draft_standard message to its

couple processor. The total number of message exchanges is 2H+1. Since the

value of H and the number of light-load processors are dynamically changed

variables, the number of control messages generated by the drafting algorithm

can only be measured by experimental simulation. For a point-to-point distri-

buted system consisting of 5 processors, the number of control messages gen-

erated by the drafting algorithm for completing 10000 jobs is a few thousand

for low arrival rates (0.5 to 2.5) and 10,000 to 32,000 for the moderate to high

arrival rates (2.5 to 5.0). However, under the same condition the bidding algo-

rithm must issue (2(5—1)+2)*10,000 = 100,000 control messages.
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The bidding algorithm migrates the new arrival from the original processor

to the remote processor. When the external load fluctuation is serious, the

migration of the new arrival causes processor thrashing and unnecessary migra-

tions, and cannot reach fairness in the global sense. The drafting algorithm

migrates a migratable process which satisfies the drafting standard only. This

kind of migration achieves fairness at the system level.

The bidding algorithm migrates a process from the tail of a waiting queue

to another tail of a waiting queue. It may migrate a process from a heavily

loaded processor to a less heavily loaded processor or from a lightly loaded pro-

cessor to a more lightly loaded processor. The drafting algorithm usually

migrates the first process in the schedule queue to a light-load processor; the

value of Q (section 5.2.) guarantees the migrant process gaining a better

response time than if executed locally.

Finally, the bidding algorithm gathers the global information instantane-

ously whenever a new arrival enters a processor. The drafting algorithm uses a

load table to keep track of system status information. Each processor broad-

casts its current state in a well-organized manner (section 5.2.). The piggyback

further considerably reduces this overhead.

These features make the drafting algorithm eflicient and effective. On the

other hand, they cause the design of the drafting algorithm to be complicated.



CHAPTER 6

DYNAMIC PAIRING IN TOKEN RING NETWORKS

In a token ring network, all stations form a physical ring topology. Each

station connects to the communication channel through a ring interface proces-

sor (RIP). The RIP has four communication ports: one connects to the input

channel, one connects to the output channel, one passes information to the sta-

tion, and one accepts information from the station, as depicted in Figure 6-1.

Detailed operations of token ring networks can be found in [LiR084, IEEE84].

In this chapter, a description of the token ring network operational principles

and characteristics necessary for understanding our proposed distributed pairing

algorithms for load balancing will be provided.

In order to avoid channel access conflict, a physical token circulates around

the ring. The token is either free or busy. A station must seize a free token

and then transmit the information frame. The token is not removed from the

ring; rather, its state is converted from free to busy by the token holder and

the frame follows the busy token circulating around the ring. A non-token

holder station will copy the frame as it passes by the RIP if the station is the

destination station. The frame is removed by the sending station (token

holder) and the token holder also converts the token from busy to free. The

next station downstream from the ring becomes the new token holder upon

receiving the free token.

The RIP is an active device and plays an important role in a token ring

network. The RIP has three operational modes. If the station is in failure or

does not want to join the ring, the RIP will be in the bypass made, directly con-

necting the input channel to the output channel (see Figure 6-1(a)). If the sta-

tion is the token holder, the associated RIP will be in transmit mode. In this

81



82

case, the input channel is connected to the input port of the station and the

output channel is connected to the output port of the station (see Figure 6-

1(b)). For a non-token holder station, its RIP will be in the listen mode. In this

case, the RIP buffers the frame received from the input channel and reproduces

the frame to put on the output channel (see Figure 6-l(c)). If the station is the

destination station, a copy of the input frame is sent to the station. In the

listen mode, the frame is delayed for at least one bit-time.

6.1. Characteristics of Token Ring Networks

In a token ring network, the time period between two consecutive free

token visits to a given station is called token cycle time. The token cycle time

is an important distribution function used to measure the performance of token

ring networks [Reg085]. The time period during which the free token is passed

from one station to the next station is called token passing time. This value is

deterministic and is dependent on physical distance between these two adjacent

stations, the transmission rate, and the channel propagation delay. The interval

from the instant that a station receives the free token until it passes the free

token to the next station is referred to as token holding time. Note that if the

outgoing queue is empty, the token holding time is zero. Obviously, if there are

N stations on the network, the token cycle time is the sum of token passing

time and token holding time of all these N stations.

The distribution of token holding time is mainly determined by the

number of ready-to-transmit frames in the station and the queue emptying dis-

cipline. The queue emptying discipline is defined as the maximum number of

frames transmitted per free token visit and is classified into two categories. An

exhaustive discipline allows each station to transmit all its ready—to—transmit

frames before passing the token to the next station. This discipline results in a
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long token cycle time and is not fair to those stations with a small number of

frames. A nonexhaustive discipline allows the token holder to transmit at most

n frames per token visit. In the standard token ring network, the value of n is

one [IEEE84]. This provides a more equitable service to stations. The time

period from when the token holder puts a frame on the channel and the token

holder removes that frame from the channel is referred to as frame cycle time.

This value is dependent on the physical length of the whole ring, the delay

caused by each RIP, the number of stations, the channel propagation delay, the

transmission rate, and the length of the frame.

Since a transmitted frame is removed by the sending station (the token

holder), every station on the network is able to listen to the ongoing transmis-

sion. This makes the implementation of multicast (one-to-many) and broadcast

(one-to-all) easy.

Another unique characteristic of the token ring network is its bitwise

changeable feature. Every bit received by the RIP from the input channel may

be changed and forwarded to the output channel. Communication traflic can

be reduced by using this feature. For example, a separate acknowledgment

frame must be transmitted by the receiving station for the purpose of a reliable

communication in most of the network architectures. In the token ring net-

work, an extra ACK bit is placed at the tail of a frame. The receiving station

flips the ACK bit if the received frame is receives correctly. When removing the

frame from the ring, the sending station examines this ACK bit to decide

whether the frame was correctly received.

The third feature of the token ring network is its sequential passing pro-

perty. All stations must take turns becoming the token holder and all frames

must pass through each station in a fixed order.
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A priority reservation mechanism implemented on the token ring network

is based on the above features [IEEE84]. In order to efliciently handle frames

with different priority levels on a token ring network, a priority reservation

(PR) field (3-bit) is defined in the frame format. When the frame passes

through a non-token holder which is in listen mode, the non-token holder reads

the current PR value, stores it in the inbuff (delay element in the RIP), com-

pares it with its own priority, and writes its own priority to the PR field if the

priority is higher than the reserved one. When the frame is retured to the

token holder, the PR field carries the current highest priority among all sta-

tions. The token holder then raises the priority of the free token and passes the

token to the next station. The station whose priority is no less than the token

priority is eligible to become the token holder.

Note that the above read—compare-modify procedure is done in one bit-

time for each incoming bit of information. The RIP does not hold (delay) the

whole PR field and then make a reservation. Figure 6-2 Shows a procedure to

demonstrate the priority reservation process, which can be done by having one

bit delay in the delay bufl'er.

6.2. Load Balancing Design Considerations

The goal of this research is to find an efficient load balancing strategy for

token ring networks. In a token ring network, the single communication chan-

nel is shared by all stations. Directly implementing bidding or drafting algo-

rithms without taking advantage of those special features provided by the ring

network is very ineflicient.

Both bidding and drafting algorithms have two operating phases. During

the first phase, coupling phase, a remote processor is selected for either immi-

grating a process or migrating a process. The second phase is migrating phase
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* the priority takes three bits [0..2 *)

It oldpr[0..2] — old priority receive from the channel II=)

* new r[0..2] -- new priority put on the channel It)

* pcp[g..2] - priority of the station *)

* inbuff - one—bit bufler *)

procedure priority_reservation;

begin

flag := unsolved;

for i := 0 to 2 do (* take three bit-time *)

begin

inbuff := oldpr[i];

case flag of

unsolved:

begin

if (pcp[i] > inbufl') then

begin

neWpr[i] := pcp[i];

flag := keepnew;

end

else if (pcp[i] < inbufl') then

gin

newpr[i] := inbuff;

flag := keepold;

end

else

neWpr[i] := inbufl';

end;

keepnew : (* station pr > old pr IIr)

newpr[i := pcp i];

keepold : * old pr >= station pr *)

neWpr[i := inbufl;

end;

end;

end;

Figure 6-2 The process of priority reservation on token ring networks

which performs the migration of the process. During the coupling phase, a pro-

cessor has to negotiate with those related processors. These negotiation

processes create extra communication traflic and introduce extra time delay. A

long coupling phase also increases the probability that a station may have

changed its state of load. Thus, an efficient implementation of coupling phase

is essential to the system performance. Also, an efficient synchronization

mechanism is needed to ensure that all stations will notice the transition from
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coupling phase to migrating phase.

In the drafting algorithm, the light-load station sends a draft-request mes-

sage to all heavy-load stations. In the token ring network, this can be achieved

by sending a broadcast message to all stations. Those light-load or normal-load

stations may ignore this message. The heavy-load station must reply with a

draft-age message to the drafting station. In order to do so, the heavy-load sta-

tion must wait until it receives the free-token. Thus, before the next token

visit, the drafting station must receive all draft-age replies. If there are K

heavy-load stations among N total stations, it takes at least hK +pN for the

drafting station to receive all replies if the rest of the N-K stations don’t

transmit anything, where h is the average token holding time of those stations

whose outgoing queue is noe-empty, and p is the average token passing time.

The sending station then sends a draft-standard to the drafted station.

The original definition of the bidding algorithm requires all stations in the

network to reply with a bid. In the token ring network, the bidding station has

to wait at least (p +h )N to complete the coupling phase.

The environment of the token ring networks strongly afl'ect the implemen-

tation of load balancing algorithms. By taking advantage of these unique

features mentioned in the previous section, the coupling phase can be efficiently

implemented by defining a writable message.

The broadcast feature allows every processor to collect information carried

in the message sent by any other processor. The bit changeable feature gives

every processor a chance to compare each passing bit in the message and

change its content if necessary. And the sequential passing fashion forces the

serialization of actions taken by processors. These three features allow the pro-

posal of a writable message format which makes it possible for the message con-

tents to be changed while the message passes around the ring. This vehicle
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carrying the negotiation information enters a processor, carries the response of

the processor, and goes to the next processor. The negotiation will be done by

visiting every processor in the ring in one run. The negotiation result is either

known by the related processor immediately or known by the token holder

when the message finally returns. The writable message is a convenient data

structure for the negotiation and allows the communication to obtain more

hardware support from the RIP of a host processor. Thus, the RIP is more

intelligent and shares the burden with the host computer to make the commun-

ication faster.

The writable message format adds one field, called the <specifier> into

the head of the original message format designed for the ring network [Dixo82].

It is described by the BNF as follows.

<specifier> := O | l <task_spec> <writable_field>

<task_spec> := 00 | 01 | 10 | 11

<writable_field> = <w_tag> <w_sid>

<w_tag> = 0 I 1

<w_sid> := integer

Figure 6-3 The <specifier> field of the writable message format

where, the <0> or <l> is called <ident_bit> which indicates whether the

<specifier> field exists or not. The <task_spec> tells what kind of task will

be accomplished. The <writable_field> is dedicated to the message the proces-

sors want to modify. Its format depends on the algorithm employed. If the

<specifier> field exists, then <ident-bit> is set as 1. Otherwise, it is set as 0.

In this way, the control message is piggybacked on a data message to allow the

control message go through as quickly as possible. The structure of the field

varies with the algorithm employed for load balancing.
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6.3. The Concept of Dynamic Pairing

Because of the writable message, every processor is able to obtain the

current global information about the ring and finish the negotiation within a

message cycle time. Specifically, the control message communication of the

coupling phase in the load balancing design becomes “real time”.

As mentioned earlier, the algorithms of load balancing are classified as

heavy-initial and light-initial [\NaM085]. The bidding algorithm belongs to the

former, the drafting algorithm belongs to the latter. More important, the draft-

ing algorithm introduces the internal states and the fairness concepts to make

the algorithm tend toward the performance of an M/M/N multiple-server

queueing system with a global first-come-first-served scheduling discipline.

However, the sequential passing fashion in the ring sacrifices the parallelism

existing in the environment of networks. Each time a processor becomes the

token holder, it should not miss a chance to trigger a migration if conditions

are appropriate. Therefore, a mixed algorithm called dynamic pairing is pro-

posed to take advantage of both bidding-type and drafting-type concepts.

The benefits of adopting the bidding concept are two fold. First, the

heavy-load token holder can also trigger a migration by sending a bid-request

message to other processors in the ring. Second, a light-load processor is put to

sleep when it figures out there were no heavy-load processors in the ring. When-

ever a heavy-load processor appears, it can employ the bidding algorithm to

awaken the sleeping light-load processors. Consequently, each token holder may

trigger a migration in both light-load and heavy-load states. This idea can be

realized due to the design of the writable message containing all the informa-

tion needed by the negotiation. The message cycle time automatically syn-

chronizes the different phases of the algorithm in the global sense but it is still

diflicult to synchronize global actions with local actions.
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The concept of dynamic pairing in the coupling phase is to have a heavy-

load processor pairing with a light-load processor and a light-load processor

pairing with a heavy-load processor. The pairing activity can be initiated by

either a heavy-load processor or a light-load processor. After a pair of proces-

sors have formed, process migration is then initiated between these two paired

processors. There are several ways to form a pair. A good pairing algorithm has

to consider the tradeofl between communication complexity, efliciency, and

implementation issues. In the following sections, a first-match algorithm and a

min/max algorithm are introduced. Detailed specifications and design alterna-

tives of these approaches are discussed. A comparison study as well as the

simulation results of these algorithms are covered in the next chapter.

6.4. The First Match Algorithm

The first match algorithm provides the simplest way to form a pair. While

the draft-request message sent by a light-load processor goes around the ring,

the first heavy-load processor downstream in the ring responds to the draft-

request message and forms a pair. Other heavy-load processors are then prohi-

bited to form another pair with that light-load processor. Similarily, the first

light-load processor will respond to a bid-request message.

6.4.1. Definition of writable message format

The commands of the first match algorithm will be carried by a writable

message format shown in Figure 6-3. All the commands for the first match

algorithm are coded in the <task_spec> field as summarized below.

Implementation of the first match algorithm needs the following five

parameters: current load state of the processor; number of migratable processes;

L-couple bufler to record the paired light-load processor ID; H—couple buffer to
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<tastspec> command sender receiver

00 draft regest light-loachrocessor heavy-load processor

01 cancel token holder paired processor

10 bid request heavy-load processor light-load processor

11 migrate heavy-load couple light-load cgple
 

record the paired heavy-load processor ID; and the task specification field of the

messages passing. By designing one slot for the H—couple buffer, it is

guaranteed that the light-load processor will accept at most one migrant pro-

cess. Thus it prevents the light-load processor from being overloaded. Two

phases of the dynamic pairing algorithm employing the first match strategy are

described as follows.

6.4.2. The coupling phase

The coupling phase starts when the processor receives a token. An ECA

(Event-Condition-Action) tabulation method is proposed to formally specify the

algorithm. Whenever an event occurs, the processor has to check some condi-

tions. A set of actions is performed only when all conditions are satisfied. The

ECA table provides a clear, concise, and elegant way to specify a protocol, com-

pared with state transition diagrams or standard language specifications. Each

column in the table corresponds to one transition due to the occurrence of an

event and the satisfaction of the corresponding conditions. Each row belongs to

one of four sets. The first set (E) represents the event. The second set (C) lists a

set of conditions. The corresponding actions are fired if all the conditions are

satisfied. A null entry in a condition implies a don’t care condition. The third
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set (A) indicates the actions to be performed. The last set is a transition index-

ing for reference purpose. Note that if the table is very wide, it may be parti-

tioned at the boundary of different conditions. The symbol % in the leftmost

column represents a place-holder; its content is listed in the corresponding row

entry.

Processor to processor communication is via send(destination,message)

command. If the destination is all, then it is a broadcast message. An L-couple

or H-couple in the destination field indicates its paired light-load processor or

paired heavy-load processor, respectively. The message field is indicated by one

of the four commands specified in the <task_spec> field defined earlier.

 

Table 6-1. The ECA table of a light-load processor receiving the token

E event receive a free token

load state li ht li t li t li t

H-cou le=em t ? no

L-cou le=em t ?

leee =TRUE?

auto-check

A send all %

send cou le cancel* cancel

T Transition 1 2 3 4 5 
*Cancel has higher priority than request because the consistency is more impor-

tant than migration

 

Table 6-1 lists all actions taking place when a light-load processor becomes

the token holder. The state of light-load and the empty of its H-couple buffer
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and L-couple indicates it can accept a migrant process (transition 1). However,

if all processors are in light—load state, no process migration should be triggered

as indicated by the leeep flag (transition 2). The request is either piggybacked

on the first message already in the outgoing queue (if the first packet has not

carried any control message in it), or sent in a newly created message. In this

section, we only discuss normal cases. Those abnormal cases (transitions 3-5)

will be detailed in the next section.

While the draft request passes a non-token holder processor in the ring, the

actions listed in Table 6—2 take place according to the processor’s current

status. The non-token holder processor learns that the message is a draft

request by reading the task specification code. The processor fills its ID into the

writable field if the processor is in the heavy load state, it has not yet paired

with another L-couple, and no other processor has made pairing reservation

with the requesting processor (transition 8). Note that the latter case can be

detected if the <w_tag> field was on. It then turns on the prohibition tag bit

in <w_tag> to prevent refilling from other heavy-load processors and puts its

address in the <w_sid> field. Meanwhile, the heavy-load processor records the

ID of the light-load drafting processor (drafter address) into its L-couple buffer.

Eventually, the draft request message comes back to the token holder initiating

the draft request. The token holder records the processor ID carried by the

message field <w_sid> into its H-couple buffer (transition 12 of Table 6—3). If

there is not any heavy-load processor in the ring, the token holder goes to sleep

by setting its leeep flag to true (transition 11 of Table 6—3). The coupling
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Table 6—2. The ECA table of a non-token holder receiving a draft request

 

 

 

 

 

 

        

E event receive a draft request

token holder? no

C load state light normal heavy

L-couple=empty? yes no

reserved? es no

Hsleep 4— % FALSE

A make reservation yes I

L—cou le 4- % drafter addr

T transition 6 7 8 9 10
 

 

phase is done.

 

Table 6—3. The ECA table of the token holder receiving a draft request

 

 

 

 

 

 

E event receive a draft re uest

token holder? yes

C load state light normal heavy

reserved? no es

leeep 4— % TRUE

A .

H-couple +— % <w181d>

T transition 11 12 13 14        

 

Similarily, once the token holder is in the heavy load state, it then sends a

bid-request message trying to pair a light-load processor as shown in Table 6-4

(transition 15). If the token holder’s Hsleep flag is true indicating all processors
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are in heavy-load state, then no process migration action will be triggered

(transition 16). If the heavy-load token holder has a paired L-couple, it will

migrate a process to the paired processor (transition 17). If it had paired a

heavy-load processor, it will cancel the pairing relationship with that heavy-

load processor (transition 18).

 

Table 6—4. The ECA table of a heavy-load processor receiving the token

 

 

 

 

 

 

I E event receive the free token

load state heavy

H-couple=empty? yes no

C

L-couple=empty? yes | no

Hslee =TRUE? es no

send(all,%) bid request

A send(L—couple,%) migrate
        send H—cou le % cancel

T transition 15 16 17 18

 

When the bid-request message passes through the first light-load non-token

holder downstream, the light-load processor will turn its leeep flag off if the

flag has been true. It then fills its processor ID into the writable field, marks the

prohibition tag bit as l and records the bid sender’s ID into its H—couple buffer

as described in Table 6-5.

Table 6-6 illustrates a case where the bid command returns to the token

holder sending the bid request message. The token holder then records the pro-

cessor ID carried by the message field <w_sid> into its L-couple buffer
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Table 6-5. The ECA table of a non-token holder receiving a bid request

 

 

 

 

 

 

    
       

E event receive a bid request

token holder? no

C load state light normal heavy

H-couple=empty? yes no

reserved? no es

leeep 4— % FALSE

A make reservation yes

==H—couple ‘— % = bidder addr

T transition 19 l 20 21 22 23
 

 

(transition 27). If no processor made pairing reservation, it indicates that all

processors are in heavy-load state. The Hsleep flag is then set to true (transi-

tion 26).

 

Table 6-6. The ECA table of the token holder receiving a bid request

E event receive a bid est

token holder? es

C load state li ht normal hea

reserved

Hslee *— % TRUE

L-cou le +—

 

transition 26
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6.4.3. The migrating phase

The migrating phase starts whenever the heavy-load processor which has

made a migration reservation becomes the token holder. If the load states of

the coupled processors remain original, as in the coupling phase when the

migrating phase starts, the migration continues normally. The heavy-load token

holder will send a migrate command message associated with the migrant pro-

cess to the paired destination processor as shown in Table 6-4.

There are two kinds of migrate commands. One is for migrate only,

another is for both migrate and bid, depending on the number of the migrat-

able processes currently existing in the heavy-load processor. At the time when

the heavy-load processor migrates the migrant process, if it finds the number of

the migratable processes is greater than one, it will send the migrate and bid

command. This can be achieved by issuing a migrate command and having

<w_tag>=0 (enable bidding procedure) or <w_tag>=1 (disable bidding

procedure). Upon receiving the migrant process, the destination processor

changes the task specification field of the message from the migrate command

to the bid command (transitions 28 and 29). The light-load processors whose

positions are behind the destination processor in the ring give its response to

the bid command later on. Thus, one message plays a double role as tabulated

in Table 6—7. Note that the condition address match means that the sender’s

address must be same as the H-couple.

The process migration is a global action which performs in parallel with

the local actions taking place in different local processors. When the global
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Table 6—7. The ECA table of a non-token holder receiving a migrate command

 

 

 

 

 

 

     

E event receive a migrate command

token holder? no

C load state light normal I heavy

address match? yes no I

<w ta >=0 bid? es no

receive migrant process yes yes

A .

change to bid command yes yes
_E

T transition 28 29 30 31 32    
 

 

action involves a processor, it is difl'icult to tell whether a current local state is

final or not. For example, at the moment a processor receives a draft request

message, it may be in the middle of a migration phase. It responds to the draft

request that it has one migratable process before migrating this process out.

After a while, it changes its load state from heavy-load to normal-load, due to

the fact that it migrated the migratable process. Thus, it leaves an inconsistent

state implicit. However, it is impossible to synchronize the global action with

the local action. Therefore, it cannot avoid anomalies, especially when the time

period between the coupling phase and the migrating phase lasts longer. The

anomalies include :

(1) The L-couple processor which initiated the coupling phase changes its

state to normal or heavy before the draft request message returns.

The original light-load token holder can ignore the result of the request

message immediately; i.e., it breaks the pairing relationship with its H-couple.
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When the H—couple becomes the token holder, it still starts the migrating phase

and sends a migrant process to the destination, namely its L-couple processor,

because the H-couple is not informed that the pairing relationship had been

broken. At this moment, regardless of the current state of the L-couple proces-

sor, it cannot accept the migrant process. Thus the migrant process will come

back to the heavy-load processor. The migrant process should be sent back to

the schedule queue, and the L-couple bufler of the heavy-load processor will be

reset.

(2) The L-couple processor changes its state to normal or heavy before the

migrant process reaches it.

The H—couple processor migrates the migrant process, but the original L-

couple processor cannot accept the migrant process. The L-couple processor

reset its H—couple buffer. The migrant process will be returned back to the H-

couple processor and sent back to the schedule queue.

(3) The original H—couple processor changed its state to normal or light

before the moment of migrating.

When the H-couple processor becomes the token holder, and if its own

state has been changed to normal or light load state, it sends a cancel com-

mand to cancel the result of the coupling phase.

(4) The heavy-load processor which initiated the bid command becomes

normal or light state before the bid command returns back.

The original H-couple processor can ignore the result of the bid command

immediately, but the L-couple processor had set up the pairing relationship
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with the H-couple processor. Suppose that the L-couple processor will stay in

the light state forever, then it will wait for the impossible migration forever,

i.e., it will never participate the drafting algorithm again. Therefore, we need a

special treatment, called auto check, for this case. When a processor gets the

token and detects its H-couple buffer, if the bufl'er has the same processor ID in

it for three times, it will reset the bufler to 0 automatically to cancel the cou-

pling result. This case is reflected in Table 6-1 which indicates the processor has

light load state but its H—couple buffer is not empty.

 

Table 6-8. The ECA table of a normal-load processor receiving the token

event receive the free token

load state normal

H—cou le=em ?

L-cou le=em t ?

send cou le % cancel

send cou le cancel cancel

transition 33 34 35 36

 

 

The typical cancel situations happen in the cases listed in Table 6—8.

Other cases are spread in Tables 6-1 and 6—4. Note that in transition 36, both

L-couple and H-couple should be cancelled. However, cancelling H-couple has

higher priority than cancelling L-couple because L-couple means nothing to the

normal state but the H-couple may still migrate a process to a normal proces-

SOI‘.
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Note the <w_tag> is used to indicate whether the L-couple or the H-

couple is to be cancelled. When the cancel command passes a non-token

holder, the processor checks its processor ID; if it matches the ID carried by the

message, it cleans its H-couple or L-couple accordingly. When the cancel com-

mand returns to the token holder, no more actions are required. State transi-

tion tables of the above events are rather simple and are not showned here.

6.4.4. Advantages and disadvantages of the first match algorithm

Obviously, the first match algorithm does not require the load table and it

is a simple control strategy. It is, however, unfair in the sense that the first H—

couple might not be the current heaviest processor or the first L-couple might

not be the current lightest processor in the ring network. Imagine that there are

many processors, say 100 in the ring; then only a few processors around a

heavy-load processor may couple with the heavy-load processor, and the proces-

sors whose locations are “far away” from the heavy-load processor may never

get a chance to have a migrant process. This phenomenon is called migration

starvation and will be explained in detail in the next chapter. A more serious

problem is that the migrating phase cannot start until the H-couple processor

becomes the token holder. The longer the time period between the coupling

phase and the migrating phase, called state change period, the higher the pro-

bability that the anomalies will occur. If the H—couple processor is located far

away from its L-couple processor, then its state change period will be long.

Other algorithms must be studied to overcome the disadvantages mentioned

above.
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6.4.5. Design alternatives

The diflerent token passing disciplines give diflerent alternatives of the

algorithm. The major alternatives are

a Single coupling, single migrating - Each token holder can only make one

couple and each heavy-load token holder can only migrate one migratable

process if it has made a migration reservation. This alternative makes a

fair equal opportunity for every processor to send a message and migrate

process.

0 Multiple coupling, multiple migrating -- Each heavy-load processor can

make multiple migration reservations of n and each H-couple can migrate

multiple migratable processes of m. This version makes the load balancing

mechanism more complicated than others since it requires list data struc—

ture for n migration reservations, more hardware and more complicated

exception handling considerations. Meanwhile, choosing a proper value of n

and m is a formidable task since it depends on the various parameters of

the network.

0 Single coupling, multiple migrating -- Each processor makes only one cou-

ple but whenever the H-couple becomes the token holder, it is allowed to

migrate as many migratable processes as possible. The control is simple.

The number of migrations in one token cycle time period is no longer res-

tricted. The token passing time will be longer than that in the first ver-

sion. This alternative is inferior to the individual heavy-load processor.

Especially in the Situation where a heavy-load processor stays at the
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heavy-load state forever, load balancing is effectively killed.

6.5. The Min/Max Algorithm

The second algorithm is called min/max algorithm. Every migration occurs

between the current maximum heavy-load processor and the current minimum

light-load processor. Obviously, the algorithm provides better fairness but more

complexity.

6.5.1. Definition of the writable message format

The min/max algorithm attempts to couple the min-max pair. The writ-

able message format must have fields to carry the values of the light load and

values of the heavy load as a basis of comparisons. The <h_sid> and

<l_sid> fields are used to keeping track of the minimum light-load processor

ID and the maximum heavy-load processor ID. A <w_tag> is set for distin-

guishing the ordinary command and the confirm message.

The specification of the <specifier> of the writable message format by

BNF expressions is as follows.

<specifier> ::= 0 | l <task_spec> <writable_field>

<task_spec> ::= 00 | 01 | 10 | 11

<writable_field) = <w_tag> <h_load> <h_sid> <l_load> <l_sid>

<w_tag> = 0 | 1

<h_load> := integer

<h_sid> = integer

<l_load> .= integer

<l_sid> ::= integer

Figure 6-4. The (specifier) field of the writable message

format of the min/max algorithm
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All the <task_spec> codes are listed below.

00 -- couple, sent by the current light- or heavy-load token holder

01 - cancel, sent by the token holder

10 -— confirm, sent by the token holder to confirm the coupling result

11 -- migrate, sent by the heavy couple, received by the light couple

6.5.2. The coupling phase

The draft and the bid commands lose their difl'erences because both com-

mands are looking for the min/max pair. When a processor becomes the token

holder, it checks its load state. If the load state is either light or heavy, it sends

a couple message into the ring. Every non-token holder processor compares its

load with the load value carried by the message. If a non- token holder is

lightly loaded and its load is less than the light load value carried by the mes-

sage, it will fill its load value and its processor ID into the message. Similarly, if

a non token holder is heavily loaded and its heavy load is greater than the

heavy load value carried by the message, it will fill its heavy load and its pro-

cessor ID into the message. Thus, the token holder will receive a packet which

ran around the ring and contained the min/max information which, however,

has not been confirmed since nobody knows which processor eventually is the

min or the max except the token holder.

6.5.3. The confirming phase

Therefore, an additional confirming message should be sent out before the

token holder releases the token to the next processor. The confirming message

carries the min/max information and set the <w_tag> as l to indicate that
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the writable field is not changeable. Each light-load processor compares its pro-

cessor II) with the <l_sid> and each heavy-load processor compares its proces-

sor ID with the <h_sid> in the confirming message. A match indicates that

the processor is the minimum light processor or the maximum heavy processor,

respectively. All of the no match cases rely on the cancel mechanism.

' 6.5.4. The migrating phase

The migrating phase does not start until the maximum heavy-load proces-

sor becomes the token holder. The normal migrating phase is the same as that

of the first match algorithm. The anomaly situations are different.

The state change time period between the coupling phase and the migrat-

ing phase is longer than that of the first match algorithm because it requires an

additional confirming phase. Thus the probability that the state will be

changed is larger than that of the first match algorithm. On the other hand,

the channel transmission rate is very high in the local area networks. Even

though two runs are needed before the migrating phase, the state change period

is still small compared with the processes interarrival time. And the min/max

algorithm pairs the maximum heavy-load processor with the minimum light-

load processor with more stable status than the couples of the first match algo-

rithm. This fact alleviates the probability of the state change so that the prob-

lem is not very serious.

The anomalies are :

(1) The token holder is the original minimum light-load processor or the
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original maximum heavy-load processor, but it changed its state before the cou-

pling message returns.

The coupling phase is failed and ignored. There will be no confirming mes-

sage. The token holder can release the token immediately.

(2) The minimum light-load processor changed its state to normal or heavy

or the maximum heavy-load processor changed its state to normal or light after

the coupling message returns but before the confirming message reaches it.

The coupling result is ignored. However, either the H-couple has been

confirmed or the L-couple has been confirmed. If it is the former, then the H-

couple processor will start the migrating phase and send a migrant process to

the destination, namely, the L—couple processor. At this moment, regardless of

the current state of the L-couple processor, it cannot accept the migrant pro-

cess. Thus the migrant process will be returned to the H—couple processor, sent

back to the schedule queue, and the L-couple buffer will be reset. If it is the

latter, the L-couple processor recorded the original H-couple processor ID into

its H-couple buffer. Suppose that the L-couple processor will stay in the light

state forever. Then it will never participate in the algorithm again. Therefore,

the auto check procedure should be applied.

(3) The original L-couple processor changed its state to normal or heavy

before the migrant process reaches it.

The H-couple processor migrates a migrant process, but the original L-

couple processor cannot accept the migrant process. The migrant process will

be returned to the H-couple processor and sent back to the schedule queue.
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(4) The original H-couple processor changed its state to normal or light

before the migranting moment.

When the H-couple processor becomes the token holder, and if its load

state has been changed to normal or light, then it sends a cancel command.

6.5.5. Advantages and disadvantages of the min/max algorithm

The min/max algorithm which always pairs the minimum light-load pro-

cessor with the maximum heavy-load processor gives the load balancing fairness

the avoidance of the “migration starvation” phenomenon as mentioned in the

first match algorithm. On the other hand, it requires every processor to take

care of the load comparison, which indeed increases the burden of every inter-

face. The confirming phase requires an extra message causing a longer state

change time period and more channel traffic. Therefore, we propose an

improved min/max algorithm which attempts to eliminate the confirming

phase.

6.5.6. Design alternatives

A design alternative to the min/max algorithm only allows the heavy-load

processor to send the couple command to couple with the minimum light-load

processor but the light-load token holder does not send the couple command.

When the message which carried the coupling result back to the heavy-load

token holder arrives, the processor checks the result to see if it is the current

maximum heavy-load processor in the ring by comparing the value of the

<h_load> carried in the message with its own heavy load value. If so, it starts
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the migrating phase immediately. Otherwise, the result is ignored.

The algorithm, called the modified min/max algorithm provides additional

features beyond the advantages of the original min/max algorithm. The

features are that there is only one cycle before the migrating phase and there is

no state change time period. The major problem is that the coupling may never

succeed since the token holder may not be the current maximum heavy-load

processor and the current maximum heavy-load processor may not be the token

holder simultaneously.

A coupling standard will be applied to alleviate this problem. The coupling

standard is a range of the diflerence between the current value of the maximum

load in the ring and the current load value of the token holder. Suppose the

coupling standard is predefined as 2 and the current maximum load value car-

ried by the message is 4 but the load value of the token holder is 3. The

difference is 1 which is within the coupling standard. Then the token holder can

start the migrating phase even though it is not exactly the current maximum

heavy-load processor in the ring. The coupling standard is an important design

parameter of the algorithm.

In a situation where more than one processor has the same minimum

light-load value, say 0, or more than one processor has the same maximum

heavy-load values, it will force the modified min/max algorithm back to the

first match algorithm since the first light-load processor in the path will be

selected as the L-couple. One way to distinguish them is to use another design

alternative of the min/max algorithm, called the statistical min/max algorithm,



109

which requires a load table to record the statistics. The load of a processor

may either be measured by the number of the processes in the queue or meas-

ured by the time period, named state counter, in which the processor remains in

one of the three state groups. By using the second measurement, the statistical

method attempts to record the state counter in a load table. The bigger the

state counter, the longer the processor remains in the state group. When the

heavy-load token holder checks the load table and finds it is the current max-

imum heavy-load processor. It couples the minimum light-load processor from

the load table, and starts the migration.

Every processor has its own entry in the load table. An entry includes an

L-counter for recording the light-state counter and a H-counter for recording

the heavy-state counter. The rules for the counting are defined as

a draft request command increases the token holder’s L-counter by one;

a bid command increases the token holder’s H—counter by one;

a migrate command reduces the token holder’s H-counter by one and the

receiving non-token holder’s L-counter by one;

0 normal state broadcast command resets the token holder’s H-counter and

L-counter.

Note that the coupling phase is replaced by the message recording. The

load table requires extra memory. Thus the message recording may cause a

bufler overflow problem. The number of messages is increased because the

token holder must send a message per token visit, including broadcasting the

normal state information.
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CHAPTER 7

PERFORMANCE EVALUATION OF DYNAMIC PAIRING STRATEGIES

The performance of the dynamic pairing algorithms are studied by con-

ducting simulation experiments on the token ring network environment. First,

the performance of the first match strategy and the min/max strategy is stu-

died. Then, the performance of the drafting algorithm and the bidding algo-

rithm under the same environment are compared. The simulation results reveal

the quantitative diflerences between these algorithms, and provide a clearer pic-

ture of the conceptual analysis described previously.

7.1. Performance of Dynamic Pairing Algorithms

The first match and the min/max algorithms have been simulated by a

simulator written in the C language. The main points of the simulator were

described in Chapter 4.

Parameters for the simulation

For the purpose of performance measurement, the following assumptions

are made:

(1) There are N processors in the ring network, where N=10 in our simula-

tion;

(2) The physical distance between two adjacent RIPS is D meters, where

D=50 in our simulation;

(3) The transmission rate of the channel is R mbps, where R=10 in our simu-

lation;

(4) The length of the token is T bytes (8T bits), where T=10 in our simula-

tion;

110
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(5) The length of a control message is C bytes (8C bits), where C=10 in our

simulation;

(6) The mean length of a migrant process is K bytes (8K bits), where K=1000

in our simulation and the actual length of a migrant process is a random

number obtained by calling the exponential random generator aexp(8K);

(7) Every RIP makes 1 bit delay.

A message sent by the token holder and then returning to the token holder

takes a period of time called message delay = processor number * (interproces-

sor propagation delay + 1 bit delay) + message length / channel transmission

rate, where, interprocessor propagation delay = D / (2/3 * light speed); 1 bit

delay = l / channel transmission rate. The message delay time is normalized

by using the same unit as the one for normalizing the local processor’s service

rate. It is assumed the unit is norm_unit = 0.001 second. Therefore,

msg_delay =(N* (3 *D /2 *light_speed +1 /R )+msg_length /R )/norm_unit

where, for control message the msg_length = 80; for migrant process the

msg_length = aexp(8K).

The results and analysis

The Simulation results based on the comparisons of two algorithms are

analyzed.

The performance of the first match and the min/max algorithms under the

condition of Q=3 is shown in Figure 7-1 illustrating the curve of the perfor-

mance divided into 2 parts. In the range of the total arrival rate of 5.0 to 7.5,

both the first match and the min/max algorithms have nearly the same mean

response time, even though the min/max is little better than the first match. In

the lower load situation, the processors are likely lightly loaded. Under the

min/max algorithm, a heavy-load processor also chooses the first light-load
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processor downstream as the minimum light-load processor since several light-

load processors downstream may have the same minimum load value, for exam-

ple, 0. Therefore, the min/max algorithm behaves like the first match algo-

rithm. When the total arrival rate reaches 7.5 and up, the min/max algorithm

exhibits better performance than the first match algorithm.

More detailed data from the simulation results of two algorithms are

shown in Tables 7-1 to 7-4. Tables 7-1 and 7-2 refer to the total arrival rate

5.01 corresponding to the lower load situation, while Tables 7-3 and 7-4 refer to

the total arrival rate 8.51 corresponding to the higher load situation. The dis-

tribution of the arrival rate along the 10 processors is X,- = 0.147 * total

arrival rate, for i = 1,2,3; and )\j = 0.08 * total arrival rate , for j =

4,5,6,7,8,9,10. Therefore, processors 1 to 3 form a heavy oriented group and pro-

cessors 4 to 10 form a light oriented group. The results of the first match algo-

rithm possess a “biased property”. However, the results of the min/max algo-

rithm show an “even property”. This is clearer in the high total arrival rate

situation than in the lower total arrival rate situation. From the data listed in

the Tables, we can see

(1) The number of migrant processes migrated out from the heavy oriented

processor group (the “mig out” row of the tables) is in decreasing order in the

first match, but not in the min/max under the higher total arrival rate situa-

tion;

(2) The number of the migrant processes entering the light oriented proces-

sor group (the “mig in” row of the tables) is in the decreasing order in the first

match, but not in the min/max under the higher total arrival rate situation;

(3) In the dynamic process migration, it is possible for a light oriented pro-

cessor to migrate out some processes. It is also possible for a heavy oriented

processor to accept some migrant processes. This is called bidirectional
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migration. The bidirectional migration phenomenon of the first match algo-

rithm is more serious than that of the min/max algorithm (the first and the

second rows of the tables). The bidirectional migrations contain some unneces-

sary migrations which degrade the system performance.

(4) Thus, the mean response time of the min/max algorithm are more even

than those of the first match algorithm (the “resp. time” row of the tables).

(5) The standard deviation of response times of the min/max algorithm are

less than those of the first match algorithm (the “stand. devia.” row of the

tables). This reflects that the min/max algorithm is more fair than the first

match algorithm.

(6) The number of processes left when simulation stopped in the min/max

algorithm is less than that in the first match algorithm (the “late msg” row of

the tables).

(7) Unfortunately, the number of the too-late messages of the min/max

algorithm are greater than those of the first match algorithm because the phase

transition period of the min/max algorithm is longer than that of the first

match algorithm.

(8) From Tables 7-3 and 7-4 we can see that the mean response time of the

light oriented processors are still small, i.e. the light oriented processors still

have a potentially large capacity to improve the performance under the higher

total arrival rate situation. The queue emptying discipline adopted restricts the

number of migrations. Other kinds of queue emptying discipline to reduce this

restriction may be employed.
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Table 7-1. First match algorithm, Q=3, R=5.01

(r1=r2=r3=0.73, r4-r10=0.40)

 

 

 

 

 

 

 

 

 

 

           
 

 

 

 

 

 

 

 

 

 

 

 

id 1 2 3 4 5 6 7 8 9 10

mig out 828 790 716 85 80 63 60 56 70 62

mig in 72 375 512 874 353 188 124 99 86 96

ctrl msg 3497 3834 3920 2628 1762 1481 1446 1342 1347 1340

late msg 35 44 43 ll 11 4 0 7 12 4

draft msg 2032 2225 2326 1962 1419 1264 1258 1174 1181 1175

bid msg 557 551 524 68 54 48 54 44 46 46

2:: 2.39 2.39 2.38 1.72 1.64 1.61 1.56 1.56 1.59 1.64

8"“.d‘ 2.06 1.98 2.00 1.66 1.65 1.56 1.48 1.51 1.54 1.58
dev1a.

proc.
left 5 2 1 0 1 0 0 1 1 0

Table 7-2. Min/max algorithm, Q=3, R=5.01

(r1=r2=r3=0.73, r4-r10=0.40)

id 1 2 3 4 5 6 7 8 9 10

mig out 802 721 717 60 65 69 71 68 71 59

mig in 47 200 320 649 474 303 230 162 133 126

ctrl msg 2208 2323 2430 2288 2061 1995 2028 1998 1969 1910

late msg 34 34 42 30 57 33 36 45 20 19

draft msg 1052 1191 1205 1927 1802 1795 1820 1821 1796 1767

bid msg 498 452 473 51 52 53 55 47 53 47

2:: 2.33 2.30 2.35 1.65 1.66 1.63 1.57 1.56 1.63 1.64

“39¢ 1.95 2.05 2.01 1.56 1.56 1.55 1.46 1.50 1.56 1.56
devna.

pm“ 0 1 1 0 0 0 1 3 0 1
left           
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Table 7-3. First match algorithm, Q=3, R=8.51

(r1=r2=r3=1.25, r4-r10=0.68)

346.0 472.5 735.2 3.2 3.1 2.9 3.2 3.0 3.1 2.7

136.8 153.3 230.1 2.7 2.8 2.5 2.8 2.5 2.6 2.3

 784 899 1483 l 0 4 4 1 3 4

Table 7-4. Min/max algorithm, Q=3, R=8.51

(r1=r2=r3=1.25, r4-r10=0.68)

“59' 212.2 215.7 220.3 3.5 3.2 3.3 3.3 3.0

stand.

63.4 61.8 67.1 3.1 2.8 2.9 2.9 2.6

pm“ 447 447 454 1 1 0 0 1 
7.2. Performance comparison of bidding and drafting algorithms

The drawbacks of the bidding algorithm have been analyzed and overcome

in the design of the drafting algorithm. However, a comprehensive quantitative

comparison between the drafting algorithm and the bidding algorithm has not
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been given. Based on the same token ring network environment, we conducted

a series of simulation experiments for both the drafting algorithm and the bid-

ding algorithm. Here, the drafting algorithm is one which differs from the

dynamic pairing algorithm investigated in Chapter 6 in the sense that it does

not employ the heavy-initiated method. Consequently, the performance of the

drafting algorithm is a little worse than that of the dynamic pairing algorithm

as shown in Figure 7-3.

Simulation models

The simulation model of the drafting algorithm is the same as shown in

Figure 4-2. The bidding algorithm does not have the concept of the internal

load states. The model is simple as shown in Figure 7-2. The system parameters

are the same as described in Section 7.1.

In the model, new arrivals enter the waiting queue of a processor. Migrant

processes enter the incoming queue. All processes which will be migrated and

other messages are accumulated in the outgoing queue. The migratable

processes are the new arrivals in the waiting queue. On the token ring network,

only the token holder has the authority to use the channel. The token holder

may not have a new arrival, while the processor with a new arrival may not be

the token holder. In order to overcome this difiiculty, a rule is employed, which

says that the token holder can send out a bid request if it had at least one new

arrival during the previous token cycle time, that is, the period of time after it

released the token until it receives the token again. The load difference

between the source processor and the destination processor is selected and given

the same value as the Q value in the drafting algorithm, the threshold value

between the heavy load state and the light load state.
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Figure 7-2 The simulation model of bidding algorithm

Simulation results

Figure 7-3 shows the performances of the bidding algorithm and the draft

ing algorithm. It is clear the drafting algorithm has higher performance than

that of the bidding algorithm. Tables 7-5 and 7-6 list more detailed data from

the two algorithms under the same parameters.

The following conclusions may be drawn from the tables:

(1) The bidding algorithm does not have the concept of internal load

states. Whenever a processor has a new arrival, it sends a bid request no matter

how heavy its load is. This creates a lot of control messages even on the token

ring network environment (the row “cntl msg" of the tables). The drafting
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(r1=r2=r3=1.25, r4-r10=0.68)

Table 7-5. Bidding, first match algorithm, Q=3, R=8.51

 

 

 

 

 

 

 

 

 

 

           
 

 

 

 

 

 

 

 

 

 

 

           

id 1 2 3 4 5 6 7 8 9 10

mig. out 1308 1263 1249 148 140 133 129 112 118 120

mig. in 0 2 5 766 748 640 546 484 428 387

ctrl msg 1803 1828 1826 1594 1530 1576 1611 1550 1580 1511

late msg 0 0 0 274 247 253 232 209 176 143

draft msg 0 0 0 0 0 0 0 0 0 0

bid msg 1803 1828 1826 1489 1429 1441 1471 1422 1472 1414

"FSP' 518.3 590.1 481.0 3.3 3.1 3.0 3.2 2.7 2.8 2.8
time

:‘a‘fd' 262.3 325.7 241.7 3.0 2.8 2.5 2.7 2.3 2.6 2.5
CV13.

pm' 942 1040 938 1 8 2 4 8 0 4
left

Table 7-6. Drafting, first match algorithm, Q=3, R=8.51

(r1=r2=r3=1.25, r4-r10=0.68)

id 1 2 3 4 5 6 7 8 9 10

mig. out 2081 1465 937 51 120 191 201 191 239 217

mig. in 0 0 0 721 740 738 709 706 631 594

ctrl msg 0 0 0 893 961 944 971 1006 988 1044

late msg 0 0 0 109 145 168 200 175 163 152

draft msg 0 0 0 876 940 910 932 951 938 1002

bid msg 0 0 0 0 0 0 0 0 0 0

’ffp' 208.4 420.1 713.2 3.8 3.0 3.1 3.1 2.9 3.0 2.7
time

“3”.‘1' 61.6 162.2 208.9 3.7 2.4 2.7 2.7 2.5 2.5 2.3
dev1a.

pm' 289 794 1356 0 2 0 1 1 1 1
left  
 

 

algorithm sends out 6549 drafting requests, and ends up with 5693 migrations;

The bidding algorithm sends out 15595 bid requests, and ends up with 6028

migrations. The number of bid requests is about twice as much as the number

of drafting requests for nearly the same number of migrations.
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(2) The bidding algorithm migrates the new arrivals from the tail of a

waiting queue in the original processor to the another tail of the waiting queue

in the remote processor. In heavy load situation, migrating the processes from

the tail of the waiting queue does not give a considerable contribution to the

response time. Therefore, the average response time of the bidding algorithm is

223.51, rather than 184.50 of the drafting algorithm when the total arrival rate

is 8.51. However, the response time distribution is more even in the bidding

algorithm than in the drafting algorithm. The reason is that the number of

light oriented processors is greater than the number of heavy oriented proces-

sors in this simulation. It is easier for heavy-load processors to find a couple in

the bidding algorithm than for the light-load processors to find a couple in the

drafting algorithm. This leads to the result that the processor 1 migrated more

processes than the processor 3 in the drafting algorithm, so that the response

time of processor 3 is much longer than that of processor 1.



was

The

cha.

8.1.

non

to a

pm

data

“he

med

Secc

Whe

Wher

dela3

{Ma}

tfirm:



CHAPTER 8

DISCUSSION OF INIPLEMENTATION ISSUES

The implementation of the drafting algorithm on the token ring networks

was considered in Chapter 6. The other two standardized local area networks,

token passing bus and CSMA/CD networks, provided different features [Stal84].

The implementation issues on these two networks are further discussed in this

chapter.

8.1. Implementation Discussion on Token Passing Bus

The token passing bus physically is a bus, but logically is a ring. Under

normal (error-free) conditions, the operation of this type of network is similar

to a token ring network. However, the bus network has two special basic pro-

perties which are different from the ring network. First, with a bus network, all

data terminal equipments are connected directly to the transmission medium.

When a data terminal equipment transmits (broadcasts) a message on the

medium, it is received by all active data terminal equipments in the network.

Second, there is a maximum time requirement for a data terminal equipment

when it waits for a response to a transmitted message before it assumes that

either the transmitted message was corrupted or the specified destination data

terminal equipment was inoperable. This time is known as the slot time tau

(not the same as used in a CSMA/CD bus) and can be defined as :

= 2(transmission path delay + processing delay)

where the transmission path delay is the worst-case transmission propagation

delay going from any transmitter to any receiver in the network and processing

delay is the maximum time for the medium access control unit within a data

terminal equipment to process a received frame and generate an appropriate
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response. On receipt of a valid token frame, a data terminal equipment may

transmit a number of frames it has in the waiting queue. It then passes the

token to its known successor. After sending the token, the data terminal equip-

ment listens to any subsequent activity on the bus to make sure its successor is

active and has received the token. If it hears a valid frame being transmitted, it

knows that its successor has received the token correctly. If it does not hear a

valid frame being transmitted after the slot time interval, it must take correc-

tive actions.

The broadcast feature is good for gathering global status information, but

it makes the implementation difficult since it can not take advantage of the

writable message format to establish the coupling phase of the drafting algo—

rithm as done previously on token ring networks. That is, the dynamic pairing

strategies can not be applied to the token passing bus directly even though the

token passing bus forms a logical ring. Therefore, the light-load processor issu-

ing a draft request must wait until all heavily loaded processors in the network

become token holders in turn, then respond with the draft-age messages to the

light-load processor. For a token ring network consisting of N processors, sup.

pose that the interprocessor propagation delay is T. The total time needed for

the message to go around the ring is N(T +1) + L /C', where 1 is the 1 bit

delay made by every token ring interface, L is the length of the message, and C

is the channel tranmission rate. The second item in the above equation may be

ignored since L is usually small, while C is large. Thus, the message delay time

is approximately

N(T+1) (7-1)

In the token passing bus, it takes 1' + L /C for a light-load processor to

issue a draft request. Then it needs another 7 + L /C to pass the token to its

successor. In the worst case where other processors are all heavily loaded, the
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time interval from a light-load processor issued a draft request until it receives

all draft-age messages (under the assumption there is no other message

transmission) is 2N (T + L / C ). In the best case where only one heavy-load pro-

cessor is in the network, the time interval is (2+(N—2)+2)(‘r+ L /C’). The

average time interval is

(1.5N+1)(T + L /C) (7-2)

Consequently, the performance of the drafting algorithm on the token passing

bus with respect to that on the token ring network is determined by the value

of

N(T +1)

(1.5N+1)(7+L /C)

In case the ratio is close to 1, direct implementation of the drafting algorithm

 

(7-3)

on the token passing bus networks can be made, achieving the same level of

performance as that on the token ring networks. However, the value of r is usu-

ally greater than T since the propagation delay 1' deals with the entire length of

the bus, but the propagation delay T only relates to the interprocessor distance.

Therefore, the performance of the drafting algorithm on the token passing bus

is worse than that on the token ring networks.

8.2. Implementation Considerations on CSMA/CD Networks

The DCRLab (Distributed Computing Research Laboratory) at Michigan

State University has a number of Sun workstations running UND( 4.2 BSD and

interconnected through a CSMA/CD Ethernet. The system is facilitated with

the primitives for interprocesses communication. These primitives provide the

possibility of implementing the drafting algorithm.

Protocol implementation and operating system

To implement an algorithm on an existing computing system is to add a
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protocol to an operating system. Generally speaking, it may be realized in three

ways. The protocol may be in a process provided by the operating system, or it

can be part of the kernel of the operating system itself, or it can be put in a

separate communications processor or front end machine [Clar82].

The process is the abstraction which most operating systems use to provide

the execution environment for user programs. A very simple path for imple.

menting a protocol is to obtain a process from the operating system and imple-

ment the protocol to run in it. In this way, kernel modifications are not

required, and the job is done by someone who is not an expert in kernel struc-

ture. Unfortunately, putting a protocol in a process has a number of disadvan-

tages, related to both structure and performance. First, process scheduling

causes a significant time delay which not only decreases the performance of the

protocol but also postpones the response to the client. Structurally, the protocol

may provide some services. For example, the data streams are normally

obtained by going to special kernel entries. It may be impossible to let a pro-

gram read data from a process. It is usually the case that special kernel

modification is necessary to achieve this structure, which defeats the benefit of

implementing the protocol in a process.

There are advantages to putting the protocol package in the kernel. It is

reasonable to view the network as a device, and device drivers are traditionally

contained in the kernel. The process scheduling problem can be alleviated

because the code of the protocol is put inside the kernel. However, network pro-

tocols have a special characteristic which is different from other devices. The

protocols require timeouts to protect themselves from any unpredictable excep-

tions. The kernel often has no facility to provide timer events. The only avail-

able mechanism is the interrupt. From the operating system point of view, it

does not require too much time to handle an interrupt. But the protocol may
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perform some actions which are too complex and time consuming. Thus, in

turn, causes a long time interrupt. The system scheduler has no control over

the time used by the protocol. If a large number of communications is involved,

all of the time may be spent for the interrupts. The system is actually killed.

On the other hand, the interrupt handler does not provide a variety of impor-

tant system facilities. The obscure bugs of the protocol implementation may

not only kill the protocol, but also the entire operating system. In addition, the

kernel address space is usually too small to contain the protocol code. This con-

straint does not allow an effective and general implementation of a protocol. A

protocol tied to an operating system is a troublemaker whenever the operating

system requires change.

The third way is to put the entire protocol package into a separate com-

munication processor. The package is independent of existing operating systems

which may differ from host to host in the system. Thus, an easier implemented

protocol may be employed by different hosts. Similarly, there are also problems;

such as, the need for an extra communication processor, the interface between

it and the host as a protocol which still causes problems as mentioned above.

Environment of UNIX 4.2 BSD

The right way to implement a protocol, therefore, is to layer the protocol

along with network layers. In the ISO 081 (International Standard

Organization’s Open System Interconnection) model, each layer provides many

facilities supporting the higher layer(s) and using the services provided by the

lower layer(s). The bottom-most layer is within the kernel, starting with a dev-

ice driver or local network driver, then 1? (Internet Protocol) and TCP

(Transmission Control Protocol), eventually reaching the user. These existing

system facilities may be used to implement a new protocol.
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Berkeley UNDC 4.2 BSD offers extensive network services for doing IPC

(InterProcess Communication) [KiNi86], a comprehensive tool for processes at

different processors of the network to be able to communicate and cooperate

with each other. Their native network transport facility is the DOD

TCP/UDP/IP protocol family. The standard interface between application pro-

grams and transport protocols allows implementation of the protocol into

processes obtained from the operating system, which are distributed on different

processors. The network facilities correspond to a portion of the session layer

and all of the transport and network layer of the 081 model. The transport

layer normally includes the aspects of reliable transfer, data sequencing, flow

control, and service addressing. Reliability is usually reached by explicit ack-

nowledgement of data delivered. Sequencing may be handled by attaching a

sequence number to each message. The session layer facilities may provide

forms of addressing which are mapped into formats required by the transport

layer.

In UNIX 4.2 BSD, the process is represented by three memory segments:

the text segment containing code and constant data, the data segment contain-

ing variables, and the stack segment holding the process stack. Each process has

a private descriptor table through which it accesses the rest of the system. Each

descriptor is a handle allowing the process to reference objects such as files,

devices, and communication links (sockets). The basic method to create a pro-

cess in UNIX is to invoke the system call fork().

The IPC facilities provided in 4.2 BSD have been designed as totally

independent subsystems. The IPC allows processes to rendezvous in many

ways. The basic building block for communication is the socket. A socket is a

bidirectional endpoint of communication to which a name may be bound. To

create a socket, a call is invoked:
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sk = socket(domain, type, protocol);

requiring three parameters. The domain refers to the area the socket works on.

For example, UNIX domain (specified by AF_UNIX) is for socket working on

one host. Internet domain (specified by AF_INET) is for the communication

between hosts. Each socket in use has a type and one or more associated

processes. Three types of sockets are available. A stream socket provides for the

bidirectional, reliable, sequenced, and unduplicated flow of data without record

boundaries. A datagram socket supports bidirectional flow of data with record

boundaries, which is not sequenced, reliable, or unduplicated. A raw socket is

normally datagram oriented. The exact characteristics are dependent on the

interface provided by the protocol. A raw type socket is not used. A socket,

also, associates with a particular protocol. Either the user specifies the protocol

or the system selects an appropriate protocol (put a value 0). This call returns a

value of sk which is an index pointing to an entry in the caller process’s

descriptor table.

A socket is created without a name. A name is an address. In the internet

domain, a address contains an internet host’s address and a port number. The

name can be specified by user :

struct sockaddr_in name

name.sin_family = AF_INET;

name.sin_addr.s_addr = host_address;

name.sin_port = port_number;

If user knows only the name of the host, then the address of the host may be

found by the gethostbyname(host_name) call. The port_number may be set 0

and the system will assign an available port to the name. The connection

between the entry of the descriptor table and the name is established by the

call bind :

bind(sk, name, name_length);
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The name provides a point which may be used to connect the host with other

hosts in the system. The communication between two hosts could be based on

either connection oriented or connectionless oriented. In the former case, a con-

nect call will establish a connection :

connect(sk, &remote_name, remote_name_length);

Then data transfer is done simply by calling write and read

write(sk, bufler, bufler_length);

read(sk, bufler, bufler_length);

or send and recv instead.

send sk, bufler, bufler_length);

recv sk, bufler, bufler_length);

The connectionless data transfer is usually used for datagram. To send

data, the sendto primitive is available :

sendto(sk, bufler, bufl'er_length, flags, &des_name, des_name_length);

The des_name is the name of the destination host the data is expected to reach.

To receive data, the recvfrom is usable :

recvfrom(sk, bufler, bufl'er_length, flags, &sou_name, sou_length);

There are other primitive alternatives for the diflerent calls [LeJF83],

[LeFJ84]. Summarized, the steps needed for data transfer are :

0 create a socket

0 find a name

0 bind the socket and the name

6 establish a connection (or use connectionless)

6 transfer data



130

Implementation Considerations

The drafting algorithm balances the work load by using the process migra-

tion mechanism based on the predefined internal load states of a processor. In

other words, it involves two basic aspects: the definition of the internal load

states and the mechanism of the process migration. As mentioned in the previ-

ous section, the network communication facilities in 4.2 BSD are normally sup-

ported by a portion of the session layer and the entire transport layer. Thus,

the drafting algorithm is implemented in the application layer in a user tran-

sparent manner. The implementation of the drafting algorithm on the

CSMA/CD UNDi 4.2 BSD environment gives rise to several considerations.

The internal load states of the host

The internal states deal with the system kernel. At the first stage of the

implementation, it is better to avoid the aspect of touching the kernel. For-

tunately, the UNDC command to gives the average load value in previous 1, 2

and 5 minutes, respectively. Thus, these average load values are used to deter-

mine the internal states of the host without touching the kernel by predefining

threshold values of heavy, normal and light load states. However, the migrant

process is selected only from the new arrival instead of the first process in the

schedule queue since the process table in the kernel may not be accessed. As

shown in Figure 7-2, the model of the bidding algorithm is simple. It is possible

to implement the bidding algorithm without touching the kernel. From the

implementation point of view, a bidding algorithm armed with internal states

can be implemented.

The process main()

A process main() can be built up on the top of the user login process. It

accepts the command that is user typed in from the keyboard, then sends this
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command to a filter. All possible commands issued by users can be dis-

tinguished as migratable or unmigratable. For example, cp, mv, rm, cd etc. are

locally processed since all resources involved reside only in the local. Commands

like cc, lpr, itrofl and a.out without interactive operations etc. might be

migrated and remotely processed. The filter figures out the current load of the

host and the migratable possibility of the command. If the current load of the

host is heavy and the command is migratable, the main() begins sending a

request to the daemons on the other hosts by using datagram facilities. Other-

wise, if the command is local processed only, then the filter calls the system

subroutine system() and takes the command as the parameter to execute the

user command locally (see Figure 8-1).

1{nain()

get_host_name(my_host_name);

get_host_addr(my_host_addr);

open_ctl_sk(my_host_addr); /* a datagram socket */

open_mig_sk(my_host_addr); /* a stream socket */

while(TRUE) {

readmask = 1 << mig_skil;

select(20, &readmask, 0, 0, tv);

* receive a command from key board */

1f ((readmask & 1) > 0)

read(0, buf, BUFSI E);

if (filter buf == REMPROC) {

if couple_remote())fi)

mig_command( uf);

return;

system(buf);

* receive the result from the remote processor */

1f ((readmask & 1 << mig_sk > 0) {

recv(mig_sk, buf, BUFSI E);

Figure 8—1 The main() of the implementation
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where, REMPROC is the state for allowing remote process. The

couple_remote() calls a procedure ctl_comm() described below and through a

socket called ctl_sk opened by the procedure open_ctl_slc() to communicate

with the remote daemon for coupling a remote host and then migrates the com-

mand to it through another socket named mig_sk which is a stream type socket

and dedicated to migration. In realizing that the system possessed has a file

server which can be accessed from all hosts in the system, the migration is per-

formed by passing the command and the file name (the address of the file)

instead of the entire file contents.

The I/O multiplex is chosen to implement the main() to make it powerful

and flexible. In this way the main() receives the both command from the user’s

keyboard and the result sent back from the remote hosts.

A daemon for the control

Every processor has a daemon for the purpose of receiving and handling

control messages. The request received by daemons in other processors is sent

to the procedure process_reguest(requcst, response), then the daemon sends the

response back to the host initiating the request. Figure 8-2 sketches the main

parts of the daemon,

daemon()

1getliostimmewostname, &name_length);

or ;;

recvfrom(daemon_sk, (char *)&request, sizeof(request), 0,

&from_addr, &from_size);

process_request(&request, &response);

sendto(daemon_sk, (char *)&response, sizeof(response), 0,

&request.ctl_addr, sizeof(request.ctl_addr));

Figure 8-2 The sketch of the daemon()
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where request and response are declared in globa.h file. They carry the

addresses for communication purpose.

In order to task the control functions, the daemon maintains a double

linked list which is a modified load table of the drafting algorithm, several

manipulating procedures, and abundant control types to handle all possible

controls, such as BROADC_H (broadcast_heavy), ANNOUN_W

(announce_winning), LEAVE_C (leave_coupling), DELETE_R (delete_record),

etc. The response of the remote host is carried by the data structure response;

it is sent back by the daemon().

Control communication

A procedure ctl_comm() plays the role of interface between the

couple_remote() of the main() and the daemon().

ctl_comm(des_host_addr, msg, type, response)

msgtype = type;

daemon.addrsin__—addr= des_host_addr;

daemon.addrsin_port = daemon_po;rt

sendto(ctl_sk, (char *)&msg, sizeof CTLMSG,)0,

&daemon_addr, sizeof( aemon_adr

recvfrom(ctl_sk, (char *)&response, sizeof(CTL_RESPONSE), 0,

&from_addr, &from_size);

Figure 8-3 The interface procedure ctl_comm()

The procedure sends the request message to the daemon which can either be

the daemon in the local host or in the remote site by passing a different

destination_host_addr. Then it waits for the response coming back.

Transactions between the couple_remote() and the daemon()

The fundamental transactions between the couple_remote() and the dae-

mon() include :
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o The couple_remote() broadcasts the remote processing request to all

other processors in the system by calling the ctl_comm() in the type

BROADC_H. The broadcasting message contains the load value of the heavy-

load processor. The message reaches the other host and is inserted into the dou-

ble linked list in decreasing order of the load value. This results in the heavist

host at the first position of the list. The host receiving the heavy-load message

then puts its light load value into the response record if it is in light load state.

Otherwise, it does nothing. The response record is returned to the heavy-load

host.

0 The heavy-load host receives all responses and selects one of them as the

winning processor based on load values carried by the response records. Then,

call ctl_comm() to send the ANNOUN_W message to the winning processor.

The winning host issues LEAVE_C to its own daemon to clean the load table

and passes an accept or reject response according to its current load state. If it

is in the light load state, it sends accept and calls listen() on its mig_sk socket

waiting for the caller’s connection.

0 The heavy-load host receives the accept response, initiates connect() at

its own socket mig_sk and connects to the winning host, then migrates the

command of the remote processing. The reject response causes the function

couple_remote() to return a FALSE, then the main() calls system routine sys-

tem() to execute the command locally. Any exception is handled by calling

DELETE_R type of request.

This implementation reveals that the UNIX 4.2 BSD operating system pro—

vides a good environment for adding new protocols in the application layer.

The difficulty lies in the kernel change. The drafting algorithm is more diflicult

to implement than the bidding algorithm, and was not implemented. The

queue-length-determined internal state mechanism was also not implemented.

 



CHAPTER 9

CONCLUDING REMARKS AND FUTURE WORK

Load balancing is an important mechanism in distributed systems for

improving the performance of the whole system. This study reveals the

dynamic characteristics of the distributed systems, discuses the design con-

siderations of the load balancing algorithms, and compares the performance of

the various load balancing strategies to investigate an eflicient dynamic

scheduling scheme, called the distributed drafting algorithm.

9.1. Summary

The following results were achieved through this research:

(1) The unpredictable interprocess message transit delays of the distributed

systems force control algorithms to work on an approximation of the global sys-

tem state. The more accurate the global state gathered, the more communica-

tions required, therefore, the stronger eflects the unpredictable delays show.

The unavoidance of the asynchronization of the global actions produced by the

control algorithms with the concurrent local actions causes anomalies. These

facts create the difliculty of designing protocols and algorithms. The protocols

and algorithms must compromise between two contradictory goals: maximize

the processor utilization and minimize the communication overhead, and must

consider the complicated exception handling.

(2) Generally speaking, the phenomenon of imbalance exists in distributed

systems. This phenomenon degrades utilization of processors, and therefore, the

performance of the whole system. The dynamic process migration is a useful

tool for load balancing to alleviate the unbalancing problem. The distributed

drafting algorithm is an eflicient load balancing algorithm which is network

135



136

topology independent and accommodates dynamically changing system

behavior. It satisfies the design requirements of the dynamic protocols men-

tioned in (1).

(3) Figures 5-3 and 5-5 showed simulation results in the point-to-point net-

work consisting of 5 processors under the nonprobabilistic balancing situation

and the probabilistic balancing situation, respectively. These figures indicate

that the distributed drafting algorithm strongly improves the system perfor-

mance over the situation without load balancing. The simulation results in

Figure 5—4 also show that the drafting algorithm is suitable for the networks

possessing the high transmission rate and low error rate.

(4) The drafting algorithm overcomes the drawbacks of the bidding algo-

rithm by introducing internal load states and letting the light-load process ini-

tiate migration. The qualitative analyses point out that the drafting algorithm

avoid the wait-while-idle, the unfairness and the unnecessary process migrations

which are the inherent problems of the bidding algorithm. The quantitative

simulation results of the token ring environment indicate that the drafting algo-

rithm reduces the mean response time of the bidding algorithm around a half

under the heavy load situation (up to total arrival rate of 8.0 for a token ring

network consisting of 10 processors shown in Figure 7-3).

(5) The underlying network topology of a distributed system affects the

implementation strategies, design parameters, and performance of load balanc-

ing algorithms. On the token ring network, we combined the heavy-initiated

concept with the drafting algorithm to improve the performance. On the

CSMA/CD network, we used other measures of the internal states and migra-

tion only of new arrival processes to avoid touching the kernel of an existing

operating system which we used to implement a load balancing algorithm in a

CSMA/CD environment.

 



137

(6) The dynamic pairing concept comes from the drafting algorithm, and

studies the methods used to select a pair among the possible couples by consid-

ering the trade-ofl' between the highest performance and the easiest implemen-

tation. Based on the features possessed by the token ring network, a writable

message format is designed as a convenient vehicle to carry the negotiation

information when implementing the dynamic pairing algorithms in the token

ring network environment. The comparison of the simulation results (Figure

7-1) shows the mean response time of the min/max algorithm is about one of

fourth of the first match algorithm when the total arrival rate reaches 8.0.

9.2. Future Work

We have studied the distributed drafting algorithm in different network

environments. The results of the simulation indicate that the drafting algorithm

approaches the M/M/N queueing model to a certain extent, and it outperforms

the conventional bidding algorithm. However, some problems still remain as

open questions.

(1) Adaptive definition of the internal load states

The bidding algorithm triggered by a new arrival introduces the influence

of the external work load fluctuation. This fluctuation not only degrades the

performance of the system but also brings an unstable factor to the system.

The distributed drafting algorithm introduces internal load states so that the

triggering of the algorithm depends on the system states. The number of mes-

sage exchanges is considerably reduced and the stability of the whole system

increased. The introduction of internal states appears the essence of the draft-

ing algorithm.

Obviously, the internal states in turn require a quantity that can be used

as a measurement of the processor’s load in the system. The number of waiting
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processes in a processor may be selected as an applicable parameter for the

definition of the internal states. Unfortunately, this parameter does not take

the size of the waiting processes into account. Meanwhile, the predefined three

internal states may not be adjusted with the dynamic situation in the system.

A more eflicient and effective approach for defining the internal load states is

expected. Eflicient means less overhead; eflective means more accurate. The

min/max algorithm studied in chapter 6 is a partial solution of the dynamic

definition of states because the migration from the heaviest processor to the

lightest processor copes with the dynamic situation of the system. But the

definition of the load states itself is still static.

(2) Load state of channels

As mentioned in Chapter 3, the load state of the channels is ignored in this

study. Actually, the channel traflic seriously aflects the control message

exchanges and the process migrations. If channel traflic is heavy, it postpones

the control message communications and the migrations, and increases the

length of the phase transition period that reduces the eflectiveness of load

balancing. Meanwhile, additional channel trafl'rc introduced by load balancing

further increases the burden on the channels. Therefore, a quantity which may

be used as a measurement of the channel’s load is important. Considering the

unpredictable property of the channel communication delay, the difficulty of

finding this quantity is clear.

(3) Implementing the drafting algorithm on a UNDC-based system

Some basic implementation considerations of the drafting algorithm have

been described in Chapter 8. More research is required on how to modify the

kernel for accessing the process table, in order to fully implement the work

described here.
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(4) Expanding the drafting algorithm to heterogeneous distributed systems

Homogeneous distributed systems provide compatibility between the pro-

cessors. This environment is easy for discussion of process migrations. Con-

versely, in heterogeneous distributed systems, the diflerent processors employ

different operating systems. Many problems, such as “What kind of processes

can be migrated?”, “How can a migrant process be migrated?”, “After a

migrant process has been migrated to a remote processor, how can the correct

communication with the original process be kept?” etc., require further investi-

gation.

(5) What if a distributed system consists of thousands of computers?

A light-load processor must broadcast a drafting request to thousands of

other computers. A possible solution to reduce communications and migration

overhead is to employ a hierarchical structure which groups some processors.

Load balancing can be executed both within a group and between groups.
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