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ABSTRACT

OPTIMAL APERIODIC SAMPLING FOR

SIGNAL REPRESENTATION AND SYSTEM CONTROL

BY

Ronald Lee Van Wieren

There were two investigations conducted in this thesis. First,

signal representation through use of non-periodic sampling was

investigated in an effort to reduce the sampling errors inherent in

periodically sampled piecewise constant approximations of con-

tinuous time signals. Second, non-periodic sampling was applied to

the feedback control problem by sampling of the continuous time feed-

back control error signal.

A performance index for the signal representation problem was

proposed which measured the errors caused by passing a continuous-

time signal through a sample and hold mechanism. A cost for im-

plementation was developed and included to form a system performance

measure. The cost of implementation measured the costs for computer

utilization, software and data storage, and data communication for

each of the sampling methods (periodic, aperiodic, and adaptive) used.

The Optimal aperiodic sampling criterion was determined by first

Obtaining a derived performance index as a function of the sampling

interval sequence, (i. e. a sequence of sampling interval lengths) and
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the number of sampling intervals being used. This derived performance

index was then minimized with respect to the sampling intervals for a

particular number of sampling intervals. The Optimal sampling in-

te rval sequence was then determined to be the optimal number of

samples and the resulting optimal sampling interval sequence which

minimized the derived system performance index.

A remote display problem was presented as an example for com-

paring periodic, adaptive, and sub—optimal aperiodic sampling techniques

used to obtain piecewise constant representations of continuous time

signal records. The continuous time signal record used in the display

problem was generated by a signal model, then stored, and later sam-

pled for transmission via a specified communications network to the

remote display.

Optimal aperiodic sampling was extended from the signal repre-

sentation problem and applied to a control implementation problem. The

sampling process for measuring the outputs and actuating the control

inputs was to be designed. Two system configurations employing control

signal sampling we re considered. The first sampling configuration sam-

ples both the input and feedback signals while the second samples only

the feedback with the input signal being continuously applied to the system

plant. The control law was assumed to be designed previously using

either classical or modern techniques. Thus, the only design parameters

are the number of samples and the sampling interval lengths.

A quadratic control performance index is assumed which measures
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control energy, tracking error and terminal error. A cost for im-

plementation is developed and included to form a system performance

index. This cost of implementation measured the computer utilization,

data and program storage, and data communication costs for each

method of sampling used.

The optimal aperiodic sampling criterion was again computed by

determining a derived system performance index which was a function

of the number Of samples and the length of each sampling interval. The

derived system performance index was minimized with respect to the

lengths of sampling intervals for a particular number of sampling in-

te rvals. The optimal aperiodic sampling criterion was then determined

to be the optimal number of samples and the resulting optimal sampling

interval sequence which minimized the system performance index.

The results of the investigations conducted on optimal sampling for

signal representation of continuous time signals resulted in the following

findings. The derivedperformance costs for sub-optimal aperiodic

sampling in all cases considered yielded lower performance costs than

comparable periodic or adaptive sampling methods applied to the same

continuous time signal record with an equal number of sampling intervals.

The costs for implementation of sub-optimal aperiodic sampling were

in general higher than periodic or adaptive sampling as the number of

sampling intervals. This increase was due to the increased computational

requirements of aperiodic sampling.

Investigations of non-pe riodic sampling for system control indicated
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that through use of sub-Optimal aperiodic sampling control performance

costs could be reduced below periodic sampling costs using an equal

number of sampling intervals in each case considered. In several

cases control performance costs using aperiodic sampling of slow

responding control Systems were reduced below continuous time

performance costs over a fixed control interval. Again Obtaining the

optimal sampling interval sequence proved costly with respect to

computer processing time except if the number of sampling intervals

was small.
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I. INTRODUCTION

The subject Of this thesis deals with the development Of a theory

for optimal aperiodic sampling1 for both representation of signals and

system control.

The design Of sampling criteria has always been based on control

performance, signal sampling efficiency, cost of implementation, and

ease Of design and analysis. Periodic sampling criteria have Often

been used because periodic sampled-data single-input single-output

control systems can be easily designed using transform techniques.

For periodic sampling the sampling rate is generally constrained to

satisfy the sampling theorem. As a result, the sampling rate becomes

greater than twice the system bandwidth in order to minimize aliasing

and thus provide reasonable control performance. The actual choice

of a sampling rate is chosen by a tradeoff between control performance

and the economic cost for instrumentation and communications hard-

ware. The continuous-time controller is implemented if the cost for

communicating data is low and computer processing is not required to

implement the system design.

The design of sampling criteria for multiple -input multiple-output

systems is more involved since the bandwidths are generally quite

different for each element Of the transfer function. Because Of this,

 

1See Appendix A for a definition of sampling as used in the context

of this thesis. See Appendix B for discussion of periodic, adaptive,

and aperiodic sampling.
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multi-rate and asynchronous sampling criteria [28] have been intro-

duced. Adaptive sampling criteria [4-11] have also been developed

which vary sampling rate with respect to changes in output or error

signals. If the signals used in an adaptive or aperiodic sampling cri-

terion accurately represent the system dynamics, where system dy-

namics depend on the system state equation, control inputs, disturbance

noise, and initial conditions, the sampling criterion can be considered

tuned to the system. Tuning the sampling rule to the system dynamics

can improve both control performance and sampling efficiency.

Most adaptive sampling criteria have been derived using either an

integral-absolute-error performance index or an integral-squared-

error performance index which measures the error caused by the

sample and hold mechanism over one interval. This performance index

can be shown to explicitly depend on the system state equations, control

inputs, and initial conditions. To insure a non-trivial sampling rule the

integral performance index is augmented by a functionwhich is in-

versely pr0portional to the length of the sampling intervals. This add-

itional term is implied to represent the costs associated with the sam-

ple and hold mechanism on a cost per sample per unit time basis.

The performance index is frequently simplified by approximating

continuous time signals by a Taylor series expansion. The number of

terms used to approximate the continuous signals will determine how

well the performance index is tuned to the particular signal. Retaining

only the first two terms of the Taylor series approximation will de-

grade the representation of the continuous signals in the sampling

criteria. [24] As a result the cost function no longer explicitly



depends on the System state equation, disturbance noise, and control

inputs, but instead depends on the signal and its derivatives. Through

use of these approximations, integration of the performance index can

be performed analytically yielding a performance measure dependent

on the length of the sampling interval, the signal, and the derivatives

of the signal. Having the analytical solution Of the performance index,

the adaptive sampling rule can be obtained by setting the derivative of

the performance index with respect to the sampling interval equal to

zero and solving for the sampling interval length.

As an alternative to minimizing an integral performance measure,

Tomovic and Bekey [6] and Tait [11] proposed that sampling occur

only when the sampling error exceeds a predetermined level. This

approach did not require signal derivatives and insured an error

bound [14] .

In a paper by Smith [1] , an evaluation Of adaptive sampling com-

pared to periodic sampling was undertaken. The adaptive techniques

were shown to have a tendency to sample at the sampling interval ex-

tremes if constraints on the minimum and maximum sampling interval

were imposed. In general, the result of his study indicated that if the

input was known a priori, any adaptive sampling rule could out perform

periodic sampling. If the input was not known _a_ priori, periodic

sampling was generally more desirable.

Aperiodic sampling for signal representation is proposed as

an alternative to adaptive sampling. In aperiodic sampling the number

Of sampling intervals and the lengths of each sampling interval are

chosen to minimize the performance index defined over the entire time

interval of interest. The choice Of any particular interval length is



dependent on the fixed final time and the length of the other sampling

intervals. The continuous time system dynamics and associated im-

plementation costs1 are incorporated into the performance index

thereby influencing the number of sampling intervals used and the

length of each interval. A poor choice of sampling intervals will in-

crease the performance cost while a good choice of interval lengths

will yield a lower performance cost for a given number of samples.

Therefore the aperiodic sampling performance index is derived as a

function of the sampling interval sequence. This derived performance

index can then be minimized with consideration being given to the

system dynamics and costs for implementation to yield the optimal

sampling interval sequence.

Optimal aperiodic sampling can also provide better control

performance than a similar non-optimal sampling criterion. In this

case, the performance index used must reflect the performance objec-

tives for the control system as well as indicate control implemen-

tation costs with respect to computer utilization and data communi-

cations. Hsia [24] and Smith [ 1] treated the adaptive sampling

problem for control as a special case Of the signal representation

problem. Therefore a signal representation type performance index

was used for system control without regard to system control objec-

tives such as: tracking and final state errors and control energy ex-

penditures found in most control type performance indices. The

assumption made is that if the sampling process minimizes the errors

between the signal and its sampled and hold approximation, good con-

trol performance will result. This assumption is clearly invalid and

 

lImplementation costs will be discussed in more detail in

Chapter II.



therefore the performance index used for the control problem should

reflect specific control objectives and the relative implementation

costs required to achieve the control Objectives.

The approximations made to obtain simple analytic expressions for

the adaptive sampling performance indices are not used in the evalua—

tion of the Optimal aperiodic sampling for control problem. If these '

approximations were made, the performance Of the resulting sampling

rule would depend on the accuracy of the approximation to a particular

signal and the sampling rule would thus become dependent on the signal

and its derivative and independent of the a priori information available

on the system state equation, inputs, disturbances, initial conditions,

and control law.

The first Optimal sampling problem for control [45, 46] was

formulated to obtain an optimal sampled data control where both the

level of control over a sampling interval and the length of the sampling

interval were chosen together to minimize the performance index. The

optimal control law was thus specified by an optimal control sequence-

optimal sampling interval sequence combination. Necessary conditions

were derived, but were not used to obtain an efficient computational

algorithm for the optimal control. An algorithm was developed [47]

by discretizing the cost functional and state equations and adjoining

constraints on the sampling intervals. The resulting nonlinear pro-

gramming problem was solved using a sequential unconstrained mini-

mization technique. The optimal sampled-data control problem can

be solved directly if the Optimal control sequence can be determined

as a unique function of the sampling interval sequence chosen. In this

case, the performance index can also be derived as a unique function



of the sampling interval sequence. The resulting derived performance

index can be minimized using a search algorithm to Obtain the optimal

sampling interval sequence. The optimal control sequence can then be

determined by specifying the optimal sampling interval sequence. This

algorithm solves the Optimal sampling problem directly and is more

efficient than solving the discrete time problem using the sequential

unconstrained minimization technique. Moreover, the errors incurred

by a priori discretization are eliminated. This later algorithm was

used to determine optimal aperiodic [l9] , state dependent [20] , and

adaptive [24] control laws for the regulator problem. These problem

formulations neglected system disturbances and costs for implemen-

tation and used a fixed number Of sampling intervals for all investiga-

tions.

Another approach to obtaining Optimal sampling processes for

control systems was proposed [3, 40] for the case of periodic sam-

pling. This control problem included an additional performance cost

proportional to the number of uniformly spaced samples used during

the particular control interval. An integer programming algorithm

was then used to compute the optimal number of sampling intervals

and thus the Optimal periodic sampling rate.

It should be noted that in order to optimize the performance index

for aperiodic sampling, it is desirable that the system input be known

for the time in which the system is to be controlled. This restriction

is not as severe as it would seem since in general, applications such

as numerical control [41] or linear regulator problems [19-21] the

input to the system is knowngm or is constant.

Optimal aperiodic sampling of continuous time feedback error

signals for system control is proposed. A predetermined continuous



time optimal or sub—Optimal feedback control law is used tO generate

the feedback error signals. The performance Of the control system

is determined by a quadratic performance index which is a function of

the tracking errors, control energy, and thus implicitly depends on

the disturbance noise, system state equation, and initial conditions.

The performance index is augmented by a cost for implementation

through sampling which approximates computational costs, data stor-

age requirements, and communications costs. The performance

index is reformulated as a derived function of the sampling interval

sequence and then minimized with respect to the number of sampling

intervals and the length of each sampling interval. The Optimal

sampling interval sequence Obtained is then used in the sampling of

the continuous time feedback error signals in an effort to improve

overall system performance while yielding acceptable computational

and communications costs.

In summary, the hypothesis of this research is that signal rep-

resentation performance indices are apprOpriate for data acquisition

and signal sampling where control using the sampled signal is not an

immediate objective. A control type performance index should be used

for designing sampling processes for system control. This is why

there are two separate problem formulations found in this work. In

addition, each problem formulation will use a cost for implementation

model to determine the feasibility of system implementation. Heuristic

implementation models have always been used by System designers to

determine implementation requirements for various system designs.

This research will formulate a generalized cost for implementation

model based on computer and communications system utilization. Thus



in Chapter II a theory for Optimal stochastic aperiodic sampling for

signal representation is formulated. The cost functional is derived

and used in conjunction with a cost for implementation based on system

computational and communication requirements. In Chapter III the

optimal stochastic aperiodic sampled-data tracking problem is formu-

lated and derived for various feedback configurations. In Chapter IV

various tests are performed and comparisons made in order to evalu-

ate the performance of several sampling rules for signal representation

and system control. Chapter V summarizes the results, reviews the

thesis, and suggests further research.



II. SAMPLING FOR SIGNAL REPRESENTATION

Communications and control very often use sample and hold

mechanisms1 in system design. These systems are usually designed

around a minicomputer or microprocessor thus enabling the sample

and hold devices to be under direct computer control. Therefore

with the availability of the computer, the sample and hold devices can

be utilized more efficiently through optimal sampling techniques.

The function of a sample and hold device is to approximate a

continuous signal over discrete intervals. The accuracy of the signal

approximation for periodic sampling is dependent on the sampling rate

while for adaptive and aperiodic sampling the accuracy is dependent

on the length of each sample interval and the number of intervals. In-

creasing the number of samples taken over any given time interval for

periodic, aperiodic, or adaptive sampling will generally decrease the

error in the signal approximation but will increase computational and

data communications expense. The signal representation performance

index should measure errors in signal approximations and indicate the

relative costs for implementation for each method of sampling under

consideration.

This structure for the design of optimal sampling criteria also

provides a framework for understanding the analytic design of non-

optimal adaptive sampling criteria [24] . A large class of adaptive

 

1See Appendix A.



10

sampling criteria can be derived by minimizing a Taylor series

approximation of the cost functionals

t. + T

k -a2Ti

1 1 i 2
liZ—k— S; [[§_(t) —_s_(ti)[] dt+ale (2.1)

Ti 1 1

with respect to the sampling intervals Ti for i: 0, 1, . . . , N-l where

_s_(t) is any continuous time output or error signal. The first term in

each cost functional is a weighted integral of a function of the error

_s_(t)-3&1) caused by the sample and hold operation over (ti’ ti +Ti)'

The second term represents the so called “cost for sampling. ” The

parameters k k
1' 2’ al’ a

2 are permitted to take on the following

value 5

k1€ {-1. 0.1}:k2€{1. Z};al. a2e(0.00)

This functional ii penalizes sampling interval lengths with respect to

the mean of the integral if k = l, the time-weighed integral if k1 : —l,

l

or the unweighted integral if k1 = O.

The signal s(t) can be approximated by the truncated Taylor series

over each sampling interval

s(t) 2’ s(ti) + s (ti)(t-ti) t2 t1

and the "cost for sampling" can be approximated by either

-a2Ti ~ a1[1- aZTi]

aie ~ 2

a1[l -aZTi+(a2Ti) /2]

The sampling rules can then be determined by minimizing the resulting

approximations to the cost functionals ii with respect to Ti for

i=0,1,...,N-1.

The adaptive sampling rules obtained by Hsia determine the

length of only one sampling interval for a particular set of signal
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measurements. This one step interval determination was not dependent

on system dynamics, control laws, or the statistical description of the

initial states and system disturbances. The adaptive sampling rules

depended only on the values of the signal and its derivative and provid-

ed an analytic rule which minimized an approximation to the initial

performance index as indicated in (Z. l).

The derived adaptive sampling rules were shown to outperform

periodic sampling if the parameters of the sampling rules were adjusted

appropriately and the number Of samples to be taken along with the

system input were known a prim. The criterion used tO compare

sampling rule performance was an integral-absolute-error and thus all

sampling rules derived from the generalized performance index (2. 1)

could be compared [1] .

In contrast to adaptive sampling, Optimal periodic sampling with

fixed costs for sampling and a variable number Of samples was inves-

tigated [3] . The results indicate that optimization with respect to the

number of samples was indeed possible and yielded improved perform-

ance for the various system dynamics considered.

These previous developments in signal sampling have been con—

sidered in the formulation of the Optimal aperiodic signal representation

problem. The performance index used in adaptive sampling measured

sampling errors under the assumption that good signal representation of

the feedback error signals implied good system control performance.

This assumption was obviously incorrect because the adaptive sampling

performance index measured sampling errors rather than Optimizing

system performance Objectives (e. g. minimization of final state errors,

tracking errors, etc. ). Therefore two problems are formulated in this
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thesis; the sampling for control problem found in Chapter III and the

signal representation problem found in this chapter.

A performance index for optimal aperiodic sampling for signal

representation will be developed as a function Of system dynamics, sys-

tem inputs, disturbance noise, and costs for implementation. The sys-

tem dynamics are obtained from the continuous time signal model used

to generate the signal record which is to be sampled. The system

dynamics will not be discretized _a priori thus reducing system model-

ing errors. In addition the length of each sampling interval will not be

optimized on an individual basis but instead the entire sampling interval

sequence will be optimized with respect to sampling interval lengths for

a fixed number of intervals to obtain a sub-optimal aperiodic sampling

criterion. If the performance is then optimized over the number of

sampling intervals an optimal sampling criterion for signal representa-

tion is Obtained.

The computational costs required to obtain the optimal aperiodic

signal representation as well as communications costs resulting in the

transmission of the data which represents the sampled signal will be

considered in a cost for implementation model. This model represents

a new approach to implementation cost modeling not considered in any

of the previous references. Therefore, the signal representation per-

formance index will measure the errors in signal representation and

indicate the relative costs for implementation for each method Of

sampling under consideration.

The work which is to follow in this chapter states the signal repre-

sentation problem and defines periodic, optimal periodic, aperiodic,

sub-Optimal aperiodic, and Optimal aperiodic sampling critera. A
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general cost function is formulated which can be used to evaluate each

sampling criteria with respect to signal representation quality and

costs for implementation.

2. 1. Signal Representation Problem Statement

Consider the linear time invariant system,

z’c_(t) = gm + _1_3_x_1€(t) + gt) (2.2)

£(t) = _C_3§(t) + _D_z(t) (2. 3)

where

£(t) - n dimensional state vector of the system producing y(t);

Beat) - r dimensional error signal vector;

gt) - r dimensional input signal vector;

gt) - m dimensional signal vector; and

_w(t) - n dimensional disturbance vector.

Matrices A, _B_, and E, _Q are constant and compatible with the

above vectors. The initial time to is known, with t > tO being the

f

fixed terminal time. The initial state §(to) is assumed to be a Gaussian

random vector with mean and variance

E {35%)} = r_no, COv {x(to), _x(t0)} : 1&0) (2.4)

The plant noise process _w_(t) is assumed to be non-zero mean

Gaus sian white noise

E{y_(t)} 2E0, t6 [tot tf] (2’5)

Cov {_vflt), 3(7)} = 311(t)6(t-'r), t, 76 [to’ tf] (2-6)

where 6(t - '1') is a delta function. In addition, _x(t0) and fit) are assumed

independent.

This model was chosen to generate a general signal vector which

could be produced by either a communications System or a control
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system. The actual model dynamics are either known or identified

offline from previous output and control histories.

With the system specified a signal vector generated by this system

is to be sampled at the sampling times ti; such that,

tinitial = t0 < t1 < t2 < . . . < tN-l < tN = tfinal (2. 7)

with a sample interval being defined as Ti where

Tizti+1'ti
(2.8)

fori=0, 1,...,N-land

1:3[T0’ T1, 0 o o , TN-l] (209)

An optimal periodic sampling (OPS) criterion can be specified by

selecting the number of sample intervals, N, to satisfy

N . 5 NS N (2.10)
min max

and imposing the equality constraint knowing tf and t0

‘1: -t

g(I_)= {_f_N__o -Ti=0, i=0, 1, . . . , N-lforanyN (2.11)

where Nmax is determined by sampler performance specifications and

min by Signal representation quality. Optimal periodic sampling is

Obtained through the minimization of a signal representation perform-

ance index with respect to N satisfying (2. 10) and (2. 11) thus yielding

the optimal number of samples N*. Periodic sampling (PS) is

specified by a fixed N such that

N . =N=N (2.12)
min max

and requiring (2. 11) be satisfied for the N chosen.

An optimal aperiodic sampling (OAS) criterion can be specified by

sampling interval constraints of the form

0 < Tmin 3 Ti 5 Tmax (2.13)
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and given t and t0
f

N-l

ng) = 2 Ti — [1;f - to] = o (2.14)

1:0

where Tmin is determined by the sampler performance specifications

and Tmax by System stability or worst case signal representation

quality. The number of sample intervals, N, is chosen to satisfy (2.10).

Optimal aperiodic sampling is obtained through minimization of a signal

representation performance index with respect to both N and l satisfy-

ing (2.10), (2.13), and (2.14)tO yield the Optimal number of sample

intervals, N*, and the optimal sample interval sequence, 2* . Sub-

optimal aperiodic sampling (SAS) Specifies a fixed N satisfying (2. 12)

with the sample interval sequence free but satisfying (2. 13) and (2. l4).

Sub-Optimal aperiodic sampling criterion is Obtained through

minimization of the Signal representation performance index with

respect to '_I‘_ with N satisfying (2. 12). Finally, aperiodic sampling

(AS) is specified when N and :1; are chosen to satisfy (2. 12), (2.13),

and (2. 14) with no Optimization on N or _'_I'_.

Five sampling criteria have been specified. Each of the Optimal

criteria require the minimization of a signal representation perfor-

mance index with respect to certain variables. The form of the per-

formance index is based on various periodic and adaptive sampling

cost functionals Similar to (2. 1). A quadratic rather than an absolute

error function is chosen since large sampling errors, either positive

or negative, should be penalized more than small errors.

The measure of the errors introduced by a sample and hold mech-

anism does not provide an adequate basis for determining the particular

sampling method to be implemented for a particular data acquisition
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system. The costs for implementation; including computer utilization

time, computer program and data storage, and communications Of Out-

put data, must also be considered. Therefore, the performance index

for a signal representation problem must measure both the errors

caused by the sample and hold Operation and the costs for implementa-

tion. Thus, the signal representation performance index becomes

J = J + J (2.15)

O f

where

N'1 1 t1+1

J =1: {2 — [ (gm-g<t.))'§(§_<t)-_s_(t.))dt} (2.16)
o . Ta t 1 1

i=0 i i

measures the performance cost over N sampling intervals due to the

piecewise constant approximation of the continuous time signal _s_(t).

The matrix Sis assumed to be a positive semi-definite m x m Symmet-

ric matrix, Ti is assumed to satisfy the appropriate sampling interval

constraints and E { } is the expectation operator taken over the random

variables found in the system which generates the continuous time sig-

nal vector _s_(t). The functional J o penalizes sampling errors with re-

spect to the mean of the integral if a = 1, the time -weighted integral if

a : -l, or the unweighted integral if a = 0.

The reason for including the J portion Of (2. 15) is to represent the
f

computational costs necessary to Obtain the sampling interval sequence,

_'_T_, and the communications costs required for transmission of sampling

interval sequence and signal approximation, -S-(ti)’ information. The

sum of the computational and communications costs will be termed costs

for implementation, J throughout this thesis.
f,

Implementation costs have always been considered to some extent

in data acquisition or control system design. The amount Of attention
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paid to these costs range from complete neglect for systems where

data storage or retrieval is not a concern to extensive analysis and re-

design for systems where realization would be impossible due to exces-

sive implementation costs. Therefore modeling of implementation costs

are justified since it will indicate to the system designer the feasibility

of implementation for the System design being considered.

The costs for computation, required on-line or Off-line, can Often

determine the feasibility of a particular design approach. Explicit ex-

pressions for the computational costs have been determined for some

simple computational tasks [51] . The processing time required to

perform the task has been expressed in terms of the execution time for

a particular operation and the number of times this Operation was per-

formed. The memory requirements for both data storage and compu-

tation are also enumerated. The determination of explicit expressions

for processing time and computer memory for more difficult computa-

tional tasks may be impossible or not worth the effort required. For

example, the computational costs for computing the Optimal sampling

interval sequence will depend on the type of optimization routine chosen,

the convergence criterion imposed, the number of sampling intervals to

be optimized, and the complexity of the performance index to be mini-

mized. The computational costs will also depend on the dimensions of

the System matrices and vectors, the number of signals which will re-

quire processing, and the number of data points used to represent each

signal. In addition any added subroutines, input/output routines, and

auxiliary storage accesses [51] will also increase computer utilization

expenses. Thus, improved models for computation costs must be de-

termined which are realistic and intuitively appealing to the system

designer.
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Data communications costs can also be extremely important for

data acquisition and remote sensing problems where retrieval of the

signal representation data is vital for System Operation. Therefore a

communications costs model is needed to inform the System designer

of possible tradeoffs between such communication system variables as

channel capacities, data record lengths, data transmission time delays,

and channel reliability. Thus a measure of the communications costs

must also be developed.

Implementation costs, either computational or communications,

are highly problem specific with dependency on each detail of the system

being considered and the economic constraints placed on the system be-

ing designed. The models for implementation costs also depend on

whether the system hardware (e. g. computers, samplers, etc.) is to

be purchased based on system design or whether a particular System

design is to be implemented through use of existing computer/communi-

cations equipment. Also of major importance are the design philoso-

phies, previous system design experience, and technological awareness

of the system designer.

The particular implementation cost model which will be developed

in this section is one of many possible. In this work it is assumed that

the computer and communications system for the signal representation

problem are specified and that utilization of the computer System and

data acquisition system should be minimized with respect to a given

level of performance cost as expressed in (2. 16). Thus the Jf portion

of (2. 15) will have the form

Jf:JCu+JCC (2.17)

where qu is the computer utilization/processing costs and JCC is the
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communications costs. The assumption made here is that the computer

utilization and communications utilization are separable.

The computer utilization/processing costs is assumed to have the

form

qu=wlxMxU (2.18)

where

U - computer utilizatiOn/processing time (seconds)

M - program/data storage requirements (words of main memory)

w - utilization/processing weighting factor ((word-second)-l)

The computer utilization/processing cost model expressed in (2. 18)

weights the product Of computer utilization time measured in seconds,

and the software/data storage requirements commonly expressed in

words of main memory. This form of the computer utilization/process-

ing cost model was selected based on common data processing practices

for determining computer charges. (e. g. The CDC 6500 computer sys-

tem found at Michigan State University uses this formula, along with

others, to determine computer user charges. ) Having written all neces-

sary computer software, the program/data storage requirements become

fixed for the particular version Of the main program, optimization rou-

tine, etc. being considered. It is a common practice of most computer

assemblers to indicate the number of words of main memory required

by the assembled computer program. This makes M, program/data

storage requirements, readily available to the system designer for the

system software he is considering for implementation. If the storage

requirements for the system software requires a large portion of the

available computer memory w will have to be increased apprOpriately.

1

Thus U, computer utilization/processing time, becomes the only real



20

variable in the particular design problem. U will increase as the pro-

cessing time required to compute the optimal sampling interval sequence

increases. Thus a 10% increase in U will result in a 10% increase in

qu holding M and w1 fixed for the particular problem begin considered.

The weighting factor, w is chosen by the System designer based upon1.

the relative importance of computer utilization costs.

After the sampling interval sequence has been used in sampling of

the desired continuous time signal record to obtain the piecewise constant

signal representation, it is sometimes necessary to transmit the result-

ing output data to a remote site via a specific communications network.

As with the computer utilization costs as found in (2. 18), communications

costs have to be considered in system implementation. The importance

or the relative weight of data communications to overall system design

will determine its contribution to the total implementation costs found

in (2. l7).

CommunicatiOns costs are in general, dependent on the speed, re-

liability, and relative cost Of the data transmitter and receiver to be used

as well as the bandwidth of the communications channel Over which the

data will be transmitted. A communications cost model should reflect

data transmission rates, the amount of data to be transmitted, and the

relative importance ascribed to the communications process. Thus the

communications cost, Jcc' portion of (2. 17) is assumed to have the

form

w2 x K x W

: Q

Jcc R
(2.1 )

 

where

w - Output data word bit length (bits/word)

K - amount Of periodically or aperiodically sampled data to be

transmitted (words)
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R - data transmission rate Of the communications channel

(bits/second)

W2 - communications cost weighting factor (second)—

The communications cost model expressed in (2. 19) weights the

product Of output word lengths expressed in bits/word times the number

of words to be transmitted over the communications channel divided by

the channel capacity in bits/second. This form for the communications

cost model was also selected based on commonly used data communica-

tions accounting practices. This form of communications cost is based

on ”connect time" and is the formula used On the CDC 6500 computer

installation at Michigan State University. Any changes in the communi-

cations process (i. e. more data, lower channel capacity, etc.) will be

reflected directly in the communication cost model shown in (2. 19). In

applications of remote sensing or data acquisition the communications

costs are considerably more important than for a control problem appli-

cation where a computer is usually near the System under control.

Insight into the particular application, available tradeoffs in hard-

ware and computer software, and the importance in the overall System

design will determine the relative weighting of computational and com-

munications costs as opposed to performance improvements. In Chap-

ter IV hypothetical signal representation and System control design

problems will be formulated. The problems will evaluate performances

Of various methods of sampling and yield relative computational and

communications costs for implementation of each method Of sampling

under consideration.

Thus, the optimal signal representation problem using the desired

sampling criteria and appropriate constraints can be stated as follows:
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Given the linear dynamical system (2. 2) and (2. 3) with arbitrary

input _z_(t), determine the Optimal sampling interval sequence, 1* and

the optimal number of samples, N* such that J (l, N), is minimized

for a given output or error signal subject to (2. 9), and the System dis-

turbances and initial conditions found in (2. 4) through (2. 6).

2. 2. The Derived Signal Representation Performance Index

Given the J0 cost functional as found in (2. l6), consider the Special

case where gt) = _l_1_e(t)l, since ue(t) was used in the original adaptive

sampling studies [24, l] :

gt) = gee) = 213m - 91m (2.20)

_q is an r x m dimensional constant feedback gain matrix, H is an r x r

dimensional constant input signal gain matrix, and £(t) is an arbitrary

deterministic input signal vector. Therefore using (2. 3) with _D_ = O,

(2.16) becomes

N-l t.

1+1

JO=E[Z -—l—a- ‘8" €‘(t)_S_é\(t)dt3 (2.21)

. T. t.

120 i i

where eA(t) = Hugh) - _g_C__x(t) - flyti) + _G_£§(ti) (2.22)

. A . . .

With e'(t) indicating the transpose of (2. 22). Making the substitutions

A(t)=x(t) -x(t.) (2.23)

(t)|
N
>

|
>
4
>

£(t) - £(ti) (2. 24)

into (2. 22) and then into (2. 21) yields

JO:E{:OT——:a:~[‘+ z(t)-GCx(t)) §H(£(t)-GCx(t))dt}

(2.25)

 

1
s(t) can be any desired signal vector, either generated by a sig-

nal model or supplied from an external source.
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Expanding the integrand in (2. 25) and taking the expectation of each of

the three resulting terms using the relationships that

E {x' (t)Tx(t )} = _rfi' (Hip/1m +tr {135m}

where X(t) is found in (2.4) and tr{ -} is the trace operation,

T: C'G'SGS with

E{§(t)} -E{3c_(ti)} :E{3<_(t)-§(ti)} : E{§(t)} =28“). (2.26)

Therefore the original cost functional found in (2. 25) becomes

JO=::——5‘t:+1[§(ct)-é())'§(flé(t)-_G_§_r_g(t)

+ tr (ll/JUN dt (2.27)

Now computing the variance as required in (2. 27)

t

QM— x(t)-_(t L (t, t) — le (t) +5; 2 (t.7)[_1_3_9_e(t,)+3'(7)1d7

i

(2. 28)

where

_x(ti) is an n x 1 state vector at time ti;

38(t) is an r x 1 error input to the system;

\_)v_ ('r) is noise as in (2. 2), a n x 1 vector;

<I> (t, t.) is an n x n state transition matrix at time (t ~ti),

1

The mean Of £(t) becomes

A “t

£1“) = £(tl-m(ti): [513(t. ti)-_I_Jm(ti)+[ <1> (t, 7)[Bue((t)+wo ]d7-

‘t.

1 (2.29)

where
\

m(ti) is the mean Of the process at t., and
1

we 18 the mean of the noise process, n x 1 vector.

Subtracting (2. 29) from (2. 28):
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[2(t,t1)-_I_][x(t.)-mmain

t.

+S‘H1513(t,7)[_I§ue(t()+W('r)-._1§11,3(t)"27_o]d'T

t.
1

(2.30)

using (2. 30), and taking the expectation,

E{(x(t) m(t))(x(t)- gn’fx'm}

= [513 (t,ti) :1] [93(3) -r_n_(ti)] [3(ti) -_Ip_(ti)]'[2 (mi) 41'

+£:§t: <I> (t, 'r) ’T-)_V_Vo][W(o.)_- Worg (t,o.)' deG

(2. 31)

yields

1:

+52 (t, 7 )\Ir('r)<15' (t,'r)d'r (2.32)

ti

Therefore (2.32) is the variance equation required in (2. 27).

The derived cost as found in (2. 27) will be added to the cost for im-

plementation, to be given in detail in Chapter IV, to yield the total de-

rived performance index as found in (2.15) for the signal representation

problem.



III. OPTIMAL APERIODIC SAMPLING FOR CONTROL

Periodic sampling criteria have often been used in sampled-data

control systems to simplify design, analysis, and implementation.

Aperiodic and adaptive sampling criteria have become quite practical

due to the introduction of digital computers into system design and con-

trol implementation. As a result,various aperiodic and adaptive sam-

pling criteria have been formulated to improve system performance and

reduce sampling costs with respect to periodic sampling.

A general framework for the analytical design of non-periodic sam-

pling criteria was first proposed by Hsia [24] . A class of adaptive

sampling rules were derived from a continuous time integral perfor-

mance index which measured the squared error introduced by sampling

the error signals of a feedback control system. The performance index

was augmented by a ”cost for sampling, " as introduced by Hsia, which

was inversely proportional to the sampling interval length in order to

insure that the sampling intervals were greater than zero. The perfor-

mance index was defined over just one sampling interval and thus the

sampling rules obtained determined the length of only one sampling

interval for each set of measurements taken of the signal being sampled.

The sampling rules were derived by approximating the error signal and

the cost for sampling by a Taylor series. These approximations were

made in order to derive an analytic expression for the sampling rule.

The resulting sampling rules were explicitly dependent on the signal and

25
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its derivatives and we re not explicitly dependent on the System dynamics,

system inputs, system disturbances, and costs of implementation. The

dependence of the sampling rule on the a p_ri_o_r_i_ knowledge of the system

was destroyed by the approximations made to the cost functional.

Each sampling rule was tested by using it to adaptively sample a

continuous time feedback error signal. The results of the tests re-

vealed that each of the adaptive sampling rules had a tendency to sam-

ple at the sampling extremes if constraints on the minimum and maximum

sampling intervals were imposed. The underlying assumption of this

work was that good signal representation by adaptive sampling of the

continuous time error feedback signals implied good system performance

over the desired control interval.

In general, the performance of a feedback control system imple-

mented through use of periodic sampling is dependent on the sampling

rate. Periodic sampling requires the sampling rate to be greater than

twice the system bandwidth in order to minimize aliasing and thus pro-

vide reasonable control performance. The actual sampling rate used is

a compromise between control performance and the costs for computa-

tion, data storage, data communications, and sampling hardware.

Optimal periodic sampling of discrete time control systems was

first formulated by Kushner [40] and later extended by Aoki [3] in

order to obtain an analytic formulation for the design of periodic sam-

pling criteria. A discrete -time performance index was used which con-

sisted of the terminal errors squared, a summation of the squared

piecewise constant closed loop controls, and a "cost for sampling" term

proportional to the number of samples taken over the control interval.

The system state equation and control law were also modeled in discrete
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time with explicit dependence on the sampling rate by substitution of

the system state equation and control law into the performance index.

The derived performance index was then minimized with respect to the

sampling rate through use of an integer programming algorithm. The

result was an optimal periodically sampled discrete time feedback con-

trol system with consideration being given to sampling costs. These

papers [3, 40] were the first attempts at using a control performance

index and ”costs for sampling" to obtain optimal sampling for control.

A general optimal aperiodic sampled-data control problem was

first formulated by Jordan and Polak [46] . A continuous -time cost

functional was used with the control being a piecewise constant vector

function over each sampling interval. Both the control level over each

interval and the length of each sampling interval were selected to mini-

mize the performance index. As a result, the optimal control consisted

of an optimal piecewise constant vector function and an optimal sam-

pling interval sequence. The necessary conditions were established

for the control problem but a computational algorithm was not devel-

oped to obtain the optimal control. The performance index which was

considered was not a function of the number of sampling intervals and

did not have provisions for incorporating implementation costs or

system disturbances. Tabak and Kuo [47] solved the optimal control

problem introduced by Jordan and Palak [46] by discretizing the per—

formance index and state equations _a_ priori thus enabling them to solve

the non-linear programming problem through use of a sequential

unconstrained minimization technique.

The optimal aperiodic sampled-data regulator problem was inves-

tigated for state dependent sampling by Schlueter and Levis [21] and
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for constrained sampling times by Schlueter [ l9] . Schlueter developed

an efficient computational algorithm for the problem formulated by

Jordan and Polak [46] for the special case where the Optimal control

could be determined uniquely as a function of the sampling interval se-

quence. This optimal control sequence was determined by solving the

Kuhn Tucker conditions. The control sequence was then substituted

into the performance index to obtain a derived cost functional which

was dependent on the sampling interval sequence. The optimal sam-

pling interval sequence was then determined by minimizing the derived

cost functional subject to the sampling constraints. The optimal sam-

pling interval sequence specified the optimal aperiodic sampled-data

control law. The optimal control—optimal sampling interval combina—

tion was shown to outperform an optimal control law with any periodic

or arbitrary aperiodic sampling criteria.

All of the previous references were considered in the formulation

of the optimal aperiodic sampling for control problem to be presented

in this chapter. A continuous time performance index and system state

equation were chosen similar to those found in Schlueter [19] and

Jordan and Polak [45] and unlike the performance indices and system

equations found in Aoki [3] , Kushner [40] , and Tabuk and Kuo [48] .

The performance index is augmented by a cost for implementation term

proportional to computer computational time requirements, data and

software storage requirements, and output data communication costs.

Implementation costs were implied by the "cost for sampling” terms

as found in Aoki [3] and Hsia [24] but neglected in the other references.

The performance index will consider system noise disturbances, which

were neglected in earlier references and will be dependent on the
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sampling interval sequences as in Jordan and Polak [46] , Tabak and

Kuo [47] , and Schlueter [l9] . The number of aperiodic sampling in-

tervals used during the control interval will be free and selected opti-

mally as in Aoki [3] for the special case of periodic sampling. All

other references fix the number of samples used during the control

interval. The control law will be specified am as found in Aoki

[3] and Hsia [24] .

The design of optimal aperiodic sampling for control implementation,

with a specified control law is proposed. The performance index will be

formulated with dependence on the system state equation, control inputs,

tracking errors, initial conditions, disturbance noise, and augmented

by costs for implementation as discussed in Chapter II. The performance

index will then be derived as a function-of the sampling interval sequence

and implicitly as a function of the number of sampling intervals. Using

non-linear programming the derived performance index will be minimized

with respect to the sampling interval sequence for a fixed number of

sampling intervals to yield the sub-optimal aperiodic sampling criteria.

By selecting the number of samples, and through use of repeated opti-

mizations the optimal aperiodic sampling criteria for control is obtained.

3.1. Aperiodic Sampling for Control Problem Statement

Consider the linear time invariant System,

yt) = Ag“) + ggeu) + _vflt) (3.1)

x(t) = 23551:) (3. 2)
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where

gt) - n dimensional state vector of the system producing 1(t);

3e“) - r dimensional error signal vector;

_z_(t) - r dimensional system input signal vector;

y(t) - m dimensional output signal vecotr; and

1v(t) - n dimensional disturbance noise vector.

Matrices A, _B_, and g are constant and compatible with the above

vectors. The initial time to is known, with tf > tO being the fixed

terminal time. The initial state yto) is assumed to be a Gaussian

random vector with mean and variance

E {£(to)} = _nr_1(to ). COV{§(tO). §(to)} = _Y_(to) (3. 3)

The plant noise process w(t) is assumed to be non-zero mean

Gaus sian white noise

E{:‘_’(t)} =1". 0. 136 [‘10. ff] (3.4)

Cov {_vgcc), 3(7)} = _\_Il_(t)6 (t-T), t, 7 e [to, tf] (3.5)

where 6 (t - 'r) is a delta function. In addition, _x_(to) and _w_(t) are

assumed independent.

The performance of the system found in equations (3. l) and (3. 2)

will be investigated for two cases of the feedback control error signal

vector, Ee(t)' Case 1 will investigate system control by using

gem 36(ti) = fiyti) - _gyti) (3. 6)

where E and g are r x r and r x m dimensional constant input and feed-

back gain matrices respectively and fit) is an arbitary continuous time

input signal vector. Figure 3. 1 shows the location of the sample and

hold device used in the sampled-data control system being considered
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in Case I. This is the only case which will be investigated in Chapter

IV since it is the most gene rally implemented.

wt)

 

   
“E

Figure 3. l - Control System Configuration Using a Sampled

Feedback Error Signal

_l_i and _C_}_ are constant r x r and r x m dimensional matrices respectively

with the other system matrices being defined in equations (3. l) and (3. 2).

Case 2 will consider system control using

gem = 53m - 9m.) (3. 7)

where _I_-I_, _q, and £(t) are as defined earlier. Figure 3. 2 shows the

location of the sample and hold device used in the sampled-data control

system being considered in Case 2
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Figure 3. 2. - Control System Configuration Using a Con-

tinuous Input Signal and Sampled Feedback
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where the above sampled-data control system is defined in equations

(3.1) and (3. 2) with 1:1, _q, and _g being r x r, m x n, and r x m dimen-

sional constant matrices.

With the system specified, the feedback control signal generated

during the control interval is to be sampled at the sampling times ti;

such that,

tinitial = to < 1:l < 1:2 < . . . < tN-l < tN = tfinal (3.8)

with a sampling interval being defined as T1 where

T. = t. - t. (3. 9)

1:[TO,T1,...,T (3.10)
N-l ]

An optimal periodic sampling criterion for control can be

specified by having the number of sampling intervals, N, satisfy

N . 5 N5 N (3.11)

m1n max

and the equality constraint knowing tf and t0

 5(3) =[tf111t0 _ Ti = 0 i=0, 1,. . . , N-l, for any N

(3. 12)

where Nmax is determined by sampler performance specifications and

min by system stability. Optimal periodic sampling is obtained through

minimization of the derived control implementation performance index

with respect to N satisfying (3.11) and (3. 12) thus obtaining the optimal

number of samples N]: Periodic sampling for control is specified by

a fixed N such that

N . =N=N (3.13)
m1n max

and having (3. 12) satisfied for the N chosen.

An optimal aperiodic sampling criterion for control can be speci-

fied by having the number of sampling intervals, N, satisfy (3.11). The
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sampling intervals satisfy constraints of the form

0<T.ST.ST (3.14)
m1n 1 max

where Tmin is determined by the sampler performance specifications

and Tmax by system stability. Thus given tf and to, the following

sampling constraint is to be satisfied,

N-l

g(1) = § Ti - [tf - to] = 0 (3.15)

i=o

Optimal aperiodic sampling for control is obtained through rnini-

mization of the derived implementation performance index with respect

to both N and I satisfying (3.11), (3. 14) and (3. 15) to yield the optimal

number of sampling intervals N]= and the optimal sampling interval

sequence, 1*. Sub-optimal aperiodic sampling for control specifies

a fixed N such that

N . =N=N
m1n m

(3.16)
ax

with the sampling interval sequence, _T_, free but satisfying (3. l4)

and (3. 15). The optimal sampling interval sequence, 1*, is obtained

through minimization of the derived aperiodic sampling for control

implementation performance index with respect to _'I‘_ only.

Each of the optimal sampling criteria specified require minimiza-

tion of a performance index with respect to certain variables. The

exact form of the control implementation performance index is based

on various references. A quadratic rather than an absolute error per-

formance index is chosen since large tracking errors either positive

or negative and large control energy expenditures should be penalized

more heavily. Thus the sampling for control performance index is

JzJo'i'Jf (3.17)
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where

J0 = E{ (ytN) - yth' 1 (1(tN) - 5(th

N41 t1+1

+> 5 [(fl’C) - 5(t))'9_(x(t)-§(t)) +g;(t)§ge(t)]dt}

:—J 1:

1:0 i

(3.18)

Matrices X, g, and I): are assumed to be positive semi-definite sym-

metric m, m, and r dimensional square matrices respectively and

E{ . } is the expectation operator taken over the random variable _x(t).

The Jf portion of (3. 17) represents the implementation costs such

as, computer computation time, computer program and data storage,

and costs for output data communications if necessary as discussed in

Chapter 11.

Thus, the optimal aperiodic sampling for control problem using

the desired sampling criteria and appropriate sampling constraints can

be stated as follows:

Given the linear dynamical system (3. 1) and (3. 2) with arbitrary

system input _z_(t), determine the optimal sampling interval sequence,

_'_I‘_*, and the Optimal number of sampling intervals, N*, such that the

performance index (3. 17) is minimized for the particular control system

specified in (3. 3) through (3. 7).

3.2. The Derived Control Implementation Performance Index

The feedback control configurations shown in Figures 3. 1 and 3. 2

will now be used to obtain the derived control performance index. In

each case sampling will be involved in the determination of the feedback

control signal Be(t)° Sampling of the feedback error signal, He“), will

occur at the sampling times ti for i : 0, l, . . . , N-l as determined by
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the derived control performance index and the optimization routine being

used.

The performance of the Case 1 feedback control system found in

Figure 3. 1 will be determined through use of the performance index as

found in (3. 17) with Be“) being defined in (3. 6). The performance index

found in (3. 18) plus the implementation costs as discussed in Chapter II

yields the total control performance index.

The control performance indices for Case 1 and Case 2 will now be

derived in terms of the sampling interval sequence, 1, defined in (3.10),

and the number of sampling intervals, N, satisfying (3. 11) or (3. l3).

Derived Performance Index for Case 1
 

Substitution of equations (3. 2) and (3. 6) with E = I_, where _I_

is the identity matrix, into (3.18) yields

J z E{(§_§_(tN) - _Z_(tN))'X(9_ZE(tN) ‘ -z—(tN))O

1‘51 t1+1

+§ S [(gyt) - _Z_(t))'_Q(§_3<_(t) -g(t))

:44 t
1:0 1

+ (fifti) ‘ §E§(ti))' B<§<ti) -§_Q§(ti))] dt} (3.19)

Taking the expectation of (3. 19) and using the relationship

E{§'(t)_1\_/I_§(t)} =m'(t)L\/I__rp_(t) +tr[MX(t)] (3.20)

where M is an appropriately dimensioned matrix and

E {EN} = 110:), E {§(t) z<_'(t)} = Ht) (3. 21)

yields the derived performance index for Case 1;
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JOE. N) = ((§__r9_(t )-g(tN))'_¥_(g_q1_(tN) -§(tN)) + tr[§_'_¥_£_\[_(tN)]

N

NTI ~ti+1

+> ‘S [(§m(t)-§(t))'9(£_rp_(t)-§(t))+tr[§_'QEX(t)l

. ’ t.

120 1

+ (5(ti) -_G__C_3_rp_(ti))' R (zui) -§_£_Ip_(ti))

+tr[_(_:_'_g'_fg_g_ V(ti)]] dt (3.22)

where

_T_=[T0,T ,T.,...,TN_1]andTi=t. -t1, O O O 1 1+1 i.

The variance term X(t) found in (3. 22) is obtained from the following

equations. The system state is represented by

t

50:) = 5130:. ti)_>g(ti) +S _<I_>(t. 'r) _B_[§(ti) "99—3151” +3”) (17

t.

1 (3.23)

where

_A_(t-t.) é(t-'T)

<I>(t,t)=e 1, <I>(t,7):e

both being state transition matrices of the System found in (3. 1).

Taking the expectation of (3. 23) yields

t

m(t) = <I>(t, t,)m(t.) +5 <1>(t, 7) B[z(t.)—GCm(t.)] +w dt
— — 1 — 1 t - — 1 —--— 1 —o

1 (3. 24)

Subtracting (3. 24) from (3. 23) yields

[s(t)-2%)] = gt. t1) [gap-main

t

+5. 2 (tn) (-§._<_3.9_L>s<t,> gain + 3(7) -310) a.

i

(3.25)

01‘

[§(t)-m(t)] 2 g(t, ti)[§(t.)-m(t.)]
— t 1 -- 1

+3 2(t, 'r)[w('r) -w ]d7' (3. 26)
t _ _O

i
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where

_e_<t, ti) = g (t, ti) -_I3<t, ti) (3.27)

t

2(t, ti) = X2“, 'r)d7_E_3_§__C_3 (3.28)

t

i

Therefore since the noise _w_('r) for 7 > tO is uncorrelated with the state

§(to), the final expression for the variance becomes

10:) = E{(g:_(t) -_IT_1(t))(§_(t) -_1;n_(t))'}

= g (t, ti) E{[§(ti) - _n_3(ti)] [£(ti) - _r_n_(ti)] } '2'“. ti)

t t
t‘ o o

+ it 5,; 91“” ) “UV—(""2201 [3(a)-301'}2'(t, a)d7da

i i

(3. 29)

where E{ [35(ti) - {_n_(ti)] [§(ti) - _1_'_n_(ti)] } = _\_’_(ti) and

E{ [31(7) - _vzo] [_vy_(o.) - we] '} = $(7)6('r - o), and the integra-

tion with respect to 0. yields t

X(t)=_€1(t. ti)y_<ti)9_'(t, 119+”? [gunmwgwn 7)]d'r (3.30)
t.
1

which is the required expression for the variance to be used in (3. 22)

Derived Performance Index for Case 2. (Figure 3. 2)

The derived performance index for Case 2 is similar to the derived

performance obtained for Case 1. The difference is in the fact that

Eeui) is replaced by pe(t) as seen in Figure 3. Z and equation (3. 7)-

Therefore substitution of equation (3. 2) and (3. 7), with E =_I_, into

(3.18) yields a performance index equation identical to (3. 19) with the

exception that yti) is replaced by gt). Thus using equations (3. 21)

and (3. 22) the derived performance index for Case 2 becomes
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Jo<'_r_ , N) = <9_rp_(tN) -g<tN)>' x (ggtN) - _z_(th + tr [9' 3.911(th

N—l'l ti+1

+2 [ (§__rr_1(t)—g(t))'9_(_C__r_n_(t)-§(t)) +tr[g'9__q_\:(t)l

t.

120 1

+ (at) -§_C__rp_(ti))'_B_(§(t) -§_C_3_1n_(ti))

+tr[g'GRGCV(ti)] dt (3.31)

wherel:[T0,T ,T, T andTizt -t

1"" i""N-l] i+l i'

The variance term _Y_(t) is derived in equations (3. 23) through (3. 29).



IV. EVALUATION OF SAMPLING METHODS

In any signal representation or control performance evaluation pro-

gram, suitable simulation models have to be developed from which the

proposed methods of sampling can be investigated under various signal

and system conditions. In particular, the performance of periodic,

adaptive, and aperiodic methods of sampling for signal representation

and system control will be investigated. The signal which is to be sam-

pled will be generated by a known signal model for the signal represen-

tation problem and by a known feedback control system for the sampling

for system control implementation problem. The initial conditions,

system matrices, weighting coefficients, and final time will be speci-

fied for each investigation. A step, ramp, parabola, and noise will be

used as system inputs with all optimizations being performed using the

non-linear programming optimization subroutine ZXPOWL as found of

the CDC 6500 computer system. [See reference [53] for a detailed

description of the ZXPOWL subroutine. ]

4.1. Samfling for Signal Representation
 

The sampling for signal representation problem is restated from

Chapter II:

Dete rminc the optimal sampling interval sequence (N*, sz)

that SPBCifiCS the optimal sample and hold approximation

A

_s_(t) = §_(ti), t-[ti , ti“); 1: o, 1, , N—l

that minimizes a signal representation performance index (2. 15)

subject to the sampling constraints (2. 10), (2.13), and (2.14).

39
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The signal representation performance index (2.15) not only mea-

sures the error

S(t) " QUL), t€[tl’ t i: 0919 0") N'l
1+1];

caused by the sample and hold mechanism but also measures the costs

for implementation which includes a cost for computer utilization, pro-

gram and data storage requirements, and data communications.

The following signal representation problem is presented to illus-

trate the theory and provide insight into the performance of optimal

aperiodic sampling for signal representation.

Objective: Investigate the tradeoffs in periodic, adaptive and

aperiodic sampling of a data signal record (to be

supplied from auxiliary storage upon request) for

communications to a remote signal level display

panel.

General Specifications1

1. The data signal record will consist of 101 data points

spanning one unit of time.

2. A minimum of 2 and a maximum of 8 piecewise constant

approximations will be allowed for the representation

of each signal data record.

3. Each data point inputted from auxiliary storage consists

of 3 ASCII‘2 characters. This will also be true for the

sampling time and piecewise constant signal level out-

put data as obtained through use of periodic, adaptive,

or aperiodic sampling.

 

1Details not specifically stated in ”General Specifications"are

left to the discretion of the System Designer.

2ASCII is the commonly used abbreviation for American Standard

Code for Information Interchange.
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4. Output data (time and level information) will be trans-

mitted to the remote display via serial data transmission

techniques.

5. A start, stOp, and parity bit will be added to each ASCII

output character before transmission.

6. Any parity errors occuring during data transmission and

detected at the remote display will be indicated by a

”parity error" light. The error indicator will be auto-

matically reset after the next signal is received for dis-

play. No other means of error detection or correction

are necessary.

Figure 4. 1 presents the Remote Display System in block diagram

form. The most important block shown is the “Main Signal Record

Processor and P/S Converter Controller" block. This block represents

the computer portion of the display system. The computer will be re-

quired to perform the following tasks:

a)

b)

d)

request continuous time signal records from the auxiliary

storage facility

load the signal record into the proper portion of its main

memory for purposes of signal representation through

sampling

execute the predetermined optimization program stored in

main memory with respect to the minimization of the de-

rived signal representation performance index

control the transmission of the resultant signal level and

sampling time information to the remote display. This

entails the control of the parallel to serial converter via

the P/S control line as indicated. (The S/P converter on

the display end of the data transmission line is assumed

a passive device.)

The computer is assumed to be entirely committed to either sig-

nal processing through sampling or data transmission via the P/S con-

verter and communications line. The Signal Record Processor is
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assumed too small with respect to memory size and too slow with re-

spect to computational speed to allow signal multiplexing and therefore

optimal aperiodic sampling will be performed for data compression.

The rest of the blocks shown in Figure 4. 1 are explained in the figure

or are self-explanatory.

A simplified flowchart of the computer program used in the evalu-

ation of the three methods of sampling, viz. periodic, adaptive, and

sub-optimal aperiodic, for the remote display problem is shown in

Figure 4. 2.
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Auxiliary

Storage of

Signal Records

to be Processed.

[1 data

   

 
    

  

   

 

 

 

 

 

 

 

 

 

request

line parallel

data

1

Main Signal Record P/S

Processor Converter

and _ P

P/S Converter1 300 Baud

Controller Data Trans-

P/S mission Line

control line

S/P _
Converter2 |‘ , — 5

i l I I 1]
and , '-

I, Display

Parity

Checker Parity Error

Indicator   
Figure 4. l - Block Diagram of the Remote Display System

 

lP/S Converter converts data from parallel data inputted on

several information lines to serial data which is transmitted to the

display using only one transmission line.

2Reverse of P/S Converter.
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gm...)
1

 

 

 

Obtain the signal record:

1. request signal record from aux. storage or

2. generate the signal record through use of

the signal model.

  
 

 

 

l -

Initialize the number of sampling intervals :I

N = N .
min

A]

'1
 

 

Periodically sample the signal record and eval-

uate the derived signal representation performance

index (JO) and determine the costs for implemen-

 
 

tation (Jf).

 

Adaptively sample the signal record through use

of the sampling rule corresponding to the value

of "a" chosen and evaluate the derived signal

representation performance index (Jo) and deter-

mine the costs for implementation (Jf).

 

 

 

Obtain the optimal sampling interval sequence

through use of the ZXPOWL optimization sub-

routine which minimizes the derived signal

representation performance index (JO). Deter-

mine the resulting costs for implementation (Jf)

necessary for sub-optimal aperiodic sampling

of the signal record.  
  
 

No

N:N+l

 

 

Yes

CSTOP)

Figure 4. 2 - Computer Program Flowchart for Signal

Repre s entation Inve stigation
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4.2. _S_ignal Representation Performance Results

The sampling evaluation computer program as found in the simpli-

fied flowchart form in Figure 4. 2 will be used to investigate periodic,

adaptive, and aperiodic sampling for signal. representation as formu-

lated in Chapter II. The following system model and derived signal

representation performance index will be used

0 1 10 -1

gm = xjt) + u (t) , 35(t ) = (4.1)

0 0 100 e O 0

y(t) = [10] gt) + [ O] z(t) (4.2)

with

8(t) = ue(t) = Z(t) - y(t) (4. 3)

where _z_(t) can be one of the following input signals

a) 1. 0 (Step)

b) t (Ramp)

c) t2 (Parabola)

for te [to, tf] where t0 = O. O and tf = 1. O. The control signal ue(t)

will be sampled for signal representation at the sampling times ti

such that,

:1: <1: <1: <...<

tinitial o 1 2 < ttN-l N : tfinal

with a sampling interval being defined as Ti where

Ti : t1+1 ' ti

The derived signal representation performance index is

N-l t.
1 1+1 2

. . 1
1:0 1

The cost for implementation, Jf, for periodic sampling is

W2 x K x W

J = w x M x U + (4. 5)
 

f l R
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where

M = 800 words of memory

wl = . 0001 (word-second)-1

W : 30 bits/output word (record) to be transmitted

K = (N+4) words (records)l

R = 300 bits/second

wZ . 75 seconds-1

The cost for implementation for adaptive and aperiodic sampling is

w2 x K x W

szwlxMxU+ R (4.6)

where

M = 1000 words of memory

W1 2 . 0001 (word-second)"1

W : 30 bits/output word (record) to be transmitted

K : 2 x (N+1) words (records)2

R = 300 bits/second

w2 = . 75 seconds-1

 

1(N+4) is obtained from the fact that specifying periodic data

requires

1. 1 data word to indicate the initial time.

2. 1 data word to indicate the time between data points.

3. N + 1 data points.

4. 1 data word to indicate the number of data points sent.

Thus the communications costs for periodic sampling will be based on

(N + 4) data words to be sent for each sampled signal record which is

processed.

22 (N +1) is obtained from the fact that specifying aperiodic or

adaptive sampling requires

1. (N + 1) data words to specify the N + 1 signal magnitudes.

2. (N + 1) data words to indicate the times of each signal

magnitude change.

Thus the communications costs for aperiodic/adaptive sampling depends

on 2 (N +1) data words to be sent for each sampled signal record

which is processed.
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In the computer utilization portion of (4. 5) or (4. 6) the computer

memory requirements (M) are determined by the number of words re-

quired to store the sampling criteria software in the main memory of

the computer being used to obtain the signal representation data. The

value U, which depends on the number of sampling intervals; N, the

complexity of the system software, (i. e. , cost functional subroutine,

optimization routines, etc.) and the length of the signal record, is found

by determined the computer processing time required, in this case

through use of the CDC 6500 computer, to obtain the optimal sampling

interval sequence of the input signal record using any particular value

of N. The weighting coefficient w is the cost per word-second for the
l

particular computer being used.

In the communications cost portion of (4. 5) and (4. 6) the values of

R and W are determined respectively by specifying the minimum com-

munications channel capacity to be 300 Baud and that each signal level

measurement and sampling time be transmitted by using 3 ASCII char-

acters with start, stop, and parity bits being added to each character.

The number of words (records) (K) to be transmitted via the communi-

cations net work depends on the number of sampling intervals and the

type of sampling being used. The weighting coefficient w2 is the cost

per second for use of the communications channel for data transmission.

In general both weighting factors (i. e. , w and W2) are highly problem
1

specific and will change with system specifications or advances in .

technology.

A comparison of optimal ape riodic sampling criteria determined

for three different performance indices will be made first. The par-

ameter "a" will take on the values of -l, 0, and 1 resulting in a time-
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weighted, unweighted, or average error type performance indices. The

sub-optimal aperiodic sampling criterion for each N will be compared

with periodic and the appropriate adaptive sampling rule for the value

of "a" being used. These adaptive sampling rules were derived in

Hsia [24] using the three values of ”a" as indicated.

Adaptive Rule 1 (ARI) for a = 0:

T. = c / [i1 (t.)] , where c is adjusted to yield the
1 1 e 1 . l . .

de81red number of sampl1ng 1n-

tervals. (4. 7)

Adaptive Rule 2 (ARZ) for a = -1:

Ti : CZ/ (he (ti)2> 1/3, where c is adjusted to yield

the desired number of sam-

pling intervals. (4. 8)

Adaptive Rule 3 (AR3) for a = 1:

T. = T / ( (11’1 (t.) + 1. 0), where a is adjusted to

1 max e 1 . .
yield the deS1red number

of sampling intervals.

max I Tfinal (4° 9)

Therefore given the System, performance index, and cost for im-

plementation function, the figures which follow will graphically illus-

trate performance cost changes, JO, as a function of the number of

sampling intervals used to represent the signal being sampled. In

addition the total or System performance costs, J, will also be shown

in each figure, (i. c. J 2 Jo + Jf). Both performance costs will be in-

vestigated using the three ”a" values for the periodic, optimal aperiodic

and the appropriate adaptive sampling criteria. The performance in-

dices will be evaluated. for the case of a step input, (z(t) = 1) where

§(to)’= [ -l 0] is specified, and the disturbance noise is zero. The

performance costs for sub-optimal aperiodic sampling represent the

minimized performance cost obtained through use of the ZXPOWL
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optimization subroutine for the specified number of sampling intervals.

(The exact numerical value of each performance cost is listed by

figure number in Appendix C. )

The performance of optimal aperiodic sampling for signal repre—

sentation will be compared with adaptive and periodic sampling. The

control performance costs for aperiodic, adaptive, and periodic sam-

pling will be designated as J1, J2, J3, resPectively in this chapter.

The optimal performance costs for each sampling criterion, denoted

as Ji*, i = l, 2, 3, are defined as the minimum value of Ji over the

set of N satisfying the constraint 2 4 N 9'- 8, (2.10). The optimal

system performance ratio between adaptive and aperiodic sampling,

denoted by (Jz/J1)*, is defined as the maximum ratio of JZ/Jl over

the set (2. ll) of feasible N. The optimal system performance ratio

between periodic and aperiodic sampling criteria, denoted by (J3/Jl)*,

is the maximum ratio J3/J1 over the set of feasible N, (2.11).

Sub-optirnal aperiodic sampling reduces signal representation

errors compared to periodic or adaptive sampling for each value of N

for the three different cases a = -l, a = 0, and a = l as shown in

Figures 4. 3(a), 4. 4(a), and 4. 5(a) respectively. The optimal aperiodic

(0A) COSt, J], is significantly smaller than the optimal adaptive sampling

(OAD) cost, J; or optimal periodic sampling (OPS) cost, J; for each

case (a = -l, 0, 1) shown in Table 4. 1. Moreover, the maximum ratio

of the performance costs between adaptive and sub-optimal aperiodic

sampling (Jz/J1)* and the maximum ratio of performance costs between
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periodic and sub-optimal aperiodic sampling (J3/Jl)* are quite large.

These large performance ratios indicate that selecting the sequence of

sampling intervals together rather than individually as is done in adap-

tive sampling or using equal length sampling intervals as in periodic

sampling, can significantly reduce the errors caused by the sample

and hold ope ration. It is also apparent from Table 4. 1 that the optimal

performance J: for optimal aperiodic (i=1), Optimal adaptive (i=2), and

optimal periodic (i=3) increases as ”a” increases. These increases

can be explained by noting that the performance index is prOportional to

(l/Ti)a which increases with "a" since in all cases Ti is less than one

(tf is equal to one).

 

 

 

 

 

oA OAD ops AD/OA PS/OA

,. a: J :1: J :1:

: .~ * 31" p :

"a" J] N] J2 NZ J3 N3 —2 N2 —3 N_3_

-1 .003 8 .036 8 .036 8 17.9 2 15.6 2

0 .040 6 .073 5 .276 8 12.8 5 6.7 5

1 .522 6 .638 6 2.12 8 5.9 5 1.6 4             
Table 4.1. Data summary for Figures 4. 3(a) to 4. 5(a).
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The maximum performance improvement ratios between adaptive

or periodic sampling and sub-optimal aperiodic sampling, (Jz/Jl)* and

(J3/Jl)* respectively, decrease with increases in ”a". Therefore, the

tradeoffs possible in selecting the N sampling intervals together appar-

ently provide greater performance improvement in the case when ”a”

is small.

The length of the sampling intervals for both adaptive and sub-

optimal aperiodic sampling criteria are shown in Figure 4. 6 for a = -l,

a = 0, and a = l. The length of the sampling intervals becomes less

periodic as ”a" increases for both adaptive and sub-optimal aperiodic

sampling criteria. Thus, the sampling rate is better tuned to the rate

of change of the signal when ”a” increases.

(a) Step Input, Adaptive Sampling, 5 sampling intervals (N=5)

 

 

   

l 1 1 l —

f. *1 t3 {4 a--1

1 L l 1
3:0

1 1 l 1

a=l

(b) Step Input, Sub-Optimal Aperiodic Sampling, N=5

 

 

   

1 1 1 1

f, 5 £3 £4. a—-l

n n 1 1 3:0

1 ll J azl

to f t

{'55

Figure 4. 6. Representative Sampling Interval Lengths for

Figures 4. 3(a) to 4. 5(a) using N=5.
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Thus the selection of the proper performance index depends on the

particular application and the smallest sampling interval length interval

allowable. For this particular problem, a = 1 or a = 0 would be pre-

ferred since the sampling criterion would be better tuned to the changes

in the signal and since no lower bound exists for the length of the sam-

pling interval.

Clearly as the number of sampling intervals are increased the

sampling errors are reduced. It should be noted that through use of as

few as two sampling intervals performance improvements of as much

as 15. 6 :1 can be realized through the use of optimal length sampling

intervals. The remote di8play problem indicates that through use of

optimal aperiodic sampling, reductions in the amount of data necessary

to represent the sampled input signal record while maintaining a de-

sired signal representation performance index is possible.

The System performance costs are graphically presented in

Figures 4. 3(b), 4.4(b), and 4. 5(b) as a function of the number of sam-

pling intervals, N, used to represent the input signal record. As can

be seen, an increase in the number of sampling intervals results in

increased costs for implementation in most cases. At points where

System performance costs for sub-optimal aperiodic sampling exceeds

that for either periodic or adaptive sampling, the computer utilization/

processing costs necessary to obtain the optimal sampling interval

sequence, _T_*, and the communications costs necessary to transmit

the resultant signal level and sampling time data exceed any perfor-

mance improvements resulting from aperiodically sampling the de—

sired signal record. These implementation costs become apparent at

the 4th sampling interval in Figure 4. 3(b) and at the 6th sampling
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interval in Figure 4. 4(b). Figure 4. 5(b) shows that sub~optimal aperio-

dic sampling costs exceed those of adaptive sampling after 4 sampling

1 and W2 were re-

duced, or if a faster computer, more efficient Optimization algorithm,

intervals. If the values of the weighting factors w

or higher data transmission rate communications channel were used,

the costs for implementation could be reduced proportionally. These

reductions would make optimal aperiodic sampling more desirable at

higher values of N. In Figures 4. 3 and 4. 4 good performance improve-

ments can be realized with respect to adaptive and periodic sampling

by using a = -l or a =0 with N being either 2 or 3. The ultimate choice

of the sampling criterion and the value of N will depend on the perfor-

mance level required for Jo.

The performance of the Optimal aperiodic sampling for signal

representation will now be investigated with an unweighted integral

performance index (a = 0) for the following four inputs:

a) step, z(t) = 1.0

b) ramp, z(t) : t

c) parabolic, z(t) = t2

with initial state covariance and noise covariance being

-1 0 0 0 0

E{§(to)} = . V (t )= .30):

_ O O 0 0 0

The derived signal representation performance index found in equation

(4. 4) and the costs for implementation shown in either equation (4. 5)

or (4. 6) will be used. The fourth input is

d) noise, z(t) = 0

where the noise and randomly distributed initial states are assumed

gaussian with



1 0

1336200)} =9. 1x80): (4.10)

0 1

and

l 0

E{1v_<t>} = 9. gm = (4.11)

0 1

The derived performance index for the case of noise disturbances with

z(t) = 0 becomes

N-l t.
1 1+1 2

J = 2 ~32 St {z(t) - z(ti) -[ l 0] I_n_(t) +[ l 0] _rp_(ti)

i=0 Ti 1

1 0

+tr V (t) dt + J (4°12)

L 0 1 1} f

where the costs for implementation, Jf, are found in (4. 5) or (4. 6).

The values of the performance index for periodic, adaptive, and

sub-optimal aperiodic sampling criteria using a = 0 are plotted in

Figures 4. 4(a), 4. 7(a), 4. 8(a), 4. 9(a) as a function of the number of

sampling intervals for the step, ramp, parabolic, and noise inputs

respectively. The values of the performance index, Jik' for the Optimal

aperiodic (i = 1), Optimal adaptive (i = 2), and Optimal periodic criteria

(i = 3) are shown in Table 4. 2 for each of the four input types. The

maximum performance improvement ratios, (JZ/J1)* and (J3/Jl)*’ for

sub-optimal aperiodic criteria over adaptive and periodic criteria

respectively are also given in Table 4. 2.

The results indicate that sub-optimal aperiodic sampling produces

smaller signal sampling errors as compared to periodic or adaptive

sampling for each input and value of N shown in Figures 4. 4(a), 4. 7(a),

4. 8(a), and 4. 9(a). The optimal aperiodic (OA) cost, J*, is lower than

either the optimal adaptive (OAD) cost, J: or the optimal periodic

>:<

sampling (OPS) cost, .1 , for each input considered. The maximum
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ratio of the performance costs between adaptive and sub-optimal ape ri-

odic sampling (JZ/Jl)* and the maximum ratio between periodic and

sub-optimal aperiodic sampling (J3/Jl)* are large for a step, ramp,

and parabolic input. These performance ratios indicate that optimal

selection of the sampling interval sequence is preferable to individual

sampling interval selection as found in adaptive or use of equal length

sampling intervals as in periodic sampling. Thus using the optimal

sampling interval sequence, errors caused by the sample and hold

operation can be significantly reduced for these input types.

 

 

 

  

 
 

          
 

>1: :1:

OA OAD OPS (AD/A) (PS/A)

>1: 9': 55‘

INPUT * * >3 12 N2 J N
_ J J N J _ _ 3

(a-O) 1 2 2 3 J1 1 11 3-

STEP .040 .073 5 .276 12.8 5 6.7 5

RAMP .008 .013 6 .062 7.6 2 11.0 6

PARABOLi. 007 .011 8 .069 7. 4 2 11.6 4

NOISE 1.028 8 - - . 029 8 - - 1. 3 5

Table 4. 2. Data Summary for Figures 4. 6(a) to 4. 8(a).

The optimal aperiodic cost J): for a noise input is only slightly lower

:1:

than the optimal periodic cost J 3. In addition the maximum perfor-

:1:

mance improvement ratio (J3/Jl) is considerably lower than the cor-

responding performance ratios for the other inputs. This indicates

that periodic sampling is in fact near Optimal if noisy signals are to be

sampled.
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—-_ Adaptive Sampling

_-.. — -- Aperiodic Sampling
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N (Number of Sampling Intervals)

(a)

2. 4
Periodic Sampling

—--—- Adaptive Sampling 1‘

------ Aperiodic Sampling ,’ \\

 

 

 
 

° 0 r r l I I F 1

2 3 4 5 6 7 8

N (Number of Sampling Intervals)

(b)

Figure 4. 7 - Signal Representation Costs Using

a = O and Ramp Input
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Periodic Sampling

__ .. -— Adaptive Sampling

--- - -- Ape riodic Sampling

 

 

N (Number Of Sampling Intervals)

(a)
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l/
’/

q I” /

 ? m I T I “I

2 3 4 5 6 7 8

N (Number of Sampling Intervals)

(b)

Figure 4. 8 - Signal Representation Costs Using

a = 0 and Parabolic Input
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Periodic Sampling

 

 

  

 

  

. ----- Aperiodic Sampling

-( ~.‘-~-~_.

‘ ‘--- -- J.- _-_:

0° ° 1 l 1 l l 1
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N (Number of Sampling Intervals)
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1.5 -< ’-’
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- [’r v
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II

1.0 -‘
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JV

.5 ""

-‘ Periodic Sampling

" """" Aperi odic Sampling

1

0° 0 l l T l T 1

2 3 4 5 6 7 8

N (Number of Sampling Intervals)

(b)

Figure 4. 9 - Signal Representation Costs Using

a = 0 and Noise Input
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The sampling interval sequences for both adaptive and sub-optimal

aperiodic sampling using a = 0 and N = 5 are shown in Figure 4. 10 for

each of the four input types. (See Appendix C for the exact numerical

length of each sampling interval.) In general, the sampling interval

lengths for step, ramp, and parabolic inputs are longer for sub-optimal

aperiodic s ampling. The sampling interval sequence for the noise input

using sub-optimal aperiodic sampling is very close to periodic as was

indicated by the performance cost for the noise input found in Table 4. 2.

 

 

 

  
 

 

 

 

  
 

(a) Adaptive Sampling (a=0, N25)

1 j 1 1 Step

{1 f2 {3 (4

l L l L

t, t, t, {'4 Ram?

l J l 1 b 1

in t; t, t4 Para 0 a

1 L A 1

£- t t f

to I 1 3 ‘f 1“: tf

(b) Sub-Optimal Aperiodic Sampling (a=0, N=5)

A l L L St

f, t,‘ f3 t4 ep

1 j l L

‘ L 4 ‘ Parabola
1, t1 t3 t4

L L l L ,

t) t2 t3 {4 N01se

to t5: ff

Figure 4. 10 Representative Sampling Interval Lengths for

Figures 4. 7(a) to 4. 9(a) using N=5.
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As can be seen in Figure 4. 7(b) the costs for implementation added

to the performance costs increased the system performance costs for

sub-optimal aperiodic sampling above those for periodic and adaptive

sampling after 3 sampling intervals. The shape of the cost curve for a

ramp input, found in Figure 4. 7(b) for sub-optimal aperiodic sampling,

is far from a ”smooth" curve as compared to the curves for periodic

and adaptive sampling. The shape of the aperiodic performance curve

is due to the fact that an increase in the number of sampling intervals

does not necessarily imply a corresponding increase in the computation-

al costs (qu) required to obtain the optimal sampling interval sequence

_T_*. As can be seen in Figure 4. 7(b) the shift in the system performance

for sub-optimal aperiodic sampling is due mainly to the increased costs

for implementation.

In Figure 4. 8(b) the system performance cost for periodic sampling

remains relatively constant while the costs for adaptive and sub-Optimal

aperiodic sampling increase above the periodic sampling costs after 4

sampling intervals. The increases in system performance costs for

adaptive and aperiodic sampling using a parabolic input are due pri-

marily to the increased computational expenses required to obtain the

optimal sampling interval sequences 1* as indicated in Figure 4. 10

for N = 5.

In‘ Figure 4. 9(b) the costs for implementation required for sub-

optimal aperiodic sampling were so high that periodic sampling had

the lowest system costs for each N considered. This implies in con-

junction with Figure 4. 10 that if ”noisy" signals are to be sampled for

signal representation, based on signal variances as in (2. 32), periodic

sampling will provide good signal representation with lower implemen-

tation costs than optimal aperiodic sampling for each N considered.



64

In summary, aperiodic sampling as specified in Chapter II yielded

improved signal representation performances with respect to periodic

or adaptive sampling for all values of ”a" and input signals considered.

If signal representation performance costs are to be considered alone

in the choice of the sampling method to be used, clearly all results in-

dicate that sub-optimal aperiodic sampling should be chosen.

In any design problem, in particular the one shown in Figure 4. 1,

signal representation performance costs can not be used as the only

basis for choosing the method of sampling to implement. AS can be

seen in the figures which have been presented, the costs for implemen-

tation when considered jointly with the performance costs can outweigh

any reductions in sampling errors obtained through use of more sophis-

ticated sampling techniques such as optimal aperiodic sampling. Thus

if the costs for implementation as introduced in Chapter II and discussed

in detail for the remote display problem are low, aperiodic sampling

should be employed; if the costs for implementation are high, periodic

or possibly adaptive sampling should be employed. The greater the

knowledge the system designer has about the problem and the constraints

he is required to work within the better the System design will become.

The procedure for selecting the particular sampling criterion is to

first determine the maximum value of the signal representation costs

permitted and then determine the minimum number of sampling inter-

vals required to obtain this value Of performance using each sampling

criteria. Then selecting the sampling criterion with the lowest total

costs assuming that each criterion is only considered in the region

above its minimum number of sampling intervals. Another approach

would be to select the sampling criteria with the lowest implementation

costs over the same set of acceptable number of sampling intervals.
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EXAMPLE DESIGN PROBLEM
 

Consider the Signal representation performance index cost curves

for a ramp input signal using a = 0 as shown in Figure 4. 7. Two pos-

sible methods of selecting the best sampling criterion given the system

design specifications will be presented.

METHOD 1. (See Figure 4. 7(a))
 

STEP 1. Determine the maximum allowable signal representa-

tion performance cost, JO. For this example, the perfor-

mance cost will be arbitrarily chosen, thus let Jo = . 04.

STEP 2. Select the feasible values of N, where 2 S N S 8 as

seen in Figure 4. 7(a), such that STEP 1 is satisfied.

   

Sampling Type Feasible N Minimum N (N?)

Periodic Sampling none none

Adaptive Sampling 4, 6, 7, 8 4

Sub-Optimal Aperiodic Sampling 4, 5, 6, 7, 8 4

STEP 3. Choose the method Of sampling with the lowest system

performance costs. (See Figure 4. 7(b)) For this example,

adaptive sampling using 4 sampling intervals yields the lowest

total performance cost, J. (The exact numerical values of the

performance costs are found in Appendix C.)

Thus in this example the use of METHOD 1 indicates that adaptive

sampling should be chosen for implementation based on the performance

results indicated in Figure 4. 7.
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METHOD 2. (See Figure 4. 7(a))
 

STEP 1 and STEP 2 are identical to those in METHOD 1.
 

STEP 3. Choose the method of sampling with the lowest imple-

mentation cost. Implementation costs Jf are determined by

subtracting the performance cost J0 from the system perfor-

mance cost J. Using this procedure, adaptive sampling with

N = 4 has the lowest implementation costs, Jf.

Thus using this method of sampling criterion selection, adaptive

sampling would again be chosen for implementation. AS can be seen in

Figure 4. 7, a different choice of the value of JO would lead to different

sampling criterion selection.

The two methods of sampling type selection are Similar for STEP 1

and STEP 2 but different in STEP 3. STEP 3 causes METHOD 1 to em-

phasize total or system performance costs whereas METHOD 2 empha-

sizes implementation costs alone. The method used in the selection of

the sampling criteria for implementation depends on the System design

objectives and allowable system performance.

4.3. Samjliig for Control Implementation
 

The performance of the optimal sampling for control implementa-

tion problem will now be investigated. Performance will be investiga-

ted as a function of System response times (bandwidth), the system

type (the number of poles at the origin in the System plant), and the

inputs forcing the system during the control interval. The performance

index will be augmented by costs for implementation as discussed in

Chapter II. The cost for data communications will be essentially
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neglected since the controlling computer is assumed to be very near

the system under control.

The sampling for control problem, as restated from Chapter III,

is:

Determine the optimal sampling interval sequence (N33, _'I_‘_>:< )

that specifies the optimal sample and hold approximations

Gem = ue(ti) , t£[ti , tiH] ; i = 0, 1, , N-l

that minimize the control implementation performance index

(3. 17). subject to the sampling constraints (3.11), (3.12), and (3.13).

The control implementation performance index (3. 17) measures

the terminal errors, the system tracking errors, the control energy

expenditures and implementation costs. The implementation costs in-

clude computer utilization, software and data storage costs for com-

puting the optimal sampling intervals, and data communications costs

for transmitting the control information from the computer to the system

under control.

The primary objective of investigating this problem is to evaluate

the trade-offs between performance and implementation costs for im-

plementating a digital control system through use of a periodic or an

optimal aperiodic sampling process. A comparison of performance and

costs for implementation will be made for the following cases:

[1] a Type 2 (two poles at the origin) system with FAST, MEDIUM,

and SLOW speeds of response to a step input.

[2] a Type 2 MEDIUM response time system for a step, ramp,

and a random noise input.

[3] a Type 1 (one pole at the origin) MEDIUM response time

System for a step, ramp, and a random noise input.
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[4] a Type 0 (no poles at the origin) MEDIUM response time

System for a step, ramp, and a random noise input.

A comparison of the performance and implementation costs for

these two sampling criteria will also be compared based on the System

type for a particular input signal.

The control performance of the feedback control system imple-

mented with a continuous time (analog) control is evaluated to provide

a basis for evaluating the control performance of the two sampled-

data Systems. It is assumed that the implementation costs for the

continuous time (analog) control system is prohibitive.

The basic assumption made in evaluating and comparing the per-

formances of the control laws implemented with the periodic and opti-

mal aperiodic sampling criterion are:

[l] a second order System will be used in all cases:

0 1 b1

:(t) = _s_(t) + ue(t) (4.13)

-al -a2 b2

y(t) = [:1 0] _x_(t) (4.14)

[2] the control law is specified by

ue(t) = z(t) - y(t) (4.15)

over a control interval te[0, l] where z(t) is the programmed

control.

[3] measurements of the control law are transmitted at the sam-

pling times {ti} :51 where

1:0 :tinitial : 0 < t1< < tN—1 < thtfinal :1

where N is restricted to satisfy

(4.16)

25N58 (4-17)
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based on computer software constraints.

[4] the control error is generated only at the sampling times

and held over each sampling interval such that

ue(t) = e(ti) , t [ti , tiH]

andi = 0,1, . . ., N-l.

[5] the performance objectives for this System are assumed to be

met by selecting a performance index which penalizes terminal

errors, tracking errors, and control energy expenditures as

found in (3. 17). The computational costs are the off-line costs

for computing the optimal sampling criterion and the commu-

nications costs are the on-line costs for transmitting data

between the computer and the System being controlled. The

sum of the computational and communications costs result in

the costs for control system implementation as discussed in

Chapter II.

The derived control performance index used is

:r = E {(y(tN) - z(th' 5 (y(tN) - 2(th +

N-l t

 

2 £1+1[(y(t) - z(t))' .l (y(t) - z(t)) + . 02ue(t)2] dt} + Jf

i=0 i

(4. 18)

The cost for implementation, Jf, for periodic sampling is

w2 x K x W

Jf=wlxMxU+ R (4.19)

where

M = 1700 words of memory

wl = .0001 (word-second)-1

W = 30 bits/output word (record)
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(N+4) words (records)1K :

R = 300 bits/second

wZ = .00005 seconds-1

The cost for implementation for aperiodic sampling is

 

wZ x K x W

Jf=W1xMXU + R (4.20)

where

M = 1700 words of memory

wl = . 0001 (word-secondfl

W = 30 bits/output word (record)

K = 2 x (N+l) words (records)2

R = 300 bits/second

wz = .00005 seconds-1

In the computer utilization portion of (4. 19) or (4. 20) the computer

memory requirements (M) are determined by the number of words re—

quired to store the control system software in the main memory of the

computer being used for System control. The value of U, which depends

on the number of sampling intervals; N, the complexity of the control

System software, (i. e. cost functional subroutine, optimization routines,

etc. ) and the control time interval, is found by determining the compu-

ter processing time required, in this case through use of the CDC 6500

computer, to obtain the optimal sampling interval sequence, _T_*, using

any particular value of N. The weighting coefficient w is the cost per
1

word-second for the particular computer being used.

 

1

See Page 46 , Section 4. 2.

2See Page 46 , Section 4. 2.
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C1)

Data Read-In and

Initialization Phase

1
Simulate the continuous time feedback control

system and evaluate the derived control per-

formance index (Jo).

Initialize the number of sampling intervals.

N : Nmin

 

 

 
 

 

 

 

r J.
r Simulate the feedback control system using per-

eriodic sampling of period T = (tf-tO)/N and

compute the derived control performance index

JO(T, N) and Jf.

 

1

Obtain the optimal aperiodic sampling interval

sequence 3* through use of the ZXPOWL opt- (

irnization subroutine and the derived control per-

(( formance index (3. 25). Use «Tj< in the simula-

tion of the feedback control system to obtain

JO(T_*, N) and Jf for optimal aperiodic sampling.

 

  
 

   ‘ 8 No IS

N=N+l N-‘Nma

7 — Yes

Q 1

Figure 4. 11. Computer Program Flowchart for Control Pe r-

formance Evaluation.
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In the communications cost portion of (4. 19) or (4. 20) the values

of R and W are determined respectively by specifying the minimum

communications channel capacity to be 300 Baud and that each Signal

level measurement and sampling time be transmitted by using 3 ASCII

characters with start, stop, and parity bits being added to each char-

acter. The number of words (records) (K) to be transmitted via the

communications network depends on the number of sampling intervals

and the type of sampling being used. The weighting coefficient w2 is

the cost per second for use of the communications channel for data

transmission. In general both weighting factors (1. e. W1 and wz) are

highly problem specific and will change with system specifications or

advances in technology.

Section 4. 4 will investigate three Type 2 control system models

having FAST, MEDIUM, and SLOW reSponse times. Performance

costs for each System and input being investigated will be found using

the computer program shown in simplified flowhcart form in Figure

4.11.

4.4. Control Implementation Performance Results
 

The trade-offs in performance and implementation costs for a

sampled-data control implementated with periodic and optimal aperi-

odic sampling will be investigated for a Type 2 control system which

has been used extensively in research [1, 19, 20, 24, 52] on compari-

son and evaluation of adaptive sampling criteria. This system will be

investigated for gain settings which result in FAST, MEDIUM, and

SLOW response times. The three system models have the form
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a) FAST response time system :

0 l 10

350.) 33(1) 1 u,,(t)

0 0 100

y(t): [1 0150)

b) MEDIUM response time system :

0 l 5

35(t) = 350) + ue(t)

0 0 25

y(t) = [1 01330)

c) SLOW response time system :

0 1 2.5

z(t) = z(t) + ue(t)

0 0 6.25

y(t) = [1 0 150)

These three systems will be investigated for a

z(t)=l, t€[0,l]

with initial conditions

- l

0

and noise cova rianc e

“130) =9

(4.21)

(4.22)

(4.23)

(4.24)

step input
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Therefore given the three response time systems, the per-

formance index, and the cost for implementation function, the figures

which follow Show the control performance costs and system per-

formance costs. Each value of the performance index for the sub-

optimal aperiodic sampling represents the minimized performance

cost obtained through use of the ZXPOWL optimization subroutine for

the specified number of sampling intervals. (The exact numerical

values are listed by figure number in Appendix C.) The value of the

continuous time feedback control performance costs are obtained by

applying the feedback control Signal continuously as the system input

control Signal. The performance of this continuous time (analog)

control will be denoted J4 and the performance of the periodic and

aperiodic sampled data control will be denoted as J3 and J1 respectively.

The optimal performance costs for periodic and aperiodic, denoted by

J: for i = 3 and i = 1 respectively, are defined as the minimum value

of Ji over the set of feasible N (3.11). The optimal system per-

formance ratio between periodic and aperiodic sampling (J3/Jl)* is

defined as the maximum value of J3/J1 over the set of feasible N (3. 11).

The optimal system performance ratio between continuous and aperiodic

sampled-data control, (J4/J1)*, is defined as the maximum ratio

J4 /J1 over the set of feasible N (3.11).

Figures 4.12(a), 4.13(a), and 4. 14(a) graphically represent the

values of the derived control performance index using the indicated

number of sampling intervals for control of the three Type 2 unity



75

feedback control Systems presented. In each figure sub-optimal

aperiodic sampling performance costs will be compared to both periodic

sampling and continuous time control. As can be seen in Table 4. 3,

continuous time feedback control performance costs (C) increase as the

control response time of the system decreases. The main reason for

the increase in performance costs is due to the fact that continuous time

control is unable to significantly reduce the terminal errors as system

response times decrease and is thus penalized by the control per-

formance index. The optimal aperiodic (OAS) cost J: is lower than the

optimal periodic sampling (OPS) costs J: for each system considered

but outperforms continuous time control performance only for the

 

 

 

 

 

c OAS ops (C/OA)* (PS/OA)*

c 1 J J *ontro :1: >1: :1: >1: 4 _3

Response J4 J1 N1 J3 N3 "' * N1 J1 N3

Jl .1.

FAST 2. 2 4. 9 8 8. 4 8 .44 8 104 2

MEDIUM 5. 2 2. 3 8 5. 3 5 2. 3 8 104 2

SLOW 11.6 4.5 6 6.8 2 2.6 6 2.3 7           
 

Table 4. 3. Data Summary for Figures 4. 12(a) to 4. 14(a).

MEDIUM and SLOW systems. The maximum ratio of the per-

formance costs between continuous and sub-optimal aperiodic sam-

. >1: ,

plmg (J4/Jl) increases as system control response decreases. This

implies that Optimal aperiodic sampling can be more effective than

continuous time feedback control in reducing final state errors for a
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fixed length control interval for slower responding systems. The max-

imum ratio of performance costs between periodic sampling and sub-

optimal aperiodic sampling (J3/J1)::< is large for the FAST and MEDIUM

control response Systems indicating that the periodic sampled—data

system is unstable for N = 2. This conclusion is verified from Figures

4. 12 and 4. 13 respectively. It should be noted that system stability

improved and performance cost reductions were made through use of

periodic sampling for the SLOW response time system.

In the figures which have been presented, performance costs of

a continuous time control system, having feedback error signals sam-

pled either periodically or ape riodically and applied as a system
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Figure 4. 12 - Performance Costs for a Type 2 FAST

Response Time Control System Using

a Step Input
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Figure 4. 13. Performance Costs for a Type 2 MEDIUM Re-

sponse Time Control System Using a Step Input.
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control input, nearly equal or in the case of sub-Optimal aperiodic sam-

pling out-perform continuous time feedback control. These per-

formance results are explained by the fact that through use of sam-

pling, either periodic or sub-optimal aperiodic, delays are intro-

duced into the feedback error signal. These delays introduce a mis—

representation of the actual input error control signal by indicating

to the system under control that the feedback error is greater (smaller)

than it actually is. As a result, the system is made to respond faster

(slower) than it normally would through use of a continuous time feed-

back error signal which has no delays. For example, consider the

control error signal ue(t) found in (4. 15). At the initial time, to,

ue(to) will have an initial value dependent on z(to) and x1(to). Since

the systems being investigated are assumed stable, ue(t) will

eventually be reduced depending on the system type and the input

signal. If ue(t) is sampled and held until time t1, such that t1 > to,

any changes in ue(t) between times t0 and t1 will not become apparent

until time tl when ue(t) is again sampled and held. This "delay" in

the error feedback signal if used properly (e. g. adjusted through use

of sub-optimal aperiodic sampling) will improve system response as

indicated in the figures being presented. If the "delay" in the error

signal is not adjusted severe system instability can result as shown in

Fig.4.12 for periodic sampling.

It should be noted that in all cases the performance costs for

both periodic and sub-Optimal aperiodic sampling approach the value
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of performance for the continuous time control as the number of sam-

pling intervals increase. This result stems from the fact that using

more sampling intervals the feedback control signal becomes a better

approximation to the continuous time control.

Figure 4. 13 also indicates the performance costs resulting from

use of the optimal signal representation sampling interval sequence

being applied to the control implementation problem. The results, as

seen in Figure 4. 13(a), Show that control performance can be improved

in three cases over periodic sampling and in two cases over con-

tinuous feedback control. The control performance using sub-optimal

aperiodic sampling determined by the control performance index,

out-performed the optimal Signal representation sampling interval

sequence in all cases as was expected. These results indicate that

use of the Optimal sampling interval sequence for signal representation

for system control does not necessarily yield good system control

performance as was implied in earlier references [1, 24] .

The results as seen in Figure 4. 12(b) indicates that for 3 to 7

sampling intervals sub-optimal aperiodic sampling would have to be

employed since the control system is extremely unstable using periodic

sampling for fewer than 8 sampling intervals. In Figure 4. 13(b) sub-

optimal aperiodic sampling would again have to be used if 4 or less

sampling intervals were required. If more than 4 sampling intervals

could be used either periodic or sub-optimal aperiodic sampling could

be used. Figure 4. 14(b) indicates that the total performance costs for
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periodic and sub-optimal aperiodic sampling are approximately the

same until 7 sampling intervals and than the costs for implementation

for the aperiodic sampling criterion, in particular the processing

costs, become large.

The lengths of the sampling intervals which yield the per-

formance costs indicated at 5 sampling intervals in Figures 4. 12

through 4. 14 are shown in Figure 4. 15. The initial time tO is 0. 0

with the final time tf being 1. 0 for each sampling interval sequence.

Each sampling time ti, for i = 0, 1, 2, 3, 4, 5, is indicated with the

length of a sampling interval being ti+ - ti' The exact length of
1

each sampling interval is found in Appendix C.

Step Input, Type 2 System, N=5

 

 

   

L m l l FAST

1 l l l MEDIUM

1 1 l L SLOW

1‘6 t, t1 t3 ‘4 f; ‘ t;-

Figure 4. 15. Representative Sampling Interval Lengths for

Figures 4.12(a) to 4.14(a) using N=5.

In Figure 4. 15 the shift in the sampling intervals as the band-

width of the Type 2 control system decreases can be attributed to the

fact that since the same performance index is used for each system,

sampling has to yield large piecewise control signals and delay times

to compensate for the "slowness" in the control system reSponse. It
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—t)should be noted that during the first sampling interval (T0 = t1 0

the control input error signal will reflect the initial conditions of the

control system. In this case using the initial conditions of -l. O for

the "position" state variable and using a step input having an amplitude

of l. 0 at time tO results in an initial input error control signal of

2. 0 (e. g. ue(to) = z(to) - x1(to) or ue(to) = l.0-(-l.0) = 2. 0) during

the first sampling interval, T1. The longer sampling interval T1 and

the corresponding error feedback delay becomes, the longer the

control system is subjected to the value of 2. 0 as the input control

error signal. Thus for the SLOW reSponding system the first sampling

interval becomes large with respect to the first sampling interval for

the FAST responding system in order to better use the delay with the

large initial error to help decrease the terminal error which is

penalized severely in the performance index. Controllingiof error

feedback delay was used so effectively that for MEDIUM and SLOW

response time systems the use of optimal aperiodic sampling and in

some cases optimal periodic sampling were able to out-perform con-

tinuous time control.

The conclusions which can be drawn from Figures 4. 12 through

4. 14 are that the slower the system dynamics the more the control

performance of the system can be improved through use of periodic

or sub—optimal aperiodic sampling. For either of the two "slower"

systems considered, periodic and sub-optimal aperiodic sampling

yield comparable performance plus costs for implementation. Thus
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the sub-optimal aperiodic criterion would be implemented since the

control performance is significantly lower than the control per-

formance for periodic sampling.

The number of sampling intervals used in the implementation

process would depend on the maximum value of the control per-

formance which is acceptable. The number of sampling intervals

selected for any particular control implementation would generally

be the minimum number such that the control performance remains

below this maximum.
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4. 5 Control Performance Investigation by System Type
 

In the previous section, control performance of a Type 2 feed-

back control system having various response times, namely SLOW,

MEDIUM, and FAST, were investigated for a step input. In this

section the control performance of Type 2, Type 1, and Type 0 feed-

back control systems will be investigated using a step, ramp, and

noise input signals. Each of the three systems will have a bandwidth

of approximately 7 radians per second which corresponds to that of

the MEDIUM reSponse time system in the previous section. The per-

formance of the Type 2 MEDIUM response time system found in

(4. 13), having been previously investigated for a step input will now

be investigated using a ramp and noise input. The ramp input will

have the form

z(t)=t for Oététf

with the initial system state and noise statistics being

-1 0 0 0 O

E13001} = , 31.0.) = , 213“) =
0 0 0 0 0

The resultant control signal ue(t) found in (4. 15) will be sampled to sat-

isfy (4. 16) and (4. 17). The derived control performance index and

cost for implementation model are identical to those found in (4. 18),

(4. l9), and (4. 20) for the step input investigation. The noise input

will have the form

z(t)=0 for Oététf
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where the noise and randomly distributed initial states are assumed

gaus sian with

1 0

12646)} = 2 , 11.8.) =
0 1

and

1 0

E{x(to)}= _g , “330) =

0 1

The derived performance index for the case of system noise disturb-

ances has the form

.01 0

J z [i 1 O LIEUN) - z(tNH' .01 [l 1 0 an.(tN) - z(tNll + tr[

0 0

t1+1

N—l 2 .1 0

31(th + Z [.1 [[ 1 013m - z(t)] + tr[

i=0 0 0

t.

1

.02 0

y(t)] + .02 [ z(ti) - [ 1 0 ]_rn_(ti) ]2 + tr[ y(tin] dt + Jf

0 0

(4.25)

with Jf being defined in (4. l9) and (4. 20). The added trace terms

are a result of the Specified system statistics.

Therefore given the Type 2 system, performance index, and cost

for implementation function, the control performance levels for per-

iodic and sub-optimal aperiodic sampling criteria are plotted in

Figures 4.10, 4.12, and 4.18 for the step, ramp, and noise inputs

respectively. As can be seen in Table 4. 4, continuous time control (C),

Optimal periodic sampling (OPS), and optimal aperiodic sampling (OA)

performance costs decrease using a ramp input rather than a step

input and increase Sharply with a noise input. The decrease in
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performance costs is primarily due to differences in the terminal errors

caused by the step and ramp inputs. The large performance cost for

the disturbance noise input is attributable to the fact that the per-

formance index penalizes large variances in the terminal error on the

same level as it penalizes large tracking errors. (see per-

fo rmance indexiin (4. 21) Thus it is apparent that with the Specified

initial state and noise covariances for the Type 2 system being con-

sidered state variances increase significantly over the control interval.

As can be seen in Table 4. 4, optimal aperiodic (OA) sampling

JT out-performs either continuous time control (C) or Optimal per-

iodic sampling (OPS) for each input type considered. The maximum

ratio of performance costs between continuous and sub-optimal

aperiodic sampling (C/OA)* remains the same for the step and ramp

inputs. The maximum ratio of performance costs between periodic

and sub-Optimal aperiodic sampling (PS/A)* shows vast improvements

 

 

 

 

31‘ *

c OA ops (C/OA) (PS/0A)

1'5 >1<

T 2 J 1* N* * * 34 l3
Ype 4 1 1 J3 N3 1 N4 Jl N3
INPUT T —

1

STEP 5.2 2.3 8 5.3 5 2.3 8 104 2

RAMP .931 .39 8 1.0 4 2.4 8 103 2

NOISE 11.0 8.7 2 8.9 2 1.3 2 1.03 2            
 

Table 4. 4. Data Summary for Figures 4.13(a), 4.16(a), and 4.17(a).
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because the periodic sampled-data system was unstable using only two

sampling intervals. The maximum performance ratios between per-

iodic and sub-optimal ape riodic sampling (PS/OA)* for noise inputs

indicate periodic sampling is near Optimal when the system is to be

controlled for noise disturbances only.

Optimal aperiodic sampling yielded lower performance costs,

as seen in Figures 4.13, 4.16, and 4.17, than either periodic or

continuous time control for each input and number of sampling in-

tervals considered. These performance results are again attributed

to the effective use of feedback error signal delay to improve control

performance (See page 80 for additional discussion on delay. ) As

the number of sampling intervals increase, the delays are reduced

yielding a sampled feedback error signal which appears more con-

tinuous to the system under control. As is indicated in Figure 4. 12(a)

for 8 sampling intervals, the performance costs for periodic sampling

would decrease and approach continuous time control as a limit as the

number of sampling intervals became large. [52] Likewise for sub-

optimal aperiodic sampling as the number of sampling intervals were

increased the values of the derived performance index-would approach

that of the continuous time control. [52]

In Figure 4. 16(b) the control performance costs plus costs for

implementation are clearly lower for periodic sampling using 4 or

more sampling intervals. The high costs for sub—optimal aperiodic

sampling are attributed to the processing involved in obtaining the
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optimal sampling interval sequence. Using less than 4 sampling in-

tervals, periodic sampling results in system instability and thus

sub-optimal aperiodic sampling would have to be used.

Figure 4. 17(b) indicates that periodic sampling yields almost

constant performance costs compared to sub-optimal aperiodic

sampling. The increases in costs for aperiodic sampling are due

in all cases to increased computational expenses resulting from

Optimization of the sampling interval sequence. Since sub-optimal

aperiodic and periodic sampling yield almost the same performance

and since Optimal aperiodic yields almost periodic samples, periodic

sampling should be used for noise inputs.

The performance of a Type 1 MEDIUM response time unity

feedback control system will now be investigated for a step, ramp,

and noise input. The following control system model will be used:

0 l 0

350) = gm + new

0 -5 25

y(t) = [1 0133(t)

with the control error Signal for the above system being

ue(t) '3 z(t) - Y“)

where z(t) is a specified input signal for 0f: t f: tf.

The first two input signals being considered have the form :

z(t) 1 (step input)

and

Z(t) t (ramp input)
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with the initial system state and noise statistics being

-1 0 0 O 0

s {1%)}: , yxuo) = . ‘30) =
0 0 0 0 0

The resultant control signal ue(t) found above, will be sampled to sat-

isfy (4. l6) and (4. 17). The derived control performance index and cost

for implementation model are identical to those found in (4. 18) and (4. l9),

and (4. 20) for the step input investigation.

The third input, the noise, will have the following form:

z(t) = 0

where the noise and randomly distributed initial states are assumed

gaussian with

l 0

E {14%)} z 2 ' .Yx(to)

and

E {y(t)} = 9 . ‘Ijm =

O 1

The derived control performance index and cost for implementation

model are identical to those found in (4. 25), (4.18), and (4.19).

It should be noted that for a ramp input a Type 1 unity feedback

control system has a steady-state error. Therefore, errors in the

final state values using a ramp input will always be present with con-

tinuous time feedback control.

As can be seen in Table 4. 5, optimal aperiodic (OA) sampling

>'.<

1 outperforms either continuous time control (C) or optimal periodicJ
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sampling (OPS) for each input considered. The maximum ratio of

performance costs between continuous and sub-optimal aperiodic

sampling (C/OA)* occurs for a ramp input. The maximum ratio of

performance costs between periodic and sub—optimal aperiodic sam-

pling (PS/OA)* also occurs for a ramp input. These optimal im-

provement ratios can be attributed to the fact that Optimal aperiodic

sampling is able to reduce final state errors to a greater extent for

a ramp input than a step input compared to continuous time or

periodically sampled control. The maximum performance ratio be-

tween periodic and sub-optimal aperiodic sampling (PS/OA)* for

noise inputs indicate periodic sampling is near optimal when the

system is to be controlled for noise disturbances only.

 

 

 

 

 

a):

C OA ops (C/OA) (Ps/oA)*

T l * ' * I E J *.ype >5 .

INPUT 1 1 1

STEP 5. 7 3. 8 8 22. 6 8 1. 5 8 8. 5 2

RAMP 1. 0 .29 8 3. 9 8 3.4 8 24.0 4

NOISE .45 .37 2 .38 2 1. 2 2 1.02 3           
Table 4. 5. Data Summary for Figures 4. 18(a) to 4. 20(a).

Figure 4. 18(a) and 4. 19(a) indicate that delay caused by periodic

sampling degraded control performance for the number of sampling in-

tervals considered. Sub-optimal aperiodic sampling with its ”controlled

delay" was able to outperform continuous time control for N greater

than six sampling intervals for a step input and three sampling intervals
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Figure 4.18. Performance Costs for a Type 1 MEDIUM Re-

sponse Time Control System using a Step Input.
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for a ramp input since it was more effective in reducing final state

errors. In the case of sub-optimal aperiodic sampling where the

sampling delays can be "tuned to the system" through variation of

the sampling interval lengths, the performance costs have been re—

duced. Periodic sampling cannot adjust sampling interval lengths,

and thus the delays caused by sampling, as a result performance

costs are increased. As was pointed out previously, and as can be

seen in Figures 4.18(a) and 4.19(a), the performance cost in periodic

and Optimal aperiodic sampling approach the continuous time per-

formance cost as N increases.

Figure 4. 19(a) indicates the performance costs for the Type 1

control system using the Specified noise input. As can be seen the

performance costs for periodic and aperiodic sampling almost identical.

This indicates that periodic sampling is near optimal when used to

control for noise disturbances.

Figure 4. 18(b) indicates sub-Optimal aperiodic sampling to be

the only means of implementation using the number of sampling in-

tervals investigated.

Figure 4. 19(b) indicates sub-optimal aperiodic sampling yields

lower performance index plus costs for implementation than periodic

sampling for up to 6 sampling intervals. Since the processing costs

are large for sub-optimal aperiodic sampling, periodic sampling

yields lower overall costs for 7 and 8 sampling intervals even though

a performance improvement of 13. 5 was realized through the use of
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sub-optimal aperiodic sampling at 8 sampling intervals.

Figure 4. 20(b) indicate periodic sampling yields almost constant

performance costs compared to sub—optimal aperiodic sampling. The

increases in costs for aperiodic sampling are due in all cases to in—

creased computational expenses resulting from optimization of the

sampling interval sequence.

The performance of a Type O MEDIUM response time unity

feedback control system will now be investigated for a step, ramp,

and noise input. The following control system model will be used:

0 l 0

em = §(t) + new

-24 —1O 19

y(t) = [1 0 ]§(t)

with the control error signal for the above system being

new = z(t) - y(t)

where z(t) is a specified input signal for 0 1.- t 5 tf. The resulting

control signal ue(t), will be sampled to satisfy (4. l6) and (4. 17). The

three input signals being considered for this system, viz. step, ramp,

and noise, have been Specified in the investigation of the Type 1 system

just completed. The derived performance index and cost for im—

plementation model to be used for the noise input are found in (4.25),

(4.18), and (4.19).

It should be noted that for a step input to a Type 0 unity feed-

back control system there occurs a steady state error in the output

signal with reSpect to the input signal which can not be eliminated by
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conventional feedback techniques. A ramp used as an input to a Type

0 unity feedback control system yields errors between the input and

output signals which increase with time.

As can be seen in Table 4. 6, optimal aperiodic (OA) sampling

J? outperforms either continuous time control (C) or optimal

periodic sampling (OPS) for each input considered. The maximum

ratio of performance costs between continuous and optimal aperiodic

sampling (C/OA)* occurs for a ramp input. The maximum ratio of

performance costs between periodic and sub—optimal aperiodic sam-

pling (135/ 0A)* also occurs for a ramp input. These optimal im-

provement ratios can be attributed to the fact that optimal aperiodic

sampling is able to reduce final state errors to a greater extent for

a ramp input than a step input compared to continuous time or per-

iodically sampled control. The maximum performance ratio be-

tween periodic and sub-optimal aperiodic sampling (PS/ 0A)* for

noise inputs indicate periodic sampling is near optimal when the

 

 

 

 

 

 

*

(3 0A OPS (C/OA) (PS/my“

~'< * J * * T * |

Type 0 J4 Jj‘ NT 33 N3 34 N3 3‘3 N3

INPUT
1 l 1 1

STEP 4.3 1.6 8 12.2 8 2.7 8 11.5 2

RAMP 2.7 .22 8 5.4 8 12.2 8 33.0 3

NOISE .23 .19 2 .19 2 1.2 2 1.02 2           
Table 4. 6. Data Summary for Figures 4. 21(a) to 4.23(a).
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the system is to be controlled for noise disturbances only.

Performance improvements in sub-optimal aperiodic sampling

are again attributed to the ability of aperiodic sampling to "tune

sampling delays" to the system and thus minimize the derived per-

formance index through use of the optimal sampling interval sequence.

Using the ramp input this example was able to show major im-

provements in control performance through use of sub-optimal

aperiodic sampling. Again as in the past explanations, tuning of the

sampling intervals, and thus the feedback control error delays,

through use of the sub-Optimal aperiodic sampling techniques as pre-

sented in Chapter III, vastly improve control response for, in this

example, MEDIUM speed Type O unity feedback control system with

ramp inputs.

Figure 4. 23(a) indicates the performance costs for the Type 0

control system using the Specified noise input. AS can be seen the

performance costs for periodic and sub-optimal aperiodic sampling

yielded almost identical performance costs. This indicates that periodic

sampling is near optimal when used to control for noise disturbances.

Figure 4. 21(b) indicates the total sub-optimal aperiodic sam-

pling costs to be lower than periodic sampling for all the sampling

intervals considered. As can be seen in the sub-optimal aperiodic

sampling case, the precesssing costs increase with an increasing

number of sampling intervals and could easily result in the total

sub-optimal aperiodic sampling costs exceeding those for periodic
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sampling using 9 or 10 sampling intervals.

Figure 4. 22(b) indicates improved performance plus costs for

implementation for sub-optimal aperiodic sampling for all sampling

intervals. As can be seen for 7 and 8 sampling intervals, processing

costs offset improvements in control performance Shown in Figure

4. 22(a).

Figure 4. 23(b) indicates periodic sampling yields almost con-

stant performance costs compared to sub-optimal aperiodic sampling.

The increases in costs for aperiodic sampling are due in all cases

to increased computational expenses resulting from optimization

of the sampling interval sequence.
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4. 6 Analysis bLSystem Type.
 

The lengths of the sampling intervals using N=5 for the Type 2,

Type 1, and Type 0 feedback control Systems are Shown in Figure

4. 25(a), 4. 25(b), and 4. 25(c) for a step, ramp, and noise inputs

respectively. As can be seen the lengths of the sampling intervals

decrease as system type number decreases for both step and ramp

inputs. The length of the sampling intervals increase as the type

number decreases for the noise input. The changes in the sampling

interval lengths with respect to system type are a result of the

differences in the Open loop plants being considered for each

system type.

Consider the open loop reSponses of the three plants to a unit

step input for t €[ 0 , 1 ] as shown in Figure 4. 24(a) with the plant

transfer function for a step input being shown in Figure 4. 24(b). As

can be seen, the Type 2 System reSponds quickly to the step input,

having a terminal value of 17. 5 at t : 1. The response of the Type 0

and Type 1 systems are very similar, each being nearly linear over

the time interval being considered with the Type 0 system having

approximately twice the Slope of the Type 1 system. (See time

domain reSponses in Figure 4. 24(b))

AS a result of the sample and hold operation used in system

control, piecewise constant signals are applied as inputs to the

various open loop plants. (See Chapter III) The responses of each

open loop plant, as seen in Figure 4. 24, will proceed as shown
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Figure 4. 24. Open Loop Plant Responses of the Type 2, l, and 0

Plants for a Unit Step Input.
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(a) Step Input, MEDIUM Response Time Systems, N=5.
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(c) Noise Input, MEDIUM Reaponse Time Systems, N =5.
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Figure 4. 25. Sub-Optimal Sampling Interval Sequences, N25, for

Type 2, l, and 0 Control Systems.
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until a different piecewise constant input is applied. The length of

time each piecewise constant signal is held is used as a control

variable for the system. Therefore using the sub-optimal sampling

interval sequences as control variables, the resulting System

responses are shown in Figure 4. 26 for a step input.

The closed 100p step responses as seen in Figure 4. 26 indicate

an underdamped response to a step input for the Type 2 system

compared to the rather linear overdamped responses of the Type 1

and Type 0 systems. Longer sampling intervals for the Type 2

control system are due to the fact that the control performance

index severely penalizes terminal errors making it necessary

to reduce the levels of the piecewise constant input error signals

as quickly as possible thereby reducing changes in the system

state due to non-zero input control levels during the final sampling

inte rval.

The reduction in the sampling interval lengths for the Type 1 and

Type 0 systems are attributable to the fact that each of these systems

reSpond slowly to the step input, thus large feedback control errors

have to be used effectively to reduce terminal errors. Effective use

of the feedback control errors to improve system response is

accomplished by sampling earlier in the control interval and thus
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Sub-Optimal Aperiodic Sampling Re3ponse
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Figure 4. 26. Type 2, l, and 0 Feedback Control System Response to

a Unity Step Input .using Periodic and Sub-Optimal

Aperiodic Sampling.
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taking advantage Of the large initial errors between the System state

and the step input signal. A Similar explanation is used to explain

the differences in the sampling interval lengths, Shown in Figure

4. 25(b), between the Type 2 and Type 0 and 1 systems for a ramp

input signal. It should be noted that the terminal errors are larger,

as seen in Figure 4. 26, for the Type 1 System than either the Type 2

or Type 0 systems. These large terminal errors for the Type 1

system are due to the relatively Slow response of the Type 1 system

and the short control interval which does not allow significant

changes to occur to reduce terminal errors. (See Figure 4. 24(b))

The third input considered, the noise input, yields a sampling

interval sequences which are Short and periodically spaced at the

beginning of the control interval for the Type 2 system compared to

the periodically spaced sampling intervals Of the Type 0 and Type 1

systems. (See Figure 4. 25(c)) The noise which occurs early in the

control interval has a more severe effect on the terminal errors as

the number Of integrators in the plant increase. (See Figure 4. 26(b)

for the plant transfer functions.) Thus, the sampling intervals must

be chosen smaller as the type number increases to offset the effect

Of the increase in noise during the initial part of the control interval.

Table 4. 7 summarizes optimal control performance data found

in Chapter IV for the Type 2, 1, and 0 unity feedback control systems

with respect to step, ramp, and noise inputs for various methods of

control. The Optimal performance results present in Table 4. 7 will
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be compared by method Of sampling versus sytem Type for each

input considered. Figure 4. 27 is presented to Show trends and

generalities not readily seen in tabular data presentations.

Ramp Input (Figure 4. 27(a))
 

In the unity feedback control systems being considered, a

decrease in System type increases the steady state terminal errors.

[50] For a ramp input the Type 2 System has no inherent steady state

terminal errors, while the Type 1 system has constant steady state

terminal errors, and the Type 0 System has terminal errors which

increase with time. AS can be seen in Figure 4. 27(a), the continuous

time control (C) and Optimal periodic sampling (OPS) control per-

formance costs increase with a decrease in system type. These

increases in performance costs are attributed to the increased

terminal errors which result from changes in System type. Since

the control performance index heavily penalizes terminal errors,

increases in performance costs with decreases in system type were

expected. It should be noted that through use of Optimal aperiodic

sampling control performance costs were reduced compared to the

other methods Of control being investigated. This reduction in

performance cost indicates that controlled feedback error delays, aS

discussed in previous sections, are effective in reducing the inherent

terminal errors present in the Type 0 and Type 1 control systems

having a ramp input.
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c OA OPS (C/OA)* (PS/OA)*

=1: 5 £13: *

>1: >1: * a: J

Type 2 J4 J1 N1 J3 N3 3.4 Ni J1 N2

INPUT 1 l 1

STEP 5. 2 2. 3 8 5. 3 5 2. 3 8 104 2

RAMP .921 .39 8 1.0 4 2.4 8 103 2

NOISE 11.0 8.7 2 8.9 2 1.3 2 1.03 2

* *

c OA OPS (c/OA) (PS/0A)

* * * *

*

Type 1 J4 J’i‘ N1 J: N: l4 Ni _J_3 N3

INPUT J1 1 J1 '1'

STEP 5.7 3.8 8 22.6 8 1.5 8 8.5 2

RAMP 1. 0 .29 8 3. 9 8 3.4 8 24. o 4

NOISE .45 .37 2 .38 2 u1.2 2 1.02 3

* *

c OA OPS (C/OA) (PS/0A)

>1: * Q * *

Type 0 J J* N* J N* :14 N4 23 N
4 1 1 3 3 J —- J 3

INPUT 1 1 1 1

STEP 4.3 1. 6 8 12.2 8 2. 7 8 11.5 2

RAMP 2. 7 . 22 8 5. 4 8 12. 2 8 33. o 3

NOISE .23 .19 2 .19 2 1.2 2 1.02 2          
 

Table 4. 7. Numerical Data for Figure 4. 25.
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Stgglnput (Figure 4. 27(b))
 

For a step input the Type 1 and Type 2 control system have no

steady state errors compared to an inherent constant steady state

error for the Type 0 System. Thus based on the performance cost

results for the ramp input it was expected that performance costs

would increase with a decrease in system type for the step input.

Instead performance costs for the Type 1 control system exceeded

those for the Type 2 and Type 0 Systems for each method of sampling

being considered. Therefore since the steady state errors for the

Type 1 system are zero, the plant reSponse time must be considered

in explaining the large performance costs for the Type 1 system.

Clearly from Figure 4. 24 the Type 1 system reSponded slower over

the chosen control interval to a step input than did the Type 2 and

Type 0 systems. As can be seen in Figures 4. 26 the response of the

Type 1 system yields large terminal errors. Thus with the terminal

errors being penalized heavily by the control performance index, costs

increased as seen in Figure 4. 27(b). The Type 0 system out-performed

the Type 1 system even with its inherent steady state errors for a step

input. The control performance cost reductions for the Type 0 system

are due to the fact that the larger feedback control errors coupled

with a faster system response over the control interval resulted in a

reduction in terminal errors. For Optimal aperiodic sampling the

faster system reSponse time for the Type 0 system along with optimal

adjustment of the feedback error delays improved control performance

for each input considered.
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Noise Input (Figure 4. 27(c))
 

The performance costs with respect to system disturbance

noise decreases as system type decreases for each method Of

sampling investigated. This implies that control performance costs

with reSpect to noise are dependent on System structure, and thus

system type. (See the control performance index in equation 4. 21))

Apparently the integration of noise drastically effects the value of

the control performance index since performance costs decrease

rapidly as the system type decreases. This is consistent with the

analysis of sampling times for the different system types since it was

found that sampling must be performed faster initially in the control

interval for systems with integrators in order to control for the

integration effect of the noise that occurs early in the control interval.

In summary, this section considered the Open loop response

times of the Type 2, l, and 0 system plants subject to a unit.. step

input signal. The lengths of the sampling intervals for N=5 were

justified using the Open loop plant reSponse times for a step input in

an effort to better explain system behaviour using the various methods

of sampling under consideration. A summary of the optimal performance

costs for each system type, as shown in Figure 4. 27, were used in

comparing optimal performance costs for various type systems for a

given input.

In conclusion this chapter revealed that Optimal aperiodic sam-

pling, as Specified in Chapter III, yielded improved control performance
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with reSpect to Optimal periodic sampling and in several cases of con-

tinuous time control. If control performance costs alone are to be

considered, eSpecially for the slow responding Type 0 control

systems with inherent terminal errors, Optimal aperiodic sampling

appears very promising. As in the case Of Signal representation,

performance costs alone cannot be considered in the choice of the

sampling method to employ. Therefore, the greater the knowledge

the system designer has about the control problem at hand and the

constraints he is required to work within the better the control

system design will become.



V. CONCLUSIONS

This chapter summarizes the main results of this thesis and sug—

gests areas Of future research.

5. 1. Summary

This thesis has developed a theory of optimal aperiodic sampling

for signal representation and system control. The theory encompasses

 previous work in adaptive sampling, optimal periodic sampling, and

aperiodic sampling in addition to presenting a cost for implementation

model.

The theory of optimal aperiodic sampling considers the signal rep-

resentation and system control problems to be different and are thus

considered separately. Past studies have considered the signal repre-

sentation and system control problems together under the assumption

that good signal representation through sampling leads to good system

control. This theory also develops a cost for implementation model

which indicates the relative cost required to implement a particular

signal representation or system control problem via the selected meth-

od Of sampling. Previous studies of sampling methods have neglected

or misrepresented implementation costs and thus have reduced the

practical significance of the method of sampling being considered.

The theory which has been deveIOped Optimizes both the sampling

interval sequence and the number Of sampling intervals. Three methods

Of sampling were considered in the development Of the Optimal aperiodic

sampling theory. Each sampling method studied optimized either the

l 17
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sampling interval lengths or the number of sampling intervals used but

never considered joint optimization. Adaptive sampling was studied

since it was the first non-periodic method Of sampling which yielded

improved performance Over periodic sampling. Adaptive sampling

techniques optimized the length of each sampling interval on an indivi-

dual basis through use Of a sampling rule Obtained by using various ap—

proximations to the original integral performance index. Optimal peri-

odic sampling was next studied since it optimized the number of periodi-

cally spaced sampling intervals. Finally work in aperiodic sampling

which optimized the sampling interval sequence rather than Optimizing

the lengths of the individual sampling intervals (as was done in adaptive

sampling) was investigated. Concepts from each of these methods of

sampling were used in the development Of the theory of optimal ape rio-

dic sampling for signal representation and system control.

Therefore the theory of optimal aperiodic sampling provides a

general framework for investigating various methods of sampling ap-

plied to either the signal representation or system control problem.

Through use of the proper constraints on the number of sampling inter-

vals or the length of each sampling interval, each method Of sampling,

viz. adaptive, optimal periodic, and aperiodic, can be investigated

using the theory which has been developed for Optimal aperiodic sam-

pling. In addition a cost for implementation model is presented which

indicates the relative implementation costs associated with the method

of sampling being investigated.

For the signal representation problem the approach taken was to

sample a given continuous time signal record non-periodically adjusting

the length of each sampling interval to minimize a derived signal repre-

sentation performance index. The derived signal representation perfor-
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mance index was made dependent on the signal model, initial conditions,

input driving signals, and model disturbances. Adjustment Of the sam-

pling intervals we re made via the ZXPOWL non-linear programming

optimization subroutine found on the CDC 6500 computer System. For

each adjustment made in the length Of a sampling interval(s), a re-eval-

uation of the derived performance index was made until the minimization

of the derived performance index was accomplished. The resulting

sampling interval sequence yielded minimum Sampling errors with re-

spect to the performance index using the number of sampling intervals

allowed and thus was used with the corresponding signal magnitudes to

yield a piecewise constant representation of the original continuous

time signal. The piecewise constant signal representation required

approximately 10% of the storage needed for the continuous time signal

record with sampling errors being reduced as much as 95% with respect

to an equal number Of periodically spaced sampling intervals.

A simplified remote display problem was proposed. The display

problem investigation was used as a basis for the introduction of the

processing and communications costs as they apply to implementation

of various methods of sampling. These costs for implementation were

added to the performance costs obtained through minimization of the

derived performance index to yield a total performance level reflecting

improvements in signal representation through aperiodic sampling and

at the same time indicating the relative costs for these improvements

in the quality of the signal representation.

Two main conclusions can be made as a result of the sampling for

signal representation investigations conducted in Chapter IV, Section

4. 2. First, minimization of the derived signal representation perfor-

mance index, as found in (2. 24), through adjustment of the length of
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each sampling interval can substantially reduce the sampling errors

present in the piecewise constant representation of the continuous time

signal record with respect to periodic or adaptive sampling. Second, ob-

taining of the Optimal sampling interval lengths, and hence the best piece-

wise constant representation using the specified number Of sampling in-

tervals, results in increased computational expense and complexity com- 51-»

pared to adaptive or periodic sampling. Thus in each situation where

continuous time signal records are to be sampled, the system designer

_
“

'.
'
1
"

should consider each sampling alternative at his disposal.

 ’
2
’

.
‘
a

The control implementation problem was based on the premise that

periodic sampling need not be used to implement feedback control systems

designed through use of continuous time techniques. As a result, sampling

for signal representation was extended to the sampling of the continuous

time feedback error signal generated by the system control law. Again as

in the case of signal representation, a performance index was proposed (see

(3. 16)). The control implementation performance index resembled conven-

tional optimal control performance indices in that it penalized for control

energy expenditures, tracking deviations, and final state errors. However,

the control implementation index also included a cost of implementation

term. The performance index was then derived in terms of the sampling

interval sequence, '_I‘_ and the number Of sampling intervals, N. The derived

performance index was minimized through use of the ZXPOWL non-linear

programming optimization subroutine found on the CDC 6500 computer

system. Each attempt at minimization required evaluation Of the derived
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control. implementation performance index through simulation of the

control system using a specified sampling interval sequence. Thus given

the required system information as indicated in Chapter IV, Section

4. 3, control of various feedback Systems were investigated with re-

spect to sampling of the feedback control error signal.

The results of Chapter IV, Section 4. 3, indicate that sub-optimal

aperiodic sampling of the continuous time feedback control error signal

can improve control performance, based on the derived control imple-

mentation performance index, compared to periodic sampling and some

cases of continuous time control. Control performance improvements

were more apparent as the bandwidth of the closed loop unity feedback

System decreased and the system type numbers were reduced. Com-

putational cost requirements necessary to Obtain improved control

performance through use of sub-optimal aperiodic sampling increased

with the number of sampling intervals being optimized such that sam-

pling interval Optimizations for a large number of intervals become

computationally prOhibitive. Using as few sampling intervals as pos-

sible yielded totally unacceptable periodic sampling performance while

sub-Optimal aperiodic sampling was able to maintain reasonable system

stability through adjustment of sampling delays as discussed in detail in

Chapter IV, Section 4. 3.

5. 2. Future Research
 

In both the signal representation and control implementation pro-

blems the signal which is to be sampled needs to be known as in the

case of signal representation or generated through control system sim-

ulation for the control implementation problem. For on-line applica-

tions where the continuous time signal record or feedback control error
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signal are not known a priori further research into on-line signal pre-

diction, estimation, and system modelling is necessary.

As indicated throughout this thesis optimization of the lengths of

each sampling interval is necessary to maximize signal representation

or system control performance through use of aperiodic sampling. As

was shown in Chapter IV, aperiodic sampling improves performance F

but the computational expenditures necessary for optimization made I

actual implementation unlikely. Therefore investigation into more

computationally efficient Optimization routines, or possible adaptive/

aperiodic hybrid sampling could be further studied.  
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APPENDIX A

THE SAMPLE AND HOLD OPERATION

The operation of a sample and hold mechanism involves two phases.

The first phase is the measurement of the continuous time signal magni-

tude at the desired sampling instant. The figure below shows a continu-

ous signal e(t), with values indicated at various times, ti.

 

’1“

r
‘

 

e(t) - e*(t) ’1

 

           L
t. 1. t, t, t. ' if t. 1:. t, t, t. t;

(a) (b)

Figure A—l. Signal Sampling using Impulses.

  

The sequence of signal values at the sampling times as shown in

Figure A-l (a) may be represented by a series of impulses as shown

in Figure A-l (b) with the strengths of the impulses being equal to the

magnitude Of e(t) at the corresponding sampling time. Thus the series

of impulses as shown in Figure A-l discretize the original signal e(t).

N-l

e(t) z e“‘(t) = Z e(ti) 6 (t-ti) Os ts tfina1 , N < oo

i=0

The term e*(t) is called the sampled signal equaling the continuous time
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Signal at instants t :ti’ Whether e*(t) represents values of the continu-

ous signal e(t) at each sampling instant, or if e*(t) is actually a series

of impulses at ti - ti length intervals, the impulse representation
+ 1

may be thought of as a switch which closes instantaneously at the

beginning of each interval. If an infinite number of samples were taken

the continuous time signal could be represented exactly at any given

point by the magnitude of the appropriate impulse function. In all prac-

tical applications this is clearly impossible and thus a finite number of

samples are used. The magnitude of each impulse can then be quantized,

stored, and later used for various calculations as required.

After each sample (impulse) is obtained the second, or holding

phase Of the sample and hold operation occurs. The ”hold" operation

maintains a constant signal level equal to e(ti) until t =ti + 1 at which

time sampling again occurs. Figure A-Z (b) indicates the piecewise

constant signal used to approximate the continuous time signal e(t) found

in Figure A-l (a). The holding operation as depicted in Figure A-2(b) is

 

 

        
 
 

* ’l '11-“‘ g: I’ l ‘\

e (t) I’q \‘~-’”’p"11 ehlll I \ ~-”.”‘-1

,
I

I, I
I

I

t. t. t. t; 1. t; t. t. t. I. t: if

(a) (b)

Figure A-Z. The Impulse Holding Operation.

more formally called a zero-order-hold as Opposed to a nth order hold

which approximates the signal using a polynomial curve fit between the

data points where the degree of the polynomial is proportional to n.
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Thus the terms "sampling" or "sample and hold" will indicate the

representation of signal, as in Figure A-l(a), by piecewise constant

levels as indicated in Figure A-2(b).

 



APPENDIX B

PERIODIC, ADAPTIVE, AND APERIODIC SAMPLING

The ”sampling" of a continuous time signal, as described in Appen-

dix A, using equally spaced sampling times is known as periodic sam-

w
.
m
m

:
I
.
”

a

pling as shown in Figure B-l.

  

{
7

e(t) eh“)

 

 

 

 

 

          
 

1. t. t. t, +, t, t, 1, +. 1.

Figure B-l. Periodic Sampling

The sampling interval is defined for Figure B-l as

T-t -t i=0,1,2,3,4,5,6,7,8
i ‘ 1+1 i

where for periodic sampling

T0=T1=T2=T3=T4=T5=T62T 2T8.

Periodic sampling as shown in Figure B-l is entirely independent of Sig—

nal changes within a sampling interval. The piecewise constant signal

eh(t) is determined only by the magnitude Of the original continuous time

signal at the sampling instants, ti.

The ”sampling" of a signal on a non-periodic basis can be a result

of using adaptive or aperiodic sampling rules. Adaptive sampling is a

method of sampling where the length of the sampling interval changes as
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a result of the information received about the signal (e. g. , signal mag-

nitude, signal derivative) at the end of the previous sampling interval.

eh“)

/F‘\

e(t) L—

 

 

 

 

          
 

t. 1. 1. e. '4 Mt. h *9

Figure B-Z. Adaptive Sampling

Consider a typical adaptive sampling rule,

 

Ti:l.0/]é(ti)] i=0, 1, 2, 3,4,5, 6, 7, 8.

As can be seen in Figure B-Z the lengths Of the sampling intervals will

vary according to the inverse of the absolute value of the continuous

time derivative at the sampling time, ti . For the example in Figure B-Z

no minimum or maximum sampling interval length constraints were im-

posed, thus with a signal derivative approaching zero the sampling in-

terval becomes very large as seen in Figure B-Z. During this interval

the signal variation (i. e. , during interval ”a”) was entirely neglected.

Imposing sampling interval constraints with Tmax being very small

would reduce sampling errors of the kind found during interval ”a”, but

could drastically increase the number of samples required during the

time interval of interest.

Aperiodic sampling, in general, also yields non-periodic sampling

intervals as does adaptive sampling. In contrast to adaptive sampling

where each sampling interval is determined on an individual basis,

aperiodic sampling considers a specified number of variable length

sampling intervals having a combined length equal tO tfinal-tinitial'
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Therefore given an initial sampling interval sequence, aperiodic

sampling varies the length of each sampling interval to minimize a

predetermined sampling error performance index while maintaining

the sum of the sampling interval lengths equal to tfinal - tinitial'

Adjusting each sampling interval based on minimization of sampling

errors rather than signal derivatives will hopefully decrease the

possibility Of large sampling errors from going undetected as seen

in Figure B-Z. Figure B—3 shows a possible sampling interval sequence

which would detect the signal variation during the interval "a". This

sampling interval sequence could be Obtained through use of aperiodic

sampling assuming that the sampling interval sequence shown in Figure

B-3 yielded lower sampling errors than the sampling intervals in Figure

 

 

 

 

          

B-Z.

eh”) “-1

e(t)

*0 in '5; t, t. ‘t‘ t‘ *1 +3 8,

Figure B-3. Aperiodic Sampling

 



APPENDIX C

NUMERICAL DATA FOR FIGURES FOUND IN CHAPTER IV

The data presented in this Appendix accurately presents the

various performance cost values as graphically presented in Chapter

IV. The data found in this Appendix is arranged by Figure number.

Figure 4. 3(a)

N Periodic Adaptive Aperiodic

2 1.158 1.330 .074

3 . 525 . 696 . 042

4 . 264 . 294 . 041

5 .136 .158 . 013

6 .082 .082 .008

7 .045 .056 .004

8 . 036 . 036 . 003

Figure 4. 3(b)

N Periodic Adaptive Aperiodic

2 1.623 1.797 .828

3 1.066 1.313 1.040

4 .881 1.061 1.392

5 .828 1.075 1. 521

6 .850 1.150 1.739

7 .887 1.273 2.100

8 .953 1.403 2.280

134
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Figure 4. 4(a)

N Periodic Adaptive Aperiodic

2 2.315 1.610 .240

3 1. 590 .326 .239

4 1.055 .134 .092

5 .681 .073 .053

6 .485 .088 .040

7 .323 .236 .060

8 .276 .182 .056

Figure 4. 4(b)

N Periodic Adaptive Aperiodic

2 2. 780 2.079 .993

3 2.131 .942 1.613

4 1.671 .902 1.037

5 1.372 1.016 1.201

6 1.251 1.156 1.360

7 1.164 1.489 1.943

8 1.193 1.590 2.735

Figure 4. 5(a)

N Periodic Adaptive Ape riodic

2 4. 631 4. 822 4. 246

3 4.818 1.909 1.272

4 4.220 1.258 . 764

5 3. 403 . 788 . 580

6 2. 852 . 638 . 522

7 2. 304 . 814 . 538

8 2.124 . 767 . 522



136

Figure 4.5(b)

N Periodic Adaptive Aperiodic

2 5.097 5.289 5.131

3 5.359 2. 526 2.349

4 4.837 2.025 2.178

5 4.095 1.705 2.590

6 3.619 1.702 2.542

7 3.146 2.030 3.057

8 3.040 2.134 2.810

Figure 4. 6

(a) Step Input, Sub-Optimal Aperiodic,

a=0 [ .0346, .0530, .0617, .3161, .5345 ]

a=-l [ .0830, .1037, .1888, .0776, .5469 ]

a=l [ .0400, .0428, .0251, .8283, .0635 ]

(b) Step Input, Adaptive,

a:0 [ .0500, .0500, .0600, .1200, .7200]

az—l [ .2100, .2100, .2100, .2100, .1600]

a=l [ .0400, .0500, .0700, .2500, .5900]

Figure 4. 7(a)

N Periodic Adaptive Ape riodic

2 . 563 . 463 . 061

3 . 376 . 081 . 061

4 . 243 . 029 . 024

5 .155 . 060 . 022

6 .110 . 013 . 010

7 . 073 . 022 . 012

8 . 062 . 017 . 008
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Figure 4. 7(b)

N Pe riodic Adaptive Ape riodic

2 1.029 .930 .801

3 .917 .698 1.050

4 .859 .796 .989

5 .846 .977 1. 589

6 .876 1.111 1.347

7 .915 1.323 2.161

8 .979 1.384 1.700

Figure 4. 8(a)

N Pe riodic Adaptive Ape riodic

2 . 563 .430 .058

3 . 388 .089 .058

4 .255 .033 .022

5 .167 . 028 . 015

6 .119 . 069 . 033

7 . 079 . 029 . 012

8 . 068 . 011 . 007

Figure 4. 8(b)

N Periodic Adaptive Aperiodic

2 1.028 .897 . 737

3 .929 . 706 1.063

4 .876 .801 .972

5 .859 .973 l. 116

6 .886 1.137 1.458

7 . 921 1.283 2.107

8 .985 1.380 1.810



Figure 4. 9(a)
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N Pe riodic

.426

.207

.118

.077

.053

.042

.030o
o
x
l
o
m
u
b
w
w

Figure 4.9(b)

N Periodic

2 . 892

3 . 748‘

4 . 735

5 . 768

6 . 820

7 . 885

8 . 948

Figure 4. 10

(a) Ramp Input, a:0,

Adaptive

Sub -Opt. Ape r .

[.0500,

[.0648,

(b) Parabola Input, a:0,

Adaptive

Sub-Opt. Aper.

(c) Noise Input, arO,

Periodic

Sub-Opt. Aper.

[.0500,

[.0296,

[.2000,

[.3048,

.0500,

. 0796,

. 0600,

. 0383,

. 2000,

. 2000,

Ape riodic

.367

.172

.099

.061

.046

.035

.028

Ape riodic

.061

.225

.335

.220

.442

.566

. 819D
—
‘
h
-
l
D
-
‘
H
t
—
‘
r
-
l
l
-
d

.0600,

.2539,

. 0900,

.0661,

.2000,

.1828,

.1200,

.1029,

. 3300,

. 3702,

. 2000,

.1696,

.7200 ]

.4986]

.4700 ]

.4959]

.2000]

.1428]



Figure 4.12(a)

N

C
D
K
I
O
‘
U
W
u
-
P
U
J
N

Pe riodic

1.3x107

4.5x107

1.6x107

2.0x105

1082.0

55.4

8.4

Figure 4. 12(b)

N

C
D
K
J
O
‘
U
‘
I
I
-
F
U
J
N

Periodic

1.3x107

4.5x107

1.6x107

2.0x105

1082.20

55.50

8.51

Figure 4. 13(a)

N

o
o
x
l
c
m
e
P
-
w
m

Periodic

45779.

223. 0

. 59

. 30

. 01

. 70

. 80«
1
4
4
m
m

139

Ape riodic

140.4

13

11

10

7.

7.

. 54

.93

.72

10

89

4.95

Ape riodic

143

16.

15.

14.

12

13

8.

Ape riodic

2

N
N
N
N
t
b
x
l
t
-
d

.43

51

08

97

.72

.53

14

.87

.29

.19

.50

.74

.51

.34

Sig. Rep.

1352. 8

301.1

16.32

4.11

5.31

10.36

6.47

 I
‘
l
l
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Figure 4.13(b)

N Periodic Aperiodic Sig. Rep.

2 49779.4 23. 57 1353.2

3 223.2 9.70 301.3

4 5.68 7.44 16.41

5 5. 39 6. 68 4. 21

6 7.11 5.40 5.41

7 7. 80 7. 89 10.46

8 7.97 7.38 6.64

Figure 4.14(a)

N Periodic Aperiodic

2 6. 78 6. 59

3 7. 20 4. 68

4 8. 55 4. 55

5 9. 35 4. 54

6 9. 84 4. 50

7 10.17 4. 52

8 10.40 5. 74

Figure 4. 14(b)

N Periodic Aperiodic

2 6. 86 7. 90

3 7. 28 6. 52

4 8. 64 7.14

5 9.44 8. 02

6 9.94 9.28

7 10.27 12. 53

8 10. 50 15. 32



Figure 4.15
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System Response Time, Step Input, Tyep 2 Systems:

FAST

MEDIUM

SLOW

[ .0852, .0080, .5010, .0184, .3881]

[ .1992, .1139, .2962, .1469, .2437 ]

[ .4192, .0845, .0516, .0704, .3742 ]

Figure 4.16(a)

N

C
D
Q
O
‘
U
'
l
I
-
b
U
J
N

Periodic Aperiodic

8938.5 3.91

24.00 1. 50

.990 . 764

1.58 .519

1.83 .510

1.85 .397

1.79 .395

Figure 4.16(b)

N

0
0
4
0
0
1
p
r

Periodic Aperiodic

8938. 7 5. 72

24. 09 3. 95

1. 08 6. 53

l. 68 4. 31

l. 93 6. 42

l. 94 6. 58

l. 89 7. 80

Figure 4. 17(a)

N

m
u
m
s
-
1
4
3
0
4
3
1

Periodic Ape riodic

8. 92 8. 70

9.15 8. 71

9. 3O 8. 71

9. 39 8. 73

9.47 8. 73

9. 52 8. 73

9. 56 8. 76



Figure 4.17(b)

N

o
o
x
i
o
m
e
-
w
a

Periodic

\
O
\
O
\
D
\
O
\
0
\
O
\
O

Figure 4.18(a)

N

0
0
4
0
1
1
1
4
s
z

Periodic

113.

112.

77.

51.

36.

27.

22.

Figure 4. 18(b)

N

C
D
K
J
O
‘
U
T
I
-
F
U
J
N

Pe riodic

113.

112.

77.

51.

36.

28.

22.

.20

.43

.58

.68

.75

.81

.87

7O

66

24

50

65

99

62

79

76

34

60

75

08

72
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Ape riodic

14. 69

17.89

19.12

24.46

26. 64

28.21

29.36

Ape riodic

13. 45

7.69

6.83

7.39

5.13

4.10

3. 79

Ape riodic

14. 92

9. 50

9.10

10. 71

9. O4

8. 45

6.48
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Figure 4. 19(a) Continuous = 1. 051

N Periodic Ape riodic

2 5. 88 1.18

3 12.10 . 613

4 10. 70 .441

5 8. 00 . 656

6 6.04 .412

7 4. 77 . 288

8 3. 94 . 292

Figure 4. 19(b)

N Periodic Aperiodic

2 5.97 2.37

3 12.20 1. 55

4 10.79 3.02

5 8.09 3.99

6 6.14 3.89

7 4.87 5.31

8 4.04 5. 68

Figure 4. 20(a)

N Periodic Aperiodic

2 . 3760 . 3696

3 . 3837 . 3752

4 . 3888 . 3853

5 . 3922 . 3906

6 . 3947 . 3938

7 . 3965 . 3961

8 . 3978 . 3974

 



Figure 4. 20(b)

N Pe riodic

m
~
1
0
\
m
h
¥
>
W
N

Figure 4. 21(a)

N Pe riodic

.8031

.8373

.8271

.8429

.8467

.8548

.8628

144

Ape riodic

7.268

10.978

6.186

7. 906

9. 544

11.329

13. 565

Continuous = 4. 261

m
K
J
O
‘
U
'
I
b
F
U
O
N 52.08

47.87

33.47

23.65

17.91

14.46

12.24

Figure 4. 2 1 (b)

N

m
K
J
O
U
'
k
a
U
O
N

Periodic

52.17

47.96

33.57

23.75

18.02

14.56

12.35

Ape riodic

4. 57

3.86

2.13

2. 57

2.08

1. 75

1. 64

Ape riodic

6. 05

5. 80

4. 57

5. 84

6. 30

3. 89

7.13



Figure 4. 22(a)

N

o
o
x
i
m
m
u
p
w
w

Pe riodic

10. 37

12.69

10.63

8.51

7.06

6.10

5.45

Figure 4. 22(b)

N

C
D
K
J
O
\
U
1
I
#
W
N

Periodic

10.46

12. 78

10. 73

8.60

7.16

6.21

5. 56

Figure 4. 23(a)

N

O
O
Q
O
‘
U
I
$
U
O
N

Pe rio dic

.1944

.1971

.1991

.2003

.2012

.2019

.2023

145

Continuous = 2. 755

Ape riodic

. 379

. 384

.300

.280

.253

.232

.225

Ape riodic

2.118

2.271

2.864

2.711

4.358

5.205

5.767

Ape riodic

.1903

.1951

.1986

.2001

.2010

.2018

.2023

 [
‘
1
—
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Figure 4. 23(b)

N Periodic Aperiodic

2 . 5801 7. 093

3 . 5914 4.126

4 . 5981 5. 776

5 . 6006 6. 901

6 . 6164 8. 079

7 . 6330 10. 372

8 . 6355 11. 927

Figure 4. 25

MEDIUM Re3ponse Time System, Step Input.

Type 2 [.1992, .1139, .2962, .1469, .2437]

Type1 [.0841, .0345, .0863, .2293, .5658]

Type 0 [.0896, .0338, .0818, .1951, .5995]

MEDIUM Reaponse Time System, Ramp Input.

Type 2 [.2339, .1046, .2763, .1409, .2443]

Type1 [.0884, .0439, .0950, .2430, .5268]

Type 0 [.0806, .0327, .0828, .1573, .6466]

MEDIUM Response Time System, Noise Input.

Type 2 [. 0542, . 0709, . 0819, . 0891, . 7038]

Type1 [.1823, .1879, .1975, .2025, .2297]

Type 0 [.1924, .1947, .1995, .2056, .2076]

I
n
n
.
.
.
“
m
i
x
;
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