...... .... «... . w..... . .... ......_............ .............. ..........._:... 3.0.1.7.. ... 3......”U::?.. ........ ...........e..... z... .2.....lu... ... ...... . .. ................ ..0. .. .1... . ... ....1... -..... ...............L.x.1.7.x... ....0...~.; ..........:...a..... ......... ... 0.1m Macaw, U- 93‘. mu ammom y TE mm A com: nos/.801“ 107 If VKBRA . .... .. ......a ....:.. . . . . . .. . , . 1...... 1...}... -....s. , . . . . . . . .. .. ... ., I . ... I ”......L......a....y.9.... :.....J..........r..?....l.; . 33...... .. . l'flt‘s'cfi This is to certify that the thesis entitled A Complete Fourth-Order Vibration-Rotation Hamiltonian of HZO-Type Molecules presented by Liek Wilardjo has been accepted towards fulfillment of the requirements for Ph.D. degree in PhYSiCS \l '2 - Cm 727 . ”Kira; Major professor Date October '6; 1970 0-7 639 ABSTRACT A COMPLETE FOURTH—ORDER VIBRATION-ROTATION HAMILTONIAN OF HzO-TYPE MOLECULES By Liek Wilardjo Starting with the Darling—Dennison Hamiltonian, a complete fourth-order vibration—rotation Hamiltonian for HZO-type molecules has been obtained. It is in the form of a power series in the com— ponents of rotational angular momentum in the molecule-fixed frame. The coefficients of this power series include the equilibrium ro— tational constants, second—order and fourth—order centrifugal dis— tortion constants and vibrational corrections to the rotational con- stants and to the second—order centrifugal distortion constants. Expressions for all the above coefficients in terms of the fundamental molecular parameters have been obtained and their relation to exper- imentally determinable quantities has been established. These funda- mental parameters include the equilirium moments of inertia, the normal frequencies, and the potential constants of vibration of the molecule. The resulting Hamiltonian is appropriate for the calculation of ground-state energies of vibrating and rotating H20—type molecules to the fourth order of approximation. Such calculations may also be possible for those excited vibration states which are not subject to accidental vibrational and accidental vibration-rotation resonances. A COMPLETE FOURTH-ORDER VIBRATION-ROTATION HAMILTONIAN OF HZO-TYPE MOLECULES By Liek Wilardjo A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Physics 1970 ACKNOWLEDGMENTS The author wishes to express his sincere gratitude to Professor Paul M-.Parker for suggesting the problem, and for his guidance and counsel throughout this work. He also wishes to thank the U. S. Department of State for the Fulbright travel grant that enabled him to come to the United States from Indonesia. ii t—l N TABLE OF CONTENTS . INTRODUCTION . GENERAL VIBRATION—ROTATION HAMILTONIAN 3. THE VIBRATION—ROTATION HAMILTONIAN 0F HQO—TYPE MOLECULES b 5- TWICE- APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX . ONCE-TRANSFORMED HAMILTONIAN TRANSFORMED HAMILTONIAN I. Coefficients aéfi, Aégngv and Coriolis Coupling Coefficients II. The Expansion of}%u, yap III. The Untransformed Hamiltonian IV. Coefficients (2;de;a;-) in hé V. Coefficients (2;d@;ab;-) in hi VI. Coefficients (2;d@;—;ab) in hi VII. Coefficients (2;d;abc;—) in hé and All Possible Permutations VIII. Coefficients (2;d;c;ab) in bi IX. Coefficients (2;-;cd;ab) in hi X. Coefficients (2;-;-;abcd) in hi and All Possible Permutations XI. Coefficients (3;xp36}—;a) in hé XII. Coefficients (3;dfij;b;a) in hé XIII. Coefficients (3;dfi;bc;a) in hé XIV. Coefficients (3;dP;—;abc) in hi XV. Coefficients (4;afi§?§ifi;-;-) 12 26 32 50 55 57 60 61 62 64 65 67 69 7O 78 89 112 APPENDIX. XVI. Coefficients (4 ”(mfg— ;ab) APPENDIX XVII. Coefficients (4;«p7{{;ab;-) APPENDIX XVIII. Coefficients (4!dfi3’,§£{J!—!-) APPENDIX XIX. Coefficients (4!0((53/,$!—!ab) in h4@ APPENDIX XX. Coefficients (4!o(/9,’(5!-.!ab) in h4@ APPENDIX XXI. Coefficients (Moupyfhtab) in h4@ APPENDIX XXII. Coefficients (4!o(f53{$!abl—‘) in h4@ APPENDIX XXIII. Coefficients (4!X(3,3/5!ab:—) in h4@ APPENDIX XXIV. Coefficients (4!0(,(;’f{!ab!-) in h4@ BIBLIOGRAPHY iv 114 117 123 125 126 127 128 129 130 131 Table VI VIII IX XI XIII XIV XV XVI LIST OF TABLES . . d _ The coefficients lin of the transformation to normal coordinates o( Coriolis coupling coefficients {Pm First-order coefficients afé, agj dd 4 «a a Second-order coefficients Aij’ Ai?» Aij , Aijf3 Character table of point group sz.and symmetry species of the operators appearing in the Hamiltonian Coefficients ¢fl%*—*a) and ¢x*b*a) in the first- order Hamiltonian H1 Coefficients €¥fi*-*ab) in the second—order Hamiltonian H2 Coefficients GX*C*ab) in the second-order Hamiltonian H2 Coefficients (—*cd*ab) in the second—order Hamiltonian H2 Coefficients @flA*-*abc) in the third—order Hamiltonian H3 Coefficients Gx*d*abc) in the third-order Hamiltonian H3 Nonvanishing coefficients in the fourth—order Hamiltonian H4 Coefficients [S;¥p;a;—] in the first contact transformation Coefficients [S;d;—;ab] and [S;q;ab;—] in the first contact transformation Coefficients [S;-;abc;-] in the first contact transformation Coefficients [S;-;c;ab] in the first contact transformation Page l3 14 15 l6 16 21 21 22 22 22,23 24 24,25 27 27 28 28 Table XVIII XIX XXI Coefficients (2;JPXS;—;—) in the second—order Hamiltonian hz' Coefficients [d;dfiX;—;a] in.the second contact transformation Coefficients [6;dfigb;a] in the second contact transformation Coefficients B7;d;c;ab] in the second contact transformation Coefficients [6;u;—;abc] in the second contact transformation The constants Aabc and Bab,c The coefficients $019an The coefficients/ -I;Z —I)'(y I” -1); l "Ixz (2.5) _I_;IZ 1&2 In (2.3) to (2.5), Iéd and Iép are the instantaneous moments and products of inertia, respectively. In terms of Q36 they can be written as aka = «+2; aSGQSGI+s§;‘x AsatrngQtt. (2 6) s J'fl =42: + \W aSGQsovi‘ ér Aso‘t'cQsoQtt (2. 7) where a4: and A' .(d= @, 0’#{3) are constants for a given mol— SO’S'O‘ ecule whose explicit evaluations are given in Appendix I. Since we use the principal axes of inertia, we have 0 = o = Wm Ivy/5 Sdeotd 9 LP {0,d#@ (2.8) i.e., the equilibrium products of inertia I343 , CHE/5 vanish. Using the defining formula of the internal vibrational angular mom- q’ P0( = S; gr CsctrQscPE’c (2-9) entum d where $:¢tt are Coriolis coupling coefficients defined in Appendix I, the Hamiltonian (2.1) can be written as -W:..:.. : .--'- 7' 7 -.—I~———" whe] H = (1/2);fi{[2¥ — pqwdrjpp _ pa] +Ml/4(H,/4,L(M’Cl/2(pfl)£-/4))} + <1/2>S;{p§% +jA1/4(p§6,4£1/2(p§oj&/4))} + v (2.10) In (2.10) an operator in parentheses acts only on quantities in the same parentheses, and not on the wavefunction. The Hamiltonian (2.10) depends not only on/udp, but also on the determinant/L. Since the Schroedinger equation (H —E)\i/= 0 (2.11) is apparently impossible to solve in closed form, the Hamiltonian must be expanded in orders of magnitude to put it in a form suitable for perturbation calculations. Thus we would have to expand both/A‘¥# andjl as power series in Q56, which is quite a tedious calculation to do. Fortunately,however, it is not necessary to expandjd, as it has recently been shown by Watson7 that the Hamiltonian (2.10) can be identically rewritten in the greatly simplified form: H = (1/2)[°Z(B{;,L(PP°(P(, — [Pd/Mo‘fipfg + Papa/3P3] + RX/udppfl’} +5; pg: - (fi2/4);}Am] + V (2'12) If it is assumed that the displacements of the nuclei from their equilibrium positions are small relative to internuclear distances, we may expand/Mg“ and/Aqfi in (2.12) into McLaurin series in dim— ensionless normal coordinates defined as qsg = (“s/hZHMQSs (2.13a) where5is is related to the normal frequencyaJS associated with q56 by H = (1/2)°(:fi{[g( - quflquPp — p6] +Ml/MR‘1‘LNIUMPHMMD} + <1/2)sz;{p>§%r +)A1/4(p§6M1/2(p§51A}/4))} + v (2.10) In (2.10) an operator in parentheses acts only on quantities in the same parentheses, and not on the wavefunction. The Hamiltonian (2.10) depends not only on/udp, but also on the determinantji. Since the Schroedinger equation .(H —E)\[/= 0 (2.11) is apparently impossible to solve in closed form, the Hamiltonian must be expanded in orders of magnitude to put it in a form suitable for perturbation calculations. Thus we would have to expand both/AJ¥# and)A as power series in Q56, which is quite a tedious calculation to do. Fortunately,however, it is not necessary to expand/M, as it has recently been shown by Watson7 that the Hamiltonian (2.10) can be identically rewritten in the greatly simplified form: H = (untggmpt Pp - [Payqppp + papa/5PM + Fix/Jappfé'} +5; pg: - (fi2/4);/qu] + V (2.12) If it is assumed that the displacements of the nuclei from their equilibrium positions are small relative to internuclear distances, we may expand/iLmtand/qu in (2.12) into McLaurin series in dim- ensionless normal coordinates defined as qso’ = (7Ls/h2)l/4Qs6' (2.13a) whereiis is related to the normal frequencya)S associated with qsg by 7LS = (21tcms)2 (2.13b) Carrying through the procedure and collecting terms expected to be of the same order of magnitude, we obtain a Hamiltonian in the form: H=H0+H1+H2+H3+H4 (2.14) where H0, H1, H2, H3 and H4 are the zeroth, first, second, third and fourth order portions of the vibration-rotation Hamiltonian, res— pectively. They are found to be of the form: Ho =;;{(ot/5*—*—)I&Pp + (asl/z/Zfi)ps(27} + (Nagasl/quz H1 =°( Z{@fi*'*SV)Qch

*'*S°'t1)qso'thPdPF> + (<><*t1:*rpsw) (1/2){qrpCIsa~Pt¢}g< + (—*sc't'r*p‘r[rf) (1/2){qpuqr9,pscrpt1} - h2/4)(°‘°‘*"*')} + .- Zucfizkprstqpfiqrquo/qtr i H3 =°‘ZPZ{ (075*-*rPS¢tT)qrpqscqt1Po = an + (1/m)[is,hn£T+l>1V + (1/m)[is,h§‘3‘§1)]R (2.22) 10 and [13,11]V = (1/2)[isV,HV]{sR,HR} [iS,H]R = (1/2){sV,HV}[isR,HR] (2.23) The subscripts V and R denote the vibrational and rotational part, respectively, of the corresponding operators. To be able to calculate vibration—rotation energies to the fourth order, we need to subject H' to a second contact transformation't such that ho', hl', and h2' will be diagonal in the vibrational quantum numbers in the represent— ation in which ho' is diagonal in the vibrational quantum numbers. This contact transformation, too, will necessitate regrouping of terms in true orders of magnitude. Thus H' is once again transformed and once again regrouped to H@ ="EH"E—'= exp(io’)H'exp(—icr) = h0@ + hl@ + h2@ + h3@ @ + h4 (2.24) where now h0@, hl@, and h2@ are diagonal in the vibrational quantum numbers in the representation in which ho' is diagonal.The proper Hermitian transformation function G‘has been found by Goldsmith, Amat and Nielsen.17 For the asymmetric-rotator case, and for given quantum number J, it has been found that through the fourth order of approximation the Hamiltonian in matrix form in a symmetric-top basis can be cast into the Wang forml8919 as shown in Figure 2.1.For the orthorhombic point group symmetry to which HZO-type molecules belong, all matrix elements outside the four diagonal blocks E+, E', 0+,and 0' along 11 the main diagonal vanish.20 Thus when we specialize our Hamiltonian we need not retain terms that do not have matrix elements falling inside the blocks E+, ET, 0+ and O", i.e., we shall take into account only those terms that are of even-power in the rotational angular momentum components Rx. We shall,moreover, not explicitly consider pure vibrational terms as our interest lies-in the detailed rotat- ional structure for given vibrational state. The third and fourth— order terms nondiagonal in any of the vibrational quantum numbers can be discarded as it is possible to show that these do not contribute to the vibration-rotation energy up to the fourth order.21 E+ I2 112 III 12 E' 111 112 112 111 0+ 12 111 II2 I2 0' Figure 2.1 III. THE VIBRATION-ROTATION HAMILTONIAN OF H20 -TYPE MOLECULES Since any triatomic molecule is necessarily planar, we choose our molecular frame so that the x-y plane is also the plane of the molecule and the origin is at the instantaneous center of mass . We also hold this frame fixed with respect to the equilibrium configuration of the molecule. Thus we have: z ' = z ' = z ' = 0 (3.1a) M . 1 l 2 3 4% m(x2'+x3') + Mxl' = 0 , x (3.1b) /:9/// c m \\\<3\> m(y2'+y3') + Myl' = 0 m m 3 I 2 mrosindb(y2'-y3') = Figure 3.1 (1/2) rocosob(2xl'—x2'-X3') (3.1c) Equilibrium Configuration of the HZO-type Molecule where r0,(0 -9u/m) (m//M3>1/2cou>/Is ' (Aab + Aha )1/ Zldlfifl + gab) third order : [dp*abc] =%[ i -%8_ azgagaaia/Igla + (SZJAflifi'aggAgffl IS}/6I°(I@] (3.8) In the expression for Exfi*abc] 2% denotes summation over all distinct permutations of a, b, and c. Goldsmith et a1, 6 and Watson7 have obtained general expressions for the coefficients of expansion of/Aap. Equations (3.8) above have been obtained from the general coefficients of expansion ijdafi‘of Goldsmith et al. The fourth—order coefficients Ffl3*abcd] which appear only in the fourth-order Hamiltonian are not needed since they appear in the final form of the Hamiltonian as corrections to the rotational constants of the rigid rotator. Since the latter are of order zero, these fourth— order corrections are negligible and hence discarded. The same l8 argument also applies to other terms which originally stand in H4. Therefore, although their detailed expressions have been obtained, we shall merely list them in a simplified version of the notation used in (2.15). The coefficients in (3.8) are not tabulated since what is really needed are not these coefficients, but the coefficients of the terms in the Hamiltonian (2.15). Of the latter, those that symmetry allows to be nonvanishing are included below: :11 II (1/2)[(PX2/Ix + PyZ/Iy + 922/12) + (plzmll/z + p22/7L21/2 + pgzmgl/anl + (111/2912 +l"21/2‘122 J'?‘3l/‘Z<132)/21’i (3'9” [(XX*-*l)q1 + (XX*-*2)q2]Px2 + [(yy*-*l)q1 + (yy*-*2)q2]Py2 + [(zz*—*l)ql + (zz*-*2)q2]Pz2 + (xy*—*3)q3(PxPy + Pny) + 3 2 2 2 3 2Kfic + >q1 + ((XX*-*2) + (yy*-*2) + (z2*-*2))q2] + [ + x (q1q22p3+p3qlq22) + (2*3*222)(q23p3+p3q23) + (z*3*133)(q1q32P3+ p3q1q32) + (z*3*233)(q2q32p3+p3q2q32) + (z*1*113)(q12q3p1+p1q12q3) + (z*l*123)(qlq2q3p1+p1qlq2q3> + (z*l*223)(q22q3p1+qu22q3) + (2*1*333)(ql3p32+p32q13) + (-*33*112)(q12q2p32+p32q12q2> + (-*33*122)(qlq22p32+p32q1q22) + (-*33*222)(q23p32+p3q23) + (-*1l*l33)(qlq32p12+p1q1Q32) + (—*11*233)(q2q32p12+p12q2q32) + (—*12*l33)(q1q32p1p2+p1p2qlq32) + (-*12*233)(q2q32P1P2+P1p2q2q§) + (-*22*133)(q1q32p22+p22q1q32) + (—*22*233)(q2q32p22+p22q2q32) + (-*l3*ll3)(q12q3p1p3+p1p3q12q3) + (-*l3*223)(q2q3P1P3+P1P3q2q3) + (—*13*123)(qlq2q3plp3+P1P3q1QZQ3)+(-*23*1l3)CQ§Q3P2P3+P2P3QEQ3) +(—*23*123)(qlq2q3pzp3+P2p3q1q2q3)+(-*23*223)(q3q3p2p3+p2p3q§q3)] (3.9d) H4 = 0%53%\ + (—n2/4§§;E§ Gid*-*ab)qaqb + Z. zmdhaégfig(kabcdefqaqchqdqeqf (3.9e) \ \ The detailed expressions of the coefficients in (3.9b) to (3.9d) are listed in Tables VI to X. Table XI lists the nonzero coefficients in the fourth—order Hamiltonian (3.9e) Each of the coefficients in Tables VII to XI is equal to coefficient or coefficients of the same type, that could be obtained by permuting the indices of vibrational operators in the original one. 21 Table VI. Coefficients ¢Xfi*—*a) and (z*b*a) in the first-order Hamiltonian H1 (xx*-*l) = 1/4a1yy/21y2 (yy*-*2) = —CHZAK2)l/4aZYY/2Iy2 -(-n2A?xl)1/4alZZ/2Iz2 (zz*—*2) = —(-h2mz)1/4azzz/2Iz2 —(n2/23)1/4a3XY/2Ix1y = -(n2/75)l/4a3XY/21x1y (z*3*1) (z*3*2) = —(%3/31>1/4‘§3/Iz (z*l*3) = +c21/23)1/43:3/Iz = -(%3fll2)l/4$;3/Iz (2*2*3) = +(72/“3)1/4§23/Iz Table VII. Coefficients G“fi*-*ab) in the second—order Hamiltonian H2 (xx*-*ll) (xx*—*12) (yy*-*12) (xx*—*22) (xx*—*33) (zz*—*12) (Xy*-*l3) (xy*-*23) (yx*-*13) = 3hsin2172IX2K11/2 (yy*-*ll) = 3ficosZfi/21y2flll/2 =4hsin’6COS/K/I§(7il7\2)l/4 (zz*—*ll) = 3fi§232/2122211/2 =—4hsin1cos'6/I§(lez}/4 (ZZ*—*22) = 313:32/2122fl21/2 = 3ficos2372lx2221/2 (yy*—*22) = 3fisin%fl21y2221/2 = 3h/2Izlx231/2 (yy*-*33) = 3n/2Izlyfl3l/2 =‘3h3135‘23/Iz20h7‘2)“4 (ZZ*-*33) = 0 =-3n[(Ix/12)1/2cosg+(1y/Iz)l/Zsing]/21X1y(2i33)1/4 = n[5(IX/Iz)l/Zsin1-3(Iy/Iz)1/2cosgq/21x1y61223)1/4 = (xyi<—*l3) (yx‘a'C—ft23) = (xy*—*23) 22 Table VIII. Coefficients €x*c*ab) in the second-order Hamiltonian H2 (z*3*ll) = 51/27131/4alzz Q3/2211/2122 (2.3.22) = hl/2g31/4azzz353/2n21/2122 (z*3*12) = hl/Zfi31/4(a1223;3 + azzz§13)/2(“{”2}/41§ (2*1*13) =—n1/2alzz§13/2231/4122 (z*l*23) :_fi1/lel/4a2zz 13/2(2233)1/4I§ (z*2*13) =ehl/2221/4alzz333/2(2123)1/41§ (z*2*23) =—hl/2aZZZS;3/2k3l/4Izz Table IX. Coefficients (—*cd*ab) in the second—order Hamiltonian H2 (_*33*11)=(23/21)1/2$;32/4IZ (-*11*33)=(llflk3)l/23132/4Iz (-*33*12)=(fi3zflhi22)l/4513§23/212 ('*12*33)=6ki225132)1/4513§23/212 (—*33*22)=GK3AA2)1/23332/412 (—*22*33)=(32/33)1/25232/412 (-*23*13)=—(22/21)1/4§13123/212 <-*13*23)=-(21(A2)1/4513523/212 (-*23*23>='3232/212 (—*l3*l3)=-5132/212 Table X. Coefficients @P*—*abc) in the third—order Hamiltonian H3 (xx*~*lll) = :fi3/Zsin33/Ix5/Zzi3/42 (xx*—*222) = :n3/2cos3z/Ix5/2fl23/42 (xx*-*112) (xx*—*122) (xx*—*133) (xx*-*233) (YY*“*111) (YY*'*222) (YY*‘*112) (YY*'*122) (yy*-*l33) (yy*-*233) (zz*—*lll) (zz*-*222) (zz*-*112) (zz*-*122) (xy*—*ll3) (xy*—*123) (xy*-*223) (xy*-*333) (yx*—*113) (yx*-*123) 23 Table X (cont'd) -llh3/25iancosX/6Ix5/zhll/Z%21/4 —llh3/zsin3hos2376Ix5/2A11/4fizl/2 ih3/2[23in/X+ (Ix/1y)1/2cos34/2IZIX3/2g11/4331/2 2h3/2[2cos,x+.(Ix/1y)1/2sin2a,2121x3/2321/4231/2 1fi3/2c053X/21y5/2213/4 -5h3/2sin33/61y5/2223/4 +11h3/2s1ngtos23761y5/22ll/2221/4 —1lh3/Zsin2vcos376Iy5/2gll/4221/2 253/2[2cos7{+ (Iy/Ix)1/231n%q/21y3/21£)11/4)31/2 +h3/2[(8/3)siIvX—-(Iy/Ix)1/2cogg]/21y3/ZIéZZl/423l/2 +fi3/25333/2125/2213/4 253/2gi33/2125/2223/4 —3fi3/2$135232/2125/%111/2221/4 +3fi3/25233132/2125/2311/4%21/2 +fi3/2 ' + I 1 1/2 2 + I I 1/2 ' 211[§“i‘7§§:f‘/22§17éy’ 1 W W x y z +h3/2[3cos +7(I /I )1/2sin cos —8(I /I )l/zsin cos — 4sin23]/6:EIyIzX/2?%ikjk3)¥>4‘1 x y 3/ ’5 +fi3/2[sin COS’X+'(I gly)l/2c0322{+ (Iy/Ix)l/zsinzg]/ ZInyIzl 2231/22317 +h3/2/2(1x1y123)1/2%33/4 (xy*—*ll3), (yx*-*223) = (xy*—*223) (xy*-*123), (yx*-*333) = (xy*—*333) 24 Table XI. Coefficients (i*d*abc) in the third-order Hamiltonian H3 (z*3*lll), (z*3*112), (z*3*122), (z*3*222), (z*3*l33), (z*3*233), (z*1*113), (z*1*123), (z*l*223), (z*l*333), (z*2*113), (z*2*123), (z*2*223), (z*2*333) The detailed forms of these coefficients are not required for our calculation. Table XII. Nonvanishing coefficients in the fourth-order Hamiltonian H4 (l) (7‘ *-*abcd): CK? abcd XX 1 yy ] 1111, 1112, 1122, 1133, 1222, 2222, 2233, 3333 zz ] xy = yx 1113, 2223, 1123, 1223, 1333, 2333 f2) fd*e*abcd): d. e z 1 ] 2 11113, 2223, 1123, 1223, 1333, 2333 3 1111, 1112, 1222, 2222, 1122, 1133, 1233, 2233 25 Table XII(cont'd) (3) (—*ef*abcd): ef abcd 11 ] 12 = 21 ] 1133, 1233, 2233, 3333 22 ] 13 = 31 ] 23 = 32 ] 1113, 1123, 1223, 2223, 1333, 2333 33 1111, 1112, 1122, 1222, 2222, 1133, 1233, 2233 (4) (*x*-*ab)= These coefficients have been listed in Table VII. (5) kabcdef: abcdef = 111111, 222222, 333333, 111112, 122222, 111122, 112222, 111133, 113333, 222233, 223333, 111222, 111233, 122233, The detailed forms of all these coefficients are not required for our calculation. 4. ONCE—TRANSFORMED HAMILTONIAN The terms in H1 that truly contribute to the first—order energy are absent in the case of asymmetric rotators. This is because there are no degenerate modes of vibration. The S function of Herman and Shaffer may expressed as16 S :23} %[S;d{5;a;-]pa§ 352% ([S;«;-;ab]qaqb + [Susabs—lpapbfld} + a$ ’>’/?-Iyzl‘i3/413/4 [S;xx;2;—] = azxx/21x2h3/2223/4 [S;yy523-1 = aZYY/ZI 2h3/2223/4 [S;zz;l;-] = alzz/2I22h3/2313/4 [S;xy;3;-] = a3xy/21x1y‘T‘I3/27‘33/4 [S;zz;2;-] = aZZZ/2122h3/27‘23/4 [S;yx;3;-] = a3xY/2leyfi3/2233/4 Table XIV. Coefficients [S;oQ-;ab] and [S;qfiab;-] in the first con— tact transformation 3'13 (211mg) / (21-23) 12211/4231/4 3§3<flz+33n(712—13)12321/4a31/4 [S;z;-;l3] = [S;z;-;3l] [S;z;-;23] = [S;Z;-;32] [S;z;13;—] = [S;z;3l;—] = 2313311/4231/4/(21-23)15h2 [S;z;23;—] = [S;z;32;—] = 2525321/4231/4/622—75)Izh2 The once-transformed Hamiltonians, regrouped in true orders of magnitude with the aid of (2.22), are found to be as in (2.21), where 28 Table XV. Coefficients [S;—;abc;-] in the first contact transformation [S;-;lll;-] = [S;-;112;-] = [S;-;122;-] = [S;-;l33;-] = [S;-;233;-] = —4mcklll/3fi3lll/2 [S;—;222;—] = -4Ick222/3fi3221/2 —4[ckllzfil/fi3fizl/2(431—22) = [s;—;121;-] = [s;—;211;-] -4Hck12222/h3311/2(47b—fli) = [S;-;212;-] = [S;-;221;-] —4nck133fl3/h37111/2(4713—21) = [s;—;313;-] = [s;—;331;-] —4rck23323/n3221/2(423—22) = [s;-;323;—] = [s;-;332;~] Table XVI. Coefficients [S;—;c;ab] in the first contact transformation [S;-;l;ll] [S;-;2;ll] [S;-;l;12] [S;-;2312] [S;-;3;l3] [S;-;l;22] [S;-;3;23] [S;-;l;33] [S;-;2;33] -2rccklll/mll/2 [s;—;2;22] = —27Lck222/‘fia21/2 -2tck112(221—22)/fiflzl/2<421-22) —4chlléflll/2/fi(4fll-22) = [s;-;1;21] —4Tck122221/2/fi(422-21) = [s;—;2;21] —41[ck133231/2ffi(4513—711) = [S;-;3;31] —2mck122(222421)/nAll/2<422—31) ~41ck233231/2/fi(4a3—22) = [s;—;3;32] -2npkl33(233-21)/fiflll/2<47t4kl> —27r.ck233 (223412) 5121/2 (433-32) 29 h ' = H (4.2) H0 is given in (3.9a) h1' = H1 + [iS,HO]V = 0 (4.3) h2' = H2 + [15,111/2]V + [iS,H0]R = dE-TrSQy/ayfi—rwopfipgpf +°(F%/Za(2;0(flg;a;—)pag(PP/,PZ, + 0%az< and pure vibrational terms which do not contribute to the energy through the fourth order of approximation. 30 114' = H4 + [15,013 + [iS/2,(H2 + [iS,Hl/4]V + [iSsH0/31RJV)]V + [15,H1/31R)]V + [is,(H2 + [13,111/3]V + [iS’HO/ZJRHR «%r4““°%53”21323323 + 333231} + 0(ng afifimafigfiflabmaqb + (4;dpg’{;ab;-)papb}g<%P1P§ + h4’!‘ (4.6) The coefficients appearing in (4.6) are listed in Appendixes XV to XVII. h4* is the portion of h4' that is discarded henceforth; it consists of pure vibrational terms, terms whose matrix elements in a symmetric—top basis fall outside the diagonal blocks E+, E_, 0+, O_, and terms quadratic in the components of rotational angular momentum QX' These terms either do not contribute to the energy through the fourth order of approximation, or represent negligible corrections to the terms re— tained in the final form of the Hamiltonian. The first sum in (4.6) is not desymmetrized in the components of rot- ational angular momentum since h4' is already in the form in which it will enter the final form of the Hamiltonian.0ne could also symmetrize the second sum at this point,but instead of doing so now, we shall symmetrize this sum later (Appendix XVI). We expect that identical co- efficients in that appendix will automatically symmetrize the cor— responding terms in this sum, and this is, in fact, the case. 31 Table XVII. Coefficients (2;Q@?63-;-) in the second—order Hamiltonian h2 l (2;xxyy;-;-) (2syyzz;-;-) (2;zzxx;—;-) (2;nyy;—;-) (2;xxxx;—;—) (2;yyyy;-;-) (2;zzzz;-;-) (2;yyXX;-;-) (2;zzyy;-;- (2;xxzz;—;-) (23XYYX3';—) -[(a§x agy )441 + (agx agy )/22]/81x21y2 _[(alyya122)ztl + (azyyaZZZ)/az]/81y2122 _[(alZZalXX) /a1 + (aZZZaZXX) /Z2]/8Izzlx2 -(a3XY)2/81§ _[(alXX)2/fll —[(alyy)2/fil -[2/3l (2;xxyy;-;-) (2;yy22;-;-) (2;zzxx;—;—) (2;yxxy;-;—) = 13713 + (a§X )2/421/813 + (aZYY)2fi22]/8I§ + (aZZZ)Zflxz]/81g (2;yXyX;—;—) = (2;xyxy;-;- 5. TWICE-TRANSFORMED HAMILTONIAN The second contact transformation that diagonalizes H in the vi— brational quantum numbers through the second order of approximation has been constructed by Amat and Nielsen16 from the basic Herman— Shaffer functions. The portion of this function that is needed in our case can be written as follows: C7 1%3; [6;«M;-;a]qa%.Ff;P3 +°ég [0“;Orp;b;a](l/2)(qapb+pbqa)I;(Pfi +0, c%,$1,[U;o(;ab;c](l/2) (qcpapb + papchfifi ii on ._. 51%“,1 ,d, ,abCanqchI’.( (5.1) The coefficients [dgdfia§—;a], [U;ufi;b;a], etc., are given in Tables XVIII to XXI, with the constants Aabc and Babc appearing in BT;u;c;ab] and [6;x;-;abc] as listed in Table XXII. Expanding'f = exp.(i2zc) and’b-l = exp.(-i%?¢) in power series in o’and collecting terms of the same order of magnitude in H@ =TII'1'1 we obtain: @_ Ho ‘ ho @_ H1 ' hl H@=h'+i[ch'] 2 2 ’ O H@=h'+'[o’h'] 3 1 ' 1 I V I H4@= h. + new 1 —<1/2>[rr, [6,110 11 (5.2) In (5.2) h' , h; , h; , etc., are the zeroth, first, second-order portion, etc., of the once—transformed Hamiltonian regrouped to true oreders of magnitude which we have obtained in Chapter 4 from the original once—transformed Hamiltonian with the aid of (2.22). 32 33 Table XVIII. Coefficients [d;ufifi;-;a] in the second contact trans— formation. [6;ZZZ;-;3] = (2;zzz;3;—)/7\3l/2 BS;xxz;-;3] = (2;xxz;3;-)fla3l/2 [6;zxx;—;3] = (2;zxx;3;—)/7\31/2 BY;YYZ;'33] = (23YYZ;3;—)/fl31/2 [S;zyy;—;3] = (2;zyy;3;-)/23l/2 [O’sxzx;-;3] = (2;xzx;3;-)/'7\3l/2 [6;yzy;-;3] = (2syzy;3;-)/7\31/2 [6;xy2;-;j] = [~jl/2/t2]/(9\3 —7\j) [6;xys3;j] j = 1.2 [6;yX;j;3] = [6;xy;j;3] Table XX. Coefficients K7kx;c;ab] in the second contact transform— ation. 34 [6;zsjjs3] [632;12;3] Bf;z;l3;l] [032;23;2] [6;z;l3;2] [632;23;l] [032;21;3] [032;32;j] -(2; 2; 3;jj)A j3/fi2 + (2; z;j;j3)Bj -/fi2 —(2; Z;jj3; —)gj' 3,3(1'1'25j3) ; j = ji:§33 —(2: z;3;12)A12:/h2 + (2 z; 1; 23)B 3 2/52 -(2; z; 1 ,13)A113/h2 + (2, z; 1 ,13)Bll 3/n2 +2(2; z; 3; 11)}3l3 l/fi — 2(2; 2; 113 ,-)B13’l —(2;z;2;23)A223/‘hz + (2;Z;2;23)322 3N2 +2(2;z;3;22)B23 2/n - 2(2;z;223;—)B23 2 —(2; z; 2 ,13)A 123/52 + (2; z, 1 ,23)B12 3/52 +(2; z;3;12)B23 l/n2 — (2; z; 123,-)B13 2 —(2; z; 1- ,23)A123/h2 + (2; z; 2 ,13)B2 3/h2 +(2; 2 3;12)Bl3 2/h2 - (2; 2; 1233'132m [6:z;12;3] [632;3l;j] = [6;2;l3;j] [6:Z;23;j] j 1,2 Table XXI. Coefficients BT;x;-;abc] in the second contact transform— ation. k7;z;-;1l3] = —(2;z;1;13)1313,l — (2;.v.;3;11)1311,3 4h2(2;z;113;-)All3 B7;z;—;223] = -(2;z;2;23)B23,2 - (2;z;3;22)B22’3 =h2(2;z;223;—)A223 [6;Z;—;123] = ”(2; Z, .1‘ ,23)B23 l - (2; Z, 2' ,13)B13 2 " (2;Z; 3;12)B12,3— h2(2 z;123,—)A123 [Gfiz;-;333] = —(2;z;3;33)B33’3 — h2(2;z;333;—)A333 35 Here, too, it is advantageous to regroup H@ in true orders of magni- tude. Upon subjecting H@ to.regrouping of terms according to true orders of magnitude we have: @=@= @. @ @ @ @ H h hO + hl + h2 + h3 + h4 where h0@ = H0 h1@ = o h2@ = h2' + i[c;H0]V h3@ = h3' + ikT,HO]R h4@ = h4' + itcr,h2']V — (1/2) [0", [53h0'1v1v The last two terms in h4' can be written as follows: i[03h2']V - <1/2>[1V = <1/2>[c,1v Moreover, it can be shown that i[03h2@]V does not contribute to the energy through the fourth order of approximation except in cases of accidental near—degeneracy.22 The same is true of h3@. Thus for the calculation of energies through the fourth order of approximation we only need to consider: h0@ = H0 h2@ = h2' + i[CXH0]V h4@ = h4' + i[o*,h2']V h@ = h0@ + h2@ + h4@ (5.4) 36 Table XXII. The constants Aabc and Bab,C Aaaa = —2fla1/2/3; a = 1,2,3 A112 = —2alza21/2(421 "%2) A122 = ‘232/“11/2(4g2 ' “1) A113 = ‘211/7‘31/2Uml ‘ 7‘3) A133 = -2“3/7\11/2(4’7\3 -711) A223 = '2“2fih31/2(4a2 ' Q3) A233 = "2%3/x21/2(4“3 ’6a2) A123 = zékla275)l/2D123 ; ( and all permutations of indices. ) Baa,a = '(1/3)“a1/2 3 a = 1,2,3 B12,3 = 4x3l/2(“3 ‘9‘1 '5K2)D123 B13,2 = ‘azl/Zfikz ‘Afii "’23)D123 B23,1 = 'flll/zcxl -9\2 '7‘3)D123 B12,1 = ‘311/2/(4R1 -0x2) B12,2 = '“21/2/(4A2 -7‘1) B13,3 = -131/2/(423 ‘9\1> B23,3 = “751/2/(4q3 ‘7‘2) B13,1 = 'all/z/(4Zl ‘ ”3) B23,2 = ‘751/2/(479 ' “3) B11,2 = CA2 - 221)/A21/2(421 -%2) B22,1 = (“1 — 27‘2)/7‘1l/2(47‘2 "m1) B11,3 - (A3 - 221)/93l/2(4Q1 -%3) B33,1 = (”1 - 223)/a11/2(433 431) B22,3 = 27b)/“3l/2(47& 'fl3) B33,2 = 612 - 233)fi“21/2<4”3 '“2) b.) I In A , B and the corresponding constants obtained through 123 12,3 permutations of indices, D123 = [gall/2+221/2+fi3l/2)Call/24321/2_A3l/2)(fill/2-221/2+Q31/3) XCA11/2+%21/2-fl31/2)]_1 ; ( all permutations of indices ) 37 Of the terms in H0 in (3.9a) only the first three will be kept in h0@ since the remaining terms are purely vibrational and of no interest @ here. However, in the second term of h2 in (5.4) the pure-vibration- al operator—terms in H0 must be included in the commutator [03H0]V for it is precisely these terms that contribute to h2@, since for the pure-rotational operator—terms in H0 (2—23b) yields i[O',Ho]V = i[O‘V,HOV](l/2)(O‘RH0R + HORO’R) Thus we have h2@ = hz' + i[ch,HOV](1/2)(o§.1 + 1.0;.) = h2' + i[c7V,HOV10'R and with 0 from (5.1) and the last six terms in (3.9a) for HOV, one can show that h2@ =0??? (2;uf52fX;—;—)g(r;936Pg + 0%; [fi2(2;o((5;aa;-) + (2;d{5;-;aa)](qa2 + paz/hz)g(% + 112* (5.5) i.e., except for h2*, h2@ is diagonal in all vibrational quantum numbers; h2* consists of pure—vibrational operator—terms originating from hQ'.Even though this portion of h2@ is not diagonal in the vibrational quantum numbers, it can be disregarded as it can be shown that the pure—vibrational operator-terms in h2@ would be diagonal if the complete transformation function of Goldsmith et al had been used. Substituting (4.6) for h4', (4.4) for hz' and (5.1) forC7 into the 38 last equation in (5.4), we obtain @ _ . ._._ h4 -o((%%569 (IV,o({5’Jf£f), , )g‘?) 1361951381}, + “g; agb [(IV;0(F/()f«*’;-;ab)qaqb + (IV;°(PX§;ab;-)papb]%lP@lé’P5 + 114* (506) where h4* includes terms of the type r4P2 and rkP6'k, k = 1,3,5. Following the notation introduced by Amat and Nielsen,22 rn and Pm are used to denote products of any n vibrational and any m rotational op— erators, respectively; h4* is discarded henceforth since herein terms of the first type represent fourth-order corrections to zeroth—order rotational constants of rigid rotator, while terms of the second type would contribute only to the energy in an order higher than the 21 fourth. The coefficients in h4@ can be shown to be the following: <1v;«%‘£{>;—;—> = (Mggéqéfirr) + (4w;£§’e!—z—) (1v;°(%5;—;ab) = (4;o(WS;—;ab) + (4!3(&a_’,§_!-!ab) + (4!gré,g£!—!ab) + (4!o_(,&fl!-!ab) (IV;o(/5’(rf;ab;-) = (4;oqz,ys;ab;-) + (4!%2!ab!-) + (4!gé,@§!ab!—) + (4!g,M!ab!-) (5.7) .(4;5Q,5—;—), (4;afi37;—;ab) and (4;dfi37;ab;-) are the coefficients in h4', the underlining on the groups of indices indicating how they can be constructed from the original coefficients to accomplish the desymmetrization of the corresponding rotational operators. Thus, for instance, (4;z£,2gfaF;-;-) = (1/2)[(4;o(fl,gfaf>;-;-) + (4;6{’,0([&ga(;-;-)] 39 since the corresponding rotational operator—term (1/2) (EngPfiPfPa PF + Bfff'Pa; 13(1)? ) is desymmetrized to E‘fieBxggaafio. The rest of the coefficients in (5.7), i.e., (4!QQZ;,§§fi!-!—), etc., belong to the terms in i[O§h2']V. Again, the underlines are used here to show how they can be constructed from the original coefficients. These original coefficients are given in Appendixes XVIII to XXIV. The desymmetrization.procedure mentioned above was used merely to @ facilitate writing the coefficients of h4 in (5.6) in general form. In our actual calculation all terms were left in their original sym— .metric—form since they are already in the correct form in which they enter the final form of the Hamiltonian. We now summarize the final result. From (5.4) we have h@ = ho@ + h2@ + h4@ (5.8) Excluding the pure Vibrational terms in H0, we have, from (5.4) and (3.9a), h0@ = (1/2)[ PXZ/IX + Pyz/Iy + Pzz/Iz 1 (5.9) No further rearrangement is required in (5.9) since it is already in the desired final form. One identifies the coefficients therein as being proportional to the equilibrium rotational constants A0, B0 and C0. The coefficients (23Xfi@§E—;—) in the first sum of (5.5) have been listed in Table XVII. Following the notation of Chung and Parker23 we write <2;orr>z{f;-;-) = (1/4)Twpa’f 40 and in terms of the coefficients 1;¢3g3 the first sum of (5.5) and Table XVII yield (1/4)[q;’xxxxP4 x +‘fyyny Y4 + LzzzzP z 4x+rtxxyy(P 2Py 2 + Py 2P x2) + 2 2 Tyyzz(Py PZ + Pz 2P yZ) + TZZXXQZZPXZ + PXZPZZ) + T + 2 2 xyxy(PxPnyPy PyPXPny + P xPy Px + Pny Py) ] With the aid of the commutation relations [Ex’gé] = -ifiBa, cyclic, the last term can be written as (1/4)[ 2(Px2Py2 + PyZPXZ) + 352P22 — 2h2Px2 - 2n2Py2 1T;yxy Thus we have, from the first sum in (5.5), 4 4 4 (1/4) [ ’L’lPx +"L’2Py + "E3Pz + ”(4(Pyzpzz + Pzzpyz) + T(P2P2+P2P2)+'t>'<(P2P2+P2P2)+ 5 z x X z 6 x y y x 2 2 2 2 Tgn (3Pz — 2Px — 2Py ) ] The last term is of the second order but will now be grouped with h0@, and the coefficients of sz, Py2 and Pz2 therein represent centrifugal distortion corrections to the rotational constants A0, B0 and C0, respectively. The coefficients'F “U etc., or their numerical— XXXX’ YYYY’ subscript forms Tl, Ti, etc., are listed in Table XXIII. The coefficients (2;dfl;aa;—) and (2;dfl;-;aa) in the second sum of (5.5) are given in Appendixes V and VI, respectively, along with the coefficients of the off—diagonal terms in h2'. We note that for a = b (2;o((é;ab;-) and (2;0(fi;—ab) vanish if 0(74’9 . Hence the second sum of (5.5) can be written as follows: 41 3 2 2 2 2 2 g 8%“ ‘5 (2;ob<;aa;-) + (2;ob<;-;aa) ]( qa + Pa f5 )Pix Table XXIII. The coefficients "tom’s. Txxxx = T1 = "[(alxx)2/)Ll + («392‘x 2/712]/2Ix4 Tyyyy = 1’“2 = ‘[(alyy)2/’/\1 + (815332/7‘21/213'4 Tam = 73 = -[2/7x1 + = ( Va + l/2 )nz, = ( va + 1/2) a = 1,2,3 respectively, where va is the harmonic oscillator quantum number cor— responding to normal mode a, we can write the above double sum as 3(1sz + U-(ZPyZ + 3(3P22 where 3 l = 521 (Va + 1/2)Eh2(2;XX333;-) + (2;xx;-;aa)] ”N2 = £21 (Va + 1/2)[fi2(2;yy;aa;—) + (2;yy;—;aa)] M3 = 521 (Va + 1/2)[fi2(2;zz;aa;—) + (2;zz;-;aa)] (5.10) 42 SinceiHj ; j = 1,2,3 are the coefficients of terms quadratic in the components of angular momentum, these terms, although of the second order, are now also grouped into h0@. Therefore, they will be added to ho@ along with the centrifugal distortion terms from the first sum of (5.5). The3ij's represent the vibration-rotation coupling correct- ions to the equilibrium rotational constants A0, B0, C0 . The first sum in (5.6) contains terms sextic in the components of rotational angular momentum, the coefficients of which are given @ @ in (5.7). Since there are no sextic terms in ho or hz , no ambi- guities will be introduced if the "IV” and "4" are omitted from the coefficients. Thus we simplify the notation and write «*336?F)9 Gflgqfflaf) and Gfl63*5£f) for (IV;dfiQflEF;-;—), (4;dfl{6fi5fi) and (4!agggia0!—!—), respectively. Comma and asterisk are used in the second and third coefficients, respectively, to show which group of indices originates from the transformation function, and which one from the Hamiltonian. In our notation the group of indices preceding the separating comma or asterisk is the one coming from the trans— formation function. We use the comma when the function is S, and the asterisk when the function is<7. The detailed expressions of the co— efficients Gxfl;gz5f5 are given in Appendix XV. These are the coeffi- cients of the sextic terms P6 in h4'. The coefficients GX@J%S£f) are given in Appendix XVIII. One can see in these appendixes that the operators PX, P and P2 always appear in even power in all the sextic y pure-rotational terms. To have the sextic terms in the form arrived 10 at by Yallabandi and Parker, the original form 43 (945:5?ng PdeBdP5,%l?) + PXIg-PFJP’DQPfi ) + (dwsiepu .PxPfiPngPaPF +- PSIZLIEJ PXPp P'b’ ) was subjected to rearrangement based on the angular momentum commut— ation relations. In carrying.out this rearrangement, Table II of Kneizys, Freedman.and Cloughll was very useful. Entries 58 through 105 in this table were subjected to permutations of indices to obtain op- erators with P2 symmetfically placed with respect to PX and Py. As a result of extensive rearrangement we obtain sixteen new coefficients, of which ten belong to P6—terms and the other six belong to P4—terms. Three of the former stay in their original form; they are the coeff— icients of PX6, Py6 and P26. The rest of the coefficients are found to be certain linear combinations of the original coefficients. Act— ually we also obtained terms quadratic in the components of angular momentum, but these were discarded since they are negligible relative to the coefficients A0, B0 and C0 in the Exz—terms. Following Yalla— bandi and Parker,10 these sixteen coefficients are calledd)l t04716. They are listed in Table XXIV. Where these coefficients stand in the final form of the Hamiltonian will be shown later. The coefficients of the r2P4—terms in (5.6) comprise eight diff- erent coefficients, two coming from h4' and six from i[O:h2']V. The notation in (5.7) will now be simplified as follows: (4;o/pfl;-;ab) ——> («ea/fab) <4;o((53rf;ab;—> —-—> (abom’f) “wags !—!ab) —9 («Micfiaw (410(ggf,§:ab2—) —> (abdfiW) (4!o((5,fi£!—!ab) -> (0(f5*wab) (4!o(@,3ff!ab!—) -—> (abosw’i) (4!o(,{§’6’5!—!ab) -> (0(*M5ab) (4!o(,fi2{5!ab!—) a (mam) 44 Table XXIV. Coefficients - 5(22.’nyy) + 15(xy,xyyy) - 14(xy,xyzz) - (5/2)(yy,zxzx) + (5/2)(zz,zxzx) - (5/2)(yy,zyzy) —(5/2)(zz,zyzy) — l4(xy,zxzy) + 3(zzz*xxz) — 3(zzz*yyz) - (3/2)(zzz*xzx) + (3/2)(zzz*yzy) - 4(xxz*yyz) - 4(yyz*yyz) — -3(yyz*xzx) — 5(yyz*yzy) —'(3/2)(xzx*yzy) - (3/2)(yzy*yzy) - 7(xzy*xzy) — 7(xyz*xyz) — 7(zxy*zxy) - l4(xyz*xzy) — l4(xyz*zxy) — 14(xzy*zxy) ($15 = 2(xx,xxyy) - 2(xx,xxzz) — 2(zz,zzxx) + 2(zz,zzyy) - 4(zz,xxyy) -2(xx,yyzz) + (ll/2)(xx,xyxy) — 5(zz,xyxy) + 15(xy,xyxx) - 14(xy,xyzz) -(5/2)(xx,zxzx) - (5/2)(zz,zxzx) — (5/2)(xx,zyzy) + (5/2)(zz,zyzy) — l4(xy,zxzy) -3(zzz*xxz) + 3(zzz*yyz) - (3/2)(zzz*xzx) + (3/2)(zzz*yzy) — 4(xxz*xxz) - 4(xxz*yyz) — 5(xxz*xzx) — 3(xxz*yzy) — 2(yyz*xzx) - (3/2)(xzx*yzy) — (3/2)(xzx*xzx) - 7(xzy*xzy) - 7(xyz*xyz) - 7(zxy*zxy) - 14(xyz*xzy) - l4(xyz*zxy) — 14(xzy*zxy) 4316 = -2(XX.xxyy) - 2(yy.y.VXX) - 2(xx,xxu) + 2(yy,yy22) + 8(zz,xxyy) +2(xx,yyzz) + 2(yy,zzxx) - 5(xx,xyxy) - 5(yy,xyxy) + 8(zz,xyxy) —8(xy,xyxx) — 8(xy,xyyy) + 12(xy,xyzz) + (5/2)(xx,zxzx) + (3/2)(yy,ZXZX) + (3/2)(XX.Zyzy) + (5/2)(yyszyzy) + 8(Xy.zxzy) + 2(xxz*xxz) + 8(xxz*xzx) + 8(yyz*yyz) + 8(yyz*yzy) + 2(xzx*xzx) +2(yzy*yzy) + (xzy*xzy) + (xyz*xyz) + (zxy*zxy) + 2(xyz*xzy) + 2(xyz*zxy) = 2(xzy*zxy) Herein @Xfi;g§8f) and éipz%§bp) are as given in Appendixes XV and XVIII, respectively. In the simplified notation above, rotational operators' indices, afigfi; either precede the indices of vibrational normal coordinates, or follow those of the momenta conjugate to the normal coordinates. Again, an asterisk is used to separate rotational operators' indices coming from G‘and from Hi The two contact transformations, S and<5, diagonalize H in the vibrational quantum numbers through second order only. Thus we have both diagonal and off—diagonal elements in the 46 matrix representation of h4@. It can be shown,21 however, that the terms that are off-diagonal in the vibrational quantum numbers va do not contribute to the energy through the fourth order of approximat— ion unless the vibrational states are spaced so closely that an accid— ental nearedegeneracy results. For this reason we have not included in Appendixes XVIII through XXIV the coefficients of terms off-diagon— al in Va. The regrouping of the r2P4—terms into the final form of the Hamiltonian can be accomplished either through commutator algebra with the aid of the commutation relations [Fx,fi5] = _ifi25’ cyclic, or by using the relations among the angular momentum operators of Olson and Allen.24 This rearrangement has been done by Yallabandi and Parker,10 and their results were usedo Following their notation, we have, from the coefficients in Appendixes XVIII to XXIV, P1 = Pxxxx = 2; (va + 1/2)[ (xxxxaa) + (aaxxxx)h2 + (xx*xxaa) + (aaxx*xx)h2 ] [’2 = Fyyyy = 2,, (Va + 1/2)[ (yyyyaa) + (aayyyyfi’l2 + (yy*yyaa) + (aayy*yy)fi2 ] f3 = fgzzz = 2; (Va + 1/2)[ (zzzzaa) + (aazzzz)‘h2 + (zzz*zaa) + (aazzz*z)fi2 + (zz*zzaa) + (aazz*zz)‘h2 + (z*zzzaa) + (aaz*zzz)‘h2 ] fa = Pyyzz = 2; (Va + 1/2)[ (yyzzaa) + (aayyzz)h2 + (yyz*zaa) + (aayyz*z)fi2 + (yy*zzaa) + (aayy*zz)‘fi2 + (zz*yyaa) + (aazz*yy)‘h2 + (z*yyzaa) + (aaz*yyz)fi2] =Pzzyy 47 r75 = fzzxx = 2.078 + 1/2)[ (xxzzaa) + (aaxxzz)‘l’i2 + (xxz*zaa) + (aaxxz*z)l’i2 + (xx*zzaa) + (aaxx*zz)1't2 + (zz*xxaa) + (aazz”‘xx)‘1‘i2 + (z*xxzaa) +(aaz*xxz)‘h2] = Fxxzz [)6 = {)xxyy = :3 (Va + 1/2)[ (xxyyaa) + (aaxxyy)'1’i2 + (xx*yyaa) + (aaxx”"z)'h2 + (z*yzyaa) + (aaz""yzy)'1'12 ] = szzy {)8 =szzx = :8“ (Va + 1/2)[ (zxzxaa) + (aazxzxfi'f2 + (xzx*zaa) + (aaxzx*z)h2 + (z*xzxaa) + (aaz*xzx)‘fi2 1 = [’xzxz f9 = fxyxy = E, (va + l/2>[ + (azaxyxym2 + + (aaxy*xy)‘h2 ] =Pyxyx {910: {’zyyz = 2; (Va + 1/2)[ (zyyzaa) + (aazyyz)h2 + (zyy*zaa) + (aazyy*z)‘fi2 + (z*yyzaa) + (aaz*yyz)‘h2 ] P11= fyzzy = 23 (Va + 1/2)[ (aayzzy)‘h2 1 f12=fzxxz = % (Va + l/2)[ (2xxzaa) + (aazxxz)n2 + (zxx*zaa) + (aazxx*z)'h2 + (2*xxzaa) + (aaz*xxz)h2 1 7313: fxzzx = % (Va + l/2)[ (aaxzzx)‘h2 ] F14: fxyyx = g (Va + l/2)[ (xyyxaa) + (aaxyyx)‘1‘12 + (xy*yxaa) + (aaxy*y><)fi2 ] P15: Pyxxy = P14 (5.11) 48 After all these rearrangements, the Hamiltonian h@ in (5.4) can be written as h@ = h2 + h4 + h6 (5.12) where h2 = (A0 ~— Tgaz/z +3-(1)Px2 + (Bo — 9152/2 + 34 +[)7 + (l/2)f’lo + (1/2)f’11 {9* =fs + {’8 + (“Dru “1”)?13 I); = {)6 + [)9 + (l/2)Pl4 + (1/2){>15 (5.16) h@ is a complete fourth—order vibration—rotation Hamiltonian for H20-type molecules. The detailed expressions for the coefficients therein have been obtained and are given in the tables and appendixes referred to in this chapter. The expressions for all coefficientsf?j and the expressions forCPll throughCFl6 are original with this in- vestigation. The fact that two Hamiltonians H and H have identical eigenvalues if they are related by any arbitrary unitary transformation U has been utilized by Watson9 along with an order—of—magnitude argument, to 49 deduce the form of a rotational Hamiltonian devoid of experimentally indeterminable coefficients. This theory has been extended by Yallabandi and Parker,10 who, in their order—of—magnitude argument, included second—order corrections of the P2~type and fourth—order corrections of the P4—type in the zeroth and second—order terms, re— spectively, of the transformed Hamiltonian. In this way it was shown that one can impose one constraint and thereby reduce the number of independent coefficients of the quartic terms to five, and three further constraints to reduce the number of independent coefficients of the sextic terms to seven. Subject to certain restrictions25 one can choose these constraints in several ways. For further information, the orig— inal papersg’lo’25 should be consulted. In this thesis, a complete Hamiltonian was developed through the fourth order of approximation for the vibrating and rotating HZO—type molecular configuration. Explicit expressions were calculated for all coefficients occurring in the Hamiltonian in terms of fundamental mol- ecular constants, viz., the equilibrium principal moments of inertia (which are related to the equilibrium geometry of the molecule), the normal frequencies of vibration, and the qubic and quartic potential constants of the molecule. Since vibrational and vibration-rotational accidental resonances have not been considered, the theory at the pre- sent stage is applicable to the ground state, and to bands not subject to such resonances. APPENDICES APPENDIX I “B Coefficients aég, A168,. and Coriolis Coupling Coefficients $2: Z To show how the constants a§§, dol a mi éflg, Ascs'o” and Aéfigvdv relate , 2 Pi to the Hamiltonian (2.1) it a i Ri suffices to consider the class- 31 A ical Hamiltonian of a rotating R Y CV and vibrating polyatomic molec— x 4443 ule--specifically the part of O X the Hamiltonian coming from the Figure AI—l kinetic energy. If the iEE nucleus, whose mass is mi, is denoted by the radius vectors E;(X,Y,Z) and fi(x,y,z) in the inertial or space—fixed and moving or molecule-fixed frames, respectively, and if F1 is its displacement relative to its equilibrium position 31 in the latter frame, we have _, Ri i + ?i (AI-l) I31 = 121- 31 (AI.2) where E is the radius vector of the moving frame's originla’in the inertial frame. In the moving frame 31 is a constant vector. If T is the kinetic energy of the molecular framework, 2T = Zmfiij’i {mini =2 mifi/ + 3, + (Z'ox 31)]2 (AI.3) l i i —-, where Vi is the velocity of the iEE nucleus in the inertial frame, 51 3; is the velocity of the iEE nucleus in the moving frame, V is the velocity of the moving frame relative to the inertial frame andEB is the angular velocity of the moving frame relative to the inertial frame. Use.has been.made of the operator relation _> d/dtL = d/dt + 60x inertial moving (AI.3) can be written as -9 _, '7 2T = VZM +§ mi((—;)X f1).(coX ri) +2 miviz + ZZmi(V.vi) + I i _. —) 22mi(c7;x ri.V) + 22mi(§’i.?ax ii), i v where M is the mass of the molecule. The rules of vector algebra allow rearrangement to 2T = W2 + 21111912502 — (3.313))2] + Zmiviz + 2V.Z mivi + i t i —> -9 2V Xib.::mi?i + 20L2:mi?i X 31 g I Choosing the origin of the moving frame to be at the center of mass of the molecule makes the fourth and fifth terms vanish identically. Thus 2: miri = 0 (AI.4) T = (1/2)Mv2 + (l/2)§__mi[?:§.m2 - (Pi.'<15)2] + (1/2)Z_miviz + I l and a).Zmi?i X 3i . The first term in the above is the kinetic energy of the overall translation which we shall discard as it leads only to an additive constant in the total energy, the second term represents the rotat— ional kinetic energy Trot: the third term represents the vibrational kinetic energy Tvib and the last term represents the Coriolis energy, the energy of rotation—vibration interaction, T Equation (AI.4) c. is called the first Eckart condition. The rotational kinetic energy can be written 52 =(l/2)Zmi["12'd)2 - 51.39%] = (1/2)§_ I“ we)», (AI.5) «(e f5 where _ . .0 .' 2 0 l 2 Ida - Imam. +5.) + (2)1 +31) ] = 2' Ininai02 +1102) + Zimdfiiopi' +’Xi0’a’i') + Ei‘miqain + r5112) = 1‘9,x + 22mi(fgiopi' +XIO’JI') + 211153552 +Wi'2)’ cyclic —;2mi°(i{31 + ij-(dioei' + (aiodi') — gmiO/i'fii' -Ig@ + Zf‘mi(0(i0fii' + fiiodi') - Zimidi'fii', cyclic _I°( 7D ll 10rd and L4" are the instantaneous moments and products of inertia, respectively, and 12(0( and Tap the corresponding equilibrium values; di"fii' and 11' are the components of F1 and 0(10, #10 and 310 the components of 31. If normal coordinates QsG’ are introduced by the following: mil/2di' = loJ'fSO'Qso' (AI.6) where 0(1' are the x, y or z—component of I31 ( i = 1,2,......N) and 1:26- are the elements of the matrix of transformation to normal coordinates, then 104% and qug can be written as Ida = lad +;:« as Qso’ +§scs' 'G'q Add IMP. 0 + sZo-'as Qso'+ 255—6-5329“ Astrsér" Qchs' o" (AIJ) where a:- ZZimil/Zqfiolgs +giolii's) a? = {mil/Rafi. + 6101?. > ; “#5 (BSVS'O’ QSG'QS' 0'" old E> Asc's'o” = 25-(liso'lis 0" + liso‘lis' 5" sq; 3a ASG‘S'G' = Zlisc'lis' '0" = As'o" so“ 3 dffi ,Fhfgcyclic (AI.8) o< 0M o( This defines the constants 330" as?“ Aso‘s'cr' and Asfis'w" 53 Using the second Eckart condition -v a Zmi(ai x vi) = o (AI.9) l the kinetic energy of Coriolis interaction can be simplified to .9 Tc = Elimipi X 31 1 Again, using the transformation to normal coordinates (AI.6) to ex— .5 press f1 and V, in terms of normal coordinates, the(o(= Iaa‘éggs' ”6’ '305 " 5"an 16, 'Q3 "0" n Idp= I°(|%_ _Z”§:6::' 11¢ viincrnQ: '04an u (AI.12) we then have, using (AI. 7), W. I' «a: 104x +3204?“ sachso‘ + $0.334“ Ason '0'Q30Qs2y' . _ _ 9 1°@_ 0 ;- aso'Qsc' ES'SZ'ASQ’SH o" Qso-Qs '0" (AI'13) where se's'cJ scs'cr' s o‘ SO‘SO‘ = A (AI.14) (X «a, 0(O( Z °( go A =A — nu unslvuu 3: ASFé'G' SG‘S' ' _ u n O‘ n n 80’s 0" «ex This defines the coefficients Aso's'o" and AZEé'OJ. APPENDIX II The Expansion of )ga, )kfla The determinant in (2.5) can be expanded into 2-I'I'2—I'I'2—2I'I'I'] - I' 1' xx yz yy xz zz xy xy yz xz V V I [Ixxlyylzz .. 2 2 —l )u _ [Ixxlyylaz - Ixxlyz _ Iyylxz " Iézlé§ _ 2Ixylyzlxz] (AII.1) Substituting (AII.1) into (2.3) and (2.4) we get = I l __ I2 I I I _ I I2_ I I2_ I I2 )iW (IMIW 19,6)/(Ixxlyylzz Ixxlyz InyXZ IzzIxy — 2léyl§zléz ) ; cg @,q’= x, y, z cyclic 1“? = (Il'leo'qb - 58%? )/(l,gxl§yI;z — 1.269% — gym; — 1121,25 - ZIxnyzIxz ) ; cc fi,g’= x, y, z cyclic (AII.2) It has been shown in Appendix I that ng‘and ng3(w, fl = x, y, z) are functions of the normal coordinates qu. Hence “we and udfl.are also functions of st- Since the nuclei are assumed to move about their equilibrium positions with small displacements F1, the Qsc's are small relative to internuclear distances. Therefore, we may expand Jamx and “a? into McLaurin series in Q56, Scs-”] =§ amp/2cm.seesaw 91315013514 etc., (All.6) In (AII.6) 51,-: sum over all distinct permutations of s, s', s", etc., and in (AII.5) all summations are restricted, i.e., subject to sgskgs" ... etc. APPENDIX III The Untransformed Hamiltonian It will be understood that throughout this appendix there is a degeneracy index associated with each normal mode. The Watson—simpli— fied Darling-Dennison Hamiltonian in (2.12) has the following terms: (1) (U2); )1“de p, d? ( ( ( ( 2 3 4 5 ) v V v _(l/2% [pdpxg + )andePg (“2% ruffle, (1/2)2; p32 ‘ fiz/B) if.“ d (6) V We shall call this "term—1”; this term contributes to H0 through H4. We shall call this "term-2"; this term contributes to H1 through H4. We shall call this ”term—3"; this term contributes to H2, H3 and H4. We shall call this "term-4"; this term contributes to H0. We shall call this "term—5"; this term contributes to H2, H3 and H4. We shall call this "term-6"; this potential-energy term contributes to H0 through H4. In general we shall use the notation Hm(n), n = l, 2, ...., 6; m = l, 2, 3, 4, to denote the mEE—order Hamiltonian coming from term—n H H H 0 1 m T hus we have: H0(1) 1 H0(4) + a0<6> H1<1) + Hl<2) + Rice) = Hm”) + Hm”) + Hm(3) + Hm(5) + Hm(6), m = 2, 3, 4 57 (AIII.1) 58 Using the expansion of‘pqfi,(see Appendix II, equation (AII.5)), one has 1 HO() 140(4) How) Hlu) H1<2> 111(6) H2<1> HZ<2) 112(3) 112(5) H2(6) H3cl) H3<2) 113(3) 113(5) 33(6) H4<1> 34(2) H4<3> H4<5) H4(6) (1/2>Z[o(p*11;P, OI (l/Zh) gag/213,2 V0 = <°rr/2>Z.9L.1/2<*b*a>(1/2){qa,pb}1>°< (AIII.2) 2Trhcabc kabcqaqch (AIII.3) (“Dd/53 Exffi *ab]qaqu°(P‘g 1¥ggb e**c*ab)(l/2){anb:Pc}%( aggd (-*Cd*ab)(1/2){qaqb’Pcpd} —(h2/8>Z [dew] q’ kabcdqaqchqd (AIII.4) 5({37 *abc]qaqchP°,PP zmhcabcd am 2 «fiabc = Qgcd (o(*d*abC)(1/2){qaqchspd}%( = abcde (_*de*abc)(1/2){qaqch’Pdpe} —Ch2/8) é; Fkx*a]qa Meagan kabcdeqaqchqdqe (AIII.5) (1/2)o(@abcd [dfi*abcd]qaqchqdl;(PB Exabcde ex*e*ade)(1/2){QaQbQCQd»Pe EX aggéef (_*ef*ade)(1/2){fiaqchqd’pepf} «Wang [<>(o<*ab]qaqb Zlficaéécef kabcdefqaqchqdquf (AIII.6) In equations (AIII.2) through (AIII.6) the "bracket coefficients" are those directly arising from the expansion Of}£¥5’ with the factor of conversion from normal coordinates and momenta QS, ps* to dimension- less coordinates and momenta qs, ps absorbed into them. They are 59 defined in Appendix II. The "parentheses coefficients" are related to the corresponding "brac- ket coefficients” by a. normal—mode depending factor that arises from expressing the components of the internal vibrational momentum Rx in terms of normal coordinates and momenta. Substituting (AIII.2) into the first equation in (AIII.1) we obtain the H0 in (2.15). Similarly, we obtain the H1, H2, H3 and H4 in (2.15) by substituting (AIII.3), (AIII.4), (AIII.5) and (AIII.6) into the second, third, fourth and fifth equation in (AIII.1), respectively. APPENDIX IV Coefficients (2;o(f3’g;a;-) in hi Herein are given the coefficients (2;dpa§a;—) in the second sum of (4.4). Throughout this appendix the.condensed notation Omega) will be used to denote (2;qp3;a;—), and j = 1, 2. (zzzB) = -(231/4/2123n1/2)(a§zq3 + @2323) [(31 + 9&2 —27\3)/ (31 - 713)”? 713) — <31 +32>/2%1%21 (xxz3) = -(231/4/8lleznl/2)(a’l‘XEZ3/21 + .ng/zz) + a§y(Iz - Ix)/4IX21yI;233/4n3/2 — (231/4/4Ilein1/2) x [a’l‘xgflal ‘33) + 32" 23/02 ’75)] (zxx3) = (xxz3) (yyzB) = —(R31/4/8Iy212n1/2)(afyflyzl + a§Y§2°3/>I2) + a§y(ly - Iz)/4Iny21z 33/4n3/2 _ (231/4/4Iy212h1/2) x [Elly 13/(9‘1 'q3) + aZyQ3/(9xz "9‘91 (zyy3) = (yyz3) (xzx3) = a’3‘y(Iz - Ix)/ZIXZIyI£q33/4h3/2 (yzy3) = a§y(Iy - Iz)/ZIny21gq33/4h3/2 (xyzj) = (Ajl/4agycg3/4Ixiylznl/2)[(fij - sky/2230;, —7I3)] + [agixay — Iz)/Ix + a§z(Ix — Iy)/Iz]/4leylgaj3/4h3/2 (zij) = (xij) (xzyj) = [aIX(Iy — Iz)/IX + a§y(lz - Ix)/Iy]/4leylz‘fij3/‘*fi3/2 (yzxj) = (XZYj) \23/l'(“I "9‘2” ' all/zglg/Izzfial ' 9‘3) = (2221) = (ztc/Izzn3/2)[213/4afzk112/221/2(4%1 —512) + 7\23/4a22k122/111/2(4a2 ‘ 31)] ' (Al/AZfl/Z'al +[A2 ' 29'3)$I3§23/Iz2fi(9'1-/3)(AZ—9‘3) = (WC/Izzfiwz)[322k222/223/4 +aazalzk122/xl3/4(4“2 'C'l) — azl/Zgg/Izzmaz ‘%3) = (re/IZZn3/2)[afzkl33/fll3/4(4?3 —.Ql) +agzk233/223/4(423_%2)]_ (431/2/Izzmli‘lg/(21 —7\3> + 52%, —7\3>1 = 2r6X33/4agyk133/leyn3/2211/2(423 -§41) + <4143>U4G§/I.2Iy2<31 43> = 2Ic233/4afiyk233/leyn3/2X21/2(423 —-%2) + (393)1/452‘3Jy _ Ix)/Iley2(22 _ 23) = (yx13) = (yx3l) = (xyl3) ; (xy32) = (YX23) (yx32) = (xy23) 61 APPENDIX VI Coefficients (2;qfi;—;ab) in hi Herein are given the coefficients (23aP;-;ab) of the second term in the third sum of (4.4). Throughout this appendix (23qflg-;ab) will be written in the condensed form anab). (xxll) (xx22) (xx33) (xx12) (yyll) (yy22) (yy33) (yy12) (zzll) 3fisin33721x2211/2 + (mdhl/Z/Ixz)[Zakalll/fil3/4 + a§Xk112(321—22)/Q23/4(4%l—%2)1 3ncos23721x2211/2 + (Kohl/Z/Ixz) [2«'=1§"1<222/9\23/4 + ai‘xklzz (542-41) />\13/“<47\2-%1)1 3n/21x12951/2 + (teal/z/Ixz)[aka133(395-73)/%13/4(4%3-2q) + a§xk233(3a3-42>/Az3/4(4a3-%2)1 (xx21) = 3nsin3cos3721x262122)1/4 + (Hchl/Z/Ixz) x [alxkllz<5alaaz)/al3/4(4al’a2'+82xk122(522'al>/223/4(4az'a1)1 3ncosZX/2Iy2211/2 + (tcnl/Z/Iyz)[zeiyklll/Rf/4 + agyk112(321-%2)/%23/4(4%1-22)] 3nsin33/2Iy2221/2 + Oman/13:2)[2a2yk222/123/4 + aiyklzz(392-“1>/213/4(4a2-“1)1 3fi/21yliq3l/2 + (“gal/z/Iyz)[afykl33(3fi3x%1)/A13/4(4234x1) + a§yk233(375“32)/az3/4(4R3422)1 (yy21) = —3nsin3cos3721y2(2i%Q)l/4 + (flcfil/Z/Iyz) x [aka112(5a1'%2)/al3/4(4A14x2)+a§yk122(5%2;%1)/a23/4(422‘%l)1 (n/2122951/2)[3§Z§ + Si§<21+%3)/(31423)1 + (TDCfil/z/IZZ) [Zaizklll/Ql3/4 + 332k112(39\1-g2) /223/4(47\1-7\2) I 62 (zz22) (zz33) (zz12) (xy13) (xy23) 63 (‘fi/ZIZZ9\2V2 )[33‘13 + $33()2+23)/0I2-9\3)] + (maul/Z/IZZ)[2a32k222/223/4 + aizk122(332<21)/213/4(4A2—fll)] ISZ§<fil+fis>/<“1-%3> + 33§<32+23>/<22423>I + (‘njc‘hl/Z/Izz) [aizk133(323—7\1)/9\13/4(4’A3-7Il) + 322193 (32342) ”23M ($342)] (2221) = (nSf3Q3/2I22211/4A21/4n-3 + 2(91+9\3)(911+22-223)/ éal-R3>(32-%3>I + (teal/2/122>Iaizkllz(591422>fi413/4<421422> + a22k122(5a2441)4223/4(422431)1 (yx13) = (xysl) = (yx3l) =‘chhl/zkl33(59t3-7\1)/Iny’)\§/4(47\3-7Il) -(n/4Ix2Iy2?\11/4931/4) [3(Ix/Iz)1/2cos’o’+ 3(Iy/Iz)1/2sin’gf - - zéfgcly-Ix>63I+23>/<%1-%3>1 (yx23) = (xy32) = (yx32)-_-1I:ch1/2k233(593-12)/Iny9\33/4(49I3-7\2) +(n/4IX2Iy2221/4A31/4)[5(Ix/IZ)1/2sin3’- (Iy/Iz)1/2cosfi+ + 2 23(22+%3>/<%2-%3>1 APPENDIX VII Coefficients (2;d;abc;—) in hi and All Possible Permutations The following is the list of the coefficients (2; ;abc;-), written in the condensed form exabc), appearing in the fourth sum of (4.4) : (2113) = (2"67‘31/4/12‘52H 131‘111/9‘13/4 - 2€3k133a31/2/7'11/4(49'3'21) + g3k112ql/223/4C49'1’7'2) 1 (2223) = (Z'EC9‘31/"/:Lz"‘2)[52631‘222/7'23/4 ‘ 2~{2’3k233a31/2/a21/4("95:42) + 4:31‘12222/413/4‘49'2‘7‘1” (217-3) = (“Icg37'21/47‘31/4”2527\11/2)[klzza‘zllz/W‘z‘ l) ' k1333‘31/2/ (433-41)) + (415c§:39\11/4>\31/4/lzfi2)21/2)[k112311/2/(49xl—M) - k235231/2/(49‘3-22H (2333) = (2Ic’A35/4/Iz'h2)[5:3k133/7I13/4(47\3-7\1) + §3k233/Az3/4(49I3—7\2)] 64 APPENDIX VIII Coefficients (2;o(;c;ab) in bi Listed herein are the coefficients (2;o(;c;ab), written in the condensed form (o(cab), appearing in the fifth sum of (4.4) : (2311) = Ti1/2231/43I23I34211/2122 + (Ida3l/4/Iz)[k111313(“3‘7al)/ g13/4(;5_ql) + kllzggg((221.22)/223/4(421:A2) —2221/4/(23—22)) ' 2%31/25I3k1334all/4(498'21)1 (2322) = h1/29'31/4322523/9‘21/21z2 + (W0231/4/Iz>[k222333ca3-722)/ ’223/4(23_7§) + k122§I3((222441)/al3/4(4)24Z1) -2211/4/(23221)) ' 2231/2555k233/a21/4(495—72)1 '(2312) = (2321) =.fi1/2q3l/4(ai23:3 + a§z§:é)flgll/4fi21/4IZZ + (2tefi31/4/IZ)[(23-921+222)Qll/4gi3k112/(4%1422)(23-21) + (23-922.2q1y221/43§5k122/(422.21)(25_i2) _ fi3l/2$§3kl33/g21/4(4)3;Al) _ OBI/25:5k233/211/4(4q3_7b)1 (2333) = (ic’A31/4/iz)[3:3k133(2212+29(32—7217\3)mi” (433—711)(A3—ql) + $§3k233(2X22+2A32—72223)/923/4(423J%2)(23JA2)] (2113) = (2131) = -nl/2a§z l3/9\31/4Iz2 - (2tc/Iz)[2235/4(221+fi3)§:3 x 1‘133/(49'3'21)(aralfllw4 ' (21222)1/4§23k1124131/4(4ql-Q2> - 313k111/(21g3)l/41 (2223) = (2232) = Jhl/zangES/Q3l/4Izz - (zrc/Iz)[2235/4(222+fi3)$;3 x 1‘233/(49'3‘9‘2)Okrazw‘zw4 ‘ (22241)ll€§l3k1224k31/4(422441) ‘ $23k222/(327h)l/41 65 66 (2123) = (2132) = —n1/2a§zflll/4§:3/(fifiyl/fizz - (zinc/Iz)[(9\l’4_.’)l/4 x q3k233a1+22 “97‘3”““3-7‘2) (Al-“3) + “31/452,31‘133 X (29'3‘9'1)((2129‘2)l/4(49‘3‘7'1> ' “21/4f23k122m‘2'9‘lfl (31223)1/4(422—'41) - 213/4523k112/9131/4(Ml-g2)1 (2213) = (2231) = —n1/2afzflzl/4§:3/(393)1/4122 - (21rc/Iz)[(42’h3)l/4x $23kl33(22+2q1'9a3)“49'3"al)(22‘9'3) + “31/4fl'3k233 X (23'3-92V(42231)“4C4'A3-22) fill/[‘stlleQ'l-fizfl (22223)1/4(4’Al_22) - q23/43'13k122/7'31/4(‘92—’41)] APPENDIX IX Coefficients (2;-;cd;ab) in hé Herein are given the coefficients (2;—;cd;ab) appearing in the sixth sum of (4.4). Throughout this appendix (2;—;cd;ab) will be written in the condensed form (cdab). (1111) = (—4Ir2c2fh)[3k1§1/9111/2 +O‘ikiiz/flzl/2Wi-32N (1112) = (1121) = (—8izc2k112/n)[klll/2ll/2 + klzjfil/221/2(4%1—22)] (1122) = (—4n2c2/fi)[332k111k122/211/2(422-31) + k112k222/z21/2] (1133) = (~4n2c2/n)[klllk133/211/2 + k112k23321/221/2(47h-7Q)] + (Al/43)l/2§15/212 (1211) = (2111) = (—8n?c2k112/n)[3kllle/221/2(4Ql—22) + k1227‘2/‘9‘11/2(49‘2-7'1)1 (1212) = (1221) = (2112) = (2121) = (—len?c2/n)[Alklfznzzl/2(421—fiz) +7'21‘122/7‘ll/Z(49‘2‘9‘1)1 (1222) = (2122) = (-8n2c2k122/n)[k11221/221/2(421122) + 3k22292/a11/2(4“2-31)1 (1233) = (2133) = (-8n2c2/fi)[21k112k133/Q21/2(4%14X2) + a2k122k233/‘7‘ll/2(49‘2‘7‘1)1 + (2122/332)1/45I3523/Iz (2211) = (-4n?c2/n)[322k111k1222211/2(4224A1) + kllzkzzz/zzl/Z] (2212) = (2221) = (-8n?c2k122/m)[kllgfizfiall/2(4fizlkl) + kzzz/fizl/Z] (2222) = (—4n?c2/n)[22k132A211/2(4%2421) + 3k232/221/2] (2233) = (-4ch2/n)[32k122k133/311/2(422131) + k222k233/221/2] + 2 (92/a3)l/2523/212 68 (3311) = (—4t2c2/fi)[323k111k133/211/2<47h‘31) +'23k112k233/ 321/2(4’A3'9‘2)1 + (waif/233325 (3312) = (3321) = (—8r2c2ffi)[23k112k133fl411/2(433411) + 75k122k233/ ‘321/2(423432)1 + (932/2122)1/I:13§23/Iz (—4r2c2/n)[23k122k133/211/2(433431) + 37bk222k233/ 221/2(4'A3—32)] + (Q3/32)1/2§'2§/21z (—4t?c2/n)[Q3klg3/qll/2(4Og—Al) +323k2§32221/2(423422)1 (3322) (3333) (1313) (1323) (2313) (2323) (1331) = (3113) = (3131) {34.1 (1332) = (3123) = (3132) ‘(al/22)1/43I3§23/Iz] (2331) = (3213) = (3231) -(22/Ql)l/ASI3§23/Iz] (2332) = (3223) = (3232) 2 — 3/Iz = [‘16“?Caaakl33k133/fiall/z(423491) = ['16n20233kl33k233/fiflll/2(433431) = [~16K2C223k133k233/fi7El/2(4X3izz) = [‘16W2C233k233k233/nfizl/2(433‘32) APPENDIX X Coefficients (2;-;—;abcd) and A11 Possible Permutations Listed herein are the coefficients (2;—;—;abcd) in the seventh sum of (4.4). Throughout this appendix (2;—;-;abcd) will be written in the condensed form (abcd). (1111) = 2rhckllll — 212c2n[3k1§17211/2 + kl§2(zfilJAZ)/221/2(421-22)] (3333) = zwnck3333 - 2m2c2nIkl§3(223-31)/211/2(47g—21) + k2§3(223—7&)/%21/2(493422)] (1122) = ztnckllz2 — 4n?c3n[k112k222(3%l—%Q)/221/2(421422) + k111k122(37'2'7'1)/211/2(4f"2-7\1) + 2klizall/z/(‘IQ‘l-‘Afl + 2k122321/2/<432-7h)1 (1133) = ZIfickll33 — 2n9c25[k111k133(59g-221)/flll/2(423—21) + k112k233((221412)/2221/2(47&—7b) + (223'92)/2321/2(433432)) + 2k153a31/2/(4A3‘31)1 (2233) = 2Wfick2233 - 2n9c2‘h[k222k233(523—232)/7b1/2(475422) + (k122k133/211/2><<2’42— l)/(4’Az—’/)l) + (223—21)/ (423—31)) + (1112) = Z‘IHTCklllZ - 27L2C2’fi[klllk112(7ql—qZ)/fill/2(40l1-9I2) + kllzklzz(I3Zffi2-2212-5222)/221/2(421422)(422421)] (1222) = 2Kfick1222 - 2u9czn[k122k222(722—21)fik21/2(422431) + k112k122(13211243215312)fill/2(47‘1422)(432—331)] (1233) = 2nfick1233 — 4“?c25[k122k233((2)3422)/221/2(423422) + 221/2/ (432—21)) + k112k133<<223-21)/211/ 2423-31) +9111/2/<421—212)> +2kl33k233731/2(Baa-al‘fiz>/<4a3‘21)(433422)] 69 APPENDIX XI Coefficients (33dp36E—ga) in bi Listed herein are the coefficients (3;dfizd:—;a) appearing in the first sum of (4.5). They are expressed in terms of the auxiliary coefficients (T;o(,(}yI;—;a) and (U;¢(5,’&’f;—;a) as follows: (3;dfi')/7;-;a) = (Baha’i-:61) + (mgggL-m) (A XLl) The detailed expressions for (T;agpgég—;a) and (U;afi4y£}—;a) are given in this appendix following the list of (3;d@3$}-;a). Throughout this appendix the condensed notations «(ya/(a), (o(,{53rfa) and («PQ’Ya are used to represent (3;o({}a’[;—;a), (T;o(,{l;3'{;-;a) and (U;o(@,a’f;-;a), respectively. (1) Coefficients (x3763): (xxxxl) = (xx,xxl) (xxxx2) = (xx,xx2) (yyyyl) = (yy,yyl) (yyyyZ) = (yy.yy2) (22221) = (z,zzzl) + (zz,zzl) (zzzz2) = (z,zzz2) = (zz,zz2) (xxyyl) = (yyxxl) = [(xx.yyl) + (yy,xxl)]/2 (xxyyZ) = (yyxx2) = [(xx,yy2) + (yy.xx2)]/2 (yyzzl) = (zzyyl) = [(2.yyzl) + (yy,zzl) + (zz,yyl)]/2 (yyzzZ) = (zzyyZ) = [(2.yy22) + (yy.222) + (zz,yy2)]/2 (zzxxl) = (xxzzl) = [(z,xle) + (xx,zzl) + (zz,xx1)]/2 (zzxx2) = (xxzzZ) = [(z,xxz2) + (xx,zzZ) + (zz,xx2)]/2 (zxle) = (xzle) = (z,xle)/2 (zxzx2) = (xzsz) = (z,xzx2)/2 7O 71 (zyz-l) = (yzyzl) = (x,yzyl)/2 (zyzyZ) = (yzyzz) = (2.yzy2)/2 (xyxyl) = (xyyxl) = (yxxyl) = (yxyxl) = (xyacyl) (xyxyZ) = (xyyxZ) = (yxxyZ) = (yxyx2) = (xy.xy2) (xxxyB) = (xxyx3) = (xyxx3) = (yxxx3) = [(xx,xyB) + (xy.xx3)]/2 (yyxy3) = (yyyx3) = (xyyy3) = (yxyy3) = [(yy.xy3) + (xy.yy3)]/2 (zzxy3) = (zzyx3) = [(z,zxy3) + (zz,xy3) + (xy,zz3)]/2 (xyzz3) = (yxzzB) = [(z,xyzB) + (xy,z23) + (zz,xy3)]/2 (zxzy3) = (xzyz3) = zyzx3) = (yzxz3) = (z,xzy3)/2 (zyyz3) = (z,yyz3)/2 (zxxz3) = (z,xx23)/2 (2) Auxiliary coefficients (4,193;ng : E51/23l3(al+9h)/3(>1‘7b)211/4Iz4](aIZ5I3 + 32a§23) X [ (2 192-223) / (214(2) (AZ-33> - (Alma/211321 [PI/€523/3(g2433Y)21/41241(alzfls + 322553) X [ (21+22—223)/(21.7.2) (912-913) - (Map/2210121 (z,zxxl) =[ml/2313(%1+75)/12(xl—23)211/41x21221 x [aIx-{l‘flfil-zfl/aflgl-zfi + 82x§3(3>|2->\3)/7\2 {32-713)} -..}gyg‘galay/8(2,—23))(11/4a31x2122n1/2 (z,zxx2) =[ti/23:3c22+95)/12cx2-95x121/4Ix21221 x -a§>'§§3<22+33>/802-23>9\21/43,ix2122al/2 (z,zyyl) =[fi1/23f3(7\1+fl3>/12(9Il-’>I3)9»11/4Iy21221 X +3§Y§:;(Rl+)3)/8(114)3ykll/4231yzlzafil/2 =I'nl/ 2333612913)/1202—9I3)9£21/4Iy2122] x +a3y523642+33>/8(a2"73)921/49s1y2122h1/2 (z,zzzl) (z,zzzZ) (z,xle) (z,xxz2) (Z.yyzl) (z,yy22) (z,xle) (z,xzx2) (z.yzyl) (Z.yzy2) (Z’WZ3) (z,xzy3) (z,zxy3) 72 _a§y 13(21423>/41x21z2(OHIZ3)7&l/423hl/2 '35y523(22+95)/4Ix2Iz2(124334221/41351/2 +a§Y5:;(3y+?b)/4Iy2122(21:75)?11/42351/2 +a§y5:3(22+23)/4Iy2I225'2“23ya21/43331/2 (z,zyx3) = [:nl/2a§¥§:§dllak3)/o(dez3xx3l/4IXIYIZZ] x [(M—slngfigaz-fign + E-fil/ 2a§y§3§<32+23)/6(912-23> x '231/41x1y122][(22—375)/223(AZ-93)1 + [six —a{Y(Ix-Iy)/ lz]I§T3611+23)/81xlylz?2f231/4(9h-23)fil/2] + [afiX—agyx (Ix-1y) /Iz] [553 (4203) /81x1y12222331/ 4 (fiz—fisml/ 2] (z,yzx3) = (a€V-a:*)§:3(ll+?5)/s l 31/4(21_23)Ix1ylgh1/2 (z,yxz3) = [sol/Zagy/lzfl35/4Ixiylzz1(513(21423) x (’xfi—fip/(AI-fip +33%).)(2,-333>/<22-33>1 — Ia):y + aizux—Iymzl £3<31+93>/8319sl/4<21-’43)Ix1y122nl/2 - [aXY + a§z(IX—Iy)/Iz]533(22¥23)/33éA§/4IXIYI§(22—23)nl/2 (3) Auxiliary coefficients GXQQKfa) : (xx,xxl) = (3h1/2/21X49q1/4)[aixsin%fffil + agxsinvcosa72/ ] + (ZIcafx/3le'fil3/4) Izaixklll/9L13/4 + agxk112(321_>'2)/ a23/4(431'32)] + dtcagx/3Ix4423/4)[aka112(531'22)/ 9(13/4(4il_9«2) + .gxklzzwzz—ap023/4432-11)I (xx,xx2) = (351/2/21x4221/4)[agxcongVQZ + agxsinacosaVZAl] + (Z‘llficaaéx/31x4223/4)I:2a}2cxk222/’/'\23/4 + a}ka122(37\2-9\1)/ 213/4(4fizexl)1 + (reafx/3IX4213/4)[akallz(5filéhz)/ a13/4(411‘22) + a2(xk122(59‘2"7‘l)”23/4(4’Az‘7\1)1 73 (xx,yyl) = (351/2/21x21y2a11/4)[afxcosfif/fll - agxsingcosz7232] + (mcaffX/ 313:1323I/4) [zalyklll/X‘l + 32yk112(35‘l‘32)/ 753/4(421432)1 + (rca§x/3lx21y%(23/4)[aiyk112(521412)/ 3/4 _ _ 3/4 _ 9‘1 (421 a2) + agyklzzwxz 99/32 (M2 21)] (xx,yy2) = (3fi1/2/21x21y2221/4)[agxcos%3722 — aixsin3c0357221]-+ (xx,zzl) (xx,zz2) (xx,xy3) = (”caJZm/ 31231372221”) [2332]},1‘222/ 7'2 + aiyklzzw‘z‘qlfl ‘213/4(422421)] + (tcafx/31x21y%xl3/4)[aiykllz(521-22)/ 21344214,) + against—31>/2,3/‘*<422-21>I (sol/Zafz/slxzizaall/4)[afxafz/Ql + agxagz/zfiz] + [Til/2 l3al+X3>/3Ix21229\11/40‘1‘9‘3)1[313/31 + 2523 X (31+512-2313H22 @2143” + (zxca’l‘x/lezlzzfif/l‘)[2aiz x. XIII/31w 4 + a2zk112(37'1-9'2)/qz3/ 4“ml-7'2” + Wea’zm/ 31x2122223/4)Ia§2k112(521-22)f313/4(421:22) + agzklzz x (5912-21)/>123/4(422-7Il>1 (SKI/Zagz/MXZIZBZZI/l')[agxagzaz + ai‘xafz/zfil] + “71/2523 (92+Q3V 31x2122X21/4az‘7‘3” [{2‘3/9‘2 + 2513" (31+32-223)A1(31-913)] + (zuca’z‘x/3Ilez7qz3/4)[2a§z x 1‘222/323/4 + a‘1221‘122(3312'7'1)”‘13/4(‘*X2'7\l)1 + (IcaIx/ 3Ix21z27'13/4)[aIzkllZ(5’41’9'2)al3/4(47'14\2) + a"2321(122 X (522-711)/423/ 4(4712-711H (xx,yx3) = (-351/2a’1‘x/891231/4lx41y2)[(Ix/lz)1/2cosa/+ (Iy/Iz)l/Zsin’X] + (fl/Za’Z‘X/SOIZ’A31/4Ix41y2)[5(Ix/Iz)1/2x sinyf- (Iy/Iz)l/2cos 7] + (Ito/31x3ly9x33/4)[a’ka133 x (5X3‘X1)/X13/4(49‘3'9‘1) + a'2mk233<5;'3'7\2)(423/4(M3412)1 Ih1/2(Iy-Ix>/8IX4I§231/4J[an§13631+?g>/31<314%3) + a2x§302+a3>flz1 74 (yy.xx1> = (3fi1/2/21x2Iy27111/4)[ai'ysinZX/Al + agysingcosa/mz] + (21ccaXY/3Ileyfll3/4) [2a’kalll/7cl3/4 + a§Xk112(37\l-’)(2)/ ‘323/4(421—9§)1 + (rcagy/31x21y3223/4)[aka112(521—22)/ 0'13/4U‘a1'qz) + agxklzz(522'7‘1)/7)23/4(47‘2'Xl)1 (yy,xx2) = (3hl/2/ZIXZIy29I21/4)[agycosz’b/Az + aiysin'b/cosy/fil] + (zuca5Y/3Ix21y2223/4)[2axxk222/223/4 + aka122(3224kl)/ 9123/4(4%2—7\1)] + (roa{Y/3rxzry2213/4> lawman—22w a13/4(49‘1‘7‘2) + a'2'1'1‘12263‘2‘ 1)/7‘23/4(47‘2'Xl)1 (yy,yyl) = (3n1/2/2Iy4211/4)[afycoszgifll — agysingcosgvzfiz] + (zucaXY/3Iy3113/4)[2aXYk111/213/4 + a§Yk112(321422)/ 7123/4(431-22)1 + mea§Y/3iy4323/4> [aiykllz (521-22>/ 7'13/4(4a1'9‘2) + aiyklzz(59‘2‘7‘1V9‘23/Hflz’al)1 (yy.yy2) = (3h1/2/21y4221/4)[agysiay/flz — aiysinatOS/J/Zfil] + (27Lca5y/31y4 23/4)[2a§Yk222/7Iz3/4 + afYklzzehz—le 0113/ “422-31” + (reap/31374213”) [a{yk112(521-22)/ 7'13/4(4al'7‘2> + a32'Yk122(5’42—7\l)/o\23/4(47\2—21)] (yy,zzl) = (3n1/2afz/8ly2123211/4)[afyafz/al + agya§Z/222] + m“ 2 51°3(21+9\3>/3Iy21z1211/ 461—23>1[a?5§3/21 + 2a§y x g, (31+12-2213H912 (22413)] + (21ECaXy/3Iy2122213/4) [2afzx klll/9\l3/4 + a22k112(321'22V9'23/4MQ'1'X‘2H + (th3237 3Iy2122223/4)[aIzkllzwa'aflfll3/4(49'1'q2) + aizklzz X (fig-’Ap/ 23/4<4’Az—31>I (zz,xx1) = (351/2/21x2122211/4)[aizsinfiyzfil + agzsingcosavzflz] + (zucafZ/3Ix2122213/4)[2akalllnal3/4 + agxk112(321432)/ 7'23/4(‘*”'1‘32)1 + “cagz/3Ilezzaz3/4) [alxk112(59‘1'7\2)/ 7t3/4(47&J7§) + a§Xk122(522421)[323/4(422421) 1 75 (yy,zz2) = (3T‘Il/Zazz/8Iy2 IZ§ZZ3221/4)[a§ya /;\2 + a1yaf z/2Q1] + [“1/253/31172122221/402 >13)][5‘2y 23(22+23)/32 + 2a1’Y51’3011+A3) 01+)2-223)/21(?\->3)1 + (zucagy/sly 2Iz 2x 9‘23/4H2a22k222/7123/4 + alzklZZCEQZ 7‘1)/)'13/4(4>‘2'7\1)]+ mca1y/31y21227113/4Ha1z k112(511—32)/9\13/“(421—%2) + 322k122(57‘2">'1)/223/4(422 ‘31)] (zz,xx2)= (3fil/Z/ZIXI 2 2222““)[azz cos 23422 + afzsinarcosg/zfifl + (27[ca§z/3Ix2122’>I23/4)[2a§xk222/)I23/4 + aka122(3’>12-21)/ 213/4(4%2—’A1)] + (mail/31121 22313/4)[a’1‘xk112(591—7Iz)/ 7‘13/4(431-22) + a ’z‘zxk122(5%2—7I1)/223/4(42 41)] (yy.xy3) = (yy.yx3) = (-3fr1/2a{y/81ley421'a31/4)[(Ix/Iz)1/2 cos1+ (ly/Iz)1/2sin'b(] + (ml/Zagy/stzIy4QQ3l/4)[5(Ix/Iz)1/2 x sin/64 (Iy/Iz)l/2cosg] + (no/3ley3233/4Ha1yk133 x (5”‘3—Xl>//\13/4(49‘3—Xl) + a2yk233(5’X3-9\2)”\23/4U/A3-32)1 [fil/2(Iy-Ix) /81x21y") 31/41 em. (31%) Al (”41-23) + .yyr3c22+23>m21 (zz,yyl) = (3fi1/2/21y21 2221““)[a1z coszf/Xl - agzsin’a/cosa’nfiz] + Quail/31221 327q13/4H23ka111/a13/4 + 82yk112(331-7\2)/ 323/4(4'>\1—22)1 + (IcaEZ/3Izzly2223/4)[aka112(5ql-7Iz)/ f’) EMMA—7‘2) + 32yk122(57‘2'9‘1>/9'23/4(47‘2'9‘1)1 (zz,yy2)= (3111/2/21y 21 22;) 21/4)[a2z sin2X/22 — a1zsin3'cosf/221] + (zucagz/nz 21y2223/4)[2a§Yk222/x23/4 + aiyk122(322—21)/ 213/4(4312_’/11)] + (7cca1z/3IZ2 1112?, 13/4)[ayyk112(5’)\1—22)/ 213/4421—32) + agyk122(532-21)/223/4(422-’/\1>I 76 (22.221) = (sol/2 822/2125 21am)“ .2); /21 + (a3 732/2221 + [1.11/2 x 5:3(al+33)/3Iziall/4(alaa3)1[alzsI34Xl + 2822533 X (al+55-223)/X2(X2433>1 + (ZIbaIz/3IzXXI3/4)[Zaizklll/ 9'13/4 + agzk112(3ql-22)/9\23/4(49\l-9\2)] + (Icagz/3Iz X ’223/4)[afzk112(591422)/>13/4(421’Az) + a 22k122(592‘91)/ ’k 23/4(43 2431)] (22,222): <3fi1/2a zz/zlz 52 21/411133212112 + (a1ZZ>2/zx11 + ffil/Zx 3.23/4 + a1 zk122(3>\2- 1913/“ (43241)] + (reef/312 4 x 3K13/4)[a12k112(5)1412)/213/ 4(421332) + a2 zk122(522‘ 1)/ filmed 241)] (zz, xy3) = (zz,yx3) = (-3nl/2aZZ/81x211y21222'2;1/4)[(lx/IZ)1/2cos7{ + (Iy/Iz)l/Zsinvi + cal/Zafiz/81x21y212222951/4) X [5(Ix /I 2z)1/Zsin’gf— (I y/Iz)1/2cos'6’] + [El/2(Iy -I x)/ SIX2 1229‘ 321/4][a1z§1°3(21+7\3)/7I1(3I1-9\3) + azz 23x €32¥;:>/32(324fi3>1 + (WC/BInyIZ 2233/4)[a12 k133 x (533-31>/2\13/4<413-7«1> + afizk233(93-Xz)/X23/4(47‘3-7\2)] (xy,xy1) = (xy.yxl) = (yx.xyl> = (yX.yxl) = (-3fil/2a§y/8Ix3ly323 X 9111/4)[(lx/IZ)1/2cosg+ (Iy/Iz)1/2sin7fl + [mang133 x (5A3JZ1)/31x21y2 33/2(423J)1)] + Pal/2513(Iy-Ix) x a§X(ale3)/8Ix3Iy333all/4631JA3)] (xy,xy2) = (xy,yx2) = (yx,xy2) = (yx,yx2) = (ml/Zagy/81x3ly323 x 9.21/4)[5(Ix/Iz)1/2siny-(Iy/IZ)1/2cos3’] + (rca’gyk233 x (523432)/3Ix21y2233/2(423432)1 + [51/2§§3(Iy-IX) x a§Y (3295) /81x3ly39\39\%/4 (2243)] 77 (xy,xx3) = (YX,xx3) = (Bill/Zagy/ZIYIZIXZA35/4) + (‘Itca’3‘y/3lxaly X “33”) [ aka133< 37‘3'31) ”'13/4 (433141) + a’2‘xk233 ($342” Q23/4(47\3_’)12)] (xy.yy3> = (yx.yy3) = (351/ Zap/21211152235“) + (lrca’g‘Y/31y31x X 9.33/4)[31’Yk133(32.3_9.1)fl13/4(49.3_9(1) + 32yk233(37‘3-’/\2)/ = = (finely/41115122235“)[£32/(A1—33)+;z‘32/ (423.211) + agzkz33(323-’x\z>/9\23/4<4’A3-22>I APPENDIX XII Coefficients (3;dfl3§b;a) in hé Expressed in terms of the auxiliary coefficients (T;dp@§b;a), (U;°"F”K;b;a)’ (N;o(,@’b/;b;a), (X;o(€),' + (xyzij) (Xxy,zij)]/2 + (nyzij) (zxyij) - (yxzij) = (szyij) + [(Uz.xyij) + (Nz,xyij) + (Xxy.zij)]/2.+H(szyij) (yzxij) = (szyij) + (zeyij) (xzyij) These last three entries are for a = b = 3 : (xyz33) = (zyx33) = (Txyz33) + [(Uz,xy33) + (Nz,xy33) + (Xxy,z33)]/2 + (ny233) (zxy33) = (yxz33) = (szy33) + [(Uz,xy33) + (Nz,xy33) + (Xxy,z33)]/2 + (szy33) (xzy33) = (yzx33) = (szy33) (2) Auxiliary coefficients (neigfgbm 5 (egg; ba): j = 1, 2 (zzz3j) = {-4rckj33fi33/4/3Iz3n1/2(423-95)][£2313 + £2533] x I 011+32-2X3V 01-313) (3233) - (31%) mm 21 (zzzj3) = {-41rckj337x31/4(2713-21)/3123fi1/27\11/2<4’Xs-Xj>1[aiz§l3 + 85253][(/11+?I2_2Q3)/0(1_’\3) 02-33) - (Arm/231321 (xxz3j) = (zxx3j) = [- ckj33 33/4/3Ilezhl/2(4 3- 1)][afx 13 x (3al‘a3)/ (AF/Afial + angg3(332.33)/(>~2.23)211 + nckj33a§Y/2Ilez(433-31)9I31/4n3/2 (xxzj 3) (YYZ3j) (W213) (xzx3j) (xzxj 3) (yzy3j) (yzyj3) (xyzll) 8O (zxxj3) = I-Irckj33(233—11)’)\31/4/3IXZIZ’>\11/2(4%-fij)nl/2] X [angIBOAfO‘BVal‘QBVfi + a§x£3(39\2-?\3)/(?\2—99)9\2] + Tlickj 3333‘y {2331—711 ) /2IxZIz/)'jl/2 (433.911 )9133/4113/2 <2yy3j> = ['IIij33 33/4/3Iy212f1/2c433-3pl[c.1813 x (3XI‘X3V (XI-aflal + a23'g2'3(3">‘2")‘3)/ (9‘2'7‘3Vzl " 'IIij 33a§Y/21y2]:z (423;):1 )fi31/4L113/2 (zyyj 3) = [’TIij 33 (2%3-91131 >131/4/3Iy219j1/2 (475—7111 )‘Ifl/z] X [318153 (321143) / (kl-afia'l + 32323 (3324‘s) / 024932] _ 2 1/4 2 lrckj 33a};y (233141 ) /1X2129\jl/27133/4 (49.34).j 153/ 2 _-n—ck133a}3 (47‘2- 97‘3".1 (nck222/21x1y12325/453/2)[a§z(lx-Iy)/Iz - a’z‘x] +Itck122 X 1/2 + (nck122’2121/2/2leyIQI13/4(49\2-7\1)fi3/2) [a1z (Ix-Iy)/Iz-a’1‘x] (xyzZl) = (zyx21) =7Ick112a§y£3q11/4(27\1—9\2) (Al-39B)/3leylz X 321/2(47\1_')(2)(’)\1_7137fi1/2 + (“$11203 l-7\2) /21x1y129\21/2X fil/Zaxy (ii-39‘ )/3III$\(91- )(4 -’)I)1I1/2+(-rrcx 2 3 3 2 3 3 2 3 1 xyz k122/21x13112?‘2:L/4(l‘/)\2"’/.\1)1'i:3/2)[3'22(1x'1y>/Iz " a32cx1 81 (xyzm = = M122(222-21)2.21/‘*a2-323>a§y§3/31x1yiz x [)‘11/29\3(X2-7\3>(4”\2-’)\l)‘1’il/2 + (Trek122(25'2-9\l>/21xlylz X 211/223/4(49\2—7\1)n3/2)Ia§Z(lx—Iy)/Iz - a>2£l—>\2)‘fi3/2)[afz(Ix-Iy)/Iz — a’1‘x] (zxyll) = (ylel) = Irck111a§Y§"13(fl1—3’)I3)/3IXIyIz’)I11/‘Q3(21—’A3)Ifil/2 + (71ck111/zlxlylz’l15Ming/2)[afzaX—Iywlz + a1’y] + We x k112’k11/2221/4a’3‘yff3(AZ—37x3) /3InyIz’/\3 (AZ—Q3) (421-32)?” + (Tck1122111/2/2InyIz’7123/4(4911—32m3/2)[a§Z(Ix—Iy)/Iz + a‘2’y] (zxy22) = (yx222) = Ick222a§y g(912—3713)/3InyIz’)\21/4fl3(’>\2-'X3)'fil/2 + (1rck222/2InyIz’/\25/‘m‘3/2)[afizax—IYVIz + afiy] +th X k122321/29111/4a3‘yg3{21—323)/31nyIzg3()1—>I3)(422.9(1ml/2 + (Irck122’121/2/2InyIzQ13/4(422—31m3/2) [aizux—Iynlz + afy] (zxy21) = (yszl) = ‘n’ck112Q11/4(2’/)1—9Iz)01—fl3)a§y§:3/3leylzq3 x 9.21/2(7.1—23)(4’A1—712)n1/2 + (Trck112(2ql-f>\2)/ZInyIzO\21/2X 7113/4(421—712)r3/2)[aizux—Iywlz + aiy] + 71‘ck122’A11/4 x Q21/2593“;(323,43)/31x1y12930‘2-f>‘3) (laza‘lfll/2 + (TIC X k122/2InyIz’Azl/4(47\2—>\l)‘fi3/2)[a§z(Ix—Iy)/Iz + an (zxy12) = (yxz12) =rr,ck122a’3‘y 53922-21)02-393)/3IXIYIZ’A11/223 x OLZ-X3)(47\2-’/\l>fil/2 + (Treklzz(2712-31)/21nyIz’>‘ll/29\23/4X (422—Z1m3/2) [a§-’-(Ix-Iy)/Iz + a§Y1 +nck1129x13/4a’3‘3’51’3x (91'3q3)/3Ix1y1z?‘30'l"q3) (411-'>\2)'fil/2 + (TCkllqul/Z/ zlxlylz’/\23/4(4’A1-’/\2)fi3/2[afzax—Iywlz + a1”] 82 (xzyll) = (ylel) ='n’ck111(a{y - a§X)/4InyI£215/4fi3/2 + 71‘ck1127111/2(a§y - 3:2“)/21nyIz7Iz3/4(4A1-22)‘fi3/2 (xzy22) = (yzx22) = ck222(a§y - a§X)/4InyI£AZS/4fi3/2 + 'nck121321/2(a1y — afx)/2InyI;Z13/4(432131)h3/2 (xzy21) = (yzx21) =‘ch112(221—%2)(aiy — afx)/4InyI£AZl/2213/4 X (421—22)n3/2 +-7rck122(ag’y - agx)/2leylé221/4(432—21)n3/2 (xzy12) = (yzx12) ='rck122(2X2—X1)(a§y - a§x)/4ley1gh1l/2A23/4 x (4)2—A1)n3/2 + rck112(a1Y — a1X)/2lx1yl;h11/4(421—)zyn3/2 (xyz33) = (zyx33) = Irck133q31/2/n1/21x1y12(423421)1Ia§¥§13211/4 x (31-3A3)/333(31—>3) + (afz(Ix-Iy)/Iz — a§X)/25213/4] + [Ihk233431/2/fil/21x1ylz(4)3aA2)1[33y523321/4(Xz'323>/ 3k3(k2—23) + (a§Z(lx-Iy)/Iz — a§X)/2hAZ3/4] (zyx33) = (yxz33) = [Ickl3é13l/2/hl/lelylz(423-?fi)][a§y5:3qll/4 X (A1—3k3)/3%3611- 3) + (afz(IX—Iy)/Iz + a1Y)/ZH}13/4] + FI‘k233X31/2/“1/21xlylz(4X3JX2)1Ia§y§53221/4(az'333)/ 323(22_k3) + (a52(lX—ly)/Iz + agy)/2h753/41 (xzy33) = (yzx33) = (Ic331/2/2leylih3/2)[(aiy — a’1‘x)k133/9113/4 x (423-21) + (agy - a§X)k233/223/4(423-22)1 (3) Auxiliary coefficients (Uxx,py;b;a) e (a’ be) : In the following,cx= x, y ; j = l, 2 (z. 13) = <-81rc7~31/4/3I 21,115”)[(313211/4/01—23»I§f1°(k111/21/’* + ag11 (z, 23) = (—8Ic}31/4/3rleih5/2)[($31)21/4/(22—Z3))[aéak222/223/4 + aIKk1227‘2/213/M422‘Z1H + (£3211/4/<9i1-23>>I§§°( x k122223/4/211/2(422'al) + 51(kll2313/4/azl/2(4'l‘a2)1] 83 (2,2213) = (-8nc;\31/4/3Iz3fi5/2)[(313)11/4/(911-913D[afzk111/213/4 + a2zk1127‘1/7‘23/4(47‘1‘7‘2)1 + ~('52'39‘21/4/(X2'X3D[5‘23 X1227‘23/4/311/2(4>‘2’7‘1) + 3221‘1127'13/4/221/2ml‘32) 1] + (8,3:3211/4231/4/312352)[211/2513/(91413fl + 7‘21/2 X §§(21+22-223)/(21-9I3) (A [913%] (2.2223) = (~81rc23 1’4/312 3~115/2>I<$"3 1’ 4/(22-3 ))[a2k222/912 + a1 21(12232/113/4 (422-711)] + ((139)114/ “21-23mm? x k1129'13/4 /X21/2(47‘1‘X2) + 3223/1‘1229‘24/Xll/2(47‘2'7‘l>11 + (8{1"3221/4231/4/3133'52)[azl/X'S‘Zg/(221A3)2 +7I11/2 x Q§<21+22-223>/<3\2-9~3>01-23%] 3/4 (42331) + 521(233/223/ 4(0)?in (2.2233) = <-8Ic$13211/4231/4/3IZ3Q1-23m5/ 2>Iaizk133/<4%3-%1) x 9113/4 + agzk233/(4A3-22)9|23/4] + (8333211/4231/4/3123 x (21- 3>fi2>I31§/(91-3\3) + rig/<22 -A3>I (z,xyij) - (z,yxij)= [— 81Tca3 xyk133gg3qjl/4 M3/3IXI 121115/291 l”X (2133x4331) + {13(13011219132)1/4clx-Iy>/2Ix21yzlzx fi01-713M'31-713H . i = 1. 2 ; j = 1. 2 (z,yx33) = (z,xyll) + (z,xy22) (z,xy33) (4) Auxiliary coefficients (N5o(,&715b;a) :- (ogflfba) : In the following,0(.= x, y ; j = 1, 2 (z,o(o(j3) = 63:3211/4/(’11-).3fi31/41221x + [41'3'1'391-11/49\31/4/31°(21z x Til/205‘ 3)][351‘13309‘33‘9/313/4(4X3‘Xl) + an2(°(1<233 X (333-32>/323/4<413-22>1 84 (Z’zzj3) = (8"h§§33jll4331/4/3Iz3<11-23rhl/2)[afzk133csfi3—Zl)/ (z,xx31) (z,xx32) (z,yy3l) (z,yy32) (z,xyll) ‘A13/4(4%3‘”1) + agzk233(37b‘z2)/%23/4(475'A2)1 + (333 X Z1“ 4/<21-23)9\31/ 4123) [31921—29 + Egg/(22%)] 6§13231/4ein%1/(21—7g)211/41x212 + (sweizgfill/4Z3l/4/ 3(21'fl3)1x21ifil/2)[zakalll/zl3/4 + a§xk112(37‘1-7‘2)/ (421—7§)9§3/4] + (41c£33221/4A31/4/3(A2—%3)Ileéfil/2)X [(5}1"f)‘2)a‘}1‘xk112/(‘31‘7‘29‘13/4 + (59‘2‘7‘1)aimklzz/Azw4X (422—Al)] + 33:3231/4sin3e0337(21423)221/4Ix212 65:5131/4cosaf7(22‘7§)x21/41x212 + <3TC§:3?El/4231/4/ 3(22—'A3)ix212111/ 2) [za’Z‘XkZZZ/Rf/ 4 + a’l‘xklzzmz-zlw (412-21)213/4] + (Afic§1§211/4231/4/3(21—13)Ixziifil/2)x [(5%2"”‘1)a‘}2{xk122/(49‘2"9‘1flz3/4 + (521—22)a§xk112/213/4x (421—fi2)] + 33:3231/4ein360s67(fi2—95)%11/41x212 63:3231/4eos337()1—Z3)211/41yziz + (8nc§:;A11/4231/4/ 3(21—23)1y211n1/2)[zeiyk111/213/4 + a§Vk112(3)1:22)/ (421-7by123/4] + (41c§33121/4231/4/3(22;23)Iyzléfii/2)X [(52132”?1‘112/(47‘1-7‘2)7‘13/4 + (522-21)a§yk122/z23/4X (422421)] — 33:3231/4sin5eos37(g1-75)“21/41y212 6SZSQ31/4sinfiy/(32—33)}21/4Iyzlz + (swegg3fizl/Qfi3l/4/ 3(32-R3)Iy21ih1/2)[2egyk222/223/4 + aXYk122(3§2421)/ (4;2_21)q13/41 + (amcgi3g11/4g31/4/3(214A3)1y21ifi1/21x [(532—?1)a§Yk122/(422—91)%23/4 + (-r>”\1"’>‘2)<‘=‘ka112/9‘13/4X (421422)] - 33:3951/4sinfieosg7(22—133211/41y212 (z,yxll) = [-3313/2(21afi3)1x21y2123/21[Ii/2 cosir+ Iyl/Zsinaq + 4we315211/4(5%34x1)k133/3(214%3)%31/2 x (423-31>1x1ylifil/2 - 5:3(31+?3)(Ix—Iy)/2(%l—%3)ZIXZI§IZ (z,xy22) = (z,xy12) = (z,xy21) = (2,2231) = (z,zz32) = (z,xy33) = 85 (z,yx22) = [g3/2(22-’A3)Ix21y2123/2][sixl/Zsinar— 1y1/2coslg] + 4mQ3fizl/4(55\3-7\2)k233/3(AZ—913951” x (413-791) InyIz‘fil/2_ 3330293) (Ix—1y)/2()12_913)2Ix21y212 (Z’YX12) = [giszll/4/g21/4(A1423)IXZIYZIZB/z][51x1/2 x sin3’— Iyl/zeosg] + Ame5:3A11/4(523422)k233/3(21—23) x (423-7‘29‘31/212213212‘51/2 - 3&37‘11/4afi7‘3) (Ix-Iy>/ Mai-“3) <“2—Q3921/41leyzlz (z,yx21) = [—35:3221/4/2A11/2(32123)1x21y2123/2][Ii/2x cosX+ Iyl/Zsin’d] + 41e§23q21/4(5%3-fil)k133/3O(2-9\3> x (423-215z31/21x1y12fi1/2 - §Z3§Zé>bl/4(>l+23)(Ix—1y)/ 2 (21-)? (22-13fl11/4Ix21y212 [87rc5f3211/4A31/4/301—7x3)12351/2] [Zaizklll/Zl3/4 + 213212112(321-%2)/(49x1-'AZ)123/4] + 4 1§X31/4(9\1+>(3)/3IZ3X 111/4(}1—>3)2 + [Ame{E3221/4231/4/36X2—Z3)12351/2] X [(59‘1‘9‘2Mfzk112/(431'7\2>7‘13/4 + (512J11)a§zk122/223/4x (4%2—21)] + 4§13S;§)31/4(31+23)(R1¥>2-2fi3)/3(22—k3)2 x xil/l‘al‘ganf + 33:3331/4(aiz)2/2421' 39‘11/4124 + 3ggix3l/4afzaEZ/4(224A3)211/4Iz4 1871C§3q21/4%31/4,3(Az_’>\3)123fi1/21[2afizk222023/4 + 13121212202241)/(47\2—7\1)7\13/4] + 432317231/4(’/\2+X3)/3iz4x 951/405—2972 + {41¢}:3211/4A31/4/3(21—'A3)12351/2] x [(522—21)252k122/(422-21>223/4 + (521—%2>aizk112/%13/4x (4h1—A2)] + 4§3§Z§A3U402+>x3>(21+?iz—2k3w3a1—9x3)? x ”21/4<22'%3>Iz3 + 3§35X31/4(a32)2/2(A2'fi3)321/4124+ 33:3231/4352332/4(gl‘a3)%21/4Iz4 (z,yx33) = (z,xyll) + (z,xy22) 86 (5) fliliary o_oef£ioients (X;o(18 ,Qvf;b;a) e (figmba) : In the following, o(= x, y, z (”6231) = 3093:2131/4~(I3/Io<21227\15/4 + 33a(ai253 + 3525:39‘31/4/ zlqzlzlel/Mz + (2Tca°1(°(7‘31/4/31u212q13/4fi1/2)[kill x \gBGB—7alflalB/4O‘33‘1) + k112g3((2)1‘22)/(49‘1‘32) X 7‘23/4 ' 2221/4/(23‘7‘2D “ 2k1333:931/2/(‘a3‘7‘lflll/41 + (27coa§<°(7\31/4/3I°<2129\23/4hl/2) [k1125‘139x11/4(3\3-9’>\1+ 2:12” (49‘1‘ flab—7‘1) + k122g3’A21/4O‘3"9%2+221)/ (47‘2" gl>(7‘3-7‘2> - k133333’331/2/221/4(4)331) - k2335‘l3q31/2/ %“ 4(Ma-12>] (222.232) = a°2‘%52%31/4§§3/IJI22225/4 + 3:“2332533 + aizfz’lflsm/ 2It>(21229121/4711 + (211112;:91/31/4/311(2129123/4111/2)[k222 x 533(23'79‘2V22 3MO‘3'7‘2) + k122§$3((2>‘2'(>‘1)/(4IA2-9‘1) X 9‘13/4 ‘ 2211/4/(23—9‘1» ' 21‘23333931/2/(4%3'7‘2)“2l/41 + (27rca:(°(7\3l/4/3I°<2127\13/4‘fil/2) [121223;3fi21/4fl3-9’Afi 2911)/(4A2-21) (7\3-'>\2) + k11zf‘1’3u1l/4a3—9l1+2xz)/(421- 712)(Q\3_’)11) " k2335:3’A31/2p‘11/4(03—32) ‘ k133(237‘31/2/ 7x21/4(4A3—h1)] (o(o<,zla) = (—a:(0(/ZIO(2‘hl/2;\13/4)[‘fil/zaizg3/Izz7i3l/4 + (47ft/3IZ)X [2235/4(29‘1‘M3g’13k133/(42331)(75-7191?”4 ‘ 6‘11/2 X 9‘21/4fzfl3kllz/<‘*>‘l"'”2)”\3l/4 ‘ q3klll/zll/4p‘31/4“ + 7 (-af/ZIdzfil/zfizs/a) [fil/2615253311/4/122221/4231/4 + (MFG/312 ) [fill/4231M(11+2712_97\3)§‘13k233/(423912) (21- (A3) + 931/4(2233‘93‘2‘31‘133/(423'qlflll/29‘21/4 "A2“4 X (232-3l)§3k122/ (4)2'7‘1fl11/2A31/4 - Q‘13/43‘23k112/ (421“229‘31/4 87 (cogz23) = (—a°1(°(/21d2h1/27\13/4) [151/2211212{2'39l21/4/1227l11/4A31/4 + (47Cc/3Iz) [121/ 4231/ 4 (22+221—9’h3)52 3k133/ (42341) (2 _ 7‘3) +q31/4(2;13_ 2)fl’3k233/(“23‘7‘29‘11/4221/4 ' fill/4X (221‘7‘2)5‘121‘112/(l‘yl‘gzfibulo‘zl/2 ' 7‘23/4fl3k122/(422' Q1)’A31/411 + (_a<>2«>(/210(2fil/2913/4)1111/2122”“(gang/Elm+ (”C/312)[2235/4(222+7\3)5:3k233/(49‘3'7‘2) (7L3-”\2);\23/4 - ' fill/[*Azl/Zggklzz/(4)2‘119‘31/442‘31‘222/>‘21/4A31/431 (xy,zll) = (yx,zll) = -a’3‘yafz§:3/2lxlylzz?i3 - (2ma§y/3leylz x 233/451/2)[2k133ff3235/4(2’A1+’A3)/(4%3—7\1)(A3—?\1)’>\13/4- kllzgflll/Zazlmflf/a(42132) ‘ klllg3/211/4A‘31/4] (xy,222) = (yx,222> = —a§ya§z§3/21X1yizzg3 — (27cca’3‘Y/31xiyiz x g'33Mfil/2)[21(23332637‘35/4(2"210‘3)“47832)(7‘3-’>”2>”\23/4- k122g3121/2A11/4/231/4(47‘2‘7‘1) ' k222g3/9‘21/4A31/4] (xy,212) = (yx,z12) = -e’3‘ya§zfl‘39\ll/4/2lxlylzzfi3121/4 - (zirca’g‘y/ 3InyIzq33/Z'fil/2) [k233—q3211/47‘31/4(7‘1”)‘2'99‘9“47‘3- 7902‘“? + k133g39‘3l/4Qq3'9‘1) 7‘11/27‘%M(4”\3‘R1) - k122g37‘21/4(21231)fill/2951M("7‘2‘7\l) ‘ k112§E3 X 213/4M31/4(1Al_912)1 (xy,zZl) = (yx,zZl) = -a’33 [k133g39‘21/49L31/4(224411-975)/(4A3— 712)(21_7\3) + k233£3231/4(29‘3' 2)>\21/27‘ll/4(49‘3'7‘2) ‘ k112{163%1/4091—7‘2)”‘21/27‘31/4(4313‘? — k122§l3 X 9123/4/7131/4(4912_zl)1 88 (6) Auxiliary coefficients (G;o(9 ;,b;a) .5 (dfiba) : In the following, c(= x, y ; i = 1, 2 ; j = 1’ 2 «xxzj3) (0W 33' ) (dzoci 3) (o(zo(3j ) (xyzij) (xyz33) (zxyij) (zxy33) (xzyij) (20633) = [(_)dea§y/8Ix1§qj3/4Q31/4][£?{/LX2-2a§z/Izz] 2(2223j> = [(-)S“ya§y/8IXI§111/4333/4][5:x/Lx2— 232/1221 I(-f£*ya§y/4ley9fi1/4953/4][afiq/Iq? _ age/1221 (zyxij) = (aiZ/slzzki3/4Ajl/4)[agy/lyz — agx/lxz] + (afix/8IXZQi3/4gjl/4)[agz/Izz _ aguy/11,21 (zyx33) = (a§Y)2/8Ix21y223 (yxzij) = (agy/81y2213/4211/4)[agx/ixz — agz/Izz] + (312/8122213/47111/4) [agy/IyL aSSX/Ixz] (yxz33) = - = ;c,b;a)]/(l +3“) List (1) of this appendix shows specifically which ones of the above auxiliary coefficients actually contribute to the nonzero (3;dfi;bc;a)— coefficients. In this list the symbol "3" and all separating semi— colons are omitted from the coefficients, with the understanding that the alphabetical and numerical indices therein appear in their orig- inal orders. The auxiliary coefficients (U;4P;bc;a), (X;d,p;bc;a), etcc, are listed separately in lists (2) to (7). In these lists the symbols "U”, "X", etc., are omitted since it is only when the coeffi— cients appear together that one really needs to keep these distin— guishing symbols. Again, all separating semicolons are omitted. 89 90 (l) Coefficients (3;fl%;bo;a) a jgpbca) j fill_____ In the following,q’= x, y ; i = l, 2 ; j = l, 2 Gixiij) («0(le) G**33j) @exj33) 颥3j3) (zziij) (zlej) (zzle) (zz33j) (zzj33) (zz3j3) (xyi3j) (yxi3j> (xy3ij) (yx3ij) (xy123) (xyjj3) (yxjj3) (xy333) (Umuiij) + (Pquiij) + (TQQi,ij) @anlj) = (Uaule) + (Bxkle) + (wal,2j) + (wa2,lj) wmflafi +(Eu3fi) (Udaj33) + (waj33) + (Gauj33) (dej33) + (Pea533) — (Geuj33) (Uzziij) + (Xz,ziij) + (Pzziij) + (Tzzi,ij) + (szi,ij) (Uzlej) + (Xz,lej) + (Pzlej) + (Tzzl,2j) + (TzzZ,lj) + (szl,2j) + (szZ,1j) (zz12j) (Uzz33j) + (Pzz33j) + (T223,3j) (Uzzj33) + (Xz,zj33) + (Pzzj33) + (Tzzj,33) + (Tzz3,j3) (szj,33) + (sz3,j3) (zzj33) (nyi3j) + (nyi3j) + (Txyi,3j) + (Txy3,ij) + (nyi3j) (xyi3j) (nyi3j) + (nyi3 )‘+ (Txyi,3j) + (Txy3,ij) -(nyi3j) (xy3ij) (xy213) = (yX123) = (yx213) = (ny123) + (ny123) + [(Xx,y123) + (xy,x123)]/2 (nyjj3) + (nyjj3) (ijj3) (yx333) = (ny333) + (ny333) 91 (2) Auxiliary coefficients (Ugezéz-bcia) 5 (dfibca) : In the following, 0(= x, y, 2 W111) = Qx&121) = (doQZl) = (-8m2o2k11é21/31d2n3/2221/2(421—a2»[£:dk112(521—xz)/ 913/4(4’A1_9\2) + 32“12122(5%2—%1)/7\23/4(49\2-7\1)1 -(l6'fl.2c2X klll/3szh3/2211/2)[2§? 1‘111/213/4 + £§Kk112(321_%2)/ 223/4(421—99)1 - (lzmoklll/nlq2A1)[fistinZZ’+ ggycos§y1 41—80(2) (61tck1127\13/4/fi1d2323/ 4 (Ml-7x2» [<->1"$ (Ml-A2” cmXle) = (-32t?c2kll§21/3lxzn3/2221/2(491—)9))[2&f‘k111/ Q13/4 + a§“k112(3A1-32)/223/4(4?1422)1 — (16n2o2k12222/ 3Ld2h3/2211/2(422-21))[a:*k112(521-%2)/213/4(4%14k2) + aoéwklzz(512-47‘1)flz‘o’mmxzfl‘l)1 ‘ (24nhk112A11/2/3Lx2 X 321/2(421_22))[S;xsin22(+‘oxyooSQKJ - (l-S;Z)(lznek122x 9‘23/ 4mx2213/ Roz-Q1» [<—>1'€Wsinycosg] — Scam-7m x k112(alz)gll/2 ffilz3221/2(4“14A2> + 3nok122a§za§ZA23/4/ fiI23213/4(49‘2-9‘l) + 16n3k12iAQS/43IBXZ3(Al¥x3)(21+ZZ' 223)/31225213/4(Z1—A3)(22-23)(422421) + lonnkllilll/Zx 3:3(A1+23)/31225221/2(21—23)(4%1—Z2)] ('8H9C2k222/33x2h3/22ll/2>[5ixkllz(5ql‘“2)/Al3/4<4)l'12) + e§Xk122(5fl2-21)/223/4(4%2—Rl)] — (lon?o2k12222/3103 x H3/2/r‘ll/2(‘*Q2‘9‘l))[2"=‘°l(°] - (lzncklzzfig/nlx221(4fiz— 1)[ngsin22{+ gxycosfif] - (l— dz)(ennkzzz/nrx2223/4flll/4)[(_)1'axxx... 92 (o Mao—11>] (W112) = (-87L2c2k111/31q2fi3/27Lll/2)[a°{°(k112(521-22)/?\13/4(47\1- 7‘2) + af>§Xk122(57‘2-7‘1VA23/4wzz-7‘l)1 - (l6ngczklléxl/ 3103n3/2221/2(421-22))[25§*k222/223/4 + aTVk122(3224A1)/ 313/4(422—21)] - (lznbkllzfilthxZQQ(4x1422))[ngc0322f+ sensitize/1 - <1-§z><6vtckin/file2%i3’ 4X2“ bunks“ x singoosgfi - 5&z[3nck112(a§2)221/fi123fi2(4al422) + 3[ck111X aizagz/21123213/4221/4 ' 8n¢k1115:35;3(21+33)(21+“2- 213)/3Izzal3/4a21/4(Al'23)(“z-a3) ‘ 8WPk1122133§<22+A3)/ 312222(22-23)(431412)] «xx222) = (-lon?e2k222/3rx253/2221/2)[zééxk222/223/4 + efihklzz x (312_A1)/113/4(422—x1)1 — (8n9o2k12232/31,?n3/2211/2 x (4)2—zl))[d§xk122(5A2'%1)/A23/4(4A2'21) + ékallz(5al‘ 22)/213/4(421—22)1— (lZflckzzz/fiLuzzz)[Schosz + axy x sinzb’] - (1&2) (eukmfif/ 4m103213/ MHz-$1» [ (J‘érx sinyeosg] — 5,2[3nek222ags2mz322 + mkllzafzagz x 223/4/fi123A13/4(4Al‘z2) + 8I9k22253§(22+23)/31225“2(12- 23) + 8W1227K23/4(22+23>(kHz-223)gags/312211711“4 X (ll—A3) (kl—9x3) (42241)] «£1122) = onlez) = (—32n2o2k121A2/3lq?n3/2211/2(4%2-11))[23? x k222/223/4 + ekalzz(322—Al)/fl13/4(422-k1)1 — (l6m2c2 x kllzzl/3lx233/Zazl/2(4z1—32))[5?“t112(521—%2)/Z13/4 x... 93 (06(122) , cont'd. (W331) = (0(O(332) = (06(133) = (ml—fig) + a‘ZXklzzohz-fll) /223/4<4%2-%1)1 —<241:ck122 x “21/ szxzkll/ 2(422-A1» [axxcos;5/+ gysiéy] —(l—é°(z)x (lznok112213/4/m2fl23/4(Ml-A2)) [(—)l_&xsin’o’cos’5] — Suzwlmklzflagz 27‘21/2/‘mz3X11/2(Ml—X2) + 3thkllzaiz X a32213/4/nlz3221/2(Ml—AZ) + 16mk1227\21/25§§(22+A3)/ 312202—23) (47x2—21)7\11/2 — 167Lck112(21+13)(31+A2—223) x 7‘13/4 1:31:3/3122223/4ar913) (2243) (4131—79)] (-l6752c2kl337l3/3Io(zfi3/ 2211/ 2 (Hg-A1» [2a°f‘klll /7\l3/ 4 + aoédkllzwfil‘AZ)AZBMMRI’AZ)1 ' (W2C2k2337s/ 310(2n3/2x 951/2(4"\3'7‘2)) [acidklIZGQ‘i—az)/7\13/4(47‘1'7‘2) + ale§°<1<122X (512-%1>/7tz3/4<422—11> 1 - (127021213323 fulfill (423-21) >x [S;(xsinzfd’+ deoosfifl - (l—SW)(61cck2”Kg/13103123”4 x 7111/ 4(4’13—22»[<—)1'5°l2) + a°2<><2’X3/25X21/4“9‘34LG[2~‘2‘°26(k222/5‘*23/4 + 5‘3““an (312-11)/9\13/4(4>\2->\1)1 - (121Ick2337L3/‘fi1w27lz(433—12))X [gdxCOSZKO/i' Saysinzrgf] — (l-&2)(67cck1339i3/n10<2213/4 x fl21/4<4A3->\1>[<—>1'5xx singcoszn — éXZI3rtck2337Lg(a§z)2/ nlz312(47\3-A2) + 3mk133fl3aizagz/2nlz 113/4K21/4(4A3-7L1)] (o + a°<2°<1<233<3X3-7‘2>/223/4(4X3-7\2)1 -(247cok1339l31/2/n10(12111/2(423-11)) (l-S,(z)- 5;,ro x k1339k31/2/3122fi211/2(4134(1)][fig/(X196) + 53/ (“z-13>] 94 @nx233) = ¢nX323) = (-lon?o2k23323/3l,?n3/2A21/2(4A3éx2))[éfi‘k133x (333—11>Akl3/4(4A3—21) + §§ + 53§/<22-23>1 (xyll3) = (Yxll3) = (-8n¥c2(SQS—Xl)/3leyfi3/2a33/4)[klllkl33/(423— X1)fl11/2 + k112k233911/2/(4x1—A2)(413412)] — (nc(Iy—Ix)/ IleyzfiXBl/A)[klll§:3(ql+23)/Al3/4(21_ 3) + k1123;39‘1)‘ (A2+x3)/AQ3/4(22—23)] + (3noklll/nix21yzal)[(lx/lz)1/2x coszf+ (ly/Iz)l/zsinj] - (moklljkllfilx21y2223/Qfl31/4 x (all—A2))[5(lx/IZ)1/2sin3/— (Iy/lz)1/2oosg] (xy223) = (yx223) = (—8n?o2(513-xz)/3lxlyn3/2z33/4)[k222k233/(423- )2>le/2 + k122kl33221/2/(422-7lfl(433-111)] - (IB(Iy-Ix)/ Ix21y25231/4>[k222333(22+X3>/7‘23/4(22-7‘3) + k12251322X (Al+X3)/Xl3/4(Xl—23)1 + (313k1229‘2ffilleyz’tlwwbl/4 X <4x2—21>)[(Ix/Iz>1/2cosa/+ (Iy/Iz>1/2sinafi - (nrkzzz/ nlx21y2123/4A31/4)[5(1x/lz)1/2singr— (ly/lz)1/2ooe1] (xy123) = (yx123) = (xy213) = (yx213) = (—lon?o2/3lxlyfl33/4)[klzzx k23322(533-7‘2)/211/2<47‘247‘1)(QB-7‘2) + k112k13391(523‘ X1)/221/2(421_22)(423—A1)] - (2ro)[5(Ix/Iz)1/2sin2{— (Iy/Iz)1/2x c0531 (xyl3l) = (yx131) = (xy311) = (yx3ll) = -8m2o2kl§3231/4/3lx1§n3/2x all/2(SA3IXI)(4X3J%1)2 ‘ TD3kl335:39‘33/40114'23)(Iy‘Ime 95 (xyl3l), cont'd. 1x21y2213/4(21—R3)(4234A1) + (6npkl33233/4/51x21y2(423- 21)fl13/4)[(Ix/Iz)1/2coe34+ (Iy/Iz)1/2sin31 (xy232) = (yx232) = (xy322) = (yx322) = —sngc2k233231/4/31x1yh3/2x 321/2(5%3-22><423—%2>2 — Irk233333233/4<22+Ao>(Iy— Ix)/ 1x21y%223/4(A2_23)(493—22) ' (2W5k233333/4/X1x21y2(493' 22)A23/4)[5(Ix/IZ)1/2sin1{- (Iy/Iz)1/2coszfi (xy333) = (yx333) = (xyl3l) + (xy232) (xy132) = (yx132) = (xy312) = (yx312) = —8n2c2k133k233231/4/3Ixx Iifi3/gzll/2(5X3-A2)_l(433—Z1)(433€A2)— ck133333233/4ca2+ 23)(Iy—Ix)/Ix21y2211/2A21/4(22—7g)(4k3—21) - 2n3k133 x X33/4/fi1x21y2211/ikzl/2(4%3-h1)>[sclx/Iz)l/2sin2(— (Iy/Iz)1/2cosg] (xy231) = (yx23l) = (xy321) = (yx321) = —8n?c2k133k233231/4/3Ix x IyXS/zzzl/Z(523‘92)_1(4X3‘zl)(4X3'X2) ' X‘k233§:3(21+ 93>233/4(Iy—IX)/Ix21y2221/2211/4(Al—A3)<4z3—22> + (622 x k233233/4/h1xzxy2221/2211/4(423—x2>>[1/2cos1r+ (Iy/IZ)l/Zsin6] (3) Auxiliary coefficients (x;ocp;bc;a) = (ocfihggl_i In the following, i = l, 2 ; j = l, 2 ; E.= [j+(—)(j+l)Sij] <2.ziij> = {-4iegjg/3Izzhfljl/4caj-x3>1[3:3ckiii/ai3/4 - 2ki3é)3l/2/2i1/4(4A3'%i)> + 323k11331/353/4<4Xi'3g)1 (z,lej) = (z,zle) = [—8Wc§;3(fij+fi3)/3I;%h(fij—13)%jl/4231/4] x [223/4231/4333k122/211/2(422"hl)‘g21/4233/€§33k133/ 2ll/Z(47‘3'%l>+Xl3/4X31/4gakllz/le/z(4X14X2FXIU4 X “33/43l3k233/X21/2(4%3JX2)1 96 (z,zj33)= (z, z3j3)= 2(z, zjjj) + (z, zjk__k) (4) Miliary coefficients gdfibcm) a (o/fibca) : In the following, o(= x, y, z, and in general (u/gbca) = (fiqcba). 66(111) = (—8113c2 a°{°\l>1 @4221) = (—87r,2c2a°‘°‘/319<2'H3/27\13/4)[fizklllklzz/Xll/zflaaal) + kllzkzzz/Xzl /2] ' (878czagd/3quh3/ZX23/4)[fizkllzklzz/ p‘ll/2(‘*22 '21) + X122k222/le/2] (M022) = (—87I2c2 aZX/3Iwzir3/2223/4)whiz/221”- +?\2k1%2/211/2 x (22221)] - (8120.2 a‘f‘X/3I 2213/2213”)[1222212122/221/2 + 221‘1221‘112/“11/2(49‘2‘21) 1 (“(331) = (’8TD2CZaIX/3k2fi3/ 2913/ 4)[37‘3klllk133/le/ 2(l+’/\3-;\l)+ A3X k112k233/9‘21/2(4)3‘9‘2)] - (815C235‘693lxzfi3/2323/4H9‘3 X k112k133/9fll/2(423'Xl) + X3k122k233/9‘21/2fl‘9‘3'X2N + (“cl/2332122 1 film 1’4)t§‘3°"‘/9«1+5§3a°§°‘/121 97 enX332) = (-8x?cza§{/3Iugfi3/2223/4)[A3k122k133/311/2(423-21) + 3231222212233/221/2(423-22)] - (876c2a°2(°‘/3Io(7-h3/2223/4) x [23k112k133/211/ 2(423-911) + 23k122k233/221/2(433-32)] + (231/2§3/21q212fi1/2221/4)[5382(Xa2 + 1351016021] («4133) = (~161gzc2aof/3Id2fi3/2gl3/4) [9312133/211/ Zak-21)] - (lenéczagw93193h3/2223/4>[2321332233/211/2(423-21)1 - 2[33k233k133/921/2(433122)1._ 523,32” 210(212111/ 2223/ 4 ' 921/4535???“ / 21031211“ 29&1 (xyll3) = (-8E?cza§y/3Ix1§h3/%133/4)[k111k133flzll/2 + k112k233 x ’kl/gzl/2(4Al_gz)1 +:2llx2gigagy/21x11nl/2235/4 (xy223) = (-81?c2a§Y/3IXI§h3/2233/4)[k222k233L921/2 + k122k133 x 92A211/2(422421)1 +‘X21/ZSZ§a§y/21xlynl/%aa5/4 (xy123) = (-Sn?c2a§Y/3IXI§nS/2233/4)L21k112k133/321/2(491_;&) + 22k122k233/X11/2(432‘21)1 +‘211/4221/4}:3§Z3a§Y/zlxly X 12hl/2235/4 (xy333) = (~8I9c2agy/BIXIyH3/2233/4)[I3kl33k133fiflll/2(423;21) + 25k233k233/921/2(423'7\2)1 (xyiBj) = {-16flgczagy/31xI§n3/ZA33/4)[23k133kj33/gil/2(423-31)] _ 211/4333§3a§y/21xlylzhl/221“4233/4 ; i = l, 2 ; j = 1,2 (5) Auxiliary coefficients (T;o(‘3;b,c;a) = gfibfia) : In the following, Q/= x, y, ; i = l, 2 ; j = l, 2 (xy3,ij) = (yx3,ij) = 16n2c2k133kj33a§Y235/4/3Ix1§fi3/2211/2(423— 2i><423421> + 2nhk133211/iz33/4gj3cly—1x>/Ix2112<423- 21> 98 (xyi,j3) = (yxi,j3) = 16¢?c2k133kj33agyfi33/4(2)3-X1)/3Ix1§n3/2 x 211/2211/zc423-21) (423-21) + zxck133313ay-Ix) (223- 91119131/4211/4/1x21y2311/2 (123411) (31313) (xyi,3j) = (yxi, 3j) = 16n9cc2k111k333a§y233/4(29}‘21)l3lxlin3/2X 211/ 22 1/ 2(42 -2-1)<47l3-311) + 1612c2k111k133a3233/4 31XIYn3/2(421 -21)(423-A1) + 27cck1 1133231 /4211/4(221- 91)(Iy-Ix)leziyzajl/Zmzj-Ai){21-23) + 2Ick111 513(1),— 12)231/4213/4/1x2122(421-21)(hi-23> , j 7‘ i (xyl,31) = (yxl,31) = 16E9c2k111k133a§y233l4/31infia/211(423:21) + 16n2c2k112k233a§Y233/€a11/2/3IXI§h3/2(421-22)(423-22)x 321/2 + chklllslaqsl/4 + . 2I3k1223l3321/3311/3231/4(Iy-Ix)/Ix21y2(432-11)(”l-X3) (oozl,ll) = (161L2c2 k1 11/31012113/22 11/2)[a°1°‘k 111/213/4+a2°(h1129\1/ 2 23/4(421-22)] + (lon?c2k112211/2/3Ia3h3/2(421é22)[a2 x k122323/ [all /2(432 31) + a1Wk112313/4/321/2(4911-312)1 ng2,11) = (16m?c2k112(221122>/312253/2(421432)221/2)[a1 ¢*11,12) = (16m2c2k122(2A2-21)/3szh3/%911/2(432-%1))[d§*k122 x X23/4/311/2(432‘X1) + ikall2X13/4/le/2(431432)1 + (167(2c2k1127\11/ 2/3103213/ 2(421—73» [23"12111/213/ 4 + ... 99 (96(1,12), cont'd. + ao29(1‘112911/223/4(4911—22)1 (442,12) = (1611;2c2k222/31012h3/2221/2)[a°§’<1Xlll/9113/4 + 8°;k112fi1/223/4MQ11'912H (221,21) = (16m2c2k112’211/2/3Ifn3/2(421—22))[a°§’1 100 In the following, (b,ca) will be used to denote the expression obtained (221,11) (z22,ll) (zzl,12) (z22,12) (221,21) (222,21) (zz2,22) (223,31) (zz3,32) (zzl,33) (222,33) when 2 is substituted for 0(in (*xb,ca) : (1,11) — (encfifg/slzzh)[2k111313/(21—23) + k112(2H1—22) x 3:3311/4(ql+32-233>/321/4(431432>(31133>(32-33)1 (2,11) — (812515211/4/3122n(21423))[2k112(221422)§:3211/4/ 121/ 2091-22) + k1229123/4~52‘3(31+7‘2-29‘3)“43231) (912—29 1 (1,12) - (8mc3f3/3lzzh(21-23))[k122(222—21)221/€§;3(A1+A2 -291)/211/4(422:21)(22-23) + 2211521 13/(421122)1 (2,12) - (8n2313211/4/3122h(21-23))[323(21+22—223)k222/(22 -21)221/4 + 2k122221/2211/4311/(422—21)1 (1,21) — (smc221/2333/31225(32—23))[2k112311/2323/(411-32) klll¢13<£l+32’223)/211/4(31J33)321/41 (2,21) — (8Ic333/31225(22-A3))[2k12222322/(422421) + k112x (231-22)311/4313621+32-233>/221/4(431-22)(Al-33)] (2,22) — (schZ3/3122n(22-23))[2k222333 + k122211/4223/4 x 3:3(21+22—223) / (422-91) (9123)] (3,31) - (lomck13523/3122h(423:21))[513/(21-23) + 3;§/<22- 913)] (3,32) - (16m23323/3122mfl3—22)>[Q3/(21—23)+3‘2’5/(22-23>1 (1,33) - (lorck133(223411)211/2/3Izzh(423—21))[Kjg/(21—fi3) + 3:3/(22—913H (2,33) - (12121233(222-92)231/2/31222(223—22>>[Sig/(21—23) + {21/011291 (6).Auxiliary coefficients(N;{,fi;b,c;a). 101 . («be .ca) : ‘+l In the following, i = l, 2 ; j = 1, 2 ; m = 1, 2 3 S = ('13 +3 (2,21,11) = -2§3 j3qill4332/123111/ 2611-913) (z,zmaij) = .(z,zj,33) = (2:23.33) = (2:233j3) = [811C §3gill4g31/4/ 3122m21-23n [212133311‘3235/4 (22103) / (423-21) (9(3-21) x 313/4 - ksij323311/23211/4/331/4(4314‘s) ‘ 1111531 9131/4311/4] 451112121“ 4a1?Z/121‘h1/ 2 (2 In313) — [sire Q32m1/4231/4/3122x 15 (am-13) 1 [111/ 4231/ 4g: 3121 3 3 (213221-923) / (423-21) (7(1— 713) + 231/4313k133(223—9\1)/211/2211/4(4913-’A1) - 9&11/4X (:3k111(2311-31)/211/4R31/4(47\1-21) ‘ X‘iS/l'gskiij/ 231/4<431-21>1 , i 2 j [8th {10321.1( 4231/ 931221101143) 1 [k133§13(2>(12+2232- 7317‘31/9‘13/4(433‘31) 013—711) + k233 3293022397132- 771223) 2123/ 4(423-2 2) (2342)] (2231/2/12311/2311/4)12332211901143) + 3:3(2112113 + eggs/(2823)] + [8&53111/4231/2/3122M31-23)] x [12111(12(23-721)/213/4(%3-9\1> + k113§3<(221-23)/<421- “9233/4 - 2281/4/(23-23» - 2213353231/2/211/4M9h- 21)] + [81Lc{8933181/4231/2/35215(28-23)][la-113313211” x (23+2zS—9711)/(421-28) @341) + kjssgz3asl/4(9\3+221— 9713)/<428-9\1>(23->\s> - k133§§3231/2/9\s1/4<49\3—21) - k.233 333331/2/3j1/4wfl3'3afl (Z9219jl) + (z,zZ,j2) 102 (7) Auxiliary coefficients ((3419 ;bc;a) a (qubc_a_L:_ In the following, i = l, 2 ; j = l, 2 ;o(= x, y: («4133) = (00(3j3) = <-)§Y2§3211/4a§y/Ix1112251/2(21423) (22131) = @2131) = —(xysij> = t€3211/4231/4/Igh1/2211/4(911-23)1 yy 2 xx 2 X [a1 /Iy - aj /IX] APPENDIX XIV Coefficients (333% ;—;abc) in hé The coefficients (3;xp;—;abc) appearing in the fourth sum of (4.5) can be written in general as (3u@;-;abc) = (d?*-*abc) + (N;o(p;-;abc) + *Z[(T;o<fi;-;rs ,t)+(U;o(,@;-3r.st)+(G;o(p;-:r.st)] (rstsabc) where GX@*-*abc) are the coefficients in H3 as listed in Table X, (N;o(@;-;abc), (T;o/221/2(421-22) + klllk122(322<21>/ 2 ll/2(422‘21) + 2k122211/2/(47‘1-7‘2) + 2kl§2221/2/<422- 31)] + 3nhh1/2%Wk1112/I2Al3/4 - (2n;c2n2/2a$“71«2 x 213/4)[klllkllz(721'22)/211/2(42l‘22) + k112k122(132‘1 X 22—2A12-5222)/22 1/2(421-22)(422—21)1 (AXlZZ) = 31ch1/2af k1222/1X2a23/4 - (21,c2fil/2a2“/1«2223/4) x [k122k222(222'21)/221/2(422'2l) + k112k122(132122‘2222' 5212)/211/2(43H-22)(42 —21)] + 2mcfil/2 a““k1122/1 2x 213/4-(813c2n1/2a3‘1“‘/3l,<2213/4)[kllzkzzzwfi :22>/<4xl— 22)2‘2l/2+ klll(322‘kl>k122/211/2(422221) + 2k1122‘11/2/ (422 —2 l) + 2klgzzzl/2/<421-Az)1 1/2a°2(°(k2222/I°(2223/4-(815c21'1'1/2aqx/3IX2223/4n3 x k222/22l/2 + k122(222‘21)/211/2(47‘2 A1)] + mcfil/2a1dx W222) = [Fitch k1222/Io< 2213/4 ‘ (2n2c251/2$ /3LN 2213/4)[k222k122<722- 91)/221/2(4£2—>1) + klzzkllz(l32f22-2222—5312)/211/2 x (422421)(421—%2)] = /2221/2<421—%2> + (2%3-22)/2121/2<4%3e22>) + 2kl§323l/2/(423‘21)1 (xy123) = (yx123) = znefil/2a§yk1233/ley233/4 — (812e2n1/2a§y/3 x I£37133”)[k122k233(<223-22)/9<21/2(423-522) +221/2 /<422- 21)) + k112k133<(2%3-11)/211/2<4fl3n21> + 211/2/<421422>) + 2k133k233231/2(823-21-22)/(423-21)(423-22)1 (xy223) = (yx223) = zmenl/2a§yk2233/1x1y233/4 _ (4flgczfi1/2agy/3 x ley233/4>[k222k233(523-222)/221/2(423-22) + (k122k133/ 211/2><<222-%1)/(422-%1> + (223-21>/<423421>) + 2k2§3 X 231/2/<423-%2)1 (xy333) = (yx333) = 4Hen1/2a§yk3333/IXI§A33/4 - (8m2c2nl/2a§Y/3 x 1x1§333/2)[kl§3(223421>/%ll/2<423-2h> + k2%3023‘22” 221/2(423-Az)] (3) Auxiliary coefficients (Iigfi;ab,c) a («Qab,c) : In the following, c1: x, y, z (wx11,1) = (amen/Iq2flll/4)[2klll($xycos2y’- astin%()AAl3/4 + (—)62X(l-$xz)kllz(221422)sin6eos37223/4(49n-22)1 — 8Mz(3WCHaiz/4Izgall/4)[2klllaiz/213/4 + kllza§z(221‘ q2)1123/4(121-gz)1 — (afoul/Zklll/slu2211’2>[2a$“%lll/ 213/4 + £32k112(321‘22)/223/4(421'22)1 ' [4KCfil/2kllzx (221'22)/3Lx2221/2(421'22)1[ékallz(521—22)/2l3/2(421‘ 2'2) + aguklzz(522*2l)/223/4(422421>1 ¢2x22,2) = (3nnn/la2221/4)[2k222(5;ysin26’— gdxcos%{)/q23/4 + (—)gdx(l—E¥z)k122(222-21)singeos57213/4(422—21)1 — gdz(3nCha§z/41232Zl/4)[2k222a32/223/4 + klzzafz x _._ (06(22 ,2) , cont (06412,1) = («22,1) = (0083.1) = 107 'd. (2%2-11)/213/4<422~21>1 - (sien1/21222/3112221/2>[22§/213/4<422—A1)1 — [4Icfil/2X k122(222‘21)/3Id2211/2(422'21)1[£21k122(522'gl)/ 23/4X (4A2411) + ékallz(52l422)/213/4<421-22)1 (6nufi/Lx2)[2k112(gxycosarLéfixsin%f)/(421-%2) + (—)gxxx (1—SXZ)k1223in5co§37(422—21)] - SXZ(3nehafZ/2IZ3)[2a52x kllz/(421—kz) + agzklzz/(422—Rl)] - [lenenl/2kllzfill/2/ 32x'z(421‘22)][22>f1klll/213/4 + 8220(1‘112(321'7‘2V2‘23/4 X (421—22)] — [sien1/2k1229h1/2/3lx2(422411)1[aka112(s%l '22)/213/2(421‘22) + a§>:(2D(k122(522'2‘1)”123/(“42221)1 (snen/1X2211/4)[2k122(éxyeoefiy-Sstingg)(2224h1)/(4A2— )l)%l3/4 + (—)32X(l-g;z)kzzzsinqfiosz¢ZZ3/4] — $Xz(3nex 'fiaiz/alz3all/4)[2k122aiz(2)2121)/fl13/4(422-Rl) + k222X l/2k222/3I03221/2)[aixk112(521'92)/ 213/4<421412> + 52‘k122<522-%l>/223/4<422-x1>1 — [encx fil/zklzzaqz'gl)/3Io<2211/2(422'2‘l)1[2“=‘°f’2)(223/4(421‘22)1 (3mth/Ia2211/4)[2kl33(gxycosszistinéf)(223—21)/(4R3— Alyxl3/4 + (—) x(l—éxz)k233sin36os3«ihé—kz)/(498412)x 1/4 a32/223/4] - (anon 223/4] —$XZ(3wena§z/lz3ql )[2k133(2fl3—%l)a§z/Al3/4 x (423—21) + k233<223—Rz>a32/%23/4(4R3—%2>1 - [snenl/Z x k133cil3-kl>/3l«2911/2<4234x1>1[zafi‘klll/Al3/4 + 53* x kllz(391—22)/223/4(421—%2)1 - [#mcfil/2k233(223-22)/3 x Iagfizl/2(4fl3412)][$T(k112(521-22)f213/4(421—22) + 5g“x 1122(522-21>/923/4<422-fil>1 (ddll,2) = «£112,2) = ¢2X33,2) = ¢£ = 108 (swan/lafiqzl/4)[2k112(Sxysinzyzgxxeoséy)(221—22)/(421— qQ7123” + klllsingfiong-)g;X(l-Syz)/213/4] - SXZ[3TCX fihgz/4lz3221/4][2k112(221'22)a§z/223/2(421‘22) + klllX afz/213/41 l2k112<2fil—?n)/3112221/2<4%11A2>1 x [252xk222/5X23/4 + aDiwklzz(322421)”213/2(422—21)1 ' [4X nehl/zklll/slaFfihl/Zl[51“k112(sfil-Az>/al3/4<4zl-Az> + $1122 (5912—21) /$\23/ 4 (4911412) 1 (anon/10(2)[2k122(§1(ysin20/-ExeosZp/(Mz—Al) + 9&9: (1—$1z)k112211/4sin3E0937221/2(421—22)] - sz(3mcna§z/ 2123>12k122a;Z/<422—21> + kllzafqul/4/221/4(475532)1 1/2k112211/2/3QX2(421-22)1[31u2112(5A1'22)/(421 —A2)>113/4 + a°§°‘k122(522—)1)/9\23/ 4221—12)] - [l61tc x 'fil/2k122/3Lx2(422'21)1[Zégxkzzz/flzy4 + didk122(322' hl>/213/4<4AZ-Al>1 (3nch/Id2fi21/4)[2k233(gxysin2Q{— axXcong)(ZR3—22)/(423 —223323/4 + (—) o(X(1%“)k133singéos’g/(223—Cil)/213/4 x (423—)l)] - gxz(3mena§Z/4lz3221/4)[2agzk233(223- 2)/ 923/4(423112> + aizk133<223éhl>/fl13/4<413:Al>1 — [afcx f11/2k133(223-2l)/3Io12311/2<423-21>1[atmllzfifil-Ptzfl 213/4<4%14)2> + éé‘klzz(592-%l>1223/4<4a2-fil>1 — [encx 111/2k233(27‘3‘7'2)”2x222(423-22)1[2‘22”<1<222mz3/4 + 5TXX klzz(3224A1>/a13/4(422—21>1 -(1— dz)[lsznkj33/Lxlz(4k3ékj)] — Egz[8nrhkj33/3Izz x (4913—9\j>][3f3/ol—9\3> + fag/(£2291 — [létcfil/zkj33x 231/2/31°f(4’>13—9\j)1 [if‘k133023-91)/7\13/"(47§-$\1) + a321233csfi3-22>/223/4<4fl3- 2)] ; j = 1, 2 -[&mn1 - [87Cc‘h 109 (xyll,3) = (yxll,3) = (3ionklll/21X2Iy2lzl/2fll3/4q31/4)[Ix1/2eos3/ 1y1/2singq — n2e2fil/2klllkl33(sfl3—21)/3ley211/2233/4x (423-21) +'mcfiklllff3(fll¥23)(Ix-Iy)/21x2Iy2213/4931/4X (Al-A3) — rfenkllz(2214xz)/21x21y2121/%az3/4a31/4(421- 22)][51x1/2sing/— Iy1/2cosg1 — n2o2fi1/2k112k233czhl- 22)(523—22)/31x1y%21/2233/4<4%14>2)(4)34A2) +-icH5§3 x k112(221—22)(Rz+23)(Ix—1y)/21x21y2223/4(421422)(hz—z3)x 231/4 (xy12,3) = (yx12,3) = [3nehkllgh11/4/1x2ly2121/2231/4(421422)1 x [1x1/2cos/(+-Iyl/2singq - 27€e2h1/2k112k135211/2(3)3- /l>/3Ix1y(421—22)233/4(423'21) + 13hk112§13621+23)(1x' Iy)2ll/4/Ix21y2231/4C2143)(421-22) — fmcfik122221/4/ 1x21y2121/2231/4(422411)][Slxl/Zsingi lyl/Zcosgj — [2x mgc2fi1/2k12é221/2/3IXIY(429—21)][k233(SQ34%2)fl233/4 x (495-22)] +-menk122§§3)21/4(22+95)(Ix—1y)/lx21y2231/4x (422—Rl)()2423) (xy22,3) = (yx22,3) = [3fnk122(222421)/21x21y2121/2231/9213/4(422 _Ql)][1Xl/2eosz{+ lyl/Zsing] — -€e2nl/2k122k133(222_ 21)(523—21)/3Ix1yz33/4211/2(423—21)(422—21) + ncfiklzzx {[3(21+%3>(2%2—%1>(Ix-1y)/2Ix21y%213/4Q31/4(422->1><21 —Q3).-.(ICfikzzz/ZIXZIYZIZl/Z223/4231/4)[SIXl/Zsin’f- ‘ lyl/2oosqfl — 13o2fil/2k222k233(57g-12)/3IXI§321/2233/4x (423-22; i-mehk2223§3caz+%3)(Ix—1y)/2lx21y2A23/4Q31/4x (22-23) (xy33,3) = (yx33,3).= [axehkl33(223-21)/21x21y2121/2x31/4213/4 x (4903-911) ] [le/Zcos ’{+ Iyl/Zsinfi] — “gczfil/2k133kl33x. . llO (xy33,3), cont'd. 22 a) 51-2 /31 I q 1/22 3/4 42-2 42 a ( 3 1 ( ’3 l) x y l 3 < 3 1>< 3 l) +'“9X fikl33§12<21+33)(223‘21)(Ix—1y)/21x21y2213/4231/4(423' fli)(21—23) - [nenk233(223—22)/2Ix2Iy2Izl/2fiz3/@fi3l/4 x (4Q3—12)][51xl/Zsin2(— lyl/zcoszfl — figc2fi1/2k2%3(223— 22)(572'22)/3Ix1§221/2233/2(423‘22)2 + “3fi2233523(22+ 23)(2R3—22)(IX—1y)/2Ix21y2223/4231/4(423—22)(fig-2B) (xyj3,l) = (yxj3,1) = [3nenkj33231/4/Ix21y2121/2(423—25Y211/4] x [IXl/ZCOS ’0"? Iyl/Zsinfi] - 873C2fil/2k133kj33(513-21)/ 733/4(423421)(423-2j) +~mcfikj33313QBl/4(fll+q3)(Ix-1y)/ IXZIy2211/4(423-75)(21-23) ; j = 1, 2 (xy13,2> = = {—ncfikj33231/4/Ix21y2121/2221/4(423-23->1 x [Sle/zsinzf— Iyl/Zcosfiq - 8Tgczhl/2k233kj33(523-22)/ g33/4Ua-3'Q2) + TCCfikj 33 §3Q3l/4(22+R3) (IX-1y)/Ix2Iy2 X 221/4(423'2j)(22‘23) (4) Auxiliary coefficients (U;d,§;-;a,bc) a Qiga,bc) : In the following, i = 1, 2 ; j = l, 2 (z,zi,ii> = —'fi3/2a§z§‘i3§3(/\1+%>/Iz3211/42j1/2<fli—23> - [ZTEC'H x {1'3 (Ai+%3)/39\il/4 1 [kjjjgfifiyfljmf/“(K $3) + kiJ-j3Z3<(zfij-fiiwflB/Hflj—Zi) — 2211/4/<9\3-21>> — 2231/2fg3kj33/2jl/2(423-2j)1 (z,zj,12) = (z,zj,21) = 4h3/2§33(25+23)(afz$:3 + a325E5)/Iz3(fij— 913)91j1/4211/4221/4 — [Aneng3(aj+x3>/32j1/4<2j-23>1 x [CZ3+222‘921)211/4313k112/(421'22>(23421) + (23+22l' 922)221/2§23k122/(422'21)(23‘22) ‘ 231/2522k133/(428' 2‘1)221/2 ' 2‘31/2g3k233/2‘11/4(42-3-22)1 (2,2j.33) (2,23,13) 111 {—2tcfi§3(2j+k3>Alf/403.43)1[q3k133<2212 + 29132 - 72fh3)/213/4(423-21)(23-21) + 5§3k233(2222 + 2232 — 79223) /223/4(423-22) 03—22)] (2,23,31) = 113/2a? 13(9103)/Iz39«3l/2211/4(21—23) + [4123532109 /3122211/4131/4(21_23) 1 [2235/4<29«1+23>x 3131(133/(423‘21)(2329213/4 ‘ 2‘11/22‘21/l+(231<112/(421' 2293”4 - 3:3k111/211/2231/4] +'fi3/Zaiz 22(22+23>/ 223231/2(22'2‘3) + [4"Cfig23(2)295)/3122221/4231/2(22' 23)][221/4331/4523k133(22+22 '923)/(423421)(22'23) + 231/4(223‘2213:3k233/211/2221/2(423-22) 'l211/4§:2 X k112(221422)/221/2231/4(421‘22) ' 223/4§:3k122/231/4X (4% $911) 1 (2,23,23) = (2,23,32) =-fi3/2a§z§:§(21+a3)/IZ3231/2221/4(>1na3) + [41e56fg(21+23)/3Iz2111/49\31/4(7‘1-2\3)] [9111/4R31/4I13X k233(21+222‘923)/(423—22)(21:23) *‘231/2(223'21)(23 X k133/211/2221/4M23‘Ql) - 2121/4323k122(22‘2-9‘1>/9\11/2X 231/4(422—21) - 213/4323k112/fi31/4(421-92)1 +-n3/2a§Zx 323(22+23)/123221/4231/2(22—13) + [4ncn?§3(22+23)/3 x I227‘21/4231/4(22-23)1[2235/ 23k233(222+%3>/(423-22)X (23'2‘29‘23/4 - 211/4221/2313k122/931/4(422221) - 323 X 1/4 1/4 k222/92 7L3 1 (5) Auxiliary coefficients (G;o(B;-;a,bc) E (qga,bc) : (Xyi 3 j 3) (xx3.j3) (yxi,j3) = [113/2:33<2j+23>/2izmj1/‘*231/4aj—23>1[aiy/ Iyzail/4 ‘ afix/Ixzhil/al ; i = l, 2 ; j = 1, 2 — = [413/2523(7\j+23)affy/leylszjl/4R3l/2(aj "513) ;j=l,2 APPENDIX XV Coefficients (4;q$;XXéf;—;—) The coefficients (4;dP;XSEF;—;—) appearing in the first sum of (4.6) can be written in the general form (4dfiqufR—;-) = (Zfi/322:[S;xfl;m;-](3:262f;-;m) m where [S;dfl;m;-] are the coefficients of the first contact transform— ation S, and (3;Z§2F;—;m) are the coefficients in hé; they have been listed in Table XIII and Appendix XI, respectively. Written in the condensed form GXPJQT8P), the coefficients (4;qp;3$£F;-;—) are listed in List A and List B below. A. For d’=@ = x, y, or z, (ddfgfiaf) = (215/3)([S;oé(;l;-](3;XFZ€;-;l) + [s;«x;2;—1<3;3A’2f;-;2>> The nonzero ones are: (xx,XXXX), (yy,yyyy), (zz,zzzz), (xx,yyyy), (xx,ZZZZ), (yy,ZZZZ), (yy,XXXX), (zz,xxxx), (22.yyyy), (xx,xxyy)=(XX.yVXX), (xx,xxzz)=(xx,ZZXX), (yy,YYXX)=(yy.Xny), (yy.yy22)=(yy,zzyy) (zz,zzxx)=(zz,xxzz), (zz,zzyy)=(zz,yyzz), (xx,yyzz)=(xx,zzyy) (yy,zzxx)=(yy,xxzz), (zz,xxyy)=(zz,yyxx), (xx,xzxz)=(xx,zxzx) (yy,x2x2)=(yy,zxzx), (zz,xzxz)=(zz,zx2x), (xx,yzyz)=(xx,zyzy) (yy,yzy2)=(yy,zyzy), (zz,YZYZ)=(zz,zyzy), (xx,xyxy)=(xx,xyyX)=(xx,YXXy)=(xx,yXVX) (yy.xyxy)=(yysnyX)=(yy,YXXY)=(yy,YXYX) (zz,XYXy)=(zz,xyyX)=(zz,yxxy)=(zz,yxyX) B.%rz¢d#fi# m («g/flap : <2fi/3)[S;wp;3;—J<3;Jf8f;—;3> The nonzero ones are: 112 113 List B, cont'd. (xy,xxxy) = (yx,xxxy) = (xy,xxyx) = (yX.xxyX) = (XYsXYXX) = (yx,xyXX) (xy,YXXX) = (yx,YXXX) (xy,YYXy) (yx,yyxy) = (xy,yyyx} (yx,nyX) = (xy,xyyy) (yx,xyyy) (xy,yxyy) = (yx,yxyy) (xy,zxzy) (yx,zxzy) = (xy,xzyz) = (yx,xzyz) = (xy,zyzx) = (yx,ZYZX) (xy,YZXZ) = (yX’yZXZ) (xy,zzxy) - (yx,zzxy) = (xy,ZZYX) (yx,ZZYX) (xy,xy22) (yXaXyZZ) = (xy,ZZYX) - (yX.ZZYX) (xy,zxxz) (yx,zxxz) (xy,zyy2) (yx,2yy2) APPENDIX XVI Coefficients (4;d&3§}-;ab) e coe 1c1ents ;d ;—;a appearing in t e secon sum 0 . Th ff' ' (4 X b) ' ' h d f (4 6) can be written in general form (4;dfi’Jv§-;ab) = (O;o<%Y;-;ab) + (R;z,fia€;-;g.2) + (Ssgga.fi;-;ab) where (O;def}-;ab), (R;g, ;-;ab) and (S;gfi)zék-;ab) are auxiliary coefficients to be listed in Lists (2) to (4) of this appendix. In the condensed form G¥¢31ab), the coefficients (4;dfi2fiE—;ab) are listed in List (l).0nly those with a = b actuall contribute to h . (l) Coefficients (4;dsqéE-;ab) a (ngéab) : (2 V In the following, o(=x, y, z ;@=x, y, z ;dflp) ;i&j= 1. 2 (zddzij) = (zaezji) = [(l—Sdz)/2(l+%ij)][(Rz,2eo(i,j)+(Rz,2o(o(j,i)] (o(o(o(a(ij) = (o(o(o(o2(5;—;1> + [S;-;2;ab](3;dP35}-;2)] and the nonzero ones are: oxaeuaa), onxxxlz) = (Anxle),(xxgpaa), enxpplz) = («29221), (nyyaa) = (xyyxaa) = (yxxyaa) = (yxyxaa) (xyxylZ) = (xyxyZl) = (xyyle) = (xyyle) = (yxxylZ) = (yxxyZl) = (yxyle) = (yxyle) B. For (ab) = (13), (31), (23) Or (32), (0;dp){8-;ab) = <2h/3)[s;—;3;ab1<3;d&7(f;—;3> There are a total of forty eight nonzero coefficients of this type, seven of which are independent. They do not contribute to the final Hamiltonian, and therefore are not listed here. (3) Auxiliary coefficients (R;q,§3§3-;a,b) E (d,§3éa,b) The form in which these auxiliary coefficients relate to the co— efficients (4;°(fi3’X;-;ab) is (R31’M32’R): with the underlining having the significance as explained in Appendix XIII. In general, (R;ot,ea’f;-;a,b) = <—2h/3>%[S;«;-;am]<3;ezf;m;b> where [SflX;-;am] are the coefficients of the first contact trans— formation S, as listed in Table XIV, and (3;p3$2m;b) are the co— efficients in hé, already given in Appendix XII. The nonzero (R;X,@35:—;a,b) that contribute to the final Hamilt— onian are: (z,zfiXiJ) = (z,o+[s;oa;2;—1<3;fifi;-;222)1(zfi/s) In addition to the above, there are: (xy,xyjj) = (xy,Yij) = (yX.xyjj) = (yx,yxjj) = (Zfi/3)[S;xy;3;-](3;xy;-;jj3) (xy,xy12) = (xy,xy21) = (xy,yx12) = (xy,yx21) = (yX.Xy12) = (yx,xy21) = (yx,yx12) = (yx,yx2l) (2n/3)[S;xy;3;-](3;xy;-;123) where j = l, 2, 3 APPENDIX XVII Coefficients (4;dfix$;ab;-) The coefficients (4;d913;ab;-) appearing in the third sum of (4.6) have the general form (4pr5;ab;-) = (O;d9’(5;ab;-) + (R;<_x_, 5;§.§;-) + (S;1&,fi;ab;-) + (Uzdl’z’a’5;2.h;-) where (O;dp($;ab;-), (R;d,p31;a,b;-), etc., are auxiliary coefficients whose detailed expressions will be given later in this appendix. In condensed notations, the nonvanishing (4;dfi%§;ab;-)'s that contribute to the final Hamiltonian are listed in List (1), while Lists (2) to (5) give the auxiliary coefficients appearing therein. (1) Coefficients (4;¢gx$;ab;-) s (abd2fi5) : In the following, °<= x, y, z ; fi= x, y ; i = j = 1, 2 (ijdddd) = (jiaexw) = (Oddddij) + (Sd«,wxij) + [bgz/(lfbij)] x [(R2,zzzi,j) + (Rz,zzzj,i)] (3344“) = (Oddd063) + (500‘ + bow) (Uama3,3) +%o(z(Rz’ZZZZ3'3) (ijxxyy) = (ijyyXX) = (jixxyy) = (tiYXX) = (Oxxyyij> + (1/2) X [(Sxx,yyij) + (Syy.xxij)] + [(Uxxyyi.j) + (Uxxyyj.i)]/ (1+bij) (33xxyy) = (33yyxx) = (Oxxyy33) + (Uxxyy3,3) (ijppzz) = (jifipzz) = (oppzzij) + [1/2(l+%ij)][(Rz,zppi,j) + (R2,zpflj,i)] + (l/2)[(Sfip,zzij) + (Szz,pfiij)] + [(Upfizzid) + (Ufipzzj,i)]/(l+‘oij) (33ppzz) = (oppzz33) + (l/2)(Rz,zpp3,3) + (uppzz3,3) (3322??) = (Ozzpp33) + (l/2)(Rz,zpp3,3) + (Uzzpfi3,3) 117 (2) (ijzzpfi) (ijxyxy) (33XyXY) (ijzpzfi) (33ZFZP) (ijzfifiz) (334q32) (ijpzzp) (33PZZP) 118 (jizng) = (Ozngij) + [1/2(1+$ij)][(Rz,zHli,j) + (Rz,z(a(aj,i)] + (1/2)[(5zz,’egij) + (392,22in + [(Uzzggi,j) + (Uzzpfij,i)]/(l+gij) (inYYX) = (ijyxxy) = (ijyXVX) = (jixyxy) = (jiXYYX) = (jiyxxy) = (tiXYX) = (Oxyxyij) + (Sxy.xyij) + [(nyxyi,i> + woman/(1613) (33xyyX) = (33yxxy) = (33YXYX) = (0xyxy33) + (Sxyixy33) + (nyxy3,3) (jizng) = (ozfezteij) + [1/2(l+SiJ-)][(Rz,gzpi,j) + (Rz,{izgj,i)] + [(Uzpzpid) + (Uaezpj,i)]/(1+%ij) (029223) + (l/2)(Rz, 2 3,3) + (U2 2 3,3) (jizppz) = (1/2(1+%ij)][(Rz,zppi,J-) + (Rz,zggj,i)] + [(Uzfipzij) + (Uzfipzj,i)]/(l+$ij) (l/2)(Rz,2)853,3) + (1122,2233) (jifizzp) = [(Ufizzfii,j) + (upzzfij,i)]/(l¢$ij) (Upzzp3,3) Auxiliary coefficients (O;Q’ ézab'—) E (d Jab) : In general, (O;xflqfizab;-) = (2fi/3)2% [S;-;abm;-](3:4fi353-;m)(1+sam+$bm) where [S;—;abm;-] are the coefficients of the first contact trans— formation S, listed in Table XV, and (3;N??$;—;m) the coefficients in hg, listed in Appendix XI. Listed herein are only those (O;«pa§}ab;-)'s that contribute to the final Hamiltonian. They can be obtained from the general form— ula above, with m running from I to 2 only. In the following list, o(&@ = x,y,z 0(7‘fié; ’X= x,y ; 1&j = 1,2 v 119 («exam = (dodei), (0479(063), (zfzfiij) = (z'dz’b’ji), (rm/33), («pa 11) = (W921i) = ((Wij) = (@Mji), (2W3) = (#463). (xyxyij) = (nyxij) = (yxxyij) = (yxyxij) = (xyxyji) = (nyxji) = (yxxyji) = (YXYin), (xyxy33) = (xyyx33) = (yxxy33) = (yxyx33) Auxiliary coefficients (R;«J?35;a,b;—) E (M,fifi{a,b) In general, (R;«,W5;a.b;-) = (Z’ri/3)% [S;d;am;-](3;p?ff;b;m) where [S;«;am;—] are the coefficients of the first contact trans— formation S, listed in Table XV, and (3;dpg§fb;m) the coefficients in hfi, listed in Appendix XII. Of the possible combinations of the vibrational operators' indices, a and b, only the following ones yield contributing auxiliary coefficients (d,fi3§a,b): A. b E j = l, 2 ; a E i = l, 2 , for which the general formula above reduces to (Ream/8mm = <2fi/3>[s;o<;i3;-1(2915mm B. a = b = 3, for which the above formula reduces to (R;o(,pyg;3.3;-) = (2h/3)[[S;°(;l3;-](3;Mf;3;l)+ [S;«;23;-] X (393$;3;2)] For these two cases, Table XIV and Appendix XII yield: (2,zqfii,j) = (z,ddzi,j), (z,zfix3,3) = (z,wxz3,3), (z,dz«i,j), (z;X2X3,3), where o(= x, y, 2 ; i & j = l, 2 Auxiliary coefficients (S;%§iz;;ab;-) a Qifiéfgab) In general, (s;o(g,'()’§;ab;-) = (Zfi/3)% [S;dfism;-](3;Xf;ab;m) where [S;¢#;m;—] are the coefficients of the first contact (5 V 120 transformation, listed in Table XIII, and (3;%$;ab;m) the coeffi- cients in hé, listed in Appendix XIII. Of the nonvanishing (S;u?,%$;ab;-)'s, only the following ones contribute to the final Hamiltonian: A. (S;au,f@;ij;-) = (S;dd.&@;ji;-) = (2h/3)[[S;xa;l;-](3;Ffi;ij;l) + [S;dd;2;—](3;pfi;ij;2)] (S;o&.gg;33;—) = (2h/3)[[S;dd;1;-](3;PP;3;1) + [S;wd;2;-] X (3;@p;33;2)] ;ol&fl = x,y,z ; i&j = 1,2 B. (33XY:XYSij;')=(S;Xy,yx§ij;')=(S;yX:Xy;ij;‘)=(S;yX:YX;ij;') = (S;xy.xy;ji;-)=(S;xy.yX;ji;-)=(S;yx,xy;ji;-) = (S;yx,yxzji;-)= (2fi/3)[S;xy;3;—](3;xy;ij;3) (S;xy,xy;33;-)=(S;xy,yxs33;-)=(S;YX.xy;33;-)=(S;YX;yX;33;-) = (2fi/3)[S;xy;3;-](3;xy;33;3) ; 1&3 = 1.2 Auxiliary coefficients (U;¢&3§;a,b;—) E GrfixSa,b) In terms of the coefficients [S;d@;a;—] in Table XIII and the co— efficients (2';dfifi;b;-) to be given at the end of this appendix, the nonzero contributing (U;dP%f;a,b;—)'s are listed below. In this list symbols and separating semicolons are omitted from the corresponding coefficients, 1. e., [S;d@;a;—] and (2';dfi]fib;—) are written in the condensed notations (Apa) and Gxfijb), respectively. (xxxx3,3) = 2h(xy3)[2(zxx3) + (xzx3)] (yyyy3,3) = -2fi(xy3)[2(zyy3) + (yzy3)] (xxyy3.3) = (yyxx3.3) = -fi(xy3)[(xxz3) - (yyz3)] (xxyyi,j) = (yyxxi,j) = fi(yyi)[(zxyj) + (xzyj)] - fi(xxi)[(xyzj) + (xzyj)] 121 (xxzz3,3) = (zzxx3,3) = h(xy3)[(xzx3) + (zxx3) — (zzz3)] (xxzzi,j) = (zzxxi,j) = h(xxi)[(xzyj) + (xyzj)] - fi(zzi)[(yXZj) + (xyzj)] (yyzz3,3) = (zzyy3,3) = h(xy3)[(yyz3) + (yzy3) - (zzz3)] (yyzzi,j) = (zzyyi,j) = fi(zzi)[(xij) + (yXZj)] - h(yyi)[(yXZj) + (Ysz)] (xyxy3.3) = (yxyx3,3) = 'h(xy3)[(yzy3) - (xzx3)] (xyxyi,j) = (yxyxi,j) = 2fi[(yyi)(xy21) - (xxi)(zxyj)] (zxzx3,3) = (xzxz3,3) = h(xy3)[(zzz3) - 2(2xx3)] (zxzxi,j) = (xzxzi,j) = 2h[(xxi)(zxyj) - (zzi)(xzyj)] (zyzy3,3) = (yzy23,3) = h(xy3)[2(zyy3) - (zzz3)] (zyzyi,j) = (yzyzi,j) = 2h[(zzi)(xzyj) - (yyi)(xy2j)] mex3)=-flflmfi)@md> (yxxyi,j) = 2h(yyi)[(xzyj) + (zxyj)] (xyyx3,3) = 2fi(xy3)(zyy3) (nyxi,j) = 4h(xxi)[(xzyj) + (XYZj)] (xzzx3,3) = 2(xxzz3,3) (xzzxi.j) = 2fi(xxi)[(XYZj) 4-(zij)] (yzzy3.3) = 2fi(xy3)[(zyy3) + (yzy3) - (zzz3)] (yzzyi,j) = 2(yyzz3.3) (zxxzi,j) = -2h(zzi)[(xy2j) + (zxyj)] (z-yzi,j) = 2fi(zzi)[(xy2j) + (zxyj)] In the above list i & j = l, 2 ; not every one of the coefficients is independent of the others. The coefficients (2' ;dfi'ggbr) appearing in the preceding list are closely related to the coefficients (2;XPJ§b;-) in Appendix IV. They are as follows: (2';zzz;3;-) (2';ZXX;3;-) (2';zyy;3;-) (2';XZX;3;-) (2';yzy;3;-) (2';xzy;j;-) (2';xy2;j;-) (2';yx2;j;-) 122 (2/3)(2;zzz;3;-) (2';XXZ;3;-) = (2/3)(2;zXX;3;-> (2';yy2;3;-) = (2/3)(2;zyy;3;-) (1/2)(2;XZX;3;-) (1/2)(2;yzy;3;-) (2';yzx;j;-) = (1/2)(2;xzy;j;—); j = 1, 2 (2';zyx;j;—) = (2/3)(2;xyz;j;—) — Ia§Z(Ix—Iy) — agxlz]/24InyIz2Aj3/4h3/2 ; j = 1, 2 (2';zxy;j;—) = <2/3)<2;yxz;j;-> - 1a§z 123 QXZKNXZOO (dzx*pzp) . (xy2*XYZ) (xzy*x2y) (zxy*zxy) (XYZ*Xzy) (xy2*zxy) (xzy*zxy) 124 (—h/2X31/2> <2; (xy2*zyX) = (ZYX*XYZ) = (zyX*zyX) =(sh/2) X [(2;xy2;l;-)2/9\11/2 + (2;xy2;2;-)2fl321/2] (xzy*YZX) = (yZX*Xzy) = (YZX*YZX) =(=fi/2) X [(2;xzy;l;-)‘2/9lll/2 + (2;xzy;2;-)2/221/2] (ZXY*YXZ) = (yx2*zxy) = (YXZ*YXZ) = (=fi/2)X [(2;zxy;l;-)2/9\ll/2 + (2;zxy;2;-)2/221/2] (XYZ*YZX) = (zyX*xzy) = (ZYX*YZX) = (xzy*xy2) (xzy*ZYX> = (y2X*XyZ) = (yZX*zyX) = (-fi/2) X 1/2 + (2;xyzz2;-) X [(2;xyz;l;-)(2;xzy;l;—)/Xl (2;xzy;2;-)/221/2] (xy2*yx2) = (ZYX*ZXY) = (zyX*YXZ) = (zxy*xy2) (zxy*zyX) = (yx2*xy2) = (yx2*ZYX) = (45/2) X [(2;xy2;l;-)(2;zxy;l;-)/211/2 + (2;xy2;2;-) X (2;zxy;2;-)/AZl/2] (xzy*VXZ) = (y2X*zxy) = (YZX*YXZ) = (zxy*xzy) (zxy*yzx) = (yxz*xzy) = (yxz*yzx) = (—n/2) x [(2;xzy;l;-)(2;zxy;l;-)/'>\ll/2 + (2;xzy;2;-) X (2;zxy;2;-)/XZl/2] APPENDIX XIX Coefficients (4!d ,{!-!ab) in h @ 4 The coefficients (4!dpz,g!—!ab) appearing in the second term of the second equation in (5.7) are of the following general form: (4!d93§X!-!ab) = (sh/2);; [S;«fiafi—;m](2;$}m;ab) where [5}2p7;-;m] are the coefficients of the second contact trans— formation, and (2;§;m;ab) the coefficients in hz: they are listed in Table XVIII and Appendix VIII, respectively. It was mentioned in Appendix XVI, that , of the coefficients listed therein, only those with equal indices of vibrational operator, a = b, actually contribute to the final Hamiltonian. This holds true also of the coefficients listed in Appendix XVII, which is why the condition i = j was imposed in the beginning of the listing. As a matter of fact, this condition of vibrational diagonality covers all quartic coefficients in the fourth-order, twice transformed Hamiltonian h4@. Therefore, the coeff- icients with a ¥ b will not be included in the list below. Again, the condensed notation adopted in Chapter 5 will be used here. (222*2jj) = (~‘r'1/2)[0";222;-;3](2;z;3;jj) (20(0(*zjj) = (o(a(z*zjj) = (47/2)[°‘;zo = (yX*ijj) = Cfi/Z)[6;xy;3;j](2;xy;-;3j) (xy*xy33) = (xy*yx33) = (yX*xy33) = (yX*yx33) = (fi/Z)[[63xy;l;3](2;xy;-;l3) + [62xy;2;3](2;xy;-;23)] 126 APPENDIX XXI Coefficients (4!d,Pgéd—!ab) in h4@ The coefficients (4!d,@3§1-!ab) in the fourth term of the second eq- uation in (5.7) can be expressed in general as: (42«,p?{::—zab) = (41/2)? [o';o<;-;mab](2;pgf;n;—)(l + Sam +$bm) where [6§q;—;mab] are the coefficients of the second contact trans— formation, and (2;fi3§;m;—) the coefficients in bi; they are listed in Table XXI and Appendix IV, respectively. The symbol X; denotes the summation over m and over all permutations of (mab), subject to the restriction: left index <_middle index <;right index. Listed below are the coefficients (4!d,335!-!ab), written in the con- densed notation GX*Qagab) introduced in Chapter 5, that actually con— tribute to the final Hamiltonian. = (eh/2)[o:z;—;jj31<2;zzz;3;—><1+28j3> (2*Mkzjj) = (2*zdxjj) (-‘h/2) [o’;z;—;jj3] (2;o(o