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ABSTRACT 

STABILITY AND ELECTRONIC PROPERTIES OF LOW-DIMENSIONAL 

NANOSTRUCTURES 

By 

Jie Guan 

As the devices used in daily life become smaller and more concentrated, traditional three-

dimensional (3D) bulk materials have reached their limit in size. Low-dimensional nanomaterials 

have been attracting more attention in research and getting widely applied in many industrial 

fields because of their atomic-level size, unique advanced properties, and varied nanostructures. 

In this thesis, I have studied the stability and mechanical and electronic properties of zero-

dimensional (0D) structures including carbon fullerenes, nanotori, metallofullerenes and 

phosphorus fullerenes, one-dimensional (1D) structures including carbon nanotubes and 

phosphorus nanotubes, as well as two-dimensional (2D) structures including layered transition 

metal dichalcogenides (TMDs), phosphorene and phosphorus carbide (PC). 

I first briefly introduce the scientific background and the motivation of all the work in this 

thesis. Then the computational techniques, mainly density functional theory (DFT), are reviewed 

in Chapter 2. 

In Chapter 3, I investigate the stability and electronic structure of endohedral rare-earth 

metallofullerene La@C60 and the trifluoromethylized La@C60(CF3)n with n ≤ 5. Odd n is 

preferred due to the closed-shell electronic configuration or large HOMO-LUMO gap, which is 

also meaningful for the separation of C60-based metallofullerenes. 

Mechanical and electronic properties of layered materials including TMDs and black 

phosphorus are studied in Chapter 4 and 5. In Chapter 4, a metallic NbSe2/semiconducting WSe2 

bilayer is investigated and besides a rigid band shift associated with charge transfer, the presence 



of NbSe2 does not modify the electronic structure of WSe2. Structural similarity and small lattice 

mismatch results in the heterojunction being capable of efficiently transferring charge acrossthe 

interface. In Chapter 5, I investigate the dependence of stability and electronic band structure on 

the in-layer strain in bulk black phosphorus.  

In Chapters 6, 7 and 8, novel 2D structures are predicted theoretically. In Chapter 6, I 

propose two new stable structural phases of layered phosphorus besides the layered α-P (black) 

and β-P (blue) phosphorus allotropes. A metal-insulator transition caused by inlayer strain or 

changing the number of layers is found in the new γ-P phase. An unforeseen benefit is the 

possibility to connect different structural phases at no energy cost, which further leads to a 

paradigm of constructing very stable, faceted phosphorus nanotube and fullerene structures by 

laterally joining nanoribbons or patches of different planar phosphorene phases, which is 

discussed in Chapter 7. In Chapter 8, I propose previously unknown allotropes of PC in the 

stable shape of an atomically thin layer. Different stable geometries, which result from the 

competition between sp2 bonding found in graphitic C and sp3 bonding found in black P, display 

different electronic properties including metallic, semi-metallic with an anisotropic Dirac cone, 

and direct-gap semiconductors with their gap tunable by in-layer strain.  

In Chapter 9, I propose a fast method to determine the local curvature in 2D systems with 

arbitrary shape. The curvature information, combined with elastic constants obtained for a planar 

system, provides an accurate estimate of the local stability in the framework of continuum 

elasticity theory. This approach can be applied to all 2D structures. 

Finally, I present general conclusions from the PhD Thesis work in Chapter 10. 
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Chapter 1

Introduction

In this thesis, I have studied four different topics related to low-dimensional nanostructures

and their associated with stability and electronic properties: stable and extractable metallo-

fullerenes, electronic properties and applications of layered materials, novel two-dimensional

(2D) structures, as well as curvature and stability for 2D systems. All these topics are stud-

ied to explore the advanced properties of existing nanomaterials and to discover unknown

promising nanomaterials, and finally to lead to applications in different fields.

1.1 Stable and extractable metallofullerenes

The discovery of C60 in 1985 [1] started the nanotechnology revolution. In the mean time,

metallofullerene LaC60 was also observed in a mass spectrum of the products from laser

vaporization of a LaCl3 impregnated graphite rod [2]. As more endohedral metallofullerens

were successfully synthesized [3–6], there have emerged wide applications in different fields,

such as solar cells [7, 8] and biomedicine [9, 10]. However, unlike hollow fullerenes, it is not

easy to separate the metallofullerenes except M@C82 from the raw soot containing both

hollow fullerenes and metallofullerenes with different sizes [3, 11–14]. The extraction of

small metallofullerenes especially for most abundant M@C60, has become a big challenge

due to their insolubility in normal fullerene solvents such as toluene and CS2 [11, 15, 16].

These metallofullerenes are chemically reactive due to their open-shell electronic configura-
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tions or small HOMO-LUMO gaps and consequent tendency to form insoluble polymerized

solids [17]. Recently, Shinohara’s group at Nagoya University reported a new strategy to

open the HOMO-LUMO gaps of small metallofullerenes including M@C60 and M@C70 by

trifluoromethylation [18, 19], and a number of trifluoromethylated metallofullerenes have

been purified.

In this thesis I investigated the stability and electronic structure of the endohedral rare-

earth metallofullerene La@C60 and trifluoromethylized La@C60(CF3)n with n≤5. Unlike the

trifluoromethyl derivatives of C60, La@C60(CF3)n prefers odd numbers of n, due to the 3

extra valence electrons from the encapsuled metal atom La. Calculated electronic eigenstates

of molecular orbitals further confirmed that with an odd number n La@C60(CF3)n is more

stable by forming a closed-shell electronic configuration or large HOMO-LUMO gap, which

is also significant for the separation of C60-based metallofullerenes.

1.2 Electronic properties and applications of layered

materials

2D materials have been attracting the electronics community’s research interest since the

successful exfoliation of single-layer graphene from bulk layered graphite [20]. Applications

in 2D electronics are limited for graphene due to its zero band gap. Layered transition-metal

dichalcogenides (TMDs) have been considered as promising candidates for 2D electronics

in the post-graphene era, since the isolation of single-layer molybdenum disulfide (MoS2)

and its application in field-effect transistors [21, 22]. One of the biggest challenges for the

fabrication of high-performance electronic devices is the poor contact between metal and the

TMD surface [23–26].
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In this thesis, in search of an improved strategy to form low-resistance contacts to semi-

conducting TMDs, I propose to use metallic TMD as 2D/2D drain/source contacts. A

metallic NbSe2/semiconducting WSe2 bilayer is investigated. Very different from traditional

contacts with relatively thick depletion layer, I found that the electronic structure of WSe2

is not modified by the NbSe2 layer besides a rigid band shift associated with charge transfer.

Since the two TMDs are structurally similar and display only a small lattice mismatch, they

form a heterojunction capable of efficiently transferring charge across the interface, thus

improving current injection into WSe2.

Layered black phosphorus has been another promising 2D material since the successful

applications of few-layer phosphorene in electronic devices [27, 28]. Bulk black phosphorus

has been known for a century [29] and displays an interesting change in its electronic and

topological properties under compression [30–32]. Similar to bulk black phosphorus, its band

gap displays a strong and anisotropic response to in-layer strain in phosphorene monolayers

and few-layer systems [27,28,33–38], which is now well established. However, no dependable

data are available for the corresponding response in the bulk system.

In this thesis, I investigate the dependence of stability and electronic band structure on

the in-layer strain in bulk black phosphorus and found that the strain energy and interlayer

spacing display a strong anisotropy with respect to the uniaxial strain direction. The band

gap depends sensitively on the in-layer strain and even vanishes at compressive strain values

exceeding ≈2%, thus suggesting a possible application of black P in strain-controlled infrared

devices.
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1.3 Novel 2D structures

Even though interest in 2D electronics and the family of 2D semiconductors is growing fast,

a consensus has not been reached regarding the optimum candidate for channel materials.

Semi-metallic graphene, with an excellent carrier mobility, has received the most attention

so far, but all attempts to open up a sizeable, robust, and reproducible band gap have failed

due to the negative side effects of the different modifications [39–42]. The TMD family, such

as MoS2 [22, 43] has sizeable fundamental band gaps, but lower carrier mobility. Recently

isolated few-layer films of black phosphorus, including phosphorene monolayers, combine

high carrier mobility with a sizeable and tunable fundamental band gap [27, 28], but have

limited stability in air [44]. Novel low-dimensional structures and materials with advanced

properties are still desirable.

In this thesis, I propose two new stable structural phases of layered phosphorus besides

the layered α-P (black) and β-P (blue) phosphorus [33] allotropes. The possibility to connect

these different structural phases at no energy cost further leads to the paradigm of construct-

ing very stable, faceted phosphorus nanotube and fullerene structures by laterally joining

nanoribbons or patches of different planar phosphorene phases. I also propose previously un-

known allotropes of phosphorus carbide (PC) in the stable shape of an atomically thin layer.

Different stable geometries, which result from the competition between sp2 bonding found in

graphitic C and sp3 bonding found in black P, display different electronic properties includ-

ing metallic, semi-metallic with an anisotropic Dirac cone, and direct-gap semiconductors

with their gap tunable by in-layer strain.
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1.4 Curvature and stability for 2D systems

One of the most important advantages of 2D systems is mechanical flexibility, which allows

tuning of the morphology of the 2D surface. The most prominent example, graphitic carbon,

is the structural basis not only of graphene [45], but also fullerenes, nanotubes, tori and

schwarzites [46–50]. Even though the structural motif in all of these systems may be the same,

their mechanical and electronic properties depend sensitively on the local morphology [51–

53]. On the other hand,ab initio calculations are impractical to estimate the global or local

stability for very large structures. Empirical rules or parameterized force fields, including

the Tersoff potential and molecular mechanics [54–57], have often been used to estimate

stability but are sometimes unsatisfactory. Application of continuum elasticity theory, which

can describe stability changes due to deviation from planarity, has been successful, but it is

limited to systems with a well-defined, constant curvature [58,59].

Since strain energy is dominated by local geometry and independent of the global mor-

phology, here I propose a fast method to determine the local curvature in 2D systems with

arbitrary shape. The curvature information, combined with elastic constants obtained for

a planar system, provides an accurate estimate of the local stability in the framework of

continuum elasticity theory. This approach can be applied to all 2D structures.

1.5 Outline of the dissertation

This PhD thesis contains 9 chapters, including Chapter 1 as an introductory chapter and

Chapter 2 to describe the computational methods used throughout this thesis.

In Chapter 3, I investigated stability and electronic structure of endohedral rare-earth

metallofullerene La@C60 and the trifluoromethylized La@C60(CF3)n with n≤5. Preferred
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odd number of n are found benefits from the close-shell electronic configuration or large

HOMO-LUMO gap, which is also meaningful for the separation of C60-based metallo-

fullerenes.

Mechanical and electronic properties of layered materials including TMDs and black

phosphorus are studied in Chapter 4 and 5. In Chapter 4, a metallic NbSe2/semiconducting

WSe2 bilayer is investigated and besides a rigid band shift associated with charge transfer, the

presence of NbSe2 will not modify the electronic structure of WSe2. Structurally similar and

small lattice mismatch result in the heterojunction being capable of efficiently transferring

charge across the interface. In Chapter 5, I investigate the dependence of stability and

electronic band structure on the in-layer strain in bulk black phosphorus.

In Chapters 6, 7 and 8, novel 2D structures are predicted theoretically. In Chaper 6,

I propose two new stable structural phases of layered phosphorus besides the layered α-P

(black) and β-P (blue) phosphorus allotropes. Metal-insulator transition caused by in-layer

strain or changing the number of layers are found in the new γ-P phase. An unforeseen benefit

is the possibility to connect different structural phases at no energy cost, which further leads

to a new paradigm in constructing very stable, faceted phosphorus nanotube and fullerene

structures by laterally joining nanoribbons or patches of different planar phosphorene phases,

which is discussed in Chapter 7. In Chapter 8, I propose previously unknown allotropes of

PC in the stable shape of an atomically thin layer. Different stable geometries, which result

from the competition between sp2 bonding found in graphitic C and sp3 bonding found

in black P, display different electronic properties including metallic, semi-metallic with an

anisotropic Dirac cone and direct-gap semiconductors with their gap tunable by in-layer

strain.

In Chapter 9, I propose a fast method to determine the local curvature in 2D systems
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with arbitrary shape. The curvature information, combined with elastic constants obtained

for a planar system, provides an accurate estimate of the local stability in the framework of

continuum elasticity theory. This approach can be applied to all 2D structures.

Finally in Chapter 10, I provide my conclusions for the whole work of my PhD study.
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Chapter 2

Introduction to Density Functional

Theory

In this chapter, I will start with the Hartree-Fock (HF) approximation and show the disad-

vantage of this single-particle approximation. Then I will introduce density functional theory

(DFT) which is better method for many materials. I will talk about the Hohenberg-Kohn

(HK) theorem, Kohn-Sham (KS) equations, as well as the approximations and methods used

in the application of DFT.

2.1 Hartree-Fock approximation

In a complex nanostructure including many atoms and electrons, the Hamiltonian operator

of the whole system can be written as:

Ĥ =
∑
I

− ~2

2M
∇2
I +
∑
i

− ~2

2m
∇2
i +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ|
+

1

2

∑
i 6=j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|ri −RI|
(2.1)

Here, the uppercase indices describe the ions and the lowercase indices describe electrons.

The first two terms represent the kinetic energy of the ions and the electrons. The last three

terms are, respectively, ion-ion, electron-electron and the electron-ion interactions. RI and

RJ denote the ion positions and ri and rj denote the electron positions. As the nucleus is
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thousands of times heavier than the electron, the ion motion and the electron motion can be

separated by the Born-Oppenheimer approximation [60]. Based on this approximation, the

ions can be seen as fixed when considering the electron system. In this case, the Hamiltonian

of electrons can be written as

Ĥ =
∑
i

− ~2

2m
∇2
i +

1

2

∑
i6=j

e2

|ri − rj|
−
∑
I,i

ZIe
2

|ri −RI|
. (2.2)

To get the states of electrons we need to solve the Schrödinger’s equation

ĤΨ(r) = EΨ(r). (2.3)

In a system including N electrons, the HF approximation assumes that the wave function of

the whole system can be written as a Slater determinant

Ψ(r) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ1(r1) Φ1(r2) · · · Φ1(rN)

Φ2(r1) Φ2(r2) · · · Φ2(rN)

...
...

...

ΦN (r1) ΦN (r2) · · · ΦN (rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Here the Φi(rj) represents the electron orbital i at position rj, and they are orthonormal

∫
Φ∗i (r)Φj(r) = δij . (2.4)
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The last term in Eq. (2.2) represents the periodic potential in a crystal and can be written

as

V (r) =
∑
I

v(r−RI) = −
∑
I

ZIe
2

|r−RI|
. (2.5)

The total energy of the system is

E =

∫
Ψ∗(r)ĤΨ(r)dr. (2.6)

By substituting the Hamiltonian and wave function into Eq. (2.6), we can get the average

energy

E =
∑
i

∫
drΦ∗i (r)[− ~2

2m
∇2 + V (r)]Φi(r) +

1

2

∑
i6=j

∫
drdr′|Φi(r)|2 e2

|r− r′|
|Φj(r′)|2 −

1

2

∑
i6=j

∫
drdr′Φ∗i (r)Φ∗j (r

′)
e2

|r− r′|
Φj(r)Φi(r

′). (2.7)

We can see that if the electrons in the system do not interact with each other, then the

energy will only include the first term. Obviously this is not the truth. The second term is

the Coulomb interaction between different electrons. The third term describes the exchange

interaction between electrons with the same spin. To find the ground state of the system

we need to minimize the total energy. We can use the variational principle to do it and find
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that Φi(r) should satisfy the following equation:

[− ~2

2m
∇2 + V (r) +

∑
j

∫
dr′|Φj(r′)|2

e2

|r− r′|
]Φi(r)−

∑
j

∫
dr′

e2Φ∗j (r
′)Φi(r′)

|r− r′|
Φj(r) = εiΦi(r). (2.8)

Here we obtained the famous HF equation. Notice that in the second term of the left hand

side of the equation the operator is related to the wave function for the electron we consider,

so the equation can only be solved in a self consistent way.

The HF method is only an approximation and sometimes does not give a satisfactory

result. This is because in HF we assume that the electron wave function can be written

as a single Slater determinant, which is wrong. In this way we assume that each electron

interacts with an average charge distribution due to the other electrons. This introduces an

error in the wave function and the energy of the electrons. The energy error here ignored in

HF is called the electron correlation energy. The error sometimes can be rather big and give

wrong results.

2.2 Hohenberg-Kohn theorem

Although the HF method has been applied for a long time in solid state physics, it is not

a strict theoretical basis for the single-particle approximation of the many-body system.

Density functional theory based on the Hohenberg-Kohn theorem [61] and the subsequent

Kohn-Sham equations [62] gives strict evidence that the ground state problem of a many-

body system can be transformed to a ground state problem of a single quasi-particle problem

in an effective external potential.
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The essential idea of the Hohenberg-Kohn theorem is that in a many-body system, the

electron density ρ(r) is the basic variable that determines the physical quantities. In 1964,

Hohenberg and Kohn first proved a basic lemma which states that one external potential

V (r) on a many-electron system only corresponds to one ground state electronic density

ρ(r). With a known V (r), both the ground state wave function and the total energy of the

system are decided. In this way, we reach the first Hohenberg-Kohn theorem, which states

that the ground-state properties of a many-electron system depend only on the electronic

density ρ(r). Thus, in the ground state, it turns out that the total electronic energy of the

system can be expressed by a functional of the electronic density ρ(r), including the kinetic

energy of electrons T [ρ], the interaction between electrons Vee[ρ], and the interaction with

the external potential V (r) as

E[ρ] = T [ρ] + Vee[ρ] +

∫
drV (r)ρ(r). (2.9)

The second Hohenberg-Kohn theorem states that the correct ground state density for a

system is the one that minimizes the total energy through the functional E[ρ]. Once the

expression for the kinetic energy T [ρ] and electron-electron interaction energy Vee are known,

the ground state electron density ρ and total energy E[ρ] can be calculated based on the

variational principle, which minimizes the total energy while keeping the total number of

electrons N constant.
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2.3 Kohn-Sham equations

The Hohenberg-Kohn theorems justify that the ground-state properties of the system are

determined by the functional of the ground state electron density ρ(r). However, as exact

expressions for the kinetic energy T [ρ] and electron-electron interaction Vee[ρ] are unknown,

it is still unclear how to obtain E[ρ].

Kohn and Sham introduced the idea that the ground state electron density of a many-

electron system can be approximated using contributed by N independent orbitals:

ρ(r) =
∑
i

ψ∗i (r)ψi(r). (2.10)

Here {ψi(r)} (i = 1, 2, · · · , N) is a supposedly noninteracting quasi-electron system, which

just happens to have the same ground state electron density ρ(r) as the interacting sys-

tem we are considering here. Since the Hohenberg-Kohn theorem tells us that the ground

state properties only depend on ρ(r), we can obtain the ground state properties from this

equivalent noninteracting quasi-electron system.

Using the noninteracting quasi-electron wave functions ψi(r), we can write down the

Coulomb energy (Hartree energy) as

VH [ρ] =
1

2

∫
drdr′ρ(r)

e2

|r− r′|
ρ(r′)

=
1

2

∑
i,j

< ψiψj |
e2

r12
|ψiψj >, (2.11)
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and the kinetic energy for the noninteracting quasi-electron system as

T0[ρ] =
∑
i

∫
drψ∗i (r)(− ~2

2m
∇2)ψi(r)

=
∑
i

< ψi| −
~2

2m
∇2|ψi > . (2.12)

Then, the ground state energy as a functional of ρ(r) for the system can be rewritten as

EKS [ρ, V ] = T0[ρ] + VH [ρ] + Exc[ρ] +

∫
drV (r)ρ(r). (2.13)

Here Exc[ρ] is the term for electron exchange and correlation, which is defined as

Exc[ρ] = (T [ρ]− T0[ρ]) + (Vee[ρ]− VH [ρ]). (2.14)

It describes the energy caused by the exchange interaction and electron correlation in the

electron-electron interaction energy Vee[ρ] after subtracting the Hartree energy; and the

difference in the kinetic energy between the interacting electrons and the non-interacting

quasi-electrons.

We can use variational method to minimize EKS [ρ, V ] by keeping the total number of

electrons N unchanged as the constraint condition:

N =

∫
drρ(r) =

∑
i

< ψi|ψi > . (2.15)

The quasi-electron wave functions < ψi|ψj > are orthonormal. The ground state energy and

electron density are decided by the variational extremum ofEKS [ρ, V ]−
∑
i(εi < ψi|ψi > −1),

where εi are the Lagrange multipliers. Substituting Eq. (2.13) into the variational term and
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doing the variation with respect to < ψi|, we get

< δψi

∣∣∣∣δT0[ρ]

δρ
+
δVH [ρ]

δρ
+
δExc[ρ]

δρ
+ V (r)− εi

∣∣∣∣ψi >= 0. (2.16)

The equation is satisfied for arbitrary < δψi|, so the coefficient of < δψi| should be zero.

Then we get

[− ~2

2m
∇2 + Veff (r)]ψi(r) = εiψi(r). (2.17)

It is very similar to the single-electron equation except Veff is the effective potential and

has the form

Veff (r) =
δVH [ρ]

δρ
+
δExc
δρ

+ V (r) = VC(r) + Vxc(r) + V (r), (2.18)

VC(r) =

∫
dr′ρ(r′)

e2

|r− r′|
. (2.19)

Eq. (2.17) describes the motion of a quasi-electron under the effective potential Veff (r).

However, this effective potential depends on the ground-state electronic density

ρ(r) =
∑
i

|ψi(r)|2. (2.20)

Eqs. (2.17) and (2.20) are called Kohn-Sham equations and they need to be solved in a

self-consistent way.

This is an important theoretical result because it demonstrates that the ground state

problem can be solved by Kohn-Sham self-consistent equations, which describe the motion

of single quasi-electrons. However, the electron exchange and correlation part Exc[ρ] and

corresponding Vxc[ρ] are unknown, and solving the Kohn-Sham equations is still a challenge.
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Another thing that must be noticed is that the Lagrange multipliers εi are not the single-

electron energies in the many-body system.

2.4 Exchange-correlation functionals

The application of DFT depends on the choice of the exchange-correlation functional Exc[ρ].

To construct suitable forms of the exchange-correlation functionals, approximations at dif-

ferent levels have been made.

The local density approximation (LDA) [62, 63],which is applied for most of the carbon

systems in this thesis, is the most straightforward approximation of the exchange-correlation

functional where the exchange-correlation energy is a function of the local electron density

ρ. The exchange-correlation energy can be written as

ELDAxc [ρ] =

∫
drρ(r)εxc(ρ). (2.21)

Here, εxc(ρ) is the exchange and correlation energy density of a homogenous electron gas

with density ρ. εxc(ρ) can be further separated into an exchange term and a correlation term

εxc(ρ) = εx(ρ) + εc(ρ). (2.22)

In a uniform electron gas, the exchange part is known:

εx(ρ) = −3

4

( 3

π

)1
3ρ(r)

1
3 . (2.23)

The remaining part of εxc, the correlation energy εc, has been determined by Ceperley and
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Alder [63] using quantum Monte Carlo calculations of a uniform electron gas with different

densities.

LDA is exact for the uniform electron gas. However, the electron density is not homoge-

nous in real systems. Application of LDA is based on the assumption that the exchange-

correlation energy of the nonuniform system can be obtained approximately by separating

the system into infinitely many small portions with constant electron density and by treating

these as a locally uniform electron gas of the same density.

LDA provides a good approximation to the exchange-correlation energy when the charge

density does not change dramatically. However, ignoring the variation of the electron density

will lead to errors especially for systems with significant variations in the electron density.

To correct this error, Exc can be considered as a functional of not only the local electron

density but also the electron density gradient, which is the essential idea of the so-called

generalized gradient approximation (GGA). In GGA, the exchange-correlation energy can

be written as

EGGAxc [ρ] =

∫
drf(ρ(r),∇ρ(r)). (2.24)

Here the function f(ρ,∇ρ) can have different choices and there are many different GGAs

depending on different f(ρ,∇ρ). The GGA functional used in this thesis applied to most

layered structures is the PBE [64] functional proposed by Perdew, Burke and Ernzerhof in

1996, which is currently the most popular GGA functional.

Although GGAs are sometimes called “nonlocal” functionals, the density and its gradient

still supply only local information. Neither LDA and GGA can give a good description for

long-range dispersion (or van der Waals (vdW) interaction), which is important layered

structures. Various functionals including vdW interaction corrections have been developed
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recently. In this thesis, the optB86b-vdW [65, 66] functional has been used to describe the

inter-layer interaction of the layered structures studied. However, the results using vdW-

corrected functionals have been shown to depend sensitively on the choice of functionals

and cannot compared to quantum Monte Carlo calculations [67] in their ability to correctly

describe the physics of the inter-layer interaction.

As discussed above, in the Kohn-Sham equations Eq. (2.17), εi are Lagrange multipliers

and have no particular physical meanings. However, it turns out that while this is strictly

approximate, the energy spectrum of εi often resembles the eigenvalues of electronic states.

In addition, there is usually an underestimation of the electronic band gap of semiconductors

in both LDA and GGA. Although DFT is not designed to reproduce the band gap in solids,

efforts have been made to correct the underestimation of the band gap in LDA and GGA.

Hybrid functional methods, which combine partial Hartree-Fock exact exchange with the

partial exchange-correlation energy of DFT, have been applied to correctly reproduce the

band gap in solids. The mixture of HF, which typically overestimates the band gap, with

DFT, which typically underestimates the band gap, usually predicts a reasonable electronic

band gap value. In this thesis, the HSE06 hybrid functional approximation introduced by

Heyd, Scuseria, and Ernzerhof [68] are used to predict the band gap values of certain systems.

2.5 Basis sets and pseudopotentials

In order to solve the Kohn-Sham equations Eq. (2.17), a preselected basis set {χν(r)} needs

to be chosen and then the single quasi-electron wave function ψi(r) can be projected to the

basis functions:

ψi(r) =
∑
ν

cνiχν(r). (2.25)
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Here cνi are the coefficients. Defining

f(r) = − ~2

2m
∇2 + Veff (r), (2.26)

Eq. (2.17) can be rewritten as

f(r)
∑
ν

cνiχν(r) = εi
∑
ν

cνiχν(r). (2.27)

As the basis functions {χν(r)} are known, what we need now are just the coefficients cνi. In

this way, the problem can be transformed to a matrix problem, which is much easier to deal

with by a computer.

In quantum chemistry, atomic orbitals are usually used as the basis for the molecular

orbitals, based on the LCAO-MO approximation, which assumes that the molecular orbitals

(MO) are a linear combination of atomic orbitals (LCAO). In physics, plane wave basis

sets are also often used in solids. In this thesis, atomic-orbital basis sets are used in DFT as

implemented in the SIESTA code [69]. Plane wave basis sets are used in DFT as implemented

in the VASP code [70–73].

Since the chemical properties are decided by the valence electrons of each atom, the core

electrons have little effect on the properties of solids. Therefore, their effects on the valence

electrons can be represented by a pseudopotential, which simplifies the complicated real all-

electron potential and reduces the computational effort substantially. There are many differ-

ent formulas to construct pseudopotentials. In this thesis, norm-conserving pseudopotentials

are used in the SIESTA code and projector augmented wave (PAW) pseudopotentials [73,74]

are used in the VASP code.
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Chapter 3

Stability and electronic structure of

La@C60 functionalized by CF3 radicals

This study is a collaboration with Prof. Hisanori Shinohara’s group at Nagoya University,

Japan.

3.1 Introduction

At the same time as the famous fullerene C60 was observed experimentally in 1985 [1],

the complexes LaC60 and other LaC2n were also found by laser vaporization of a LaCl3

impregnated graphite rod [2]. Later on, more metal and nonmetal atoms encapsuled by

fullerenes were synthesised with different methods [3–6,75–78]. Unlike previous expectations,

only M@C82-type metallofullerenes were separated from the raw soot containing hollow

fullerenes and other metallofullerenes with different sizes [3, 11–14]. It has been difficult to

extract the most abundant M@C60 and M@C70 metallofullerenes due to their insolubility

in normal fullerene solvents such as toluene and CS2 [11, 15, 16]. Although several M@C60

metallofullerenes have been extracted by solvents such as pyridine and aniline [16, 79–81],

purification and isolation of the M@C60 metallofullerenes is still a big challenge since pyridine

and aniline are not suitable solvents for HPLC (high-performance liquid chromatography)

separation methods [15]. Right now it is still not clear why the M@C60 metallofullerenes
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behave so differently from M@C82, which is easy to extract and isolate.

Recently, Wang et al. reported a new strategy to isolate small metallofullerenes including

M@C60 and M@C70 by trifluoromethylation [18, 19]. The key point here is that the small

metallofullerenes with open-shell electronic configurations are chemically unstable [17] and

this can be solved by trifluoromethylation.

In this chapter I investigated stability and electronic structure of endohedral rare-earth

metallofullerene La@C60 and the trifluoromethylized La@C60(CF3)n. Isomers with trifluo-

romethyls at different sites on the C60 are calculated by ab initio Density Functional Theory

and the most stable isomers for 2≤n≤5 are identified. Unlike the trifluoromethyl derivatives

of C60, La@C60(CF3)n prefers odd numbers of n, due to the 3 extra valence electrons from

the encapsuled metal La. Calculated electronic eigenstates of molecular orbitals further con-

firmed that with an odd number n La@C60(CF3)n is more stable by forming a close-shell

electronic configuration or large gap between highest occupied molecular orbital (HOMO)

and lowest unoccupied molecular orbital (LUMO), which is also relevant for the separation

of C60-based metallofullerenes.

3.2 Computational methods

I utilize ab initio density functional theory (DFT) as implemented in the VASP code [70–72]

to obtain the optimized structure and energy of the endohedral metallofullerene, as well as the

electronic structure. I used projector-augmented-wave (PAW) pseudopotentials [82] and the

Perdew-Burke-Ernzerhof (PBE) [64] exchange-correlation functionals. All isolated structures

have been represented using periodic boundary conditions and separated by a 12 Å thick

vacuum region. I used 500 eV as the electronic kinetic energy cutoff for the plane-wave basis
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Figure 3.1: Ball-and-stick model of the optimized structure of the most stable isomers of
La@C60(CF3)n for (a) n = 0, (b) n = 1, (c) n = 2, (d) n = 3, (e) n = 4, (f) n = 5.

and a total energy difference between subsequent iterations below 10−5 eV as the criterion for

reaching self-consistency. All geometries have been optimized using the conjugate-gradient

method [83] until none of the residual Hellmann-Feynman forces exceeded 10−2 eV/Å.

3.3 Results and discussion

The equilibrium geometry of La@C60 and La@C60(CF3)n for n≤5 as determined by DFT-

PBE calculation are shown in Fig. 3.1. For n≥2, the trifluoromethyls can have more than

one configuration on the C60 surface. Many different isomers for n from 2 to 5 are calculated

and the detailed results are discussed in Appendix A. Here I show the most stable isomers

for n from 2 to 5 in Fig. 3.1(c)-(f). I can see that for n = 2 and n = 3, the trifluoromethyls

prefer to be close to each other with a separation distance of para-position in one hexagon

(third nearest neighbor) on the surface of fullerene. For n = 4 the trifluoromethyls are

separated into two para-(CF3)2 pairs, and for n = 5 it prefers one CF3 separated from the
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ΔEt(n) = Etot(n)-Etot(n-1)-1/2Etot((CF3)2)
The lower ΔEt(n) the more stable for n

n = 3 is the best fig2

La@C60(CF3)n

Figure 3.2: Energy change ∆Et based on DFT-PBE for attaching one trifluoromethyl of
different La@C60(CF3)n isomers. Here ∆Et is defined as ∆Et(n) = Etot(n)−Emintot (n−1)−
1/2Etot((CF3)2). Emintot (n) is the total energy for the most stable isomer of La@C60(CF3)n,
which are indicated by the larger symbols in green.

other para-(CF3)4 group. I also noticed that for n = 3 and n = 4, the most stable isomers

have C2v symmetry, as shown in Fig. 3.1(d) and (e).

The Bader charge analysis [84–87] is performed and about 1.8 electrons are found to

be transferred from the La atom to the cage for all the molecules shown in Fig. 3.1. An

average off-center distance of about 1.2 Å for the La atom is found, and an average energy

of about 3.3 eV is gained by moving the La atom from the center to the optimized position.

This can be simply interpreted as the electrostatic polarization energy of the model with a

point charge inside a thin metallic spherical shell, which has been successfully applied for

metallofullerenes before [88, 89]. Using the 3.5 Å radius of C60 as the radius of the shell, I

obtained an energy gain of 1.7 eV, which is the same order as the value obtained by DFT

calculation.

To find out the preferential number of trifluoromethyls attached on the La@C60, I calcu-

lated the energy change ∆Et for attaching one trifluoromethyl of La@C60(CF3)n by DFT-

23



fig3

ΔEH = 0.205 eV
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Figure 3.3: Hydrogenated La@C60(CF3)n for (a) n = 0, n = 1 with hydrogen and triflu-
oromethyl at (b) para-position and (c) ortho-position in a hexagon. The first row is the
ball-and-stick model of the structures without La atom inside the cage and the second row is
the structures with La atom inside the cage. The last row is the corresponding Schlegel dia-
gram of C60 with hydrogen site indicated by blue dot and trifluoromethyl site by red. ∆EH

here is defined as ∆EH = Etot(La@C60(CF3)n-H)−Etot(La@C60(CF3)n)−1/2Etot(H2), or
∆EH = Etot(C60(CF3)n-H) −Etot(C60(CF3)n)−1/2Etot(H2) for that without La atom in-
side.

PBE. The specific definition for ∆Et as a function of n is ∆Et(n) = Etot(n) − Emintot (n −

1) − 1/2Etot((CF3)2). Here Emintot (n) is the total energy for the most stable isomer of

La@C60(CF3)n. The negative value of ∆Et indicates an exothermic reaction for adsorb-

ing one CF3 radical from a hexafluoroethane molecule. The lower ∆Et is, the more stable

the structure would be. According to the results plotted in Fig. 3.2, I find that there can be

an energy difference of as much as 3 eV for different isomers with the same n. Comparing the

most stable isomers, I see that, in general, La@C60 molecules prefer to have an odd number
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of CF3s. Three is the indicated best number of attached CF3s on La@C60, which has the

lowest ∆E of -0.44 eV. n = 4 has the highest ∆E of -0.11. eV, 0.33 eV higher than n = 3.

This result is consistent with previous work on M@C70 molecules [18, 19]. However, this is

contrary to the hollow fullerenes, which prefer even number of attached CF3s [90, 91]. It is

easy to understand that on a hollow fullerene, when adding CF3s, the C-C double bonds

of the fullerene need to be broken and the C atom where CF3 is attached will change to a

sp3 bonding from the original sp2 bonding. In that case, an odd number of CF3 radicals

attached must produce one C radical on the fullerene surface, which is unstable. This dif-

ference is caused by the encapsuled metal atom La, which has three valence electrons. The

odd number of extra free electrons will try to transfer to the cage and modify the electronic

environment of the surface, which consequently results in a preference for an odd number of

attached CF3s.

To further investigate the influence of the encapsulated La atom in La@C60(CF3)n

molecules on the cage surface, I calculated the hydrogenation process of La@C60(CF3)n

molecules with and without La inside for n = 0 and n = 1. The energy change ∆EH

for adsorbing one hydrogen atom from a hydrogen molecule on La@C60(CF3)n was calcu-

lated. The results are shown in Fig. 3.3. The specific definition for ∆EH here is ∆EH =

Etot(La@C60(CF3)n-H) −Etot(La@C60(CF3)n) −1/2Etot(H2) for molecules with La en-

caplsuled or ∆EH = Etot(C60(CF3)n-H)−Etot(C60(CF3)n)−1/2Etot(H2) for those without

La atom. From the first row of Fig. 3.3 I can see that for the hollow fullerene C60-H, I ob-

tained a positive value of 0.205 eV for ∆EH , which indicates a endothermic process. Similar

as previously discussed for trifluoromethyls, the attached H atom must break one double

bond on C60 and change the original sp2 C atom where H is attached to sp3. Then the C

atom on the other end of the original double bond will have an unpaired electron left and
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cause instability. This is consistent with previous work on hydrogenation of carbon nan-

otubes and fullerenes [92, 93]. However, for the C60(CF3)-H molecule, the attached H atom

and CF3 radical can fill the two unstable sites with unpaired electrons caused by breaking

one double bond. I got negative values for both the H and CF3 in a para arrangement (-

0.807 eV) and an ortho arrangement (-1.083 eV) on the C60 surface. A lower value of ∆EH

is obtained for the ortho arrangement where H and CF3 are attached to the two ends of a

double bond on C60, which can easily be seen in the Schlegel diagram shown in the last row

of Fig. 3.3.

The situation will be totally different when a La atom is encapsulated. As shown in the

second row of Fig. 3.3, I always get negative ∆EH regardless of whether or where the CF3 is

attached. The extra three free electrons coming from the valence electrons of La change the

electronic environment on the surface of the whole molecule and make it always favorable to

adsorb H atoms. The difference of ∆EH for La@C60(CF3)-H and La@C60-H is about 0.1 eV

(from -0.485 eV to -0.592 eV and -0.332 eV), which is much smaller than the ≥1.0 eV change

(from 0.205 eV to -0.807 eV and -1.083 eV) in the absence of encapsulated La. Moreover,

for La@C60(CF3)-H, the H and CF3 no longer like the ortho arrangement on the ends of a

broken double bond but prefer the para arrangement, which is the optimized arrangement

for La@C60(CF3)2 as shown in Fig. 3.1(c). The result of the comparison of hydrogenation

for the metallofullerenes with La encapsuled and hollow fullerenes confirms that the La atom

is the key factor for why La@C60(CF3)n prefers an odd number n rather than the even n,

which is preferred for hollow C60. The three valence electrons of La also agree well with

three being the best number n.

Since the electronic strucures will significantly affect the chemical stability of the met-

allofullerene molecules, I calculated the electronic eigenstates of C60 and La@C60(CF3)n
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Figure 3.4: Electronic eigenstates for molecular orbitals based on DFT-PBE of (a) C60 and
La@C60(CF3)n with (b) n = 0,(c) n = 1, (d) n = 2, (e) n = 3, (f) n = 4, (g) n = 5. The
LUMO and HOMO of C60 and the corresponding states in La@C60 are indicated in red and
orange squares, respectively, in (a) and (b).

molecules with n from 0 to 5 at the DFT-PBE level and show the results in Fig. 3.4. In

Fig. 3.4(a), I show the molecular states of C60. It has a wide gap of 1.6 eV. The HOMO

(in orange dashed square) is five-fold degenerate, and the LUMO (in red dashed square) is

three-fold degenerate due to the high symmetry of C60. In comparison, in Fig. 3.4(b) I see

that for La@C60, since the symmetry of C60 is broken by the encapsulated La atom, the

five-fold degenerate HOMO in C60 splits into two doubly degenerate states and one separate

state, which are very close to each other (shown in orange square). The three-fold degenerate

LUMO in C60 splits into a doubly degenerate state and a separate state about 0.2 eV higher

in energy (shown in the red square). La@C60 displays metallic character with the Fermi

level lying on the doubly degenerate state which used to be the LUMO in C60. This is due

to the three valence electrons from La partly occupying the doubly degenerate state.

For La@C60(CF3)n when n≥1, the eigenstates change a lot due to the attached CF3s and

I cannot distinguish the original HOMO and LUMO in C60 any more. The most important

thing I find is that for even n I always get a metallic character with the Fermi level on a partly

filled state, as shown in Fig. 3.4(b), (d), and (f). On the other hand, for odd n I always
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get a non-zero gap, as shown in Fig. 3.4(c), (e), and (g). This also agrees with previous

discussions that odd n is preferred, since structures with a non-zero gap are chemically more

stable than those with no gap. I also found that La@C60(CF3)n molecules with larger n will

have a larger gap. Therefore for odd number of n, n = 5 with a gap of 1.0 eV should be the

most chemically stable, followed by n = 3 with a gap of 0.7 eV. n = 1 will be relatively the

least stable with a narrow gap of 0.1 eV. I expect that La@C60(CF3)n molecules with n = 3

and 5 will be easy to separate in experiment since they have relatively large gaps.

3.4 Summary

In summary, I investigated the stability and electronic structure of endohedral rare-earth

metallofullerene La@C60 and the trifluoromethylized La@C60(CF3)n. Isomers with triflu-

oromethyls at different sites on the C60 are calculated using ab initio Density Functional

Theory, and the most stable isomers for 2≤n≤5 are identified. Unlike the trifluoromethyl

derivatives of C60, La@C60(CF3)n prefers odd n, due to the 3 extra valence electrons from

the encapsuled metal La. Calculated electronic eigenstates of molecular orbitals further con-

firmed that with an odd n La@C60(CF3)n is more stable due to formation of a closed-shell

electronic configuration or large HOMO-LUMO gap, which is also relevant for the separation

of C60-based metallofullerenes.
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Chapter 4

Electronic structure and charge

injection across transition metal

dichalcogenide heterojunctions

This study is a collaboration with Prof. Zhixian Zhou’s group at Wayne State University.

4.1 Introduction

Since the successful isolation of single-layer molybdenum disulfide (MoS2) and its application

in field-effect transistors [21,22], layered transition-metal dichalcogenides (TMDs) have been

considered as promising candidates for two-dimensional (2D) electronics and optoelectronics

applications [94–112]. Even though much effort has been devoted to the fabrication of high-

performance electronic devices, the device performance typically suffers from inadequate

electrical contacts caused by significant Schottky barriers (SB) between the contact metal

and the TMD [23–26]. Local doping near the metal-semiconductor interface, which has

been successfully used in traditional three-dimensional (3D) silicon-based devices, cannot

be easily realized in 2D cases [113–117]. Metal electrodes with a proper work function

and Fermi level close to the conduction band minimum (CBM) or valence band maximum

(VBM) are expected to have a lower Schottky barrier height (SBH) and to decrease the
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contact resistance [118–121]. However, the complex Fermi level pinning at the electrode-

semiconductor interface makes Ohmic contacts rather difficult to achieve [122–124]. The

metal-TMD interface and thus the extent of Fermi level pinning is highly sensitive to the

processing environment and the crystalline order in TMDs [125,126]. Several other strategies

to reduce the contact resistance have been proposed and used, such as in-layer junctions

obtained by phase engineering [127, 128] and 2D/2D inter-layer junctions with weak Fermi-

level pinning [129], including hexagonal boron nitride (hBN) [130], graphene [131–134] and

doped TMDs [135].

In search of an improved strategy to form low-resistance contacts to semiconducting

TMDs, I propose to use metallic TMDs as drain/source contacts. I find the Schottky/tunneling

barrier between metallic and semiconducting TMDs is fundamentally different from a con-

ventional metal-semiconductor Schottky barrier for the following important reasons. First,

the formation of interface states is suppressed in TMD heterojunctions due to the lack of

dangling bonds on TMD surfaces similar to graphene/TMD junctions. Second, an abrupt

potential drop, rather than a relatively thick depletion layer, forms across the van der Waals

gap of TMD heterojunctions. As a result of these differences, Fermi level pinning is expected

to be significantly reduced at metallic and semiconducting TMD interfaces. To validate this

behavior, I perform ab initio density functional calculations of a NbSe2/WSe2 bilayer, con-

sisting of semiconducting WSe2 and metallic NbSe2 monolayers. Besides a rigid band shift

associated with charge transfer, I find that presence of NbSe2 does not modify the electronic

structure of WSe2. Since the two transition metal dichalcogenides are structurally similar

and display only a small lattice mismatch, they form a heterojunction capable of efficiently

transferring charge across the interface, thus improving current injection into WSe2.
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4.2 Computational Methods

Same DFT method as the former chapter is utilized to obtain the optimized structure and

electronic properties of WSe2 and NbSe2 monolayers, the NbSe2/WSe2 bilayer, and the

corresponding bulk structures with AB stacking of layers. The two-dimensional (2D) struc-

tures are represented by a periodic array of slabs separated by a vacuum region in excess of

15 Å. Besides the Perdew-Burke-Ernzerhof (PBE) [64] exchange-correlation functionals, the

optB86b-vdW [65, 66] functional is used to address the weak interlayer interactions. The

Brillouin zone of the primitive unit cell of the 2D structures was sampled by 8×8×1 k-points

and that of bulk structures by 8×8×2 [136]. A total energy difference between subsequent

self-consistency iterations below 10−6 eV as the criterion for reaching self-consistency. The

other parameters are the same as used before.

4.3 Results and discussions

I first optimized the bulk structures of WSe2 and NbSe2 in the stable 2H phase. Results

of my DFT-optB86b calculations show that the AB layer stacking is energetically favorable

compared to the AA stacking in both systems. For bulk NbSe2, I found that my calculated

in-plane lattice constant atheor = 3.46 Å lies close to the observed value [137] aexpt = 3.44 Å

and the out-of-plane lattice constant, covering two interlayer distances, is ctheor = 12.74 Å,

close to the observed value [137] cexpt = 12.48 Å. For bulk WSe2, I also obtained very good

agreement with experiment [138]: atheor = 3.30 Å and aexpt = 3.28 Å for the in-layer lattice

constant and ctheor = 13.10 Å and cexpt = 12.96 Å for the out-of-plane lattice constant. I

notice that the in-layer lattice constant of NbSe2 is only 5% larger than that of WSe2 in the

bulk, suggesting the likelihood of epitaxial stacking especially in few-layer systems.
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Figure 4.1: Ball-and-stick model of the AB-stacked NbSe2/WSe2 bilayer in (a) top view and
(b) side view. The unit cell is indicated by yellow shading in the top view. a1 and a2 are
the lattice constants spanning the layers and d is the inter-layer distance.

I also found a preferential AB stacking for the 2H-NbSe2/2H-WSe2 bilayer, depicted in

Fig. 4.1. The bilayer forms a honeycomb lattice with 6 atoms per unit cell, 3 of which are in

the NbSe2 and the other 3 in the WSe2 layer. The optimum in-layer lattice constant atheor =

3.37 Å, which lies in-between the values for the individual bulk components. Also the value

dtheor = 6.41 Å for the optimum inter-layer distance lies in-between the corresponding values

in bulk NbSe2 and WSe2. The binding energy of the two layers is 0.19 eV per unit cell based

on DFT-optB86b, indicating a weak interlayer coupling.

Electronic band structure results for the NbSe2/WSe2 bilayer and its monolayer com-

ponents are shown in Fig. 4.2. As seen in Fig. 4.2(a), the NbSe2/WSe2 bilayer is metallic.

To interpret the band structure of the bilayer, I calculated separately the band structure of

isolated NbSe2 and WSe2 monolayers and displayed it in Fig. 4.2(b). These results indicate

that the NbSe2 monolayer is metallic, whereas the WSe2 monolayer is semiconducting with

a direct gap of about 1.35 eV at the K point. Even though the absolute value of the band
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Figure 4.2: Electronic structure of an NbSe2/WSe2 bilayer and its decomposition. The band
structure of the bilayer in (a) is compared in (b) to a superposition of individual monolayers
of NbSe2 (solid red lines) and WSe2 (dashed green lines). The band structure in (c) is
obtained from (b) by shifting the bands of semiconducting WSe2 rigidly up by 0.293 eV.
The resulting band structure is superimposed on that of (a) representing the bilayer.

gap is typically underestimated in DFT calculations, the dispersion of individual bands is

typically in good agreement with more adequate self-energy calculations. I found that in-

dividual bands in isolated NbSe2 and WSe2 monolayers in Fig. 4.2(b) can be identified in

the band structure of the bilayer. To prove this point, I superposed the band structure of

the two constituent parts, shifting rigidly the bands of WSe2 up by 0.293 eV. The resulting

band structure, presented in Fig. 4.2(c), is finally superposed with that of the bilayer of

Fig. 4.2(a). The agreement between the band structure of the bilayer and the superposition

of monolayers is near-perfect, suggesting the applicability of a rigid-band model and a small

charge transfer between otherwise unaffected NbSe2 and WSe2 monolayers.

To better understand the inter-layer interaction in the NbSe2/WSe2 bilayer, I calculated

the charge density difference ∆ρ = ρtot(bilayer) −
∑
ρtot(monolayers) associated with the

assembly of the bilayer from isolated monolayers. This charge density difference is visualized

by contour plots in Fig. 4.3(a). I find that the charge redistribution is very small, with
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Figure 4.3: Charge redistribution ∆ρ(r) and spatial variation of the electron potential as-
sociated with assembling the NbSe2/WSe2 bilayer from isolated monolayers. (a) Charge
density difference ∆ρ = ρ(NbSe2/WSe2)− ρ(NbSe2)− ρ(WSe2).∆ρ is shown by isosurfaces
bounding regions of electron excess (yellow) at +2.5 × 10−4 e/Å3 and electron deficiency
(blue) at −2.5×10−4 e/Å3. (b) 〈∆ρ(z/c)〉 averaged across the x−y plane of the layers. The
raw data, shown by the red solid line, have been convoluted by a Gaussian with a full-width
at half-maximum ∆(z/c) = 0.17, shown by the blue dashed line. (c) Electrostatic potential
〈V (z/c)〉 averaged across the x− y plane of the layers. z/c indicates the relative position of
the plane within the unit cell.

electrons transferring mainly from the WSe2 layer to the inter-layer region and to the NbSe2

layer. To further elucidate the charge redistribution, I averaged the charge density difference

in planes with constant z that are parallel to the NbSe2 and WSe2 layers. The averaged

quantity 〈∆ρ(z/c)〉, shown by the solid line in Fig. 4.3(b), displays many oscillations even

in individual TMD layers. To better understand the net charge flow, I convoluted the raw

data by a Gaussian with a full-width at half-maximum of 0.17. The resulting function,

displayed by the blue dashed line in Fig. 4.3(b), indicates a very small net flow of electrons

from the WSe2 layer to the NbSe2 layer. This result is consistent with the upward shift of

WSe2 bands discussed in relation to Fig. 4.2(c). What I found here agreed with previous

work on the VS2/MoS2 bilayer system [129]. As a more quantitative measure of the charge
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redistribution, I performed a Bader charge analysis [84–87] in the NbSe2/WSe2 bilayer and

found that 0.017 electrons per unit cell are transferred from the WSe2 to the NbSe2 layer.

Since charge injection across the interface is modulated by potential barriers, which

appear as tunnel or Schottky barriers, I also investigated the local electrostatic potential V

in the whole NbSe2/WSe2 bilayer region. For easy interpretation, I averaged V in constant

z planes, similar to ∆ρ(z/c) in Fig. 4.3(b), and present results for 〈V (z/c)〉 in Fig. 4.3(c).

The difference between the electrostatic potential in the vacuum region and the Fermi level,

observed at V (vac.)−EF≈5.6 eV, corresponds to the work function. I also observe a narrow

Schottky barrier characterized by ∆(z)≈3.4 Å and ∆V≈14 eV when measured from the

bottom of the closest potential well. For electrons at the Fermi level, the effective barrier to

tunnel through reduces to one third of ∆V and the barrier thickness reduces ∆(z) by more

than half, thus significantly increasing the probability of tunneling across the interface [119].

4.4 Summary

In summary, I performed ab initio density functional calculations of a NbSe2/WSe2 bilayer,

consisting of semiconducting WSe2 and metallic NbSe2 monolayers. This system can be

considered a heterojunction between two related materials and may be viewed as a new

paradigm for high-transparency metal contacts to transition metal dichalcogenides. Besides

a rigid band shift associated with a small electron transfer from NbSe2 to WSe2, I find

that the presence of NbSe2 does not modify the electronic structure of the semiconducting

channel. Since the two transition metal dichalcogenides are structurally similar and display

only a small lattice mismatch, their heterojunction is capable of efficiently transferring charge

across the interface, thus improving on current metal contacts to WSe2.
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Chapter 5

Structure and electronic properties of

strained bulk black phosphorus

The following discussion is my original contribution to the related publication by Jie Guan,

Wenshen Song, Li Yang and David Tománek, Phys. Rev. B 94, 045414 (2016) [139]. This

study is a collaboration with Prof. Li Yang’s group at Washington University in St.Louis.

5.1 Introduction

Layered bulk black phosphorus (BP), discovered only one century ago [29, 140], is a direct-

gap semiconductor with an observed fundamental band gap [141–144] of 0.31−0.36 eV. The

electronic response distinguishes BP as favorable from other well-studied layered systems

including semimetallic graphite and transition metal dichalcogenides (TMDs) such as MoS2,

which are indirect-gap semiconductors. Under compression, bulk BP displays an interesting

change in its electronic and topological properties [30–32]. Similar to bulk BP but a much

wider direct fundamental band gap is found in phosphorene monolayers and few-layer sys-

tems, suggesting promising applications in 2D semiconductor electronics [27,28,33]. Whereas

it is now well established that the gap displays a strong and anisotropic response to in-layer

strain in phosphorene monolayers and few-layer systems [27, 28, 33–38], no dependable data

are available for the corresponding response in the bulk system.
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To fill in this missing information, I study theoretically the structural and electronic

response of layered bulk black phosphorus to in-layer strain. My ab initio density functional

theory (DFT) calculations reveal that the strain energy and interlayer spacing display a

strong anisotropy with respect to the uniaxial strain direction. To correctly describe the

dependence of the fundamental band gap on strain, I combined my DFT results with the

computationally more involved GW quasiparticle approach, performed by Li Yang’s group,

which is free of parameters and superior to DFT studies, which are known to underestimate

gap energies. I find that the band gap depends sensitively on the in-layer strain and even

vanishes at compressive strain values exceeding ≈2%, thus suggesting a possible application

of black P in strain-controlled infrared devices.

5.2 Computational methods

I utilized ab initio density functional theory (DFT) as implemented in the SIESTA [69] code

to optimize the structure and to determine the structural response to in-plane strain. I used

the Perdew-Burke-Ernzerhof (PBE) [64] exchange-correlation functional, norm-conserving

Troullier-Martins pseudopotentials [145], and a double-ζ basis including polarization orbitals.

Reciprocal space was sampled by a fine grid [136] of 8×8×4 k-points in the first Brillouin

zone of the primitive unit cell containing 8 atoms. I used a mesh cutoff energy of 180 Ry

to determine the self-consistent charge density, which provided us with a precision in total

energy of ≤2 meV/atom. The same conjugate gradient method [83] as former chapters is

used in a same accuracy.

DFT calculations are not designed to reproduce the electronic band structure correctly.

Even though DFT band structure usually resembles observed results, the fundamental band
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Figure 5.1: (a) Ball-and-stick model of the structure of bulk black phosphorus in top and
side views. (b) Fractional change of the interlayer distance a3 as a function of the in-layer
strain ε along the a1 and a2 directions. (c) Dependence of the strain energy ∆E per unit
cell on the in-layer strain along the a1 and a2 directions.

gap is usually underestimated. The proper way to calculate the band structure without ad-

justable parameters involves solving the self-energy equation. My collaborators from Wash-

ington University in St.Louis perform such calculations using the GW approximation [146]

as implemented in the BerkeleyGW package [147], where the dynamical electronic screening

is captured by the general plasmon pole model. [146] We chose this state-of-the-art ap-

proach to computationally less involved hybrid DFT functionals such as HSE06 [68], which

mix Hartree-Fock and DFT-PBE exchange-correlation energies using an adjustable param-

eter. They use single-shot G0W0 calculations with a 14×10×4 k-point grid, which provides

converged results for the self-energies and quasiparticle energy gaps in strained bulk black

phosphorus.
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5.3 Results and discussion

The optimum structure of bulk black phosphorus, as obtained by DFT-PBE calculations, is

shown in Fig. 5.1(a). As seen in the bottom panel, individual layers in the layered structure

are not flat due to the non-planar sp3 hybridization of the P atoms. The AB stacking

is caused by displacing every other layer along the ~a2-direction, yielding an orthorhombic

lattice spanned by the orthogonal lattice vectors ~a1, ~a2 and ~a3, with ~a3 extending over

two inter-layer distances. The covalent in-plane bonding is adequately described by DFT-

PBE, as suggested by the agreement between the calculated lattice constants, a1(PBE) =

4.53 Å and a2(PBE) = 3.36 Å, and the experimental values [148] a1(expt) = 4.38 Å and

a2(expt) = 3.31 Å. As indicated by recent Quantum Monte Carlo studies [67], the nature

of the weak inter-layer interaction in bulk black phosphorus differs in a non-trivial manner

from a van der Waals interaction. In view of this fact, the calculated value of the out-of-

plane lattice constant a3(PBE) = 11.15 Å agrees rather well with the observed value [148]

a3(expt) = 10.50 Å.

As a result of the weak inter-layer interaction contrasting the strong in-layer covalent

bonding, I do not expect the interlayer distance to change much when the lattice is subjected

to in-layer strain. I considered both tensile and compressive in-layer strain ε up to 2%.

Results for the fractional change ∆a3/a3 for different strain combinations ε(a1), ε(a2) are

presented in Fig. 5.1(b). The continuous contour plot is based on a cubic spline interpolation

of a 5×5 grid of data points for different strain value combinations. These results, as well

as my findings, suggest that the interlayer spacing changes much less than 1% for the strain

range considered here. Such small changes in the interlayer distance are unlikely to be

affected by the choice of the total energy functional, which plays only a minor role in the
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interlayer separation [67] and are consistent with very weakly coupled layers.

My results in Fig. 5.1(b) indicate a trend that the inter-layer distance increases by stretch-

ing and decreases by compressing the crystal along the soft, accordion-like a1 direction. In

contrast, both stretching and compression along the stiffer a2 direction cause a reduction of

the inter-layer spacing. Even though these effects are small, they clearly reflect the anisotropy

of the system. They translate to a very small negative Poisson ratio between the soft ~a1

in-layer direction and the ~a3 direction normal to the layers. The Poisson ratio between the

hard ~a2 in-layer direction and the ~a3 direction is also very small in magnitude, but changes

sign near a2 = 0. This definition of the Poisson ratio in the bulk differs from the “Poisson

ratio” in a phosphorene monolayer, which relates the monolayer thickness to the in-layer

strain and finds a negative value for that quantity [149].

With the optimum value of the inter-layer spacing a3,opt(a1, a2) for the different strain

combinations at hand, I have calculated the strain energy ∆E as a function of ε(a1) and ε(a2)

and present the results in Fig. 5.1(c). The prominently elliptical shape of the isoenergetic

contours is another manifestation of the elastic anisotropy in the system. The observed tilt

of the elliptical axes from the horizontal and vertical direction indicates a positive Poisson

ratio ν21 = −dε(a2)/dε(a1) = 0.19 within the phosphorene plane, indicating that stretching

in one (in-plane) direction results in a lattice contraction in the normal (in-plane) direction.

I find the lattice to be rather soft with respect to in-plane compression, since stretching by

2% even along the stiffer a2 direction requires an energy investment of only ≈0.06 eV per

unit cell.

Results of my calculations for the electronic band structure and density of states (DOS)

of unstrained and strained bulk black phosphorus are shown in Fig. 5.2. The DFT-PBE

results, represented by the dashed red lines in Fig. 5.2(a), predict an extremely small direct
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Figure 5.2: Electronic band structure (left panels) and density of states (right panels) of
bulk black phosphorus (a) without strain, (b) when stretched by 1% along the a1 direction,
and (c) when stretched by 2% along the a1 direction. GW results are shown by the solid
black lines. DFT-PBE results, which underestimate the band gap, are shown by the dashed
red lines.

fundamental band gap value Eg(PBE)≈0.05 eV for unstrained bulk black phosphorus. The

band gap becomes larger as the structures are stretched along the a1 direction. As men-

tioned before, the DFT results are known to substantially underestimate the band gap in

semiconductors. Band structure results obtained using the more proper GW approach by

my collaborators are represented by the solid black lines in Fig. 5.2(a). These data suggest

a larger quasiparticle band gap of Eg(qp)≈0.35 eV in unstrained bulk black phosphorus,

very close to the published value based on GW calculations [150, 151] and to the observed

value [141] of ≈0.33 eV.

Differences between quasi-particle spectra, Eqp, and DFT band structure results, EPBE,

are summarized in Fig. 5.3(a). As shown previously [146,152], the self-energy (or GW) cor-

rection is roughly represented by a “scissor operator”, which would shift DFT-based valence

states rigidly down and conduction states rigidly up by .0.2 eV in bulk black phosphorus,

thus opening up the fundamental band gap.

A more precise comparison between the quasiparticle spectra and DFT eigenvalues re-

veals that the difference Eqp − EPBE does depend on the energy, but is independent of the
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Figure 5.3: (a) Correlation between quasiparticle (GW) energies Eqp and Kohn-Sham energy
values EPBE, obtained using the DFT-PBE functional, for states along high symmetry lines
in the Brillouin zone. The straight lines in the valence and conduction band regions are
drawn to guide the eye. The results represent bulk black phosphorus subject to strain values
ε(a1) = 1% and ε(a2) = 0. The Fermi level is at zero energy. (b) Dependence of the
quasiparticle (GW) electronic band gap Eg on the in-layer strain applied along the a1 and
a2 directions.

crystal momentum k. I considered black phosphorus stretched by 1% along the soft a1 di-

rection, which has a nonzero band gap in DFT-PBE, and displayed the correlation between

quasiparticle energies Eqp and corresponding DFT eigenvalues EPBE at selected high sym-

metry points in the Brillouin zone in Fig. 5.3(a). Besides the discontinuity at the Fermi level,

I found that the quasiparticle energies display a linear relationship with DFT eigenvalues,

given by

Eqp(CB) = 1.10×EPBE(CB) + 0.11 eV (5.1)

Eqp(VB) = 1.07×EPBE(VB)− 0.18 eV . (5.2)

Assuming that the Fermi level defines zero energy, the linear relationship between Eqp and

EPBE is slightly different in the conduction band (CB) region, identified by Eqp > 0, and

the valence band region, identified by Eqp < 0. Since GW energies have been calculated
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only at a few k-points, I have used expressions (5.1) and (5.2) to generate the continuous

GW band structure shown in Fig. 5.2.

Comparing DFT and GW values at different strains, I found that the modulation of the

band gap ∆Eg(PBE)≈∆Eg(qp) is the same up to .0.01 eV in the strain range studied here.

With the quasiparticle band gap of unstrained black phosphorus at hand, I thus can deduce

the quasiparticle band gap in phosphorus subject to different strain values ε(a1) and ε(a2)

by combining the DFT band gap values Eg(PBE) with Eqs. (5.1) and (5.2). My results,

based on a cubic spline interpolation of a 5×5 grid of data points, are shown in Fig. 5.3(b).

My results indicate that, within the range |ε|.2% of strain applied along the a1 and a2

direction, the band gap Eg of bulk black phosphorus varies smoothly between 0.05 eV and

0.70 eV. Independent of the strain direction, Eg increases upon stretching and decreases upon

compression. Noticing the nearly equidistant spacing between the contour lines in Fig. 5.3(b),

I can extrapolate to larger strains and expect the band gap to close at compressive strains

along both a1 and a2 directions exceeding 2%.

So far, much less attention has been paid to the moderate 0.3 eV band gap of bulk BP than

to the 2 eV wide direct band gap of a phosphorene monolayer [28]. The inter-layer coupling

in bulk BP, which is responsible for the large difference in the band gap, displays a nontrivial

character [67]. Therefore, it has not been clear a priori if previously reached conclusions for

the band gap dependence on uniaxial in-layer strain in a phosphorene monolayer will also be

applicable for the bulk system. There is an independent, more practical concern about band

gap modulation in BP systems by strain. Pristine phosphorene monolayers and few-layer

systems are very unstable under ambient conditions [153–155] and must be capped, typically

by sandwiching in-between inert h-BN layers to remain useful [156]. It is unclear if applying

in-layer strain will not destroy the rigid capping layer before reaching desirable strain values
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in the enclosed phosphorene. This limitation applies to a much lesser degree to bulk black

phosphorus, which is chemically much more stable and thus can be handled more easily in

the experiment.

The sensitivity of the band gap to the in-layer strain suggests the use of bulk or multi-

layer black phosphorus in infrared devices tunable by strain. Optical measurements should

be able to reveal the band gap value discussed here, since observed optical spectra should

not be modified by excitonic states due to the negligibly small exciton binding energy in

bulk black phosphorus [150].

5.4 Summary

In summary, I have studied theoretically the structural and electronic response of layered

bulk black phosphorus to in-layer strain. Ab initio density functional theory (DFT) calcu-

lations reveal that the strain energy and interlayer spacing display a strong anisotropy with

respect to the uniaxial strain direction. To correctly describe the dependence of the funda-

mental band gap on strain, I combined the computationally more involved GW quasiparticle

approach performed by my collaborators from Washington University in St.Louis that is free

of parameters and superior to DFT studies, which are known to underestimate gap energies.

I found that the main difference between GW quasiparticle energies Eqp and DFT eigenval-

ues EPBE is a discontinuity at the Fermi level and have identified the relationship between

Eqp and EPBE in the valence and conduction band regions. Similar to a phosphorene mono-

layer, I found that the band gap depends sensitively on the in-layer strain and even vanishes

at compressive strain values exceeding ≈2%, thus suggesting a possible application of black

P in strain-controlled infrared devices.
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Chapter 6

Various phases of few-layer

phosphorene

The following discussion is my original contribution to the related publication by Jie Guan,

Zhen Zhu and David Tománek, Phys. Rev. Lett. 113, 046804 (2014) [157].

6.1 Introduction

Layered black phosphorus is considered as a viable contender in the competitive field of two-

dimensional (2D) semiconductors [158, 159]. Unlike the popular semi-metallic graphene, it

displays a significant band gap while still maintaining a high carrier mobility [27,28,160]. The

band gap in few-layer phosphorus, dubbed phosphorene, is believed to depend sensitively

on the number of layers and in-layer strain [28, 33, 116, 161]. Layered blue phosphorus,

previously described as the A7 phase [162, 163], has been predicted to be equally stable as

black phosphorus but to have a different electronic structure [33]. It is intriguing to find out,

whether there are more than these two stable layered phosphorus allotropes, and to what

degree their dielectric response may be modified from semiconducting to metallic.

Here I introduce γ-P and δ-P as two additional stable structural phases of layered phos-

phorus besides the layered α-P (black) and β-P (blue) phosphorus allotropes. Based on my

ab initio density functional calculations, I find these new structures, shown in Fig. 6.1, to
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Figure 6.1: Equilibrium structure of (a) an α-P (black), (b) β-P (blue), (c) γ-P and (d) δ-P
monolayer in both top and side views. Atoms at the top and bottom of the non-planar layers
are distinguished by color and shading and the Wigner-Seitz cells are shown by the shaded
regions.

be almost as stable as the other layered allotropes. Monolayers of some of these allotropes

have a wide band gap, whereas others, including γ-P, show a metal-semiconductor transition

caused by in-layer strain or changing the number of layers. An unforeseen benefit is the

possibility to connect different structural phases at no energy cost. This becomes particu-

larly valuable in assembling heterostructures with well-defined metallic and semiconducting

regions in one contiguous layer.

6.2 Computational techniques

The DFT method used to obtain insight into the equilibrium structure, stability and elec-

tronic properties of γ-P and δ-P is the same as last chapter. Reciprocal space was sampled

by a fine grid [136] of 8×8×1 k-points in the Brillouin zone of the primitive unit cell or

its equivalent in supercells. Equilibrium structures and energies based on SIESTA were

checked against values based on the VASP [70] code. The optB86b-vdW functional [65,66],

same as used in Chapter 4, is used to estimate the effect of van der Waals interactions on
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the inter-layer distances and interactions in the layered systems. For selected systems, I

performed GW self-energy calculations using VASP.

6.3 Results and discussions

Referring to the well-established black phosphorus structure as α-P and to blue phospho-

rus [33] as β-P, I present the optimized structure of these two and two additional layered

phosphorus allotropes, called γ-P and δ-P, in Fig. 6.1. All share the threefold coordination

of all atoms and a nonzero intrinsic thickness of the layers, caused by the preference of phos-

phorus for a tetrahedral arrangement of its nearest neighbors. In fact, the differences among

these structures arise from the different ways to connect tetrahedrally coordinated P atoms

in a 2D lattice. There are 4 atoms in the rectangular Wigner-Seitz cell of γ-P and 8 atoms

in that of δ-P. The ridge structure of these phases is analogous to that of the anisotropic

α-P, but differs from the isotropic β-P with a hexagonal Wigner-Seitz cell containing only

two atoms. The optimum structural parameters are summarized in Table 6.1.

Results of my total energy calculations in Table 6.1 indicate that all layered structures

are nearly equally stable, with cohesive energy differences below 0.1 eV. This comes as no

surprise, since the local environment of the atoms is very similar, resulting in all bond lengths

being close to 2.29 Å. Due to the well-known overbinding in density functional calculations,

my DFT-PBE cohesive energies are larger than the experimental value.

Independent of its cohesive energy, a structure may only be considered stable if it does

not spontaneously change. A tendency for spontaneous structural change is indicated by

the presence of soft modes (or imaginary frequency values) in the vibrational spectrum. To

demonstrate the stability and structural rigidity of γ- and δ-P, I present the vibrational
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Table 6.1: Observed and calculated properties of the four layered bulk phosphorus allotropes.
| ~a1| and | ~a2| are the in-plane lattice constants defined in Fig. 6.1. d is the inter-layer separa-
tion and Eil is the inter-layer separation energy per atom. Ecoh is the cohesive energy with
respect to isolated atoms. ∆Ecoh = Ecoh −Ecoh(α-P) is the relative stability of the layered
allotropes with respect to the most stable black phosphorene (or α-P) phase.

Phase α-P α-P β-P γ-P δ-P
(expt.) (calc.) (calc.) (calc.) (calc.)

|~a1| (Å) 4.381 4.532 3.33b 3.41b 5.56b

|~a2| (Å) 3.31a 3.36b 3.33b 5.34b 5.46b

d (Å) 5.25a 5.55b 5.63b 4.24b 5.78b

– 5.303 4.20c 4.21c 5.47c

Eil (eV/atom) – 0.02b 0.01b 0.03b 0.02b

– 0.12c 0.10c 0.13c 0.11c

Ecoh(eV/atom) 3.434 3.30b 3.29b 3.22b 3.23b

∆Ecoh(eV/atom) – 0.00b −0.01b −0.08b −0.07b

– 0.00c −0.04c −0.09c −0.08c

spectra of these phases in Figs. 6.2(a) and 6.2(b). Absence of soft modes in these spectra

indicates that γ- and δ-P are stable. I compare the vibrational spectra with those of α-P and

β-P monolayers in a previous study [33] and find them to be rather similar, reflecting similar

bonding character in all four phosphorene allotropes. The hardest optical mode frequency

in γ-P near 500 cm−1 at Γ lies very close to that of β-P due to the close relationship of

the two structures. Similar to β-P, the vibration spectrum of γ-P is nearly isotropic. This

can be explained by a close inspection of the structural differences, which indicate that the

level of buckling in γ-P is much smaller than in α-P and δ-P. The vibrational spectrum of

δ-P best matches that of α-P in terms of the hardest mode frequency and the anisotropy of

the longitudinal acoustic modes. The differences in the vibrational spectra offer a promising

route to identify the presence of γ-P and δ-P using Raman or infrared spectroscopy.

Structural stability at T = 0, evidenced in the vibrational spectra, says little about

stability at high temperatures, where thermally activated structural changes may take place.

α-P, β-P, γ-P and δ-P are structurally related by different ways to connect tetrahedrally
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coordinated P atoms in a 2D lattice. Local structural changes may be achieved by flipping

bonds in a bi-stable configuration at an energy cost of ≤0.5 eV/atom, identified in the α-

P→ β-P transition [33]. The relatively high activation energy value suggests that structural

changes will only rarely occur before the system melts.

A more direct way to probe the stability of γ-P and δ-P at high temperatures is by

performing molecular dynamics (MD) simulations. Results of my canonical MD simulations

are presented as structural snap shots of infinite γ-P and δ-P monolayers at T = 300 K

and T = 1, 000 K in Fig. 6.3. To avoid artifacts associated with constraints imposed by

finite-size unit cells, I used very large supercells containing 96 atoms for γ-P and 128 atoms

for δ-P. Due to the large unit cell size, I needed to limit the simulation time to 1.6 ps for

γ-P and 0.6 ps for δ-P when using 1 fs time steps. This simulation time still covers about

10 vibrational periods of the optical modes and thus should indicate the propensity towards

structural changes.

At room temperature, I find the structural changes in the layers to be minimal. More

significant changes are expected at T = 1, 000 K, which lies well above TM = 863 K, the

melting point of red phosphorus [165]. Even though the changes are larger in this case,

they resemble more the onset of a melting process than a concerted structural change. I

also expect that few-layer structures may convert to an amorphous structure resembling red

phosphorus above the melting point.

The high-temperature MD simulations suggest that γ-P and δ-P should display similar

thermal stability as previously found [33] for α-P and β-P. In view of cohesive energy differ-

ences between the structures not exceeding 0.1 eV per atom, I expect the four phosphorene

allotropes to coexists under experimental conditions.

My results for the optimum inter-layer separation d (d = | ~a3| for the AA layer stacking)
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Figure 6.2: Vibrational band structure ω(~k) of a monolayer of (a) γ-P and (b) δ-P. High-
symmetry lines are shown in the insets.

and inter-layer interaction energy Eil in the four phases are summarized in Table 6.1. By not

taking proper account of the van der Waals interactions [166, 167], DFT-PBE calculations

tend to underestimate Eil and overestimate d [28, 33]. Probably the best, albeit computa-

tionally extremely demanding way to correct this deficiency is the Quantum Monte Carlo

(QMC) approach [168]. QMC results for α-P indicate Eil≈40 meV/atom [169], twice the

20 meV/atom value based on DFT-PBE, as cited in Table 6.1. I also list the value obtained

for α-P using van der Waals-corrected optB86b-vdW functional, Eil≈120 meV/atom, which

is significantly larger than the more reliable QMC value. Very similar corrections to the inter-

layer interaction of ≤0.1 eV and a reduction of the inter-layer distance are also obtained for

the other layered allotropes. In spite of these minor differences, I find the inter-layer interac-

tions and distances to be rather similar in all these allotropes and in reasonable agreement

with observed data in the only previously known allotrope black phosphorus (α-P).

The calculated energy differences between the AA, AB and ABC stacking of layers of few

meV/atom represent only a fraction of the inter-layer interaction Eil. Since the inter-layer

distances are large and inter-layer interactions are small in all four phases, the optimized
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Figure 6.3: Snap shots of canonical molecular dynamics simulations depicting structural
changes in γ-P at (a) T = 300 K and (b) T = 1, 000 K. Corresponding snap shots of δ-P are
shown in (c) for T = 300 K and (d) for T = 1, 000 K. For better comparison, both top and
side views are presented for all structures. The unit cell of the lattice contains 96 atoms in
γ-P and 128 atoms in δ-P.

layer structures of the bulk system and the monolayer are nearly indistinguishable. The

fact that the inter-layer interaction is similarly small in all phases indicates the possibility

of layer-by-layer exfoliation not only of black phosphorus [28], but also the other layered

allotropes.

I present results of DFT-PBE electronic band structure calculations for γ-P and δ-P

monolayers in Fig. 6.4. As can also be inferred from the numerical results in the related

Table 6.2: The fundamental band gap Eg in monolayers of α-P, β-P, γ-P and δ-P, based on
DFT-PBE calculations.

Phase α-P β-P γ-P δ-P
Eg (eV) 0.90 1.98 0.50 0.45
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Figure 2 

(a)                                         (b) γ-P monolayer δ-P monolayer 
N=1 

N=2 

N→∞ 
N=1 

N→∞  

Top view                Side view                       Top view                    Side view 

(c)                                         (d) 

Figure 6.4: Electronic band structure and density of states (DOS) of (a) γ-P and (b) δ-P
monolayers. Results for bilayer and bulk systems are shown for comparison in the DOS
plots only. Top and side views of the electron density ρvc near the top of the valence and
the bottom of the conduction bands of (c) γ-P and (d) δ-P. Only states in the energy range
EF − 0.4 eV< E < EF + 0.4 eV are considered, as indicated by the green shaded region in
(a) and (b). ρvc is represented at the isosurface value ρvc = 1.1×10−3 e/Å3 for γ-P and δ-P
and superposed with a ball-and-stick model of the structure.

Table 6.2, the fundamental band gaps in γ-P and δ-P are somewhat smaller than those of

α-P and β-P monolayers, but still significant. Since my GW self-energy calculations indicate

that these DFT-PBE band gap values are underestimated by ≈1 eV, as expected for DFT

calculations, all four phases should display a fundamental band gap in excess of 1 eV in the

monolayer. Whereas γ-P has an indirect band gap, δ-P is a direct band gap semiconductor.

Besides the electronic band structure of the monolayers, I present the associated density of

states of a monolayer and of the bulk system in Figs. 6.4(a) and 6.4(b). As already noticed

for the α-P and β-P structures in previous works [28, 33], the electronic structure near

EF including the band gap depends sensitively on the number of layers in all phosphorene

allotropes, including γ-P and δ-P. The most notable difference in the density of states of γ-P
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Figure 6.5: (a) Dependence of the fundamental band gap Eg on the slab thickness in N -layer
slabs of α-P (black), β-P (blue), γ-P, and δ-P. Dependence of the fundamental band gap
on in-layer strain σ is presented in (b) for γ-P and in (c) for δ-P. The strain direction is
defined in Fig. 6.1. The shaded regions in (a) and (b) highlight conditions, under which γ-P
becomes metallic. Dashed vertical lines in (b) and (c) indicate a direct-to-indirect band gap
transition.

in Fig. 6.4(a) is between a semiconductor for N = 1 and a metal for N≥2.

Whereas DFT calculations typically underestimate the fundamental band gap, they are

believed to correctly represent the electronic structure in the valence and the conduction

band region. To get a better impression about the nature of the conducting states in doped

γ-P and δ-P, I display the charge distribution associated with states near the Fermi level in

Figs. 6.4(c) and 6.4(d), superposed with the atomic structure. These states and their hybrids

with electronic states of the contact electrodes will play a crucial role in the carrier injection

and quantum transport. I find these conduction states to have the character of p-states

normal to the layers, similar to graphene. In multi-layer systems, these states hybridize

between adjacent layers, causing a band dispersion normal to the slab. This causes a change

in the density of states in the gap region between a monolayer and the bulk structure.

To judge how the fundamental band gap depends on the slab thickness, I present my

DFT-PBE band gap results for α-P, β-P, γ-P and δ-P as a function of the number of layers

N in Fig. 6.5(a). My most important finding is that the band gap vanishes for N≥2 in γ-P,
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Figure 6.6: Energetically favorable in-layer connections between (a) α-P and β-P, (b) β-P
and γ-P, and (c) γ-P and δ-P, shown in perspective and side view. l represents the edge
length at the interface and ϕ is the connection angle. The color scheme for the different
allotropes is the same as in Fig. 6.1.

turning bilayers and thicker slabs metallic.

A similarly intriguing picture emerges when studying the dependence of the fundamental

band gap on the in-layer strain. Results for strain applied in two orthogonal directions are

shown in Fig. 6.5(b) for γ-P and in Fig. 6.5(c) for δ-P. Again, my most significant finding is

that stretching beyond 4% should turn a γ-P monolayer metallic.

As already reported for α-P and β-P [28,33,116,161], applying even relatively low levels

of in-layer strain causes drastic changes in the band gap, and may even change its character

from direct to indirect. The latter fact results from the presence of several valleys in the

conduction band, which may change their relative depth due to lattice distortions. Strain

of up to a few percent may be accomplished when phosphorene is grown epitaxially on a

particular substrate. We may even consider the possibility of in-layer band gap engineering

by substrate patterning.

Even richer possibilities for band structure engineering should arise by in-layer connec-

tions between the different phases. In-layer connections, which have been observed in hybrid

systems of graphene and hexagonal BN [170], suffer from large interface energy penalties
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Table 6.3: Energy cost per edge length ∆Ec/l and connection angle ϕ, defined in Fig. 6.6,
associated with connecting two semi-infinite phosphorene monolayers.

Phase connection α-β β-γ γ-δ

∆Ec/l < 1 meV/Å < 17 meV/Å < 6 meV/Å
Angle ϕ 142◦ 160◦ 145◦

due to the lack of commensurability. The situation is very different in phosphorene, since

the four layered allotropes share the same structural motif of threefold coordinated P atoms

surrounded by nearest neighbors in a tetrahedral arrangement. I find that this tetrahedral

arrangement can be maintained even within specific in-layer connections of the different

structures, resulting in an extremely low energy penalty.

I have optimized the structure of in-layer connections between α-P and β-P, between β-P

and γ-P, and between γ-P and δ-P. My results, depicted in Fig. 6.6, indicate that an optimum

connection involves different orientations of the joined planes. The optimization calculations,

performed in a supercell geometry with varying cell sizes, allowed us to determine the energy

cost per edge length ∆Ec/l to connect two structural phases. To obtain this quantity for a

connection between phases 1 and 2, I considered N1 atoms of phase 1 and N2 atoms of phase

2 per unit cell and varied the N1/N2 ratio while keeping the same length of the interface

boundary. For a reliable estimate of the energy penalty associated with forming an interface

between the two phases, I compared total energies of optimized structures with coexisting

phases to those of pure, defect-free phases. My results for ∆Ec/l for the connections shown

in Fig. 6.6 are listed in Table 6.3, along with the optimum values of the connection angle ϕ.

The energy results in Table 6.3 indicate that the energy cost to connect stable, but

different, structural phases is negligible in comparison to the cohesive energy. The implication

that coexistence of several phases within one layer is not energetically penalized is extremely

uncommon in nature. I can envisage the possibility of forming such multi-phase structures
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by depositing phosphorene monolayers on a substrate with a specific step structure, such as

a vicinal surface, using Chemical Vapor Deposition. The domain wall boundaries between

different phases may also move to optimize adhesion to an inhomogeneous or non-planar

substrate. The electronic properties of a heterostructure within one layer will depend not

only on the electronic structure of the pure phases, but also their finite width or size and

the defect bands associated with the interfaces. In principle, it should be possible to form

a complex device structure by a judicious arrangement of different structural phases within

one phosphorene monolayer.

Monolayers containing the four layered phosphorene phases are expected to be not only

stable, but also flexible. Consequently, the non-planarity of multi-phase structures does

not pose a real problem. It may even provide an advantage in formation of complex foam

structures, similar to graphitic carbon foams, with unusual electronic properties [171,172].

6.4 Summary

In conclusion, based on ab initio density functional calculations, I have proposed γ-P and

δ-P as two additional stable structural phases of layered phosphorus besides the layered α-P

(black) and β-P (blue) phosphorus allotropes. Monolayers of some of these allotropes have

a wide band gap, whereas others, including γ-P, show a metal-insulator transition caused

by in-layer strain or changing the number of layers. An unforeseen benefit is the possibility

to connect different structural phases at no energy cost. This becomes particularly valuable

in assembling heterostructures with well-defined metallic and semiconducting regions in one

contiguous layer.
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Chapter 7

Faceted nanotubes and fullerenes of

multi-phase phosphorene

The following discussion is my original contribution to the related publication by Jie Guan,

Zhen Zhu and David Tománek, Phys. Rev. Lett. 113, 226801 (2014) [173].

7.1 Introduction

One reason for the unprecedented interest in graphitic carbon is its ability to form not only

self-supporting graphene layers [174,175], but also single- and multi-wall nanotubes [47] and

fullerenes [46]. Similar to graphite, which is the parent compound of these carbon allotropes,

the stable black phosphorus allotrope is a layered compound that can be exfoliated to phos-

phorene monolayers [27, 28]. Phosphorus nanotubes [176, 177] and fullerenes [178–180] have

been postulated to form in analogy to their carbon counterparts by deforming a phosphorene

monolayer, typically at significant energy cost. In contrast to the unique structure of planar

graphene, at least four equally stable phases with different properties, α-P, β-P, γ-P and δ-

P, can be distinguished in the puckered structure of a phosphorene monolayer [33,163,181].

The ability of the different phases to form non-planar in-layer connections at essentially zero

energy cost suggests the possibility to form faceted nanotube and fullerene structures that

are as stable as planar phosphorene. The possibility to mix different phases within each
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wall of spherical and cylindrical single- and multi-wall structures would offer unprecedented

richness not only of form but also the associated electronic properties. Bulk quantities

of carbon nanotubes and fibers are currently used as a performance-enhancing additive to

graphite in Li-ion batteries (LIBs) [182]. Since black phosphorus is considered superior to

graphite for LIB applications [183,184], a similar benefit could be derived from the presence

of phosphorene nanotubes and related structures.

Here I present a new paradigm in constructing very stable, faceted nanotube and fullerene

structures by laterally joining nanoribbons or patches of different planar phosphorene phases.

My ab initio density functional calculations indicate that these phases may connect laterally

at an angle. Unlike fullerenes and nanotubes obtained by deforming a single-phase planar

monolayer at substantial energy penalty, I find faceted fullerenes and nanotubes to be nearly

as stable as planar single-phase monolayers. The resulting rich variety of polymorphs allows

one to tune the electronic properties of phosphorene nanotubes and fullerenes not only by

the chiral index but also by the combination of different phosphorene phases. In selected

PNTs, a metal-insulator transition may be induced by strain or by changing the number of

walls.

7.2 Computational techniques

The same method as last chapter is used to obtain insights into the equilibrium structure,

stability and electronic properties of nanotubes and fullerenes based on different layered

phosphorus allotropes. I use periodic boundary conditions throughout the study, with nan-

otubes and fullerenes separated by a vacuum region exceeding 15 Å. I sample reciprocal space

by a fine grid [136] of 8 k-points for the 1D Brillouin zone of nanotubes and only 1 k-point
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Figure 7.1: (a) Atomic structure of α-, β-, γ- and δ-P in top view and the side view of
zigzag and armchair edges. The orthogonal lattice vectors ~a1 and ~a2 define the unit cells or
supercells used in this study. Schematic and atomic structure of (b) an armchair and (d) a
zigzag PNT, with the different structural phases distinguished by color and shading. The
cross-sections of (c) an armchair and (e) a zigzag nanotube illustrate the symmetry and the
distribution of phases along the perimeter.

for the small Brillouin zone of isolated fullerenes.

7.3 Results and discussions

The nanotube and fullerene structures presented in this study are formed by laterally con-

necting the different stable allotropes of layered phosphorus, namely α-, β-, γ- and δ-P,

which are shown in Fig. 7.1(a). Whereas α- and β-P are the most stable allotropes with

Ecoh = 3.28 eV/atom in the monolayer, the stability of γ- and δ-P are lower only by

< 0.1 eV/atom [181]. All these structures share the underlying honeycomb lattice with

graphene but – in contrast to graphene – are not flat. In analogy to graphene, I define the

armchair and zigzag edges of the different phosphorene phases in Fig. 7.1(a). The vectors

~a1 and ~a2, which span these lattices, may also be used to identify the edges of phosphorene
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Figure 7.2: Geometric cross-section of selected (a) a-PNTs and (b) z-PNTs. Different struc-
tural phases are distinguished by color.
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Figure 7.3: Source of ambiguity in the nomenclature of faceted nanotubes. In two identical
junctions of phases α and β, atoms along the connection line, indicated by the dotted ellipse,
may be assigned to the phase on either side.

nanoribbons (PNRs). Considering the equilibrium non-planar connections between α-, β-,

γ-P along zigzag edges and γ-, δ-P along armchair edges [181], I can design two types of

faceted nanotubes.

The exact morphology of the more common carbon nanotubes (CNTs) is defined by the

chiral index (n1, n2), which is associated with the chiral vector ~Ch = n1~a1 + n2~a2 on a

graphene monolayer. This vector defines the wrapping into a nanotube and identifies its

edge. There is a common distinction between armchair nanotubes (a-NTs) with an armchair

edge and zigzag nanotubes (z-NTs) with a zigzag edge. A similar convention can be used

when bending monolayers of α-, β-, γ- and δ-P into corresponding nanotubes.
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The nanotubes I consider here are very different, as they are formed by connecting

narrow planar nanoribbons of different phosphorene allotropes. Armchair nanotubes (a-

PNTs), shown in Fig. 7.1(b) and 7.1(c), form by connecting laterally α-PNRs with β- and

γ-PNRs along their zigzag edges. Virtually no deformation is required to form a nanotube

with C3 symmetry and a polygonal cross-section like that shown in Fig. 7.1(c). The three

identical 120◦ segments in the cross-section of this a-PNT contain, in this sequence, an

α-PNR connected to a β-PNR, γ-PNR, and β-PNR. The width of each individual PNR

may be zero or nonzero, giving rise to many different morphologies. Since the two β-PNRs

in this segment may also have different widths, I distinguish them by a subscript. Next,

I imagine joining laterally all nanoribbons of a given phase ε to a wider ribbon of width

Wε = nε|~a1|. Obtaining in this way the values nα, nβ1 , nγ and nβ2 , I may characterize

an armchair nanotube as a-PNT(nα,nβ1 ,nγ ,nβ2) and identify the nanotube in Fig. 7.1(c) as

a-PNT(6,3,3,3).

In analogy to a-PNTs, zigzag nanotubes (z-PNTs), as shown in Fig. 7.1(d) and 7.1(e),

form by connecting laterally γ- and δ-PNRs along their armchair edges. Virtually no de-

formation is required to form a nanotube with C2 symmetry and a polygonal cross-section,

shown in Fig. 7.1(e). The two identical 180◦ segments in the cross-section of this z-PNT

contain, in this sequence, a γ-PNR connected to a δ-PNR, γ-PNR, and δ-PNR. The width

of each individual PNR may be zero or nonzero, giving rise to many different morphologies.

Since the two γ- and the two δ-PNRs in this segment may also have different widths, I

distinguish them by a subscript. Next, I imagine joining laterally all nanoribbons of the

same phase ε to a wider ribbon of width Wε = nε|~a2|. Obtaining in this way the values

nγ1 , nδ1 , nγ2 and nδ2 , I may characterize a zigzag nanotube as z-PNT(nγ1 ,nδ1 ,nγ2 ,nδ2)

and identify the nanotube in Fig. 7.1(e) as z-PNT(5,2,5,4). I do not discuss here the nar-
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rowest z-PNT(1,0,1,0) with a P4 square in the cross-section, which is in reality a nanowire.

Additional examples of narrow armchair nanotubes are shown in Fig. 7.2(a) and of zigzag

nanotubes in Fig. 7.2(b). Even though these nanotubes have a small average radius, they

are unusually stable as I will discuss later.

I also wish to point out that the faceted nanotubes described here are not completely free

of strain. Assuming that the optimum connection angles between narrow strips are the same

as between semi-infinite planes provided in Reference [181], I do find that narrow strips of the

different phases, connected at the optimum angle, would not form a perfect tube. Specifically,

constituents of an armchair nanotube would ideally connect at 348◦ instead of 360◦, requiring

a small amount of additional bending to form a armchair nanotube. Similarly, constituents

of a zigzag nanotube would connect at 280◦ instead of 360◦, requiring a larger amount of

additional bending to form a zigzag nanotube. While this residual strain is very small, it is

not negligible. As stated before, the stability of a particular nanotube is mainly determined

by the different stabilities of the constituent phases and, to a much smaller degree, by this

residual strain.

Whereas the designation a-PNT(nα,nβ1 ,nγ ,nβ2) defines the way to construct a unique

armchair nanotube from PNRs, a given nanotube may be characterized by different sets of

chiral indices. Ambiguity arises from assigning atoms along the connection line to either the

phase on the one or on the other side of the connection line. As shown in Fig. 7.3, the same

structure could be described by (nα, nβ) and (nα + 1, nβ − 1). This would lead to different

values of nα in the same a-PNT and different values of nγ1 and nγ2 in the same z-PNT. This

ambiguity can be avoided by selecting nα = max. A similar ambiguity in the nomenclature

of z-PNTs can be avoided by selecting nγ1 to be maximum and nγ2 to be maximum.

Similar to the construction of nanotubes by connecting nanoribbons of different phases,
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Figure 7.4: Phosphorene-based fullerene structures with (a-c) octahedral and (d-f) icosahe-
dral symmetry. The structural models in (a) and (d) indicate how triangular facets of β-P
are connected by γ-P along the edges. The stick models of P72 in (b), P200 in (c), P80 in (e)
and P180 in (f) depict the relaxed atomic structures of octahedral and icosahedral fullerenes.

fullerenes, too, may be constructed by connecting planar triangular segments of β-P mono-

layers by narrow γ-P strips at the edges, as shown in Fig. 7.4. I have considered octahe-

dral fullerenes, illustrated schematically in Fig. 7.4(a), and icosahedral fullerenes, illustrated

schematically in Fig. 7.4(d). Ideal Pn octahedral fullerenes contain n = 8m2 atoms and

icosahedral fullerenes contain n = 20m2 atoms, where m is an integer. Two examples of oc-

tahedral fullerenes are presented in Figs. 7.4(b) and 7.4(c), and two examples of icosahedral

fullerenes in Figs. 7.4(e) and 7.4(f). Since these structures do not require significant defor-

mation of the planar monolayer structure, but rather result from an optimum connection

between β-P and γ-P, they also are expected to be nearly as stable as the planar single-phase

allotropes.

My results for the relative stability of phosphorene nanotubes are presented in Fig. 7.5(a)
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Figure 7.5: (a) Average strain energy per atom ∆E/n in PNTs of different radius R with
respect to a planar β-P monolayer. The shaded region indicates the range of stabilities of
different planar phases. I also present data points for pure-phase PNTs obtained by rolling
up β- and γ-P to a tube. (b) Strain energy per atom in octahedral (o) and icosahedral (i)
fullerenes of radius R. The dashed lines in (a) and (b) represent the 1/R2 behavior based
on continuum elasticity theory for pure-phase nanostructures. (c) Band gaps Eg in faceted
a-PNTs and z-PNTs. The horizontal lines depict Eg values in pure planar phosphorene
monolayers. (d) HOMO-LUMO gaps in o- and i-fullerenes.The red and blue shaded regions
indicate the range of values for a-PNTs and z-PNTs.

and those for fullerenes in Fig. 7.5(b). In both sub-figures, the dashed lines display the ex-

pected 1/R2 behavior of the strain energy per atom ∆E/n on the radius R that energetically

penalizes structures with small radii.

As seen in Fig. 7.5(a), this projected behavior, based on continuum elasticity theory [58],

agrees closely with my results for pure β- and γ-P nanotubes and previously published

results for β-P nanotubes, calculated by density functional based tight-binding (DFTB)

method [177]. As anticipated originally, the faceted multi-component nanotubes are much
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Figure 7.6: Snap shots of canonical molecular dynamics simulations at T = 300 K and T =
1000 K depicting structural changes in phosphorus nanotubes and fullerenes. Nanotubes are
represented by (a) the armchair a-PNT(3,3,0,0) and (b) the zigzag z-PNT(5,0,5,0). Fullerenes
are represented by (c) P72 and (d) P80. The nanotubes are shown in end-on view.

more stable than these. I find that (i) their strain energies are nearly independent of the

radius and (ii) their relative stabilities lie in the range delimited by the stabilities of the pure

planar components, indicated by the shaded region. Since z-PNTs contain the least stable

γ and δ phases, they are also the least stable among the faceted nanotubes. The presence of

the more stable α and β phases, on the other hand, makes a-PNTs consistently more stable

than z-PNTs.

Stability enhancement caused by the coexistence of multiple phases can also be observed

in my results for fullerenes in Fig. 7.5(b). As in the nanotubes, I find most strain energies

within the value range delimited by the pure planar β- and γ-P phases. The stability

enhancement is most visible in very small fullerenes. Interestingly, I find the small fullerene

structures more stable than P4, the building block of the (most reactive) bulk phosphorus

allotrope.

Structural stability at T = 0 says little about stability at high temperatures, where
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Figure S3b

(a) (c)

z-PNT(3,0,3,0) z-PNT(5,0,5,0)

EF EF

(d)(b)

Figure 7.7: Electronic band structure of (a) the z-PNT(3,0,3,0) and (c) the z-PNT(5,0,5,0)
nanotube. The region associated with frontier orbitals is highlighted by the green shading in
the energy range EF −0.1 eV< E < EF + 0.1 eV in (a) and EF −0.2 eV< E < EF + 0.2 eV
in (c). Electron density ρf associated with frontier states in (b) the z-PNT(3,0,3,0) and (d)
the z-PNT(5,0,5,0) nanotube, superposed with ball-and-stick models of the structures. ρf is

represented by the isosurface value 8×10−4 e/Å3.

thermally activated structural changes may take place. A direct way to probe the stability of

faceted phosphorus nanotubes and fullerenes at high temperatures is by performing molecular

dynamics (MD) simulations. Results of my canonical MD simulations are presented in

Fig. 7.6 as structural snap shots of the a-PNT(3,3,0,0) and the z-PNT(5,0,5,0) nanotube

and the P72 as well as the P80 fullerene at T = 300 K and T = 1, 000 K. To avoid artifacts

associated with constraints imposed on nanotubes by finite-size unit cells, I used supercells

containing 3 primitive unit cells. I used 1 fs time steps to cover 0.8-3 ps, depending on

system and temperature. I found structural changes to be minimal at room temperature. I

observed larger atomic motion at T = 1, 000 K, which lies slightly above TM = 863 K, the

melting point of red phosphorus [165], but no indication of concerted structural changes to

a different allotrope. I thus conclude that faceted nanotubes and fullerenes display a similar

thermal stability as monolayers of α-, β-, γ- and δ-phosphorene discussed previously [33,181]

and also in earlier chapters. Since the cohesive energies of faceted nanotubes and fullerenes

are at most 0.2 eV/atom lower than bulk black phosphorus, I expect these nanostructures
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Figure 7.8: (a) Cross-section and (b) DOS of the double-wall z-PNT (5,0,5,0)@(9,0,9,0). The
solid line in (b) shows the total DOS and the dashed line depicts the superposition of the
densities of states of the isolated nanotube components. The Fermi level EF is set at 0. (c)
Perspective view of the a-PNT(3,0,9,0) and (d) dependence of the gap energy Eg on axial
strain.

to coexist with the bulk structure under experimental conditions.

In carbon nanotubes and fullerenes, the occurrence of a fundamental band gap is a sig-

nature of quantum confinement in the underlying semi-metallic graphene structure. The

advantage of phosphorene over graphene is the presence of a fundamental band gap in all

layered allotropes discussed here. I thus expect the fundamental band gaps, Eg, of nan-

otubes and fullerenes to approximately span the value range of the pure components of

planar strucutures, indicated by the shaded regions in Figs. 7.5(c) and 7.5(d). Even though

additional corrections are expected due to quantum confinement and structural relaxation,

such corrections are apparently not as important, since most of my data points lie in the
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range delimited by the pure components. At this point, I wish to point out that my elec-

tronic structure results in Figs. 7.5(c) and 7.5(d), obtained by DFT-PBE, are expected to

underestimate the fundamental band gaps [28,33].

As seen in Fig. 7.5(c), I find larger band gap values in armchair PNTs containing α-, β-

and γ-P, since each of the pure planar components has a band gap in excess of 0.5 eV in the

monolayer. Since γ- and δ-P have the smallest band gaps among the phosphorene allotropes,

I also see the smallest band gaps in z-PNTs, which contain these two pases.

Only the narrowest z-PNT(3,0,3,0) is metallic, with two bands crossing the Fermi level, as

seen from its band structure in Fig. 7.7(a). Wider z-PNTs are all narrow-gap semiconductors,

as seen in the representative band structure of the z-PNT(5,0,5,0) shown in Fig. 7.7(c). To

find the reason for the anomalous electronic structure of the z-PNT(3,0,3,0), I examined

the charge distribution in the frontier orbitals and display it in Fig. 7.7(b). For the sake

of comparison, I display the analogous charge distribution in the wider z-PNT(5,0,5,0) in

Fig. 7.7(d). I used a somewhat arbitrary definition of frontier orbitals as corresponding to

the energy range EF −0.1 eV< E < EF +0.1 eV in the metallic nanotube in Figs. 7.7(a) and

7.7(b). Since no states are found in this energy range in the semiconducting z-PNT(5,0,5,0),

I expanded the energy range associated with the frontier orbitals to EF −0.2 eV< E < EF +

0.2 eV in Figs. 7.7(c) and 7.7(d). I find the frontier orbitals to display a dominant p character

with a small s admixture, causing them to point radially in or out. Whereas there is no

overlap between such orbitals on neighboring sites in the wider z-PNT(5,0,5,0) in Fig. 7.7(d),

I observe a significant overlap between third-neighbor sites along the inner perimeter, which

come closer to each other in the narrow z-PNT(3,0,3,0), shown in Fig. 7.7(b). The origin

of conduction in the narrow z-PNT(3,0,3,0) is the conduction channels formed by these

rehybridized states. One beneficial effect of the rehybridization across the diameter is an
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improved rigidity of the nanotubes.

In finite-size fullerenes, Eg represents the gap between the highest occupied molecu-

lar orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). My results in

Fig. 7.5(d) suggest that the HOMO-LUMO gaps in icosahedral fullerenes are larger than in

octahedral fullerenes. Even though the values are similar to those of nanotubes in Fig. 7.5(c),

I can not easily rationalize the value range for o- and i-fullerenes, since both structures consist

of the same β-P and γ-P allotropes.

As reported previously [28, 33, 116, 161, 181], the fundamental band gap in phosphorene

depends sensitively on the number of layers and on in-layer strain. My results in Fig. 7.8

indicate that the same behavior occurs also in PNTs. I find multi-wall PNTs to be sta-

bilized by an inter-wall interaction of ≤50 meV/atom, roughly the same as in the layered

compounds [168, 169]. Due to a large fraction of γ-P in the wall, which has been shown to

undergo a metal-semiconductor transition, I investigated the (5,0,5,0)@(9,0,9,0) double-wall

z-PNT, shown in Fig. 7.8(a). The density of states (DOS) of this double-wall PNT, shown in

Fig. 7.8(b), indicates that the inter-wall interaction may turn two semiconducting nanotubes

metallic upon being combined to form a double-wall nanotube. As seen in Figs. 7.8(c) and

7.8(d) for the single-wall a-PNT(3,0,9,0), even a modest 5% stretch may turn a semicon-

ducting nanotube containing a significant fraction of γ-P metallic. This low level of strain

may be applied externally or induced by epitaxy, including structural changes induced in

multi-wall nanotubes.

The most important implication of my claim that faceted nanotubes and fullerenes are

as stable as planar phosphorene is that they should exist in nature and will be observed

eventually, as was the case with boron nanostructures [185,186]. Phosphorus nanotubes and

fullerenes may form during ball milling of black phosphorus [184] under inert, oxygen-free
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atmosphere. This process may also produce structures with a large accessible surface area

for phosphorus-based LIB applications [183,184].

7.4 Summary

In conclusion, I have presented a new paradigm in constructing very stable, faceted nanotube

and fullerene structures by laterally joining nanoribbons or patches of different planar phos-

phorene phases. My ab initio density functional calculations indicate that these phases may

form very stable, non-planar joints. Unlike fullerenes and nanotubes obtained by deforming

a single-phase planar monolayer at substantial energy penalty, I find faceted fullerenes and

nanotubes to be nearly as stable as the planar single-phase monolayers. The resulting rich

variety of polymorphs allows one to tune the electronic properties of phosphorene nanotubes

and fullerenes not only by their chiral index but also by the combination of different phos-

phorene phases. In selected PNTs, a metal-insulator transition may be induced by strain or

changing the number of walls.
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Chapter 8

Combination of sp2 and sp3 bonding:

two-dimensional phosphorus carbide

The following discussion is my original contribution to the related publication by Jie Guan,

Dan Liu, Zhen Zhu and David Tománek, Nano Lett. 16, 3247-3252 (2016) [187].

8.1 Introduction

There is growing interest in 2D semiconductors, both for fundamental reasons and as poten-

tial components in flexible, low-power electronic circuitry. A large number of substances with

unique advantages and limitations has been studied in this respect, but consensus has not

been reached regarding the optimum candidate. Semi-metallic graphene with an excellent

carrier mobility has received the most attention so far, but all attempts to open up a sizeable,

robust, and reproducible band gap have failed due to the negative side effects of the differ-

ent modifications [39–42]. Transition metal dichalchogenides (TMDs) such as MoS2 [22, 43]

or TcS2 [188] do have a sizeable fundamental band gap, but they also have lower carrier

mobilities. Recently isolated few-layer films of black phosphorus, including phosphorene

monolayers, combine high carrier mobility with a sizeable and tunable fundamental band

gap [27,28], but they have limited stability in air [44].

Since both elemental carbon and phosphorus form stable 2D monolayers, which have been
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Figure 8.1: Possible stable structures of an atomically thin PC monolayer, represented by
(a-c) a tiling pattern and (d-i) by ball-and-stick models in both top and side view. The
number of like nearest neighbors defines the structural category N . There are two stable
allotropes, α and β, for each N . The primitive unit cells are highlighted and the lattice
vectors are shown by red arrows. Two inequivalent P sites are distinguished by a subscript
in (d).

studied extensively, it is intriguing to find out whether the compound phosphorus carbide

(PC), also called carbon phosphide, may also be stable as a monolayer and display properties

that may even be superior to both constituents. The plausibility of a 2D structure of PC

derives from the same three-fold coordination found both in graphene and phosphorene. On

the other hand, the 2D structure will likely suffer from a competition between the planar

sp2 bonding characteristic of graphene and the significantly different non-planar sp3 bonding

found in phosphorene. The postulated 2D structure of PC with 1:1 stoichiometry is funda-

mentally different from the amorphous structure observed in deposited thin solid films [189],

the postulated foam-like 3D structure [190], or the postulated GaSe-like multi-layer struc-
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tures of PC containing C and P with the same sp3 hybridization [191, 192]. On the other

hand, 2D allotropes of PC are related to postulated and observed fullerene-like structures of

CPx [193,194] and CNx [195–198], and to g-C3N4, called graphitic carbon nitride. [199]

In this Letter, based on ab initio density functional calculations, I propose previously

unknown allotropes of phosphorus carbide in the stable shape of an atomically thin layer. I

find that different stable geometries, which result from the competition between sp2 bonding

found in graphitic C and sp3 bonding found in black P, may be mapped onto 2D tiling

patterns that simplify categorizing of the structures. I introduce the structural category

N , defined by the number of like nearest neighbors, and find that N correlates with the

stability and the electronic structure characteristic. Depending on the category, I identify

2D-PC structures that can be metallic, semi-metallic with an anisotropic Dirac cone, or

direct-gap semiconductors with their gap tunable by in-layer strain.

8.2 Computational methods

Insight into the equilibrium structure, stability and electronic properties of 2D-PC allotropes

reported in this chapter is obtained by the same method as used in last chapter. Reciprocal

space is sampled by a fine grid [136] of 8×12×1 k-points in the Brillouin zone of the primitive

unit cell of 4 atoms or its equivalent in supercells. Since the fundamental band gap is

usually underestimated in DFT-PBE calculations, I have resorted to the HSE06 [68, 200]

hybrid exchange-correlation functional, as implemented in the VASP [70–73] code, to get a

different (possibly superior) description of the band structure. I use 500 eV as the energy

cutoff and the default mixing parameter value α = 0.25 in these studies. DFT-PBE and

DFT-HSE06 band structure results are compared.
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Figure 8.2: Bonding configuration in (a) N = 1, (b) N = 2, and (c-e) N = 0 category 2D-PC
allotropes. Green-shaded regions indicate sites that satisfy the octet rule discussed in the
text. Bonding in β0-PC is characterized by panel (d) and bonding in α0-PC is described by
panel (e).

8.3 Results and discussions

As mentioned above, all atoms in the 2D-PC allotropes are threefold coordinated, similar to

the planar honeycomb lattice of graphene. Thus, the structure can be topologically mapped

onto a 2D lattice with sites occupied either by P or C atoms. Bisecting all nearest-neighbor

bonds by lines yields a 2D tiling pattern, where each triangular tile with a characteristic

color represents either a P or a C atom. Next, I define a structural category N for each

allotrope, with N given by the number of like nearest neighbors. For N = 0, none of the

atoms are connected to any like neighbors. Each C or P atom has only one like (C or P)

neighbor for N = 1, and two like neighbors for N = 2. There is no N = 3 structure, which

would imply a pure carbon or phosphorus lattice. The tiling patterns for different 2D-PC

allotropes are shown in Fig. 8.1(a)-8.1(c). A similar categorization scheme has been used

previously to distinguish between different allotropes of 2D phosphorene [201], where N was

the number of “like” neighbors either in the upper or lower position within the lattice.

Whereas the tiling pattern is useful for simple categorization, it does not provide infor-
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mation about the nontrivial optimum structure shown in Fig. 8.1(d)-8.1(i), which results

from a competition between the favored planar sp2 hybridization of C and non-planar sp3

hybridization of P. The side view of structures displayed in Fig. 8.1 best illustrates that al-

lotropes with the same value of N may be structurally different. In analogy to the different

postulated phosphorene allotropes [33, 157], I distinguish αN , which display a black-P-like

armchair structure in side view, from βN phases of PC, which display a blue-P-like (or

grey-As-like) zigzag structure in side view, and use the index N to identify the structural

category.

I start my discussion with the N = 1 allotropes α1-PC and β1-PC, shown in the middle

column in Fig. 8.1. According to the definition of N , each atom has one neighbor of the same

species and two of the other species, forming isolated P-P and C-C dimers, as seen in the

tiling pattern and the atomic structures. As seen in Fig. 8.2(a), the chemical octet rule [202]

is satisfied both on C sites in the graphitic sp2 configuration and on P sites, containing a

lone electron pair, in sp3 configuration, indicating stability. Both allotropes have rectangular

unit cells consisting of distorted hexagons. The unit cell of α1-PC with 8 atoms is larger

than that of β1-PC with four atoms.

In the N = 2 allotropes α2-PC and β2-PC, shown in the right column of Fig. 8.1, each

atom has two like neighbors and one unlike neighbor. In the side view, these allotropes look

very similar to those of the N = 1 category. The main difference becomes apparent in the

top view. Whereas N = 1 structures contain ethylene-like C2 units that are interconnected

by P2 dimers, N = 2 systems contain contiguous trans-polyacetylene-like all-carbon chains

that are separated by P-chains. Due to the difference between the locally planar sp2 bonding

of C atoms and locally non-planar sp3 bonding of P atoms, and due to the difference between

equilibrium C-C and P-P bond lengths, the hexagons found in N = 1 structures change to
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Table 8.1: Calculated properties of different 2D-PC allotropes. < Ecoh > is the cohesive
energy per “average” atom with respect to isolated atoms. < ∆E >=< Ecoh > − <
Ecoh,max > describes the relative stability of a system with respect to the most stable
structure. | ~a1| and | ~a2| are the in-plane lattice constants defined in Fig. 8.1. dP−P , dP−C
and dC−C are the equilibrium bond lengths between the respective species. In α0-PC, the
P1-C bonds differ from the P2-C bonds in length.

Structure α0-PC β0-PC α1-PC β1-PC α2-PC β2-PC
< Ecoh > (eV/atom) 4.80 4.75 5.05 5.06 5.20 5.20
< ∆E > (eV/atom) −0.40 −0.45 −0.15 −0.14 0.00 0.00
|~a1| (Å) 8.41 5.12 8.73 4.76 9.84 10.59
|~a2| (Å) 2.94 2.95 2.95 2.95 5.11 5.11
dP−P (Å) – – 2.36 2.36 2.29 2.29
dP−C (Å) 1.86 (P1) 1.78 1.84 1.84 1.85 1.85

1.71 (P2)
dC−C (Å) – – 1.38 1.38 1.44 1.44

pentagon-heptagon pairs in the optimum N = 2 structure resembling the pentheptite or

haeckelite structures of graphitic carbon. As seen in Fig. 8.2(b), similar to N = 1 structures,

the chemical octet rule is satisfied on both C and P sites. The lattice of α2-PC and β2-PC

allotropes contains rectangular unit cells with sixteen atoms.

In 2D PC compounds of category N = 0, shown in the left column of Fig. 8.1, each

atom is surrounded by three unlike neighbors. There is no bonding configuration that would

satisfy the octet rules on all sites. The bonding configuration depicted in Fig. 8.2(c) satisfies

the octet rule only at the C sites, whereas the configuration in Fig. 8.2(d) favors only the

P sites. The bonding configuration depicted in Fig. 8.2(e) contains alternating P-C chains

containing P sites with lone electron pairs and C atoms in sp2 configuration, which satisfy

the octet rule, and P-C chains that do not satisfy it. In whatever bonding arrangement,

the bonding configuration in N = 0 structures is frustrated. As a consequence, the α0-PC

structure converts spontaneously from an initial armchair configuration, similar to α1-PC

and α2-PC, to the zigzag structure depicted in Fig. 8.1(d).

The reconstruction process of α0-PC can be seen in the snap shots of the optimizing
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Figure 8.3: Spontaneous structural transformation of α0-PC from its initial armchair profile
in (a) to the final structure with a zigzag profile in (d). Snap shots of the intermediate
structures, shown in side view in the upper panels, are accompanied by the corresponding
band structure in the lower panels. Noteworthy is the transition from a metallic structure
in (a) to a semiconductor in (d). The significance of the inequivalent P1 and P2 sites is
discussed in the main text.

process shown in the upper panels of Fig. 8.3(a)-8.3(d). The changing band structure, calcu-

lated using the DFT-PBE functional, is presented below the structural snap shots in Fig. 8.3.

These results allow us to follow the gradual transition from the initial metallic structure in

(a) to a semiconductor with a 0.7 eV band gap in (d). The band gap opening comes along

with a symmetry reduction, best seen in the transformation of the local environment at the

P1 and P2 sites, which are equivalent in (a) and become significantly different in (d). The

final α0-PC structure with inequivalent P1 and P2 sites reflects the bonding configuration in

Fig. 8.2(e) containing P1 sites with lone electron pairs and P2 sites with lone electrons. The

β0-PC structure, depicted in Fig. 8.1(g), remains locally stable in the electronic configuration

shown in Fig. 8.2(d).

To make sure that the reconstruction process of α0-PC is unique and that all structures

discussed in this chapter represent the true equilibrium configuration, rather than an artifact

of unit cell limitations, I doubled the unit cells of all allotropes and found no further changes.
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FigS4

(a)                        (b)
β0 β1

Figure 8.4: Phonon spectra of (a) β0-PC and (b) β1-PC monolayers.

I also found all structures resistant under arbitrary deformations, which is validated by

showing that the phonon spectra of unsupported monolayers are free of imaginary frequencies

that would indicate spontaneous collapse of the structure in a way dictated by the particular

soft mode character. Computation of phonon spectra of 2D structures with low flexural

rigidity is very demanding, since such calculations require very large supercells to yield

converged results in particular for the flexural Z mode with an ω(k)∝k2 dispersion near

the Γ point. For the sake of illustration, I present the phonon spectra of β0-PC and β1-PC

monolayers in Fig. 8.4. The soft out-of-plane acoustic Z modes can be clearly distinguished

from the in-plane transverse acoustic and the in-plane longitudinal acoustic modes, which

are the hardest of the three. Clearly, further structural stabilization that suppresses the Z

modes will occur when PC is deposited on a substrate.

Structural characteristics and the binding energy of the different allotropes are summa-

rized in Table 8.1. My energy results are obtained using the DFT-PBE functional (including

spin polarization where required), which is known to overbind to some degree. I define the

cohesive energy per atom, < Ecoh >, by dividing the total atomization energy by the total
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number of atoms, irrespective of species. The energy values in the first rows indicate that for

given N , the α and β phases are almost equally stable, confirming that categorizing struc-

tures by the number of like neighbors at any site makes sense in terms of stability. Clearly,

N = 2 systems are most stable, followed by N = 1 and N = 0 allotropes. In particular,

the cohesive energy of N = 2 monolayers exceed the 5.14 eV/atom value of the postulated

GaSe-like PC multi-layer structures [191,192] by 0.06 eV/atom.

The lower stability of N = 0 systems has been anticipated above, since the octet rule

can not be satisfied at all sites. I also note that the α0 phase is slightly more stable than

the β0 phase of PC. The stability advantage of α0-PC derives from the larger variational

freedom within the unit cell, which allows the distinction of two different P sites (P1 and

P2), as shown in Fig. 8.1(d) and Fig. 8.2(e). The α0-PC structure consists of P1(sp3)-C(sp2)

chains, which obey the octet rule and form stable ridges, alternating with P2-C chains, which

do not obey the octet rule and form terraces.

Additional support for the plausibility of the bonding configuration depicted in Fig. 8.2

comes from the equilibrium bond lengths, which are listed in Table 8.1. With the exception

of N = 0 structures, the bond lengths depend primarily on N and are rather insensitive to

the phase (α or β). For N = 1 and N = 2 structures, the C-C bond lengths lie close to the

1.42 Å value in sp2 bonded graphite (or graphene) and the P-P bond lengths are close to

the 2.26− 2.29 Å range found in layered black phosphorus (or phosphorene).

As seen in Fig. 8.2(a) and 8.2(b), P and C atoms are connected by a single-bond with

dP−C≈1.85 Å in N = 1 and N = 2 category structures. As suggested above, the bonding

is frustrated at least in parts of N = 0 structures. In the significantly reconstructed α0-PC

system, depicted in Fig. 8.1(d), I can distinguish P1 sites at ridges from P2 sites at terraces.

The lengths of the three P-C bonds are very similar at each of the P sites of one type, but
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Figure 8.5: Electronic band structure, density of states (DOS), and charge density ρvc
associated with valence frontier states of αN and βN allotropes, where N is the structural
category. The energy range associated with ρvc is indicated by the green shaded region
in the band structure and DOS panels and extends from EF − 0.45 eV< E < EF in (a),
EF −0.40 eV< E < EF in (c) and (d), EF −0.10 eV< E < EF in (b), (e) and (f). Isosurface
plots of ρvc are displayed in the right-side panels and superposed with ball-and-stick models
of the structure in top and side view. The isosurface values of ρvc are 1.0×10−3 e/Å3 in (a),
2.0×10−3 e/Å3 in (b), 0.5×10−3 e/Å3 in (c) and (d), and 0.5×10−4 e/Å3 in (e) and (f).

they differ significantly between P1 and P2. At P1 sites that satisfy the octet rule, as seen in

Fig. 8.2(e), the P1-C bond length of 1.86 Å is very similar to N = 1 and N = 2 structures.

At P2 sites, which do not satisfy the octet rule, the frustrated bonds are much shorter with

dP−C = 1.71 Å. As seen in Fig. 8.1(g), there is no reconstruction in the β0-PC structure. As

seen in the corresponding Fig. 8.2(c) or 8.2(d), the octet rule is only satisfied at either the

P or the C sites. The P-C bonds are frustrated and their length of 1.78 Å lies in-between

the P1-C and P2-C bond lengths in α0-PC.
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Results of my DFT-PBE electronic band structure calculations for monolayers of the six

proposed PC allotropes are presented in Fig. 8.5.

The electronic band structure and associated density of states (DOS) of N = 0 systems

is shown in Fig. 8.5(a) and 8.5(b). My results in Fig. 8.5(a) suggest that α0-PC is an

indirect-gap semiconductor with a band gap of ≈0.7 eV. In stark contrast, the structurally

similar β0-PC allotrope is metallic according to Fig. 8.5(b). As suggested earlier, all bonds

and electronic configurations are frustrated in β0-PC, with all C sites engaging only three

valence electrons in sp2-like bonds, leaving one lone electron behind, and the angle at the

P ridge being too large for typical sp3 bonding. This finding, in particular the presence of

a non-bonding electron in the C2p⊥ orbital, is seen in the frontier states of β0-PC that are

depicted in the right panel of Fig. 8.2(b).

α0-PC is quite different from β0-PC, as it contains two inequivalent P and C sites. The

P1 site at the ridge displays the favored sp3 bonding characteristic and its lone pair orbital is

present in the frontier state displayed in the right-hand panel of Fig. 8.5(a). In contrast, the

bonding is very different at the P2 site, where the lone pair orbital does not contribute to the

frontier state. The flat bonding geometry near this site is reminiscent of sp2 bonding at the

C sites. The added flexibility provided by a larger unit cell allows for additional stabilization

of α0-PC due to the opening of a band gap, in rough analogy to the Peierls instability.

As seen in Fig. 8.5(c) and 8.5(d), both α1-PC and β1-PC have a direct band gap, which I

attribute to the presence of isolated ethylene-like units mentioned above. The two allotropes

display a very similar charge distribution in their valence frontier states, which contain lone

pair orbitals on P sites and reflect sp2 bonding between C sites. The main difference between

the two structures is that the 0.4 eV wide gap in α1-PC is at the Γ point, whereas the 0.3 eV

gap in β1-PC is at the X point. In both structures, the band dispersion is rather anisotropic
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near the top of the valence and bottom of the conduction band, which causes an anisotropy

in the effective mass. I find the effective mass of both electrons and holes to be much

smaller along x-direction than along the y-direction, which is reminiscent of the situation in

black phosphorene [27, 28]. The effective mass anisotropy offers a significant advantage in

transport, since it combines high mobility of carriers with a large DOS near the band edges.

According to Fig. 8.5(e) and 8.5(f), the two N = 2 allotropes, α2-PC and β2-PC, share

very similar band structure, DOS, and frontier orbitals due to structural similarities. The

electronic structure of these systems is nevertheless very different from the other two cate-

gories, chiefly due to the presence of trans-polyacetylene-like chains mentioned above. Both

α2-PC and β2-PC display a Dirac cone at the Fermi level, at a crystal momentum between Γ

and Y . As mentioned before, the distinguishing feature of N = 2 structures is the alternation

between chains consisting of pure P or pure C atoms. Fig. 8.2(b) indicates that all P sites

have occupied lone pair orbitals, which are also reflected in the frontier states. The P chains

form ridges within the structure, with bond angles characteristic of the sp3 bonding found in

black phosphorus. The structure of the carbon chains, also illustrated in Fig. 8.2(b), resem-

bles that of conjugated trans-polyacetylene or graphene with sp2 bonding, and the presence

of C2p⊥ orbitals in the frontier states is clearly seen in the right-side panels of Fig. 8.5(e)

and 8.5(f). Differences between equilibrium bond length and bond angles of the P and C

chains are accommodated by introducing pentagon-heptagon pairs. The conjugation within

C chains and their suppressed dimerization caused by their bonding to adjacent P chains lies

behind the formation of the Dirac cone. Due to the strong anisotropy in the system, caused

by the direction of the trans-polyacetylene-like chains, the Dirac cone is anisotropic in the

plane of the layer.
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Figure 8.6: Band structure of semi-metallic (a) α2-PC and (b) β2-PC near the Dirac point.
(c) Definition of the high-symmetry points in the Brillouin zone of the structures in (a) and
(b).

More information about the band structure of semi-metallic α2 and β2 allotropes of PC

is displayed in Fig. 8.6(a) and 8.6(b). Each structure has a Dirac point at point A located

in-between Γ and Y in the Brillouin zone shown in Fig. 8.6(c). The unusual location of

the Dirac points inside the Brillouin zone differs from its location in Brillouin zone corners

in graphene. Due to the strong structural anisotropy in the systems, the Dirac cone is

anisotropic and thus not a true cone. The opening angle of the cone, given by the E(k)

dispersion near A, is largest along the A−B direction and the smallest along the A− Γ or

A− Y direction. I have found that uniaxial strain may be used to eliminate the anisotropy

of the Dirac cone. At the same time, however, also the location of the Dirac point along

Γ− Y line in the Brillouin zone changes.

Even though DFT-PBE calculations notoriously underestimate the fundamental band

gap between occupied and unoccupied states, the calculated dispersion E(k) of individual

bands is believed to closely resemble experimental values. For the sake of comparison, I

have also performed DFT-HSE06 [68, 200] calculations with a hybrid exchange-correlation

functional for the same structures. As seen in Fig. 8.7, my HSE06 studies use the default
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Figure 8.7: Electronic band structure of (a) α0-PC, (b) α1-PC, (c) α2-PC, (d) β0-PC, (e)
β1-PC, and (f) β2-PC monolayer obtained using DFT calculations with PBE and HSE06
exchange-correlation functionals.

value of 0.25 for the mixing parameter and, for the sake of fair comparison, the identical

geometry that had been optimized by DFT-PBE. Band structure results in Fig. 8.7 indicate

that for the semiconducting α0-PC, α1-PC and β1-PC structures, HSE06 shifts occupied

states rigidly down and unoccupied states up with respect to the Fermi level, thus increasing

the band gap value. As a result, HSE06 gives band gap values of 1.5 eV for α0-PC, 1.1 eV for

α1-PC, and 0.8 eV for β1-PC. As a consequence of the increased band gap, the compressive

in-layer strain required to close this gap in α1-PC and β1-PC will be larger than what was

expected based on DFT-PBE results. HSE06 does not affect the metallic character of β0-PC

and semi-metallic character of α2-PC and β2-PC predicted by DFT-PBE, but increases the

band dispersion and thus the width of the valence and conduction bands.
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Figure 8.8: Effect of uniaxial in-layer strain on (a) the relative binding energy ∆Etot and
(b) the fundamental band gap in different PC allotropes. Results for α0-PC, β0-PC, α1-PC,
β1-PC, α2-PC and β2-PC are distinguished by color and symbols. Results for strain in the
x-direction, defined in Fig. 8.1, are shown by solid lines and for strain in the y-direction by
dashed lines.

Similar to other non-planar 2D systems like phosphorene, PC is susceptible to even

minute in-plane stress, which can cause major distortions in the geometry, affecting the

electronic structure and bonding. To quantify this effect, I have determined the effect of

tensile and compressive strain on the stability and the fundamental band gap in the different

PC allotropes and present the results in Fig. 8.8. I have considered uniaxial strain along

the x- and the y-direction, defined in Fig. 8.1. Since all allotropes discussed here are non-

planar, applying in-layer strain changes the effective thickness of the layers and vice versa.

As expected, layer thickness is reduced under tensile strain and increased under compressive

strain. For strain values below 5%, I have observed changes in layer thickness of up to 10%.

The distinct structural anisotropy, best seen in the side views, translates into a distinct

anisotropy of the strain energy with respect to the strain direction, shown in Fig. 8.8(a).

Similar to black phosphorene, the system appears soft when strained along the x-direction

normal to the ridges and valleys, whereas it is much stiffer when distorted along the y-

direction. I find the α phase to be particularly soft in the x-direction, with compressive or
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tensile strain requiring ∆E.5 meV/atom in strain energy.

The dependence of the fundamental band gap on the in-layer strain, as obtained by

my DFT-PBE calculations, is shown in Fig. 8.8(b). I find that compression along the soft

x-direction does not affect the band gap much, quite unlike what is expected to occur in

black phosphorene [28]. This is quite different from my results for strain along the stiffer

y-direction. There, I observe the fundamental band gap to disappear at compressive strain

exceeding 4% for α1-PC and 3% for β1-PC. I also find that the metallic character of β0-PC

and semi-metallic character of α2-PC and β2-PC are not affected by tensile or compressive

strains up to 5% applied along the x- or the y-direction. Since vertical strain causing a 10%

reduction of the layer thickness is equivalent to an effective tensile in-layer strain below 5%,

I can judge its effect on the electronic structure based on the above findings.

Even though the cohesive energy of the 2D structures presented here exceeds that of

previously discussed PC systems, the calculated cohesive energy per formula unit still falls

0.54 eV short of the sum of the cohesive energies of pure black phosphorene, 3.27 eV, and

pure graphene, 7.67 eV according to DFT calculation. Even though the PC allotropes

discussed here are all stable, the slight energetic preference for pure components over the

PC compound should offer challenges in the synthesis. Recent advances in supramolecular

assembly may solve this problem. Similar to my requirements, precisely designed structures

including graphdiyne [203, 204], graphene nanoribbons [205] and carbon nanotubes [206]

have been assembled using wet chemical processes from specific molecular precursors. In the

same way, I expect that the postulated 2D-PC structures may be formed of proper molecular

precursors that contain sp2 bonded carbon and sp3 bonded phosphorus.
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8.4 Summary

In conclusion, I have performed ab initio density functional calculations and identified pre-

viously unknown allotropes of phosphorus carbide (PC) in the stable shape of an atomically

thin layer. I found that different non-planar stable geometries, which result from the com-

petition between sp2 bonding found in graphitic C and sp3 bonding found in black P, may

be mapped onto 2D tiling patterns that simplify categorizing of the structures. I have in-

troduced the structural category N , defined by the number of like nearest neighbors ranging

from 0 to 2, and found that N correlates with the stability and the electronic structure char-

acteristic. I found structures of the N = 0 category either to be metallic or to reconstruct

spontaneously to a more stable structure with a larger unit cell and a sizeable fundamental

gap. Systems of the N = 1 category are more stable than N = 0 systems and display a

significant, direct band gap and a significant anisotropy of the effective mass of carriers.

N = 2 systems are the most stable of all, are semi-metallic, and display an anisotropic Dirac

cone at the Fermi level. Due to their non-planar character, all systems can sustain in-layer

strain at little energy cost. The fundamental band gap is not very sensitive to strain in most

systems with the exception of N = 1 allotropes, where it closes upon applying compressive

strain of .5% along the ridges and valleys.
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Chapter 9

Curvature and stability for

two-dimensional systems

The following discussion is my original contribution to the related publications by Jie Guan,

Zhongqi Jin, Zhen Zhu, Chern Chuang, Bih-Yaw Jin and David Tománek, Phys. Rev. B 90,

245403 (2014) [207], and by Chern Chuang, Jie Guan, David Witalka, Zhen Zhu, Bih-Yaw

Jin and David Tománek, Phys. Rev. B 91,165433 (2015) [208].

9.1 Introduction

Layered structures including graphite, hexagonal boron nitride, black phosphorus, transition

metal dichalcogenides such as MoS2, and oxides including V2O5 are very common in Nature.

The possibility to form stable two-dimensional (2D) structures by mechanical exfoliation of

these structures appears very attractive for a variety of applications. [45, 209] The most

prominent example of such 2D systems, graphitic carbon, is the structural basis not only of

graphene, [45] but also fullerenes, nanotubes, tori, and schwarzites. [46–50] Even though the

structural motif in all of these systems may be the same, their mechanical and electronic

properties depend sensitively on the local morphology. [51–53] Not only does the natural

abundance of structural allotropes and isomers reflect their net energetic stability, but also

the relative chemical reactivity of specific sites in a given structure correlates well with the
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Figure 9.1: Principal radii of curvature R1, R2 and the Gaussian curvature G on the surface
of (a) a sphere and (b) a cylinder and (c) at a saddle point. (d) Determination of the local
curvature at point P using the atomic lattice (grey dashed lines) and the dual lattice (blue
solid lines). P is the center atom and Fi (i = 1 3) are three first neighbors. Vi (i = 1 3) are
vertices of due lattice.

local curvature and local stability. [51–53] This relationship has been well established for

the reactive sites in the C50 fullerene, [51] used to induce structural collapse leading to

chemical unzipping of carbon nanotubes, [93,210,211] and used to destroy collapsed carbon

nanotubes. [53]

For very large structures, estimating the global or local stability using ab initio calcu-

lations has proven impracticable. Instead, in such structures the stability has often been

estimated using empirical rules or parameterized force fields including the Tersoff poten-

tial and molecular mechanics, [54–57] with sometimes unsatisfactory results. Application

of continuum elasticity theory, which can describe stability changes due to deviation from
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planarity, has been successful, but it is limited to systems with a well-defined, constant cur-

vature. [58, 59] Since strain energy is dominated by local geometry and independent of the

global morphology, it is intriguing to explore, whether the local deformation energy may be

accurately determined from local morphology estimates using the atomic geometry. If so,

then the local stability in even arbitrarily shaped structures could be estimated accurately.

Here I propose a fast method to determine the local curvature in 2D systems with a com-

plex morphology using the local atomic geometry. Curvature information alone, combined

with elastic constants obtained for a planar system, provides accurate stability estimates

in the framework of continuum elasticity theory. I find that relative stabilities of graphitic

structures including fullerenes, nanotori, nanotubes, and schwarzites, as well as phosphorene

nanotubes, calculated using this approach, agree closely with ab initio density functional

calculations. The continuum elasticity approach can be applied to all 2D structures and

is particularly attractive in complex systems with known structure, where the quality of

parameterized force fields has not been established.

9.2 Continuum elastic method

The local curvature at a particular location on a surface is given by the two principal radii

of curvature R1 and R2, as shown in Fig. 9.1. On a spherical surface, R1 = R2. On

a cylindrical surface, R1 is the cylinder radius and R2→∞. Finally, a saddle point on a

surface is characterized by opposite signs of R1 and R2. Knowing the principal radii of

curvature everywhere, I may use continuum elasticity theory to determine the curvature
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energy ∆EC with respect to a planar layer using [212]

∆EC =
1

2
D

∫
surface

dA

(
1

R2
1

+
1

R2
2

+
2α

R1R2

)
. (9.1)

Here, the integral extends across the entire surface, D is the flexural rigidity and α is the

Poisson ratio. Simple expressions for ∆EC can be obtained for simple morphologies such as

a sphere or a cylinder, where R1 and R2 are constant everywhere. [58] This is, however, not

the case in general.

I find it convenient to introduce the local mean curvature

k =
1

2

(
1

R1
+

1

R2

)
(9.2)

and the local Gaussian curvature

G =
1

R1R2
. (9.3)

Using these quantities, I can rewrite Eq. (9.1) as

∆EC = D

∫
surface

dA
[
2k2 − (1− α)G

]
. (9.4)

In the following, I will consider the equilibrium arrangement of atoms in a planar 2D

structure as the reference structure and will determine the local curvature from changes in

the local morphology. The discrete counterpart of Eq. (9.4) for the curvature energy ∆EC

is a sum over atomic sites i,

∆EC≈DA
∑
i

[
2k2i − (1− α)Gi

]
, (9.5)
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where A is the area per atom.

To use Eq. (9.5) for curvature energy estimates, I need to know the local curvatures k and

G at all atomic sites. My approach to estimate these values at a given site P is illustrated

in Fig. 9.1(d). According to Eq. (9.2), the local mean curvature k should be close to the

average inverse radius of curvature at that point,

k≈
〈

1

R

〉
. (9.6)

Since the atomic site P and its nearest three neighbors F1, F2 and F3 define the surface of

a sphere of radius R, I take k = 1/R.

The positions of four atoms do not allow one to distinguish whether P is on a plane, a

sphere or a cylinder or at a saddle point. I may obtain this additional information using the

concept of an angular defect. On any surface that can be triangulated as in Fig. 9.1(d), the

angular defect at a representative vertex V1 is defined by ∆(V1) = 2π −
∑
i ϕi in units of

radians. The local Gaussian curvature at V1 is then given by [213]

G(V1) = ∆(V1)/At =

(
2π −

∑
i

ϕi

)
/At , (9.7)

where At is the total area of the triangulated surface divided by the number of vertices.

For trivalent molecular graphs containing 5-, 6- and 7-membered rings found in fullerenes,

carbon nanotubes, and schwarzites, a unique triangulation may be obtained by connecting

the centers of adjacent polygons. This method is referred to as the dual graph in graph

theory [214] and its use is illustrated in Fig. 9.1(d). Since P is not a vertex in the dual graph,

but rather the center of the triangle 4V1V2V3, I must infer the local Gaussian curvature at
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P from the angular defects at V1, V2 and V3. If vertex Vj is surrounded by nj triangles, I

may assign to point P the angular defect ∆(P ) = ∆(V1)/n1 + ∆(V2)/n2 + ∆(V3)/n3. Then,

I can estimate the local Gaussian curvature at P as

G(P ) = ∆(P )/A , (9.8)

where A is the average area per atom. I use A = 2.62 Å2, the value found in the honeycomb

lattice of graphene, for all graphitic structures.

The above definition of the local Gaussian curvature satisfies exactly the equality

A
∑
atoms

G(Pj) = At
∑

vertices

G(Vj) = 2πχ . (9.9)

Here, χ is the Euler characteristic of the surface, given by χ = 2 − 2g, where g is the

genus, meaning ‘number of holes’. Of interest here is the fact that χ = 2 for spherical

objects like fullerenes and χ = 0 for cylindrical objects such as nanotubes. Equation (9.9)

is the discretized version of the Gauss-Bonnet theorem [215] regarding the integral of the

Gaussian curvature over an entire closed surface, called the sum of the defect, which is

usually formulated as
∫
surfaceGdA = 2πχ.

The variation of the local Gaussian curvature G and the local curvature energy ∆EC/A

across the surface of carbon polymorphs, including two fullerene isomers, a nanotube, and a

schwarzite structure, is displayed in Fig. 9.2. The local curvature energy in these sp2-bonded

structures has been evaluated using the elastic constants of graphene [58]: D = 1.41 eV and

α = 0.165. The higher stability of the C38(17) isomer in Fig. 9.2(b) is reflected in a rather

uniform curvature energy and Gaussian curvature distribution. The low stability of the
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Figure 9.2: Local Gaussian curvature G (upper panels) and local curvature energy ∆EC/A
(lower panels) across the surface of (a) the least stable C38 isomer, (b) the most stable C38
isomer, (c) a (10,10) carbon nanotube, and (d) a schwarzite structure with 152 atoms per
unit cell. The values of G and ∆EC/A have been interpolated across the surface.

C38(2) isomer in Fig. 9.2(a) is reflected in a large variation of curvature energy and Gaussian

curvature, clearly indicating the most reactive sites. Cylindrical carbon nanotubes, such as

the (10,10) nanotube displayed in Fig. 9.2(c), have zero Gaussian curvature and a constant

curvature energy caused by the mean curvature. Schwarzites such as the C152 structure,

displayed in Fig. 9.2(d), have only negative Gaussian curvature that may vary across the

surface, causing variations in the local curvature energy.

9.3 Validation of the continuum elasticity approach

I will next test the accuracy of the continuum elasticity approach by calculating the rel-

ative stability of non-planar structures based on graphitic carbon. An infinite number of

morphologies including nanotubes, fullerenes and schwarzites may be produced by deform-

ing a segment of a graphene layer and reconnecting its edges so that all carbon atoms are

94



Figure 3
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Figure 9.3: Strain energy ∆E in carbon nanostructures with respect to the graphene reference
system. (a) DFT-based total strain energy ∆EDFTtot for selected fullerenes, with the most
stable isomers indicated by the larger symbols. (b) Strain energy ∆E in different C38

isomers. Total energy differences ∆EDFTtot based on DFT, ∆E
Tersoff
tot based on the Tersoff

potential and ∆E
Keating
tot based on the Keating potential are compared to curvature energies

∆E
Keating
C based on Keating-optimized geometries. To further compare curvature energy

based on different geometries, ∆EDFTtot are compared to curvature energies ∆EDFTC based

on continuum elasticity theory for structures optimized by DFT, and ∆E
Keating
C in (c).

threefold coordinated. In many cases, the non-planar structures contain carbon pentagons

and heptagons in the graphitic honeycomb arrangement of atoms as required by Euler’s

theorem. [215]

To validate the continuum elasticity theory results, I calculated the total energy of a

graphene monolayer and selected graphitic structures using ab initio density functional the-

ory (DFT) as implemented in the SIESTA code. [69] I used the Local Density Approximation

(LDA) [216, 217] and Perdew-Burke-Ernzerhof (PBE) [64] exchange-correlation functionals,

norm-conserving Troullier-Martins pseudopotentials [145], and a double-ζ basis including

polarization orbitals. The 1D Brillouin zone of nanotubes was sampled by 16 k-points and

the 2D Brillouin zone of graphene by 16×16 k-points. [136] The small Brillouin zones of

schwarzites with several hundred C atoms per unit cell were sampled by only 1 k-point. All

the other parameters used here are the same as previous chapters.

My DFT-LDA results for the relative energy ∆EDFTtot of optimized Cn fullerenes [218]
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with respect to graphene are shown in Fig. 9.3(a). The various data points for one size

correspond to different structural isomers, which increase fast in number with increasing n.

If all fullerenes were perfect spheres, Eq. (9.4) would simplify to [58] ∆EC = 4πD(1 + α).

Using the proper elastic constants for graphene [58] D = 1.41 eV and α = 0.165, I would

estimate ∆EC = 20.6 eV for all fullerenes independent of size. The numerical values for the

different optimized fullerene isomers in Fig. 9.3(a) are all larger, indicating that variations

in the local curvature and bond lengths cause a significant energy penalty.

As I show in the following, considering only local curvature variations across the surface

(and ignoring precise atomic positions) allows continuum elasticity theory to quantitatively

predict the strain energy with a precision competing with ab initio calculations. To illustrate

this point, I present in Fig. 9.3(b) the total strain energy ∆E in seventeen isomers of C38

obtained using various approaches. The strain energy ∆EDFTtot based on DFT, which is

expected to represent closely the experimental results, is not only significantly lower than

the predicted values, ∆E
Tersoff
tot , based on the Tersoff potential [54] but also differs from

this popular bond-order potential in the prediction of relative stabilities.

Next I demonstrate that accurate energy estimates may be obtained even for geometries

optimized using simple potentials with only bond stretching and bond bending terms such

as the Keating potential [219,220]

∆EK =
1

2
αK
∑
<i,j>
i<j

(r2ij −R
2)2

R2
+

1

2
βK
∑

<i,j,k>
j<k

(rij · rik + 1
2R

2)2

R2
. (9.10)

The first term sums over nearest neighbor pairs and the second term over nearest neighbor

triplets, where j and k share the same neighbor i. DFT calculations for graphene yield

R = 1.42 Å as bond length, 120◦ as bond angle, αK = 11.28 eV/Å2 and βK = 4.14 eV/Å2.
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Strain energies for Keating optimized fullerenes are shown in Fig. 9.3(b). Whereas the

Keating optimized geometry is close to the DFT optimized geometry, the Keating strain

energy ∆E
Keating
tot clearly underestimates the DFT values and does not correctly represent

the relative stabilities of the different isomers. As an alternative, I used the Keating op-

timized geometry to obtain the curvature strain energy ∆E
Keating
C using the continuum

approach. I found that this approach represents the relative stabilities of isomers adequately

and compares well to ∆EDFTtot . The curvature strain energy values are somewhat lower than

the DFT values, since energy penalties associated with bond stretching and bending do not

appear in the continuum approach. The small value of such corrections reflects the fact that

in equilibrated structures, bond lengths and angles are near their optimum. The largest

errors are expected in frustrated structures, where not all bond lengths and angles can be

optimized simultaneously.

One of the key findings of this study is that continuum elasticity theory provides not

only a fast, but also a relatively robust way to determine relative stabilities that are, to

some degree, insensitive to the precise geometry. I illustrate this point in Fig. 9.3(c), where I

compare different ways to determine the total strain energy ∆E in all C38 isomers discussed

in Fig. 9.3(b). ∆EDFTtot , shown by the solid line, is the difference between the total energy

in DFT of DFT-optimized C38 isomers and 38 carbon atoms in the graphene structure.

∆EDFTC , given by the dashed line, is the curvature energy based on the DFT-optimized

geometry. ∆E
Keating
C , given by the dash-dotted line, is the curvature energy based on the

Keating-optimized geometry. I note that all expressions provide an accurate representation

of relative stabilities. As mentioned above, the fact that ∆EC is about 10% lower than

∆Etot is caused by my neglecting the stretching and bending of discrete atomic bonds in the

continuum approach.
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Figure 9.4: (Color online) Strain energy ∆E in carbon nanostructures with respect to the
graphene reference system. (a) Comparison between DFT-based total energies ∆EDFTtot and

the curvature energy ∆E
Keating
C based on Keating-optimized geometries for all fullerene

isomers considered in Fig. 9.3(a). (b) Comparison between DFT-based strain energies

∆EDFTtot /n and curvature energies per atom ∆E
Keating
C /n for Keating-optimized geome-

tries of fullerenes, nanotubes and schwarzites. Dashed lines represent agreement between
DFT and continuum elasticity results.

Encouraged by the level of agreement for C38, I present in Fig. 9.4(a) the correlation

between the curvature energy ∆E
Keating
C and ∆EDFTtot based on DFT for all fullerenes

discussed in Fig. 9.3(a). The narrow spread of the data points close to the ∆E
Keating
C =

∆EDFTtot line confirms that the continuum elasticity approach is competitive in accuracy

with computationally much more involved ab initio calculations.

To demonstrate the generality of my approach, I extend it from near-spherical fullerenes

to nanotubes with cylindrical symmetry and schwarzites with local negative Gaussian curva-

ture. Since nanotubes and schwarzites are infinitely large, I compare stabilities on a per-atom

basis in these structures. Besides results for the fullerenes discussed in Figs. 9.3 and 9.4(a),

Fig. 9.4(b) displays results for nanotubes with radii ranging between 2.5 − 9.0 Å and for

schwarzite structures with 152, 192 and 200 carbon atoms per unit cell. These results again

indicate excellent agreement between curvature energies in Keating-optimized structures and
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Figure 9.5: (a)Atomic structure of a polygonal nanotorus containing non-hexagonal rings.

(b) Energy differences per atom ∆EDFTtot based on DFT and ∆E
Keating
tot based on the Keat-

ing potential are presented next to curvature energies ∆E
Keating
c for Keating-optimized

geometries.

DFT-based strain energies. This agreement is particularly impressive, since the spread of

atomic binding energies extends over more than 1 eV.

My continuum elastic method was also applied to polygonal carbon nanotori. Unlike

the polyhex nanotori rolled up from carbon nanutubes, the polygonal nanotori also contain

non-hexagonal rings to release the large in-plane strain, as an example shown in Fig. 9.5(a).

The results of my methodology to a subset of 22 polygonal nanotori are shown in Fig. 9.5(b).

Here the strain energy calculated through Eq. (9.5) with geometry optimized by Keating po-

tential is represented by the green squares, energy calculated with the accurate DFT method

by black dots, and the Keating potential energy for the Keating-optimized optimized geom-

etry by red rhombi. My results show clearly that for Keating-optimized geometries, strain

energies based on Eq. (9.5) reproduce my ab initio results rather well. On the other side,

strain energies estimated using Keating potential alone not only significantly underestimates

the strain, but also do not follow the correct general trend. This firmly establishes the

applicability of the continuum methodology to polygonal nanotori under investigation.
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Figure 9.6: Local Gaussian curvature G (left panels) and local curvature energy ∆Ec/A
(right panels) across the surface of selected nanotori. Representative examples shown are
(a) the flattened C320 nanotorus with 320 atoms and (b) the elongated C280 nanotorus with
280 atoms. G and ∆Ec/A are interpolated from their values at the atomic sites.

The distribution of the local Gaussian curvature Gi and the local curvature energy per

area, ∆E
(i)
c /A0 = D[2k2i − (1 − α)Gi], across the surface of two representative nanotori is

shown in Fig. 9.6. In both cases the positively curved segments, shown in red and yellow in

the left panels, are concentrated near the loci of pentagons along the outer perimeter. The

negatively curved segments, shown in blue, are concentrated near the loci of heptagons along

the inner perimeter. Specifically, the heptagons along the inner perimeter of the C320 nan-

otorus in Fig. 9.6(a) are well separated from the pentagons along the outer perimeter. This

is different from the axially elongated C280 torus of Fig. 9.6(b), where pentagon-heptagon

pairs in the upper and lower planes form an azulene-like pattern. As a consequence, the

Gaussian curvature is more evenly distributed in the latter. I emphasize again that for

closed nanotori, the summation of the local Gaussian curvatures is strictly zero as dictated
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by the Gauss-Bonnet theorem.

The distribution of the local curvature energy is even more intriguing. I observed some

degree of correlation between the absolute value of the local Gaussian curvature and the

curvature energy. This should imply, at least for the nanotori investigated, that the two local

curvatures ki and Gi are not entirely independent. Yet the value of this correlation has its

limitations, as shown in Fig. 9.6. Whereas in the flattened C320 nanotorus in Fig. 9.6(a) the

curvature energy is rather evenly distributed across the structure, the strain is clearly largest

near the upper and lower ends of the C280 nanotorus in Fig. 9.6(b). This curvature energy

distribution in the right panels differs obviously from the Gaussian curvature distribution

in the left panels. The reason for this finding is that in these extreme structures, I can

not truly decouple ki and Gi. In C280, Gi≈0 and ki is constant in the central ‘tubular

segments’. Only at the upper and lower ends, a large mean curvature ki is required to

connect the inner and the outer tube. The flatter C320 nanotorus lacks ‘tubular segments’

with Gi≈0. Therefore, the Gaussian curvature and curvature energy are better correlated

and more evenly distributed in this isomer.

As suggested at the outset, my approach to estimate relative stabilities is particularly

valuable for unexplored systems such as monolayers of blue phosphorus, [33] where model po-

tentials have not yet been proposed. My DFT-PBE results for a blue phosphorene monolayer

indicate A = 4.78 Å2 as the projected area per atom, D = 0.84 eV and α = 0.10. The mono-

layer structure, shown in the top panel of Fig. 9.7(a), has an effective thickness of 1.27 Å.

This structure can be rolled up into phosphorene nanotubes with different radii R using the

approach used in the construction of carbon nanotubes. [50] As seen in Fig. 9.7(b), the strain

energy for this geometry, obtained using continuum elasticity theory, agrees very well down

to very small radii with results obtained using much more involved DFT calculations [173].
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Figure 5

(a)                                  (b)

R

Figure 9.7: (a) Perspective view of the planar structure of a blue phosphorene monolayer
(top), which has been rolled up to a nanotube with radius R (bottom). (b) Compari-
son between the strain energy per atom ∆EC/n based on continuum elasticity theory and
∆EDFTtot /n based on DFT in blue phosphorene nanotubes. The dashed line represents agree-
ment between DFT and continuum elasticity results.

9.4 Discussion

Given a set of points in space, such as atomic positions, it is possible to construct a smooth

surface that contains all these points in order to characterize its shape everywhere, and to

eventually determine the deformation energy using the continuum elasticity approach.

I illustrate this point by tessellating the smooth surface of a graphitic nanocapsule, con-

sisting of a cylinder capped by hemispheres at both ends and representing C120, in different

ways. My results in Fig. 9.8 show that the average curvature energy < ∆EC > is rather in-

sensitive to the tessellation density. The horizontal dashed line at < ∆EC >= 0.099 eV/Å2,

representing an extrapolation to a dense tessellation, is≈5% higher than the exact continuum

elasticity value of 0.093 eV/Å2, obtained for an ideal capsule with cylinder and hemisphere

radius R = 3.55 Å. The small difference arises from my approximate way to estimate the

mean curvature k on the cylinder surface and at the interface between the cylinder and the

hemisphere. The extrapolated value is also close to the value of < ∆EDFTtot >= 0.100 eV/Å2
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Figure 9.8: Average curvature energy < ∆EC > per area of a nanocapsule tessellated by
a honeycomb lattice with different numbers of vertices. The vertical dash-dotted red line
indicates that the capsule represents the C120 structure. The inset shows, how the capsule
surface can be tessellated by a honeycomb lattice with 120 vertices or atoms, shown by the
white lines, and also with 480 vertices, shown by the red lines. The horizontal dashed black
line represents an extrapolation to an infinitely dense tessellation.

based on the DFT-optimized C120 capsule.

The reverse process to determine atomic positions from the shape alone is not unique.

An informative example is the structure of a carbon nanotube. Whereas the precise atomic

structure within each nanotube is defined by the chiral index, many nanotubes with different

chiral indices share essentially the same diameter and the same local curvature. Thus, given

only the diameter of a (wide) hollow cylinder representing a nanotube, it is impossible to

uniquely identify the chiral index and thus the atomic position. As a matter of fact, iden-

tifying the precise atomic positions is not necessary, since according to continuum elasticity

theory, supported by experimental evidence, the stability of nanotubes depends only on the
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tube diameter. [50]

From its construction, the continuum elasticity description of local and global stability

is best suited for very large structures with small local curvatures. Therefore, the high

level of agreement between its predictions and ab initio results in structures with large

local curvatures is rather impressive. Among the different allotropes, I find the continuum

elasticity description to be most accurate for carbon nanotubes, where all bond lengths are

at their equilibrium value. In fullerenes and schwarzites, the presence of non-hexagonal rings,

including pentagons and heptagons, prevents a global optimization of bond lengths and bond

angles, reducing the agreement with DFT results.

My stability results are consistent with the pentagon adjacency rule that provides an

energy penalty of 0.7 − 0.9 eV for each pair of adjacent pentagons, [221–223] which causes

an increase of the local curvature. While this rule is surely useful, it can not compare the

stability of isomers with isolated pentagons or structures of different size.

What I consider the most significant benefit of my approach to determine local strain

is to identify the least stable sites in a structure. Local curvature and in-plane strain play

the key role in both local stability and local electronic structure, [52] which also controls the

chemical reactivity. [51, 53] Thus, my approach can identify the most reactive and the least

stable sites, which control the stability of the entire system.

9.5 Summary

In conclusion, I have introduced a fast method to determine the local curvature in 2D systems

with arbitrary shape. The curvature information, combined with elastic constants obtained

for a planar system, provides an accurate estimate of the local stability in the framework of
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continuum elasticity theory. Relative stabilities of graphitic structures including fullerenes,

nanotori, nanotubes and schwarzites, as well as phosphorene nanotubes calculated using

this approach, agree closely with ab initio density functional calculations. The continuum

elasticity approach can be applied to all 2D structures and is particularly attractive in

complex systems with known structure, where the quality of parameterized force fields has

not been established.
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Chapter 10

Conclusions

2D materials have attracted a lot of attention since the successful exfoliation of graphene.

Lack of a fundamental band gap in graphene turned out into an unsurmountable obstacle

for electronics applications. TMDs, which have nonzero band gap and are chemical stable,

have become the most promising 2D candidates for the semiconducting channel materials.

However, the performance of TMD-based devices is still not satisfactory, mainly due to their

low carrier mobility. Additional challenges come from the small size of synthesized samples,

defects, contacts, and the limitations in the tuning of band gaps in electronic devices.

Few-layer black phosphorus has emerged as a new, promising material in 2014. This

field grows fast due to the nonzero band gap and high carrier mobility in black phosphorus.

Anisotropic transport, tunable band gap, and various stable phases make phosphorene, the

monolayer of black phosphorus a unique 2D material. The biggest challenge for the applica-

tion of phosphorene is its insufficient chemical stability in air. In all phosphorene structures,

each phosphorus atom is sp3 hybridized, has three covalent bonds and one lone electron pair.

The lone pair with energy near the Fermi level easily reacts with oxygen atoms in the air.

This will finally form phosphorus oxides or phosphoric acids, resulting in the degradation of

the phosphorene structure. The most efficient way to avoid this is to protect the posphorene

channels by capping them on both sides. The capping layers can be the chemically stable

and insulating hexagonal boron nitride (h-BN), aluminum oxide, or polymer overcoating.

Since phosphorus has several phases with nearly equivalent stability, it may be difficult to
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synthesize high-quality pure-phase phosphorene on a large scale. Multi-layer phosphorene

has a much better stability than a mono-layer and is also easier to obtain in the experiment.

Thus current phosphorene-based devices are mostly using multi-layer phosphorene, and their

performance can be optimized by controlling the thickness of phophorene samples.

As stated before, all materials in the current 2D-semiconductor market have their partic-

ular advantages and disadvantages. It is thus still an important issue to search and design

novel 2D semiconductors to address particular disadvantages and display advanced mechan-

ical and electrical properties. Besides traditional layered black phosphorus and the recently

discovered blue phosphorus, more structural phases for layered phosphorus have been found,

including semiconductors a with tunable band gap and an anisotropic carrier mobility. Sim-

ilar to phosphorus, all the group V elements, such as arsenic and antimony, have layered

allotropes due to their similar chemical properties. Even 2D nitrogen has been predicted

to be stable at low temperatures. In addition to the elemental semiconductors, also com-

pounds of group V elements, such as AsxP1−x and SbxAs1−x, are promising candidates for

2D semiconductors, with properties tunable by changing the stoichiometry.

On the other hand, similar to h-BN which is isoelectronic to graphene and shares its

honeycomb structure, group IV and group VI compounds, such as SiS, SnSe, are isoelectronic

to phosphporus and may share some of its properties. These compounds have stable layered

structures similar to group V elements, but can have very different properties. It is very

possible to solve the problem that most of the 2D group V structures are chemically unstable

by exploring the behavior of other isoelectronic structures. Even though not isoelectronic to

group V systems, combination of sp2 carbon and sp3 phosphorus in a single 2D structure

further widens the scope of the 2D structural family. Identifying the optimum method

for synthesis of all these 2D structures will remain the main challenge for the upcoming
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generation of experimental scientists.
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As mentioned in Chapter 3, there is more than one isomer for La@C60(CF3)n with n ≥ 2. To find 

the most stable isomers of La@C60(CF3)n, I calculated different geometries with n trifluomethyls 

attached on C60 in different arrangements. The results for n = 2, 3, 4 and 5 are shown in Fig. A.1, 

A.2, A.3 and A.4, respectively. In general, coupled with more than one CF3 prefer to be 

separated in a para arrangement, which can be best seen in the case of n = 2 as shown in Fig. A.1. 

The most stable isomer has the two CF3s attached at the para-position in one hexagon shown in 

Fig. A.1(a). The two CF3s are too crowded and less stable when they are closer as shown in Fig. 

A.1 (d), (e), (j). It is also less stable when they are two far away as shown in Fig. A.1 (b), (c), (f), 

(g), (h), (i). For the case of n = 3, the most stable isomer is the one with all three CF3s in para 

arrangement, which has a C2v symmetry as shown in Fig. A.2 (a). The second most stable one 

shown in Fig. A.2 (f) has a C3 symmetry, which is only 0.108 eV less stable. For n = 4 and n = 5 

they do not like all the CF3s para arranged any more. As shown in Fig. A.3 (a), when there are 

four CF3s, they prefer to be separated to two para-arranged pairs of CF3s. The one with all four 

CF3s in para arrangement is slightly less stable with 0.051 eV in energy, as shown in Fig. A.3 (e). 

Both these most stable two isomers for n = 4 have a C2v symmetry. When n = 5, four of the five 

CF3s like to be in para arrangement and with the left one a little far away, as shown in Fig. A.4 

(a). The one with all five CF3s is para arrangement in 0.857 eV less stable, as shown in Fig. A.4 

(b). 

 



(a) (b) (c) (d) (e)2(1) 2(2) 2(3) 2(4) 2(5)
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figS1

ΔE = 0 eV ΔE = 0.382 eV ΔE = 0.587 eV ΔE = 0.730 eV ΔE = 0.947 eV

ΔE = 0.269 eV ΔE = 0.106 eV ΔE = 0.290 eV ΔE = 0.792 eV ΔE = 0.387 eV

La
C
F

Figure A.1: Ten different isomers of La@C60(CF3)n with n = 2. In each subfigure ball-and-
stick model of the optimized structure is shown at the top, the relative DFT-PBE energy
with respect to the most stable isomer is listed in the middle and the corresponding Schlegel
diagram of C60 with trifluoromethyl sites indicated by red dots is shown at the bottom.
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(a) (b) (c)3(1) 3(2) 3(3)

(d) (e) (f)3(4) 3(5) 3(6)

figS2

ΔE = 0 eV ΔE = 0.760 eV ΔE = 0.610 eV

ΔE = 1.267 eV ΔE = 1.061 eV ΔE = 0.108 eV

La
C
F

Figure A.2: Six different isomers of La@C60(CF3)n with n = 3. In each subfigure ball-and-
stick model of the optimized structure is shown at the top, the relative DFT-PBE energy
with respect to the most stable isomer is listed in the middle and the corresponding Schlegel
diagram of C60 with trifluoromethyl sites indicated by red dots is shown at the bottom.
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(a) (b) (c) (d) (e)4(1) 4(2) 4(3) 4(4) 4(5)

(f) (g) (h) (i) (j)4(6) 4(7) 4(8) 4(9) 4(10)

figS3

ΔE = 0 eV ΔE = 1.523 eV ΔE = 1.259 eV ΔE = 0.938 eV ΔE = 0.051 eV

ΔE = 2.812 eV ΔE = 0.373 eV ΔE = 0.691 eV ΔE = 0.729 eV ΔE = 0.773 eV

La

C
F

Figure A.3: Ten different isomers of La@C60(CF3)n with n = 4. In each subfigure ball-and-
stick model of the optimized structure is shown at the top, the relative DFT-PBE energy
with respect to the most stable isomer is listed in the middle and the corresponding Schlegel
diagram of C60 with trifluoromethyl sites indicated by red dots is shown at the bottom.
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(a) (b) (c)5(1) 5(2) 5(3)

(f) (g) (h)5(6) 5(7) 5(8)

figS4

ΔE = 0 eV ΔE = 0.857 eV ΔE = 2.958 eV

ΔE = 1.497 eV ΔE = 0.352 eV ΔE = 1.118 eV

ΔE = 0.293 eV ΔE = 0.409 eV

ΔE = 0.679 eV ΔE = 0.440 eV

(d) (e)5(4) 5(5)

(i) (j)5(9) 5(10)

La
C
F

Figure A.4: Ten different isomers of La@C60(CF3)n with n = 5. In each subfigure ball-and-
stick model of the optimized structure is shown at the top, the relative DFT-PBE energy
with respect to the most stable isomer is listed in the middle and the corresponding Schlegel
diagram of C60 with trifluoromethyl sites indicated by red dots is shown at the bottom.
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